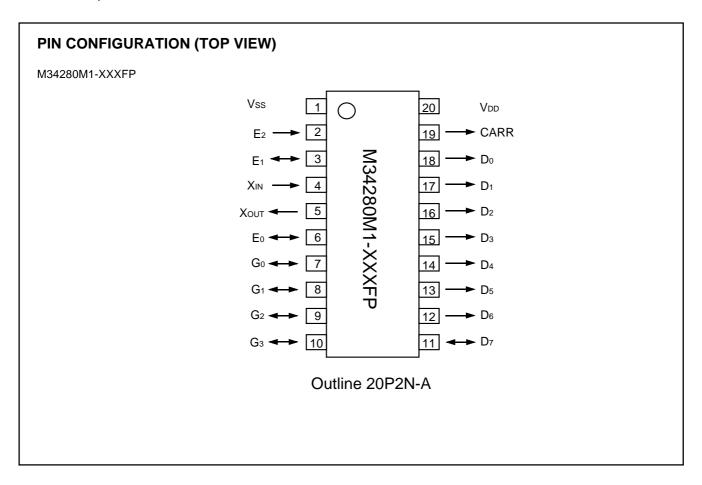
DESCRIPTION

The M34280M1-XXXFP is a 4-bit single-chip microcomputer designed with CMOS technology for remote control transmitters. The M34280M1-XXXFP has 7 carrier waves and enables fabrication of 8×7 key matrix.

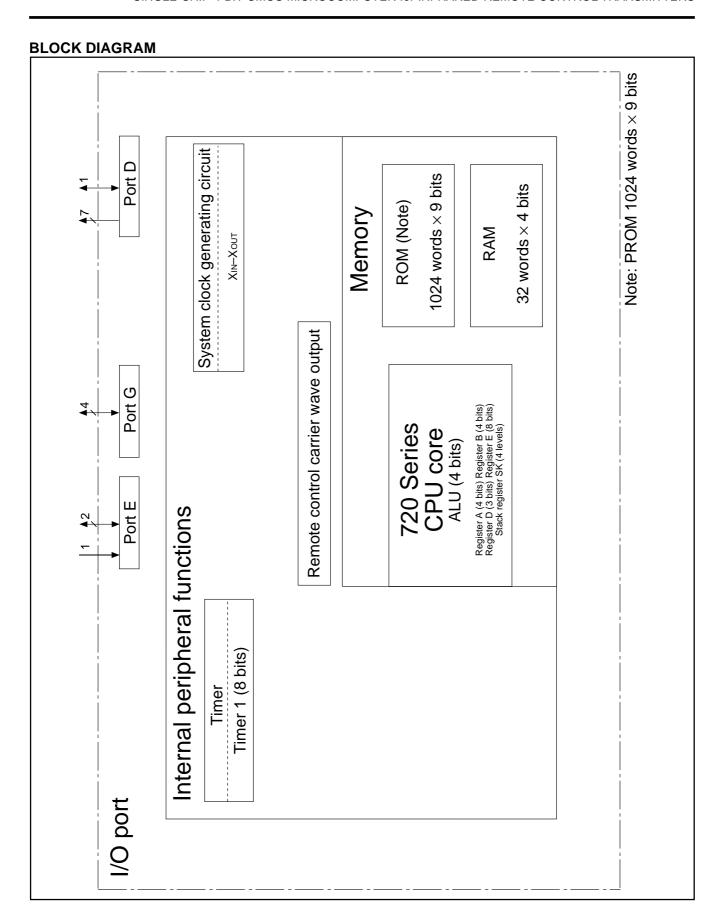
FEATURES

- Carrier wave output function (port CARR) f(XIN), f(XIN)/4, f(XIN)/8, f(XIN)/12 f(XIN)/64, f(XIN)/96, "H" output fixed
- Logic operation function (XOR, OR, AND)
- · RAM back-up function


- Oscillation circuit Ceramic resonance
- · Watchdog timer
- · Power-on reset circuit
- Voltage drop detection circuitTypical:1.50 V

APPLICATION

Various remote control transmitters


Product	ROM (PROM) size (× 9 bits)	RAM size (× 4 bits)	Package	ROM type
M34280M1-XXXFP *	1024 words	32 words	20P2N-A	Mask ROM
M34280E1FP *	1024 words	32 words	20P2N-A	One Time PROM

^{*:} Under development

1

PERFORMANCE OVERVIEW

Parameter			Function				
Number of basic instructions		tions	62				
Minimum instru	uction exe	cution time	8.0 μs (at 4.0 MHz system clock frequency)				
			(f(XIN) = 4.0 MHz, system clock = f(XIN)/8, VDD = 3 V)				
Memory sizes	ROM	M34280M1/	1024 words X 9 bits				
	RAM	E1	32 words X 4 bits				
Input/Output	D0-D6	Output	Seven independent output ports				
ports	D ₇	I/O	1-bit I/O port with the pull-down function				
	E0-E2	Input	3-bit input port with the pull-down function				
	E0, E1	Output	2-bit output port (E ₀ , E ₁)				
	Go-G3	I/O	4-bit I/O port with the pull-down function				
	CARR	Output	1-bit output port; CMOS output				
Timer 1			8-bit timer with a reload register				
Subroutine nes	sting		4 levels (However, only 3 levels can be used when the TABP p instruction is executed)				
Device structur	re		CMOS silicon gate				
Package			20-pin plastic molded SOP (20P2N-A)				
Operating tem	perature r	ange	−20 °C to 85 °C				
Supply voltage			1.8 V to 3.6 V				
Power Active mode		ode	400 μΑ				
dissipation			(f(XIN) = 4.0 MHz, system clock = f(XIN)/8, VDD = 3 V)				
(typical value)	RAM bad	ck-up mode	0.1 μ A (at room temperature, V _{DD} = 3 V)				

PIN DESCRIPTION

Pin	Name	Input/Output	Function		
Vdd	Power supply	_	Connected to a plus power supply.		
Vss	Ground	_	Connected to a 0 V power supply.		
XIN	System clock input	Input	I/O pins of the system clock generating circuit. Connect a ceramic resonator		
Хоит	System clock output	Output	between pins XIN and Xouт. The feedback resistor is built-in between pins XIN and Xouт.		
D0-D6	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is P-channel open-drain.		
D ₇	I/O port D	I/O	1-bit I/O port. For input use, turn on the built-in pull-down transistor and set the latch of the specified bit to "0." In addition, key-on wakeup function using "H" level sense becomes valid. The output structure is P-channel open-drain.		
E0-E2	I/O port E	Output Input	2-bit (E ₀ , E ₁) output port. The output structure is P-channel open-drain. 3-bit input port. For input use (E ₀ , E ₁), turn on the built-in pull-down transistor and set the latch of the specified bit to "0." In addition, key-on wakeup function using		
			"H" level sense becomes valid. Port E ₂ has an input-only port and has a key-on wakeup function using "H" level sense and pull-down transistor.		
G0–G3	I/O port G	I/O	4-bit I/O port. For input use, set the latch of the specified bit to "0." The output structure is P-channel open-drain. Port G has a key-on wakeup function using "H" level sense and pull-down transistor.		
CARR	Carrier wave output for remote control	Output	Carrier wave output pin for remote control. The output structure is CMOS circuit.		

CONNECTIONS OF UNUSED PINS

Pin	Connection
D0-D7	Open or connect to VDD pin (Note 1).
E0, E1	Set the output latch to "1" and open, or
	connect to VDD pin (Note 2).
E ₂	Open or connect to Vss pin.
G0-G3	Set the output latch to "0" and open, or
	connect to Vss pin.

Notes 1: Port D7: Set the bit 2 (PU02) of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF.

2: Set the corresponding bits (PU0₀, PU0₁) of the pull-down control register PU0 to "0" by software and turn the pull-down transistor OFF.

(Note in order to set the output latch to "0" to make pins open)

- After system is released from reset, a port is in a high-impedance state until the output latch of the port is set to "0" by software. Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

• Connect the unused pins to Vss or Vpp at the shortest distance and use the thick wire against noise.

PORT FUNCTION

Port	Pin	Input/	Output atrustura	Control	Control	Control	Remark
Port Pin Output Structure		bits	instructions	registers	Remark		
Port D	D0-D6	Output	P-channel open-drain	1 bit	SD		
		(7)			RD		
					CLD		
	D ₇	I/O			SD	PU0	Pull-down function and key-on
		(1)			RD		wakeup function
					CLD		(programmable)
					SZD		
Port E	Eo	I/O	P-channel open-drain	Output:	OEA	PU0	Pull-down function and key-on
	E1	(2)		2 bits	IAE		wakeup function
				Input:			(programmable)
	E ₂	Input		3 bits	IAE		
		(1)					
Port G	G0-G3	I/O	P-channel open-drain	4 bits	OGA		Pull-down function and key-on
		(4)			IAG		wakeup function
Port CARR	CARR	Output	CMOS	1 bit	OCRA	С	
		(1)					

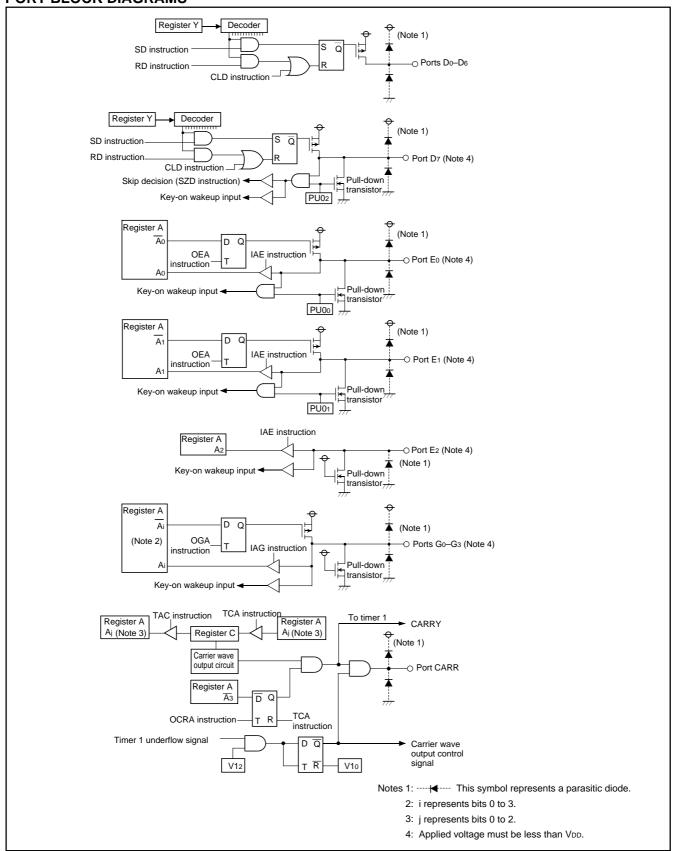
DEFINITION OF CLOCK AND CYCLE

• System clock (STCK)

The system clock is the source clock for controlling this product. It can be selected as shown below whether to use the CCK instruction.

CCK instruction	System clock	Instruction clock
When not using	f(XIN)/8	f(XIN)/32
When using	f(XIN)	f(XIN)/4

• Instruction clock (INSTCK)


The instruction clock is a signal derived by dividing the system clock by 4, and is the basic clock for controlling CPU. The one instruction clock cycle is equivalent to one machine cycle.

Machine cycle

The machine cycle is the cycle required to execute the instruction.

PORT BLOCK DIAGRAMS

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A. Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

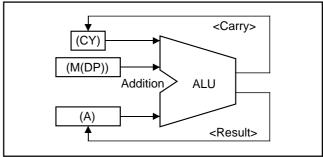


Fig. 1 AMC instruction execution example

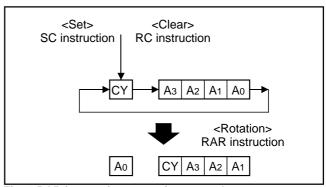


Fig. 2 RAR instruction execution example

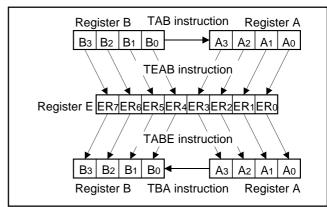


Fig. 3 Registers A, B and register E

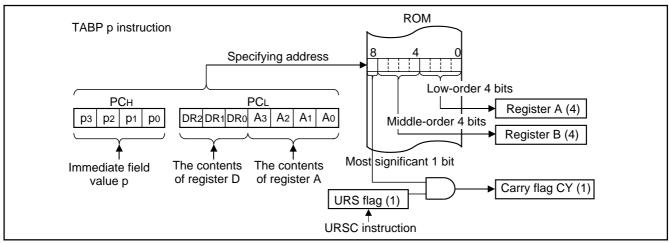


Fig. 4 TABP p instruction execution example

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(5) Most significant ROM code reference enable flag (URS)

URS flag controls whether to refer to the contents of the most significant 1 bit (bit 8) of ROM code when executing the TABP p instruction. If URS flag is "0," the contents of the most significant 1 bit of ROM code is not referred even when executing the TABP p instruction. However, if URS flag is "1," the contents of the most significant 1 bit of ROM code is set to flag CY when executing the TABP p instruction (Figure 4). URS flag is "0" after system is released from reset and returned from RAM back-up mode. It can be set to "1" with the URSC instruction, but cannot be cleared to "0."

(6) Stack registers (SKs) and stack pointer (SP)

Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when:

- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are four identical registers, so that subroutines can be nested up to 4 levels. However, one of stack registers is used when executing a table reference instruction. Accordingly, be careful not to over the stack. The contents of registers SKs are destroyed when 4 levels are exceeded.

The register SK nesting level is pointed automatically by 2-bit stack pointer (SP).

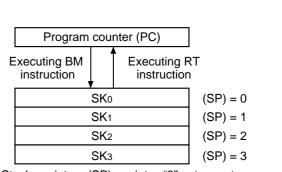

Figure 5 shows the stack registers (SKs) structure.

Figure 6 shows the example of operation at subroutine call.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions.

Note: The 4280 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

Stack pointer (SP) points "3" at reset or returning from RAM back-up mode. It points "0" by executing the first BM instruction, and the contents of program counter is stored in SKo. When the BM instruction is executed after four stack registers are used ((SP) = 3), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

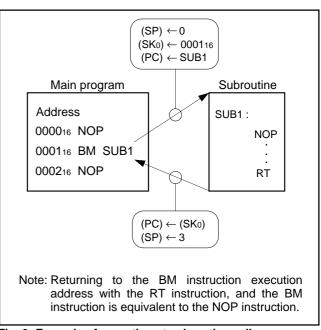


Fig. 6 Example of operation at subroutine call

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PC_H (most significant bit to bit 7) which specifies to a ROM page and PC_L (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PC ${\rm H}$ does not exceed after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers X and Y. Register X specifies a file and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position. When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

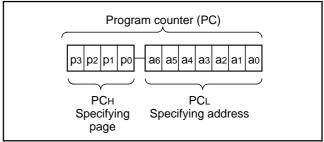


Fig. 7 Program counter (PC) structure

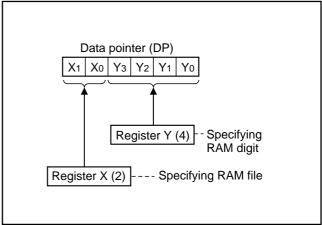


Fig. 8 Data pointer (DP) structure

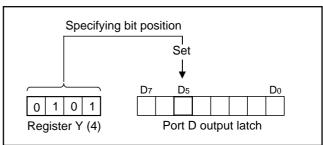


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 9 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127).

Table 1 ROM size and pages

Product	ROM size (X 9 bits)	Pages	
M34280M1	1024 words	9 (0 to 7)	
M34280E1	1024 Words	8 (0 to 7)	

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern of all addresses can be used as data areas with the TABP \mbox{p} instruction.

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers X and Y. Set a value to the data pointer certainly when executing an instruction to access RAM.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Table 2 RAM size

Product	RAM size			
M34280M1	32 words X 4 bits (128 bits)			
M34280E1				

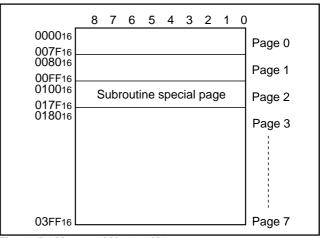


Fig. 10 ROM map of M34280M1

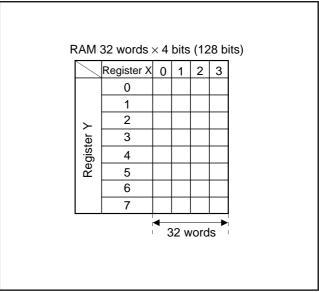


Fig. 11 RAM map

TIMERS

The 4280 Group has the programmable timer.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n+1), a timer 1 underflow flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

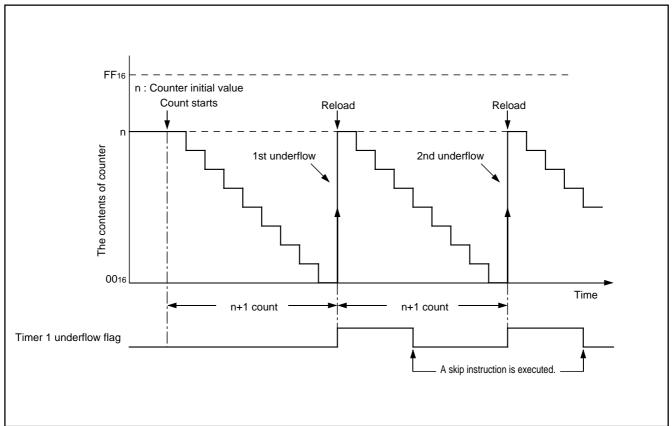


Fig. 12 Auto-reload function

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

The 4280 Group timer consists of the following circuit.

• Timer 1: 8-bit programmable timer

This timer can be controlled with the timer control register V1.

Timer 1 function is described below.

Table 3 Function related timer

Circuit	Structure	Count source	Frequency	Use of output signal	Control
Circuit	Structure	Count source	dividing ratio	Ose of output signal	register
Timer 1	8-bit programmable	Carrier generating circuit	1 to 256	Carrier wave output control	V1
	binary down counter	output (CARRY)			
		Bit 5 of watchdog timer			

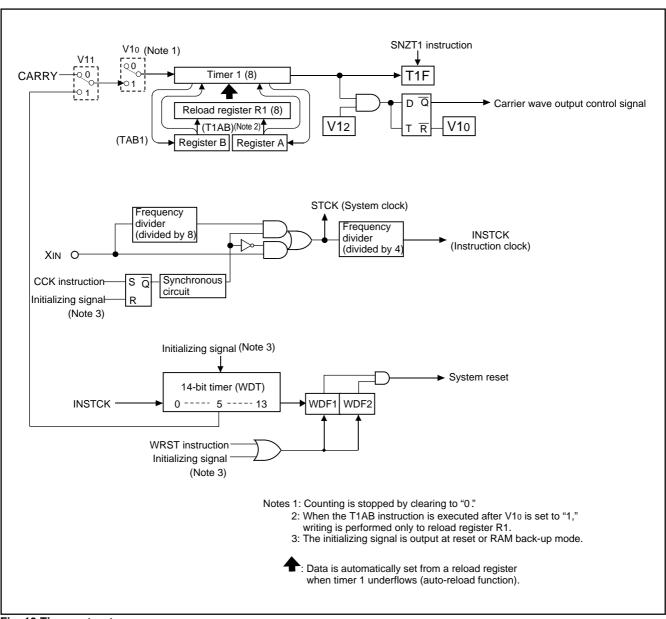


Fig. 13 Timers structure

Table 4 Control registers related to timer

Timer control register V1		at reset : 0002		at RAM back-up : 0002	W		
V4. Coming output output bit		0	Auto-control output by timer 1 is invalid				
V 12	V1 ₂ Carrier wave output auto-control bit		Auto-control output by timer 1 is valid				
\/4.	V11 Timer 1 count source selection bit		Carrier output (CARRY)				
V 11			Bit 5 of watchdog ti	imer (WDT)			
V10	Times 4 control bit	0	Stop (Timer 1 state	e retained)			
V 10	V1 ₀ Timer 1 control bit		Operating				

Note: "W" represents write enabled.

(1) Control register related to timer

· Timer control register V1

Register V1 controls the timer 1 count source and autocontrol function of carrier wave output from port CARR by timer 1. Set the contents of this register through register A with the TV1A instruction.

(2) Precautions

Note the following for the use of timers.

· Count source

Stop timer 1 counting to change its count source.

· Watchdog timer

Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.

Writing to reload register R1

When writing data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

(3) Timer 1

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1).

When timer is stopped, data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction.

When timer is operating, data can be set to only reload register R1 with the T1AB instruction.

When setting the next count data to reload register R1 at operating, set data before timer 1 underflows.

Timer 1 starts counting after the following process;

- ① set data in timer 1,
- 2 select the count source with the bit 1 of register V1, and
- 3 set the bit 0 of register V1 to "1."

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 underflow flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Data can be read from timer 1 to registers A and B. When reading the data, stop the counter and then execute the TAB1 instruction.

(4) Timer 1 underflow flag (T1F)

Timer 1 underflow flag is set to "1" when the timer 1 underflows. The state of this flag can be examined with the skip instruction (SNZT1).

T1F flag is cleared to "0" when the next instruction is skipped with a skip instruction.

WATCHDOG TIMER

Watchdog timer provides a method to reset and restart the system when a program runs wild. Watchdog timer consists of 14-bit timer (WDT) and watchdog timer flags (WDF1, WDF2).

Watchdog timer downcounts the instruction clock (INSTCK) as the count source. When the timer WDT count value becomes 000016 and underflow occurs, the WDF1 flag is set to "1." Then, when the WRST instruction is not executed before the timer WDT counts 16383, WDF2 flag is set to "1" and internal reset signal is generated and system reset is performed.

When using the watchdog timer, execute the WRST instruction at period of 16383 machine cycle or less to keep the microcomputer operation normal.

Timer WDT is also used for generation of oscillation stabilization time. When system is returned from reset and from RAM back-up mode by key-input, software starts after the stabilization oscillation time until timer WDT downcounts to 3E0016 elapses.

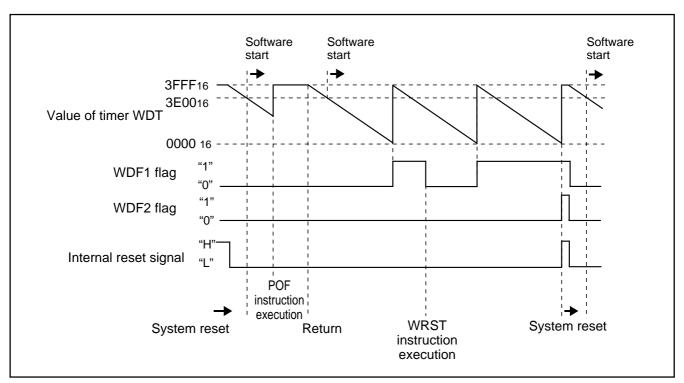


Fig. 14 Watchdog timer function

CARRIER GENERATING CIRCUIT

The 4280 Group can output the various carrier waveforms by the carrier wave selection register C.

Set the contents of this register through register A with the TCA instruction. The TAC instruction can be used to transfer the contents of register C to register A. When the TCA instruction is executed, the output latch of port CARR is cleared to "0."

The carrier waveform selected by setting register C can be output from port CARR by setting port CARR output latch to "1." When the CARR output latch is cleared to "0," carrier wave output is stopped and port CARR output is fixed to "L" level. The CARR output latch can be set through bit 3 (A₃) of register A with the OCRA instruction.

The relationship between the setting value of register C and selected waveform is described below.

Also, timer 1 can auto-control the carrier wave output from port CARR by setting the timer control register V1.

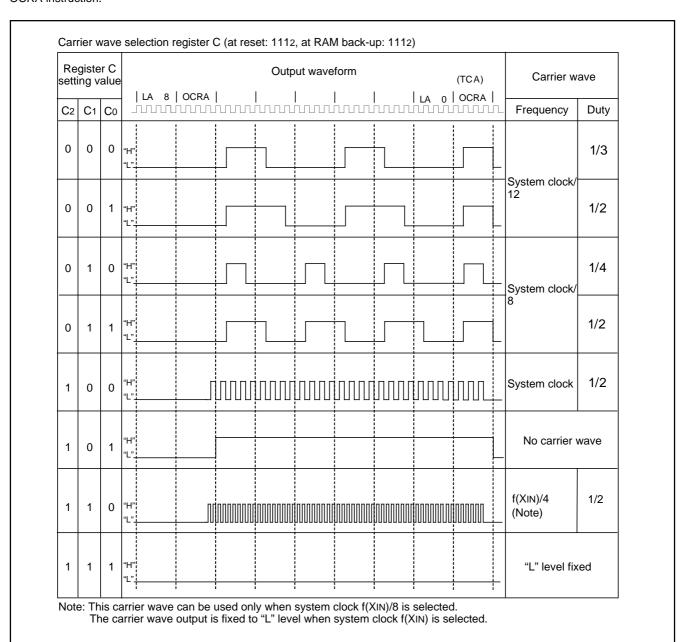


Fig. 15 Carrier wave selection register

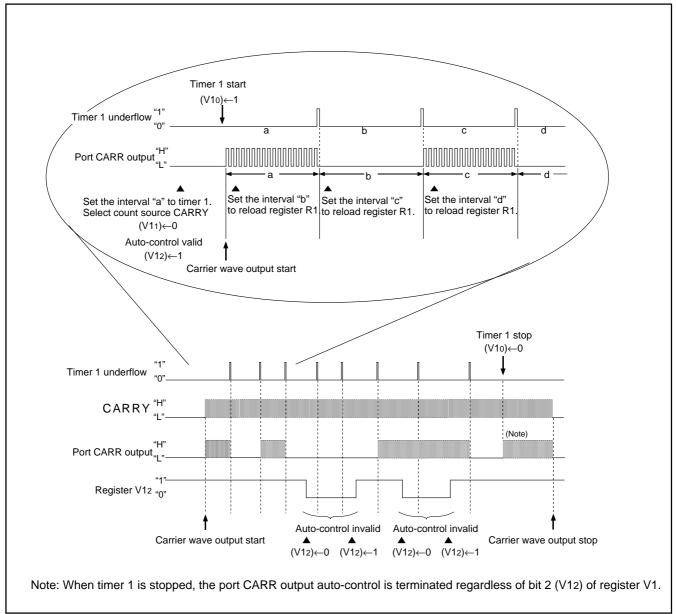


Fig. 16 Port CARR output auto-control by timer 1

LOGIC OPERATION FUNCTION

The 4280 Group has the 4-bit logic operation function. The logic operation between the contents of register A and the low-order 4 bits of register E is performed and its result is stored in register A.

Each logic operation can be selected by setting logic operation selection register LO.

Set the contents of this register through register A with the TLOA instruction. The logic operation selected by register LO is executed with the LGOP instruction.

Table 5 shows the logic operation selection register LO.

Table 5 Logic operation selection register LO

	able o Logic operation colocion rogicio. Lo							
Logic operation selection register LO		at reset : 002		t reset : 002	at RAM back-up : 002	W		
			LO ₁	LO ₀	Logic operation function			
LO	LO ₁ Logic operation selection bits		0	0	Exclusive logic OR	operation (XOR)		
			0	1	OR operation (OR)			
LO			1	0	AND operation (ANI	D)		
			1	1	Not available			

Note: "W" represents write enabled.

RESET FUNCTION

The 4280 Group has the power-on reset circuit, though it does not have $\overline{\text{RESET}}$ pin. System reset is performed automatically at power-on, and software starts program from address 0 in page 0.

In order to make the built-in power-on reset circuit operate efficiently, set the voltage rising time until VDD=0 to 2.2 V is obtained at power-on 1ms or less.

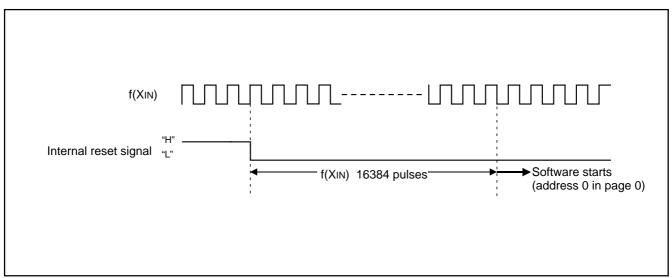


Fig. 17 Reset release timing

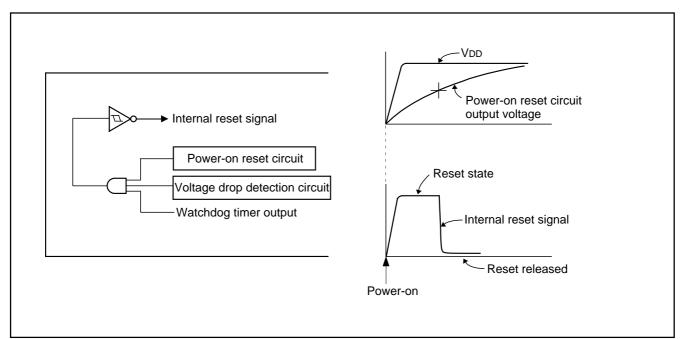


Fig. 18 Power-on reset circuit example

(1) Internal state at reset

Table 6 shows port state at reset, and Figure 19 shows internal state at reset (they are retained after system is released from reset).

The contents of timers, registers, flags and RAM except shown in Figure 19 are undefined, so set the initial value to them.

• Program counter (PC)	0 0 0 0
Address 0 in page 0 is set to program counter.	
• Power down flag (P)	
Timer 1 underflow flag (T1F)	
• Timer control register V1 0 0 0	
Carrier wave selection register C	
Pull-down control register PU0	
Logic operation selection register LO	
Most significant ROM code reference enable flag (URS)	
• Carry flag (CY)	
• Register A	
• Register B	
• Stack pointer (SP)	

Fig. 19 Internal state at reset

Table 6 Port state at reset

Name	State at reset	State after system is released from reset
D0-D6	"H" output	High impedance state
D ₇	"H" output	Input circuit OFF (Pull-down transistor OFF)
G0-G3, E2	Input port (Pull-down transistor ON)	Input port (Pull-down transistor ON)
E0, E1	Input circuit OFF (Pull-down transistor OFF)	Input port (Pull-down transistor OFF)

Note: The contents of all output latch is initialized to "0."

VOLTAGE DROP DETECTION CIRCUIT

The built-in drop detection circuit is designed to detect a drop in voltage at operating and to reset the microcomputer if the supply voltage drops below the specified value (Typ. 1.50 V) or less.

The voltage drop detection circuit is stopped and power dissipation is reduced at the RAM back-up mode, when the functions except the RAM and pull-down control register (PU0) are initialized.

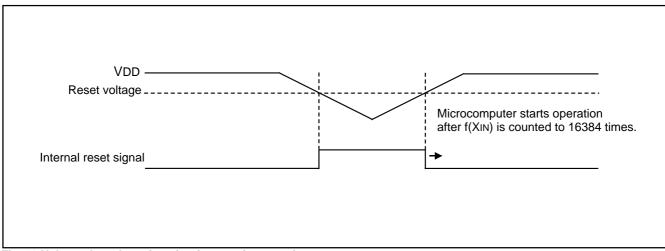


Fig. 20 Voltage drop detection circuit operation waveform

RAM BACK-UP MODE

The 4280 Group has the RAM back-up mode.

When the POF instruction is executed, system enters the RAM back-up state.

As oscillation stops retaining RAM, the function of reset circuit and states at RAM back-up mode, power dissipation can be reduced without losing the contents of RAM. Table 7 shows the function and states retained at RAM back-up. Figure 21 shows the state transition.

(1) Identification of the start condition

Warm start (return from the RAM back-up state) or cold start (return from the normal reset state) can be identified by examining the state of the power down flag (P) with the SNZP instruction.

(2) Warm start condition

When the external wakeup signal is input after the system enters the RAM back-up state by executing the POF instruction, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(3) Cold start condition

The CPU starts executing the software from address 0 in page 0 when any of the following conditions is satisfied.

- reset by power-on reset circuit is performed
- reset by watchdog timer is performed
- reset by voltage drop detection circuit is performed In this case, the P flag is "0."

Table 7 Functions and states retained at RAM back-up

Functi	on	RAM back-up	
Program counter (PC), r	×		
carry flag (CY), stack po	inter (SP) (Note 2)	^	
Contents of RAM		0	
Ports D ₀ –D ₆ (Note 3)		X ("H" output)	
Port D ₇	(PU02)=0 (Note 3)	X ("H" output)	
	(PU0 ₂)=1	X (input)	
Port E ₀	(PU0 ₀)=0 (Note 4)	X (input cut-off)	
FOIL EU	(PU0 ₀)=1	X (input)	
Port E ₁	(PU01)=0 (Note 4)	X (input cut-off)	
POIL E1	(PU01)=1	X (input)	
Port G		X (input)	
Timer control register V1	1	×	
Pull-down control registe	er PU0	0	
Logic operation selection	n register LO	×	
Timer 1 function		×	
Timer 1 underflow flag (T1F)	×	
Watchdog timer (WDT)		×	
Watchdog timer flag 1 (V	×		
Watchdog timer flag 2 (V	×		
Most significant ROM code ref	erence enable flag (URS)	×	

- Notes 1: "O" represents that the function can be retained, and "X" represents that the function is initialized.

 Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.
 - 2:The stack pointer (SP) points the level of the stack register and is initialized to "112" at RAM back-up.
 - 3: The contents of port output latch is initialized to "0." However, port continues to output "H" level.
 - 4: The state of this bit is equal to the state at reset.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(4) Return signal

An external wakeup signal is used to return from the RAM back-up mode. Table 8 shows the return condition for each return source.

Table 8 Return source and return condition

. Return source	Return condition	Remarks
Ports D7, E0, E1	Return by an external "H" level	Only key-on wakeup function of the port whose pull-down transistor is
	input.	turned ON is valid.
Ports G, E ₂	Return by an external "H" level	Key-on wakeup function is always valid.
	input.	

(5) Pull-down control register PU0

Pull-down control register PU0
 Register PU0 controls the ON/OFF of pull-down transistor, input, key-on wakeup function of ports E₀, E₁ and D₇.

Set the contents of this register through register A with the TPU0A instruction.

Table 9 Pull-down control register

	Pull-down control register PU0	at	t reset : 0002	at RAM back-up : state retained W				
PU02	Port D7 pull-down control bit	0	Pull-down transisto	r OFF, input circuit OFF, key-on wakeup invalid				
PU02	Port D7 pail-down control bit	1	Pull-down transistor ON, input circuit ON, key-on wakeup valid					
PU0 ₁	Port E ₁ pull-down control bit	0	Pull-down transisto	or OFF, key-on wakeup invalid				
1001	Port E1 pull-down control bit	1	Pull-down transisto	or ON, key-on wakeup valid				
PU0 ₀	Port Eo pull-down control bit	0	Pull-down transisto	or OFF, key-on wakeup invalid				
PU00	Fort E0 pail-down control bit	1	Pull-down transisto	or ON, key-on wakeup valid				

Note: "W" represents write enabled.

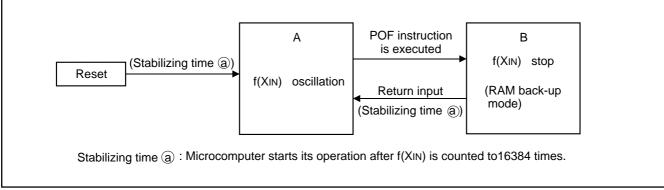


Fig. 21 State transition

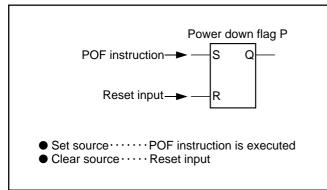


Fig. 22 Set source and clear source of the P flag

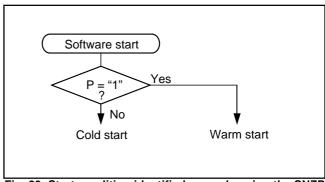


Fig. 23 Start condition identified example using the SNZP instruction

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- · System clock generating circuit
- · Control circuit to stop the clock oscillation
- · Control circuit to return from the RAM back-up state

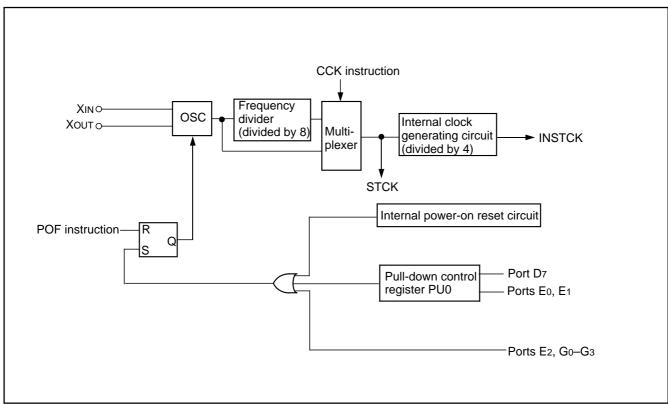


Fig. 24 Clock control circuit structure

Clock signal f(XIN) is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins XIN and XOUT at the shortest distance as shown Figure 26.

A feedback resistor is built-in between XIN pin and XOUT pin.

ROM ORDERING METHOD

Please submit the information described below when ordering Mask ROM.

(1) M34280M1-XXXFP Mask ROM Order Confirmation Form

	1
(2) Data to be written into mask ROM	. EPROM
(three sets containing the identical data)	

(3) Mark Specification Form

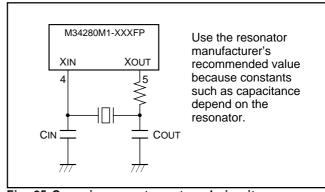


Fig. 25 Ceramic resonator external circuit

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up;

- connect a bypass capacitor (approx. 0.01 μF) between pins Vpb and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- · use the thickest wire.

In the One Time PROM version, port E2 is also used as VPP pin. Connect this pin to Vss through the resistor about 5 k Ω which is assigned to E2/VPP pin as close as possible at the shortest distance.

2 Notes on unused pins

(Note in order to set the output latch to "0" to make pins open)

- After system is released from reset, a port is in a highimpedance state until the output latch of the port is set to "0" by software.
 - Accordingly, the voltage level of pins is undefined and the excess of the supply current may occur.
- To set the output latch periodically is recommended because the value of output latch may change by noise or a program run away (caused by noise).

(Note when connecting to Vss and VDD)

 Connect the unused pins to Vss and VDD at the shortest distance and use the thick wire against noise.

3 Timer

- Count source
 - Stop timer 1 counting to change its count source.
- Watchdog timer
 - Be sure that the timing to execute the WRST instruction in order to operate WDT efficiently.
- Writing to reload register R1
 When writing data to reload register R1 while timer 1 is
 operating, avoid a timing when timer 1 underflows.

Program counter

Make sure that the program counter does not specify after the last page of the built-in ROM.

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

B Regis DR Regis ER Regis C Carri V1 Time	ister A (4 bits) ister B (4 bits) ister D (3 bits) ister E (8 bits) rier wave selection register C (3 bits) er control register V1 (3 bits)	D E G CARR	Port D (8 bits) Port E (3 bits) Port G (4 bits) Port CARR (1 bit)
DR Regi: ER Regi: C Carri V1 Time	ister D (3 bits) ister E (8 bits) rier wave selection register C (3 bits)	G	Port G (4 bits)
ER Regis C Carri V1 Time	ister E (8 bits) rier wave selection register C (3 bits)	_	
C Carri V1 Time	rier wave selection register C (3 bits)	CARR	Port CARR (1 bit)
V1 Time			
	er control register V1 (3 bits)		
PU0 Pull-		х	Hexadecimal variable
1 1 1	-down control register PU0 (3 bits)	у	Hexadecimal variable
LO Logic	ic operation selection register LO (2 bits)	р	Hexadecimal variable
		n	Hexadecimal constant which represents the
X Regi	ister X (2 bits)		immediate value
Y Regi	ister Y (4 bits)	j	Hexadecimal constant which represents the
DP Data	a pointer (6 bits)		immediate value
(It co	onsists of registers X and Y)	A3A2A1A0	Binary notation of hexadecimal variable A
PC Prog	gram counter (10 bits)		(same for others)
PCH High	n-order 3 bits of program counter		
PCL Low-	order 7 bits of program counter	\leftarrow	Direction of data movement
SK Stack	ck register (10 bits X 4)	\leftrightarrow	Data exchange between a register and memory
SP Stack	ck pointer (2 bits)	?	Decision of state shown before "?"
CY Carry	ry flag	()	Contents of registers and memories
R1 Time	er 1 reload register	_	Negate, Flag unchanged after executing
T1 Time	er 1		instruction
T1F Time	er 1 underflow flag	M(DP)	RAM address pointed by the data pointer
WDT Wate	chdog timer	а	Label indicating address a6 a5 a4 a3 a2 a1 a0
WDF1 Wate	chdog timer flag 1	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
WDF2 Wate	chdog timer flag 2		in page p3 p2 p1 p0
URS Most	st significant ROM code reference enable flag	С	Hex. number C + Hex. number x (also same for
P Powe	ver down flag	+	others)
STCK Syste	tem clock	x	
INSTCK Instru	ruction clock		

Note: The 4280 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

LIST OF INSTRUCTION FUNCTION

Grouping	Mnemonic	Function	Grouping	Mnemonic	Function	Grouping	Mnemonic	Function
	TAB	(A) ← (B)		LA n	(A) ← n	u	SEAM	(A) = (M(DP)) ?
					n = 0 to 15	riso		
	TBA	(B) ← (A)				Comparison operation	SEA n	(A) = n ?
_				TABP p	(SP) ← (SP) + 1	Som		n = 0 to 15
sfe	TAY	$(A) \leftarrow (Y)$			$(SK(SP)) \leftarrow (PC)$)		
tran					(РСн) ← p p=0 to 7		Ва	(PCL) ← a6–a0
Register to register transfer	TYA	$(Y) \leftarrow (A)$			$(PCL) \leftarrow (DR_2-DR_0,$			
gis					Аз-A ₀)	on	BL p, a	(PCн) ← p
o re	TEAB	$(ER_7 - ER_4) \leftarrow (B)$			When URS=0	Branch operation		(PCL) ← a6–a0
er t		$(ER_3-ER_0) \leftarrow (A)$			(B) \leftarrow (ROM(PC))7 to 4	obe		
gist					$(A) \leftarrow (ROM(PC))$ 3 to 0	년 년	ВАа	$(PCL) \leftarrow (a6-a4, A3-A0)$
Re	TABE	(B) ← (ER7–ER4)			When URS=1	sran		
		(A) ← (ER3–ER0)			$(CY) \leftarrow (ROM(PC))_8$	ш	BLA p, a	(PCH) ← p
	TD 4	(DD DD) (A A)			(B) \leftarrow (ROM(PC))7 to 4			$(PCL) \leftarrow (a6-a4, A3-A0)$
	TDA	$(DR_2-DR_0) \leftarrow (A_2-A_0)$	ے		$(A) \leftarrow (ROM(PC))3 \text{ to } 0$		DM -	(CD) . (CD) . 4
	1 ۷۷	$(X) \leftarrow x, x = 0 \text{ to } 3$	Arithmetic operation		$(PC) \leftarrow (SK(SP))$		ВМ а	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$
S	LXY x, y	, , ,	ber		(SP) ← (SP) – 1			
RAM addresses		$(Y) \leftarrow y, y = 0 \text{ to } 15$	<u>ic</u> 0	AM	$(A) \leftarrow (A) + (M(DP))$			(PC _H) ← 2 (PC _L) ← a6–a0
dre	INY	(Y) ← (Y) + 1	uet	Alvi	$(A) \leftarrow (A) + (W(DP))$	_		(FCL) ← ab−a0
ad	IINT	(1) ← (1) + 1 	l i	AMC	(A) ← (A) + (M(DP))	tion	DMI n a	(SP) ← (SP) + 1
AM	DEY	(Y) ← (Y) − 1	₹	AIVIC	+ (CY)	era	DIVIL P, a	$(SK(SP)) \leftarrow (PC)$
œ		(1) ← (1) − 1			(CY) ← Carry	do s		$(PCH) \leftarrow p p = 0 \text{ to } 7$
	TAM j	$(A) \leftarrow (M(DP))$	_		(O1) County	Subroutine operation		$(PCL) \leftarrow a_6-a_0$
	., ., .,	$(X) \leftarrow (X) \in (X) \in (X)$		A n	(A) ← (A) + n	ron		(1 02) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		j = 0 to 3		,,,,	n = 0 to 15	Suk	BMI A p	(SP) ← (SP) + 1
					6 16 16		a	(SK(SP)) ← (PC)
	XAM j	$(A) \longleftrightarrow (M(DP))$		sc	(CY) ← 1			(PCH) ← p p= 0 to 7
	,	$(X) \leftarrow (X) EXOR(j)$						$(PCL) \leftarrow (a_6-a_4, A_3-A_0)$
		j = 0 to 3		RC	(CY) ← 0			
						uc	RT	$(PC) \leftarrow (SK(SP))$
	XAMD j	$(A) \longleftrightarrow (M(DP))$		SZC	(CY) = 0 ?	ratic		(SP) ← (SP) – 1
in lie		$(X) \leftarrow (X) EXOR(j)$				operation		
ınsfer		j = 0 to 3		CMA	$(A) \leftarrow (\overline{A})$	_	RTS	$(PC) \leftarrow (SK(SP))$
r tra		(Y) ← (Y) − 1				Returr		(SP) ← (SP) – 1
ster				RAR	\rightarrow CY \rightarrow A3A2A1A0	L.C.		
RAM to register tran	XAMI j	$(A) \longleftrightarrow (M(DP))$						
t t		$(X) \leftarrow (X) EXOR(j)$		LGOP	Logic operation			
MA.		j = 0 to 3			instruction			
"		(Y) ← (Y) + 1			XOR, OR, AND			
				CD:	(M:/DD)) 4			
				SB j	(Mj(DP)) ← 1			
			Ē		j = 0 to 3			
			Bit operation	RB j	(Mj(DP)) ← 0			
			per	IVD]	$(M)(DP)) \leftarrow 0$ j = 0 to 3			
			3it o) = 0 to 5			
			"	SZB j	(Mj(DP)) = 0 ?			
				J_J_J	j = 0 to 3			
		<u>I</u>	<u> </u>	1	, 0.00		<u> </u>	I

LIST OF INSTRUCTION FUNCTION (CONTINUED)

Grouping	Mnemonic	Function	Grouping	Mnemonic	Function
	TV1A	$(V12-V10) \leftarrow (A2-A0)$		NOP	(PC) ← (PC) + 1
	TAB1	$(B) \leftarrow (T17-T14)$ $(A) \leftarrow (T13-T10)$		POF	RAM back-up
				SNZP	(P) = 1 ?
	T1AB	at timer 1 stop (V10=0): $(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$	ation	ССК	STCK changes to f(XIN)
Timer operation		$(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$	Other operation	TLOA	$(LO_1,LO_0) \leftarrow (A_1,A_0)$
ner o		at timer 1 operating: (V1 ₀ =1)	ð	URSC	(URS) ← 1
<u> </u> = 		$(R17-R14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$		TPU0A	(PU02−PU00) ← (A2−A0)
	CN 74			WRST	$(WDF1) \leftarrow 0$
	SNZ1	(T1F) = 1 ? After skipping the next			
		instruction			
		(T1F) ← 0			
5	TCA	$(C_2-C_0) \leftarrow (A_2-A_0)$			
/ave eratic		(CARR) ← 0			
Carrier wave control operation	TAC	$(A_2-A_0) \leftarrow (C_2-C_0)$			
Ö oo	OCRA	(CARR) ← (A ₃)			
	CLD	(D) ← 1			
	RD	(D(Y)) ← 0			
		(Y) = 0 to 7			
	SD	(D(Y)) ← 1			
ation		(Y) = 0 to 7			
opera	SZD	(D(Y)) = 0 ?			
ıtbut		(Y) = 7			
Input/Output operation	OEA	$(E_1,E_0) \leftarrow (A_1,A_0)$			
_	IAE	$(A_2-A_0) \leftarrow (E_2-E_0)$			
	OGA	(G) ← (A)			
	IAG	$(A) \leftarrow (G)$			

INSTRUCTION CODE TABLE

																		40000	44000
1	D8-D4	00000	00001	00010	00011	00100	00101	00110	00111	01000	01001	01010	01011	01100	01101	01110	01111	10000 10111	11000
D3- D0	Hex. notation	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10–17	18–1F
0000	0	NOP	BLA	SZB 0	BL	TAC	BMLA	XAM 0	BML	OGA	TABP 0	A 0	LA 0	LXY 0,0	LXY 1,0	LXY 2,0	LXY 3,0	ВМ	В
0001	1	ВА	CLD	SZB 1	BL	LGOP	_	XAM 1	BML	_	TABP 1	A 1	LA 1	LXY 0,1	LXY 1,1	LXY 2,1	LXY 3,1	ВМ	В
0010	2	1	1	SZB 2	BL	SNZT1		XAM 2	BML	URSC	TABP 2	A 2	LA 2	LXY 0,2	LXY 1,2	LXY 2,2	LXY 3,2	ВМ	В
0011	3	SNZP	INY	SZB 3	BL	1	_	XAM 3	BML	-	TABP 3	A 3	LA 3	LXY 0,3	LXY 1,3	LXY 2,3	LXY 3,3	ВМ	В
0100	4	1	RD	SZD	BL	RT		TAM 0	BML	OEA	TABP 4	A 4	LA 4	LXY 0,4	LXY 1,4	LXY 2,4	LXY 3,4	ВМ	В
0101	5		SD	SEAn	BL	RTS		TAM 1	BML	ı	TABP 5	A 5	LA 5	LXY 0,5	LXY 1,5	LXY 2,5	LXY 3,5	ВМ	В
0110	6	RC		SEAM	BL	ı	IAE	TAM 2	BML	OCRA	TABP 6	A 6	LA 6	LXY 0,6	LXY 1,6	LXY 2,6	LXY 3,6	ВМ	В
0111	7	sc	DEY		BL	T1AB	TAB1	TAM 3	BML		TABP 7	A 7	LA 7	LXY 0,7	LXY 1,7	LXY 2,7	LXY 3,7	ВМ	В
1000	8		l	IAG	_		TLOA	XAMI 0				A 8	LA 8	LXY 0,8	LXY 1,8	LXY 2,8	LXY 3,8	ВМ	В
1001	9		_	TDA		_	ССК	XAMI 1	_	_	_	A 9	LA 9	LXY 0,9	LXY 1,9	LXY 2,9	LXY 3,9	ВМ	В
1010	А	AM	TEAB	TABE		1	TCA	XAMI 2		ı	_	A 10	LA 10	LXY 0,10	LXY 1,10	LXY 2,10	LXY 3,10	ВМ	В
1011	В	AMC		_			TV1A	XAMI 3		_	_	A 11	LA 11	LXY 011	LXY 1,11	LXY 2,11	LXY 3,11	ВМ	В
1100	С	TYA	СМА			RB 0	SB 0	XAMD 0	_		_	A 12	LA 12	LXY 0,12	LXY 1,12	LXY 2,12	LXY 3,12	ВМ	В
1101	D	POF	RAR	_	_	RB 1	SB 1	XAMD 1	_	_	_	A 13	LA 13	LXY 0,13	LXY 1,13	LXY 2,13	LXY 3,13	ВМ	В
1110	Е	ТВА	TAB	_	_	RB 2	SB 2	XAMD 2	_	_	_	A 14	LA 14	LXY 0,14	LXY 1,14	LXY 2,14	LXY 3,14	ВМ	В
1111	F	WRST	TAY	SZC	_	RB 3	SB 3	XAMD 3		TPU0A	_	A 15	LA 15	LXY 0,15	LXY 1,15	LXY 2,15	LXY 3,15	ВМ	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D8–D4 show the high-order 5 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use the code marked "–."

The codes for the second word of a two-word instruction are described below.

	The second word										
BL	1	1 a a a	aaaa								
BML	1	0 a a a	aaaa								
ВА	1	1 a a a	aaaa								
BLA	1	1 a a a	0 p p p								
BMLA	1	0 a a a	Оррр								
SEA	0	1011	nnnn								
SZD	0	0010	1011								

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

MACHINE INSTRUCTIONS

Parameter						Ir	nstru	ctio	n co	de				s of	r of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀		adeo otati	cimal ion	Number of words	Number of cycles	Function
	TAB	0	0	0	0	1	1	1	1	0	0	1	Е	1	1	(A) ← (B)
e	ТВА	0	0	0	0	0	1	1	1	0	0	0	Ε	1	1	(B) ← (A)
transf	TAY	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
egister	TYA	0	0	0	0	0	1	1	0	0	0	0	С	1	1	(Y) ← (A)
Register to register transfer	TEAB	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	(ER7–ER4) ← (B) (ER3–ER0) ← (A)
Regis	TABE	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (ER7–ER4) (A) ← (ER3–ER0)
	TDA	0	0	0	1	0	1	0	0	1	0	2	9	1	1	$(DR_2-DR_0) \leftarrow (A_2-A_0)$
	LXY x, y	0	1	1	X 1	X 0	y 3	y 2	y 1	y 0	0	C +x		1	1	$(X) \leftarrow x, x = 0 \text{ to } 3$ $(Y) \leftarrow y, y = 0 \text{ to } 15$
RAM addresses	INY	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
<u>«</u>	DEY	0	0	0	0	1	0	1	1	1	0	1	7	1	1	(Y) ← (Y) − 1
	TAM j	0	0	1	1	0	0	1	j1	jo	0	6	4 +j	1	1	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ j = 0 to 3
ransfer	ХАМ ј	0	0	1	1	0	0	0	j1	jo	0	6	j	1	1	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X) EXOR(j)$ j = 0 to 3
RAM to register transfer	XAMD j	0	0	1	1	0	1	1	j1	jo	0	6	C +j	1	1	$(A) \longleftrightarrow (M(DP))$ $(X) \longleftrightarrow (X) EXOR(j)$ $j = 0 \text{ to } 3$ $(Y) \longleftrightarrow (Y) - 1$
	ХАМІ ј	0	0	1	1	0	1	0	j1	jo	0	6	8 +j	1	1	$ \begin{aligned} &(A) \longleftarrow (M(DP)) \\ &(X) \longleftarrow (X) \; EXOR(j) \\ &j = 0 \; to \; 3 \\ &(Y) \longleftarrow (Y) + 1 \end{aligned} $

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

	-	
Skip condition	Carry flag CY	Detailed description
-	_	Transfers the contents of register B to register A.
-	-	Transfers the contents of register A to register B.
_	-	Transfers the contents of register Y to register A.
-	-	Transfers the contents of register A to register Y.
_	-	Transfers the contents of registers A and B to register E.
_	_	Transfers the contents of register E to registers A and B.
-	_	Transfers the contents of register A to register D.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y.
description		When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.
(Y) = 15	_	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
-	_	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
-	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped.

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lr	nstru	ıctio	n co	de				er of ds	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D2	D ₁	D ₀	Hexa	adec tatio	imal on	Number of words	Number of cycles	Function
	LA n	0	1	0	1	1	nз	n ₂	n1	no	0	В	n	1	1	(A) ← n n = 0 to 15
	ТАВР р	0	1	0	0	1	0	p2	p1	po	0	9	p	1	3	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p, p=0 \text{ to } 7$ $(PCL) \leftarrow (DR_2-DR_0, A_3-A_0)$ When URS=0, $(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ When URS=1, $(CY) \leftarrow (ROM(PC))8$ $(B) \leftarrow (ROM(PC))7 \text{ to } 4$ $(A) \leftarrow (ROM(PC))3 \text{ to } 0$ $(SP) \leftarrow (SP) - 1$ $(PC) \leftarrow (SK(SP))$
ation	АМ	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
Arithmetic operation	AMC	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arith	A n	0	1	0	1	0	nз	n2	n1	no	0	Α	n	1	1	$(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$
	sc	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
		0	0	0	0	1	1	1	0	0		1		1	1	$(A) \leftarrow (\overline{A})$
		0	0	0	0	1	1	1		1		1		1	1	\rightarrow CY \rightarrow A ₃ A ₂ A ₁ A ₀ \rightarrow
	LGOP	0	0	1	0	0	0	0	0	1	0	4	1	1	1	Logic operation instruction XOR, OR, AND

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

	ò	
Skip condition	Carry flag	Detailed description
Continuous description	_	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A when URS flag is cleared to "0." These bits 7 to 0 are the ROM pattern in address (DR ₂ DR ₁ DR ₀ A ₃ A ₂ A ₁ A ₀) specified by registers A and D in page p.
	0/1	Transfers bit 8 of ROM pattern is transferred to flag CY when URS flag is set to "1" (after the URSC instruction is executed).
		One of stack is used when the TABP p instruction is executed.
-	_	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation.
_	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	-	Skips the next instruction when the contents of carry flag CY is "0."
_	_	Stores the one's complement for register A's contents in register A.
_	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	_	Execute the logic operation selected by logic operation selection register LO between the contents of register A and register E, and stores the result in register A.

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lr	nstru	ıctio	n cc	de				er of	er of	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D1	D ₀		adec otati		Number of words	Number of cycles	Function
	SB j	0	0	1	0	1	1	1	j1	jo	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	1	0	0	1	1	j1	j o	0	4	C +j	1	l .	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit o	SZB j	0	0	0	1	0	0	0	j1	jo	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
ç	SEAM	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP)) ?
Comparison operation	SEA n	0	0	0	1	0	0	1	0	1	0	2	5	2		(A) = n ? n = 0 to 15
ပြီ °		0	1	0	1	1	nз	n2	n1	n ₀	0	В	n			
	Ва	1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а	1	1	(PCL) ← a6-a0
	BL p, a	0	0	0	1	1	рз	p ₂	p 1	p ₀	0	3	р	2	2	(РСн) ← р (РС∟) ← a6−a0 (Note)
Branch operation		1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а			(Note)
nch op	ВА а	0	0	0	0	0	0	0	0	1	0	0	1	2	2	(PCL) ← (a6-a4, A3-A0)
Brar		1	1	a 6	a 5	a 4	a 3	a 2	a 1	a 0	1	8 +a	а			
	BLA p, a	0	0	0	0	1	0	0	0	0	0	1	0	2	2	(PC _H) ← p (PC _L) ← (a6–a₄, A3–A₀)
		1	1	a 6	a 5	a 4	рз	p ₂	p1	p ₀	1	8 +a	р			(Note)

Note: p is 0 to 7 for M34280E1, and p is 0 to 7 for M34280M1.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Skip condition	Carry flag CY	Detailed description
_	_	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	_	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP).
(A) = n n = 0 to 15	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field.
-	_	Branch within a page : Branches to address a in the identical page.
-	_	Branch out of a page : Branches to address a in page p.
-	_	Branch within a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in the identical page with register A.
_	_	Branch out of a page: Branches to address (a ₆ a ₅ a ₄ A ₃ A ₂ A ₁ A ₀) determined by replacing the low-order 4 bits of the address a in page p with register A.

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lı	nstru	ıctio	n co	de				er of Is	er of es	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hex	adec otati		Number of words	Number of cycles	Function
E	ВМ а	1	0	a 6	a 5	a 4	a 3	a 2	a1	a 0	1	а	а	1	1	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a_6-a_0$
operation	BML p, a	0	0	1	1	1	рз	p ₂	p 1	p 0	0	7	р	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$ $(PCH) \leftarrow p$
Subroutine operation		1	0	a 6	a 5	a 4	a 3	a 2	a ₁	a 0	1	а	а			(PCL) ← a6−a0 (Note)
Su l	BMLA p, a	0	0	1	0	1	0	0	0	0	0	5	0	2	2	$(SK(SP)) \leftarrow (PC)$ $(SP) \leftarrow (SP) + 1$
		1	0	a 6	a 5	a 4	рз	p ₂	p 1	p ₀	1	а	p			$(PCH) \leftarrow p$ $(PCL) \leftarrow (a_{6}-a_{4}, A_{3}-A_{0})$ (Note)
eration	RT	0	0	1	0	0	0	1	0	0	0	4	4	1	2	$ (PC) \leftarrow (SK(SP)) $ $ (SP) \leftarrow (SP) - 1 $
Return operation	RTS	0	0	1	0	0	0	1	0	1	0	4	5	1	2	$ (PC) \leftarrow (SK(SP)) $ $ (SP) \leftarrow (SP) - 1 $
-	TAB1	0	0	1	0	1	0	1	1	1	0	5	7	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
Timer operation	T1AB	0	0	1	0	0	0	1	1	1	0	4	7	1	1	at timer 1 stop (V10=0) $(R17-R14) \leftarrow (B)$, $(R13-R10) \leftarrow (A)$ $(T17-T14) \leftarrow (B)$, $(T13-T10) \leftarrow (A)$ at timer 1 operating (V10=1) $(R17-R14) \leftarrow (B)$, $(R13-R10) \leftarrow (A)$
<u>i</u> -	TV1A	0	0	1	0	1	1	0	1	1	0	5	В	1	1	$(V12-V10) \leftarrow (A2-A0)$
:	SNZ1	0	0	1	0	0	0	0	1	0	0	4	2	1	1	$(T1F) = 1$? After skipping the next instruction $(T1F) \leftarrow 0$
ve	TAC	0	0	1	0	0	0	0	0	0	0	4	0	1	1	$(A_2-A_0) \leftarrow (C_2-C_0)$
Carrier wave control operation	TCA	0	0	1	0	1	1	0	1	0	0	5	Α	1	1	$(C_2-C_0) \leftarrow (A_2-A_0), (CARR) \leftarrow 0$
Carr	OCRA	0	1	0	0	0	0	1	1	0	0	8	6	1	1	$(CARR) \leftarrow (A_3)$

Note: p is 0 to 7 for M34280E1, and p is 0 to 7 for M34280M1.

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Skip condition	Carry flag CY	Detailed description
_	_	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
-	_	Call the subroutine: Calls the subroutine at address (a6 a5 a4 A3 A2 A1 A0) determined by replacing the low-order 4 bits of address a in page p with register A.
_	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	_	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.
-	_	Transfers the contents of timer 1 to registers A and B.
-	_	Transfers the contents of registers A and B to timer 1.
_	_	Transfers the contents of register A to registers V1.
(T1F) = 1	_	Skips the next instruction when the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
-	_	Transfers the contents of register A to register C.
-	_	Transfers the contents of register C to register A. In this case, port CARR output latch is cleared to "0."
_	_	Transfers the contents of bit 3 (A ₃) of register A to port CARR output latch.

MACHINE INSTRUCTIONS (CONTINUED)

Parameter						lı	nstru	ıctio	n co	de			er of	er of les	
Type of instructions	Mnemonic	D8	D7	D ₆	D ₅	D4	Dз	D ₂	D ₁	D ₀	Hexade notat		Number of words	Number of cycles	Function
	CLD	0	0	0	0	1	0	0	0	1	0 1	1	1	1	(D) ← 0
	RD	0	0	0	0	1	0	1	0	0	0 1	4	1	1	$(D(Y)) \leftarrow 0$ (Y) = 0 to 7
u	SD	0	0	0	0	1	0	1	0	1	0 1	5	1	1	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 7$
Input/Output operation		0	0	0	1	0	0	1	0	0	0 2		2	2	(D(Y)) = 0 ? (Y) = 7
/Outp		0	0	0	1	0	1	0	1	1	0 2	В			
Input	OEA	0	1	0	0	0	0	1	0	0	0 8	4	1	1	$(E_1,E_0) \leftarrow (A_1,A_0)$
	IAE	0	0	1	0	1	0	1	1	0	0 5	6	1	1	$(A_2 A_0) \leftarrow (E_2 E_0)$
	OGA	0	1	0	0	0	0	0	0	0	0 8	0	1	1	$(G) \leftarrow (A)$
	IAG	0	0	0	1	0	1	0	0	0	0 2	8	1	1	$(A) \leftarrow (G)$
	NOP	0	0	0	0	0	0	0	0	0	0 0	0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	1	1	0	1	0 0	D	1	1	RAM back-up
	SNZP	0	0	0	0	0	0	0	1	1	0 0	3	1	1	(P) = 1 ?
Other operation	ССК	0	0	1	0	1	1	0	0	1	0 5	9	1	1	STCK changes to f(XIN)
Other of	TLOA	0	0	1	0	1	1	0	0	0	0 5	8	1	1	$(LO_1,LO_0) \leftarrow (A_1,A_0)$
	URSC	0	1	0	0	0	0	0	1	0	0 8	2	1	1	(URS) ← 1
	TPU0A	0	1	0	0	0	1	1	1	1	0 8	F	1	1	$(PU0_2-PU0_0) \leftarrow (A_2-A_0)$
	WRST	0	0	0	0	0	1	1	1	1	0 0	F	1	1	(WDF1) ← 0

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

Skip condition	Carry flag CY	Detailed description
-	-	Clears (0) to port D (high-impedance state).
_	-	Clears (0) to a bit of port D specified by register Y (high-impedance state).
-	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 (Y) = 7	_	Skips the next instruction when a bit of port D specified by register Y is "0."
-	_	Outputs the contents of register A to port E.
_	-	Transfers the contents of port E to register A.
-	_	Outputs the contents of register A to port G.
-	_	Transfers the contents of port G to register A.
-	-	No operation
-	_	Puts the system in RAM back-up state.
(P) = 1	_	Skips the next instruction when P flag is "1." After skipping, P flag remains unchanged.
-	_	System clock (STCK) changes to f(XIN) from f(XIN)/8. Execute this CCK instruction at address 0 in page 0.
_	_	Transfers the contents of register A to the logic operation selection register LO.
_	_	Sets the most significant ROM code reference enable flag (URS) to "1."
_	_	Transfers the contents of register A to register PU0.
_	_	Initializes the watchdog timer flag (WDF1).
	-	

CONTROL REGISTERS

	Timer control register V1	at	t reset : 0002	at RAM back-up : 0002	W			
V12	Carrier ways autout auto central hit	0	Auto-control output by timer 1 is invalid					
V 12	Carrier wave output auto-control bit	1	Auto-control output by timer 1 is valid					
\/4.	Times 4 count course colection bit	0	0 Carrier output (CARRY)					
V1 ₁	Timer 1 count source selection bit	1	Bit 5 of watchdog to	imer (WDT)				
1/4	Time of control bit	0	Stop (Timer 1 state	e retained)				
V10	Timer 1 control bit	1	Operating					

	Pull-down control register PU0	at	reset: 0002	at RAM back-up : state retained W				
PU02	Port D7 pull-down control bit	0	Pull-down transisto	r OFF, input circuit OFF, key-on wakeup invalid				
PU02	Port D7 pull-down control bit	1	Pull-down transistor ON, input circuit ON, key-on wakeup valid					
PU0 ₁	Port E ₁ pull-down control bit	0	Pull-down transisto	r OFF, key-on wakeup invalid				
P001	Port E1 pull-down control bit	1	Pull-down transisto	r ON, key-on wakeup valid				
PU0 ₀	Port Eo pull-down control bit	0	Pull-down transisto	r OFF, key-on wakeup invalid				
-000		1	Pull-down transisto	r ON, key-on wakeup valid				

(Carrier wave selection register C				reset : 1112	at RAM	R/W		
		C.	<u> </u>	Со	Carrier wave				
C ₂		C2	C1	Co	Frequer	псу	Duty		
		0	0	0	System clo	ck/12	1/3		
		0	0	1	System clo	System clock/12		1/2	
C ₁	Carrier wave selection bits	0	1	0	System clo	System clock/8			
C1		0	1	1	System clo	ock/8	1/2		
		1	0	0	System c	lock	1/2		
		1	0	1		No carrie	er wave		
C ₀			1	0	f(XIN)/4 (No	ote 2)	1/2		
		1	1	1		"L" leve	l fixed		

Lo	gic operation selection register LO		а	t reset : 002	at RAM back-up : 002	W		
		LO ₁	LO ₀		Logic operation function			
LO ₁		0	0	Exclusive logic OR	operation (XOR)			
	Logic operation selection bits	0	1	OR operation (OR)				
LO ₀		1	0	AND operation (ANI	AND operation (AND)			
		1	1	Not available				

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: f(XIN) is valid only when f(XIN)/8 is selected as the system clock.

ABSOLUTE MAXIMUM RATINGS

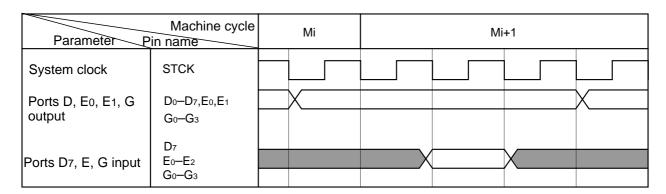
Symbol	Parameter	Conditions	Ratings	Unit
Vdd	Supply voltage		-0.3 to 5	V
Vı	Input voltage		-0.3 to VDD+0.3	V
Vo	Output voltage		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

RECOMMENDED OPERATING CONDITIONS

(Ta = -20 °C to 85 °C, VDD = 1.8 V to 3.6 V, unless otherwise noted)

Cumahal	Parameter				Unit		
Symbol	Pa	irameter	Conditions	Min.	Тур.	Max.	Offic
Vdd	Supply voltage	oply voltage		1.8		3.6	V
VRAM	RAM back-up voltage (at	RAM back-up mode)		1.4		3.6	V
Vss	Supply voltage				0		V
Vін	"H" level input voltage Po	orts D ₇ , E, G	VDD = 3 V	0.7Vdd		Vdd	V
Vін	"H" level input voltage XIII	N .	VDD = 3 V	0.8Vpd		Vdd	V
VIL	"L" level input voltage Po	rts D ₇ , E, G	VDD = 3 V	0		0.2VDD	V
VIL	"L" level input voltage XIN	I	VDD = 3 V	0		0.2Vdd	V
Iон(peak)	"H" level peak output cur	rent Ports D, E ₁ , G	VDD = 3 V			-4	mA
Ioн(peak)	"H" level peak output current Port Eo		VDD = 3 V			-24	mA
Iон(peak)	"H" level peak output cur	rent CARR	VDD = 3 V			-20	mA
loL(peak)	"L" level peak output curr	ent CARR	VDD = 3 V			4	mA
Iон(avg)	"H" level average output	current Ports D, E ₁ , G	VDD = 3 V			-2	mA
Iон(avg)	"H" level average output	current Port E ₀	VDD = 3 V			-12	mA
Iон(avg)	"H" level average output	current CARR	VDD = 3 V			-10	mA
lo _L (avg)	"L" level average output of	current CARR	VDD = 3 V			2	mA
f(XIN)	System clock frequency	when STCK = f(XIN)/8 selected	Ceramic resonance			4	MHz
I(XIII)	System clock frequency	when STCK = f(XIN) selected	Ceramic resonance			500	kHz
VDET	Voltage drop detection circuit detection voltage			1.10		1.80	V
VDEI			Ta=25 °C	1.40	1.50	1.56	V
TDET	Voltage drop detection circuit low voltage		Supply voltage is -10V/s and		0.16	1.2	ms
IDLI	determination time		drops under detected voltage.		0.10	1.2	1113
TPON	Power-on reset circuit valid power source rising time		V _{DD} = 0 to 2.2 V			1	ms

Note: The average output current ratings are the average current value during 100 ms.



ELECTRICAL CHARACTERISTICS

(Ta = -20 °C to 85 °C, V_{DD} = 3 V, unless otherwise noted)

Symbol	Parameter	Test conditions		- Unit		
Syllibol	Falameter	rest conditions	Min.	Тур.	Max.	Onit
Vol	"L" level output voltage Port CARR	IoL = 2 mA			0.9	V
Vон	"H" level output voltage Ports D, E1, G	Iон = −2 mA	2.1			V
Vон	"H" level output voltage Port Eo	Iон = −12 mA	1.5			V
Vон	"H" level output voltage CARR	Iон = −10 mA	1.0			V
lı∟	"L" level input current Ports D7, E, G	Vı = Vss			-1	μΑ
Іін	"H" level input current Ports E ₀ , E ₁	V _I = V _{DD} Pull-down transistor in off-state			1	μΑ
loz	Output current at off-state Ports D, E ₀ , E ₁	Vo = Vss			-1	μΑ
	Supply current (when operating)	f(XIN) = 4.0 MHz		400	800	
		f(XIN) = 500 kHz		350	700	μΑ
IDD				1	3	μА
	Supply current (at RAM back-up)	Ta = 25 °C		0.1	0.5	μΑ
R PH	Pull-down resistor value Ports D ₇ , E, G	V _{DD} = 3 V. V _I = 3 V	75	150	300	kΩ
Rosc	Feedback resistor value between XIN-XOUT	- VI - 3 V, VI - 3 V	700		3200	kΩ

BASIC TIMING DIAGRAM

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4280 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM.

Table 10 shows the product of built-in PROM version. Figure 26 and 27 show the pin configurations of built-in PROM versions. The One Time PROM version has pin-compatibility with the mask ROM version.

Table 10 Product of built-in PROM version

Product	PROM size (X 9 bits)	RAM size (X 4 bits)	Package	ROM type
M34280E1FP	1024 words	32 words	20P2N-A	One Time PROM [shipped in blank]

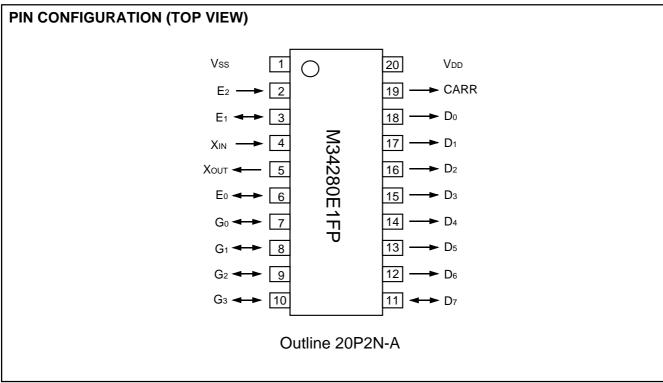


Fig. 26 Pin configuration of built-in PROM version

(1) PROM mode (serial input/output)

The M34280E1FP has a PROM mode in addition to a normal operation mode. It has a function to serially input/output the command codes, addresses, and data required for operation (e.g., read and program) on the built-in PROM using only a few pins. This mode can be selected by setting pins SDA (serial data input/output), SCLK (serial clock input), PGM and VPP to "H" after connecting wires as shown in Figure 1 and powering on the VDD pin, and then applying 12.5V to the VPP pin.

In the PROM mode, three types of software commands (read, program, and program verify) can be used. Clock-synchronous serial I/O is used, beginning from the LSB (LSB first). Refer to the Mitsubishi Data Book "DEVELOPMENT SUPPORT TOOLS FOR MICROCOMPUTERS" about the serial programmer for the Mitsubishi single-chip microcomputers.

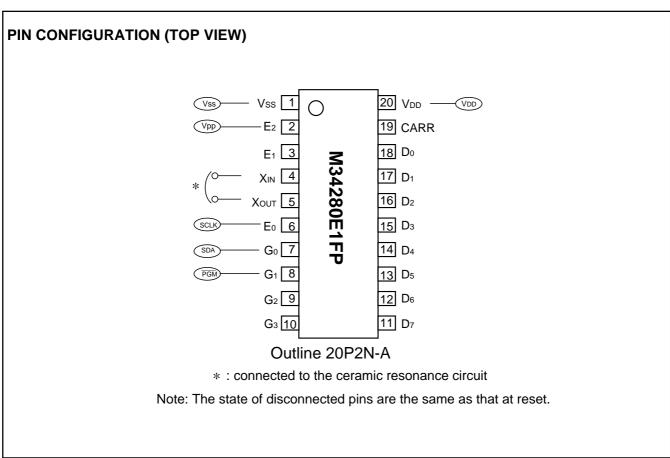


Fig. 27 Pin configuration of built-in PROM version (continued)

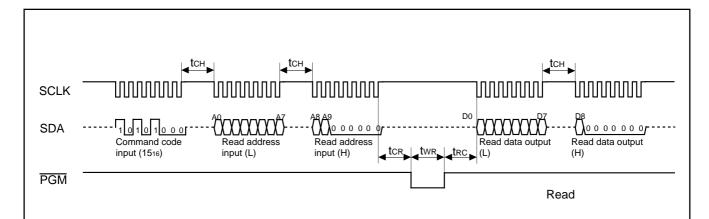
4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(2) Functional outline

In the PROM mode, data is transferred with the clocksynchronous serial input/output. The input data is read through the SDA pin into the internal circuit synchronously with the rising edge of the serial clock pulse. The output data is output from the SDA pin synchronously with the falling edge of the serial clock pulse. Data is transferred in units of 8 bits. In the first transfer, the command code is input. Then, address input or data input/output is performed according to the contents of the command code. Table 11 shows the software command used in the PROM mode. The following explains each software command.

Table 11 Software command


Number of transfer	First command	Second	Third	Fourth
Command	code input	Second	Trilla	Fourth
Read	1516	Read address L (input)	Read address H (input)	Read data L (output)
Program	2516	Program address L (input)	Program address H (input)	Program data L (input)
Program verify	3516	Program address L (input)	Program address H (input)	Program data L (input)

Number of transfer	C:tth	Fifth Sixth		
Command	FIIM	Sixth	Seventh	
Read	Read data H (output)			
Program	Program data H (input)			
Program verify	Program data H (input)	Verify data L (output)	Verify data H (output)	

(3) Read

Input the command code 15 $_{16}$ in the first transfer. Proceed and input the low-order 8 bits and the high-order 8 bits of the address and pull the \overline{PGM} pin to "L." When this is done, the contents of input address is read and stored into the internal data latch.

When the PGM pin is released back to "H" and serial clock is input to the SCLK pin, the low-order 8 bits and high-order 8 bits of read data which have been stored into the data latch, are serially output from the SDA pin.

Note: When outputting the read data, the SDA pin is switched for output at the first falling of the serial clock. The SDA pin is placed in the high-impedance state during the th(c-E) period after the last rising edge of the serial clock (at the 16th bit).

Fig. 28 Timing at reading

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(4) Program

Input command code 25₁₆ in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data,

and pull the $\overline{\text{PGM}}$ pin to "L." When this is done, the program data is programmed to the specified address.

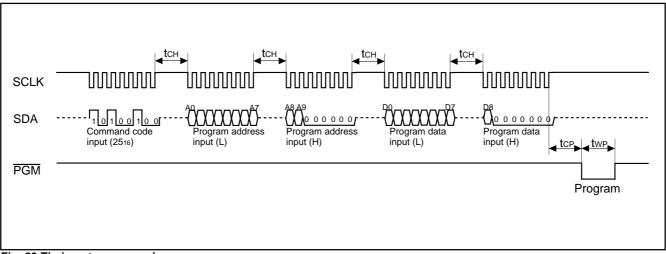


Fig. 29 Timing at programming

(5) Program verify

Input command code 3516 in the first transfer. Proceed and input the low-order 8 bits and high-order 8 bits of the address and the low-order 8 bits and high-order 8 bits of program data, and pull the \overline{PGM} pin to "L." When this is done, the program data is programmed to the specified address. Then, when the \overline{PGM} pin is pulled to "L" again after it is released back to "H," the address programmed with the program command is read

and verified and stored into the internal data latch. When the \overline{PGM} pin is released back to "H" and serial clock is input to the SCLK pin, the verify data that has been stored into the data latch is serially output from the SDA pin.

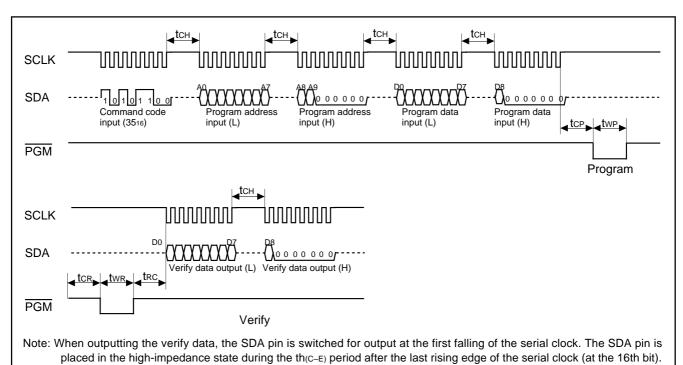
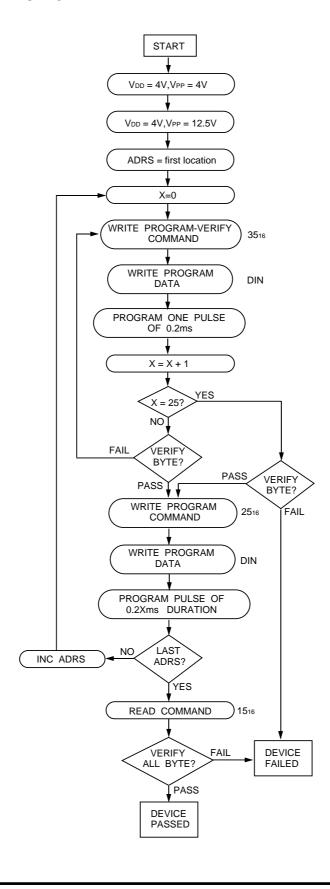
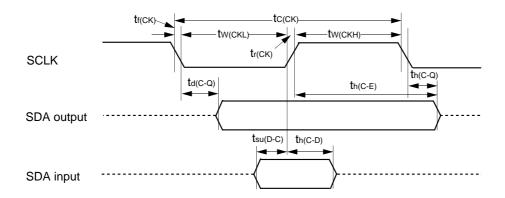



Fig. 30 Timing at program verifying

PROGRAM ALGORITHM FLOW CHART



TIMING REQUIREMENT CONDITION AND SWITCHING CHARACTERISTICS

 $(Ta = 25 \, ^{\circ}C, \, V_{DD} = 4.0 \, V, \, V_{PP} = 12.5 \, V)$

O. was board	Dansan - 4	Lin	nits	11-4:4
Symbol	Parameter		Max.	Unit
tсн	Serial transfer width time	2.0		μs
tcr	Read wait time after transfer	2.0		μs
twr	Read pulse width	500		ns
trc	Transfer wait time after read	2.0		μs
tcp	Program wait time after transfer	2.0		μs
twp	Program pulse width	0.19	0.21	ms
towp	Added program pulse width	0.19	5.25	ms
tc(ck)	SCLK input cycle time	1.0		μs
tw(ckh)	SCLK "H" pulse width	450		ns
tw(CKL)	SCLK "L" pulse width	450		ns
tr(CK)	SCLK rising time	40		ns
tf(CK)	SCLK falling time	40		ns
td(C-Q)	SDA output delay time	0	180	ns
th(C-Q)	SDA output hold time	0		ns
th(C-E)	SDA output hold time (only for 16th bit)	100		ns
tsu(D-C)	SDA input set-up time	60		ns
th(C-D)	SDA input hold time	180		ns

TIMING DIAGRAM

Measurement condition Output timing voltage: Vol = 0.8 V, VoH = 2.0 V Input timing voltage: VIL = 0.2 VDD, VIH = 0.8 VDD

4280 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER for INFRARED REMOTE CONTROL TRANSMITTERS

(6) Notes on handling

- ① A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ② For the M34280E1FP, Mitsubishi Electric corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 31 before using is recommended.

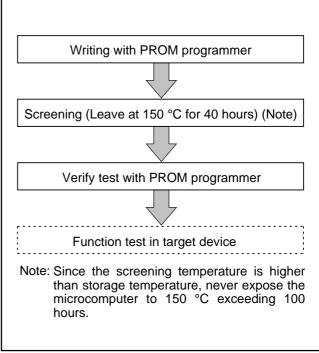
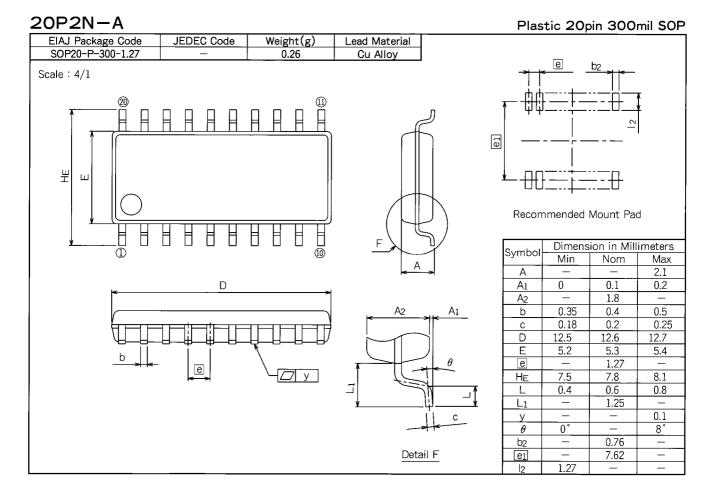
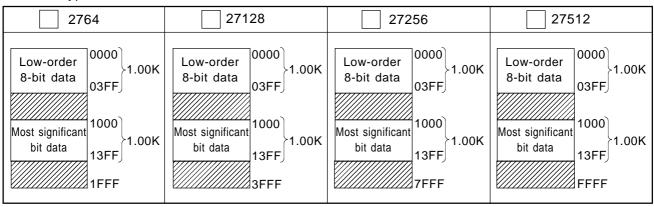



Fig. 31 Flow of writing and test of the product shipped in blank

PACKAGE OUTLINE

GZ	ZZ-SH12-(08B <77A0	Mask	ROM numbe	er	
		SINGLE-C	MASK ROM ORDER CONFIRMATION FORM HIP MICROCOMPUTER M34280M1-XXXFP MITSUBISHI ELECTRIC ms marked *.		Date: Section head signature	Supervisor signature
*		Company name	TEL (Responsible	Supervisor
		Date issued	Date:	Issuance signature		

* 1. Confirmation


Specify the type of EPROMs submitted.

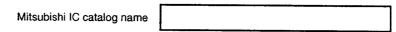
Three sets of EPROMs are required for each pattern (check in the approximate box).

If at least two of the three sets of EPROMs submitted contain the identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differ from this data. Thus, the customer must be especially careful in verifying the data contained in the EPROMs submitted.

Check code for entire EPROM area			(hexadecimal notation)

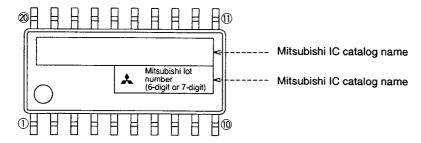
EPROM Type:

Set "FF16" in the shaded area.

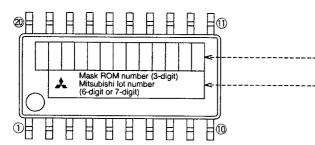

* 2. Mark Specification

Mark specification must be submitted using the correct form for the type of package being ordered. Fill out the approximate Mark Specification Form (20P2N-A for M34280M1-XXXFP) and attach to the Mask ROM Order Confirmation Form.

* 3. Comments



20P2N-A (20-PIN SOP) MARK SPECIFICATION FORM

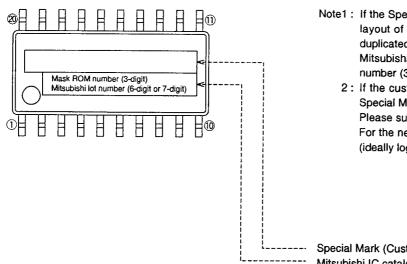


Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi IC catalog name

Customer's Parts Number


Note: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name

Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's Parts Number can be up to 13 characters: Only 0 ~ 9, A ~ Z, +, -, /, (,), &, ©, (periods),, (commas) are usable.
- 4: If the Mitsubishi logo A is not required, check the box below.
 - A Mitsubishi logo is not required

C. Special Mark Required

Note1: If the Special Mark is to be Printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible.

Mitsubishi lot number (6-digit or 7-digit) and Mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the Special Mark, check the box below.

Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

Special logo required

Special Mark (Customer's Trade Mark) Mitsubishi IC catalog name

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any
- Intese materials are intended as a reference to assist our customers in the selection of the Misusbinsh Semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Misusbinsh Electric Corporation or a third party.

 Misusbishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Misusbishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Misusbishi Electric Corporation or an authorized Misusbishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Misusbishi Electric Corporation which human life in extentivity of the latest product information before purchasing a product listed herein.
- product unsurioud intrine latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

REVISION DESCRIPTION LIST 4280 GROUP DATA SHEET

Rev.	Revision Description	Rev.
No.		date
1.0	First Edition	980420