

8620C Sweep Oscillator

SAFETY

This instrument has been designed and tested according to International Safety Requirements. To ensure safe operation and to keep the instrument safe, the information, cautions, and warnings in this manual must be heeded. Refer to Section I for general safety considerations applicable to this instrument.

CERTIFICATION

Hewlett-Packard Company certifies that this instrument met its published specifications at the time of shipment from the factory. Hewlett-Packard Company further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from the date of shipment. Hewlett-Packard will at its option, repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard. Repairs necessitated by misuse of the product are not covered by this warranty. NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CONSEQUENTIAL DAMAGES.

Service contracts or customer assistance agreements are available for Hewlett-Packard products that require maintenance and repair on-site.

For any assistance contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

OPERATING AND SERVICE MANUAL

8620C SWEEP OSCILLATOR

INCLUDES OPTION 001, OPTION 011, AND OPTION 908.

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1716A.

With changes described in Section VII, this manual also applies to instruments with serial numbers prefixed 1645A, 1641A, 1626A, 1604A, 1542A, and 1537A.

For additional important information about serial numbers see INSTRUMENT COVERED BY MANUAL in Section I.

© Copyright HEWLETT-PACKARD COMPANY 1977 1400 FOUNTAIN GROVE PARKWAY, SANTA ROSA, CALIFORNIA 95404, U.S.A.

MANUAL PART NO. 08620-90093 Microfiche Part No. 08620-90094 Operating Information Supplement Part No. 08620-90093

Printed: OCTOBER 1977

CONTENTS

Sectio	on	Page
I	GENERAL INFORMATION	
1-1	Introduction	. 1-3
1-6.	Specifications	. 1-3
1.8.	Safety Considerations	. 1-3
1-9.	General	. 1-3
1-11.		. 1-3
1-12.	Instruments Covered by Manual	. 1-6
1-17.	Description	. 1-6
1-20.		
1-22.	Marker Sweep Mode	. 1-6
1-24.	$\triangle F$ Sweep Mode	
1-26.	CW Mode	
1.28.	Options	. 1-7
1-32.	Accessories Supplied	. 1-7
1.35.	Accessory Kit	. 1-7
1-37.	Equipment Required But Not Supplied	. 1-7
	Equipment Available	. 1-7
1-40.	Service Accessories	. 1-7
1-42.		. 1-7
1-44.	Power Meters and Crystal Detectors	. 1-7
1-46.	HP-IB Equipment	1-10
1.47.	Recommended Test Equipment	1-10
1-49.	8620C Option 001 Description	1-10
1-51.		1-10
1-54.		1-10
II	INSTALLATION	
2-1.	Introduction	
2-3.	Initial Inspection	. 2-1
2-5.	Preparation For Use	. 2-1
2-6.	Power Requirements	. 2-1
2-8.	Line Voltage Selection	. 2-1
2-10		
2-12		. 2-1
2 - 14		. 2-4
2-16		
2-20	-	. 2-4
2-22	. Bench Operation	. 2-4
2 - 24	. Rack Mounting (Option 908)	. 2-4
2-26	 	. 2-4
2-28	. Model 8620C HP-IB Interface (Option 011)	
	Installation	2-5
2-29	Interface Connectors and Cables	2-5
2-31		2-5
2-33		2-7
2-35		
2.37		
	Installation	2-8
2-39		
	Capabilities	2-8
2-41	. Verification	2-9
2.49	3. Storage and Shipment	2-9
	······································	

Sectio	n	Page
2-44.	Environment	. 2-9
2-46.	Packaging	
III	OPERATION	. 3-1
3-1.	Introduction	
3-3.	Panel Features	
3-5.	Operator's Check	
3-7.	Operating Instructions	
3-9.	Safety	. 3-1
3-12.	Remote Programming	. 3-6
3-14.		
3-17.		
3-19.		
3-21.	HP-IB Remote Programming Instructions	
3-23.	Interface Modes of Operation	
3-26.		
	Band Programming	
	Frequency (Voltage) Programming	
3-44.	Markers	. 3-9
3-47.	Format Statements	. 3-9
3-51.	-	
3-53.		
3-58.	Addressing	
3-61.		
3-65.	E E	
3-67	Response Timing Consideration	3-11
3-69.	Bus Operating Considerations	0-14 010
	Operator's Maintenance	2 1 9
3-74		219
3-76		
3-78	· · ·	
3-80	. Frequency Scale Installation	. 0-12
īV	PERFORMANCE TESTS	4-1
4-1.	Introduction	
4-1 . 4-3 .		4-1
		4-1
4.7	Full Sweep Test	4-1
4.8	Marker Sweep Test	4-1
4.9.	CW Operation Test	4-2
4-10	. CW Vernier Test	4-2
	$\Delta \mathbf{F}$ Sweep Test	
4-12	. Sweep Time Adjust and Stop Sweep Test	
	(HP Model 86290A Only)	4-6
4-13	Amplitude Modulation Test	4-7
4-14	Blanking Outputs Test	4-8
4-15	. Triggered Sweep Test	. 4-11
4-16	5. Frequency Markers Test	. 4-12
4-17	'. Digital-to-Analog Converter Test	
	(Option 001)	. 4-14
4-18	8. Model 8620C Performance Test Using HP-IB	
	Option 001	. 4-15

CONTENTS (Cont'd)

Section Pa	age
V ADJUSTMENTS	5-1
5-1. Introduction	
5-3. Equipment Required	5-1
5-5. Safety Considerations	5-1
5-11. Related Adjustments	5-1
5-13. Adjustment Locations	5-1
5-15. Power Supply Adjustments	5-3
5-16. Fan Adjustments	5-4
5-17. 1 kHz Modulation Adjustment	5-5
5-18. Sweep Generator Board Adjustments	5-5
5-19. Full Sweep Adjustment	5-7
5-20. Start Marker/Stop Marker Adjustment	5-7
5-21. Marker Sweep Adjustment	5-8
5-22. CW/CW Marker Adjustment 5	5-8
5-23. CW Vernier Adjustment 5	5-9
5-24. △F Adjustment 5	5-9
5-25. Digital-to-Analog Converter Adjustment	
(Option 001 Only) 5-	10
5-26. Digital-to-Analog Converter Adjustment	
(Option 011 Only) 5-	10
5-27. Mechanical Zero Adjustment 5-	12
VI REPLACEABLE PARTS 6	5-1
6-1. Introduction 6	5-1
6-3. Abbreviations 6	5-1

Secti	on	Page
6-5.	Replaceable Parts List	. 6-1
6-8 .	Ordering Instructions	
VII	MANUAL BACKDATING CHANGES	. 7-1
7-1.	Introduction	. 7-1
7-5.	Manual Change Instructions	. 7-1
VIII	SERVICE	. 8-1
8-1.	Introduction	. 8-1
8-3.	Assembly Service Sheets	. 8-1
8-5.	Principles of Operation	. 8-1
8-6.	Circuit Description	
8-8.	Service	
8-9.	Safety	
8-13.		
8-16.	Recommended Test Equipment	
	Repair	
8-19.		
8-21.		
8-24.		
8-29.		
8-31.	Maintenance	
8-32.		
8-34.	Air Filter	
8-36.	Lamp Replacement	

ILLUSTRATIONS

Figui	re Page
1-1.	Model 8620C Sweep Oscillator with Accessories
	Supplied
1-2.	Model 8620C Option 001 Equipment Supplied 1-1
1-3.	Model 8620C Option 011 Equipment Supplied 1-2
1-4.	Typical Serial Number Plate 1-6
1-5.	Service Accessories, HP Part Number
	08620-60124
1-6.	HP Model 8410B Auto-Frequency Mode
	Interface Cable
1-7.	Interface Connections and Bus Structure 1-12
2-1.	Line Voltage Selection with Power Module
	PC Board 2-2
2-2.	AC Power Cables Available
2-3.	Preparation for Rack Mounting 2-5
2-4.	Location of Mainframe Parts Pertinent to
	Frequency Scale and RF Plug-In
	Installation
2-5.	Mainframe Front Panel in Open Position 2-6
2-6.	HP-IB Interface Cable 2-7

Figu	e Page
2-7.	HP-IB Connector/Adaptor 08620-60130,
	Pin Configuration
2-8.	Address Switch A12SW1 2-8
2-9.	HP-IB/8410B Installation
2-10.	Installation for Additional Interface
	Capabilities 2-10
2-11.	8620C Cable Adapter for Additional Interface
	Capabilities 2-11
2-12.	HP-IB Verification Program (HP 9830A
	Calculator)
2.13.	HP-IB Verification Program (HP 9825A
	Calculator) 2-13
3-1.	Front Panel Controls, Connectors, and
	Indicators 3-2
3-2.	Rear Panel Controls and Connectors
3-3.	Lamp Replacement 3-17
3-4.	Operator's Check 3-18
3-5.	Full Sweep Mode 3-21
3-6.	Marker Sweep Mode 3-23
	iii

iv

ILLUSTRATIONS (Cont'd)

Figur	e Page
3-7.	CW Operating Mode 3-25
3-8.	ΔF Sweep Mode
4-1.	CW Vernier Test Setup 4-2
4-1.	ΔF Sweep Test Setup
	Sweep Time Adjust and Stop Sweep Test
4-3.	Setup
A A	Sequential Sweep Ramp Compared in Time
4-4.	to Negative Blanking 4-7
4 5	Amplitude Modulation Test Setup 4-8
4-5. 4-6.	Display Blanking and RF Blanking Test Setup 4-9
4-0. 4-7.	Typical Display with No Blanking 4-10
4-7. 4-8.	Typical Display with RF Blanking 4-10
4-0. 4-9.	Typical Display with Display Blanking 4-10
	Negative and Positive Blanking Test Setup 4-10
	Negative Blanking at J5 Compared in Time
4-11.	to Sweep Output at J1
1 1 9	Positive Blanking at J8 Compared in Time
4-14.	to Sweep Output at J1 4-11
4 1 9	Triggered Sweep Test Setup
4-10.	Frequency Markers Test Setup
4-14.	Typical Display with Amplitude Markers 4-14
	Typical Display with Intensity Markers 4-14
	Digital-to-Analog Converter Test Setup 4-14
	HP-IB Performance Test Setup for FILE 2 4-16
	HP-IB Performance Test Setup for FILE 4 4-16
4-19.	HF-IB Feriormance Test Setup for TIDE 4 4-10
5-1.	Adjustment Test Setup 5.3
5-2.	Oscilloscope Display of Fan Waveforms 5-5
5-3.	Oscilloscope Display of Waveform Symmetry 5-6
5-4.	D/A Converter Adjustment Test Setup 5-11
5-5.	Mechanical Zero Adjustment Locations 5-13
5-6.	Location of Test Points 5-15
5-7.	Location of Adjustments 5-15
6-1.	Front Panel Assembly, Parts Locations 6-17
6-2.	Cabinet Parts
7-1.	A1 Sweep Generator Assembly, Component
	Locations (CHANGE C) 7-4
7-2.	A1 Sweep Generator Assembly, Component
	Locations (CHANGE C) 7-5
7-3.	A7 Operations Control Assembly, Component
	Locations (CHANGE D) 7-6
7-4.	
	Assembly, Schematic (CHANGE D) 7-7
7-5.	
7-6.	A7 Operations Control Assembly, Component
	Locations (P/O Change G) 7-9
8-1.	
_	From Mainframe
8-2.	Removing Dial Frame From Front Panel 8-5
8-3.	•
	and A10 Front Interconnect Assy 8-6

Figur	e	Page
8-4.	Location of Pointer Belts	. 8- 6
8-5.	Pointer Belt Restringing Diagrams	
8-6.	General Information on Schematic	
	Diagrams	. 8-8
8-7.	Schematic Diagram Notes	. 8-9
8-8.	IC Logic Symbol Configuration Details	
	Functional Block Diagram	
	A1 Sweep Generator Assembly, Component	
	Locations (1 of 2)	8-15
8-11.	A1 Sweep Generator Assembly, Schematic	
	(1 of 2)	8-15
8-12	A1 Sweep Generator Assembly, Component	
•	Locations (2 of 2)	8-17
8-13.	A1 Sweep Generator Assembly, Schematic	
	(2 of 2)	8-17
8-14.	A2 Frequency Control Assembly, Component	
•	Locations	8-19
8-15	A2 Frequency Control Assembly, Schematic	
	A3 Logic Assembly, Component Locations	
	A3 Logic Assembly, Schematic	
	A4 +20V and +5V Regulator Assembly,	
÷ 10.	Component Locations	8-23
8-19	A4 + 20V and $+5V$ Regulator Assembly,	
0 20.	Schematic	8-23
8.20	A5 -10V and -40V Regulator Assembly,	
0 20.	Component Locations	8-25
8-21	A5 - 10V and $-40V$ Regulator Assembly,	
	Schematic	8-25
8-22	A6 BCD Programming Assembly, Component	
	Locations (Option 001)	8-27
8-23	A6 BCD Programming Assembly, Schematic	
0 20	(Option 001)	8-27
8-24	A12 HP-IB Interface Assembly, Component	
0.21	Locations (Option 011)	8-29
8.25	. A12 HP-IB Interface Assembly, Schematic	
	(Option 011)	8-29
	. Hall Effect Generator Description	
	A7 Operations Control Assembly, Component	
021		8-31
8-28	. A7 Operations Control Assembly, Schematic	
	. A8 Rectifier Assembly, Component	
	Locations	8-33
8-30	. A8 Rectifier Assembly, Schematic	
	. A9 Switch Assembly, Component Locations .	
	. A9 Switch and A10 Front Interconnect	
	Assembly, Schematic (1 of 2)	8-35
8-33	. A10 Front Interconnect Assembly,	
	Component Locations	8-37
8-34	. A9 Switch and A10 Front Interconnect	
	Assembly, Schematic (2 of 2)	. 8-37
8-35	. A11 Motherboard, Component Locations	
8-36	. A11 Motherboard Interconnect Diagram	. 8-39
	. Rear Panel Wiring Diagram	

ILLUSTRATIONS (Cont'd)

Figure	Page	Figure	Page
8-38. Top View, Major Assembly and Component		8-39. Bottom View, Major Assembly and	
Locations	8-43	Component Locations	8-43

TABLES

Table Pag	
1-1. Specifications 1-	4
1-2. Recommended Test Equipment 1-1	1
1-3. Glossary of HP-IB Terms, Relating to	
8620C 1-1	3
2-1. Model 8620C Mating Connectors 2-	4
3-1. Program Modes	7
3-2. Band Programming (All Modes)	8
3-3. Frequency (Voltage) Programming	
(Modes M1, M2, M4)	8
3-4. Summary of Programming Codes 3-10	0
3-5. Listen Address Codes 3-12	2
3-6. Remote Programming Using Standard	
8620C 3-1	3
3-7. Remote Programming Using 8620C	
Option 001 3-1	5

Table	e	Page
3-8.	Programming Connector Commands and Signals Available for Additional Interface Capabilities	3-17
4-1.	BCD Inputs and Corresponding Frequency Outputs	4.15
5-1.	Controls Listed and Adjustment Sequence	. 5-2
6-1.	Reference Designations and Abbreviations	. 6-2
6-2.	Replaceable Parts	. 6-4
6-3.	Code List of Manufacturers	
7-1.	Manual Changes by Serial Number	. 7-1
8-1.	Service Sheet Cross-Reference	. 8-2

Figure 1-1. Model 8620C Sweep Oscillator with Accessories Supplied

Figure 1-2. Model 8620C Option 001 Equipment Supplied

Figure 1-3. Model 8620C Option 011 Equipment Supplied

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This Operating and Service manual contains information required to install, operate, test, adjust, and service the Hewlett-Packard Model 8620C Sweep Oscillator mainframe. (See Figure 1-1.) An electronically-tuned sweep signal source is made up either by the combination of the Model 8620C and an RF Plug-in, or the combination of the Model 8620C with an RF Section and appropriate oscillator modules. Operating and Service information for the RF Plug-ins, RF Sections, and oscillator modules is contained in separate manuals.

1-3. This manual is divided into eight sections which provide information as follows:

- a. SECTION I, GENERAL INFORMATION, contains the instrument description and specifications as well as the accessory and recommended test equipment list.
- b. SECTION II, INSTALLATION, contains information relative to receiving inspection, preparation for use, mounting, packing, and shipping.
- c. SECTION III, OPERATION, contains operating instructions for the instrument.
- d. SECTION IV, PERFORMANCE TESTS, contains information required to verify that instrument performance is in accordance with published specifications.
- e. SECTION V, ADJUSTMENTS, contains information required to properly adjust and align the instrument after repair.
- f. SECTION VI, REPLACEABLE PARTS, contains information required to order all parts and assemblies.
- g. SECTION VII, MANUAL CHANGES, contains backdating information to make this manual compatible with earlier equipment configurations.
- h. SECTION VIII, SERVICE, contains descriptions of the circuits, schematic diagrams, parts location diagrams, and block diagrams to aid the user in maintaining the instrument.

1-4. Supplied with this manual is an Operating Information Supplement. The Supplement is a copy of the first three sections of this manual, and should be kept with the instrument for use by the operator.

1-5. Also listed on the title page of this manual is a Microfiche part number. This number can be used to order $4 \ge 6$ -inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo-duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-6. SPECIFICATIONS

1-7. Listed in Table 1-1 are the instrument specifications. These specifications are the performance standards, or limits against which the instrument may be tested.

1-8. SAFETY CONSIDERATIONS

1-9. General

1-10. This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation. This product has been manufactured and tested in accordance with international safety standards.

1-11. Safety Symbols

Instruction manual symbol: the apparatus will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect the apparatus against damage.

 \pm Earth terminal.

4

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the equipment. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

Table 1-1. Specifications (1 of 2)

SPECIFICATIONS 8620C SWEEP OSCILLATOR (with RF Section or RF Plug-in installed)

FREQUENCY

- Frequency Range: Determined by band select lever and RF Plug-in installed.
- Frequency Linearity: Refer to RF unit specifications.

SWEEP FUNCTIONS

- FULL Sweep: Sweeps the full band as determined by plug-in and band select lever.
- MARKER Sweep: Sweeps from START MARKER to STOP MARKER frequency settings.
 - Range: Both settings continuously and independently adjustable over the entire frequency range; can be set to sweep either up or down in frequency.
 - End-point Accuracy: Refer to RF unit specifications, same as frequency accuracy.
- $\triangle F$ Sweep: Sweeps symmetrically upward in frequency, centered on CW setting. SW Vernier can be activated for fine control of center frequency.
 - Width: Continuously adjustable and calibrated from zero to 1%, zero to 10%, or zero to 100% of usable frequency band as selected with front-panel switch. Scale calibrated directly in MHz.
 - Width Accuracy: $\pm 1\%$ of maximum ΔF plus $\pm 2\%$ of ΔF being swept.

Center-Frequency Accuracy: Refer to RF unit specifications, same as frequency accuracy.

- Frequency Markers: Three constant-width frequency markers are fully calibrated and independently adjustable over the entire range of FULL SWEEP; the markers are controlled by the START MARKER, STOP MARKER, and CW MARKER controls. In Δ F Sweep, Start and Stop Markers are available; in MARKER SWEEP, the CW Marker is available. A front panel switch provides for selection of either amplitude or intensity markers (amplitude modulating the RF output or Z-axis modulating the CRT display).
- Accuracy: Refer to RF unit specifications, same as frequency accuracy.
- Resolution: Better than 0.25% of RF unit bandwidth.
- Marker Output: Rectangular pulse, typically -5 volts peak, available from Z-axis BNC connector or rear panel. Source impedance, approximately 1000 ohms.

CW Operation: Single-frequency RF output, adjusted by CW Marker control and activated by pressing CW pushbutton.

CW Vernier: Calibrated directly in MHz about CW setting. CW Vernier activated by pressing CW VERNIER pushbutton. Zero to $\pm 0.5\%$ or zero to $\pm 5\%$ of full bandwidth, selectable with front panel switch.

Accuracy: Refer to RF unit specifications, same as frequency accuracy.

Preset Frequencies: START MARKER, STOP MARKER, and △F end points in MANUAL and CW MARKER frequency, can be used as preset CW frequencies.

SWEEP MODES

Auto: Sweep recurs automatically.

Manual: Front-panel control provides continuous manual adjustment of frequency between end frequencies set in any sweep function.

External: Sweep is controlled by external signal applied to rear-panel PROGRAMMING connector. Zero volts at start of sweep increasing linearly to approximately +10V at end of sweep.

SWEEP TRIGGERS

Line: Sweep can be synchronized with ac power line.

Internal: Sweep is controlled by internally generated trigger.

Single: Activated by front-panel switch.

Sweep Time: Continuously adjustable in four decade ranges typically .01 to 100 seconds.

Sweep Output: Direct-coupled sawtooth, zero to approximately +10V, concurrent with swept RF output. Zero volts at start of sweep, approximately +10V at end of sweep regardless of sweep width or direction. In CW mode, dc output is proportional to frequency.

MODULATION

Internal AM: 1000 Hz square-wave modulation on all sweep times (internally adjusted from 950 to 1050 Hz). On/Off ratio, refer to RF unit specifications.

External AM: Refer to RF unit specifications.

External FM: Refer to RF unit specifications.

Phase Lock: Refer to RF unit specifications.

GENERAL

RF Blanking: With RF blanking switch enabled, RF is automatically turned off during retrace, and turned on after completion of retrace. On automatic sweeps, RF is on long enough before sweep starts to stabilize external circuits and equipment whose response is compatible with the selected sweep rate.

- Display and Negative Blanking Outputs: Direct-coupled rectangular pulses of approximately +5V (Display Blanking) and approximately -5V (Negative Blanking) into 2500 ohms available at rear-panel Z-AXIS/ MKR/PEN LIFT and NEGATIVE BLANKING connectors, respectively. Both pulses are coincident with RF Blanking pulse.
- Pen Lift: For use with X-Y graphic recorders having positive power supplies only. Pen lift terminals available at rear panel PROGRAMMING connector or rear-panel Z-AXIS/MKR/PEN LIFT connector. Available only on slowest sweep speed.
- Furnished: 229 cm (7¹/₂-foot) power cable with NEMA plug, and accessory kit.
- **Power:** 100, 120, 220, and 240 Vac +5% -10%, 50 to 400 Hz. Approximately 140 watts.
- Dimensions: 425 mm wide, 132,6 mm high, 33,7 mm deep (16¹/₄" x 5-1/8" x 13¹/₄").
- Weight (not including RF unit): Net, 11,1 kg (24 lb). Shipping, 13,4 kg (30 lb).

OPTION 001 and OPTION 011 REMOTE FREQUENCY PROGRAMMING

Functions:

Band: Manual enable or remote control of four bands.

Mode: Seven modes; including digital-frequency control in three modes, with resolution of 10,000 points across full band or between START MARKER and STOP MARKER as set by frontpanel controls, or across ΔF as set by front-panel ΔF and CW controls; or selection of any of four analog sweep functions: ΔF or MARKER SWEEP with end points set by appropriate front-panel controls, CW as set by CW MARKER control, or FULL SWEEP of band selected.

Frequency: Resolution of 10,000 points per band.

Marker (Option 011 only): With analog sweeps (FULL SWEEP, ΔF , or MARKER SWEEP), a programmable marker is available in either amplitude (AMPL) or intensity (INTEN) as selected with front-panel switch.

External Trigger: Sweep is actuated by external trigger signal applied to rear-panel EXT TRIGGER BNC connector. Trigger signal must ge greater than +2 Vdc, wider than $0.5 \,\mu$ sec, and not greater than 1 MHz in frequency.

1-12. INSTRUMENTS COVERED BY MANUAL

1-13. Attached to the instrument is a serial number plate. (A typical serial number plate is shown in Figure 1-4.) The serial number is in two parts. The first four digits and letter are the serial number prefix; the last five digits are the suffix. The prefix is the same for all identical instruments; it changes only when a change is made to the instrument. The suffix, however, is assigned sequentially and is different for each instrument. The contents of the manual apply to instruments with the serial number prefix(es) listed under SERIAL NUMBERS on the title page.

Figure 1-4. Typical Serial Number Plate

1-14. An instrument manufactured after the printing of this manual may have a serial number prefix that is not listed on the title page. This unlisted serial number prefix indicates the instrument is different from those described in this manual. The manual for this newer instrument is accompanied by a yellow Manual Changes supplement. This supplement contains "change information" that explains how to adapt the manual to the newer instrument.

1-15. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is identified with this manual's print date and part number, both of which appear on the manual's title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-16. For information concerning a serial number prefix that is not listed on the title page or in the manual Changes supplement, contact your nearest Hewlett-Packard office.

1-17. DESCRIPTION

1-18. The Hewlett-Packard Model 8620C Sweep Oscillator, together with either an RF Section and oscillator modules, or an RF plug-in forms a completely solid-state self-contained multiband swept signal source. The Model 8620C is designed for use with network analyzer systems such as the 8410B/8411A to provide a complete microwave measurement system. Other systems can also be built, using the Model 8620C as a swept signal source.

1-19. The front panel is designed for simplicity and ease of operation. It is hinged to the mainframe to facilitate changing of the frequency dial. Pressing a mode control selects the mode and causes the lamp in the control to light providing a positive identification of the mode selected.

1-20. Full Sweep Mode

1-21. Full Sweep mode is selected automatically when the mainframe is turned on. In this mode, three markers are available for frequency identification. One marker is adjusted by the CW MARKER control. When ΔF Sweep is selected, this CW Marker setting becomes the center frequency of the ΔF Sweep. The other two markers are adjusted by the START MARKER and STOP MARKER controls. The position of these two markers becomes the start/stop frequencies of the sweep when MARKER SWEEP mode is selected. These two markers are also available on the ΔF Sweep and again become the start/stop frequencies of the sweep when MARKER SWEEP is selected.

1-22. Marker Sweep Mode

1-23. When Marker Sweep mode is selected, one marker is available (controlled by CW MARKER) and its position identifies the center frequency of the ΔF Sweep. The Marker Sweep start/stop frequencies are determined by the position of the start and stop markers on the trace in Full Sweep or ΔF Sweep modes.

1-24. \triangle F Sweep Mode

1-25. When ΔF Sweep mode is selected, the CW mode lamp is also lit and the center frequency is adjusted by the CW MARKER control. The ΔF control selects the full-width about the CW frequency. Start and stop markers are available in ΔF Sweep and become the start/stop frequencies of the Marker Sweep.

1-26. CW Mode

1-27. A single-frequency RF output is selected in CW operation. The frequency is selected by adjusting the CW MARKER control. Pressing the CW VERNIER control provides a vernier function for precise frequency adjustment around the CW setting.

1-28. OPTIONS

1-29. Option 001 provides remote programming of mode, band and frequency. The frequency may be selected at 10,000 points through each band by a 16-line BCD input.

1-30. Option 011 provides the HP-IB capability for remote programming. It provides remote programming of mode, band, frequency, and a remote marker. Frequency may be selected at 10,000 points through each band.

1-31. For maximum utility in automatic systems the 8620C is programmable through a rear panel fifity-pin connector. Frequency can be digitally programmed for 10,000 points across each band with the addition of one of the optional plug-in printed circuit boards.

1-32. ACCESSORIES SUPPLIED

1-33. Figure 1-1 shows the HP Model 8620C Sweep Oscillator mainframe and accessories supplied. The accessories consist of a 0-10V Calibration scale (HP Part No. 08620-00021) a power cable (see Figure 2-2 for HP Part Number) and the accessory kit (HP Part No. 08620-60123). The power cable is described in Section II, Installation.

1-34. The A12 HP-IB Interface Assembly (08620-60118). HP-IB connector/adapter (08620-60130), and HP-IB interconnect cable (10631B) are supplied for the 8620C Option 011 (See Figure 1-3). The A6 BCD Programming Assembly (08620-60116) is supplied for Option 001. (See Figure 1-2.)

1-35. ACCESSORY KIT

1-36. The accessory kit (shown in Figure 1-1) contains a reversing extender board, two three-amp fuses, an incandescent lamp, and a fifty-pin connector. The reversing extender board permits all the necessary interconnections to be made between the Model 8620C mainframe and the plug-in board assembly being serviced. The two three-amp fuses

are spares for the A4 and A5 Regulator Assemblies. The fifty-pin connector plugs into the rear-panel PROGRAMMING connector. The incandescent lamp is a spare for the mode select pushbuttons.

1-37. EQUIPMENT REQUIRED BUT NOT SUPPLIED

1-38. To have a complete operating unit, the Model 8620C Sweep Oscillator mainframe must have an RF Plug-in installed. The plug-in may either be an HP Model 8621B RF Section with appropriate oscillator module(s) installed or an 86200 series RF Plug-in.

1-39. EQUIPMENT AVAILABLE

1-40. Service Acessories

1-41. A service accessories package containing a plug-in extender cable, an adjustment tool, and two service boards may be obtained from Hewlett-Packard by ordering Service Accessories Part No. 08620-60124. This is supplied for convenience in aligning and troubleshooting the mainframe, the RF Section and oscillator modules, and an RF Plug-in units. Parts contained in the service accessories package are listed in Figure 1-5.

1-42. Model 8410B/8411A Network Analyzer

1-43. The Model 8620C Sweeper is compatible with the Hewlett-Packard Model 8410B Network Analyzer System. The combination of the Model 8410B Network Analyzer, the Model 8411A Frequency Converter, and an appropriate display plug-in forms a phasemeter and a ratiometer for direct phase and amplitude ratio measurement on RF voltages. These measurements can be made on single frequencies and on swept frequencies from 110 MHz to 18 GHz. Some plug-ins are capable of multi-octave sweeps in this range. Interface cable HP Part Number 8120-2208 must be used when sweeping octave or multi-octave bandwidths or the 8410B will not phase lock properly. (See Figure **1-6 for description of cable.**)

1-44. Power Meters and Crystal Detectors

1-45. Depending on the RF section used, the RF output can be externally leveled using power meters or crystal detectors. Refer to the Operating and Service Manual of the RF Plug-in used for detailed information on leveling systems that may be used with the 8620C/RF Plug-in combination.

Figure 1-5. Service Accessories, HP Part Number 08620-60124

Figure 1-6. HP Model 8410B Auto-Frequency Mode Interface Cable

1-46. HP-IB Equipment

HP 10631A Cable-1 metre HP-IB Cable

HP 10631B Cable-2 metre HP-IB Cable

HP 10631C Cable-4 metre HP-IB Cable

HP 59401A Bus System Analyzer

Troubleshoots hardware and software problems on HP-IB

HP 8620C Cable Adapter (8120-2207)

(See Figure 2-11.)

Connects to 50-pin PROGRAMMING connector and has feed-through pins for troubleshooting and additional interfacing.

1-47. RECOMMENDED TEST EQUIPMENT

1-48. Equipment required to maintain the Model 8620C is listed in Table 1-2. Other equipment may be substituted if it meets or exceeds the critical specifications listed in the table.

1-49. 8620C OPTION 011 DESCRIPTION

1-50. The Model 8620C Option 011 provides a remote programming capability for the 8620C sweeper, with the Hewlett-Packard Interface Bus (HP-IB) as the common link between instruments. It provides remote programming of the sweep modes, band selection, frequency, and a remote marker. The sweep functions may be digitally programmed and the frequency endpoints set by an internal remote control voltage. Sweep functions may also be programmed for local control with frequency endpoints set by front-panel controls and with a digitally controlled marker. All programming is routed through a rear-panel fifity-pin connector from either a computer or calculator.

1-51. HP-IB General Information

1-52. The Hewlett-Packard Interface Bus (HP-IB) is an instrumentation interface for integrating instruments, calculators, and computers into systems. The Bus uses sixteen signal lines to effect transfer of data and commands to interconnect up to 15 instruments. The HP-IB is normally the only communication link between the interconnected units. The instruments on the Bus are connected in parallel as shown in Figure 1-7. Eight of the signal lines (DI01-DI08) are used for the transfer of data and other messages in a byte-serial, bit-parallel form. The remaining eight lines are used for communication timing (Handshake), control, and status information. A glossary of HP-IB terms is contained in Table 1-3.

1-53. Data is transmitted on the eight HP-IB data lines as a series of eight-bit characters referred to as "bytes". The meaning of each byte is arbitrary, being different for each type of instrument. Normally, a seven-bit ASCII code (American Standard Code for Information Interchange) is used with the eighth bit available for a parity check, if desired. Data is transferred by means of an interlocked "handshake" technique. This sequence permits asynchronous communications over the range of data rates.

1-54. Three-Wire Handshake Description

1-55. Information is transferred on the data lines under control of a technique called the three-wire handshake. The handshake involves the use of three control lines and operates as follows:

- a. The 8620C indicates that it is ready to accept data by letting the Not Ready for Data (NRFD) line go high. Listeners are connected to the NRFD line in a logical AND configuration so the NRFD line does not go high until all active listeners are ready for data.
- b. After NRFD has gone high, the talker places a data byte on the eight data lines by setting the Data Valid (DAV) line low.
- c. After DAV has gone low, the 8620C pulls NRFD low, accepts the data, and lets the Data Accepted (NDAC) line go high. Again, all listeners are logically ANDed and NDAC does not go high until all listeners have accepted the data.
- d. After the NDAC line has gone high, the talker can let DAV go high again and take the data off the lines. When DAV goes high, the listeners set NDAC back to low and the sequence is ready to repeat with Step a.

NOTE

Data is transferred asynchronously as fast as the slowest active device on the bus.

instrument	Critical Specifications	Recommended Model	Use*
Oscilloscope	Variable persistence, Dual trace, 20 MHz minimum bandwidth, 5 mV/Div sensibility, and 1 μ S/Div horizontal sweep rate. 10:1 probe and 1:1 probe.	HP 181A/1801A/1820C	P, A, T
Digital Multimeter ¹	Accuracy: 0.004% Input Impedance: 10 M Ω minimum	HP 3490A	P, A, T
Frequency Counter ¹	Range: As required by RF Plug-In	HP 5340A	Р
Power Meter ¹	Frequency Range: As required by RF Plug-In Power Range: —20 dBm to +20dBm	HP 436A	Р
Power Sensor	Frequency Range: As required by RF Plug-In Power: Up to 100 mW	HP 8481A	Р
Pulse Generator	Amplitude: 2 volts positive peak Pulse Width: 0.5 μ S Repetition Rate: 1 MHz	HP 8002A	Р
Crytal Detector	As required by RF Plug-In	HP 423A or HP 8470A	Р
Calculator		HP 9830A	P, A
10-dB Attenuator	Attenuation: 10 dB ±0.5 dB	HP 8491B, Option 001	Р
HP-IB Interface Cable	Connectors: HP-IB, 24-pin	HP 10631A/B/C	A
Adapter	APC-7 to Type N, Male	HP 1250-0479	Р
Wrench	Right Angle, Bristol, No. 6	HP 8710-0055	A
36-pin Service Board**		HP 08620-60037	P, A, T
50-Pin Service Board**		HP 08620-60125	P, A, T
Extender Cable**		HP 08620-60032	т
Adjustment Tool**		HP 8830-0024	A
HP-IB Calculator Interface		HP 59405A (Option 030)	A

Table 1-2. Recommended Test Equipment

These instruments must contain HP-IB option when used for HP-IB testing the 8620C, Option 011.

Figure 1-7. Interface Connections and Bus Structure

Table 1-3. Glossary of HP-IB Terms, Relating to 8620C(1 of 2)

ADDRESS - A 7-bit code applied to the HP-IB in Command Mode which enables the 8620C to listen on the Bus.

ADDRESSED COMMANDS - These commands allow the Bus controller to initiate simultaneous actions from addressed instruments which are capable of responding.

ATN – Mnemonic referring to the Attention control line on the HP-IB. This refers to the Command Mode of operation on the HP-IB, or the control line which places the HP-IB in this mode.

BIT - The smallest part of an HP-IB character (Byte) which contains intelligible information.

BUS COMMANDS – A group of Special Codes which initiate certain types of operation in instruments capable of responding to these codes. Each instrument on the HP-IB is designed to respond to those codes that have useful meaning to the device and ignore all others. (See Table 3-4.)

BYTE - An HP-IB character sent over the Data Input/Output (DIO) Lines, normally consisting of eight-bits.

COMMAND MODE – In this mode, devices on the HP-IB can be addressed or unaddressed as talkers or listeners. Bus commands are also issued in this mode.

CONTROLLER – Any device on the HP-IB which is capable of setting the ATN line and addressing instruments on the Bus as talkers and listeners. (Also see System Controller.)

DATA MODE – The HP-IB is in this mode when the ATN control line is high (false). In this mode, data or instructions are transferred between instruments on the HP-IB.

DAV – Mnemonic referring to the Data Valid control line on the HP-IB. This line is used in the HP-IB Handshake sequence.

DIO - Mnemonic referring to the eight Data Input/Output lines of the HP-IB.

EOI - Mnemonic referring to the End or Identify line on the HP-IB.

HANDSHAKE – Refers to the sequence of events on the HP-IB during which each data byte is transferred between addressed devices. The conditions of the HP-IB handshake sequence are as follows:

- a. NRFD, when false, indicates that a device is ready to receive data.
- b. DAV, when true, indicates that data on the DIO lines is stable and available to be accepted by the receiving device.
- c. NDAC, when false indicates to the transmitting device that data has been accepted by the receiver.

HP-IB - An abbreviation that refers to the Hewlett-Packard Interface Bus.

IFC – Mnemonic referring to the Interface Clear control line on the HP-IB. Only the system controller can activate this line. When IFC is set (true) all talkers and listeners on the HP-IB are unaddressed, and controllers go to the inactive state.

LISTENER – A device addressed to receive data or instructions from other instruments on the HP-IB. (Also see Extended Listener.)

NDAC - Mnemonic referring to the Not Data Accepted line on the HP-IB.

Table 1-3. Glossary of HP-IB Terms, Relating to 8620C (2 of 2)

NRFD – Mnemonic referring to the Not Ready For Data control line on the HP-IB. This line is used in the HP-IB Handshake sequence.

REN – Mnemonic referring to the Remote Enable control line on the HP-IB. This line is used to enable Bus compatible instruments to respond to commands from the controller or another talker. It can be issued only by the system controller.

SRQ - Mnemonic referring to the Service Request line on the HP-IB.

SYSTEM CONTROLLER – An instrument on the HP-IB having all the features of a standard controller with the added ability to control the IFC and REN lines. (Also see Controller.)

UNLISTEN COMMAND – This is the Unlisten Command (?). When the Unlisten Command (?) is transmitted on the HP-IB, listeners on the Bus will be unaddressed as listeners.

UNIVERSAL COMMAND - These commands affect every device capable of responding on the HP-IB, regardless of whether they have been addressed or not.

UNADDRESS COMMAND – See UNLISTEN COMMAND.

SECTION II

2-1. INTRODUCTION

2-2. This section provides installation instructions for the Model 8620C Sweep Oscillator and its accessories. This section also includes information about initial inspection and damage claims, preparation for using the Sweep Oscillator, and packaging, storage and shipment.

2-3. INITIAL INSPECTION

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. Procedures for checking electrical performance are given in Section IV. If the instrument combination does not pass the electrical performance tests, refer to the Adjustments (Section V) in this manual. If, after the Adjustments have been made, the instrument combination still fails to meet specifications, refer to RF Plug-in Adjustments in the applicable RF Plugin manual. If a circuit malfunction is suspected, refer to troubleshooting procedures section of this manual or applicable RF Plug-in manual. If the instrument does not pass the above electrical tests, or if the shipment contents are incomplete, or if there is mechanical damage or defect, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATION FOR USE

2-6. Power Requirements

2-7. The Model 8620C requires a power source of 100, 120, 220, or 240 Vac, +5% -10%, 50 to 400 Hz single phase. Power consumption is approximately 140 watts with RF Section and oscillator module(s) installed.

2-8. Line Voltage Selection

CAUTION

BEFORE SWITCHING ON THIS IN-STRUMENT, make sure the instrument is set to the voltage of the power source.

2-9. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage selection card and the proper fuse are factory installed for 120 Vac operation.

2-10. Power Cable

2-11. In accordance with international safety standards this instrument is equipped with a three wire power cable. When connected to an appropriate power line outlet, this cable grounds the instrument cabinet. Figure 2-2 shows the styles of mains plugs available on power cables supplied with HP instruments. The numbers under the plugs are part numbers for complete power cables. The types of power cable/plug shipped depends on the country of destination.

WARNING

BEFORE SWITCHING ON THIS IN-STRUMENT, be sure only the specified power cord is used. The instument is provided with a 3-wire power cord which grounds the instrument cabinet. This power cord should only be inserted in a socket outlet provided with a protective earth contact. This protective action should not be negated by the use of an extension cord (power cable) without a protective conductor (ground). Grounding one conductor of a two conductor outlet is not sufficient protection.

2-12. Interconnections

2-13. For the Model 8620C Sweep Oscillator to operate, an RF Plug-in or an RF Section with an oscillator module installed, must be plugged into the 8620C mainframe. Refer to RF Plug-in manual for RF Plug-in installation instructions.

OPERATING VOLTAGE APPEARS IN MODULE WINDOW.

SELECTION OF OPERATING VOLTAGE

- 1. SLIDE OPEN POWER MODULE COVER DOOR AND PUSH FUSE-PULL LEVER TO LEFT TO REMOVE FUSE.
- 2. PULL OUT VOLTAGE-SELECTOR PC BOARD. POSITION PC BOARD SO THAT VOLTAGE NEAREST ACTUAL LINE VOLTAGE LEVEL WILL APPEAR IN MODULE WINDOW. PUSH BOARD BACK INTO ITS SLOT.
- 3. PUSH FUSE-PULL LEVER INTO ITS NORMAL RIGHT-HAND POSITION.
- 4. CHECK FUSE TO MAKE SURE IT IS OF COR-RECT RATING AND TYPE FOR INPUT AC LINE VOLTAGE. FUSE RATINGS FOR DIF-FERENT LINE VOLTAGES ARE INDICATED BELOW POWER MODULE.
- 5. INSERT CORRECT FUSE IN FUSEHOLDER.

Figure 2-1. Line Voltage Selection with Power Module PC Board

Plug Type	Cable HP Part Number	Plug Description	Cable Length (inches)	Cable Color	For Use In Country
250V	8120-1351 8120-1703	Straight*BS1363A 90°	90 90	Mint Gray Mint Gray	Great Britain, Cyprus, Nigeria Rhodesia, Singapore, So. Africa, India
250V E	8120-1369 8120-0696	Straight*NZSS198/ASC112 90°	79 87	Gray Gray	Australia , New Zealand
250V E N	8120-1689 8120-1692	Straight*CEE7-Y11 90°	79 79	Mint Gray Mint Gray	East and West Europe, Saudi Arabia, United Arab Republic (unpolarized in many nations)
125V	8120-1348 8120-1398 8120-1754	Straight*NEMA5-15P 90° Straight*NEMA5-15P	80 80 36	Black Black Black Black	United States, Canada, Japan (100 or 200V), Mexico, Phillippines, Taiwan
N L	8120-1378 8120-1521 8120-1676	Straight*NEMA5-15P 90° Straight*NEMA5-15P	80 80 36	Jade Gray Jade Gray Jade Gray	
250V	8120-2104	Straight*SEV1011 1959-24507 Type 12	79	Gray	Switzerland
250V E	8120-0698	Straight*NEMA6-15P			
250V E	8120-1860	Straight*CEE22-VI			

Figure 2-2. AC Power Cables Available

2-14. Mating Connectors

2-15. All of the externally mounted connectors on the mainframe are listed in Table 2-1. Opposite each mainframe connector is an industry identification, the part number of a mating connector, and the part number of an alternate source for the mating connector.

2-16. Operating Environment

2-17. Temperature. The instrument may be operated in temperatures from 0° C to $+55^{\circ}$ C.

2-18. Humidity. The instrument may be operated in environments with humidity from 5% to 95% at 0° to 40° C. However, the instrument should also be protected from temperature extremes which cause condensation within the instrument.

2-19. Altitude. The instrument may be operated at altitudes up to 4572 metres (15 000 feet).

2-20. Cooling

2-21. Clearances for ventilation should be three to four inches at the rear of the cabinet and two to three inches at the sides. The clearances provided by the plastic feed in bench stacking and the filler strips in rack mounting are adequate for the top and bottom cabinet surfaces.

2-22. Bench Operation

2-23. The instrument cabinet has plastic feet and a foldaway tilt stand for convenience in bench operation. The tilt stand inclines the instrument for ease of operating. The plastic feet provide clearance for air circulation and make the instrument self-aligning when stacked on other Hewlett-Packard full rack-width modular instruments.

2-24. Rack Mounting (Option 908)

2-25. Instruments with Option 908 contain a Rack Flange Kit. This kit supplies necessary hardware and installation instructions for preparing the instrument to be mounted on a rack of 482.6 mm (19 inch) spacing. Installation instructions are also given in Figure 2-3. A Rack Mounting Kit for the 8620C may be obtained from Hewlett-Packard by ordering HP Part Number 5060-8740.

2-26. Frequency Scale Installation

2-27. To install frequency scale, proceed as follows:

862	DC Connector	Mating Connector		
Connector Name	Industry Identification	HP Part No.	Alternate Source	
J1 SWEEP OUT	BNC	1250-0256	Specialty Connector 25-P118-1	
J2 PROGRAMMING	Micro-Ribbon 50-Contact Rack and Panel Plug	1251-0086	TRW Cinch Div. 57-30500- 37 5	
J3 EXT AM	BNC	1250-0256	Specialty Connector 25-P118-1	
J4 EXT TRIGGER	BNC	1250-0256	Specialty Connector 25-P118-1	
J5 NEGATIVE BLANKING	BNC	1250-0256	Specialty Connector 25-P118-1	
J6 RF Plug-in Interface	Micro-Ribbon 36-Contact Rack and Panel Plug	1251-3066	Amphenol 222-42-36-058	
J8 Z-AXIS/MKR/ PEN LIFT	BNC	1251-0256	Specialty Connector 25-P118-1	

Table 2-1. Model 8620C Mating Connectors

Figure 2-3. Preparation for Rack Mounting

NOTE

If RF Plug-in is installed in mainframe, it must be removed to install frequency scale. See RF Plug-in removal instructions in Operating and Service Manual for RF Plug-in.

- a. Disengage mainframe front-panel latch handle, shown in Figure 2-4, by pushing downward on handle while pushing inward lightly on top of front panel.
- b. Swing front panel forward and down to position shown in Figure 2-5.
- c. Depress mainframe front-panel BAND select lever, shown in Figure 2-4, to rotate frequency scale drum until desired scale position is accessible.

NOTE

Drum positions 1 through 4 may be identified by tick marks (1, 11, 111, 111) on left-hand side of drum.

NOTE

If necessary to remove a frequency scale, exert a pressure OUTWARD, away from drum, on right-hand edge of scale.

- d. Insert frequency scale so key (a 1/16-inch long, 1/2-inch wide protrusion) on left end of scale fits into notch, shown in Figure 2-5 in roller on left-hand edge of drum.
- e. Push inward on right-hand edge of frequency scale to snap it in place in frequency scale drum.

To prevent damage to frequency pointers when bandswitch drum is rotated, make certain that frequency scale is firmly in place and flush with band drum edges.

f. Return front panel to upright (closed) position, and, while pushing inward lightly on top of front panel, re-engage front-panel latch handle by pushing it upward to lock position as shown in Figure 2-4, exploded view.

2-28. MODEL 8620C HP-IB INTERFACE (OPTION 011) INSTALLATION

2-29. Interface Connectors and Cables

2-30. The HP-IB connector/adapter (HP Part No. 08620-60130) is a 50-pin-to-24-pin adapter that is connected to the rear-panel, 50-pin PROGRAM-MING connector. The 24-pin connector interfaces directly to the HP-IB interconnect cable. The two-meter HP-10631B interface cable (Figure 2-6) interfaces the 8620C Sweep Oscillator with the HP-IB. The connectors on the cable consist of two standard HP-IB 24-pin connectors. (See Figure 2-7 for the pin configuration of the HP-IB connector.)

2-31. Cable Length Restrictions

2-32. As many as 15 instruments can be connected in parallel on the Hewlett-Packard Interface bus. To achieve design performance on the bus, proper voltage levels and timing relationships must be maintained. If the system cable is too long or if the accumulated cable length between instruments is too long, the data and control lines cannot be driven properly and the system may fail to perform. Therefore, the following restrictions must be observed:

a. With two instruments in a system, the cable length must not exceed four meters (12 feet).

Figure 2-4. Location of Mainframe Parts Pertinent to Frequency Scale and RF Plug-in Installation

Figure 2-5. Mainframe Front Panel in Open Position

HP-IB CABLE PART NUMBERS	LENGTHS
HP 10631A	1 Meter
HP 10631B	2 Meters
HP 10631C	4 Meters

Figure 2-7. HP-IB Connector/Adaptor 08620-60130, Pin Configuration

- b. When more than two instruments are connected on the bus, the cable length to each instrument cannot exceed two meters (six feet) per unit.
- c. The total cable length between all units cannot exceed 20 meters (65 feet).

2-33. HP-IB Interface Assembly

2-34. The circuit board for the 8620C Option 011 is the A12 HP-IB Interface Assembly (Option 011), HP Part No. 08620-60118. (See Figures 1-3 and 8-26.) The HP-IB interface is available when this board is installed in the XA6 connector of the A11 Master Board.

2-35. Address Switch

2-36. The 8620C address switch A12SW1 is preset at the factory to ASCII character "&". Upon installation of the A12 HP-IB Interface Assembly, any of the 30 listen-address codes shown in Table 3-5 may be used. The code selected must of course be compatible with the system. The switches in Figure 2-8 are set in the ASCII character "&" address code (Octal 046). The numbers 1 through 5 etched on the A12 board correspond to b_1 through b_5 in Table 3-5. Number 1 is the Least Significant Bit (LSB) and number 5 is the Most Significant Bit (MSB).

2-37. HP-IB/Model 8410B Network Analyzer Installation

2-38. The following installation provides simultaneous operation between the 8410B Network analyzer, and the 8620C Sweeper with the HP-IB. The 8410B Cable (HP Part No. 8120-2208) has a standard 14-pin 8410B connector on one end and a 50-pin, piggy-back connector on the other end, which connects to the 8620C rear-panel PRO-GRAMMING connector J2. The HP-IB connector/ adapter is connected and then the HP-IB cable. The installation procedure follows and the completed installation is shown in Figure 2-9.

- a. Remove HP-IB Connector/Adapter 08620-60130 if it is connected to PROGRAMMING connector.
- b. Install 8410B cable 8120-2208 (see Figure 1-6).
- c. Install HP-IB Connector/Adapter 08620-60130.
- d. Install HP-IB cable 10631B.

2-39. Installation for Additional Interface Capabilities

2-40. By using a combination of the 8620C cable adapter (8120-2207) and the programming connector (2151-0086) a configuration is available that provides additional remote programming and interface capabilities while retaining HP-IB operation. (Refer to Table 3-8 for a list of the available

Figure 2-8. Address Switch A12SW1

Figure 2-9. HP-IB/8410B Installation

commands, signals, and controls.) The 8620C cable adapter (HP Part No. 8120-2207) has a 50-pin, piggy-back connector on one end, which is connected to the 8620C rear-panel PROGRAMMING connector J2; on the other end is a standard 24-pin HP-IB connector. (See Figure 2-11.) The additional control lines are soldered to pins on the programming connector (HP Part No. 1251-0086, part of Accessory Kit 08620-60123). For example, if remote RF attenuation is desired, connections would be made to pins 36, 37, and 38. The installation procedure follows and the completed configuration is shown in Figure 2-10.

- a. Remove HP-IB Connector/Adapter 08620-60130 if it is connected to PROGRAMMING connector.
- b. Install 8620C cable adapter 8120-2207.
- c. Connect programming connector 1251-0086 with new lines soldered to desired pins.

2-41. VERIFICATION

2-42. To ensure correct electrical performance and remote programming operation after installa-

tion, complete the verification procedure in either Figure 2-12 or Figure 2-13, whichever applies.

2-43. STORAGE AND SHIPMENT

2-44. Environment

2-45. The instrument may be stored or shipped in environments within the following limits:

Temperature $\dots \dots \dots$
Humidity $\dots \dots \dots$
Altitude Up to 15240 metres
(50000 feet)

The instrument should also be protected from temperature extremes which cause condensation within the instrument.

2-46. Packaging

2-47. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of

Figure 2-10. Installation for Additional Interface Capabilities

service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-48. Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:

a. Wrap instrument in heavy paper or plastic. (If shipping to Hewlett-Packard Office or Service Center, attach tag indicating type of service required, return address, model number and full serial number.)

- b. Use a strong shipping container.
- c. Use enough shock-absorbing material around all sides of instrument to provide firm cushion and prevent movement inside container. Protect control panel with cardboard.
- d. Seal shipping container securely.
- e. Mark shipping container FRAGILE to assure careful handling.
- f. In any correspondence, refer to instrument by model number and full serial number.

Figure 2-11. 8620C Cable Adapter for Additional Interface Capabilities

90 REM CHECK MODE OPERATION +-++++	490 REM TEST ALL SWEEP MODES *****
95 DISP "MODES"	490 REM TEST ALL SWEEP MODES ****** 500 CMD "?U&"*"M1B1" 510 DISP "REMOTE FULL SWEEP" 520 GOSUB 1500 530 CMD "?U&";"M2" 540 DISP "REMOTE DELTA F SWEEP" 550 GOSUB 1500 560 DISP "REMOTE MARKER SWEEP" 570 CMD "?U&";"M4" 580 GOSUB 1500 590 DISP "ANALOG FULL SWP -REMOTE MARKER" 500 CMD "?U&";"M5R"
100 CMD "200"	546 NYOD "DEMATE ENLL OUEED"
110 FOR .= 1 TO 5	510 DIGE KENDTE FOLL GWEEF 590 FOCHE 1500
120 FOR 1=1 TO 4	520 60300 1000 530 rmt "940","M9"
130 OUTPHT (13.140)T	530 CHD (00 7 HZ 540 THED "DEMOTE DELTA E CHEED"
140 FORMAT "M".F1000 0	STA CACHD 1500
150 NAIT 200	538 80300 1380 528 Ried "Demote Madved Cused"
160 NEXT I	570 CMD "9H&","M4"
170 NEXT 1	580 COSUR 1500
180 CMD "","M1"	598 BISED TABLER FULL SUP LEFMETE MEDVED"
190 REM CHECK BAND OPERATION ******	EAR CMD "91%", "MSP"
195 DISP "BANDS"	610 GOSHE 1500
200 FOR J=1 TO 5	500 DISP "HARLOG FOLL SWP "KENDTE MARKER 600 CMD "PU&"; "M5R" 610 GOSUE 1500 620 DISP "HAALOG FULL SWP - LOCAL MARKER" 630 CMD ""; "L" 640 GOSUE 1500 650 DISP "ANALOG DELTA F SWP - REMOTE MKR" 660 CMD "PU&"; "M6R" 670 GOSUE 1500 680 DISP "ANALOG MKR SWP - REMOTE MKR" 690 CMD "PU&"; "M8R" 700 GOSUE 1500 999 BEEP 1000 DISP "DONE" 1490 STOP 1500 REM REMOTE TUNE D/A VOLTAGE 1505 FOR I=1 TO 3 1510 FOR V=0 TO 10 STEP 0.3 1511 WAIT 40 1520 OUTPUT (13,1530)V 1530 FORMAT "V";F1000.3;"E" 1546 NEXT V 1550 RETURN 9992 END
210 FOR I=1 TO 4	630 CMB "","I"
220 OUTPUT (13,230)I	640 GOSUB 1500
230 FORMAT "B", F1000.0	650 DISP "ANALOG DELTA E SWP - REMOTE MKR"
240 WAIT 200	660 CMD "20%", "M6R"
250 NEXT I	679 GOSUB 1500
260 NEXT J	680 DISP "ANALOG MKR SWP - REMOTE MKR"
270 CMD "","81"	690 CMD "?U&","M8R"
280 REM CHECK VOLTAGES ******	700 GOSUE 1500
290 CMD "","M1"	999 BEEP
300 CMD "","V0E"	1000 DISP "DONE"
310 DISP "0.000 V"	1490 STOP
320 STOP	1500 REM REMOTE TUNE D/A VOLTAGE
330 CMD "","V:000E"	1505 FOR I=1 TO 3
340 DISP "10.000 V"	1510 FOR V≠0 TO 10 STEP 0.3
350 STOP	1511 ŴAIY 40
360 CMD "","V7777E"	1520 OUTPUT (13,1530)V
370 DISP "7.777 V"	1530 FORMAT "V",F1000.3,"E"
380 STOP	1546 NEXT V
390 CMD "","V8888E"	1550 REXT I
400 DISP "8.888 V"	1590 RETURN
410 STOP	9998 END

Figure 2-12. HP-IB Verification Program (HP 9830A Calculator)

```
O: "CHECK MODE OPERATION ++++++":
 1: prt "MODES":cond 7:"?US
 2: for J=1 to 5
 3: for I=1 to 4
4: fmt 1."M".t.0;wrt 706.1.I;wait 200
 5: next 1
 6: next J
 7: "CHECK BAND OPERATION +****":
8: amd 7,"?U&"_"M1";prt "BANDS"
 9: For J=1 to 5
 10: for I=1 to 4
 11: fmt 2, "B", f.0; wrt 706.2, I; wait 200
 12: next I
 13: next
14: "CHECK VOLTAGES *****":
15: cmd 7,"?U&","M1V0E";prt "0.000 V";stp
16: cmd 7,"V:000E";prt "10.000 V";stp
17: cmd 7; "V7777E";prt "7.777 V";stp
18: cmd 7; "V8888E";prt "8.888 V";stp
19: "TEST ALL SWEEP MODES *****":
20: cmd 7,"?U&","M1B1";prt "REMOTE FULL SWP";esb "volt"
21: ond 7,"?U&","M2";prt "REMOTE DELTA F SWP";esb "volt"
21: cmd 7, 70% ; M2 ; Prt REMOTE DELTH F SWPTiesD Toolt"
22: cmd 7, "?U&", "M4";Prt "REMOTE MKR SWPTiesD "volt"
23: cmd 7, "?U&", "M5R";Prt "ANALOG FULL SWP-REMOTE MKR";esD "volt"
24: cmd 7, "?U&", "L";Prt "ANALOG FULL SWP-LOCAL MKR";esD "volt"
25: cmd 7, "?U&", "M6R";Prt "ANALOG DELTA F SWP-REMOTE MKR";esD "volt"
26: cmd 7, "?U&", "M8R";Prt "ANALOG MARKER SWP-REMOTE MKR";esD "volt"
27: Deepiprt "BONE";stp
28: "volt":
29: "REMOTE TUNE D/A VOLTAGE":
30: for I=1 to 3
31: for V=0 to 10 by .3
32: wait 40
33: fmt 3,"V",f.3,"E";wrt 706.3,V
34: next V
35: next I
36: ret
37: end
*20176
```

Figure 2-13. HP-IB Verification Program (HP 9825A Calculator)

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section explains the function of the controls and indicators of the Model 8620C Sweep Oscillator. It describes typical operating models in a measurement system and covers the typical operator maintenance such as fuse, indicator lamp, and fan filter replacement.

3-3. PANEL FEATURES

3-4. Front and rear panel features are described in Figures 3-1 and 3-2. Description numbers match the numbers on the illustration.

3-5. OPERATOR'S CHECK

3-6. The operator's check (Figure 3-4) allows the operator to make a quick check of the main instrument functions prior to use. This check assumes that an RF Plug-in or an RF Section with oscillator module is installed in the mainframe. Incorrect indications may indicate troubles in either the mainframe or RF Plug-in. To determine if the mainframe is working correctly, check the 8620C using the performance tests in Section IV.

3-7. OPERATING INSTRUCTIONS

3-8. Figures 3-5 through 3-8 show general operating procedures with the 8620C connected in a typical measurement test setup. There are many other applications for the 8620C but the general operating procedure is the same.

3-9. Safety

3-10. BEFORE APPLYING POWER, refer to SAFETY CONSIDERATIONS in Section I of this Operating and Service manual.

3-11. The information, cautions, and warnings in this manual must be followed to ensure safe operation and to keep the instrument safe.

WARNING

BEFORE SWITCHING ON THE IN-STRUMENT, be sure only the specified power cord is used. The instrument is provided with a 3-wire power cord which grounds the instrument cabinet. This power cord should only be inserted in a socket outlet provided with a protective earth contact. This protection should not be negated by using an extension cord (power cable) without a protective grounding conductor. Grounding one conductor of a two-conductor outlet is not sufficient protection.

WARNING

Any interruption of the protective (grounding) conductor, inside or outside the instrument, or disconnection of the protective earth terminal could make this instrument dangerous. Whenever it is suspected that this protection has been impaired, the instrument should be made inoperative and secured against any unintended operation.

BEFORE SWITCHING THE INSTRU-MENT ON, ensure that all ac line powered devices connected to the instrument are connected to the protective earth ground.

CAUTION

BEFORE APPLYING POWER, make sure the ac input is set for the available ac line voltage, that the correct fuse is installed, and that all normal safety precautions have been taken.

- START MARKER Control R2 and FULL SWEEP Pushbutton Switch S4. Pressing pushbutton switch selects FULL SWEEP mode and FULL SWEEP lamp DS1 lights. Sweep covers full band of frequencies of scale from low to high frequency. Green START MARKER lettering over control is color coded to green start pointer on scale. In FULL SWEEP mode, START MARKER control adjusts only Start Marker position and not start frequency. Three markers are available on sweep: Start Marker at position of green pointer, CW Marker at position of white pointer, and Stop Marker at position of red pointer.
- **BAND** Switch S2/S3. Depressing lever advances drum containing frequency scales. It also changes position-sensing switches to activate oscillator module in RF section.
- 3 Frequency Scale Window. The band selected is displayed at the window. Top scale has pointers for START MARKER (green), STOP MARKER (red), and CW MARKER (white) controls. Bottom left scale is △F and bottom right scale is CW VERNIER. A calibration scale is included in one band position for ease of calibration, but is not essential to the calibration procedure. When an additional band is added to the RF drawer, a new scale may be installed by following procedure in Paragraph 2-26. Drum position may be identified

by tick marks on left-hand side of drum. Position "I" of the BAND drum activities Heterodyne Module ("Position 1" in 8621A/B) and oscillator module installed in "Position 2" of 8621A/B or band 1 of 86290A. Position "II" of the BAND drum activates the oscillator installed in "Position 2" of 8621A/B or band 2 of 86290A. Position "III" activates oscillator installed in "Position 3" of 8621A/B or band 3 of 86290A. Position "III" activates circuits for use with the HP Model 86290A multi-octave sequential sweep band 4. Any BAND drum position will select an 86200 series plug-in.

- ▲F Multiplier Slide Switch A9S4. Selects multiplier for △F scale. When set to X1 position, △F scale setting is read directly and when set to X.1 or X10 positions, △F scale setting is multiplied by either 0.1 or 10.
- 5 △F Control R3 Pushbutton Switch S5. Pressing pushbutton lights both △F DS2 and CW DS3 pushbuttons, indicating that center frequency is selected by CW MARKER control and full deviation about CW frequency is selected by △F control. △F scale is short scale above △F control. Start and Stop Markers are available on △F sweep.
- **6** MARKERS Slide Switch A9S5. Selects marker modes: AMPL, OFF, INTEN. In AMPL position,

Figure 3-1. Front Panel Controls, Connectors, and Indicators (1 of 2)

(2)

frequency marker is modulated on RF sweep signal. In OFF position, no marker is present. In INTEN position a frequency marker is obtained by intensity modulating Z-axis of oscilloscope or other display instrument on which sweep trace is shown. Intensity modulation signal is available at rear-panel Z-AXIS/MKR/PEN LIFT output J8.

CW MARKER Control R4 and CW Pushbutton Switch S6. Pressing pushbutton switch selects CW mode and CW lamp DS3 lights. White CW MARK-ER lettering over control is color coded to white pointer on scale and indicates CW frequency. With FULL SWEEP or MARKER SWEEP selected, a CW Marker is available and position of white pointer indicates frequency setting of CW Marker. CW light also comes on when ΔF mode is selected, indicating CW MARKER control selects center frequency of ΔF Sweep.

B CW VERNIER Multiplier Slide Switch A9S6. Selects multiplier for CW vernier scale. In X1 position scale is read directly and in X.1 position scale indication is multiplied by 0.1.

S CW VERNIER Control R5 and Pushbutton Switch S7. Pressing pushbutton switch connects vernier function for CW or ΔF modes. (DS4 lights.) Vernier control provides fine adjustment of frequencies about CW scale setting. Scale multiplier is controlled by slideswitch below pushbutton control.

STOP MARKER Control R6 and MARKER SWEEP Pushbutton Switch S8. Pressing pushbutton switch selects MARKER SWEEP mode and MARKER SWEEP lamp DS5 lights. Red STOP MARKER lettering over control is color coded to red stop pointer on scale. Sweep is between green START MARKER pointer and red STOP MARK-ER pointer. CW Marker is available on sweep.

WEEP OUT BNC Connector J1. Output is linear ramp voltage from zero to 10 volts synchronous with RF sweep signal. Output is available for all operating modes.

- TIME-SECONDS Vernier Control R8. Allows sweep time to be adjusted through range selected at TIME-SECONDS slide switch.
- **TIME-SECONDS Slide Switch A9S3.** Sets range of sweep time. Sweep time may be selected from > 100 seconds per sweep (slide switch to left position and vernier control counterclockwise) to < 0.01 seconds per sweep (slide switch to right position and vernier control clockwise).
- **TRIGGER Slide Switch A9S2.** Selects source of sweep-trigger pulse. Switch has spring return in SINGLE sweep mode position. Each time switch is pressed into SINGLE position, a single sweep is initiated; when released, switch returns to EXT. In EXT position, an external trigger pulse may be applied through rear-panel EXT TRIGGER connector. In INT position, sweep trigger pulse is derived from internal sweep oscillator and system is free running. In LINE position, sweep is triggered by power line sine wave peaks.
- **MODE Slide Switch A9S1.** Selects source of sweep signal. In MANUAL position, the control at left of MODE switch controls sweep manually. In EXT position, an external sweep signal may be applied through rear-panel PROGRAMMING connector. In AUTO position, sweep signal is obtained from internal sweep oscillator, producing continuous sweep signal.
- MANUAL MODE Control R7. Allows manual sweep of frequency range selected by FULL SWEEP, MARKER SWEEP, or △F controls. Selects start frequency in full counterclockwise position; selects stop frequency in full clockwise position. No markers are available.
- LINE, OFF-ON Switch S1. Pressing LINE switch applies power to mainframe and plug-in, and switch illuminates DS6. Applying power to instrument always selects FULL SWEEP mode. Line on side of pushbutton indicates ON and OFF position.

Figure 3-1. Front Panel Controls, Connectors, and Indicators (2 of 2)

into 2500 ohms. Intensity modulation frequency marker is selected when front-panel MARKERS

slide switch is in the INTEN position. Marker

signal is rectangular -5 volt pulse into 10K ohms.

Figure 3-2. Rear Panel Controls and Connectors (1 of 2)

3-4

PROGRAMMING Connector J2. Provides means

to connect remote programming signals for stan-

dard instrument or when Options 001 or 011 are

REAR PANEL FEATURES

NEGATIVE BLANKING Connector J5. BNC connector provides negative polarity blanking during retrace. Blanking signal is rectangular -5 volt pulse into 2400 ohms.

B Power Line Module FL1. Line Voltage Selector Card FL1TB1 allows selection of 100, 120, 220, or 240 Vac operation. Instructions for line voltage selection is in Figure 2-1. 9 EXT TRIGGER Connector J4. BNC connector to input external trigger pulse. This input is selected when the front-panel TRIGGER slide switch is in EXT position. Trigger signal must be greater than +2 Vdc, wider than 0.5 μ sec and not greater than 1 MHz in frequency.

EXT AM Connector J3. BNC connector to input external amplitude modulation signal. This input is selected when rear-panel 1 kHz SQ WV/OFF slide switch is in OFF position.

3-12. REMOTE PROGRAMMING

3-13. Remote programming control is applied through rear-panel PROGRAMMING connector. Tables 3-6 and 3-7 show the input commands and output signals for the programming connector and logic tables for the various commands. Table 3-6 applies to a standard 8620C and Table 3-7 applies when Option 001 is installed.

3-14. Computer or Calculator Programming

3-15. With the addition of Option 001 (A6 BCD Programming printed circuit board) the 8620C may be programmed remotely from a computer or calculator. A simulated sweep mode is provided by sequentially selecting up to 10,000 point frequencies for each band. Band switching, RF attenuation (with 8621B Option 001) and remote/ manual operation may also be programmed from the computer.

3-16. The Option 001 BCD programming provides the same capabilities as the HP-IB Option with the exception that no digital marker is available in the programmed sweep modes.

3-17. Hewlett-Packard Interface Bus (HP-IB)

3-18. With the addition of Option 011, a capability is provided to control the sweeper directly via the HP Interface Bus. With Option 011 installed, any sweep function (ΔF , FULL SWEEP, etc.) can be selected and the 8620C will sweep according to the front-panel frequency settings. This option provides a flexible, digital frequency programming with a resolution of 10,000 points per band or 10,000 points across the frequency range set by the front-panel controls. With this operation, a programmable digital marker is available.

3-19. Manual Remote Programming

3-20. A manual remote control system may be used where repetitive operations are performed. The standard 8620C (without Options) contains remote control circuits to select operating mode and frequency range. This mode can be calculator or computer controlled.

3-21. HP-IB REMOTE PROGRAMMING INSTRUCTIONS

NOTE

Examples in this section are written using the HP Model 9830A Calculator with HP Model 59405A Option 030 HP-IB Calculator Interface. 3-22. The 8620C Option 011 sweeper is a remote programmable instrument designed for use in systems that interface with the HP-IB. The frontpanel sweep modes that are programmable include FULL SWEEP, ΔF SWEEP, CW, and MARKER SWEEP. Control voltages (from a remote-control source) tune the frequency in FULL SWEEP, ΔF SWEEP, and MARKER SWEEP modes. Also a remote control voltage tunes a remote marker in Local operation. The selection of bands 1 through 4 is programmable and one code is available to place the 8620C in Local band control.

3-23. Interface Modes of Operation

3-24. The HP-IB uses two modes to communicate between instruments: Command Mode and Data Mode. During Command Mode, the system controller addresses the instrument to be programmed. The ASCII "&" character is the example address for the 8620C used in this manual. (Refer to paragraph 3-61.) During Data Mode, codes are sent that are instructions for the instrument addressed to listen. In Data Mode, there are no specific code assignments but devices communicating must agree on the meaning of the codes used.

3-25. The structure for a typical system controller statement would be:

Where "?" is the universal ASCII unlisten command to re-initialize the bus, "U" is the calculator talk address, and "&" is the sweeper listen address. The data string follows the address mode. Quotation marks are needed to obtain the keyboard alpha characters and the comma separates the address string from the data or instruction string. The "?U" preceding the 8620C listen address (&) clears the previously addressed instruments and re-addresses the calculator as a talker. (A complete summary of the programming codes is in Table 3-4.)

3-26. Mode Selection

3-27. The HP Model 8620C Option 011 allows several modes of digital and analog frequency control via the HP-IB. These modes are summarized in Table 3-1.

3-28. In Mode M1, the output frequency is totally independent of front-panel control settings and offers 10,000 points of frequency resolution per band for fine frequency selection.

	Description	ASCII Code
	0.000 Volts \rightarrow Low End of Band Selected = F_L	
	10.000 Volts \rightarrow High End of Band Selected = F_U	M1
	0.000 Volts \rightarrow Setting of Front Panel	
	CW Control Minus $\frac{\Delta F Setting}{2} = F_L$	M2
Digital	10.000 Volts → Setting of Front Panel	
Modes	CS Control Plus $\frac{\Delta F \text{ Setting}}{2} = F_U$	
	0.000 Volts → Setting of Front Panel	
	Start Marker = F_L	M4
	10.000 Volts → Setting of Front Panel	
	Stop Marker = F _U	
	Analog Sweep of Full Band Selected	M 5
Analog Sweep	Analog ΔF Sweep Controlled by Front Panel ΔF and CW Controls	M6
Modes	Analog Marker Sweep Controlled by Front Panel Start- and Stop-Marker Controls	M8
Analog CW Mode	Output = Front Panel CW Control Setting	M3 or M7

Table 3-1. Program Modes

3-29. For even more resolution, Modes M2 and M4 are available. In these modes, the digital frequency resolution is determined by front-panel frequency control settings on the 8620C. For example, with Mode M2 selected, the front-panel CW control set at 7.5 GHz, and the $\triangle F$ control set at 1 GHz, the source would have a digital frequency resolution of 10,000 points between 7.0 GHz and 8.0 GHz or a minimum increment of 100 kHz. The START MARKER and STOP MARKER controls might then be set at 8.0 and 9.0 GHz respectively allowing 10,000 points resolution between those settings in mode M4. In combination, this would provide a resolution or minimum increment capability of 100 kHz from 7.0 -9.0 GHz in modes M2 and M4.

3-30. Often, it is desirable to be able to view a dynamic swept display, especially during set-up and fine-tuning of a device prior to final test, or as a quick preview to insure no gross discontinuities exist. Modes M5, M6 and M8 allow this flexibility. Mode M5 produces an analog sweep of the full

band selected. Sweep speed, sweep mode, and trigger are all determined by 8620C front-panel controls. Similarly, modes M6 and M8 produce analog ΔF and MARKER SWEEP as determined by appropriate front panel control settings. In these three modes, mainframe markers or a digitally programmed marker are available.

3-31. The capability to place the sweeper in mainframe-controlled CW mode is provided in modes M3 and M7. This allows the operator to manually set CW frequencies or, with a counter, to accurately set the center frequency for ΔF modes.

3-32. If no mode is programmed, the sweeper retains its most recent mode. At the initial turn-on of the sweeper, it is in mode M5.

3-33. BAND PROGRAMMING

3-34. Any of the four bands of the 8620C Option 011 may be selected externally via the HP-IB.

Model 8620C

Bands 1 through 4 are designated simply by the ASCII characters "B1" through "B4". In addition, band selection control may be returned to the 8620C front-panel lever by programming "B ϕ ". At turn-on, the sweeper is in B ϕ . As with Mode programming, the sweeper retains its most recent Band instruction if not instructed otherwise.

3-35. Band programming capability is most useful with the multi-band plug-ins such as the 86290A 2-18 GHz plug-in and the 8621B RF drawer with HP 86300 series RF modules. Since the 86200 series of single-band plug-ins will operate equally with any band selected, this instruction is not necessary.

Table 3-2.	Band Programming (All	Modes)
------------	-----------------------	--------

Description	ASCII Code
Local Band (As Selected by Front-Panel Lever)	Вφ
Band 1	B1
Band 2	B2
Band 3	B3
Band 4	B4

3-36. FREQUENCY (VOLTAGE) PROGRAMMING

3-37. Since the YIG-tuned oscillators in the 8620 plug-ins are essentially VCO's, the programming instructions are in volts or millivolts. This allows the flexibility to use a large number of frequency plug-ins covering a wide variety of bandwidths and absolute frequencies.

3-38. For this reason, it is necessary to use the calculator to convert desired frequency to the required voltage information. This involves a simple conversion equation:

$$V_{X} = \frac{F_{X} - F_{L}}{F_{U} - F_{L}} \times 10$$

where F_X = the desired frequency

 F_L^{Λ} = lower frequency limit of the Mode selected (see Table 3-1) F_{II} = upper frequency limit of the Mode

selected (see Table 3-1)

3-39. The 8620C Option 011 requires the following format to output the proper frequency: "Va.bcdE". The letter "E" indicates the end of the voltage string. The decimal point is optional and is disregarded by the sweeper. It processes up to four digits of information and assumes the information is in millivolts with leading zeros suppressed. If more than four digits come down the HP-IB, the 8620C processes only the four digits immediately preceding the "E".

3-40. EXAMPLE: With this information, we are prepared to execute an example using literals for the programming information. In this and following examples, we will use the 86290A 2–18 GHz plug-in with the 8620C. It has four bands covering 2–6.2 GHz, 6–12.4 GHz, 12–18 GHz, and 2–18 GHz respectively. Bands 1 through 3 allow greater resolution than band 4; so, in general, we will be more likely to use these narrower bands than the full 2–18 GHz band.

3-41. Let's assume the desired output frequency is 15 GHz. One approach is to use Mode M1 and band B3. The required voltage is then:

$$\frac{15-12}{18-12} \times 10 = 5.000.$$

The calculator statement required to output 15 GHz is:

10 CMD "?U&","M1B3V5,000E"

3-42. Note that the order of execution is unimportant, (i.e., GMD "?U&". "B3V5000EM1" would produce the same results). Note also that the 3 zeros must be present after the "5" whether or not the decimal point is present.

Table 3-3. Frequency (Voltage) Programming (Modes M1, M2, M4)

selected	d orrespond to hi	w end of band and mode gh end of band and mode
	Exampl	es
Frequency (% of Band/Mode)	Voltage Required (Volts)	ASCII Codes
0% 0.1% 55% 100%	0 0.01 5.5 10.000	VφE or VφφφφφE V.010E or V10E V5.500E or V5500E V:.000E or V:000E

3-43. As mentioned above, if more than four voltage digits travel down the HP-IB, only the last four are processed. What if the frequency desired is the same as F_U ? This would require 10.000 volts. But only the last four zeros would be processed resulting in F_L instead of F_U ! To obtain ten volts or more, there is a special ASCII character which signifies 10. The character is the colon (:). For 18 GHz output, the above string would be modified to:

10 CMD "?U&", "M1B3V:000E"

3-44. MARKERS

3-45. In modes M5, M6 and M8, a digitally programmed marker is available in addition to the standard mainframe markers. The programmable marker is selected by outputting the ASCII character "R" (which also disables the mainframe marker). The frequency of the marker is dictated by a voltage string programmed in the same manner as the digital frequency described above with F_L and F_U being the end points of the band selected. For example, to obtain a marker at 14 GHz in modes M5, M6 or M8, the following string is required:

10 CMD "?U&", "B3V3333ER"

This will result in either an AMPLitude or INTENsity marker dependent on the setting of the 8620C front-panel switch. In this mode, the mainframe-controlled markers are disabled.

3-46. To enable the mainframe markers and disable the programmable marker, output the ASCII character "L". This places the markers into totally local control.

3-47. FORMAT STATEMENTS

3-48. In order to program the frequency with variables, a format statement is required to insure the proper characters and sequence are used on the HP-IB. For the Band and Mode information, suppression of leading zeros is required. With the frequency information in volts, three digits are required after the decimal point and again it is desirable to suppress leading zeros.

3-49. EXAMPLE: In this example, the variable B is defined as the band number, X is defined as the voltage required, and mode M1 is used to output a CW frequency. The following program steps would output the proper frequency:

9825A

```
0:
cmd7, "?U&" ;fmt1"M
1B",f.0, "V",f.3,
"E"⊢
1:
wrt 706.1,B,x⊢
```

9830A

10 CMD ''?U&'' 20 OUTPUT (13,30)B,X 30 FORMAT ''M1B'',F1000.0, ''V'',F1000.3,''E''

3-50. There are two ways to handle ≥ 10 volts when programming in variables. If F_U is desired to the accuracy of the sweeper, a conditional statement resetting X to 9.999 whenever it is greater than or equal to 9.9995 will produce virtually 10 volts and a frequency within 0.005% of that produced with 10.000 volts. For frequency correction (see example below) or where frequencies $\geq F_U$ are required, a conditional output statement may be used. If X is ≥ 9.9995 , then the program would branch to the following output steps:

9825A

8: cmd7, "?U&"; fmt2"M 1B",f.0, "V:",f.3 , "E"⊢ 9: wrt 706.2,B,x-10 ⊢

9830A

```
70 CMD "?U&"
80 OUTPUT (13,90)B,X-10
90 FORMAT "M1B" ,F1000.0, "V:" ,F1000.3,"E"
```

3-51. HP 8620C HP-IB Configuration Code

3-52. The programming configuration code for the 8620C, as documented in IEEE Standard 488-1975 for the HP-IB, and selected by the calculator is:

SHØ AH1 TØ L2 SRØ RL2 PPØ DCØ DTØ CØ E1

3-53. Remote/Local Operation

3-54. The term remote/local refers to which device is controlling the 8620C sweeper. In local, the front panel of the sweeper has control; in remote,

CODES		FUNCTION	DESCRIPTION
	M1	FULL SWEEP	Remote control voltage of 0V corresponds to the low frequency end of the band and control voltage of 10V represents the high frequency end of the band.
	M2	ΔF	Remote control voltage of 0V represents CW – (Δ F WIDTH/2) and control voltage of 10V represents CW + (Δ F WIDTH/2).
	M3/M7	CW	Frequency corresponds to position of CW pointer.
MODE SELECTED	↓ M4	MARKER SWEEP	Remote control voltage of 0V represents the START pointer frequency and control voltage of 10V represents the STOP point- er frequency.
	М5	FULL SWEEP	FULL SWEEP control operates same as in local operation.
	M6	∆F	ΔF control operates same as in local operation.
	мв	MARKER SWEEP	MARKER SWEEP control operates same as in local operation.
	B1	Band 1 select	
	B2	Band 2 select	
BAND SELECTED	В3	Band 3 select	
	B4	Band 4 select	
	ВØ	Local Control	Front-panel BAND lever selects the band.
MARKER	∫L	LOCAL MARKERS only	Markers selected in Sweep Modes M5, M6, and M8.
MODE	R	REMOTE MARKERS only	

Table 3-4. Summary of Programming Codes

the calculator or computer is in control. Three conditions of Local/Remote/Return-to-Local are explained below.

3-55. Power-On Conditions. When the 8620C is first turned on, it is in Local Control.

3-56. Remote Control. To set the 8620C to Remote, the HP-IB must be in remote (REN true) and the 8620C must receive its listen address. REN must be held true continuously to remain in remote control. When set to Remote control, the programming and conditions will be as follows:

- Mode: Determined by mode set on front panel; Codes M5, M6, M7, or M8.
- Band: Set by front-panel lever switch; Code BØ.

Control Voltage: V is undefined.

Marker: Set to local; Code L.

3-57. Return-to-Local. The 8620C may be returned to local control by setting REN false, turning the 8620C or controller power OFF, or removing the HP-IB cable from either the 8620C or controller.

3-58. ADDRESSING

3-59. All instruments using the HP-IB share a common set of data and control lines. Since the controller must communicate with individual instruments on the bus, each instrument is given a unique address. The address is a seven-bit ASCII character (American Standard Code for Information Interchange) that the instrument recognizes and responds to.

3-60. Before addressing an instrument, the controller first pulls the ATN (attention) control line low (true) and then, during Command Mode, the address code is transmitted. When the instrument acknowledges receipt of the address (through the handshake lines), the controller releases the ATN line and clears the address code. The 8620C can be addressed (or unaddressed) in both local and remote control modes.

3-61. Listen Address Codes

3-62. In an HP-IB system, the 8620C Option 011 functions as a Listener. A listener is a device

capable only of receiving data or commands from other instruments. The 8620C is enabled as a listener when the controller transmits the correct listen-address code. The 8620C HP-IB interface ignores all commands or addresses relating to talkers or controllers.

3-63. The seven-bit codes reserved for listen addresses and the corresponding ASCII character are listed in Table 3-5. (A total of 31 addresses is available.) Bits one through five of the data (DIO) lines are set either high or low to select the address. The address code is set with five address switches. A12SW1-1 - A12SW1-5 on the A12 HP-IB Interface Assembly. A contact to ground (low) indicates a true state. (Refer to Figure 2-8.)

3-64. The nominal 8620C listen address is ASCII Character "&" or octal 046. The address may be changed by the system designer since the 8620C does not require any particular address. When changing addresses, be sure the new address does not conflict with those of other instruments using the HP-IB.

3-65. Unaddressing

3-66. Once the 8620C is addressed, it remains addressed until it is unaddressed or cleared by the system controller. There are several ways to unaddress the 8620C:

- a. Sending Unlisten command (077 octal ASCII ?). This command must be given in the Command Mode (ATN true).
- b. Pulling Interface Clear (IFC) line true. This asynchronously clears all instruments on the HP-IB.
- c. Turning 8620C mainframe OFF.

3-67. RESPONSE TIMING CONSIDERATION

3-68. The time required by the 8620C to accept each character is approximately 5 μ sec. Any change of frequency in the plug-in will need 10 msec or less for stepping across the entire band and proportionally less time for smaller changes in frequency. (This time delay is required by the 8620C, after the command is received, and is due to inherent delays in the oscillator.)

Table 3-5. Listen Address Codes

I		Al and a second s	n Addres		
		Bits			ASCII
	h4	^b 3	^b 2	^b 1	Character
0	0	0	0	0	SP
0	0	0	0	1	!
0	0	0	1	0	"
0	0	0	1	1	
0	0	1	0	0	S
0	0	1	0	1	%
-0	0	1	1	0	& ,
0	0	1	1	1	,
0	1	0	0	0	(
0	1	0	0	1	() *
0	1	0	1	0	*
0	1	0	1	1	+
0	1	1	0	0	'
0	1	1	0	1	—
0	1	1	1	0	
0	1	1	1	1	1
ι	0	0	0	0	0
ι	0	0	0	1	1
1	0	0	1	0	2
1	0	0	1	1	3
1	0	1	0	0	4
1	0	1	0	1	5
1	0	1	1	0	6
t	0	1	1	1	6 7 8
L	l	0	0	0	8
L	t	0	0	1	9
1	1	0	1	0	:
1	1	0	1	1	;
1	t	1	0	0	<
1	t	1	0	1	·· ·, V = ^
t	t	1	1	0	>

3-69. 8US OPERATING CONSIDERATIONS

3-70. When a device capable of activating IFC is powered ON during system operation, it may cause the active controller on the bus to relinquish control, resulting in errors. The controller must transmic IFC to regain active control.

3.71. Prior to addressing new listeners it is recommended that all previous listeners be unaddressed using the Unlisten Command "?".

3-72. OPERATOR'S MAINTENANCE

3.73. Operator's maintenance consists of replacing line fuse and indicator lamps, cleaning the Model 8620C

air filter, and changing the frequency scales. These items are discussed in the following paragraphs.

3-74. Fuses

·····
CAUTION
S CAUTION 3
• • • • • • • • • • • •

Make sure that only fuses with the required rated current and of the specified type are used for replacement. The use of repaired fuses and other short-circuiting of ufse-holders should be avoided.

3-75. There are five fuses in the 8620C. The main ac line fuse is located at the back of the instrument next to the line cord jack. The ac line cord must be removed to gain access to the fuse compartment. The fuse may be removed by pulling the lever inside the fuse compartment. (See Figure 2-1.) For the 100 or 120 Vac supply source, use a 3-amp line fuse; for the 220 or 240 Vac supply, use a 1.5 amp line fuse. There are four other fuses inside the instrument. Access to these requires removing instrument top cover. These fuses should be replaced only by qualified service personnel who are aware of the hazard involved. Replacement of these fuses is covered in Section VIII.

3-76. Air Filter

WARNING

To avoid personal injury, set LINE switch to OFF and remove AC line cord from rear of instrument before removing fan filter.

3-77. The fan has a filter attached from the outside for ease of cleaning or replacement. To service the filter, remove the four screws holding filter to rear panel and either replace it with the appropriate part listed in Section VI or clean it, using a solution of warm water and soap.

3-78. Lamp Replacement

3-79. The five front-panel lamps located in the mode selector pushbutton switches and the LINE lamp are replaceable from the front. (See Figure 3-3 for procedure.)

3-80. Frequency Scale Installation

3-81. See procedure in Paragraph 2-26.

3-12

Pin on J2*	Input Command Output Signal		Pin on J2*	Input Commands or Output Signals
13	Band Select		32	Marker Sweep Select
14	Band Select	Inputs	34	Stop Sweep Pulse
16	Pen Lift Common		36	40 dB
17	Z Axis/Mkr/Pen Lift		37	20 dB RF ATTN
19	+20V		38	10 dB
20	+5V	Outputs	39	Remote Band Enable
26	Sequential Sync		40	RF Blanking – Output
27	Marker		41	Remote Attn Enable – Input
28	External Sweep		43	Ground
29	∆F Mode Select	_	44	-10V Outputs
30	CW Mode Select	Inputs	45	_40V }
31	Full Sweep Select			*Pins not shown are unused in this application.

Table 3-6.	Remote Programming	Using Standard	8620C (1 o	f 2)
------------	--------------------	----------------	------------	------

R 10 dB line 20 dB line 40 dB line REMOTE ATTN SELECT **RF Output Attenuation** J2 Pin 38 J2 Pin 37 J2 Pin 36 J2 Pin 41 0 dB Х Х Х 1 0 dB 0 0 0 0 10 dB 1 0 0 0 20 dB 0 0 1 0 30 dB 1 1 0 0 40 dB 0 0 0 1 50 dB 1 0 1 0 60 dB 0 1 1 0 70 dB 1 1 1 0

RF	Output	Attenuation	Programming
	Juipui	11110114411011	I Ogi antinting

	Band Sel	lect Programming	
Band	A	B	Remote Band Select J2 Pin 39
	J2 Pin 13	J2 Pin 14	JZ PIN 39
X	x	x	1
1	1	1	0
2	1	0	0
3	O	0	0
4	0	1	0

Table 3-6. Remote Programming Using Standard 8620C(2 of 2)

Manual Remote Mode Programming

Mode Selected	J2 Pin 29	J2 Pin 30	J2 Pin 31	J2 Pin
FULL SWEEP	1	1	0	1
MARKER SWEEP	1	1	1	0
CW	1	0	1	1
ΔF	0	1	1	1
	NOTE			
Each mode is selec 1 indicates no closu	cted by a momentary o re to ground. Ground is p	or steady state in J2-43.	e closure to ground (0).
Each mode is select 1 indicates no closu	cted by a momentary of re to ground. Ground is p NOTE	in J2-43.	e closure to ground (0).

Pin on J2*	Input Commands or Output Signals		Pin on J2*	Input Commands or Output Signals					
1	BCD8, 8 Volts		26	Sequential Sync	<u> </u>				
2	BCD4, 4 Volts		27	Marker	Output				
3	BCD2, 2 Volts	Voltage	28	External Sweep					
4	BCD1, 1 Volt	J Units	29	∆F Mode Select					
5	BCD8, 0.8 Vol		30	CW Mode Select					
6	BCD4, 0.4 Vol	t Voltage	31	FULL SWEEP Mode Select					
7	BCD2, 0.2 Vol	t Tenths	32	MARKER SWEEP Mode Select					
8	BCD1, 0.1 Vol			BCD2, 0.002 Volt	Inputs				
9	BCD8, 0.08 Vo		34	Stop Sweep Pulse					
10	BCD4, 0.04 Vo	olt Voltage	35	BCD4, 0.004 Volt					
11	BCD2, 0.02 Vo		36	40 dB					
12	BCD1, 0.01 Vc	lt -	37	20 dB RF Attenuation					
13	Band Select		38	10 dB J J					
14	Band Select		39	Remote Band Enable - Input					
15	Remote D/A E		40	RF Blanking - Output					
16	Pen Lift Comm		41	Remote Attn Enable					
17	Z Axis/Mkr/Per	n Liit J	42	BCD8, 0.008 Volt Inputs					
18	BCD1, 0.001 V	olt – Input	43	Ground					
19	+20V Outpu	ts	44	-10V Outputs					
20	+5V)		45	$-40V$ $\int c^{-40V}$					
	in this applica		IOTES						
	signals fro	om J2 pins 1 thru 12, 18, 33, 3	35, and 42.	uired to accept frequency control					
		rol signals from J2 pins 36 thr			·····				
		Band Select .	Programming	·····					
		•	B	Remote Band					
	Band	A		Select					
	Band	A J2 Pin 13	J2 Pin 14						
	Band X								
		J2 Pin 13	J2 Pin 14	J2 Pin 39					
	x	J2 Pin 13 X	J2 Pin 14 X	J2 Pin 39 X					
	X 1	J2 Pin 13 X 1	J2 Pin 14 X 1	J2 Pin 39 X 0					

Table 3-7. Remote Programming Using 8620C Option 001 (1 of 2)

		10	dB line	20 dB line	4	0 dB line	REMOTE ATTN SELEC				
RF O	utput Attenuation	J2	Pin 38	J2 Pin 37	J	2 Pin 36	J2 Pin 41				
	0 dB		х	x		x	1				
	0 dB		0	0		0	0				
	10 dB		1	0		0	0				
	20 dB		0	1		0	0				
	30 dB		1	1		0	0				
	40 dB		0	0		1	0				
	50 dB		1	0		1	0				
	60 dB		0	1		1	0				
	70 dB	1	1		1	0					
			Manual .	Remote Pro	grammi	ng					
	Mode Selected		J2 Pin 29	J2 F	'in 30	J2 Pin 31	J2 Pin 32				
	FULL SWEEP		1		1	0	1				
	MARKER SWEI	EP	1		1	1	0				
	CW		1		0	1	1				
	ΔF		0		1	1	1				
	NOTES										
	1. Analog and digital sweep modes are available. The digital sweep mode is provided when the digital-to-analog converter is enabled.										
	2. The bandwidth is dependent upon the front-panel control when the digital-to-analog converter is enabled.										
	3. Each mod no closure	e is sele to grou	cted by a mom nd. Ground is p	entary or stea in J2-43.	ıdy state	closure to ground	(0). 1 indicates				
				NOTES							
	1 = Open or ≥ +2.0 Vdc.										

Table 3-7. Remote Programming Using 8620C Option 001 (2 of 2)

Pin on J2*	Pin on J2*	
16Pen Lift Common17Z-Axis/Mkr/Pen Lift19+20V20+5V26Sequential Sync27Marker28External Sweep34Stop Sweep Pulse	41 Remo 43 Grou 4410V 4540V	B RF ATTENUATION** Blanking – Output ote Attn Enable – Input ind V Outputs

Table 3-8. Programming Connector Commands and Signals Available for Additional Interface Capabilities

- (See paragraph 2-39 for installation.)
- 8621B Option 010 programmable 70 dB attenuator is required to accept RF attenuation ** control signals from J2 pins 36, 37, and 38.

Figure 3-3. Lamp Replacement

Figure 3-4. Operator's Check (1 of 3)

Figure 3-4. Operator's Check (2 of 3)

OPERATOR'S CHECK

CW VERNIER pointer 🚯 Center or 0
MARKERS 13 AMPL
MODE 15 AUTO
TRIGGER (1) INT
TIME SECONDS (2) 101
TIME-SECONDS Vernier 🕕 Fully clockwise
1 kHz SQ WV/OFF (Rear Panel) 20 OFF
DISPLAY BLANKING/OFF (Rear Panel) 18 DISPLAY BLANKING
RF BLANKING/OFF (Rear Panel) 😗 OFF

- 3. Press LINE pushbutton switch 11 to turn on instrument; LINE and FULL SWEEP 1 pushbuttons should light.
- 4. Set controls on RF Plug-in to obtain an RF signal output. Oscilloscope trace should show detected RF signal output below zero-volt reference. There should be no discontinuity in swept trace across band. Three markers should appear on sweep: Start Marker at position indicated by green pointer 3, CW Marker at position indicated by white pointer 6, and Stop Marker at position indicated by red pointer 9.
- 5. Press MARKER SWEEP pushbutton (1); pushbutton should light. CW Marker should appear at center of oscilloscope trace as indicated by position of white CW MARKER pointer (6). Sweep should begin at frequency setting of START MARKER pointer (3) and end at frequency setting of STOP MARKER pointer (9).
- 6. Set MODE switch 15 to MANUAL position and adjust MANUAL control 16. Trace dot should move across oscilloscope CRT. No markers are available in Manual mode.
- 7. Set MODE switch to AUTO.
- 8. Press CW pushbutton **1**; pushbutton should light and trace on oscilloscope should be a dot. Change frequency setting of CW MARKER pointer and dot should move across oscillo-scope CRT.
- 9. Press CW VERNIER pushbutton (8); pushbutton should light. Adjust CW VERNER control and oscilloscope dot should move across CRT at a very slow rate and through a narrow range. Press CW VERNIER pushbutton again to disable CW VERNIER function.
- 10. Press $\triangle F$ pushbutton 4; $\triangle F$ and CW pushbuttons should light. Sweep trace below zero volt reference should be displayed on oscilloscope CRT.

NOTE

In $\triangle F$ mode, two markers are available by adjusting the START MARKER and STOP MARKER controls.

Figure 3-4. Operator's Check (3 of 3)

Figure 3-5. Full Sweep Mode (1 of 2)

FULL SWEEP MODE

- 1. Connect sweep oscillator as shown in Figure 3-4 test setup.
- 2. Set 8620C controls as follows:

BAND 2	Depress to select frequency band
START MARKER pointer	Left-hand end mark on scale
CW MARKER pointer 6	Middle mark on scale
STOP MARKER pointer 9	Right-hand end mark on scale
ΔF control 5	Fully clockwise
CW VERNIER control 8 .	Fully clockwise
MARKERS 13	INTEN
MODE 15	AUTO
TRIGGER 14	INT
TIME-SECONDS 12	
TIME-SECONDS Vernier 🕕	Fully clockwise
1 kHz SQ WV/OFF (Rear Par	nel) 21 OFF
RF BLANKING/OFF (Rear F	Panel) (19 OFF
DISPLAY BLANKING/OFF	(Rear Panel) 🔢 . DISPLAY BLANKING

- 3. Press LINE pushbutton switch 1) to turn on instrument; LINE and FULL SWEEP pushbuttons should light.
- 4. Set controls on RF plug-in to obtain an RF signal output. Oscilloscope trace should show detected RF signal output below zero-volt reference. There should be no discontinuity in swept trace across band. Three bright marker spots should appear on trace: Start Marker at position of green pointer 3 CW Marker at position of white pointer 6 and Stop Marker at position of red pointer 9. Set MARKERS switch 13 to AMPL to obtain amplitude markers on trace.
- 5. Sweep width is full band of frequencies of scale selected and cannot be changed.
- 6. Band may be swept manually be setting MODE switch 15 to MANUAL and adjusting MANUAL control 16 through its range. Nor markers are available in Manual mode.
- 7. Select SINGLE sweep as follows: Set MODE switch 15 to AUTO. Press TRIGGER switch
 to SINGLE position and release. Repeat this to obtain each single sweep. External (EXT) trigger mode is available by setting TRIGGER switch to EXT and applying external trigger pulse to rear-panel EXT TRIGGER 20. Sweep may be triggered from ac line by setting TRIGGER switch to LINE.

Figure 3-6. Marker Sweep Mode (1 of 2)

MARKER SWEEP MODE

- 1. Connect sweep oscillator as shown in Figure 3-4 test setup.
- 2. Set 8620C controls as follows:

BAND 2 Depress to select frequency band	
START MARKER pointer 3 Left-hand end mark on scale	
CW MARKER pointer 6 Middle mark on scale	
STOP MARKER POINTER 🖲 Right-hand end mark on scale	
ΔF Control 5	
CW VERNIER control 🚯 Fully clockwise	
MARKERS 🚯 INTEN	
MODE (5) AUTO	
TRIGGER 14 INT	
TIME-SECONDS 12	
TIME-SECONDS Vernier 🕕 Fully clockwise	
1 kHz SQ WV/OFF (Rear Panel) (2) OFF	
RF BLANKING/OFF (Rear Panel) 😗 OFF	
DISPLAY BLANKING/OFF (Rear Panel) 🚯 . DISPLAY BLANKING	

- 3. Press LINE pushbutton switch 1 to turn on instrument; LINE and FULL SWEEP pushbuttons should light.
- 4. Press MARKER SWEEP pushbutton (10); pushbutton should light.
- 5. Set controls on RF plug-in to obtain an RF signal output. Oscilloscope trace should show detected RF signal output below zero-volt reference. There should be no discontinuity in swept trace across band. Bright marker spot should be at middle of trace.
- 6. Sweep width is changed by START MARKER 1 and STOP MARKER 1 controls marker position is changed by CW MARKER control 1.
- 7. Set MARKERS switch 13 to AMPL to obtain amplitude markers on trace.
- 8. Band may be swept manually by setting MODE switch 15 to MANUAL and adjusting MANUAL control 16 through its range. No markers are available in Manual mode.
- 9. Select SINGLE sweep as follows: Set MODE switch (5) to AUTO. Press TRIGGER switch (4) to SINGLE position and release. Repeat this to obtain each single sweep. External (EXT) trigger mode is available by setting TRIGGER switch to EXT and applying external trigger pulse to rear-panel EXT TRIGGER input (2). Sweep may be triggered from ac line by setting TRIGGER switch to LINE.

Figure 3-7. CW Operating Mode (1 of 2)

CW MODE

- 1. Connect sweep oscillator and set 8620C controls as shown in Figure 3-4.
- 2. Press LINE pushbutton switch 🖲 to turn on instrument; LINE and FULL SWEEP 🕕 pushbuttons should light.
- 3. Depress BAND switch 2 until correct band is displayed at window.
- 4. Press CW pushbutton 3. Pushbutton should light and trace on oscilloscope should be a dot. Change frequency with CW MARKER control and dot should move across oscillo-scope CRT.
- 5. Rotate CW MARKER control 3 to set CW pointer 4 at selected frequency on scale.
- 6. If it is desired to modulate CW signal, set rear-panel 1kHz SQ WV/OFF slide switch (1) to either OFF or 1kHz SQ WV position. In OFF position, a modulation signal may be applied from external source through rear-panel EXT AM connector (9). In 1kHz SQ WV position, a 1kHz internal oscillator modulates RF output signal.
- 7. To expand CW frequency dial, press CW VERNIER pushbutton switch **5**. CW VERNIER control allows CW frequency to be changed by small amounts. Set X.1-X1 multiplier slide switch **7**, located below CW VERNIER control, for bandspread desired.

Figure 3-8. $\triangle F$ Sweep Mode (1 of 2)

 Set 862 Press 1 buttor Set cor Press 2 CW M 	ct sweep oscillator as shown in Figure 3-4 test setup. 20C controls as follows: BAND 2 Depress to select desired frequency band CW MARKER pointer 5 Selected ΔF center frequency ΔF control 4 Fully clockwise MODE 12 AUTO TRIGGER 10 INT TIME-SECONDS 5 101 TIME-SECONDS 5 101 TIME-SECONDS Vernier 7 Fully clockwise 1 kHz SQ WV/OFF (Rear Panel) 18 OFF RF BLANKING/OFF (Rear Panel) 16 OFF DISPLAY BLANKING/OFF (Rear Panel) 15 DISPLAY BLANKING LINE pushbutton switch 14 to turn on instrument; LINE and FULL SWEEP push- ns should light. ΔF pushbutton switch 3 ; ΔF and CW 5 pushbuttons should light.
 Press I buttor Set co Press 2 CW M 	BAND 2 Depress to select desired frequency band CW MARKER pointer 5 Selected △F center frequency △F control 4 Fully clockwise MODE 12 AUTO TRIGGER 10 INT TIME-SECONDS 9 101 TIME-SECONDS Vernier 6 OFF 1 kHz SQ WV/OFF (Rear Panel) 18 OFF RF BLANKING/OFF (Rear Panel) 16 OFF DISPLAY BLANKING/OFF (Rear Panel) 15 DISPLAY BLANKING LINE pushbutton switch 14 to turn on instrument; LINE and FULL SWEEP push- antrols on RF plug-in to obtain an RF signal output. Autor
buttor 4. Set co 5. Press 4 6 CW M	CW MARKER pointer 5 Selected △F center frequency △F control 4 Fully clockwise MODE 12 AUTO TRIGGER 10 INT TIME-SECONDS 1 -01 TIME-SECONDS Vernier 8 Fully clockwise 1 kHz SQ WV/OFF (Rear Panel) 16 OFF RF BLANKING/OFF (Rear Panel) 16 OFF DISPLAY BLANKING/OFF (Rear Panel) 15 DISPLAY BLANKING LINE pushbutton switch 14 to turn on instrument; LINE and FULL SWEEP pushnes should light. ontrols on RF plug-in to obtain an RF signal output. INT
buttor 4. Set co 5. Press 4 6 CW M	ns should light. ontrols on RF plug-in to obtain an RF signal output.
5. Press 2 6. CW M	
6. CW M	\triangle F pushbutton switch 3; \triangle F and CW 6 pushbuttons should light.
6. CW M	
SIOr	MARKER control 6 sets center frequency of sweep. START MARKER 1 and MARKER 1 controls adjust position of markers.
7. Set ∆ deviat band.	F control 3 abd $\triangle F$ multiplier slide switch 1 below $\triangle F$ control for selected tion from center frequency. Trace on oscilloscope should display across the swept
8. Band MANU	may be swept manually by setting MODE switch 12 to MANUAL and adjusting UAL control 13 through its range. No markers are available in MANUAL mode.
10 t (EXT) trigger	t SINGLE sweep as follows: Set MODE switch 12 to AUTO. Press TRIGGER switch to SINGLE position and release. Repeat this to obtain each single sweep. External) trigger mode is available by setting TRIGGER switch to EXT and applying external er pulse to rear-panel EXT TRIGGER input 10. Sweep may be triggered from ac line tting TRIGGER switch to LINE.

Figure 3-8. $\triangle F$ Sweep Mode (2 of 2)

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. The procedures in this section test the electrical performance of the 8620C Sweep Oscillator/ RF Unit combination. The performance standards are the specifications in Section I of the applicable RF Unit manual. All tests can be performed without access to the interior of the instruments.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for the performance tests is listed in the Recommended Test Equipment table in Section I of this manual and the applicable RF Unit manual. Any equipment that satisfies the critical specifications given in the tables may be substituted for the recommended model(s).

4-5. TEST RESULTS

4-6. If the 8620C Sweep Oscillator/RF Unit combination fails to meet performance test speci-

fications, and a circuit malfunction is not suspected, refer to 8620C Adjustments (Section V) in this manual. If, after 8620C Adjustments have been performed, the instrument combination still fails to meet specifications, refer to RF Unit Adjustments in the applicable RF Unit manual. If a circuit malfunction is suspected, refer to troubleshooting section of this manual or applicable RF Unit manual.

NOTE

To avoid parallax when setting a pointer to a graticule mark, view the pointer and scale directly from the front of the instrument panel.

NOTE

Press LINE pushbutton on 8620C to turn power ON and allow 30 minutes warm-up time.

PERFORMANCE TESTS

4-7. FULL SWEEP TEST

- SPECIFICATION: Full Sweep: Sweeps the full band as determined by plug-in and band select lever. End-point Accuracy: Refer to RF Unit Specifications, same as frequency accuracy.
- DESCRIPTION: Full Sweep end-point accuracy is checked in FULL SWEEP using Manual mode.
- EQUIPMENT: Refer to RF Unit Frequency Range and Accuracy performance test.
- PROCEDURE: In FULL SWEEP, Manual mode, check low end and high end of band for end-point accuracy according to RF Unit performance test procedure for manual sweep accuracy; Frequency Range and Accuracy Test.

4-8. MARKER SWEEP TEST

SPECIFICATION: Marker Sweep: Sweeps from START MARKER to STOP MARKER frequency settings.
 Range: Both settings continuously and independently adjustable over the entire frequency range; can be set to sweep either up or down in frequency.
 End-Point Accuracy: Refer to RF Unit specifications, same as frequency accuracy.

DESCRIPTION: Marker Sweep end-point accuracy is checked in MARKER SWEEP using Manual mode.

PERFORMANCE TESTS

4-8. MARKER SWEEP TEST (Cont'd)

- EQUIPMENT: Refer to RF Unit Frequency Range and Accuracy performance test.
- PROCEDURE: In MARKER SWEEP, Manual mode, check low end and high end of band for end-point accuracy according to RF Unit performance test for manual sweep accuracy; Frequency Range and Accuracy Test.

4-9. CW OPERATION TEST

SPECIFICATION: CW Operation: Single-frequency RF output. Adjusted with CW MARKER control and activated by pressing CW pushbutton.

Accuracy: Refer to RF Unit specifications, same as frequency accuracy.

- DESCRIPTION: CW Frequency accuracy is checked in CW mode.
- EQUIPMENT: Refer to RF Unit Frequency Range and Accuracy performance test.
- PROCEDURE: In CW, check CW Frequency accuracy at low end, center, and high end of band according to RF Unit performance test for CW mode accuracy; Frequency Range and Accuracy Test.

4-10. CW VERNIER TEST

Accuracy: Refer to RF Unit specifications, same as frequency accuracy.

DESCRIPTION: CW Vernier accuracy is checked at left-edge, then right-edge of scale in both X1 and X.1 multiplier positions with CW frequency control at center-scale mark.

Figure 4-1. CW Vernier Test Setup

EQUIPMENT:	Sweep Oscillator .				•			HP 8620C
	Frequency Counter		•					HP 5340A
	10 dB Attenuator	•		•	•			HP 8491B, Option 010

4-10. CW VERNIER TEST (Cont'd)

PROCEDURE: a. Connect equipment as shown in Figure 4-1.

- b. Press CW and CW VERNIER pushbuttons.
- c. Set CW frequency control to center-scale mark and CW VERNIER Multiplier to X1. Set CW VERNIER pointer to center-scale mark. Record frequency counter indication for use later.
- d. Set CW VERNIER pointer to left-edge scale mark. Frequency indication should be lower than that recorded in step a by $5\% \pm 0.3\%$ of full frequency bandwidth.
- e. Set CW VERNIER pointer to right-edge scale mark. Frequency indication should be higher than that recorded in step a by $5\% \pm 0.3\%$ of full frequency bandwidth.
- f. Set CW VERNIER Multiplier to X.1. Set CW VERNIER pointer to center-scale mark and record frequency indication for use later.
- g. Set CW VERNIER pointer to left-edge scale mark. Frequency should be lower than that recorded in step d by $0.5\% \pm 0.05\%$ of full frequency range.
- h. Set CW VERNIER pointer to right-edge scale mark. Frequency should be higher than that recorded in step d by $0.5\% \pm 0.05\%$ of full frequency range.

4-11. △ F SWEEP TEST

SPECIFICATION: ΔF Sweep: Sweeps upward in frequency, centered on CW setting. CW Vernier can be activated for fine control of center frequency.

Width: Continuously adjustable and calibrated from zero to 1%, zero to 10%, or zero to 100% of usable frequency band as selected with front panel slide switch. Scale calibrated directly in MHz.

Width Accuracy: $\pm 1\%$ of maximum $\triangle F$ plus $\pm 2\%$ of $\triangle F$ being swept.

Center Frequency Accuracy: Refer to RF Unit specifications, same as frequency accuracy.

DESCRIPTION: Accuracy of ΔF Sweep is checked, with maximum ΔF , in all multiplier positions by monitoring RF Output with frequency counter.

PERFORMANCE TESTS

4-11. △F SWEEP TEST (Cont'd)

Figure 4-2. ΔF Sweep Test Setup

EQUIPMENT:	Sweep Oscillator .							HP 8620C
DQUIMENT	Frequency Counter							HP 5340A
	10 dB Attenuator							HP 8491B, Option 010
	10 42 11000000000000000							

- PROCEDURE: a. Connect equipment as shown in Figure 4-2.
 - b. Set CW pointer to center-scale mark and adjust for center-scale frequency indication on frequency counter.

NOTE

Center-scale frequency can be determined by adding one-half of total bandwidth to the low-end frequency of the band.

Example:

86330B (1.8-4.2 GHz) RF Plug-in

Total bandwidth is range from 1.8 to 4.2 GHz or 2.4 GHz. Center-scale frequency, therefore, is 1.8 GHz + 1.2 GHz or 3.0 GHz for the 86330B.

- c. Press $\triangle F$ pushbutton. Set $\triangle F$ Multiplier to X10. Set $\triangle F$ pointer to right-edge scale mark.
- d. Set sweep MODE to MANUAL, and MANUAL control fully clockwise.
- e. Frequency counter should read high-end frequency of band $\pm 3\%$ of total bandwidth.

NOTE

The tolerance of $\pm 3\%$ used is determined using specifications of Table 1-1 in this manual: $\pm 1\%$ of maximum $\triangle F \pm 2\%$ of $\triangle F$ being swept. With $\triangle F$ Multiplier in the X10 position and $\triangle F$ pointer to right-edge scale mark, the total bandwidth is being swept. Therefore, the tolerance becomes $\pm 3\%$ of the total bandwidth.

Example: 86330B (1.8-4.2 GHz) RF Plug-in

4-11. △F SWEEP TEST (Cont'd)

Example: (cont'd)

Total bandwidth is 2.4 GHz. Therefore, tolerance is $\pm 3\%$ of 2.4 GHz of ± 72 MHz. Frequency indication, then, would be 4.2 GHz ± 72 MHz for the 86330B.

- f. Set MANUAL control fully counterclockwise. Frequency counter should read low-frequency end of band ±3% of total bandwidth.
- g. Set ΔF Multiplier to X1. Adjust CW and CW VERNIER controls for a convenient frequency counter indication. Record reading for use later.
- h. Set MANUAL control fully clockwise. Frequency counter indication should be higher than reading recorded in step g by $10\% \pm 0.3\%$ of total bandwidth.

NOTE

The tolerance of $\pm 0.3\%$ used is determined using specifications of Table 1-1 in this manual: $\pm 1\%$ of maximum $\Delta F \pm 2\%$ of ΔF being swept. With ΔF Multiplier in X1 position and ΔF pointer to rightedge scale mark, maximum ΔF and ΔF being swept are both 10% (0.1) of total bandwidth. Therefore, the tolerance becomes $\pm 3\%$ times the percent of band used (10%) or $\pm 0.3\%$ of total bandwidth.

Example:

86330B (1.8-4.2 GHz) RF Plug-in

Total bandwidth is 2.4 GHz. Therefore, 10% of total bandwidth is 0.24 GHz or 240 MHz. Tolerance is $\pm 0.3\%$ of total bandwidth or ± 7.2 MHz. Frequency indication, then, would be 240 MHz ± 7.2 MHz higher than reading recorded in step g for the 86330B.

- i. Set MANUAL control fully counterclockwise. Set ΔF Multiplier to X.1. Adjust CW and CW VERNIER controls for a convenient frequency indication. Record reading for use later.
- j. Set MANUAL control fully clockwise. Frequency counter indication should be higher than reading recorded in step i by $1.0\% \pm 0.03\%$ of total bandwidth.

NOTE

The tolerance of $\pm 0.03\%$ used is determined using specifications of Table 1-1 in this manual: $\pm 1\%$ of maximum $\Delta F \pm 2\%$ of ΔF being swept. With ΔF Multiplier in X.1 position and ΔF pointer to right-edge scale mark, maximum ΔF and ΔF being swept are both 1.0% (0.01) of total bandwidth. Therefore, the tolerance becomes $\pm 3\%$ times the percent of band used (1.0%) or $\pm 0.03\%$ of total bandwidth.

Example:

86330B (1.8-4.2 GHz) RF Plug-in

4-11. △F SWEEP TEST (Cont'd)

Example (cont'd):

Total bandwidth is 2.4 GHz. Therefore, 1.0% of total bandwidth is 0.024 GHz or 24 MHz. Tolerance is $\pm 0.03\%$ of total bandwidth or ± 0.72 MHz. Frequency indication would be 24 MHz ± 0.72 MHz higher than reading recorded in step i for the 86330B.

- 4-12. SWEEP TIME ADJUST AND STOP SWEEP TEST (HP Model 86290A ONLY)
- SPECIFICATION: Sweep Time Adjust: Input to 8620C sweep circuits provided by wideband RF Plug-in to reduce the sweep time when sweeping full range.

Stop Sweep Pulse: Input to 8620C sweep circuits provided by wideband RF Plug-in to stop the sweep during the time RF Plug-in is changing bands to ensure full-range uninterrupted sweep.

DESCRIPTION: Sequential sweep ramp is displayed on oscilloscope and sweep time interval relationships are verified. Timing of stop sweep pulse is verified by time comparison of negative blanking output and sequential sweep ramp.

Figure 4-3. Sweep Time Adjust and Stop Sweep Test Setup

EQUIPMENT:Sweep OscillatorHP 8620COscilloscope; Variable PersistenceHP 181A/1801A/1820C

Connect equipment as shown in Figure 4-3.

PROCEDURE: a.

- b. Set DISPLAY BLANKING/OFF switch on 8620C rear panel to DISPLAY
- c. Set TIME-SECONDS switch to .1-.01 and TIME-SECONDS Vernier control fully clockwise. Select Band 4.
- d. Press FULL SWEEP pushbutton.

BLANKING.

e. Adjust oscilloscope Channel A and Channel B to display waveform as shown in Figure 4-4.

4-12. SWEEP TIME ADJUST AND STOP SWEEP TEST (HP Model 8629A ONLY) (Cont'd)

- f. Time (a) should be shorter than both times (c) and (e). Time (c) should be longer than both Times (a) and (e). Time (e) should be longer than Time (a) but shorter than Time (c).
- g. Time (d) should be longer than Time (b).
- h. Relationship of sequential sweep ramp (Channel A) and Negative Blanking waveform (Channel E) should be as shown in Figure 4-4.

Figure 4-4. Sequential Sweep Ramp Compared in Time to Negative Blanking

4-13. AMPLITUDE MODULATION TEST

SPECIFICATION: Internal AM: Square-wave modulation on all sweep times (internally adjusted from 950 to 1050 Hz).

ON/OFF Ratio: Refer to RF Unit specifications.

DESCRIPTION: Internal 1 kHz modulation is selected and modulated RF output is monitored on frequency counter.

PERFORMANCE TESTS

4-13. AMPLITUDE MODULATION TEST (Cont'd)

Figure 4-5. Amplitude Modulation Test Setup

EQUIPMENT:Sweep OscillatorHP 8620CAPC-7 to N Male AdapterHP 1250-0479Crystal DetectorHP 423A or HP 8470A as required10 dB AttenuatorHP 8491B, Option 010Frequency CounterHP 5340A

PROCEDURE: a. Set POWER LEVEL control on RF Plug-in front panel fully counterclockwise.

- b. Connect equipment as shown in Figure 4-5.
- c. Set 1kHz SQ WV/OFF switch on 8620C rear panel to 1kHz SQ WV.
- d. Press CW pushbutton.
- e. Set frequency counter to read 1 kHz and rotate POWER LEVEL control clockwise until frequency counter indicates a frequency.

CAUTION

Care must be taken not to exceed the maximum power input limit of frequency counter.

f. Frequency counter indication should be 1.0 kHz ±0.05 kHz.

4-14. BLANKING OUTPUTS TEST

SPECIFICATION: Blanking: With RF BLANKING/OFF switch set to RF BLANKING, RF is automatically turned off during retrace and turned on after completion of retrace. On automatic sweeps, RF is on long enough before sweep starts to stabilize external circuits and equipment whose response is compatible with the selected sweep rate.

Blanking Outputs: Rectangular pulse approximately +5V into 2500 ohms (coincident with RF blanking), available from rear-panel Z-AXIS/MKR/PEN LIFT output jack. A negative rectangular pulse +5V into 2500 ohms) is available from rear-panel NEGATIVE BLANKING output jack.

4-14. BLANKING OUTPUTS TEST (Cont'd)

DESCRIPTION: Display Blanking and RF Blanking are checked by monitoring detected RF output on oscilloscope with either Display Blanking or RF Blanking. Negative Blanking and Positive Blanking are checked by time comparison of blanking waveform and sweep ramp.

Figure 4-6. Display Blanking and RF Blanking Test Setup

EQUIPMENT:	Sweep Oscillator HP 8620C
	APC-7 to N Male Adapter HP 1250-0479
	Crystal Detector HP 423A or HP 8470A as required
	Oscilloscope; Variable Persistence HP 181A/1801A/1820C

PROCEDURE: Display Blanking and RF Blanking:

- a. Set RF Plug-in POWER LEVEL control fully counterclockwise.
- b. Connect equipment as shown in Figure 4-6.
- c. Set TIME-SECONDS switch to .1-.01 and TIME-SECONDS Vernier control fully clockwise.
- d. Press FULL SWEEP pushbutton.
- e. Set DISPLAY BLANKING/OFF switch on 8620C rear panel to OFF. Set RF BLANKING/OFF switch on 8620C rear panel to OFF.
- f. Adjust oscilloscope and RF Plug-in POWER LEVEL control for display similar to typical display shown in Figure 4-7.
- g. Set 8620C rear-panel RF BLANKING/OFF switch to RF BLANKING.
- h. Oscilloscope display should be similar to typical display shown in Figure 4-8.
- i. Set 8620C rear-panel DISPLAY BLANKING/OFF switch to DISPLAY BLANKING.
- j. Oscilloscope display should be similar to typical display shown in Figure 4-9.
4-14. BLANKING OUTPUTS TEST (Cont'd)

Figure 4-7. Typical Display with No Blanking

Figure 4-8. Typical Display with RF Blanking

Figure 4-9. Typical Display with Display Blanking

Figure 4-10. Negative and Positive Blanking Test Setup

EQUIPMENT:	Sweep Oscillator HP 8620C Oscilloscope; Variable Persistence HP 181A/1801A/1820C
	Negative and Positive Blanking
	k. Connect equipment as shown in Figure 4-10. Verify oscilloscope Channel B connected to NEGATIVE BLANKING on 8620C rear panel.

4-14. BLANKING OUTPUTS TEST (Cont'd)

- 1. Set 8620C rear-panel DISPLAY BLANKING/OFF switch to DISPLAY BLANKING.
- m. Press FULL SWEEP pushbutton.
- n. Adjust oscilloscope to display waveforms as shown in Figure 4-11.
- o. Connect oscilloscope Channel B to 8620C rear-panel Z-AXIS/MKR/PEN LIFT connector.
- p. Adjust oscilloscope to display waveforms as shown in Figure 4-12.

Figure 4-11. Negative Blanking at J5 Compared in Time to Sweep Output at J1

4-15. TRIGGERED SWEEP TEST

- SPECIFICATION: Triggered Sweep: Sweep is actuated by front panel slide switch, or by externally applied signal $\geq +2$ volts peak, $>0.5 \ \mu$ s pulse width, and <1.0 MHz repetition rate. (Signal applied to rear-panel EXT TRIGGER input.)
- DESCRIPTION: START MARKER AND STOP MARKER pointers are set to the two end points and band is swept with MANUAL control. The sweep is then triggered with SINGLE sweep TRIGGER switch on front panel. In EXT position of the TRIGGER switch, an external voltage is applied to the rear panel and a single sweep is triggered each time a voltage is applied.

PERFORMANCE TESTS

4-15. TRIGGERED SWEEP TEST (Cont'd)

Figure 4-13. Triggered Sweep Test Setup

EQUIPMENT:	Pulse Generator	•	•	HP 8002A
	Sweep Oscillator		•	HP 8620C
	Oscilloscope; Variable Persistence			HP 181A/1801A/1820C

PROCEDURE: a. Connect equipment as shown in Figure 4-13.

- b. Press FULL SWEEP pushbutton.
- c. Set sweep MODE switch to AUTO, TIME-SECONDS switch to .1-.01, and TIME-SECONDS Vernier fully clockwise.
- d. Set TRIGGER switch to EXT. Adjust pulse generator for 2 volt positive pulse, pulse width of $0.5 \mu s$, and repetition rate of 1 MHz.
- e. Oscilloscope should display a continuous recurring trace.
- f. Disconnect EXT TRIGGER. Set TIME-SECONDS to 10-1.
- g. Set TRIGGER switch to SINGLE momentarily, then release. A single sweep should occur.

4-16. FREQUENCY MARKERS TEST

- SPECIFICATION: Frequency Markers: Three constant-width frequency markers are fully calibrated and independently adjustable over the entire range in FULL SWEEP; the markers are controlled by the START MARKER, STOP MARKER, and CW MARKER controls. In Δ F Sweep, Start and Stop Markers are available; in MARKER SWEEP, the CW Marker is available. Front panel switch provides for the selection of either amplitude or intensity markers (amplitude modulating the RF output or Z-axis modulating the CRT display).
- DESCRIPTION: Frequency markers are checked by displaying detected RF output on oscilloscope; first with amplitude markers, then intensity markers.

PERFORMANCE TESTS

4-16. FREQUENCY MARKERS TEST (Cont'd)

Figure 4-14. Frequency Markers Test Setup

EQUIPMENT:	Sweep Oscillator HP 8620C
	APC-7 to N Male Adapter HP 1250-0479
	Crystal Detector HP 8470A
	Oscilloscope; Variable Persistence HP 181A/1801A/1820C

- PROCEDURE: a. Set RF Plug-in POWER LEVEL control fully counterclockwise.
 - b. Connect equipment as shown in Figure 4-14.
 - c. Set TIME-SECONDS switch to .1-.01 and TIME-SECONDS Vernier fully clockwise.
 - d. Set 8620C rear-panel DISPLAY BLANKING/OFF switch to DISPLAY BLANK-ING. Set 8620C rear-panel RF BLANKING/OFF switch to RF BLANKING.
 - e. Set Start Marker (green pointer) to one-quarter scale, CW Marker (white pointer) to half-scale, and Stop Marker (red pointer) to three-quarter scale.
 - f. Set 8620C front-panel MARKERS switch to AMPL.
 - g. Press FULL SWEEP pushbutton.
 - h. Adjust RF Plug-in POWER LEVEL control and oscilloscope controls for display similar to typical display shown in Figure 4-15.
 - i. Set 8620C front-panel MARKERS switch to INTEN.
 - j. Oscillsocope display should be similar to typical display shown in Figure 4-16.

4-16. FREQUENCY MARKERS TEST (Cont'd)

Figure 4-15. Typical Display with Amplitude Markers

Figure 4-16. Typical Display with Intensity Markers

4-17. DIGITAL-TO-ANALOG CONVERTER TEST (OPTION 001)

- SPECIFICATION: Digital-to-Analog Converter: In the Programmed Mode of operation, the D/A Converter uses digital intelligence inputs to develop analog tuning voltages for frequency tuning with resolution of 10,000 points across full band.
- DESCRIPTION: Proper operation of the D/A Converter is verified by checking end-points (0 volt and +10 volt tuning voltages), then checking one-quarter scale, half-scale, and three-quarters scale frequency indications using digital inputs.

Figure 4-17. Digital-to-Analog Converter Test Setup

EQUIPMENT:	Sweep Oscillator HP 8620C	
	Frequency Counter HP 5340A	
	10 dB Attenuator HP 8491B, Option 010	
	50-pin Service Board	
	-	

- PROCEDURE: a. Set RF Plug-in POWER LEVEL control fully counterclockwise.
 - b. Connect equipment as shown in Figure 4-17.

4-17. DIGITAL-TO-ANALOG CONVERTER TEST (OPTION 001)

- c. Install 50-pin service board (HP Part No. 08620-60125) on 8620C rear-panel PRO-GRAMMING connector.
- d. Set remote D/A enable switch (R D/A) to GND. Set all BCD switches (8V, 4V, 2V, 1V, etc.) to GND.
- e. Press FULL pushbutton.
- f. Adjust RF Plug-in POWER LEVEL control until frequency counter indicates a frequency.

Care must be taken not to exceed the maximum power input limit of frequency counter or damage to the counter may occur.

- g. Frequency counter should read low-end frequency of band being tested. Refer to RF Unit specifications for CW mode frequency accuracy.
- h. Set 8V and 2V BCD switches to OPEN.
- i. Frequency counter should read high-end frequency of band. Refer to RF Unit specifications for CW mode frequency accuracy.
- j. Set BCD switches to OPEN in order indicated in Table 4-1. For each step in the table, refer to RF Unit specifications for CW mode frequency accuracy.

Table 4-1. BCD Inputs and Corresponding Frequency Outputs

BCD Switches (OPEN)	Tuning Voltage	Frequency
1. 2V, .4V, .08V, .01V .008V, .002V	2.5 Vdc	Determined by RF Plug-in CW mode frequency accur- acy specifications.
2. 4V, 1V	5.0 Vdc	acy specifications.
3. 4V, 2V, 1V, .08V, .01V, .008V, .002V	7.5 Vdc	

4-18. MODEL 8620C PERFORMANCE TEST USING HP-IB, OPTION 001

DESCRIPTION: This Performance Test uses an HP Model 9830A/B Calculator and HP-IB compatible test instruments to test many of the specifications of the HP Model 8620C and HP Model 86200 series RF Plug-ins.

PERFORMANCE TESTS

4-18. MODEL 8620C PERFORMANCE TEST USING HP-IB, OPTION 001 (Cont'd)

NOTE

For proper operation of this program, the following address codes must be used for the test equipment. (Refer to the individual Operating and Service manuals for location of address switches.)

436 A	Listen Address	"_"	3490A Listen Address	"6"
436 A	Talk Address	"M"	3490A Talk Address	"V"
5340A	Listen Address	****		
5340A	Talk Address	"J"	8620C Listen Address	"&"

Figure 4-18. HP-IB Performance Test Setup for FILE 2

Figure 4-19. HP-IB Performance Test Setup for FILE 4

PERFORMANCE TESTS

4-18. MODEL 8620C PERFORMANCE TEST USING HP-IB, OPTION 001 (Cont'd)

EQUIPMENT:	Sweep Oscillator				HP 8620C
	Frequency Counter .				HP 5340A, Option 011
	DC Digital Voltmeter	•			HP 3490A, Option 030
	Power Meter				HP 436A, Option 022
	Power Sensor				HP 8481A

PROCEDURE: 1. Cassette Program Loading Instructions

a. Insert a blank cassette tape into the 9830A/B calculator and mark take as follows:

А.	MARK		(FILE Ø)	
B.	MARK	$\begin{array}{c} \hline 1 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$	(FILE 1)	
C.	MARK	1 4 5 0 0	(FILE 2)	For
D.	MARK	1 1 0	(FILE 3)	ther
E.	MARK	12350	(FILE 4)	file l
F.	MARK	1 1 0	(FILE 5)	

NOTE or operation of th

For proper operation of the program, there must be a 10 "word" dummy file between each program file.

NOTE

If unfamiliar with HP Model 9830A/B Calculator operation, refer to 9830A Calculator Operating and Programming Manual, HP Part Number 09830-90001, for complete instructions for use of the calculator and its tape deck.

- b. Rewind tape completely.
- c. Enter first program listing (FILE \emptyset) into the calculator.
- d. Press
- e. Press A , then enter second (FILE 2) program and press A , then enter

third (FILE 4) program.

4-18. MODEL 8620C PERFORMANCE TEST USING HP-IB, OPTION 001 (Cont'd)

- f. Rewind tape and press \sim $\widehat{\circ}$
- g. When lazy T (+) appears on the caculator display, the program.
- h. Repeat step g for *FILE 2* and *FILE 4*.
- i. Press () then press () the calculator will respond by printing ENTER MODEL NUMBER.
- k. The calculator will immediately go to the proper file for the model number indicated and begin execution of the program. Read the calculator instructions carefully and do as the calculator instructs.

FILE 0 (1 of 5)

```
30 DIM M$[6],F[4],H[4],A$[10],B$[30],C[4],DS[5,50]
35 DIM ES[5,50],D$[30],WS[100],GS[55],V[4],I[4],B[5,50],AS[5,50]
40 P=1
45 REWIND
50 PRINT "ENTER MODEL NUMBER", LIN3
60 INPUT MŞ
70 IF LEN(M$)>5 THEN 120
80 IF M$[1,5] #"8620C" THEN 100
90 LOAD 2,10,30
100 PRINT "MODEL NUMBER AND POSITION NUMBER OF PLUG-IN MODULE ";
105 PRINT "TO BE CHECKED"LIN3
110 INPUT M$,P
120 IF M$[3,3]="3" THEN 1270
130 A=0
140 IF M$[4,4] <= "4" THEN 170
150 A=2
160 GOTO 200
170 IF M$[5,5]>"0" THEN 200
180 B = VAL(M\$[4,4]) + A
190 GOTO 210
200 B=VAL(M$[4,4])+VAL(M$[5,5])+A
210 IF B<9 THEN 230
220 B=9
230 GOTO B OF 240, 340, 540, 440, 720, 820, 920, 1020, 1120
240 REM 86210A SPECS
250 F[1]=1E+07
260 H[1] = 3.5E + 08
270 E1=7E+06
280 E2 = 7E + 06
290 Bl=1
300 CMD "?U&", "V0286E"
310 v1=286
320 V2=9999
330 LINK 4,10
340 REM 86220A
350 F[1]=1E+07
360 H[1]=1.3E+09
370 E1=1E+07
380 E2=E1
390 B1=1
400 CMD "?U&", "V0077"
410 V1=76.92
420 V2=9999
430 LINK 4,10
440 REM 86222A/B
450 F[1] = 1E + 07
460 H[1]=2.4E+09
470 E1=1E+07
480 E2=E1
490 Bl=1
500 CMD "?U&", "VOE"
```

FILE 0 (2 of 5)

51.0 V1=0 520 V2=9999 530 LINK 4,10 540 REM 86230A/B 550 E1=1E+07 560 E2=E1 570 IF M\$[6,6] ="B" THEN 650 580 F[1] = 2E + 09590 H[1] = 4E + 09600 Bl=1 610 CMD "?U&", "VOE" 620 V1=0 630 v2=9999 640 LINK 4,10 650 F[1]=1.8E+09 660 H[1]=4.2E+09 670 Bl=1 680 CMD "?U&", "VOE" 690 V1=0 700 V2=9999 710 LINK 4,10 720 REM 86241A 730 F[1] = 3.2E + 09740 H[1]=6.5E+09 750 E1=3E+07 760 E2=E1 770 Bl=1 780 CMD "?U&", "V0286E" 790 V1=286 800 v2=9714 810 LINK 4,10 820 REM 86242A/C 830 F[1]=5.9E+09 840 H[1]=9E+09 850 E1=3.5E+07 860 E2=E1 870 Bl=1 880 CMD "?U&", "VOE" 890 V1=0900 V2=9999 910 LINK 4,10 920 REM 86250A/B/C 930 F[1] = 8E + 09940 H[1]=1.24E+10 950 E1 = 4E + 07960 E2=E1 970 Bl=1 980 CMD "?U&", "VOE" 990 Vl=0 1000 V2=9999

FILE 0 (3 of 5)

1010 LINK 4,10 1020 REM 86260A 1030 F[1]=1.24E+10 1040 H[1]=1.8E+10 1050 E1=5E+07 1060 E2=E1 1070 B1=1 1080 CMD "?U&", "V0667E" 1090 v1=667 1100 v2=9999 1110 LINK 4,10 1120 REM 86290A 1130 F(1) = 2E + 091140 F[2] = 6E + 091150 F[3]=1.2E+10 1160 F[4] = F[1]1170 H[1]=6.2E+09 1180 H[2]=1.24E+10 1190 H[3] = H[4] = 1.8E+101200 E1=3E+071210 E2=8E+07 1220 B1=4 1230 CMD "?u&", "VOE" $1240 \vee 1=0$ 1250 V2=9999 1260 LINK 4,10 1270 A=01280 IF M\$[4,4] <= "4" THEN 1310 1290 A=2 1300 GOTO 1340 1310 IF M\$[5,5]>"0" THEN 1340 1320 B=VAL(M\$[4,4])-1 1330 GOTU 1350 1340 B = VAL(M\$[4,4]) + (VAL(M\$[5,5]) - 1) + A1350 GOTU B OF 1360,1470,1600,1730,1860,1990,2120,2250 1360 REM 86320A/B/C 1370 F[1] = 1E + 081380 H[1] = 2E + 091390 E1=1.5E+07 1400 E2=E1 1410 B1=1 1420 P=1 1430 CMD "?U&", "V0500E" 1440 V1=500 1450 v2=9999 1460 LINK 4,10 1470 REM 86330A/B/C 1480 IF P>1 THEN 1510 1490 PRINT "IS "M\$" IN POSITION 2 OR 3 OF 8621 RF DRAWER"LIN3 1500 INPUT P

FILE 0 (4 of 5)

1510	F[P] = 1.8E + 09								
	H[P] = 4.2E + 09								
	E1=1.5E+07								
	E2=E1								
	B1=P								
	CMD "?U&","VOE"								
	∨1=0								
1580	V 2=9999								
1590	LINK 4,10								
1600	REM 86331A/B/C								
1610	IF P>1 THEN 1640								
1620	PRINT "IS "M\$" IN	POSITION	2	OR	3	OF	8621	\mathbf{RF}	DRAWER"LIN3
	INPUT P								
	F[P] = 1.7E + 09								
	H[P] = 4.3E + 09								
	E1=2E+07								
	E2=E1								
	CMD "?U&","VOE"								
	V1=0								
	v2=9999								
	LINK 4,10								
	REM 86341A/B/C								
1740	IF P>1 THEN 1770	•							
175Ü	PRINT "IS "M\$" IN	POSITION	2	ÛR	3	OF	8621	RF	DRAWER", LIN3
1760	INPUT P								
1770	F[P] = 3.2E + 09								
1780	н[P]=6.5L+09								
	E1 = 3E + 07								
	E2=E1								
	ы1=Р								
	CMD "?U&", "V0286E"								
	v1=286								
	v2=9714								
	LINK 4,10								
	REM 86342A/C								
18/0	1F P>1 THEN 1900	DOUTERTON	2	05	h	<u>en</u>	0(2)	D D	
	PRINT "IS "M\$" IN	POSITION	2	OR	٢	OF	8621	RF	DRAWER , LINS
	INPUT P								
	F[P]=5.9E+09								
1910	A[P]=9E+09	*							
1920	E1=3.5E+07								
1930	E2=E1								
1940	Bl=P								
1950	CMD "?u&","V0E"								
	v1=0								
	V2=9999								
	LINK 4,10								
	REM 86350A/C								
	IF P>1 THEN 2030								
2000	11 1/1 1MLN 2000								

4-22

FILE 0 (5 of 5)

2020 2030 2040 2050 2060	PRINT "IS "M\$ INPUT P F[P]=8E+09 H[P]=1.24E+10 E1=4E+07 E2=E1 B1=P	" IN P(USITION	2	ŨR	3	OF	8621	RF	DRAWER",LIN3
2080 2090 2100 2110 2120 2130 2140 2150 2160 2170 2180	CMD "?U&","VO V1=0 V2=99999 LINK 4,10 REM 86351A IF P>1 THEN 2 PRINT "IS "M\$ INPUT P F[P]=1.07E+10 H[P]=1.17E+10 E1=2E+07 E2=E1	160	OSITION	2	OR	3	OF	8621	RF	DRAWER",LIN3
2200 2210 2220 2230 2240 2250 2260 2260 2270 2280 2290 2300 2310	B1=P CMD "?U&","V0 V1=0 V2=9999 LINK 4,10 REM 86352A IF P>1 THEN 2 PRINT "IS "M\$ INPUT P F[P]=8.5E+09 H[P]=1.05E+10 E1=2E+07 E2=E1	290 "IN ₽	OSITION	2	OR	3	OF	8621	ĸf	DRAWER"LIN3
2 3 3 0 2 3 4 0 2 3 5 0 2 3 6 0	Bl=P CMD "?U&","V0 Vl=0 V2=9999 LINK 4,10	Е"								

FILE 2 (1 of 7)

```
10 REM ADDRESS---8620C=&----3490A=6(LISTEN), V(TALK)-----
20 REM 8620C VERIFICATION AND ADJUSTMENT
30 DIM B$[30],C[22],C$[10],A[20]
40 PRINT "THIS PROGRAM IS USED TO CHECK THE 8620C(OPT.011";
45 PRINT "(HP-IB)), OR AN 8620C", LIN1
50 PRINT "WITH A12-08620-60118-INSTALLED FOR TESTING, WITH A ";
55 PRINT "3490A (OPT. 30 (HP-IB) "LIN1
60 PRINT "DVM OR ANY DVM WITH +-0.004% D.C. ACCURACY ON 100 ";
70 PRINT "VOLT RANGE."LIN3
80 PRINT TABL6 "ARE YOU USING A 3490A (OPTION 30)?", LIN3
90 B=1
100 INPUT CS
110 IF C$ [1,1] #"Y" THEN 140
120 J=0
130 GOTO 150
140 J=1
150 PRINT TAB21"SET 8620C CONTROLS AS FOLLOWS:".LIN3
160 PRINT TAB21"START MARKER ********** 2 VOLT MARK",LIN1
180 PRINT TAB21"CW POINTER ********** 5 VOLT MARK",LIN1
190 PRINT TAB21"DELTA F POINTER *******
                                      5 VOLT MARK", LIN1
200 PRINT TAB21"CW VERNIER *********************
                                         CENTERED", LIN1
                   210 PRINT TAB21"MODE
220 PRINT TAB21"MANUAL CONTROL ************** MAX CCW",LIN1
INT", LIN1
                                         10-1 SEC",LIN1
240 PRINT TAB21"TIME
                   250 PRINT TAB21"TIME VERNIER ****************
                                          MAX CCW",LIN1
260 PRINT TAB21"DELTA F MULTIPLIER *****************
                                               X1",LIN1
OFF",LIN1
280 PRINT TAB21"CWV MULTIPLIER *********************
                                              X1".LIN4
290 PRINT TAB15"INSTALL 8620 SERVICE BOARD PART NUMBER 08620-60037"
300 PRINT LIN(2)
310 PRINT "TO CONTINUE WITH PROGRAM PRESS--SPACE-EXECUTE", LIN3
320 INPUT B$
330 PRINT "SWITCH 8620C AND DVM ON AND ALLOW FOR A 30 MINUTE WARM UP"
340 PRINT LIN(3)
350 INPUT B$
360 PRINT "CONNECT VOLTMETER MINUS LEAD TO J6 PIN32 AND PLUS ";
370 PRINT "LEAD TO J6 PIN 34"LIN2
380 INPUT B$
390 PRINT TAB21"+20 VOLT CHECK"
400 PRINT LIN(2)
410 B=1
420 M=20
430 E=0.006
440 GOSUB 1560
450 PRINT TAB15"******* +20 VOLT SUPPLY CORRECT *********
```

```
460 C[1] = v
470 PRINT LIN(2)
480 PRINT "CONNECT VOLTMETER MINUS LEAD TO J6 PIN32 AND PLUS ";
490 PRINT "LEAD TO J6 PIN 29"LIN2
500 INPUT B$
510 PRINT TAB21"-40 VOLT CHECK", LIN2
520 B=2
530 M=40
540 E=0.02
550 GOSUB 1560
560 PRINT TAB15 ******* -40 VOLT SUPPLY CORRECT **********
570 C[2]=V
580 PRINT LIN(2)
590 PRINT "CONNECT VOLTMETER MINUS LEAD TO J6 PIN32 AND PLUS ":
600 PRINT "LEAD TO J6 PIN 31"LIN2
610 INPUT B$
620 PRINT TAB21"-10 VOLT CHECK", LIN2
630 B=3
640 M=10
650 E=0.004
660 GOSUB 1560
670 PRINT TAB15"******* -10 VOLT SUPPLY CORRECT *********
680 C[3]=V
690 PRINT LIN(2)
700 PRINT "CONNECT VOLTMETER MINUS LEAD TO J6 PIN32 AND PLUS ";
710 PRINT "LEAD TO J6 PIN 33"LIN2
720 INPUT BS
730 PRINT TAB21"+5 VOLT CHECK", LIN2
740 3=4
750 M=5
760 E=0.005
770 GUSUB 1560
780 PRINT TAB15"******* +5 VOLT SUPPLY CORRECT *********
790 C[4]=v
800 PRINT LIN(2)
810 PRINT "CONNECT VOLTMETER MINUS LEAD TO J6 PIN32 AND PLUS ";
320 PRINT "LEAD TO J6 PIN 1"LIN2
830 INPUT B$
840 PRINT TAB21"FULL SWEEP CHECK", LIN2;
850 WAIT 1000
860 CMD "?U&","M1V0E"
870 B=5
880 M=0
890 E=0.005
900 DISP "LOW END"
910 GOSUB 1560
920 CMD "?u&", "HIV:00UE"
930 C[5]=v
940 B=5
950 M=10
```

960 E=0.005 970 DISP "HIGH END" 980 GOSUB 1560 990 PRINT TAB15"******** FULL SWEEP CORRECT *************** 1000 C[6] = V1010 PRINT LIN(2) 1020 PRINT TAB21 "MARKER SWEEP CHECK" 1030 PRINT LIN(2) 1040 WAIT 1000 1050 CMD "?U&", "M4V0E" 1000 B=6 1070 M=21080 E=0.005 1090 DISP "LOW END" 1100 GOSUB 1560 1110 CMD "?U&", "M4V:000E" 1120 C[7] = V1130 B=6 1140 M=8 1150 E=0.005 1160 DISP "HIGH END" 1170 GOSUB 1560 1180 PRINT TAB15"******** MARKER SWEEP CORRECT ************ 1190 C[8] = V1200 PRINT LIN(2) 1210 PRINT TAB21"CW CHECK" 1220 PRINT LIN(2) 1230 WAIT 1000 1240 CMD "?U&","M3" 1250 B=7 1260 M=5 1270 E=0.005 1280 DISP "MID BAND" 1290 GOSUB 1560 1310 C[9]=V 1320 PRINT LIN(2) 1330 PRINT TAB21"DELTA F CHECK" 1340 PRINT LIN(2) 1350 WAIT 1000 1360 CMD "?u&","M2V0E" 1370 B=8 1380 M=4.5 1390 E=0.01 1400 DISP "LOW END" 1410 GOSUB 1560 1420 CMD "?u&", "M2V:00UE" 1430 C[10]=V 1440 B=81450 M=5.5

FILE 2 (4 of 7)

```
1460 E=0.01
1470 DISP "HIGH END"
1480 GOSUB 1560
1500 C[11] = V
1510 PRINT LIN(2)
1520 CMD "?06"
1530 OUTPUT (13,1680)1024,768;
1540 GOTU 2680
1550 REM VOLTMETER MEASUREMENT & COMPARISON
1560 lf J ThEN 1620
1570 CMD "?u6", "M3R3F0T1E;"
1580 CMD "?V5"
1590 ENTER (13,1600) V
1600 FURMAT 4X, E12.0
1610 GOTO 1650
1620 PRINT TAE21"INPUT DVM READING"
1630 PRINT LIN(2)
1640 INPUT V
1650 A = ABS(ABS(V) - M)
1660 IF A<E THEN 1710
1670 CMD "?u6"
1680 FORMAT 2B
1690 OUTPUT (13,1680)1024,768;
1700 GOTO B OF 1720,1780,1830,1880,1930,2150,2340,2440
1710 RETURN
1720 REM ADJUSTMENT PROCEDURES
1730 REM +20 VOLT ADJUST
1740 PRINT SPALU ADJUST +20 VOLT ADJUST A4R5 FOR +20VDC "LIN1
1750 PRINT SPAIO"+ OR -0.006VDC ON DVM.",LIN3
1760 INPUT B$
1770 GOTO 410
1780 REM -40 VOLT ADJUST
1790 PRINT SPALU ADJUST -40 VOLT ADJUST A5R9 FOR -40VDC LIN1
1800 PRINT SPALO"+ OR -0.020VDC ON DVM.", LIN3
1810 INFUT B$
1820 GOTO 520
1830 REM -10 VOLT ADJUST
1840 PRINT SPAIO"ADJUST -10 VOLT ADJUST A5R12 FOR -10VDC",LIN1
1850 PRINT SPALO"+ OR -0.004 VDC ON DVM.", LIN3
1860 INPUT B$
1870 GOTO 630
1880 REM +5 VOLT ADJUST
1890 PRINT SPALO ADJUST +5 VOLT ADJUST A4R32 FOR +5VDC",LIN1
1900 PRINT SPA10"+ OR -0.005 VDC ON DVM."
1910 INPUT B$
1920 GOTO 740
1930 CMD "?U&"
1940 OUTPUT (13,1680)256,1,512
1950 FOR I=1 TO 2
```

FILE 2 (5 of 7)

1960 PRINT "TURN MANUAL CONTROL FULL CCW", LIN3 1970 INPUT B\$ 1980 PRINT SPALO ADJUST A2R21 FOR 0.0VDC +-0.001VDC ON DVM.",LIN3 1990 INPUT B\$ 2000 PRINT "TURN MANUAL CONTROL FULL CW", LIN3 2010 INPUT B\$ 2020 PRINT SPALO ADJUST A2R22 FOR LOVDC +-0.005VDC ON DVM. ",LIN3 2030 INPUT B\$ 2040 NEXT I 2050 CMD "?U&","M1" 2060 FOR I=1 TO 2 2070 CMD " ","VOE" 2080 PRINT SPALO ADJUST 'LO' ALZRIL FOR 0.0VDC +-0.0005VDC ON DVM." 2085 PRINT LIN(3) 2090 INPUT B\$ 2100 CMD " ","V:000E" 2110 PRINT SPALO" aDJUST 'HI' AL2RL2 FOR +LOVDC +-0.0005VDC ON DVM." 2115 PRINT LIN(3) 2120 INPUT B\$ 2130 NEXT I 2140 GOTU 860 2150 CMD "?U&","M4V0E" 2160 PRINT SPALO"SET 'STOP MARKER' TO 5 VOLT MARK ON SCALE", LINI 2170 PRINT SPALO SET START MARKER' TO O VOLT MARK ON SCALE", LIN2 2180 PRINT SPALO ADJUST A2R55 FOR 0.0VDC +-0.001VDC ON DVM.", LIN3 2190 INPUT B\$ 2200 PRINT SPAIO"SET 'START MARKER' TO 10 VOLT MARK ON SCALE", LINI 2210 PRINT SPALO"ADJUST A2R26 FOR 10VDC +-0.005VDC ON DVM.", LIN3 2220 INPUT B\$ 2230 CMD " ","V:000E" 2240 PRINT SPALO"SET 'STOP MARKER' TO 0 VOLT MARK ON SCALE", LINI 2250 PRINT SPALO"ADJUST A2R25 FOR 0.0VDC +-0.005VDC ON DVM", LIN3 2260 INPUT B\$ 2270 PRINT SPALO"SET 'STOP MARKER'TO 10 VOLT MARK ON SCALE", LINI 2280 PRINT SPALU"ADJUST A2R36 FOR 10VDC +-0.005VDC.",LIN3 2290 INPUT B\$ 2300 PRINT SPALO"SET 'STOP MARKER' TO 8 VOLT MARK", LINL 2310 PRINT SPALO"SET 'START MARKER' TO 2 VOLT MARK", LIN3 2320 INPUT B\$ 2330 GOTO 1050 2340 CMD "?U&","M3" 2350 PRINT SPALO"SET 'CW MARKER' TO 0 VOLT MARK ON SCALE ",LIN1 2360 PRINT SPAIO"ADJUST A2R50 FOR 0.0VDC +-0.001VDC ON DVM.", LIN3 2370 INPUT B\$ 2380 PRINT SPALO"SET 'CW MARKER' TO 10 VOLT MARK ON SCALE", LINI 2390 PRINT SPALO"ADJUST A2R29 FOR 10VDC +-0.005VDC ON DVM.",LIN3 2400 INPUT B\$ 2410 PRINT SPALO"SET 'CW MARKER' TO 5 VOLT MARK", LIN3 2420 INPUT B\$ 2430 GOTU 1250 2440 CMD "?U&" 2450 OUTPUT (13,1680)256,1,512

FILE 2 (6 of 7)

2460 PRINT SPAIO"PERFORM DELTA F ADJUSTMENT PROCEDURE IN MANUAL"LINI 2470 PRINT SPALO"PAGE 5-13, PARAGRAPH 5-24", LIN3 2480 INPUT B\$ 2490 GOTO 1360 2500 REM BAND CHECK 2510 PRINT SPALO"REMOVE TEST BOARD AND INSTALL & 86290A RF", LINL 2520 PRINT SPALO"PLUG-IN OR A 8621B WITH 86320,86330 OR 331,"LIN1 2525 PRINT SPALO"AND A 863XX RF PLUG-IN"LIN3 2530 INPUT B\$ 2540 PRINT TAB21"OBSERVE BANDS CHANGING ON RF PLUG-IN", LIN4 2550 WAIT 1000 2560 CMD "?U&","M1" 2570 DISP SPA6"BAND SWITCHING CHECK" 2580 FOR J=1 TO 2 2590 FOR I=1 TO 4 2600 OUTPUT (13,2610) I 2610 FORMAT "B", F1000.0 2620 WAIT 2000 2630 NEXT I 2640 NEXT J 2650 CMD " ","Bl" 2660 PRINT SPALO"BAND SWITCHING CHECK COMPLETE", LIN2 2670 GOTO 2960 2680 REM TUNING VOLTAGE CHECK 2690 PRINT SPA6"TÚNING VOLTAGE CHECK", LIN2 2700 WAIT 2000 2710 CMD "?U&","M1V0E" 2720 G=1 2730 FOR K=1.111 TO 10 STEP 1.111 2740 OUTPUT (13,2760) K 2750 IF J=1 THEN 2810 2760 FORMAT "V", F1000.3,"E" 2770 CMD "?U6", "M3R3F0T1E" 2780 CMD "?V5" 2790 ENTER (13,1600)V 2800 GOTO 2830 2810 PRINT TAB21"INPUT DVM READING", LIN2 2820 INPUT V 2830 R=K 2840 A[G]=V 2850 G=G+1 2860 IF ABS(V-R) <= 0.002 THEN 2900 2870 OUTPUT (15,2880) 2880 FORMAT 37"*", "ERROR", 37"*" 2890 PRINT "DVM READING IS"V; "READING SHOULD BE "R; "ERROR IS "V-R, LIN3 2900 CMD "?U&" 2910 WAIT 1000 2920 NEXT K 2930 PRINT SPA10"VOLTAGE CHECK COMPLETE", LIN2 2940 WAIT 2000 2950 GOTO 2500

FILE 2 (7 of 7)

2960 PRINT SPALO"WHAT IS THE 8620C SERIAL NUMBER", LIN3 2970 INPUT CS 2980 PRINT SPALO"WHAT IS TODAY'S DATE", LIN3 2990 INPUT B\$ 3000 WRITE (15,3010) 3010 FORMAT 80"-" 3020 PRINT "DATE: "B\$, LIN2 3030 PRINT SPA21"MODEL 8620C SWEEP OSCILLATOR MAINFRAME", LIN1 3040 PRINT SPA29"SERIAL NUMBER "C\$,LIN3 3050 PRINT SPA35"TEST RECORD", LIN3 3060 PRINT SPA22"CHECK"SPA29"READING" 3070 PRINT SPA22"----"SPA29"-----",LIN2 3080 PRINT SPA17"+20 VOLT SUPPLY"SPA26,C[1],LIN1 3090 PRINT SPA17"-40 VOLT SUPPLY"SPA26,C[2],LIN1 3100 PRINT SPA17"-10 VOLT SUPPLY"SPA26,C[3],LIN1 3110 PRINT SPA17"+5 VOLT SUPPLY"SPA27,C[4],LIN1 3120 PRINT SPA17"FULL SWEEP LOW END OF BAND"SPA15,C[5],LIN1 3130 PRINT SPA17"FULL SWEEP HIGH END OF BAND"SPA14,C[6],LIN1 3140 PRINT SPA17"MARKER SWEEP (START)"SPA21,C[7],LIN1 3150 PRINT SPA17"MARKER SWEEP (STOP) "SPA22,C[8],LIN1 3160 PRINT SPA17"CW MARKER"SPA32,C[9],LIN1 3170 PRINT SPA17"DELTA F (START)"SPA26,C[10],LIN1 3180 PRINT SPA17"DELTA F (STOP)"SPA27,C[11],LIN1 3190 PRINT SPA17"D/A VOLTAGES", LIN1 3200 FOR I=1 TO 9 3210 PRINT SPA58, A[I], LIN1 3220 NEXT I 3230 OUTPUT (15,3010) 3240 FORMAT 2B 3250 OUTPUT (13,3240)1024,768; 3260 PRINT SPA10"TEST COMPLETE" 3270 WAIT 1500 3280 PRINT "DO YOU WISH TO CHECK A 8620 RF PLUG-IN ?"LIN3 3290 INPUT C\$ 3300 IF C\$[1,1]="N" THEN 3320 3310 LINK 0,10 3320 END

FILE 4 (1 of 4)

```
10 DIM D[5,50], F[4], H[4], B[5,50], B$[30], WS[100]
20 DIM A$[10],A[5,50],GS[55],D$[30],E[5,50],V[4],I[4],C[4]
30 REM FREQUENCY CHECK OF ALL 8620 PLUG-INS
35 REWIND
40 PRINT "THIS PROGRAM IS DESIGNED TO CHECK THE "M$" FREQUENCY ";
45 PRINT "AND POWER"LIN1
50 PRINT "ACCURACY USING HP-IB,8620C,5340A(COUNTER)AND 436A";
55 PRINT "(POWER METER)."LIN2
60 PRINT "CONNECT THE "M$" TO THE 436A AND SET THE "M$" POWER"LINI
70 PRINT " CONTROL FOR MAXIMUM LEVELED POWER."LIN3
80 PRINT "TO CONTINUE WITH THIS PROGRAM AFTER EACH STOP PRES";
90 PRINT "S--SPACE BAR-EXECUTE."LIN1
100 INPUT BŞ
110 PRINT "DISCONNECT 436A AND CONNECT 5340A COUNTER TO ";
115 PRINT M$" OUTPUT"LIN3
120 INPUT B$
130 REM---ADDRESSES 8620C--"&"; 5340A--"*"(LISTEN), "j"(TALK)
140 REM---436A--"-"(LISTEN),"M"(TALK)
150 PRINT "WHAT FREQUENCY INCREMENT IN MHZ DO YOU WANT TO ME";
155 PRINT "ASURE ?"LIN3
160 INPUT IL
170 Il=Il*lE+06
180 FOR I=P TO B1
190 DISP "FREQUENCY CHECK"
200 CMD "?u&","M1"
210 OUTPUT (13,220) I, V1*0.001
220 FORMAT "6",F1000.0,"v",F8.3,"E"
225 wAIT 1000
230 C[I] = (H[I] - F[I]) / I1
240 I[I] = (v2 - v1) / C[I] * 0.001
250 v[I] = I[I] + (v1*0.001)
260 C[I] = INT(C[I])
270 IF (C[1]+1)<50 THEN 310
280 PRINT "FREQUENCY INCREMENT IS TO SMALL CHOSE A LARGER ONE !", LIN3
290 WAIT 5000
300 GOTO 150
310 FOR N=1 TO C[I]+1
320 FORMAT 4X, F12.6
330 CMD "?U*", "4PJ@MOH", "?J5"
335 WAIT 1000
340 ENTER (13,350)D[I,N]
350 FORMAT 4X, E12.6
360 A[I,N] = ABS(D[I,N] - (F[I] + (N-1)*I1))
370 IF I<4 THEN 400
380 E = E2
390 GOTO 410
400 E=E1
410 B[I,N] = 0
420 IF A[I,N] <E THEN 450
430 B[I,N] = 1
```

```
440 E[I,N] = A[I,N] - E
450 WAIT 1500
460 IF V[I] \le (V2*0.001) THEW 480
470 V[I] = V2 * 0.001
480 CMD "?U&"
490 OUTPUT (13,500) V [I]
500 FORMAT "V", F10.3, "E"
510 V[I] = V[I] + I[I]
520 NEXT N
530 NEXT I
540 REM POWER CHECK
550 PRINT "DISCONNECT FREQUENCY COUNTER"LIN2
560 PRINT "ZERO AND CALIBRATE THE 436A & CONNECT IT TO THE "M$,LIN3
570 INPUT B$
580 CMD "?u&","M1"
590 OUTPUT (13,600) B1, V1*0.001
600 FORMAT "B", F1000.0, "V", F10.3, "E"
610 G[1]=V1*0.001
620 FOR J=1 TO 50
630 DISP "LEVELED POWER CHECK"
640 WAIT 300
650 K=J
660 CMD "?U-","DT"
670 CMD "?M5"
680 ENTER (13,690) W[J]
690 FORMAT 4X, E12.2
700 G[K+1] = G[K] + (V2 - V1) * 0.001/50
710 IF G[K+1] <= V2*0.001 THEN 730
720 G[K+1]=V2*0.001
730 CMD "?U&"
740 OUTPUT (13,500)G[K+1]
750 NEXT J
760 H = W[1]
770 L=w[1]
780 FOR J=2 TO 50
790 IF W[J] <= H THEN 810
800 H=W[J]
810 IF W[J] >= L THEN 830
820 L=W[J]
830 NEXT J
840 REM TEST RECORD OF FREQUENCY CHECK
850 PRINT "WHAT IS THE "M$" SERIAL NUMBER?",LIN1
860 INPUT A$
870 PRINT "WHAT IS THE 8620C SERIAL NUMBER?"LIN3
880 INPUT B$
890 PRINT "ENTER TODAY'S DATE", LIN3
900 INPUT D$
910 WRITE (15,920)
920 FORMAT 80"-"
930 PRINT "DATE: "D$,LIN2
```

4-32

FILE 4 (3 of 4)

```
940 PRINT SPA35"TEST RECORD"
950 PRINT SPA35"-----"LIN3
960 PRINT SPA22"MODEL "M$" SERIAL NUMBER ";A$
970 PRINT SPA22"-----"LIN2
980 PRINT SPA22"MODEL 8620C SERIAL NUMBER ";B$
990 PRINT SPA22"-----"LIN3
1000 PRINT "FREOUENCY"
1010 PRINT "----"
1020 WRITE (15,1030)
1030 FORMAT 12X, "SET<GHZ>", 17X, "MEASURED<GHZ>", 12X, "DIFFERENCE<MHZ>"
1040 WRITE (15,1050)
1050 FORMAT 12X,68"-"
1060 PRINT
1070 REM FREQUENCY DATA PRINT OUT
1080 FOR I=P TO B1
1085 PRINT "BAND "I
1090 FOR J=1 TO C[I]+1
1100 WRITE (15,1110) (F[I]+((J-1)*I1))/1E+09,D[I,J]/1E+09,A[I,J]/1E+06
1110 FORMAT 4X, F12.3, 15X, F12.3, 15X, F12.3
1120 IF B[I,J]#1 THEN 1160
1130 WRITE (15,1140)E[I,J]
1140 FORMAT 9X," TTTTT FREQUENCY ERROR TTTTT ERROR =", F12.3,"MHZ"
1150 GOTO 1170
1160 PRINT
1170 NEXT J
1180 WRITE (15,920)
1190 NEXT I
1200 REM START OF MAXIMUM LEVELED POWER GRAPH
1210 PRINT LIN5
1220 WRITE (15,920)
1230 PRINT LIN5
1240 PRINT "FREQUENCY!"SPA25"POWER<DBM>"
1250 PRINT " <GHZ> !"
1260 R=F[B1]/1E+09
1270 O=V1*0.001
1280 WRITE (15,1290)L,L+(H-L)/4,(H-L)/2+L,H-(H-L)/4,H,(H-L)/4+H
1290 FORMAT 9X,"!",6X,F5.2,5X,F5.2,5X,F5.2,5X,F5.2,5X,F5.2
1300 OUTPUT (15,1310)
1310 FORMAT "-----*", 3"------------*", "-----"
1320 PRINT SPA9"!"SPA59"!"
1330 REM PLOTTING ROUTINE
1340 FOR I=1 TO 50
1350 IF G[I]#O THEN 1400
1355 Z=INT(R)+(INT((R-INT(R))*10+0.5))*0.1
1360 PRINT Z; TAB9"+"TAB(((W[I]-L)/(H-L)*40)+20)"*"TAB69"+"
1370 R=R+(H[B1]-F[B1])/8E+09
1380 \ Q=Q+0.006*(V2-V1)/50
1390 GOTO 1410
1400 PRINT SPA9"!"TAB(((W[I]-L)/(H-L)*40)+20)"*"TAB69"!"
1410 NEXT I
```

```
1420 PRINT SPA9"!"TAB69"!"
1430 OUTPUT (15,1310)
1440 PRINT LIN(3)
1450 PRINT "MAX POWER ="H; "MIN POWER ="L; VARIATION ="H-L, LIN2
1460 WRITE (15,920)
1470 PRINT LIN5
1480 FORMAT 2B
1490 OUTPUT (13,1480)1024,768;
1500 PRINT "DO YOU WISH TO CHECK ANOTHER PLUG-IN OR A 8620C?", LIN3,
1510 INPUT A$
1520 IF A$[1,1]="N" THEN 1540
1530 LINK 0,10
1540 PRINT "DO YOU WISH TO CHECK ANOTHER "M$" ?",LIN3
1550 INPUT A$
1560 IF A$[1,1]="N" THEN 1580
1570 GOTO 60
1580 END
```

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section provides adjustment procedures for the Model 8620C Sweep Oscillator mainframe. These procedures should not be performed as a routine maintenance procedure but should be used after replacement of a part or component or when the performance test shows that the specifications of Table 1-1 cannot be met. Table 5-1 lists the adjustment controls and their functions and also the paragraph number of the adjustment procedure for each.

5-3. EQUIPMENT REQUIRED

5-4. Table 1-4 lists the equipment required for the adjustment procedure. If the test equipment recommended is not available, other equipment may be used if its performance meets the "Critical Specifications" listed in the table.

5-5. SAFETY CONSIDERATIONS

5-6. Although this instrument has been designed in accordance with international safety standards, this manual contains information, cautions, and warnings which should be followed to ensure safe operation and to retain the instrument in safe condition (see Sections II and III). Service and adjustments should be performed only by qualified service personnel.

WARNING

Any interruption of the protective (grounding) conductor (inside or outside the instrument) or disconnecting the protective earth terminal could make this instrument dangerous.

5-7. Any adjustment, maintenance, or repair of the opened instrument under voltage should be

avoided as much as possible but, when necessary, should be performed only by skilled persons who are aware of the hazard involved.

5-8. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

5-9. Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the shortcircuiting of fuseholders should be avoided.

5-10. Whenever it is likely that the protection offered by fuses has been impaired, the instrument should be made inoperative and secured against any unintended operation.

WARNING

Adjustments described herein are performed with power supplied to the instrument while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.

5-11. RELATED ADJUSTMENTS

5-12. The +20-volt power supply regulator furnishes reference voltage to some of the other power supply regulators, therefore, the +20-volt regulator must always be adjusted first. If the sequence in the procedure is followed, a minimum of interaction between controls is present.

5-13. ADJUSTMENT LOCATIONS

5-14. Figures 5-6 and 5-7 show the location of each test point and adjustment control for the Model 8620C Sweeper.

Reference Designation	Adjustment Paragraph	Board Name	Common Name	Function Adjusted
A4R5	5-15	ADJ +20	+20V Adjust	Sets +20 Volt regulator
A5R9	5-15	ADJ -40	–40V Adjust	Sets –40 Volt regulator
A5R12	5-15	ADJ -10	-10V Adjust	Sets – 10 Volt regulator
A4R32	5-15	ADJ +5	+5V Adjust	Sets +5 Volt regulator
A7R10	5-16	FAN SPEED	FAN SPEED	Sets fan speed to 3000 RPM (20 ms period)
A7R35	5-16	BAL	FAN BALANCE	Sets fan waveform symmetry
A7R27	5-17	1KHz	1 kHz Adjust	Sets internal modulation oscillator to 1 kHz (1 ms period)
A1R12	5-18	RANGE	SWEEP RANGE	Adjusts minimum sweep time at slowest sweep speed setting
A1R35	5-18	OFFSET	SWEEP SYM	Adjusts symmetry of sweep time to sweep return time
A1R11	5-18	SWP	SWEEP TIME	Adjusts sweep time
A1R10	5-18	RET	RETURN TIME	Adjusts sweep return time
A2R21	5-19	A	SWP OV	Sets 0 Vdc for low end of sweep ramp
A2R22	5-19	В	SWP 10V	Sets +10 Vdc for high end of sweep ramp
A2R44	5-20	S	STOP MARK LO	Sets Stop Marker position at low frequency end of scale in FULL SWEEP
A2R35	5-20	Р	STOP MARK HI	Sets Stop Marker position at high frequency end of scale in FULL SWEEP
A2R41	5-20	K	START MARK LO	Sets Start Marker position at low frequency end of scale in FULL SWEEP
A2R27	5-20	N	START MARK HI	Sets Start Marker position at high frequency end of scale in FULL SWEEP
A2R55	5-21	F	START FREQ LO	Sets Start Marker frequency at low end of scale in MARK- ER SWEEP
A2R26	5-21	М	START FREQ HI	Sets Start Marker frequency at high end of scale in MARK- ER SWEEP
A2R25	5-21	L	STOP FREQ LO	Sets Stop Marker frequency at low end of scale in MARK- ER SWEEP
A2R36	5-21	R	STOP FREQ HI	Sets Stop Marker frequency at high end of scale in MARK- ER SWEEP
A2R43	5-22	v	CW MARK LO	Sets CW Marker position at low frequency end of scale in FULL SWEEP
A2R33	5-22	Т	CW MARK HI	Sets CW Marker position at high frequency end of scale in FULL SWEEP
A2R50	5-22	н	CW FREQ LO	Sets CW frequency at low end of scale
A2R29	5-22	U	CW FREQ HI	Sets CW frequency at high end of scale
A2R57	5-23	С	CWV CAL	Calibrates CW VERNIER control
A2R46	5-24	D	∆F OFFSET	Adjusts △F offset amplifier symmetry
A2R49	5-24	J	∆F SYM	Adjusts ∆F symmetry
		_		

Table 5-1. Controls Listed in Adjustment Sequence

5-24 5-24	E	ΔF AMPLITUDE	Adjusts ΔF amplitude		
Option 00		Option O(D1 Only		
5-25	OFFSET	DAC 0V	Adjusts for 0 Vdc at low frequency end		
5-25	REF	DAC 10V	Adjusts for +10 Vdc at high frequency end		
		Option 01	11 Only		
5-26	LO	DAC OV	Adjusts for 0 Vdc at low frequency end Adjusts for +10 Vdc at high frequency end		
	5-25 5-25	5-25 OFFSET 5-25 REF 5-26 LO	Option 0 5-25 OFFSET 5-25 REF DAC 0V Option 0 Option 0 Option 0 S-26 LO DAC 0V		

ADJUSTMENTS

NOTE

Before performing any adjustments, allow 30 minutes warmup time for the instrument.

NOTE

When a test point has a common connection with RF Section interface connector J6, the pin on J6 will be noted at the end of a sentence in parenthesis. This allows the use of the service board at J6 for faster connection to the desired point.

NOTE

Ground DVM to ground pin on board being probed or to 36-pin service board pin 10 (J6-10).

Figure 5-1. Adjustment Test Setup

5-15. POWER SUPPLY ADJUSTMENTS

REFERENCE: Service Sheet 4, +20V and +5V REGULATOR ASSEMBLY; and Service Sheet 5, -10V and -40V REGULATOR ASSEMBLY.

DESCRIPTION: The A4 and A5 Regulator Assemblies are adjusted to provide the proper dc voltages for the 8620C Sweep Oscillator and RF units connected in the mainframe. (See Figure 5-1 for test setup.)

EQUIPMENT: Digital Multimeter HP 3490A

5-15. POWER SUPPLY ADJUSTMENTS (Cont'd)

PROCEDURE: +20 Volt Supply

- a. Connect digital voltmeter to +20 test point on A4 Assembly (J6-34), and connect ground lead to GND.
- b. Adjust +20 ADJ A4R5 for +20.000 Vdc ±0.006 Vdc.
- -40 Volt Supply
- c. Connect digital voltmeter to -40 test point on A5 Assembly (J6-29), and connect ground lead to GND.
- d. Adjust -40 ADJ A5R9 for -40.000 Vdc ±0.020 Vdc.
- -10 Volt Supply
- e. Connect digital voltmeter to -10 test point on A5 Assembly (J6-31), verify ground lead connected to GND.
- f. Adjust -10 ADJ A5R12 for -10.000 Vdc ±0.004 Vdc.
- +5 Volt Supply
- g. Connect digital voltmeter to +5 test point on A4 Assembly (J6-33), and connect ground lead to GND.
- h. Adjust +5 ADJ A4R32 for +5.000 Vdc ±0.005 Vdc.

5-16. FAN ADJUSTMENTS

- REFERENCE: Service Sheet 7, OPERATIONS CONTROL ASSEMBLY.
- DESCRIPTION: Fan Speed and ON/OFF ratio are adjusted for maximum efficiency (see Figure 5-1 for test setup).
- EQUIPMENT: Oscilloscope (with 10:1 probes) HP 181A/1801A/1820C
- PROCEDURE: a. Connect oscilloscope Channel A to A7TP6 (Q5 collector) and oscilloscope Channel B to A7TP7 (Q7 collector). Connect oscilloscope ground lead to A7TP8.
 - b. Adjust FAN SPEED A7R10 for a 20 ms period on oscilloscope. This corresponds to 3000 RPM.
 - c. Adjust BAL A7R35 to balance ON time of Channel A waveform to ON time of Channel B and OFF time of Channel A to OFF time of Channel B.

5-16. FAN ADJUSTMENTS (Cont'd)

Figure 5-2. Oscilloscope Display of Fan Waveforms

5-17. 1 kHz MODULATION ADJUSTMENT

- **REFERENCE:** Service Sheet 7, OPERATIONS CONTROL ASSEMBLY.
- DESCRIPTION: 1 kHz Oscillator is adjusted for proper operating frequency (see Figure 5-1 for test setup).
- EQUIPMENT: Oscilloscope (with 10:1 probe) HP 181A/1801A/1820C
- PROCEDURE: a. Set rear-panel 1 kHz SQ WV/OFF slide switch to 1kHz SQ WV.
 - b. Connect oscilloscope to test point 5 on A7 (J6-6), and connect oscilloscope ground lead to test point 7 (ground) on A7.
 - c. Adjust 1 kHz A7R27 for 1 ms \pm 0.05 ms period on oscilloscope. This corresponds to 1 kHz.

5-18. SWEEP GENERATOR BOARD ADJUSTMENTS

REFERENCE: Service Sheet 1, SWEEP GENERATOR ASSEMBLY.

DESCRIPTION: Set correct sweep time, sweep return time, symmetry, and range of RF Blanking signal (see Figure 5-1 for test setup).

EQUIPMENT:	Oscilloscope	•											HP 181A/1801A/1820C
	10:1 Probe .		•			•							HP 10004B
	1:1 Probe .	•	•	•	•	•	•	•	•	•	•	•	HP 10008B

5-18. SWEEP GENERATOR BOARD ADJUSTMENTS (Cont'd)

PROCEDURE:

- a. Connect oscilloscope VERTICAL input to A1TP9 (10:1 Probe), and ground lead to A1TP12.
- b. Connect oscilloscope EXT TRIGGER input to A1TP9 (1:1 Probe), and set oscilloscope trigger controls to EXT, NORM, and (-) SLOPE.
- c. Press FULL SWEEP pushbutton; pushbutton should light.
- d. Set 8620C Sweep MODE switch to AUTO.
- e. Set 8620C sweep TRIGGER switch to INT.
- f. Set 8620C TIME-SECONDS switch to .1 .01 and turn TIME-SECONDS Vernier control fully clockwise.
- g. Adjust oscilloscope for display as shown in Figure 5-3.
- h. Set A1R12 RANGE and A1R35 OFFSET controls to center of range.
- i. Adjust A1R11 SWP control for $t_1 = 10.8 \text{ msec} \pm 0.5 \text{ msec}$. Adjust A1R10 RET control for $t_2 = 5.4 \text{ msec} \pm 0.5 \text{ msec}$.
- j. Set 8620C TIME-SECONDS Vernier control fully counterclockwise. Conenct a 19.6K 1% resistor between A1TP4 and A1TP12.
- k. Adjust oscilloscope sweep time so that t_2 occupies 1.0 division of the display. Adjust A2R35 OFFSET control so that t_1 occupies 6.5 divisions of the display. Symmetry is now set to 6.5:1.
- l. Remove 19.6K resistor. With oscilloscope sweep time in a calibrated mode, adjust A1R12 RANGE control for $t_1 = 282$ msec \pm 5.0 msec.
- m. Connect 19.6K resistor between A1TP4 and A1TP12. Verify symmetry between 6.5:0.7 and 6.5:1.3.
- n. Set 8620C TIME-SECONDS Vernier control fully clockwise. t₁ should be between 32.5ms and 37.5ms (19.6K resistor still connected); if not, select a new value between 51.1K and 110K for A1R3.

Figure 5-3. Oscilloscope Display of Waveform Symmetry

ADJUSTMENTS

5-19. FULL SWEEP ADJUSTMENT

- REFERENCE: Service Sheet 2, FREQUENCY CONTROL ASSEMBLY.
- DESCRIPTION: Sets zero to +10 Volt sweep ramp.
- EQUIPMENT: Digital Multimeter HP 3480D/3484A
- PROCEDURE: a. Connect equipment as shown in Figure 5-1.
 - b. Select calibration scale with band select switch.
 - c. Press FULL SWEEP pushbutton. Set sweep MODE to MANUAL and MANUAL control fully counterclockwise.
 - d. Connect DVM input to A2TP3 and ground lead to GND on A4 board.
 - e. Set adjustment A (SWP 0V) (A2R21) for DVM indication of 0.000 Vdc \pm 0.001 Vdc.
 - f. Turn MANUAL control fully clockwise. Set adjustment B (SWP 10V) (A2R22) for DVM indication of +10.000 Vdc ±0.005 Vdc.

5-20. START MARKER/STOP MARKER ADJUSTMENT

- REFERENCE: Service Sheet 2, FREQUENCY CONTROL ASSEMBLY.
- DESCRIPTION: Sets correct voltages to calibrate STOP MARKER and START MARKER controls.
- EQUIPMENT: Digital Multimeter HP 3490A

NOTE

If STOP MARKER potentiometer R6 on START MARKER potentiometer 22 has been replaced, refer to Paragraph 5-27 for mechanically zero.

- PROCEDURE: a. Set Stop Marker (red pointer) to 0 Volt mark on calibration scale. Connect DVM to A2TP2.
 - b. Set adjustment S (STOP MARK LO) (A2R44) for DVM indication of 0.000 Vdc \pm 0.001 Vdc.
 - c. Set Stop Marker to 10 Volt mark on calibration scale. Set adjustment P (STOP MARK HI) (A2R35) for DVM indication of +10.000 Vdc ± 0.005 Vdc.
 - d. Connect DVM input to A2TP1. Set Start Marker to 0 Volt mark on calibration scale.
 - e. Set adjustment K (START MARK LO) (A2R41) for DVM indication of 0.000 Vdc ± 0.001 Vdc.
 - f. Set Start Marker to 10 Volt mark on calibration scale. Set adjustment N (START MARK HI) (A2R27) for DVM indication of +10.000 Vdc ± 0.005 Vdc.

5-21. MARKER SWEEP ADJUSTMENT

- REFERENCE: Service Sheet 2, FREQUENCY CONTROL ASSEMBLY.
- DESCRIPTION: Sets correct voltages to calibrate MARKER SWEEP OPERATION.
- PROCEDURE: a. Press MARKER SWEEP pushbutton. Set MANUAL control fully counterclockwise. Set STOP MARKER to 5 Volt mark on calibration scale.
 - b. Connect DVM input to A2TP5. Set Start Market to 0 Volt mark on calibration scale. Set adjustment F (START FREQ LO) (A2R55) for DVM indication of 0.000 Vdc ± 0.001 Vdc.
 - c. Set Start Marker to 10 Volt mark on calibration scale. Turn MANUAL control fully clockwise. Set adjustment L (STOP FREQ LO) (A2R25) for DVM indication of 0.000 Vdc ± 0.005 Vdc.
 - e. Set Stop Marker to 10 Volt mark on calibration scale. Set adjustment R (STOP FREQ HI) (A2R36) for DVM indication of +10.000 Vdc ± 0.005 Vdc.

5-22. CW/CW MARKER ADJUSTMENT

- REFERENCE: Service Sheet 2, FREQUENCY CONTROL ASSEMBLY.
- DESCRIPTION: Sets correct voltages for calibration of CW frequency and CW MARKER control.

NOTE

If CW MARKER potentiometer R4 has been replaced, refer to Paragraph 5-27 for mechanical zero.

- PROCEDURE: a. Press FULL SWEEP pushbutton. Connect DVM input to A2TP4.
 - b. Set CW Marker (white pointer) to 0 Volt mark on calibration scale.
 - c. Set adjustment V (CW MARK LO) (A2R43) for DVM indication of 0.000 Vdc ± 0.001 Vdc.
 - d. Set CW Marker to 10 Volt mark on calibration scale. Set adjustment T (CW MARK HI) (A2R33) for DVM indication of +10.000 Vdc ± 0.005 Vdc.
 - e. Press CW pushbutton. Connect DVM input to A2TP5. Set CW Marker to 0 Volt mark on calibration scale. Set adjustment H (CW FREQ LO) (A2R50) for DVM indication of 0.000 Vdc ± 0.001 Vdc.
 - f. Set CW Marker to 10 Volt mark on calibration scale. Set adjustment U (CW FREQ HI) (A2R29) for DVM indication of +10.000 Vdc ± 0.005 Vdc.

5-23. CW VERNIER ADJUSTMENT

- **REFERENCE:** Service Sheet 2, FREQUENCY CONTROL ASSEMBLY.
- DESCRIPTION: Sets correct voltages for calibration of CW VERNIER control.

NOTE

If CW VERNIER potentiometer R5 has been replaced, refer to Paragraph 5-27 for mechanical zero.

PROCEDURE: a. Verify DVM connected to A2TP5. Set CW Marker to 0 Volt mark on calibration scale and adjust CW MARKER control for DVM indication of 0.000 Vdc ± 0.001 Vdc.

- b. Press CW VERNIER pushbutton. Set CW VERNIER pointer to +5 Volt mark on calibration scale. Set CW VERNIER Multiplier to X1.
- c. DVM indication should be +0.500 Vdc \pm 0.007 Vdc. Record this reading.
- d. Set CW VERNIER pointer to -5 Volt mark on calibration scale. Set adjustment C (CWV CAL) (A2R57) for DVM indication of same magnitude ± 0.002 Vdc as recorded in step (d) but of opposite polarity.
- e. Set CW VERNIER pointer to 0 Volt mark on calibration scale. DVM indication should be 0.000 Vdc ± 0.010 Vdc.
- f. If test limit is not met in step (f), reset adjustment C. Recheck DVM indication at +5 Volt mark and -5 Volt mark for test limit.

5-24. \triangle F ADJUSTMENT

REFERENCE: Service Sheet 2, FREQUENCY CONTROL ASSEMBLY.

DESCRIPTION: Sets correct voltages for calibration of ΔF operation.

NOTE

If ${\bigtriangleup}\,F$ potentiometer R3 has been replaced, refer to Paragraph 5-27 for mechanical zero.

- PROCEDURE: a. Connect DVM to A2TP5. Adjust CW and CW VERNIER controls for DVM indication of +5.000 Vdc ± 0.001 Vdc.
 - b. Press ΔF pushbutton. Set ΔF Multiplier to X10. Set ΔF pointer to 0 Volt mark on calibration scale.
 - c. Connect DVM to A2TP3. Adjust MANUAL control for DVM indication of +5.000 Vdc ± 0.005 Vdc.

5-24. \triangle F ADJUSTMENT (Cont'd)

- d. Connect DVM input to A2TP6. Set adjustment D (Δ F OFFSET) (A2R46) for DVM indication of 0.000 Vdc ± 0.001 Vdc.
- e. Connect DVM to A2TP5. Set ΔF pointer to +5 Volt mark on calibration scale. While continually rotating MANUAL control between full clockwise and full counterclockwise positions, set adjustment J (ΔF SYM) (A2R49) for symmetry.
- f. Rotate MANUAL control continually between full clockwise position and full counterclockwise position and set adjustment E (ΔF AMPLITUDE) (A2R42) for 0.000 Vdc ±0.001 Vdc at clockwise position and +10.000 Vdc ±0.0001 Vdc at counterclockwise position.

5-25. DIGITAL-TO-ANALOG CONVERTER ADJUSTMENT (Option 001 Only)

- REFERENCE: Service Sheet 6, DIGITAL-TO-ANALOG CONVERTER ASSEMBLY.
- DESCRIPTION: Sets calibration adjustment for A6 Assembly (refer to Figure 5-1 for test setup).
- EQUIPMENT: Digital Multimeter HP 3490A
- PROCEDURE: a. Connect DVM to 36-pin service board (HP Part No. 08620-60037) pin 1 (tuning voltage output) (J6-1) and connect ground lead to ground pin on service board (J6-10).
 - b. Install 50-pin service board (HP Part No. 08620-60125) on rear-panel PROGRAM-MING connector J2.
 - c. Set remote D/A enable switch (R D/A) to GND. Set all BCD input switches (8V, 4V, 2V, 1V, etc.) to GND.
 - d. Adjust OFFSET A6R1 for 0.0000 Vdc ± 0.0005 Vdc indication on DVM.
 - e. Set 8V and 2V BCD switches to OPEN.
 - f. Adjust REF A6R2 for +10.0000 Vdc ± 0.0005 Vdc indication on DVM.

5-26. DIGITAL-TO-ANALOG CONVERTER ADJUSTMENT (Option 011 Only)

REFERENCE: Service Sheet 6A. A12 HP-IB Interface Assembly

DESCRIPTION: Assures that the programmed digital-control-voltage input is converted to the correct analog tuning voltage. The 0V and 10V references are set by two adjustments, LO (0V) and HI (10V), on the A12 HP-IB Interface Assembly.

5-26. DIGITAL-TO-ANALOG CONVERTER ADJUSTMENT (Option 011 Only) (Cont'd)

Figure 5-4. D/A Converter Adjustment Test Setup

EQUIPMENT:	Digital Multimeter					•	•	HP 3490A
•	Calculator							HP 9830A
	HP-IB Calculator Interface							HP 59405A (Option 030)
	36-Pin Service Board							HP 08620-60036
	HP-IB Interface Cable	•	•	•	•	•	•	HP 10631A/B/C

NOTE

For this adjustment, the HP Model 59401A Bus System Analyzer or any other HP-IB controller may be substituted for the HP 9830A Calculator.

PROCEDURE: a. Remove 8620C top cover and insert 36-pin service board at J6.

- b. Connect DVM to service board pin 1 (tuning voltage output) (J6-1) and connect ground lead to ground pin on service board (J6-10).
- c. Connect calculator or bus system analyzer to 8620C PROGRAMMING connector J2.
- d. Press 8620C LINE pushbutton ON.
- e. Address 8620C, program FULL SWEEP mode REMOTE, and select zero volts. CMD "?U&", M1VØE
- f. Adjust LO A12R11 for 0.0000 Vdc ±0.0005 Vdc indication on DVM.
- g. Program for 10 volts: V: $\emptyset \emptyset \emptyset E$
- h. Adjust H1 A12R12 for +10.0000 Vdc ±0.0005 Vdc indication on DVM.
5-27. MECHANICAL ZERO ADJUSTMENT

- **REFERENCE:** Figure 5-5. Mechanical Zero Adjustment Locations.
- DESCRIPTION: Sets mechanical zero of START MARKER, △F, CW MARKER, CW VERNIER, and STOP MARKER controls. One adjustment procedure is shown for all controls and the indications are the same for each control except for CW VERNIER. The CW VERNIER readings are shown in parentheses.

NOTE

This adjustment should be performed in conjunction with frequency or marker control adjustments and only when one of the potentiometers has been replaced. Refer to paragraphs 5-19 through 5-24.

- PROCEDURE: a. Locate minimum resistance point of control by rotating control about 0 Volt scale mark (+5 Volt scale mark for CW VERNIER) while monitoring voltage reading on DVM. Minimum resistance point is indicated by minimum voltage reading on DVM. (CW VERNIER control is adjusted for a DVM reading of +0.500 Vdc ± 0.005 Vdc).
 - b. Loosen set screws in shaft collar as shown in Figure 5-5 using a right-angle 4-spline (Bristol) wrench (HP Part No. 8710-0055).
 - c. Align pointer to 0 Volt scale mark (+5 Volt scale mark for CW VERNIER) by first setting pointer to left-edge stop, then adjusting up-scale to 0 Volt scale mark (+5 Volt scale mark for CW VERNIER).
 - d. Tighten set screws in shaft collar.
 - e. Locate minimum resistance point of control and check alignment of pointer (adjust for +0.500 Vdc ± 0.005 Vdc for CW VERNIER). If pointer is not aligned to scale mark, loosen set screws in collar and realign pointer.
 - f. Repeat this process until pointer is aligned to scale mark. Alignment is complete when DVM indicates minimum voltage (+0.500 Vdc ± 0.005 Vdc for CW VERNIER).

Figure 5-5. Mechanical Zero Adjustment Locations

Figure 5-6. Location of Test Points

Figure 5-6. Location of Test Points

Figure 5-7. Location of Adjustments

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designator order. Table 6-3 contains names and addresses that correspond to the manufacturer's code numbers.

6-3. ABBREVIATIONS

6-4. Table 6-1 lists abbreviations used in the parts list, schematics and throughout the manual. In some cases, two forms of the abbreviation are given; one uses all capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always in capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-5. REPLACEABLE PARTS LIST

6-6. Table 6-2 is the list of replaceable parts and is organized as follows:

a Electrical assemblies and their components in alpha-numerical order by reference designation.

b. Chassis-mounted parts in alpha-numeric order by reference designation.

c. Miscellaneous parts.

d. Illustrated parts breakdown, if appropriate.

6-7. The information given for each part consists of the following:

a. The Hewlett-Packard part number.

b. The total quantity (Qty) in the instrument.

c. The description of the part.

d. The typical manufacturer of the part in a five-digit code.

e. Manufacturer code number for the part.

NOTE

The total quantity for each part is given only once - at the first appearance of the part number in the list.

6-8. ORDERING INSTRUCTIONS

6-9. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate quantity required, and address the order to the nearest Hewlett-Packard office.

6-10. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

REFERENCE DESIGNATIONS

A	E.
AT attenuator; isolator;	
termination	F.
B fan; motor	FL
BT battery	н.
C capacitor	НΥ
CP coupler	J .
CR diode: diode	
thyristor; varactor	
DC directional coupler	
DL delay line	К.
DS annunciator:	L.
signaling device	Μ.,
(audible or visual);	MP
lamp; LED	

Ľ.	•		٠	٠	•	٠			n	IS	сı		41	e	ou	s	
				e	le	ct	rı	c	al	F)d	r۱					
F.														ſ	us	e	
F1														fi	lt e	r	
н											1	na	rd	w	ar	۲	
H?	r										c	ire	cu	la	to	r	
J				e	le	c	۱r	۱c	a	1	cu	וחי	ne	c	lo	r	
				(st.	at	ic	'n	ıa	r١	1	po	rt	ic	'n):	
)a	ıc	k											
к															d a	v	
L									c	γï	Ľ	in	d	uc	etc	r	

meter miscelianeous mechanical part

Ρ	electrical connector (movable portion); plug
Q	transistor: SCR ; triode thyristor
R	resistor
RT	thermistor
	switch
Т	transformer
ТΒ	terminal board
ТС	thermocouple
	test point

U			integrated circuit.
			microcircuit
v			electron tube
VF	ł		. voltage regulator:
			breakdown diode
w			. cable; transmission
			path; wire
х			socket
			. crystal unit (piezo-
			electric or quart/)
Z		,	, tuned cavity; tuned
			circuit

ABBREVIATIONS

			INT internal
A ampere	COEF coefficient	EDP electronic data	kg kilogram
ac alternating current	COM common	processing	kHz kilohertz
ACCESS accessory	COMP composition	ELECT electrolytic	$k\Omega$ kilohm
ADJ adjustment	COMPL	ENCAP encapsulated	
A/D analog-to-digital	CONN connector	EXT external	kV kilovolt
AF audio frequency	CP cadmium plate	F farad	lbpound
AFC automatic	CRT cathode-rav tube	FET field-effect	LC inductance-
frequency control	CTL complementary	transistor	capacitance
AGC automatic gain	transistor logic	F/F flip-flop	LED light-emitting diode
control	CW continuous wave	FH	LF low frequency
ALaluminum	cwclockwise	FIL H fillister head	LG long
ALC automatic level	cm centimeter	FM frequency modulation	LH left hand
control	D/A digital-to-analog	FP front panel	LIM hmit
AM amplitude modula-	dB decibel	FREQ frequency	LIN linear taper (used
tion	dBm decibel referred	FXD fixed	in parts list)
AMPL amplifier	to 1 mW	g gram	lin linear
APC automatic phase	dc direct current	GE germanium	LK WASH lock washer
control	deg , degree (temperature	GH/ gigahert/	LO low; local oscillator
ASSY assembly	interval or differ-	GLglass	LOG logrithmic taper
AUXauxiliary		GND ground(ed)	(used in parts list)
	o ence)	H henry	log logrithm(ic)
avg average	degree (plane	h hour	LPF low pass filter
AWG American wire	angle) Cdegree Celsius	HET heterodyne	LV low voltage
gauge		HEX hexagonal	m meter (distance)
BAL balance	c (centigrade)		mA milliampere
BCD binary coded	F degree Fahrenheit	HDhead	MAX maximum
decimal	K degree Kelvin	HDW hardware	$M\Omega$ megohm
BD board	DEPC deposited carbon	HF high frequency	MEG meg (10^6) (used
BECU beryllium	DET detector	HG mercury	
copper	diam diameter	Hl high	in parts list)
BFO beat frequency	DIA diameter (used in	HP Hewlett-Packard	MET FLM metal film
oscillator	parts list)	HPF high pass filter	MET OX metallic oxide
BH binder head	DIFF AMPL differential	HR hour (used in	MF medium frequency:
BKDN breakdown	amplifier	parts hst)	microfarad (used in
BP bandpass	div division	HV high voltage	parts list)
BPF bandpass filter	DPDT double-pole.	Hz Hertz	MFR manufacturer
BRS brass	double-throw	IC integrated circuit	mg milligram
BWO backward-wave	DR drive	ID inside diameter	MHz megahertz
oscillator	DSB double sideband	IF intermediate	mH millihenry
CAL calibrate	DTL diode transistor	frequency	mho mho
ccw counter-clockwise	logic	IMPG impregnated	MIN minimum
CER ceramic	DVM digital voltmeter	in inch	min minute (time)
	ECL emitter coupled	INCD incandescent	minute (plane
CHAN	logic	INCL include(s)	angle)
cm centimeter	EMF . electromotive force	INP input	MINAT miniature
CMO cabinet mount only	EMP electromotive force	INS insulation	mm millimeter
COAX coaxial			

NOTE

All abbreviations in the parts list will be in upper-case.

Table 6-1. Reference Designations and Abbreviations (2 of 2)

MOD modulator
MOM momentary MOS metal-oxide
MOS metal-oxide
semiconductor
ms millisecond
MTG mounting
MTR meter (indicating
device)
mV millivolt
mVac millivolt, ac mVdc millivolt, dc
mvac mulivolt, ac
mivpk minivoli, peak
mvp-p milivoit, peak-
to-peak
mVrms millivolt, rms
mW milliwatt
MUX multiplex
······································
μA microampere
μF microfarad
μF microfarad μH microhenry
µmho micromho
μs microsecond
μv microvolt
µVac microvolt, ac
μVacmicrovolt, ac μVdcmicrovolt, dc μVpkmicrovolt, peak
UVpk microvolt, peak
$\mu V p k$ microvolt, peak $\mu V p p$ microvolt, peak-
to-peak
μ Vrms microvolt, rms
μW microwatt
nA nanoampere
NC no connection N/C normally closed
NE neon
NI PI pinkol plate
NI PL nickel plate
N/O normally open
NOM nominal
NORM normal
NPN negative-positive-
negative
NPO negative-positive
zero (zero tempera-
ture coefficient)
NRFR not recommended
NRFR not recommended for field replace-
NRFR not recommended for field replace- ment
NRFR not recommended for field replace-
NRFR not recommended for field replace- ment
NRFR not recommended for field replace- ment NSR not separately replaceable nanusecond
NRFR not recommended for field replace- ment NSR not separately replaceable ns nanosecond nW nanowatt
NRFR not recommended for field replace- ment NSR not separately replaceable nanusecond
NRFR not recommended for field replace- ment NSR not separately replaceable ns nanosecond nW nanowatt

OD outside diameter
OH oval head
OH oval head OP AMPL operational
amplifier
OPT option
A.V.
02
Ω ohm
P peak (used in parts
list)
PAM pulse-amplitude
modulation
PC printed circuit
· · · · · · · · · · · · · · · · · · ·
tion; pulse-count
modulation
PDM pulse-duration
modulation
pF picofarad
PH BRZ phosphor bronze
PHL Phillips
PIN positive-intrinsic-
negative
PIV peak inverse
voltage
pk
PL phase lock
PLO phase lock
oscillator
PM phase modulation
PNP positive-negative-
P/O part of
POLY polystyrene
PORC porcelain POS positive: position(s)
POS positive: position(s)
(used in parts list)
POSN position
• • • •
r r s s s s s s s r r m r p s m
in parts list)
PPM pulse-position
modulation
PREAMPL preamplifier
PRF pulse-repetition
frequency
PRR pulse repetition
rate
ps picosecond
PT point PTM pulse-time
modulation
PWM pulse-width
modulation

PWV.	peak working
	voltage
RC	resistance-
D.D.O.M	capacitance
RECT	rectifier reference regulated
REF .	reference
REPL	regulated
	replaceable
RFI .	radio frequency radio frequency
AFI .	interference
RH	round head; right
	hand
	resistance-
	inductance-
	capacitance
RMO :	rack mount only
rms	. root-mean-square
RND.	
ROM	read-only memory
R&P	rack and panel reverse working
RWV .	reverse working
c	voltage
S	scattering parameter
s	second (plane angle)
S-B	slow-blow (fuse)
	(used in parts list)
SCR	silicon controlled
	rectifier: screw
SE	selenium
SECT .	sections
	N semicon-
	ductor
	superhigh fre- quency
	silicon
SIL	silver
SL	silver slide signal-to-noise ratio
SNR	signal-to-noise ratio
SPDT	single-pole
	double-throw
SPG	spring
SR	
SPST .	single-pole.
	single-throw
SSB	single sideband
SST	stainless steel
511	single sideband stainless steel steel
SU	
SYNC	standing-wave ratio
T tir	ned (slow-blow fuse)
TA	tantalum
тс	temperature
	compensating

TD time delay
TERM terminal
TFT thin-film transistor
mun u
Tl titanium
TOL tolerance
TRIM trimmer
TSTR transistor
TTL transistor-transistor
logic
TV television
TVI television interference
TVI television interference TWT traveling wave tube
U micro (10 ⁻⁶) (used
in parts list)
UF microfarad (used in
Darts list)
UHF ultrahigh frequency
UNREG unregulated
V volt
VA voltampere
Vac volts, ac VAR variable
VAR
VCO voltage-controlled
oscillator
Vdc volts, dc volts, dc VDCW volts, dc, working
VDCW volts, dc, working
(used in parts list)
V(F) volts, filtered
VFO variable-frequency
oscillator
VHF very-high fre-
quency
Vpk
Vp-p volts, peak-to-peak
Vrms volts, rms
VSWR voltage standing
wave ratio
VTO voltage-tuned
oscillator
VTVM vacuum-tube
voltmeter
V(X), volts, switched
W
WIV working inverse
voltage
WW wirewound
W/O without
YIG yttrium-iron-garnet
Z _o characteristic
impedance

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation	Prefix	Multiple
т	tera	1012
G	giga	109
М	mega	106
k	kilo	103
da	deka	10
d	deci	10 1
С	centi	10-2
m	milli	10 3
μ	micro	10-6
n	nano	109
p	pico	10-12
f	femto	10^{-15}
а	atto	10 -18

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A 1	04020-00111	1	EULRD ASSEMBLY, SAEEP USCILLATOR	28480	UM020-60111
A1C1 A1C2 A1C3	0100-0572 0160-0572 0184-1735	2	CAPACITOR-FXD 2200PF +-20% 100#VDC CEH CAPACITUR-FXD 2200PF +-20% 100#VDC CEH CAPACITUR-FXD .220F+-10% 35VDC TA CAPACITOR-FXD .010F +-20% 100#VDC CEF	28480 28480 56289 28480	6160-0572 6160-0572 1500224×9035A2 9160-3879
A1C4 A1C5	0100=3879 0100=3876	6	CAPACITOR-FXD 1000PF +-20% 100WVDC CEM	28480	6160-387F
A1C6 A1C7	U160-3679 U166-2055	ь	CAPACITOR-FXD .01UF +-20% 100mVDC CER CAPACITUR-FXD .01UF +60-20% 100mVDC CER	28480 28480	0160=3879 0160=2055
A1CP1 A1CP2 A1CP3 A1CP4 A1CP5	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	10	DICDE-SAITCHING 30V 50MA 2NS DO-35 DIODE-SAITCHING 30V 50MA 2NS DO-35 CIODE-SAITCHING 30V 50MA 2NS DO-35 DIODE-SAITCHING 30V 50MA 2NS DO-35 DICDE-SAITCHING 30V 50MA 2NS DO-35	26460 28480 28480 28480 26480	1401-0040 1901-0040 1901-0040 1901-0040 1901-0040
A1CP6 A1CP7 A1CP6 A1CP9 A1CP9 A1CP10	1961-0040 1901-0040 1901-0040 1903-0040 1903-0040	2	DIQDE-SRITCHING 30V 50MA 2NS DD-35 DICDE-SRITCHING 30V 50MA 2NS DD-35 DIQDE-SRITCHING 30V 50MA 2NS DD-35 DIQDE-SRITCHING 30V 50MA 2NS DD-35 DIQDE-GE 60V 60NA 1US DD-7	28480 28480 28460 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1916-0010
A1CR11 A1CR12 A1CR13 A1CR14 A1CR14	1901-0040 1901-0033 1901-0159 1910-0016 1901-0040	9 9	DIODE-SAITCHING 30V 50MA 2NS DO-35 DIODE-GEA PRP 180V 200MA DO-7 DIODE-PAR RECT 400V 750MA DO-41 DIODE-SAITCHING 30V 50MA 2NS DO-35	28480 28480 04713 28480 28480	1901-0040 1901-0033 Sk1356-4 1910-0016 1901-0040
A1CP16 A1CR17 A1CR18 A1CR19 A1CR19 A1CR20	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	26480 26480 26480 26480 26480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A1MP1 A1MP2 A1MP3 A1MP4	4040+0749 4040-0749 1480-0073 1480-0073	2	EXTR-PC BD BRN PDLYC .062-BD-THKNS EXTR-PC BD BRN PDLYC .062-BD-THKNS Pinidrive 0.250" LG Pinidrive 0.250" LG	28480 28480 00000 00000	4040-0749 4040-0749 080 680
A1Q1 A1W2 A1W3 A1W3 A1W5	1854-0404 1854-0404 1854-0404 1853-0404 1853-0404	36 6	TRANSISTOR NPN SI TO-18 PD#360Mm Transistor NPN SI TO-18 PD#360Mm Transistor NPN SI TO-18 PD#360Mm Transistor PNP SI TC-18 PD#360Mm Transistor NPN SI TC-18 PD#360Mm	28480 26480 28480 28480 28480 28480	1854-0404 1854-0404 1854-0404 1853-0050 1854-0404
A166 A197 A165 A199 A1910	1654-0404 1854-0404 1855-0082 1855-0082 1855-0404	12	TRANSISTOR NPN SI TO-16 PD=360MK. TRANSISTOR NPN SI TO-16 PD=360MW TRANSISTOP MOSFET F=CHAN D=MODE SI TRANSISTOR J=FET N=CHAN D=MODE SI TRANSISTOF NPN SI TU-18 PD=360MK	28480 28480 28480 28480 28480 28480	1854-0404 1854-0404 1855-0082 1855-0082 1854-0404
A1U11 A1U12 A1U13 A1U14 A1U14 A1U15	1853-0050 1854-0404 1854-0474 1854-0404 1855-0662	2	TRANSISTOR PNP SI TO-18 PD=360MA TRANSISTOR NPN SI TO-18 PD=360MA TRANSISTOR NPN SI PD=310MA FT=100MH2 TRANSISTOR NPN SI TU-18 PD=360MA TRANSISTOR J-FET N-CHAN D-MODE SI	26480 28480 28480 28480 28480 28480	1853-0050 1854-0404 1854-0474 1854-0474 1854-0404 1855-0062
A1410 A1417 A1416 A1419 A1420	1654-0404 1853-0050 1854-0404 1853-0050 1854-0079	1	TRANSISTOR NPN SI TU-18 PD=360Mm Transistor PNP SI TU-18 PD=360Mm Transistor NPN SI TU-18 PD=360Mm Transistor NPN SI TO-18 PD=360Mm Transistor NPN 2N3439 SI TO-5 PD=1m	28480 28480 28480 28480 02735	1854-0404 1853-0050 1854-0404 1853-0050 2N3439
A1421 A1622	1854-0474 1654-0404		TRANSISTOR NPN SI PD=310Mm FT=100MHZ Thansistor nPn SI TO+18 PD=360Mm	28480 28480	1854-0474 1854-0464
A1#1 A1#2 A1#3+	0898-7236 0898-7262 0757-0461	8 1 9	RESISTOR 1K 12 .05% F TC=0+-100 RESISTOR 12.1K 12 .05% F TC=0+-100 RESISTOR 68.1K 12 .125% F TC=0+-100 *FACTORY SELECTED PART	24546 24546 24546	C3-1/8-T0-1001-G C3-1/8-T0-1212-G C4-1/8-T0-8812-F
A1#4	0695-7275	1	RESISTOR 42.2% 1% .05% F TC=0+-100	24546	C3-1/8-T0-4222-G C3-1/8-T0-1902-G
A1#5 A1#6 A1R7 A1#8 A1#9	0698-7267 0698-7277 0696-7260 0698-7272 0698-7260	1 3 14 3	RESISTOR 19.6K 1% .05W F TC=0+-100 RESISTOR 51.1K 1% .05W F TC=0+-100 RESISTUR 10K 1% .05W F TC=0+-100 RESISTOR 31.6K 1% .05W F TC=0+-100 RESISTOR 10K 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-5112=G C3-1/8-T0-1002=G C3-1/8-T0-3162=G C3-1/8-T0-1002=G
A1#10 A1#11 A1#12 A1#13 A1#14	2100-2517 2100-2517 2100-2520 0696-7247 0696-7247	2 1 2	RÉSISTOR-TRMR 50K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 50K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 50 20% C SIDE-ADJ 1-TRN RESISTOR 2.87K 1% .05% F TC=0+-100 RESISTOR 2.87K 1% .05% F TC=0+-100	30983 30983 30983 24546 24546	£T50X503 ET50X503 ET50X500 C3-1/8-T0-2871-G C3-1/8-T0-2871-G
A1#15 A1#16 A1#17 A1#18 A1#19	0696-7243 0696-7263 0696-727 0696-7238 0696-7238	9 2 1 4	RESISTOR 1.96K 1% .05K F TC=0+=100 RESISTOR 13.3K 1% .05K F TC=0+=100 RESISTOR 51.1K 1% .05K F TC=0+=100 RESISTOR 1.21K 1% .05K F TC=0+=100 RESISTOR 1K .1% .125K F TC=0+=25	24546 24546 24546 24546 24546 24546	C3-1/8-T0-1961-G C3-1/8-T0-1332-G C3-1/8-T0-5112-G C3-1/8-T0-1211-G NE55

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1R20 A1R21 A1R22 A1R23 A1R24	0698-7260 0698-7260 0663-1065 0683-1065 0698-7254	3	RESISTUP 10K 11 .05% F TC=0+-100 FESISTOF 10K 11 .05% F TC=0+-100 RESISTOR 10M 51 .25% FC TC=+900/+1100 RESISTOR 10M 51 .25% FC TC=+900/+1100 RESISTOF 5.62K 11 .05% F TC=0+-100	24546 24546 01121 01121 24546	C3-1/8-TV-1002+G C3-1/8-TV-1002+G C41065 C3-1/8-TV-5621+G
A1R25 A1R26 A1R27 A1R28 A1R29	0698-7229 0653-1065 0698-7236 0698-6362 0698-6362	3	RESISTOR 511 11 .05n F TC=0+-100 RESISTOR 10M 51 .25n FC TC=-9u0/+1100 RESISTOR 14 11 .05n F TC=0+-100 RESISTOR 14 .11 .125n F TC=0+-25 RESISTOR 104 11 .05n F TC=0+-100	24546 01121 24546 24546 24546	C3-1/8-T0-511R-G Cd1065 C3-1/8-T0-1001-G NE55 C3-1/8-T0-1002-G
A1+30 A1831 A1832 A1833 A1834	0698-6362 0696-7270 0699-7208 0698-7245 0698-6362	3 1 1	<pre>#ESISTOF 1K .12 .125. F TC±0++25 RESISTOR 26.1K 12 .05m F TC±0++100 RESISTOR 86.1 12 .05m F TC±0++100 RESISTOR 3.16K 12 .05m F TC±0++100 RESISTOR 1K .12 .125m F TC±0++25</pre>	24546 24546 24546 24546 24546 24546	v£55 C3-1/8-TU-2612-G C3-1/8-TU0-88R1-G C3-1/8-TU-3161-G v€55
A1R35 A1R36 A1R37 A1F36 A1F39	2100-2516 0698-7277 0698-7282 0698-7244 0698-7236	1	RESISTON-TRMR 100K 10% C SIDE-ADJ 1-TRN RESISTON 51.1K 1% .05m F TC#0+-100 RESISTOR 82.5K 1% .05m F TC#0+-100 RESISTOR 2.15K 1% .05m F TC#0+-100 RESISTOR 1K 1% .05m F TC#0+-100	73138 24546 24546 24546 24546	62-231-1 C3-1/8-T0-5112-G C3-1/8-T0-2552-G C3-1/8-T0-2151-G C3-1/8-T0-1001-G
A1R40 A1441 A1R42 A1R43 A1R44	0698-7207 0696-7243 0698-7229 0698-7243 0698-7243	1	RESISTOR 61.9 1% .05* F TC=0+=100 RESISTOR 1.96K 1% .05* F TC=0+=100 RESISTOR 511 1% .05* F TC=0+=100 RESISTOR 1.96K 1% .05* F TC=0+=100 RESISTOR 1.96K 1% .05* F TC=0+=100	24546 24546 24546 24546 24546 24546	C3-1/8-T00-01R9-6 C3-1/8-T0-1961-6 C3-1/8-T0-511R=6 C3-1/8-T0-1961-6 C3-1/8-T0-1961-6
A1R45 A1R46 A1R47 A1R48 A1R48	0698-7284 0698-7260 0698-3260 0698-7272 0698-7272	3 11 3	RESISTOR 100K 1X .05m F TC≡0+-100 RESISTOR 10K 1X .05m F TC≡0+-100 RESISTOR 464K 1X .125m F TC≡0+-100 RESISTOR 31.6K 1X .05m F TC≡0+-100 RESISTOR 14.7K 1X .05m F TC≡0+-100	24546 24546 91637 24546 24546	C3-1/6-T0-1003-G C3-1/6-T0+1002-G C™F-55-1, T-1 C3-1/6-T0-3162-G C3-1/6-T0-1472-G
A1R50 A1R51 A1R52 A1R53 A1R54	0698-7236 0698-7257 0698-7253 0698-7253 0698-7232 0698-7272	1 3 1	RESISTOR 1K 1X .05% F TC=0+-100 RESISTOR 7.5K 1X .05% F TC=0+-100 RESISTOK 5.11K 1X .05% F TC=0+-100 RESISTOR 681 1X .05% F TC=0+-100 RESISTOR 31.6K 1X .05% F TC=0+-100	24546 24546 24546 24546 24546 24546	C3-1/8-TU-1001-G C3-1/8-TU-7501-G C3-1/8-TU-5111-G C3-1/8-TU-581R-G C3-1/8-TU-5162-G
A1855 A1856 A1857 A1858 A1858 A1859	0698-7245 0757-0317 0698-0083 0696-7260 0698-7256	1 1 2 1	RESISTOR 2,37K 1X .05% F TC=0+-100 RESISTOR 1.33K 1X .125% F TC=0+-100 RESISTOR 1.96K 1X .125% F TC=0+-100 RESISTOR 10K 1X .05% F TC=0+-100 RESISTOR 8.25K 1X .05% F TC=0+-100	24546 24546 24546 24546 24546 24546	C3-1/6-T0-2371-G C4-1/6-T0-1331-F C4-1/8-T0-1961-F C3-1/8-T0-1002-G C3-1/8-T0-8251-G
A1R60 A1R61 A1R62 A1R63 A1R64	0698-7278 0698-7270 0698-7236 0698-7236 0698-7236	1	RESISTOR 56.2K 1% .05N F TC=0+-100 RESISTOR 26.1K 1% .05N F TC=0+-100 RESISTOR 1K 1% .05N F TC=0+-100 RESISTOR 1K 1% .05N F TC=0+-100 RESISTOR 10K 1% .05N F TC=0+-100	24546 24546 24546 24546 24546 24546	C3-1/6-T0-5622-G C3-1/6-T0-2612-G C3-1/6-T0-1001-G C3-1/6-T0-1001-G C3-1/6-T0-1002-G
11465 11866 11867 11868 11868	0698-7260 0698-7260 0757-0419 0757-0289 0757-0289	3 1 1	RESISTOR 10K 1% .05% F TC±0+-100 RESISTOR 10K 1% .05% F TC=0+-100 PESISTOR 681 1% .125% F TC=0+-100 RESISTOR 13.3% 1% .125% F TC=0+-100 RESISTOR 1.62K 1% .125% F TC=0+-100	24546 24546 24546 19701 24546	C3-1/8-T0-1002=G C3-1/8-T0-1002=G C4-1/8-T0-881R=F MF4C1/8-T0-1332=F C4-1/8-T0-1621=F
11870 11871 11872 11873 11873	0757-1094 0698-7284 0757-0288 0698-7250 0698-7254	4 2 2	RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR 100K 1% .05% F TC=0+-100 RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .05W F TC=0+-100 RESISTOR 14.7K 1% .05W F TC=0+-100	24546 24546 19701 24546 24546	Cu-1/8-Tu-1471=F C3-1/8-TU-1003=G #F4C1/8-T0-9091=F C3-1/8-TU-8811=G C3-1/8-Tu-1472=G
1875 1876 1877 1878 1879	0696-7284 0698-7270 0698-7264 0698-7256 0698-7255		RESISTOR 100K 12 .05m F TC=0+-100 RESISTOR 26.1K 12 .05m F TC=0+-100 RESISTOR 14.7K 12 .05m F TC=0+-100 RESISTOR 6.81K 12 .05m F TC=0+-100 RESISTOR 5.11K 12 .05m F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-1003-G C3-1/8-T0-2612-G C3-1/8-T0-1472-G C3-1/8-T0-6811-G C3-1/8-T0-5111-G
1880 1881 1882 1883 1884	0698-7236 0698-7253 0698-7263 0698-7276 0698-7243	1	RÉSISTON 1K 1% .05N F TC≠0+-100 RESISTOR 5.11K 1% .05N F TC=0+-100 RESISTOR 13.3K 1% .05N F TC=0+-100 RESISTOR 45.4K 1% .05N F TC=0+-100 RESISTOR 1.96K 1% .05N F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-1001-G C3-1/8-T0-5111-G C3-1/8-T0-1332-G C3-1/8-T0-4042-G C3-1/8-T0-4901-G
1U1 1U2 1U3 1U4	1813-0041 1826-0092 1820-0076 1200-0507 1826-0102	1 3 1 7 1	IC LH 0042C OP AMP IC MC 1458 OP AMP IC-DIGITAL \$N7476N TTL DUAL J-K SOCKET-IC 19-CONT DIP-SLDR-TERMS IC LM 312 OP AMP	27014 28480 01295 06776 27014	LH0042CH 1826-0092 SN7476N ICN-163-53N LM312H
105 106 107	1826-0092 1820-0054 1200-0508 1820-0411 1200-0508	2 12 1	IC MC 1458 OP AMP IC-DIGITAL SN7400N TTL QUAD 2 NAND SOCKET-IC 14-CONT DIP-SLDR-TERMS IC-DIGITAL MC817P RIL QUAD 2 NOR SOCKET-IC 14-CONT DIP-SLDR-TERMS	28460 01295 06776 04713 06776	1626-0092 SN7400N ICN-143-S3W MCB17P ICN-143-S3W

A1U9 12 A1U10 18 A1U10 18 A1U11 18 A1U11 18 A1U11 18 A1VR1 19 A1VR2 19 A1VR3 19 A1VR5 19 A2C2 06 A2C1 01 A2C2 01 A2C3 01 A2C4 01 A2K1 04 A2K3 04 A2K4 04	821-0001 200-0500 820-005- 200-0500 820-005- 200-0507 820-0092 902-0025 902-0029 902-0029 902-0029 902-0029 902-0005 8020-00112 100-0573 100-0573 1490-0910	2 1 1 2 48 3 1 1 1	TRANSISTOR ARRAY DIP SUCKET-IC 14-CONT DIP-SLDR-TEPMS IC-DIGITAL SNY400A TTL 404D 2 NAND SUCKET-IC 14-CONT DIP-SLDR-TERMS IC-DIGITAL SNY4123N TTL DUAL SUCKET-IC 16-CONT DIP-SLDR-TERMS IC MC 1456 OP AMP DICDE-ZNR 2.37V 51 DD-7 PDE.4M TCE+.0741 DIDDE-ZNR 4.64V 51 DD-7 PDE.4M TCE+.0231 DIDDE-ZNR 5.11V 51 DD-7 PDE.4M TCE+.0091 A1 MISCELLAMEOUS CONTACT-CONN U/M-POST-TYPE MALE DPSLDR mIRE 22ANG M PVC 1122 BOC BGARD ASSEMBLY, FREQUENCY CONTROL	02735 06776 01295 06776 20480 15818 28480 15818 28480 15818 28480 15818 28480 28480 28480	CA3046 ICA-143-S3A SU7400A ICA-143-S3A SV:74123A ICA-163-S3A 1826-0092 CD 35526 1902-0025 CU 35610 1902-3203 CD 35622 1251-0600 8159-0005
A1U11 1F A1VR1 19 A1VR2 19 A1VR3 19 A1VR5 19 A2C1 01 A2C2 06 A2C1 01 A2C2 01 A2C4 01 A2K1 04 A2K3 04	R2b-0092 902-002 902-025 902-3082 902-3082 902-3082 902-0041 251-0600 159-0005 8620-00112 150-1706 160-1746 160-0573 160-0573	1 4 2 48 3 1 1 1	IC MC 1456 OP AMP DILDE-7NP 2.37V 52 DO-7 PDE.4M TCE+.0742 DIDDE-ZNR 10V 52 DO-7 PDE.4M TCE+.062 DIDUE-ZNR 4.64V 51 DO-7 PDE.4M TCE+.0232 DIDDE-ZNR 4.64V 52 DO-7 PDE.4M TCE+.0232 DIDDE-ZNR 14.7V 52 DO-7 PDE.4M TCE+.0572 DIDDE-ZNR 5.11V 52 DO-7 PDE.4M TCE+.0092 A1 MISCELLANEOUS CONTACT-CONN U/M-POST-TYPE MALE DPSLOR MIRE 22ANG M PVC 1222 80C	15818 26480 15818 15818 28480 15818 28480 28480 28480 28480	CD 35526 1902-0025 CU 35610 CD 35610 1902-3203 CD 35622 1251-0600 B159-0005
A1VR1 19 A1VR2 19 A1VR3 19 A1VR3 19 A1VR3 19 A1VR5 19 A2VR5 19 A2VR5 19 A2VR5 19 A2C1 01 A2C2 01 A2C4 01 A2K1 04 A2K3 04 A2K4 04	9u2-3002 9u2-0025 9u2-3082 9u2-3082 9u2-3082 9u2-3082 902-0041 251-0000 159-0005 8620-00112 180-1706 180-1706 180-0573 180-0573	1 4 2 48 3 1 1 1	DICDE-ZNP 2.37V 51 DD-7 PD=.4n TC=.0741 DIDDE-ZNF 10V 51 DC-7 PD=.4n TC=.021 DIODE-ZNF 4.64V 51 DD-7 PD=.4n TC=.0231 DIODE-ZNF 4.64V 51 DD-7 PD=.4n TC=.0231 DIODE-ZNF 14.7V 51 DD-7 PD=.4n TC=.071 DIODE-ZNF 5.11V 51 DD-7 PD=.4n TC=.0091 A1 MISCELLANEOUS CUNTACT-CONN U/M-POST-TYPE MALE DPSLDR mIRE 22ANG N PVC 1122 80C	28480 15818 15818 28480 15818 28480 28480 28480	1902-0025 CD 35610 1902-3203 CD 35622 1251-0600 8159-0005
AjvRo 19 AjvRo 12 bi 51 A2 06 A2C1 01 A2C2 01 A2C3 01 A2C4 01 A2X2 04 A2X3 04 A2X4 04	902-0041 251-0600 159-0005 8620-00112 150-1706 150-1746 160-0573 160-0573	2 48 3 1 1	DIDDE-ZNR 5.11V 5% DO-7 PD=.4M TC=009% A1 MISCELLANEOUS CUNTACT-CDNN U/W-POST-TYPE MALE DPSLDR WIRE 22ANG W PVC 1%22 80C	28480 28480	1251-0600 8159-0005
A2 06 A2C1 01 A2C2 01 A2C3 01 A2C4 01 A2C4 01 A2C4 01 A2C4 01 A2C4 04 A2C4 04 A2C4 04 A2C4 04 A2C4 04	159-0005 8620-60112 160-1706 160-1746 160-0573 160-0573	3 1 1	CUNTACT-CONN U/N-POST-TYPE MALE DPSLOR NIRE 22ANG N PVC 1X22 BOC	25480	81 59- 0005
A2 06 A2C1 01 A2C2 01 A2C3 01 A2C4 01 A2C4 01 A2C4 01 A2C4 01 A2C4 04 A2C4 04 A2C4 04 A2C4 04 A2C4 04	159-0005 8620-60112 160-1706 160-1746 160-0573 160-0573	3 1 1	NIRE 22ANG W PVC 1X22 80C	25480	81 59- 0005
APC1 01 A2C2 01 A2C3 01 A2C4 01 A2X2 64 A2X2 64 A2X3 04 A2X4 04	180-1700 180-1746 180-6573 180-0573	1	BUARD ASSEMBLY, FREQUENCY CONTROL	26480	
A2C2 01 A2C3 01 A2C4 01 A2X1 04 A2X2 04 A2X3 04 A2X3 04	160-1746 160-0573 160-0573	1			08620-60112
۵۲۲۱ ۵۵ ۵۲۲۵ ۵۵ ۵۲۲۵ ۵۵ ۵۲۲۵ ۵۵	490-0915	3	CAPACITOR-FXD 1000F+-20% 25VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 4700PF +-20% 1000VDC CER CAPACITOR-FXD 4700PF +-20% 1000VDC CER	56289 56289 26480 28480	1090107x0025F2 1500156x902082 0160-0573 0160-0573
	490-0916 490-0916 490-1013 490-1013	3 8	RELAY-REED 14 .5A 50V CONT 5V-COIL RELAY-REED 14 .5A 50V CONT 5V-COIL RELAY-REED 14 .5A 50V CONT 5V-COIL RELAY-REED 16 250MA 28VAC 5VDC-COIL 3VA RELAY-REED 16 250MA 28VAC 5VDC-COIL 3VA	28480 28480 28480 28480 28480 28480	0490-0916 6490-0916 0490-0916 0490-1013 0490-1013
A2K7 04 A2K8 04 A2K9 04	490-1013 490-1013 490-1013 490-1013 490-1013		RELAY-REED 1C 250MA 28VAC 5VDC-COIL 3VA Rélay-REED 1C 250MA 28VAC 5VDC-COIL 3VA Relay-REED 1C 250MA 28VAC 5VDC-COIL 3VA Relay-REED 1C 250MA 28VAC 5VDC-COIL 3VA Relay-REED 1C 250MA 28VAC 5VDC-COIL 3VA	28480 28480 28480 28480 28480 28480	0490-1013 0490-1013 0490-1013 0490-1013 0490-1013 0490-1013
A2L1 91	140-0137	2	CUIL-MLD 1MH 5% 0=60 .19DX.44LG SRF=3MHZ	99800	2500=28
40 42MP2 40 42MP3 14	040-0750 040-0750 460-0073 460-0073	2	EXTHACTOR-PC BD RED POLYC .062-BD-THKNS Extractor-pc bd RED Polyc .062-BD-Thkns Pinidrive 0.250" LG Pinidrive 0.250" LG	28480 28480 00000 00000	4040-0750 4040-0750 UHD DED
A202 19 A203 18 A204 18	855-0020 854-0404 854-0404 854-0404 854-0404	5	TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI TRANSISTOR NPN SI TU-16 PD=360mm TRANSISTOR NPN SI TU-18 PD=360mm TRANSISTOR NPN SI TU-18 PD=360mm TRANSISTOR NPN SI TU-18 PD=360mm	28480 28480 28480 28480 28480 28480	1855-0020 1854-0404 1854-0404 1854-0404 1854-0404
A207 18	855-0020 855-0020 855-0020		TRANSISTOR J-FET N-CMAN D-MODE TO-10 SI TRANSISTOR J-FET N-CMAN D-MODE TO-18 SI TRANSISTOR J-FET N-CMAN D-MODE TO-18 SI	28480 26480 28480	1955-0020 1855-0020 1855-0020
A2R2 06 A2R3 07 A2R4 06	698-3449 698-3159 1757-0461 1698-3449 1698-3159	7	RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 26.1K 1% .125W F TC=0+-100 RESISTOR 68.1K 1% .125W F TC=0+-100 RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 26.1K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-2872-F C4-1/8-T0-2012-F C4-1/8-T0-6812-F C4-1/8-T0-2872-F C4-1/8-T0-2872-F C4-1/8-T0-2612-F
A2R7 06 A2R6 06 A2K9 07	757-0461 6698-3449 6698-3159 9757-0461 668-3260		RESISTOR 68.14 11 .125m F TC=0+-100 RESISTOR 26.74 11 .125m F TC=0+-100 RESISTOR 26.14 11 .125m F TC=0+-100 RESISTOR 68.14 11 .125m F TC=0+-100 RESISTOR 4644 11 .125m F TC=0+-100	24546 24546 24546 24546 91637	C4-1/8-T0-6812=F C4-1/8-T0-2872=F C4-1/8-T0-2612=F C4-1/8-T0-6812=F C4-1/8-T0-6812=F CMF-55-1, T-1
A2×12 00 A2R13 00 A2R14 06	0698-3260 0698-3449 0698-3260 0698-3260 0757-0465	ų	RESISTOR 464K 12 .125W F TC=0+-100 RESISTOR 28.7K 1X .125W F TC=0+-100 RESISTOR 464K 1X .125W F TC=0+-100 RESISTOR 464K 1X .125W F TC=0+-100 RESISTOR 100K 1X .125W F TC=0+-100	91637 24546 91637 91637 24546	CMF-55-1, T-1 C4-1/0-T0-2072-F CMF-55-1, T-1 CMF-55-1, T-1 C4-1/0-T0-1003-F
AZR17 00 AZR18 07 AZR19 07	0698-3260 0698-3159 7757-0461 757-0462 0698-3162	1 1	PLSISTOR 464K 1X .125W F TC=U+-100 RESISTOR 26.1K 1X .125W F TC=U+-100 RESISTOR 66.1K 1X .125W F TC=0+-100 RESISTOR 75K 1X .125W F TC=0+-100 RESISTOR 46.4K 1X .125W F TC=0+-100	91637 24546 24546 24546 24546	CMF=55-1, T=1 Cu-1/8-T0-2612=F C4-1/8-T0-6812=F C4-1/8-T0-7502=F C4-1/8-T0-4642=F
A2R22 21 A2R23 00 A2R24 05	2100-3103 2100-3103 3698-3260 3811-1185 2100-3154	12 1 9	RESISTOR-TRMR 10K 10X C SIDE-ADJ 17-TRN RESISTOR-TRMR 10K 10X C SIDE-ADJ 17-TRN RESISTOR 464K 1% .125m F TC=0+-100 RESISTOR 10K .01X .0125m PWM TC=0+-10 RESISTOR-TRMR 1K 10X C SIDE-ADJ 17-TRN	32997 32997 91637 20940 32997	3006P-1-103 3006P-1-103 CMF-55-1, T-1 140-1/20-1002-T 3006P-1-102

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2H26 A2R27 A2R26 A2R29 A2R29 A2R30	2100-3154 2100-3154 0911-1186 2100-3123 0698-8045	1 1 5	RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TRN RESISTOR-ZOK .01% .0125m Pmm TC#0++10 RESISTUR-TRMR 500 11% C SIDE-ADJ 17-TRN RESISTOR 9.5K 1% .125m F TC#0++25	32997 32997 20940 32997 19701	3006P=1=102 3006P=1=102 140=1/80=2002=T 3006P=1=501 MF4C1/8=T9=9501=F
A2R31 A2R32 A2R33 A2R33 A2R34 A2R35	0698-8045 0698-8045 2100-3095 0811-1197 2100-3154	3	RESISTOR 9.5K 1X .125M F TC#0+-25 PESISTOR 9.5K 1X .125M F TC#0+-25 RESISTOR-TRMR 200 10X C SIDE-ADJ 17-TRN RESISTOR 1.78K 1X .125M PMW TC#0+-10 RESISTOR 1.78K 1X .125M PMW TC#0+-10	19701 19701 32997 20940 32997	MF4C1/8-T9-9501-F MF4C1/6-T9-9501-F 3008P-1-201 11-1/8-1781-F 3008P-1-102
A2R36 A2H37 A2H38 A2R38 A2R39 A2R40	2100-3154 0698-8025 0811-2670 0698-8045 0698-8045	1	RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TRN RESISTOR 1.91K .25% .125m F TC#0+-50 RESISTOR 1.96K 1% .05m Pnm TC#0+-10 RESISTOR 9.5K 1% .125m F TC#0+-25 RESISTOF 9.5K 1% .125m F TC#0+-25	32997 19701 14140 19701 19701	300bP-1=102 MF4C1/8=T2=1911=C 1409-1/20-D=1961=F MF4C1/8=T9=9501=F MF4C1/8=T9=9501=F
AZRU1 AZHUZ AZHUZ AZHU AZHU AZHU	2100-3103 2100-3122 2100-3103 2100-3103 0757-0418	2	RESISTOR-TRMR 10K 10X C SIDE-ADJ 17-TRN RESISTOR-TRMR 100 10X C TUP-ADJ 15-TRN RESISTOR-TRMR 10K 10X C SIDE-ADJ 17-TRN RESISTOR-TRMR 10K 10X C SIDE-ADJ 17-TRN RESISTOR 619 1X _125W F TC=0+-100	32997 32997 32997 32997 32997 24546	3006P-1-103 3006P-1-101 3006P-1-103 3006P-1-103 C4-1/8-T0-619R-F
A2R46 A2R47 A2R48 A2R48 A2R49 A2R50	2100-3103 0511-1196 0811-1196 2100-3103 2100-3103	5	RESISTOR-TRMR 10% 10% C SIDE-ADJ 17-TRN RESISTOR 5K .1% .062m Pmm TC=0+-10 RESISTOR 5K .1% .062m Pmm TC=0+-10 RESISTOR-TRMR 10% 10% C SIDE-ADJ 17-TRN PESISTOR-TRMR 10% 10% C SIDE-ADJ 17-TRN	32997 20940 20940 32997 32997	3006P-1=103 114-1/16-5001-B 114-1/16-5001-B 3006P-1=103 3006P-1=103
A2R51 A2R52 A2R53 A2R54 A2R54 A2R54	0698-3260 0698-3260 0811-1196 0811-1196 2100-3103		RESISTOR 464K 1% .125W F TC=0++100 RESISTOR 464K 1% .125W F TC=0++100 RESISTOR 5K .1% .062M PWW TC=0++10 RESISTOR 5K .1% .062W PWW TC=0++10 RESISTOR 5K .1% .062W PWW TC=0++10 RESISTOR TRMR 10% 10% C SIDE+ADJ 17-TRN	91637 91637 20940 20940 32997	CMF=55=1, T=1 CMF=55=1, T=1 114=1/10=5001=8 114=1/10=5001=8 3000P=1=103
A2R56 A2R57 A2R58	0757-0461 2100-3095 0698-3446	1	RESISTOR 68.1K 1% .125W F TC=0+-100 RESISTOR-TRMR 200 10% C SIDE-ADJ 17-TRN RESISTOR 383 1% .125m F TC=0+-100	24546 32997 24546	C4-1/8-T0-6812-F 3006P-1-201 C4-1/8-T0-383R-F
A2U1 A2U2 A2U3 A2U4 A2U5	1826-0261 1826-0261 1826-0261 1826-0261 1826-0261	10	IC UA 741 OP AMP IC UA 741 OP AMP IC UA 741 OP AMP IC UA 741 OP AMP IC UA 741 OP AMP	28480 28480 28480 28480 28480 28480	1826-0261 1826-0261 1826-0261 1826-0261 1826-0261
A2U6 A2U7 A2U8	1826-0261 1826-0261 1820-1197 1200-0508	ь	IC UA 741 OP AMP IC UA 741 OP AMP IC-DIGITAL SN74LSOON TTL LS QUAD 2 NAND SOCKET-IC 14-CONT DIP-SLDR-TERMS	28480 26480 01295 06776	1826-0201 1820-0201 SN74LS00N 1CN-143-53N
42VR1	1902-3082		DIODE-ZNR 4.64V 5% DO-7 PD=.4m TC=023% A2 MISCELLANEDUS	15818	CD 35610
	1251-0600		CUNTACT-CONN U/M-POST-TYPE MALE DPSLDR	28480	1251-0600
A 3	08620-60113	1	BUARD ASSEMBLY, LOGIC	28480	08620-60113
A3C1 A3C2 A3C3 A3C4 A3C5	0160-4084 0160-4084 0160-2206 0160-0573 0160-0575	2 2 5	CAPACITOR-FXD .1UF +-20% 50mvDC CEP CAPACITOR-FXD .1UF +-20% 50mvDC CER CAPACITOR-FXD 60UF+-10% 6vDC TA CAPACITOR-FXD 470uPF +-20% 100mvDC CER CAPACITOR-FXD .047UF +-20% 50mvDC CER	28480 28480 56289 26480 28480	0160-4084 0160-4084 150D6087900682 0160-0573 0160-0575
A3C6 A3C7 A3C8 A3C9 A3C10	0160-3878 0160-3878 0160-3678 0160-0575 0160-0575		C4PACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD .047UF +-20% 50WVDC CER CAPACITOR-FXD .047UF +-20% 50WVDC CER	28480 28480 28480 28480 28480 28480	0160-3878 0160-3878 0160-3878 0160-3878 0160-0575 0160-0575
A3C11 A3C12	0160-0575 0160-3878		CAPACITOR-FXD .047UF +-20% 50mVDC CER CAPACITOR-FXD 1000PF +-20% 100mVDC CER	28480 28480	0160-0575 0160-3878
A3CR1 A3CR2 A3CR3 A3CR4 A3CR4 A3CR5	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050 1901-0050	51	DIQUE-SWITCHING 80V 200MA 2NS DU-7 DIQDF-SWITCHING 80V 200MA 2NS DU-7 DIQDE-SWITCHING 80V 200MA 2NS DU-7 DIQDE-SWITCHING 80V 200MA 2NS DU-7 DIQDE-SWITCHING 80V 200MA 2NS DU-7	28480 28480 28480 28480 28480 28480	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050
43K1	0490-1013		RELAY-REED 1C 250MA 28VAC 5VDC-COIL 3VA	28480	0490-1013
A 3 MP 1 A 3 MP 2 A 3 MP 3 A 3 MP 4	4040-0751 4040-0751 1480-0073 1480-0073	2	EXTRACTOR-PC BD ORN POLYC .062-BD-THKNS EXTRACTOR-PC BD ORN POLYC .062-BD-THKNS PIN:DRIVE 0.250° LG PIN:DRIVE 0.250° LG	28480 28480 00000 00000	4040-0751 4040-0751 UHD OGD
A 301 A 302 A 303 A 304 A 305	1854-0404 1854-0404 1854-0404 1854-0404 1854-0404 1854-0404		TRANSISTOR NPN SI TU-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MW TRANSISTOR NPN SI TO-18 PD=360MM TRANSISTOR NPN SI TO-18 PD=360MM	28480 28480 28480 28480 28480 28480	1854-0404 1854-0404 1854-0404 1854-0404 1854-0404

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A346 A347 A346 A346 A349 A340	1653-0920 1854-0464 1854-0464 1854-0404 1854-0404	5	THANSISTOR PNP SI PD=300Mm FT=150MmZ TRANSISTOR NPN SI TU-18 PD=360Mm THANSISTOR NPN SI TU-18 PD=360Mm TKANSISTOR NPN SI TU-18 PD=360Mm TKANSISTOR NPN SI TO-18 PD=360Mm	58480 58480 58480 58480 58480	1653-0020 1854-0404 1854-0404 1854-0404 1854-0404
A3W11 A3W12 A3W13 A3W14 A3W14	1853-0020 1854-0404 1854-0404 1854-0404 1854-0404		TRANSISTOR PNP SI PD=300mn FT=15umm2 Transistor NPN SI TO-18 PD=360mn Transistor NPN SI TO-18 PD=360mn Transistor NPN SI TO-18 PD=360Mn Transistor NPN SI TO-18 PD=360Mn	28480 26480 28480 28480 28480 28480	1853-0020 1854-0404 1854-0404 1854-0404 1854-0404
A3010 A3017 A3018	1854-0404 1854-0404 1855-0020		TRANSISTOR NPN SI TO-18 PD≢360Mm TRANSISTOR NPN SI TU-18 PD≢360Mm TRANSISTOR J-FET N-CMAN D-MODE TG-18 SI	28480 28480 28480	1854-0404 1854-0404 1855-0020
A 3 M 1 A 3 M 2 A 3 M 2 A 3 M 3 A 3 M 4 A 3 M 5	0757-0394 0698-7260 0698-7260 0698-7260 0598-7260 0757-0422	7	RESISTOR 51.1 11 .125w F TC≣0+-100 RESISTOP 10K 11 .05w F TC≡0+-100 RESISTOR 10K 11 .05m F TC≡0+-100 RESISTOR 10K 12 .05m F TC≡0+-100 RESISTOR 909 11 .125w F TC≡0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-51R1=F C3-1/8-T0-1002=G C3-1/8-T0-1002=G C3-1/8-T0-1002=G C4-1/8-T0-909R=F
A 3 R 6 A 3 R 7 A 3 H 8 A 3 R 9 A 3 H 10	0757-0442 0757-0442 0757-0442 0696-3449 0698-3159	27	RESISTOR 10K 11 .125W F TC=0+-100 RESISTOR 10K 11 .125W F TC=0+-100 RESISTOR 10K 11 .125W F TC=0+-100 RESISTOR 28.7K 11 .125W F TC=0+-100 RESISTOR 26.1K 11 .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1002+F C4-1/8-T0-1002+F C4-1/8-T0-1002+F C4-1/8-T0-2872-F C4-1/8-T0-2812-F
A 3R 1 1 A 3H 12 A 3R 1 3 A 3H 14 A 3H 15	0757-0461 0698-3449 0698-3159 0757-0461 0698-3260		RESISTOR 68.1K 1X .125W F TC=0+-100 RESISTOR 28.7K 1X .125W F TC=0+-100 RESISTOR 26.1K 1X .125W F TC=0+-100 RESISTOR 68.1K 1X .125W F TC=0+-100 RESISTOR 464K 1X .125W F TC=0+-100	24546 24546 24546 24546 91637	Cu-1/8-T0-6812-F Cu-1/8-T0-2872-F Cu-1/8-T0-2612-F Cu-1/8-T0-8612-F CMF-55-1, T-1
A 3 R 1 6 A 3 R 1 7 A 3 R 1 8 A 3 R 1 9 A 3 R 2 0	0757-0459 0696-3429 0696-3429 0698-3429 0698-3429 0695-3260	1 3	RESISTOR 56.2K 1X .125W F TC=0+-100 RESISTOR 19.6 1X .125W F TC=0+-100 RESISTOR 19.6 1X .125W F TC=0+-100 RESISTOR 19.6 1X .125W F TC=0+-100 RESISTOR 464K 1X .125W F TC=0+-100	24546 03888 03888 03888 03888 91637	C4-1/8-T0-5622=F PME55-1/8-T0-1986=F PME55-1/8-T0-1986=F PME55-1/8-T0-1986=F CMF-55-1, T-1
A 3 R 2 1 A 3 R 2 2 A 3 R 2 3 A 3 R 2 4 A 3 R 2 5	0757-0416 0698-0085 0757-0416 0757-0442 0757-0442	3 16	RESISTOR 511 1% .125* F TC=0+-100 RESISTOR 2.01* 1% .125* F TC=0+-100 RESISTOR 511 1% .125* F TC=0+-100 RESISTOR 10* 1% .125* F TC=0+-100 RESISTOR 10* 1% .125* F TC=0+-100	24546 24546 24546 24546 24546	Cu-1/8-T0-511R+F Cu-1/8-T0-511R+F Cu-1/8-T0-511R+F Cu-1/8-T0-511R+F Cu-1/8-T0-1002+F Cu-1/8-TU-1002+F
A 3 R 2 6 A 3 R 2 7 A 3 R 2 8 A 3 R 2 9 A 3 R 3 0	0757-0442 0698-3157 0698-3157 0698-3157 0698-3157 0698-3157	9	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 19.6K 1% .125W F TC=0+-100 RESISTUR 19.6K 1% .125W F TC=0+-100 RESISTOR 19.6K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1962-F C4-1/8-T0-1962-F C4-1/8-T0-1962-F C4-1/8-T0-2611-F
A 3 R 3 1 A 3 R 3 2 A 3 R 3 3 A 3 F 3 4 A 3 R 3 5	0698-0085 0698-0085 0698-0085 0698-3157 0757-0442		RESISTOR 2.61K 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .125W F TC=0+=100 RESISTOR 2.61K 1% .125W F TC=0+=100 RESISTOR 19.6K 1% .125W F TC=0+=100 RESISTOR 10K 1% .125W F TC=0+=100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-2611-F C4-1/8-T0-2611-F C4-1/8-T0-2611-F C4-1/8-T0-1962-F C4-1/8-T0-1062-F
A3R36 A3R37 A3R38 A3R39 A3R40	0757-0442 0757-0439 0757-0441 0757-0441 0757-0448	2 3 7	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0++100 RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0++100 RESISTOR 5.11K 1% .125W F TC=0++100	24546 24546 24546 24546 24546 24546	$\begin{array}{c} C 4 - 1/8 - T0 - 1002 - F \\ C 4 - 1/8 - T0 - 6811 - F \\ C 4 - 1/8 - T0 - 6251 - F \\ C 4 - 1/8 - T0 - 8251 - F \\ C 4 - 1/8 - T0 - 5111 - F \end{array}$
A3R41 A3R42 A3R43 A3R44 A3R44 A3R45	0757-0422 0757-0442 0698-0685 0698-0085 0757-0442		RESISTOR 909 11 .125% F TC=0+-100 RESISTOR 10% 11 .125% F TC=0+-100 RESISTOR 2.61% 11 .125% F TC=0+-100 RESISTOR 2.61% 11 .125% F TC=0+-100 RESISTOR 10% 11 .125% F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/R-T0-909R-F C4-1/b-T0-1002=F C4-1/8-T0-2611=F C4-1/8-T0-2611=F C4-1/8-T0-1002=F
43R46 43R47 43R48 43R49 43R49 43R50	0698-3157 0757-0442 0698-3157 0757-0442 0757-0442		RESISTOR 19.6K 1X .125M F TC=0+-100 RESISTOR 10K 1X .125M F TC=0+-100 RESISTOR 19.6K 1X .125M F TC=0+-100 RESISTOR 10K 1X .125M F TC=0+-100 RESISTOR 10K 1X .125M F TC=0+-100	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1962-F C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F C4-1/8-T0-1002=F
A3R51 A3R52 A3R53 A3R54 A3R55	0757-0442 0698-0085 0698-0085 0698-3157 0698-0085		RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 19.6K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	$\begin{array}{c} Cu = 1 / 8 - T 0 - 1 002 - F \\ Cu = 1 / 8 - T 0 - 2011 - F \\ Cu = 1 / 8 - T 0 - 2011 - F \\ Cu = 1 / 8 - T 0 - 1962 - F \\ Cu = 1 / 8 - T 0 - 2611 - F \end{array}$
A3R56 A3R57 A3R58 A3R59 A3R59 A3R60	0757-0442 0698-3152 0698-0085 0698-0085 0757-0422	3	RESISTOR 10K 1X .125K F TC=0+-100 RESISTOR 3.48K 1X .125K F TC=0+-100 RESISTOR 2.61K 1X .125K F TC=0+-100 RESISTOR 2.61K 1X .125K F TC=0+-100 RESISTOR 909 1X .125K F TC=0+-100	24546 24546 24546 24546 24546	$\begin{array}{c} Cu = 1 / 8 = 70 = 1002 = F\\ Cu = 1 / 8 = 70 = 3481 = F\\ Cu = 1 / 8 = 70 = 2611 = F\\ Cu = 1 / 8 = 70 = 2611 = F\\ Cu = 1 / 8 = 70 = 909R = F\end{array}$
A3R61 A3R62	0698-3157 0757-0442		RESISTOR 19.6K 1% .125W F TC#0++100 RESISTOR 10K 1% .125M F TC#0++100	24546 24546	C4-1/8-T0-1962=F C4-1/8-T0-1002=F
			l		

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A 3 U 1 A 3 U 2 A 3 U 3 A 3 U 4	1820-1201 1200-0508 1826-0026 1826-0026	3	IC-DIGITAL SN74LSOBN TTL LS QUAD 2 AND Socket-IC 14-Cont DIP-SLDR-TERMS IC LM 311 COMPARATUM IC LM 311 COMPARATOR IC LM 311 COMPARATOR	01295 06776 27014 27014 27014	5%74L50AN ICN=143-53n L*311m L*311m L*311m
A3U5 A3U6 A3U7	1820-0282 1200-0508 1820-1212 1200-0507 1820-1212 1200-0507	1 3	IC-DIGITAL SN7486N TTL QUAD 2 EXCL-UP SOCKET-IC 14-CONT DIP-SLOR-TERMS IC-DIGITAL SN74LS112N TTL LS DUAL SOCKET-IC 16-CONT DIP-SLOR-TERMS IC-DIGITAL SN74LS112N TTL LS DUAL SOCKET-IC 16-CONT DIP-SLOR-TERMS	01295 06776 01295 06776 01295 06776	S*7486N ICN-143=53n SN74L5112N ICN-163=53m SN74L5112N ICN-163=53n
▲3UR ▲3U9 ▲3U10 ▲3U11	1826-0026 1826-0026 1826-0026 1820-1416 1200-0506	1	IC LM 311 COMPARATOR IC LM 311 COMPARATOR IC LM 311 COMPARATOR IC LM 311 COMPARATOR IC-DIGITAL SN74LS14N TTL LS HEX 1 INV SOCKET-IC 14-CONT DIP-SLOR-TERMS	27014 27014 27014 01295 06776	LM311M LM311M LM311M SN74LS14N ICN-143-S3A
A3U12 A3U13	1820-1197 1200-0508 1820-1197 1200-0508		IC-DIGITAL SN74LS00N TIL LS QUAD 2 NAND SDCKET-IC 14-CONT DIP-SLDR-TERMS IC-DIGITAL SN74LS00N TIL LS QUAD 2 NAND SOCKET-IC 14-CONT DIP-SLDR-TERMS	01295 06776 01295 06776	SN74LS00N ICN+143=S3H SN74LS00N ICN+143=S3M
A3VR1	1902-0184	3	DIODE-ZNR 16.2V 5% DO-7 PD=.4% TC=+.066%	04713	52 10939-242
A4C1 A4C2 A4C2 A4C3 A4C4 A4C5	08620-60114 0160-0158 0180-0235 0180-2486 0160-0301 0180-2206	1 3 1 2 3	BOARD ASSEMBLY, +5+20 REGULATOR CAPACITUR-FXD 5600PF +=10X 200WVDC FOLYE CAPACITOR-FXD 560F+-20X 75VDC TA CAPACITUR-FXD 4700F+-20X 30VDC TA CAPACITUR-FXD 012UF +=10X 200WVDC POLYE CAPACITUR-FXD 2200F+=10X 10VVDC TA	28480 56289 56289 56289 56289 56289	06620-60114 292556292 10905665007572 1090477X003072 292912392 1500227X901052
4400 4400 4400 4400 4400 4400 4400 440	1901-0050 1901-0050 1901-0050 1901-0050 1901-0159 1901-0050		DIODE-SMITCHING BOV 200MA 2NS DD-7 DIODE-SMITCHING BOV 200MA 2NS DU-7 DIODE-SMITCHING BOV 200MA 2NS DD-7 DIODE-SMITCHING BOV 200MA 2NS DU-7 DIODE-SMITCHING BOV 200MA 2NS DU-7	28480 28480 28480 04713 28480	1901-0050 1901-0050 1901-0050 SR1358-4 1901-0050
A4CR6 A4CR7 A4CR8 A4CR9 A4CR10	1901-0050 1901-0050 1901-0159 1901-0050 1901-0050		DICDE-SWITCHING BOV 200MA 2NS DD-7 DIDDE-SWITCHING BOV 200MA 2NS DD-7 DIDDE-PRF RECT 400V 750MA DD-41 DIDDE-SWITCHING BOV 200MA 2NS DD-7 DIDDE-SWITCHING BOV 200MA 2NS DD-7	28480 28480 04713 28480 28480	1901-0050 1901-0050 SP1358-4 1901-0050 1901-0050
A4CR11 A4F1	1901-0159 2110-0332	5	DIDDE-PHR RECT 400V 750MA DO-41 Fuse 34 125V NORM-BLO .25X.27	04713	SR1358-4 GMN 3
A4F1 A4F2 A4MP1 A4MP3 A4MP3 A4MP4	2110-0332 2110-0332 4040-0752 1460-0073 1460-0073	2	FUSE 3A 125V NORM-BLC .25X.27 Extr-PC BU YEL POLYC .062-BD-TMKNS Extr-PC BD YEL POLYC .062-BD-TMKNS PIN:DRIVE 0.250° LG PIN:DRIVE 0.250° LG	71400 28480 28480 00000 00000	GMR 3 4040-0752 4040-0752 080 UBD
A401 A402 A403 A404 A405	1854-0404 1854-0071 1854-0039 1853-0020 1853-0038	5 1 3	TRANSISTOR NPN SI TU-18 PD#360Mm TRANSISTOR NPN SI PD=300Mm FT#200Mm2 TRANSISTOR NPN 2N3053 SI TO-5 PD#1m TRANSISTOR PNP SI PD=300Mm FT#150MM2 TRANSISTOR PNP SI TO-39 PD#1w FT#100MH2	28480 28480 04713 28480 28480	1854-0404 1854-0071 2N3053 1*53-0020 1853-0036
A406 A407	1884-0012 1884-0012	5	THVRISTOR-SCR JEDEC 2N3528 Thvristor-SCR JEDEC 2N3528	02735 02735	2N3528 2N3528
A4R1 A4R2 A4R3 A4R4 A4R5	0812-0014 0698-0089 0698-3150 0698-8473 2100-3154	1 2 3 1	RESISTOR .5 3% 5% PM TC#0+=90 RESISTOR 1.78K 1% .5% F TC#0+=100 RESISTOR 2.37K 1% .125% F TC#0+=100 RESISTOR 3.358K .1% .1% F TC#0+=5 RESISTOR=TRMR 1K 10% C SIDE=ADJ 17=TRM	01686 91637 24546 07716 32997	T5 MFF-1/2-10 C4-1/8-T0-2371=F man5, T-16 3006P-1-102
A4R6 A4R7 A4R8 A4R9 A4R9	0696-8476 0698-0085 0757-0419 0698-3153 0757-0280	1 1 5	RESISTOR 5.315K .1% .1% F TC=0+=5 RESISTUR 2.61K 1% .125% F TC=0+=100 RESISTOR 681 1% .125% F TC=0+=100 RESISTOR 3.83K 1% .125% F TC=0+=100 RESISTOR 1K 1% .125% F TC=0+=100	07716 24546 24546 24546 24546	$\begin{array}{c} \texttt{MAP5, T-16} \\ \texttt{C4-1/8-T0-2611-F} \\ \texttt{C4-1/8-T0-561R-F} \\ \texttt{C4-1/8-T0-3631-F} \\ \texttt{C4-1/8-T0-1001-F} \end{array}$
A4R11 A4R12 A4R13 A4R14 A4R15	0757-0180 0757-0394 0757-0465 0757-0394 0757-0442	3	RESISTOR 31.6 1% .125m F TC=0+-100 RESISTOR 51.1 1% .125m F TC=0+-100 RESISTOR 100K 1% .125m F TC=0+-100 RESISTOR 51.1 1% .125m F TC=0+-100 RESISTOR 10K 1% .125m F TC=0+-100	24546 24546 24546 24546 24546	$\begin{array}{c} C a_{-} & 7 = 0 \\ C a_{-1} / 8 = 7 0 = 51 R1 = F \\ C a_{-1} / 8 = 7 0 = 51 R1 = F \\ C a_{-1} / 8 = 7 0 = 51 R1 = F \\ C a_{-1} / 8 = 7 0 = 100 2 = F \end{array}$
A4R16 A4R17 A4R18 A4R19 A4R20	0698-0082 0757-0276 0811-1661 0757-0438 0757-0438	1 2 1	RESISTOR 464 1% .125m F TC=0+-100 RESISTOR 1.76K 1% .125m F TC=0+-100 PESISTOR .39 5% 2m Pm TC=0+-800 RESISTOR 5.11K 1% .125m F TC=0+-100 PESISTOR 5.11K 1% .125m F TC=0+-100	24546 24546 75042 24546 24546	Cu-1/8-T0-4640=F Cu-1/8-T0-1781=F BwH2-39/100-J Cu-1/8-T0-5111=F Cu-1/8-T0-5111=F

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
AUR21 Auk22 Auk23 Auk24 Auk24 Auk24	0757-0200 0698-3460 0698-3454 0698-3454 0698-3447 0757-0397	1 1 2 5 5	RESISTOR 5.62x 11 .125x F TC=0+-160 RESISTOR 422K 11 .125x F TC=0+-100 RESISTOR 412 11 .125x F TC=0+-100 RESISTOR 422 11 .125x F TC=0+-100 RESISTOR 68.1 11 .125x F TC=0+-100	24546 91637 24546 24546 24546	C4-1/8-T0-5621=F CMF=55-1, T-1 C4-1/8-T0-2153=F C4-1/8-T0-422R=F C4-1/8-T0-68R1=F
ДИР26 ДИР26 ДИР28 ДИР28 Дир29 Дир29 Дир29	0757-0447 0694-3150 0757-(466 0698-3454 0757-0466	1 2	FESISTON 16.2K 11 .125m F TC=0+-100 RESISTOR 2.37K 11 .125m F TC=0+-100 RESISTOR 110K 11 .125m F TC=0+-100 RESISTOR 215K 11 .125m F TC=0+-100 RESISTOR 110K 11 .125m F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-10-1022=F C4-1/8-10-2371=F C4-1/8-T0-1103=F C4-1/8-T0-2153=F C4-1/8-T0-1103=F
44R31 44R32 44R33 44R33 44R34 44R35	0757-0278 2106-3095 0698-0083 0695-3447 0757-0397		RESISTOR 1.78K 1% .125M F TC=0+-100 RESISTOR-TRMMR 200 10% C SIDE=ADJ 17-TRN RESISTOR 1.96K 1% .125M F TC=0+-100 RESISTOR 422 1% .125M F TC=0+-100 RESISTOR 68.1 1% .125M F TC=0+-100	24546 32997 24546 24546 24546	C4-1/8-T0-1781=F 3006P-1-201 C4-1/8-T0-1961=F C4-1/8-T0-422R=F C4-1/8-T0-68R1=F
A4U1 A4U2	1821-0001 1820-0201		TRANSISTOR ARRAY DIP IC UA 741 OP AMP	02735 25480	CA3046 1826-0261
A4VR1 A4VR2 A4VR3 A4VR3 A4VR4 A4VR5	1902-3139 1902-3139 1902-3224 1902-0680 1902-0680	4 2 2	DIODE-ZNR 8.25V 5X DO-7 PD=.4N TC=+.053X DIODE-ZNR 8.25V 5X DO-7 PD=.4N TC=+.053X DIODE-ZNP 17.8V 5X DO-7 PD=.4N TC=+.067X DIODE-ZNP 1N827 6.2V 5X DO-7 PD=.25N DIODE-ZNR 1N827 6.2V 5X DO-7 PD=.25N	04713 04713 28480 03877 03877	SZ 10939-158 SZ 10939-158 1902-3224 19827 19827
44786 44787 44788 44789	1902-3182 1902-3256 1902-3182 1902-3182 1902-0049	4 1 1	DIDDE-ZNR 12.1V 5% DO-7 PD=.4M TC=+.064% DIDDE-ZNR 23.7V 5% CO-7 PD=.4M TC=+.064% DIDDE-ZNR 12.1V 5% DO-7 PD=.4M TC=+.064% DIDDE-ZNR 6.19V 5% DO-7 PD=.4M TC=+.022%	28480 04713 28480 28480	1902-3182 Sz 10939-290 19u2-3182 1902-0049
	¢		A4 MISCELLANEOUS	,	
	1251+0600 1251-2313	8	CONTACT-CONN U/N-POST-TYPE MALE DPSLDR Connector-SGL Cont SKT .04-DIA	28480 00779	1251-0600 3-332070-5
۵5	08020-00115	1	BOARD ASSEMBLY, -10-40 REGULATOR	28480	08620-60115
ASC1 ASC2 ASC3 ASC4 ASC5	0160-0299 0160-0235 0160-0235 0160-0235 0160-2206 0160-2206	1	CAPACITOR-FXD 1800PF +-10X 200WVDC POLYE CAPACITOR-FXD 56UF+-20X 75VDC TA CAPACITOR-FXD 56UF+-20X 75VDC TA CAPACITOR-FXD 220UF+-10X 10VDC TA CAPACITOR-FXD 220UF+-10X 10VDC TA	56289 56289 56289 56289 56289	292P18292 109D566×0075T2 109D566×0075T2 150D227×901082 1500227×901052
45C6 45C7	0160-0153 0160-0301	ì	CAPACITOR-FXD 1000PF +-10X 200NVDC POLYE CAPACITOR-FXD .012UF +-10X 200NVDC POLYE	56289 56289	292P10292 292P12392
A5CR1 A5CR2 A5CR3 A5CR4 A5CR4	1901-0050 1901-0050 1901-0050 1901-0050 1901-0050 1901-0159		CIDCE-SMITCHING BOV 200MA 2NS DG-7 DICDE-SMITCHING BOV 200MA 2NS DG-7 DICDE-SWITCHING BOV 200MA 2NS DG-7 DICDE-SWITCHING BOV 200MA 2NS DG-7 DICDE-SWITCHING BOV 200MA 2NS DG-7 DICDE-PWR RECT 400V 750MA DD-41	28480 28480 25480 25480 26480 04713	1901-0050 1901-0050 1901-0050 1901-0050 SR1358-4
45CR6 45CR7 45CR6 45CR9 45CR9	1901-0159 1901-0050 1901-0050 1901-0050 1901-0050 1901-0159		DICDE-PWR RECT 400V 750MA DO-41 DiCDE-SWITCHING 80V 200MA 2NS DU-7 CIODE-SWITCHING 80V 200MA 2NS DO-7 DICDE-SWITCHING 80V 200MA 2NS DU-7 DICDE-PWR RECT 400V 750MA DO-41	04713 28480 26480 26480 04713	S91358-4 1901-0050 1901-0050 1901-0050 S91358-4
A5CR11 A5CR12	1901-0159 1901-0159		DIODE-PWR RECT 400V 750MA DD-41 DIGDE-PWR RECT 400V 750MA DD-41	04713 04713	SR1358-4 SR1358-4
45F1 45F2	2110-0332 2110-0332		FUSE 34 125V NORM-8LC .25X.27 FUSE 34 125V NORM-8LO .25X.27	71400 71400	GMN 3 GMN 3
&5MP1 A5KD2 A5MP3 A5MP4	4040-0753 4040-0753 1450-0073 1460-0073	2	EXTRACTOR-PC BD GRN POLYC .062-BD-THKNS EXTRACTOR-PC BD GRN POLYC .062-BD-THKNS PINIDRIVE 0.250" LG PINIDRIVE 0.250" LG	28450 28480 00000 00000	4040-0753 4040-0753 08D 08D
4541 4542 4543 4544 4545	1853-0020 1853-0020 1853-0038 1854-0071 1854-0022	1	THANSISTOR PNP SI PD=300Mm FT=150mmZ TRANSISTOR PNP SI PD=300Mm FT=150mmZ TRANSISTOR PNP SI TO-39 PD=1m FT=100MmZ TRANSISTOR NPN SI PD=300Mm FT=200MmZ TRANSISTOR NPN SI TO-39 PD=700Mm	28480 28480 25480 28480 07263	1853-0020 1853-0020 1853-0038 1854-0071 517843
4566 4507 4508 4508	1853-0050 1853-0038 1884-0012 1884-0012		TRANSISTOR PNP SI TU-18 PD=360Mm TRANSISTOR PNP SI TU-39 PD=1m FT=100MmZ TH¥RISTOR-SCR JEDEC 2N3528 TH¥RISTOR-SCR JEDEC 2N3528	28480 26480 02735 02735	1853-0050 1853-0038 2×3528 2×3528
4581 4582 4583 4584 4585	0811-1005 0698-3150 0757-0288 0757-0442 0698-0089	1	RESISTOR .82 5% 2% P% TC=0+-800 RESISTOR 2.37% 1% .125% F TC=0+-100 RESISTOR 9.09% 1% .125% F TC=0+-100 RESISTOR 10K 1% .125% F TC=0+-100 RESISTOR 1.78% 1% .5% F TC=0+-100	75042 24546 19701 24546 91637	B+H2-B2/100-J C4-1/8-T0-2371-F MF4C1/8-T0-9091-F C4-1/8-T0-1002-F MFF-1/2-10

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A5R6 A5R7 A5R8 A5R9 A5R10	0698-3406 0698-0085 0698-7642 2100-3109 0698-6614	1 1	RESISTOR 1.33K 1% .5m F TC=0+-100 RESISTOR 2.01K 1% .125m F TC=0+-100 RESISTOR, 20.1K DMM RESISTOR TRMR 2K 10% C SIDE-ADJ 17-THN RESISTOR 7.5K .1% .125m F TC=0+-25	91637 24546 19701 32997 24546	₩FF-1/2-10 Cu-1/b-T0-2611=F ₩F4C1/6-T9-2612=B 3006P-1-202 N£55
A5R11 A5R12 A5R13 A5R14 A5R14 A5R15	0757-0397 2100-3122 0757-0422 0698-3346 0757-0180	1	RESISTOR 68,1 1% .125m F TC≋0+-100 RESISTOR-TRMR 100 10% C TOP-ADJ 15-TRN RESISTOK 909 1% .125m F TC≋0+-100 RESISTOR 4.227 1% .5x F TC≅0+-100 RESISTOR 31.6 1% .125m F TC≡0+-100	24546 32997 24546 91637 24546	[4-1/8-T0-68R1-F 3006P-1-101 C4-1/8-T0-909R-F MFF-1/2-10 C4, T-0
A5R16 A5R17 A5R18 A5R19 A5R20	0757=0180 0757=0394 0757=0394 0757=0394 0757=0465 0757=0465		PESISTOR 31.6 1% .125% F TC#0+-100 RESISTOR 51.1 1% .125% F TC#0+-100 RESISTOR 51.1 1% .125% F TC#0+-100 RESISTOR 100% 1% .125% F TC#0+-100 RESISTOR 100% 1% .125% F TC#0+-100	24546 24546 24546 24546 24546	C4, T=0 C4=1/8-T0=51R1=F C4=1/8-T0=51R1=F C4=1/8-T0=1003=F C4=1/8-T0=1003=F
ASR21 ASR22 ASR23 ASR24 ASR24 ASR25	0757-0394 0757-0394 0698-3157 0698-3440 0757-0417	1	RESISTOR 51.1 12 .125M F TC≖0+-10C RESISTOR 51.1 12 .125M F TC≖0+-100 RESISTOR 19.6K 12 .125M F TC≖0+-100 RESISTOR 196 12 .125M F TC=0+-100 RESISTOR 562 12 .125M F TC≖0+-100	24546 24546 24546 24546 24546	C4=1/8-T0=51R]=F C4=1/8-T0=51R]=F C4=1/8-T0=1982=F C4=1/8-T0=1988=F C4=1/8-T0=582R=F
A5R26 A5R27 A5R28 A5R29 A5R30	0698-3154 0757-0439 0698-3631 0811-1659 0698-3447	3 1 1	RESISTON 4.22x 1% .125m F TC#0+-100 RESISTOR 6.81x 1% .125m F TC#0+-100 PESISTOR 330 5% 2m NO TC#0+-200 RESISTOR .27 5% 2m PM TC#0+-800 RESISTOR 422 1% .125m F TC#0+-100	24546 24546 11502 75042 24546	C4-1/8-T0-4221-F C4-1/8-T0-0811-F R642 8*M2-27/100-J C4-1/8-T0-422R-F
A5R31 A5R32 A5R33 A5R34 A5R34 A5R35	0757-0397 0698-3447 0757-0397 0757-0416 0698-3447		RESISTOR 68.1 1% .125% F TC=0+-100 RESISTOR 422 1% .125% F TC=0+-100 RESISTOR 68.1 1% .125% F TC=0+-100 RESISTOR 511 1% .125% F TC=0+-100 RESISTOR 422 1% .125% F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-68R1=F C4-1/8-T0-422R=F C4-1/8-T0-68R1=F C4-1/8-T0-511R=F C4-1/8-T0-422R=F
A5U1 A5U2	1826-0261 1826-0261		IC UA 741 OP AMP IC UA 741 OP AMP	28480 28480	1826-0261 1626-0261
A5VR1 A5VR2 A5VR3 A5VR4 A5VR4	1902-3139 1902-3139 1902-3224 1902-0071 1902-0184	1	DIODE-ZNR 8.25V 5% DO-7 PD=.4* TC=+.053% DIODE-ZNR 8.25V 5% DO-7 PD=.4* TC=+.053% DIODE-ZNR 17.8V 5% DO-7 PD=.4* TC=+.087% DIODE-ZNR 9V 5% DO-14 PD=.5* TC=+.001% DIODE-ZNR 16.2V 5% DO-7 PD=.4* TC=+.086%	04713 04713 28480 26480 04713	SZ 10939-158 SZ 10939-156 1902-3224 1902-0071 SZ 10939-242
ASVR6	1902-3345 1902-3182	1	DIODE-ZNR 51.1V 5% DO-7 PD=.4m TC=+.081% DIODE-ZNR 12.1V 5% DO-7 PD=.4m TC=+.064%	04713 25480	SZ 10939=386 19u2=3182
			A5 MISCELLANEOUS		
	1251-0600 1251-2313	1	CONTACT-CONN U/W-POST-TYPE MALE DPSLDR Connectur-SGL Cont SKT .04-DIA	28480 00779	1251-0600 3-332070-5
AGCR1	1902-3082		DICDE-ZNR 4.64V 5% D0-7 PD=.4% TC=023%	15818	CD 35610
A6MP1 A6MP2 A6MP3 A6MP4	4040-0754 4040-0754 1460-0073 1480-0073	2	EXTRACTOP-PC BD BLU POLYC .062-BD-THKNS Extractor-PC BD BLU POLYC .062-BD-THKNS PINIDRIVE 0.250" LG PINIDRIVE 0.250" LG	28480 28480 00000 00000	4040-0754 4040-0754 680 680
A6R1 A6R2	2100-3094 2100-3103	1	RESISTOR-TRMR 100K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 10K 10% C SIDE-ADJ 17-TRN	32997 32997	3006P-1-104 3006P-1-103
A6U1 A6U2 A6U3 A6U4	0960-0447 1820-0668 1820-0668 1820-0668	23	ICIDIGITAL, ANALOG CONVERTER IC-DIGITAL SN7407N TTL HEX 1 NDN-INV IC-DIGITAL SN7407N TTL HEX 1 NON-INV IC-DIGITAL SN7407N TTL HEX 1 NON-INV	28480 01295 01295 01295	0960-0447 S17407N S17407N S17407N S17407N
	1251-0600		A6 MISCELLANEDUS CONTACT-CONN U/W-POST-TYPE MALE DPSLDR	28480	1251-0000
	1251-1550	54	CUNNECTOR-SGL CONT SKT .018-IN-BSC-SZ	28480	1251-1550
A6(0PT.001)	08620-60116	1	BOARD ASSEMBLY, BCD PROGRAMMER	26480	08020-00110
A7	08620-60137	1	BOARD ASSEMBLY, OPERATOR CONTROL	28480	08620-00137
A7C1 A7C2 A7C3 A7C4 A7C5	0180-1715 0180-0094 0160-2055 0160-2055 0160-2055	1	CAPACITOR-FXD 150UF+=10% 6VDC TA CAPACITOR-FXD 100UF+75=10% 25VDC AL CAPACITOR-FXD 01UF +60=20% 100WVDC CER CAPACITOR-FXD 01UF +60=20% 100WVDC CER CAPACITOR-FXD 01UF +60=20% 100WVDC CER	56289 56289 28480 28480 28480	150D157×9006R2 36D1076025DD2 0160-2055 0160-2055 u160-2055 u160-2055
A7C6 A7C7 A7C8 A7C9 A7C10 A7C11	0160-2055 0180-2206 0180-0218 0180-0218 0160-2055 0180-0197	2 1	CAPACITOR-FXD .01UF +80-20% 100+VDC CER CAPACITOR-FXD 60UF+10% 6VDC TA CAPACITOR-FXD .15UF+-10% 35VDC TA CAPACITOR-FXD .15UF+-10% 35VDC TA CAPACITOR-FXD .01UF +80-20% 100WVDC CER . CAPACITOR-FXD 2.2UF +-10% 20VDC TA	28480 56289 56289 56289 26480 56289	0160-2055 1500606x900682 1500154x9035A2 1500154x9035A2 0160-2055 1500225x9020A2
			L		

<i>Table 6-2.</i>	Replaceable Parts
-------------------	-------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
47641 47682 47683 47684 47685	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033		DIODE-GEN PRP 160V 200MA DD-7 DICDE-GEN PRP 160V 200MA DO-7 DICDE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DD-7	28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033 1901-0033
47046 47087 47095	1901-0033 1901-0033 1901-0033		CICDE-GEN PRP 1804 200MA DO-7 DICDE-GEN PRP 1804 200MA DO-7 DIODE-GEN PRP 1804 200MA DO-7	28480 28480 28480	1901-0033 1901-0033 1901-0033
A7L1	9140-0137		COIL-MLD 1MM 5% 0±60 .19DX.44LG SRF±3mmZ	99800	2500-28
47401 47402 47403 47404	4040-0755 4040-0755 1480-0073 1480-0073	2	EXTRACTOR-PC BD VID POLYC .062-BD-THKNS Extractor-PC BD VID POLYC .062-BD-THKNS PINIORIVE 0.250° LG PINIORIVE 0.250° LG	26480 25480 00000 00000	4040-0755 4040-0755 UBD DBD
4701 4732 4703 4704 4705	1#54=0062 1854=0404 1854=0404 1854=0404 1854=0404	1	TRANSISTOR NPN 2N1701 SI TO-8 PD#25n TRANSISTOR NPN SI TU-18 PD#360Mm TRANSISTOR NPN SI TO-18 PD#360Mm TRANSISTOR NPN SI TO-18 PD#360Mm TRANSISTOR NPN 2N22184 SI TO-5 PD#800Mm	04713 28480 28480 28480 04713	2N3055 1854-0404 1854-0404 1854-0404 2N2218A
A746 A767 A768 A749 A749 A7410	1854-0013 1854-0013 1854-0013 1853-0034 1853-0034	5	TRANSISTOR NPN 2N2218A SI TO-5 PD=R00Mm TRANSISTOR NPN 2N2218A SI TO-5 PD=R00Mm TRINSISTOR NPN 2N2218A SI TO-5 PD=R00Mm TRANSISTOR PNP SI TO-18 PD=360Mm TRANSISTOR PNP SI TO-18 PD=360Mm	04713 04713 04713 28480 28480	2N2218A 2N2218A 2N2218A 1853-0034 1853-0034
A7U11 A7U12 A7U13 A7U14 A7U15	1853-0034 1853-0034 1853-0012 1854-0071 1853-0012	2	TRANSISTOR PNP SI TO-18 PD=360mm TRANSISTOR PNP SI TU-18 PD=360mm TRANSISTOR PNP 2N2904A SI TD-5 PD=600mm TRANSISTOR NPN SI PD=300mm FT=200mm/2 TRANSISTOR PNP 2N2904A SI TU-5 PD=600mm	28480 28480 01295 28480 01295	1853-0034 1853-0034 2N2904A 1854-0071 2N2904A
A7616 A7017 A7016 A7619 A7620	1854-0071 1853-0050 1864-0012 1853-0034 1854-0404		TRANSISTOR NPN SI PD#300Mm FT#200MH2 TRANSISTOR PNP SI TO-18 PD#360Mm THYRISTOR-BCR JEDEC 2N3528 TRANSISTOR PNP SI TO-18 PD#360Mm TRANSISTOR NPH SI TO-18 PD#360Mm	26480 28480 02735 28480 28480	1854-0071 1853-0050 2×3528 1*53-0034 1854-0404
47x1 47x2 47r3 47r4 47r5	0757-0442 0698-3152 0698-3136 0757-1094 0757-0442	2	RESISTOR 10K 1% ,125% F TC=0+=100 RESISTOR 3.48K 1% ,125% F TC=0+=100 RESISTOR 17,8K 1% ,125% F TC=0+=100 RESISTOR 1.47K 1% ,125% F TC=0+=100 RESISTOR 10K 1% ,125% F TC=0+=100	24546 24546 24546 24546 24546 24546	C4=1/8=T0=1002=F C4=1/8=T0=3481=F C4=1/8=T0=1782=F C4=1/8=T0=1471=F C4=1/8=T0=1002=F
A7#6 A7#7 A7#8 A7#9 A7#9	0757-0442 0698-3155 0698-3450 0698-3450 2100-3154	2 2	RESISTOR 10K 1% .125m F TC=0++100 RESISTCR 4.64K 1% .125m F TC=0++100 RESISTCR 42.2K 1% .125m F TC=0++100 RESISTOR 42.2K 1% .125m F TC=0++100 RESISTOR-TRMR 1K 10% C SIDE+ADJ 17-TRN	24546 24546 24546 24546 32997	C4=1/8=T0=1002=F C4=1/8=T0=4641=F C4=1/8=T0=4222=F C4=1/8=T0=4222=F 306P=1=102
47%11 47R12 47R13 47R14 47R14	0757-0424 0757-0419 0698-3152 0698-3136 0757-1094	2	RESISTOR 1.1K 1% .125m F TC=0+-100 RESISTOR 681 1% .125m F TC=0+-100 RESISTOR 3.48K 1% .125m F TC=0+-100 RESISTOR 17.8K 1% .125m F TC=0+-100 RESISTOR 1.47K 1% .125m F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-TU-1101=F C4-1/8-TU-681R=F C4-1/8-TU-3481=F C4-1/8-TU-1782=F C4-1/8-TU-1471=F
A7R16 A7R17 A7R18 A7R19 A7R19 A7H20	0757-0424 0757-0438 0698-3155 0757-0198 0757-0198	1	RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 4.64K 1% .125W F TC=0+-100 RESISTOR 100 1% .5W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-1101=F C4-1/8-T0-5111=F C4-1/8-T0-4641=F MF7C1/2-T0-101=F C4-1/8-T0-1002=F
47K21 47K22 47K23 47K24 47R25	0698-3444 0757-0442 0757-0442 0757-0442 0757-0442 0757-0442	1	RESISTOR 316 1% .125w F TC=0+-100 RESISTOR 10K 1% .125w F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-316R-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
ATR26 ATH27 ATR26 ATR29 ATR30	0757-0280 2100-3154 0698-3154 0698-3154 0757-0280		RESISTOR 1K 12 .125* F TC=0+-100 RESISTOR-TRMR 1K 10% C SIDE-ADJ 17-TRN RESISTOR 4.22K 1% .125* F TC=0+-100 RESISTOR 4.22K 1% .125* F TC=0+-100 RESISTOR 1K 1% .125* F TC=0+-100	24546 32997 24546 24546 24546	C4-1/8-T0-1001=F 3006P-1-102 C4-1/8-T0-4221=F C4-1/8-T0-4221=F C4-1/8-T0-4221=F
A7R31 A7R32 A7R33 A7R34 A7R34 A7R35	0757-0442 0757-0438 0757-0280 0698-3434 2100-3164	2 1	RESISTOR 10K 1X .125% F TC=0+-100 RESISTOR 5.11K 1X .125% F TC=0+-100 RESISTOR 1K 1X .125% F TC=0+-100 PESISTOR 34.6 1X .125% F TC=0+-100 RESISTOR-TRMR 10 20X C SIDE+ADJ 17-TRN	24546 24546 24546 24546 32997	C4-1/8-T0-1002=F C4-1/8-T0-5111=F C4-1/8-T0-1001=F C4-1/8-T0-34R8=F 3006P-1-100
47H36 47R37 47R38 47R39	0698-3434 0757-1094 0757-0438 0698-0084	1	RESISTOR 34.8 1% .125m F TC=0+-100 RESISTOR 1.47K 1% .125m F TC=0+-100 RESISTOR 5.11K 1% .125m F TC=0+-100 RESISTOR 2.15K 1% .125m F TC=0+-100	24546 24546 24546 24546	C4-1/8-T0-3488=F C4-1/8-T0-1471=F C4-1/8-T0-5111=F C4-1/8-T0-2151=F
47U1 47U2 47U3	1820-0616 1200-0507 1820-1216 1200-0507 1820-1277 1820-1277	1 1 1	IC-DIGITAL 93220C TTL QUAD 2 2-T0-1-LINE SOCKET-IC 16-CONT DIP-SLOR-TERMS IC-DIGITAL SN74LS138M TTL LS 3 SOCKET-IC 16-CONT DIP-SLOR-TERMS IC-DIGITAL SN74LS192N TTL LS DECD SOCKET-IC 16-CONT DIP-SLOR-TERMS	07263 06776 01295 06776 01295 06776	9322DC 1CN-163-53m 5N74L5138N ICN-163-53m 5N74L5192N ICN-163-53m

Table 6-2	Replaceable	Parts
-----------	-------------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A7U4 A7U5	1820-0174 1200-0506 1858-0632 1200-0508	1	IC-DIGITAL SN7404N TTL MEX 1 SOCKET-IC 14-CONT DIP-SLOR-TERMS IC CA3146E XSTR ARRAY SOCKET-IC 14-CONT DIP-SLOR-TERMS	01295 06776 02735 06776	51;7404N IC=143=53n Ca3146E IC=143=53n
A7VR1 A7VR2	1902+0184 1902+3182		DIODE-ZNR 16.2V 5% DO-7 PDE.4n TCE+.065% DIODE-ZNR 12.1V 5% DO-7 PDE.4n TCE+.064%	04713 28460	SZ 10939-242 1902-3182
	1251-0600		AT MISCELLANEOUS Contact-conn u/n=post=type male dpsldr	28480	1251-0600
A 8	08620-60013	1	BOARD ASSEMBLY, RECTIFIER	28480	08620-60013
ABC1 ABC2 ABC3 ABC4	0160-0931 0170-0040 0160-2118 0160-2118	1	CAPACITOR-FXD .047UF +-20% 1000WVLC CAPACITOR-FXD .047UF +-10% 200WVDC POLYE CAPACITOR-FXD .18UF +-10% 200WVDC POLYE CAPACITOR-FXD .18UF +-10% 200WVDC POLYE	84411 56289 28480 28480	663U#473010m2 292P47392 0160-2118 0160-2116
ABCR1 ABCR2 ABCR3 ABCR4 ABCR5	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418	10	DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A	04713 04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12
ABCR6 ABCR7 ABCR8 ABCR9 ABCR10	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418		DIDDE-PWR RECT 400V 1,5A DIDDE-PWR RECT 400V 1,5A DIDDE-PWR RECT 400V 1,5A DIDDE-PWR RECT 400V 1,5A DIDDE-PWR RECT 400V 1,5A	04713 04713 04713 04713 04713 04713	SF1646-12 SF1846-12 SF1846-12 SF1846-12 SF1846-12
A8CR11 A8CR12 A8CR13 A8CR14 A8CR14 A8CR15	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418 1901-0418		DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A DIODE-PWR RECT 400V 1.5A	04713 04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SP1846-12 SP1846-12 SR1846-12
A8CR16 A8CR17 A8CR18	1901-0418 1901-0025 1901-0025	2	DIODE-PWR RECT 400V 1.5A DIODE-gen PRP 100V 200MA DD-7 DIODE-gen PRP 100V 200MA DD-7	04713 26480 28480	SR1846-12 1901-0025 1901-0025
A801	1854-0071		TRANSISTOR NPN SI PD=300Mm FT=200MHZ	28480	1854-0071
ABR1 ABR2 ABR3 ABR4 ABR5	0698-0085 0698-0085 0757-0438 0757-0199 0757-0441	1	RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4=1/8=T0=2611=F C4=1/8=T0=2611=F C4=1/8=T0=2111=F C4=1/8=T0=2152=F C4=1/8=T0=8251=F
48R6 48R7	0757-0443 0757-0461	1	RESISTOR 11K 1% .125W F TC≖0+-100 RESISTOR 68.1K 1% .125W F TC≖0+-100	24546 24546	C4-1/8-T0-1102-F C4-1/8-T0-6812-F
A 9	08620-60119	1	BOARD ASSEMBLY, SWITCH	28480	08620-60119
A9/A10	08620-60109		FRONT PANEL ASSEMBLY	28480	08620-60109
A 1 U	08620-60120	1	BOARD ASSEMBLY, FRONT INTERFACE	28480	08620-60120
A10C1 A10C2 A10C3 A10C4 A10C5	0180-2141 0180-2205 0160-0163 0160-0155 0180-2205	2211	CAPACITOR-FXD 3.3UF+-10X 50VDC TA CAPACITUR-FXD .33UF+-10X 35VDC TA CAPACITOR-FXD .033UF +-10X 2500WVDC POLYE CAPACITUR-FXD 3300PF ++10X 250WVDC POLYE CAPACITOR-FXD .33UF+-10X 35VDC TA	56289 56289 56289 56289 56289	150D335×905082 150D334×9035A2 292P33392 292P33292 150D334×9035A2
A10C6 A10C7 A10C8	0180-2186 0180-0234 0180-2141	1 1	CAPACITOR-FXD 300UF+-20% 30VDC TA CAPACITOR-FXD 33UF+-20% 75VDC TA CAPACITOR-FXD 3.3UF+-10% 50VDC TA	56289 56289 56289	109D307X0030K2 109D336X0075F2 150D335X9050B2
A10CR1	1901-0050		DIODE-SWITCHING BOV 200MA 2NS DO-7	28480	1901-0050
A10R1 A10R2 A10R3 A10R4 A10R5	0757-0873 0757-0280 0698-6628 0698-8395 0811-1196	1 1 1	RESISTOR 1.62K 1% .5₩ F TC=0+-100 RESISTOR 1K 1% .125₩ F TC=0+-100 RESISTOR 500K .1% .125₩ F TC=0+-25 RESISTOR 50K .1% .25₩ F TC=0+-50 RESISTOR 5K .1% .062₩ PWW TC=0+-10	19701 24546 91637 19701 20940	MF7C1/2-T0-1624-F C4-1/8-T0-1001-F MFF-1/8-T9-5003-8 MF52C1/4-T2-5002-8 114-1/16-5001-8
A10R6 A10R7	0 698-0056 0698-3160	1	RESISTOR 931K 1% .5% F TC=0+-100 RESISTOR 31.6K 1% .125% F TC=0+-100	91637 24546	MFF-1/2-10 C4-1/8-T0-3162-F
A10XA9-1 A10XA9+2	08620-40013 08620-40013	2	CONNECTOR, PC SPACER Connector, PC spacer	28480 28460	08620-40013 68620-40013
A11	08620-60121	1	BDARD ASSEMBLY, MOTHER	28480	08020-00121
A11C1 A11C2 A11C3 A11C4	0180-0453 0180-2603 0180-0452 0180-2604	1 1 1 1	CAPACITOR-FXD 8700UF+75-10% 40VDC AL CAPACITOR-FXD 7200UF+75-10% 50VDC AL CAPACITOR-FXD .013F+75-10% 25VDC AL CAPACITOR-FXD 1700UF+75-10% 100VDC AL	28480 28480 28480 28480 28480	0180-0453 0180-2603 0180-0452 0180-2604

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A11J1 A11J2	1251-1966 1251-2314	1	CUNVECTUR-PC EDGE 10-CONT/ROM 1-RU/ CUNNECTUR-PC EDGE 10-CONT/ROM 2-RUMS	26742 05574	91-6910-1700-00 3vn10/1Jv5/079
A11XA1 A11XA2	1251-2134	5	CUNNECTUR-PC EDGE 10-CONT/RO# 2-ROMS CONNECTOR-PC EDGE 18-CUNT/ROM 2-ROMS	71785	252-18-30-340 252-18-30-340
A11XA3	1251-2134		CUNNECTOR-PC EDGE 18-CONT/RO# 2-RU#S	71785	252-18-30-340
411×44 411×45	1251-1513 1251-1513	3	CUNNECTOR-PC EDGE 18-CUNT/RUN 1-RUN Connectur-PC Edge 18-Cunt/Run 1-Run	9D949 9D949	143-018-07-1158 143-018-07-1158
A11XA6 A11XA7 A11XA8	1251-2134 1251-2134 1251-1513		CUNNECTUR-PC EDGE 18-CONT/RUN 2-KUNS Connector-PC EDGE 18-Cont/Ron 2-Rons Cunnector-PC EDGE 18-Cont/Ron 1-Run	71785 71785 90949	252-18-30-340 252-18-30-340 143-016-07-1158
			A11 MISCELLANEOUS		
	0340-0111	10	STANDOFF-RVT-DN .25LG 0-321HD .250D BRS	28480	v380=0111
412	08620-60118	1	BDARD ASSEMBLY, MP-IB INTERFACE (Option 011)	28480	08020-00118
A12C1	u160-0575		CAPACITOR-FXD .047UF +-20% 50WVDC CER	28480	0160-0575
A12C2 A12C3	0100-3879 0100-0570	1	CAPACITOR-FXD .01UF +=20% 100WVDC CER CAPACITUR-FXD 220PF +=20% 100WVDC CER	28480 28480	0160-3879 0160-0570
A12C4	0100-3879		CAPACITOR-FXD .01UF +-20% 100mVDC CER	28480	0160-3879
A12C5	0160-3878		CAPACITUR-FXD 1000PF +-20% 100mVDC CER	28480	0160-3878
AIZCRI	1901-0539	1	DICDE-SCHOTTKY	28480	1901-0539
A12L1	9100-1627	1	COIL-HLD 390H 5% @=60 .155DX.375LG	24226	15/392
A12R1 A12P2	0698-7229		RESISTOR 511 1% .05% F TC=0+=100 RESISTOR 1K 1% .05% F TC=0+=100	24546 24546	C3-1/8-T0-511R-G C3-1/8-T0-1001-G
A12R3	0698-7200		RESISTOR 10K 1% .05W F TC=0++100	24546	C3-1/8-T0-1002-G
A12R4 A12R5	0698-7224 0698-7223	1 2	RESISTOR 316 1% .05% F TC=0+-100 RESISTOR 287 1% .05% F TC=0+-100	24546 24546	C3-1/8-T0-316R+G C3-1/8-T0-287R-G
A12R6	0698-7223		RESISTOR 287 1% .05% F TC=0+-100	24546	C3-1/8-T0-287R-G
412R7 412R6	0698-7243 0698-7243		RESISTOR 1.96K 1% .05m F TC=0+=100 RESISTOR 1.96K 1% .05m F TC=0+=100	24546	C3=1/8=T0=1961=G C3=1/6=T0+1961=G
A12R9 A12R10	0696-7243 0696-7243		RESISTOR 1.96K 1X .05W F TC=0+-100 RESISTOR 1.96K 1X .05W F TC=0+-100	24546	C3-1/8-T0-1961-G C3-1/8-T0-1961-G
A12R11	2160-3103		RESISTOR-TRMR 10K 10% C SIDE-ADJ 17-TRN	32997 32997	3006P-1-103
A12812 A125m1	2100-3103 3101-1860	,	RESISTOR-TRMR 10K 10X C SIDE-ADJ 17-TRN Switch-Sl 5-14-NS DIP-SLIDE-ASSY .14	11237	3006P-1-103 206 TYPE
41201	1820-1197		IC-DIGITAL SN74LSUON TTL LS QUAD 2 NAND	01295	SN74L500N
A12U2	1620-1197	3	IC-DIGITAL SN74LSOON TTL LS QUAD 2 NAND IC-DIGITAL SN74LS74N TTL LS DUAL	01295	SN74LS00N SN74LS74N
A12U3 A12U4	1820-1112	_	IC-DIGITAL SN74LS74N TTL LS DUAL	01295	SN74LS74N
A12U5	1820-0904	1	IC-DIGITAL 93L24DC TTL L MAGTD	07263	93L24DC
41206 41207	1820-1112 1820-1196	6	IC=DIGITAL SN74LS74N TTL LS DUAL IC=DIGITAL SN74LS174N TTL LS MEX	01295 01295	SN74LS74N SN74LS174N
412UB 412U9	1820-1196 1820-1198	2	IC-DIGITAL SN74LS174N TTL LS MEX IC-DIGITAL SN74LS03N TTL LS QUAD 2 NAND	01295	SN74LS174N SN74LS03N
A12U10	1820-1201	-	IC-DIGITAL SN74LSOBN TTL LS QUAD 2 AND	01295	SN74LBOBN
A12011	1820-1197		IC-DIGITAL SN74LSOON TIL LS QUAD 2 NAND IC-DIGITAL SN74LS174N TIL LS MEX	01295	SN74L500N SN74L5174N
A12U12 A12U13	1829-1196 1820-1196		IC-DIGITAL SN74LS174N TTL LS HEX	01295	SN74L5174N
A12U14 A12U15	1820-1196 1820-1212		IC-DIGITAL SN74LSO3N TTL LS QUAD 2 NAND IC-DIGITAL SN74LS112N TTL LS DUAL	01295	9N74L803N SN74L8112N
412016	1820-1201		IC-DIGITAL SN74LSOBN TIL LS QUAD 2 AND	01295	SN74LSOBN
A12U17 A12U18	1829-1196		IC-DIGITAL SN74LS174N TTL LS MEX IC-DIGITAL SN74LS174N TTL LS MEX	01295 01295	SN74LS174N SN74LS174N
A12018 A12019 A12020	1820-1522	4	IC-DIGITAL MC3440P TTL* QUAD	04713	MC3440P MC3440P
A12U21	1920-1522		IC-DIGITAL MC3440P TTL+ QUAD	04713	MC3440P
412022	1820-1522		IC-DIGITAL MC3440P TTL* QUAD	04713	MC3440P
A12U23 A12U24	0960-0447 1818-2269	1	4 BED DIGITAL IC, Mos Rom	28480 28480	0960-0447
	1200-0553	1	SOCKET-IC 28-CONT DIP-SLDR	28480	1200-0553
A12VR1	1902-0041		DIODE-ZNR 5.11V 5% DO-7 PD=.4% TC=.009%	15818	CD 35622
			A12 MISCELLANEDUS		
	1251-1556		CONNECTOR-SGL CONT SKT .018-IN-6SC-SZ	28480	1251-1550
61	3160-0217	1	FAN BLADE .76-THK 3-DD .079-ID	28480	3160-0217
81	3140-0490 1251-1115	1	MOTOR, DC Pulafizing key-pc edge conn	28480 28480	3140-0490 1251-1115

Table 6-2.	Replaceable Parts
------------	-------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
DS1 DS2 DS3 DS4 DS5	2140-0312 2140-0312 2140-0312 2140-0312 2140-0312 2140-0312	5	LAMP-INCAND 7683ASIS SVDC 60MA T-1-BULR LAMP-INCAND 7683ASIS SVDC 60MA T-1-BULB LAMP-INCAND 7683ASIS SVDC 60MA T-1-BULB LAMP-INCAND 7683ASIS SVDC 60MA T-1-BULB LAMP-INCAND 7683ASIS SVDC 60MA T-1-BULB	71744 71746 71746 71744 71744 71744	CM7-7683A815 CM7-7683A815 CM7-7683A815 CM7-7683A815 CM7-7683A815
056	5100-0204	1	LAMP-GLOW AIM 65/105VDC 1MA T-2-BULB	28480	2140-0245
F1 F1 F1	2110-0003 2110-0043 2110-0332	1	FUSE 34 250V FAST-BLC 1.25X.25 UL IEC FUSE 1.54 250V FAST-BLC 1.25X.25 UL IEC FUSE 34 125V NORM-BLC .25X.27	75915 75915 71400	312003. 31201.5 GMn 3
FL1	0960-0448	1	LINE MODULE FILTEP	28480	0960-0448
J1 J2 J3 J4 J5	1251-0118 1251-4222 1250-0118 1250-0118 1250-0118	1 1 4	CONNECTUR 6-PIN M CIRC K CONNECTOR CONNECTOR-RF BNC FEM SGL-HOLE-FR 50-OMM CONNECTOR-RF BNC FEM SGL-HOLE-FR 50-OMM CUNNECTUR-RF BNC FEM SGL-HOLE-FR 50-OMM	71468 28480 24931 24931 24931 24931	₩×=6=325 1251=4222 28JR126=1 28JR126=1 28JR126=1 28JR128=1
J6 J7 J9MP1 J9MP2	1251-3066 1251-2447 1250-0118 1251-0198 5040-0327 2200-0109	1 1 1 2	CONNECTOR 36-PIN F MICRU RIBBUN CONNECTOR-PC EDGE 44-CUNT/ROM 2-ROAS CONNECTOR-RF BNC FEM SGL-HOLE-FR 50-OHM CUNNECTOR-RC EDGE 6-CONT/ROM 2-RONS HODD:CONNECTOR SCREN-MACH 4-40 .438-IN-LG PAN-PC-POZI	9D949 05574 24931 71785 28480 28480	222-42-36-058 3vmau/13N5 28JR128-1 251-06-30-261 5040-0327 2200-0109
J2MP1	08620-20082	1	SHROUD, CONNECTOR	28480	28002-20282
01 02 03 04	1853-0059 1854-0063 1853-0059 1854-0080	2 1 1	TRANSISTOR PNP 2N3791 SI TO-3 PU=150H TRANSISTOR NPN 2N3055 SI TO-3 PD=115H TRANSISTOR PNP 2N3791 SI TO-3 PD=150H TRANSISTOR NPN SI TO-3 PD=100H FT=3MHZ	04713 28480 04713 28480	2N3791 1854-0064 2N3791 1854-0080
R1 R2 R3 R4 R5	0698-3449 2100-2867 2100-2865 2100-2865 2100-2865	2 2 1	RESISTOR 28.7K 1% .125M F TC=0+-100 PESISTOR-VAR PREC WA 5-TRN 10K STD-BSHG RESISTOR-VAR PREC WA 3-TRN 1K 3% RESISTOR-VAR PREC WA 3-TRN 2K 3% RESISTOR-VAR PREC WA 3-TRN 1K 3%	24546 28480 28480 28480 28480	C4-1/8-T0-2872-F 2100-2867 2100-2865 2100-2865 2100-2865
R6 R7 R8	2100-2667 2100-2937 2100-2937	2	RESISTOR-VAR PREC WA 5-TRN 10K STD-85MG RESISTDH-VAR CONTROL CC 1K 10% LIN RESISTOR-VAR CONTROL CC 1K 10% LIN	28480 01121 01121	2100-2867 n n
S1 S2 S3 S4 S5	3101-1395 3101-0859 3101-0859 3101-0859 3101-1081 3101-1081	1 2 5	SWITCH-PB DPDT-DB ALTNG 10.5A 250VAC SWITCH-SENS SPDT SUBMIN .1A 125VAC SWITCH-SENS SPDT SUBMIN .1A 125VAC SWITCH-SENS SPDT SUBMIN .5A 30VDC SWITCH-SENS SPDT SUBMIN .5A 30VDC	0050I 01963 01963 91929 91929	53-67260-121/A1M E63-17K E63-17K 118M23 11SM23
36 57 58 59 310	3101-1081 3101-1081 3101-1081 3101-1081 3101-0070 3101-0070	3	SAITCH-SENS SPDT SUBMIN, SA 30VDC SAITCH-SENS SPDT SUBMIN .SA 30VDC SAITCH-SENS SPDT SUBMIN .SA 30VDC SAITCH-SL DPDT-NS MINTR .SA 125VAC/DC SAITCH-SL DPDT-NS MINTR .SA 125VAC/DC	91929 91929 91929 79727 79727	115M23 115M23 115M23 GF-126-0000 GF-126-0000
S11	3101-0070		SWITCH-SL DPDT-NS MINTR .54 125VAC/DC	79727	GF-126-0000
τ1	9100-3841	1	TRANSFORMER, POWER	28480	9100-3841
W1 W2 W3 W4 W5	08620-60083 08620-60085 8120-1348 08620-60105 08620-60107	1 1 1 1 1	CABLE ASSEMBLY, POWER CABLE ASSEMBLY, FLEX CABLE ASSY 18ANG 3-CNDCT 6LK-JKT .253-00 MIRING MARNESS, FRONT MIRING, MARNESS, MOTOR	28480 28480 28480 28480 28480 28480	08620-60083 08620-60085 8120-1348 08620-60105 08620-60105
			MISCELLANEOUS PARTS		
	0380-0643	1	STANDOFF, LG STUD MOUNT(METRIC THREAD) (P/O 08620-60130 CONNECTOR/ADAPTER FOR OPTION 011)	00464	480 <i>*</i>
	0360-0268 0380-0921 0380-1036 0590-0053 1200-0043 2380-0115 2420-0001	1 2 4 4 1 1	TERMINAL-SLDR LUG LK-MTG FDR-#6-SCR SPACER-RND .45LG .086ID .3120D AL ALDN SPACER-HEX .255LG 6-32THD .312A/F STL NI NUT-SHMET-J 6-32-THD .5-WD STL INSULATOR-XSTR ALUMINUM SCREM-MACH 6-32 .312-IN-LG PAN+HD-POZI NUT-HEX-W/LKWR 6-32-THD .109-THK	78189 28480 28480 78553 76530 28480 28480	2103-06-00 0380-0921 0380-1036 C17859-632-240 322047 2360-0115 2420-0002
	2510-0184 7120-2359 9223-0040 08620-00019 08620-00074	1 1 4 2 2	SCREN-MACH 8-32 .562-IN-LG 82 DEG SERIAL PLATE .625-IN-ND 1.5-IN-LG AL POST-PAK POLYETH RND 10.75-LG 4-DIA BRACKET, FAN SMIELD, FAN BLADE	28480 28480 28480 28480 28480 28480	2510-0184 7120-2359 9223-0040 08620-00019 08620-00074
	08620-20072 08620-20122 08620-60108 08620-60109 08620-60123	1 1 2 1	STRIP FILLER BOARD, CONNECTOR Panel Assembly, rear Panel Assembly, front Accessory Kit	28480 28480 28480 28480 28480 28480	08620-20072 08620-20122 08620-60108 08620-60109 08620-60123

Mrf No.	Manufacturer Name	Address	Zip Code
00000	U.S.A. Common	Any supplier of the U.S.	
0018A	AR Tech Packaging Corp.	Lowell, Ma.	01854
0046A	ADAC Screw Machine Products		
00501	Illuminated Products Inc.	Anaheim, Ca	92803
00779	AMP Inc.	Harrisburg, Pa	17105
01121	Allen-Bradley Co.	Milwaukee, Wi	53212
01295	Texas Instrument Inc., Semicond Cmpnt Div.	Dallas, Tx	75231
01686	RCL Electronics In.c	Manchester, NH	03102
01963	Cherry Electrical Products Corp.	Waukegan, II	60085
02735	RCA Corp Solid State Div.	Sommerville NJ	08876
03877	Transitron Electronic Corp.	Wakefield, Ma	01880
03888	KDI Pyrofilm Corp.	Whippany, NJ	07981
04713	Motorola Semiconductor Products	Phoenix, Az	85008
05574	Viking Industries Inc.	Chatsworth, Ca	91311
06776	Robinson Nugent Inc.	New Albany, In	47150
07263	Fairchild Semiconductor Div.	Mountain View, Ca	94040
07716	TRW Inc. Burlington Div.	Burlington, la	52601
11237	CTS Keene Inc.	Paso Robles, Ca	93446
11502	TRW Inc. Boone Div.	Boone, Nc	28607
14140	Edison Elek, Div. McGraw-Edison	Manchester, NH	03130
15818	Teledyne Semiconductor	Mountain View, Ca	94040
19701	Menco/Electra Corp.	Mineral Wells, Tx	76067
20940	Micro-Ohm Corp.	El Monte, Ca.	94731
		Gowanda, NY	14070
24226	Gowanda Electronics Corp.	Bradford, Pa	16701
24546	Corning Glass Works (Bradford)	Indianapolis, In	46227
24931	Specialty Connector Co. Inc.	Chicago, II	60656
26742	Methode Electronics Inc.	1 1	95051
27014	National Semiconductor Corp.	Santa Clara, Ca	94304
28480	Hewlett-Packard Co. Corporate HQ	Palo Alto, Ca	92121
30983	Mepco/Electra Corp.	San Diego, Ca	92507
32997	Bourns Inc. Trimpot Prod. Div.	Riverside, Ca	
56289	Sprague Electric Co.	North Adams, Ma	01247
70472	Associated Spring Corp.	Bristol, Ct	06010
71400	Bussman Mfg. Div. of McGraw-Edison Co.	St. Louis, Mo	63017
71468	ITT Cannon Electric Co.	Santa Ana, Ca	92702
71744	Chicago Miniature/Drake	Chicago, II	60640
71785	TRW Elek Components Cinch Div.	Elk Grove Village, Il	60007
72962	Esna, Div. of Amerace Corp.	Union, NJ	07083
73138	Beckman Instruments Inc. Helipot Div.	Fullerton, Ca	92634
75042	TRW Inc. Philadelphia Div.	Philadelphia, Pa	19108
75915	Littlefuse Inc.	Des Plaines, Il	60016
76530	TRW Elek Cmpnt Cinch-Monadnock Div.	City of Industry, Ca	91747
78189	Illinois Tool Works Inc. Shakeproof	Elgin II.	60126
78553	Tinnerman Products Inc.	Cleveland, Oh	44129
79136	Waldes Kohinoor Inc.	Long Island City, NY	11101
79727	C-W Industries	Cleveland, Oh	44129
79963	Zierick Mfg Co.	Mt. Kisco, NY	10549
80120	Schnitzer Alloy Products Co.	Elizabeth, NJ	07206
81150	Cemco Mfg. Co., OEM Sales Div.	Columbus, Oh	43201
84411	TRW Capacitor Div.	Ogallala, Ne	69153
9D949	Amphenol Sales Div. of Bunker-Ramo	Hazelwood, Mo	63042
91637	Dale Electronics Inc.	Columbus, Ne	68601
91929	Honeywell Inc. Micro Switch Div.	Freeport, II	61032
97464	Industrial Retaining Ring Co.	irvington, NJ	07111
99800	Amer Pron Ind. Inc. Delevan Div.	Aurora, NY	14052

Table 6-3. Code List of Manufacturers

REPLACEABLE FRONT PANEL PARTS

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
1	08620-40006		WHEEL, RETAINING	28480	08620-40006
2	1480-0072	2	PIN, ROLL .062 DIA X .375" LG	72962	92-012-062-0375
3	08620-20067	2	ARM, LATCH	28480	08620-20067
4	0624-0227		SCREW, MACHINE PAN HD POZI DR, 4-40 THD, 25" LG	28480	0624-0227
5	2190-0019 08620-00014	5	WASHER, LOCK, NO 4, .115" ID ARM, PIVOT	28480 28480	2190-0019
7	08620-20021	1	SHAFT, DRUM	28480	08620-00014 08620-20021
8	08620-00057	i	BRACKET, MICROSWITCH, BAND	28480	08620-00057
9	08620-00017	2	SPRING, PUSHBUTTON	28480	08620-00017
10	2360-1022	5	SCREW, FH 6 - 32X 0.500" LG.	28480	2360-1022
11	08620-00015	1	BRACKET, LEFT HAND NOTCH	28480	08620-00015
12 13	08620-00058 08620-00016		HINGE	28480 28480	08620-00058
13	08620-00013	5	BRACKET, RIGHT HAND NOTCH PLATE. NUT, SWITCH	28480	08620-00016 08620-00013
15	08620-20022	5	PLUNGER, PUSHBUTTON	28480	08620-20022
16	0520-0137	12	SCREW, MACHINE: 2-56, .75" LG, PAN HD	28480	0520-0137
17	3050-0098	8	WASHER, FLAT 2.094 ID .25 OD	80120	AN960 C2
18	2190-0112	13	WASHER, LOCK, NO 2, .088 ID	28480	2190-0112
19 20	0520-0129 3050-0098		SCREW. MACHINE: 2-56, .312" LG, PAN HD WASHER, FLAT 2.094 ID .25 OD	28480 80120	0520-0129 AN960 C2
21	2190-0112		WASHER, LOCK HELICAL: 2.088 ID .175	28480	2190-0112
22	08620-20063	1 1	NUT, SPRING	28480	08620-20063
23	08620-20065	i	SPACER, SPRING	28480	08620-20065
24	1460-0534		SPRING, TORSION	28480	1460-0534
25	08620-40005		WHEEL, CAM	28480	08620-40005
26 27	2200-0105 08620-40004		SCREW, MACHINE: 4-40, .312" LG, PAN HD	28480 28480	2200-0105 08620-40004
27 28	08620-40004 08620-20057		FLIPPER, DRUM PIN, STEP	28480	08620-40004 08620-20057
29	1460-1163		SPRING, COMPRESSION	28480	1460-1163
30	0510-0082	1	RING, RETAINING .125 DIA BE CU	97464	3100-12-BC
31	0510-0055	5	RING, RETAINING, .438 DIA	0018A	1400-43-CD
32	08620-40008	1	WASHER, STOP. KEYED	28480	08620-40008
33	08620-40009		WASHER, STOP, UNKEYED	28480	08620-40009
34 35	3050-0127 0520-0137	5	WASH ER. SPRING, WAVY, 7/16, .44" ID SCREW, MACHINE 2-56, .75" LG, PAN HD	70472 28480	R4 0520-0137
36	3050-0098		WASHER, FLAT 2.094 ID .25 OD	80120	AN960 C2
37	2190-0112		WASHER, LOCK: HELICAL 2.088 ID .175	28480	2190-0112
38	08620-60044	1	FULL SWP DRIVE BELT & POINTER REPLASSY	28480	08620-60044
39	08620-60046	1	CW DRIVE BELT & POINTER REPLASSY	28480	08620-60046
40	08620-60047	2	CW VERNIER DRIVE BELT & POINTER REPLASSY	28480	08620-60047
41 42	08620-60045 1450-0707	1	MARKER SWP DRIVE BELT & POINTER REPL ASSY LAMPHOLDER	28480 28480	08620-60045 1450-0707
43	08620-40012	3	SPROCKET, 10 TOOTH	28480	08620-40012
44	08620-20030	28	ROLLER, BELT	28480	08620-20030
45	08620-20025	5	SCREW, ADJUST	28480	08620-20025
46	08620-20031	5	ROLLER, ADJUSTING	28480	08620-20031
47	2190-0014	5	WASHER, LOCK, INT TOOTH, NO 2, .089" ID	28480	1902-00
48 49	0610-0001 08620-40011	5 2	NUT. HEX, 2-56 THD, .062" THK SPROCKET, 7 TOOTH	28480 28480	0610-0001 08620-40011
50	08620-20017	ī	FRAME, DIAL	28480	08620-20017
51	08620-60047	i	△F, DRIVE BELT & POINTER REPL. ASSY	28480	08620-60047
52	08620-20122	1	BRACKET, PC BOARD	28480	08620-20122
53	08620-20071	1	FRAME, PANEL	28480	08620-20071
54	08620-20068	1	ROD. LATCH	28480	08620-20068
55 56	0510-0060 08620-00007		RING, RETAINING, .875" DIA BRACKET, BOARDS	79136 28480	5555-37-S-MD 08620-00007
57	08620-00020	i	GUARD, FAN	28480	08620-00020
58	08620-00059	i	HANDLE, LATCH	28480	08620-00059
59	2360-0195	1	SCREW. PAN HD POZI DR, 6-32 THD, .312" LG	28480	2360-0195
60	2190-0018	1	WASHER, LOCK, NO 6, .141" ID	28480	2190-0013
61 62	3050-0066 1460-0535	1	WASHER, FLAT, NO 6, .147" ID SPRING, LATCH HANDLE	28480 28480	3050-0066 1460-0535
62	08620-20062	1	SCREW, LATCH, BEARING	28480	08620-20062
64	08620-20061	1	BEARING, LATCH	28480	08620-20061
65	3030-0195	5	SCREW. SET, 2-56 THD, .094" LG	28480	3030-0195
66	08620-00021	1	SCALE, 0 - 10V CALIBRATE (P/O ACCESSORIES	28480	08620-00021
	00/00 000		SUPPLIED)		00/20 202/0
67	08620-20069	1	SUPPORT, LEFT, LATCH ROD	28480	08620-20069 08620-00061
68 69	08620-00061 2360-0124	1	PLATE. NUT, LEFT SCREW, NUT PLATE, LEFT, 6-32 THD, .625" LG	28480 28480	2360-0124
70	2950-0001	4	NUT, HEX, 3/8-32 THD, .094" THK	28480 12697	2360-0124 2014-13
71	2190-0016	8	WASHER, LOCK, STAR, INT TOOTH, NO 3/8, .377 ID	78189	1920-02
72	0360-1190	4	LUG, GROUND, 3/8 SCREW, .38"/.078" ID	79963	720380H
73	0380-0093	4	STANDOFF, HEX, .5" LG, 6-32 THD	81150	R370-E
74	08620-20070	1	SUPPORT, RIGHT, LATCH ROD	28480	08620-20070
75 76	08620-00062 2360-0211	1 2	PLATE, NUT, RIGHT SCREW NITPLATE RIGHT 6.32 THD 75" LG	28480 28480	08620-00062 2360-0211
76	08620-40010	5	SCREW, NUT PLATE, RIGHT, 6-32 THD, .75" LG KNOB, PUSHBUTTON, WHITE	28480	2360-0211 08620-40010
78	0370-1375	5	KNOB. ROUND. JADE GRAY (STD.)	28480	0370-1375
79	5040-0345	2	INSULATOR, CONNECTOR	28480	5040-0345
80	0370-1001	2	KNOB, RND, JADE GRAY FOR 0.125" DIA SHAFT	28480	0370-1001
81	08620-20072	1	FILLER STRIP, PLASTIC	28480	08620-20072

Figure 6-1. Front Panel Assembly, Parts Locations (1 of 4)

Figure 6-1. Front Panel Assembly, Parts Locations (2 of 4)

Figure 6-1. Front Panel Assembly, Parts Locations (3 of 4)

Replaceable Parts

Figure 6-1. Front Panel Assembly, Parts Locations (4 of 4)

Figure 6-2. Cabinet Parts

SECTION VII MANUAL BACKDATING CHANGES

7-1. INTRODUCTION

7-2. This manual has been written for and applies directly to instruments with serial numbers prefixed as indicated on the title page. Earlier versions of the instrument (serial number prefixes lower than the one indicated on the title page) may be slightly different in design or appearance. The purpose of this section of the manual is to document these differences. With the information provided in this section, this manual can be corrected so that it applies to any earlier version or configuration of the instrument. Later versions of the instrument (serial number prefixes higher than the

one indicated on the title page) are documented in a yellow Manual Changes Supplement.

7-3. To adapt this manual to your instrument, refer to Table 7-1 and make all manual changes listed opposite your instrument serial number. Perform these changes in the sequence listed.

7-4. If your instrument serial number is not listed on the title page of this manual or in Table 7-1, it will be documented in a yellow Manual Changes Supplement. Complimentary copies of this supplement are available through your nearest Hewlett-Packard office. Addresses are provided at the rear of this manual.

Table 7-1. Manual Changes	by Serial Number
---------------------------	------------------

Serial Prefix or Number	Make Manual Changes			
1645A	A			
1641A	A, B			
1626A	A, B, C			
1604A	A, B, C, D			
1542A00311 through 1542A00350	A, B, C, D, E			
1542A00151 through 1542A00310	A, B, C, D, E, F			
1537A	A, B, C, D, E, F, G			

7-5. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Page 6-11, Table 6-2:

Change A5R9 HP Part Number to 2100-3154 and Description to 1K OHMS.

Page 8-25, Figure 8-21, SERVICE SHEET 7: Change A5R9 value to 1K.

CHANGE B

Page 6-7, Table 6-2:

Change A3C5, A3C9, A3C10, and A3C11 to HP Part Number 0160-3878, CAPACITOR-FXD, 1000 PF.

Page 8-21, Figure 8-17, SERVICE SHEET 5: Change A3C5, A3C9, A3C10, and A3C11 values to 1000 pF.

MANUAL BACKDATING CHANGES

CHANGE C

Page 6-4, Table 6-2: Delete A1C7.

Page 8-15, Figure 8-10, SERVICE SHEET 2: Replace Figure 8-10 with Figure 7-1.

Page 8-17, Figure 8-12, SERVICE SHEET 3: Replace Figure 8-12 with Figure 7-2.

Page 8-17, Figure 8-13, SERVICE SHEET 3: Delete A1C7.

CHANGE D

Page 6-11, Table 6-2: Change A7 HP Part Number to: 08620-60117.

NOTE

Instruments with serial prefixes 1604A and lower were equipped with the 08620-60117 A7 Operations Control Assembly, however, the 08620-60137 is the recommended replacement and is directly interchangeable.

Page 6-12, Table 6-2:

Delete A7C11. Delete A7Q19. Delete A7Q20. Change A7R8 to 0757-0459, RESISTOR 56.2K, 1%, .125W. Change A7R9 to 0698-3260, RESISTOR 464K, 1%, .125W. Change A7R10 to 2100-3109, RESISTOR-TRMR 2K, 10%, SIDE ADJUST, 17-TURN. Change A7R11 to 0698-0084, RESISTOR 2.15K, 1%, .125W. Change A7R12 to 0698-3444, RESISTOR 316 OHMS, 1%, .125W. Change A7R16 to 0757-0416, RESISTOR 511 OHMS, 1%, .125W. Change A7R17 to 0698-0082, RESISTOR 464 OHMS, 1%, .125W. Delete A7R37. Delete A7R38. Delete A7R39.

Page 8-31, SERVICE SHEET 10: Replace Figure 8-27 with Figure 7-3.Replace applicable part of Figure 8-28 with Figure 7-4.

CHANGE E

Page 6-15, Table 6-2:

Delete HP Part Number 0380-0643, STANDOFF, HEX HEAD, P/O 08620-60130 CONNECTOR/ADAPT-ER FOR OPTION 011.

MANUAL BACKDATING CHANGES

CHANGE E (cont'd):

NOTE

The above mentioned part was not installed on instruments with serial numbers prefixed 1552A and lower, however it is recommended that the part number not be deleted from the replaceable parts list as this part is necessary for operation of HP-IB instruments.

CHANGE F

Page 6-9, Table 6-2, after last A3 entry: Add HP Part Number 8159-0005, WIRE, 22AWG, PVC, 1X22, 80C.

NOTE

This wire jumper switches in the CW Filter in Remote D/A Tuning Mode. It was deleted as an instrument improvement modification. It is recommended that this wire jumper not be installed.

Page 6-11, Table 6-2: Add after A6U2, A6U3, and A6U4: 1200-0508, SOCKET, IC, 14-CONT.

Page 6-14, Table 6-2: Change J2MP1 HP Part Number to 08620-00073.

CHANGE G

Page 5-2, Figure 5-1: Replace Figure 5-1 with Figure 7-5.

Page 5-6, Paragraph 5-16:

Change Procedure Step a to read: Connect oscilloscope Channel A to A7TP6 (Q5 collector) and Channel B to Q7 collector. Connect oscilloscope ground lead to A7TP7.

Page 5-7, Figure 5-4: Change title on bottom waveform to read: CHANNEL B, (Q7 COLLECTOR).

Page 8-31, SERVICE SHEET 10:

Replace Figure 8-27 with Figure 7-6.

In Figure 8-28, change A7TP8 to A7TP7 and delete A7TP7 at Q7 collector.

Figure 7-1. A1 Sweep Generator Assembly, Component Locations (CHANGE C) (1 of 2)

Figure 7-2. A1 Sweep Generator Assembly, Component Locations (CHANGE C) (2 of 2)

Figure 7-3. A7 Operations Control Assembly, Component Locations (CHANGE D)

Figure 7-4. P/O Figure 8-28. A7 Operations Control Assy. Schematic (Change D)

Figure 7-5. Location of Test Points (P/O Change G)

Figure 7-6. A7 Operations Control Assembly, Component Locations (P/O Change G)

7-9/7-10
SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section provides information for troubleshooting and repairing the Model 8620C Sweep Oscillator. This information includes troubleshooting block diagrams and schematic diagrams. Circuit descriptions are included with the schematic diagrams of the assemblies. Component location illustrations are contained in this section to add visual information for servicing and repairing. Figure 8-9 provides a block diagram and functional description of the instrument. Schematic presentations in this manual show electrical circuit operation and are not intended to serve as wiring diagrams.

8-3. ASSEMBLY SERVICE SHEETS

8-4. The schematics are arranged by service sheets. The service sheet numbers appear in the lower right-hand corner of the schematics (large number above assembly number). Included in the service sheet is the schematic as well as the accompanying circuit theory, component-parts location photo, and simplified block diagrams. A list of service sheets cross-referenced to assemblies is given in Table 8-1.

8-5. PRINCIPLES OF OPERATION

8-6. Circuit Description

8-7. Detailed circuit description for each individual schematic diagram is placed on the facing left-hand foldout page. This places material needed for printed-circuit-level diagnosis in one location and allows easy correlation between function and specific circuitry.

8-8. SERVICE

8-9. Safety

8-10. The information, cautions, and warnings in this manual must be followed to ensure safe operation and to keep the instrument safe. SERVICE AND ADJUSTMENTS SHOULD BE PER-FORMED ONLY BY QUALIFIED SERVICE PERSONNEL.

8-11. Adjustment or repair of the opened instrument with the ac power connected should be avoided as much as possible but, when unavoidable, should be performed only by qualified service personnel who are aware of the hazard involved.

8-12. Capacitors inside the instrument may still be charged even though the instrument has been disconnected from its source of supply.

WARNING

Servicing this instrument often requires working with the instrument's protective covers removed and ac power connected. Extreme caution should be exercised since energy available at many points in the instrument may, if contacted, result in personal injury.

WARNING

BEFORE SWITCHING THE INSTRU-MENT ON, ensure that all ac line powered devices connected to the instrument are connected to the protective earth ground.

WARNING

With the ac power cable connected, the ac line voltage (115 or 230 Vac) is present at the terminals of mainframe power line assembly FL1 (mounted on rear panel) and at the mainframe POWER switch, whether the POWER switch is on or off. With the top cover removed, these terminals are exposed and carry ac voltages capable of causing death.

8-13. Troubleshooting

8-14. Troubleshooting is divided into two maintenance levels in this manual. The first level isolates a trouble to a circuit or assembly. This is done using a troubleshooting block diagram with typical voltages and waveforms along with general circuit descriptions. 8-15. The second maintenance level isolates the trouble to the component. Schematic diagrams and circuit descriptions for each assembly aid in troubleshooting to the component level. The schematic also contains waveforms and voltages for use during troubleshooting.

8-16. RECOMMENDED TEST EQUIPMENT

8-17. Test equipment and accessories required to maintain the Model 8620C are listed in Table 1-2. If the equipment listed is not available, equipment that meets the minimum specification shown may be substituted.

8-18. REPAIR

8-19. Service Accessories

8-20. A service accessories package HP Part No. 08620-60124 is available as an aid in maintaining the Model 8620C and its associated RF Plug-in and Oscillator Module. The package is described in Figure 1-5.

8-21. Cleaning Switches

When cleaning board-mounted frontpanel switches, do not allow the switch to slide out of guides. The switch is very difficult to properly assemble back into the guides. 8-22. Board-mounted switches on switch assembly A9 may be cleaned without disassembling the switch. Since the switch is assembled with great precision, disassembly of the switch should not be attempted.

······
CAUTION

Isopropyl alcohol will damage the pointer drive belts on the front panel. To clean the switches on A9, the switch board should be removed from the front panel to prevent inadvertent damage to the drive belts from alcohol.

8-23. The cleaning agent to be used on the switches is isopropyl alcohol. HP Part No. 8500-0755. Spray the alcohol into the switch and slide the switch back and forth within the guides. Repeat this procedure several times, continue to slide the switch back and forth until the alcohol is evaporated.

8-24. Front Panel Disassembly

8-25. To remove hinged front panel assembly from mainframe, perform the following:

- a. Remove bottom cover, plastic filler strip, and five screws used to secure hinged front panel to mainframe (Figure 8-1).
- b. Disconnect W2J1 from A11P1.
- c. Remove front panel assembly through front frame opening.

Service Sheet	Assembly Numbers	Schematic	Component Locations
2 and 3	A1	Figures 8-11 and 8-13	Figures 8-10 and 8-12
4	A2	Figure 8-15	Figure 8-14
5	A3	Figure 8-17	Figure 8-16
6	A4	Figure 8-19	Figure 8-18
7	A5	Figure 8-21	Figure 8-20
8	A6	Figure 8-23	Figure 8-22
9	A12	Figure 8-25	Figure 8-24
10	A7	Figure 8-28	Figure 8-27
11	A8	Figure 8-30	Figure 8-29
12	A9, A10	Figure 8-32	Figure 8-31 (A9 Assembly)
13	A9, A10	Figure 8-34	Figure 8-33 (A10 Assembly)
14	A11	Figure 8-36	Figure 8-35
			0

Table 8-1. Service Sheet Cross-Reference

8-26. To remove dial frame from front panel assembly, proceed as follows:

- a. Remove all front-panel knobs with rightangle hex key .050 (HP Part No. 8710-0857).
- b. Remove retaining nuts on MANUAL and TIME potentiometers and on the SWEEP OUT connector.
- c. Remove five screws holding dial frame to front panel (Figure 8-2).

8-27. To remove A9/A10 switch/interconnect assembly, remove three screws holding the assembly to front panel (Figure 8-3).

8-28. To disassemble A9 switch assembly from A10 front interconnect, remove six bolts holding two boards together (Figure 8-3).

8-29. Restringing Pointer Belts

8-30. Use the following procedure to restring any of the pointer belts. (See Figures 8-4 and 8-5).

- a. Remove front panel as described in Paragraphs 8-26 and 8-27.
- b. Loosen adjustment idler shown on restringing diagram in Figure 8-5 for belt being replaced.
- c. Turn drive sprocket fully counterclockwise.
- d. For a FULL SWEEP, MARKER SWEEP, or CW belt:
 - 1. Turn drive sprockets of two unbroken belts fully counterclockwise to move both pointers to left-hand edge of scale.
 - 2. Place new belt in slot and move pointer to left edge of scale.
 - 3. If it is a FULL SWEEP or MARKER SWEEP belt, line new belt pointer up with left-hand edge mark of scale so pointer covers end mark.
 - 4. If it is a CW belt, line new belt pointer up so that it is offset to left about 1/64th of an inch from left-hand edge mark of scale.
 - 5. Restring belt as shown in Figure 8-5 and tighten belt with adjustment idler.
 - 6. Recheck belt pointer at fully counterclockwise position of drive sprocket. FULL

SWEEP or MARKER SWEEP pointer should cover end mark on scale and CW pointer should be 1/64th of an inch to left of end mark.

- e. For \triangle F or CW VERNIER belt:
 - 1. Place belt in slot and move left edge of pointer body 1/16th inch past edge of pointer guide slot.
 - 2. Restring belt as shown in Figure 8-5 and tighten belt with adjustment idler.
 - 3. Recheck that at fully counterclockwise position of drive sprocket, the left edge of pointer body goes approximately 1/16th inch beyond white metal guide.
- f. Make adjustments in circuit that had belt restrung, as outlined in Section V.
- g. Reassemble front panel.

8-31. MAINTENANCE

8-32. Fuses

8-33. There are five fuses in the 8620C. Replacement of the AC line fuse is covered in Section III, Operator's Maintenance. There are four other fuses inside the instrument. Access to these fuses requires removing the instrument top cover.

WARNING

To avoid personal injury, set LINE switch to OFF and remove AC line cord from rear of instrument before removing top cover. With top cover removed and AC power connected, there is energy available at many points within the instrument which may, if contacted, result in personal injury. Maintenance of the instrument with protective covers removed should be performed only by qualified service personnel who are aware of the hazards involved. These fuses are located on the A4 and A5 assemblies (yellow and green PC board extractors). They are mounted on twopin connectors and can be removed by pulling them straight out from the printed circuit board. Refer to Component Location Diagram and Section VI (Replaceable Parts List) for fuse type, current rating, and HP Part Number.

8-34. Air Filter

8-35. Cleaning and replacement of the fan filter is covered in Section III, Operator's Maintenance.

8-36. Lamp Replacement

8-37. Replacement of Mode Selector pushbutton lamps and LINE switch lamp is covered in Section III, Operator's Maintenance.

Figure 8-1. Removing Hinged Front Panel Assembly From Mainframe

Figure 8-2. Removing Dial Frame From Front Panel

Figure 8-3. Removal and Dissassembly of A9 Switch Assy and A10 Front Interconnect Assy

Figure 8-4. Location of Pointer Belts

Figure 8-5. Pointer Belt Restringing Diagrams

Figure 8-6. General Information on Schematic Diagrams

SCHEMATIC DIAGRAM NOTES					
BASIC SCHEM	ATIC SYMBOLS				
R, L, C	Resistance is in ohms, inductance is in millihenries, capacitance is in microfarads, unless otherwise noted.				
P/O	Part of.				
*	Asterisk denotes a factory-selected value. Value shown is typical.				
0	Panel control.				
7	Screwdriver adjustment.				
	Encloses front panel designation.				
	Encloses rear panel designation.				
	Circuit assembly borderline.				
	Other assembly borderline.				
	Heavy line with arrows indicates path and direction of main signal.				
	Heavy dashed line with arrows indicates path and direction of main feedback.				
<u>≰cw</u>	Wiper moves toward CW with clockwise rotation of control as viewed from shaft or knob.				
\bigcirc	Encloses wire color code. Code used (MIL-STD-681) is the same as the resistor color code. First number identifies the base color, second number the wider stripe, and the third number identifies the narrower stripe; e.g. 947 denotes white base, yellow wide stripe, violet narrow stripe.				
20	Number = Service Sheet number for off-page connection. Letter = off-page connection.				
Ť	Light-emitting diode (LED).				
🔁 Đ	Breakdown diode.				
	PIN diode.				
\bigcirc	Field effect transistor (FET) with N-type base.				

Figure 8-7. Schematic Diagram Notes (1 of 3)

Figure 8-8. Schematic Diagram Notes (2 of 3)

Figure 8-7. Schematic Diagram Notes (3 of 3)

Figure 8-8. IC Logic Symbol Configuration Details

SERVICE SHEET 1

FUNCTIONAL DESCRIPTION OF 8620C SWEEP OSCILLATOR

The Functional Block Diagram of the 8620C Sweep Oscillator is shown in Figure 8-9. The following concerns the functional operation of the sweep oscillator in the local mode. The remote mode of operation is covered in detail in Service Sheets 6 and 6A.

In the AUTO mode of operation, the Ramp Generator on A1 assembly outputs a triangular ramp voltage from -0.6V to +6.2V. The SWEEP time is set by the TIME-SECONDS switch on the front panel. The ramp voltage is clamped at 0V and +6.0V by the Clamper Circuit and applied to the A2 Frequency Control Assembly. The Ramp Amplifier provides ramp voltages to the A2 assembly offset amplifiers and the Sweep Voltage Select Circuit in the A3 Logic Assembly. The sweep mode of operation selected (FULL, MARKER or ΔF), and the resulting relays energized, determines the ramp voltages applied to the Summing Amplifier. The output of the Summing Amplifier becomes the Tuning Voltage for the oscillator module in the RF Section. The Tuning Voltage routed to A3K1 is the SWEEP OUT signal in MANUAL, CW, and remote operation. In FULL, MARKER or ΔF sweep modes, the SWEEP OUT signal is the ramp sweep voltage taken from the output of A2 Ramp Amplifier.

In MANUAL mode of operation, the tuning and SWEEP OUT voltages are controlled by the frontpanel manual sweep adjust R7. In EXT mode, the sweep voltage is supplied by a remote device.

The upper and lower limits of the ramp sweep voltage are determined by two comparators and a flip-flop. When the ramp attains the upper voltage limit, the voltage from the Upper Ramp Limiter sets the Sweep Ramp Flip-Flop. The Sweep Ramp F/F triggers the Ramp Generator to begin a positive-to-negative excursion. At the lower limit, the voltage from the Lower Ramp Limiter resets the Sweep Ramp F/F and reverses the direction of the ramp. In EXT TRIGGER, the F/F is reset by either an external trigger connected to EXT TRIGGER J4 or from the single sweep switch. In Line Trigger,

the F/F is reset by a 60 Hz line pulse generated on the A8 Rectifier Assembly. The signals are processed in the Trigger Circuit and applied to the One Shot Multivibrator on the A1 Assembly.

The 0V to +3V rectangular pulses from the Sweep Ramp Flip-Flop are also used for positive Z-axis blanking, negative blanking, and pen lift drive. One of the F/F outputs is applied to the RF Blanking Gate where it is routed to the oscillator in the RF Plug-In for positive RF Blanking. This same F/F output is applied to the Positive Z-Axis Blanking amplifier. From the Z-Axis Blanking and Marker driver, the positive blanking is routed to the Z-AXIS/MKR/PEN LIFT connector J8 and is available for display equipment.

A second 0V to +3V signal from the Sweep Ramp F/F is applied to the Negative Blanking Circuit where it is amplified, inverted (0V to -4.5V), and applied to the NEGATIVE BLANKING connector J5. In addition a second input is applied to the Negative Blanking Circuit. This comes from the wide ΔF comparator on the A3 assembly and provides a blanking signal when the Tuning Ramp goes lower than -1 volt or higher than +11 volts when in ΔF Sweep Mode.

The mode of operation (FULL SWEEP, ΔF , CW, CW VERNIER, or MARKER SWEEP) is selected with pushbutton switches on the front panel. The switches ground a mode select line in the A3 assembly Mode Select Logic circuit. In turn, the correct relays on the A2 assembly are energized to set the correct mode, and front-panel indicators illuminate to show the mode selected.

A 1 kHz Square Wave Oscillator in the A7 assembly provides internal amplitude modulation to the CW RF signal. The square wave output is 0V to +4V in amplitude.

The Marker Generator circuit on the A1 assembly receives a trigger pulse from the A3 assembly and then provides marker pulses to the RF Section and high intensity markers for the Z-Axis of a display instrument. The markers are available at the Z-AXIS/MKR/PEN LIFT connector J8. The A2 Marker Reference Amplifiers supply reference voltages to A3 Marker Trigger Generator.

SERVICE SHEETS 2 AND 3

A1 SWEEP GENERATOR ASSEMBLY, CIRCUIT DESCRIPTION

General

The A1 Sweep Generator Assembly produces the triangular sweep ramp voltages used for sweeping the RF oscillator up and down in frequency. The marker pulses and positive and negative blanking are developed in the A1 assembly. Also provided are the external trigger circuit, and the penlift drive and current limiting circuits. The circuits involved in supplying these voltages are described in the following paragraphs. Figure 8-10 is a simplified block diagram of the A1 assembly showing its functions.

Ramp Generator

The sweep ramp generator consists of the Sweep Ramp F/F, Current Source, Integrator, and upper and lower ramp comparators. The output of the sweep ramp generator at integrator U1 is applied to the inputs of operational amplifiers U11B and U11A, the upper and lower ramp comparators. When the ramp voltage at U11B pin 6 exceeds the dc voltage at U11B pin 5 (+62V dc), the upper ramp limit is reached and U11B output goes negative. The resultant negative-going pulse (+4.5V to 0V) from U11B sets sweep ramp flip-flop U3B. When U3B changes states, it reverses the feedback input voltage applied to U2 which then supplies a +5 volts to Pin 3 of Current Source U4. This changes the direction of the ramp, starting from the upper limit of +6.2 Vdc and going toward the lower limit of -0.6 Vdc. Current Source U4 applies current to the feedback capacitor selected by the TIME-SECONDS switch A9S3 and connected across Integrating Amplifier U1.

When the ramp voltage at U11A pin 3 becomes more negative than U11A pin 2 (-0.6 Vdc), the lower ramp limit is reached and U11A output goes negative. The resultant negative-going pulse (+4.5V to 0V) from U11A clears sweep ramp flip-flop U3B. When U3B changes state, it again reverses the input voltage applied to U2 and supplies a +5 volts to Pin 2 of Current Source U4. This again starts the ramp, developed by Integrating Amplifier U1, in a positive direction; starting from the lower limit of -0.6 Vdc and going toward the upper limit.

The output of the ramp generator is taken from U1 and is routed through the MODE switch in the AUTO position to the clamper circuit. The repetition rate is dependent upon the feedback capacitor selected by the TIME-SECONDS switch and TIME-SECONDS Vernier across the inputs to U4 Current Source.

Clamper

The Clamper consists of U8A through U8D with the combination of U8A/ U8B providing a reference voltage level for U8C and U8D. The sawtooth waveform from the ramp genrator through MODE switch A9S1 (AUTO) is applied to the emitter input of U8D. The top of the sawtooth is clamped at +6V and the bottom is clamped at 0V. Clamping the top and bottom of the sawtooth waveform allows the oscillator in the RF Plug-In to stabilize before starting the frequency sweep. This also allows time for peripheral equipment to phase lock to the signal before the frequency sweep begins. The clamped sweep ramp voltage is routed to the A2 Frequency Control Assembly.

SERVICE SHEETS 2 AND 3 (Cont'd)

Fast Retrace

Transistors Q11 and Q9 and associated components provide a fast retrace on all sweep speeds except .1-.01 (fastest speed). During retrace time, positive pulses from the \overline{Q} output of U3B are applied to the base of Q11. These pulses turn Q11 intermittently on and off. The resultant output at the collector of Q11 is directly coupled to the input of Q9 turning it on and off. Each time Q9 is turned on, a +20V pulse is applied to the non-inverting input of Integrator U1. This higher voltage increases the current through the feedback capacitor (in the ramp generator feedback circuit) causing the lower ramp limit to be reached sooner, thus decreasing retrace time.

Sweep Trigger Circuit

NAND gates U6C and U6B form a monostable multivibrator which produces a square wave pulse when triggered. A trigger pulse is produced when the TRIGGER switch is set to SINGLE position. The trigger pulse from U6C-U6B toggles flip-flop U3A, producing an enable gate to U6D for a single sweep. For other trigger modes, U6C is disabled by a ground at U6C pin 9 which prevents U6C from changing states. Other trigger signals from the 60 Hertz AC line or from the EXT TRIGGER input connector J4 may be selected to toggle flip-flop U3A and produce the appropriate sweep rate.

Positive RF Blanking

The RF Blanking Gate consists of U9A and U7C. In the AUTO sweep mode (FULL, ΔF or MARKER) the blanking gate is enabled when the upper ramp limiter U11B output goes low, toggling sweep ramp F/F U3B and changing U3B Q output to high. This high causes U9A output to go low and U7C to invert the output and apply a high to the blanking output on J6 pin 24 and J6 pin 3 through RF blanking switch S10. U3B holds the blanking circuit on during the entire retrace cycle.

The Blanking gate is disabled in Manual and Ext mode by +20 volts from A9S1 to CR2 and base of Q18. The blanking is also disabled by +20V from A3Q6 to CR1 and the base of Q18. These voltages establish a low at U9A pin 4 disabling the blanking gate.

Negative Blanking

The combination of CR17, CR16 and CR20 forms an OR gate. Normally Q8 is conducting. When the Sweep Ramp generator is sweeping, Sweep Ramp F/F U3B \overline{Q} output is High and the input to CR16 is High. This forward biases CR20 turning Q3 ON. Q16 is ON which turns Q17 ON and the output at J5 is 0 volt. When the Sweep Ramp generator starts its retrace, Q3B \overline{Q} goes Low. This forward biases CR17 and turns CR20 off. Q3 then turns off, Q16 turns off, and Q17 turns off, allowing the output at J5 to go to -5.11 volts.

The same sequence is repeated if a negative Stop Sweep pulse is applied to CR16 from an RF Plug-In (such as an 86290A).

Figure 8-10. A1 Sweep Generator Assembly, Component Locations (1 of 2)

SERVICE SHEET 2 AND 3 (Cont'd)

Marker Generator

The MARKER GENERATOR consists of two retriggerable monostable multivibrators U10A and U10B. U10A is wired to trigger on a low to high transition from the marker trigger generator on A3 assembly and U10B on a high to low transition. The \overline{Q} outputs are ORed and inverted by U9B and applied to U7B which inverts the pulse and routes the signal through sweep mode switch A9S1 and the sweep time capacitors, to one side of U7A and then to the blanking circuits and the RF Plug-In.

During retrace of the ramp generator U3B, Q output is high. This high is coupled to U7A Pin 1 and disables the marker generator.

Two monostable multivibrators are used to simplify the operation of the circuit when all three markers available are used. The multivibrators trigger on pulse edges only, not on signal level. Therefore, to produce the three markers, the level is changed three times (starting Low) and the marker pulse is generated at each switch point (edge).

Z-AXIS Intensifier

Marker pulses from the Marker Generator are applied to the emitter input of Z-Axis Intensifier Q4. The markers are amplified and inverted by Q6 and direct coupled to the base of Blanking and Marker Driver Q10. If A9S5 marker switch is in the OFF or AMP position, Q4 is biased OFF. Switching to INTEN grounds the base of Q4 and a positive signal on the emitter will cause Q4 to turn ON. The markers at the rear panel Z-AXIS/MKR/ PEN LIFT connector J8 are used to intensity modulate a marker spot on a scope trace or other display.

Pen Lift

When an X-Y recording instrument is connected to the 8620C Sweep Oscillator, the recorder supplies a +50V operating voltage through J8 for the Pen Lift Driver circuit. The following conditions are required to obtain pen lift drive to an X-Y recorder:

- 1. An X-Y recorder connected to J8.
- 2. MODE switch in AUTO.
- 3. TIME-SECONDS switch in 100 to 10.

The positions of the MODE switch A9S1 and TIME-SECONDS switch A9S3 control the ON/OFF operation of Q22. Q21 and Q20 provide drive to an X-Y recorder only when Q22 is OFF. The operation of Q22 is as follows.

Conduction of Q22 places ground on the base of Q21 keeping the Darlington pair Q21 and Q20 cutoff. With the TIME-SECONDS switch A9S3 in 10 to 1, 1 to .1, or .1 to .01 position, a +5 Vdc is applied to Q22 base permitting conduction.

When the TIME-SECONDS switch is in the 100 to 10 position, the square wave from F/F U3B (0V to +3.4V) is applied to the base of Q22. The square wave turns Q22 intermittently on and off, causing the Darlington pair to turn on and off, CR13 prevents losing the negative marker in the slowest sweep range when Q10 (Blanking Driver) is turned on.

Pen Lift Current Limiter

The Pen Lift Current Limiting circuit consists of Q13, Q12, VR5, and associated components. During sweep time, the pen is engaged and during retrace the pen lifts or disengages. To engage the pen, (relay energized in recorder) requires over 100 mA; to release the pen, the current must be <1 mA. The Pen Lift Current Limiting circuit operates as follows. When no recorder is connected to J8 and Q10 is operating as a driver for the blanking and marker pulses, Q16 is off and Q13 is on. With a recorder connected and +50V applied to the driver circuit, Q4 and Q10 drive the recorder relay and engage the pen. Zener diode VR5 fires and a positive voltage is applied to the base of Q12. Q12 turns on and Q13 turns off. For correct operation, the current through VR5 plus the leakage current (Ico) through Q13 must be <1 mA.

Service

8-15/8-16

Figure 8-12. A1 Sweep Generator Assembly, Component Locations (2 of 2)

Service

Figure 8-13. A1 Sweep Generator Assembly, Schematic (2 of 2)

8-17

SERVICE SHEET 4

A2 FREQUENCY CONTROL ASSEMBLY, CIRCUIT DESCRIPTION

General

The A2 Frequency Control Assembly receives the Sweep Ramp from the Ramp Generator on the A1 Assembly and converts it to the tuning voltage selected by the front panel. In FULL SWEEP mode, the 0V to 6V sweep ramp is amplified to 0V to 10V and applied to the A3 Logic Assembly. When ΔF , CW or MARKER SWEEP is selected, the 0V to 10V ramp is applied to the input of the selected Offset Amplifier (except in CW) and then to the Summing Amplifier.

The Offset Amplifiers are also used to generate the marker reference voltages when in a sweep mode.

Sweep Ramp Select

The 0V to 6V Clamped Sweep Ramp from the A1 assembly is applied to Ramp Amplifier U1 through Q7 for all internal sweep functions.

When an EXT sweep or D/A tuning voltage is desired, the appropriate input to U8B is grounded. The output of U8B goes high turning Q2 ON and turning Q7 OFF preventing the clamped Sweep Ramp from reaching the input of Ramp Amplifier U1. The high from U8B is also present at U8A Pin 2. U8A Pin 3 goes low turning Q3 OFF and turning Q1 ON, making U1 a unity gain follower.

The outputs of U8C and U8D are dependent upon which external input is selected. U8C energizes Q6 for EXT Sweep input and U8D energizes Q8 for D/A tuning.

Ramp Amplifier

The 0 to +6 volt sweep ramp from the A1 clamper on the A1 Assembly is applied to the non-inverting input of U1. U1 amplifies the Ramp to 0 to +10 volts and makes it available for use as the Sweepout, Full Sweep Tuning Voltage or the Offset Amplifier input.

Start, Stop Offset Amplifiers

Selecting MARKER SWEEP Mode, switches the output of RAMP Amplifier U1 to the inputs of the START and STOP Offset Amplifiers. The gain of the two amplifiers U5 and U6 are set by the two front panel variable controls. The outputs of U5 and U6 are applied to the inputs of summing amplifier U4. The output of U4 is then routed through the A3 assembly to the RF Plug-In.

U4 sums the two ramp voltages as follows. Assuming that the START control is set at 2K Ohm and the STOP control is at 8K ohm, initially, with the ramp at 0 volts, the output of U5 is at +2 volts (the sum of -10 +0V times the gain of -0.2 equals +2 volts). R1 and R2 form a summing junction at the input of U5. As the ramp voltage

SERVICE SHEET 4 (Cont'd)

rises to +10 volts the sum of the voltages are amplified by a gain of -0.2 until the output of U5 equals 0 volts.

U6 (STOP amplifier) has no offset and amplifies with a gain of -0.8 for an output ramp of 0 to -8 volts. The two ramps are then summed by U4.

The START ramp is applied to a 2:1 voltage divider and amplified by a gain of +2. The STOP ramp is amplified by a gain of -1. The resulting output ramp goes from +2 volts to +8 volts.

CW Offset Amplifier

When CW mode is selected, the CW Offset Amplifier U7 is used to generate the tuning voltages which is input to the +20 volt supply across a series combination of resistors which totals 2K ohms. The gain of the Amplifier is adjusted by means of the front panel CW Control. Its output is adjustable from 0 volts to -10 volts and applied to the summing Amplifier U4.

When CW Vernier is selected, a small amount of dc offset (controlled by front panel control and multiplier switch) is also summed at the input of summing Amplifier U4.

△ F Offset Amplifier

In $\triangle F$ sweep mode, the output of ramp amplifier U1 is applied to the non-inverting input of Amplifier U3 through a resistor voltage divider. The output of U3 is a ramp from -3.3 to +3.3 volts. This ramp is amplified by U2 whose gain is controlled by the $\triangle F$ front panel control. The output of U2 goes to the front panel multiplier and then to the input of U4 where it is summed with the CW voltage from CW Offset Amplifier U7 and the CW Vernier offset (if selected).

Marker Reference Amplifier

The 8620C has three markers available for use in the FULL sweep mode (CW, START and STOP Markers).

The START, STOP and CW offset amplifiers are used as Marker Reference amplifiers when AMP or INTEN markers are selected at the front panel. A -10 volts is applied to the amplifiers and inverted and routed to the Marker trigger generator on the A3 assembly.

If the 8620C is in MARKER SWEEP mode, only the CW marker is available for use. In $\triangle F$ mode, only the START and the STOP markers are available.

Figure 8-14. A2 Frequency Control Assembly, Component Locations

Service

Figure 8-15. A2 Frequency Control Assembly, Schematic

SERVICE SHEET 5

A3 LOGIC ASSEMBLY, CIRCUIT DESCRIPTION

General

The A3 Logic Assembly contains the Mode select decoder which supplies the necessary drive to energize the front panel Mode select indicator lamps and switch the appropriate relays on the A2 Assembly to select the proper Tuning Voltage.

The Marker Trigger Generator is also part of the A3 assembly. The Marker reference voltages from the A2 Assembly are applied to comparators and compared to the Tuning Voltage to generate the trigger which is fed to the Sweep Ramp Generator on the A1 assembly.

In $\triangle F$ mode of operation it is possible to sweep out of Band of the RF Plug-In. To prevent this possible erroneous data, a comparator checks the Tuning Voltage and, if the tuning voltage exceeds -1 volt or +11 volts, will provide a blanking signal for use with a display.

Mode Select Decoder

The Mode Select Decoder is comprised of U12A through D, U13A through D, and U7A and B, U6 and U11C. Depressing the full sweep pushbutton on the front panel will hold the FULL SWEEP mode line low. The low at U12A Pin 2 and U12C Pin 9 makes the two outputs high. The high is applied to U13A Pin 2 and U13C Pin 10. Their outputs go low causing flip-flops U7A and U7B to reset. With U7A and U7B reset, their Q outputs are low and \overline{Q} outputs high. The high at U7A \overline{Q} is applied to U1D Pin 12 and U1C Pin 10. U7B Q is low and applied to U1C Pin 9 holding its output low. U7B \overline{Q} output is tied to U1D Pin 13. With both inputs high U1D output Pin 11 is high and Q15 turns ON lighting the front panel full lamp. The high at U1D Pin 11 is also tied to U11E Pin 13 inverter. This de-energizes Q14 and thus turns A2K4 off and the output of Ramp Amplifier A2U1 is applied directly to the RF Plug-in via A3 Assembly.

Only the FULL mode of operation is discussed here. The operation of the mode select circuit is identical for all other modes of operation.

U6 is a J-K flip-flop with the J and K inputs wired high. In this condition the flip-flop will change output states each time a clock pulse is applied. This clock appears when the CW Vernier front panel pushbutton is pressed. The circuit combination R1, R5 and C3 will create a negative spike at the input of inverter U11C. The resulting positive pulse toggles U6, turning CW Vernier either on or off, depending on its previous condition (U6 is reset off at turn on by U7A Q output).

Marker Trigger Generator

The START, CW and STOP marker reference voltages are applied to U8, U9, and U10 respectively. When the marker enable Q18 is ON,

SERVICE SHEET 5 (Cont'd)

the tuning voltage is applied to the three comparators. When the tuning ramp goes more positive than the reference voltage that comparator output goes to zero. The outputs of the comparators are applied to exclusive OR gates U5A, B, and C. Initially U5A Pin 1 and Pin 2 are high and the output Pin 3 is low. U5C Pin 13 is high and, combined with the low on Pin 12 output, Pin 11 of U5C is high. The inputs to U5B are then both high, resulting in the output U5B Pin 6 being low. If any of the comparators changes to a low state, U5B Pin 6 will go high. U5B Pin 6 will go low again when the next comparator switches and then high with the switching of the third comparator.

A remote marker is also available with the 8620C. Grounding the Remote Marker Enable line will turn Q4 OFF and Q5 ON. This results in two things happening. Marker Enable Q18 turns OFF and the -10 volts present at the inverting input of

U4 is removed. The removal of this voltage allows a remotely controlled D/A Voltage to be applied and used as a reference voltage for Comparator U4. With the tuning voltage applied to the other input of U4, the marker trigger is generated as above.

Wide \triangle F Comparator

The Wide ΔF Comparator is employed to prevent viewing erroneous outputs from the 8620C RF Plug-In on a display system. When in ΔF mode, it is possible with a wide sweep to have the 8620C tuned far below or above the frequency band of the RF Plug-In used. The two comparators, U2 and U3, have the tuning voltage applied to them. When the tuning voltage goes below -1 volt, U3 will saturate and turn the Z-Axis negative blanking gate one. This action will intensity blank the non-specified output on the display system. The same thing happens when the tuning voltage exceeds +11 volts and U2 saturates.

Figure 8-16. A3 Logic Assembly, Component Locations

ERIAL PREFIX: 1716A

-10 CZ 0.1 7

+201

Figure 8-17. A3 Logic Assembly, Schematic

Figure 8-18. A4 +20V and +5V Regulator Assembly, Component Locations

Figure 8-19. A4 +20V and +5V Regulator Assembly, Schematic

Figure 8-20. A5-10V and -40V Regulator Assembly, Component Locations

Figure 8-21. A5-10V and -40V Regulator Assembly, Schematic

SERVICE SHEET 8

A6 BCD PROGRAMMING ASSEMBLY (OPTION 001) CIRCUIT DESCRIPTION

General

Installation of the A6 Digital-to-Analog Converter Assembly (Option 001) into the 8620C, gives the user the capability of externally tuning the 8620C by means of an external device such as a computer. The user can program the tuning voltage in steps of 0.001 volts from 0 Vdc to 9.999 volts, giving him a total of 10,000 points available.

In addition to voltage tuning, the user can program the 8620C into remote or local operation and can remotely switch bands and change Sweep Modes from the PROGRAMMING connector (J2) at the rear of the instrument.

Circuit Operation

The A6 Assembly consists of four groups of buffers, U2, U3, and U4, which are used for isolation, and a four-bit binary Digital-to-Analog Converter (U1). The board also is used to interconnect the Remote D/A Enable line from Programming connector J2 to the instrument.

Four digit BCD information is applied to the buffers from the J2 Programming connector. The D/A Converter then changes this information into an analog voltage which is applied to the input of the A2 Frequency Control Assembly.

Band Switching information is applied directly to the A7 Operations Control Assembly. Band Buffer decoder Mode Switching information from J2 is applied to the A3 Logic Assembly for use by the Mode Select Decoder.

Remote Programming

Programming connector J2 description is shown in Table 2 along with the programming codes needed to control the 8620C. Figure 0-0 is a 50 Pin D/A Programming board which can be used to remotely program the 8620C without need of a computer or calculator. Band switching and tuning voltage can be programmed with this board by means of the switches installed on it. This board can be a very useful troubleshooting tool.

Figure 8-22. A6 BCD Programming Assembly, Component Locations (Option 001)

SERIAL PREFIX: 1716A

Figure 8-23. A6 BCD Programming Assembly, Schematic (Option 001)

SERVICE SHEET 9 (Cont'd) Handshake Logic

The Handshake Logic circuit consists of A12U11A, A12U16B and C, and A12U6A. Two conditions enable the handshake, either: (1) ATN true (command mode); or (2) the low output at the listen F/F pin 7 when a valid address (MLA) sets the F/F. Either or both of these conditions apply low inputs to U16B and the low output enables A12U21 to handshake. (The listen F/F is ORed with the ATN in U16B so that in data mode the handshake remains enabled.)

The handshake lines NRFD and NDAC are driven by A12U21; there is drive voltage to A12U21 for these lines with or without the handshake enabled. Flip-flop A12U6A and gate A12U16C provide the logic signals to drive the NRFD and NDAC lines during data transfer. Initially DAV is high (false, data not valid), and A12U6A is not triggered. When the remote controller has data available, it sets the DAV line true (low) and a data transfer cycle is initiated. The high output of A12U22 pin 3 applied to A12R4, C1, CR1, and U16C is delayed by 2 to 3 μ sec to ensure that all timing on the A12 Interface Assembly has settled. After the delay, the positive transition at the clock input triggers A12U6A and Q goes high. The output of the bus driver A12U21 drives NRFD true (low) and NDAC false (high). These conditions are maintained until all instruments on the HP-IB indicate they have accepted data. When data is accepted, the controller sets the DAV line high (false). This applies a low at the CLR input of U6A and sets Q low. The NRFD control line in turn goes high and is ready for data when the next data transfer is initiated. (This completes one data transfer cycle.)

Data Strobe

The "Listen" line and U6A-5 are ANDed together at U10C and applied to U10D-13. The low at U6A-6 is delayed by approximately 0.3 μ sec by L1 and C3 and applied to U10D-12. This delay generates a narrow positive pulse at the output of U10D. This Data Strobe is used as a timing pulse for all data transfer.

Listen and Remote F/F

The Listen F/F A12U15B is set in command mode by a valid listen address (MLA). The F/F can be cleared with an unlisten command or by the IFC line going low. Also loss of power will apply a low from A12U10B to the CLR input of U15B. (Normally a high is at A12U10B pin 4; this input goes low only if the IFC line goes low.) If MLA line is true and the "Unlisten" line from A12U24 is false, the Listen F/F will be set by a data strobe clock pulse from A12U16A. If MLA is false and the A12U24 "Unlisten" is true, the Listen F/F will be cleared by the clock pulse. The Remote F/F A12U15A is set by MLA true or a data strobe clock pulse and the REN line low (true). It can only be cleared when REN goes false, causing the output of A12U10A to go low. A12C4/R6 and C2/R5 are noise filters to ensure that the listen and remote flip-flops can only be cleared by a signal from the HP-IB.

Remote/Local Marker Decoder

The Remote/Local Marker decoder consists of flip-flop A12U6B and two NAND gates A12U2A and U2C. An "R" on the HP-IB is detected by the

SERVICE SHEET 9

A12 HP-IB INTERFACE ASSEMBLY (OPTION 011) CIRCUIT DESCRIPTION

General

The 8620C A12 HP-IB Interface Assembly (Option 011) connects directly to the Hewlett-Packard Interface Bus (HP-IB) and is an interface between an HP-IB controller (i.e., calculator or computer) and selected control lines of the 8620C mainframe. The functional block diagram illustrates the interfacing between the HP-IB and the 8620C direct control lines. The control lines used in the HP-IB interface include the Remote D/A Tuning Voltage to the A2 Frequency Control and A3 Logic assemblies; the Remote D/A Enable, Remote Mode Select, and Remote Marker Enable to the A3 Logic Assembly; and the Remote Band Select to the A7 Operations Control Assembly. Operation for each section of the A12 HP-IB Interface Assembly is as follows.

Bus Transceivers

The bus transceivers consist of A12U19 through A12U22. These quad-bus transceivers provide the proper termination for the bus and invert the bus data. Each transceiver has the capability of driving the HP-IB. However, only A12U21 is connected as a transceiver and, at the time of data transfer, drives the two HP-IB handshake lines: NRFD and NDAC. Drive for these two lines is generated when the handshake enable goes low (output of AND gate U16B pin 6).

Signal Detector

The Read Only Memory (ROM) A12U24 and the five-bit address comparator A12U5 make up the Signal Detector. A listen address is transmitted on the signal lines (DI 01 through DI 05) in command mode (controller sets ATTEN-TION (ATN) line true). The listen address is compared with the binary "1" and "0" inputs set with A12S1. When the address agrees with the code set by the switch, a high or My Listen Address (MLA) signal is generated. This signal initiates the interface listen and remote capabilities.

The inputs to the ROM include the ATN signal and the seven data lines $(DI \ 01 - DI \ 07)$. The ROM decodes these inputs into intermediate signals to be used in other decoders. When the bus ATN control line is true (low), the ROM output signals "Listen" and "Unlisten" are high (true) under the following conditions:

- a. "Listen" True when data lines contain valid listen character.
- b. "Unlisten" True when data lines equal ASCII "?", Octal 077.

All other ROM output lines are false with ATN true.

In Data Mode, the controller sets the ATN control line high (false). With a selected input on the data lines, the ROM decodes the input and the corresponding output line goes high (true). The ROM output lines that are true when ATN is false are described in Table 0-0.

SERVICE SHEET 9 (Cont'd)

ROM A12U24. The "R" output at U24 pin 10 is ANDed with the data strobe in A12U2A and used to set the F/F high (\overline{Q}) low). When U24 detects an "L" and the data strobe occurs, a high from A12U2C clocks the F/F low $(\overline{Q}$ high). (When the clock input goes high, the information stored on the D input is transferred to the Q output.) The F/F A12U6B is cleared when REN goes false and the remote F/F A12U15A Q output ("remote" line) goes low or LOCAL operation. The \overline{Q} output of A12U6B is routed to the 8620C A3 Logic Assembly as the Remote Marker Enable.

Mode Decoder

The Mode Decoder, consists of data-strobe inverter A12U2B, flip-flop A12U4, A12U11B and U11C, and four NAND gates A12U14. When the 8620C is in Remote, a low output from A12U11C disables the mode select decoder on the 8620C A3 Logic Assembly - until a delayed data strobe sets U11C high. The operation to generate this output from U11C is as follows. Flip-flop A12U4A stores, at the D input, a decoded "M" from the ROM A12U24. The data strobe is inverted by A12U2B and applied to the F/F clock input. On the negative-positive transition of the data strobe (trailing edge), the F/F triggers and the information stored on the D input is transferred to the Q output. The Q output is ANDed with the data strobe at A12U11B to produce a data strobe delayed by one character. When "M" is the last character sent, the mode select logic is enabled and one of the four mode select lines is held low by A12U14. Simultaneously with the delayed data strobe, F/F A12U4B is triggered. A high is produced at the Q output if the data on the HP-IB is either a "1", "2", "3" or "4" (RBE output line, see Table 0-0). This output enables the D/A tuning of the tuning voltage.

Band Decoder

The Band Decoder consists of inverter A12U2B, flip-flop A12U3A, and NAND gates A12U2D and A12U9. The operation of the band decoder is similar to the mode decoder. Flip-flop A12U3A stores, at the D input, a decoded "B" from the ROM A12U24. The data strobe is inverted by A12U2B and applied to the F/F clock input. On the negative-positive transition of the data strobe (trailing edge), the F/F triggers and Q is set high. The Q output is ANDed with the next data strobe at A12U2D to drive A12U9B. The output of NAND gate U9B enables the remote band latch (RBL) on the A7 operations control assembly to accept a band number. Immediately after the "B" code is received, the desired band number is transmitted on the HP-IB. The band number is decoded by the ROM A12U24 which applies drive to one of the NAND gates U9D, U9C, or U9A. The output of the gate drives the band decoder on the A7 assembly.

Voltage Decoder

The voltage decoder consists of a controller circuit, 4-digit shift register, 4-digit storage register, and digital-to-analog converter. When a frequency is required from the sweeper, four digits (16 bits), representing that frequency, are transmitted on the HP-IB. The four digits are loaded, one digit at a time, into the 4-digit shift register. With proper signals from the system controller, a clock pulse is generated which loads, in parallel, the four digits into a storage register. The output of the storage register drives the D/A converter. The D/A converter provides a zero-to-ten-volt analog output with 10,000 points.

Controller

The Controller is comprised of flip-flop A12U3B, gates A12U1, and A12U16D. When a "V" is transmitted on the HP-IB, an output from U1B sets the F/F and clears the 4-digit shift register. (The shift register consists of A12U8, U13, and U18.) When any "numeric" character is transmitted on the bus, the output of U1A strobes the clock inputs (shift line) on the positive edge. This shifts the first four bits of the numberic character into the first digit of the shift register. Up to four digits can be shifted into the shift register. When an "E" is transmitted on HP-IB, A12U24 decodes it and store a high on U16D-12. The Data Strobe is NANDed with this high and causes the output of the Shift Registers to be clocked into the 4-digt Storage Registers U7, U12 and U17 by U1C which also clears the F/F U3B.

Shift Register, Storage Register and D/A Converter

The 4-digit Shift register consists of A12U8, U13 and U18. When an "E", "B", or "M" is received at a time when F/F U3B is set, the output of U16D and the resulting high from U1C pin 8 clears the flip-flop. The high from U1C is also the clock line for the 4-digit storage register. A clock pulse to the storage register shifts the stored data to drive the D/A converter A12U23 to the desired voltage.

Figure 8-24. A12 HP-IB Interface Assembly, Component Locations (Option 011)

ALL MOTHER BOARD 1 PROGRAMMING 12 37 1 - 23 BAND SELECT -017 52 24 BANG SELECT -96 <u>_</u>! - The second sec سنام 🚠 **(37**) ENVP MODE SEL K (29 DF MODE SELECT œ يبيغ 2 230 CW MODE SELECT **%** 12 (938 12 A STATE OF 5 PI 54 2د 10 210 550 FULL SWEEP 92 1.2 ΔF (135 50 1,4 <u>..</u>w 57 MARKER SWEET +51 +151 -15 9 ö 26 47 48 4TH DIGIT (M3D) 4² 87 0 54 20 ¢ -REFERENCE DESIGNATION AC 24451 JZ, CT AI 10 ÷ 2 - 25 CR1 zد т. 54-ст 5 UI RI-R/2 SI UI-U24 VE P2 XA1-X45, X46,X47 15 ÷. 13 4 3RD 14 2 DIGIT 244 AL FRED CONTROL Ĵ i XAG JOTET : TOF VIEW US,7.8 - 1,13,15,17 - 11 ×42 UZB 4 DIGIT BOD 94 CONVERTER ZO DVA TUNING i ,7 2 10 <u>_</u>2 TO SEW 21] | ÅÅÅÅÅÅÅÅÅ Pyyyyyyy 15 5 NC 7 NC ø NC 23 4) ³⁷ 24 2 Disit 25 1 25 1 10 IC FART NUMBE ABLOOK ASSISS 34 Line Stantist U25 1820-1850 U25 1820-1850 U21 1820-1850 U5 1820-1850 U5 1820-1810 U16 1820-1810 U10 1810-1810 U10 1810 U10 2 CA TUNING VOLTAGE VA REMOTE DIA REMOTE DIA CHE ENABLE V CHE FULL CALLED V CHE SWEEF 1820-1112 1820-1197 1820-1192 1820-1192 1820-119 1820-119 1820-119 1820-119 1820-119 1820-119 12 39 R/2 XXX ×4.2 002 2010 2010 2010 2010 2010 2010 2010 **ب**م * s de la K CIT ON MODE 52 i K ->` \rightarrow >29 15-20-11-90 \rightarrow źz AT DI ELAT. DIV (D) (1 EB. (22 EE: (25 EE: (25 EE: (27 EE: 26 .) →>:___ →>^{20_} **9** A12 × 28 <u>ج</u>

Figure 8-25. A12 HP-IB Interface Assembly, Schematic (Option 011)

SERVICE SHEET 10 (Cont'd)

This causes Q14 and Q13 to be biased off and Q16 and Q15 to be biased on. The resultin -10V and +20V outputs of Q13 and Q15, respectively, latch the RF coaxial switch in position 1. The reverse conditions apply when selecting position 2 of the RF switch.

Fan Control Circuit

The cooling fan in the 8620C is a variable speed, brushless DC motor which operates using Hall Effect Generators. A Hall Effect Generator operates in the following manner.

A Hall Effect Generator is a semiconductor with a current applied as shown in Figure 8-26a. When in a magnetic field, the semiconductor generates a voltage proportional to the strength of the field and perpendicular to it and the current.

The semiconductors are positioned in the motor 90° apart (Figure 8-26b). The rotor is made of a cylindrical, bipolar permanent magnet. When the rotor is positioned as in Figure 8-26c, the output voltage of Hall Generator 1 will be maximum and the output of Hall Generator 2 will be 0 volts. As the rotor is turned clockwise, the voltage at 1 will decrease and the voltage from 2 will increase. The result is two sine wave outputs 90° out of phase. This output is amplified by the fan driver circuit and applied to the stators.

Fan Drivers

The Fan Drivers consist of Q6 through Q12 and are arranged in pairs. Each pair is connected back to the Hall Effect Generator diodes which amplify the voltage applied. This amplified voltage is then used to drive the fan by energizing the stator windings 90° ahead of the rotor. A portion of this voltage is rectified by diodes CR4-CR7 and fed back to the fan speed control circuit.

The Fan Speed Control

The Fan Speed Control circuit operates as follows. The rectified DC voltage from the Fan Drivers is applied through the Fan Speed Control potentiometer to the base of Q4. If the fan slows down, the voltage from CR4 to CR7 decreases. This drop in voltage will decrease the conduction of Q4 allowing the voltage on the base of Q1 to go more positive. This turns Q1 on harder, reducing the voltage drop across it and increasing the voltage applied to the fan stators. The increased current through the stators speeds up the fan.

The opposite holds true if the fan should operate at an increased rate of speed.

A12 HP-IB Interface Assembly (Option 011) SERVICE SHEET 9

SERVICE SHEET 10

A7 OPERATIONS CONTROL ASSEMBLY, CIRCUIT DESCRIPTION

General

The A7 Operations Control Assembly contains the Band Decoder circuitry which provides the drive to the RF Plug-In to select the proper band. The Band Decoder consists of the Band Data Buffer U3, Band Data Multiplexer U1 and a 1 of 4 decoder U2.

The Fan Driver, Speed Control and failure warning circuits are also located on the A7 Assembly.

In addition, the 1 kHz Square Wave Oscillator for Internal AM Modulation and the RF Switch Position drivers for use in the 8621A/B RF Section are located on the A7 Assembly.

Band Decoder

The BAND DECODER can have either remote or local inputs depending on the logic state of U3 Pin 10.

When U3 Pin 10 is high, the Band Data Multiplexer U1 receives data from band switches S2 and S3. These switches provide a two-line binary code. This code is applied to U2, a one of four binary decoder. The selected output of U2 will go low and be inverted by U4A, B, C or D and then be routed to the RF Plug-in to turn on theappropriate band.

When remote band selection is desired, either from the PROGRAM-MING connector J2 or from A12 HP-IB Interface Assembly, Pin 10 U3 is brought low by the external device. This selects the inputs to the multiplexer U1 from Band Data Buffer U3. The multiplexer and decoder then function the same as above.

1 kHz Square Wave Oscillator

The 1 kHz Square Wave Oscillator functions as follows. U5A/B form a free-running, capacitor-coupled symmetrical multivibrator whose 1 kHz square wave output is amplified by Darlington pair U5D/E. The output of U5D/E is applied to common emitter amplifier U5C and the output is applied to the RF oscillator in the RF Section. The 1 kHz square wave output provides internal amplitude modulation to the CW RF signal. Frequency is controlled by changing the base voltage of U5A/B with the 1 kHz ADJ potentiometer R33.

RF Switch Position Drivers

There are two RF Switch Position Drivers. With Option 100 installed in the 8621A/B RF Section, the RF Switch Position Drivers control the operation of the RF coaxial switch. The switch drivers for RF switch position 1 are Q16/Q15 and for RF switch position 2 are Q14/Q13. To set the 8621A/B RF Switch in position 1, the 8620C BAND selector initiates voltages that place a negative (LO) voltage on the base of Q14 and a positive (HI) voltage on the base of Q16.

SERVICE SHEET 10 (Cont'd)

Fan Failure Warning

Failure occurring in the fan driver, speed control circuits, or the fan itself could have a disasterous effect on the 8620C. For this reason the fan failure warning has been added to the fan control circuitry. Its operation is as follows.

If the fan should fail to turn on for any reason when the 8620C is turned on, the following sequence occurs. With the fan not turning, no back EMF occurs and subsequently the voltage present at the base of Q1 is 0. This voltage turns Q1 off and forward biases Q19 base/emitter junction. A positive voltage is then applied to Q20 turning it ON. This provides a conduction path to ground for C1 to discharge (C1 had been charged to +5.7 volts while Q19 was off). C1 will discharge to +2.5 volts and Q17 will then turn ON. Q17 turning ON puts +5 volts on the control of SCR Q18. The SCR conducts and blows the +5 volt regulated power supply fuse turning the front panel lights OFF, warning the operator of a fan failure.

If a failure should occur in the Fan Driver Circuit, such as an open driver transistor, the speed will drop. The dropping of the fan speed will cause the rectified back EMF to drop substantially with respect to the voltage at the emitters of Q1 and Q19. When this voltage drops to the point that the bases of Q1 and Q19 become more negative than the emitter voltage by 0.7 volts, Q19 conducts and the above shutdown sequence is repeated.

Figure 8-26. Hall Effect Generator Description

Figure 8-27. A7 Operations Control Assembly, Component Locations

ABLY (08620 - 60/17)

.

Figure 8-29. A8 Rectifier Assembly, Component Locations

	XH2			х л э		XMA		x#5	_		Х Л66	_		X#7	-
-20 VOLT	/ /9	CWV	ſ	/ /9	SWEEP OUT		1 +20 VOLT		-ID VOLT	REMOTE BINARY /	<u></u>	REMOTE	REMOTE BINARY I	1 79	N.C.
TUNING. VOLTAGE	2 20	DA TUNING	z-Axis Blanking	2 20	TUNING. VOLTAGE	2	+20 VOLT	2		REMOTE DA	2 20	REMOTE BINARY 2	BAND 3 TURN ON	2.20	REM BINA
SWEEP	3 21	CLAMPED RAMP OUTPUT	MARKER TRIGGER	3 21	SWEEP RAMP	2		3	FREQ REF GND	REMOTÉ MARKER EN ABLE	32	D/A TUNING VOLTAGE	BAND 4 TURN ON	3 21	-10 1
DIGITAL	4 22	EXT TUNING.	REMOTE DA	4 22	DIGITAL RAMP ENABLE	4	+5 VOLT	4	-20 VOLT	-20 VOLT	4 22	N.C.	BAND I TURN ON	4 22	+20
ENABLE NHRKER SWEEP LAMP/	5 23	N.C.	REMOTE MARK- ER ENABLE	5 23	EXT SWEEP POSITION	5	+5 VOLT	5	-40 VOLT REG	BAND	5 23	+20 VOLT	BAND 2 TURN ON	5 123	GND
-NABLE -10 VOLT	6 24	START MARKER REF	-10 VOLT	e 24	START MARK- ER REF	6	GND	6	-40 VOLT REG	N.C.	6 24	GND	IKHZ SQWV	6 24	+51
+20 VOLT	7 25	CW MARKER REF	+20 VOLT	7 25	CW MARKER REF	7	-40 VOLT REG	17	GND	BV PROG	7 2.5	+ 5 VOLT	BAND LATCH	7 25	LOCA BINH
GND	8 20	STOP MARK- ER REF	GND	ė 26	STOP MARKER REF	6	-16.2 VOLT	ð	-16.2 VOLT	4V PROG	6 2.	MODE LATCH ENHBLE	~.c.	8 26	BINM
+ 5 VOLT	9 27	N.C.	+ 5 VOLT	9 27	DA TUNING. VOLTAGE	ļ,	+16.2 VOLT	9	+16.2 VOLT	2 V PROQ	9 21	STOP SWEEP PULSE	N.C.	9 27	N.C.
DF/CW/CWV ENABLE	10 28	N.C.	.IOI SEC GATE	10 25	AF/CW/CWV ENABLE	10	-20 VOLT REGULATOR EMITTER	ĸ	REGULATOR	IV PROG	10 2E	REMOTE RAND ENABLE	COIL DRIVE	16 28	ENAL
FULL DISABLE	1/ 29	N.C.	MBRKER SWEEP LAMP/ ENABLE	29	FULL DISABLE	$\overline{\prime\prime}$	-20 VOLT REGULATOR BASE	1//	-40 VOLT REGULATOR BASE	.8 v prog	[7] [29]	SELECT	SWITCH I,2	11 29	+5 M REG.
AF LAMP/ ENABLE	12 30	N.C.	CW MANUAL GATE	./2 30	MARKER ENABLE	12	-5 VOLT REG- ULATOR EMITTER	72	-10 VOLT REG- ULATOR EMITTER	.4V PROG	12 30	MARKER SWEEP MODE SELECT	COIL DRIVE	12 30	N.C.
CW ENABLE	13 3	AF MULTIPLIER	STOP SWEEP	13 31	CW ENABLE	73	-5 VOLT REGULATOR BASE	[- <u>-</u> -]	-10 VOLT REGULATOR BASE	.2 V PROG	13 3'	CW MODE SELECT	SWITCH I, I	13 3/	N.C.
CWV LAMP/ ENABLE	14 32	AF POT = 1	CW LAMP	14 32	FULL LAMP	14	+5 VOLT UN- REG TO FAN	14	-10 VOLT REQULATOR COLLECTOR	IV PROG	[4] 3 '	FULL MODE SELECT	N.C.	14 32	N.C.
START POT	15 33	AF POT #2	CW LAMP/ ENABLE	15 33	+1-+01 SEC POSITION	15	+5 VOLT UNREG	:5	GND	.06 V PROG	15 33	.008 V PROG	N.C.	15 33	N.C.
CW POT #1	/c 34	START POT	MARKER SWEEP MODE SELECT	16 34	MODE LATCH ENABLE	16	GND	16	-10 VOLT UNREG	DA V PROG	16 30	.004 V PROG.	N.C.	16 34	N.C.
CW POT = 2	17 25	STOP POT +1	CW MODE SELECT	17 35	SELECT	17	+20 VOLT REG	77	+23.5 VOLT UNREG	.02 V PROG	17 35	.002 V PROG	N.C.	17 35	N.C.
CW VERNIER	/8 36	STOP POT #2	FULL MODE SELECT	16 36	CWV MODE SELECT	10	+20 VOLT UN- REG RETURN	18	-40 VOLT REG	.OI V PROG	/ 8 31	.001 V PROG	FAN GND	18 50	FAN
	L	L		L	L	L	-	·	-			_			

PREFIX: 1716A

Figure 8-34. A9 Switch

Figure 8-32. A9 Switch and

Figure 8-31. A9 Switch Assembly, Component Locations

Figure 8-32. A9 Switch and A10 Front Interconnect Assembly, Schematic (1 of 2)

Figure 8-33. A10 Front Interconnect Assembly, Component Locations

Figure 8-34. A9 Switch and A10 Front Interconnect Assembly, Schematic (2 of 2) 8-37/8-38

Figure 8-35. A11 Motherboard, Component Locations

MOTHER BOARD

¥

ERIAL PREFIX: 17/4

FIG. 8-36 ALL MOTHER BOARD INTERCONNECT DIAGRAM

Figure 8-36. All Motherboard Interconnect Diagram

Figure 8-37. Rear Panel Wiring Diagram

8-41/8-42

A11 MOTHER BOARD

P2

TUNING VOLTAGE OUT $\xrightarrow{1}$ 49 >

CW AND MANUAL GATE +> 46 >

SWEEP TIME ADJUST +> 31 >

RF SW POS. 1 DR. CONT +> 68 >

FREQ REF GND $\xrightarrow{+}$ 11 > NOT USED $\xrightarrow{+}$ 70 >

. 1-. 01 SEC RANGE POSN \rightarrow 8 >

J7

Figure 8-38. Top View, Major Assembly and Component Locations

Figure 8-39. Bottom View, Major Assembly and Component Locations

Major Assembly and Component Locations

- MANUAL IDENTIFICATION -

Model Number: 8620C Date Printed: OCTOBER 1977 Part Number: 08620-90093

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after the printing of the manual.

To use this supplement:

Make all ERRATA corrections

Make all appropriate serial number related changes indicated in the tables below.

Serial Prefix or Number _____ Make Manual Changes _____ Serial Prefix or Number _____ Make Manual Changes _____

······································	

► NEW ITEM ERRATA

Page 4-17, Paragraph 4-18, Step 1:

- Change instructions in step a as follows: $A = MARK \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- A. MARK $1 \cdot 2 \cdot 0 \cdot 0 \cdot 0$ B. MARK $1 \cdot 1 \cdot 0$
- C. MARK (1) (4) (5) (0) (0)
- D. MARK $1 \cdot 1 0$
- E. MARK 1 2 3 5 0
- F. MARK $1 \cdot 1 0$

In step e. change last part of first line to read: "press STORE (2)

Page 4-18. Paragraph 4-18:

Change step g to read: "When lazy T (\vdash) appears on the calculator display, ust the program".

Page 8-17. Figure 8-13: Change Pin 16 at J2/W2P2 connection to Pin 19.

NOTE

Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies quote the manual identification information from your supplement, or the model number and print date from the title page of the manual.

5 DECEMBER 1977

Printed in U.S.A.

2 Pages

ERRATA (Cont'd)

'age 8-21, Figure 8-17:
Add jumper connection between R47 and R48.
Add note as follows: This jumper is installed in Option 001 and 011 instruments only.
Delete C4.

Page 8-23, Figure 8-19: Delete Note 2.

age 8-25, Figure 8-21: Delete Note 2.

'age 8-31, Figure 8-28: Add supply voltage to the top of Q18: "+5V".

age 8-33, Figure 8-30: Delete Note 1.

Figure &

K4XL's 🌮 BAMA

This manual is provided FREE OF CHARGE from the "BoatAnchor Manual Archive" as a service to the Boatanchor community.

It was uploaded by someone who wanted to help you repair and maintain your equipment.

If you paid anyone other than BAMA for this manual, you paid someone who is making a profit from the free labor of others without asking their permission.

You may pass on copies of this manual to anyone who needs it. But do it without charge.

Thousands of files are available without charge from BAMA. Visit us at http://bama.sbc.edu