

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 4513/4514 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with serial I/O, four 8-bit timers (each timer has a reload register), and 10-bit A-D converter.

The various microcomputers in the 4513/4514 Group include variations of the built-in memory type and package as shown in the table below.

FEATURES

- Minimum instruction execution time 0.75 μ s (at 4.0 MHz oscillation frequency, in high-speed mode, VDD = 4.0 V to 5.5 V)
- Supply voltage
 - Middle-speed mode
 - 2.5 V to 5.5 V (at 4.2 MHz oscillation frequency, for Mask ROM version and One Time PROM version)
 - 2.0 V to 5.5 V (at 3.0 MHz oscillation frequency, for Mask ROM version)
 - (Operation voltage of A-D conversion: 2.7 V to 5.5 V) • High-speed mode
 - 4.0 V to 5.5 V (at 4.2 MHz oscillation frequency, for Mask ROM version and One Time PROM version)
 - 2.5 V to 5.5 V (at 2.0 MHz oscillation frequency, for Mask ROM version and One Time PROM version)
 - 2.0 V to 5.5 V (at 1.5 MHz oscillation frequency, for Mask ROM version)

(Operation voltage of A-D conversion: 2.7 V to 5.5 V)

Timers

Timer 1	8-bit timer with a reload register
Timer 2	8-bit timer with a reload register
Timer 3	8-bit timer with a reload register
Timer 4	8-bit timer with a reload register
Interrupt	
Serial I/O	
A-D converter 10-bit	successive comparison method
Voltage comparator	2 circuits
Watchdog timer	
 Voltage drop detection circuit 	

- Clock generating circuit (ceramic resonator)
- LED drive directly enabled (port D)

APPLICATION

Microwave oven, rice cooker, audio, telephone, office equipment

Product	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34513M2-XXXSP/FP *	2048 words	128 words	SP: 32P4B FP: 32P6B-A	Mask ROM
M34513M4-XXXSP/FP *	4096 words	256 words	SP: 32P4B FP: 32P6B-A	Mask ROM
M34513E4SP/FP * (Note)	4096 words	256 words	SP: 32P4B FP: 32P6B-A	One Time PROM
M34513M6-XXXFP **	6144 words	384 words	32P6B-A	Mask ROM
M34513M8-XXXFP **	8192 words	384 words	32P6B-A	Mask ROM
M34513E8FP ** (Note)	8192 words	384 words	32P6B-A	One Time PROM
M34514M6-XXXFP *	6144 words	384 words	42P2R-A	Mask ROM
M34514M8-XXXFP *	8192 words	384 words	42P2R-A	Mask ROM
M34514E8FP * (Note)	8192 words	384 words	42P2R-A	One Time PROM

Note: shipped in blank

* : Under development

**: Under planning

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BLOCK DIAGRAM (4513 Group)

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BLOCK DIAGRAM (4514 Group)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PERFORMANCE OVERVIEW

	Paramete	r	Function		
Number of 4513 Group		4513 Group	123		
basic instruction	ons	4514 Group	128		
Minimum instr	uction exec	cution time	0.75 μ s (at 4.0 MHz oscillation frequency, in high-speed mode)		
Memory sizes	ROM	M34513M2	2048 words X 10 bits		
		M34513M4/E4	4096 words X 10 bits		
		M34513M6	6144 words X 10 bits		
		M34513M8/E8	8192 words X 10 bits		
		M34514M6	6144 words X 10 bits		
		M34514M8/E8	8192 words X 10 bits		
	RAM	M34513M2	128 words X 4 bits		
		M34513M4/E4	256 words X 4 bits		
		M34513M6	384 words X 4 bits		
		M34513M8/E8	384 words X 4 bits		
		M34514M6	384 words X 4 bits		
		M34514M8/E8	384 words X 4 bits		
Input/Output ports	D0D7	I/O (Input is examined by skip decision)	Eight independent I/O ports; ports D6 and D7 are also used as CNTR0 and CNTR1, respectively.		
	P00-P03	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software.		
	P10-P13	I/O	4-bit I/O port; each pin is equipped with a pull-up function and a key-on wakeup function. Both functions can be switched by software.		
	P20-P22	Input	3-bit input port; ports P20, P21 and P22 are also used as SCK, SOUT and SIN, respectively.		
	P30-P33		4-bit I/O port (2-bit I/O port for the 4513 Group); ports P30 and P31 are also used as INT0 and INT1, respectively. The 4513 Group does not have ports P32, P33.		
	P40-P43	I/O	4-bit I/O port; The 4513 Group does not have this port.		
	P50-P53	I/O	4-bit I/O port with a direction register; The 4513 Group does not have this port.		
	CNTR0	I/O	1-bit I/O; CNTR0 pin is also used as port D6.		
	CNTR1	I/O	1-bit I/O; CNTR1 pin is also used as port D7.		
	INT0	Input	1-bit input; INT0 pin is also used as port P30 and equipped with a key-on wakeup function.		
	INT1 Input		1-bit input; INT1 pin is also used as port P31 and equipped with a key-on wakeup function.		
Timers	Timer 1		8-bit programmable timer with a reload register.		
	Timer 2		8-bit programmable timer with a reload register is also used as an event counter.		
	Timer 3		8-bit programmable timer with a reload register.		
	Timer 4		8-bit programmable timer with a reload register is also used as an event counter.		
A-D converter			10-bit wide, This is equipped with an 8-bit comparator function.		
Voltage compa	arator		2 circuits (CMP0, CMP1)		
Serial I/O			8-bit X 1		
Interrupt	Sources		8 (two for external, four for timer, one for A-D, and one for serial I/O)		
	Nesting		1 level		
Subroutine ne	sting		8 levels		
Device structu	re		CMOS silicon gate		
Package	4513 Gro	up	32-pin plastic molded SDIP (32P4B)/LQFP(32P6B-A)		
4514 Group Operating temperature range		up	42-pin plastic molded SSOP (42P2R-A)		
		ange	-20 °C to 85 °C		
Supply voltage	e 1		2.0 V to 5.5 V for Mask ROM version, 2.5 V to 5.5 V for One Time PROM version (Refer to the electrical characteristics because the supply voltage depends on the oscillation frequency.)		
Power dissipation	Active mo	ode	1.8 mA (at VDD = 5.0 V, 4.0 MHz oscillation frequency, in middle- speed mode, output transis- tors in the cut-off state)		
(typical value)			3.0 mA (at VDD = 5.0 V, 4.0 MHz oscillation frequency, in high-speed mode, output transistors in the cut-off state)		
	RAM bac	k-up mode	0.1 μ A (at room temperature, VDD = 5 V, output transistors in the cut-off state)		

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input/Output	t	
Vdd	Power supply	—	Connected to a plus power supply.	
Vss	Ground	—	Connected to a 0 V power supply.	
VDCE	Voltage drop detec- tion circuit enable	Input	VDCE pin is used to control the operation/stop of the voltage drop detection circuit. When "H" level is input to this pin, the circuit is operating. When "L" level is inpu to this pin, the circuit is stopped.	
CNVss	CNVss	—	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.	
RESET	Reset input	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer causes the system to be reset or system reset is performed by the voltage drop detection circuit, the RESET pin outputs "L" level.	
Xin	System clock input	Input	I/O pins of the system clock generating circuit. XIN and XOUT can be connected to	
Xout	System clock output	Output	ceramic resonator. A feedback resistor is built-in between them.	
D0-D7	I/O port D (Input is examined by skip decision.)	I/O	Each pin of port D has an independent 1-bit wide I/O function. Each pin has an out- put latch. For input use, set the latch of the specified bit to "1." The output structure is N-channel open-drain. Ports D6 and D7 are also used as CNTR0 and CNTR1, respectively.	
P00-P03	I/O port P0	I/O	Each of ports P0 and P1 serves as a 4-bit I/O port, and it can be used as inputs when the output latch is set to "1." The output structure is N-channel open-drain.	
P10-P13	I/O port P1	I/O	Every pin of the ports has a key-on wakeup function and a pull-up function. Both functions can be switched by software.	
P20-P22	Input port P2	Input	3-bit input port. Ports P20, P21 and P22 are also used as SCK, SOUT and SIN, respectively.	
P30-P33	I/O port P3	I/O	4-bit I/O port (2-bit I/O port for the 4513 Group). For input use, set the latch of the specified bit to "1." The output structure is N-channel open-drain. Ports P30 and P31 are also used as INT0 and INT1, respectively. The 4513 Group does not have ports P32, P33.	
P40-P43	I/O port P4	I/O	4-bit I/O port. For input use, set the latch of the specified bit to "1." The output structure is N-channel open-drain. Ports P40–P43 are also used as analog input pins AIN4–AIN7, respectively. The 4513 Group does not have port P4.	
P50-P53	I/O port P5	I/O	4-bit I/O port. Each pin has a direction register and an independent 1-bit wide I/O function. For input use, set the direction register to "0." For output use, set the direction register to "1." The output structure is CMOS. The 4513 Group does not have port P5.	
Aino-Ain7	Analog input	Input	Analog input pins for A-D converter. AIN0–AIN3 are also used as comparator input pins and AIN4–AIN7 are also used as port P4. The 4513 Group does not have AIN4–AIN7.	
CNTR0	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 2 event counter, and to output the timer 1 underflow signal divided by 2. CNTR0 pin is also used as port D6.	
CNTR1	Timer input/output	I/O	CNTR1 pin has the function to input the clock for the timer 4 event counter, and to output the timer 3 underflow signal divided by 2. CNTR1 pin is also used as port D7.	
INT0, INT1	Interrupt input	Input	INT0, INT1 pins accept external interrupts. They also accept the input signal to re- turn the system from the RAM back-up state. INT0, INT1 pins are also used as ports P30 and P31, respectively.	
SIN	Serial data input	Input	SIN pin is used to input serial data signals by software. SIN pin is also used as port P22.	
Sout	Serial data output	Output	SOUT pin is used to output serial data signals by software. SOUT pin is also used as port P21.	
Scк	Serial I/O clock input/output	I/O	SCK pin is used to input and output synchronous clock signals for serial data trans- fer by software. SCK pin is also used as port P20.	
CMP0- CMP0+	Voltage comparator input	Input	CMP0-, CMP0+ pins are used as the voltage comparator input pin when the volt- age comparator function is selected by software. CMP0-, CMP0+ pins are also used as AIN0 and AIN1.	
CMP1- CMP1+	Voltage comparator input	Input	CMP1-, CMP1+ pins are used as the voltage comparator input pin when the volt- age comparator function is selected by software. CMP1-, CMP1+ pins are also used as AIN2 and AIN3.	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
D6	CNTR0	CNTR0	D6	AINO	CMP0-	CMP0-	AINO
D7	CNTR1	CNTR1	D7	AIN1	CMP0+	CMP0+	AIN1
P20	Scк	SCK	P20	AIN2	CMP1-	CMP1-	Ain2
P21	Sout	SOUT	P21	Аімз	CMP1+	CMP1+	Аімз
P22	SIN	SIN	P22	P40	AIN4	AIN4	P40
P30	INT0	INT0	P30	P41	Ain5	AIN5	P41
P31	INT1	INT1	P31	P42	AIN6	AIN6	P42
				P43	AIN7	AIN7	P43

Notes 1: Pins except above have just single function.

2: The input of D6, D7, P20–P22, CMP0-, CMP0+, CMP1+, CMP1+ and the input/output of P30, P31, P40–P43 can be used even when CNTR0, CNTR1, SCK, SOUT, SIN, INT0, INT1, and AIN0–AIN7 are selected.

3: The 4513 Group does not have P40/AIN4–P43/AIN7.

CONNECTIONS OF UNUSED PINS

Pin	Connection		
Хоит	Open (when using an external clock).		
VDCE	Connect to Vss.		
D0–D5 D6/CNTR0 D7/CNTR1	Connect to Vss, or set the output latch to "0" and open.		
P20/SCK P21/SOUT P22/SIN	Connect to Vss.		
P30/INT0 P31/INT1 P32, P33	Connect to Vss, or set the output latch to "0" and open.		
P40/AIN4–P43/AIN7	Connect to VSS, or set the output latch to "0" and open.		
P50-P53 (Note 1)	When the input mode is selected by soft- ware, pull-up to VDD through a resistor or pull-down to VDD. When selecting the output mode, open.		
AIN0/CMP0- AIN1/CMP0+ AIN2/CMP1- AIN3/CMP1+	Connect to Vss.		
P00-P03	Open or connect to VSS (Note 2)		
P10-P13	Open or connect to Vss (Note 2)		

- Notes 1: After system is released from reset, port P5 is in a input mode (direction register FR0 = 00002)
 - 2: When the P00–P03 and P10–P13 are connected to Vss, turn off their pull-up transistors (register PU0i="0") and also invalidate the key-on wakeup functions (register K0i="0") by software. When these pins are connected to Vss while the key-on wakeup functions are left valid, the system fails to return from RAM back-up state. When these pins are open, turn on their pull-up transistors (register PU0i="1") by software, or set the output latch to "0." Be sure to select the key-on wakeup functions and the pull-up functions with every two pins. If only one of the two pins for the key-on wakeup function is used, turn on their pull-up transistors by software and also disconnect the other pin. (i = 0, 1, 2, or 3.)

(Note when the output latch is set to "0" and pins are open)

- After system is released from reset, port is in a high-impedance state until it is set the output latch to "0" by software. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur while the port is in a high-impedance state.
- To set the output latch periodically by software is recommended because value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to VSS and VDD)

• Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PORT FUNCTION

Port	Pin	Input Output	Output structure	I/O unit	Control instructions	Control registers	Remark
Port D	D0-D5 D6/CNTR0 D7/CNTR1	I/O (8)	N-channel open-drain	1	SD, RD SZD CLD	W6	
Port P0	P00-P03	I/O (4)	N-channel open-drain	4	OP0A IAP0	PU0, K0	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P1	P10-P13	I/O (4)	N-channel open-drain	4	OP1A IAP1	PU0, K0	Built-in programmable pull-up functions Key-on wakeup functions (programmable)
Port P2	P20/SCK P21/SOUT P22/SIN	Input (3)		3	IAP2	J1	
Port P3 (Note 1)	P30/INT0 P31/INT1 P32, P33	I/O (4)	N-channel open-drain	4	OP3A IAP3	11, 12	Built-in key-on wakeup function (P30/INT0, P31/INT1)
Port P4 (Note 2)	P40/AIN4 -P43/AIN7	I/O (4)	N-channel open-drain	4	OP4A IAP4	Q2	
Port P5 (Note 2)	P50-P53	I/O (4)	CMOS	4	OP5A IAP5	FR0	

Notes 1: The 4513 Group does not have P32 and P33.

2: The 4513 Group does not have these ports.

DEFINITION OF CLOCK AND CYCLE

System clock

The system clock is the basic clock for controlling this product. The system clock is selected by the bit 3 of the clock control register MR.

Table Selection of system clock

Register MR MR3	System clock
0	f(XIN)
1	f(XIN)/2

Note: f(XIN)/2 is selected after system is released from reset.

Instruction clock

The instruction clock is a signal derived by dividing the system clock by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PORT BLOCK DIAGRAMS

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PORT BLOCK DIAGRAMS (continued)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PORT BLOCK DIAGRAMS (continued)

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PORT BLOCK DIAGRAMS (continued)

Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to change.

MITSUBISHI MICROCOMPUTERS

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

External interrupt circuit structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Fig. 1 AMC instruction execution example

Fig. 2 RAR instruction execution example

Fig. 3 Registers A, B and register E

Fig. 4 TABP p instruction execution example

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or

change.

• executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine.

Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

Program counter (PC)						
Executing BM Executing RT instruction						
SKo)	(SP) = 0				
SK1		(SP) = 1				
SK2	SK2					
SK3	SK3					
SK4	ŀ	(SP) = 4				
SK5	5	(SP) = 5				
SKe	5	(SP) = 6				
SK7	SK7					
SK7 (SP) = 7 Stack pointer (SP) points "7" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SK0.						

ontents of program counter is stored in SK0. When the BM instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SK0 is destroyed.

Fig. 5 Stack registers (SKs) structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

Fig. 7 Program counter (PC) structure

Fig. 8 Data pointer (DP) structure

Fig. 9 SD instruction execution example

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34514M8/E8.

Table 1 ROM size and pages

Product	ROM size (X 10 bits)	Pages
M34513M2	2048 words	16 (0 to 15)
M34513M4/E4	4096 words	32 (0 to 31)
M34513M6	6144 words	48 (0 to 47)
M34513M8/E8	8192 words	64 (0 to 63)
M34514M6	6144 words	48 (0 to 47)
M34514M8/E8	8192 words	64 (0 to 63)

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP $\ensuremath{\mathsf{p}}$ instruction.

Fig. 10 ROM map of M34514M8/E8

Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Table 2 RAM size

Product	RAM size
M34513M2	128 words X 4 bits (512 bits)
M34513M4/E4	256 words X 4 bits (1024 bits)
M34513M6	384 words X 4 bits (1536 bits)
M34513M8/E8	384 words X 4 bits (1536 bits)
M34514M6	384 words X 4 bits (1536 bits)
M34514M8/E8	384 words X 4 bits (1536 bits)

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
2	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
3	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
4	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
5	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1
6	Timer 4 interrupt	Timer 4 underflow	Address A in page 1
7	A-D interrupt	Completion of A-D conversion	Address C in page 1
8	Serial I/O interrupt	Completion of serial I/O transfer	Address E in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

Interrupt name	Request flag	Skip instruction	Enable bit
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20
Timer 4 interrupt	T4F	SNZT4	V21
A-D interrupt	ADF	SNZAD	V22
Serial I/O interrupt	SIOF	SNZSI	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

Program counter (PC)

An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).

- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0."
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored aut
- The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

Fig. 13 Program example of interrupt processing

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Interrupt control registers

Interrupt control register V1

Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.

Interrupt control register V2

Interrupt enable bits of timer 3, timer 4, A-D and serial I/O are assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

	Interrupt control register V1	at	reset : 00002	at RAM back-up : 00002	R/W	
V13	Timer 2 interrupt enable bit	0	Interrupt disabled	(SNZT2 instruction is valid)		
V 13		1	Interrupt enabled (SNZT2 instruction is invalid)		
V12	Timer 1 interrupt enable bit		Interrupt disabled	(SNZT1 instruction is valid)		
VIZ		1	Interrupt enabled (SNZT1 instruction is invalid)		
V11	External 1 interrupt enable bit	0	Interrupt disabled	(SNZ1 instruction is valid)		
VII		1	Interrupt enabled (SNZ1 instruction is invalid)		
V10	External 0 interrupt enable bit	0	0 Interrupt disabled (SNZ0 instruction is valid)			
VIU		1	Interrupt enabled (SNZ0 instruction is invalid)	Z0 instruction is invalid)	
	Interrupt control register V2	at	reset : 00002	at RAM back-up : 00002	R/W	
1/20	Carial I/O interrupt anable bit	0	Interrupt disabled ((SNZSI instruction is valid)		
V23	Serial I/O interrupt enable bit	1	Interrupt enabled (SNZSI instruction is invalid)		
1/20	A Distormust on ship hit	0	Interrupt disabled ((SNZAD instruction is valid)		
V22	A-D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid)		
V21	Timor 4 interrupt enable bit	0	Interrupt disabled ((SNZT4 instruction is valid)		
vZ1	Timer 4 interrupt enable bit	1	Interrupt enabled (SNZT4 instruction is invalid)		
V20	Timor 2 interrupt enable bit	0	Interrupt disabled ((SNZT3 instruction is valid)		
v20	Timer 3 interrupt enable bit		Interrupt enabled (SNZT3 instruction is invalid)		

Note: "R" represents read enabled, and "W" represents write enabled.

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10–V13 and V20–V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

Fig. 16 Interrupt sequence

4513/4514 Group

EXTERNAL INTERRUPTS

The 4513/4514 Group has two external interrupts (external 0 and external 1). An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection). The external interrupts can be controlled with the interrupt control registers I1 and I2.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	P30/INT0	When the next waveform is input to P30/INT0 pin	l1 1
		 Falling waveform ("H"→"L") 	112
		 Rising waveform ("L"→"H") 	
		 Both rising and falling waveforms 	
External 1 interrupt	P31/INT1	When the next waveform is input to P31/INT1 pin	l21
		 Falling waveform ("H"→"L") 	122
		 Rising waveform ("L"→"H") 	
		Both rising and falling waveforms	

Fig. 17 External interrupt circuit structure

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to P30/INT0 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

The P30/INT0 pin need not be selected the external interrupt input INT0 function or the normal I/O port P30 function. However, the EXF0 flag is set to "1" when a valid waveform is input even if it is used as an I/O port P30.

• External 0 interrupt activated condition

External 0 interrupt activated condition is satisfied when a valid waveform is input to P30/INT0 pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.

- ① Select the valid waveform with the bits 1 and 2 of register I1.
- ② Clear the EXF0 flag to "0" with the SNZ0 instruction.
- ③ Set the NOP instruction for the case when a skip is performed with the SNZ0 instruction.
- ④ Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the P30/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to P31/INT1 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

The P31/INT1 pin need not be selected the external interrupt input INT1 function or the normal I/O port P31 function. However, the EXF1 flag is set to "1" when a valid waveform is input even if it is used as an I/O port P31.

• External 1 interrupt activated condition

External 1 interrupt activated condition is satisfied when a valid waveform is input to P31/INT1 pin.

The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.

- ① Select the valid waveform with the bits 1 and 2 of register I2.
- ² Clear the EXF1 flag to "0" with the SNZ1 instruction.
- ③ Set the NOP instruction for the case when a skip is performed with the SNZ1 instruction.
- ④ Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the P31/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(3) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A. • Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 8 External interrupt control registers

	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W
l13	Not used	0	This bit has no function, but read/write is enabled.		
14.5	Interrupt valid waveform for INT0 pin/ return level selection bit (Note 2)		Falling waveform (instruction)/"L" leve	("L" level of INT0 pin is recognized v el	with the SNZI0
112			Rising waveform (instruction)/"H" lev	"H" level of INT0 pin is recognized v	with the SNZI0
I1 1	INT0 pin edge detection circuit control bit	0	0 One-sided edge detected		
111	INTO pill edge detection circuit control bit	1	Both edges detect	ed	
110	INT0 pin	0	Disabled		
110	timer 1 control enable bit	1	Enabled		
	Interrupt control register I2		reset : 00002	at RAM back-up : state retained	R/W
123	Not used	0	This bit has no function, but read/write is enabled.		
10-	Interrupt valid waveform for INT1 pin/	0	Falling waveform ("L" level of INT1 pin is recognized with the instruction)/"L" level		vith the SNZI1
122	return level selection bit (Note 3)	1	Rising waveform ("H" level of INT1 pin is recognized with the instruction)/"H" level		vith the SNZI1
124	INTA sin odge detection singuit control bit	0	One-sided edge de	etected	
I21	INT1 pin edge detection circuit control bit	1	Both edges detect	ed	
120	INT1 pin	0	Disabled		
120	timer 3 control enable bit	1	Enabled		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of 112 is changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction.

3: When the contents of 122 is changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction.

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

TIMERS

The 4513/4514 Group has the programmable timers.

Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

• Fixed dividing frequency timer

The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

Fig. 18 Auto-reload function

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RELIMINARY Notice: This is not a final specification. Some parametric limits are subject to some parametric limits are subject to change.

The 4513/4514 Group timer consists of the following circuits.

- Prescaler : frequency divider
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3 : 8-bit programmable timer
- Timer 4 : 8-bit programmable timer
- (Timers 1 to 4 have the interrupt function, respectively) • 16-bit timer

Prescaler and timers 1 to 4 can be controlled with the timer control registers W1 to W6. The 16-bit timer is a free counter which is not controlled with the control register. Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	Frequency divider	Instruction clock	4, 16	• Timer 1, 2, 3 and 4 count sources	W1
Timer 1	8-bit programmable	Prescaler output (ORCLK)	1 to 256	Timer 2 count source	W1
	binary down counter			CNTR0 output	W6
	(link to EXF0)			Timer 1 interrupt	
Timer 2	8-bit programmable	Timer 1 underflow	1 to 256	Timer 3 count source	W2
	binary down counter	Prescaler output (ORCLK)		Timer 2 interrupt	W6
		CNTR0 input		CNTR0 output	
		16-bit counter underflow			
Timer 3	8-bit programmable	Timer 2 underflow	1 to 256	Timer 4 count source	W3
	binary down counter	Prescaler output (ORCLK)		Timer 3 interrupt	W6
	(link to EXF1)			CNTR1 output	
Timer 4	8-bit programmable	Timer 3 underflow	1 to 256	Timer 4 interrupt	W4
	binary down counter	Prescaler output (ORCLK)		CNTR1 output	W6
		CNTR1 input			
16-bit timer	16-bit fixed dividing	Instruction clock	65536	Watchdog timer	
	frequency			(The 15th bit is counted twice)	
				Timer 2 count source	
				(16-bit counter underflow)	

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PRELIMINAR

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 10 Timer control registers

	Timer control register W1		at	reset : 00002	at RAM back-up : 00002	R/W	
W13	Prescaler control bit	(0 Stop (state initialized)				
VV15			1	Operating			
W12	Prescaler dividing ratio selection bit	(0	Instruction clock divided by 4			
VV 12			1	Instruction clock divided by 16			
W11	Timer 1 control bit	(0	Stop (state retained	d)		
			1	Operating			
W10	Timer 1 count start synchronous circuit	(0		onous circuit not selected		
	control bit		1	Count start synchro	onous circuit selected		
	Timer control register W2		at	reset : 00002	at RAM back-up : state retained	R/W	
W23	Timer 2 control bit		0	Stop (state retained	d)		
1125			1	Operating			
W22	Not used		0	This hit has no fun	ction, but read/write is enabled.		
V V Z Z	Not used		1	THIS DIL HAS NO TUN	clion, but read/write is enabled.		
		W21	W20		Count source		
W21		0	0	Timer 1 underflow	signal		
	Timer 2 count source selection bits	0	1	Prescaler output			
W20		1	0	CNTR0 input			
		1	1	16 bit timer (WDT)	underflow signal		
	Timer control register W3		at	reset : 00002	at RAM back-up : state retained	R/W	
W/2a	Timer 3 control bit		0	Stop (state retaine	d)		
W33	Timer 3 control bit		1	Operating			
14/0 -	Timer 3 count start synchronous circuit	1	0	Count start synchro	onous circuit not selected		
W32	control bit		1 Count start synchronous circuit selected				
		W31	W30		Count source		
W31		0					
	Timer 3 count source selection bits	0	1	Prescaler output			
W30		1	0	Not available			
		1	1	Not available			
	Timer control register W4		at	reset : 00002	at RAM back-up : state retained	R/W	
			0	Stop (state retaine	ained)		
W43	Timer 4 control bit		1	Operating			
10/4-	Netword		0				
W42	Not used		1	i his bit has no fun	ction, but read/write is enabled.		
		W41	W40		Count source		
W41		0	0	Timer 3 underflow	signal		
			·				
	Timer 4 count source selection bits	0	1	Prescaler output			
W40	Timer 4 count source selection bits	0	1 0	Prescaler output CNTR1 input			
W40	Timer 4 count source selection bits						
W40	Timer 4 count source selection bits Timer control register W6	1	0 1	CNTR1 input	at RAM back-up : state retained	R/W	
	Timer control register W6	1	0 1	CNTR1 input Not available reset : 00002	at RAM back-up : state retained signal output divided by 2	R/W	
W40 W63		1	0 1 at	CNTR1 input Not available reset : 00002 Timer 3 underflow			
W63	Timer control register W6 CNTR1 output control bit	1	0 1 at	CNTR1 input Not available reset : 00002 Timer 3 underflow	signal output divided by 2 trol by timer 4 underflow signal divid		
	Timer control register W6		0 1 at 0 1	CNTR1 input Not available reset : 00002 Timer 3 underflow CNTR1 output con D7(I/O)/CNTR1 inp	signal output divided by 2 trol by timer 4 underflow signal divid		
W63 W62	Timer control register W6 CNTR1 output control bit D7/CNTR1 function selection bit		0 1 at 0 1 0	CNTR1 input Not available reset : 00002 Timer 3 underflow CNTR1 output con D7(I/O)/CNTR1 inp CNTR1 (I/O)/D7(in	signal output divided by 2 trol by timer 4 underflow signal divid out put)		
W63	Timer control register W6 CNTR1 output control bit		0 1 at 0 1 0 1 0	CNTR1 input Not available reset : 00002 Timer 3 underflow CNTR1 output con D7(I/O)/CNTR1 inp CNTR1 (I/O)/D7(in Timer 1 underflow	signal output divided by 2 trol by timer 4 underflow signal divid out put) signal output divided by 2	ed by 2	
W63 W62	Timer control register W6 CNTR1 output control bit D7/CNTR1 function selection bit		0 1 at 0 1 0 1	CNTR1 input Not available reset : 00002 Timer 3 underflow CNTR1 output con D7(I/O)/CNTR1 inp CNTR1 (I/O)/D7(in Timer 1 underflow	signal output divided by 2 trol by timer 4 underflow signal divid out put) signal output divided by 2 trol by timer 2 underflow signal divid	ed by 2	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) Timer control registers

Timer control register W1

Register W1 controls the count operation of timer 1, the selection of count start synchronous circuit, and the frequency dividing ratio and count operation of prescaler. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

• Timer control register W2

Register W2 controls the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

Timer control register W3

Register W3 controls the count operation and count source of timer 3 and the selection of count start synchronous circuit. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register W4

Register W4 controls the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

• Timer control register W6

Register W6 controls the D6/CNTR0 pin and D7/CNTR1 functions, the selection and operation of the CNTR0 and CNTR1 output. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A.

(2) Precautions

Note the following for the use of timers.

Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

Count source

Stop timer 1, 2, 3, or 4 counting to change its count source.

- Reading the count value Stop timer 1, 2, 3, or 4 counting and then execute the TAB1, TAB2, TAB3, or TAB4 instruction to read its data.
- Writing to reload registers R1 and R3
 When writing data to reload registers R1 or R3 while timer 1 or timer 3 is operating, avoid a timing when timer 1 or timer 3 underflows.

(3) Prescaler

Prescaler is a frequency divider. Its frequency dividing ratio can be selected. The count source of prescaler is the instruction clock.

Use the bit 2 of register W1 to select the prescaler dividing ratio and the bit 3 to start and stop its operation. Prescaler is initialized, and the output signal (ORCLK) stops when the bit 3 of register W1 is cleared to "0."

(4) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction.

When writing data to reload register R1 with the TR1AB instruction, the downcount after the underflow is started from the setting value of reload register R1.

Timer 1 starts counting after the following process;

① set data in timer 1, and

 $\ensuremath{\textcircled{}^{2}}$ set the bit 1 of register W1 to "1."

However, P30/INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register W1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Data can be read from timer 1 with the TAB1 instruction. When reading the data, stop the counter and then execute the TAB1 instruction. Timer 1 underflow signal divided by 2 can be output from D6/CNTR0 pin.

(5) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction.

Timer 2 starts counting after the following process;

① set data in timer 2,

② select the count source with the bits 0 and 1 of register W2, and③ set the bit 3 of register W2 to "1."

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Data can be read from timer 2 with the TAB2 instruction. When reading the data, stop the counter and then execute the TAB2 instruction. The output from D6/CNTR0 pin by timer 2 underflow signal divided by 2 can be controlled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(6) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction.

When writing data to reload register R3 with the TR3AB instruction, the downcount after the underflow is started from the setting value of reload register R3.

Timer 3 starts counting after the following process;

① set data in timer 3,

0 select the count source with the bits 0 and 1 of register W3, and 0 set the bit 3 of register W3 to "1."

However, P31/INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 2 of register W3 to "1."

Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function).

When a value set in reload register R3 is n, timer 3 divides the count source signal by n + 1 (n = 0 to 255).

Data can be read from timer 3 with the TAB3 instruction. When reading the data, stop the counter and then execute the TAB3 instruction. Timer 3 underflow signal divided by 2 can be output from D7/CNTR1 pin.

(7) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with the timer 4 reload register (R4). Data can be set simultaneously in timer 4 and the reload register (R4) with the T4AB instruction.

Timer 4 starts counting after the following process;

① set data in timer 4,

② select the count source with the bits 0 and 1 of register W4, and③ set the bit 3 of register W4 to "1."

Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes "0"), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4, and count continues (auto-reload function).

When a value set in reload register R4 is n, timer 4 divides the count source signal by n + 1 (n = 0 to 255).

Data can be read from timer 4 with the TAB4 instruction. When reading the data, stop the counter and then execute the TAB4 instruction. The output from D7/CNTR1 pin by timer 4 underflow signal divided by 2 can be controlled.

(8) Timer I/O pin (D6/CNTR0, D7/CNTR1)

D6/CNTR0 pin has functions to input the timer 2 count source, and to output the timer 1 and timer 2 underflow signals divided by 2. D7/CNTR1 pin has functions to input the timer 4 count source, and to output the timer 3 and timer 4 underflow signals divided by 2.

The selection of D6/CNTR0 pin function can be controlled with the bit 0 of register W6. The selection of D7/CNTR1 pin function can be controlled with the bit 2 of register W6.

The following signals can be selected for the CNTR0 output signal with the bit 1 of register W6.

- timer 1 underflow signal divided by 2
- the signal of AND operation between timer 1 underflow signal divided by 2 and timer 2 underflow signal divide by 2

The following signals can be selected for the CNTR1 output signal with the bit 3 of register W6.

- timer 3 underflow signal divided by 2
- the signal of AND operation between timer 3 underflow signal divided by 2 and timer 4 underflow signal divide by 2

Timer 2 counts the rising waveform of CNTR0 input when the CNTR0 input is selected as the count source.

Timer 4 counts the rising waveform of CNTR1 input when the CNTR1 input is selected as the count source.

(9) Timer interrupt request flags (T1F, T2F, T3F, and T4F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, and SNZT4).

Use the interrupt control registers V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(10) Count start synchronization circuit (timer 1, timer 3)

Each timer 1 and timer 3 has the count start synchronization circuit which synchronize P30/INT0 pin and P31/INT1 pin, respectively, and can start the timer count operation.

Timer 1 count start synchronization circuit function is selected by setting the bit 0 of register W1 to "1." The control by P30/INT0 pin input can be performed by setting the bit 0 of register I1 to "1."

P30/INT0 pin input level can be selected by the bit 2 of register I1 as follows;

I12 = "0": The count start synchronizes the "L" level of P30/INT0 pin
I12 = "1": The count start synchronizes the "H" level of P30/INT0 pin Timer 3 count start synchronization circuit function is selected by setting the bit 2 of register W3 to "1." The control by P31/INT1 pin input can be performed by setting the bit 0 of register I2 to "1."

P31/INT1 pin input level can be selected by the bit 2 of register I2 as follows:

I22 = "0": The count start synchronizes the "L" level of P31/INT1 pin
I22 = "1": The count start synchronizes the "H" level of P31/INT1 pin
When timer 1 and timer 3 count start synchronization circuits are used, the count start synchronization circuits are set, the count source is input to each timer by inputting valid levels to P30/INT0 pin and P31/INT1 pin. Once set, the count start synchronization circuit is cleared by clearing the bit I10 or I20 to "0" or reset.

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

WATCHDOG TIMER

Watchdog timer provides a method to reset the system when a program runs wild. Watchdog timer consists of a 16-bit timer (WDT), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source. The underflow signal is generated when the count value reaches "000016." This underflow signal can be used as the timer 2 count source.

When the WRST instruction is executed after system is released from reset, the WEF flag is set to "1". At this time, the watchdog timer starts operating. When the count value of timer WDT reaches "BFF16" or "3FFF16," the WDF1 flag is set to "1." If the WRST instruction is never executed while timer WDT counts 32767, WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer. Execute the WRST instruction at each period of 32766 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.

To prevent the WDT stopping in the event of misoperation, WEF flag is designed not to initialize once the WRST instruction has been executed. Note also that, if the WRST instruction is never executed, the watchdog timer does not start.

Fig. 20 Watchdog timer function

The contents of WEF, WDF1 and WDF2 flags and timer WDT are initialized at the RAM back-up mode.

If WDF2 flag is set to "1" at the same time that the microcomputer enters the RAM back-up state, system reset may be performed. When using the watchdog timer and the RAM back-up mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the RAM back-up state (refer to Figure 21)

Fig. 21 Program example to enter the RAM back-up mode when using the watchdog timer

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SERIAL I/O

The 4513/4514 Group has a built-in clock synchronous serial I/O which can serially transmit or receive 8-bit data.

- Serial I/O consists of;
- serial I/O register SI
- serial I/O mode register J1
- serial I/O transmission/reception completion flag (SIOF)
- serial I/O counter

Registers A and B are used to perform data transfer with internal CPU, and the serial I/O pins are used for external data transfer. The pin functions of the serial I/O pins can be set with the register

J1.

Table 11 Serial I/O pins

Pin	Pin function when selecting serial I/O
Р20/SCK	Clock I/O (SCK)
P21/SOUT	Serial data output (SOUT)
P22/SIN	Serial data input (SIN)

Note: Input ports P20-P22 can be used regardless of register J1.

Fig. 22 Serial I/O structure

Table 12 Serial I/O mode register

	Serial I/O mode register J1		at reset : 00002	at RAM back-up : state retained	R/W
J13	J13 Not used		This hit has no function, but road/write is anabled		
J13	Not used	1	This bit has no function, but read/write is enabled.		
14.0	Serial I/O internal clock dividing ratio	0	0 Instruction clock signal divided by 8		
J12	12 selection bit		Instruction clock sig	nal divided by 4	
14.	J11 Serial I/O port selection bit		Input ports P20, P21, P22 selected		
JII			Serial I/O ports SCK, SOUT, SIN/input ports P20, P21, P22 selected		elected
110	J10 Serial I/O synchronous clock selection bit		External clock		
J10			Serial I/O synchronous clock selection bit	1	Internal clock (instru

Note: "R" represents read enabled, and "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 23 Serial I/O register state when transferring

(1) Serial I/O register SI

Serial I/O register SI is the 8-bit data transfer serial/parallel conversion register. Data can be set to register SI through registers A and B with the TSIAB instruction. The contents of register A is transmitted to the low-order 4 bits of register SI, and the contents of register B is transmitted to the high-order 4 bits of register SI.

During transmission, each bit data is transmitted LSB first from the lowermost bit (bit 0) of register SI, and during reception, each bit data is received LSB first to register SI starting from the topmost bit (bit 7).

When register SI is used as a work register without using serial I/O, pull up the SCK pin or set the pin function to an input port P20.

(2) Serial I/O transmission/reception completion flag (SIOF)

Serial I/O transmission/reception completion flag (SIOF) is set to "1" when serial data transmission or reception completes. The state of SIOF flag can be examined with the skip instruction (SNZSI). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The SIOF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(3) Serial I/O start instruction (SST)

When the SST instruction is executed, the SIOF flag is cleared to "0" and then serial I/O transmission/reception is started.

(4) Serial I/O mode register J1

Register J1 controls the synchronous clock, P20/SCK, P21/SOUT and P22/SIN pin function. Set the contents of this register through register A with the TJ1A instruction. The TAJ1 instruction can be used to transfer the contents of register J1 to register A.

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(5) How to use serial I/O

Figure 24 shows the serial I/O connection example. Serial I/O interrupt is not used in this example. In the actual wiring, pull up the

wiring between each pin with a resistor. Figure 25 shows the data transfer timing and Table 13 shows the data transfer sequence.

Fig. 24 Serial I/O connection example

PRELIMINARY Notice: This is not a final specification Some parametric limits are subject to change.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 25 Timing of serial I/O data transfer

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 13 Processing sequence of data transfer from master to slave

Master (transmission)	Slave (reception)	
[Initial setting]	[Initial setting]	
• Setting the serial I/O mode register J1 and inter- rupt control register V2 shown in Figure 24.	• Setting serial I/O mode register J1, and interrupt control register V2 shown in Figure 24.	
TJ1A and TV2A instructions	TJ1A and TV2A instructions	
• Setting the port received the reception enable signal (SRDY) to the input mode.	• Setting the port received the reception enable signal (SRDY) and outputting "H" level (reception impossible).	
(Port D5 is used in this example)	(Port D5 is used in this example)	
SD instruction	SD instruction	
* [Transmission enable state]	*[Reception enable state]	
• Storing transmission data to serial I/O register SI.	The SIOF flag is cleared to "0."	
TSIAB instruction	SST instruction	
	• "L" level (reception possible) is output from port D5.	
	RD instruction	
[Transmission]	[Reception]	
•Check port D5 is "L" level.		
SZD instruction		
•Serial transfer starts.		
SST instruction		
•Check transmission completes.	Check reception completes.	
SNZSI instruction	SNZSI instruction	
•Wait (timing when continuously transferring)	• "H" level is output from port D5.	
	SD instruction	
	[Data processing]	

1-byte data is serially transferred on this process. Subsequently, data can be transferred continuously by repeating the process from *. When an external clock is selected as a synchronous clock, the

clock is not controlled internally. Control the clock externally because serial transfer is performed as long as clock is externally input. (Unlike an internal clock, an external clock is not stopped when serial transfer is completed.) However, the SIOF flag is set to "1" when the clock is counted 8 times after executing the SST instruction. Be sure to set the initial level of the external clock to "H."

A-D CONVERTER

The 4513/4514 Group has a built-in A-D conversion circuit that performs conversion by 10-bit successive comparison method. Table 14 shows the characteristics of this A-D converter. This A-D converter can also be used as an 8-bit comparator to compare analog voltages input from the analog input pin with preset values.

Table 14 A-D converter characteristics

Parameter	Characteristics			
Conversion format	Successive comparison method			
Resolution	10 bits			
Absolute accuracy	Linearity error: ±2LSB			
	Non-linearity error: ±0.9LSB			
Conversion speed	46.5 μ s (High-speed mode at 4.0 MHz oscillation frequency)			
Analog input pin	4 for 4513 Group			
	8 for 4514 Group			

3: The 4513 Group does not have ports P40/AIN4-P43/AIN7 and the IAP4 and OP4A instructions.

Fig. 26 A-D conversion circuit structure

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Table 15 A-D control registers

A-D control register Q1		at reset : 00002		reset : 00002	at RAM back-up : state retained R/W		
Q13 Not used		0			This bit has no function, but read/write is enabled.		
		1 Q12Q11Q10		010		Selected pins	
Q12			0	0	AINO	Selected pins	
GIL	· · ·	0	0	1	AIN1		
			1	0	AIN2		
Q11	Analog input pin selection bits (Note 2)	0	1	1	Аімз		
		1	0	0	AIN4 (Not available for the 4513 Group)		
		1	0	1	AIN5 (Not available for the 4513 Group)		
Q10		1	1	0	AIN6 (Not available for the 4513 Group)		
		1	1 1 AIN7 (Not available for the 4513 Group)		for the 4513 Group)		
	A-D control register Q2			at	reset : 00002	at RAM back-up : state retained R/W	
Q23	A D anarotian made coloction bit	0 A-D conversion mode		de			
QZ3	A-D operation mode selection bit	1 C			Comparator mode		
Q22	P43/AIN7 and P42/AIN6 pin function selec-		0 P43, P42 (read/		P43, P42	(read/write enabled for the 4513 Group)	
QZZ	tion bit (Not used for the 4513 Group)	1			AIN7, AIN6/P43, P42 (read/write enabled for the 4513 Group)		
Q21	P41/AIN5 pin function selection bit		0		P41 (read/write enabled for the 4513 Group)		
	(Not used for the 4513 Group)		1		AIN5/P41	(read/write enabled for the 4513 Group)	
Q20	P40/AIN4 pin function selection bit		0		P40	(read/write enabled for the 4513 Group)	
Q(2)	(Not used for the 4513 Group)		1		AIN4/P40	(read/write enabled for the 4513 Group)	

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: Select AIN4-AIN7 with register Q1 after setting register Q2.

(1) Operating at A-D conversion mode

The A-D conversion mode is set by setting the bit 3 of register Q2 to "0."

(2) Successive comparison register AD

Register AD stores the A-D conversion result of an analog input in 10-bit digital data format. The contents of the high-order 8 bits of this register can be stored in register B and register A with the TABAD instruction. The contents of the low-order 2 bits of this register can be stored into the high-order 2 bits of register A with the TALA instruction. However, do not execute this instruction during A-D conversion.

When the contents of register AD is n, the logic value of the comparison voltage V_{ref} generated from the built-in DA converter can be obtained with the reference voltage VDD by the following formula:

Logic value of comparison voltage Vref

$$V_{ref} = \frac{V_{DD}}{1024} \times n$$

n: The value of register AD (n = 0 to 1023)

(3) A-D conversion completion flag (ADF)

A-D conversion completion flag (ADF) is set to "1" when A-D conversion completes. The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(4) A-D conversion start instruction (ADST)

A-D conversion starts when the ADST instruction is executed. The conversion result is automatically stored in the register AD.

(5) A-D control register Q1

Register Q1 is used to select one of analog input pins. The 4513 Group does not have AIN4–AIN7. Accordingly, do not select these pins with register Q1.

(6) A-D control register Q2

Register Q2 is used to select the pin function of P40/AIN4, P41/ AIN5, P42/AIN6, and P43/AIN7. The A-D conversion mode is selected when the bit 3 of register Q2 is "0," and the comparator mode is selected when the bit 3 of register Q2 is "1." After set this register, select the analog input with register Q1.

Even when register Q2 is used to set the pins for analog input, P40/AIN4–P43/AIN7 continue to function as P40–P43 I/O. Accordingly, when any of them are used as I/O port P4 and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, for the port input, the port input function of the pin functions as analog input is undefined.

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(7) Operation description

A-D conversion is started with the A-D conversion start instruction (ADST). The internal operation during A-D conversion is as follows:

- \odot When A-D conversion starts, the register AD is cleared to "00016."
- ② Next, the topmost bit of the register AD is set to "1," and the comparison voltage Vref is compared with the analog input voltage VIN.
- ③ When the comparison result is Vref < VIN, the topmost bit of the register AD remains set to "1." When the comparison result is Vref > VIN, it is cleared to "0."

The 4513/4514 Group repeats this operation to the lowermost bit of the register AD to convert an analog value to a digital value. A-D conversion stops after 62 machine cycles (46.5 μ s when f(XIN) = 4.0 MHz in high-speed mode) from the start, and the conversion result is stored in the register AD. An A-D interrupt activated condition is satisfied and the ADF flag is set to "1" as soon as A-D conversion completes (Figure 27).

Table 16 Change of successive comparison register AD during A-D conversion

At starting conversion	Change of successive comparison register AD Comparison voltage (Vref) value
1st comparison	1 0 0 0 0 0 <u>VDD</u> 2
2nd comparison	$*1$ 1 0 0 0 $\frac{VDD}{2}$ \pm $\frac{VDD}{4}$
3rd comparison	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
After 10th comparison	A-D conversion result VDD ± VDD
completes	*1 *2 *3 *8 *9 *A 2 ± ± ± 1024

*1: 1st comparison result

*2: 2nd comparison result

*3: 3rd comparison result*9: 9th comparison result

*8: 8th comparison result

*A: Ath comparison result

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(8) A-D conversion timing chart

Figure 27 shows the A-D conversion timing chart.

(9) How to use A-D conversion

How to use A-D conversion is explained using as example in which the analog input from P40/AIN4 pin is A-D converted, and the highorder 4 bits of the converted data are stored in address M(Z, X, Y)= (0, 0, 0), the middle-order 4 bits in address M(Z, X, Y) = (0, 0, 1), and the low-order 2 bits in address M(Z, X, Y) = (0, 0, 2) of RAM. The A-D interrupt is not used in this example.

- After selecting the AIN4 pin function with the bit 0 of the register Q2, select AIN4 pin and A-D conversion mode with the register Q1 (refer to Figure 28).
- 2 Execute the ADST instruction and start A-D conversion.
- ③ Examine the state of ADF flag with the SNZAD instruction to determine the end of A-D conversion.
- Transfer the low-order 2 bits of converted data to the high-order 2 bits of register A (TALA instruction).
- Transfer the contents of register A to M (Z, X, Y) = (0, 0, 2).
- Transfer the high-order 8 bits of converted data to registers A and B (TABAD instruction).
- \odot Transfer the contents of register A to M (Z, X, Y) = (0, 0, 1).
- $\$ Transfer the contents of register B to register A, and then, store into M(Z, X, Y) = (0, 0, 0).

Fig. 28 Setting registers

(10) Operation at comparator mode

The A-D converter is set to comparator mode by setting bit 3 of the register Q2 to "1."

Below, the operation at comparator mode is described.

(11) Comparator register

In comparator mode, the built-in DA comparator is connected to the comparator register as a register for setting comparison voltages. The contents of register B is stored in the high-order 4 bits of the comparator register and the contents of register A is stored in the low-order 4 bits of the comparator register with the TADAB instruction.

When changing from A-D conversion mode to comparator mode, the result of A-D conversion (register AD) is undefined.

However, because the comparator register is separated from register AD, the value is retained even when changing from comparator mode to A-D conversion mode. Note that the comparator register can be written and read at only comparator mode.

If the value in the comparator register is n, the logic value of comparison voltage V_{ref} generated by the built-in DA converter can be determined from the following formula:

Logic value of comparison voltage Vref -

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n: The value of register AD (n = 0 to 255)

(12) Comparison result store flag (ADF)

In comparator mode, the ADF flag, which shows completion of A-D conversion, stores the results of comparing the analog input voltage with the comparison voltage. When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1." The state of ADF flag can be examined with the skip instruction (SNZAD). Use the interrupt control register V2 to select the interrupt or the skip instruction.

The ADF flag is cleared to "0" when the interrupt occurs or when the next instruction is skipped with the skip instruction.

(13) Comparator operation start instruction (ADST instruction)

In comparator mode, executing ADST starts the comparator operating.

The comparator stops 8 machine cycles after it has started (6 μ s at f(XIN) = 4.0 MHz in high-speed mode). When the analog input voltage is lower than the comparison voltage, the ADF flag is set to "1."

(14) Notes for the use of A-D conversion 1

Note the following when using the analog input pins also for $\mbox{ I/O}$ port P4 functions:

- Even when P40/AIN4–P43/AIN7 are set to pins for analog input, they continue to function as P40–P43 I/O. Accordingly, when any of them are used as I/O port P4 and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.
- TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

(15) Notes for the use of A-D conversion 2

Do not change the operating mode (both A-D conversion mode and comparator mode) of A-D converter with bit 3 of register Q2 while A-D converter is operating.

When the operating mode of A-D converter is changed from the comparator mode to A-D conversion mode with the bit 3 of register Q2, note the following;

- Clear bit 2 of register V2 to "0" to change the operating mode of the A-D converter from the comparator mode to A-D conversion mode with the bit 3 of register Q2.
- The A-D conversion completion flag (ADF) may be set when the operating mode of the A-D converter is changed from the comparator mode to the A-D conversion mode. Accordingly, set a value to register Q2, and execute the SNZAD instruction to clear the ADF flag.

(16) Definition of A-D converter accuracy

The A-D conversion accuracy is defined below (refer to Figure 30).

Relative accuracy

This means an analog input voltage when the actual A-D conversion output data changes from "0" to "1."

② Full-scale transition voltage (VFST)

This means an analog input voltage when the actual A-D conversion output data changes from "1023" to "1022."

3 Linearity error

This means a deviation from the line between Vot and VFst of a converted value between Vot and VFst.

④ Differential non-linearity error

This means a deviation from the input potential difference required to change a converter value between VoT and VFST by 1 LSB at the relative accuracy.

Absolute accuracy

This means a deviation from the ideal characteristics between 0 to VDD of actual A-D conversion characteristics.

Fig. 30 Definition of A-D conversion accuracy

Vn: Analog input voltage when the output data changes from "n" to "n+1" (n = 0 to 1022)

- 1LSB at relative accuracy $\rightarrow \frac{VFST-V0T}{1022}$ (V)
- 1LSB at absolute accuracy $\rightarrow \frac{V_{DD}}{1024}$ (V)

VOLTAGE COMPARATOR

The 4513/4514 Group has 2 voltage comparator circuits that perform comparison of voltage between 2 pins. Table 17 shows the characteristics of this voltage comparison.

Table 17 Voltage comparator characteristics

Parameter	Characteristics			
Voltage comparator function	2 circuits (CMP0, CMP1)			
Input pin	CMP0-, CMP0+			
	(also used as AIN0, AIN1)			
	CMP1-, CMP1+			
	(also used as AIN2, AIN3)			
Supply voltage	3.0 V to 5.5 V			
Input voltage	0.3 VDD to 0.7 VDD			
Comparison check error	Typ. 20 mV, Max.100 mV			
Response time	Max. 20 μs			

Fig. 31 Voltage comparator structure

Table 18 Voltage	e comparator	control	register	Q3
------------------	--------------	---------	----------	----

Voltage	Voltage comparator control register Q3 (Note 2)		reset : 00002	at RAM back-up : state retained	R/W
Q33	Q33 Voltage comparator (CMP1) control bit		Voltage comparator (CMP1) invalid		
0,03	Q33 Voltage comparator (CIVIP 1) control bit	1	Voltage comparator	(CMP1) valid	
Q32	Voltage comparator (CMP0) control bit	0	Voltage comparator (CMP0) invalid		
0,52		1	Voltage comparator	(CMP0) valid	
Q31	CMP1 comparison result store bit	0	CMP1- > CMP1+		
QUI	CMPT compansion result store bit	1	CMP1- < CMP1+		
Q30		0	CMP0- > CMP0+		
Q30	CMP0 comparison result store bit	1	CMP0- < CMP0+		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: Bits 0 and 1 of register Q3 can be only read.

(1) Voltage comparator control register Q3

Register Q3 controls the function of the voltage comparator. The function of the voltage comparator CMP0 becomes valid by setting bit 2 of register Q3 to "1," and becomes invalid by setting bit 2 of register Q3 to "0." The comparison result of the voltage comparator CMP0 is stored into bit 0 of register Q3.

The function of the voltage comparator CMP1 becomes valid by setting bit 3 of register Q3 to "1," and becomes invalid by setting bit 3 of register Q3 to "0." The comparison result of the voltage comparator CMP1 is stored into bit 1 of register Q3.

(2) Operation description of voltage comparator

The voltage comparator function becomes valid by setting each control bit of register Q3 to "1" and compares the voltage of the input pin. The comparison result is stored into each comparison result store bit of register Q3.

- The comparison result is as follows;
- When CMP0- > CMP0+, Q30 = "0"
- When CMP0- < CMP0+, Q30 = "1"
- When CMP1- > CMP1+, Q31 = "0" When CMP1- < CMP1+, Q31 = "1"

(3) Precautions

When the voltage comparator is used, note the following;

• Voltage comparator function

When the voltage comparator function is valid with the voltage comparator control register Q3, it is operating even in the RAM back-up mode. Accordingly, be careful about such state because it causes the increase of the operation current in the RAM back-up mode.

In order to reduce the operation current in the RAM back-up mode, invalidate (bits 2 and 3 of register Q3 = "0") the voltage comparator function by software before the POF instruction is executed.

Also, while the voltage comparator function is valid, current is always consumed by voltage comparator. On the system required for the low-power dissipation, invalidate the voltage comparator by software when it is unused.

• Register Q3

Bits 0 and 1 of register Q3 can be only read. Note that they cannot be written.

 Reading the comparison result of voltage comparator Read the voltage comparator comparison result from register Q3 after the voltage comparator response time (max. 20 μs) is passed from the voltage comparator function becomes valid.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to RESET pin, software starts from address 0 in page 0.

Fig. 32 Reset release timing

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) Power-on reset

Reset can be performed automatically at power on (power-on reset) by connecting resistors, a diode, and a capacitor to $\overline{\text{RESET}}$ pin. Connect $\overline{\text{RESET}}$ pin and the external circuit at the shortest distance.

Fig. 34 Power-on reset circuit example

(2) Internal state at reset

Table 19 shows port state at reset, and Figure 35 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 35 are undefined, so set the initial value to them.

Table 19 Port state at reset

Name	Function	State
D0D5	D0D5	High impedance (Note)
D6/CNTR0, D7/CNTR1	D6, D7	
P00-P03	P00-P03	High impedance (Notes 1, 2)
P10-P13	P10-P13	
P20/SCK, P21/SOUT, P22/SIN	P20-P22	High impedance
P30/INT0, P31/INT1	P30, P31	High impedance (Note 1)
P32, P33 (Note 4)	P32, P33	
P40/AIN4–P43/AIN7 (Note 4)	P40-P43	High impedance (Note 1)
P50–P53 (Note 4)	P50-P53	High impedance (Note 3)

Notes 1: Output latch is set to "1."

2: Pull-up transistor is turned OFF.

3: After system is released from reset, port P5 is in the input mode. (Direction register FR0 = 00002)

4: The 4513 Group does not have these ports.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Program counter (PC)	
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	
Power down flag (P)	0
External 0 interrupt request flag (EXF0)	0
External 1 interrupt request flag (EXF1)	0
Interrupt control register V1	0000 (Interrupt disabled)
Interrupt control register V2	0000 (Interrupt disabled)
Interrupt control register I1	0000
Interrupt control register I2	0000
• Timer 1 interrupt request flag (T1F)	0
Timer 2 interrupt request flag (T2F)	0
Timer 3 interrupt request flag (T3F)	0
• Timer 4 interrupt request flag (T4F)	0
Watchdog timer flags (WDF1, WDF2)	0
Watchdog timer enable flag (WEF)	
Timer control register W1	
Timer control register W2	
Timer control register W3	
• Timer control register W4	
• Timer control register W6	
Clock control register MR	
Serial I/O transmission/reception completion flag	
Serial I/O mode register J1	(External clock selected and seri
Serial I/O register SI	
A-D conversion completion flag (ADF)	
A-D control register Q1	
A-D control register Q2	
• Voltage comparator control register Q3	
 Successive comparison register AD 	
• Comparator register	
• Key-on wakeup control register K0	
Pull-up control register PU0	
• Direction register FR0	
• Carry flag (CY)	
• Register A	
• Register B	
• Register D	
• Register E	
• Register X	
• Register Y	
• Register Z	
• Stack pointer (SP)	

Fig. 35 Internal state at reset

Notice: This is not a final specification. Some parametric limits are subject to change.

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

Fig. 36 Voltage drop detection reset circuit

Fig. 37 Voltage drop detection circuit operation waveform

RAM BACK-UP MODE

The 4513/4514 Group has the RAM back-up mode.

When the EPOF and POF instructions are executed continuously, system enters the RAM back-up state. The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, current dissipation can be reduced without losing the contents of RAM. Table 20 shows the function and states retained at RAM back-up. Figure 38 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the EPOF and POF instructions continuously, the CPU starts executing the program from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the program from address 0 in page 0 when;

- reset pulse is input to RESET pin, or
- · reset by watchdog timer is performed, or
- voltage drop detection circuit detects the voltage drop.

In this case, the P flag is "0."

Table 20 Functions and states retained at RAM back-up

Function	RAM back-up
Program counter (PC), registers A, B,	
carry flag (CY), stack pointer (SP) (Note 2)	X
Contents of RAM	0
Port level	0
Timer control register W1	×
Timer control registers W2 to W4, W6	0
Clock control register MR	×
Interrupt control registers V1, V2	×
Interrupt control registers I1, I2	0
Timer 1 function	×
Timer 2 function	(Note 3)
Timer 3 function	(Note 3)
Timer 4 function	(Note 3)
A-D conversion function	x
A-D control registers Q1, Q2	0
Voltage comparator function	O (Note 5)
Voltage comparator control register Q3	0
Serial I/O function	×
Serial I/O mode register J1	0
Pull-up control register PU0	0
Key-on wakeup control register K0	0
Direction register FR0	0
External 0 interrupt request flag (EXF0)	x
External 1 interrupt request flag (EXF1)	×
Timer 1 interrupt request flag (T1F)	x
Timer 2 interrupt request flag (T2F)	(Note 3)
Timer 3 interrupt request flag (T3F)	(Note 3)
Timer 4 interrupt request flag (T4F)	(Note 3)
Watchdog timer flags (WDF1, WDF2)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)
16-bit timer (WDT)	X (Note 4)
A-D conversion completion flag (ADF)	×
Serial I/O transmission/reception completion flag (SIOF)	×
Interrupt enable flag (INTE)	×

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.

3: The state of the timer is undefined.

4: Initialize the watchdog timer with the WRST instruction, and then execute the POF instruction.

5: The state is retained when the voltage comparator function is selected with the voltage comparator control register Q3.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 21 shows the return condition for each return source.

(5) Ports P0 and P1 control registers

• Key-on wakeup control register K0

Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.

• Pull-up control register PU0

Register PU0 controls the ON/OFF of the ports P0 and P1 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.

Table 21 Return source and return condition

R	eturn source	Return condition	Remarks
edge input ("H"→"L").			Set the port using the key-on wakeup function selected with register K0 to "H" level before going into the RAM back-up state because the port P0 shares the falling edge detection circuit with port P1.
sign	Port P30/INT0	Return by an external "H" level or "L" level input. The EXF0 flag is not set.	Select the return level ("L" level or "H" level) with the bit 2 of register I1 ac- cording to the external state before going into the RAM back-up state.
Exter	Port P31/INT1	Return by an external "H" level or "L" level input. The EXF1 flag is not set.	Select the return level ("L" level or "H" level) with the bit 2 of register I2 ac- cording to the external state before going into the RAM back-up state.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Fig. 38 State transition

Fig. 39 Set source and clear source of the P flag

Fig. 40 Start condition identified example using the SNZP instruction

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	Key-on wakeup control register K0	at	reset : 00002	at RAM back-up : state retained	R/W
1/0-	Pins P12 and P13 key-on wakeup	0	Key-on wakeup not	tused	
K03	control bit	1	Key-on wakeup use	ed	
1/2	Pins P10 and P11 key-on wakeup	0 Key-on wakeup no		t used	
K02	control bit	1	Key-on wakeup use	ed	
	Pins P02 and P03 key-on wakeup	0	Key-on wakeup not		
K01	control bit	1	Key-on wakeup use		
	Pins P00 and P01 key-on wakeup	0	Key-on wakeup not		
K00	control bit	1	Key-on wakeup use		
	Pull-up control register PU0	at	reset : 00002	at RAM back-up : state retained	R/W
	Pins P12 and P13 pull-up transistor	0	Pull-up transistor C) FF	
PU03	control bit	1	Pull-up transistor C		
	Pins P10 and P11 pull-up transistor	0	Pull-up transistor C)FF	
PU02	control bit	1	Pull-up transistor C		
	Pins P02 and P03 pull-up transistor	0	Pull-up transistor C		
PU01	control bit	1	Pull-up transistor C		
	Pins P00 and P01 pull-up transistor	0	Pull-up transistor C		
PU00	control bit	1	Pull-up transistor C		
	Interrupt control register I1		reset : 00002	at RAM back-up : state retained	R/W
		0			
113	Not used	1	This bit has no fund	ction, but read/write is enabled.	
112	Interrupt valid waveform for INT0 pin/	0	Falling waveform (" instruction)/"L" leve	'L" level of INT0 pin is recognized with	the SNZ
112	return level selection bit (Note 2)	1	Rising waveform ("H" level of INT0 pin is recognized with th instruction)/"H" level		the SNZ
I1 1	INT0 pin edge detection circuit control bit	0	One-sided edge de	tected	
111	in to pill edge detection circuit control bit	1	Both edges detecte	ed	
110	INT0 pin	0	Disabled		
110	timer 1 control enable bit	1	Enabled		
	Interrupt control register I2	at	reset : 00002	at RAM back-up : state retained	R/W
			This bit has no function, but read/write is enabled.		
123	Not used	0	This bit has no fund	ction, but read/write is enabled.	
	Not used			L" level of INT1 pin is recognized with t	he SNZI
I23 I22		1	Falling waveform (" instruction)/"L" leve	L" level of INT1 pin is recognized with t I H" level of INT1 pin is recognized with t	
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 3)	1 0	Falling waveform (" instruction)/"L" leve Rising waveform ("I	L" level of INT1 pin is recognized with t I H" level of INT1 pin is recognized with t	
	Interrupt valid waveform for INT1 pin/	1 0 1	Falling waveform (" instruction)/"L" leve Rising waveform ("I instruction)/"H" leve One-sided edge de	L" level of INT1 pin is recognized with t I H" level of INT1 pin is recognized with t el tected	
122	Interrupt valid waveform for INT1 pin/ return level selection bit (Note 3)	1 0 1 0	Falling waveform (" instruction)/"L" leve Rising waveform ("I instruction)/"H" leve	L" level of INT1 pin is recognized with t I H" level of INT1 pin is recognized with t el tected	

Table 22 Key-on wakeup control register, pull-up control register, and interrupt control register

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of 112 is changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction.

3: When the contents of I22 is changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction.

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- System clock generating circuit
- · Control circuit to stop the clock oscillation

- Control circuit to switch the middle-speed mode and high-speed mode
- Control circuit to return from the RAM back-up state

Fig. 41 Clock control circuit structure

Table 23 Clock control register MR

	Clock control register MR	at	reset : 10002	at RAM back-up : 10002							
MR3	System clock selection bit	0	f(XIN) (high-speed mode)								
IVIT3		1	f(XIN)/2 (middle-speed mode)								
MR2	Not used	0	This bit has no function, but need/units is eachlad								
IVIR2	Not used	1	This bit has no function, but read/write is enabled.								
MR1	Not used	0	This bit has no for all on how on doubt is such to d								
IVITY	Not used	1	This bit has no function, but read/write is enabled.								
MRo	Not used	0	- This bit has no function, but read/write is enabled.								
IVIR0		1									

Note : "R" represents read enabled, and "W" represents write enabled.

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Clock signal $f(\ensuremath{\mathsf{XIN}})$ is obtained by externally connecting a ceramic resonator.

Connect this external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT. When an external clock signal is input, connect the clock source to XIN and leave XOUT open. When using an external clock, the maximum value of external clock oscillating frequency is shown in Table 24.

Fig. 43 External clock input circuit

Table 24 Maximum value of external clock oscillation frequency

		Supply voltage	Oscillation frequency (duty ratio)
	Middle-speed mode	VDD = 2.0 V to 5.5 V	3.0 MHz (40 % to 60 %)
Mask ROM version		VDD = 4.0 V to 5.5 V	3.0 MHz (40 % to 60 %)
	High-speed mode	VDD = 2.5 V to 5.5 V	1.0 MHz (40 % to 60 %)
		VDD = 2.0 V to 5.5 V	0.8 MHz (40 % to 60 %)
	Middle-speed mode	VDD = 2.5 V to 5.5 V	3.0 MHz (40 % to 60 %)
One Time PROM version	High-speed mode	VDD = 4.0 V to 5.5 V	3.0 MHz (40 % to 60 %)
		VDD = 2.5 V to 5.5 V	1.0 MHz (40 % to 60 %)

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

- (1) Mask ROM Order Confirmation Form 1
- (2) Data to be written into mask ROMEPROM (three sets containing the identical data)
- (3) Mark Specification Form 1

LIST OF PRECAUTIONS

①Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.1 $\mu\text{F})$ between pins VDD and Vss at the shortest distance,
- equalize its wiring in width and length, and

• use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω in series at the shortest distance.

2 Prescaler

Stop the prescaler operation to change its frequency dividing ratio.

3 Timer count source

Stop timer 1, 2, 3, or 4 counting to change its count source.

④ Reading the count value

Stop timer 1, 2, 3, or 4 counting and then execute the TAB1, TAB2, TAB3, or TAB4 instruction to read its data.

5 Writing to reload registers R1 and R3

When writing data to reload registers R1 or R3 while timer 1 or timer 3 is operating, avoid a timing when timer 1 or timer 3 underflows.

6P30/INT0 pin

When the interrupt valid waveform of the P30/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.

- Clear the bit 0 of register V1 to "0" before the interrupt valid waveform of P30/INT0 pin is changed with the bit 2 of register I1 (refer to Figure 44⁽¹⁾).
- Depending on the input state of the P30/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the interrupt valid waveform is changed. Accordingly, clear bit 2 of register I1, and execute the SNZ0 instruction to clear the EXF0 flag after executing at least one instruction (refer to Figure 44⁽²⁾)

:	
LA 4	; (XXX 02)
TV1A	; The SNZ0 instruction is valid
LA 4	;
TI1A	; Interrupt valid waveform is changed
NOP	
SNZ0	; The SNZ0 instruction is executed
NOP	
:	
X : this b	it is not related to the setting of INT0 pin.

Fig. 44 External 0 interrupt program example

⑦P31/INT1 pin

When the interrupt valid waveform of P31/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.

- Clear the bit 1 of register V1 to "0" before the interrupt valid waveform of P31/INT1 pin is changed with the bit 2 of register I2 (refer to Figure 45⁽³⁾).
- Depending on the input state of the P31/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the interrupt valid waveform is changed. Accordingly, clear bit 2 of register I2 and execute the SNZ1 instruction to clear the EXF1 flag after executing at least one instruction (refer to Figure 45④).

:	
LA 8	; (XX 0 X 2)
TV1A	; The SNZ1 instruction is valid
LA 8	
TI2A	; Change of the interrupt valid waveform
NOP	
SNZ1	; The SNZ1 instruction is executed
NOP	
:	
	X : this bit is not related to the setting of INT1.

Fig. 45 External 1 interrupt program example

Image: Second Second

The operating power voltage of the One Time PROM version is 2.5 V to 5.5 V.

Multifunction

The input of D6, D7, P20–P22, I/O of P30 and P31, input of CMP0-, CMP0+, CMP1-, CMP1+, and I/O of P40–P43 can be used even when CNTR0, CNTR1, SCK, SOUT, SIN, INT0, INT1, AIN0–AIN3 and AIN4–AIN7 are selected.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

1 A-D converter-1

hange.

PRELIMINAF

Notice: This is not a final specifi Some parametric limits are sub

When the operating mode of the A-D converter is changed from the comparator mode to the A-D conversion mode with the bit 3 of register Q2 in a program, be careful about the following notes.

- Clear the bit 2 of register V2 to "0" to change the operating mode of the A-D converter from the comparator mode to the A-D conversion mode with the bit 3 of register Q2 (refer to Figure 46⁽⁵⁾).
- The A-D conversion completion flag (ADF) may be set when the operating mode of the A-D converter is changed from the comparator mode to the A-D conversion mode. Accordingly, set a value to register Q2, and execute the SNZAD instruction to clear the ADF flag.

Do not change the operating mode (both A-D conversion mode and comparator mode) of A-D converter with the bit 3 of register Q2 during operating the A-D converter.

:	
LA 8	; (X0XX2)
TV2A	; The SNZAD instruction is valid 5
LA 0	; (0 XXX 2)
TQ2A	; Change of the operating mode of the A-D converter from the comparator mode to the A-D conversion mode
SNZAD	
NOP	
:	X: this bit is not related to the change of the operating mode of the A-D conversion.

Fig. 46 A-D converter operating mode program example

⁽¹⁾A-D converter-2

Each analog input pin is equipped with a capacitor which is used to compare the analog voltage. Accordingly, when the analog voltage is input from the circuit with high-impedance and, charge/ discharge noise is generated and the sufficient A-D accuracy may not be obtained. Therefore, reduce the impedance or, connect a capacitor (0.01 μ F to 1 μ F) to analog input pins (Figure 47).

When the overvoltage applied to the A-D conversion circuit may occur, connect an external circuit in order to keep the voltage within the rated range as shown the Figure 48. In addition, test the application products sufficiently.

Fig. 48 Analog input external circuit example-2

¹²POF instruction

Execute the POF instruction immediately after executing the EPOF instruction to enter the RAM back-up.

Note that system cannot enter the RAM back-up state when executing only the POF instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction.

⁽¹⁾Analog input pins

Note the following when using the analog input pins also for I/O port P4 functions:

- Even when P40/AIN4-P43/AIN7 are set to pins for analog input, they continue to function as P40-P43 I/O. Accordingly, when any of them are used as I/O port P4 and others are used as analog input pins, make sure to set the outputs of pins that are set for analog input to "1." Also, the port input function of the pin functions as an analog input is undefined.
- TALA instruction

When the TALA instruction is executed, the low-order 2 bits of register AD is transferred to the high-order 2 bits of register A, simultaneously, the low-order 2 bits of register A is "0."

[®]Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

In the 4513 Group, when the IAP3 instruction is executed, note that the high-order 2 bits of register A is undefined.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

[®]Voltage comparator function

When the voltage comparator function is valid with the voltage comparator control register Q3, it is operating even in the RAM back-up mode. Accordingly, be careful about such state because it causes the increase of the operation current in the RAM back-up mode.

In order to reduce the operation current in the RAM back-up mode, invalidate (bits 2 and 3 of register Q3 = "0") the voltage comparator function by software before the POF instruction is executed.

Also, while the voltage comparator function is valid, current is always consumed by voltage comparator. On the system required for the low-power dissipation, invalidate the voltage comparator when it is unused by software.

1 Register Q3

Bits 0 and 1 of register Q3 can be only read. Note that they cannot be written.

[®]Reading the comparison result of voltage comparator

Read the voltage comparator comparison result from register Q3 after the voltage comparator response time (max. 20 μ s) is passed from the voltage comparator function become valid.

MITSUBISHI MICROCOMPUTERS 4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

SYMBOL

The symbols shown below are used in the following instruction function table and instruction list.

Symbol	Contents	Symbol	Contents
А	Register A (4 bits)	T1F	Timer 1 interrupt request flag
В	Register B (4 bits)	T2F	Timer 2 interrupt request flag
DR	Register D (3 bits)	T3F	Timer 3 interrupt request flag
E	Register E (8 bits)	T4F	Timer 4 interrupt request flag
Q1	A-D control register Q1 (4 bits)	WDF1	Watchdog timer flag
Q2	A-D control register Q2 (4 bits)	WEF	Watchdog timer enable flag
Q3	Voltage comparator control register Q3 (4 bits)	INTE	Interrupt enable flag
AD	Successive comparison register AD (10 bits)	EXF0	External 0 interrupt request flag
J1	Serial I/O mode register J1 (4 bits)	EXF1	External 1 interrupt request flag
SI	Serial I/O register SI (8 bits)	Р	Power down flag
V1	Interrupt control register V1 (4 bits)	ADF	A-D conversion completion flag
V2	Interrupt control register V2 (4 bits)	SIOF	Serial I/O transmission/reception completion flag
l1	Interrupt control register I1 (4 bits)		
12	Interrupt control register I2 (4 bits)	D	Port D (8 bits)
W1	Timer control register W1 (4 bits)	P0	Port P0 (4 bits)
W2	Timer control register W2 (4 bits)	P1	Port P1 (4 bits)
W3	Timer control register W3 (4 bits)	P2	Port P2 (3 bits)
W4	Timer control register W4 (4 bits)	P3	Port P3 (4 bits)
W6	Timer control register W6 (4 bits)	P4	Port P4 (4 bits)
MR	Clock control register MR (4 bits)	P5	Port P5 (4 bits)
K0	Key-on wakeup control register K0 (4 bits)		
PU0	Pull-up control register PU0 (4 bits)	x	Hexadecimal variable
FR0	Direction register FR0 (4 bits)	У	Hexadecimal variable
Х	Register X (4 bits)	z	Hexadecimal variable
Υ	Register Y (4 bits)	р	Hexadecimal variable
Z	Register Z (2 bits)	n	Hexadecimal constant
DP	Data pointer (10 bits)	i	Hexadecimal constant
	(It consists of registers X, Y, and Z)	j	Hexadecimal constant
PC	Program counter (14 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
РСн	High-order 7 bits of program counter		(same for others)
PCL	Low-order 7 bits of program counter		
SK	Stack register (14 bits X 8)	\leftarrow	Direction of data movement
SP	Stack pointer (3 bits)	\leftrightarrow	Data exchange between a register and memory
CY	Carry flag	?	Decision of state shown before "?"
R1	Timer 1 reload register	()	Contents of registers and memories
R2	Timer 2 reload register	-	Negate, Flag unchanged after executing instruction
R3	Timer 3 reload register	M(DP)	RAM address pointed by the data pointer
R4	Timer 4 reload register	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
T1	Timer 1	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
T2	Timer 2		in page p5 p4 p3 p2 p1 p0
Т3	Timer 3	С	Hex. C + Hex. number x (also same for others)
T4	Timer 4	+	
		x	

Note : The 4513/4514 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function		
	ТАВ	$\begin{array}{l} (A) \leftarrow (B) \\ (B) \leftarrow (A) \end{array}$	ansfer	XAMI j	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$	c	SB j	(Mj(DP)) ← 1 j = 0 to 3		
	TAY	$(A) \leftarrow (Y)$	egister tra		$(Y) \leftarrow (Y) + 1$	Bit operation	RB j	(Mj(DP)) ← 0 j = 0 to 3		
	ТҮА	$(Y) \leftarrow (A)$	RAM to register transfer	TMA j	$\begin{array}{l} (M(DP)) \leftarrow (A) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array}$	Bit	SZB j	(Mj(DP)) = 0 ? j = 0 to 3		
fer	TEAB	$(E_7-E_4) \leftarrow (B)$ $(E_3-E_0) \leftarrow (A)$		LA n	(A) ← n	5 6	SEAM	(A) = (M(DP)) ?		
Register to register transfer	TABE	$\begin{array}{l} (B) \leftarrow (E7{-}E4) \\ (A) \leftarrow (E3{-}E0) \end{array}$		TABP p	n = 0 to 15 (SP) \leftarrow (SP) + 1 (SK(SP)) \leftarrow (PC)	Comparison operation	SEA n	(A) = n ? n = 0 to 15		
er to re	TDA	$(DR2-DR0) \leftarrow (A2-A0)$			$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0,$		Ва	(PCL) ← a6–a0		
Regist	TAD	$(A2-A0) \leftarrow (DR2-DR0)$ $(A3) \leftarrow 0$			$(A) \leftarrow (B) $	Branch operation	BL p, a	(PCH) ← p (PCL) ← a6–a0		
	TAZ	$\begin{array}{l} (A1, A0) \leftarrow (Z1, Z0) \\ (A3, A2) \leftarrow 0 \end{array}$			$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Branch	BLA p	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$		
	ТАХ	$(A) \gets (X)$		AM	$(A) \gets (A) + (M(DP))$		D 14			
	TASP	$(A2-A0) \leftarrow (SP2-SP0)$ $(A3) \leftarrow 0$		АМС	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$		BM a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$		
sses	LXY x, y	$\begin{array}{l} (X) \leftarrow x, x = 0 \text{ to } 15 \\ (Y) \leftarrow y, y = 0 \text{ to } 15 \end{array}$	Arithmetic operation	An	(A) ← (A) + n n = 0 to 15	Subroutine operation	BML p, a	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$		
RAM addresses	LZ z	$(Z) \leftarrow z, z = 0 \text{ to } 3$	hmetic	AND	$(A) \leftarrow (A) \ AND \ (M(DP))$	outine o		(PCH) ← p (PCL) ← a6–a0		
RAM	INY	$(Y) \leftarrow (Y) + 1$	Arit	OR	$(A) \gets (A) \; OR \; (M(DP))$	Subro	BMLA p	$(SP) \leftarrow (SP) + 1$		
	DEY	$(Y) \leftarrow (Y) - 1$		sc	(CY) ← 1			$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$		
	TAM j	$\begin{array}{l} (A) \leftarrow (M(DP))\\ (X) \leftarrow (X)EXOR(j)\\ j=0 \text{ to } 15 \end{array}$		RC	$(CY) \gets 0$			(PCL) ← (DR2–DR0, A3–A0)		
transfer	XAM j	$(A) \leftarrow \rightarrow (M(DP))$		szc	(CY) = 0 ?		RTI	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		
RAM to register transfer		$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15		CMA	$(A) \leftarrow (\overline{A})$ $\rightarrow \boxed{CY} \rightarrow \boxed{A3A2A1A0} \rightarrow $	peration	RT	$(PC) \leftarrow (SK(SP))$		
RAM to	XAMD j	$\begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array}$				Return operation	RTS	$(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$		
								$(SP) \leftarrow (SP) -$		

LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
	DI	$(INTE) \leftarrow 0$ $(INTE) \leftarrow 1$		TAW4 TW4A	$(A) \leftarrow (W4)$ $(W4) \leftarrow (A)$		SNZT1	(T1F) = 1 ? After skipping $(T1F) \leftarrow 0$
	SNZO	(EXF0) = 1 ?		TAW6	$(A) \leftarrow (W6)$		SNZT2	(T2F) = 1 ?
		After skipping $(EXF0) \leftarrow 0$		TW6A	(W6) ← (A)	Timer operation		After skipping $(T2F) \leftarrow 0$
	SNZ1	(EXF1) = 1 ? After skipping $(EXF1) \leftarrow 0$		TAB1	$\begin{array}{l} (B) \leftarrow (T17T14) \\ (A) \leftarrow (T13T10) \end{array}$	Timer o	SNZT3	(T3F) = 1 ? After skipping $(T3F) \leftarrow 0$
	SNZIO	I12 = 1 : (INT0) = "H" ? I12 = 0 : (INT0) = "L" ?		T1AB	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$		SNZT4	(T4F) = 1 ? After skipping
operatio	SNZI1	I22 = 1 : (INT1) = "H" ? I22 = 0 : (INT1) = "L" ?		TAB2	$(T13-T10) \leftarrow (A)$ $(B) \leftarrow (T27-T24)$		IAP0	$(T4F) \leftarrow 0$ $(A) \leftarrow (P0)$
Interrupt operation	TAV1	$(A) \leftarrow (V1)$		IT DE	$(A) \leftarrow (T23 - T20)$		OP0A	$(P0) \leftarrow (A)$
	TV1A	(V1) ← (A)		T2AB	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$		IAP1	(A) ← (P1)
	TAV2	(A) ← (V2)	ration		$(T23-T20) \leftarrow (A)$		OP1A	(P1) ← (A)
	TV2A	(V2) ← (A)	Timer operation	ТАВЗ	(B) ← (T37–T34) (A) ← (T33–T30)		IAP2	$\begin{array}{l} (A2-A0) \leftarrow (P22-P20) \\ (A3) \leftarrow 0 \end{array}$
	TAI1	$(A) \leftarrow (I1)$ $(I1) \leftarrow (A)$	⊢	ТЗАВ	(R37–R34) ← (B) (T37–T34) ← (B)		IAP3	(A) ← (P3)
	TAI2	$(A) \leftarrow (I2)$			$(R33-R30) \leftarrow (A)$ $(T33-T30) \leftarrow (A)$	eration	ОРЗА	(P3) ← (A)
	TI2A	(I2) ← (A)		TAB4	(B) ← (T47–T44) (A) ← (T43–T40)	Input/Output operation	IAP4* OP4A*	$(A) \leftarrow (P4)$ $(P4) \leftarrow (A)$
	TAW1	(A) ← (W1)		T4AB	(R47–R44) ← (B)	Input/O	IAP5*	(A) ← (P5)
	TW1A	$(W1) \leftarrow (A)$			$(T47-T44) \leftarrow (B)$ $(R43-R40) \leftarrow (A)$ $(T40, T42) \leftarrow (A)$		OP5A*	(P5) ← (A)
ration	TAW2 TW2A	$(A) \leftarrow (W2)$ $(W2) \leftarrow (A)$		TR1AB	$(T43-T40) \leftarrow (A)$ $(R17-R14) \leftarrow (B)$		CLD	(D) ← 1
Timer operation	TAW3	(A) ← (W3)			(R13–R10) ← (A)		RD	$\begin{array}{l} (D(Y)) \leftarrow 0 \\ (Y) = 0 \text{ to } 7 \end{array}$
Ë	TW3A	(W3) ← (A)		TR3AB	(R37–R34) ← (B) (R33–R30) ← (A)		SD	$(D(Y)) \leftarrow 1$ (Y) = 0 to 7
							SZD	(D(Y)) = 0? (Y) = 0 to 7

*: The 4513 Group does not have these instructions.

LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Group- ing	Mnemonic	Function
Input/Output operation	ТКОА ТАКО ТРU0А	$(K0) \leftarrow (A)$ $(A) \leftarrow (K0)$ $(PU0) \leftarrow (A)$		TABAD	$\begin{array}{l} (A) \leftarrow (AD5\text{-}AD2) \\ (B) \leftarrow (AD9\text{-}AD6) \\ However, in the comparator mode, \\ (A) \leftarrow (AD3\text{-}AD0) \end{array}$
Input/Outpu	TAPU0	(A) ← (PU0)		TALA	$(B) \leftarrow (AD7-AD4)$ $(A) \leftarrow (AD1, AD0, 0, 0)$
	TFR0A* TABSI	$(FR0) \leftarrow (A)$ $(A) \leftarrow (S13-S10)$ $(B) \leftarrow (S17-S14)$	operation	TADAB	$(AD_3-AD_0) \leftarrow (A)$ $(AD_7-AD_4) \leftarrow (B)$
ration	TSIAB	$(SI3-SI0) \leftarrow (A)$ $(SI7-SI4) \leftarrow (B)$	A-D conversion operation	TAQ1 TQ1A	$(A) \leftarrow (Q1)$ $(Q1) \leftarrow (A)$
introl opei	TAJ1	$(A) \leftarrow (J1)$	A-D	ADST	$(ADF) \leftarrow 0$ A-D conversion starting
Serial I/O control operation	TJ1A SST	$(J1) \leftarrow (A)$ $(SIOF) \leftarrow 0$ Serial I/O starting		SNZAD	(ADF) = 1 ? After skipping $(ADF) \leftarrow 0$
	SNZSI	(SIOF) = 1 ? After skipping $(SIOF) \leftarrow 0$		TAQ2 TQ2A	$(A) \leftarrow (Q2)$ $(Q2) \leftarrow (A)$
				NOP	$(PC) \leftarrow (PC) + 1$
				POF	RAM back-up POF instruction valid
				SNZP	(P) = 1 ?
			Other operation	WRST	$(WDF1) \leftarrow 0, (WEF) \leftarrow 1$
			Other of	TAMR TMRA	$(A) \leftarrow (MR)$ $(MR) \leftarrow (A)$
				TAQ3	(A) ← (Q3)
				TQ3A	$(Q33, Q32) \leftarrow (A3, A2)$ $(Q31) \leftarrow (CMP1 \text{ comparison result})$ $(Q30) \leftarrow (CMP0 \text{ comparison result})$

*: The 4513 Group does not have these instructions.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

INSTRUCTION CODE TABLE (for 4513 Group)

PRELIMINARY Notice: This is not a final specification Some parametric limits are subject to change.

Г)9-D4	000000	000001	000010	000011		000101			001000	001001	001010	001011	001100	001101	001110	001111	010000	01100
\backslash														001100	001101	001110		010111	01111
D3–D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–11
0000	0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16***	TABP 32**	TABP 48*	BML	BML***	BL	BL***	BM	В
0001	1	_	CLD	SZB 1	_	_	TAD	A 1	LA 1	TABP 1	TABP 17***	TABP 33**	TABP 49*	BML	BML***	BL	BL***	BM	В
0010	2	POF	_	SZB 2	_	_	ТАХ	A 2	LA 2	TABP 2	TABP 18***	TABP 34**	TABP 50*	BML	BML***	BL	BL***	BM	В
0011	3	SNZP	INY	SZB 3	_	_	TAZ	A 3	LA 3	TABP 3	TABP 19***	TABP 35**	TABP 51*	BML	BML***	BL	BL***	BM	В
0100	4	DI	RD	SZD	_	RT	TAV1	A 4	LA 4	TABP 4	TABP 20***	TABP 36**	TABP 52*	BML	BML***	BL	BL***	BM	в
0101	5	EI	SD	SEAn	_	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21***	TABP 37**	TABP 53*	BML	BML***	BL	BL***	BM	в
0110	6	RC	-	SEAM	_	RTI	-	A 6	LA 6	TABP 6	TABP 22***	TABP 38**	TABP 54*	BML	BML***	BL	BL***	BM	в
0111	7	SC	DEY	_	_	-	-	A 7	LA 7	TABP 7	TABP 23***	TABP 39**	TABP 55*	BML	BML***	BL	BL***	BM	В
1000	8	-	AND	_	SNZ0	LZ 0	-	A 8	LA 8	TABP 8	TABP 24***	TABP 40**	TABP 56*	BML	BML***	BL	BL***	BM	В
1001	9	-	OR	TDA	SNZ1	LZ 1	-	A 9	LA 9	TABP 9	TABP 25***	TABP 41**	TABP 57*	BML	BML***	BL	BL***	BM	В
1010	А	AM	TEAB	TABE	SNZI0	LZ 2	-	A 10	LA 10	TABP 10	TABP 26***	TABP 42**	TABP 58*	BML	BML***	BL	BL***	BM	В
1011	В	AMC	_	-	SNZI1	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27***	TABP 43**	TABP 59*	BML	BML***	BL	BL***	BM	В
1100	С	TYA	СМА	_	-	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28***	TABP 44**	TABP 60*	BML	BML***	BL	BL***	BM	В
1101	D	_	RAR	-	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29***	TABP 45**	TABP 61*	BML	BML***	BL	BL***	BM	В
1110	Е	тва	ТАВ	-	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30***	TABP 46**	TABP 62*	BML	BML***	BL	BL***	BM	В
1111	F	_	TAY	SZC	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31***	TABP 47**	TABP 63*	BML	BML***	BL	BL***	BM	В

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the low-order 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word								
BL	10	paaa	aaaa								
BML	10	paaa	aaaa								
BLA	10	pp00	рррр								
BMLA	10	pp00	рррр								
SEA	00	0111	nnnn								
SZD	00	0010	1011								

- *, **, and *** cannot be used in the M34513M2-XXXSP/FP.
- * and ** cannot be used in the M34513M4-XXXSP/FP.
- * and ** cannot be used in the M34513E4FP.
- * cannot be used in the M34513M6-XXXFP.

4513/4514 Group

INSTRUCTION CODE TABLE (continued) (for 4513 Group)

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

						<u>`</u>					<u> </u>							
[D9–D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3–D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	ТW3А	OP0A	T1AB	_	TAW6	IAP0	TAB1	SNZT1	_	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	TW4A	OP1A	T2AB	_	_	IAP1	TAB2	SNZT2	_	_	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	TJ1A	_	_	ТЗАВ	TAJ1	TAMR	IAP2	ТАВЗ	SNZT3	_	_	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	TW6A	OP3A	T4AB	_	TAI1	IAP3	TAB4	SNZT4	_	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	_	-	_	TAQ1	TAI2	_	-	_	_	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	TQ2A	_	_	_	TAQ2	_	_	_	_	_	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	ТQЗА	TMRA	-	_	TAQ3	TAK0	_	-	-	_	_	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	-	TI1A	Ι	-	-	TAPU0	-	-	SNZAD	_	-	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	-	TI2A	Ι	TSIAB	-	_	-	TABSI	SNZSI	-	-	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	_	_	-	TADAB	TALA	_	_	TABAD	_	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	А	_	_	-	Ι	_	_	_	_	_	_	-	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	_	TK0A	-	TR3AB	TAW1	_	-	-	-	-	-	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	_	_	Ι	Ι	TAW2	_	_	_	_	_	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	-	-	TPU0A	-	TAW3	_	-	-	-	-	-	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	E	TW1A	-	-	-	TAW4	_	-	-	-	SST	-	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	-	_	TR1AB	_	_	_	-	-	ADST	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the loworder 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The second word											
BL	10	paaa	aaaa									
BML	10	paaa	aaaa									
BLA	10	pp00	рррр									
BMLA	10	pp00	pppp									
SEA	00	0111	nnnn									
SZD	00	0010	1011									

INSTRUCTION CODE TABLE (for 4514 Group)

	D9–D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111	010000 010111	
D3–D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	
0000	0	NOP	BLA	SZB 0	BMLA	_	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32	TABP 48*	BML	BML	BL	BL	ВМ	В
0001	1	_	CLD	SZB 1	_	_	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33	TABP 49*	BML	BML	BL	BL	BM	В
0010	2	POF	-	SZB 2	-	_	ТАХ	A 2	LA 2	TABP 2	TABP 18	TABP 34	TABP 50*	BML	BML	BL	BL	BM	В
0011	3	SNZP	INY	SZB 3	-	-	TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35	TABP 51*	BML	BML	BL	BL	BM	В
0100	4	DI	RD	SZD	-	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36	TABP 52*	BML	BML	BL	BL	BM	В
0101	5	EI	SD	SEAn	-	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37	TABP 53*	BML	BML	BL	BL	BM	В
0110	6	RC	Ι	SEAM	-	RTI	_	A 6	LA 6	TABP 6	TABP 22	TABP 38	TABP 54*	BML	BML	BL	BL	BM	В
0111	7	SC	DEY	-	-	_	_	A 7	LA 7	TABP 7	TABP 23	TABP 39	TABP 55*	BML	BML	BL	BL	BM	В
1000	8	-	AND	-	SNZ0	LZ 0	_	A 8	LA 8	TABP 8	TABP 24	TABP 40	TABP 56*	BML	BML	BL	BL	BM	В
1001	9	-	OR	TDA	SNZ1	LZ 1	_	A 9	LA 9	TABP 9	TABP 25	TABP 41	TABP 57*	BML	BML	BL	BL	BM	В
1010	А	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26	TABP 42	TABP 58*	BML	BML	BL	BL	BM	В
1011	В	AMC	_	_	SNZI1	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43	TABP 59*	BML	BML	BL	BL	BM	В
1100	С	TYA	СМА	-	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44	TABP 60*	BML	BML	BL	BL	BM	В
1101	D	_	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45	TABP 61*	BML	BML	BL	BL	BM	В
1110	Е	ТВА	TAB	_	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46	TABP 62*	BML	BML	BL	BL	BM	В
1111	F	_	TAY	SZC	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47	TABP 63*	BML	BML	BL	BL	BM	в

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	paaa	aaaa
BML	10	paaa	aaaa
BLA	10	pp00	pppp
BMLA	10	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

• * cannot be used in the M34514M6-XXXFP.

INSTRUCTION CODE TABLE (continued) (for 4514 Group)

																		110000
	D9-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	-	ТѠЗА	OP0A	T1AB	-	TAW6	IAP0	TAB1	SNZT1	-	WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	TW4A	OP1A	T2AB	-	-	IAP1	TAB2	SNZT2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	TJ1A	_	_	ТЗАВ	TAJ1	TAMR	IAP2	ТАВЗ	SNZT3	_	-	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	_	TW6A	ОРЗА	T4AB	_	TAI1	IAP3	TAB4	SNZT4	_	-	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	TQ1A	_	OP4A	_	TAQ1	TAI2	IAP4	_	_	_	-	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	TQ2A	_	OP5A	-	TAQ2	-	IAP5	_	_	_	-	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	ТQЗА	TMRA	_	_	TAQ3	TAK0	_	-	-	_	-	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	Ι	TI1A	Ι	_	-	TAPU0	_	-	SNZAD	_	-	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	-	TI2A	TFR0A	TSIAB	_	_	_	TABSI	SNZSI	_	-	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	-	_	I	TADAB	TALA	-	_	TABAD	_	_	-	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	А	-	_	-	_	_	_	_	-	-	_	-	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	-	TK0A	-	TR3AB	TAW1	-	_	-	-	-	-	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	Ι	_	I	_	TAW2	_	_	_	_	_	-	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	_	_	TPU0A	_	TAW3	-	_	_	-	_	-	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	_	-	_	TAW4	_	_	-	-	SST	-	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	_	-	TR1AB	_	-	-	-	-	ADST	-	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D₃–D₀ show the loworder 4 bits of the machine language code, and D₉–D₄ show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	10	paaa	aaaa
BML	10	paaa	aaaa
BLA	10	pp00	рррр
BMLA	10	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS

Paramete	r	Instruction code											er of ds er of				
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otati	cimal on	Number (words	Number o cycles	Function
	ТАВ	0	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	$(A) \gets (B)$
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	$(B) \gets (A)$
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \gets (Y)$
	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \gets (A)$
transfer	ТЕАВ	0	0	0	0	0	1	1	0	1	0	0	1	А	1	1	$\begin{array}{l} (E7-E4) \leftarrow (B) \\ (E3-E0) \leftarrow (A) \end{array}$
egister 1	TABE	0	0	0	0	1	0	1	0	1	0	0	2	A	1	1	$\begin{array}{l} (B) \leftarrow (E7\text{-}E4) \\ (A) \leftarrow (E3\text{-}E0) \end{array}$
r to r	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR2-DR0) \leftarrow (A2-A0)$
Register to register transfer	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$(A2-A0) \leftarrow (DR2-DR0)$ $(A3) \leftarrow 0$
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$\begin{array}{l} (A1,A0) \leftarrow (Z1,Z0) \\ (A3,A2) \leftarrow 0 \end{array}$
	ТАХ	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$\begin{array}{l} (A2-A0) \leftarrow (SP2-SP0) \\ (A3) \leftarrow 0 \end{array}$
	LXY x, y	1	1	Х3	X2	X1	X 0	уз	у2	у1	уo	3	х	у	1	1	$\begin{array}{l} (X) \leftarrow x, x = 0 \text{ to } 15 \\ (Y) \leftarrow y, y = 0 \text{ to } 15 \end{array}$
resses	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z, z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	$(Y) \leftarrow (Y) + 1$
R	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	TAM j	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$(A) \leftarrow (M(DP))$
	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$\begin{array}{l} (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (O(DP)(j)) \end{array}$
ansfe	XAMD j	1	0	1	1	1	1	i	i	j	j	2	F	i	1	1	$\begin{array}{l} (X) \leftarrow (X) EXOR(j) \\ j = 0 \text{ to } 15 \\ (A) \leftarrow \rightarrow (M(DP)) \end{array}$
egister ti								-		,							$ \begin{array}{l} (X) \leftarrow (X) EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAM to register transfer	XAMI j	1	0	1	1	1	0	j	j	j	j	2	E	j	1	1	$\begin{array}{l} (A) \leftarrow \to (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array}$
	TMA j	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	С	
Skip condition	Carry flag	Datailed description
-	-	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
-	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of registers A and B to register E.
-	-	Transfers the contents of register E to registers A and B.
_	-	Transfers the contents of register A to register D.
_	-	Transfers the contents of register D to register A.
-	-	Transfers the contents of register Z to register A.
_	-	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to register A.
Continuous description		Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	-	Loads the value z in the immediate field to register Z.
(Y) = 0		Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next in- struction is skipped.
(Y) = 15		Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.
-		After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15		After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0		After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is per- formed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
-	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between reg- ister X and the value j in the immediate field, and stores the result in register X.

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

4513/4514 Group

MACHINE INSTRUCTIONS (continued)

Parameter	r	Instruction code											r of s	r of s			
Type of	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do	Hexadecimal notation	Number of words	Number (cycles	Function		
	LA n	0	0	0	1	1	1	n	n	n	n	0 7 n	1	1	(A) ← n n = 0 to 15		
	TABP p	0	0	1	0	р5	р4	рз	р2	p1	po	08p +p	1	3	$\begin{array}{l} (\text{SP}) \leftarrow (\text{SP}) + 1 \\ (\text{SK}(\text{SP})) \leftarrow (\text{PC}) \\ (\text{PCH}) \leftarrow p \\ (\text{PCL}) \leftarrow (\text{DR2-DR0}, \text{A3-A0}) \\ (\text{B}) \leftarrow (\text{ROM}(\text{PC}))^{7-4} \\ (\text{A}) \leftarrow (\text{ROM}(\text{PC}))^{3-0} \\ (\text{PC}) \leftarrow (\text{SK}(\text{SP})) \\ (\text{SP}) \leftarrow (\text{SP}) - 1 (\text{Note}) \end{array}$		
	АМ	0	0	0	0	0	0	1	0	1	0	0 0 A	1	1	$(A) \gets (A) + (M(DP))$		
eration	AMC	0	0	0	0	0	0	1	0	1	1	0 0 B	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$		
Arithmetic operation	A n	0	0	0	1	1	0	n	n	n	n	06 n	1	1	$(A) \leftarrow (A) + n$ n = 0 to 15		
Arith	AND	0	0	0	0	0	1	1	0	0	0	0 1 8	1	1	$(A) \leftarrow (A) \; AND \; (M(DP))$		
	OR	0	0	0	0	0	1	1	0	0	1	019	1	1	$(A) \gets (A) \; OR \; (M(DP))$		
	sc	0	0	0	0	0	0	0	1	1	1	0 0 7	1	1	$(CY) \leftarrow 1$		
	RC	0	0	0	0	0	0	0	1	1	0	0 0 6	1	1	$(CY) \leftarrow 0$		
	szc	0	0	0	0	1	0	1	1	1	1	02F	1	1	(CY) = 0 ?		
	СМА	0	0	0	0	0	1	1	1	0	0	0 1 C	1	1	$(\overline{A}) \leftarrow (\overline{A})$		
	RAR	0	0	0	0	0	1	1	1	0	1	0 1 D	1	1			
u	SB j	0	0	0	1	0	1	1	1	j	j	0 5 C +j	1	1	$(Mj(DP)) \leftarrow 1$ j = 0 to 3		
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0 4 C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3		
Bit	SZB j	0	0	0	0	1	0	0	0	j	j	02j	1	1	(Mj(DP)) = 0 ? j = 0 to 3		
	SEAM	0	0	0	0	1	0	0	1	1	0	026	1	1	(A) = (M(DP)) ?		
Comparison operation	SEA n	0	0	0	0 1	1 1	0 1	0 n	1 n	0 n	1 n	025 07n	2	2	(A) = n ? n = 0 to 15		
		2451										to 47 for M24					

Note :p is 0 to 15 for M34513M2, p is 0 to 31 for M34513M4/E4, p is 0 to 47 for M34513M6 and M34514M6, and p is 0 to 63 for M34513M8/E8 and M34514M8/E8.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Datailed description
Continuous description		Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-		Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in ad- dress (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, 1 stage of stack register is used.
	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY re-
		mains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	-	Adds the value n in the immediate field to register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
-		Takes the AND operation between the contents of register A and the contents of M(DP), and stores the re- sult in register A.
-		Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
_	-	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A) = n	-	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.

4513/4514 Group

MACHINE INSTRUCTIONS (continued)

Notice: This is not a final specification. Some parametric limits are subject to change.

Parameter	r	Instruction code											er of Is	er of es			
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otat	cimal ion	Number of words	Number of cycles	Function
	Ва	0	1	1	a 6	a5	a 4	a 3	a2	a1	a0	1	8 +a		1	1	(PCL) ← a6–a0
ation	BL p, a	0	0	1	1	1	p4	рз	p2	p1	p0	0	E +p		2	2	(PCH) ← p (PCL) ← a6–a0
Branch operation		1	0	p5	a 6	a5	a 4	аз	a2	a 1	a0	2	p +a				(Note)
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0	1	0	2	2	$(PCH) \leftarrow p$
		1	0	p5	p4	0	0	рз	p2	p1	p0	2	р	р			(PCL) ← (DR2–DR0, A3–A0) (Note)
	BM a	0	1	0	a 6	a 5	a4	a 3	a2	a1	a 0	1	а	а	1	1	$\begin{array}{l} (SP) \leftarrow (SP) + 1 \\ (SK(SP)) \leftarrow (PC) \\ (PCH) \leftarrow 2 \\ (PCL) \leftarrow a6{-}a0 \end{array}$
Subroutine operation	BML p, a	0	0	1	1	0	р4	рз	p2	p1	p0	0	С +р		2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$
outine		1	0	р5	a 6	a 5	a 4	a 3	a2	a 1	a 0	2	p +a				(PCL) ← a6–a0 (Note)
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0	3	0	2	2	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$
		1	0	р5	p4	0	0	рз	p2	p1	p0	2	р	р			$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0,A3-A0)$ (Note)
tion	RTI	0	0	0	1	0	0	0	1	1	0	0	4	6	1	1	$\begin{array}{l} (PC) \leftarrow (SK(SP)) \\ (SP) \leftarrow (SP) - 1 \end{array}$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Retu	RTS	0	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	$(INTE) \leftarrow 0$
ation	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	$(INTE) \leftarrow 1$
Interrupt operation	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	(EXF0) = 1? After skipping $(EXF0) \leftarrow 0$
Inter	SNZ1	0	0	0	0	1	1	1	0	0	1	0	3	9	1	1	(EXF1) = 1 ? After skipping $(EXF1) \leftarrow 0$

Note : p is 0 to 15 for M34513M2, p is 0 to 31 for M34513M4/E4, p is 0 to 47 for M34513M6 and M34514M6, and p is 0 to 63 for M34513M8/E8 and M34514M8/E8.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

r		
Skip condition	Carry flag CY	Datailed description
-	-	Branch within a page : Branches to address a in the identical page.
_	-	Branch out of a page : Branches to address a in page p.
_		Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
_		Call the subroutine : Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
	-	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous de- scription of the LA/LXY instruction, register A and register B to the states just before interrupt.
_	-	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	-	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.
	-	Clears (0) to the interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to the interrupt enable flag INTE, and enables the interrupt.
(EXF0) = 1	-	Skips the next instruction when the contents of EXF0 flag is "1." After skipping, clears (0) to the EXF0 flag.
(EXF1) = 1	-	Skips the next instruction when the contents of EXF1 flag is "1." After skipping, clears (0) to the EXF1 flag.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (continued)

Parameter						In	nstru	ction		le					er of Is	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otati	cimal on	Number of words	Number of cycles	Function
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	А	1	1	I12 = 1 : (INT0) = "H" ?
																	I12 = 0 : (INT0) = "L" ?
	SNZI1	0	0	0	0	1	1	1	0	1	1	0	3	в	1	1	I22 = 1 : (INT1) = "H" ?
tion																	I22 = 0 : (INT1) = "L" ?
Interrupt operation	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	$(A) \leftarrow (V1)$
.npt o	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	$(\vee 1) \leftarrow (A)$
Interr	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	$(A) \leftarrow (V2)$
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	Е	1	1	$(\vee 2) \leftarrow (A)$
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	$(I1) \leftarrow (A)$
	TAI2	1	0	0	1	0	1	0	1	0	0	2	5	4	1	1	(A) ← (I2)
	TI2A	1	0	0	0	0	1	1	0	0	0	2	1	8	1	1	(I2) ← (A)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	$(A) \leftarrow (W1)$
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	$(W1) \leftarrow (A)$
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	$(A) \leftarrow (W2)$
L L	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	$(W2) \leftarrow (A)$
eratio	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	$(A) \leftarrow (W3)$
Timer operation	ТѠЗА	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	$(W3) \leftarrow (A)$
Ξ	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	Е	1	1	$(A) \leftarrow (W4)$
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	$(W4) \leftarrow (A)$
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	$(A) \leftarrow (W6)$
	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	lag CY	
Skip condition	Carry flag	Datailed description
(INT0) = "H" However, I12 = 1	-	When bit 2 (I12) of register I1 is "1" : Skips the next instruction when the level of INT0 pin is "H."
(INT0) = "L" However, I12 = 0	-	When bit 2 (I12) of register I1 is "0" : Skips the next instruction when the level of INT0 pin is "L."
(INT1) = "H" However, I22 = 1	-	When bit 2 (I22) of register I2 is "1" : Skips the next instruction when the level of INT1 pin is "H."
(INT1) = "L" However, I22 = 0	-	When bit 2 (I22) of register I2 is "0" : Skips the next instruction when the level of INT1 pin is "L."
-	-	Transfers the contents of interrupt control register V1 to register A.
-	-	Transfers the contents of register A to interrupt control register V1.
-	-	Transfers the contents of interrupt control register V2 to register A.
-	-	Transfers the contents of register A to interrupt control register V2.
-	-	Transfers the contents of interrupt control register I1 to register A.
-	-	Transfers the contents of register A to interrupt control register I1.
-	-	Transfers the contents of interrupt control register I2 to register A.
-	-	Transfers the contents of register A to interrupt control register I2.
-	-	Transfers the contents of timer control register W1 to register A.
-	-	Transfers the contents of register A to timer control register W1.
-	-	Transfers the contents of timer control register W2 to register A.
-	-	Transfers the contents of register A to timer control register W2.
-	-	Transfers the contents of timer control register W3 to register A.
-	-	Transfers the contents of register A to timer control register W3.
-	-	Transfers the contents of timer control register W4 to register A.
-	-	Transfers the contents of register A to timer control register W4.
-	-	Transfers the contents of timer control register W6 to register A.
-	_	Transfers the contents of register A to timer control register W6.

PRELIMINARY PRELIMINAL Specification. PRELIMINAL Specification. Notice: This is not a final specification. Notice: This is not a final specification. Some parametric limits are subject to some subject to some parametric limits are subject to some subject

Parameter						In	stru	ctior	l cod	le					er of Is	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do			ecimal tion	Number of words	Number o cycles	Function
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$\begin{array}{l} (R27-R24) \leftarrow (B) \\ (T27-T24) \leftarrow (B) \\ (R23-R20) \leftarrow (A) \\ (T23-T20) \leftarrow (A) \end{array}$
	TAB3	1	0	0	1	1	1	0	0	1	0	2	7	2	1	1	$(B) \leftarrow (T37-T34) \\ (A) \leftarrow (T33-T30) $
	ТЗАВ	1	0	0	0	1	1	0	0	1	0	2	3	2	1	1	$\begin{array}{l} (\text{R37-R34}) \leftarrow (\text{B}) \\ (\text{T37-T34}) \leftarrow (\text{B}) \\ (\text{R33-R30}) \leftarrow (\text{A}) \\ (\text{T33-T30}) \leftarrow (\text{A}) \end{array}$
eration	TAB4	1	0	0	1	1	1	0	0	1	1	2	7	3	1	1	
Timer operation	T4AB	1	0	0	0	1	1	0	0	1	1	2	3	3	1	1	$(R47-R44) \leftarrow (B)$ $(T47-T44) \leftarrow (B)$ $(R43-R40) \leftarrow (A)$ $(T43-T40) \leftarrow (A)$
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17–R14) ← (B) (R13–R10) ← (A)
	TR3AB	1	0	0	0	1	1	1	0	1	1	2	3	В	1	1	(R37–R34) ← (B) (R33–R30) ← (A)
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1	1	(T1F) = 1? After skipping $(T1F) \leftarrow 0$
	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1	1	(T2F) = 1 ? After skipping $(T2F) \leftarrow 0$
	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	(T3F) = 1 ? After skipping $(T3F) \leftarrow 0$
	SNZT4	1	0	1	0	0	0	0	0	1	1	2	8	3	1	1	(T4F) = 1 ? After skipping $(T4F) \leftarrow 0$

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of timer 1 to registers A and B.
_	-	Transfers the contents of registers A and B to timer 1 and timer 1 reload register.
-	-	Transfers the contents of timer 2 to registers A and B.
-	-	Transfers the contents of registers A and B to timer 2 and timer 2 reload register.
-	-	Transfers the contents of timer 3 to registers A and B.
-	-	Transfers the contents of registers A and B to timer 3 and timer 3 reload register.
-	-	Transfers the contents of timer 4 to registers A and B.
-	-	Transfers the contents of registers A and B to timer 4 and timer 4 reload register.
-	-	Transfers the contents of registers A and B to timer 1 reload register.
-	-	Transfers the contents of registers A and B to timer 3 reload register.
(T1F) = 1	-	Skips the next instruction when the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
(T2F) =1	-	Skips the next instruction when the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
(T3F) = 1	-	Skips the next instruction when the contents of T3F flag is "1." After skipping, clears (0) to T3F flag.
(T4F) = 1	-	Skips the next instruction when the contents of T4F flag is "1." After skipping, clears (0) to T4F flag.

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS (continued)

Parameter						In	stru	ction	l cod	le					er of Is	er of es	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		ade otat	cimal ion	Number o words	Number o cycles	Function
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	$(A) \leftarrow (P0)$
	OP0A	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	$(P0) \leftarrow (A)$
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	$\begin{array}{l} (A2-A0) \leftarrow (P22-P20) \\ (A3) \leftarrow 0 \end{array}$
	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	(A) ← (P3)
	ОРЗА	1	0	0	0	1	0	0	0	1	1	2	2	3	1	1	(P3) ← (A)
	IAP4*	1	0	0	1	1	0	0	1	0	0	2	6	4	1	1	$(A) \leftarrow (P4)$
	OP4A*	1	0	0	0	1	0	0	1	0	0	2	2	4	1	1	$(P4) \leftarrow (A)$
L L	IAP5*	1	0	0	1	1	0	0	1	0	1	2	6	5	1	1	$(A) \leftarrow (P5)$
eratio	OP5A*	1	0	0	0	1	0	0	1	0	1	2	2	5	1	1	$(P5) \leftarrow (A)$
ut op	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
Input/Output operation	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$\begin{array}{l} (D(Y)) \leftarrow 0 \\ (Y) = 0 \text{ to } 7 \end{array}$
dul	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1	1	$\begin{array}{l} (D(Y)) \leftarrow 1 \\ (Y) = 0 \text{ to } 7 \end{array}$
	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	2	2	(D(Y)) = 0 ? (Y) = 0 to 7
		0	0	0	0	1	0	1	0	1	1	0	2	В			
	ТК0А	1	0	0	0	0	1	1	0	1	1	2	1	В	1	1	$(K0) \leftarrow (A)$
	ТАКО	1	0	0	1	0	1	0	1	1	0	2	5	6	1	1	$(A) \leftarrow (K0)$
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	$(PU0) \leftarrow (A)$
	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	$(A) \leftarrow (PU0)$
	TFR0A*	1	0	0	0	1	0	1	0	0	0	2	2	8	1	1	$(FR0) \leftarrow (A)$

*: The 4513 Group does not have these instructions.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Datailed description
_	-	Transfers the input of port P0 to register A.
-	-	Outputs the contents of register A to port P0.
-	-	Transfers the input of port P1 to register A.
-	-	Outputs the contents of register A to port P1.
-	-	Transfers the input of port P2 to register A.
-	-	Transfers the input of port P3 to register A.
_	_	Outputs the contents of register A to port P3.
_	_	Transfers the input of port P4 to register A.
_	-	Outputs the contents of register A to port P4.
_	-	Transfers the input of port P5 to register A.
_	-	Outputs the contents of register A to port P5.
-	-	Sets (1) to port D.
-	-	Clears (0) to a bit of port D specified by register Y.
-	-	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 (Y) = 0 to 7	-	Skips the next instruction when a bit of port D specified by register Y is "0."
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	_	Transfers the contents of pull-up control register PU0 to register A.
-	-	Transfers the contents of register A to direction register FR0.

PRELIMINARY Notice: This is not a final specification. Some parametric limits are subject to change.

MACHINE INSTRUCTIONS (continued)

Notice: This is not a final specification. Some parametric limits are subject to change.

Parameter								ction		le					r of s	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	Do		ade otat	cimal ion	Number (words	Number o cycles	Function
	TABSI	1	0	0	1	1	1	1	0	0	0	2	7	8	1	1	
eration	TSIAB	1	0	0	0	1	1	1	0	0	0	2	3	8	1	1	$(SI_3 - SI_0) \leftarrow (A)$ $(SI_7 - SI_4) \leftarrow (B)$
ol ope	TAJ1	1	0	0	1	0	0	0	0	1	0	2	4	2	1	1	$(A) \leftarrow (J1)$
contr	TJ1A	1	0	0	0	0	0	0	0	1	0	2	0	2	1	1	$(J1) \leftarrow (A)$
Serial I/O control operation	SST	1	0	1	0	0	1	1	1	1	0	2	9	Е	1	1	(SIOF) ← 0 Serial I/O starting
Se	SNZSI	1	0	1	0	0	0	1	0	0	0	2	8	8	1	1	(SIOF) = 1 ? After skipping $(SIOF) \leftarrow 0$
	TABAD	1	0	0	1	1	1	1	0	0	1	2	7	9	1	1	$\begin{array}{l} (A) \leftarrow (AD5-AD2) \\ (B) \leftarrow (AD9-AD6) \\ However, in the comparator mode, \\ (A) \leftarrow (AD3-AD0) \\ (B) \leftarrow (AD7-AD4) \end{array}$
	TALA	1	0	0	1	0	0	1	0	0	1	2	4	9	1	1	$(A) \leftarrow (AD1, AD0, 0, 0)$
A-D conversion operation	TADAB	1	0	0	0	1	1	1	0	0	1	2	3	9	1	1	
ouo	TAQ1	1	0	0	1	0	0	0	1	0	0	2	4	4	1	1	$(A) \leftarrow (Q1)$
versi	TQ1A	1	0	0	0	0	0	0	1	0	0	2	0	4	1	1	$(Q1) \leftarrow (A)$
A-D con	ADST	1	0	1	0	0	1	1	1	1	1	2	9	F	1	1	$(ADF) \leftarrow 0$ A-D conversion starting
	SNZAD	1	0	1	0	0	0	0	1	1	1	2	8	7	1	1	(ADF) = 1 ? After skipping $(ADF) \leftarrow 0$
	TAQ2	1	0	0	1	0	0	0	1	0	1	2	4	5	1	1	$(A) \leftarrow (Q2)$
	TQ2A	1	0	0	0	0	0	0	1	0	1	2	0	5	1	1	$(Q2) \leftarrow (A)$
	NOP	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	$(PC) \leftarrow (PC) + 1$
	POF	0	0	0	0	0	0	0	0	1	0	0	0	2	1	1	RAM back-up
	EPOF	0	0	0	1	0	1	1	0	1	1	0	5	В	1	1	POF instruction valid
5	SNZP	0	0	0	0	0	0	0	0	1	1	0	0	3	1	1	(P) = 1 ?
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2	A	0	1	1	$(WDF1) \leftarrow 0$ $(WEF) \leftarrow 1$
ther	TAMR	1	0	0	1	0	1	0	0	1	0	2	5	2	1	1	$(A) \leftarrow (MR)$
	TMRA	1	0	0	0	0	1	0	1	1	0	2	1	6	1	1	$(MR) \leftarrow (A)$
	TAQ3	1	0	0	1	0	0	0	1	1	0	2	4	6	1		$(A) \leftarrow (Q3)$
	TQ3A	1	0	0	0	0	0	0	1	1	0	2	0	6	1		$(Q33, Q32) \leftarrow (A3, A2)$ $(Q31) \leftarrow (CMP1 comparison result)$ $(Q30) \leftarrow (CMP0 comparison result)$

4513/4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Skip condition	Carry flag CY	Datailed description
-	-	Transfers the contents of serial I/O register SI to registers A and B.
-	-	Transfers the contents of registers A and B to serial I/O register SI.
-	-	Transfers the contents of serial I/O mode register J1 to register A.
-	-	Transfers the contents of register A to serial I/O mode register J1.
-	-	Clears (0) to SIOF flag and starts serial I/O.
(SIOF) = 1	-	Skips the next instruction when the contents of SIOF flag is "1." After skipping, clears (0) to SIOF flag.
-	-	Transfers the high-order 8 bits of the contents of register AD to registers A and B.
_	_	Transfers the low-order 2 bits of the contents of register AD to the high-order 2 bits of the contents of register A. Simultaneously, the low-order 2 bits of the contents of the register A is "0."
	_	
_	-	Transfers the contents of registers A and B to the comparator register at the comparator mode.
-	-	Transfers the contents of the A-D control register Q1 to register A.
-	-	Transfers the contents of register A to the A-D control register Q1.
-	-	Clears the ADF flag, and the A-D conversion at the A-D conversion mode or the comparator operation at the comparator mode is started.
(ADF) = 1	-	Skips the next instruction when the contents of ADF flag is "1". After skipping, clears (0) the contents of ADF flag.
-	-	Transfers the contents of the A-D control register Q2 to register A.
-	-	Transfers the contents of register A to the A-D control register Q2.
-	-	No operation
-	_	Puts the system in RAM back-up state by executing the POF instruction after executing the EPOF instruction.
-	-	Makes the immediate POF instruction valid by executing the EPOF instruction.
(P) = 1	-	Skips the next instruction when P flag is "1". After skipping, P flag remains unchanged.
-	-	Operates the watchdog timer and initializes the watchdog timer flag WDF1.
-	-	Transfers the contents of the clock control register MR to register A.
-	-	Transfers the contents of register A to the clock control register MR.
-	-	Transfers the contents of the voltage comparator control register Q3 to register A.
_	-	Transfers the contents of the high-order 2 bits of register A to the high-order 2 bits of voltage comparator control register Q3, and the comparison result of the voltage comparator is transferred to the low-order 2 bits of the register Q3.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

CONTROL REGISTERS

	Interrupt control register V1	at	reset : 00002	at RAM back-up : 00002	R/W				
V13	Timor 2 interrupt enable bit	0	Interrupt disabled	(SNZT2 instruction is valid)					
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled (SNZT2 instruction is invalid)					
V12	Timor 1 interrupt enable bit	0	Interrupt disabled	(SNZT1 instruction is valid)					
VIZ	Timer 1 interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)					
V11	External 1 interrupt anable hit	0	Interrupt disabled	(SNZ1 instruction is valid)					
VII	External 1 interrupt enable bit	1	Interrupt enabled (SNZ1 instruction is invalid)					
V10	External Q interrupt anable bit	0	Interrupt disabled	(SNZ0 instruction is valid)					
VIU	External 0 interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)					
	Interrupt control register V2	at	reset : 00002	at RAM back-up : 00002	R/W				
V23	Carial 1/0 interrupt anable bit	0	Interrupt disabled	(SNZSI instruction is valid)					
VZ3	Serial I/O interrupt enable bit	1	Interrupt enabled (SNZSI instruction is invalid)					
V22	A D interrupt anoble bit	0	Interrupt disabled	(SNZAD instruction is valid)					
VZZ	A-D interrupt enable bit	1	Interrupt enabled (SNZAD instruction is invalid)					
V21	Timer 4 interrupt enable bit	0	Interrupt disabled	(SNZT4 instruction is valid)					
VZ1	Timer 4 interrupt enable bit	1	Interrupt enabled (SNZT4 instruction is invalid)					
1/20	Timor 2 interrupt enable bit	0	Interrupt disabled	(SNZT3 instruction is valid)					
V20	V20 Timer 3 interrupt enable bit		Interrupt enabled (SNZT3 instruction is invalid)					
	Interrupt control register I1	at	reset : 00002	at RAM back-up : state retained	R/W				
l13	Not used	0	This bit has no fun	ction, but read/write is enabled.					
	Interrupt valid waveform for INT0 pin/	0	Falling waveform (instruction)/"L" leve	("L" level of INT0 pin is recognized v	with the SNZI				
l12	return level selection bit (Note 2)	1	Rising waveform (instruction)/"H" lev	"H" level of INT0 pin is recognized v	with the SNZI				
14		0	One-sided edge de						
I1 1	INT0 pin edge detection circuit control bit	1	Both edges detect						
	INT0 pin	0	Disabled						
110	timer 1 control enable bit	1	Enabled						
	Interrupt control register I2	at	reset : 00002	at RAM back-up : state retained	R/W				
I2 3	Not used	0	This bit has no fun	ction, but read/write is enabled.					
10-	Interrupt valid waveform for INT1 pin/	0	Falling waveform (instruction)/"L" leve	"L" level of INT1 pin is recognized w	vith the SNZI				
122	return level selection bit (Note 3)		Rising waveform ("H" level of INT1 pin is recognized with the SNZI1 instruction)/"H" level						
10		0							
I 21	INT1 pin edge detection circuit control bit	1							
	INT1 pin	0	Disabled						
120	timer 3 control enable bit	1	Enabled						

Notes 1: "R" represents read enabled, and "W" represents write enabled.

2: When the contents of 112 is changed, the external interrupt request flag EXF0 may be set. Accordingly, clear EXF0 flag with the SNZ0 instruction. 3: When the contents of 122 is changed, the external interrupt request flag EXF1 may be set. Accordingly, clear EXF1 flag with the SNZ1 instruction.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	Timer control register W1		at	reset : 00002	at RAM back-up : 00002	R/W
W13	Prescaler control bit	()	Stop (state initializ	ed)	
vv 13		,	1	Operating		
W12	Prescaler dividing ratio selection bit	()	Instruction clock di	vided by 4	
VV IZ		-	1	Instruction clock di	vided by 16	
W11	Timer 1 control bit	()	Stop (state retaine	d)	
••••			1	Operating		
W10	Timer 1 count start synchronous circuit	()	,	onous circuit not selected	
****0	control bit		1	Count start synchr	onous circuit selected	
	Timer control register W2		at	reset : 00002	at RAM back-up : state retained	R/W
W23	Timer 2 control bit	(0	Stop (state retaine	d)	
**20			1	Operating		
W22	Not used		0 1	This bit has no fun	ction, but read/write is enabled.	
		W21	W20		Count source	
W21		0	0	Timer 1 underflow	signal	
	Timer 2 count source selection bits	0	1	Prescaler output		
W20		1	0	CNTR0 input		
		1	1	16 bit timer (WDT)	underflow signal	
	Timer control register W3		at	reset : 00002	at RAM back-up : state retained	R/W
14/20	Timer 2 control bit	(0	Stop (state retaine	d)	
W33	Timer 3 control bit		1	Operating		
W0a	Timer 3 count start synchronous circuit	(0	Count start synchr	onous circuit not selected	
W32	control bit		1	Count start synchr	onous circuit selected	
		W31	W30		Count source	
W31		0	0	Timer 2 underflow	signal	
	Timer 3 count source selection bits	0	1	Prescaler output		
W30		1	0	Not available		
		1	1	Not available		
	Timer control register W4		at	reset : 00002	at RAM back-up : state retained	R/W
W43	Timer 4 control bit	(0	Stop (state retaine	d)	
vv - 13			1	Operating		
W42	Not used		0 1	This bit has no fun	ction, but read/write is enabled.	
		W41	W40		Count source	
W41		0	0	Timer 3 underflow	signal	
	Timer 4 count source selection bits	0	1	Prescaler output		
W40		1	0	CNTR1 input		
-		1	1	Not available		
	Timer control register W6		at	reset : 00002	at RAM back-up : state retained	R/W
MCa	CNITR1 output control hit		0	Timer 3 underflow	signal output divided by 2	
W63	CNTR1 output control bit		1	CNTR1 output cor	ntrol by timer 4 underflow signal divide	ed by 2
Mor			0	D7(I/O)/CNTR1 inp	- Dut	-
W62	D7/CNTR1 function selection bit		1	CNTR1 (I/O)/D7(in		
14/0			0	. , ,	signal output divided by 2	
W61	CNTR0 output control bit		1		ntrol by timer 2 underflow signal divide	ed by 2
14/2		_	0	D6(I/O)/CNTR0 inp		-
W60	D6/CNTR0 output control bit		1	CNTR0 (I/O)/D6(in		

Note: "R" represents read enabled, and "W" represents write enabled.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	Serial I/O mode register J1			a	t reset : 00002	at RAM back-up : state retained	R/W					
J13	Not used) 1	_	This bit has no function, but read/write is enabled.							
	Serial I/O internal clock dividing ratio	(0		Instruction clock signal divided by 8							
J12	selection bit	1			Instruction clock signal divided by 4							
		(0		Input ports P20, P21, P22 selected Serial I/O ports SCK, SOUT, SIN/input ports P20, P21, P22 selected							
J11	Serial I/O port selection bit		1									
14.5		(0		External clock							
J10	Serial I/O synchronous clock selection bit	1			Internal clock (instru	uction clock divided by 4 or 8)						
	A-D control register Q1		i	at ı	reset : 00002	at RAM back-up : state retained	R/W					
Q13	Note used	1			This bit has no func	tion, but read/write is enabled.						
		Q12Q	11 G	210		Selected pins						
Q12		0 0) (0	Aino							
		0 0)	1	Ain1							
		0 1	1 (0	Ain2							
Q11	Analog input pin selection bits (Note 2)	0 1	1	1	Аімз							
		1 () (0	AIN4 (Not available for the 4513 Group)							
		1 ()	1	AIN5 (Not available for the 4513 Group)							
Q10	Q10				AIN6 (Not available	for the 4513 Group)						
			1	1	AIN7 (Not available	for the 4513 Group)						
	A-D control register Q2			at	reset : 00002 at RAM back-up : state retained R/W							
Q23	Q23 A-D operation mode selection bit		0		A-D conversion mod	de						
QZ3	A-D operation mode selection bit		1		Comparator mode							
Q22	P43/AIN7 and P42/AIN6 pin function selec-	0			P43, P42	(read/write enabled for the 4513 Group)						
QZZ	tion bit (Not used for the 4513 Group)				AIN7, AIN6/P43, P42 (read/write enabled for the 4513 Group)							
Q21	P41/AIN5 pin function selection bit	(0		P41 (read/write enabled for the 4513 Group)							
QZI	(Not used for the 4513 Group)		1		AIN5/P41	(read/write enabled for the 4513 Group)						
Q20	P40/AIN4 pin function selection bit	(0		P40	(read/write enabled for the 4513 Group)						
Q20	(Not used for the 4513 Group)		1		AIN4/P40	(read/write enabled for the 4513 Group)						
Co	omparator control register Q3 (Note 3)		i	at r	reset : 00002	at RAM back-up : state retained	R/W					
00-	Voltage comparator (CMD4) control bit	(C		Voltage comparator	(CMP1) invalid						
Q33	Voltage comparator (CMP1) control bit		1	\uparrow	Voltage comparator							
0.0		(0	\uparrow	Voltage comparator							
Q32	Voltage comparator (CMP0) control bit		1	\uparrow	Voltage comparator							
0.5		(0	\uparrow	CMP1- > CMP1+							
Q31	CMP1 comparison result store bit		1	\neg	CMP1- < CMP1+							
	01/20	(0	\uparrow	CMP0- > CMP0+							
Q30	CMP0 comparison reslut store bit		1	+	CMP0- < CMP0+							
	Clock control register MR		;	at r	eset : 10002	at RAM back-up : 10002	R/W					
145	Outpart all all a she stirts bit	(0		f(XIN) (high-speed n	node)						
MR3	System clock selection bit		1	\uparrow	f(XIN)/2 (middle-spe							
			0	\uparrow	. ,	,						
MR2	2 Not used			This bit has no function, but read/write is enabled.								
	IR1 Not used			This bit has no function, but read/write is enabled.								
MR1	Not used		1		This bit has no func							
	Not used		1 0			tion, but read/write is enabled.						

Notes 1: "R" represents read enabled, "W" represents write enabled. 2: Select AIN4–AIN7 with register Q1 after setting register Q2.

3: Bits 0 and 1 of register Q3 can be only read.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

	Key-on wakeup control register K0	at	reset : 00002	at RAM back-up : state retained	R/W		
1/0-	Pins P12 and P13 key-on wakeup	0	Key-on wakeup not	tused	I		
K03	control bit	1	Key-on wakeup use	ed			
1/00	Pins P10 and P11 key-on wakeup	0	Key-on wakeup not used				
K02	control bit	1	Key-on wakeup used				
KOA	Pins P02 and P03 key-on wakeup	0	Key-on wakeup not	used			
K01	control bit	1	Key-on wakeup use	ed			
KOa	Pins P00 and P01 key-on wakeup	0	Key-on wakeup not	used			
K00	control bit	1	Key-on wakeup use	ed			
	Pull-up control register PU0	at	reset : 00002	at RAM back-up : state retained	R/W		
D LLO	Pins P12 and P13 pull-up transistor	0	Pull-up transistor OFF				
PU03	control bit	1	Pull-up transistor ON				
DUIA	Pins P10 and P11 pull-up transistor	0	Pull-up transistor OFF				
PU02	control bit	1	Pull-up transistor O	N			
DU 0	Pins P02 and P03 pull-up transistor	0	Pull-up transistor O	FF			
PU01	control bit	1	Pull-up transistor O	N			
DUG	Pins P00 and P01 pull-up transistor	0	Pull-up transistor O	FF			
PU00	control bit	1	Pull-up transistor O	N			
	Direction register FR0 (Note 2)	at	reset : 00002	at RAM back-up : state retained	W		
500-	Dent DEstingut/output and this	0	Port P53 input				
FR03	Port P53 input/output control bit	1	Port P53 output				
FR02	Port DEs input/sutput septral bit	0	Port P52 input				
FKU2	Port P52 input/output control bit	1	Port P52 output				
	Dort DE4 input/output control bit	0	Port P51 input				
FR01	Port P51 input/output control bit	1	Port P51 output				
	Port DEs input/sutput septral bit	0	Port P50 input				
FR00	Port P50 input/output control bit	1	Port P50 output				

Notes 1: "R" represents read enabled, and "W" represents write enabled. 2: The 4513 Group does not have the direction register FR0.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Co	onditions	Ratings	Unit	
Vdd	Supply voltage			-0.3 to 7.0	V	
Vi	Input voltage P0, P1, P2, P3, P4, P5, RESET, XIN, VDCE			-0.3 to VDD+0.3	V	
Vi	Input voltage D0–D7			-0.3 to 13	V	
Vi	Input voltage AIN0–AIN7			-0.3 to VDD+0.3	V	
Vo	Output voltage P0, P1, P3, P4, P5, RESET		a in and all adata	-0.3 to VDD+0.3	V	
Vo	Output voltage D0–D7	Output transistors	s in cut-off state	-0.3 to 13	V	
Vo	Output voltage Xout			-0.3 to VDD+0.3	V	
			Package: 42P2R	300		
Pd	Power dissipation	Ta = 25 °C	Package: 32P6B	300	mW	
			Package: 32P4B	1100		
Topr	Operating temperature range		·	-20 to 85	°C	
Tstg	Storage temperature range			-40 to 125	°C	

Unit

V

V

V

V

V

V

V

V

V

V

mΑ

Max. 5.5 5.5 5.5 5.5 5.5

5.5

5.5

5.5

Vdd

12

Vdd

Vdd

0.2Vdd

0.3Vdd

0.15VDD

10

4

40

30

24

12

24

12

5

2

30

15

15

7

12

6

80

80

RAM back-up voltage

"H" level input voltage

"H" level input voltage

"H" level input voltage

"H" level input voltage

"L" level input voltage

"L" level input voltage

"L" level input voltage

"H" level peak output current

"L" level average output current

"H" level total average current

"L" level total average current

"H" level average output current

Supply voltage

(at RAM back-up mode)

VRAM

Vss

Vih

Vін

Vін

Vін

VIL

Vil

VIL

IOH(peak)

IOH(avg)

IOL(peak)

IOL(peak)

IOL(peak)

IOL(peak)

IOL(avg)

IOL(avg)

IOL(avg)

IOL(avg)

ΣIOH(avg)

ΣIOL(avg)

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

4.0

2.5

18

2.0

0.8VDD

0.8Vdd

0.85VDD

0.85Vdd

0

0

0

-20

-10

-10

-5

-30

0

RECOMMENDED OPERATING CONDITIONS 1

(Mask ROM version:Ta = -20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted)

((One Time	PROM version:Ta = $-20 \degree C$ to 85 $\degree C$, VDD	= 2.5 V to 5.5 V, unless of	therwise noted)		
	Cumbol	Deremeter	Condition		Limit	
	Symbol	Parameter	Condition	Conditions		
			Mask ROM version	$f(XIN) \le 4.2 \text{ MHz}$	2.5	
			Middle-speed mode	$f(XIN) \le 3.0 \text{ MHz}$	2.0	
			Mask ROM version	$f(XIN) \le 4.2 \text{ MHz}$	4.0	
			High-speed mode	$f(XIN) \le 2.0 \text{ MHz}$	2.5	
	Vdd			$f(XIN) \le 1.5 \text{ MHz}$	2.0	
			One Time PROM version	$f(XIN) \le 4.2 MHz$	2.5	
			Middle-speed mode	$\Gamma(\Lambda \Pi \Lambda) \ge 4.2 \ \Pi \Pi I Z$	2.0	

High-speed mode

Mask ROM version

D0-D7

RESET

RESET

P5 (Note)

P3, RESET

D6, D7

D0-D5

SOUT

P0, P1, P4, P5, SCK,

P3, RESET (Note)

D6, D7 (Note)

Do-D5 (Note)

SOUT (Note)

P0, P1, P3, P4

P5

P0, P1, P4, P5, Sck,

P5, D, RESET, SCK, SOUT

P5

One Time PROM version

P0, P1, P2, P3, P4, P5, XIN, VDCE

CNTR0, CNTR1, SIN, SCK, INT0, INT1

CNTR0, CNTR1, SIN, SCK, INT0, INT1

P0, P1, P2, P3, P4, P5, D0-D7, XIN, VDCE

One Time PROM version $f(XIN) \le 4.2 \text{ MHz}$

 $f(XIN) \le 2.0 \text{ MHz}$

VDD = 5.0 V

VDD = 3.0 V

Note: The average output current (IOH, IOL) is the average value during 100 ms.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

RECOMMENDED OPERATING CONDITIONS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted)

(One Time PROM version:Ta = -20 °C to 85 °C, VDD = 2.5 V to 5.5 V, unless otherwise noted)

Symbol	Parameter	Condit	ions		Limits		Unit
Cymbol		Condit		Min.	Тур.	Max.	
		Mask ROM version	VDD = 2.5 V to 5.5 V			4.2	
		Middle-speed mode	VDD = 2.0 V to 5.5 V			3.0	
	Oscillation frequency	One Time PROM version Middle-speed mode	VDD = 2.5 V to 5.5 V			4.2	
f(XIN)	(with a ceramic resonator)	Mask ROM version	VDD = 4.0 V to 5.5 V			4.2	MHz
			VDD = 2.5 V to 5.5 V			2.0	
		High-speed mode	VDD = 2.0 V to 5.5 V			1.5]
		One Time PROM version	VDD = 4.0 V to 5.5 V			4.2	
		High-speed mode	VDD = 2.5 V to 5.5 V			2.0	1
		Mask ROM version Middle-speed mode	VDD = 2.0 V to 5.5 V			3.0	
	Oscillation frequency	One Time PROM version Middle-speed mode	VDD = 2.5 V to 5.5 V			3.0	
f(XIN)		Mask ROM version	VDD = 4.0 V to 5.5 V			3.0	MHz
	(with external clock input)		VDD = 2.5 V to 5.5 V			1.0	
		High-speed mode	VDD = 2.0 V to 5.5 V			0.8	
		One Time PROM version	VDD = 4.0 V to 5.5 V			3.0	1
		High-speed mode	VDD = 2.5 V to 5.5 V			1.0	
		Mask ROM version	VDD = 4.0 V to 5.5 V	1.5			
			VDD = 2.5 V to 5.5 V	3.0			μs
		Middle-speed mode	VDD = 2.0 V to 5.5 V	4.0			
		One Time PROM version	VDD = 4.0 V to 5.5 V	1.5			
	Serial I/O external clock period	Middle-speed mode	VDD = 2.5 V to 5.5 V	3.0			
tw(SCK)	("H" and "L" pulse width)	Mask ROM version	VDD = 4.0 V to 5.5 V	750			ns
		High-speed mode	VDD = 2.5 V to 5.5 V	1.5			
		nigh-speed mode	VDD = 2.0 V to 5.5 V	2.0			μs
		One Time PROM version	VDD = 4.0 V to 5.5 V	750			ns
		High-speed mode	VDD = 2.5 V to 5.5 V	1.5			μs
		Mask ROM version	VDD = 4.0 V to 5.5 V	1.5			
		Middle-speed mode	VDD = 2.5 V to 5.5 V	3.0			1
		middle-speed mode	VDD = 2.0 V to 5.5 V	4.0			μs
		One Time PROM version	VDD = 4.0 V to 5.5 V	1.5			1
	Timer external input period	Middle-speed mode	VDD = 2.5 V to 5.5 V	3.0			1
tw(CNTR)	("H" and "L" pulse width)	Mask ROM version	VDD = 4.0 V to 5.5 V	750			ns
		High-speed mode	VDD = 2.5 V to 5.5 V	1.5			
			VDD = 2.0 V to 5.5 V	2.0			μs
		One Time PROM version	VDD = 4.0 V to 5.5 V	750			ns
		High-speed mode	VDD = 2.5 V to 5.5 V	1.5			μs

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

ELECTRICAL CHARACTERISTICS

(Mask ROM version:Ta = -20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted) (One Time PROM version:Ta = -20 °C to 85 °C, VDD = 2.5 V to 5.5 V, unless otherwise noted)

Symbol		Parameter	Tost or	onditions		Limits		Unit
Symbol	Г	alameter		manions	Min.	Тур.	Max.	
Vон	"H" level output	voltago D5	VDD = 5 V	Iон = -10 mA	3			v
VOH		vollage P5	VDD = 3 V	Iон = -5 mA	2			
Vol	"I" lovel output	voltage P0, P1, P4, P5	VDD = 5 V	IOL = 12 mA			2	v
VOL		vollage P0, P1, P4, P5	VDD = 3 V	IOL = 6 mA			0.9	
Vol	"I" lovel output	voltage P3, RESET	VDD = 5 V	IOL = 5 mA			2	v
VOL		Vollage P3, RESET	VDD = 3 V	IOL = 2 mA			0.9	
			VDD = 5 V	IOL = 30 mA			2	v
Vol	"L" level output	valtara Da Dz	VDD = 5 V	IOL = 10 mA			0.9	V
VOL		voltage D6, D7	VDD = 3 V	IOL = 15 mA			2	v
			VDD = 3 V	IOL = 5 mA			0.9	V
Vol	"I" lovel output	voltago Do Do	VDD = 5 V	IOL = 15 mA			2	v
VOL	"L" level output voltage D0–D5		VDD = 3 V	IOL = 3 mA			0.9	v
I.u. i	"H" level input c	urrent	VI = VDD, port P4 select	ted,			1	
Іін	P0, P1, P2, P3,	P4, P5, RESET, VDCE	port P5: input state					μΑ
IH	"H" level input c	urrent Do-D7	VI = 12 V			1	μA	
	"L" level input cu	urrent	VI = 0 V No pull-up of p	orts P0 and P1,	-1			
lı∟	P0, P1, P2, P3,	P4, P5, RESET, VDCE	port P4 selected, port P5: input state		-1			μΑ
lil	"L" level input cu	urrent D0–D7	VI = 0 V		-1			μA
		at active mode	VDD = 5 V	f(XIN) = 4.0 MHz		1.8	5.5	
			Middle-speed mode	f(XIN) = 400 kHz		0.5	1.5	
			VDD = 3 V	f(XIN) = 4.0 MHz		0.9	2.7	1
			Middle-speed mode	f(XIN) = 400 kHz		0.2	0.6]
			VDD = 5 V	f(XIN) = 4.0 MHz		3.0	9.0	- mA
IDD	Supply current		High-speed mode	f(XIN) = 400 kHz		0.6	1.8]
			VDD = 3 V	f(XIN) = 2.0 MHz		0.9	2.7]
			High-speed mode	f(XIN) = 400 kHz		0.3	0.9	
		at RAM back-up mode	Ta = 25 °C			0.1	1	
			VDD = 5 V				10	μA
			VDD = 3 V				6]
_	D.II.		VDD = 5 V	VI = 0 V	20	50	125	
RPU	Pull-up resistor	value	VDD = 3 V		40	100	250	kΩ
, .,	Hysteresis INT0	, INT1, CNTR0, CNTR1,	VDD = 5 V			0.3		
VT+ – VT–	SIN, SCK	•	VDD = 3 V			0.3		- V
		-	Vdd = 5 V			1.5		
Vt+ – Vt–	Hysteresis RESE	T	VDD = 3 V			0.6		V

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

A-D CONVERTER RECOMMENDED OPERATING CONDITIONS

(Comparator mode included, Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol Pa	Parameter	Conditions		Unit		
	Falameter	Conditions	Min.	Тур.	Max.	Onic
Vdd	Supply voltage		2.7		5.5	V
VIA	Analog input voltage		0		Vdd	V
f(XIN) Oscillation frequency		Middle-speed mode, VDD ≥ 2.7 V	0.8			MHz
	Oscillation frequency	High-speed mode, VDD ≥ 2.7 V	0.4			MHz

A-D CONVERTER CHARACTERISTICS

(Ta = $-20 \degree C$ to 85 $\degree C$, unless otherwise noted)

Symbol	Parameter		Test conditions		Limits		- Unit	
Symbol	Parameter				Тур.	Max.		
-	Resolution					10	bits	
	Lincerity error	Ta = 25 °C, VDD	Ta = 25 °C, VDD = 2.7 V to 5.5 V			10	LSB	
 Linearity error 		Ta = -25 °C to 85	5 ° C, VDD = 3.0 V to 5.5 V			±2		
	Differential non-linearity error	Ta = 25 °C, VDD :	= 2.7 V to 5.5 V			10.0	LSB	
 Differential non-linearity error 		Ta = -25 °C to 85	$5 \circ C$, VDD = 3.0 V to 5.5 V			±0.9		
Vот	Zara transition voltage	VDD = 5.12 V		0	5	20	mV	
Vot Zero transition voltage		VDD = 3.072 V		0	3	15		
VFST Full-scale transition voltage		VDD = 5.12 V		5105	5115	5125	- mV	
VEST	Full-scale transition voltage	VDD = 3.072 V		3060	3069	3075		
IADD	A-D operating current	VDD = 5.0 V	f(XIN) = 0.4 MHz to 4.0 MHz		0.7	2.0	mA	
IADD	A-D operating current	VDD = 3.0 V	f(XIN) = 0.4 MHz to 2.0 MHz		0.2	0.4	- ma	
TCONV	A-D conversion time	f(XIN) = 4.0 MHz,	Middle-speed mode			93.0	μs	
TCONV	A-D conversion time	f(XIN) = 4.0 MHz,	High-speed mode			46.5	μο	
-	Comparator resolution	Comparator mode				8	bits	
	Comparator arrar (Nota)	VDD = 5.12 V				±20	mV	
-	Comparator error (Note)	VDD = 3.072 V				±15		
-	Comparator comparison time	f(XIN) = 4.0 MHz, Middle-speed mode				12	μs	
	Comparator comparison time	f(XIN) = 4.0 MHz, High-speed mode				6	μ	

Note: As for the error from the ideal value in the comparator mode, when the contents of the comparator register is n, the logic value of the comparison voltage Vref which is generated by the built-in DA converter can be obtained by the following formula.

— Logic value of comparison voltage Vref—

$$V_{ref} = \frac{V_{DD}}{256} \times n$$

n = Value of register AD (n = 0 to 255)

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS

(Ta = -20 °C to 85 °C, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Symbol Parameter			Min.	Тур.	Max.	Onit
VRST	Detection voltage		2.7		4.1	V
VRSI	VRST Detection voltage	Ta = 25 °C	3.3	3.5	3.7	V
IRST	Operation current of voltage drop detection circuit	VDD = 5.0 V		50	100	μΑ

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

VOLTAGE COMPARATOR RECOMMENDED OPERATING CONDITION

(Ta = $-20 \degree C$ to 85 $\degree C$, unless otherwise noted)

Symbol	Parameter	Conditions		Unit		
Symbol	i didificter			Тур.	Max.	Onit
Vdd	Supply voltage		3.0		5.5	V
VINCMP	Voltage comparator input voltage	VDD = 3.0 V to 5.5 V	0.3Vdd		0.7Vdd	V
tCMP	Voltage comparator response time	VDD = 3.0 V to 5.5 V			20	μs

VOLTAGE COMPARATOR CHARACTERISTICS

(Ta = -20 °C to 85 °C, VDD = 3.0 V to 5.5 V, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
Symbol Farameter			Min.	Тур.	Max.	Onin
-	Comparison decision voltage error	CMP0- > CMP0+, CMP0- < CMP0+ CMP1- > CMP1+, CMP1- < CMP1+		20	100	mV
ICMP	Voltage comparator operation current	VDD = 5.0 V		15	50	μΑ

BASIC TIMING DIAGRAM

Parameter	Machine cycle Pin name	Mi	Mi+1	
Clock	XIN System clock = f(XIN)			
	XIN System clock = f(XIN)/2			
Port D output	D0-D7	X		
Port D input	D0D7			
Ports P0, P1, P3, P4, P5 output	P00–P03 P10–P13 P30–P33 P40–P43 P50–P53	X		X
Ports P0, P1, P2, P3, P4, P5 input	P00-P03 P10-P13 P20-P22 P30-P33 P40-P43 P50-P53			X
Interrupt input	INT0,INT1		X	

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4513/4514 Group has programmable ROM version software compatible with mask ROM. The built-in PROM of One Time PROM version can be written to and not be erased.

The built-in PROM versions have functions similar to those of the mask ROM versions, but they have PROM mode that enables writing to built-in PROM.

Table 25 shows the product of built-in PROM version. Figure 49 and 50 show the pin configurations of built-in PROM versions.

Table 25 Product of built-in PROM version

Product	PROM size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34513E4SP/FP	4096 words	256 words	SP: 32P4B FP: 32P6B-A	One Time PROM version
M34513E8FP	8192 words	384 words	32P6B-A	
M34514E8FP	8192 words	384 words	42P2R-A	[shipped in blank]

Fig. 49 Pin configuration of built-in PROM version of 4513 Group

Fig. 50 Pin configuration of built-in PROM version of 4514 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

(1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K. Programming adapters are listed in Table 26.Contact addresses at the end of this sheet for the appropriate PROM programmer.

• Writing and reading of built-in PROM

Programming voltage is 12.5 V. Write the program in the PROM of the built-in PROM version as shown in Figure 51.

(2) Notes on handling

①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.

② For the One Time PROM version shipped in blank, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 52 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

Table 26 Programming adapters

Microcomputer	Programming adapter
M34513E4SP	PCA7442SP
M34513E4FP, M34513E8FP	PCA7442FP
M34514E8FP	PCA7441

Fig. 51 PROM memory map

Fig. 52 Flow of writing and test of the product shipped in blank

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

G	77-SH52-4	45B <81A0		_			
0,	22-01102			Ν	/lask R	OM number	
			MASK ROM ORDER CONFIRMATION FORM IP MICROCOMPUTER M34513M2-XXXSP/FP MITSUBISHI ELECTRIC		sipt	Date: Section head signature	Supervisor signature
	Please fil	I in all ite	ms marked * .		Receipt		
		Company					
-1-		name			a. 1)	Responsible officer	Supervisor
*	Customer		TEL())	ture		
		Date issued	Date:	-	Issuance signature		

* 1. Confirmation

PRELIMINAR Notice: This is not a final specification Some parametric limits are subject to

change.

Specify the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (check in the approximate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name:	M34513M2-	XXXS	ŝP	⊡МЗ	4513M2-XXXFP
Checksum code for entire	EPROM area				(hexadecimal notation)

EPROM Type:

27C256	27C512
Low-order	Low-order
5-bit data 000016 2.00K 07FF16 400016 2.00K 400016 2.00K 47FF16 7FFF	5-bit data 000016 2.00K 07FF16 400016 400016 2.00K 47FF16 FFFF FFF

Set "FF16" in the shaded area.

Set "1112" in the area

of low-order and high-order 5-bit data.

* 2. Mark Specification

Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the approximate Mark Specification Form (32P4B for M34513M2-XXXSP, 32P6B-A for M34513M2-XXXFP) and attach to the Mask ROM Order Confirmation Form.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

G	22-9092-4	14D <01AU]>	N	lask R	OM number	
	S	INGLE-CH	MASK ROM ORDER CONFIRMATION FORM IP MICROCOMPUTER M34513M4-XXXSP/FP MITSUBISHI ELECTRIC ms marked * .		Receipt	Date: Section head signature	Supervisor signature
		Company			2		
*	Customer	name	TEL ()		ture	Responsible officer	Supervisor
		Date issued	Date:		signature		

* 1. Confirmation

PRELIMINAR Notice: This is not a final specification Some parametric limits are subject to change.

077 CLIED 44D .0440

change.

Specify the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (check in the approximate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Microcomputer name:	M34513M4	XXXS	βP	M3	4513M4-XXXFP
Checksum code for entire	EPROM area				(hexadecimal notation)

EPROM Type:

27C256	27C512
Low-order 5-bit data 000016 4.00K 0FFF16 4.00K 400016 4.00K 4FFF16 7FF16	Low-order 5-bit data 000016 4.00K 0FFF16 400016 4.00K 4FFF16 4.00K 4FFF16 FFFF16

Set "FF16" in the shaded area.

Set "1112" in the area

of low-order and high-order 5-bit data.

* 2. Mark Specification

Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the approximate Mark Specification Form (32P4B for M34513M4-XXXSP, 32P6B-A for M34513M4-XXXFP) and attach to the Mask ROM Order Confirmation Form.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

G	77-SH53-()1B <85A0		_			
02				N	lask R	OM number	
			MASK ROM ORDER CONFIRMATION FORM HIP MICROCOMPUTER M34513M6-XXXFP MITSUBISHI ELECTRIC		Receipt	Date: Section head signature	Supervisor signature
	Please fil	ll in all ite	ms marked * .		Rec		
		Company					
*	-	name	×	Γ	n (1)	Responsible officer	Supervisor
*	Customer		TEL ()		iture		
		Date issued	Date:		signature		

* 1. Confirmation

Specify the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (check in the approximate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM area			(hexadecimal notation)

EPROM Type:

27C256	27C512
Low-order	Low-order
5-bit data 000016 17FF16 6.00K 17FF16 400016 6.00K 57FF16 7FF16	5-bit data 000016 6.00K 17FF16 400016 6.00K 57FF16 6.00K 57FF16 FFFF16

Set "FF16" in the shaded area.

Set "1112" in the area of

of low-order and high-order 5-bit data.

* 2. Mark Specification

Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the approximate Mark Specification Form (32P6B-A for M34513M6-XXXFP) and attach to the Mask ROM Order Confirmation Form.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

62	22-01152-3	99D <03A0		Μ	lask R	OM number	
			MASK ROM ORDER CONFIRMATION FORM HIP MICROCOMPUTER M34513M8-XXXFP MITSUBISHI ELECTRIC		pt	Date: Section head signature	Supervisor signature
	Please fil	I in all ite	ms marked \star .		Receipt		
		0					
*	Customer	Company name	TEL ()		e e	Responsible officer	Supervisor
•	Customer	Date			signatur		
		issued	Date:	00	siç		

* 1. Confirmation

RELIMINAF Notice: This is not a final specifica some parametric limits are subjec

C77 SHE2 00B -95405

hange.

Specify the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (check in the approximate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

	Checksum code for entire EPROM area					(hexadecimal notation
--	-------------------------------------	--	--	--	--	-----------------------

EPROM Type:

27C256	27C512
Low-order 5-bit data High-order 5-bit data High-order 5-bit data 000016 1FFF16 8.00K 5FFF16 5FFF16	Low-order 5-bit data High-order 5-bit data 400016 400016 8.00K 5FFF16 8.00K 5FFF16

Set "FF16" in the shaded area. Set "1112" in the area

of low-order and high-order 5-bit data.

* 2. Mark Specification

Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the approximate Mark Specification Form (32P6B-A for M34513M8-XXXFP) and attach to the Mask ROM Order Confirmation Form.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

GZZ-SH52-41B <81A0>					lask R		
			MASK ROM ORDER CONFIRMATION FORM HIP MICROCOMPUTER M34514M6-XXXFP MITSUBISHI ELECTRIC		eipt	Date: Section head signature	Supervisor signature
	Please fil	l in all ite	ms marked * .		Receipt		
		Company					
*	Customer	name	TEL ()			Responsible officer	Supervisor
		Date issued	Date:	oucros	signature		

* 1. Confirmation

PRELIMINAR Notice: This is not a final specification some parametric limits are subject t

04 4 0

change

Specify the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (check in the approximate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM area

(hexadecimal notation)

EPROM Type:

Set "FF16" in the shaded area.

Set "1112" in the area

of low-order and high-order 5-bit data.

* 2. Mark Specification

Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the approximate Mark Specification Form (42P2R-A for M34514M6-XXXFP) and attach to the Mask ROM Order Confirmation Form.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

GZ	ZZ-SH52-4	40B <81A0)>	Ī.	lask R	OM number	
			MASK ROM ORDER CONFIRMATION FORM HIP MICROCOMPUTER M34514M8-XXXFP MITSUBISHI ELECTRIC			Date: Section head signature	Supervisor signature
	Please fil	I in all ite	ms marked 🛠 .		Receipt		
		Company					
*	Customer	name			ъФ	Responsible officer	Supervisor
~	Customer		TEL ()		gnature		
		Date issued	Date:	-	signature		

* 1. Confirmation

PRELIMINAF Notice: This is not a final specificat some parametric limits are subject

change.

Specify the type of EPROMs submitted.

Three sets of EPROMs are required for each pattern (check in the approximate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Checksum code for entire EPROM area

(hexadecimal notation)

EPROM Type:

27C256	27C512
Low-order 5-bit data High-order 5-bit data 4000 ₁₆ 8.00K 4000 ₁₆ 8.00K 5FFF ₁₆ 5FFF ₁₆ 7FFF ₁₆	Low-order 5-bit data High-order 5-bit data 4000 ₁₆ 4000 ₁₆ 8.00K 5FFF ₁₆ 8.00K 5FFF ₁₆

Set "FF16" in the shaded area. Set "1112" in the area

of low-order and high-order 5-bit data.

* 2. Mark Specification

Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the approximate Mark Specification Form (42P2R-A for M34514M8-XXXFP) and attach to the Mask ROM Order Confirmation Form.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

32P4B (32-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

(1

Note1 : The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's Parts Number can be up to 16 characters : Only 0 ~ 9, A ~ Z, +, -, /, (,), &, \odot , (periods), and , (commas) are usable.

(16)

4: If the Mitsubishi logo \bigstar is not required, check the box on the right.

★ Mitsubishi logo is not required

Note1 : If the Special Mark is to be Printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and Mask ROM number (3-digit) are always marked.

2 : If the customer's trade mark logo must be used in the Special Mark, check the box on the right. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

3 : The standard Mitsubishi font is used for all characters except for a logo.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

32P6B (32-PIN LQFP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B), and enter the Mitsubishi catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi catalog name

Customer's Parts Number

Note : The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name

Note1 : The mark field should be written right aligned.

- 2 : The fonts and size of characters are standard Mitsubishi type.
- 3 : Customer's Parts Number can be up to 7 characters : Only 0 ~ 9, A ~ Z, +, -, /, (,), &, \odot , (periods),, (commas) are usable.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

42P2R-A (42-PIN SHRINK SOP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi catalog name

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PACKAGE OUTLINE

32P6B-A

Max

1.7

0.2

0.45

0.175

7.1

7.1

9.2

9.2

0.7

0.1

10°

_

_

_

_

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Keep safety first in your circuit designs! -

Misubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. .

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.
- contained in these integrates. All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
- All miorination contained in these materials, including product data, diagrams and charts, perpresent miorimation on products at the time of publication or these materials, and are subject to change by miscubine Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubish Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. Mitsubishi Electric Corporation an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or repriotuce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the transported interview.
- approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 1998 MITSUBISHI ELECTRIC CORP. New publication, effective Aug. 1998. Specifications subject to change without notice.

REVISION DESCRIPTION LIST

4513/4514 GROUP DATA SHEET

Rev. No.	Revision Description	Rev. date
1.0	First Edition	98080