thandar

TG 101 FUNCTION GENERATOR

SERVICE MANUAL

CONTENTS

GENERAL

TECHNICAL SPECIFICATION FUNCTIONAL DESCRIPTION CIRCUIT DESCRIPTIONS CALIBRATION COMPONENT LAYOUT PARTS LIST CIRCUIT DIAGRAM

GENERAL

Service Handling Precautions

Service work should only be carried out by skilled engineers. Please note that the tracks on the printed circuit board are very fine and may lift if subjected to excessive heat. Use only a miniature temperature controlled soldering iron and remove all solder with solder wick or suction before attempting to remove a component.

Dismantling the Instrument

WARNING!

Opening the instrument is likely to expose live parts. The instrument shall be disconnected from all voltage sources before any adjustment, replacement or maintenance and repair during which it shall be opened. If afterwards, any adjustment, maintenance or repair of the opened instrument under voltage is inevitable, it shall be carried out only by a skilled person who is aware of the hazard involved.

- Invert the instrument and remove the 4 rubber feet.
- 2. Removel the 4 recessed and one surface screw.
- Holding the case upper and lower together, turn the instrument the right way up and lift off the top.
- If further dismantling is required to replace components, proceed as follows.

Remove the two pcb retaining screws and washers. The complete pcb assembly can then be lifted out of the case lower with transformer, chassis and front panel attached.

The transformer and chassis can be separated from the pcb by desoldering the appropriate connections and removing the nuts from the three pcb studs, two of which also clamp the voltage regulators to the chassis. Note that Q15 is insulated from the metal chassis. It is generally simpler to de-solder the four mains leads from the ON/OFF switch (taking careful note of their positions) and the green/ yellow earth lead from the SWEEP IN socket.

The front panel can be removed as follows. Desolder the two connections from the output attenuator switch and the screened cable connections to the BNC sockets, noting which lead goes to which socket. Desolder the L.E.D. leads from the pcb.

The moulded range knob is a push fit on its shaft and the aluminium knobs are retained by grubscrews. Note that only the grubscrews in the smaller shaft of the vernier dial assembly need be loosened. The front panel can now be removed with the dial and collar still in place. Reassemble in reverse order.

Operating Voltage

See the Power Supply section for details of changing the operating voltage from 220/240 to 110/120 and vice-versa.

SPECIFICATION

OPERATING RANGE		OUTPUTS	
Frequency range:	<0.02 Hz to 200 kHz in 5 overlapping decade ranges with fine adjustment by a calibrated vernier.	600Ω:	Two switch-selectable ranges with >40 dB vernier control within each range.
Internal Mode		0dB:	0·1V to 10V peak-to-peak from 600Ω (0·05V to 5V into 600Ω).
Vernier range:	>1000:1 on each range.	- 40dB:	1mV to 100mV peak-to-peak from 600Ω (0.5mV to 50mV into 600Ω).
Vernier accuracy:	Better than \pm 5% of full scale 100 Hz to 100kHz ranges; better than \pm 8% on 10 Hz range.	DC offset control range:	±5V from 600Ω. DC offset plus waveform attenuated proportionally in
External (Sweep) Mode			-40dB position.
Sweep range:	>1000:1 within each range, typically 10,000:1.	TTL	Capable of driving 20 standard TTL loads.
Input impedance:	10kΩ	GENERAL	
Input sensitivity:		Power Requirements	
Input for 10:1 sweep Input for 100:1 sweep Input for 1000:1 sweep	∼ 4·5V peak-to-peak ∼ 4·95V peak-to-peak ∼ 5V peak-to-peak	Input voltage:	110/120 volts AC nominal 50/60 Hz or 220/240 volts AC nominal 50/60 Hz, adjustable internally. The TG101 will operate safely and meet specification
Maximum allowable input voltage:	±10V		within normal AC supply variations viz. 100-130 volts AC and 200-260 volts AC respectively.
Sweep linearity:	Better than 1%	Power consumption:	Typically 15VA.
Maximum slew rate of sweep voltage:	0·1V/µs		

OPERATING MODES

(Specifications apply for vernier between 0.2 and 2.0 and output 5V peak-to-peak into $600\Omega//20pF$ termination).

Sine

Distortion:	Less than 1% on 10,100, 1k and 10k ranges, typically 0.5%; less than 2% on 100k range.
Amplitude flatness:	± 0.2 dB to 200kHz.
Triangle	
Linearity:	Better than 99% to 200kHz
Square Wave	
Rise and fall times:	<100 ns
Mark : Space ratio:	1:1 ±1% to 100kHz
DC	
Range:	±5V from 600Ω

FUNCTIONAL DESCRIPTION

The relationships between the major circuit elements are shown in the block diagram opposite.

The summing amplifier sums the voltage from the dial and from the sweep input, and its output programmes the current into the complementary current source. This current varies from 0.5μ A to 500μ A for a 1000:1 frequency change (.002-2.0).

The complementary current source sources or sinks current into or out of the range multiplier capacitor and is controlled by the comparator output. When the comparator output is high current is sourced and the charge on the capacitor will rise, linearly, producing the positivegoing triangle slope. When the comparator output is low current is sunk and the charge on the capacitor will fall linearly producing the negative going triangle slope.

The triangle amplifier has a gain of 2 and buffers the triangle wave on the multiplier capacitor to drive the comparator and output circuits.

The comparator operates as a window detector with fixed limit points set to the triangle peaks. Its output directly drives the complementary current source and is also level shifted to drive the TTL and square shaper circuits. When the comparator output to the complementary current source is high the triangle wave is positive-going until it reaches + 1.2V when the comparator output switches low. When the comparator output is low the triangle wave is negative-going until it reaches - 1.2V when the comparator output goes high and the cycle is repeated. This basic function generator loop is shown by the double arrows in the block diagram. Triangle and squarewave are generated simultaneously as shown.

The TTL circuit buffers the comparator output to drive the TTL output socket.

The square shaper converts the comparator output to a current signal and applies it to the square wave function switch. The sinewave converter uses the non-linear characteristics of its diodes to convert the triangle wave into a sinusoidal current, which is applied to the sinewave function switch. The selected function is sent to the pre-amplifier, where it is inverted and buffered and applied to the output level control. The signal is summed with the voltage from the DC offset control at the output amplifier. This amplifier inverts and amplifies the signal up to 10V peak-peak to drive the 600 Ohm output connector.

CIRCUIT DESCRIPTIONS

Power Supply - mains connections

The operating voltage of the instrument is shown on the rear panel label. Should it be necessary to change the operating range from 220/240V AC to 110/120V or vice-versa, change the transformer connections following the appropriate diagram below.

220/240V Operation: Primariés in series

110/120V Operation: Primaries in parallel

If a change is made, the operating voltage label should also be changed.

Note: A thermal fuse is fitted in the primary circuit of the transformer. This wil become 'open circuit' in the event of a fault occuring in the instrument which would cause excessive temperature rise of the transformer. Should such a fault occur the thermal fuse should only be replaced with the correct spare part.

WARNING ! THIS INSTRUMENT MUST BE EARTHED

Any interruption of the protective conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the instrument dangerous. Intentional interruption is prohibited.

Power Supply - DC Regulation

Diodes D7 to D10 rectify the transformer output and C19 and C20 are the reservoir capacitors of the unregulated DC rails.

IC7 is a + 12V 3-terminal regulator.

The -12V regulator is made up of Q14, Q15 and IC8. The -12V tracks the +12V by driving the input of IC8 from the centre-tap of R50, R51.

The +5V rail is derived by dividing down the +12V rail with R52 and R53, Q16 providing the necessary current gain.

Waveform Generation – Summing Amplifier, Current Sources and Range Selection

The dial and sweep voltages are summed by IC1B, the gain of which is set by VR2; VR2, in fact, is used to calibrate the high frequency end of the dial. The output range of this amplifier is from a few millivolts below ground (with the dial at .002) to approximately -6.8V (with the dial at 2.0).

This voltage is converted into a current by IC1A and Q1 which form a voltage controlled current source. With the dial at 2.0 the -6.8 volts on the output of the summing amplifier is forced across R7 and the current flowing out of Q1 collector into the complementary current source is therefore $6.8V/12K = 560\mu A$.

IC2, an operational transconductance amplifier, is used as a switchable complementary current source. Its output will either sink or source the programmed current, depending whether pin 3 is low or high respectively. For perfect symmetry the sink and source currents must be equal over at least a 1000:1 range; to ensure this IC2 is an 'A' version. Because symmetry affects sinewave distortion, fine symmetry adjustment is provided by VR4. The range switch, SW6, selects a multiplier capacitor and connects it to the output of the complementary current source.

The triangle amplifier uses a BIFET operational amplifier, IC3, to amplify the triangle wave; it has a gain of 2 set by R13 and R14. R12 and C8 on the input of IC3 improve waveform shape at high frequencies. The output of IC3 goes directly to the function switch and to the sinewave converter. It is also halved by R15 and R18 to drive the comparator IC4. R16, R17, C9, C10 and C11 compensate for comparator and other delays in the function generator loop so as to maintain a constant triangle amplitude across the full frequency range.

IC4 is another transconductance amplifier used as a high speed comparator. Because its output is a current, equal to the programmed current at pin 5, the output swing and therefore the triangle amplitude can be determined simply by a resistor R20. IC4 is pre-selected into three current bands and the value of R20 is chosen accordingly, see Parts List. The output of the comparator is approximately - / 600mV peak to peak and switches the complementary current source IC2 via R8. When the comparator output is high (600mV), pin 3 of IC2 is held high via R8 and the triangle wave will be on the positive slope. When the triangle amplitude on pin 2 of IC4 reaches + 600mV the comparator goes low (-600mV); pin 3 of IC2 is now held low via R8 and the triangle wave will now be on its negative slope until it reaches - 600mV which is the new voltage on IC4 pin 3. The comparator then switches high and the cycle is repeated.

Note that the triangle amplitude on the multiplier capacitor is ± 600 mV; it is then amplified by IC3, which has a gain of 2, and then divided by 2 by R15 and R18 to bring it back to ± 600 mV at the comparator input.

The comparator output is also buffered by emitter follower Q2 and then amplified and level shifted to be TTL compatible by Q3.

The signal at the collector of Q3 is buffered by paralleled gates IC5B and C to drive the TTL output socket.

The signal at the collector of Q3 also drives one input, pin 1, of IC5A. When squarewave is not selected,

pin 2 is held low by SW3a and the output of IC5A is permanently high. When squarewave is selected, SW3a is open and IC5A pin 2 is pulled high by R23 which allows the signal on pin 1 to be inverted by IC5A and output on pin 3. Q4 and diodes D1 and D2 level shift the signal to be switching about ground at A. This then drives the diode bridge D3 to D6 which steers current from either R35 or R36 into R37 and R38. This provides a squarewave with controlled rise and fall times which is symmetrical about ground.

Waveform Generation - Sinewave Converter

The sinewave converter consists of a diode array IC6 whose non-linear characteristics convert the triangle wave into a sinusoidal current. Three parameters affect sinewave distortion: triangle symmetry which is adjusted by VR4, triangle symmetry about ground which is adjusted by VR6 and the triangle amplitude which is adjusted by VR5.

65

Preamplifier

The selected waveform passes to the preamplifier. $\Omega 5$ and $\Omega 6$ form a long tailed pair; $\Omega 7$ and $\Omega 8$ are two cascaded emitter followers; feedback is via R44 and VR8. VR8 sets the pre-amplifier gain and is adjusted to give 10V peak to peak at the 600 Ohm output.

Output Amplifier and DC Offset

Q9 and Q10 form a long tailed pair. Q11 is a class A common emitter amplifier and driver. Q12 and Q13 form the complementary emitter follower output stage. D11 and D12 provide bias for the output stage. Feedback is via R60 and C24. The DC offset is summed with the signal at the base of Q10.

6.

Calibration should be carried out after the instrument has been switched on for a few minutes.

The available calibration points are:

Dial calibration, high frequency (2.0) end, 1Hz to 10k ranges - VR2

Dial calibration, low frequency (.002) end, all ranges - VR3 Dial calibration 100kHz range - VC1 Sinewave distortion - VR4, VR5 and VR6 DC offset of preamplifier - VR7 Maximum output level - VR8 DC offset of output amplifier - VR11

Because some of the above adjustments are interactive, fastest calibration and optimum performance are achieved if the calibrations are carried out in the following order.

- 1. Turn the fequency vernier (VR1) fully clockwise align the dial mark at .002 with the mark on the front panel; tighten both grub screws evenly.
- Set dial to 2.0, 1kHz range, VR3 midway, adjust VR2 for 1.98kHz to 2.02kHz.
- Dial still at 2.0, 100kHz range, adjust VC1 for 195kHz to205kHz.
- 4. Dial to .002, adjust VR3 for 190Hz to 210Hz.
- Select 10kHz range, dial at 1.0, sinewave. Using a distortion meter adjust VR4, VR5 and VR6 for minimum distortion. Note that VR4 slightly affects frequency and so the distortion meter will have to be trimmed at the same time as adjusting VR4.

- Select squarewave and adjust VR8 for 10V peak to peak at the 600 0hm output socket, with the output level control at maximum.
- 7. Select DC output mode by releasing all the three waveform buttons, ensure that the DC offset button is also out. With the output level control at minimum adjust VR11 for 0 volts ± 5 mV.
- Output level control to maximum and adjust VR7 for 0 volts, ±)5mV.

Notes on Servicing

Heatsink compound is applied to IC7 and Q15. Q15 also has an insulating washer beneath.

The supply rails should be:-

 $\begin{array}{l} 12V \pm 0.5V \\ - 12V \text{ within } 2\% \text{ of the } + 12V \\ + 5V \pm 0.3V \end{array}$

The DC supply current should be less than 100mA. IC2 and IC6 are hand preformed when fitted; if replacement is necessary ensure that their leads are correctly orientated. Instability may occur if Q11 is replaced with a device of different manufacture. COMPONENT LAYOUT (Prior to Issue 7 Pcb) See notes on page 17

PARTS LIST

Resistors

Ref	Description	l	Part No		Ref	Desc	ription		Part No.	
R1	4R7J W25	CF	23185-0047		R50	10KF	W25	MF	23202-3100	
R2	150KJ W25	CF	23285-4150		R51	10KF	W25	MF	23202-3100	
R 3	62KJ W25	CF	23187-3260		R52	1K33F	W25	CF	23202-2133	
R4	10KJ \W25	CF	23185-3100		R53	1K18F	W25	CF	23202-2118	
R5	82KJ W25	CF	23185-3820		R54	680RJ	W25	CF	23185-1680	
R6	10MJ W25	CF	23185-6100		R55	4R7J		CF	23185-0047	
R7	12KJ W25	CF	23185-3120		R56	1K0J	W25	CF	23185-2100	
R8	6K8J W25	CF	23185-3120		R57	1K0J	W25	CF	23185-2100	
R9	330RJ W25	CF	23185-1330		R58	680RJ		CF	23185-1680	
R10	330RJ W25	CF	23185-1330		R59	6K8J	W25	CF	23185-2680	
R11	2M2J W25	CF	23185-5220		R60	9K1J	W25	CF	23187-2910	
R12	15KJ W25	CF	23185-3150		R61	2K2J	W25	CF	23185-2220	
R13	10KJ W25	CF	23185-3100		R62	33RJ	W25	CF	23185-0330	
R14	10KJ W25	CF	23185-3100		R63	33RJ	W25	CF	23185-0330	
R15	10KJ W25	CF	23185-3100		R64	300RJ		CF	23187-1300	
R16	39KJ W25	CF	23185-3390		R65	300RJ		CF	23187-1300	
R17	6K8J W25	CF	23185-2680	2	R66	47RJ		CF	23185-0470	
R18	10KJ W25	CF	23185-3100		R67	4K7J		CF	23185-2470	
R19	62KJ W25	CF	23187-3620		R68	560RJ		CF	23185-1560	
*R20	Selected - see b				R69	20KJ		CF	23187-3200	
R21	10KJ · W25	CF	23185-3100		R70	150KJ		CF	23185-4150	
R22	2K2J W25	CF	23185-2220				1720	01	20100 4100	
R23	4K7J W25	CF	23185-2470		VR1	10K	Lin Co	nductive	L.	
R24	4K7J W25	CF	23185-2470		0.000	4.554.61	Plastic		23348-0002	
R25	0R0 / W25	CF	23185-0000		100	2014				
R26	620RJ W25	CF	23187-1620		VR2	22K	PS/H		23377-3220	
R27	240RJ W25	CF	23187-1240		VR3	22K	PS/H	CF	23377-3220	
R28	82KJ W25	CF	23185-3820		VR4	22K	PS/H	CF	23377-3220	
R29	41K2F W25	MF	23202-3412		VR5	220R	PS/H	05	23377-1220	
R30	41K2F W25	MF	23202-3412		VR6	22K	PS/H	CF	23377-3220	
R31	165RF W25	MF	23202-1165		VR7	22K	PS/H	CF	23377-3220	
R32	165RF W25	MF	23202-1165		VR8	470R	PS/H	CF	23377-1470	
R33	46K4F W25	MF	23202-3464		VR9	1K0	Lin Po		23347-0040	
R34	46K4F W25	MF	23202-3464		VR10	10K	Lin Po		23347-0050	
R35	10KJ W25	CF	23185-3100		VR11	22K	PS/H	CF	23377-3220	
R36	10KJ W25	CF	23185-3100							
R37	1K0K W25	CF	23185-2100							
R38	1K2J W25	CF	23185-2120							
R39	2K2J W25	CF	23185-2220							
R40	150KJ W25	CF	23185-4150		*R20 - F	Resistanc	e value i	is determin	ned by colour c	ode of
R41	240RJ W25	CF	23187-1240		selected	IC4 viz:				
R42	6K2J W25	CF	23187-2620							
R43	3K6J . W25	CF	23187-2360		IC4 Re	ed.	B20	= 2K4	23187-2240	
R44	2K4J W25	CF	23187-2240		IC4 Bl			= 2K2	23185-2220	
R45	3K3J W25	CF	23185-2330		IC4 Gr			= 2K61	23202-2261	
R46	1K6J W25	CF	23187-2160	*						
R47	1K0J W25	CF	23185-2100							
R48	3K9J W25	CF	23185-2390							
R49	1K6J W25	CF	23187-2160							

Capacitors

Ref	Description			Part No.	Ref	Description	Part No
C1	10NZ	63V	Cer	23427-0325	Q6	Tran ZTX239	25380-0229
C2	150PG	63V	Cer	23427-0322	07	Tran 2N3904	25381-0404
C3	470PJ	160V	Poly/S	23647-0513	Q8	Tran 2N3904	25381-0404
C4	6N8+1,-2%		Poly/S Poly/E	23620-0800	Q9	Tran ZTX239	25380-0229
C5	68NG	100V	Poly/E	23620-0800	Q10	Tran ZTX239	25380-0229
C6	680NG	100V	Poly/E	23620-0802	Q11	Tran 2N3906	25341-0218
C7	608J	1001	Poly/E	23620-0234	Q12	Tran ZTX239	25380-0229
C8	6P8C	1000	Cer	23427-0260	Q13	Tran ZTX214	25341-0214
C9	1N0K	63V	Cer	23427-0200	Q14	Tran ZTX214	25341-0214
C10	330PG	63V	Cer	23427-0327	Q15	Tran BD136	25334-0010
C11	270PG	100V	Cer	23427-0327	Q16	Tran ZTX650	25388-0206
C12	47PG	63V	Cer	23427-0329			
C12	10NZ	63V	Cer	23427-0325			07100 0000
C14	10UF	35V	Elec	23557-0647	IC1	TL072CP	27106-0606
C14	47PG	63V	Cer	23427-0329	IC2	CA3080EA	27106-0514
C16	2P2C	63V	Cer	23427-0528	IC3	TL071CP	27106-0604
C17	10NZ	63V	Cer	23427-0325	*IC4	CA3080 Selected	
C18	Not used	057	Cei	20721-0020	IC5	7400N	27220-0000
		0514		00557 0000	IC6	CA3019	27164-0600
C19	1000UF	35V	Elec	23557-0639	IC7	78M12UC	27160-0008
C20	1000UF	35V	Elec	23557-0639	IC8	UA741CP	27106-0515
C21	100UF	16V	Elec	23557-0635			
C22	100UF	16V	Elec	23557-0635	LED1	LED Miniature	25061-0200
C23	10NZ	63V	Cer	23427-0325			
C24	2P2C	63V	Cer	23427-0528	*ICA in	a selected item, colour co	ded as follows:
C25	10UF	35V	Elec	23557-0647	104150	a selected item, colour co	ded as ronows.
C26	10JZ	63V	Cer	23427-0325			
					CA308	0 Selected "Red"	27106-0800
VC1	Trimcap	4-65PF		23984-0007	CA308	0 Selected "Green"	27106-0801
1.20					CA308	0 Selected "Blue"	27106-0802
	conductors						
D1	Dio 1N414			25021-0901			
D2	Dio 1N414			25021-0901	Any o	f these may be fitted, pr	ovided the
D3	Dio 1N414			25021-0901		t value of R20 is used.	
D4	Dio 1N414			25021-0901			
D5	Dio 1N414			25021-0901			
D6	Dio 1N414			25021-0901			
D7	Dio 1N400			25115-0907			
D8	Dio 1N400			25115-0907			11
D9	Dio 1N400			25115-0907			
D10	Dio 1N400			25115-0907			
D11	Dio 1N414			25021-0901			
D12	Dio 1N414	48		25021-0901			
Q1	Tran ZTX2	214		25341-0214			
02	Tran ZTX2			25341-0214			
03	Tran 2N39			25381-0404			
Q4	Tran ZTX2			25380-0229			
Q5	Tran ZTX2			25380-0229			
CLO				LOUGO VELU			

Electro/Mechanical, Mechanical & Packaging Parts

Description		Part No	Description		Part No
Stud M3 x 10 mmL (Regulator & Chassis)	2 .4	20205 0610	Screw M3 x 5mmL self tap		°.
*PCB, Main & Control	3 011	20205-0610 35515-0860	(Brackets to main PCB) Screw M3 x 8mmL self tap	2 off	20062-0500
Pushbutton, Red		37113-0120	(Brackets to control PCB)	2 off	20062-0501
Pushbutton, Black		37113-0130	Screw 6BA x 3/16"L	2 011	LUCUL COUT
Pushbutton, Grey	3 off	37113-0140	(PCB to case, case upper		
Link LK1-15	15 off	23185-0000	to lower)	6 off	20134-0501
*Switchbank SW1-5		22225-0530	Screw M3 x 8mmL		
Switch, rotary SW6		22220-0003	(transformer)	2 off	20219-0006
Switch, slide SW7		22218-0205	Nut M3		
PCB Header 10 Way cut from		22573-0019	(Power skt (3)		
IC Socket, 8 pin	4 off	22574-0118	transformer (2)		
IC Socket, 14 pin		22574-0119 10300-0313	Q15 (1) IC7 (1)		2.2
Adhesive pad for LED Screw M2 x 5mmL		10300-0313	PCB to chassis (1))	7 off	20210-0101
(for SW7 (2)			Grubscrew M2 x 2.5mmL	o 11	
Aluminium knobs (2)			(Aluminium knob, dial)	2 011	20220-0001
Stepped collar (1))	5 off	20234-0026	Screw M3 x 10mmL (Power Skt)	2	20224 0011
BNC Socket	0 011	20204 0020	Fibre washer	2 011	20234-0011
(SKT1, 2, 3)	3 off	22588-0004	(PCB to case)	2 off	20612-0010
Front Panel	0 011	33331-0600	Screw 6BA x 1.5"L	2 011	20012-0010
Knob, aluminium, dial		37151-0280	(case upper to lower)		20134-0503
Knob, aluminium	2 off	37151-0260	Case, lower		33537-0160
Dial		37571-0050	Insulator, case lower		31346-0060
Knob, grey, plastic		37151-0270	Screen, case lower		31346-0050
Knob to shaft clip		20620-0009	Case, upper		33537-0150
Collar, stepped,			Side trim, front	2 off	31332-0490
Knob shaft	0 200	31125-0030	Side trim, rear	2 off	31332-0500
Bush, grey, front panel	2 off	31122-0190	Handle		31336-0200
Transformer, mains (T1)		22115-0020	Rear panel		33331-0340
Chassis, transformer		00445 0000	Foot, black PVC	4 off	31748-0190
mounting		33145-0300	Label, logo		37522-0010
Earthing spring (PCB to screen)		25250 0400	Label, instruction		37558-0430
Cable tie	E off	35358-0480 20653-0204	Mains Lead, tinned ends		22491-0010
Solder tag, shakeproof	5 011	20003-0204	Label, wiring instructions		07544 0400
(transformer)		20037-0400	for tinned ends		37541-0490
Mains Input Receptacle		22520-0120	Mains Lead, Euro plug Mains Lead, USA plug		22491-0020 22491-0040
Support bracket,			Warning Label 220/240V		37559-0010
right angled	2 off	33141-0500	Warning Label 110/120V		37559-0010
Spacer, nylon (brackets to	0.000		Label, Serial No.		37522-0020
control PCB)	2 off	20661-0223	Aircap Sheet		01022 0020
Washer M3			cut from	ų.	10612-0202
(Power Skt (2)			Carton		38113-0260
Transformer (1)			Printed Sleeve		38181-0140
Q15 (1) IC7 (1)	122 122		Guarantee Card		48581-0230
PCB to Case (2))	7 off	20030-0263	Instruction Book		48591-0050
Washer, shakeproof M3					
(Power Skt (2)					
Transformer (1)					
Chassis to PCB (1)	6	10027 0201			
Brackets to PCB (2))	0 011	20037-0301			

* See notes on page 17

MANUFACTURING AND PARTS LIST CHANGES

From January 1988 the AC line switch (SW1) of the switchbank is obsolete. The PCB layout is modified (raised to Issue 7) such that the ON/OFF switch of the new switchbank switches the DC secondary and not the AC line.

Additional components are included on this layout to ensure that the DC rails do not latch-up at switch-on.

Parts List changes are as follows:-

PCB 35555-0860 revised to Issue 7.

Additions

Ref	Description			Part No.		
R71	68KJ	W25	CF	23185-3680		
R72	68KJ	W25	CF	23185-3680		
D13	1N400	2		25115-0907		
D14	1N400	2		25115-0907		

Replacements

Ref	Description		Part No.		
	Switchbank	Was	22225-0530		
		now	22225-0660		

COMPONENT LAYOUT (Issue 7 onwards). See notes on page 17.

CIRCUIT DIAGRAM (prior to Issue 7 Pcb). See notes on page 17

●H DENOTES MAIN/CONTROL P.C.B. INTERCONNECTIONS.

CIRCUIT DIAGRAM (Issue 7 onwards). See notes on page 17.

