MODEL 650 MAINTENANCE MANUAL

© 1987 Wavetek

THIS DOCUMENT CONTAINS INFORMATION PRO-PRIETARY TO WAVETEK AND IS PROVIDED SOLELY FOR INSTRUMENT OPERATION AND MAINTENANCE. THE INFORMATION IN THIS DOCUMENT MAY NOT BE DUPLICATED IN ANY MANNER WITHOUT THE PRIOR APPROVAL IN WRITING FROM WAVETEK.

> Manual Revision 9/88 Manual Part Number: 1300-00-0420

N. Ch.

+_

• 2

Scans By *Artek Media*

Artek Media 1042 Plummer Cir. SW Rochester, MN 55902

www.artekmedia.com

"High resolution scans of obsolete technical manuals"

If your looking for a quality scanned technical manual in PDF format please visit our WEB site at <u>www.artekmedia.com</u> or drop us an email at <u>manuals@artekmedia.com</u> and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details, This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

- 1) Typed text pages are typically scanned in black and white at 300 dpi.
- 2) Photo pages are typically scanned in gray scale mode at 600 dpi
- Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).

If you purchased this manual from us (typically through our Ebay name of ArtekMedia) thank you very much. If you received this from a well-meaning "friend" for free we would appreciate your treating this much like you would "share ware". By that we mean a donation of at least \$5-10 per manual is appreciated in recognition of the time (a manual can take as much as 40 hours to reproduce, book, link etc.), energy and quality of effort that went into preserving this manual. Donations via PayPal go to: manuals@artekmedia.com or can be mailed to us the address above.

Thanks par & Symmeth

Dave & Lynn Henderson Artek Media

WARRANTY

Wavetek warrants that all products manufactured by Wavetek conform to published Wavetek specifications and are free from defects in materials and workmanship for a period of one (1) year from the date of delivery when used under normal operating conditions and within the service conditions for which they were furnished.

The obligation of Wavetek arising from a Warranty claim shall be limited to repairing, or at its option, replacing without charge, any product which in Wavetek's sole opinion proves to be defective within the scope of the Warranty. In the event Wavetek is not able to modify, repair or replace non-conforming defective parts or components to a condition as warrantied within a reasonable time after receipt thereof, Buyers shall be credited for their value at the original purchase price.

Wavetek must be notified in writing of the defect or nonconformity within the Warranty period and the affected product returned to Wavetek's factory or to an authorized service center within (30) days after discovery of such defect or nonconformity.

For product warranties requiring return to Wavetek, products must be returned to a service facility designated by Wavetek. Buyer shall prepay shipping charges, taxes, duties and insurance for products returned to Wavetek for warranty service. Except for products returned to Buyer from another country, Wavetek shall pay for return of products to Buyer.

Wavetek shall have no responsibility hereunder for any defect or damage caused by improper storage, improper installation, unauthorized modification, misuse, neglect, inadequate maintenance, accident or for any product which has been repaired or altered by anyone other than Wavetek or its authorized representative and not in accordance with instructions furnished by Wavetek.

Exclusion of Other Warranties

. <u>.</u>

The Warranty described above is Buyer's sole and exclusive remedy and no other warranty, whether written or oral, is expressed or implied. Wavetek specifically disclaims the implied warranties of merchantability and fitness for a particular purpose. No statement, representation, agreement, or understanding, oral or written, made. by an agent, distributor, representative, or employee of Wavetek, which is not contained in the foregoing Warranty will be binding upon Wavetek, unless made in writing and executed by an authorized Wavetek employee. Under no circumstances shall Wavetek be liable for any direct, indirect, special, incidental, or consequential damages, expenses, losses or delays (including loss of profits) based on contract, tort, or any other legal theory.

I		SAFETY FIRST
		Protect yourself. Follow these precautions:
	•	Don't touch the outputs of the instrument or any exposed test wiring carrying the output signals. This-instrument can generate hazardous voltages and currents.
		Don't bypass the power cord's ground lead with two-wire extension cords or plug adaptors.
	•	Don't disconnect the green and yellow safety-earth-ground wire that connects the ground lug of the power receptacle to the chassis ground terminal (marked with $$ or \triangle).
	•	Don't hold your eyes extremely close to an rf output for a long time. The normally nonhazardous low-power rf energy generated by the instrument could possibly cause eye injury.
	•	Don't plug in the power cord until directed to by the installation instructions.
	•	Don't repair the instrument unless you qualify and know how to work with hazardous voltages.
	•	Pay attention to the WARNING statements. They point out situations that can cause injury or death.
	•	Pay attention to the CAUTION statements. They point out situations that can cause equip- ment damage.
	L	

-

WARNING

DO NOT RECHARGE, SHORT CIRCUIT, DISASSEMBLE, OR APPLY HEAT TO THE LITHIUM BATTERY INSIDE THE 650. VIOLATING THIS RULE COULD RELEASE POTENTIALLY HARMFUL LITHIUM. OBSERVE POLARITY WHEN YOU REPLACE THE BATTERY.

CAUTION

The 650 can deliver up to $12\frac{1}{2}$ watts of output power. Always keep the output signal levels within the power range of your load.

iv

CONTENTS

.

٠

-

-...

,

СН	1	INTRODUCTION
		1.1 Specifications
СН	2	THEORY OF OPERATION
		2.1 System Overview 2-2 2.2 Input Board Set (1473, 1474) 2-7 2.3 Main Microprocessor/Sample and Hold Board (1531) 2-7 2.4 Phase Engine Board (1625) 2-7 2.5 Phase Accumulator Board (1383) 2-7 2.6 RAM Board (1458) 2-8 2.7 DAC/Output Board (1467) 2-29 2.8 Reference/Calibration Board (1615) 2-39 2.9 Switching Power Supplies (1627, 1628) 2-40
СН	3	PERFORMANCE VERIFICATION PROCEDURES
		3.1 Quick Functional Check3-23.2 Complete Performance Verification3-3
СН	4	PARTS AND SCHEMATICS
		4.1 Drawings

.

v

CHAPTER 1

* . -

INTRODUCTION

1.1 SPECIFICATIONS

Instrument specifications are located in section 1 of the Model 650 Operator's Manual.

1.2 TOOLS AND TEST EQUIPMENT

You must have the following equipment to test, troubleshoot, calibrate and repair the 650.

Basic Equipment. You must have the following equipment for the procedures in the following sections:

Phase Measurement

Wavetek Model 601 Switching System Master Chassis Wavetek Model 603 Switching System Front Panel Wavetek Model 621 Switching System Phase Detector Module

Signal Sources

Wavetek Model 271 12MHz Pulse/Function Generator Wavetek Model 178 Programmable Waveform Synthesizer Wavetek Model 650 2MHz Variable Phase Synthesizer

CHAPTER 2

THEORY OF OPERATION

<u>Section</u>

Function

2.1 System Overview

Tells what the 650 does, how phase accumulation works, and what hardware performs each major function.

2.2 Input Board Set
2.3 MicroProcessor/S&H Board
2.4 Phase Engine Board
2.5 Phase Accumulator Board
2.6 RAM Board
2.7 DAC/Output Board
2.8 Ref/Cal Board

2.9 Power Supplies

Explains circuit operation of the switching

See section 4 for wiring diagrams and schematics.

power supplies.

SYSTEM OVERVIEW

. . .

2.1 SY	STEM OVERVIEW	
Sectio	<u>on</u> .	Why You Should Read the Section
2.1.1	What Does the 650 Do?	You need to know what the 650 can do before you can understand how it works. Therefore, this section first describes phase synthesis, then lists all the other capabilities that support it.
2.1.2	How Does Phase Accumulation Work?	You need to understand phase accumulation before you study the circuits that perform it. Therefore, this section first describes this important concept, then shows how the 650 uses it to sweep frequency and phase.
2.1.3	What Does Each Board Do?	You need to know what each board does so you can relate the 650's functions to the circuits that perform them. Therefore, this section provides a system block diagram that shows all the boards and lists the functions each one performs.
	•	

2.1.1 What Can the 650 Do?

-

This section describes phase synthesis and lists all the 650 capabilities that support it. Knowing what the 650 can do will help you understand how it works.

<u>Phase Synthesis</u>. The Model 650 Variable Phase Synthesizer generates multiple waveforms at controlled phase angles. Each channel's output signal maintains an absolutely fixed and precisely controllable phase relationship with the output signals of the other channels. Phase accuracy holds for fixed frequency, swept frequency, and swept phase operation. Digital generation of the signals guarantees fixed accuracy across the entire range of frequency and phase.

<u>Support Capabilities</u>. The additional capabilities listed below support the 650's primary role as a phase synthesizer and enable it to serve both phase and non-phase applications.

2-2

Category		Capabili	ties	
Non-Sweep Modes	Continuous Triggered Burst	Sync Gated Async Gated Phase Lock		Waveform Hold AM
Sweep Choices	Frequency Sweep Phase Sweep Both Sweep Sequential Sweep	Hold Sweep Linear Sweep Log Sweep		Sine Sweep Random Sweep AM/FM/PM
Frequency/Phase/ Both Sweep Modes	Continuous Sweep with A Continuous Sweep with A Triggered Sweep with Aut Triggered Sweep with Aut Triggered Sweep/Hold wit Reset/Hold	uto Reverse o Reset o Reverse	Reverse Sequentia Sequentia	Sweep/Hold with Trig /Hold al with Triggered Steps al with Continuous Stepping al with Triggered Single Pass
Channel Control	Sine, Triangle, Square, Ramp, DC Waveforms Output Impedance Waveform Amplitude	Waveform Offs Square Wave D Phase Control Frequency Mul	outy Cycle	Amplitude Modulation Sync Output Delta Frequency Ramp Duty Cycle
Triggering	Internal External	Front Panel GPIB		
Modulation	Frequency Modulation Phase Modulation	Amplitude Mod Combined (FM/		
Shift Keying	Synchronous Frequency Shift Keying (S-FSK) Asynchronous Frequency Shift Keying (A-FSK) Asynchronous Multiple Frequency Shift Keying Asynchronous Multiple Phase Shift Keying			
Sweep Progress	Screen Sweep Monitor	Sweep Horizor	ital Out	Sweep Marker
Unit Control	Front Panel	GPIB		MATE (optional)
Memory	25 Stored Instrument Set	ups	Lost-Pov	ver Instrument Setup
Maintenance	Self-Calibration		Self-T	est

2.1.2 How Does Phase Accumulation Work?

This section describes phase accumulation, then shows how the 650 uses it to sweep frequency and phase. Read this section to learn the basics of this important concept so you can better understand the circuits that perform it.

<u>Basic Concept</u>. Figure 2-1 shows a simplified block diagram of the phase synthesis circuits. To generate a fixed-frequency waveform, the phase engine loads a phase value (such as 0.9°) into the frequency control register of the phase accumulator. The adder then accumulates phase by repeatedly adding this phase value to the total in the summing register. The accumulating phase total sequentially addresses the storage locations of the waveform RAM. As you can see, the phase accumulator actually serves as a RAM address generator.

Because the RAM stores the waveform as a series of digital amplitudes, the RAM output, when applied to the digital-to-analog converter, produces a stairstep waveform. Filtering removes the stairsteps and produces a smooth output.

The address-generation rate of the phase accumulator remains constant at 10MHz. This gives a fixed amount of time between additions for the phase engine to load new values, if any, in the frequency and phase control registers. Because the address generation rate remains fixed, the phase accumulator determines the frequency of the output waveform by jumping over intermediate RAM addresses. The size of the phase value in the frequency control register determines the size of the jumps.

<u>RAM Memory</u>. For simplicity, figure 2-1 shows a sine wave stored as five points. In reality, the 650 stores the waveform as 8192 points. This resolution allows great latitude in skipping steps before the output signal suffers. Output resolution decreases only for extremely wide and fast sweeps.

Waveform Changes. To change a channel's output waveform, the 650 simply loads a new waveshape in the RAM. Each channel can produce a different waveform without affecting phase coherence between channels.

Equivalent Addresses. The "equivalent addresses" shown with the RAM make the example easy to follow. In actual operation, the phase engine loads the registers with adjusted values that produce real RAM addresses instead of the equivalent addresses shown.

DAC/Filter. The digital-to-analog converter converts the digital amplitude values emerging from the RAM into a stair-step waveform. The 2MHz output filter removes the 10MHz clock frequency and its harmonics to produce a smooth analog waveform.

Simple Examples. Follow the table for each example to see how the values loaded in the frequency and phase control registers produce the fixed frequency, swept frequency, and swept phase outputs shown.

Swept Phase Illustration. The swept phase illustration shows three snapshots in the leftward progression of a sine wave. The wave begins in the position shown in the top figure. The middle figure shows it after it jumps 90° to the left, and the bottom one shows it after another jump 90° to the left. In actual operation, these large jumps would consist of thousands of very small jumps that would produce a smooth sweep.

Realistic Example. The phase engine actually loads a phase value (such as 0.9°) into the frequency control register. The phase value accumulates in the summing register at the fixed clock rate (10MHz for the 650). This phase accumulation controls addressing of the RAM memory and therefore the frequency of the waveform. To see more realistically how this phase accumulator technique works, assume a phase value of 0.9° and a clock rate of 10MHz:

 $\frac{0.9^{\circ}}{\text{step}} \times \frac{10 \times 10^{6} \text{ steps}}{1 \text{ second}} \times \frac{1 \text{ cycle}}{360^{\circ}} = \frac{9 \times 10^{6} \text{ cycles}}{360 \text{ seconds}} = 25 \text{ kHz output.}$

 $\frac{360^{\circ}}{\text{cycle}} \times \frac{1 \text{ step}}{0.9^{\circ}} = 400 \text{ discrete steps in each cycle of a 25 kHz output}$

2-4

Next, assume a phase value of 9° and a clock rate of 10MHz:

 $\frac{9^{\circ}}{\text{step}} \times \frac{10 \times 10^{6} \text{ steps}}{1 \text{ second}} \times \frac{1 \text{ cycle}}{360^{\circ}} = \frac{90 \times 10^{6} \text{ cycles}}{360 \text{ seconds}} = 250 \text{ kHz output}$

 $\frac{360^{\circ}}{\text{cycle}} \times \frac{1 \text{ step}}{9^{\circ}} = 40 \text{ discrete steps in each cycle of a 250 kHz output.}$

Main Menu. When you enter a frequency in the main menu, the 650 loads the non-changing phase value that will produce that fixed frequency into the frequency control register.

Sweep Menu. When you enter START and STOP frequencies in the sweep menu, the 650 converts these into the incrementing series of phase values that it loads successively into the frequency control register as the sweep progresses. All channels sweep frequency simultaneously. Similarly, when you enter different START and STOP phases for each channel in the sweep menu, the 650 converts these into a separate series of incrementing values for each channel, then loads these series successively into the phase control registers of the channels as the sweeps progress. Each channel sweeps phase independently.

Channel Menu. When you use the channel menu to select a waveform for a channel, the 650 loads that waveform into the channel's RAM. Similarly, when you enter an amplitude and voltage offset for the waveform, the 650 loads these values into the channel's amplitude and offset circuits. Finally, when you enter a fixed phase shift for a channel, the 650 loads the value that will produce that shift into the channel's phase control register.

Figure 2-1. How the 650 Generates Phase-Coherent Waveforms

2-6

.

SYSTEM OVERVIEW

2.1.3 What Does Each Board Do?

This section provides a system block diagram that shows all the boards of the 650 and lists the functions each one performs. Study this diagram so you can relate the 650's functions to the circuits that perform them.

<u>Diagram Explanation</u>. Figure 2-0 shows the system block diagram for the 650. Data and signal processing flows from the keyboard/GPIB inputs at the left to the signal outputs at the right. The blocks of text list the major functions of each board.

2.2 INPUT BOARD SET (1473, 1474) (Refer to figure 2-0.)

.

7.

. *

2.3 MAIN MICROPROCESSOR/SAMPLE AND HOLD BOARD (1531) (Refer to figure 2-0.)

2.4 PHASE ENGINE BOARD (1625) (Refer to figure 2-0.) -

2.5 PHASE ACCUMULATOR BOARD (1383)

Major Function. The phase accumulator board determines the basic output frequency of all channels by generating a series of addresses that sweep through the waveforms stored in the RAMs on the RAM boards.

SUBFUNCTION	ACTIVE PHASE ACC BOARD CIRCUITS	SECTION
Sweep/Waveform Hold via the <u>Hold Input</u> Connector	Hold Input	2.5.4
Sweep Hold via [<u>Hold/Resume</u>] key or the GPIB bus	Control Processor Interface Hold Input	2.5.3 2.5.4
Master/Slave Operation	External Sync Logic <u>Phase Sync</u> and <u>Phase Clear</u> Connectors	2.5.6 2.5.6
[<u>Main</u>] CONT, TRIG, A-GATE, S-GATE, and PHSLK Modes [<u>Sweep</u>] Modes 1-29	Mode Control Logic External Sync Logic Acc Sync Logic Phase Accumulator	2.5.5 2.5.6 2.5.7 2.5.1
[<u>Main</u>] BURST Mode	Control Processor Interface Mode Control Logic External Sync Logic Acc Sync Logic Phase Accumulator	2.5.3 2.5.5 2.5.6 2.5.7 2.5.1
Control by Main MicroP Board (over the GPIO bus)	Control Processor Interface	2.5.3
Control by Phase Engine Board (over the phase engine bus)	Phase Engine Interface (bus address decoder/mode latches)	2.5.2

· ...

INFORMATION	FUNCTION	LOCATION
Block Diagram	Shows data and control flow, circuit interaction, and related boards.	Figure 2-0
Sync and Control Logic Figure	Shows how the sync and control logic circuits generate the five major phase accumulator control signals.	Figure 2-0
Circuit Description Text	Individually describes the operation of each phase accumulator circuit.	Sections 2. to 2.5.7
Signal Description Table	Describes the function and action of each phase accumulator board signal. Alphabetical by signal name.	Table 2-0

RELATED INFORMATION IN OTHER SECTIONS LOCATION FUNCTION INFORMATION Figure 2-0 in Shows how the main µP board controls GPIO Bus Figure the phase accumulator board over the section 2.3 GPIO bus. Figure 2-0 in Shows how the phase engine board **ΦENG Bus Figure** controls the phase accumulator board section 2.4 over the **ΦENG** bus.

2.5.1 Phase Accumulator Circuit

<u>Function</u>. Generate a series of increasing addresses by repeatedly adding a small phase increment to a running total.

<u>Components</u>. A and B phase increment registers, an adder, and a phase summing register.

Operation. The phase increments in the A/B registers determine the frequency of the output signal. In operation, the phase accumulator adds the phase increment in register A or B to the current address in the phase summing register to produce a new and larger address. This new address addresses the waveform RAMs and calls up another point further along on the waveform stored in the RAM.

For a fixed-frequency output signal, the phase engine holds a fixed value in one of the phase increment registers. This value, repeatedly added to the value in the phase summing register at the fixed rate of 10MHz, makes the summing register address the waveform RAMS in equal steps and therefore produces a fixed-frequency output. Large phase increments produce higher frequencies by making the phase summing register step through the RAM (at 10MHz) with fewer, but larger, steps. Lower phase increments produce lower frequencies by stepping through the RAM (at 10MHz) with more, but smaller, steps.

For a swept-frequency output signal, the phase accumulator loads the phase increment registers with a series of larger and larger phase increments as the sweep progresses. In step-by-step operation, the phase accumulator adds the address increment in register A to the total in the summing register while the phase engine simultaneously loads the next larger address increment into the B register. Then, the control logic switches the registers and adds the new increment in the B register to the total in the summing register while the phase engine loads the next value in the series into the A register. The rate of increase of the series determines the rate and linearity of the sweep.

Although the phase accumulator sends a 16-bit address to the RAMs, it accepts and adds 40-bit phase increment values to allow extremely precise frequency control. The following table shows how the phase engine uses the A and B registers to produce the operating modes.

TO IMPLEMENT THESE MODES:	THE PHASE ENGINE LOADS:
All Main (Non-Sweeping) Modes (CONT/TRIG/GATE/BURST/PHSLK)	An unchanging value in one register.
CONT/TRIG Frequency Sweep Modes (1-6)	A series of slowly incrementing values into alternating registers.
Frequency-Shift-Keyed Modes (7-8)	The base value in one register and the keyed value in the other register.
Frequency Sequence Modes (9-11)	A series of values from an internal table into alternating registers.
Frequency Modulation Modes (12, 29)	A series of values, each determined by the voltage level of an external signal, into alternating registers.

2.5.2 Phase Engine Interface Circuit

£

10

Function. Lets the phase engine board control the phase accumulator board.

<u>Operation</u>. The phase engine controls the phase accumulator by sending bytes of data over the Φ ENG bus. The phase engine interface circuit accepts these bytes and loads them into the appropriate registers. The registers determine the operating mode, the burst count, and the output frequency.

U4. Address decoder U4 selects the register to receive the data on the data bus (see figure 2-0, phase engine bus). To load a register, the phase engine first puts data and an address on the Φ ENG bus, then strobes U4 with line FSTB/. The FSTB/ strobe causes the particular Y output selected by the address to strobe and clock the data bus data into the register controlled by that Y output. In addition to loading registers, three of U4's Y outputs also serve as control signals for the sync and control logic.

U5, U6. To make the phase accumulator board operate in a given mode, the phase engine loads various bit patterns in sweep mode latches U5 and U6. The latched outputs of U5 and U6 then make the sync and control logic generate the specific control signals required by the selected operating mode. Figure 2-0, sync and control logic, shows how the outputs of U5 and U6 affect the sync and control logic and contains a table that lists the bit pattern for each mode.

2.5.3 Control Processor Interface Circuit

<u>Function</u>. Accepts the hold-sweep, resume-sweep, and reset-status-line-IOST4/ commands from the main μP board; returns the burst-complete response to it.

2-11

THEORY OF OPERATION

U2A. Flip-flop U2A converts the BURST END pulse into a held signal level so that the main μ P does not have to monitor status line IOST4/ continuously. Selecting the [Main] BURST mode will pull D of U2A low and allow the BURST END pulse to set status line IOST4/ low. After the main μ P has processed the burst-complete response, it resets U2A with the YO output of U3.

U2B. Flip-flop U2B converts the sweep hold/resume commands into a line level for the hold input circuit.

U3. Address decoder U3 converts the GPIO addresses into the sweep hold, sweep resume, and reset status line commands.

2.5.4 Hold Input Circuit

-_

1.

Function. Accepts all hold requests and sends a hold signal to the proper circuit.

		HOLD INPUT CIRCUIT SIGNALS		
TYPE OF HOLD	SOURCE	INPUTS	OUTPUTS	
Sweep Holds	GPIB Bus	µPHOLD/ low	15D Out high	
(Frequency	[<u>Hold/Resume</u>] Key	µPHOLD/ low	15D Out high	
or Phase)	Hold Input Connector	Hold Input low	15D Out high	
Waveform Hold	Hold Input Connector	Hold Input low	16A Q/ low	

U15BC, U16A. NAND gates U15BC, flip-flop U16A, and HOLDEN determine the function of the <u>Hold Input</u> connector. HOLDEN low makes <u>Hold Input</u> hold frequency or phase sweeps by routing the hold signal through gate U15B to the phase engine. HOLDEN high makes <u>Hold Input</u> hold waveforms by allowing the hold signal to set Q/ of U16A low. ACCHOLD/ allows the phase engine board to apply a waveform hold.

U15D. Gate U15D accepts frequency and phase hold commands from either the main μ P board or the <u>Hold Input</u> connector and sends them to the phase engine board.

U17B. Gate U17B either allows the Φ ACCCLK clock line to run at 10MHz or holds it low, depending on the state of Q/ of U16A. If the clock runs, the system generates output waveforms point by point. Stopping the clock stops address generation and holds the waveform at the point reached when the hold was applied. Releasing the hold allows waveform generation to resume from the held point.

U11A, U17A. Buffers U11A and U17A put identical clock signals Φ ACCCLK and BACCCLK on two lines for distribution to the mode, sync, and accumulator circuits. Fan-out limits prevent the use of just one clock line.

2.5.5 Mode Control Logic Circuit

Major Function: Generates the **PACCCLR**/ signal for the phase accumulator.

Secondary Function: Generates the LOOVFL, LOOVFL/, and the SELINCLK signals for the other control circuits; accepts the CLEAR/ signal from the external sync logic circuit.

SIGNAL	FUNCTION
ØACCCLR/	Clears the Φ summing register. Low stops generation of output waveforms; high allows generation of output waveforms.
ØOVFL ∞. •	Positive going 0.1µsec pulse generated whenever the phase accumulator adder reaches the highest address supplied to the waveform RAM (360° point of the stored waveform).
LØOVFL	Positive-going 0.1 µsec pulse formed by synchronizing ΦΟVFL to ΦACCCLK. Used by the external sync logic.
LOOVFL/	Inverse of LФOVFL. Used by the external sync logic.
SELINCLK	Either Φ ACCCLK or L Φ OVFL, as selected by INCLK/. Used by the acc sync logic.
CLEAR/	Allows the external sync logic or the phase engine to generate a Φ ACCCLR/ and clear the phase summing register.

<u>Operation</u>. The phase engine sends the bit patterns shown in figure 2-0 (sync and control logic) to the phase accumulator to make the mode control logic generate the following five versions of Φ ACCCLR/:

MODE	ACTION OF Φ ACCCLR/
[<u>Main]</u> CONT, PHSLK [<u>Sweep</u>] Modes 1-29	Stays high continuously (the phase engine handles triggered sweeps).
[<u>Main</u>] TRIG	Steps high when TRIGGER steps high, then steps low on the next ΦOVFL .
[<u>Main</u>] A-GATE	Steps high when TRIGGER steps high, then steps low when TRIGGER steps low.
[<u>Main</u>] S-GATE	Steps high when TRIGGER steps high, then steps low on the first ΦOVFL after TRIGGER steps low.
[<u>Main</u>] BURST	Steps high when TRIGGER steps high, then steps low when RCO (burst counter carry) steps low.

CONT, PHSLK, and All [Sweep] Modes. Φ ACCCLR/ stays high continuously. Circuit Setup: CONT/ low holds flip-flop U13A cleared (Q/ output high) to block clearing of the phase summing register by the burst counter or flip-flop U7A. AGATE low disables gate U14B to prevent clearing of the phase summing register by the TRIGGER line. Operation: Holding Φ ACCCLR/ high allows the phase accumulator to run continuously and generate a continuous output waveform. The phase engine board handles triggering of the triggered sweep modes.

TRIG Mode. Φ ACCCLR/ steps high when TRIGGER steps high, then steps low on the next Φ OVFL. Circuit Setup: TGATE/ low (through U12C, U12B, and U13B) allows gate U14C to pass the output pulses of flip-flop U7A.

Operation: Stepping TRIGGER high clocks flip-flop U13A and sets output Q/ high. Rippling this high through gates U14D and U14A sets Φ ACCCLR/ high and begins output waveform generation. When the waveform reaches the 360° point, Φ OVFL will shift high, causing flip-flop U7A to generate a high-going pulse. This pulse will pass through gate U14C and preset the Q/ output of flip-flop U13A low. Rippling this low through gates 14D and 14A sets Φ ACCCLR/ low and stops output waveform generation.

A-GATE Mode. Φ ACCCLR/ steps high when TRIGGER steps high, then steps low when TRIGGER steps low. Circuit Setup: AGATE high lets gate U14B pass the

AGATE high lets gate U14B pass the TRIGGER signal. Operation: A low TRIGGER prevents signal generation by holding Φ ACCCLR/ low through U14B and U14A. Stepping TRIGGER high releases the Φ summing register and begins waveform generation. Returning TRIGGER to low immediately clears the Φ summing register and stops the output waveform in mid-cycle. S-GATE Mode. ØACCCLR/ steps high when TRIGGER steps high, then steps low on the first ØOVFL after TRIGGER steps low. Circuit Setup: SGATE high lets TRIGGER clear flip-flop U7A, and CONT/ high lets TRIGGER clock flip-flop U13A. Operation: Stepping TRIGGER high clocks flip-flop U13A and sets output Q/ high.

Rippling this high through gates U14D and U14A sets Φ ACCCLR/ high and begins output waveform generation. Stepping TRIGGER low releases the clear on flip-flop U7A and enables Φ ACCCLK to clock the next positive-going pulse of Φ OVFL through to Q of U7A. Gate U14C converts this positive-going pulse to a negative going pulse that resets Q/ of flip-flop U13A to low. Rippling this low through gates 14D and 14A sets Φ ACCCLR/ low and stops the output waveform at its 360° point.

BURST Mode. $\Phi ACCCLR$ / steps high when TRIGGER steps high, then steps low when RCO (burst counter carry) steps low. Circuit Setup: BURST/ low lets L $\Phi OVFL$ clock the burst counter, TGATE/ high lets the burst counter clear flip-flop U13B, and CONT/ high lets flip-flop U13A accept TRIGGER signals.

The phase engine sets up the mode control logic for burst operation as follows: First, it puts 65535 minus the Burst Count on the **ΦENG** data bus (for a burst of 100 cycles, 65435 would appear on the bus). Second, it loads this modified burst count into the internal register of the burst counter by pulling line Y1 (BC/) low via the address bus. The modified burst count immediately transfers from the internal register to the counter register because $\Phi ACCCLR / holds CLOAD / low$ between bursts. Finally, when the operator selects BURST from the main mode menu, the phase engine loads the burst bit pattern into the mode latches.

The mode control logic controls the burst as follows: With the TRIGGER line low, output Q/ of flip-flow U13A stays low and holds Φ ACCCLR/ low through gates U14D and A. When TRIGGER steps high, Q/ of U13A steps high, Φ ACCCLR/ steps high, and the phase accumulator starts running. Flip-flop U7B generates pulse L Φ OVFL at the end of each complete cycle of the output waveform. This pulse clocks input CCK of the burst counter, which begins counting up from the modified burst count loaded into its counter register. Output RCO/ steps low when the count reaches 65535 and back high when the count reaches 00000. RCO/ stepping low clears flip-flop U13B, which enables gate U14C. Flip-flop U7A produces pulses identical to the L Φ OVFL pulses from flip-flop U7B. When the L Φ OVFL pulse from U7B steps the count to 00000, the same pulse from U7A passes through gate U14C and presets flip-flop U13A. This sets Q/ low which, in turn, pulls Φ ACCCLR/ low and stops generation of the output waveform.

2.5.6 External Sync Logic Circuit

Function. Synchronizes the output waveforms of interconnected 650 units.

System Interconnection. The synchronized group consists of a master and several slaves. The <u>Phase Clear</u> connector of the master connects to the <u>Phase</u> <u>Clear</u> connectors of all the slaves. The <u>Phase Sync</u> connector of the master connects to the <u>Phase Sync</u> connectors of all the slaves. The <u>10 MHz Ref</u> connector of the master connects to the <u>10 MHz Ref</u> connectors of all the slaves. The last slave has a 50 ohm termination at the <u>10 MHz Ref</u> input.

Unit Configuration. To determine the configuration of each 650, the operator selects INDEPN, MASTER, or SLAVE in the [Utility] CONFIG menu. The front panel sends the operator's choice over the optolink to the main μ P board, the main μ P sends it over the GPIB bus to the phase engine board, and the phase engine sends'it over the Φ ENG data bus (as bits 8 and 9) to the phase accumulator board. Bits 8 and 9 appear at the output of the sweep mode latches as the MASTER EN and SLAVE EN lines.

System Operation. All units, whether master or slave, generate Φ OVFL, a pulse that occurs each time the adder of the phase accumulator reaches the highest address in the address generation cycle. This address represents the end (or 360° point) of the waveforms stored in the RAM board RAMs.

The master 650 converts Φ OVFL into a phase-sync pulse. The phase-sync pulse travels out <u>Phase Sync</u> of the master and into <u>Phase Sync</u> of all the slaves. Each slave compares the master phase-sync pulse to its internal sync pulse. If the pulses do not match, the slave generates a phase-clear pulse. The phase-clear pulse travels out <u>Phase Clear</u> of the out-of-sync slave and into <u>Phase Clear</u> of all the other slaves and the master. The phase-clear pulse resets the phase accumulator addresses of <u>all</u> units (master and slaves) to 0.

Unit Master Operation. Setup: MASTER EN line high, SLAVE EN line low.

Function 1: Generate phase-sync pulses for all the slaves. MASTER EN high allows NAND gate U48A to convert the L Φ OVFL signal into the phase-sync signal. Phase-sync consists of a series of negative-going 0.1 µsec pulses. SLAVE EN low holds flip-flop U46A cleared (Q low) to keep the master-sync signal from passing through U50A, U46A, and U48B and out the <u>Phase Clear</u> connector.

Function 2: Accept a phase-clear pulse from any slave. MASTER EN high and SLAVE EN low makes OR gate 49B generate a high and enable the equivalent AND gate shown in dotted lines (U48BC, U50BC). This enables a phase-clear pulse from any slave to enter the <u>Phase Clear</u> connector and propagate through the gates to generate a CLEAR/ pulse and clear the master unit.

. * ..

Unit Slave Operation. Setup: MASTER EN line low, SLAVE EN line high.

Function 1: Generate phase clear pulses. MASTER EN low holds the output of gate U48A continuously high so that exclusive-OR gate U50A can compare the phase-sync pulses from the master to the slave's internal L Φ OVFL/ signal. If the signals don't match, a varying width pulse will appear at the output of gate U50A. Flip-flop U46A (enabled by SLAVE EN high) converts the mismatch pulse into a 0.1 µsec pulse. U48B converts this signal into a negative-going phase-clear pulse for this slave, all other slaves, and the master.

Function 2: Accept phase clear pulses. MASTER EN high and SLAVE EN low makes OR gate 49B generate a high and enable the equivalent AND gate shown in dotted lines (U48BC, U50BC). Enabling this gate allows a phase-clear pulse generated by this slave or any other slave to propagate through and clear this slave.

Unit Independent (Single-Unit) Operation. Setup: Both MASTER EN and STAVE EN

Function 1: Do not generate or accept phase-sync pulses. MASTER EN low disables gate U48A to stop generation of phase-sync pulses. SLAVE EN low holds flip-flop U46A cleared to block acceptance of phase-sync signals.

Function 2: Do not generate or accept phase clear pulses. SLAVE EN low holds flip-flop U46A cleared to block generation of phase-clear pulses. MASTER EN low and SLAVE EN low makes OR gate 49B generate a low. This signal disables the equivalent AND gate shown in dotted lines (U48BC, U50BC) and stops acceptance of phase-clear pulses.

2.17

2.5.7 Acc Sync Logic Circuit

1.11

- <u>Function</u>: Generates the AINC/ and BINC/ signals for the phase increment registers of the phase accumulator.

Operation. The complementary AINC/ and BINC/ signals make the registers accept and deliver data as follows:

AINC/ Low Register A sends current data to the adder, while BINC/ High register B takes new data from the phase engine data bus.

AINC/ High Register A takes new data from the phase engine data bus, while BINC/ Low register B sends current data to the adder.

The components of the acc sync logic circuit perform the following functions:

U45B. Flip-flop U45B synchronizes register switching to the \$\PhiACCCLK.

U45A. Flip-flop U45A synchronizes register switching to either the Φ ACCCLK or the L Φ OVFL signal, as selected by the multiplexer formed by gates U8A-D. All modes except sweep mode 7, SYNC-FSK, use Φ ACCCLK.

U44. Data selector U44 selects the signal that will control AINC/ and BINC/. The "active" register feeds data to the adder, while the "inactive" register can, if required by the mode, receive new data from the phase engine.

INCSEL 10	SELECTS SIGNAL	IN ORDER TO
LL	TRIGGER	Make the TRIGGER signal select the active/inactive register. Modes: SYNC-FSK (7) and ASYNC-FSK (8).
LH	BINC	Make the phase engine directly select the active/inactive register by setting line BINC.
HL	43B-Q	Make the register currently receiving data from the phase engine send that data to the adder as soon as the phase engine finishes loading it. AINCO/ clearing Q to low says register A just received the last 16 bits of its 40-bit load; BINCO/ setting Q to high says B just received the last 16 bits of its 40-bit load. Modes: All main and sweep modes use this signal except SYNC-FSK (7), ASYNC-FSK (8), and EXTR-SEQUENCE (9).
НН	43 A -Q	Make the register that last received data from the phase engine send that data to the adder, but not until directed to by the TRIGGER or SWPCLK signal, as selected by ACCSEQ and gates U47A-D. Modes: EXTR-SEQUENCE (9). The ACCSEQ signal selects TRIGGER for mode 9.

Table 2-0. Signal Functions of the Phase Accumulator Board

Sweep mode latch line 10. Allows the phase engine to hold the ACCHOLD/ waveform by stopping the **ΦACCCLK**. Low applies hold; high releases it. 10MHz system reference clock supplied by the ref/cal board. ACCCLK Sweep mode latch line 1. Allows the phase engine to choose ACCSEO either TRIGGER or SWPCLK as the signal that will cause the last-loaded phase increment register to send its data to the adder. ACCSEQ low chooses TRIGGER; high chooses SWPCLK. Sweep mode latch line 3. Asynchronous gate asynchronous clear AGAC/ control line. The phase engine sets this line low for the main A-GATE mode so that TRIGGER can immediately clear the Φ summing register, rather than wait for the output waveform to reach 360°. Sweep mode latch line 4. The phase engine sets this line high AGATE for the main A-GATE mode so that the TRIGGER signal can directly clear the Φ summing register. Output Y2 of the Φ ENG address bus decoder. Strobes the most AINC2/ significant 8 bits of the phase increment from the Φ ENG data bus into U33 of the A register. Major control signal. Low directs the A phase increment register AINC/ to send its stored phase increment to the adder. Output Y3 of the Φ ENG address bus decoder. Strobes the middle AINC1/ 16 bits of the phase increment from the Φ ENG data bus into U38 and U28 of the A register. Output Y4 of the Φ ENG address bus decoder. Two functions: 1) AINCO/ Strobes the least-significant 16 bits of the phase increment from the Φ ENG data bus into U18 and U23 of the A register, and 2) tells the acc sync logic circuit that the phase engine has completed loading the A register. Major control signal. Switched version of ACCCLK. This 10MHz BACCCLK clock synchronizes operation of the sync and control logic. Also called **\$**ACCCLK. Output Y1 of the Φ ENG address bus decoder. Strobes the burst BC/ count on the ΦENG data bus into the burst counter's internal register. Sweep mode latch line 12. Allows the phase engine to directly BINC select the phase increment register that will add its phase increment to the Φ summing register.

2-19

-

.

• Table 2-0. Signal Functions of the Phase Accumulator Board

BINC/	Major control signal. Low directs the B phase increment register to send its stored phase increment to the adder.
BINC2/	Output Y5 of the Φ ENG address bus decoder. Strobes the most significant 8 bits of the phase increment from the Φ ENG data bus into U34 of the B register.
BINC1/	Output Y6 of the Φ ENG address bus decoder. Strobes the middle 16 bits of the phase increment from the Φ ENG data bus into U39 and U29 of the B register.
BINCO/	Output Y7 of the ΦENG address bus decoder. Two functions: 1) Strobes the least-significant 16 bits of the phase increment from the ΦENG data bus into U19 and U24 of the B register, and 2) tells the acc sync logic circuit that the phase engine has completed loading the B register.
BURST/	Sweep mode latch line 2. Low for main BURST mode operation. Allows the burst counter to count the number of complete output waveform cycles.
BURSTCOMP/	Board output signal line. The control processor interface sets this line low to tell the main μ P that the phase accumulator has finished generating the requested number of output cycles.
CLEAR	Sweep mode latch line 15. Allows the phase engine to clear the phase summing register as required. For example, the phase engine pulses this line high to clear the phase summing register when the operator changes from sweep mode 12 to 13, from 24 to 23, and from 1 to 0.
CLEAR/	Output of external sync logic circuit. Clears the phase summing register.
CONT/	Sweep mode latch line 7. Low for all the sweep modes and for the main CONT and PHSLK modes. Blocks generation of Φ ACCCLR pulses so that the phase accumulator can run free.
<u>Holđ In</u>	Rear-panel BNC input for sweep or waveform holds (see HOLDEN). Low applies, high releases the hold.
HOLDEN	Sweep mode latch line 11. Allows the phase engine to select the function of the <u>Hold In</u> connector.
	[<u>Utility</u>] CONFIG WAVFM sets HOLDEN high for waveform hold, [<u>Utility</u>] CONFIG SWEEP sets HOLDEN low for sweep hold.

ند.

. Table 2-0. Signal Functions of the Phase Accumulator Board

HOLD REQ	Board output signal line. The hold input circuit sends the hold request signal to the phase engine board. High requests the phase engine to hold the current frequency or phase sweep.
INCLK/	Sweep mode latch line 0. Chooses either Φ ACCCLK or L Φ OVFL as the signal that controls when the phase increment registers swap their add/load functions. The SYNC-FSK sweep mode uses L Φ OVFL; all other main and sweep modes use Φ ACCCLK.
INSEL1 INSELO	Sweep mode latch lines 13 and 14. Allows the phase engine to select one of four phase increment register control lines. The control lines determine 1) which register will drive the adder while the other gets new data and 2) when the registers will swap functions. LL lets the TRIGGER line choose the adding register, LH lets the phase engine select the adding register with the BINC line, HL makes the most recently loaded register add immediately, and HH makes the most recently loaded register add when directed to by TRIGGER or SWPCLK.
LOOVFL	Positive-going 0.1 μ sec pulse formed by synchronizing Φ OVFL to Φ ACCCLK. Used by the external sync logic.
MASTER EN	Sweep mode latch line 8. Determines the function of the 650 in a group of synchronized units. MASTER EN high and SLAVE EN low makes the unit a master. Both lines low make it independent (single unit operation).
µPHOLD/	Internal output of control processor interface circuit. Low indicates a sweep hold request from the front panel or GPIB bus.
MODE/	Output YO of the Φ ENG address bus decoder. Two functions: 1) Strobes the bits on the Φ ENG data bus into the sweep mode latches and 2) presets the Q output of flip-flop 43A to an initial state of 1.
PACCCLK	Major control signal. Switched version of ACCCLK. This 10MHz clock synchronizes operation of the sync and control logic. Also called BACCCLK.
ΦACCCLR/	Major control signal. Clears the Φ summing register. Pulsing this line low clears the register; holding it low stops generation of output waveforms.
ØOVFL	Major control signal. Positive-going 0.1µsec pulse generated whenever the phase accumulator adder reaches the highest address supplied to the waveform RAM (360° point of the stored waveform)

· -

-

Table 2-0. Signal Functions of the Phase Accumulator Board

Phase Sync	Rear-panel BNC input/output. Synchronizes the output waveforms of interconnected 650 units. Consists of a series of 100 nsec negative-going pulses.	
<u>Phase Clear</u>	Rear-panel BNC input/output. Synchronizes the output waveforms of interconnected 650 units. 100 nsec negative-going pulse.	
SLAVE EN	Sweep mode latch line 9. Determines the function of the 650 in a group of synchronized units. SLAVE EN high and MASTER EN low makes the unit a slave. Both lines low make it independent (single unit operation).	
SWPCLK	Input signal supplied by the ref/cal board. SWPCLK's frequency depends on sweep mode (1-29), sweep function (linear, log, sine, random), and sweep compensation (on or off). One cycle of SWPCLK takes slightly more time than the phase engine needs to calculate and load the next phase increment of the sweep. Non-linear and compensated sweeps require more calculation time and therefore have lower SWPCLK frequencies than linear and non-compensated sweeps.	
TGATE/	Sweep mode latch line 6. The phase engine sets this line low to disable the burst counter for the main TRIG, A-GATE, and S-GATE modes.	
TRIGGER	Input signal supplied by the ref/cal board. Controls the TRIG, A-GATE, S-GATE, and BURST modes. A TRIGGER signal can come from any of these sources: internal trigger generator, <u>Trig In</u> BNC connector, front panel [<u>Manual Trigger</u>] key, or the GPIB bus.	

.

2.6 RAM BOARD (1458)

Major Function. Stores the waveshape and controls the phase of two independent output channels.

	Waveform RAM	2.6.6
Generate Waveforms Add Fixed Phase Offset Sweep Phase	Control Logic Phase Accumulator Interface Phase Offset Register Adder Waveform RAM RAM Output Buffer	2.6.1 2.6.3 2.6.5 2.6.4 2.6.6 2.6.7

.

: -

.

^3

INFORMATION IN THIS SECTION		
INFORMATION	FUNCTION	LOCATION
Block Diagram	Shows data flow, circuit control, and related boards.	Figure 2-0
Circuit Description Text	Individually describes the operation of each RAM board circuit.	Sections 2.6.1 through 2.6.7
Signal Description Table	Describes the function and action of each RAM board signal. Alphabetical by signal name.	Table 2-0

	INFORMATION IN OTHER SECTIONS	
INFORMATION	FUNCTION	LOCATION
ΦENG Bus Figure	Shows how the phase engine board controls the phase accumulator board over the ΦENG bus.	Figure 2-0 in section 2.4

RAM BOARD

2.6.1 Control Logic Circuit

Function. Lets the phase engine control the data processing circuits of the RAM board.

Components. Address decoders U7 and U8, NAND gates U9 and U10, and flip-flops U11, U12, and U13.

U7, U8. Address decoders U7 and U8 form the phase engine interface. All the Y outputs of each decoder stay high. The phase engine pulses them low one at a time by placing an address on the Φ ENG address bus, then strobing the Φ STBO/ line of the bus low. The resulting pulse on the selected Y output either controls circuits directly through gates or indirectly through the D flip-flops.

U10A, UI0B. Gates U10A and U10B allow the phase engine to load a waveform into RAM1 (with the RAM1WRITE/ signal), into RAM2 (with the RAM2WRITE/ signal), or into both RAMs simultaneously (with the RAMWRITE/ signal). These signals strobe the waveform amplitudes byte by-byte from the RAM data input buffers into the waveform RAMs.

UllA. Flip-flop UllA allows the phase engine to turn RDATACLK off (to load waveforms), then back on (to generate output signals).

UllB. Flip-flop UllB allows the phase engine to control the RAM data bus. Signal RAMOE/ makes the RAM data bus either accept data from the data input buffers (load new waveform) or send data to the output buffers (generate output signals). Complimentary signal RAMOE disables the outputs of the data input buffers during output signal generation.

U9C, U10C. Gates U9C and U10C allow the phase engine to load a phase value into the channel 1 offset register (with the RAM10FST/ signal), into the channel 2 offset register (with the RAM20FST/signal), or into both RAMs simultaneously (with the RAM0FST/ signal). Flip-flops U12A, U12B, U13A, and U13B synchronize the loading with RADRSCLK.

2.6.2 RAM Data Input Buffer Circuit

Function. The RAM data input buffer lets the phase engine load sine, triangle, and ramp waveshapes into the waveform RAMs.

Components. D-Type flip-flops U23, U25, and U34.

Operation. The phase engine loads a waveform as a series of individual amplitude bytes, one for every addressable location in the RAM. To load one byte, the phase engine first latches that byte into the RAM data input buffers. Next, it loads the address of the RAM location that will store that byte into the phase offset register. Finally, it strobes the byte from the input buffer to the RAM.

The RAM data input buffer consists of 74ALS574 D-type edge-triggered flip-flops. Setting the OC/ line low makes the Q outputs deliver data to the

RAM. Setting OC/ high makes the outputs assume the high-Z state. A positive-going clock pulse clocks the bit present at the D input to the corresponding Q output.

2.6.3 Phase Accumulator Interface Circuit

<u>Function</u>. Stores each address generated by the RAM board. This lets the RAM board generate the next address while the adder processes the old one.

Components. D-Type flip-flops U5 and U6.

Operation. During waveform generation, the phase accumulator interface reads the output of the phase accumulator board each time RADDRSCLK steps high. The output of the phase accumulator interface then remains fixed for use by the adder for the rest of the RADDRSCLK cycle. During waveform loading, RAMOE/ pulls the OC/ line high to make the Q outputs assume the high-Z state. With the outputs high-Z, resistor networks RN1 and RN2 pull the adder input lines BACC3-15 high.

2.6.4 Adder Circuit

Function. Adds the address in the phase offset register to the address in the phase accumulator and places the total in the RAM address register.

Components. U14-U17, U26-U29 (adder) and D-type flip-flops U18, U19, U30, U31 (RAM address register).

<u>Operation</u>. The adders continously sum their inputs and present the result at their outputs. The RAM address register reads the output of the adders each time RADDRSCLK steps high. The output of the RAM address register then remains fixed for use by the RAM memories for the rest of the RADDRSCLK cycle.

2.6.5 Phase Offset Register Circuit

<u>Function</u>. Lets the phase engine either give a fixed phase offset (such as 35°) to the channel output signal or phase sweep the channel output signal.

Components. D-type flip-flops U1 through U4.

Fixed Phase-Operation. The operator specifies a fixed phase by pressing [Channel], then PHASE, then entering a phase in degrees. The phase engine applies this phase by loading a fixed address in the phase offset register, then repeatedly adding it to the addresses delivered by the phase accumulator.

<u>Swept Phase Operation</u>. The operator specifies a phase sweep by pressing [<u>Sweep</u>], then PHASE, then following the menus to specify the type of phase sweep and its parameters. To apply a phase sweep, the phase engine puts a new and larger address in the phase offset register before each add cycle, then adds this address to the next address from the phase accumulator board.

2.6.6 Waveform RAM Circuit

<u>Function</u>. Stores the waveshape of the channel's output signal. The RAM puts out 12-bit digital bytes that represent amplitudes along the stored waveform.

Components. U20 and U21 (channel 1 or 3), and U32 and U33 (channel 2 or 4).

Operation. Each channel's RAM consists of two 8192-word x 8-bit CMOS chips that store the waveform as 12-bit amplitude values distributed across 8192 addresses. The phase engine loads sine, triangle, and ramp waveshapes in the waveform RAM. For square waves, the phase engine loads a sine in the RAM, then has the DAC/output board convert it to a square wave.

The RAM'S OE/ line controls the mode of the data output line: L to read data out, H to write data in: Pulling the WE/ line low writes data into the currently addressed word.

2.6.7 RAM Output Buffer Circuit

· _

.

<u>Function</u>. Stores each digital amplitude called from the RAM memories. This lets the control logic call the next amplitude from the RAMs while the DAC/output board processes the old one.

Components. D-type flip-flops U22, U24, U35.

Operation. RDATACLK clocks the values through at 10MHz.

RAM BOARD

Table 2-0. Signal Functions of the RAM Board

Output YO of address decoder U8. Negative-going pulse. Turns DATAON/ RDATACLK on for output signal generation. Output Y1 of address decoder U8. Negative-going pulse. Turns DATAOFF/ RDATACLK off during RAM waveform loading. Output YO of address decoder U7. Negative-going pulse. Latches a RAM10FST/ new phase offset value into the channel 1 phase offset register. Flip-flops U13B and U13A synchronize the actual latching of the new value with RADRSCLK (10MHz). This lets the phase engine load a new offset value for every address processed, as required by phase sweeps. Output Y1 of address decoder U7. Negative-going pulse. Latches a RAM2OFST/ new phase offset value into the channel 2 phase offset register. Flip-flops U12B and U12A synchronize the actual latching of the new value with RADRSCLK (10MHz). This lets the phase engine load a new offset value for every address processed, as required by phase sweeps. Output Y2 of address decoder U7. Negative-going pulse. RAMOFST/ Simultaneously latches a new phase offset value into both the channel 1 and channel 2 phase offset registers. Output Y2 of address decoder U8. Negative-going pulse. Sets the RAMON/ outputs of flip-flop U11B to RAMOE/ low and RAMOE high. Output Y3 of address decoder U8. Negative-going pulse. Sets the RAMOFF/ outputs of flip-flop U11B to RAMOE/ high and RAMOE low. Complimentary outputs of flip-flop U11B. Three functions: RAMOE/ 1) Configures the RAM data output bus to accept data from the RAMOFF/ RAM data input buffers or to read data to the RAM output buffers. 2) Enables the outputs of the RAM data input buffers for loading waveforms into the RAMS and disables them during output signal generation. 3) Enables/disables the outputs of the phase accumulator interface for signal generation/waveform loading.

× -

RAM BOARD

Table 2-0. Signal Functions of the RAM Board

RAM1WRITE/	Output Y3 of address decoder U7. Negative-going pulse. Writes a new 12-bit amplitude data word from the channel 1 RAM data input buffer into the channel 1 waveform RAM (U32 and U33).
RAM2WRITE/	Output Y4 of address decoder U7. Negative-going pulse. Writes a new 12-bit amplitude data word from the channel 2 RAM data input buffer into the channel 2 waveform RAM (U20 and U21).
RAMWRITE/	Output Y5 of address decoder U7. Negative-going pulse. Simultaneously writes the same 12-bit amplitude data word from both RAM data input buffers into both channel waveform RAMs (U20, U21, U32, and U33).
RDATA/	Output Y6 of address decoder U7. Negative-going pulse. The positive-going edge of the pulse latches the 12-bit waveform amplitude word currently on the phase engine data bus into the RAM data input buffers.

2.7 DAC/OUTPUT BOARD (1467)

<u>Major Function</u>. Converts the stream of digital amplitudes from the RAM board into an analog signal, then processes it for output.

SUBFUNCTION	CIRCUITS RESPONSIBLE	SECTION
Convert D-to-A	TTL/ECL Translator DAC Data Latches Waveform DAC	2.7.1 2.7.2 2.7.3
Remove 10MHz from Waveform	6-Pole Filter	2.7.4
Convert Sine Wave to Variable Duty Cycle Square Wave	Square Shaper Square Wave Symmetry DAC	2.7.5 2.7.6
Control the Amplitude of the Output Signal	XY Multiplier Amplitude Control	2.7.7 2.7.8
Provide Signal Offset and Final Amplication	Output Amplifier	2.7.9
Provide Output Impedance and Attenuation	Attenuator	2.7.10
Provide Output Protection	Output Protection	2.7.11
Provide Internal Signals for Calibration and Test	Cal Mux Channel Select	2.7.12
Control Relays	Relay Drive Buffer	2.7.13
Generate the <u>Sync Out</u> Signal	Square Shaper	2.7.5

INFORMATION IN THIS SECTION		
INFORMATION	FUNCTION	LOCATION
Block Diagram	Shows data flow, circuit control, and related boards.	Figure 2-0
Circuit Description Text	Individually describes the operation of each DAC/Output board circuit.	Sections 2.7.1 through 2.7.12

	INFORMATION IN OTHER SECTIONS	
INFORMATION	FUNCTION	LOCATION
ΦENG Bus Figure	Shows how the phase engine board compensates amplitude over the Φbus.	Figure 2-0 in section 2.4

2.7.1 TTL to ECL Translator Circuit

<u>Function</u>. Converts the 10MHz system clock (ACCCLK) and the 12-bit waveform amplitudes sent by the RAM board from TTL (0V/+5V) to ECL (-1V/-2V) voltage levels.

Operation. For a triangle waveform, the LSB (DO) clocks at 5MHz and the MSB (D11) clocks at 1.2KHz.

RN1-RN4. Resistor networks RN1 through RN4 convert bits D0 through D8 of each amplitude byte from TTL to ECL voltage levels. Although the resistor networks produce inexact ECL voltage levels, the DAC data latches can easily handle the slight variations.

U26. Level-translator U26 converts the system clock from TTL to precise ECL voltage levels. ACCCLK requires precise conversion because it controls presentation of the amplitude byte to the waveform DAC. Although MSB amplitude bits D9-D11 do not need precise level conversion, converting them through U26 eliminates the need for more resistor networks.

2.7.2 DAC Data Latch Circuit

<u>Function</u>. Synchronizes the level transitions of the individual bits of the amplitude byte.

<u>Operation</u>. The data byte present on the inputs of D flip-flops U1 and U2 transfers to the Q outputs only when ACCCLK (10MHz) steps from low to high. U1 and U2 ignore their inputs for the rest of the clock cycle. Resistor networks RN5 and RN6 rapidly pull the released outputs to -5V to further synchronize the level transitions.

DAC/OUTPUT BOARD

2.7.3 Waveform DAC Circuit

<u>Function</u>. Converts the digital amplitude bytes into a stair-step analog waveform.

<u>Operation</u>. Because ACCCLK holds each input byte fixed for 100 nseconds, the output waveform has steps 100 nseconds wide.

R41. Potentiometer R41 adjusts the voltage level (threshold voltage) at which the DAC recognizes state changes at the input terminals. A DAC input terminal does not jump immediately to the voltage level for its new state, but instead follows a transition curve with a very steep slope. R41 puts the threshold voltage in the linear center of the curve, rather than at the non-linear ends. To understand the importance of the threshold setting, consider the change from 0111 to 1000. If the MSB changes before the other bits, the DAC sees this sequence: $0111 \rightarrow (1111) \rightarrow 1000$. The temporary state (in parentheses) causes a high-voltage spike on the DAC output. Centering the threshold voltage eliminates such spikes. The calibration procedure tells how to set R41.

R4. Potentiometer R4 sets the output impedance of the DAC. The calibration procedure sets it to 66.67 ohms.

2.7.4 Six-Pole Filter Circuit

Function. Removes the voltage stair-steps from the output waveform of the DAC.

<u>Operation</u>. The low-pass filter passes frequencies below 2MHz (the specified output frequency range of the 650), but rolls off sharply above 2 MHz to remove the 10MHz system clock frequency riding on the waveform. The 6 poles give the filter a sharp roll-off rate.

U4-U5. Amplifiers U4 and U5 each have a gain of 2.6 $(1 + 750\Omega/464\Omega)$ and three poles at 2MHz. Capacitors C* and C** control the gain vs frequency response of the filter. C* (in parallel with C11) controls the flatness of the filter response curve, while C** (in parallel with C17) controls the sharpness of the knee. Flattening the curve reduces the amount of correction the auto calibration program must apply at each frequency. The calibration procedure tells how to set these capacitors and shows their effect on the response curve.

R84. Potentiometer R84 sets the output amplitude of the filter. The calibration procedure sets R84 to a value that gives a 1kHz sine wave a known amplitude (10Vrms measured at the <u>Func Out</u> connector, rather than at the output of the filter). The auto calibration program then uses this known starting point to build correction curves for other amplitudes and frequencies.

N. 22. -

THEORY OF OPERATION

2.7.5 Square Shaper Circuit

<u>Function</u>. The square shaper converts the sine wave into a square wave with a variable duty cycle. The square wave symmetry DAC determines the duty cycle of the square wave.

Front Panel Control. To choose sine or square, press [Channel], then FUNC, then SINE or SQUARE.

Operation. Voltage comparator U18 compares SYMV (a DC voltage that controls the duty cycle) to FILTOUT (the sine wave emerging from the six-pole filter). Whenever the sine wave voltage exceeds SYMV, output OUTB switches low. See figure 2-0 (duty cycle waveforms). OUTA is the inverse of OUTB.

Signal OUTA (U18). Transistors Q4 and Q5 and resistors R57 and R58 convert OUTA into the 50Ω -impedance, TTL-level <u>Sync Out</u> signal. Relay K8, if present, allows the MATE option to turn the sync signal on and off.

Signal OUTB (U18). Transistor Q3, amplifier U20, and the XY multiplier, output amplifier, and 50Ω attenuator circuits convert OUTB into the square wave output waveform of the channel. OUTB turns Q3 on and off. The state of Q3 makes the precision current source (consisting of the ±10VR supplies and 1% resistors R88 and R59) deliver either of two fixed precise current levels to amplifier U20. These precise currents make U20 deliver a square wave with equally precise positive and negative amplitudes (4.4V p-p at TP10).

Q2. Transistor Q2 turns off the square shaper during sine wave generation to eliminate radiation of square wave noise into other circuits. RLY6, the same signal that makes relay K6 switch to a sine wave, also turns on transistor Q2. Q2, when on, holds the output of U20 low (-2.2V at TP10).

2.7.6 Square Wave Symmetry DAC Circuit

<u>Function</u>. The square wave symmetry DAC determines the duty cycle of the square wave generated by the square shaper circuit.

Front Panel Control. To enter a duty cycle, press [Channel], then SHIFT, then DUTY, then enter any duty cycle (in 1% increments) between 20% and 80%.

<u>Operation</u>. The front panel board sends the duty cycle to the main microprocessor board. The main microprocessor sends it over the GPIO bus to square wave symmetry DAC U11 on the DAC/output board. U11 converts the duty cycle into differential analog currents, amplifier U14A converts the currents to an analog voltage, and amplifier U14B offsets and scales the voltage to produce SYMV for the square shaper circuit.

SYMV	MENU	SQUARE WAY	VE STAYS
TP6	DUTY	HIGH	LOW
+2V	80%	80%	20%
0V	50%	50%	50%
-2V	20%	20%	80%

28

20% DUTY CYCLE

Figure 2-0. Duty Cycle Waveforms

.

2.7.7 XY Multiplier Circuit

Function. Determines the amplitude of the output signal.

Operation. Relay K6 selects either the output of the six-pole filter or the square shaper for amplitude adjustment. Amplifier U6 inverts the signal to provide differential (180° out of phase) inputs to dual-channel linear multiplier U7. Running U7 differentially reduces distortion of the amplified signal. The AMPLCTRL signal (+0.3 to +3.0V at pin 1 of U7) determines the amount of amplification. Zener diodes CR1 and CR2 drop the +/-15V supply voltages down to +/-12V for U7's power supply inputs. Amplifier U8 inverts the CH1 output signal for addition to the CH2 output signal; amplifier U9 buffers the summed signal for delivery to the output amplifier circuit.

2.7.8 Amplitude Control Circuit

<u>Function</u>. Combines the effects of the three signals that can control the amplitude of the output waveform to produce one signal (AMPLCTRL) for the XY multiplier circuit.

- SIGNAL DESCRIPTION
- AM In Allows an external signal (connected to the rear-panel AM In connector) to amplitude-modulate the output waveform.
- AMPL Allows the operator to control the waveform amplitude. The front panel board sends the digital amplitude entered in the channel amplitude menu to the main microprocessor board, which generates the DC voltage level AMPL.
- PHASE ENG Allows the phase engine board to correct frequency-dependent DATA BUS amplitude errors caused by non-linearities in the output circuits. The phase engine sends correction factors (previously generated by the auto-calibration program) over the phase engine data bus to DAC U19 to correct frequency-dependent gain errors point-by-point as waveform generation proceeds.

Front Panel Control. To enter an amplitude, press [Channel], then AMPL, then enter an amplitude voltage.

<u>Operation</u>. Scaling by the +10V REF and the resistor network makes every 0.3V of AMPL (at TP4) produce a 5Vp-p increase in the output waveform.

U19. DAC U19 converts the data on the phase engine data bus into an amplitude correction for each point of the output waveform. Figure 2-0 (structure and operation of the phase engine bus) shows how the phase engine uses the data bus and the CSTBO/ and CSTB1/ signals (shown as CSTB/ on the DAC/output board schematic) to load a different amplitude correction value in each output channel. The DAC has a compensation range of +/-12.5%.

DAC/OUTPUT BOARD

2.7.9 Output Amplifier Circuit

Function. Adds DC voltage offset and amplifies the signal up to 50Vp-p.

Front Panel Operation. To enter an offset, press [Channel], then OFFSET, then enter an offset voltage.

<u>Operation</u>. The output amplifier consists of very high slew rate wideband differential amplifier U25, associated transistors Q13-Q18, and voltage regulators VR1 and VR2. The output amplifier inverts the signal.

Gain Calibration. Manual calibration step 5 sets the gain (R119/[R92+R93]) of the output amplifier. Gain calibration requires an input signal with a known precise amplitude, a gain variation control, and a way to measure the output. For manual calibration step 5, the square shaper circuit provides the known reference input signal, R93 varies the gain from 5.4 to 7.5, and an external DVM measures the output amplitude at the rear-panel <u>Func Out</u> BNC connector. Calibration step 5 (called square wave amplitude adjust) has the operator adjust R93 until the output signal equals 10.0vrms. This corresponds to a gain of about 6.5.

Offset. Offset refers to the centerline DC offset voltage of the output waveform. Signal OFST (from the main microprocessor board) offsets the output by the amount specified in the channel menu.

U25, Q13-Q18. Zeners CR11 and CR12 reduce the ±38VDC supply voltages to ±15VDC for operational amplifier U25. The operating current used by U25 to keep the inverting (-) input at 0 volts varies according to the amplitude of MULT OUT, the applied input signal. The varying operating current develops corresponding varying voltages across resistors R120 and R124, which, in turn, drive transistors Q14 and Q17. The output of Q14 drives parallel transistors Q13/Q15 to produce the positive half of an output cycle, while Q17 drives Q16/Q18 to produce the negative half of an output cycle.

R133. Potentiometer R133 (on the output of U25) controls the aberrations (overshoot) and rise time of the output signal. Manual calibration step 7 tells how to set R133.

VR1 and VR2. Voltage regulators VR1 and VR2 limit the output current to 625 ma.

2.7.10 Attenuator Circuit

Function. Provides output switching, impedance, and attenuation.

<u>Front Panel Control</u>. To switch the output on/off and select either 0 or 50 ohm impedance, press [Channel], then SHIFT, then OUTPUT, then OFF, ON-0 ohm, or ON-50 ohm. To control attenuation, see paragraph K3 below.

Why Does the 650 Use Attenuation? Although the 650 can produce output voltages over a 1000-to 1 range (when the operator selects 50 ohm output impedance), the XY multiplier and output amplifier circuits work best (most linear) only over a 10-to-1 range (between 25V and 2.5V). Operating in the linear region of these circuits reduces the amount of amplitude correction the auto-calibration feature must add at each point of the waveform. The attenuator circuit lets the 650 produce an output voltage range of 1000-to-1 and, at the same time, operate the XY multiplier and output amplifier over only a 10-to-1 range.

To accomplish this, the main microprocessor board puts the output voltage entered in the channel menu into one of three subranges (25mV to 249mV, 250mV to 2.499V, or 2.5V to 25V). It then makes the output amplifier deliver 2.5V to 25V regardless of the range, and makes the attenuator divide this voltage by ten or a hundred to get the amplitude entered in the menu. For example, if the operator enters 1V in the menu, the output amplifier generates 10V and the attenuator divides it by 10 to get 1V at the output. The operator doesn't know about the attenuator because the main microprocessor automatically switches in the attenuation required for whatever voltage appears in the channel menu.

What About 0Ω Output Impedance? The 0 ohm output impedance shorts out the attenuator. Therefore, if the operator selects 0 ohm, the 650 limits its output to a single 100-to-1 amplitude range of 25V to 0.25V. Operating over this range makes the XY multiplexer and output amplifier operate in somewhat non-linear regions and forces the auto-calibration feature to apply larger γ correction factors to keep the output linear.

<u>Component Descriptions</u>. The attenuator consists of relays K1-K3, K5, and various precision resistors. One side of all the relay coils connects to +5V; therefore, a relay energizes when the appropriate Q output of U13 (the relay drive buffer) steps low. The schematic shows relays unenergized.

K1. Relay K1 allows the operator to turn the output on/off and also provides output overload protection. The channel menu controls K1 directly; the output protection circuit controls K1 indirectly. OFF in the channel menu opens K1; either ON-0 ohm or ON-50 ohm closes it. If the output protection circuit detects an overload, it opens K1 by disabling U13, the relay drive buffer.

K2. Relay K2 selects either 0 ohm or 50 ohm output impedance. The channel menu controls it directly. ON-0 ohm energizes the coil; ON-50 ohm de-energizes it.

K3, K5. Relays K3 and K5 control attenuation. Note that K3 requires energizing to add -20dB, while K5 requires non-energizing to add -20dB. To operate K3 and K5, first select an offset of OV ([Channel] OFFSET 0 [Execute]). Second, select a voltage range from the <u>Func Out</u> column of table 2-0. Third, enter a voltage within that range in the channel menu ([Channel] AMPL ## [Execute]). The relays will operate as shown in table 2-0.

THEORY OF OPERATION

K7. Relay K7 connects the output amplifier to the ref/cal board to calibrate offset voltage, peak voltage, and phase.

HIGH VOLTAGE	I	RELAY	к3	RELAY K5			TOTAL	VOLTAGE AT <u>Func Out</u> BNC				
OUTPUT AMP VOLTAGE RANGE	U13 P16	K3 COIL	K3 ATTN	U13 P13	K5 COIL	K5 ATTN	(K3+K5) ATTENUATION	(as entered in channel menu)				
2.5V ↔ 25V	н	NE	OdB	L	Е	OdB	0dB (V/1)	2.5V ↔ 25.0V				
2.5V ↔ 25V	L	E	-20đB	L	E	OdB	-20đB (V/10)	0.25V ↔ 2.499V				
2.5V ↔ 25V	L	Е	-20dB	н	NE	-20dB	-40dB (V/100)	0.025V ↔ 0.249V				

Table $2-0$.	Operation	of	the	Attenuation	Relays
Table 2-0.	Operation	01	00		

...E 🛬 Energized, NE = Not Energized

2.7.11 Output Protection Circuit

Function. Protects against internal and external current and voltage overloads.

Functional Schematic. Figure 2-0 gives a functional schematic of the output protection circuit.

<u>Window Comparator</u>. Operational amplifiers U24C and D form a window voltage comparator that continuously checks the output voltage and current.

<u>Window Limits</u>. Voltage regulator VR1 and resistors R107 and R108 determine the upper voltage limit of the window comparator. As long as the current through VR1 stays less than 625ma, the voltage at pin 2 stays fixed at about 37V. R108 and R107 divide the range between +37V and -5V down to an upper limit of +3V at pin 11 of U24D. Similarly, VR2, R109, and R153 divide the range between -37V and +5V down to a lower limit of -3V at pin 8 of U24C. Therefore, any output of the voltage monitor circuit that exceeds the window limits of +3V and -3V will trip output protection.

Overcurrent Detector. VR1's impedance increases when the current through it exceeds 625ma. An overcurrent therefore pushes the voltage at VR1-pin 2 toward ground. Because R107 connects to -5V, pushing the voltage of VR1-pin 2 to ground pushes U24D's + input negative. This action forces U24D's output negative and trips output protection. Similarly, an overcurrent through VR2 pushes the - input of U24C positive. This action forces U24C's output negative and trips output protection. Tripping output protection opens output relay K1 and disconnects any external short circuit or current source. <u>Voltage Monitor</u>. Resistors R111, R113, R114, and relay K4 divide the output voltage down to the +3V/-3V range of the window comparator. Selecting an output impedance of 50 ohms and an output voltage between 0 and 2.499V opens relay K4. With K4 open, 1/10 of the <u>Func Out</u> voltage appears across R111 (110K) and 9/10 appears across both R114 (1Meg) and the comparator inputs. Selecting an output impedance of 50 ohms and an output voltage of 2.500 or greater closes relay K4. With K4 closed, 9/10 of the <u>Func Out</u> voltage appears across R111 (110K) and 1/10 appears across both R113 (12K) and the comparator inputs. For 0 ohms output impedance, K4 stays closed for all output voltages.

If the output of the voltage divider exceeds +3V, the output of U24D will swing negative and trip output protection. Likewise, if the voltage comparator output drops below -3V, the output of U24C will swing negative and trip output protection. Tripping output protection opens the output relay and disconnects any external source of high voltage. Diodes CR8 and CR9 limit the output swing of the voltage comparator to protect U24C and U24D.

<u>Component/Signal Descriptions</u>. The following paragraphs discuss the operation of U24 and the OE/, IOST6/, IOBS/, and MSTRST/ signals.

U24A. Operational amplifier U24A acts as a flip-flop that remembers the status of output protection. Capacitor C68 lets U24C or U24D develop a negative-going pulse at pin 4 of U24A. Because this pulse exceeds -2.2V (the voltage at pin 5 that holds U24A in the untripped state), U24A's output swings positive and U24A switches to the tripped state.

Output OE/. Output OE/ opens output relay K1 when the output protection circuit trips. OE/ controls the output enable line of U13, the relay drive buffer. With no overload, OE/ stays low and lets the main microprocessor control the relays through U13. An overload switches OE/ high, disables the relay drive buffer, and opens all the relays, including K1, the output relay.

Output IOST6/. Status line IOST6/ tells the main microprocessor the status of the output protection circuit. High indicates untripped; low indicates tripped. Each the DAC/output board has an IOST6/ line; they all connect together and feed back to the main microprocessor board as a single-Fine.

Input IOBS/. Board select line IOBS/ lets the main microprocessor board reset the output protection circuit. Pulling IOBS/ low pulls U24A-pin 5 from +2.2V (tripped level) down to about 0.7V. Because U24A-pin 4 stays at 0.9V (except during trip pulses), pulling U24A-pin 5 down to 0.7V makes U24A's output swing negative and switches U24A to the untripped state.

Input MSTRST/. Master reset line MSTRST/ lets the main microprocessor board reset the output protection circuit. The main microprocessor board generates a master reset on power-up and also when you press the [Reset] PARAMS key.

• 2

.

.

10 . 1

2.7.12 Cal Mux Channel Select

<u>Function</u>. Lets the main microprocessor board connect any of eight internal DAC/output board signals to the ref/cal board for calibration and self testing.

Operation. Using the GPIO address bus, the main microprocessor board makes address decoder U1O latch the data on GPIO data bus lines IODTO-3 into U17's D-type flip-flops. Output lines Q1-2 of U17 connect to the address-inputs of multiplexer U15. The latched data on these address lines selects one of the eight multiplexer inputs for connection to the ref/cal board.

Latched output bit Q5 of U17 (input IODT3) controls relay K4 in the output protection circuit. K4 turns the output protection circuit on and off. The next section tells why U13, the relay drive buffer, cannot control relay U4.

2.7.13 Relay Drive Buffer

.

.

<u>Function</u>. Lets the main microprocessor board operate relays K1-K3 and K5-K7 on the DAC/output board.

Operation. Using the GPIO address bus, the main microprocessor board makes address decoder U10 latch the data on GPIO data bus lines IODT1-3 and 5-7 into U13's D-type flip-flops. A low at any latched (Q) output of U13 turns the relay connected to that output on. A low at the OE terminal (pin 1) enables U13 and lets it control the relays, while a high forces all the outputs to a high impedance state.

Effect of an Output Overload. When the output protection circuit detects an overload, it steps the OE/ signal high. Stepping OE/ high forces U13's outputs to their high impedance state, which opens all the relays, including K1. Opening relay K1 disconnects the output amplifier from the <u>Func Out</u> connector.

Relay K4. U13 does not control relay K4 (part of the output protection circuit). Instead, U13 in the cal mux channel select circuit con<u>tr</u>ols K4.

2.8 REFERENCE/CALIBRATION BOARD (1615) (Refer to figure 2-0.)

2.9 SWITCHING POWER SUPPLIES (1627, 1628)

The 650 contains the following switching power supplies:

BOARD NAME	SUPPLY NAME	OUTPUT NAME	OUTPUT CURRENT	VOLTAGE LIMITS (VDC)
		+38VDC	3 A	+36.8 to +39.2
ANALOG POWER	±38VDC	-38VDC	3 A	-36.8 to -39.2
SUPPLY BOARD		+15VDC	2 A	+14.5 to +15.5
(1627)	±15VDC	-15VDC	2 A	-14.5 to -15.5
· · · · · · · · · · · · · · · · · · ·	±5vdc	+5VDC	10 A	+4.9 to +5.1
DIGITAL POWER SUPPLY BOARD (1628)		-5VDC	2 A	-4.9 to -5.1
	ISO+5VDC	+5VDC	1A	+4.9 to +5.1

2.9.1 Functional Circuit Description

Because the ±38VDC, ±15VDC, ±5VDC, and ISO+5VDC switching power supplies all work basically the same, this section describes only the ±38VDC supply. Figure 2-0 redraws the ±38VDC schematic to make the major functions easier to see. The following text keys its circuit descriptions to the numbered functions on the schematic.

Function. Supplies ±38VDC power to the output amplifiers of each channel.

<u>Basic Circuit</u>. Components U1, Q1, L1, C11, and CR6 form the basic switching power supply circuit. U1 generates a 30kHz square wave that drives the gate of FET transistor Q1. Q1 switches $\simeq 60$ volts from the input filter capacitors through to inductor L1. L1 absorbs most of the applied voltage to limit the charging current flow to output filter capacitor C11. When Q1 removes the input voltage, L1 discharges through CR6. C11 discharges continuously through the external load. U1 controls the output voltage by adjusting the width (Q1 on-time) of the applied voltage pulses.

(1) SWITCHING FREQUENCY CONTROLLER

R4 and C6 determine the oscillator frequency for both U1 and U2. The resulting 30kHz sawtooth waveform appears across C6.

2) POWER SWITCHER

Rl biases Ql off (+). Ul turns Ql on by pulling its gate less positive through Rl, R2, and CR5. Zener diode CR5 shifts the bias voltage down to protect Ul's switching transistor. Zener diode CR23 protects field-effect transistor Ql by limiting its gate-source voltage to 15 volts.

3) VCC POWER

C5 provides VCC power to U1 and U2. During power-up, the input filter capacitors charge C5 through R3. After power-up, diode CR8 charges C5. C7 decouples high frequency and EMI at U1.

(4) DEAD-TIME CONTROLLER

C8 and R64 prevent power-up current surges. At the first application of power, C8 acts as a direct short because it contains no charge. Therefore, the entire +5V reference voltage initially appears at the DTC pin and makes U1 restrict the charging pulse to its minimum width. As C8 charges through R64, the voltage at DTC drops to OV and allows the charging pulse to expand to its operating width.

5) CURRENT LIMITER

Normal Operation. A voltage directly proportional to the output current appears across R10. Because the output voltage sensor holds R10's output (R11) side fixed at 38V, voltage variations due to current changes appear entirely on R10's input (CR22) side. R11 and R12 provide the reference voltage for the - input of error amplifier 2, while R10, CR22, R8, and R9 provide the current dependent voltage for the + input. Only output currents in excess of 3 amps can generate enough voltage across R10 to overcome the fixed 0.6V forward drop across diode CR22. Overcoming CR22's drop pulls the 2+ input below the 2reference and makes U1 reduce the width of the charging pulse.

Operation During Power-Up. During power-up, reverse current flow from ground through R9, R8, and R70 to the -38V input filter capacitors disables current limiting by holding the B+ input low. As the +38V line rises toward 38 volts, the increasing forward current from the +38V line through CR22, R8,. and R9 eventually swamps out the reverse flow and enables current limiting.

6) OVER-VOLTAGE PROTECTOR

Components R13, CR9, and R15 connect from +38V to -38V and monitor both outputs of the supply. If the total output voltage (76 volts) rises above 82 volts, zener diode CR9 will conduct, current will flow through R15, and the resulting voltage will turn on Q2. Silicon-controlled rectifier Q2 will then remain on and hold +38V and VCC shorted to ground through CR8, R14, and CR10.

(7) OUTPUT VOLTAGE SENSOR

Error amplifier 1 of U1 monitors the output voltage. R6 provides the reference voltage, while R16 and R17 divide the output voltage down to the range of the reference voltage. Feedback components C9 and R5 make the voltage monitoring amplifier insensitive to 60Hz voltage variations.

THIS PAGE LEFT BLANK

SCANS By Artek Media

Scans by ARTEK MEDIA =>

Figure 2-0

System Block Diagram												2-44
GPIO Bus Block Diagram	•					•	•	•		•	•	2-46
Phase Engine Bus Block Diagram		•	•			•		•		•	•	2-48
Phase Accumulator Board Block Diagram		•	•	•	•	•	•		•	•	•	2-51
Phase Accumulator Board Sync and Control Logic		•	•		•	•	•	•			•	2-52
RAM Board Block Diagram		•	•		•	•	•	•	•	•	•	2-54
DAC/Output Board Block Diagram		•				•		٠	•		•	2-55
Output Protection Circuit Functional Schematic												
Switching Power Supply Functional Schematic .					•	•	•	•	•	•		2-57
Power Distribution Diagram												
· · · · · · · · · · · · · · · · · · ·										-		-

.

الد المحمد الي الحرافي

.....

Figure 2-0, Part 1 650 System Block Diagram

650 System Block Diagram

Figure 2-0, Part 1 GPIO Bus Block Diagram ęr:

•

Scans by => ARTEK MEDIA © 2003-2005

LINE NAME	FUNCTION
IOBS#/	Input/Output Board Select Lines
IOSTB/	Input/Output Strobe Line
IORW	Input/Output Read/Write Line
IOAD#	Input/Output Address Lines
IODT#/	Input/Output Data Lines
IOST#/	Input/Output Status Lines
1	Identifies low-true signals.

ند

فر

	REF/CAL BOARD ADDRESS-DECODED FUNCTION LINES									
LINE	ACTION	CONTENTS OF BYTE	FROM	то						
Y0	Reads	Ext trigger trip level	IODT bus	Trigger level DAC						
Y1	Reads	Start/stop command	IODT bus	Internal trigger generator						
Y2	Writes	LSB of DVM reading	DVM	IODT bus						
Y3	Writes	MSB of DVM reading	DVM	IODT bus						
Y4	Reads	Trigger control bits	IODT bus	Control signal latcl						
Y5	Reads	DVM/PLL control bits	IODT bus	DVM latch						
Y6	Reads	Relay control bits	IODT bus	Calibrate select latch						

PHASE ENGINE BOARD ADDRESS-DECODED FUNCTION LINES							
LINE	ACTION	CONTENTS OF BYTE	FROM	то			
Y0	Reads	Commands/Data	IODT bus	MSB in latch			
Y1	Reads	Commands/Data	IODT bus	LSB in latch			
Y2	Writes	Commands/Data	MSB out latch	IODT bus			
Y3	Writes	Commands/Data	LSB out latch	IODT bus			

PHASE ACCUMULATOR BO
Sets status line IOST4/ (Q
Sets HOLD flip-flop (U2B)
Sets HOLD flip-flop (U2B)

DAC/OUTPUT BOARD ADDRESS-DECODED FUNCTION LINES							
LINE	ACTION	CONTENTS OF BYTE	FROM	то			
YO	Reads	Relay control bits	IODT bus	Relay drive latch			
Y1	Reads	Symmetry level	IODT bus	Square wave sym- metry DAC			
Y3	Reads	Signal select bits	IODT bus	Calibrate signal select latch			

OARD ADDRESS-DECODED FUNCTION LINES					
FUNCTION					
(Q of flip-flop U2A) high (burst not complete). B) to "resume sweep" state.					
b) to reading enception					

I2B) to "hold sweep" state.

•

Figure 2-0, Part 2 GPIO Bus Block Diagram Scans by => ARTEK MEDIA © 2003-2005

Figure 2-0, Part 1 Phase Engine Bus Block Diagram Scans by => ARTEK MEDLA © 2003-2005

.

Ψ.

<u>ن</u>ا د.'

Figure 2-0, Part 2 Phase Engine Bus Block Diagram

Scans by ARTEK MEDIA =>

2–50

BLANK

Scans by => ARTEK MEDIA © 2003-2005

Figure 2-0, Part 1 Phase Accumulator Board Sync and Control Logic ÷.

ŧ

ŕ

2.

.

Scans by => ARTEK MEDIA © 2003-2005

12

Phase Accumulator Board Sync and Control Logic

Figure 2-0 DAC/Output Board Block Diagram

·

×

35

في ا

с.,

Scans by => ARTEK MEDIA © 2003-2005

. 77

7.

Figure 2-0, Part 1 Power Distribution Diagram

- ----

7.

TR.

.

Figure 2-0, Part 2 Power Distribution Diagram

1.1

•

2.

- 777 - 4

-

CHAPTER 3

PERFORMANCE VERIFICATION PROCEDURES

CHAPTER OVERVIEW

Section	Question Answered	Page
3.1 Quick Functional Check	Do the basic functions work? Use this procedure and an oscilloscope to find out.	3-2
3.2 Complete Performance Verification	Does the 650 meet all the specifications? Use the tests and test equipment described in this section to find out.	3-3
3.3 Factory Performance Verification	Do you want Wavetek to run the complete performance verification for you? This section tells how to arrange for factory verification.	3- 58

•

₹•

....

3.1 QUICK FUNCTIONAL CHECK

(See Section 2.7 in Operation Manual)

at an a' d

- 3.2 COMPLETE PERFORMANCE VERIFICATION
- Does the.650 meet all the specifications? Use the tests and test equipment described in this section to find out.

Test Equipment Required. Table 3-0 lists the complete set of test equipment needed to fully verify 650 performance, while table 3-0 gives the specific instruments needed for each test.

Test Numbering. Complete performance verification consists of channel tests (repeated on each channel) and system tests (performed once per 650). Each test breaks down into parts numbered as follows:

Output Channel Tests TT.C.X.X	System Tests TT.X.X	Numbering Range
Test NumberTT Channel Under TestC Test PartX Subtest PartX	Test Number- TT	TT = 4 through 40 C = 1, 2, 3, 4
	Test PartX Subtest PartX	X = As required X = As required

More Information. Section 3.4, factory performance verification, shows the results of the factory automated version of these tests.

TEST SUMMARY

Software Version Test. Reads the version number of the software.

Quick Functional Check. Verifies that each channel has the correct Func Out and Sync Out outputs at power on.

Quick Cal Check. Verifies proper calibration of the internal reference voltage source.

<u>Reference Input/Output</u>. Three functions: 1) Verifies the frequency accuracy of the internal reference clock. 2) Verifies that the 650 can detect a signal at <u>10MHz Ref In</u>, turn off the internal REF clock, and operate from an external reference signal. 3) Verifies that the <u>10MHz Ref Out</u> signal meets TTL level specifications.

Internal Voltage Reference. Measures the accuracy of the internal calibration voltage reference.

Output On/Off; 0/50 Ohm Impedance. Verifies correct operation of the output impedances and on/off controls of all channels.

<u>Function Check at 600Hz, 10Vp-p</u>. Verifies that each channel allows selection of the SINE, TRIANG, RAMP, SQUARE, and DC functions and that each function operates correctly.

Sine Amplitude and Offset Accuracy. Verifies that sine wave amplitude and offset meet specifications across the Odb range for all channels.

PERFORMANCE VERIFICATION

COMPLETE

Sine Amplitude Accuracy at 50Vp-p. Verifies that each channel can deliver 0.5 ampere into a 50 ohm load and still maintain the maximum peak-to-peak output voltage.

Square Amplitude and Offset Accuracy. Verifies that the square wave amplitude and offset meet specifications across the Odb range for all channels.

DC Voltage Accuracy. Verifies DC voltage accuracy for each channel.

DC Current Load Test. Verifies that each channel can deliver 0.5 ampere into a 50 ohm load and still maintain the maximum DC output voltage.

Attenuator Accuracy. Verifies the accuracy of the output attenuator of each channel.

Phase Check. Verifies the phase accuracy and quick cal effectiveness for each channel.

Sine Frequency Response. Verifies that each channel's sine wave amplitude deviation remains within limits from 10Hz to 20kHz.

Sine Distortion. Verifies that each channel's sine wave meets purity specifications (limited second and third harmonics).

Spurious Level. Verifies that the worst-case spur of each channel falls below the specified limit.

<u>Rise/Fall Time and Aberrations</u>. Verifies that each channel's square wave rise/fall times and positive/negative aberrations meet specifications.

Square Wave Symmetry. Verifies the duty cycle set-ability and accuracy of each channel's square wave.

AM Input. Verifies that each channel's AM input operates and has the correct modulation drive levels.

Sync Out. Verifies that each channel's sync signal meets TTL level limits.

Main Generator Mode. Verifies that the main generator modes operate correctly at a phase setting of 0°.

Burst Count. Tests the set-ability and accuracy of the burst counter at the maximum trigger frequency.

External Phase Lock. Verifies that the 650 can phase lock to an external reference signal applied to Trig In.

Programmable Trigger Level. Verifies operation and accuracy of the trigger level DAC circuitry.

Internal Trigger. Verifies the frequency accuracy of the internal trigger synthesizer.

· · · · · · · · · · · ·

-

Marker Output Level. Three functions: 1) Verifies set-ability and accuracy of the marker frequency. 2) Verifies that the <u>Marker Out</u> levels meet TTL requirements. 3) Indirectly verifies proper operation of the phase marker.

Sweep Time. Verifies sweep time accuracy.

<u>Sweep Modes</u>. Verifies proper operation of the sweep modes associated with the <u>Trig In</u>, <u>Marker Out</u>, and <u>Horiz Out</u> connectors.

<u>FM/PM Input</u>. Verifies that an external dc voltange source can frequency modulate the 650.

Hold In. Verifies that a TTL signal applied to the Hold In connector can control frequency sweep and waveform output.

Stored Settings. Verifies that the 650 can store and recall setups and that the memory backup battery works.

Self Diagnostics. Verifies that self test can test the 650 circuits and that none have defects.

•

·--

2 MAR 87

Table 3-0. Test Equipment Required for Complete Performance Verification

Equipment	Recommended
Analyzer, Spectrum Counter, Universal Detector, Peak/Phase	HP8568A HP5334A Wavetek Phase Detection System Wavetek 601 Switching System Main Chassis Wavetek 603 Switching System Control Panel* Wavetek 621 Phase Detector Module
DMM, Thermal True RMS Generator, Pulse/Function Oscilloscope Plug-In, Vert, Programmable Plug-In, Horz, Programmable Supply, Power, Programmable Synthesizer, Waveform	Fluke 8506A Wavetek 271* Tektronix 7854 Waveform Calculator Tektronix 7A16P Tektronix 7B90P Keithley 230 Wavetek 178*
Terminations and Attenuators	Specifications
Termination A Termination B (Precision*) Termination C (Precision*) Attenuator 1 Attenuator 2	50 ohm, 2W, 2% 50 ohm, 2W, 0.1% 50 ohm, >12.5W, 0.1% 50 ohm, 5X, 2W 50 ohm, 10X, 12.5W

***NOTES**

A GPIB instrumentation computer can replace the Wavetek 603 control panel.

Any inaccuracy in the precision terminations will cause measurement errors. Either connect trimmer resistors in parallel and adjust the resistance to precise values, or measure the inaccuracy of the termination and scale the test readings accordingly.

The Wavetek 178 waveform synthesizer provides high frequency accuracy. The Wavetek 271 pulse/function generator provides the pulse function.
· _ .

2 MAR 87

COMPLETE

Table 3-0. Test Equipment Required for Each Test

				- <u>R</u>	EQ	UI	RE	:D	E	QU	IP	ME	NT	<u>!</u>	
			S		Р		F		P	W					
			Ρ		Н		U		W	V					
			Е		S		N		R	F					
			С	С	Е		С			M					
			т	0	D		G		S	S	т	т	Т	A	A
			_	Ū			Е	S	U	Y	E	Е	Е	т	т
			A	N	T		N	С	P	N	R	R	R	Т	т
						D	2	0	P	1	M	M	M	N	N
									L						
		Tuno							Y		A	в	С	1	2
<u>No.</u>	Test Name	Туре	K	I.	-	••	-	-	-	-					
	The Transformer and the State of the State o	S						_	_	_					
	Software Version Test	S C	•	0	•	0	•	•	•						
5.	Quick Functional Check		•	v	•		•	•	•	·	•	-	·		_
6.	•	S	•	•	•	0	•	:	•	÷		•	•	•	•
	Reference Input/Output	S	•	0	•	•	•	0	•	0	U	•	•	•	•
8.	Internal Voltage Reference (2.048Vdc)	S	•	٠	•	0	•	•	•	•	•	•	•	•	•
9.	~ (No Test)	-	•	•	•	٠	•	•	•	•	•	•	•	•	•
10.	(No Test)	-	•	•	•	٠	•	•	•	•	•	•	٠	•	•
11.	Output ON/OFF; 0/50 Ohm Impedance	С	•	•	•	0	٠	•	•	•	•	0	•	•	•
	Function Check at 600Hz, 10Vp-p	С	•	•	٠	0	٠	•	•	•	•	0	•	•	•
	Sine Amplitude and Offset Accuracy	С	•	•	•	ο	•	•	•	٠	•	٠	•	•	•
14.	Sine Amplitude Accuracy at 50Vp-p	С	•	•	•	0	•	•	•	•	•	•	0	•	•
15.	Square Amplitude and Offset Accuracy	С	•	•		ο	•	•	•	•	•	•	•	•	•
	DC Voltage Accuracy	С		•		ο		•	•	•	•	•	•	٠	•
	DC Current Load	С	•			ο	•	•	•	•	٠	•	ο	•	•
- · ·	Attenuator Accuracy	С			•	ο	•	•	· •	•	•	ο	•	•	•
19.	(No Test)	-						•		•	•		•	•	•
20.	(No Test)	_							•				•	•	•
	Phase Check	С			0	ο					•	ο			
		C				ο									
	Frequency Response (Sine)	C	0			-								ο	
	Sine Distortion	C	0			-	_								
24.	- I	c	Ŭ	•	•			0			0				ο
	Rise/Fall and Aberrations	C	•	0	•	•		-			0				
	Square Wave Symmetry	c	•	Ŭ	•	0	•	-	0		-				
	AM Input	c	•	•	•		•				0				
	Sync Out	-	•												
	Main Generator Mode	S							•						
	Burst Count	S							•						
	External Phase Lock	S												•	•
	Programmable Trigger Level	S							0		•	•	•	•	•
	Internal Trigger	S	•						•			•	•	•	•
34.	Marker Output Level	S	•						•						•
35.	Sweep Time	S	•						•						•
36.	Sweep Modes	S							0						•
37.	FM/PM Input	S							0						٠
	Hold In	S	•	0	•	0	٠	•	0	٠	0	•	•	•	•
	Stored Settings	S	•	•	•	٠	•	•	•	•	•	•	•	•	•
	Self Diagnostics	S	•	•	•	•	•	•	•	٠	•	•	•	•	•
	Ŭ,														

/

2 MAR 87

TEST 4: SOFTWARE VERSION TEST

- Purpose . Read the version number of the software.
 - Equipment None
 - Setup Turn 650 power on.
 - Results Power-up screen displays: "WAVETEK MODEL 650 (V2.1)"

TEST 5: QUICK FUNCTIONAL CHECK

- <u>Purpose</u> Verify that each channel has the correct <u>Func Out</u> and <u>Sync Out</u> outputs at power on.
- Equipment Counter, DMM.

SetupTest 5.C.1CNTR:Function Frequency650:RESET PARAMETERS CHANNEL(1-4) OUTPUT ONZERO EXECUTE.

- Connect 650 Channel (1-4) Sync Out to counter.
- Test 5.C.2
- DMM: Func Vac
- 650: RESET PARAMETERS CHANNEL(1-4) OUTPUT ONZERO EXECUTE. Connect 650 Channel (1-4) Func Out to DMM.
- <u>Test 5.C.3</u>
- DMM: Func Vdc
- 650: RESET PARAMETERS CHANNEL(1-4) OUTPUT ONZERO EXECUTE. Connect 650 Channel (1-4) <u>Func Out</u> to DMM.
- <u>Limits</u> 5.C.1 1000Hz ±1% 5.C.2 1.768Vacrms ±1% 5.C.3 0Vdc ±0.150

<u>Results</u>	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT
5.C.1	SYNC OUT	990	CNTR	1010	Hz
5.C.2	FUNC OUT	1.750	DMM	1.785	Vacrms
5.C.3	FUNC OUT	0.150	DMM	0.150	Vđc

TEST 6: QUICK CAL (3.5Vacrms) CHECK

<u>Purpose</u> Verify proper calibration of the 650's internal reference voltage source. To calibrate this reference, see step 2 (quick cal amplitude adjust) in the calibration procedure.

Equipment DMM

<u>Setup</u> DMM: Func Vac, Range Auto 650: RESET PARAMETERS CHANNEL 1 AMPLITUDE 9.9 OUTPUT ONZERO, EXECUTE. Connect 650 CH1 <u>Func Out</u> to DMM.

Procedure Press the [Quick Calibrate] key, then take the reading.

Limits Calibration Limits: 3.5Vacrms ±0.1% • Operation Limits: 3.5Vacrms ±0.5%

1 11

Results	PARAMETER	+0.5% Lolimit	READING	<u>+</u> 0.5% <u>HILIMIT</u>	UNIT
61	3.5Vacrms	3.4825	DMM	3.5175	Vacrms

7.5

TTL LO

2 MAR 87

COMPLETE

Vdc

TEST 7: REFERENCE INPUT/OUTPUT

1) Verify the frequency accuracy of the internal reference clock. Purpose . 2) Verify that the 650 can detect a signal at 10MHz Ref In, turn off the internal REF clock, and operate from the external reference signal. 3) Verify that the 10MHz Ref Out signal meets TTL hi/lo level specifications. Counter, DMM, 178, oscilloscope, termination (50 ohm, 2W, 2%). Equipment Setup Test 7.1 CNTR: Function Frequency 'A'. Connect 650 10 MHz Ref Out to counter, terminate at counter 650: with 50 ohm, 2W, 2% termination. e., Tests 7.2 and 7.3 CNTR: Function Frequency 'A'. Reset, Frequency per test 7.X, Function Sine, Amplitude 178: 0.25Vp-p, Rear Output On, Execute. Connect signal source 178 Func Out to 650 10MHz Ref In. · · · · · Connect 650 10MHz Ref Out to counter. Terminate at counter with 50 ohm, 2W, 2% termination. Tests 7.4 and 7.5 Connect 10 MHz Ref Out to Scope Channel 1. Terminate with 650: 50 ohm, 2W, 2% termination. Reference Out: 10MHz +5ppm. Limits Reference In: Lock to external clock of 10MHz +1%, 0.5Vp-p signal. Ref Out TTL Levels: 0.0 < LO < 0.4Vdc, 2.4 < HI < 5Vdc into 50 ohm. UNITS HILIMIT Results FREQ OF REF IN LOLIMIT READING CNTR 10.000.050 Hz 9,999,950 7.1 No Input 9,900,050 Hz CNTR 9,899,951 7.2 9.9 MHz 10,099,950 10,100,051 Hz 7.3 10.1 MHz CNTR Vdc SCOPE 5.0 7.4 TTL HI 2.4

0.0

SCOPE

0.4

TEST 8: INTERNAL CALIBRATION VOLTAGE REFERENCE (2.048Vdc)

<u>Purpose</u> Measure the accuracy of the internal calibration voltage reference.

Equipment DMM

SetupDMM: Func Vdc650: RESET PARAMETERSConnect 6502.048vOutdirectly to DMM (no termination).

Limits 2.04Vdc <u>+</u>1%

- ---

Results	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT
8.1	2.04	2.020	DMM	2.060	Vđc

~<u>.</u>

TEST 11: OUTPUT ON/OFF; 0/50 OHM IMPEDANCE

<u>Purpose</u>. Verify correct operation of the output impedances and on/off controls of all channels.

Equipment DMM, Termination (50 ohm, 2W, 0.1%)

- <u>Comment</u> Any inaccuracy in the 50 ohm termination will cause a measurement error. Therefore, you must measure the inaccuracy, then scale the voltage readings accordingly. Also, the way you connect the termination and coaxial cable to the 650 and the DMM can cause error.
- Setup 650: RESET PARAMETERS, AMPLITUDE 2.5Vp-p, OUTPUT (setting per test.11.C.X), EXECUTE.
 DMM: Function Vacrms

Connect 650 CH1-4 <u>Func Out</u> to DMM terminated with 50 ohm, 2W, 0.1% termination. See Output Setting for test specific setup.

- Limits 11.1 0.884 ±0.5% 11.2 0.884 ±0.5%
 - 11.3 0.000 +0.01, -0 11.4 0.884 <u>+</u>0.5%
 - 11.5 1.768 <u>+</u>0.5%

Results	OUTPUT SETTING	LOLIMIT	READING	HILIMIT	UNIT
11.C.1	Z=0, Output On (use external 50 ohm term)	0.879	DMM	0.888	Vrms
11.C.2	Z=50, Output On (use external 50 ohm term)	0.879	DMM	0.888	Vrms
11.C.3	Z=0, Output Off	0.000	DMM	0.010	Vrms
11.C.4	Z=O, Output On (no external termination)	0.879	DMM	0.888	Vrns
11.C.5	Z=50, output on (no external termination)	1.758	DMM	1.778	Vrms

2 MAR 87

TEST 12: FUNCTION CHECK AT 600Hz, 10Vp-p

<u>Purpose</u> Verify that each channel allows selection of the SINE, TRIANG, RAMP, SQUARE, and DC functions and that each function operates correctly.

Equipment: DMM, 50 ohm, 2W, 0.1% termination.

<u>Comment</u> Any inaccuracy in the 50 ohm termination will cause a measurement error. Therefore, you must measure the inaccuracy, then scale the voltage readings accordingly. Also, the way you connect the termination and coaxial cable to the 650 and the DMM can cause error.

Setup

-

Test 12.C.X.X

- DMM: Function Vac
- --- 650: FREQUENCY 600 MODE CONTINUOUS CHANNEL (1-4) FUNCTION (per test 12.C.X.1) PHASE 0 AMPLITUDE 10 OUTPUT ON-50 EXECUTE. Connect Channel (1-4) <u>Func Out</u> to DMM. Terminate with 50 ohm, 2W, 0.1% termination.
 - Test 12.C.5
 - DMM: Function Vdc
 - 650: FREQUENCY 600 MODE CONTINUOUS CHANNEL (1-4) FUNCTION (test 12.C.X.1) PHASE 0 AMPLITUDE 10 OUTPUT ON-50 EXECUTE. Connect Channel (1-4) <u>Func Out</u> to DMM. Terminate with 50 ohm, 2W, 0.1% termination.

Limits	SINE Ampl	10Vp-p <u>+</u> 0.5%
	TRIANG Ampl	10Vp-p <u>+</u> 0.5%
	SQUARE Ampl	10Vp-p <u>+</u> 0.5%
	RAMP Ampl	10Vp-p ±0.5%
	DC (OVdc)	OVdc <u>+</u> 10mVdc
	Offset	0Vdc <u>+</u> 150mVdc

Results	FUNCTION (Vrms)	LOLIMIT	READING	HILIMIT	UNIT
12.C.1.1	Sine (3.536)	3.516	DMM	3.556	Vrms
12.C.1.2	Offset	-0.150	DMM	0.150	Vdc
12.C.2.1	Triangle (2.886)	2.870	DMM	2.902	Vrms
12.C.2.2	Offset	-0.150	DMM	0.150	Vđc
12.C.3.1	Square (5)	4.973	DMM	5.027	Vrms
12.C.3.2	Offset	-0.150	DMM	0.150	Vdc
12.C.4.1	Ramp (2.886)	2.870	DMM	2.902	Vrms
12.C.4.2	Offset	-0.150	DMM	0.150	Vdc
12.C.5	DC (OVdc)	-0.010	DMM	+0.010	mVdc

TEST 13: SINE AMPLITUDE AND OFFSET ACCURACY

- <u>Purpose</u> .Verify that sine wave amplitude and offset meet specifications across the Odb range for all channels.
- Equipment DMM
- Comment The particular function and amplitude chosen will cause small changes in offset voltage. Because the sine and square waves have slightly different internal signal paths, test 15 tests for square wave amplitude and offset accuracy. Auto Cal measures the gain and offset errors of the signal path, then corrects those errors during operation. To see if Auto Cal works, the test points below include the calibration points used by the 650.
- Setup

• Test 13.C.X.1

- DMM:___Function Vacrms
 650: RESET, FREQUENCY 600, CHANNEL (1-4), FUNCTION SINE,
 AMPLITUDE (per test 13.C.X.1), OUTPUT ONZERO EXECUTE.
 Connect 650 CH1-4 Func Out to DMM.
- Test 13.C.X.2
- DMM: Function Vdc
- 650: RESET, FREQUENCY 600, MODE TRIGGERED, CHANNEL (1-4), FUNCTION SINE, AMPLITUDE (per test 13.C.X.1), OUTPUT ONZERO EXECUTE.

Connect 650 CH1 4 Func Out to DMM.

Limits 13.C.X.1 Vp-p ±0.5% 13.C.X.2 Ovdc ±0.15 Vdc

Results	AMP SETTING (Vrms)	LOLIMIT	READING	HILIMIT	UNIT
13.C.1.1	2.5Vp-p (.884)	0.880	DMM	0.888	Vrms
13.C.1.2	Offset 0	0.150	DMM	0.150	Vdc
13.C.2.1	5.0Vp-p (1.768)	1.759	DMM	1.777	Vrms
13.C.2.2	Offset 0	0.150	DMM	0.150	Vdc
13.C.3.1	7.5Vp-p (2.652)	2.639	DMM	2.665	Vrms
13.C.3.2	Offset 0	-0.150	DMM	0.150	Vdc
13.C.4.1	10.0Vp-p (3.536)	3.518	DMM	3.554	Vrms
13.C.4.2	Offset 0	-0.150	DMM	0.150	Vdc
13.C.5.1	12.5Vp-p (4.419)	4.397	DMM	4.441	Vrms
13.C.5.2	Offset O	-0.150	DMM	0.150	Vdc
13.C.6.1	15.0 Vp-p (5.303)	5.276	DMM	5.330	Vrms
13.C.6.2	Offset O	-0.150	DMM	0.150	Vdc
13.C.7.1	17.5Vp-p (6.187)	6.156	DMM	6.218	Vrms
13.C.7.2	Offset O	-0.150	DMM	0.150	Vdc

÷.

.....

2 MAR 87

13.C.8.1	20.0Vp-P (7.071)	7.036	DMM	7.106	Vrms
13.C:8.2	Offset 0	-0.150	DMM	0.150	Vdc
13.C.9.1	22.5 Vp -P (7.955)	7.915	DMM	7.995	Vrms
13.C.9.2	Offset O	-0.150	DMM	0.150	Vdc
13.C.10.1	25.0Vp-P (8.839)	8.795	DMM	8.883	Vrms
13.C.10.2	Offset 0	-0.150	DMM	0.150	Vdc

TEST 14: SINE WAVE AMPLITUDE ACCURACY AT 50Vp-p

1.1

Purpose Verify that each channel can deliver 0.5 amp into a 50 ohm load and still maintain the maximum peak-to-peak output voltage.

Equipment DMM, termination (50 ohm, 12.5W minimum, 0.1%).

<u>Comment</u> Any inaccuracy in the 50 ohm termination will cause a measurement error. Therefore, you must measure the inaccuracy, then scale the voltage readings accordingly. Also, the way you connect the termination and coaxial cable to the 650 and the DMM can cause error.

Setup
 DMM: Function Vacrms.
 650: RESET, FREQUENCY 600, CHANNEL (1-4), FUNCTION SINE AMPLITUDE
 50, OUTPUT ONZERO, EXECUTE.
 Connect 650 Channel (1-4) Func Out to DMM. Terminate with 50 ohm, 12.5W, 0.1% termination.

Limits 17.678 ±0.5%

<u>Results</u>	SETTING	LOLIMIT	READING	HILIMIT	UNIT
14.C.1	50Vp-p (17.678)	17.590	DMM	17.766	Vrms

1

TEST 15: SQUARE AMPLITUDE AND OFFSET ACCURACY

- <u>Purpose</u> .Verify that the square wave amplitude and offset meet specifications across the Odb range for all channels.
- Equipment DMM
- <u>Comment</u> Because the square and sine waves have slightly different internal signal paths, test 13 tests for sine wave amplitude and offset accuracy. Auto Cal measures the gain and offset errors of the signal path, then corrects those errors during operation. To see if Auto Cal works, the test points below include the calibration points used by the 650.

Determine DC offset and amplitude for the square wave by measuring the positive peak and the negative peak voltage levels. Subtract the peak values to get the amplitude; average the peak values to get the offset. Set the 650 to MODE TRIGGERED and PHASE to +90°/-90° to measure the respective positive and negative peaks.

- Setup DMM: Function Vdc 650: RESET, MODE TRIGGERED, CHANNEL (1-4), FUNCTION SQUARE, AMPLITUDE (per test 15.C.X.1), OUTPUT ONZERO, EXECUTE. Connect 650 Channel (1-4) Func Out to DMM.
- Limits 15.C.X.1 Vp-p ±0.5% 15.C.X.2 0Vdc ±0.15 Vdc

<u>Results</u>	AMP SETTING	LOLIMIT	READING	HILIMIT	UNITS
15.C.1.1	AMPL 2.5	2.488	DMM	2.513	Vp-p
15.C.1.2	Offset 0	-0.150	DMM	0.150	Vdc
15.C.2.1	AMPL 5.0	4.975	DMM	5.025	Vp-p
15.C.2.2	Offset 0	-0.150	DMM	0.150	Vdc
15.C.3.1	AMPL 7.5	7.463	DMM	7.538	Vp-p
15.C.3.2	Offset 0	-0.150	DMM	0.150	Vdc
15.C.4.1	AMPL 10.0	9.950	DMM	10.050	Vp-p
15.C.4.2	Offset 0	-0.150	DMM	0.150	Vđc
15.C.5.1	AMPL 12.5	12.438	DMM	12.563	Vp-p
15.C.5.2	Offset 0	-0.150	DMM	0.150	Vdc
15.C.6.1	AMPL 15.0	14.925	DMM	15.075	Vp-p
15.C.6.2	Offset 0	-0.150	DMM	0.150	Vdc
15.C.7.1	AMPL 17.5	17.413	DMM	17.588	Vp-p
15.C.7.2	Offset 0	-0.150	DMM	0.150	Vdc
15.C.8.1	AMPL 20.0	19.900	DMM	20.100	Vp-p
15.C.8.2	Offset O	-0.150	DMM	0.150	Vdc

PERFORMANCE VERIFICATION

-

- . .

2 MAR 87

15.C.9.1	AMPL 22.5	22.388	DMM	22.613	Vp-p
15.C.9.2	Offset 0	-0.150	DMM	0.150	Vdc
15.C.10.1	AMPL 25.0	24.875	DMM	25.125	Vp-p
15.C.10.2	Offset 0	-0.150	DMM	0.150	Vdc

<u>TEST 16: D</u>		ACCURACY TEST			
Purpose	Verify	DC voltage accurac	y for each	channel.	•
Equipment	-DMM				
Setup		Yunction Vdc. RESET, CHANNEL (1-4		DC OFFSET (per	• test 16.C.X).
	C	CONNECT (1-4 CONTPUT ONZERO, EXEC Connect 650 Channel	CUTE.		
Limits	<u>+</u> 0.3% <u>+</u>	10mVdc			
<u>Results</u>	DC OFFS	SET LOLIMIT	READING	HILIMIT	UNITS
16.C.1	25	24.915	DMM	25.085	Vdc
16.C.2	20	19.930	DMM	20.070	Vdc
16.C.3	15	14.945	DMM	15.055	Vđc
16.C.4	10	9.960	DMM	10.040	Vđc
16.C.5	5	4.975	DMM	5.025	Vdc
16.C.6	0	-0.010	DMM	+0.010	Vđc
16.C.7	5	-5.025	DMM	-4.975	Vđc
16.C.8	-10	-10.040	DMM	-9.960	Vdc
16.C.9	-15	-15.055	DMM	-14.945	Vdc
16.C.10	-20	-20.070	DMM	-19.930	Vdc
16.C.11	-25	-25.085	DMM	-24.915	Vdc

. 3-17

TEST 17: DC CURRENT LOAD TEST

Purpose Verify that each channel can deliver 0.5 amp into a 50 ohm load and still maintain the maximum dc output voltage.

Equipment DMM, termination (50 ohm, 12.5W minimum, 0.1%).

- <u>Comment</u> Any inaccuracy in the 50 ohm termination will cause a measurement error. Therefore, you must measure the inaccuracy, then scale the voltage readings accordingly. Also, the way you connect the termination and coaxial cable to the 650 and the DMM can cause error.
- <u>Setup</u> DMM: Function Vdc. 650: RESET, CHANNEL (1-4), FUNCTION DC, OFFSET (per test 17.C.X), OUTPUT ONZERO, EXECUTE.
 - -- Connect the 650 Channel (1-4) Func Out to the DMM. Terminate with 50 ohm, 12.5W minimum, 0.1% termination.

<u>Limits</u>	<u>+</u> 0.5% <u>+</u> 10m	/dc			
Results	SETTING	LOLIMIT	READING	HILIMIT	UNIT
17.C.1 17.C.2	25.0 -25.0	24.865 25.135	DMM DMM	25.135 -24.865	Vdc Vdc

TEST 18: ATTENUATOR ACCURACY

<u>Purpose</u> Verify the accuracy of the output attenuator of each channel. This test tests the OdB, 20dB, and 40dB attenuator ranges by measuring the voltage accuracy of three AC signals.

Equipment DMM, termination (50 ohm, 2W, 0.1%)

<u>Comment</u> Any inaccuracy in the 50 ohm termination will cause a measurement error. Therefore, you must measure the inaccuracy, then scale the voltage readings accordingly. Also, the way you connect the termination and coaxial cable to the 650 and the DMM can cause error.

Setup

7.

- DMM: Function Vacrms 650: RESET, CHANNEL (1-4), AMPLITUDE (per test 18.C.X), OUTPUT ON-50 EXECUTE. Connect 650 Channel (1-4) <u>Func Out</u> to DMM. Terminate with 50 ohm, 2W, 0.1% termination.
- Limits
 18.C.1
 ±0.5%
 ±2mVdc

 18.C.2
 ±0.5%
 ±2mVdc

 18.C.3
 ±0.5%
 ±2mVdc

Results	AMPLITUDE (Vp-p, Vrms, dB)	LOLIMIT	READING	HILIMIT	UNIT
18.C.1	10.0, 3.5360, 0	3.5163	DMM	3.5557	Vacrms
18.C.2	1.0, 0.3536, 20	0.3498	DMM	0.3574	Vacrms
18.C.3	0.1, 0.0354, 40	0.0332	DMM	0.0376	Vacrms

PERFORMANCE VERIFICATION 25 MAR 87

Setup

20

TEST 20: 180° PHASE VERIFICATION PROCEDURE

- Purpose Verify the phase accuracy between two sine waveforms 180° out of phase.
 - Equipment Power combiner (shown in figure 3-1), HP 3580A or similar spectrum analyzer, one matching pair of equal length (4 feet maximum) BNC cables.
 - <u>Comment</u>
 For this test you will sum two equal amplitude signals that are 180° out of phase to obtain the desired result of zero volts. A mismatch in signal amplitudes or BNC cable lengths will give an erroneous reading. To eliminate an amplitude mismatch, an adjustable resistor network (power combiner) sums the two input signals. The output is then measured with a spectrum analyzer.
 Any voltage at the fundamental frequency not caused by amplitude or cable length differences is the error signal amplitude. The phase error is determined by subtracting the output signal level from the input signal level (table 3-1).
 - 650: AMPLITUDE (10 Vp-p), FREQUENCY (any desired frequency), FUNCTION (sine), PHASE (0 degree), OUTPUT ON-OΩ impedance. Connect 650 Channel (1-4) <u>Func Out</u> as shown.
 - SA: <u>Measure Fundamental</u> ATTENUATION +10dB, RESOLUTION BANDWIDTH 10 Hz, CENTER FREQUENCY to match Model 650 frequency, FREQUENCY SPAN 0 Hz, ATTENUATION VERNIER max cw, SWEEP TIME 2 s/div.
 - Procedure Set Model 650 channel under test to 0°. Use analyzer course and fine frequency adjustments to center the display on the screen. Use the input sensitivity control to set the positive peak of the display at the top line of the anaylzer. This is now the 0 dB reference. Set the Model 650 channel under test to 180°, which should reduce the display signal. Adjust the power combiner for minimum output level, then increase resolution by setting the analyzer attenuator to -10 dB. Readjust the power combiner level to minimum and read the level relative to the 0 dB line. Use table 3-1 to determine the phase error.

Figure 3-1. 180° Phase Verification Setup 3-20 •

÷.

.,;;

DB	Phase error	DB	Phase error	DB	Phase error	DB	Phase error
	IN DEGREES		IN MILLI-DEGREES		IN MILLI-DEGREES		IN MILLI-DEGREES
-40	1.15	-60	114.59	-80	11.46	-100	1.15
-41	1.02	-61	102.13	-81	10.21	-101	1.02
-42	0.91	-62	91.02	-82	9.10	-102	0.91
-43	0.81	-63	81.12	-83	8.11	-103	0.81
-44	0.72	-64	72.30	-84	7.23	-104	0.72
-45	0.64	-65	64.44	-85	6.44	-105	0.64
-46	0.57	-66	57.43	-86	5.74	-106	0.57
-47	0.51	-67	51.19	-87	5.12	-107	0.51
-48	0.46	-68	45.62	-88	4.56	-108	0.46
-49	0.41	-69	40.66	-89	4.07	-109	0.41
-50	0.36	-70	36.24	-90	3.62	-110	0.36
-51	0.32	-71	32.30	-91	3.23	-111	0.32
-52	0.29	-72	28.78	-92	2.88	-112	0.29
-53	0.26	-73	25.65	-93	2.57	-113	0.26
-54	0.23	-74	22.86	-94	2.29	-114	0.23
-55	0.20	-75	20.38	-95	2.04	-115	0.20
-56	0.18	-76	18.16	-96	1.82	-116	0.18
- 5_7	0.16	-77	16.19	-97	1.62	-117	0.16
-58	0.14	-78	14.43	-98	1.44	-118	0.14
-59	0.13	-79	12.86	-99	1.29	<u>-119</u>	0.13
60	0.11	-80	11.46	-100	1.15	-120	0.11

Table 3-1. Phase Error Interpolation

.

TEST 21: PHASE CHECK

Purpose	Verify the following for each channel:1) phase accuracy, andTests 21-1, 2, 3, 42) quick cal effectiveness.Tests 21-5, 6, 7, 8
Equipment	DMM, Wavetek 621 phase detector, two terminations (50 ohms, 2W, 0.1%, one per channel)
Setup	 Connect DMM, 621, 650, and terminations per figure 3-2, the test 21 connection diagram. Run 650 Auto-Cal as follows: <u>Utility</u> CAL START.
<u>Comment</u>	<u>Phase Accuracy Tests</u> . Tests 21-2 through 21-4 use channel 1 as a reference to measure the phase errors of channels 2 through 4, while test 21-1 uses channel 2 as a reference to measure the phase erfor of channel 1. Each test measures the phase error of its channel at thirteen frequencies from 500Hz to 2MHz. To determine the phase error at each frequency, you must take four measurements, then make a calculation:
	DMM A = +90° Direct Reading (ref ch to 621 ref, tst ch to 621 tst) DMM B = +90° Swapped Reading (ref ch to 621 tst, tst ch to 621 ref) DMM C = -90° Direct Reading DMM D = -90° Swapped Reading
	CHC FRQ X 90° Phase Error = $[(A+B)-(C+D)]/4$ (unscaled)
	Setting the 650 to \pm 90° and swapping the reference/test channel leads eliminates the phase errors caused by the test setup. Relay 6 in the 621 phase detector swaps the leads automatically.
	Because the 621 delivers less than 1V per degree of error, the above formula requires a scaler to convert the result to degrees. To develop the scaler, you use the above procedure to determine the phase error at 90° and at 91°, then calculate the scaler as follows:
	CHC Scaler = 1/(CHC 91° Phase Error – CHC 90° Phase Error)
	The actual (scaled) formula that you will use to calculate phase error at each frequency looks like this:
	CHC FRQ X 90° Phase Error = (CHC Scaler) x ([(A+B)-(C+D)]/4)
<u>Comment</u>	Quick Cal Effectiveness Tests. Tests 21-5 through 21-8 measure the ability of the quick calibrate feature to optimize the phase error of each channel for the current 650 setup and environment. The test procedure matches that of tests 1 through 4, with the following exceptions: 1) you do not have to recalculate the channel scalers, 2) you determine phase error at only three frequencies per channel, and 3) you press the <u>Quick Calibrate</u> key before each reading.

NOTES

-_-

Make all signal paths equal length. 50 Ω termination resistances must fall within $\pm 0.1\%$ of each other. All relays shown in open position.

-

Figure 3-2. Test 21 Connection Diagram

Setup

DMM: Function Vdc

TEST 21-1: PHASE CHECK (Channel 1 Phase Measured in Rererence to Channel 2)

621: Set relays as described below.

	621:	Set r	elays a	s desc	ribed be	elow.	•								
	650:	RESET	PARAMS	, Chan	nel Num	<u>per</u> :	1, j	Cha	nne	<u>1</u> A	MPL 4, SHIFT OUTPUT				
		ON-O.	Channe	l Numb	er 2, Cl	nanne	el	AMP	L 4	, S	HIFT	COTPUT ON-	0		
		EXECU	TE. Set	main	frequence	sy ar	nđ	eac	h c	han	nel'	's phase as			
			ibed be												
Procedure		650	SET	650	SET			62				SET 650			
		TEST	TCHAN	REFN	RCHAN	1	REL	AY	STA	TES		MAIN	READ		
	STEP	CHAN	PHASE	CHAN	PHASE	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	FREQUENCY	DMM		
	1	CH1	, +91°	CH2	0°	0	С	0	0	0	0	1000 Hz	A.		
	,2	CH1	' +91°	CH2	0°	0	С	0	0	0	С	1000 Hz -	В		
₹.	3	CH1	-89°	CH2	0°	0	С	0	0	0	0	1000 Hz	С		
	4-	CH1	-89°	CH2	0°	0	С	0	0	0	С	1000 Hz	D		
	5	Calcu	late: C	H1 91°	Phase	Erro	r =	((A+B)-(C+D))/4			
	-														
	6	CH1	+90°	CH2	0°	0	С	0	0	С	0	1000 Hz	E		
	7	CH1	+90°		0°	0	С	0	0	0	С	1000 Hz	F		
	8	CH1	-90°		0°	0	С	0	0	0	0	1000 Hz	G		
	9	CH1	-90°	CH2	0°	0	С	0	0	0	С	1000 Hz	н		
	10	Calcu	late: (:н1 90°	Phase	Erro	r =	: ((E+F)-(G+H))/4			
	11	Calcu	ilate: C	H1 Sca	aler = 1	/ (CH	19	1°	Pha	se	Err	or - CH1 90°	>		
			e Error)												
	12	Repea	it steps	: 13-17	7 for ea	ch t	est	fr.	requ	enc	y s	pecified bel	Low.		
		-	-												
	13	CH1	+90°	CH2	0°	0	С	0	0	0	0	Per 21.1.1			
	14	CH1	+90°	CH2	0°	0	С	0	0	0	С	Per 21.1.1			
	15	CH1	-90°	CH2	0°	0	С	0	0	0	0	Per 21.1.1			
	16	CH1	- 90°	CH2	0°	0	С	0	0	0	С	Per 21.1.1	K L		

17 Calculate: CH1 90° FRQ X Phase Error = (CH1 Scaler) x (((I+J)-(K+L))/4)

<u>Test</u>	Frequency	Test	Frequency
21.1.1 21.1.2 21.1.3 21.1.4 21.1.5 21.1.6 21.1.7	500.000 Hz 1.000kHz 2.000kHz 5.000kHz 10.000kHz 20.000kHz 50.000kHz	21.1.8 21.1.9 21.1.10 21.1.11 21.1.12 21.1.13	100.000kHz 200.000kHz 500.000kHz 1.000MHz 1.500MHz 2.000MHz
~ /	J0.000Kill		

<u>Results</u> The results follow test 21-8.

DMM: Function Vdc

TEST 21-2: PHASE CHECK (Channel 2 Phase Measured in Reference to Channel 1)

Setup •

621: Set relays as described below.
650: RESET PARAMS, <u>Channel Number</u> 1, <u>Channel</u> AMPL 4, SHIFT OUTPUT ON-0, <u>Channel Number</u> 2, <u>Channel</u> AMPL 4, SHIFT OUTPUT ON-0 EXECUTE. Set main frequency and each channel's phase as described below.

<u>Procedure</u>	STEP	650 Test <u>Chan</u>	SET TCHAN <u>PHASE</u>	650 REFN <u>CHAN</u>	SET RCHAN <u>PHASE</u>		REL <u>2</u>		STA			SET 650 MAIN FREQUENCY	READ DMM
· · ·	1 2 3 4	GH2 CH2 CH2 CH2	+91° +91° -89° -89°	CH1 CH1 CH1 CH1	0° 0° 0°	0	C C C C	0 0	0 0 0 0	0 0 0	0 C 0 C	1000 Hz 1000 Hz 1000-Hz 1000 Hz	A B C D

5 Calculate: CH2 91° Phase Error = ((A+B)-(C+D))/4

	CU 2	۲00°	СНЈ	0°	0	С	0	0	0	0	1000 Hz	E
o	UNZ	790	OILT	•	-	-		-	-	~	1000 11-	F
7	CH3	+00°	CH1	0°	0	С	0	0	0	C	1000 Hz	г
1	ULL C	770	OILT	•	-	-		_	-	~	1000 11-	C
0	0113	000	CH1	0°	0	С	0	0	0	0	1000 Hz	G
Ö	UNZ	- 30	OILL	•	-		-	-	-	~	1000 11-	н
9	CH2	-90°	CH1	0°	0	С	0	0	0	C	1000 Hz	п

10 Calculate: CH2 90° Phase Error = ((E+F)-(G+H))/4

11 Calculate: CH2 Scaler = 1/(CH2 91° Phase Error - CH2 90° Phase Error)

12 Repeat steps 13-17 for each test frequency specified below.

12	CH2	+90°	CH1	0°	0	С	0	0	0	0	Per 21.2.X	Ι
13	CHZ	+ 30	0111	<u>^</u> •	Ô	C	0	0	0	С	Per 21.2.X	J
14	CH2	+90°	CHI	0	0	2	Š	Š	Ň	0	Por 21 2 X	ĸ
15	CH2	-90°	CH1	0°	0	C	0	0	0	0	Per 21.2.X	T
16	CH2	-90°	CH1	0°	0	С	0	0	0	C	Per 21.2.X	5

17 Calculate: CH2 90° FRQ X Phase Error = (CH2 Scaler) x (((I+J)-(K+L))/4)

21.2.1500.000 Hz21.2.8100.00021.2.21.000kHz21.2.9200.00021.2.32.000kHz21.2.10500.000	cy
21.2.4 5.000kHz 21.2.11 1.000 21.2.5 10.000kHz 21.2.12 1.500 21.2.6 20.000kHz 21.2.13 2.000 21.2.7 50.000kHz 50.000kHz 21.2.13 2.000)kHz)kHz)MHz)MHz

Results

3

The results follow test 21-8.

2 MAR 87

TEST 21-3: PHASE CHECK (Channel 3 Phase Measured in Reference to Channel 1)

 Setup
 DMM: Function Vdc
 621: Set relays as described below.
 650: RESET PARAMS, <u>Channel Number</u> 1, <u>Channel</u> AMPL 4, SHIFT OUTPUT ON-0, <u>Channel Number</u> 3, <u>Channel</u> AMPL 4, SHIFT OUTPUT ON-0 EXECUTE. Set main frequency and each channel's phase as described below.

- 621 SET 650 SET Procedure 650 SET 650 RELAY STATES MAIN READ TEST TCHAN REFN RCHAN FREQUENCY DMM CHAN PHASE CHAN PHASE 1 2 3 4 5 6 STEP 0° 1000 Hz A 0 0 0 0 0 C 1 CH3 + +91° CH1 1000 Hz В CH3 +91° 0° 0 0 C 0 0 C 2 CH1 • 3 0° 1000 Hz Ċ ε. 0 0 C 0 0 0 -89° CH1 CH3 1000 Hz D 0° 0 0 C 0 0 С 4 CH3 -89° CH1 Calculate: CH3 91° Phase Error = ((A+B)-(C+D))/45
 - 1000 Hz Ε +90° 0 0° 0 0 C 0 0 6 CH3 CH1 0 0 C 0 0 C 1000 Hz F CH3 +90° CH1 0° 7 0 0 C 0 0 0 1000 Hz G -90° 0° 8 CH3 CH1 1000 Hz H ٥° 0 0 C 0 0 C 9 СНЗ -90° CH1
 - 10 Calculate: CH3 90° Phase Error = ((E+F)-(G+H))/4
 - 11 Calculate: CH3 Scaler = 1/(CH3 91° Phase Error CH3 90°
 Phase Error)
 - 12 Repeat steps 13-17 for each test frequency specified below.

13	СНЗ	+90°	CH1	0°	0	0	С	0	0	0	Per 21.3.X	I	
14	СНЗ	+90°	CH1	0°	0	0	С	0	0	С	Per 21.3.X	J	
15	СНЗ	-90°	CH1	0°	0	0	С	0	0	0	Per 21.3.X	K	
16	CH3	-90°	CH1	0°	0	0	С	0	0	С	Per 21.3.X	L	

17 Calculate: CH3 90° FRQ X Phase Error = (CH3 Scaler) x (((I+J)-(K+L))/4)

<u>Test</u>	Frequency	Test	Frequency
21.3.1	500.000 Hz	21.3.8	100.000kHz
21.3.2	1.000kHz	21.3.9	200.000kHz
21.3.3	2.000kHz	21.3.10	500.000kHz
21.3.4	5.000kHz	21.3.11	1.000MHz
21.3.5	10.000kHz	21.3.12	1.500MHz
21.3.6	20.000kHz	21.3.13	2.000MHz
21.3.7	50.000 k Hz		

<u>Results</u> The results follow test 21-8.

TEST 21-4: PHASE CHECK (Channel 4 Phase Measured in Reference to Channel 1)

DMM: Function Vdc <u>Setup</u>.

621: Set relays as described below. 650: RESET PARAMS, Channel Number 1, Channel AMPL 4, SHIFT OUTPUT ON-0, Channel Number 4, Channel AMPL 4, SHIFT OUTPUT ON-0 EXECUTE. Set main frequency and each channel's phase as described below.

<u>Procedure</u>	<u>STEP</u>	650 Test <u>Chan</u>	SET TCHAN <u>PHASE</u>	650 REFN <u>CHAN</u>	SET RCHAN <u>PHASE</u>	<u>1</u>	REL 2	62 AY <u>3</u>	1 STA <u>4</u>	TES <u>5</u>	<u>6</u>	SET 650 MAIN FREQUENCY	READ DMM
a. •	1 2 3 4	CH4 CH4 CH4 CH4	+91° +91° -89° -89°	CH1 CH1 CH1 CH1	0° 0° 0°	0 0	0 0 0 0	0 0 0 0	C C C C	•	0 C 0 C	1000 Hz 1000 Hz 1000 Hz 1000 Hz	A B C D

5 Calculate: CH4 91° Phase Error = ((A+B)-(C+D))/4

6	CH4	+90°	CH1	0°	0	0	0	С	0	0	1000 Hz	Е
	0114		0=		_	-	-	~	~	~	1000 47	F
7	СНА	+90°	CH1	0°	0	0	0	C	0	U	1000 Hz	Ľ
'	0114				_	~	~	~	~	^	1000 17	G
8	CH4	-90°	CH1	0°	0	0	0	C	U	U	1000 Hz	9
•	0114				-	~	~	~	~	~	1000 17	Н
9	CH4	-90°	CH1	0°	0	0	0	C	U	C.	1000 Hz	

Calculate: CH4 90° Phase Error = ((E+F)-(F+H))/4 10

- Calculate: CH4 Scaler = 1/(CH4 91° Phase Error CH4 90° 11 Phase Error)
- Repeat steps 13-17 for each test frequency specified below. 12

12	СНА	+90°	CH1	0°	0	0	0	С	0	0	Per 21.4.X	Ι
1.5	CUA	+000	CH1	0.0	Ō	0	0	С	0	С	Per 21.4.X	J
14		4 3 O	CH1	0°	ō	õ	Ō	С	0	0	Per 21.4.X	K
	CH4 CH4	-90°	CH1	0°	ō	ō	Ō	C	0	С	Per 21.4.X	L

Calculate: CH4 90° FRQ X Phase Error = 17 (CH4 Scaler) x (((I+J)-(K+L))/4)

<u>Test</u>	Frequency	Test	Frequency
21.4.1 21.4.2 21.4.3 21.4.4 21.4.5 21.4.6 21.4.7	500.000 Hz 1.000kHz 2.000kHz 5.000kHz 10.000kHz 20.000kHz 50.000kHz	21.4.8 21.4.9 21.4.10 21.4.11 21.4.12 21.4.13	100.000kHz 200.000kHz 500.000kHz 1.000MHz 1.500MHz 2.000MHz

<u>Results</u> The results follow test 21-8.

7 **.**.

2 MAR 87

TEST 21-5: PHASE CHECK (Auto-Cal Effectiveness for Channel 1)

<u>Setup</u>
 DMM: Function Vdc
 621: Set relays as described below.
 650: RESET PARAMS, <u>Channel Number</u> 1, <u>Channel</u> AMPL 4, SHIFT OUTPUT
 ON-0, <u>Channel Number</u> 2, <u>Channel</u> AMPL 4, SHIFT OUTPUT ON-0
 EXECUTE. Set main frequency and each channel's phase as described below.

Procedure650SET650SET621SET650TESTTCHANREFNRCHANRELAYSTATESMAINREADSTEPCHANPHASE123456FREQUENCYDMM

 Repeat steps 2-6 for each frequency specified below. For each step, first set the frequency and phase, then press Quick Calibrate, then read the DVM.

											- 01 1 V	Ŧ
2	CH1	±00°	CH2	0°	0	С	0	0	0	0	Per 21.1.X	Ŧ
		1 50	0110	0.0	Ō	C	Δ	Ο	0	С	Per 21.1.X	J
3	CH1	+90°	CHZ	0	0	U	v		č	~	Dem 21 1 V	v
4	CH1	-90°	CH2	0°	0	С	0	0	0	0	Per 21.1.X	ĸ
	CH1	_90°	CH2	0°	0	С	0	0	0	С	Per 21.1.X	L
5	OUT	- 30	OIL	•								

6 Using the CH1 Scaler derived in part 21-1, calculate:

CH1 90° FRQ X Phase Error = (CH1 Scaler) x (((I+J)-(K+L))/4)

Test Frequency

21.1.14 1.000MHz 21.1.15 1.500MHz 21.1.16 2.000MHz

Results The results follow test 21-8.

2 MAR 87

TEST 21-6: PHASE CHECK (Auto-Cal Effectiveness for Channel 2)

Setup · DMM: Function Vdc

621: Set relays as described below.
650: RESET PARAMS, <u>Channel Number 1</u>, <u>Channel AMPL 4</u>, SHIFT OUTPUT ON-0, <u>Channel Number 2</u>, <u>Channel AMPL 4</u>, SHIFT OUTPUT ON-0 EXECUTE. Set main frequency and each channel's phase as described below.

Procedure		650	SET	650	SET			62	1			SET 650	
110000010		TEST	TCHAN	REFN	RCHAN		REL					MAIN	READ
	STEP	CHAN	PHASE	CHAN	PHASE	1	2	<u>3</u>	4	<u>5</u>	<u>6</u>	FREQUENCY	DMM

1 Repeat steps 2-6 for each frequency specified below. For each step, first set the frequency and phase, then press <u>Quick Calibrate</u>, then read the DVM.

2	CH2	+90°	CH1	0°	0	С	0	0	0	0	Per 21.2.X	I
3	CH2	+90°	CH1	0°	0	С	0	0	0	С	Per 21.2.X	J
											Per 21.2.X	
5	CH2	-90°	CH1	0°	0	С	0	0	0	С	Per 21.2.X	L

6 Using the CH2 Scaler derived in part 21-2, calculate:

CH2 90° FRQ X Phase Error = (CH2 Scaler) x (((I+J)-(K+L))/4)

Test Frequency

21.2.14 1.000MHz 21.2.15 1.500MHz 21.2.16 2.000MHz

Results

7.

The results follow test 21-8.

5

CH3

TEST 21-7: PHASE CHECK (Auto-Cal Effectiveness for Channel 3)

Setup	DMM: 621: 650:	Set r RESET ON-0, EXECU	PARAMS Channe	s desc , <u>Char</u> <u>l Numl</u> main	ber 3, Ch	<u>er</u> ann	1, el	AMP	L 4,	, SI	HIFT	4, SHIFT OUT OUTPUT ON-O s phase as	PUT
<u>Procedure</u>	STEP	650 TEST <u>Chan</u>	SET TCHAN <u>PHASE</u>	650 REFN <u>CHAN</u>	SET RCHAN <u>PHASE</u>	<u>1</u>	REL 2		1 STA: <u>4</u>		<u>6</u>	SET 650 MAIN <u>FREQUENCY</u>	READ DMM
·•	1	each	step, f	irst :	for each set the f then read	req	uen	су	and	eci ph	fied ase,	below. For then press	
	2	CU2	+90°	CH1	0°	0	0	С	0	0	0	Per 21.3.X	I
	2	СНЗ СНЗ	+90°	CH1	0°	ŏ	ŏ	c	0	0	C	Per 21.3.X	J
•	3 4	CH3	-90°	CH1	°°	õ	ō	Ĉ	Ō	0	0	Per 21.3.X	ĸ
	4	OILD			-	-		-	-	-	~	D 01 0 ¥	r

6 Using the CH3 Scaler derived in part 21-3, calculate:

0°

CH3 90° FRQ X Phase Error = (CH3 Scaler) x (((I+J)-(K+L))/4)

0 0 C 0 0 C Per 21.3.X L

Test Frequency

21.3.14 1.000MHz 21.3.15 1.500MHz 2.000MHz 21.3.16

Results

The results follow test 21-8.

-90° CH1

DMM:

2 MAR 87

TEST 21-8: PHASE CHECK (Auto-Cal Effectiveness for Channel 4)

Function Vdc

Setup

÷...

621: Set relays as described below.
650: RESET PARAMS, <u>Channel Number</u> 1, <u>Channel AMPL</u> 4, SHIFT OUTPUT ON-0, <u>Channel Number</u> 4, <u>Channel</u> AMPL 4, SHIFT OUTPUT ON-0 EXECUTE. Set main frequency and each channel's phase as described below.

Procedure650SET621SET 650TESTTCHANREFNRCHANRELAYSTATESMAINREADSTEPCHANPHASE123456FREQUENCYDMM

1 Repeat steps 2-6 for each frequency specified below. For each step, first set the frequency and phase, then press Quick <u>Calibrate</u>, then read the DVM.

2	CH4	+90°	CH1	0°	0	0	0	С	0	0	Per 21.4.X	I
											Per 21.4.X	
											Per 21.4.X	
	CH4										Per 21.4.X	

6 Using the CH4 Scaler derived in part 21-4, calculate:

CH4 90° FRQ X Phase Error = (CH4 Scaler) x (((I+J)-(K+L))/4)

Test Frequency

21.4.14 1.000MHz 21.4.15 1.500MHz 21.4.16 2.000MHz

Results

The results follow test 21-8.

i,

Results	FREQUENCY	LOLIMIT	Calculation	HILIMIT	UNIT
	CHANNEL SCALER			1.500	
21.C.1	500.0 Hz	-0.0050	PHASE ERROR	+0.0050	Deg
21.C.2	1.0kHz	-0.0050	PHASE ERROR	+0.0050	Deg
21.C.3	2.0kHz	-0.0300	PHASE ERROR	+0.0300	Deg
21.C.4	5.0kHz	-0.0300	PHASE ERROR	+0.0300	Deg
21.C.5	10.0kHz	-0.1000	PHASE ERROR	+0.1000	Deg
21.C.6	20.0kHz	-0.1000	PHASE ERROR	+0.1000	Deg
21.C.7	50.0kHz	-0.1000	PHASE ERROR	+0.1000	Deg
21.C.8	100.0kHz	-0.1000	PHASE ERROR	+0.1000	Deg
21.C.9	200.0kHz	-0.5000	PHASE ERROR	+0.5000	Deg
21.C.10	500.0kHz	-0.5000	PHASE ERROR	+0.5000	Deg
21.C.11	1.0MHz	-2.0000	PHASE ERROR	+2.0000	Deg
21.C.12	1 ⁻ 5MHz	-2.0000	PHASE ERROR	+2.0000	Deg
21.C.13	2.0MHz	-2.0000	PHASE ERROR	+2.0000	Deg

Phase Accuracy Test Results for CH1-4 (Tests 21-1, 2, 3, and 4)

ين ^{مع}ر ميرين . مراجع الر

.

Quick Cal Test Results for CH1-4 (Tests 21-5, 6, 7, and 8)

<u>Results</u>	FREQUENCY	LOLIMIT	<u>Calculation</u>	HILIMIT	UNIT
21.C.14	1.0MHz	-1.0000	PHASE ERROR	+1.0000	Deg
21.C.15	1.5MHz	-1.0000	PHASE ERROR	+1.0000	Deg
21.C.16	2.0MHz	-1.0000	PHASE ERROR	+1.0000	Deg

TEST 22: FREQUENCY RESPONSE, SINE

- <u>Purpose</u> · Verifies that each channel's sine wave amplitude deviation remains within limits from 10Hz to 20kHz.
- Equipment DMM

--

SetupDMM:Function VACrms650:RESET, FREQUENCY (per test 21.C.X), CHANNEL (1-4), FUNCTIONSINE, AMPLITUDE 10, OUTPUT ONZERO, EXECUTE.Connect 650 Channel (1-4)Func Outto DMM.

<u>Limits</u>	22.C.1 to 22.C.6		3.535Vrms <u>+</u> 0.5%		
Results	FREQUENCY	LOLIMIT	READING	HILIMITS	UNITS
22.C.1 22.C.2 22.C.3 22.C.4 22.C.5 22.C.5 22.C.6	10.0Hz 100.0Hz 1000.0Hz 5000.0Hz 10000.0Hz 20000.0Hz	3.516 3.516 3.516 3.516 3.516 3.516 3.516	DMM DMM DMM DMM DMM DMM	3.556 3.556 3.556 3.556 3.556 3.556 3.556	Vrms Vrms Vrms Vrms Vrms Vrms

_

2.15

COMPLETE

<u>Results</u>	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT
23.C.1 · 23.C.1.1 23.C.1.2	1 kHz Fund PWR Worst HARM	-2.00	SPEC ANA	NONE	dBm nd/rd dBm
23.C.1.3 23.C.1.4	HARM PWR FUND-HARM	-90	<u>SPEC ANA</u> FUND-HARM	-60	dBc
23.C.2 23.C.2.1 23.C.2.2	2 kHz Fund PWR Worst Harm	-2.00	SPEC ANA 2 or 3	NONE	dBm nd/rd
23.C.2.3 23.C.2.4	HARM PWR FUND-HARM	-90	SPEC ANA FUND-HARM	-60	dBm dBc
23.C.3 23.C.3.1 23.C.3.2	5 kHz [•] Fund PWR W o rst HARM	-2.00	SPEC ANA	NONE	dBm nd/rd dBm
23.C.3.3 23.C.3.4	HARM PWR FUND-HARM	-90	<u>SPEC ANA</u> FUND-HARM	-60	dBc
23.0.4 23.C.4.1 23.C.4.2	10 kHz FUND PWR WORST HARM	-2.00	SPEC ANA 2 or 3 SPEC ANA	NONE	dBm nd/rd dBm
23.C.4.3 23.C.4.4	HARM PWR FUND-HARM	-90	FUND-HARM	-60	dBc
23.C.5 23.C.5.1 23.C.5.2	20 kHz Fund PWR Worst Harm Harm PWR	-2.00	<u>SPEC ANA</u> 2 or 3 SPEC ANA	NONE	dBm nd/rd dBm
23.C.5.3 23.C.5.4	FUND-HARM	-90	FUND-HARM	-50	dBc
23.C.6 23.C.6.1 23.C.6.2	50 kHz Fund PWR Worst HARM	-2.00	SPEC ANA 2 or 3 SPEC ANA	NONE	dBm nd/rd dBm
23.C.6.3 23.C.6.4	HARM PWR FUND-HARM	90	FUND-HARM	-50	dBc
23.C.7 23.C.7.1 23.C.7.2	100 kHz Fund PWR Worst HARM	-2.00	SPEC ANA	NONE	dBm nd/rd dBm
23.C.7.3 23.C.7.4	HARM PWR FUND-HARM	- 90	<u>SPEC ANA</u> FUND-HARM	-50	đBc

PERFORMANCE VERIFICATION

COMPLETE

TEST 23: SINE DISTORTION

- Verify that each channel's sine wave meets purity specifications Purpose by measuring the power levels of the 2nd and 3rd harmonics with reference to the fundamental frequency. HP8568A spectrum analyzer, attenuator (50 ohms, 5X, 2W). Equipment Calibrate the spectrum analyzer before running this test. The Comment spectrum analyzer will store its correction factors. You will enable these correction factors during this test. Test 23.C.1.X to 23.C.7.X, (frequency range 1kHz to 50kHz) Setup RESET PARAMS, FREQUENCY (per tests 23.C.1-6), CHANNEL (1-4), 650: AMPLITUDE 2.828, OUTPUT ONFIFTY, EXECUTE. 2. Connect 650 Channel (1-4) Func Out to spectrum analyzer left input through the 50 ohm, 5X, 2W attenuator. ----Measure Fundamental PRESET, ATTENUATION 30dB, REFERENCE SA: LEVEL OdB, MIXER LEVEL (shift ',') -30dB, LEFT INPUT, CORRECTION FACTORS ON, CENTER FREQUENCY (per tests · 77 * 23.C.1-13), FREQUENCY SPAN (per tests 23.C.1-13), MARKER NORMAL, PEAK SEARCH. Measure Harmonics CENTER FREQUENCY (per tests 23.C.1-13) * HARMONIC (2 or 3), FREQUENCY SPAN (per tests 23.C.1-13) * HARMONIC (2 or 3) * 0.1, MARKER NORMAL, PEAK SEARCH. Test 23.C.8.X to 23.C.13.X, (frequency range 100KHz to 2MHz) RESET PARAMS, FREQUENCY (per tests 23.C.7-13), CHANNEL 650: (1-4), AMPLITUDE 2.828, OUTPUT ONFIFTY, EXECUTE. Connect 650 Channel (1-4) Func Out to spectrum analyzer right input. Measure Fundamental PRESET, ATTENUATION 40dB, REFERENCE SA: LEVEL 20dB, MIXER LEVEL (shift ',') -30dB, RIGHT INPUT, CORRECTION FACTORS ON, CENTER FREQUENCY (per tests 23.C.1-13), FREQUENCY SPAN (per tests 23.C.1-13), MARKER NORMAL, PEAK SEARCH. Measure Harmonics CENTER FREQUENCY (per tests 23.C.1-13) * HARMONIC (2 or 3), FREQUENCY SPAN (per tests 23.C.1-13) * HARMONIC (2 or 3) * 0.1, MARKER NORMAL, PEAK SEARCH. <10kHz: -60dBc Limits
 - <u><100kHz: -50dBc</u> <100kHz: -50dBc <2MHz: -40dBc

PERFORMANCE VERIFICATION

•

COMPLETE

<u>Results</u>	Parameter	LOLIMIT	READING	HILIMIT	UNIT
23.C.8 23.C.8.1 23.C.8.2	200 kHz Fund PWR Worst HARM	9.00	SPEC ANA 2 or 3	NONE	dBm nd/rd
23.C.8.3 23.C.8.4	HARM PWR FUND-HARM	-90	<u>SPEC ANA</u> FUND-HARM	-40	dBm dBc
23.C.9 23.C.9.1	500 kHz FUND PWR	9.00	SPEC ANA	NONE	dBm nd/rd
23.C.9.2 23.C.9.3 23.C.9.4	WORST HARM HARM PWR FUND-HARM	-90	2 or 3 SPEC ANA FUND-HARM	-40	dBm dBc
23.C.10. 23.C.10.	1.0 MHz 1 FUND PWR	9.00	SPEC ANA	NONE	dBm
23.C.10. 23.C.10. 23.C.10.	3 HARM PWR	-90	<u>2 or 3</u> <u>SPEC ANA</u> FUND-HARM	-40	nd/rd dBm dBc
23.C.11	1.2 MHz	9.00	SPEC ANA	NONE	dBm
23.C.11. 23.C.11. 23.C.11.	2 WORST HARM 3 HARM PWR		2 or 3 SPEC ANA		nd/rd dBm dBc
23.C.11. 23.C.12	4 FUND-HARM	-90	FUND-HARM	-40	
23.C.12. 23.C.12. 23.C.12.	2 WORST HARM	9.00	<u>SPEC ANA</u> <u>2 or 3</u> SPEC ANA	NONE	dBm nđ/rđ dBm
23.C.12.	4 FUND-HARM	-90	FUND-HARM	-40	dBc
23.C.13 23.C.13. 23.C.13.		9.00	SPEC ANA 2 or 3	NONE	dBm nd/rd
23.C.13. 23.C.13.		-90	<u>SPEC ANA</u> FUND-HARM	-40	dBm dBc

TEST 24: SPURIOUS LEVEL

- <u>Purpose</u>. Verify that the worst-case spur of each channel falls below the specified limit.
- Equipment HP8568A spectrum analyzer
- <u>Comment</u> The 650 could produce absolutely pure sine waves if spurious frequencies (called spurs) did not mix with and distort the main frequency. Test 24 finds the frequency and measures the amplitude of each spur to make sure none can cause significant distortion.

Test 24.C.1 looks for unexpected spurs across the band 0.10MHz to 2.75MHz. Test 24.C.2 looks for a likely spur at 0.909MHz (caused by a specific hardware defect). Test 24.C.3 looks for a likely 'spur at 10MHz (caused by leakage of the 10MHz reference clock).

Each test (Band, 0.909MHz, and 10MHz) first measures the level of the fundamental frequency, then measures the level of the spur, then calculates the separation between the two levels. The level of the spur must fall at least -50dBc (dB referenced to carrier) below the level of the fundamental frequency.

Setup

Test

· 777 * •

÷.

All Tests SA: Before running this test, calibrate the spectrum analyzer and enable the correction factors.

Band TEST 24.C.1: BAND TEST

- 650: RESET, FREQUENCY 1.5E6, CHANNEL (1-4), AMPLITUDE 2.828, OUTPUT ONFIFTY, EXECUTE. Connect 650 Channel (1-4) <u>Func Out</u> to spectrum analyzer right input.
 - SA: PRESET, REFERENCE LEVEL 20dB.

Test 24.C.1.1: Measure Fundamental Power (FUND PWR)

- SA: CENTER FREQUENCY 1.5MHz, FREQUENCY SPAN 2.5MHz, MARKER NORMAL, PEAK SEARCH ON.
- Test 24.C.1.2 (Step 1): Search 0.10MHz-1.40MHz for Worst-Case Spur SA: CENTER FREQUENCY 0.75MHz, FREQUENCY SPAN 1.3MHz, MAX HOLD ON (allow 8 seconds minimum to construct worst-case spur), PEAK SEARCH ON (read spur power level), MARKER FREQUENCY (read spur frequency).

Test 24.C.1.2 (Step 2): Search 1.60MHz-2.75MHz for Worst-Case Spur

- SA: CENTER FREQUENCY 2.175MHz, FREQUENCY SPAN 1.15MHz, MAX HOLD ON (allow 8 seconds minimum to construct worst-case spur), PEAK SEARCH ON (read spur power level), MARKER FREQUENCY (read spur frequency).
- Test 24.C.1.2 (Step 3): Report Worst-Case Spur (SPUR LVL @ ##MHz) Examine the spurs from part A and B above, select the worst one, and report it as follows: SPUR LVL @ ##MHz: -##.#dBm.

Limits	FUND/SPUR HI LIMIT: -5	OdBc			
<u>Results</u> .	PARAMETER	LOLIMIT	READING	<u>HILIMIT</u>	UNIT
24.C.1 24.C.1.X 24.C.1.X 24.C.1.X	FREQ: 1.5 MHz Fund PWR Spur LVL @ ##MHz Fund/Spur	12.0	SPEC ANA SPEC ANA CALC	-50	dBm dBm dBc
24.C.2 24.C.2.X 24.C.2.X 24.C.2.X	FREQ: 1.818181818 MHz FUND PWR SPUR LVL @ 0.909MHz FUND/SPUR	12.0	SPEC ANA SPEC ANA CALC	-50	đBm đBm đBc
24.C.3 24.C.3:X 24.C.3.X 24.C.3.X	FREQ: 2.0 MHz FUND PWR SPUR LVL @ 10MHz FUND/SPUR	12.0	SPEC ANA SPEC ANA CALC	-50	dBm dBm dBc

and the second sec

-

.

÷...

	<pre>Test 24.C.1.3: Calculate FUND/SPUR Separation Calculate the separation between fundamental power (FUND PWR) and the worst-case spur (SPUR LVL): FUND/SPUR = SPUR LVL - FUND PWR Example: If FUND PWR = 13.7dBm and SPUR LVL = -46.8dBm, then FUND/SPUR = -46.8dBm - 13.7dBm = -60.5dBc. The worst-case spur therefore lies -60.5dBc below the main frequency.</pre>
<u>0.909MHz</u> <u>Test</u>	 TEST 24.C.2: 0.909MHz SPUR TEST 650: RESET, FREQUENCY 1.8181818MHz, CHANNEL (1-4), AMPLITUDE 2.828, OUTPUT ONFIFTY, EXECUTE. Connect 650 Channel (1-4) Func Out to spectrum analyzer right input. SA: PRESET, REFERENCE LEVEL 20dB.
	Test 24.C.2.1: Measure Fundamental Power (FUND PWR) SA: CENTER FREQUENCY 1.8181818 MHz, FREQUENCY SPAN 2MHz, NORMAL MARKER ON, PEAK SEARCH ON.
	Test 24.C.2.2: Measure Spur Level (SPUR LVL @ 0.909MHz) SA: CENTER FREQUENCY 0.909090909MHz, FREQUENCY SPAN 100kHz, MAX HOLD ON (allow 5 seconds minimum to construct worst-case spur), PEAK SEARCH ON.
	<u>Test 24.C.2.3: Calculate FUND/SPUR Separation</u> Calculate the separation between fundamental power (FUND PWR) and the spur level (SPUR LVL): FUND/SPUR = SPUR LVL - FUND PWR
<u>10MHz</u> <u>Test</u>	 TEST 24.C.3: 10MHz SPUR TEST 650: RESET, FREQUENCY 2MHz, CHANNEL (1-4), AMPLITUDE 2.828, OUTPUT ONFIFTY, EXECUTE. Connect 650 Channel (1-4) Func Out to spectrum analyzer right input. SA: PRESET, REFERENCE LEVEL 20dB.
	Test 24.C.3.1: Measure Fundamental Power (FUND PWR) SA: CENTER FREQUENCY 2 MHz, FREQUENCY SPAN 100kHz, NORMAL MARKER ON, PEAK SEARCH.
	Test 24.C.3.2: Measure Spur Level (SPUR LVL @ 10MHz) CENTER FREQUENCY 10MHz, FREQUENCY SPAN 100kHz, MAX HOLD ON (allow 5 seconds minimum to construct worst-case spur), PEAK SEARCH ON.
	Test 24.C.3.3: Calculate FUND/SPUR Separation Calculate the separation between fundamental power (FUND PWR) and the spur level (SPUR LVL):

FUND/SPUR = SPUR LVL - FUND PWR

PERFORMANCE VERIFICATION

2 MAR 87

TEST 25: RISE/FALL TIME AND ABERRATIONS

- Purpose Verify that each channel's square wave rise/fall times and positive/negative aberrations meet specifications.
 - Equipment Oscilloscope with plug-ins, attenuator (50 ohm, 10X, 12.5W minimum), termination (50 ohm, 2W, 2%).
 - SetupTest 25.C.1
650:650:RESET, FREQUENCY 1E6, CHANNEL (1-4), FUNCTION SQUARE,
AMPLITUDE 10, OUTPUT ONFIFTY, EXECUTE.
Connect 650 Channel (1-4) Func Out to oscilloscope
vertical amplifier channel 1 input. Use a 50 ohm, 10X,
12.5W (minimum) attenuator in series with a 50 ohm, 2W, 2%
termination.
 - Scope: <u>7A16P Vertical</u> Channel 1, Coupling DC, Volts/Div 0.2. <u>7B90P Horizontal</u> Slope '-', Trigger Mode p-p, Trigger Source Internal, Trigger Coupling DC, Time/Division 200nsec.

Test 25.C.2

- 650: RESET, FREQUENCY 1E6, CHANNEL (1-4), FUNCTION SQUARE, AMPLITUDE 25, OUTPUT ONFIFTY, EXECUTE.
 Connect 650 Channel (1-4) <u>Func Out</u> to oscilloscope vertical amplifier channel 1 input. Use a 50 ohm, 10X, 12.5W (minimum) attenuator in series with a 50 ohm, 2W, 2% termination.
- Scope: <u>7A16P Vertical</u> Channel 1, Coupling DC, Volts/Div 0.5. <u>7B90P Horizontal</u> Slope '-', Trigger Mode p-p, Trigger Source Internal, Trigger Coupling DC, Time/Division 200nsec.

Limits	25.C.X.1	Risetime < 75nsec
	25.C.X.2	Falltime < 75nsec
	25.C.X.3	Pos.Aber < 5%
	25.C.X.4	Neg Aber < 5%

Results	AMPLITUDE	LOLIMIT	READING	HILIMIT	UNITS
25.C.1 25.C.1.1 25.C.1.2 25.C.1.3 25.C.1.4	10Vp-p Risetime Falltime Pos Aberr Neg Aberr	20 20 0 0	SCOPE SCOPE SCOPE SCOPE	75 75 5 5	nsec nsec % %
25.C.2 25.C.2.1 25.C.2.2 25.C.2.3 25.C.2.4	25Vp-p Risetime Falltime Pos Aberr Neg Aberr	20 20 0 0	SCOPE SCOPE SCOPE SCOPE	75 75 5 5	nsec nsec % %

TEST 26: SQUARE WAVE SYMMETRY (1KHz and 1MHz)

- <u>Purpose</u>. Verify the duty cycle set-ability and accuracy of each channel's square wave.
- Equipment Counter, termination (50 ohm, 2W, 2%).
- <u>Comment</u> This test measures the period and pulse width of the square wave with the counter, then calculates DUTYCYCLE% from the following algorithm:

DUTYCYCLE% = (Positive Pulse Width/Period)*100%

Setup

- 77

 $\mathcal{T} =$

- CNTR: Function PERIOD for first reading, Function PULSE WIDTH for second reading.
- ASO: RESET, FREQUENCY (per test 26.C.1-6), CHANNEL (1-4), FUNCTION SQUARE, AMPLITUDE 10, DUTYCYCLE (per test 26.C.1-6), OUTPUT ONFIFTY, EXECUTE. Connect 650 Channel (1-4) <u>Func Out</u> to counter. Terminate with a 50 ohm, 2W, 2% termination.

Limits DUTY SETTING <u>+</u>3%, <u>+</u>15nsec

	FREQ/DUTY	LOLIMIT	READING	HILIMIT	UNITS
26.C.1	1kHz, 20%	16.999	CALC	23.001	% %
26.C.2 26.C.3	1kHz, 50% 1kHz, 80%	46.999 76.999	CALC CALC	53.001 83.001	% %
26.C.4	1MHz, 20%	15.500	CALC	24.500 54.500	% %
26.C.5 26.C.6	1MHz, 50% 1MHz, 80%	45.500 75.500	CALC	84.500	%

- 、

TEST 27: AM INPUT

Verify that each channel's AM input operates and has the correct Purpose * ÷.... modulation drive levels.

DMM, power supply. Equipment

The test applies an external DC level to the AM In connector of Comment the test channel, then measures the ACvrms value of the sine wave at the <u>Func Out</u> connector.

Setup

DMM: FUNCTION VAcrms. Volts (per test 27.C.1-6) PS: 650: RESET, CHANNEL (1-4), AMPLITUDE 0, OUTPUT ONZERO, EXECUTE. Connect 650 Channel (1-4) Func Out to DMM. Connect power supply to 650 Channel (1-4) AM In.

----.

.

<u>+</u>15%

<u>Limits</u>

₹.

<u>Results</u>	AM In (Vdc)	LOLIMIT	READING	HILIMIT	UNITS
27.C.1	0	-0.23	DMM	0.23	Vrms
27.C.2	1	2.85	DMM	3.86	Vrms
27.C.3	2	6.01	DMM	8.13	Vrms
27.C.4	3	9.02	DMM	12.20	Vrms
27.C.5	4	12.02	DMM	16.26	Vrms
27.C.6	5	15.03	DMM	20.33	Vrms
COMPLETE

TEST 28: SYNC OUT

·-·· *

Purpose • Verify that each channel's sync signal meets TTL level lim	Purpose •	Verify that	each channel's	sync signal	meets TTL	level 1	imits
--	-----------	-------------	----------------	-------------	-----------	---------	-------

Equipment DMM, scope with plug-ins, termination (50 ohm, 2W, 2%).

Test 28.C.1.1 Setup 650: RESET, MODE TRIGGERED, CHANNEL (1-4), PHASE -90, EXECUTE. Connect the 650 channel (1-4) Sync Out to the DMM. Terminate with a 50 ohm, 2W, 2% termination. DMM: FUNCTION Vdc Test 28.C.1.2 650: RESET, MODE TRIGGERED, CHANNEL (1-4), PHASE +90, EXECUTE. Connect the 650 Channel (1-4) Sync Out to DMM. Terminate with a 50 ohm, 2W, 2% termination. . 7. DMM: FUNCTION Vdc 28.C.1.1 -0.005Vdc < SYNC LO < +0.400Vdc <u>Limits</u> +2.4Vdc < SYNC HI < +5.0Vdc 28.C.1.2

	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT
28.C.1.1	Sync Lo Level	-0.005	DMM	0.400	Vdc
28.C.1.2	Sync Hi Level	2.4	DMM	5.0	Vdc

PERFORMANCE VERIFICATION

2 MAR 87

TEST 29: MAIN GENERATOR MODE TEST

- <u>Purpose</u> Verify that the main generator modes operate correctly at a phase setting of 0°.
 - DMM, counter, signal source 271, termination (50 ohm, 2W, 2%). Equipment
 - Test 29.1 Setup RESET, FREQUENCY 2E3, EXECUTE. 650: Connect 650 Channel 1 Sync Out to Counter. Terminate with 50 ohm, 2W, 2% termination. CNTR: Function FREQUENCY

<u>Test 29.2 * 2</u>

DMM: Function ACrms RESET, FREQUENCY 2E3, MODE TRIGGERED, CHANNEL 1, OUTPUT 650: ONZERO, EXECUTE. ---Connect 650 Channel 1 Func Out to DMM.

Test 29.3

۰.

and the second s

- RESET, FREQUENCY 2E3, MODE TRIGGERED, CHANNEL 1, OUTPUT 650: ONZERO, EXECUTE. Connect 650 Channel 1 Sync Out to Counter. Connect signal source 271 to Trig In. Terminate with a 50 ohm, 2W, 2% termination.
- Function FREQUENCY CNTR:
- RESET (sets frequency to 1kHz), FUNCTION SQUARE, OUTPUT ON, 271: EXECUTE
- Test 29.4
- RESET, FREQUENCY 2E3, MODE SYNCGATE, EXECUTE. 650: Connect 650 Func Out to DMM.
- Function VACrms DMM:

Test 29.5

- RESET, FREQUENCY 2E3, MODE SYNCGATE, EXECUTE. 650: Connect 650 Channel 1 Sync Out to Counter. Connect signal source 271 to Trig In. Terminate with a 50 ohm, 2W, 2% termination.
- CNTR: Function FREQUENCY.
- RESET, FUNCTION DC, OFFSET 2, OUTPUT ON, EXECUTE. 271:

Test 29.6

RESET, FREQUENCY 2E3, MODE SYNCGATE, EXECUTE. 650:

- Connect 650 Channel 1 Func Out to DMM. Connect Signal Source 271 to Trig In. Terminate with 50 ohm, 2W, 2% termination.
- Function VAC rms DMM:
- RESET, FUNCTION SINGLE PULSE, PULSE WIDTH 250 uSec, UPPER 271: LEVEL 3, LOWER 0, OUTPUT ON, EXECUTE.

-

29.7

29.8

A-GATE

BURST

-

Vacrms

EVENTS

0.97

2

DMM ____

CNTR

-	<u>Test 29</u> 650:	RESET, FREQUENC Connect 650 Char Source 271 to <u>T</u> termination.	nnel 1 <u>Func (</u> rig In. Term	Dut to DMM.	Connect Sig	nal 2%
	DMM:	Function VAC rms	S			
	271:	RESET, FUNCTION LEVEL 3, LOWER	SINGLE PULS 0, OUTPUT ON	E, PULSE WIL , EXECUTE.	TH 250 USE	C, UFFER
	<u>Test 29</u>	9.8				
	650:	RESET, FREQUENC		BURST, CHANN	IEL 1, OUTPO	JT
		ONFIFTY, EXECUT	Ε.			
		Connect 650 Cha	nnel 1 <u>Func</u>	<u>Out</u> to Count	er. Termina	ate with
		50 ohm, 2W, 2%	termination.			
7∎	CNTR:	Function TOTALI	ZE. Set trig	ger level to	5 1.5 Vac.	•
. .		01-11- 50				
<u>Limits</u>	29.1	2kHz <u>+</u> 5%	Noo			
	29.2	OVac, -0, +0.10	Vac			
	29.3	$1 \text{ kHz} \pm 2\%$	Nac			
a manage and the second se	29.4	OVac, -0, +0.10	Vac			
		1.768Vac <u>+</u> 1%				
	29.6	1.25Vac <u>+</u> 10%				
	29.7	0.884Vac <u>+</u> 10%				
	29.8	2 counts <u>+</u> 0 cou	nts			
<u>Results</u>	MODE	PARAMETERM	LOLIMIT	READING	HILIMIT	UNITS
29.1	CONT	FREQUENCY	1900	CNTR	2100	Hz
29.2	TRIG	QUIESCENT		DMM	0.1	Vacrms
29.3	TRIG	FREQUENCY	980	CNTR	1020	Hz
29.4	S-Gate	•		DMM	0.1	Vacrms
29.5	S-Gate		1.75	DMM	1.79	Vacrms
29.6	S-GATE		1.13	DMM	1.37	Vacrms
			0 70	DMM	0 97	Vacrms

0.79

2

CYCLE/2

COUNT(2)

.

•

TEST 30: BURST COUNT

Test the set-ability and accuracy of the burst counter at the - Purpose • maximum trigger frequency.

Counter, termination (50 ohm, 2W, 2%). Equipment

RESET, FREQUENCY 2E5, MODE BURST, BURST COUNT (per test 650: Setup 29.X), CHANNEL 1, FUNCTION SQUARE, PHASE 90, AMPLITUDE 10, OUTPUT ONFIFTY, EXECUTE. Connect 650 Channel 1 Func Out to counter input. Terminate with 50 ohm, 2W, 2% termination. Press the Manual Trigger key (or send a group execute trigger over the GPIB bus) to trigger the burst.

CNTR: FUNCTION TOTALIZE, TRIG LEVEL 1.5 Vdc

30.17

7.

Trigger 650, wait for the burst to complete, then set counter to Procedure and reset counter (clear reading).

···	TOTALIZE	STOP. Record	reading and
<u>Limits</u>	<u>+</u> 0 counts	3	
<u>Results</u>	SETTING	READING	UNIT
30.1	1	1	EVENTS
30.2	2	2	EVENTS
30.3	4	4	EVENTS
30.4	8	8	EVENTS
30.5	16	16	EVENTS
30.6	32	32	EVENTS
30.7	64	64	EVENTS
30.8	128	128	EVENTS
30.9	256	256	EVENTS
30.10	512	512	EVENTS
30.11	1024	1024	EVENTS
30.12	2048	2048	EVENTS
30.13	4096	4096	EVENTS
30.14	8192	8192	EVENTS
30.15	16384	16384	EVENTS
30.16	32768	32768	EVENTS

65535

65535

EVENTS

2 MAR 87

COMPLETE

TEST 31: EXTERNAL PHASE LOCK

- <u>Purpose</u> Verify that the 650 can phase lock to an external reference signal applied to <u>Trig In</u>.
 - Equipment Counter, signal source 178, termination (50 ohm, 2W, 2%). Note: Step 3 requires a GPIB instrumentation computer.
 - Comment The 650 can phase lock to an external 40Hz to 2Mhz signal. The 650 first measures the signal's frequency, then selects the correct configuration for the PLL filter, then programs a corresponding output frequency. Part 1 of this test uses the GPIB command MONITORFREQ? to verify that the 650 can measure the reference signal frequency, part 2 verifies that the 650 can generate a phase-locked output signal, and part 3 verifies that the 650 will 'generate a display error message and an SRQ upon signal removal.

Setup

- 77

CNTR: FUNCTION FREQUENCY, TRIGGER LEVEL 1.5Vdc.

178: RESET, FREQUENCY (per test 31.X), FUNCTION SQUARE, AMPLITUDE 5, REAR FUNC OUT ON, EXECUTE.

650: RESET, MODE PHASELOCK, EXECUTE.
Connect signal source 178 rear FUNC OUT to <u>Trig In</u>. Connect
650 Channel 1 <u>Sync Out</u> to counter. Terminate with 50 ohm,
2W, 2% termination.
Configure the 650 SRQMASK to get an SRQ for phase lock loss.

Procedure

- 1) Set the frequency of the external signal (per test 31.X). 2) Wait 4 seconds for the 650 to lock to the external signal.
 - 3) Read the measured frequency with the GPIB command MONITORFREQ?.
- 4) Measure the <u>Sync Out</u> frequency.
- 5) Remove the external signal.
- Limits

31.C.1 Lock Time: <4sec Monitor Frequency: REF FREQ <u>+</u>3%

31.C.2 Frequency Accuracy: REF FREQ ±0.1%

31.C.3 Locked/Unlocked: Removing signal unlocks PLL.

<u>Results</u>	SETTING/SOURCE	LOLIMIT	READING	HILIMIT	UNIT
31.1.1 31.1.2	40Hz/MONITOR SYNC OUT	38.800 39.960	CNTR CNTR	41.200 40.040	Hz Hz
31.1.3	PLL NO LOCK (EXT.	SIGNAL REMO	VED) PASS/FAIL		
31.2.1	475Hz/MONITOR	460.750	CNTR CNTR	489.250 475.480	Hz Hz
31.2.2 31.2.3	SYNC OUT PLL NO LOCK (EXT.	474.530 SIGNAL REMO	the second s		
31.3.1	990Hz/MONITOR	960.300	CNTR	1019.700	Hz
31.3.2	SYNC OUT	989.010	CNTR	990.990	Hz
31.3.3	PLL NO LOCK (EXT.	SIGNAL REMO	OVED) PASS/FAIL	•	

-

.

31.4.1	1.1kHz/MONITOR	1.067	CNTR	1.133	kHz
	SYNC OUT	1.099	CNTR	1.101	kHz
31.4.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		
011110					
31.5.1	4.4kHz/MONITOR	4.268	CNTR	4.532	kHz
31.5.2	SYNC OUT	4.396	CNTR	4.404	kHz
31.5.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		
51.5.5					
31.6.1	9.9kHz/MONITOR	9.603	CNTR	10.197	kHz
31.6.2	SYNC OUT	9.890	CNTR	9.910	kHz
31.6.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		
51.0.5					
31.7.1	10.1kHz/MONITOR	9.797	CNTR	10.403	kHz
31.7.2	SYNC OUT	10.090	CNTR	10.110	kHz
31.7.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		-
51.7.5					
31.8.1	44.9kHz/MONITOR	43.553	CNTR	46.247	kHz
31.8.2	SYNC OUT	44.855	CNTR	44.945	kHz
31.8.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		
,	_				
31.9.1	99.9kHz/MONITOR	96.903	CNTR	102.897	kHz
31.9.2	SYNC OUT	99.800	CNTR	100.000	kHz
31.9.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		
31.10.1	100.1kHz/MONITOR	97.097	CNTR	103.103	kHz
31.10.2	SYNC OUT	100.000	CNTR	100.200	kHz
31.10.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		
31.11.1	1MHz/MONITOR	0.970	CNTR	1.030	MHz MHz
31.11.2	SYNC OUT	0.999	CNTR	1.001	MAZ
31.11.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		
				2.060	MHz
31.12.1	2MHz/MONITOR	1.940	CNTR	2.060	MHZ
31.12.2	SYNC OUT	1.998	CNTR	2.002	FH 14
31.12.3	PLL NO LOCK (EXT.	SIGNAL REM	OVED) PASS/FAIL		

÷....

TEST 32: PROGRAMMABLE TRIGGER LEVEL

Purpose Verify operation and accuracy of the trigger level DAC circuitry.

Equipment DMM, power supply.

<u>Comment</u> The positive and negative trigger levels used by this test force the DAC trigger level circuitry to respond to complimentary binary bit patterns.

Because this test puts the 650 in the gated mode with no trigger voltage, the <u>Func Out</u> connector will not produce an output until the trigger voltage applied to the <u>Trig In</u> connector reaches the trigger level.

Procedure Use the power supply to apply a starting voltage of ±2.9V to the <u>Prig In</u> connector. Change the voltage slowly until the 650 produces an output waveform.

 Setup
 DMM:
 Function Vacrms.

 PS:
 Volts, Current limiting ≤2ma.

 650:
 RESET, MODE SYNCGATE, CHANNEL 1, AMPLITUDE 10, OUTPUT

 ONZERO, EXECUTE.
 Connect power supply output to Trig In.

 Connect 650 channel 1 Func Out to DMM.

 Limits
 Trig level accuracy
 ±0.3V

<u>Results</u>	T-LVL/SLOPE	LOLIMIT	READING	HILIMIT	UNITS
32.1	+3.4/POS	3.1	DMM	3.7	Vđc
32.2	-3.3/POS	-3.6	DMM	-3.0	Vđc
32.3	-3.3/NEG	-3.6	DMM	-3.0	Vđc

PERFORMANCE VERIFICATION

TEST 33: INTERNAL TRIGGER

- Purpose Verify the frequency accuracy of the internal trigger synthesizer. The internal trigger can generate triggers from 2.5mHz to 200kHz.
 - Equipment Counter

Setup650:RESET, FREQUENCY 200E3, MODE TRIGGERED, TRIGGERSOURCEINTERNAL, TRIGGERFREQ (per test 33.X), EXECUTE.
Connect 650 Channel 1 Sync Out to frequency counter.CNTR:Function Frequency, Trigger Level 1.25V

Limits Frequency Accuracy: ±0.1%

7 .	SETTING	LOLIMIT	READING	HILIMIT	UNIT
33.1	156.00 kHz	155.84400	CNTR	156.15600	kHz
33.2	78.10 kHz	78.02190	CNTR	78.17810	kHz
33.3	39.10 kHz	39.06090	CNTR	39.13910	kHz
33.4	19.50 kHz	19.48050	CNTR	19.51950	kHz
33:,5	9.77 kHz	9.76023	CNTR	9.77977	kHz
33.6	4.88 kHz	4.87512	CNTR	4.88488	kHz
33.7	2.44 kHz	2.43756	CNTR	2.44244	kHz
33.8	1.22 kHz	1.21878	CNTR	1.22121	kHz
33.9	610.00 Hz	609.39000	CNTR	610.61000	Hz
33.10	305.00 Hz	304.69500	CNTR	305.30500	Hz
33.11	152.00 Hz	151.84800	CNTR	152.15200	Hz
33.12	76.30 Hz	76.22370	CNTR	76.37630	Hz
33.13	38.10 Hz	38.06190	CNTR	38.13810	Hz
33.14	19.10 Hz	19.08090	CNTR	19.11910	Hz
33.15	9.54 Hz	9.53046	CNTR	9.54954	Hz
33.16	4.77 Hz	4.76523	CNTR	4.77477	Hz
33.17	2.38 Hz	2.37762	CNTR	2.38238	Hz
33.18	1.19 Hz	1.18881	CNTR	1.19119	Hz

2 MAR 87

COMPLETE

TEST 34: MARKER OUTPUT LEVEL

<u>Purpose-</u> 1) Verify set-ability and accuracy of the marker frequency. 2) Verify that the <u>Marker Out</u> levels meet TTL requirements. 3) Indirectly verify proper operation of the phase marker.

Equipment DMM, termination (50 ohm, 2W, 2%).

SetupDMM: Function Vdc.650:RESET, SWEEPMODE FREQ-CONT-RST, STARTFREQUENCY 1000,
STOPFREQUENCY 1000, EXECUTE.
Connect 650 Marker Out to DMM. Terminate with 50 ohm, 2W, 2%
termination.

Limits	FREQ ACCUR	<u>+</u> 0.00001%
	TTL LEVELS	-0.005Vdc < LO < 0.400Vdc
•		2.4Vdc < HI < 5.0Vdc

Results	MARKER FREQ	LOLIMIT	READING	HILIMIT	UNITS
34.1	999.9999Hz	2.4	DMM	5.0	Vđc
34.2	1000.0001Hz	-0.005		0.400	Vđc

TEST 35: SWEEP TIME

Purpose Verify sweep time accuracy.

Equipment Counter, termination (50 ohm, 2W, 2%).

SetupCNTR:Function Period, Trigger Level 1.25 V, Execute.650:RESET, SWEEPMODE FREQCONTRST, SWEEPTIME .01 SWEEPCOMP OFF,
EXECUTE.
Connect 650 Marker Out to counter. Terminate with 50 ohm,
2W, 2% termination.

Limits +0.1%, +100usec.

<u>Results</u>	SETTING	LOLIMIT	READING	<u>HILIMITS</u>	UNIT
35.1	- 0.01sec	9.8900	CNTR	10.1100	msec

TEST 36: SWEEP MODES

z.,

- Purpose Verify proper operation of the sweep modes associated with the Trig In, Marker Out, and Horiz Out connectors.
 - Equipment DMM, counter, power supply, signal source 178, termination (50 ohm, 2W, 2%).

Setup Test 36.1 through 36.5

- CNTR: Function Frequency
- DMM: Function Vdc
- 650: RESET, CHANNEL 1, OUTPUT ONZERO, SWEEPMODE FREQTRIGHOLDRST, SWEEPTIME .01, SWEEPCOMP OFF, EXECUTE.
 - NOTE: You will need to press the <u>Manual Trigger</u> key or send a group execute trigger over the GPIB bus for tests 36.3 and 36.5.
 - --- Connect 650 Channel 1 Func Out to the counter and Horiz Out to the DMM.

Test 36.6 through 36.7

- CNTR: Function Frequency
- PS: DC volts (TTL levels per test 36.X)
- 650: RESET, CHANNEL 1, OUTPUT ONZERO, SWEEPMODE FREQSYNCFSK, SWEEPTIME .01, SWEEPCOMP OFF, EXECUTE. Connect power supply output to 650 <u>Trig In</u>.
 - Connect 650 Channel 1 Func Out to counter.

Test 36.8 through 36.9

CNTR: Function Frequency

- PS: DC volts (TTL levels per test 36.X)
- 650: RESET, CHANNEL 1, OUTPUT ONZERO, SWEEPMODE FREQASYNCFSK, SWEEPTIME .01, SWEEPCOMP OFF, EXECUTE. Connect power supply output to 650 <u>Trig In</u>. Connect 650 Channel 1 Func <u>Out</u> to Counter.

Test 36.10

- CNTR: Function Frequency
- 178: RESET, FUNCTION SQUARE, AMPLITUDE 5, REAR FUNC OUT ON, EXECUTE.
- 650: RESET, CHANNEL 1, OUTPUT ONZERO, SWEEPMODE FREQSEQEXT, SWEEPTIME .01, SWEEPCOMP OFF, EXECUTE. Connect Signal Source 178 <u>Func Out</u> to 650 <u>Trig In</u>. Connect 650 <u>Marker Out</u> to counter and terminate with 50 ohm, 2W, 2% termination.
- Test 36.11
- CNTR: Function Frequency
- 650: RESET, CHANNEL 1, OUTPUT ONZERO, SWEEPMODE FREQSEQCONT, SEQUENCELIMIT 99, SWEEPTIME .1, SWEEPCOMP OFF, EXECUTE. Connect 650 <u>Marker Out</u> to counter and terminate with 50 ohm, 2W, 2% termination.

÷

- .

Limits:	36.1	1kHz <u>+</u> 0.1%
	36.2	0Vdc <u>+</u> 0.1Vdc
•	36.3	10kHz <u>+</u> 0.01%
	36.4	10Vđc <u>+</u> 5%
	36.5	1kHz <u>+</u> 0.1%
	36.6	1kHz <u>+</u> 1%
	36.7	10kHz <u>+</u> 1%
	36.8	1kHz +1%
	36.9	10 kHz +1%
	36.10	$1 \text{ kHz } \pm 0.1\%$
	36.11	990Hz <u>+</u> 0.1%
	00122	

<u>Results</u>	SWPMODE / PARAMETER	LOLIMIT	READING	HILIMIT	UNIT
o		0.999	CNTR	1.001	kHz
36.1	(5)/START FREQ	-0.10	DMM	0.10	• Vdc '
36.2 🦈	' (5)/HORZ OUT		CNTR	10.001	kHz
36.3	.(5)/STOP FREQ	9.999		10.50	Vđc
36.4	(5)/HORZ OUT	9.50	DMM		kHz
36.5	(5)/START FREQ	0.999	CNTR	1.001	
36.6	(7)/SYNC FSK	0.990	<u>CNTR</u>	1.010	kHz
	(TTL LO @ TRIG IN)			10.100	kHz
36.7	(7)/SYNC FSK	9.900	CNTR	10.100	N.I.L.
36.8	(TTL HI @ TRIG IN) (8)/ASYNC FSK	0.990	CNTR	1.010	kHz
36.9	(TTL LO @ TRIG IN) (8)/ASYNC FSK	9.900	CNTR	10.100	kHz
36.10	(TTL HI @ TRIG IN) (9)/MARKER FREQ	0.999	CNTR	1.001	kHz
36.11	(TRIG FREQ: 1kHZ) (10)/MARKER FREQ	0.989	CNTR	0.991	kHz

TEST 37: FM/PM INPUT

- <u>Purpose</u> Verify that an external dc voltage source can frequency modulate the 650. (This test indirectly verifies operation of phase modulation.)
 - Equipment Counter, power supply, termination (50 ohm, 2W, 2%).

.

- CommentA modulation voltage of -1V to +1V will fully modulate the output
signal between the programmed start and stop frequency values.
Pressing Reset PARAMS sets the start frequency to 1kHz and the
stop frequency to 10kHz. This test uses modulation voltages of
 $\pm 0.96Vdc$ (instead of $\pm 1.00Vdc$) to verify that modulation of the
output signal does not peak before $\pm 1.00Vdc$.
- Setup
 'CNTR:
 Function Frequency

 PS:
 Volts (per test 37.X), current limiting ≤2ma.

 650:
 RESET, CHANNEL 1 OUTPUT ONFIFTY, SWEEPMODE BOTHEXTMOD,

 EXECUTE.
 Connect 650 Channel 1 Func Out to counter and terminate

 with 50 ohm, 2W, 2% termination.
 Connect power supply output to 650 FM/PM In.

<u>Limits</u>	START VOLTAGE START FREQUENCY	-0.961Vdc 1175Hz,			
	STOP VOLTAGE STOP FREQUENCY	+0.961Vdc 9825Hz,	-		
<u>Results</u>	FM/PM In	LOLIMIT	READING	HILIMITS	UNIT
37.1 37.2	-0.961Vdc +0.961Vdc	0.959 9.609	COUNTER COUNTER	1.391 10.041	kHZ kHZ

TEST 38: HOLD IN

12.....

Verify that a TTL signal applied to the <u>Hold In</u> connector can Purpose. control frequency sweep and waveform output.

DMM, counter, power supply, termination (50 ohm, 2W, 2%). Equipment

Testing frequency sweep hold requires the following timing control: Procedure 1) Set the 650 sweep time to 2 seconds

- 2) Trigger the sweep
- 3) Wait one second
- 4) Make the power supply deliver a TTL low to Hold In
- 5) Measure the CH1 Sync Out frequency
- 6) Verify that the sweep has reached 50% of the range programmed
- ' Testing waveform hold requires the following timing control:
 - ... 1) Set the 650 frequency to 0.5 Hz
 - 2) Set the output waveform to a RAMP with 10V amplitude
 - 3) Trigger the output
 - 4) Wait one second
 - 5) Make the power supply deliver a TTL low to Hold In
 - 6) Measure the CH1 Func Out voltage
 - 7) Verify that the ramp has reached 50% of the 10V amplitude

Setup

- 77

2.

CNTR: Function Frequency

RESET, SWEEPMODE FREQTRIGHOLDRST, SWEEPTIME 2, 650: TRIGGERSOURCE EXTERNAL, EXECUTE. Connect 650 CH1 Sync Out to counter and terminate with 50 ohm, 2W, 2% termination. Connect power supply output to Hold In.

Test 38.2

Test 38.1

Function Vdc DMM:

RESET, FREQUENCY 0.5, MODE TRIGGERED, HOLDINPUT WAVEFORM, 650: CHANNEL 1, FUNCTION RAMP, AMPLITUDE 10, OUTPUT ONZERO, EXECUTE. Connect 650 CH1 Func Out to DMM. Connect power supply output to Hold In.

Limits	38.1	5.50kHz <u>+</u> 10%	
	38.2	5.00Vdc <u>+</u> 10%	

<u>Results</u>	SETTING	LOLIMIT	READING	HILIMIT	UNIT
38.1	HOLD SWEEP	4.95	CNTR	6.05	kHz
38.2		4.50	DMM	5.50	Vdc

TEST 39: STORED SETTINGS

Verify that the 650 can store and recall setups and that the Purpose . memory backup battery works. This battery protects the stored setups and auto calibration data against power loss.

None. Equipment

÷.

A setup includes all the operating settings of the Main, Channel, Comment Sweep, and Trigger keys, but not those of the GPIB or Utility keys.

> When the 650 stores a setup, it also generates and stores a check sum with the setup. Then, when the operator or a GPIB computer recalls the setup, the 650 generates a new check sum and compares it to the stored check sum. If the sums differ, the 650 generates a screen error message and (if the SRQMASK equals 7) an SRQ.

For the automated factory test, the instrumentation computer sets Procedure the SRQMASK to 7, sends a command string of 25 identical setups, turns the power off/on, then recalls all 25 setups. The setup stored in all 25 locations consists of [Reset] PARAMS plus [Main] MODE TRIG.

For bench testing, use this procedure to store and recall setups:

STORE

- 1) Give the 650 a setup. 2) Press <u>Stored Settings</u> STORE.
- 2) Key in a storage location number.
- 4) Press Execute to store the setup.

RECALL

- 1) Press Stored Settings RECALL. 2) Key in storage location number.
- 3) Press Execute to recall setup.

Store from 1 to 25 setups, turn the power off/on, then recall each setup. If the front panel displays no error messages, then the stored setups and the battery work.

Storing: RESET, MODE TRIGGERED, STORESETTING (1-25), EXECUTE. Setup 650: Recalling: RESET, SRQMASK 7, MODE TRIGGERED, RECALLSTORESETTING (1-25), EXECUTE. Connect test system GPIB cable to 650.

Store and recall 25 setups with no errors. Limits

TEST 40: SELF DIAGNOSTICS

.

....

7.

.

- Verify that self test can test the 650 circuits and that none have Purpose . defects.
- None. Equipment
- Remove all rear-panel cables. Setup

- Press Utility TEST START. Procedure
- Self test takes 2-4 minutes, depending on the number of channels Results in the 650. If it finds a defect, it will display an error message and stop. If if finds no defects, it will display PASSED ALL TESTS.

. .

3.3 FACTORY PERFORMANCE VERIFICATION

Do you want Wavetek to run the complete performance verification for you?

We will: 1) Calibrate your 650 2) Run the complete performance verification procedure 3) Provide you with a printout of the test results

If you want factory calibration and test, follow this procedure:

1) Call us at (619) 279-2200 and ask for customer service. Our service representative will ask for your name, telephone number, company name, and equipment type. Tell the representative you want 650 calibration and customer data performance verification.

• 2) Pack and ship the 650. If possible, use the original packing material and boxes. If you use inadequate materials, you'll have to pay to repair any shipping damage because carriers won't pay claims on incorrectly packed equipment.

<u>Performance Verification Data</u>. Our automated test set will generate a report like the following for your 650. The letters UUT in the report refer to the 650 (unit under test).

MODEL 650 ACCEPTANCE

PROCESS STEP: CUSTOMER DATA PRINTOUT CONTAINS: ALL DATA TEST SPECIFICATIONS: PUBLISHED UUT SERIAL #: 6370286 OPTIONS INSTALLED: NO OPTIONS OPERATOR CALIB.#: 116 DATE: 02/04/87

4.0 SOFTWARE VERSION CHECK

4....

4.1 U.U.T. VERSION RESPONSE: WAVETEK MODEL 650 (V2.1)

5.0 QUICK FUNCTIONAL CHECK

1.19

5.1	• •	CHANNEL	1			
	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
5.1.1 5.1.2 5.1.3	Sync FREQ Sine AMPL Sine OFST	990 1.750 150	1000.0 1.7712 0011	1010 1.785 .150	Hz Vrms Vdc	PASS PASS PASS
5.2		CHANNEL	2			
5.2.1 5.2.2 5.2.3	Sync FREQ Sine AMPL Sine OFST	990 1.750 150	1000.0 1.7707 0007	1010 1.785 .150	Hz Vrms Vdc	PASS PASS PASS

6.0 QUICK CAL (3.5Vacrms) CHECK

	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
6.1	3.500Vrms	3.4825	3,50081	3.5175	Vrms	PASS

7.0 REFERENCE INPUT / OUTPUT

	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
	(REFIN)		(REFOUT)			
7.1 7.2 7.3 7.4 7.5	ÑO INPUT 9900000 10100000 TTL HI TTL LO	9999950 9899951 10099950 2.4 .0	10000023 9900000 10100000 2.51 .23	10000050 9900050 10100051 5.0 .4	Hz Hz Hz Vdc Vdc	PASS PASS PASS PASS PASS

8.0 INTERNAL VOLTAGE REFERENCE (2.048 Vdc)

		PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
*2	8.1	2.04vdc	2.020	2.0449	2.040	vdc	PASS
	11.0 OL	JTPUT ON/OFF;	0/50 OHM	I IMPEDANCE			-
	11.1		CHANNEL	1			
		PARAMETER		1IT READIN	IG HILIMIT	UNIT	STATUS
	11.1.1	Z=0,OUTPUT_O		79 .883	.888	Vrms	PASS
	11.1.2	(LOAD= 500bm Z=50,0UTPUT (ON .87	.884	888.888	Vrms	PASS
		(LOAD= 50ohm OUTPUT OFF Z=0,OUTPUT O (NO LOAD)	.00		.0 .010 52 .868	Vrms Vrms	PASS PASS
	11.1.5	Z=50,OUTPUT ((NO LOAD)	DN 1.75	58 1.770	5 1.778	Vrms	PASS
	11.2		CHANNEL	2			
	11.2.1	Z=0,OUTPUT O		.882	28 .888	Vrms	PASS
	11.2.2	(LOAD= 50ohm Z=50,OUTPUT	DN .87	.883	so .889	Vrms	PASS
		(LOAD= 50ohm OUTPUT OFF Z=0,OUTPUT O (NO LOAD)	.00			Vrms Vrms	PASS PASS
	11.2.5	Z=50,OUTPUT (NO LOAD)	ON 1.75	58 1.770	1.77 8	Vrms	PASS

12.0 FUNCTION CHECK AT GOOHz, 10Vp-p

12.1	CHANNEL 1	
14.1		

	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
$12.1.1.2 \\ 12.1.2.1 \\ 12.1.2.2 \\ 12.1.3.1 \\ 12.1.3.2 \\ 12.1.4.1 \\ 12.1.4.2$	TRIANGLE 2.886 -OFFSET SQUARE 5 OFFSET	3.516 15 2.870 15 4.973 15 2.870 15 15 010	3.5366 .015 2.8880 .003 5.0000 .071 2.8879 .004 0007	3.554 .15 2.902 .15 5.027 .15 2.902 .15 .010	Vrms Vdc Vrms Vdc Vrms Vdc Vdc Vdc	PASS PASS PASS PASS PASS PASS PASS PASS

CHANNEL 2

13.0 SINE AMPLITUDE & OFFSET ACCURACY

13.1

12.2

- . .

 \cdot b

: تى CHANNEL 1

	PARAMÉTER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
z. *	(Vp-p : Vrms)				-	
13.1.1.2 $13.1.2.1$ $13.1.2.1$ $13.1.2.2$ $13.1.3.1$ $13.1.3.2$ $13.1.4.1$ $13.1.4.2$ $13.1.5.1$ $13.1.5.2$ $13.1.6.1$ $13.1.6.2$ $13.1.6.2$ $13.1.7.1$ $13.1.7.2$ $13.1.8.1$ $13.1.8.2$ $13.1.9.1$ $13.1.9.2$ $13.1.9.1$ $13.1.9.2$ $13.1.9.1$	OFFSET 0 (7.5),(2.652) OFFSET 0 (10),(3.536) OFFSET 0 (12.5),(4.419) OFFSET 0 (15),(5.303) OFFSET 0 (17.5),(6.187) OFFSET 0 (20),(7.071) OFFSET 0 (22.5),(7.955) OFFSET 0 (25),(8.839)	15 1.759 15 2.639 15 3.518 15 4.397 15 5.276 15 6.156 15 7.036 15 7.915 15	.000 1.7715 .004 2.6553 .007 3.5402 .011 4.4238 .013 5.3070 .017 6.1907 .019 7.0754 .023 7.9572 .025 8.8402	$ \begin{array}{r} .888\\ .15\\ 1.777\\ .15\\ 2.665\\ .15\\ 3.554\\ .15\\ 4.441\\ .15\\ 5.330\\ .15\\ 6.218\\ .15\\ 7.106\\ .15\\ 7.995\\ .15\\ 8.883\\ .15\\ \end{array} $	Vrms Vdc Vdc Vrms Vdc Vrms Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc	PASS PASS PASS PASS PASS PASS PASS PASS
13.2	CHAI	NNEL 2				
13.2.1.1 $13.2.1.2$ $13.2.2.1$ $13.2.2.2$ $13.2.3.1$ $13.2.3.2$ $13.2.4.1$ $13.2.4.2$ $13.2.5.1$ $13.2.5.2$ $13.2.6.1$ $13.2.4.2$	(5),(1.768) DFFSET 0 (7.5),(2.652) DFFSET 0 (10),(3.536) DFFSET 0 (12.5),(4.419) DFFSET 0 (15),(5.303)	15 1.759 15 2.639 15 3.518 15) 4.397 15	.001 1.7709 .004 2.6553 .007 3.5420 .008 4.4246 .012 5.3078	.15 1.777 .15 2.665 .15 3.554 .15 4.441 .15 5.330	Vrms Vdc Vrms Vdc Vrms Vdc Vrms Vdc Vrms Vdc Vrms Vdc	PASS PASS PASS PASS PASS PASS PASS PASS

13.2.7.1 (17.5),(6.187) 13.2.7.2 DFFSET 0 13.2.8.1 (20),(7.071) 13.2.8.2 DFFSET 0 13.2.9.1 (22.5),(7.955) 13.2.9.2 DFFSET 0 13.2.10.1 (25),(8.839) 13.2.10.2 DFFSET 0	6.156 15 7.036 15 7.915 15 8.795 15	6.1921 .017 7.0782 .019 7.9604 .023 8.8437 .025	6.218 15 7.106 15 7.995 .15 8.883 .15	Vrms Vdc Vrms Vdc Vrms Vdc Vrms Vdc	PASS PASS PASS PASS PASS PASS PASS
--	--	--	--	--	--

14.0 SINEWAVE AMPLITUDE ACCURACY AT 50 Vp-p

14.1	Cł	HANNEL 1				
	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
	(Vp-p : Vrms)					• •
	(502, (17.678)	17.590	17.6290	17.766	Vrms	PASS
14.2	С	HANNEL 2				
14:2.1	(50),(17.678)	17.590	17.6320	17.766	Vrms	PASS
15.0 S	QUARE AMPLITUDE	& OFFSET	ACCURACY			

15.1

÷...

CHANNEL 1

	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
15.1.1.1 15.1.2.1 15.1.2.1 15.1.2.2 15.1.3.1 15.1.3.2 15.1.4.1 15.1.4.2 15.1.5.1 15.1.5.1 15.1.6.2 15.1.7.1 15.1.7.2 15.1.8.1 15.1.8.1 15.1.8.2 15.1.9.1 15.1.9.2 15.1.10.1 15.1.10.2	AMPL 2.5 OFFSET AMPL 5 OFFSET AMPL 7.5 OFFSET AMPL 10 OFFSET AMPL 12.5 OFFSET AMPL 15 OFFSET AMPL 17.5 OFFSET AMPL 20 OFFSET AMPL 22.5 OFFSET AMPL 25 OFFSET	$\begin{array}{c} 2.488 \\15 \\ 4.975 \\15 \\ 7.463 \\15 \\ 9.950 \\15 \\ 12.438 \\15 \\ 12.438 \\15 \\ 14.925 \\15 \\ 17.413 \\15 \\ 19.900 \\15 \\ 22.388 \\15 \\ 24.875 \\15 \end{array}$	$\begin{array}{c} 2.5064 \\004 \\ 5.0089 \\006 \\ 7.5088 \\008 \\ 10.0069 \\009 \\ 12.5073 \\010 \\ 15.0052 \\011 \\ 17.5061 \\012 \\ 20.0082 \\013 \\ 22.5034 \\012 \\ 25.0027 \\011 \end{array}$	$\begin{array}{c} 2.513 \\ .15 \\ 5.025 \\ .15 \\ 7.538 \\ .15 \\ 10.050 \\ .15 \\ 12.563 \\ .15 \\ 12.563 \\ .15 \\ 15.075 \\ .15 \\ 17.588 \\ .15 \\ 20.100 \\ .15 \\ 22.613 \\ .15 \\ 25.125 \\ .15 \end{array}$	Vp-p Vdc Vp-p Vdc	PASS PASS PASS PASS PASS PASS PASS PASS
15.2	Ci	HANNEL 2				
15.2.1.1 15.2.1.2	AMPL 2.5 OFFSET	2.488 15	2.5011 003	2.513 .15	Vp-p Vdc	PASS PASS

15.2.2.2 OFFSET 15 003 .15 Vdc PASS 15.2.3.1 AMPL 7.5 7.463 7.4978 7.538 Vp-p PASS 15.2.3.2 OFFSET 15 005 .15 Vdc PASS	is is is is
	S
15 2 7 2 OFFERT - 15 - 005 .15 Vdc PAS	S
	S
15.2.4.1 AMPL 10 9.950 9.9978 10.050 Vp-p PASS	
15.2.4.2 OFFSET15006 .15 Vdc PASS	S
15.2.5.1 AMPL 12.5 12.438 12.4898 12.563 Vp-p PASS	
15.2.5.2 OFFSET15005 .15 Vdc PASS	S
15.2.6.1 AMPL 15 14.925 14.9861 15.075 Vp-p PAS	S
15.2.6.2 OFFSET15004 .15 Vdc PASS	S
15.2.7.1 AMPL 17.5 17.413 17.4837 17.588 Vp-p PASS	S
15.2.7.2 OFFSET15004 .15 Vdc PASS	5
15.2.8.1 AMPL 20 19.900 19.9877 20.100 Vp-p PASS	S
15.2.8.2 OFFSET15004 .15 Vdc PASS	S
15.2.9.1 AMPL 22.5 22.388 22.4810 22.613 Vp-p PASS	S
15.2.9.2 OFPSET15005 .15 Vdc PAS	
15.2.10.1 AMPL 25 24.875 24.9775 25.125 Vp-p PAS	•
15.2.10.2 OFFSET15007 .15 Vdc PASS	S

16.0 DC VOLTAGE ACCURACY, FUNCTION DC

.

.

15.1		CHANNEL 1				
and the second	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
	OFFSET Vdc	······································				anan araa ulata Angla kasa, kan.
		,				
16.1.1	25.0	24.915	24.9772	25.085	Vdc	PASS
16.1.2	20.0	19,930	19.9817	20.070	Vdc	PASS
16.1.3	15.0	14.945	14.9857	15.055	Vdc	PASS
16.1.4	10.0	9.960	9.9907	10.040	Vdc	PASS
16.1.5	5.0	4.975	4.9946	5.025	Vdc	PASS
16.1.6	.0	010	0013	.010	Vdc	PASS
16.1.7	-5.0	-5.025	-4.9976	-4.975	Vdc	PASS
16.1.8	-10.0	-10.040	-9.9945	-9.960	Vdc	PASS
16.1.9	-15.0	-15.055	-14.9898	-14.945	Vdc	PASS
16.1.10	-20.0	-20.070	-19.9860	-19.930	Vdc	PASS
16.1.11	-25.0	-25.085	-24.9829	-24.915	Vdc	PASS
16.2		CHANNEL 2				
16.2.1	25.0	24.915	24,9792	25.085	Vdc	PASS
16.2.2	20.0	19.930	19.9828	20.070	Vdc	PASS
16.2.3	15.0	14,945	14,9876	15.055	Vdc	PASS
16.2.4	10.0	9.960	9.9907	10.040	Vdc	PASS
16.2.5	- 5.0	4.975	4.9946	5.025	Vdc	PASS
16.2.6	.0	010	0029	.010	Vdc	PASS
16.2.7	-5.0	-5.025	-5.0002	-4,975	Vdc	PASS
16.2.8	-10.0	-10.040	-9.9977	-9.960	Vdc	PASS
16.2.9	-15.0	-15.055	-14.9951	-14,945	Vdc	PASS
16.2.10	-20.0	-20.070	-19.9908	-19.930	Vdc	PASS
16.2.11	-25.0	-25.085	-24.9853	-24.915	Vdc	PASS

3-63

.

	17.1	C	HANNEL 1				
-	•	PARAMETER	LOLIMIT	READING	HILIMI	r UNIT	STATUS
		(OFFSET Vdc)					
	17.1.1 17.1.2	25.0 -25.0	24.865 -25.135	24.9058 -24.9134			PASS PASS
	17.2	C	HANNEL 2				
	17.2.1 17.2.2	25.0 -25.0	24.865 -25.135	24.918 -24.9282			PASS PASS
	18.0-AT	TENUATOR ACCUR	RACY				•
	18.1	C	HANNEL 1				
		PARAMETER		READING	HILIMIT	UNIT	STATUS
		(Vp-p,Vrms,db)					
	18.1.2	(10,3.536,0) (1,.3536,20) (.1,.0354,40)	3.516 .3498 .0332	3.5358 .35334 .03535		Vrms Vrms Vrms	PASS PASS PASS
	18.2	С	CHANNEL 2				
	18.2.2	(10,3.536,0) (1,.3536,20) (.1,.0354,40)	3.516 .3498 .0332	3.5286 .35307 .03531	3.555 .3574 .0376	Vrms Vrms Vrms	PASS PASS PASS

17.0 DC VOLTS TEST (+/-25 Vdc) TERMINATED INTO 50 ohms

21.0 PHASE CHECK

-

CHANNEL 1 PHASE MEASURED IN REFERENCE TO CHANNEL 2

	FREQ SETTING	LOLIMIT	READING	HILIMIT	UNIT	STATUS
21.1.1 21.1.2 21.1.3 21.1.4 21.1.5 21.1.6 21.1.7 21.1.8 21.1.7 21.1.8 21.1.9 21.1.10 21.1.10 21.1.11 21.1.12 21.1.13	1.000 MHz 1.500 MHz	0050 0050 0300 0300 1000 1000 1000 1000 5000 5000 5000 -2.0000 -2.0000 -2.0000	$\begin{array}{c} 1.3676 \\ .0009 \\ .0011 \\ .0007 \\ .0036 \\ .0038 \\ .0025 \\ .0077 \\ .0136 \\ .0366 \\0155 \\ .0956 \\ .1218 \end{array}$	$ \begin{array}{r} 1.500 \\ .0050 \\ .0050 \\ .0300 \\ .1000 \\ .1000 \\ .1000 \\ .1000 \\ .5000 \\ .5000 \\ .5000 \\ .2.0000 \\ 2.0000 \\ 2.0000 \\ 2.0000 \\ 2.0000 \\ \end{array} $	Deg Deg Deg Deg Deg Deg Deg Deg Deg Deg	PASS PASS PASS PASS PASS PASS PASS PASS

QUICK CAL PHASE ACCURACY TEST

21.1.14	1.000 MHz	-1.0000	.0460	1.0000	Deg	PASS
21.1.15	1.500 MHz	-1.0000	.0264	1.0000	Deg	PASS
21.1:16	2.000 MHz	-1.0000	.0522	1.0000	Deg	PASS

CHANNEL 2 PHASE MEASURED IN REFERENCE TO CHANNEL 1

	FREQ SETTING	LOLIMIT	READING	HILIMIT	UNIT	STATUS
$21.2.1 \\ 21.2.2 \\ 21.2.3 \\ 21.2.4 \\ 21.2.5 \\ 21.2.6 \\ 21.2.7 \\ 21.2.8 $	FREQ SETTING SYSTEM_SCALAR 500.000 Hz 1.000 kHz 2.000 kHz 5.000 kHz 10.000 kHz 20.000 kHz 50.000 kHz -100.000 kHz		READING 1.3671 0012 0010 0007 0031 0040 0015 .0072 0009	HILIMIT 1.500 .0050 .0050 .0300 .0300 .1000 .1000 .1000 .1000	UNIT Deg Deg Deg Deg Deg Deg Deg Deg	STATUS PASS PASS PASS PASS PASS PASS PASS PA
21.2.9 21.2.9 21.2.10 21.2.11 21.2.12 21.2.13	200.000 kHz 500.000 kHz 1.000 MHz 1.500 MHz 2.000 MHz	5000 5000 -2.0000 -2.0000 -2.0000	0142 0295 .0021 0973 1356	.5000 .5000 2.0000 2.0000 2.0000	Deg Deg Deg Deg Deg	PASS PASS PASS PASS PASS

QUICK CAL PHASE ACCURACY TEST

21.2.14	1.000 MHz	-1.0000	.0648	1.0000	Deg	PASS
21.2.15	1.500 MHz	-1.0000	0686	1.0000	_	
21.2.16	2.000 MHz	-1.0000	.0458	1.0000	Deg	PASS

22.0 FREQUENCY RESPONSE, SINE

22.1

.

• •

CHANNEL 1

	FREQUENCY	LOLIMIT	READING	HILIMIT	UNIT	STATUS
22.1.1 22.1.2 22.1.3 22.1.4 22.1.5 22.1.6	10 Hz 100 Hz 1000 Hz 5000 Hz 10000 Hz 20000 Hz	3.316 3.516 3.516 3.516 3.516 3.516 3.516	3.5392 3.5394 3.5384 3.5389 3.5393 3.5395	3.556 3.556 3.556 3.556 3.556 3.556 3.556	Vrms Vrms Vrms Vrms Vrms Vrms	PASS PASS PASS PASS PASS PASS
22.2		CHANNEL 2				
22.2.1 22.2.2 22.2.3 22.2.4 22.2.5 22.2.6	- 10 Hz 100 Hz - 1000 Hz 5000 Hz 10000 Hz 20000 Hz	3.516 3.516 3.516 3.516 3.516 3.516 3.516	3.5365 3.5403 3.5393 3.5398 3.5402 3.5403	3.556 3.556 3.556 3.556 3.556 3.556 3.556	Vrms Vrms Vrms Vrms Vrms	PASS PASS PASS PASS PASS PASS

23.0 SINE DISTORTION

.

- . .

23.1	ا با							
	PARAMETER	LOLIMIT	READING	HILIMIT		STATUS		
 23.1.1.2	1 kHz FUND PWR WORST HARM	-2.00	-1.00	.00	rd	PASS		
23.1.1.3 23.1.1.4	HARM PWR FUND - HARM	-90	-74.8 -73.8	-60	dbm dbc	PASS		
23.1.2.2		-2.00	3.0		rd	PASS		
23.1.2.4		90	-74.6 -73.8		dbm dbc	PASS		
23.1.3.1 23.1.3.2	5 kHz FUND PWR TWORST HARM	-2.00	3.0		rd	PASS		
23.1.3.3 23.1.3.4	HARM PWR FUND - HARM	-90	-74.0 -73.1	-60	dbm dbc	PASS		
23.1.4.1 23.1.4.2	10 kHz FUND FWR WORST HARM	-2.00	-1.00 3.0 -72.9	.00	dbm rd dbm	PASS		
23.1.4.3 23.1.4.4	HARM PWR FUND - HARM	-90		-40		PASS		
23.1.5.1 23.1.5.2	20 kHz FUND PWR WORST HARM		-1.00 3.0 -72.3	.00	dbm rd dbm	PASS		
23.1.5.3	HARM FWR FUND - HARM	-90		-50		PASS		
23.1.6.1 23.1.6.2	50 kHz FUND PWR WORST HARM HARM PWR	-2.00	-1.00 2.0 -68.4	.00	dbm nd dbm	PASS		
	FUND - HARM	-90	-67.4	-50	dbc	PASS		
23.1.7.2	100 kHz FUND PWR WORST HARM HARM PWR	-2.00	-1.10 2.0 -68.7	.00	dbm nd dbm	PASS		
23.1.7.4		-90	-67.6	-50	dbc	PASS		
23.1.8.2_		9.00	9.60 3.0	.00	dbm rd	PASS		
23.1.8.3 23.1.8.4	HARM PWR FUND - HARM	-90	-60.7 -70.3	-40	dbm dbc	PASS		
23.1.9 23.1.9.1	500 kHz Fund PWR	9.00	9.70	.00	dbm	PASS		

77 1 0 7	WORST HARM		2.0		nd	
			-56.1		dbm	
	HARM PWR	0.5	-45.8	-40	dbc	PASS
23.1.9.4	FUND - HARM	-90	-00.8			11100
_						
	1 MHz					54 00
23.1.10.1	FUND PWR	9.00	9.80	.00	dbm	PASS
23.1.10.2	WORST HARM		3.0		rd	
	HARM PWR		-47.1		dbm	
	FUND - HARM	90	-56.9	-40	dbc	PASS
20.1.10.4		/0	0017			
	1.2 MHz	n	10.10	.00	dbm	PASS
	FUND PWR	-2.00	3.0		rd	• • • • • •
	WORST HARM				dbm	
	HARM PWR		-46.0			DACC
23.1.11.4	FUND - HARM	-90	-56.1	-40	dbc	PASS
23.1.12	, 1.5 MHz					•
	FUND PWR	-2.00	10.20	.00	dbm	PASS
	WORST HARM		3.0		rd	
	HARM PWR		-46.7		dbm	
	FUND - HARM	-90	-56.9	-40	dbc	PASS
23.1.12.4		1.2	0011			
07 1 17	2 MHz					
		-2.00	8.90	.00	dbm	PASS
	FUND PWR	~2.00	3.0	• • • •	rd	
	WORST HARM				dbm	
	HARM FWR		-47.7			PASS
23.1.13.4	FUND - HARM	-90	-56.6	-40	dbc	rmaa
23.2	Cł	IANNEL 2				
23.2	Cł					
23.2	CH PARAMETER		READING	HILIMIT	UNIT	STATUS
23.2		IANNEL 2	READING	HILIMIT	UNIT	STATUS
	PARAMETER	IANNEL 2		HILIMIT	UNIT	
23.2.1	PARAMETER 1 kHz	LOLIMIT			UNIT 	ngan tana anta dabé anta dana
23.2.1 23.2.1.1	PARAMETER 1 kHz FUND PWR	LOLIMIT	-1.00			ngan tana anta dabé anta dana
23.2.1 23.2.1.1 23.2.1.2	PARAMETER 1 kHz FUND PWR WORST HARM	LOLIMIT	-1.00 3.0		dbm rd	ngan tana anta dabé anta dana
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR	ANNEL 2	-1.00 3.0 -70.9	.00	dbm rd dbm	PASS
23.2.1 23.2.1.1 23.2.1.2	PARAMETER 1 kHz FUND PWR WORST HARM	LOLIMIT	-1.00 3.0		dbm rd dbm	ngan tana anta dabé anta dana
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM	ANNEL 2	-1.00 3.0 -70.9	.00	dbm rd dbm	PASS
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4 23.2.2	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz	HANNEL 2	-1.00 3.0 -70.9 -69.9	.00 -60	dbm rd dbm dbc	PASS PASS
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM	ANNEL 2	-1.00 3.0 -70.9 -69.9 80	.00	dbm rd dbm dbc dbm	PASS
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4 23.2.2	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz	HANNEL 2	-1.00 3.0 -70.9 -69.9 80 3.0	.00 -60	dbm rd dbm dbc dbm rd	PASS PASS
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4 23.2.2 23.2.2	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR	HANNEL 2	-1.00 3.0 -70.9 -69.9 80	.00 -60	dbm rd dbm dbc dbm rd dbm	PASS PASS PASS
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4 23.2.2 23.2.2.1 23.2.2.1 23.2.2.2	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM	HANNEL 2	-1.00 3.0 -70.9 -69.9 80 3.0	.00 -60	dbm rd dbm dbc dbm rd	PASS PASS
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4 23.2.2 23.2.2.1 23.2.2.1 23.2.2.2 23.2.2.3	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR	ANNEL 2	-1.00 3.0 -70.9 -69.9 80 3.0 -71.0	.00 -60 .00	dbm rd dbm dbc dbm rd dbm	PASS PASS PASS
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4 23.2.2 23.2.2.1 23.2.2.1 23.2.2.2 23.2.2.3	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR	ANNEL 2	-1.00 3.0 -70.9 -69.9 80 3.0 -71.0	.00 -60 .00 -60	dbm rd dbm dbc dbm rd dbm dbc	PASS PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2$ $23.2.2.1$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.2.4$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM	ANNEL 2	-1.00 3.0 -70.9 -69.9 80 3.0 -71.0 -70.2	.00 -60 .00	dbm rd dbm dbc dbm rd dbm dbc	PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.2.4$ $23.2.3$ $23.2.3.1$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM S kHz FUND PWR	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90	-1.00 3.0 -70.9 -69.9 80 3.0 -71.0 -70.2 90 3.0	.00 -60 .00 -60	dbm rd dbm dbc dbm rd dbm dbc	PASS PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.2.4$ $23.2.3$ $23.2.3.1$ $23.2.3.1$ $23.2.3.2$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM S kHz FUND PWR WORST HARM	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90	-1.00 3.0 -70.9 -69.9 80 3.0 -71.0 -70.2	.00 -60 .00 -60	dbm rd dbm dbc dbm rd dbm dbc	PASS PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.2.4$ $23.2.3$ $23.2.3.1$ $23.2.3.2$ $23.2.3.3$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM S kHz FUND PWR WORST HARM HARM PWR	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90 -2.00	-1.00 3.0 -70.969.980 3.0 -71.0 -70.290 3.0 -70.4	.00 -60 .00 -60	dbm rd dbm dbc dbm rd dbm dbc dbm rd	PASS PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.2.4$ $23.2.3$ $23.2.3.1$ $23.2.3.2$ $23.2.3.3$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM S kHz FUND PWR WORST HARM	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90	-1.00 3.0 -70.9 -69.9 80 3.0 -71.0 -70.2 90 3.0	.00 -60 .00 -60 .00	dbm rd dbm dbc dbm rd dbm dbc dbm rd dbm	PASS PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.2.4$ $23.2.3$ $23.2.3.1$ $23.2.3.2$ $23.2.3.1$ $23.2.3.2$ $23.2.3.4$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 5 kHz FUND PWR WORST HARM HARM PWR FUND - HARM	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90 -2.00	-1.00 3.0 -70.969.980 3.0 -71.0 -70.290 3.0 -70.4	.00 -60 .00 -60 .00	dbm rd dbm dbc dbm rd dbm dbc dbm rd dbm	PASS PASS PASS PASS
23.2.1 23.2.1.1 23.2.1.2 23.2.1.3 23.2.1.4 23.2.2 23.2.2.1 23.2.2.1 23.2.2.2 23.2.2.3 23.2.2.4 23.2.3.1 23.2.3.1 23.2.3.2 23.2.3.4 23.2.3.4	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM S kHz FUND PWR WORST HARM HARM PWR FUND - HARM HARM PWR FUND - HARM	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90 -2.00 -90	-1.00 3.0 -70.969.980 3.0 -71.0 -70.290 3.0 -70.4	.00 -60 .00 -60 .00	dbm rd dbm dbc dbm rd dbm dbc dbm rd dbm	PASS PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2.2$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.3.1$ $23.2.3.1$ $23.2.3.2$ $23.2.3.4$ $23.2.4$ $23.2.4$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM S kHz FUND PWR WORST HARM HARM PWR FUND - HARM HARM PWR FUND - HARM	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90 -2.00	-1.00 3.0 -70.969.980 3.0 -71.0 -70.290 3.0 -70.4 -69.5 -1.00	.00 -60 .00 -60 .00	dbm rd dbm dbc dbm rd dbc dbm dbc dbm dbc	PASS PASS PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.3.1$ $23.2.3.2$ $23.2.3.1$ $23.2.3.4$ $23.2.4$ $23.2.4$ $23.2.4$ $23.2.4$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 5 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 10 kHz FUND FWR WORST HARM	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90 -2.00 -90	$ \begin{array}{r} -1.00\\ 3.0\\ -70.9\\ -69.9\\ \hline80\\ 3.0\\ -71.0\\ -70.2\\ \hline90\\ 3.0\\ -70.4\\ -69.5\\ \hline -1.00\\ 3.0\\ \hline -1.00\\ 3.0\\ \end{array} $.00 -60 .00 -60 .00	dbm rd dbm dbc dbm dbc dbm dbc dbm dbc dbm dbc	PASS PASS PASS PASS PASS
23.2.1 $23.2.1.1$ $23.2.1.2$ $23.2.1.3$ $23.2.1.4$ $23.2.2$ $23.2.2.1$ $23.2.2.2$ $23.2.2.3$ $23.2.3.4$ $23.2.3.4$ $23.2.4$ $23.2.4$	PARAMETER 1 kHz FUND PWR WORST HARM HARM PWR FUND - HARM 2 kHz FUND PWR WORST HARM HARM PWR FUND - HARM S kHz FUND PWR WORST HARM HARM PWR FUND - HARM HARM PWR FUND - HARM	ANNEL 2 LOLIMIT -2.00 -90 -2.00 -90 -2.00 -90	-1.00 3.0 -70.969.980 3.0 -71.0 -70.290 3.0 -70.4 -69.5 -1.00	.00 -60 .00 -60 .00	dbm rd dbm dbc dbm rd dbc dbm rd dbc dbm dbc	PASS PASS PASS PASS PASS

ſ

~

: ند -----

•

.

23.2.4.4 FUND - HARM	-90	-68.9	-60	dbc	PASS
23.2.5 20 kHz 23.2.5.1 FUND PWR 23.2.5.2 WORST HARM	-2.00	-1.00 3.0	.00	dbm rd	PASS
23.2.5.3 HARM PWR 23.2.5.4 FUND - HARM	-90	-68.6 -67.6	-50	dbm dbc	PASS
23.2.6 50 kHz 23.2.6.1 FUND PWR 23.2.6.2 WORST HARM	-2.00	-1.00 3.0	.00	dbm rd dbm	PASS
23.2.6.3 HARM PWR 23.2.6.4 FUND - HARM	-90	-49.0 -48.0	-50	dbc	PASS
23.2.7 100 kHz 23.2.7.1 FUND FWR 23.2.7.2 WORST HARM	-2.00	-1.10 2.0 -68.0	.00	dbm nd dbm	PASS
23.2.7.3 HARM PWR 23.2.7.4 FUND - HARM	-90	-66.9	-50	dbc	PASS
23.2.8 200 kHz 23.2.8.1 FUND PWR 23.2.8.2 WORST HARM	9.00	9.60 2.0 -63.1	.00	dbm nd dbm	PASS
23.2.8.3 HARM PWR 23.2.8.4 FUND - HARM	-90	-72.7	-40	dbc	PASS
23.2.9 500 kHz 23.2.9.1 FUND PWR 23.2.9.2 WORST HARM	9.00	9.60 2.0 -53.4	.00	dbm nd dbm	PASS
23.2.9.3 HARM PWR 23.2.9.4 FUND - HARM	-90	-63.0	-40	dbc	PASS
23.2.10 1 MHz 23.2.10.1 FUND PWR 23.2.10.2 WORST HARM 23.2.10.3 HARM PWR	9.00	9.70 3.0 -46.8	.00	dbm rd dbm	PASS
23.2.10.3 HARM PWR 23.2.10.4 FUND - HARM	-90	-56.5	-40	dbc	PASS
23.2.11 1.2 MHz 23.2.11.1 FUND PWR 23.2.11.2 WORST HARM	-2.00	10.00 3.0	.00	dbm rd	PASS
23.2.11.3 HARM PWR 23.2.11.4 FUND - HARM	90	-45.9 -55.9	-40	dbm dbc	PASS
23.2.12 1.5 MHz 23.2.12.1 FUND PWR 23.2.12.2 WORST HARM	-2.00	10.10 3.0	.00	dbm rd dbm	PASS
23.2.12.3 HARM PWR 23.2.12.4 FUND - HARM	-90	-46.5 -56.6	-40	dbc	PASS
23.2.13 2 MHz 23.2.13.1 FUND PWR 23.2.13.2 WORST HARM	-2.00	9.20 2.0	.00	dbm nd	PASS

-

.

.

23.2.13.3 23.2.13.4	3 HARM PWR 4 FUND - HARM	1 -90	-47.0 -56.2	-40	dbm dbc	PASS
24.0 SFU						
	CH	HANNEL 1				
	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
24.1.1.1	FREQ: 1.5 MH FUND PWR SPUR LVL @ 2.5 Mhz	12	-46.8		dbm dbm	
24.1.1.3	FUND-SPUR		-60.5	-50	dbc	PASS
24.1.2.1 24.1.2.2	FRED: 1.818: FUND FWR SPUR LVL @	12	12.8 -42.4			PASS
24.1.2.3	.909 Mhz FUND-SPUR		-55.2	-50	dbc	PASS
24.1.3.1	FREQ: 2 Mhz FUND PWR SPUR LVL @	12	12.2 -61.4		dbm dbm	PASS
	10 Mhz FUND-SPUR		-73.6	-50	dbc	PASS
	CI	HANNEL 2				
24.2.1.1	FREQ: 1.5 MI FUND PWR SPUR LVL @	12	13.7 -44.2		dbm dbm	PASS
24.2.1.3	2.5 Mhz FUND-SPUR		-57.9	-50	dbc	PASS
24.2.2.1	FREQ: 1.818 FUND PWR SPUR LVL @	12	13.0 -45.3		dbm dbm	PASS
24.2.2.3	.909 Mhz FUND-SPUR		-58.3	-50	dbc	PASS
24.2.3.1	FREQ: 2 Mhz FUND PWR SPUR LVL @	12	12.5 -55.4		dbm dbm	PASS
24.2.3.3	10 Mhz FUND-SPUR		-67.9	-50	dbc	PASS
25.0 RIS	E / FALL & A	BERRATIONS				
25.1	l	CHANNEL 1				
	PARAMETER	LOLIMIT	READING	HILIMIT		STATUS
	10 Vp-p Risetime	20	44.7	75	nsec	PASS

1

25.1.1.2 Falltime 25.1.1.3 Pos aberr 25.1.1.4 Neg aberr 25.1.2 25 Vp-p 25.1.2.1 Risetime 25.1.2.2 Falltime 25.1.2.3 Pos aberr 25.1.2.4 Neg aberr	20 0 20 20 0 0	40.0 1.2 1.0 43.2 36.4 1.3 1.2	75 5 75 75 5 5	nsec % nsec nsec % %	PASS PASS PASS PASS PASS PASS PASS
25.2	CHANNEL 2				
25.2.1 10 Vp-p 25.2.1.1 Risetime 25.2.1.2 Falltime 25.2.1.3 Pos aberr 25.2.1.4.Neg aberr	20 20 0 0	45.8 41.4 1.1 1.1	75 75 5 5	nsec nsec %	PASS PASS PASS PASS
25.2.2 ¹² 5 Vp-p 25.2.2.1 Risetime 25.2.2.2 Falltime 25.2.2.3 Pos aberr 25.2.2.4 Neg aberr	20 20 0 0	44.7 36.6 1.3 2.5	75 75 5 5	nsec nsec % %	PASS PASS PASS PASS
26.0 SQUAREWAVE SYM	METRY CHANNEL 1				
FREQ,SYM	LOLIMIT	READING	HILIMIT	UNIT	STATUS
26.1.1 1 kHz : 20 26.1.2 1 kHz : 50 26.1.3 1 kHz : 80 26.1.4 1 MHz : 20 26.1.5 1 MHz : 50 26.1.6 1 MHz : 80	16.999 46.999 75.999 15.500 45.500 75.500	21.5149 50.7753 80.8963 22.3000 51.0001 80.5002	23.001 53.001 83.001 24.500 54.500 84.500	7. 7. 7. 7. 7.	PASS PASS PASS PASS PASS PASS
	CHANNEL 2				
	15.500 45.500		24.500 54.5 00	7. 7. 7. 7.	PASS PASS PASS PASS PASS PASS
27.0 AM INPUT 27.1	CHANNEL 1				
AM IN Vdc	LOLIMIT	READING	HILIMIT		STATUS
27.1.1 0 27.1.2 1 27.1.3 2 27.1.4 3	6.01	3.663 7.279	8.13	Vrms Vrms Vrms Yrms	PASS PASS

27.1.5	4	$12.02 \\ 15.03$	14.482	16.26	Vrms	PASS
27.1.6	5		18.101	20.33	Vrms	PASS
27.2		CHANNEL 2				
27.2.1	0	23	.002	.23	Vrms	PASS
27.2.2	1	2.85	3.797	3.86	Vrms	PASS
27.2.3	2	6.01	7.557	8.13	Vrms	PASS
27.2.4	3	9.02	11.297	12.20	Vrms	PASS
27.2.5	4	12.02	15.051	16.26	Vrms	PASS
27.2.6	5	15.03	18.818	20.33	Vrms	PASS

28.0 SYNC OUT

1000

فس

3

2

÷...

28.1	• * · • *	CHANNEL 1				• ·
. •	PARAMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
28.1.1.1	SYNC LO	005	0008	. 400	Vdc	PASS
28.1.1.2 28.2	SYNC HI	2.4 CHANNEL 2	2.60	5.0	Vdc	PASS
28.2.1.1	SYNC LO	005	0008	.400	Vdc	PASS
28.2.1.2	SYNC HI	2.4	2.52	5.0	Vd⊂	PASS

29.0 MAIN GENERATOR MODE TEST

	MODE/PARAMETER	LOLIMIT	READING	HILIMIT		STATUS
29.1	(UUT FREQ:2Khz)	1900	2000.0	2100	Hz	PASS
29.2	TRIG/QUIESCENT		.002	.10	Vrms	PASS
	TRIG / FREQ RIG SOURCE: 1 Khz			1020	Hz	PASS
29.4	S-GATE/QUIESCENT		.000	.10	Vrms	PASS
	S-GATE / GATED RIG SOURCE 2Vdc	1.75	1.772	1.79	Vrms	PASS
29:6 TF	S-GATE / 1 CYCLE RIG SOURCE: 1 Khz	1.13 SINGLE PU	1.244 LSE, PULSE	1.37 E WIDTH	Vrms 250 usec	PASS
29.7 TF	A-GATE / CYCLE/2 RIG SOURCE: 1 Khz	.71 SINGLE PU	.785 LSE, PULSE	.97 E WIDTH	Vrms 250 usec	PASS
29.8	BURST / COUNT(2)	2	2	2		PASS

30.0 BURST COUNT

	BURST COUNT	READING	STATUS
-			
30.1	1	1	PASS
30.2	2	2	PASS
30.3	4	4	PASS
30.4	8	8	PASS
30.5	16	16	PASS
30.6	32	32	PASS
30.7	64	54	PASS
30.8	128	128	PASS
30.9	256	256	PASS
30.10	512	512	PASS
30.11	1024	1024	PASS
30.12	, 2048	2048	- PASS
30.13	4096	4096	PASS
30.14	8192	8192	PASS
30.15	16384	16384	PASS
30.16	32768	32768	PASS
30.17	65535	65535	PASS

~~ 、

.

31.0 EXTERNAL PHASE LOCK

	SETTING/SOURCE	LOLIMIT	READING	HILIMIT		STATUS
31.1.1 31.1.2 31.1.3	40Hz/MONITOR SYNC OUT PLL_NO_LOCK (EXT.	39.960	39.9999	41.200 40.040		PASS PASS PASS
31.2.1 31.2.2 31.2.3	475Hz/MONITOR SYNC OUT PLL_NO_LOCK (EXT.	474.530	475.0001			PASS PASS PASS
31.3.1 31.3.2 31.3.3	990Hz/MONITOR SYNC OUT PLL_NO_LOCK (EXT.	98 9. 010	990.0003	1019.700 990.990	Hz Hz	
31.4.1 31.4.2 31.4.3	1.1kHz/MONITOR SYNC OUT PLL_NO_LOCK (EXT.	1.099	1.1000	1.133 1.101	kHz kHz	PASS PASS PASS
31.5.1 31.5.2 31.5.3		4.396	4.4000	4.532 4.404	kHz kHz	PASS PASS PASS
31.6.1 31.6.2 31.6.3	9.9kHz/MONITOR SYNC OUT PLL_NO_LOCK (EXT.	9.890	9.9000	10.197 9.910	kHz kHz	PASS PASS PASS
31.7.1 31.7.2 31.7.3	10.1kHz/MONITOR SYNC OUT PLL_NO_LOCK (EXT.	10.090	10.1000	10.403 10.110	kHz kHz	PASS PASS PASS

46.247 kHz PASS 44.8833 43.553 44.9kHz/MONITOR 31.8.1 PASS 44.945 kHz 44.855 44.9000 31.8.2 SYNC OUT PASS PLL_NO_LOCK (EXT. SIGNAL REMOVED) 31.8.3 99.8004 102.897 kHz PASS 96,903 31.9.1 99.9kHz/MONITOR 99.9000 100.000 kHz PASS 99.800 31.9.2 SYNC OUT PASS 31.9.3 PLL_NO_LOCK (EXT. SIGNAL REMOVED) 97.097 100.0000 103.103 kHz PASS 31.10.1 100.1kHz/MONITOR PASS 100.200 kHz 100.000 100.1000 31.10.2 SYNC OUT PASS 31.10.3 PLL_NO_LOCK (EXT. SIGNAL REMOVED) 1.0000 1.030 MHz PASS .970 31.11.1 1MHz/MONITOR 1.001 MHz PASS .999 1.0000 31.11.2 SYNC OUT PASS 31.11.3 PLL_NO_LOCK (EXT. SIGNAL REMOVED) 2.060 MHz PASS 1.940 2.0000 31.12.1 2MHz/MONITOR 1.998 2.002 MHz PASS 2.0000 31.12.2 SYNC OUT PASS 31.12.3 PUE_NO_LOCK (EXT. SIGNAL REMOVED) 32.0 PROGRAMMABLE TRIGGER LEVEL TEST STATUS UNIT READING HILIMIT TRIG LVL/SLOPE LOLIMIT --------3.7 PASS 3.47 Vdc 3.4 3.1 POS 32.1 PASS -3.0 Vdc -3.42-3.3 POS -3.6 32.2 PASS Vdc -3.0 -3.45 -3.3 NEG -3.6 32.3 33.0 INTERNAL TRIGGER TEST STATUS HILIMIT UNIT READING SETTING LOLIMIT --------------_____ PASS 156.15600 kHz 156.00 kHz 155.84400 156.003764 33.1 78.17810 kHz PASS 78.096391 78.10 kHz 78.02190 33.2 PASS 39.13910 kHz 39.100723 .39,06090 39.10 kHz 33.3 19.51950 kHz PASS 19.499918 19.50 kHz 19.48050 33.4 9.77977 kHz PASS 9.770410 9.76023 9.77 kHz 33.5 kHz. PASS 4.88488 4.879794 4.87512 4.88 kHz 33.6 2.44244 PASS kHz. 2.439915 2.43756 2.44 kHz 33.7 1.22122 PASS kHz 1.21878 1.219962 1.22 kHz 33.8 33.9 610.00 Hz 609.39000 609.977320 610.61000 Hz 33.10 305.00 Hz 304.69500 304.990188 305.30500 Hz PASS PASS Hz 152.15200 Hz PASS 33.11 152.00 Hz 151.84800 151.992131 76.294110 76.37630 Hz PASS 33.12 76.30 Hz 76.22370 PASS 38.13810 Hz 33.13 38.10 Hz 38.06190 38,100921 19.11910 PASS Hz 19.101460 33.14 19.10 Hz 19.08090 9.54954 PASS 9.539099 Hz 9.54 Hz 9.53046 33.15 4.77477 Hz PASS 4.77 4.76523 4.769545 Hz 33.16 2.38238 Hz PASS 2.380118 2.38 Hz 2.37762 33.17 PASS 1.19119 Hz 1.190058 33.18 1.19 Hz 1.18881

34.0 MARKER OUTPUT LEVEL TEST

	SETTING	LOLIMIT	READING	HILIMIT	UNIT	STATUS
34.1	777.9999	2. 4	2.66	5.0	Vdc	PASS

34.2	1000.0001	00	5	.0012	. 400	Vdc	PASS
35.0	SWEEP TIME						
•	SETTING	LOLIMI	T REA	DING H	ILIMIT	UNIT	STATUS
35.1	.01sec	9.8900	9.9	97569 10	0.1100	mSEC	PASS
36.0	SWEEP MODES	6					
	MODE / PAR	AMETER	LOLIMIT	READING	HILIMIT	UNIT	STATUS
36.1	(5) / STAF	T FREQ	.999	1.0000	1.001	kHz	PASS
				~~~ <b>*</b>	10	- U.d	F-0
			5 000	10.0000	10.001	kHz	PASS
36.4	(5) / STOP (5) / HORZ	Vdc	9.50	10.023	10.50	Vac	FA55
36.5	(5) / STAF	T FREQ	~~~~			T-1 1 4-	1 1 1 2 2
36.6	7		. 990	1.0000	1.010	kHz	PASS
36.7	(T-THL LO @ (7) / SYND	TRIGIN) : FSK	9.900	10.0000			
36.8	(TTL HI @ (B) / ASYN	IC FSK	. 990	1.0000	1.010	kHz	PASS
36.9	(TTL Lo @ (8) / ASYN	IC FSK	9.900	10.0000	10.100	kHz	PASS
36.10	(TTL HI @ ) (9) / MARK (TRIG FREG	ER FREQ	. 999	1.0000	1.001	kHz	PASS
.36.11	(10) / MAF		.989	.9900	.991	kHz	PASS
37.0	FM/PM INPUT	-					
	FM_PM IN	4 L	OLIMIT	READING	HILIMIT	UNIT	STATUS
			050	1.1871	1.391	kHz	PASS
37.1	9609 va .9609 va		- /J/ 0 400	9 9734	10.041	kHz	PASS
37.2	.9609 VC	lC	7.007	7.02.0-1			
38.0	HOLD IN						
	ACTION/PARA	METER	LOLIMIT	READING	HILIMIT		T STATUS
	HOLD/SWEEP HOLD/RAMP \		4.95 4.50	5.500 4.994	6.05		PASS PASS
39.0	STORED SET	FINGS					
39.1	STORING A	ND RECALL	ING 25 S	TORESETTI	NGS		
	-	PASSE	ED STORES	ETTINGS T	EST		

in the second

40.0 SELF DIAGNOSTICS

PASSED SELF DIAGNOSTICS TEST