

7524 S.W. MACADAM AVE. . PORTLAND 19. OREGON

BRIDGES AND ACCESSORIES

JANUARY 1960 REPLACES OCTOBER 1959

es

Model 250-DA IMPEDANCE BRIDGE

Litho in U.S.A. Oglectra scientific industries. Inc. 1960

INSTRUCTION MANUAL for MODEL 250-DA IMPEDANCE BRIDGE

CONSISTING OF:

Catalog Sheet C-16 including:

Introduction

Specifications

Model 250-DA Impedance Bridge Instruction Manaual

Lid Instructions From Model 250-DA Bridge

esi 250-DA 11/59

INSTRUCTION MANUAL

for

MODEL 250-DA UNIVERSAL IMPEDANCE BRIDGE

TABLE OF CONTENTS

1. Controls

- 1.1 Circuit Selector
- 1.2 Multiplier Switch
- 1.3 Main Dial Assembly
- I.4 D-Q Dial
- 1.5 Unknown Terminals
- 1.6 External Generator Terminals
- 1.7 External D-Q Terminals
- 1.8 External Detector Terminals
- 1.9 Detector Switch
- 1.10 Generator Switch
- 1.11 Galvanometer
- 1.12 Power Switch and AC Amplifier Gain
- 1.13 AC DC Switch and AC Generator Gain
- 1.14 DC Generator Voltage Switch
- 1.15 AC Generator Tuning Network
- 1.16 AC Detector Tuning Network
- 1.17 AC Null Indicator
- 1.18 AC Amplifier Output Terminals
- 1.19 Fuse
- 1.20 Power Indicator Lamp
- 2. Operating Instructions
 - 2.1 What the Bridge Measures
 - 2.2 Resistors
 - 2.2.1 Measuring Resistors
 - 2.2.2 Things to Watch Out For
 - 2.2.3 Measuring AC Resistance

esi 250-DA 10/59

TABLE OF CONTENTS (cont. i)

- 2.3 Inductors
 - 2.3.1 Measuring Inductors
 - 2.3.2 Series and Parallel Inductance
 - 2.3.3 Things to Watch Out For
 - 2.3.4 Inductance Measurements with DC
 - 2.3.5 AC Voltage Measurement
 - 2.3.6 AC Current Measurement
 - 2.3.7 Sliding Balance
 - 2.3.8 Using an External Q Rheostat

2.4 Capacitors

- 2.4.1 Measuring Capacitors
- 2.4.2. Series and Parallel Capacitance
- 2.4.3 Things to Watch Out For
- 2.4.4 Capacitance Measurements with DC
- 2.4.5 AC Voltage Measurement
- 2.4.6 Extended Leads
- 2.4.7 Sliding Balance
- 2.4.8 Using an External D-Q Rheostat
- 2.5 Using Bridge Elements
 - 2.5.1 Standard Resistors
 - 2.5.2 DEKASTAT[®] Variable Resistor
 - 2.5.3 Standard Capacitors
- 3. Circuit Diagrams
 - 3.1 Series Inductance Bridge
 - 3.2 Parallel Inductance Bridge
 - 3.3 Resistance Bridge
 - 3.4 Series Capacitance Bridge
 - 3.5 Basic Circuits
 - 3.6 Bridge Circuit Diagram
 - 3.7 Generator-Detector Circuit Diagram
 - 3.8 Bridge Wiring Diagram
 - 3.9 Bridge Parts Placement
 - 3.10 Generator-Detector Parts Placement

TABLE OF CONTENTS (cont. ii)

- 4. Bridge Element Voltage and Current Limits
- 5. Convenient Audio Frequency Units
- 6. Servicing and Repair
 - 6.1 Preliminary Checking
 - 6.2 Checking Procedure
 - 6.2.1 Test Equipment and Tools
 - 6.2.2 Trouble Shooting Chart
 - 6.2.3 Checking the DC Generator
 - 6.2.4 Checking the Galvanometer
 - 6.2.5 Checking the AC Generator
 - 6.2.6 Checking the AC Detector
 - 6.2.7 Checking the Range Resistors
 - 6.2.8 Checking the Standard Resistors
 - 6.2.9 Checking the MAIN DIAL DEKASTAT[®]
 - 6.2.10 Checking the D-Q Rheostats
 - 6.2.11 Checking the Standard Capacitor
 - 6.3 Removing the Chassis from the Case
 - 6.3.1 Removing the Chassis
 - 6.3.2 Replacing the Chassis
 - 6.4 Repairing the Bridge

esi 250-da 6/59

1. CONTROLS

- 1.1 Circuit Selector: The metal lever in the upper right-hand control group selects the bridge circuit. Panel markings indicate the circuit chosen. Two inductance measurement circuits are provided; inductors can be measured in terms of their equivalent series or equivalent parallel circuit. Two resistance multipliers are available; the X10 multiplier is included to extend the resistance range. For capacitance, two D-multipliers are provided.
- 1.2 Multiplier Switch: The upper right-hand black knob selects any of seven multipliers. The pointer indicates the value of the multiplier and the type of units used.
- 1.3 Main Dial Assembly: The lower right-hand DEKASTAT[®] decade resistor dial is used for reading the value of resistance, inductance or capacitance being measured. The measured value is given by the product of the DEKASTAT reading and the multiplier reading. For resistance, this product must also be multiplied by the circuit selector reading.
- 1.4 D-Q Dial: The reading of the large left-hand dial times the D or Q multiplier reading gives the value of D or Q at one kilocycle. At other frequencies, the D reading for C or Q reading for L series must be multiplied by the frequency in kilocycles, and the Q reading for L parallel must be divided by the frequency in kilocycles.
- 1.5 Unknown Terminals: An unknown capacitor is connected to the two right-hand terminals. An unknown resistor or inductor is connected to the third and fourth terminals from the right.
- 1.6 External Generator Terminals: The center pair of terminals are for connecting an external generator to the bridge.
- 1.7 External D-Q Terminals: The third and fourth terminals from the left are for attaching an external circuit element to the D-Q arm of the bridge for special measurements. The left-hand external D-Q terminal is connected to the bridge chassis.
- 1.8 External Detector Terminals: The upper left-hand terminals are for connecting an external detector to the bridge. The internal ac detector is connected to the bridge through these terminals by means of a shielded double banana plug.
- 1.9 Detector Switch: The switch in the lower left-hand corner of the bridge is for choosing the detector. In the ac or external detector position, the detector corners of the bridge are connected to the external detector terminals. In the shunted meter position, the detector corners of the bridge are connected to the galvanometer through a shunting network. In the direct meter position, the bridge is connected directly to the meter.

1. CONTROLS (cont.)

- 1.10 Generator Switch: The switch at the bottom center of the panel chooses the generator to be connected to the bridge. In the internal ac position the output of the internal generator is connected to the bridge generator corners. In the external generator position the bridge corners are connected to the external generator terminals. In the internal dc position the internal dc generator is connected to the bridge generator corners.
- 1.11 Galvanometer: The meter in the center of the panel is a sensitive galvanometer which is used for indicating a bridge balance. The two mounting screws are connected to the galvanometer terminals so that it may be easily connected to other external circuits. The large knob on the galvanometer can be rotated for mechanically positioning the galvanometer pointer. When the lock button is pushed in the direction of the arrow, the galvanometer suspension is rigidly supported for protection during transportation.
- 1.12 Power Switch and AC Amplifier Gain: The left-hand control knob on the small upper panel controls the AC detector sensitivity. The power switch for the unit is connected to the same knob. The adjacent pilot light indicates when power is supplied to the bridge.
- 1.13 AC DC Switch and AC Generator Gain: The right-hand control knob on the small upper panel controls the ac generator output. In the extreme counter-clockwise position, it switches the ac generator off and the dc generator on.
- 1.14 DC Generator Voltage Switch: The switch on the right-hand side of the small panel provides for high and low values of dc voltage for resistance measurements. The low value gives greater sensitivity for unknown resistors below about 100 ohms, and the high position gives greater sensitivity above about 100 ohms. This switch has no effect on the ac generator.
- 1.15 AC Generator Tuning Network: The upper right-hand plug-in unit controls the frequency of the oscillator.
- 1.16 AC Detector Tuning Network: The upper left-hand plug-in unit determines the frequency response of the detector. With this network, the detector has a narrow acceptance band centered at the generator frequency. With this network removed, the detector has a flat response.
- 1.17 AC Null Indicator: The electron-ray-tube visual null indicator provides high sensitivity and rapid response. A null is indicated by the maximum opening of the eye.
- 1.18 AC Amplifier Output Terminals: The two terminals at the top of the small panel are for connecting an oscilloscope or other indicator to the output of the detector amplifier. They are in parallel with the visual null indicator. The black terminal on the left is connected to the bridge chassis. The red terminal on the right is connected through a capaciton to the detector output.

1. CONTROLS (cont.)

- 1.19 Fuse: The fuse receptacle is located in the upper right-hand corner recess. A 1/2 amp 3AG fuse protects the bridge. The recess is also used to store the power cord.
- 1.20 Power Indicator Lamp: The red lamp on the left-hand side of the small upper panel lights when power is supplied to the bridge.

2. **OPERATING INSTRUCTIONS**

2.1 WHAT THE BRIDGE MEASURES

It also The ESI Model 250-DA Impedance Bridge measures resistance, inductance and capacitance. measures the dissipation factor (D) and the storage factor (Q) of inductors and capacitors.

the lack of hum pickup and stray capacitance effects. Resistance measurements can be made using ac, Resistance measurements are usually made with direct current because of the increased accuracy and but they may require external reactance compensation.

alent series circuit is used for capacitors and low Q inductors; an equivalent parallel circuit is used for same impedance as the unknown. The bridge dials read the values of this equivalent circuit. An equiv-Inductance and capacitance measurements are made in terms of a simple two-element circuit with the high Q inductors.

Selector		Magni	nitude			Dar	D and Q
Switch Setting	Equivalent Circuit		Smallest Step On Frequency Lowest Range	Frequency		Range	Smallest Division on Lowest Range
	•	0 to 12	10-4	,			
2		megohms	ohms (0. l milliohm)	dc *			
		0 to 1200	10-4	0.1 kc		0 to 1.05	0.01
1		henries	millihenries	l kc	α	0 to 10.5	0.1
Series			(0.1 mh)	10 kc		0 to 105	1
	ŕ	0 to 1200	10-4	0.1 kc		95 to 10,000	non-linear
	-o - { {	henries	millihenries	l kc	α	9.5 to 1,000	scale
Paraliel			(0.1 hh)	10 kc		0.95 to 100	
	J	0 to 1200	10- ⁷	0.1 kc		0 to 0.105	0.001
υ		microfarads	microfarads	l kc	Ω	0 to 1.05	0.01
Series]]		(0.1 µµf)	10 kc		0 to 10.5	0.1

*Resistance measurements can be made using ac, but they may require external reactance compensation.

2.2 RESISTORS

2.2.1 MEASURING RESISTORS The ESI May

CONNECT UNKNOWN RESIS TO L-R TERMINALS	TOR	Make good contact with the terminals.
SET DC GENERATOR VOLT SWITCH TO LOW	AGE	This applies approximately 10 volts to the bridge.
- UNLOCK GALVANOMETER		Adjust the zero with the zero set knob if necessary.
TURN AMP CONTROL CLOC	CKWISE	This turns on the power supply. The red light to the left of the AMP switch should light.
TURN THE OSC CONTROL C CLOCKWISE FOR DC	COUNTER	This should turn off the green fluorescent screen of the visual null indicator.
SET CIRCUIT SELECTOR SU TO R X 1 OR R X 10	WITCH	For resistors between 1.2 and 12 megohms, use R X 10 position.
SET MAIN DIAL TO 3.000		This makes it easier to find the correct range.

2.2.1 MEASURING RESISTORS (cont.)

SET DETECTOR SWITCH TO SHUNTED METER	This makes it easier to find a rough null.
SET GENERATOR SWITCH TO INTERNAL DC	This connects the generator to the bridge.
ADJUST MULTIPLIER SWITCH FOR MINIMUM GALVANOMETER DEFLECTION	This sets the range so that the value can be found with maximum reso- lution on the main dial.
ADJUST MAIN DIAL FOR NULL	The detector sensitivity can be increased as null is approached by moving the detector switch to direct meter.
IF THE MAIN DIAL READING IS LESS THAN 1.200, USE THE NEXT LOWER RANGE AND READJUST THE MAIN DIAL FOR NULL	This takes advantage of the increased resolution near full scale of the dial.
FOR RESISTANCES GREATER THAN 10K SET THE DC GENERATOR VOLT- AGE SWITCH TO HIGH	(WARNING: This may put 300 volts on the unknown terminals.)
THE MEASURED RESISTANCE IS THE PRODUCT OF THE READING OF THE CIRCUIT SELECTOR SWITCH, THE MULTIPLIER SWITCH, AND THE MAIN DIAL	
BEFORE DISCONNECTING THE MEASURED RESISTOR SET THE GENERATOR SWITCH TO EXT DET, THE DETECTOR SWITCH TO SHUNTED METER, AND THE DC GENERATOR VOLTAGE SWITCH TO LOW	This disconnects the generator, protects the meter and removes the high voltage from the bridge.
BEFORE LEAVING THE BRIDGE, LOCK THE GALVANOMETER AND SET THE AMP SWITCH TO OFF	This turns off the power supply and protects the galvanometer.

2.2.2 THINGS TO WATCH OUT FOR

2.2.2.1 HIGH RESISTANCE MEASUREMENTS

Care must be taken to avoid leakage resistance across the unit being measured. If an external electronic null detector is being used it may be affected by ac hum and by the hum output of the internal dc generator. In this case a battery supplying the EXT GEN terminals may be necessary. If a battery supply is used connect a protective resistor in series with it. Use a resistor of greater than (1/4) (battery voltage)² ohms.

2.2.2.2 LOW RESISTANCE MEASUREMENTS

On the low resistance ranges the lead resistance in the unknown arm becomes significant. A correction for this resistance can be made as follows:

- 1. Short the test leads together at the point where they are to be connected to the unknown resistor and measure this "ZERO RESISTANCE".
- 2. Connect the test leads to the unknown resistor and measure the "RESIST-ANCE READING".
- 3. The "RESISTANCE VALUE" of the unknown resistor is then the "RESIST-ANCE READING" minus the "ZERO RESISTANCE".
- 4. If the unknown resistance is to be connected directly to the terminals, the "ZERO RESISTANCE" reading can be taken by connecting a piece of heavy copper wire between the unknown resistance terminals. (#14 AWG copper wire has a resistance of about 0.00025 ohm/inch.)

For greatest accuracy resistors should always be measured with dc. The accuracy of ac measurement will be 0.3% for one kilocycle and below over the range from one ohm to one megohm, for resistors with low reactance.

The indicated connections for the phase correction capacitor compensate for series inductance or parallel capacitance. It is impossible to separate the correction for the unknown from that for the rest of the bridge circuit.

NOTE: If the phase correction is small it may be convenient to connect a fixed capacitor to one terminal and a variable one to the other.

CONNECT UNKNOWN RESISTOR TO L-R TERMINALS

Make good contact with the terminals.

SET THE AMP CONTROL WITH THE DOT UP

This turns on the unit and provides medium detector sensitivity. The red light to the right of the AMP switch should light.

SET THE OSC CONTROL WITH THE DOT UP

This turns on the ac supply and provides a medium signal to the bridge. The green fluorescent screen of the visual null indicator should light.

2.2.3 MEASURING AC RESISTANCE (cont.)

SET CIRCUIT SELECTOR SWITCH TO R X 1 OR R X 10	For resistors between 1.2 and 12 megohms, use R x 10 position.
SET MAIN DIAL TO 3.000	This makes it easier to find the cor- rect range.
SET DETECTOR SWITCH TO AC OR EXT DET	This will connect from the bridge to the ac detector.
SET THE GENERATOR SWITCH TO INTERNAL AC	This will connect the ac supply to the bridge.
TRY TO BALANCE THE BRIDGE AS WITH DC	Usually the eye will not completely open indicating uncompensated phase shift.
CONNECT A VARIABLE CAPACITOR FROM THE EXT D-Q TERMINAL MARKED G TO THE HIGH C TERMIN- AL AND TRY TO OBTAIN A NULL WITH IT AND THE MAIN DIALS	Connecting the capacitor from ground to either of the generator terminals permits compensation for some of the possible equivalent circuits of the unknown.
IF A NULL CANNOT BE REACHED, CONNECT THE VARIABLE CAPACI- TOR BETWEEN THE EXTERNAL D-Q TERMINAL MARKED G AND THE HIGH L-R UNKNOWN TERMINAL. A NULL SHOULD BE OBTAINABLE WITH ONE CONNECTION OR THE OTHER	This permits balance over the remain- ing possible circuit combinations. If a non-linear element is being measured by ac, a null balance may not be pos- sible because the bridge will not be in balance at all parts of the cycle.
THE MEASURED RESISTANCE WILL BE CORRECT FOR EQUIVALENT CIRCUITS CONSISTING OF A RESISTOR AND CAPACITOR IN PARA- LLEL OR A RESISTOR AND INDUCTOR IN SERIES	This is true even for fairly large values of phase shift. Resistance accuracy will be 0.3% or better for resistors between 1 ohm and 1 megohm at a frequency of 1 kilocycle or less.
BEFORE DISCONNECTING THE RESISTOR SET THE GENERATOR SWITCH TO EXT GEN	This disconnects the generator while the resistor is being removed.
BEFORE LEAVING THE BRIDGE SET THE AMP SWITCH TO OFF	This turns off the power supply.

2.3 INDUCTORS

2.3.1 MEASURING INDUCTORS The ESI May

CONNECT THE UNKNOWN INDUCTOR TO THE L-R TERMINALS

TURN THE AMP CONTROL CLOCKWISE FOR POWER AND SET IT WITH THE DOT UP

TURN THE OSC CONTROL CLOCKWISE FOR AC AND SET IT WITH THE DOT UP

SET THE CIRCUIT SELECTOR SWITCH TO THE APPROPRIATE L CIRCUIT

> L_{series} for Q<10xf_{kc} L_{parallel} for Q>10/f_{kc}

Make good contact with the terminals.

This turns on the power supply. The red pilot light to the left of the AMP switch should light.

This supplies ac to the bridge. The green fluorescent screen of the ac null indicator should light.

SET THE MAIN DIAL TO READ 3.000

SET THE D-Q DIAL AT MAXIMUM

These settings make it easier to find the correct range.

2.3.1 MEASURING INDUCTORS (cont.)

SET THE DETECTOR SWITCH TO AC OR EXT DET	This connects the detector to the bridge.
SET THE GENERATOR SWITCH TO INTERNAL AC	This connects the generator to the bridge.
ADJUST THE MULTIPLIER SWITCH FOR MINIMUM DETECTOR SIGNAL	This sets the range so that the value can be found with maximum reso- lution on the main dial. The AMP and OSC controls can be changed to give optimum sensitivity.
ADJUST THE MAIN DIAL AND THE D-Q DIAL ALTERNATELY FOR THE WIDEST AND SHARPEST POSSIBLE SHADOW ON THE NULL INDICATOR	If more or less sensitivity is needed, adjust the AMP control and/or the OSC control. Changing the OSC control may change the inductance of iron core inductors.
IF THE MAIN DIAL READING AT BALANCE IS LESS THAN 1.200, USE THE NEXT LOWER SETTING OF THE MULTIPLIER SWITCH AND READJUST THE MAIN DIAL FOR A NULL	This takes advantage of the increased resolution near full scale of the dial.
THE MEASURED L IS THE PRODUCT OF THE READINGS OF THE MULTI- PLIER SWITCH AND THE MAIN DIAL	
AT 1 KC THE MEASURED Q IS THE PRODUCT OF THE READINGS OF THE CIRCUIT SELECTOR SWITCH AND THE D-Q DIAL. USE BLACK SCALE FOR L-SERIES USE RED SCALE FOR L-PARALLEL	FOR OTHER FREQUENCIES: MULTIPLY Q _{series} by the frequency in kc; or DIVIDE Q _{parallel} by the frequency in kc
BEFORE DISCONNECTING THE INDUCTOR SET THE GENERATOR SWITCH TO EXT GEN	This disconnects the generator.
BEFORE LEAVING THE BRIDGE SET THE AMP SWITCH TO OFF	This turns off the power supply.

2.3.2 SERIES AND PARALLEL INDUCTANCE

The bridge measures a simple equivalent circuit for the impedance connected to its terminals. This equivalent circuit consists of either an inductance and resistance connected in series or a different inductance and resistance connected in parallel. The phase and magnitude of the resulting impedance are identical for both circuits. For values of Q less than 100 the series and parallel inductances differ measurably (by more than 0.01%).

WHEN THE BRIDGE MEASURES SERIES INDUCTANCE, L:

- L = (range switch setting) x (main dial reading)
- $Q = (D-Q \text{ multiplier setting}) \times (D-Q)$ dial reading) × (f_{rc})

 $D = \frac{1}{Q}$ $R_{s} = \frac{1}{Q} \times 2\pi fL_{s}$ $Z = 2\pi fL_{s} (\frac{1}{Q} + j)$ Q and D in per unit $R_{s} \text{ in kilohms}$ f in kc $L_{s} \text{ in henrys}$ $j = \sqrt{-1}$ Z in kilohms

To calculate the equivalent parallel circuit:

The Q of the equivalent parallel circuit always equals the Q of the equivalent series circuit. The same is true of D.

$$L_{p} = (1 + \frac{1}{Q^{2}}) \times L_{s}$$
$$R_{p} = Q \times 2\pi f L_{p}$$

WHEN THE BRIDGE MEASURES PARALLEL INDUCTANCE, L_n:

- Q = (D-Q multiplier setting) x (D-Q dial reading) \div (f_{kc})

$$D = \frac{1}{Q}$$

$$D = \frac{1}{Q}$$

$$D = \frac{1}{Q}$$

$$D = \frac{D}{p}$$

$$f = \frac{D}{p}$$

To calculate the equivalent series circuit:

The Q of the equivalent series circuit always equals the Q of the equivalent parallel circuit. The same is true of D.

$$L_{s} = \frac{Q^{2}}{1 + Q^{2}} \times L_{p}$$
$$R_{s} = \frac{2\pi f L_{s}}{Q}$$

2.3.3.1 LOW INDUCTANCE MEASUREMENTS

The bridge measures the total impedance connected to its terminals. Both the unknown inductor and its leads contribute to this impedance. The leads have some resistance and inductance, which affect the value read from the bridge.

Z₁₁ - Impedance of unknown inductor

 Z_{I} - Impedance of leads

For greatest accuracy, minimize the lead impedance. Short heavy leads will reduce the resistance. Closely spaced twisted leads will reduce the inductance and the pickup of stray fields.

2.3.3.2 HIGH INDUCTANCE MEASUREMENTS

In making high inductance measurements, there are two things to watch out for:

- 1. Be careful to avoid hum pickup.
- 2. Keep the stray capacitance to a minimum.

To minimize both effects keep your hands as far as possible from the inductor measured.

Keep the leads as short and direct as possible. If extended leads are necessary, the lead from the LO terminal should be shielded. See section 2.4.6 "Extended Leads".

Care should be taken to avoid coupling stray magnetic fields into the inductor being measured.

The D and Q readings on the highest L range will be in error as indicated in the specifications because of the residual capacitance of the range resistor. If accurate D or Q readings are needed the next lowest L range can be used. The L readings on the high range are accurate.

esi 250-da 6/59

2.3.4 INDUCTANCE MEASUREMENTS WITH DC

2.3.4.1 WHEN TO USE DC

Iron core inductors are sensitive to both ac and dc current variations. Quantitative measurements of these effects can be made with the bridge.

2.3.4.2 THINGS TO WATCH OUT FOR

A. GENERAL PRECAUTIONS

Stray ac pickup may change sensitive components being measured or may give erroneous null detector readings.

The ac impedance of the dc external circuit must be greater than 2000 ohms for maximum sensitivity. If an isolating inductor is used to raise the ac impedance it may pick up stray signals or may-have mutual coupling with the unknown inductor being measured. Either one may cause reading errors. Such an inductor should be well shielded magnetically and be placed to minimize its chance of interfering. For low currents isolation may be accomplished with a resistor instead of the inductor.

The parallel inductance circuit is recommended because it simplifies dc current measuring and bridge protection problems. With the series circuit the dc current divides between the bridge arms so that it is difficult to meter. The series circuit would also require a more careful analysis to avoid excessive current in any of the bridge arms.

If equivalent series inductance is required it can be easily calculated from the parallel inductance and D (See Sec. 2.3.2).

If Q is too low to be read directly, connect an external rheostat such as the ESI Model DB-655 DEKASTAT[®] to the EXT D-Q terminals. This extends the Q range for the L parallel circuit. Q can be calculated from the equation:

$$Q = \frac{1.592}{R_{k\Omega}f_{kc}}$$

Where:

Q-Storage factor of unknown $R_{k\Omega}$ -External rheostat resistance in kilohms f_{kc} -Operating frequency in kilocycles

B. WITH DC SUPPLIED THROUGH THE GENERATOR TERMINALS

DC power can be supplied through the generator terminals by using an auxiliary ac generator instead of the bridge generator. This generator must be isolated from the dc power supply by a capacitor of at least $(10/f_{\rm kc}) \mu f$.

esi 250-da 7/59

2.3.4.2 THINGS TO WATCH OUT FOR (cont. i)

The internal bridge generator can be used as the ac source by making the special connection shown below. Bring out the generator leads. Connect one generator lead to an isolating capacitor. Connect the other side of the capacitor to the EXT GEN terminal marked LO. Connect the second generator lead to the other EXT GEN terminal. Set the generator switch to EXT GEN. It is also possible to connect the capacitor inside the bridge, in series with the generator lead. If this is done no external leads are needed, and the generator switch is set to INTERNAL AC. In either case, the capacitor should have a value of at least $(10/f_{\rm kc}) \,\mu f$.

If this operation is repeated often it may be helpful to connect two binding posts in series with one transformer lead so that an external capacitor can be easily attached. These can be mounted between the generator and detector switches. When the capacitor is not needed the terminals can be connected by a shorting bar.

Supplying the dc signal through the generator terminal allows more current for measuring inductors below 1.2 millihenrys. With this connection the dc current is not affected by balancing the bridge. A grounded dc generator cannot be used because one of the detector terminals is grounded. Leakage capacitance and resistance from the dc source to ground will be across bridge arms and may cause significant errors.

esii 250-da 7/59

2.3.4.2 THINGS TO WATCH OUT FOR (cont. ii)

Most line operated dc power supplies have high leakage capacitance to the ac line and enough dc leakage to be objectionable. An insulated, isolated battery is the recommended power supply. If a variable supply is needed the circuit shown below can be used. This circuit has a maximum output of one watt so it will not exceed the rating of any bridge element.

With the parallel inductance circuit the standard capacitor blocks the dc from all of the bridge arms except the inductor being measured and the range resistor. As a result the maximum allowable current will be limited by the range resistor. This current limit is shown in Section 2.3.4.3.

C. WITH DC SUPPLIED THROUGH THE DETECTOR TERMINALS

Supplying the dc signal through the detector terminals allows the use of higher current in measuring inductors above 1.2 millihenrys, but the dc current will be influenced by the main dial DEKASTAT setting.

The generator circuit must be isolated by a capacitor. This will require an external generator or the connection recommended in 2.3.4.2-B.

A grounded power supply can be used, since one of the detector terminals is grounded.

The problems resulting from stray ac pickup either from the ripple of a dc supply, capacitive coupling to power lines or the bridge generator, stray field pickup by the isolating inductor (if used), or inductive coupling to the unknown inductor, are much more serious with this connection because of the direct coupling to the detector.

In this circuit the current goes through the unknown inductor and the main dial DEKASTAT. It must be limited by the values given in Section 2.3.4.4. If more current is needed the range can be increased by one setting and the first DEKASTAT dial turned to zero. This will decrease the DEKASTAT resistance and increase its current rating. Because of the high resolution of the main dial DEKASTAT accurate measurements are possible even when the first dial is not used. By setting the first two dials to zero higher current is possible but only 100 divisions of resolution are left.

ł

2.3.4.3 FOR PARALLEL INDUCTANCE MEASUREMENT WITH DC SUPERIMPOSED THROUGH THE GENERATOR TERMINALS

CONNECT AS SHOWN

E - DC VOLTAGE SOURCE

For the ac supply use an external generator or the special internal connection indicated in section 2.3.4.2 B. A detector isolating capacitor is built into the Model 250-DA Bridge.

*This limits to one watt the dc power which can be supplied to the bridge thus protecting all of the bridge circuit. With care more current and voltage can be applied. The current rating of the bridge is given in the table below. These values should never be exceeded.

RANGE	UNKNOWN INDUCTANCE**	MAXIMUM CURRENT
0,1 mh	0.1 µh to 1.2 mh	710 ma
1 mh	$1 \mu h$ to $12 mh$	230 ma
10 mh	10 µh to 120 mh	71 ma
0.1 h	100 μ h to 1.2 h	23 ma
l h	1 mh to 12 h	7,1 ma
10 h	10 mh to 120 h	2.3 ma
100 h	100 mh to 1200 h	250 µa

**Lower limit is one dial division

2.3.4.3	FOR PARALLEL INDUCTANCE MEASUREMENTS WITH DC SUPER- IMPOSED THROUGH THE GENERATOR TERMINALS (cont.)		
R -	POWER LIMITING RESISTOR	This protects the bridge, the detector, and the unknown inductor.	
L -	ISOLATING INDUCTOR	Avoid ac pickup and coupling to the unknown. This prevents excessive generator loading. Not necessary if R≥100 ohms.	
с -	ISOLATING CAPACITOR	This keeps dc out of the Generator.	
R _d -	CURRENT ADJUSTING CONTROL	To set desired current.	
MA -	CURRENT MONITORING METER	To measure dc current.	

MEASURE THE INDUCTANCE

See Section 2.3.

2.3.4.4 FOR PARALLEL INDUCTANCE MEASUREMENTS WITH DC SUPER-IMPOSED THROUGH THE DETECTOR TERMINALS

external generator or the special internal connection indicated in section 2.3.4.2 B. A detector isolating capacitor is built into the Model 250-DA Bridge.

*This limits to one watt the dc power which can be supplied to the bridge thus protecting all of the bridge circuit. With care more current and voltage can be applied. The current rating of the bridge is given in the table below. The outer dial must be set to zero to use the "MIDDLE" dial rating. Both outer dials must be set to zero to use the "POT" dial rating. These values should never be exceeded.

RESOLUTION	DIAL	UNKNOWN INDUCTANCE**	MAXIMUM CURRENT
12,005 div	OUTER	100.0 µh to 1200 h	23 ma
1,005 div	MIDDLE	10.0µh to 100 h	71 ma
105 div	РОТ	0.1 µh to 10.5 h	270 ma

**Lower limit is one division on dial which limits current on lowest range.

2.3.4.4 FOR PARALLEL INDUCTANCE MEASUREMENTS WITH DC SUPER-IMPOSED THROUGH THE DETECTOR TERMINALS (cont.)

R	-	POWER LIMITING RESISTOR	This protects the bridge, the detector, and the unknown inductor.
L	-	ISOLATING INDUCTOR	Avoid ac pickup and coupling to the unknown. This prevents excessive generator loading. Not necessary if R≥(L _{h-measured}) (f _{kc}) (6) kilohms.
С	-	ISOLATING CAPACITOR	This keeps dc out of the Generator.
Rd	-	CURRENT ADJUSTING CONTROL	To set desired current.
МА	-	CURRENT MONITORING METER	To measure dc current.
ADJUS	т	THE DC CURRENT AS REQUIRED	The current will vary with the setting of the main dial.

MEASURE THE INDUCTANCE

See Section 2.3.

2.3.5 AC VOLTAGE MEASUREMENT

To measure the ac voltage applied to the unknown inductor:

Connect the ground terminal of a high impedance ac voltmeter to the EXT D-Q terminal marked G.

Connect the input terminal of the voltmeter to the HI inductor terminal.

Balance the bridge.

Read the voltmeter. With the bridge balanced, this voltage is equal to the ac voltage across the unknown inductor, but the inductor has not been loaded by the voltmeter. The bridge readings, however, may be incorrect while the meter is connected.

2.3.6 AC CURRENT MEASUREMENT

To measure the ac current supplied to the unknown inductor:

The ac voltage across the range resistor is proportional to the ac current through the unknown. At balance this voltage is equal to the voltage across the standard capacitor arm, which can be measured with a grounded volt-meter.

Connect the ground terminal of a high impedance sensitive ac vacuum tube voltmeter to the EXT D-Q terminal marked G.

Connect the input terminal of the voltmeter to the high unknown capacitor terminal of the bridge.

Balance the bridge using either the series or parallel inductance circuit.

Read the voltmeter. The ac current in milliamperes will be equal to the voltage read (in volts) times the multiplier M from the following table.

esi 250-da 7/59

$$I = V \times M$$

I - current in milliamperes
V - voltmeter reading in volts
M - multiplier from table

RANGE	UNKNOWN INDUCTANCE*	М
0.1 mh	0.1 µh to 1.2 mh	1000
l mh	$1 \mu h$ to $12 mh$	100
10 mh	10 µh to 120 mh	10
0.1 h	100 µh to 1.2 h	1
1 h	1 mh to 12 h	0.1
10 h	10 mh to 120 h	0.01
100 h	100 mh to 1200 h	0.001

*Lower limit represents one dial division.

Remove the voltmeter and re-balance the bridge for the precise inductance measurement.

esii 250-DA 7/59

When lossy inductors are measured the nulling problem known as sliding balance will occur if the usual procedure of adjusting first one control then the other is followed. As shown in the above drawings, neither the Q dial nor the L dial will move the bridge vector toward a null directly or quickly. When Q is high there is no sliding balance because the effects of Q and L are perpendicular to each other and nulling is easy.

WHAT TO DO ABOUT IT WHEN USING ESI 250-DA BRIDGE

This problem is not too serious if the value of Q is greater than one. For lower values of Q, an external D-Q rheostat may be necessary. For low Q, the L series circuit should be used. The following approach should be used if balancing is difficult.

By a somewhat different nulling technique rapid accurate low Q measurements can be accomplished.

First set the Q dial to its maximum position, then set L for a detector minimum. With Q set high, L will move the impedance vector in the L direction only. The bridge null detector signal is almost exactly proportional to the difference between the unknown impedance and the impedance indicated by the bridge dial. The correct L setting will bring the impedances closer together and give minimum signal. Next set the Q dial for a minimum on the detector. This should give a good start on finding L and Q. Move L a small amount then set Q for a minimum and observe whether this minimum is better or worse than the previous one. If it is better move L another small amount in the same direction. If it is worse try the other direction. Continue moving L in small steps in one direction only while setting Q for minimum detector signal until the detector signal reaches a true null. Moving L further will make the null worse again. The null found this way is correct. A little practice will allow you to make these measurements rapidly even when \bar{Q} is in the order of 0.1. When almost nulled it is often easier to move the Q dial "one wire at a time" while null seeking with the center L dial. Be careful with the L series circuit. The bridge will also indicate a null at a setting of Q = L = O because at this setting the generator is shorted.

2.3.8 TO USE AN EXTERNAL Q RHEOSTAT

The D and Q ranges of the bridge can be extended by use of an external rheostat. The curve below shows the ranges of D and Q for which this technique is advisable.

ALWAYS SET THE CIRCUIT SELECTOR TO L PARALLEL.

This bridge circuit gives the best results for both the series and parallel bridge connections when using an external D-Q rheostat.

<u>ALWAYS</u> TURN THE D-Q DIAL <u>CLOCKWISE</u> UNTIL IT HITS THE MECHANICAL STOP AND LEAVE IT THERE DURING THE ENTIRE MEASUREMENT. This shorts out the internal D-Q rheostat.

2.3.8.1 PARALLEL INDUCTANCE BRIDGE

RANGE RESISTOR CAPACITOR CAPACITOR

REPLACE THE EXT D-Q JUMPER BY AN EXTERNAL RHEOSTAT "R".

BALANCE THE BRIDGE.

This completes the parallel inductance circuit.

Use the range switch, the MAIN DIALS and the external rheostat.

esi 250-da 7/59

2.3.8 TO USE AN EXTERNAL Q RHEOSTAT (cont.)

READ L_P(EQUIVALENT PARALLEL INDUCTANCE) FROM THE DIALS.

CALCULATE Q

 $Q = \frac{1.592}{f_{kc}R_{kQ}}$

This reading does not depend on frequency.

Q

f_{kc}

 $R_{k\Omega}$

- Storage factor
- Frequency in kilocycles
- External D-Q rheostat
- resistance in kilohms.

2.3.8.2 SERIES INDUCTANCE BRIDGE

CONNECT AN EXTERNAL

GROUND TERMINAL.

BALANCE THE BRIDGE.

RHEOSTAT "R" BETWEEN THE HI "C" TERMINAL AND ANY

READ L_S (EQUIVALENT SERIES

INDUCTANCE) FROM THE DIALS.

This completes the series inductance circuit. Be sure the EXT D-Q terminals are jumpered.

Use the range switch, the MAIN DIALS and the external rheostat.

This reading does not depend on frequency.

CALCULATE Q Q = 0.628 $f_{kc}R_{k\Omega}$	Q f _{kc} R kΩ	 Storage factor Frequency in kilocycles External D-Q rheostat resistance in kilohms.

Note:
$$L_p = \frac{1+Q^2}{Q^2} L_s$$

2.4 CAPACITORS

2.4.1 MEASURING CAPACITORS The ESI may

CONNECT THE UNKNOWN CAPACITOR TO THE C TERMINALS

TURN THE AMP CONTROL CLOCK-WISE FOR POWER, AND SET IT WITH THE DOT UP To minimize stray capacitance to ground, connect the shield or outside foil to the terminal marked LO.

This turns on the power supply. The red pilot light to the left of the AMP switch should light.

This supplies ac to the bridge. The green

TURN THE OSC CONTROL CLOCK-WISE FOR AC, AND SET IT WITH THE DOT UP

SET THE CIRCUIT SELECTOR SWITCH TO THE APPROPRIATE C CIRCUIT fluorescent screen of the ac null indicator should light. STORAGE FACTOR (Q) 0.01 0.1 1.0 10 100 1000 10,000

 $C_{series} Dx0.01$ for $0 < D < 0.1 x f_{kc}$ $C_{series} Dx0.1$ for $0.1 x f_{kc} < D < 1.0 x f_{kc}$

2.4.1 MEASURING CAPACITORS (cont.)

SET THE MAIN DIAL TO READ 3.000	These settings make it easier to find the correct range.
SET THE D-Q DIAL TO READ 0	
SET THE DETECTOR SWITCH TO AC OR EXT-DET	This connects the detector to the bridge.
SET THE GENERATOR SWITCH TO INTERNAL AC	This connects the generator to the bridge
ADJUST THE MULTIPLIER SWITCH FOR MINIMUM DETECTOR SIGNAL	This sets the range so that the value can be found with maximum reso- lution on the main dial. The AMP and OSC controls can be changed to give optimum sensitivity.
ADJUST THE MAIN DIAL AND THE D-Q DIAL ALTERNATELY FOR THE WIDEST AND SHARPEST POS- SIBLE SHADOW ON THE NULL INDICATOR	If more or less sensitivity is needed, adjust the AMP control and/or the OSC control.
IF THE MAIN DIAL READING AT BALANCE IS LESS THAN 1.200, USE THE NEXT LOWER SETTING OF THE MULTIPLIER SWITCH AND READJUST FOR A NULL	This takes advantage of the increased resolution near full scale of the dial.
THE MEASURED CAPACITANCE IS THE PRODUCT OF THE READ- INGS OF THE MULTIPLIER SWITCH AND THE MAIN DIAL	
AT 1 KC, THE MEASURED D IS THE PRODUCT OF THE READ-	FOR OTHER FREQUENCIES:
INGS OF THE CIRCUIT SELECTOR SWITCH AND THE BLACK SCALE OF THE D-Q DIAL	The measured D is the product of (CIRCUIT SELECTOR switch setting) x (D-Q DIAL reading) x (f_{kc}).
BEFORE DISCONNECTING THE CAPACITOR, SET THE GENERATOR SWITCH TO EXT GEN	This disconnects the generator.
SET THE AMP SWITCH TO OFF BEFORE LEAVING THE BRIDGE	This turns off the power supply.

2.4.2 SERIES AND PARALLEL CAPACITANCE

The bridge measures a simple equivalent circuit for the impedance connected to its terminals. This equivalent circuit consists of a capacitance and a resistance connected in series. An alternate representation of the same impedance is an equivalent circuit consisting of a different capacitance and resistance connected in parallel. The phase and magnitude of the measured impedance are identical for both circuits. For values of D greater than 0.01 the series and parallel capacitances differ measurably (by more than 0.01%).

Although the bridge measures only the equivalent series circuit of a capacitor, the values of the equivalent parallel circuit may be easily calculated.

WHEN THE BRIDGE MEASURES SERIES CAPACITANCE, C_s:

- C_c = (MULTIPLIER SWITCH setting) x (MAIN DIAL reading)
- D = (CIRCUIT SELECTOR reading) x (D-Q DIAL reading) x (f_{kc})

Q	E	$\frac{1}{D}$	D and Q in per unit
R _s	2	D 2πfC	R _s in kilohms
5		Š	f in kc
Z	ž	$\frac{D - j}{2\pi fC_s}$	C _s in microfarads
		S	$j = \sqrt{-1}$
			Z in kilohms

TO CALCULATE THE EQUIVALENT PARALLEL CIRCUIT:

The D of the equivalent parallel circuit always equals the D of the equivalent series circuit. The same is true of Q.

$$C_{p} = \frac{C_{s}}{(1 + D^{2})}$$
$$R_{p} = \frac{1}{D} \times \frac{1}{2\pi f C_{p}}$$

2.4.3 THINGS TO WATCH OUT FOR

2.4.3.1 LOW CAPACITANCE MEASUREMENTS

In making low capacitance measurements, there are two things to watch out for:

- 1. Be careful to avoid hum pickup.
- 2. Keep the stray capacitance to a minimum.

To minimize both effects, keep your hands as far as possible from the capacitor being measured.

Keep the leads as short and direct as possible. If extended leads are necessary, the lead from the LO terminal should be shielded. See section 2.4.6, "Extended Leads".

The D and Q readings on the lowest C range will be in error as indicated in the specifications because of the residual capacitance of the range resistor. If accurate D or Q readings are needed the next highest C range can be used. The C readings on the low range are accurate.

2.4.3.2 HIGH CAPACITANCE MEASUREMENTS

The bridge measures the total impedance connected to its terminals. Both the unknown capacitor and its leads contribute to this impedance. The leads have some resistance and inductance, which affect the value read from the bridge.

 Z_{μ} = Impedance of unknown capacitor

 Z_{L} = Impedance of leads

For the greatest accuracy, minimize the lead impedance. Short heavy leads will reduce the resistance. Closely spaced twisted leads will reduce the inductance and the pickup of stray fields.
2.4.4 CAPACITANCE MEASUREMENT WITH DC

2.4.4.1 WHEN TO USE DC

Some capacitors need a polarizing voltage. For example, electrolytic and tantalytic capacitors can be damaged by the reverse polarity half-cycle of the test frequency. Even if the capacitors are not damaged, erroneous readings may result.

A polarizing voltage is not always needed in these measurements. If the ac voltage is kept at a very low value (typically below one-half volt), the capacitor will not be damaged, and the readings will be reasonably accurate.

Because of the high sensitivity of the Model 250-DA bridge, accurate measurements can be made with a very low oscillator voltage. When operating with a low oscillator voltage, be sure that the detector sensitivity is high.

2.4.4.2 THINGS TO WATCH OUT FOR

The dc should be supplied through the generator terminals. When this is done, both bridge current paths include a series capacitor. All of the dc voltage will appear across both the unknown capacitor and the standard capacitor.

Stray ac pickup may change sensitive components being measured or may give erroneous null detector readings.

The ac impedance of the external dc circuit must be less than 200 ohms for maximum sensitivity.

If D is too high to be read directly, an external rheostat such as the ESI Model DB-655 DEKASTAT^{\oplus}, connected to the EXT D-Q terminals can be used to extend the D range. D can be calculated by the equation:

$$D = D_{reading} f_{kc} + 0.628 f_{kc} R_{k\Omega}$$

where:

D	-	Dissipation factor of unknown capacitor
$D_{reading}$	-	D reading of bridge dial
R kΩ	-	External rheostat resistance in kilohms
f kc	-	Operating frequency in kilocycles

If the dc leakage resistance of the capacitor being measured is much greater than the resistance of the range resistor most of the dc input voltage will appear across the unknown capacitor. If the dc resistance of the unknown capacitor is known, the voltage across it will be shown by the following equation:

$$E_c = E_{in} \frac{R_c}{R_c + R_R}$$

where:

Е _с	- DC voltage across the unknown capacitor
${}^{\rm E}_{{ m in}}$	- DC voltage at the generator terminals
R _c	- DC resistance of the unknown capacitor
R R	- Resistance of the range resistor

DC power can be supplied through the generator terminals by using an auxiliary ac generator instead of the bridge generator. This generator must be isolated from the dc power supply by a capacitor of at least $(10/f_{kc}) \mu f$.

The internal bridge generator can be used as the ac source by making the special connection shown below. Bring out the generator leads. Connect one generator lead to an isolating capacitor. Connect the other side of the capacitor to the EXT GEN terminal marked LO. Connect the second generator lead to the other EXT GEN terminal. Set the generator switch to EXT GEN. It is also possible to connect the capacitor inside the bridge, in series with the generator lead. If this is done no external leads are needed, and the generator switch is set to INTERNAL AC. In either case, the capacitor should have a value of at least $(10/f_{\rm kc}) \mu f$.

If this operation is repeated often it may be helpful to connect two binding posts in series with one transformer lead so that an external capacitor can be easily attached. These can be mounted between the generator and detector switches. When the capacitor is not needed the terminals can be connected by a shorting bar.

2.4.4.2 THINGS TO WATCH OUT FOR (cont. ii)

A grounded dc generator cannot be used because one of the detector terminals is grounded. Leakage capacitance and resistance from the dc source to ground will be across bridge arms and may cause significant errors.

Most line operated dc power supplies have high leakage capacitance to the ac line and enough dc leakage to be objectionable. An insulated isolated battery is the recommended power supply. If a variable supply is needed the circuit shown below can be used. This circuit has a maximum output of about one watt so it will not exceed the rating of any bridge element.

The standard capacitor is subjected to the same dc voltage as the unknown capacitor. As a result the maximum allowable voltage must be limited to the standard capacitor rating of 500 volts.

2.4.4.3 FOR PARALLEL CAPACITANCE MEASUREMENTS WITH DC SUPERIMPOSED THROUGH THE GENERATOR TERMINALS

*This limits the dc power that can be supplied to the bridge to one watt to protect all of the bridge circuit in case the unknown capacitor is accidentally shorted. The maximum dc supply should not exceed 300 volts for the protection of the standard capacitor.

2.4.4.3 FOR PARALLEL CAPACITANCE MEASUREMENTS WITH DC SUPERIMPOSED THROUGH THE GENERATOR TERMINALS (cont.)

ADJUST THE DC VOLTAGE AS REQUIRED For low leakage capacitors the voltage across the unknown capacitor will be equal to the voltmeter "V" reading.

MEASURE THE CAPACITANCE

See section 3.3.4

ESI 250-DA 7/59

2.4.5 AC VOLTAGE MEASUREMENT

To measure the ac voltage applied to the unknown capacitor:

Connect the ground terminal of a high impedance ac voltmeter to the EXT D-Q terminal marked G.

Connect the input terminal of the voltmeter to the high unknown capacitor terminal of the bridge.

Balance the bridge.

Read the voltmeter. With the bridge balanced, this voltage is equal to the ac voltage across the unknown capacitor, but the capacitor has not been loaded by the voltmeter. The bridge readings, however, may be incorrect while the meter is connected.

2.4.6 EXTENDED LEADS

Sometimes it is necessary to use extended leads. This can be done easily without causing error in the measurement.

Connect a shielded lead to the unknown C terminal marked LO.

Connect the shield of this lead to the EXT D-Q terminal marked G.

Connect an ordinary clip lead to the high unknown C terminal.

The capacitance between the shield and the LO unknown C terminal is now across the detector. This keeps it from causing any error. If this stray capacitance is greater than 500 $\mu\mu$ f, it may reduce the detector sensitivity.

The stray capacitance from the unshielded lead to ground is across the standard capacitor arm of the bridge. Since the standard capacitor is 100,000 $\mu\mu f$, the stray capacitance will not cause significant errors unless it exceeds a few 10's of $\mu\mu f$.

C₁: Capacitance from LO C terminal to ground

C₂: Capacitance from unshielded conductor to ground

When lossy capacitors are measured the nulling problem known as sliding balance will occur if the usual procedure of adjusting first one control then the other is followed. As shown in the above drawings, neither the D dial nor the C dial will move the bridge vector toward a null directly or quickly. When D is low there is no sliding balance because the effects of D and C are perpendicular to each other and nulling is easy.

WHAT TO DO ABOUT IT WHEN USING ESI 250-DA BRIDGE

This problem is not too serious if the value of D is less than one. For higher values of D an external D-Q rheostat may be necessary. For high D, the C parallel circuit should be used. (see 2.4.8) The following approach should be used if balancing is difficult.

By a somewhat different nulling technique rapid accurate high D measurements can be accomplished.

First set the D dial to its minimum position, then set C for a detector minimum. With D set low, C will move the impedance vector in the C direction only. The bridge null detector signal is almost exactly proportional to the difference between the unknown impedance and the impedance indicated by the bridge dial. The correct C setting will bring the impedances closer together and give minimum signal. Next set the D dial for a minimum on the detector. This should give a good start on finding C and D. Move C a small amount then set D for a minimum and observe whether this minimum is better or worse than the previous one. If it is better move C another small amount in the same direction. If it is worse try the other direction. Continue moving C in small steps in one direction only while setting D for minimum detector signal until the detector signal reaches a true null. Moving C further will make the null worse again. The null found this way is correct. A little practice will allow you to make these measurements rapidly even when D is in the order of 10. When almost nulled it is often easier to move the D dial "one wire at a time" while null seeking with the center C dial. Be careful with the C parallel circuit. The bridge will also indicate a null at a setting of C = $\frac{1}{D}$ = O because at this setting the generator is shorted.

2.4.8 TO USE AN EXTERNAL D-Q RHEOSTAT

The D and Q ranges of the bridge can be extended by use of an external rheostat. The curve below shows the ranges of D and Q for which this technique is advisiable.

SET THE CIRCUIT SELECTOR TO C SERIES

This bridge circuit can be used for both series and parallel connections when using an external D-Q rheostat.

2.4.8.1 SERIES CAPACITANCE BRIDGE

REPLACE THE EXT D-Q JUMPER

BY AN EXTERNAL RHEOSTAT "R".

This completes the capacitance circuit series.

BALANCE THE BRIDGE. Use the range switch, the MAIN DIALS and the external rheostat. READ C_s (EQUIVALENT SERIES This reading does not depend on CAPACITANCE) FROM THE DIALS. frequency. D Dissipation factor in per unit CALCULATE D f kc Frequency in kilocycles $D = 0.628 f_{kc} R_{k\Omega} + D_{dial reading} f_{kc}$ External D-Q rheostat resist-R kΩ ance in kilohms. $^{\rm D}_{\rm dial}$ D-Q dial reading in divisions esi 250-DA 7/59

2.4.8.2 PARALLEL CAPACITANCE BRIDGE

CONNECT AN EXTERNAL RHEOSTAT "R" BETWEEN THE HI "C" TERMINAL AND THE EXT D-Q TERMINAL MARKED G.

TURN THE D-Q DIAL COUNTER-CLOCKWISE UNTIL IT HITS THE MECHANICAL STOP AND LEAVE IT THERE DURING THE ENTIRE MEASUREMENT.

BALANCE THE BRIDGE.

READ C_p (EQUIVALENT PARALLEL CAPACITANCE) from the dials.

CALCULATE D

 $D = \frac{1.592}{f_{kc}R_k\Omega}$

This completes the parallel capacitance bridge.

This shorts the internal D-Q rheostat.

Use the range switch, the MAIN DIALS and the external rheostat.

This reading does not depend on frequency.

- Dissipation factor in per unit

- fkc Frequency in kilocycles
- $R_{k\Omega}$ External D-Q reheostat
 - resistance in kilohms.

$$C_{p} = \frac{C_{s}}{(1+D^{2})}$$

D

esi 250-DA 10/59

2.5 USING BRIDGE ELEMENTS The EST may

2.5.1 STANDARD RESISTORS

Set circuit selector to R.

Set range as desired.

Set to EXT-GEN and EXT-DET.

Open EXT D-Q Jumper to disconnect chassis.

Connect between C terminals:

RANGE-Rx	100k	10k	lk	100	10	1	0.1
STANDARD RESISTOR	lmeg	100k	10k	lk	100	10	1

Or between right hand terminals of C and EXT D-Q:

RANGE-Rx	1	10
STANDARD RESISTOR	10k	lk

2.5 USING BRIDGE ELEMENTS (cont. i)

2.5.2 DEKASTAT[®] VARIABLE RESISTOR

Set circuit selector to R.

Set main dial DEKASTAT as desired.

Set to EXT-GEN and EXT-DET.

Open EXT D-Q Jumper to disconnect chassis.

Connect between left hand terminals of R and EXT D-Q.

Resistance in Kilohms is DEKASTAT reading.

esii 250-da 8/59

2.5 USING BRIDGE ELEMENTS (cont. ii)

2.5.3 STANDARD CAPACITOR

Set circuit selector to C.

Set D-Q dial as desired.

Set to EXT-GEN and EXT-DET.

Open EXT D-Q Jumper to disconnect chassis.

Connect between right hand terminals of C and ungrounded EXT D-Q terminal.

3.1 SERIES INDUCTANCE BRIDGE

3.3 RESISTANCE BRIDGE

REANGE RESISTOR

STANDARD

RANGE RESISTOR

7/59 esi 250-DA

3.6 BRIDGE CIRCUIT DIAGRAM (cont.)

GENERATOR-DETECTOR CIRCUIT DIAGRAM 3°7

6/59 esi 250-DA

3.7	GENER	RATOR-DETE	CTOR CIRCUIT	DLAGRAM (cont.)		10 kc	180 Κ 180 Κ 43.5 Κ 100 μμf 100 μμf 200 μμf 9 - 180 μμf
<u>esi</u>] Part No.	1425 1425	3932 3958 3963 3958	1804 1803 5276 2535 2535 2535 3981	1800		1 kc	172 Κ 172 Κ 58 Κ 1000 μμf 1000 μμf 2000 μμf 110 - 580 μμf
	400 V 450 V dc 450 V dc	_	230 V 230 V 25 V	250 V		tc	K K Hµl Hµl Hµl
	±20% electrolytic electrolytic ±20%	RMERS Power transformer assembly S OSC - DC switch HIGH-LOW DC switch Power switch	r equiv r equiv r equiv 20 ma 20 ma 20 ma 150 ma	6-8 V 1/2 a	ETWORK *	0.4 kc	172 172 580 2500 2500 5000 110 - 580
	ਸ਼ਸ਼ਸ਼ਸ਼	RMERS Power transformer as OSC - DC switch HIGH-LOW DC switch Power switch	12AX7 or equiv 6U5 or equiv 12AT7 or equiv 20 m 20 m 20 m	Filot Lamp Fuse, 3 AG	A TUNING N	0.1 kc	185 K 185 K 58 K 58 K 0.01 µf 0.025 µf
	С ₁₁₃ 0.01 µf С114 20 µf С115 20 µf C115 20 µf C124 7.5µµf		TUBES V101 V102 V103 V103 RECTIFIERS CR101 CR102 CR103	LAMP5 E101 Fil F1 Fus	GENERATOR TUNING NETWORK *	Frequency:	R159 R160 R161 C119 C120 C120 C122 C122 C123
		er v		Д К		10 kc	167 К 167 К 58 К 100 нµf 100 µµf 200 нµf
<u>बडा</u> Part No.	***	1/2 W 1/2 W 1/2 W 1/2 W 1/2 W 1/2 W	1 W 3958 1/2 W 1/2 W 1 W 1/2 W 1/2 W	400 V 1429 50 V dc 50 V dc 400 V 400 V 400 V 500 V 50 V dc		1 kc	167 K 167 K 70 K 1000 μμf 2150 μμf
							178 K 178 K 70 K 2500 μμf 2500 μμf 5000 μμf
	linear Pot ±10% ±10% ±10%	+10% +10% +10% +10% +10% +10% +10%	±10% linear pot ±10% ±10% ±10% ±10% ±10%	±20% electrolytic ±20% ±20% ±20% ±20% ±20% electrolytic	WORK *	0.4 kc	178 178 70 2500 2500 5000
ر. ا	100 4.7 1.5 1.2 m	470 K 100 K 10 K 2.7 meg 1.2 meg 2.7 meg 100 Ω 820 Ω	£	ORS 0.1 μf 5 μf 5 μf 0.01 μf 0.1 μf 0.1 μf 1000 μμf 5 μf	LUNING NET	0.1 kc	195 K 195 K 62 K 0.01 µf 0.02 µf
b ESISTORS	R136 R136 R137 R138 R139	да а а а а а а а а а а а а а а а а а а	7148 149 151 152 153 153 154 155 155 155	$\begin{array}{c} {\rm CAPACITORS} \\ {\rm C}_{103} \\ {\rm C}_{104} \\ {\rm C}_{104} \\ {\rm C}_{104} \\ {\rm C}_{105} \\ {\rm C}_{107} \\ {\rm C}_{107} \\ {\rm C}_{109} \\ {\rm C}_{110} \\ {\rm C}_{110} \\ {\rm C}_{110} \\ {\rm C}_{110} \\ {\rm C}_{112} \end{array}$	DETECTOR TUNING NETWORK *	Frequency:	R156 R157 R157 C116 C117 C117 C117

* Approximate values. Actual values adjusted for proper frequency and gain.

3.8 BRIDGE WIRING DIAGRAM

Ì

3.9 BRIDGE PARTS PLACEMENT

3.10 GENERATOR-DETECTOR PARTS PLACEMENT

. . .

Terros resources

Safe Power limited to 1/2 watt per resistor

Resistance in Ohms	Max Voltage in Volts	Max Current in Milliamperes
1	0.71	710.00
10	2.30	230.00
100	7.10	71.00
1,000	23.00	23.00
10,000	71.00	7.10
100,000	230.00	2.30
1,000,000	250.00	0.25

D-Q RHEOSTATS

Safe power limited to 7 watts into total resistance

Resistance in Kilohms	Maximum Resi s tance in Ohms	Max Voltage in Volts	Max Current in Milliamperes
D-Q reading x 0.0159	167	35	210
D-Q reading x 0.159	1,670	110	68
D-Q reading x 1.59	16,700	350	21

STANDARD RESISTOR

Safe power limited to 1/2 watt

Resistance in Ohms	Max Voltage in Volts	Max Current in Milliamperes
1,000	23	23
10,000	71	7.1

MAIN DIAL RHEOSTAT

Safe power limited to 1/2 watt per step

Decade	Resistance in Ohms	Max Voltage in Volts per step	Max Current in Milliamperes
First	1000 Ω steps	23	23
Second	100Ω steps	7.1	71
Rheostat	0 - 105	28 at max	270

5. CONVENIENT AUDIO FREQUENCY UNITS

For measurement and calculation in the audio frequency range the conventional electrical units are often inconvenient. A consistent set of units can be chosen so that the numerical values commonly encountered will be more practical while at the same time the equations used in calculations will not require any troublesome conversion constants. If either set of units listed below is followed consistently, the equations used for calculations will be unaltered. For example, E = IR holds true equally well with E in volts, I in amperes, and R in ohms; or with E in volts, I in milliamperes and R in kilohms.

Function	Conventional Units	Convenient Audio Frequency Units
ω	$radian/sec = 2\pi f_{cps}$	kiloradian/sec = $2\pi f_{kc}$
f	cps	kc
t	second	millisecond
С	farad	microfarad
Z, R and X	ohm	kilohm
L	henry	henry
I	ampere	milliamp
E	volt	volt
Р	watt	milliwatt
Q and D	per unit ratio	per unit ratio

SERVICING AND REPAIR 6.

NOTE! Unnecessary disassembly of the bridge may cause additional trouble instead of correcting existing trouble. Most of the bridge components can be checked without removing the chassis from the case.

If possible, the instrument should be returned to the factory or to an authorized service facility if trouble is suspected. If this is impractical the following procedure is recommended.

PRELIMINARY CHECKING 6.1

- Check the panel controls to insure that they are positioned accord-1. ing to instructions covering the specific measurement being performed. It has been found in many cases that failure to obtain a bridge balance has been due to the wrong position of one or more of the panel controls.
- 2. Check connections between the bridge binding posts and the part under measurement. What appears to be an intermittent condition inside the instrument may be merely a poor outside connection.
- When capacitor measurements of less than 100 µµf are made, be 3. sure to consider zero capacitance of the bridge.
- If the bridge cannot be balanced when measuring capacitance, check 4. the capacitor under measurement for defects. It may be shorted or open.
- 5. If a resistor is being measured, be sure it is not open.

CHECKING PROCEDURE 6.2

NOTE: The bridge operator must acquire a knowledge of abnormal outside conditions that are reflected in unsatisfactory bridge operation so that tampering with the bridge will be avoided.

When it has been ascertained that the difficulty is not due to outside causes, the following procedures should be followed in conjunction with the trouble shooting chart. The measurements described in 6.2 should be made without removing the bridge chassis from the case.

CAUTION: Unqualified personnel must not tamper with the bridge. Unauthorized repairs will invalidate our warranty. If the tests outlined in the following paragraphs indicate the need for major repairs, our Service Department will be glad to furnish necessary repair information as well as any replacement parts. If the instrument is more than one year old, a reasonable charge may be expected for replacement parts or for complete reconditioning if the instrument is returned to the factory.

6.2.1 TEST EQUIPMENT AND TOOLS

TOOL OR TEST EQUIPMENT	TYPICAL MODEL	USE
Wheatstone Bridge	esi Model 230-R	For accurate resist- ance measurements
Multimeter	Simpson Model 260	For voltage and resistance checking
Oscilloscope (frequency and voltage calibrated)	Tektronix Model 533 with the Model B or C plug-in	For checking gener- ator output
Laboratory Resistance Stan- dard	esi Model RS-624	For checking accuracy of resistance readings
Laboratory Capacitance Standard	General Radio Model 1409-T Standard Capacitor, 0.1 µf	For checking accuracy of capacitance and in- ductance readings
Screw driver		For removing bridge from case
Allen-head wrenches	No's 8 and 10, hex- agon	For loosening or tight- ening setscrews

6.2.2 TROUBLE SHOOTING CHART

SYMPTOM	PROBABLE CAUSE	PROCEDURE
Bridge inoperative for dc measurements	D-Q jumper removed Galvanometer locked Defective dc generator	Replace D-Q jumper Unlock galvanometer Test dc generator for
	Faulty wiring; galvan- ometer will not come to zero	proper voltage Check wiring to be sure that no short circuits exist and that exposed wiring does not touch the metal cabinet
	Faulty switch	Check all switches for proper contacts and operation

esi 250-da 7/59

6.2.2 TROUBLE SHOOTING CHART (cont. i)

SYMPTOM	PROBABLE CAUSE	PROCEDURE
Bridge inoperative for dc measurements (cont.)	Open, shorted, or defective resistor	Test resistors R-1 through R-10 and R-22, R-23 for open and shorted circuits and rated values
	Faulty LRC decade- rheostat	Check R-11 through R-20 and R-26 for continuity and for accuracy of resist- ance values corresponding to settings of the LRC dial
	Defective galvanometer	Check galvanometer for proper operation
Bridge inoperative for	D-Q jumper removed	Replace D-Q jumper
ac resistance measure- ments	Detector unplugged	Plug detector into EXT DET terminals
	Defective ac generator	Test ac generator for proper voltage
	Faulty switch	Check all switches for proper contact and oper- ation
	Open, shorted, or defective resistor	Test resistors R-4 through R-10, R-22, and R-23 for open and shorted circuits and for rated values
Bridge inoperative for	Replace D-Q jumper	Replace D-Q jumper
inductance and capaci- tance measurements	Unlock galvanometer	Plug detector into EXT DET terminals
	Defective ac generator	Test ac generator for proper voltage
	Faulty switch	Check all switches for proper contacts and oper- ation

_

SYMPTOM	PROBABLE CAUSE	PROCEDURE
Bridge inoperative for inductance and capaci- tance measurements (cont.)	Open, shorted, or defective resistor	Check resistors R-4 through R-10 and R-21, R-24 for open and shorted circuits, and for rated values
	Faulty LRC decade- rheostat	Check R-11 through R-20 and R-26 for continuity and for accuracy of resist- ance values corresponding to settings of the LRC dial
	Faulty capacitor C-2	Check capacitor C-2 for an open or shorted circuit, for leakage, and for proper value
Readings inaccurate	Rheostat improperly calibrated	Recalibrate LRC decade- rheostat R-11 through R-20 and R-26. Also D and Q rheostats R-21, R-24 and R-25
Power indicator lamp fails to light	No ac line voltage	Trace failure in ac power source
	Null-amplifier gain con- trol knob is not positioned correctly	Reset control knob so white dot is at OFF when control shaft is at extreme left position
	Fuse defective	Replace with $1/2$ amp fuse
	Power indicator lamp burned out	Replace with No. 47 bulb
	AC power switch defect- ive	Check and replace if neces- sary
	Power cable defective	Repair or replace cable
	Power transformer defective	Check for continuity of fila- ment winding; replace trans- former if necessary

esi 250-da 7/59

6.2.2 TROUBLE SHOOTING CHART (cont. iii)

SYMPTOM	PROBABLE CAUSE	PROCEDURE
Line fuse blows instantly when power switch is turned ON	Defective filter capaci- tors	Check capacitors C ₁₁₄ and C ₁₁₅ for possible short to ground; replace if neces- sary
	Defective rectifier	Check all rectifiers for possible short to ground; replace if necessary
	Power transformer de- fective	Check windings for pos- sible short circuit; re- place if necessary
Some tube filaments fail to light	Tubes defective	Check continuity of fila- ments; replace defective units
	Broken filament lead	Check circuit continuity and repair if necessary
Failure of 10 volt (dc) supply	Defective selenium recti- fier (CR ₁₀₃)	Check forward and back resistance of rectifier; replace if necessary
	Defective 10 volt trans- former winding	Check continuity of 10 volt winding; replace trans- former if necessary
Failure of 270 volt (dc) supply	Defective filter capaci- tors	Check capacitors C ₁₁₄ and C ₁₁₅ for possible short circuit to ground; replace if necessary
	Defective selenium recti- fiers (CR ₁₀₁ and CR ₁₀₂)	Check forward and back resistance of rectifiers; replace if necessary
	Open transformer winding	Check continuity of high voltage transformer wind- ing; replace transformer if necessary
No dc generator output	Wrong switch setting used	Recheck switch positions
	Defective switches	Check switch continuities; replace if necessary

6.2.2 TROUBLE SHOOTING CHART (cont. iv)

SYMPTOM	PROBABLE CAUSE	PROCEDURE
Failure to see green target on visual null indicator	No plate or target voltage	Check power supply; see above
	Defective tube	Replace 6U5
Failure to see null sig- nal on visual null indi- cator	Null amplifier defective	Plug headphones in pin jacks and listen for amplifier signal; if none, see below
	Defective generator	Check generator output
	Defective tube	Replace 6U5
	Defective input cable	Check continuity of all leads including shield, repair as found necessary
	Defective bridge circuit	Check all circuits associ- ated with instrument; cor- rect as necessary
Detector input signal is not amplified	Defective amplifier tube	Replace 12AX7
	No plate voltage	Check associated circuits for open resistors (R_{140} , R_{141} , R_{142}) or short circuited capacitor (C_{106} , C_{108} , or C_{124}); replace any defective components
		Remove amplifier plug-in peaking unit; if amplifier resumes operation, check plug-in unit for possible short to ground
		Check power supply; see above
	Open cathode circuit	Check all cathode circuit components (R_{137} , R_{138} , C_{104} and C_{105}); replace any defective components
	Defective input wiring or control potentiometer	Check input circuitry and continuity of R ₁₃₆

6.2.2 TROUBLE SHOOTING CHART (cont. v)

SYMPTOM	PROBABLE CAUSE	PROCEDURE
Failure to oscillate	Defective tube	Replace 12AT7
	No plate voltage	Check power supply; see above. Check resistor R ₁₄₉ ; replace if defect- ive
	Defective plug-in oscil- lator unit	Check values of all com- ponents in plug-in unit; replace any defective ones
		Check for possible shorts in plug-in unit
Failure to amplify	Defective tube	Replace 12AT7
oscillator signal	Open cathode circuit	Check R ₁₄₈ ; replace if defective
	Defective input circuit	Check R ₁₅₁ , C ₁₁₃ and control potentiometer R ₁₅₀ ; replace any defect- ive component
	No plate voltage	Check power supply; see above
		Check continuity of pri- mary winding of T ₁ ; re- place T ₁ if necessary
No generator output	Defective coupling trans- former	Check continuity of secon- dary of T ₁ and associated wiring; replace trans- former if necessary
Output signal off fre- quency	Oscillator network out of adjustment	Readjust C ₁₂₃ to give cor- rect frequency

6.2.3 CHECKING THE DC GENERATOR Set the controls as follows:

CONTROL	SETTING
DETECTOR switch	AC OR EXT DET
GENERATOR switch	INTERNAL DC
CIRCUIT SELECTOR switch	C series D X 0.01
HIGH C TERMINAL	Connect negative lead of volt- meter
HIGH L-R TERMINAL	Connect positive lead of volt- meter

Check the voltage indicated by the voltmeter:

DC GENERATOR VOLTAGE SWITCH	APPROX. VOLTS	SCALE ON 20,000 Ω/V VOLTMETER
HIGH	300	1000 V
LOW	10	50 V

6.2.4 CHECKING THE GALVANOMETER

 1_{2}

Set the controls as follows:

CONTROL	SETTING
CIRCUIT SELECTOR switch	R X 1
MULTIPLIER switch	R X 100 K
GENERATOR switch	EXT GEN
DETECTOR Switch	SHUNTED METER
MAIN DIAL	0
AMP control	With dot up
OSC control	To dc (extreme counter clockwise position)
DC GENERATOR VOLTAGE switch	LOW
GALVANOMETER	Unlock and zero the galvanometer
GENERATOR switch	INTERNAL DC

esi 250-DA 10/59

6.2.4 CHECKING THE GALVANOMETER (cont.)

The meter readings should then be approximately as indicated in the chart below:

DETECT O R SWITCH SETTING	APPROXIMATE DEFLECTION
SHUNTED METER	
DIRECT METER	

6.2.5 CHECKING THE AC GENERATOR

Set the controls as follows:

CONTROL	SETTING
DETECTOR switch	AC OR EXT DET
GENERATOR switch	INTERNAL AC
CIRCUIT SELECTOR switch	L - Series
D-Q DIAL	Completely counter clockwise (setting below D-Q = 0)
EXT DET terminals	Remove the plug
EXT D-Q terminals	Remove the shorting bar. Con- nect an oscilloscope to the EXT D-Q terminals with the ground of the oscilloscope connected to the terminal marked G

The oscilloscope pattern for the one kilocycle generator tuning network should be a reasonably good 1000 cycle sine wave. The peak-to-peak amplitude should be about 40 volts with the OSC control full clockwise. A small amount of distortion can be tolerated because of the high harmonic rejection of the tuned detector.

6.2.6 CHECKING THE AC DETECTOR

Set the controls as follows:

CONTROL	SETTING
DETECTOR switch	AC OR EXT DET
GENERATOR switch	INTERNAL AC
CIRCUIT SELECTOR switch	L - SERIES
MULTIPLIER switch	L X 100 h
MAIN DIAL	0
OSC control	Completely clockwise
D-Q DIAL	Completely counter clock- wise (setting below D-Q = 0)

Check the values in the following table:

MAIN DIAL SETTING	AC NULL IND. OPENING
0.000	Completely Open
0.300	Approximately Closed

6.2.7 CHECKING THE RANGE RESISTORS

Set the controls as follows:

CONTROL	SETTING
DETECTOR switch	AC OR EXT DET
GENERATOR switch	EXT GEN
CIRCUIT SELECTOR switch	C SERIES D X 0.01
AMP control	Extreme counter clockwise position (off)
L-R TERMINALS	Connect ohmmeter test leads

6.2.7 CHECKING THE RANGE RESISTORS

Check the values in the following table:

MULTIPLIER SWITCH READING RX	OHMMETER READING
100 K	l Megohm
10 K	100 K
1 K	10 K
100 Ω	1 K
10 Ω	100 Ω
1 Ω	10 Ω
0.1 Ω	1 Ω

6.2.8 CHECKING THE STANDARD RESISTORS

Set the controls as follows:

CONTROL	SETTING
DETECTOR switch	AC OR EXT DET
GENERATOR switch	EXT GEN
CIRCUIT SELECTOR switch	R X 1
C HIGH TERMINAL; EXTERNAL D-Q TERMINAL MARKED G. (D-Q shorting bar must be in position.)	Connect ohmmeter test leads

Check the values in the following table:

CIRCUIT SELECTOR SWITCH SETTING	OHMMETER READING
R X I	10 K
R X 10	1 K

6.2.9 CHECKING THE MAIN DIAL DEKASTAT®

Set the controls as follows:

CONTROL	SETTING
DETECTOR switch	AC OR EXT DET
GENERATOR switch	EXT GEN
CIRCUIT SELECTOR switch	RX1
L-R HIGH TERMINAL; EXTERNAL D-Q TERMINAL MARKED G. (D-Q shorting bar must be in position.)	Connect ohmmeter test leads

The ohmmeter reading in kilohms should agree with the MAIN DIAL setting.

6.2.10 CHECKING THE D-Q RHEOSTATS

6.2.10.1 To check R₂₅ set the controls as follows:

CONTROL	SETTING
DETECTOR switch	AC OR EXT DET
GENERATOR switch	EXT GEN
CIRCUIT SELECTOR switch	L - SERIES
MULTIPLIER switch	100 h
D-Q DIAL	10
C HIGH TERMINAL, EXT D-Q TERMINAL MARKED G. (short- ing bar must be in position)	Connect ohmmeter leads

The ohmmeter should read about 16 K.

6.2.10.2 To check R_{24} and R_{21} , set the controls as follows:

CONTROL	SETTING
DETECTOR switch	AC OR EXT DET
GENERATOR switch	EXT GEN
AMP control	Dot up
OSC control	Dot up
MULTIPLIER switch	C X 0.1 μ f Be sure to use this setting
C TERMINALS	Decade resistor in series with 0.1 μ f standard capacitor

To check R_{24} , set the CIRCUIT SELECTOR switch to C SERIES D X 0.01. The resulting D-Q DIAL readings should be as follows:

RESISTANCE IN SERIES WITH 0.1 μ f CAPACITOR	D-Q DIAL READING
18 Ω	1.0
82 Ω	5.0
161 Ω	10.0

To check R_{21} , set the CIRCUIT SELECTOR switch to C SERIES D X 0.1. The resulting D-Q DIAL readings should be as follows:

RESISTANCE IN SERIES WITH 0.1 µf CAPACITOR	D-Q DIAL READING
161 Ω	1.0
798 Ω	5.0
1594 Ω	10.0

If these tests indicate possible defects in the D-Q rheostat, remove the bridge from the case, disconnect the rheostat and check the resistance values individually.

6.2.11 CHECKING THE STANDARD CAPACITOR

Check the standard capacitor by measuring a capacitor of known value. We recommend the 0.1 μ f standard capacitor listed in 6.2.1. If this test indicates that the standard capacitor is unsatisfactory, remove the bridge from the case. Disconnect the standard capacitor and check it with a capacitance bridge. (The esi Model 270 Capacitance Bridge is recommended.) The value should be 99,880 $\mu\mu$ f ±0.1%.

6.3 REMOVING THE CHASSIS FROM THE CASE

6.3.1 REMOVING THE CHASSIS

Prepare a soft, clean place to set the instrument. Be sure that no projections or pointed objects will be underneath the bridge panel. See that there are no metal filings near the exposed wiring and parts of the bridge; filings which accidentally get into the chassis can cause short circuits. Loosen the four panel screws, lift out the chassis and place it carefully on the prepared surface with the panel down.

6.3.2 REPLACING THE CHASSIS

Be sure that the interior of the case is thoroughly clean. Position the bridge in the case. Replace the panel mounting screws and tighten them in place.

6.4 REPAIRING THE BRIDGE

Repairs are limited to mechanical adjustment and replacement of parts. When trouble shooting indicates that a component is defective, replace that component.

Ë

10/59

250 - DA

esi

12.

ň

MAIN DIAL DEKASTAT

MAIN DIAL DEKASTAT

STANDARD RESISTOR