

CAT64LC10/20/40

1K/2K/4K-Bit Serial E2PROM

FEATURES

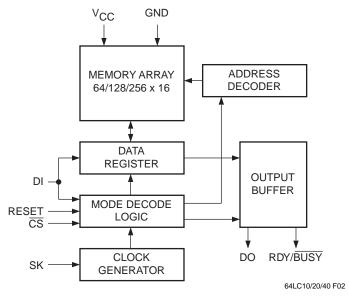
- SPI Bus Compatible
- **Low Power CMOS Technology**
- 2.5V to 6.0V Operation
- Self-Timed Write Cycle with Auto-Clear
- **■** Hardware Reset Pin
- Hardware and Software Write Protection

- **■** Commercial and Industrial Temperature Ranges
- **Power-Up Inadvertant Write Protection**
- RDY/BUSY Pin for End-of-Write Indication
- 1,000,000 Program/Erase Cycles
- 100 Year Data Retention

DESCRIPTION

The CAT64LC10/20/40 is a 1K/2K/4K-bit Serial E²PROM which is configured as 64/128/256 registers by 16 bits. Each register can be written (or read) serially by using the DI (or DO) pin. The CAT64LC10/20/40 is manufactured using Catalyst's advanced CMOS E²PROM float-

ing gate technology. It is designed to endure 1,000,000 program/erase cycles and has a data retention of 100 years. The device is available in 8-pin DIP or SOIC packages.


PIN CONFIGURATION

DIP Package (P) SOIC Package (J) SOIC Package (S) <u>cs</u> □•1 RDY/BUSY -1 CS C RESET □ Vcc □ Vcc 2 7 Vcc ⊏ 2 7 7 SK □ ☐ RDY/BUSY ☐ GND SK [RDY/BUSY 3 6 3 6 3 6 ☐ RESET cs 🖂 DO 🗀 DI 🖂 🗀 RESET 5 5 DO 🗆 ☐ GND SK 🖂 DO [☐ GND 5064 FHD F01

PIN FUNCTIONS

Pin Name	Function
CS	Chip Select
SK	Clock Input
DI	Serial Data Input
DO	Serial Data Output
Vcc	+2.5V to +6.0V Power Supply
GND	Ground
RESET	Reset
RDY/BUSY	Ready/BUSY Status

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias –55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on any Pin with Respect to Ground ⁽¹⁾ 2.0V to +V _{CC} +2.0V
V_{CC} with Respect to Ground –2.0V to +7.0V
Package Power Dissipation Capability (Ta = 25°C)
Lead Soldering Temperature (10 secs) 300°C
Output Short Circuit Current ⁽²⁾ 100 mA

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions outside of those listed in the operational sections of this specification is not implied. Exposure to any absolute maximum rating for extended periods may affect device performance and reliability.

RELIABILITY CHARACTERISTICS

Symbol	Parameter	Min.	Max.	Units	Reference Test Method
N _{END} (3)	Endurance	1,000,000		Cycles/Byte	MIL-STD-883, Test Method 1033
T _{DR} ⁽³⁾	Data Retention	100		Years	MIL-STD-883, Test Method 1008
V _{ZAP} (3)	ESD Susceptibility	2000		Volts	MIL-STD-883, Test Method 3015
I _{LTH} (3)(4)	Latch-Up	100		mA	JEDEC Standard 17

CAPACITANCE ($T_A = 25^{\circ}C$, f= 1.0 MHz, $V_{CC} = 6.0 \text{V}$)

Symbol	Test	Max.	Units	Conditions
C _{I/O} (3)	Input/Output Capacitance (DO, RDY/BUSY)	8	pF	$V_{I/O} = 0V$
C _{IN} (3)	Input Capacitance (CS, SK, DI, RESET)	6	pF	V _{IN} = 0V

Note

- (1) The minimum DC input voltage is -0.5V. During transitions, inputs may undershoot to -2.0V for periods of less than 20 ns. Maximum DC voltage on output pins is V_{CC} +0.5V, which may overshoot to V_{CC} +2.0V for periods of less than 20 ns.
- (2) Output shorted for no more than one second. No more than one output shorted at a time.
- (3) This parameter is tested initially and after a design or process change that affects the parameter.
- (4) Latch-up protection is provided for stresses up to 100 mA on address and data pins from -1V to V_{CC} +1V.

D.C. OPERATING CHARACTERISTICS

 V_{CC} = +2.5V to +6.0V, unless otherwise specified.

			Limits				
Sym.	Parameter		Min.	Тур.	Max.	Units	Test Conditions
Icc	Operating Current	2.5V			0.4	mA	f _{SK} = 250 kHz
	EWEN, EWDS, READ	6.0V			1	mA	f _{SK} = 1 MHz
ICCP	Program Current	2.5V			2	mA	
		6.0V			3	mA	
I _{SB} ⁽¹⁾	Standby Current				0	μΑ	$\frac{V_{IN}}{CS} = GND \text{ or } V_{CC}$
ILI	Input Leakage Current				2	μА	$V_{IN} = GND \text{ to } V_{CC}$
ILO	Output Leakage Current				10	μА	$V_{OUT} = GND$ to V_{CC}
VIL	Low Level Input Voltage, DI		-0.1		V _{CC} x 0.3	V	
V _{IH}	High Level Input Voltag	ge, DI	V _{CC} x 0.7		V _{CC} + 0.5	V	
VIL	Low Level Input Voltag CS, SK, RESET	e,	-0.1		V _{CC} x 0.2	V	
V _{IH}	High Level Input Voltag	ge,	V _{CC} x 0.8		V _{CC} + 0.5	V	
V _{OH} ⁽²⁾	High Level Output Volt	age 2.5V	V _{CC} - 0.3			V	I _{OH} = -10μA
	6.0V		V _{CC} - 0.3				I _{OH} = -10μA
			2.4				I _{OH} = -400μA
V _{OL} ⁽²⁾	Low Level Output Volta	age 2.5V			0.4	V	I _{OL} = 10μA
		6.0V			0.4	V	I _{OL} = 2.1mA

Note: (1) Standby Current (I_{SB}) = $0\mu A$ (<900nA) ____ (2) V_{OH} and V_{OL} spec applies to READY/BUSY pin also

A.C. OPERATING CHARACTERISTICS

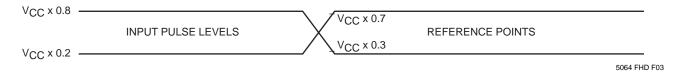
 V_{CC} = +2.5V to +6.0V, unless otherwise specified.

				Limits		
Symbol	Parameter		Min.	Тур.	Max.	Units
tcss	CS Setup Time		100			ns
tcsh	CS Hold Time		100			ns
t _{DIS}	DI Setup Time		200			ns
tDIH	DI Hold Time		200			ns
t _{PD1}	Output Delay to 1				300	ns
t _{PD0}	Output Delay to 0				300	ns
t _{HZ} (2)	Output Delay to High Impendance	•			500	ns
tcsmin	Minimum CS High Time		250			ns
tskhi	Minimum SK High Time	2.5V	1000			ns
		4.5V-6.0V	400			
tsklow	Minimum SK Low Time	2.5V	1000			ns
		4.5V-6.0V	400			
tsv	Output Delay to Status Valid	'			500	ns
fsĸ	Maximum Clock Frequency	2.5V	250			kHz
			1000			
t _{RESS}	Reset to CS Setup Time		0			ns
t _{RESMIN}	Minimum RESET High Time		250			ns
t _{RESH}	RESET to READY Hold Time		0			ns
t _{RC}	Write Recovery		100			ns

POWER-UP TIMING(1)(3)

Symbol	Parameter	Min.	Max.	Units
t _{PUR}	Power-Up to Read Operation		10	μs
t _{PUW}	Power-Up to Program Operation		1	ms

WRITE CYCLE LIMITS


Symbol	Parameter		Min.	Max.	Units
t _{WR}	Program Cycle Time	2.5V		10	ms
		4.5V-6.0V		5	

- This parameter is tested initially and after a design or process change that affects the parameter.
 This parameter is sampled but not 100% tested.
 t_{PUR} and t_{PUW} are the delays required from the time V_{CC} is stable until the specified operation can be initiated.

INSTRUCTION SET

Instru	ıction	Opcode	Address	Data
Read	64LC10	10101000	A5 A4 A3 A2 A1 A0 0 0	D15 - D0
	64LC20	10101000	A6 A5 A4 A3 A2 A1 A0 0	D15 - D0
	64LC40	10101000	A7 A6 A5 A4 A3 A2 A1 A0	D15 - D0
Write	64LC10	10100100	A5 A4 A3 A2 A1 A0 0 0	D15 - D0
	64LC20	10100100	A6 A5 A4 A3 A2 A1 A0 0	D15 - D0
	64LC40	10100100	A7 A6 A5 A4 A3 A2 A1 A0	D15 - D0
Write Enab	ole	10100011	XXXXXXX	
Write Disable 10100000		10100000	XXXXXXX	
[Write All L	ocations](1)	10100001	XXXXXXX	D15-D0

Figure 1. A.C. Testing Input/Output Waveform (2)(3(4) ($C_L = 100 \text{ pF}$)

Note:

- (Write All Locations) is a test mode operation and is therefore not included in the A.C./D.C. Operations specifications.
- Input Rise and Fall Times (10% to 90%) < 10 ns.
- (3) Input Pulse Levels = V_{CC} x 0.2 and V_{CC} x 0.8.
 (4) Input and Output Timing Reference = V_{CC} x 0.3 and V_{CC} x 0.7.

DEVICE OPERATION

The CAT64LC10/20/40 is a 1K/2K/4K-bit nonvolatile memory intended for use with all standard controllers. The CAT64LC10/20/40 is organized in a 64/128/256 x 16 format. All instructions are based on an 8-bit format. There are four 16-bit instructions: READ, WRITE, EWEN, and EWDS. The CAT64LC10/20/40 operates on a single power supply ranging from 2.5V to 6.0V and it has an onchip voltage generator to provide the high voltage needed during a programming operation. Instructions, addresses

and data to be written are clocked into the DI pin on the rising edge of the SK clock. The DO pin is normally in a high impedance state except when outputting data in a READ operation or outputting RDY/BUSY status when polled during a WRITE operation.

The format for all instructions sent to this device includes a 4-bit start sequence, 1010, a 4-bit op code and an 8-bit address field or dummy bits. For a WRITE operation,

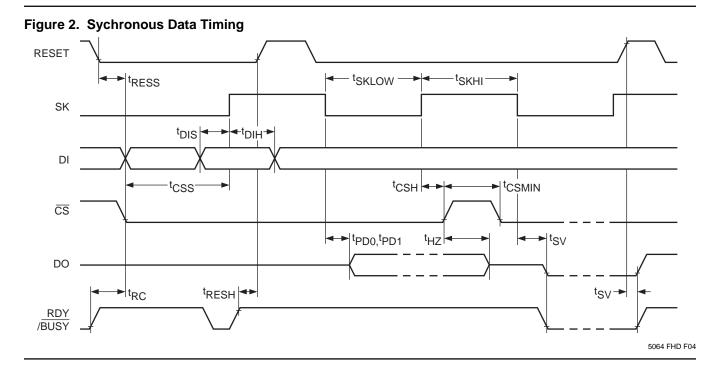
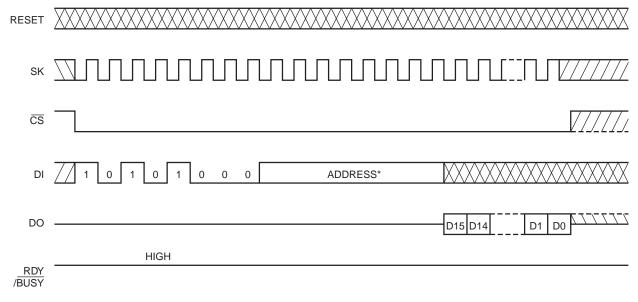
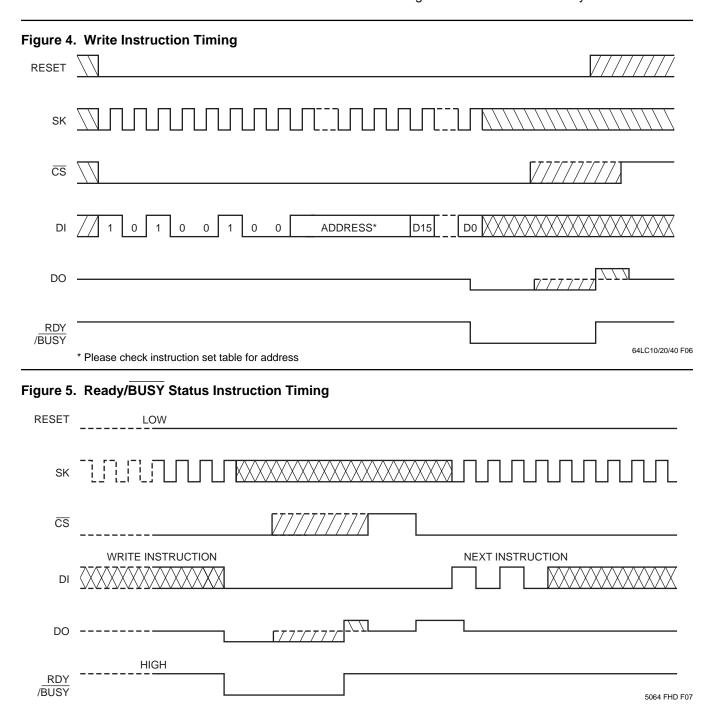



Figure 3. Read Instruction Timing

^{*} Please check the instruction set table for address

a 16-bit data field is also required following the 8-bit address field.

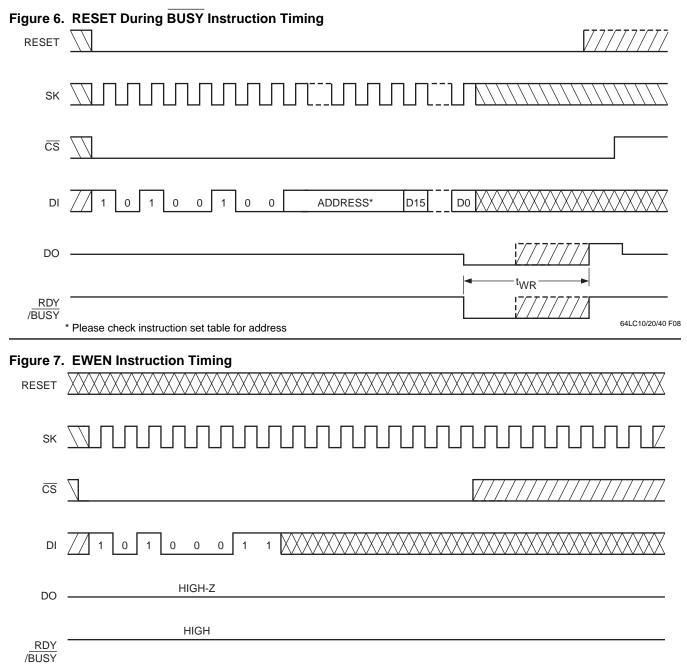

The CAT64LC10/20/40 requires an active LOW \overline{CS} in order to be selected. Each instruction must be preceded by a HIGH-to-LOW transition of \overline{CS} before the input of the 4-bit start sequence. Prior to the 4-bit start sequence (1010), the device will ignore inputs of all other logical sequence.

Read

Upon receiving a READ command and address (clocked into the DI pin), the DO pin will output data one t_{PD} after the falling edge of the 16th clock (the last bit of the address field). The READ operation is not affected by the RESET input.

Write

After receiving a WRITE op code, address and data, the device goes into the AUTO-Clear cycle and then the


WRITE cycle. The RDY/ $\overline{\text{BUSY}}$ pin will output the BUSY status (LOW) one t_{SV} after the rising edge of the 32nd clock (the last data bit) and will stay LOW until the write cycle is complete. Then it will output a logical "1" until the next WRITE cycle. The RDY/ $\overline{\text{BUSY}}$ output is not affected by the input of $\overline{\text{CS}}$.

An alternative to get RDY/BUSY status is from the DO pin. During a write cycle, asserting a LOW input to the CS pin will cause the DO pin to output the RDY/BUSY status. Bringing CS HIGH will bring the DO pin back to a high impedance state again. After the device has completed a WRITE cycle, the DO pin will output a

logical "1" when the device is deselected. The rising edge of the first "1" input on the DI pin will reset DO back to the high impedance state again.

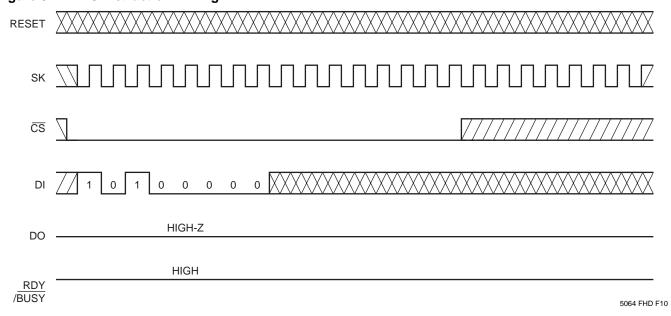
The WRITE operation can be halted anywhere in the operation by the RESET input. If a RESET pulse occurs during a WRITE operation, the device will abort the operation and output a READY status.

NOTE: Data <u>may be</u> corrupted if a RESET occurs <u>while</u> the device is <u>BUSY</u>. If the reset occurs before the <u>BUSY</u> period, no writing <u>will</u> be initiated. However, if RESET occurs after the <u>BUSY</u> period, new data will have been written over the old data.

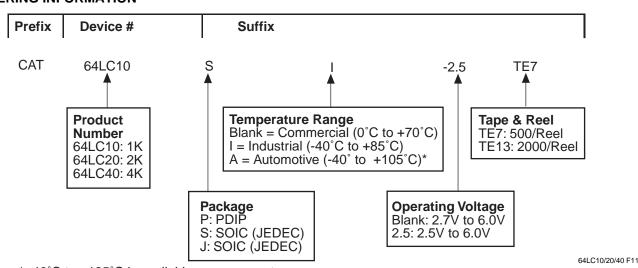
RESET

The RESET pin, when set to HIGH, will reset or abort a WRITE operation. When RESET is set to HIGH while the WRITE instruction is being entered, the device will not execute the WRITE instruction and will keep DO in High-Z condition.

When RESET is set to HIGH, while the device is in a clear/write cycle, the device will abort the operation and will display READY status on the RDY/BUSY pin and on the DO pin if CS is low.


The RESET input affects only the WRITE and WRITE ALL operations. It does not reset any other operations

such as READ, EWEN and EWDS.


ERASE/WRITE ENABLE and DISABLE

The CAT64LC10/20/40 powers up in the erase/write disabled state. After power-up or while the device is in an erase/write disabled state, any write operation must be preceded by an execution of the EWEN instruction. Once enabled, the device will stay enabled until an EWDS has been executed or a power-down has occured. The EWDS is used to prevent any inadvertent overwriting of the data. The EWEN and EWDS instructions have no affect on the READ operation and are not affected by the RESET input.

Figure 8. EWDS Instruction Timing

ORDERING INFORMATION

* -40°C to +125°C is available upon request

Notes:

(1) The device used in the above example is a 64LC10SI-2.5TE7 (SOIC, Industrial Temperature, 2.5 Volt to 6 Volt Operating Voltage, Tape & Reel)

Sales Offices

Corporate Headquarters

Catalyst Semiconductor, Inc. 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408-542-1000 FAX: 408-542-1200 http://www.catsemi.com

International Sales Offices

Europe Area

Catalyst Semiconductor, Inc. The Quorum, Bldg. 7200 Oxford Business Park Oxford OX4 2JZ **ENGLAND**

Phone: 44.1865.481.411 FAX: 44.1865.481.511

Japan Area

Nippon Catalyst K.K. 6th Fl, Kurihara Bldg. 4-48-13 Honcho Nakano-ku, Tokyo 164 **JAPAN**

Phone: 81.3.5340.3781 FAX: 81.3.5340.3780

Far East Offices

Catalyst Semiconductor, Inc. 9F, No 400, Sec 1 Kee-Lung Road Taipei, TAIWAN Phone: 886.2.345.6192

FAX: 886.2.729.9388

Catalyst Semiconductor, Inc. Blk 446, #B1-1635 Hougang Ave 8 Singapore 530446 Republic of Singapore Phone: 65.385.8568

Fax: 65.385.8569

U.S. Sales Offices

Western and Central U.S.

Catalyst Semiconductor, Inc. 1250 Borregas Avenue Sunnyvale, CA 94089 Phone: 408-542-1000 FAX: 408-542-1200

Catalyst Semiconductor, Inc. Los Gatos Eureka Building Suite 105 236N. Santa Cruz Ave. Los Gatos, CA 95030 Phone: 408-395-1921 FAX: 408-395-4941

Catalyst Semiconductor, Inc. 1201 S. Alma School Road Suite 14000 Mesa, Arizona 85210 Phone: 602-844-3800 FAX: 602-844-3600

Catalyst Semiconductor, Inc. 3303 FM 1960 West Suite 300-T Houston, Texas 77068 Phone: 281-397-8809 FAX: 281-397-0433

Eastern U.S.

Catalyst Semiconductor, Inc. 2200 Winter Springs Blvd. Suite 106-310 Oviedo, FL 32765 Phone: 407-977-1973 FAX: 407-977-1975

Catalyst Semiconductor, Inc. 1000 Mansell Exchange West Suite 250 Alpharetta, GA 30022 Phone: 770-645-7541

FAX: 770-645-7551

Catalyst Semiconductor, Inc. 5669 Whitesburg Court Norcross, GA 30092 Phone 770-613-2999 FAX: 770-613-0024

