OPERATOR'S & MAINTENANCE MANUAL ## Model 190 20 MHz Function Generator #### **OPERATOR'S & MAINTENANCE MANUAL** ## Model 190 20 MHz Function Generator © 1983 Wavetek This document contains information proprietary to Wavetek and is provided solely for instrument operation and maintenance. The information in this document may not be duplicated in any manner without the prior approval in writing from Wavetek. WAVETEK SAN DIEGO, INC. 9045 Balboa Ave., San Diego, CA 92123 P. O. Box 85265, San Diego, CA 92138 Tel 619/279-2200 TWX 910/335-2007 Manual Revision: 1/90 Manual Part Number: 1300-00-0167 Instrument Part Number: 1000-00-0167 #### WARRANTY Wavetek warrants that all products manufactured by Wavetek conform to published Wavetek specifications and are free from defects in materials and workmanship for a period of one (1) year from the date of delivery when used under normal operating conditions and within the service conditions for which they were furnished. The obligation of Wavetek arising from a Warranty claim shall be limited to repairing, or at its option, replacing without charge, any product which in Wavetek's sole opinion proves to be defective within the scope of the Warranty. In the event Wavetek is not able to modify, repair or replace non-conforming defective parts or components to a condition as warrantied within a reasonable time after receipt thereof, Buyers shall be credited for their value at the original purchase price. Wavetek must be notified in writing of the defect or nonconformity within the Warranty period and the affected product returned to Wavetek's factory or to an authorized service center within (30) days after discovery of such defect or nonconformity. For product warranties requiring return to Wavetek, products must be returned to a service facility designated by Wavetek. Buyer shall prepay shipping charges, taxes, duties and insurance for products returned to Wavetek for warranty service. Except for products returned to Buyer from another country, Wavetek shall pay for return of products to Buyer. Wavetek shall have no responsibility hereunder for any defect or damage caused by improper storage, improper installation, unauthorized modification, misuse, neglect, inadequate maintenance, accident or for any product which has been repaired or altered by anyone other than Wavetek or its authorized representative and not in accordance with instructions furnished by Wavetek. #### **Exclusion of Other Warranties** The Warranty described above is Buyer's sole and exclusive remedy and no other warranty, whether written or oral, is expressed or implied. Wavetek specifically disclaims the implied warranties of merchantability and fitness for a particular purpose. No statement, representation, agreement, or understanding, oral or written, made by an agent, distributor, representative, or employee of Wavetek, which is not contained in the foregoing Warranty will be binding upon Wavetek, unless made in writing and executed by an authorized Wavetek employee. Under no circumstances shall Wavetek be liable for any direct, indirect, special, incidental, or consequential damages, expenses, losses or delays (including loss of profits) based on contract, tort, or any other legal theory. ### **CONTENTS** | SECTION 1 | GENERAL DESCRIPTION | | |-----------|--|--| | | 1.1 MODEL 190 1.2 SPECIFICATIONS 1.2.1 Versatility 1.2.2 Frequency Precision 1.2.3 Amplitude Precision 1.2.4 Waveform Characteristics 1.2.5 General | 1-1
1-1
1-1
1-1
1-2
1-2
1-2 | | SECTION 2 | INITIAL PREPARATION | | | | 2.1 MECHANICAL INSTALLATION 2.2 ELECTRICAL INSTALLATION 2.2.1 Power Connection 2.2.2 Signal Connections 2.3 ELECTRICAL ACCEPTANCE CHECKOUT | 2-1
2-1
2-1
2-1
2-1 | | SECTION 3 | OPERATION | | | | 3.1 CONTROLS AND CONNECTORS 3.2 OPERATION 3.2.1 Signal Termination 3.2.2 Manual Function Generator Operation 3.2.3 Voltage Controlled Function Generator Operation 3.2.4 Waveforms | 3-1
3-3
3-3
3-3
3-4
3-4 | | SECTION 4 | CIRCUIT DESCRIPTION | | | | 4.1 INTRODUCTION 4.2 FUNCTIONAL BLOCK DIAGRAM ANALYSIS 4.3 DETAILED CIRCUIT DESCRIPTION 4.3.1 Current Sources 4.3.2 Current Switch 4.3.3 Triangle Buffer Amplifier 4.3.4 Hysteresis Switch 4.3.5 Loop DC Delay Compensation 4.3.6 Capacitance Multiplier 4.3.7 Sine Converter 4.3.8 Trigger Circuit 4.3.9 Trigger Baseline 4.3.10 Sync 4.3.11 Square Shaper 4.3.12 Preamplifier 4.3.13 Output Amplifier 4.3.14 Output Attenuator | 4-1
4-2
4-2
4-3
4-3
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-5
4-6 | | SECTION 5 | CALIBRATION | | | | 5.1 FACTORY REPAIR5.2 REQUIRED TEST EQUIPMENT5.3 COVER REMOVAL5.4 CALIBRATION | 5-1
5-1
5-1
5-1 | ## **CONTENTS** (Continued) | SECTION 6 | TROUBLESHOOTING | | |-----------|--|--------------| | | 6.1 FACTORY REPAIR | 6-1 | | | 6.2 BEFORE YOU START | 6-1 | | | 6.3 TROUBLESHOOTING | 6-1 | | | 6.3.1 Fuse Blows, No Dial Lamp | 6-1 | | | 6.3.2 Power Supply > 100 mV Ripple or Out of Specification | 6-1 | | | 6.3.3 All Functions at Function Out Distorted or Missing | 6-2 | | | 6.3.4 Square Wave Output Distort or Missing | 6-2 | | | 6.3.5 Sine Wave Distorted or Missing | 6-2 | | | 6.3.6 Triangle Distorted or Missing | 6-2 | | | 6.3.7 Sync Output Distorted or Missing | 6-4 | | | 6.3.8 Excessive High Frequency Sine or Triangle Roll Off | 6-4 | | | 6.3.9 Low Frequency Square Wave Tilt | 6-6 | | | 6.3.10 Time Symmetry Cannot Be Adjusted To Within Specifications | 6-6 | | | 6.3.11 Frequency Accuracy and Dial Response Problems | 6-7 | | | 6.3.12 Trigger, Gating, and Trigger Baseline Problems | 6-7 | | | 6.3.13 Voltage At VCG IN Connector Not Changing Frequency Properly | 6-8 | | | 6.3.14 DC Offset Not Functioning Properly | 6-8 | | | 6.3.15 Variable Symmetry Problems 6.4 CIRCUIT GUIDES | 6-9 | | | | 6-10 | | | The state of the supply dailed the state of | 6-10 | | | The state of s | 6-10 | | | and a superior of the | 6-11 | | | The state of s | 6-11 | | | | 6-11 | | | 6.4.6 Triangle Buffer Guide 6.4.7 Zero Crossing Detector Guide | 6-12 | | | 6.4.8 Sync Guide | 6-12 | | | 6.4.9 Capacitance Multiplier Guide | 6-13 | | | 6.4.10 Trigger Guide | 6-13 | | | 6.4.11 Trigger Baseline Guide | 6-14 | | | 6.4.12 Square Shaper Guide | 6-14
6-15 | | | 6.4.13 Sine Converter Guide | 6-15 | | | 6.4.14 Preamplifier Guide | 6-16 | | | 6.4.15 Output Amplifier Guide | 6-17 | | | 6.5 TROUBLESHOOTING INDIVIDUAL COMPONENTS | 6-17 | | | 6.5.1 Transistor | 6-17 | | | 6.5.2 Diode | 6-18 | | | 6.5.3 Operational Amplifier | 6-18 | | | 6.5.4 FET Transistor | 6-18 | | | 6.5.5 Capacitor | 6-18 | | | 6.5.6 Digital ECL ICs | 6-18 | | SECTION 7 | PARTS AND SCHEMATICS | | | | 7.1 DRAWING INDEX | 7-1 | | | 7.2 ERRATA | 7-1
7-1 | | | 7.3 ORDERING PARTS | 7-1
7-1 | ### SAFETY FIRST- #### Protect yourself. Follow these precautions: - Don't touch the outputs of the instrument or any exposed test wiring carrying the output signals. This instrument can generate hazardous voltages and currents. - Don't bypass the power cord's ground lead with two-wire extension cords or plug adaptors. - Don't disconnect the green and yellow safety-earth-ground wire that connects the ground lug of the power receptacle to the chassis ground terminal (marked with (**) or/!\). - Don't hold your eyes extremely close to an rf output for a long time. The normally nonhazardous low-power rf energy generated by the
instrument could possibly cause eye injury. - Don't plug in the power cord until directed to by the installation instructions. - Don't repair the instrument unless you are a qualified electronics technician and know how to work with hazardous voltages. - Pay attention to the WARNING statements. They point out situations that can cause injury or death. - Pay attention to the CAUTION statements. They point out situations that can cause equipment damage. # SECTION SECRIPTION #### 1.1 MODEL 190 The Wavetek Model 190, 20 MHz Function Generator, is a precision source of sine, triangle and square waveforms plus dc voltage. All waveforms are front panel variable from .002 Hz to 20 MHz and can be externally modulated. Outputs can be continuous or the generator can be triggered or gated by an external signal or a front panel switch. Amplitude of the waveforms is variable from 30V peak-to-peak (15V peak-to-peak into 50Ω) down to 1.5mV peak-to-peak. DC reference of the waveform can be offset positively or negatively. Maximum 150mA peak current can be continuously varied over an 80 dB range. A sync output provides a TTL level into 50Ω . #### 1.2 SPECIFICATIONS #### 1.2.1 Versatility #### Waveforms Selectable sine $\, ^{\wedge} \,$, triangle $\, ^{\vee} \,$, square $\, ^{\sim} \,$, and dc with TTL sync. Symmetry of waveforms may be varied for sawtooth and variable duty cycle pulses. #### **Operational Modes** **Continuous:** Generator oscillates continuously at selected frequency. **Triggered:** Generator is quiescent until triggered by external signal or manual trigger, then generates one cycle at selected frequency. **Gated:** As triggered mode, except generator oscillates for the duration of gate signal plus time to complete the last cycle. #### Frequency Range 0.002 Hz to 20 MHz in 9 overlapping decade ranges with approximately 1% of full scale vernier control. #### **Function Output** #### DC Output and DC Offset Selectable thru function output BNC. Controlled by front panel control with separate on-off switch. Adjustable between \pm 15 Vdc (\pm 7.5 Vdc into 50Ω) with signal peak plus offset limited to \pm 15 Vdc (\pm 7.5 Vdc into 50Ω). DC offset and output waveform attenuated proportionately by the 0 to 70 dB output attenuator. #### Sync Output ATTL level pulse when terminated with 50Ω . Duty cycle varies with symmetry when in square wave function. 50Ω source impedance. #### VCG—Voltage Controlled Generator Up to 1000:1 frequency change with external 0 to \pm 5V signal. Upper frequency is limited to maximum of selected range. Slew Rate: 2% of range per us. Linearity: $\pm 0.5\%$ thru \times 100K range. $\pm 5\%$ on \times 1M and \times 10M range. Impedance: 10 kΩ. #### Trigger (and Gate) Input Input Range: 1 Vp-p to \pm 10V. Trigger Level Adj: -5V to +5V. Impedance: 1.5 k Ω shunted by 1.5 pF. Pulse Width: 25 ns min. Repetition Rate: | input | Max Rep Rate | |--------|--------------| | ± 1V | 1 MHz | | ± 2.5V | 10 MHz | #### Symmetry Symmetry of all waveform outputs is continuously adjustable from 1:19 to 19:1. Varying symmetry provides variable duty-cycle pulses, sawtooth ramps and distorted sine waves. #### NOTE When SYMMETRY control is used, indicated frequency is divided by approximately 10. #### 1.2.2 Frequency Precision #### Dial Accuracy $\pm\,3\,\%$ of full scale from $\times\,.1$ Hz to $\times\,1$ MHz ranges. $\pm\,5\,\%$ of full scale on $\times\,10M$ range. #### Time Symmetry Square wave variation from 0.1 to 2 on dial less than: \pm 1% to 200 kHz. \pm 10% to 20 MHz. #### 1.2.3 Amplitude Precision #### **Amplitude Change with Frequency** Sine variation with frequency less than: ± 0.2 dB on all ranges thru $\times 100$ K. ± 0.5 dB on $\times 1$ M range. \pm 1.5 dB on \times 10M range. #### **Step Attenuator Accuracy** ±0.3 dB with 10, 20 and 40 dB attenuator setting. ±0.6 dB with 30, 50 and 60 dB attenuator setting. ±0.9 dB with 70 dB attenuator setting. #### 1.2.4 Waveform Characteristics #### **Sine Distortion** <0.5% on X1K, and X10K ranges. <1.0% on X.1 to X100 and X100K ranges. All harmonics 30 dB below fundamental on X1M range, and 25 dB below fundamental on X10M range. #### **Square Wave** Rise/Fall Time: <15 ns (10% to 90%). Total Aberrations: 5% of full amplitude (each peak). #### Triangle Linearity >99% for 0.002 Hz to 200 kHz. #### 1.2.5 General #### Stability Amplitude, frequency and dc offset after two hour warm-up. Short Term: $\pm 0.05\%$ for 10 minutes. Long Term: $\pm 0.25\%$ for 24 hours. #### Environmental Specification apply at 25°C ±5°C. Instrument operates from 0°C to +50°C. #### **Dimensions** 28.6 cm (11 $\frac{1}{4}$ in.) wide; 8.9 cm (3 $\frac{1}{2}$ in.) high; 28.6 cm (11 $\frac{1}{4}$ in.) deep. #### Weight 4.7 kg (10.4 lb) net; 5.9 kg (13 lb) shipping. #### Power 100/120/220/240V (+5%, -10%), 48 Hz to 66 Hz, 70 VA. #### NOTE All specifications apply from 0.1 to 2.0 on frequency dial, when FUNC OUT is maximum and 50Ω terminated, and with SYM control OFF. SYMMETRY and VERNIER controls affect frequency calibration. Maximum possible asymmetry is a function of frequency setting. # SECTION 2 INITIAL PREPARATION #### 2.1 MECHANICAL INSTALLATION After unpacking the instrument, visually inspect all external parts for possible damage to connectors, surface areas, etc. If damage is discovered, file a claim with the carrier who transported the unit. The shipping container and packing material should be saved in case reshipment is required. #### 2.2 ELECTRICAL INSTALLATION #### 2.2.1 Power Connection #### NOTE Unless otherwise specified at the time of purchase, this instrument was shipped from the factory with the power transformer connected for operation on a 120 Vac line supply and with a ¾ amp fuse. Conversion to other input voltages requires a change in rear panel fuse holder voltage card position and fuse (figure 2-1) according to the following procedure. Figure 2-1. Voltage Selector and Fuse Disconnect the power cord at the instrument, open fuse holder cover door and rotate fuse-pull to left to remove the fuse. - Remove the small printed circuit board and select operating voltage by orienting the printed circuit board to position the desired voltage to the top left side. Push the board firmly into its module slot. - Rotate the fuse-pull back into the normal position and insert the correct fuse into the fuse holder. Close the cover door. - 4. Connect the ac line cord to the mating connector at the rear of the unit and the power source. | Card Position | Input Vac | Fuse | |---------------|------------|---------| | 100 | 90 to 105 | 3/4 amp | | 120 | 108 to 126 | 3/4 amp | | 220 | 198 to 231 | 3/8 amp | | 240 | 216 to 252 | 3/8 amp | #### 2.2.2 Signal Connections Use RG58U 50Ω coaxial cables equipped with BNC connectors to distribute signals when connecting this instrument to associated equipment. #### 2.3 ELECTRICAL ACCEPTANCE CHECKOUT This checkout procedure verifies the generator operation. If a malfunction is found, refer to the Warranty in the front of this manual. A dual trace, 150 MHz bandwidth oscilloscope with X10 time base magnification, a 50Ω load, a coaxial tee and three 50Ω cables are required to perform this checkout. Set up as in figure 2-2 and preset the generator front panel controls as follows. | CONTROL | |
POSITION | |---------|--|--------------| | Dial | | 1.0 | FREQ MULT 1K VERN/SYM FREQ CAL (cw) SYM OFF (Extended) MODE CONT (FUNC) TRIG LEVEL 10 o'clock FUNCTION \wedge DC OFFSET (On/Off) OFF (Extended) DC OFFSET (Variable Control) ccw **POWER** OUTPUT ATTEN 40, 20, 10 All Extended AMPLITUDE MAX (cw) ON Figure 2-2. Checkout Setup Table 2-1. Checkout Procedure | Step | Control | Position/Operation | Observation | |------|-------------------------|---|---| | 1 | Oscilloscope | Trig level and slope, both positive. | CH2: Square wave that begins on positive going edge. CH1: 15 Vp-p square wave. | | 2 | Dial and
VERNIER/SYM | Rotate dial full cw, vernier full ccw.
Then the opposite. Return dial to 1.0,
vernier to CAL. | CH2: Square wave remains in sync for all dial positions. Range is less than 2 Hz to 2000 Hz (1000:1). | | 3 | FREQ MULT | Rotate to all positions. Return to 1K position. | Frequency is 1 × each range position. | | 4 | AMPLITUDE | Set to 6 Vp-p on scope. | CH1: Amplitude decreases to approximately 6 Vp-p. | Table 2-1. Checkout Procedure (Continued) | Step | Control | Position/Operation | Observation | |------|------------------------------|---|---| | 5 | DC OFFSET | Depress DC OFFSET switch, then rotate DC OFFSET Control CW. (Extended DC OFFSET upon completion.) | Full CCW gives negative offset. Clipping occurs when the offset plus waveform peak amplitude exceeds approximately $\pm 7.5 \text{V}$ into 50Ω . Initially the negative peak is clipped, but as the DC offset is rotated cw the clipping of the negative peak disappears and eventually the positive peak begins to clip. | | 6 | AMPLITUDE | Rotate cw. | Waveform returns to 15 Vp-p. | | 7 | OUTPUT
ATTN 10, 20,
40 | Depress buttons in various combinations. Then release all buttons. | Output level varies from 15 Vp-p (0 dB) to 4.7 mV (70 dB). | | 8 | FUNCTION | Rotate ccw. Select DC \land , \land , \lnot . Reset to \land . | Observe 0 Vdc level;
\wedge , \wedge and \square are 15 Vp-p. Note phase relationships; \square in phase with \wedge and \wedge . | | 9 | SYM,
VERNIER/SYM. | Depress SYM switch and rotate VERNIER/SYM control ccw. Extend SYM, return VERNIER/SYM to CAL. | Frequency decreases to approximately 1 kHz. CCW of the 12 o'clock position gives 1:19; CW gives 19:1 (a skewed sinewave and variable duty cycle pulses can be observed for | | 10 | MODE and
FUNCTION | Select GATE. Select $ $ | A dc level near zero volts (except \(\text{\texts} \) function; quiescent level is at negative peak value). | | 11 | MANUAL
TRIGGER | Press, hold and release. | A burst of √ for the period the MAN TRIG is depressed. | #### 3.1 CONTROLS AND CONNECTORS The generator front panel controls and connectors are shown in figure 3-1 and keyed to the following descriptions. - Frequency Dial Settings under the dial index mark summed with 13 and multiplied by 2 determine the output signal frequency. - **2** FREQ MULT Control Selects one of nine frequency multipliers for dial **1** setting. - VERNIER/SYM Control When the SYM switch 3 is off (extended) this inner control is a fine adjustment of the frequency dial 1 setting. When the SYM switch is on (depressed) this control varies the symmetry of the waveforms (normally 50% duty cycle). Symmetry range is 19:1 to 1:19 (half cycle to half cycle ratio). When SYM is used, the main generator frequency is divided by 10. Extending SYM switch ensures 1:1 (50%) symmetry. See figure 3-2. $^{\circ}$ SYNC DUTY CYCLE VARIES SAME AS FUNC OUT SIGNAL WHEN SQUARE FUNCTION ($\,\, \square_{\,\,}$) IS SELECTED. Figure 3-2. Effect of Symmetry Control Figure 3-1. Controls and Connectors - 3 SYM Pushbutton This switch, when-depressed, allows the waveform symmetry to be varied 19:1 to 1:19 range by the VERNIER/SYM control 2; as a result the generator frequency is divided by 10. When extended, the switch allows the generator to produce normal (50% duty cycle) waveforms. - **4** MODE Control This switch selects one of the three operating modes: **CONT** — Continuous output at FUNC OUT **10** and SYNC OUT **11** connectors. TRIG — A dc level output until the generator is triggered by the MAN TRIG 5 or with a signal at the TRIG IN connector 12. When triggered the generator output is one cycle of waveform followed by a dc level. **GATED** — As for TRIG except the output is continuous for the duration of the manual or external trigger signal. The last waveform cycle started is always completed. TRIG LEVEL Control — This inner control is a continuously variable adjustment of the trigger circuitry firing point. When full ccw, a positive going signal at approximately +5V is required for triggering (see figure 3-3). In the full cw position, a positive going signal at approximately —5V or more positive voltage is required for triggering. In the GATED modes, the generator will run continuously when the control is cw from 12 o'clock. Trigger signal must be a positive going signal exceeding the TRIGGER LEVEL setting. Figure 3-3. Minimum Trigger Signal 5 MAN TRIG Pushbutton — Triggers or gates the output signals when generator mode is TRIG or GATED 4. In trigger mode, one waveform cycle is output when the button is pushed. In gated mode, waveform cycles are continuously output as long as the button is held in. **FUNCTION Selector** — Outer coaxial knob selects one of three waveforms (sine, triangle, square) or dc. DC OFFSET Control — Inner coaxial control offsets the main generator output waveform vertically from its normal position and when FUNCTION (outer coaxial switch 6) is in the DC position, controls polarity and voltage of dc output. DC output range is $0 \pm 15 \, \text{Vdc} \, (\pm 7.5 \, \text{Vdc} \, \text{into} \, 50\Omega)$. DC OFFSET switch $7 \, \text{must}$ be depressed to enable this DC OFFSET Control. Extending the DC OFFSET switch ensures zero volt offset. DC offset and waveform are attenuated by the OUTPUT ATTEN control $8 \, \text{must}$, but dc offset is not attenuated by the AMPLITUDE control $9 \, \text{must}$. Waveform peak voltage plus dc offset is limited to $\pm 15 \, \text{Vdc} \, (\pm 7.5 \, \text{Vdc} \, \text{into} \, 50\Omega)$. See figure $3 - 4 \, \text{must}$ Figure 3-4. DC OFFSET Control - 7 DC OFFSET Pushbutton When depressed, the dc offset is switched on and controlled by the DC OFFSET control 6. When extended, zero offset is assured. - 8 OUTPUT ATTEN Pushbuttons These buttons select the attenuation range of the FUNC OUT 10 signal. The AMPLITUDE control 9 allows continuous level variations within each attenuator range. Each of the three buttons may be used individually for 40, 20 or 10 dB steps of attenuation, or pressed in combinations for up to 70 dB of attenuation. The attenuator attenuates both the waveform and dc offset. - 9 AMPLITUDE This control continuously varies the waveform amplitude within each OUTPUT ATTEN 8 range. CCW rotation reduces waveform amplitudes at FUNC OUT 10 by approximately 10 dB. DC and dc offset voltages are not affected by this control. - **10 FUNC OUT Connector** This BNC is the waveform (or dc) output of the generator. Maximum output is 30 Vp-p (15 Vp-p into 50Ω). Source impedance is 50Ω . - 11 SYNC OUT Connector The sync signal from this BNC is a TTL level into 50Ω . Duty cycle varies with waveform symmetry. Source impedance is 50Ω . - 12 TRIG IN Connector This BNC receives the external trigger and gate signals. These signals are applied to the trigger and gate circuit when the MODE switch 4 is in the TRIG or GATED positions. Refer to paragraph 1.2.1, Trigger (and Gate) Input, for trigger signal requirements. The TRIG LEVEL control 4 selectively accepts trigger and gate signals for the trigger and gate circuits. - VCG IN Connector This BNC accepts ac or dc voltages to proportionately control frequency within the range determined by the FREQ MULT Positive voltages increase the frequency set by the dial 1; negative voltages decrease the frequency. The VCG IN will not drive the generator frequency beyond the normal limits of a range. Input impedance is 5 kΩ. - 14 POWER Pushbutton Depressed is power on, extended is power off. #### 3.2 OPERATION Perform the initial checkout in Section 2 for the feel of the instrument. Any questions concerning individual controls and connectors may be answered in paragraph 3.1. #### 3.2.1 Signal Termination Proper signal termination, or loading, of the generator connectors is necessary for its specified operation. For example, the proper termination of the 50Ω OUT connector is shown in figure 3-5. Placing the 50 ohm terminator, or 50 ohm resistance, in parallel with a higher impedance, matches the receiving instrument input impedance to the coax characteristic and generator output impedance, thereby minimizing signal reflection or power loss on the line due to impedance mismatch. The input and output impedances of the generator connectors are listed below. Figure 3-5. Signal Termination | Connector | Impedance | |----------------|-----------| | FUNC OUT | 50Ω | | SYNC OUT (TTL) | 50Ω | | TRIG IN | 10k | | VCG IN | : 5kΩ | #### 3.2.2 Manual Function Generator Operation The following steps demonstrate manual control of the function generator. (Bold numbers are keys to figure 3-1.) | Step | Control/Connec | tor | Setting | |------|----------------|-----|---| | 1 | FUNC OUT | 10 | Connect circuit to output (refer to paragraph 3.2.1). | | 2 | MODE | 4 | Select CONT. | | 3 | SYM | 3 | Extended. | | 4 | FREQ MULT | 2 | Set to desired range of frequency. | | 5 | Frequency Dial | 1 | Set to desired frequency within the range. | | 6 | FUNCTION | 6 | Set to desired waveform. | | 7 | DC OFFSET | 7 | Set as desired. Limit offset to prevent waveform clipping (see figure 3-4). | | 8 | OUTPUT ATTEN | 8 | Select for desired attenuator range. | | 9 | AMPLITUDE | 9 | Select for desired waveform amplitude. | ## 3.2.3 Voltage Controlled Function Generator Operation Operation as a voltage controlled function generator (VCG) is as for a manually controlled function generator, only the frequency within particular ranges is additionally controlled by an external voltage ($\pm\,5V$ excursions) injected at the VCG IN connector. Perform the steps given in paragraph 3.2.2, only set the frequency dial to determine a reference from which the frequency is to be voltage controlled. - For frequency control with positive dc inputs at VCG IN, set the dial for a lower frequency limit. - For frequency control with negative dc inputs at VCG IN, set the dial for an upper frequency limit. - For modulation with an ac input at VCG IN, set the dial at the desired center frequency. Do not exceed the maximum dial range of the selected frequency range. Figure 3-6 is a nomograph with examples of dial and voltage effects. Example 1 shows that with 0V VCG in put, frequency is determined by the main dial setting, 1.0 in this example. Example 2 shows that with a positive VCG input, output frequency is increased. Example 3 shows that with a negative VCG input, output frequency is decreased. (Note that the Output Frequency Factor column value must be multiplied by a frequency range multiplier to give the actual output frequency.) *Must be multiplied by FREQ MULT switch setting Figure 3-6. VCG Voltage-to-Frequency Nomograph #### NOTE Nonlinear operation may result when the VCG input voltage is excessive; that is, when the attempted generator frequency exceeds the range limits. The upper limit is 2 times the multiplier setting, and the lower limit is 1/1000th of the upper limit. The up to 1000:1 VCG sweep of the generator frequencies available in each range results from a 5V excursion at the VCG IN connector. With the frequency dial set to 2.0, excursions between -5V and 0V at VCG IN provide the up to 1000:1 sweep within the set frequency range. #### 3.2.4 Waveforms See figure 3-7
for definition of controllable waveform characteristics. Figure 3-7. Waveform Characteristics Figure 4-1. Function Block Diagram # SECTION CIRCUIT DESCRIPTION #### 4.1 INTRODUCTION This section describes the functions of the major circuits elements and their relationships to one another as shown in figure 4-1, functional block diagram. 4.2 FUNCTIONAL BLOCK DIAGRAM ANALYSIS As shown in figure 4-1, the VCG (Voltage Controlled Generator) sums the voltage inputs from the frequency dial, VCG IN, and frequency vernier to provide a voltage control signal for the positive and negative current sources. The positive and negative current sources generate precision currents, linearly related to the output of the VCG summing amplifier, which pass through the current switch to the timing capacitors. Additional linear currents are generated for loop dc delay compensation and the trigger baseline compensation. The current switch, controlled by the hysteresis output, causes either the positive current source or the negative current source to charge the timing capacitor selected by the frequency multiplier. When the positive current source is switched in, the charge on the timing capacitor will rise linearly producing the positive-going triangle slope. Likewise the negative current source produces the negative going triangle slope. The triangle buffer amplifier is a unity gain amplifier whose output is fed to the hysteresis switch, sine converter and output circuits. The hysteresis switch operates as a "window" comparator with limit points set to the triangle peaks. When the positive going ramp reaches + 1.0V, the hysteresis switch toggles to a low state causing the current switch to connect the negative current source. This causes the timing capacitor voltage to linearly ramp to -1.0V as the timing capacitor voltage reaches -1.0V, the hysteresis switch toggles to a high state, switching in the positive current source. The generator loop continues to oscillate producing simultaneous triangle and square waves, at a frequency determined by the frequency multiplier and the magnitude of the timing current controlled by the sum of the dial setting, the VCG input, and the vernier. Depressing the SYM button produces an unsymmetrical waveform and a division of the frequency by a factor of 10. The VERNIER/SYM control creates an imbalance in the current sources and therefore an imbalance in the waveform symmetry up to a ratio of 19:1. The result is variable duty cycle pulse, variable askewed sine wave and variable "sawtooth" triangle waves. The dc loop delay compensation circuit is used on the two highest frequency ranges to compensate for loop delay. This circuit causes the hysteresis switch trip points to switch earlier in the cycle, and prevents the timing capacitors from charging beyond ± 1.0 V. The switch points are adjusted in proportion to the charging current, thus ensuring a constant amplitude as frequency is varied. The capacitance multiplier is an active circuit which simulates capacitors up to 10,000 times larger than the timing capacitor, thus allowing very long charging times using physically small capacitors. This circuit is used in the four lowest frequency ranges. The sine converter accepts $a \pm 1.0$ volt triangle signal from the triangle buffer and converts it to a sine wave current. The output is fed via the function switch to the preamplifier. The trigger circuit allows precise single or multiple (gated) cycles at the output in response to external trigger signals or manual trigger operation. The trigger circuit operates by holding the timing capacitor at 0 volts, via the loop stop signal, on the positive going triangle ramp, until a trigger signal occurs. In the TRIG mode a single cycle is produced for each trigger signal above the variable trigger level threshold. In the GATED mode continuous cycles are generated for the time period at which the external signal is above the trigger level threshold plus the time for completion of the last partial cycle. The RUN signal causes the SYNC output to stay in the low state when the generator is quiescent. The TRGRST signal resets the trigger circuit and generator to the quiescent state on every generator cycle to arm it for the next trigger input. The trigger baseline compensation circuit holds the generator output at zero volts, LOOP STOP. (within specified limits) during the quiescent intervals at any position (value) of the frequency dial, FREQ MULT, VCG IN, or VERNIER. The sync circuit accepts the square wave signal from the hysteresis or the zero crossing detector switch and converts it to a true 50Ω TTL level output. In square wave function (SYNC SELECT enabled) the sync is in phase with the output, but in triangle or sine functions (SYNC SELECT disabled), the zero crossing detector causes the sync output to be in phase with the zero crossing of the output waveform. When square is selected by the function switch, the square shaper accepts the signal from the hysteresis switch and converts it to a clean, fast square wave current to drive the preamplifier. The function switch also enables the sync circuit, causing the sync output to be in phase with the positive going edge of the output square wave. In sine, triangle or DC functions, the square shaper input and output are disabled so as not to interfere with the selected waveform. The preamplifier is fed from both the function switch and the square shaper. The voltage output drives the output amplifier via the amplitude control. The output amplifier accepts signals from the preamplifier by way of the amplitude control and drives the output attenuator. DC offset is achieved by offsetting the output amplifier. The output attenuator, fed directly from the output amplifier, provides up to 70 dB of attenuation to the selected waveform or DC offset. This signal is connected directly to the FUNC OUT BNC. #### 4.3 DETAILED CIRCUIT DESCRIPTION #### 4.3.1 Current Sources Refer to the Generator Board Schematic sheet 4. The VCG IN (J7) and FREQ VERNIER (R88) are summed with the dial potentiometer (R56) at the summing node, U14 pin 6 of the VCG amplifier. Full scale on the dial causes a -5 volt control signal at the dial buffer output U14 pin 7. Rotating the dial to minimum, plus turning the FREQ VERNIER ccw produces -5 mV at U14 pin 7. The output of the buffer drives both the GCV buffer and current sources. The GCV output at U14 pin 1 is +5.0 volts at full scale. The current source from U14 pin 7 is present at U13 pin 1. The output of U13 at pin 12 is fed through level shifting transistor Q14 to U8 pin 6. The collector current at pin 7 flows from ground through R81 and R80. As the voltage at U14 pin 7 varies, amplifier U13 and transistor Q14 adjust the base drive of U8 pin 6, and hence the collector current, until the voltage at U13 pin 2 equals the voltage at U13 pin 1. Because U8 is an array of matched transistors with the bases connected together, and all emitter resistors are equal with VERNIER selected, all collector currents are also equal. The positive current source is controlled by a current control signal at U8 pin 1, which is held at 0 volts by the servo action of U13 pins 6, 7 and 10, level shifting transistor Q15 and U7 pins 6 and 7. The current "I" in R84 must flow through R93, and because these resistors are both $1k\Omega$, an equal but opposite base control voltage is present on U7 pin 6 compared to U8 pin 6. Because the transitors in U7 are matched and their bases are at the same point, a positive current "I" flows in R97 and hence the positive current source. A small amount of adjustable balance is provided by R95 and R94 to enable the positive and negative currents to be set for correct symmetry. On the 1M and 10M ranges, the timing current is increased by approximately 25%, allowing the use of larger timing capacitors and hence, minimizing the effect of any stray capacitance. On the higher ranges, the parallel resistance across R83 (at ISCAL) is greater than the resistance on the lower ranges. This would decrease the current through U8 pin 8 were it not for the servo loop action of U13 pin 12, Q14 and U8 pins 6, 7 and 8. For any VCG setting at U14 pin 7 and U13 pin 1, no matter which range is selected, this servo loop maintains the voltage at U13 pin 2 equal to pin 1. Because the voltage at U13 pin 2 remains constant from range to range, the voltage across, and therefore the current through R80 and R81 also remains constant. This current also flows through U8 pins 7 and 8. To enable this current to remain constant, the servo loop drives the base voltage at U8 pin 6 in a positive direction. Because all of the bases in U8 are at the same point, the current relative to the lower ranges increases in R84 through R87 and also in the collectors of U8 pins 1, 14, 2, and 9. Variable symmetry is controlled by R88 which doubles as the frequency vernier. With VERNIER selected, R88 functions as a frequency vernier with one end of the control connected to ground and the other connected to the - 15 volt supply. The wiper supplies current to the summing node U14 pin 6. Additionally, one end of 1kΩ resistors R84 through R87 are all connected to the - 15 volt supply. For any given dial setting, the current through each of the four resistors is "I". With SYM selected, R88 functions as a variable symmetry vernier with the wiper connected to the - 15 volt supply. One end of this vernier supplies current to R84 and R85, while the other end supplies current to R86 and R87. With the vernier centered, each leg is approximately 5000Ω and reduces the current through each of these 4 resistors to 1/10 I, dividing the generator frequency by 10. As the symmetry control is varied, resistors for the positive and negative current sources are changed in ratio, hence the current sources are unbalanced and the timing for the positive waveform is varied in respect to the negative waveform, resulting in variable symmetry. Loop
delay dc compensation currents (+ ICMP and - ICMP), are supplied by Q16 and U8 pin 9 and track the timing currents. A current (ITRGBL), is supplied by U8 pin 14 to the trig baseline circuit to compensate for variations in freq dial settings when the generator is in a quiescent trigger or gated mode. #### 4.3.2 Current Switch Refer to sheet 3. The current switch is driven by the square wave signal (ISWCTRL) from the hysteresis switch. Level shifting transistor Q10 provides a control signal for the diode bridge CR8, CR9, CR30 and CR31. When the control signal is + 1.8 volts, CR30 is reversed biased, allowing CR8 to conduct current from the positive current source to the timing capacitor selected by SW9-D. This produces a positive going ramp. CR31 is also turned on, which reverse biases CR9 and prevents current sinking from the timing capacitor to the negative current source. When the control signal is -1.8 volts, both CR30 and CR9 are forward biased, while CR31 and CR8 are reversed biased. At this time, current from the negative current source sinks from the timing capacitor, producing a negative going ramp. #### 4.3.3 Triangle Buffer Amplifier Refer again to sheet 3 of the schematic. The signal on the selected timing capacitor is present at both the gate of Q11, and at U9 pin 2. These devices provide a very high input impedance for the signal to avoid leakage which would otherwise cause poor triangle linearity. The output current of Q11 controls the base drive to emitter follower Q13 and hence the output voltage on the emitter. This voltage is sensed at U9 pin 3, causing U9 to adjust the base voltage of Q12 until the differential input of U9 is zero. The low impedance source output voltage at the emitter follower Q13 now follows the high impedance input signal at the gate of Q11 with a circuit gain of 1.0 up to a bandwidth of approximately 1 MHz, above which the gain will drop down to approximately 0.95 typically. #### 4.3.4 Hysteresis Switch Refer to sheet 2. U10 pin 5 is the input to the positive peak comparator, while pin 10 is the input to the negative peak comparator. A level shifted triangle signal of -0.9 volts to -2.8 volts is present at pins 5 and 10 of U10. Assume a positive going.ramp. R18 and R19 set the reference voltage on U10 pin 4 at -0.9 volts. When the voltage on pin 5 exceeds the reference voltage on pin 4, the positive comparator changes state and the voltage on pin 3 pulses from an ECL low (-1.8V) to an ECL high (-0.8V). This signal is connected to clear direct (pin 4) of D flip flop U5. The output of U5 pin 2 goes low, while U5 pin 3 goes high. These outputs toggle the differential pair Q7 and Q8 so that Q7 is on and Q8 is off. This causes the current switch control signal (ISWCTRL) to go low, which connects the negative current source to the timing capacitor, and causes the triangle to begin to ramp negative. The negative peak comparator functions in an identical manner to the positive comparator except that the reference voltage at U10 pin 9 is -2.8 volts. At the negative triangle peak, U10 pin 6 pulses high, causing a set direct at U5 pin 5, toggling the current switch signal (ISWCTRL) high and producing a positive going ramp. In addition to being used to store the first peak comparison pulse from U10 pins 3 and 6, U5 also ignores "chatter" from both positive and negative comparators. #### 4.3.5 Loop DC Delay Compensation The circuit is also located on sheet 2 of the schematic diagram. The purpose of this circuit is to adjust the reference voltages on the comparators in the two highest frequency ranges so that the triangle peaks do not increase in amplitude due to loop delay. Q2 functions as a variable positive current source controlled by the range switch and the main current source. As the generator frequency is increased, the base voltage of Q2 progressively moves negative causing positive current through R15 and increasing the reference voltage on U5 pin 9 in a positive direction. This causes the negative peak to switch earlier in time, compensating for the loop delay and maintaining constant triangle amplitude and correct frequency tracking. The positive peak comparator reference is changed in an identical way, except that the voltage on U10 pin 4 becomes more negative with increased frequency. Q4 is a variable negative current source. Q1 and Q3 function as temperature compensating diodes. #### 4.3.6 Capacitance Multiplier Refer to schematic diagram sheet 5. The capacitance multiplier is a precision current splitter which shunts up to 99.990% of the VCG current away from the integrating capacitor (C57) to produce the 100 through 0.1 frequency ranges. Timing current is divided between C57 and R114, then again between R113 and the selected timing resistor (R110 through R112 or R108). The signal at U11 pins 2, 6, and 7 is a ± 1.0 volt triangle. U11 (pins 6, 7, and 10) is a non-inverting amplifier with a gain of 8. The waveform at U11 pin 1 is a ± 1.0 volt triangle with 0.5 volt spikes at each peak. At any given moment, the junction of R103 and C55 (differentiator circuit input) has 8 times the voltage as the junction of R104 and C55. This voltage difference causes a constant current to charge C55 through R104 and the selected timing resistor. Thus a frequency dependent charging current flows into the summing node of U11 pin 1, producing an inverted square wave component at the differentiator output U11 pin 12 sinking or sourcing current from the main current sources and limiting the amount of current available to charge C57. The \pm 1.0 triangle at U11 pin 2 provides the triangle portion of the waveform at U11 pin 12. Since the triangle slopes on U11 pins 1 and 12 are identical, only the square wave component of the waveform at U11 pin 12 is across the timing resistor. The amount of current supplied to charge C55 is therefore this voltage divided by the range resistor value. As the range resistor is increased, the feedback for U11 between pins 1 and 12 is also increased, causing less current to charge C55 and increasing the amount of current being shunted to U11 pin 12 by a factor of 10 for each lower frequency range. #### 4.3.7 Sine Converter Refer to sheet 6 of the circuit diagram. The sine converter converts the buffered \pm 1.0 volt peak triangle to a sinusoidal current of 2mA peak. The input triangle voltage (TRIBUFC) passes through a voltage divider network to the input of the diode at pins 1, 4 and 6. As this signal progressively increases, the diode between pins 1 and 9 is progressively reversed biased, sinking less current and causing the diode between pins 2 and 5 to pass increasingly more current in a sinusoidal manner to IFUNC. This produces the positive half of the sine wave at the output of the preamplifier. At the same time, the diode between pins 2 and 8 is progressively reversed biased. This slows and eventually prevents current from flowing from the negative portion of the sine converter. When the input waveform moves negatively, the diode between pins 2 and 5 is reversed biased and the diode between pins 2 and 8 progressively conducts, producing the negative half of the sine wave. R159 sets the input amplitude for correct biasing of the sine conversion diodes, while R165 adjusts the input signal offset. Thermister R161 adjusts the input voltage to compensate for the diode voltage change with temperature. The network consisting of R166, R167 and C102 provides a signal (SINCMP) to the non-inverting input of the preamplifier to compensate for the effects of diode capacitance which would otherwise distort the sinewave peaks at high frequencies. #### 4.3.8 Trigger Circuit Refer to sheet 5. The trigger input at J8 is added to the voltage from the trigger level control R119 and compared at U12 pin 5 with a reference at U12 pin 4. When the signal at U12 pin 5 exceeds pin 4 by a few millivolts, U12 pin 3 goes high. R120 and C60 ensure a noise free pulse at U12 pin 3 which is one of two wire ORed inputs to U4 pin 7. The second input originates from the MAN TRIG switch circuit. When this switch is depressed, R115 pulls U12 pin 10 low. Pin 10 is compared to the Vbb reference voltage at pin 9, latching pin 6 high and preventing false triggering due to switch contact bounce. Pin 13 connected to pin 6, is referenced to pin 12, causing pin 15 to also go high. When either U12 pin 3 or pin 15 go high, U4 pin 3 goes low because these outputs are wire ORed to U4 pin 7. U4 pin 3 is connected to pins 4 and 10. Because pin 10 was previously high, U4 pin 14 was low causing a low at U4 pin 5. The trigger pulse low at U4 pin 4 causes a 10 ns ECL high pulse at U4 pin 2. At the same time, U4 pin 14 goes high and after the time delay set by R126 and C62, U4 pin 5 also goes high. This causes U4 pin 2 to return low. In the gate mode CR14 holds U4 pin 11 high, forcing pin 14 low. The length of the control pulse at U4 pin 2 is now equal to the period during which U4 pin 7 is held high. In the continuous mode, U4 pin 2 is held high by CR16 regardless of any input trigger signals. #### 4.3.9 Trigger Baseline Refer to sheet 5. In the trigger mode, with no trigger inputs, U5 pin 12 is held low. On the next positive going triangle, the trigger reset (TRIG RST) signal at U5 pin 11 causes U5 pin 14 to go high. This turns Q18 off and Q17 on, which turns off Q19. The Q19 emitter voltage is pulled down by the negative current sources Q20 and Q21, causing CR19 to conduct. Because the anode is at ground and CR18 is matched to CR19, the voltage at the anode of CR18 is also zero. This causes the triangle on the positive going ramp to stop at exactly zero volts. When a trigger signal occurs, U5 pin 12 goes high for about 10ns, causing pin 15 to also go high. This turns on Q18 and turns off Q17, which turns on Q19, causing the emitter to rise to about 1.7 volts. This reverse biases CR18 and CR19 causing the generator to run for exactly one cycle. In the gate mode, U5 pin 12 is held high for the
duration of the input signal causing the generator to run for this interval plus the time required to complete a partial cycle. In the trigger or gated mode, quiescent state, positive charging current I flows in CR18. As the VCG current is varied, I also varies, causing the voltage across CR18 to vary. To prevent this from causing a baseline shift, current (I) must also flow in the reference diode CR19. A negative current source (ITRGBL) is connected to the bases of Q20 and Q21. Negative current (-I) flows through the collector of Q20 and R133. Because of the configuration of Q20 and Q21, and because R133 and R134 are both $1k\Omega$, an equal amount of current - I also flows through the collector of Q21 and R134, causing -21 to flow at the junction of R133 and R134. Half of this current (-1) flows through CR19, while the remaining current flows through CR18. Therefore, the anode of CR18 is held at zero volts regardless of the VCG summing node current. The RUN signal is used to hold the sync output low during quiescent periods. #### 4.3.10 Sync Refer to sheet 2. The SYNC OUT amplifier is driven from the signal at U6 pin 10 in the triangle and sine functions, and from U6 pin 7 when the function switch is in the square function. These two inputs are wire ORed at U6 pin 13. In the triangle and sine functions, SYNC SEL allows R23 to pull CR4 high causing a low at U6 pin 2. This enables the signal from the zero crossing detector output (U10 pin 15), and disables the hysteresis switch input at U6 pin 7. When the positive going ramp crosses 0 volts at the zero crossing detector input U10 pin 13, U10 pin 15 and U6 pin 10 go high. This causes a low at U6 pins 14 and 13. U6 pin 9 goes low and pin 15 goes high turning on Q5 and turning off Q6. This results in a high at SYNC OUT. As the triangle at U10 pin 13 crosses 0 volts in a negative direction, pin 15 goes low, causing Q5 to be turned on, producing a low at SYNC OUT. Therefore the SYNC OUT always toggles when the triangle crosses 0 volts. When the square wave function is selected, CR4 pulls U6 pins 4 and 6 low. U6 pins 2 and 11 now go high, disabling the zero crossing detector input from pin 10, and enabling the square wave input from U6 pin 7. U5 pin 3 now drives the SYNC OUT connector in a similar manner as U10 pin 15. The SYNC OUT is in phase with the square wave output. R26, a 49.9 Ω resistor sets the 50 Ω output impedance. #### 4.3.11 Square Shaper The square shaper schematic is located on sheet 6. In square function, CR20 pulls U4 pin 13 low, enabling the hysteresis switch input (HYS) at U4 pin 12. A low at U4 pin 12 causes a low at U4 pin 15 and a high at pin 9. Q22 turns on while Q23 is turned off, producing a +1.2 volt high at the bases of the current switch control transistors Q24 and Q25. Transistor Q25 is on, reverse biasing CR23. Transistor Q24 is off allowing positive current to flow through R147, CR22, R154 and into the preamplifier node via R152. When HYS toggles high, Q23 turns on forcing the bases of Q24 and Q25 to -1.2 volts. Q24 turns on and Q25 turns off, allowing negative current to flow through R157, CR23, R154 and the the amplifier node via R152. R152 and R154 form a current divider to obtain a 2mA full scale current into the preamplifier. Overshoot caused by diode capacitance is reduced by R153 and C73. The output of the square shaper is disabled in all other functions by turning on Q26 and CR24 which reverse bias CR22 and CR23 and prevents current from flowing through R152. #### 4.3.12 Preamplifier Refer to sheet 7 of the schematic circuitry. For all functions, full scale output voltage is produced when 2mA is injected into the input summing node U1 pin 8. Transistor array U1 forms a cascaded differential stage. Transistor Q27 is a fixed current source. Q28 and Q29 form a high gain voltage follower. DC negative feedback is applied through R195 to U1 pin 8. The closed loop voltage gain of the amplifier is determined by the ratio of R195 to the input resistors, R152 for square wave and R176 for triangle. The sine converter output supplies the correct current directly from U3 pin 2 to U1 pin 8. The servo action of the preamplifier holds this point at 0 volts, therefore no voltage can be measured. U1 pin 4 is the non-inverting input and is used both to adjust the offset to 0 volts at TP2 using R185 and to inject the sine converter compensation signal (SINCMP) described under paragraph 4.3.7, Sine Converter. High frequency compensation is provided by R182, C81, C86 and C153. Zener diode CR29 provides increased collector voltages for U1 pins 11 and 12 and also allows these two points to be relatively close in voltage. #### 4.3.13 Output Amplifier The output amplifier consists of an ac coupled amplifier for signals above about 16 kHz, and a dc coupled amplifier for signals below about 16 kHz, and to maintain zero dc output offset within specified limits. Refer to the simplified output amplifier schematic, figure 4-2. Assume zero input voltage at the junction of R203 and R218. The output at R222 and R224 is maintained at 0 volts by dc amplifier U2. U2 pin 3 is connected to a 0 volt reference. If the output drifts away from 0 volts, this will be sensed at U2 pin 2 through R256, R257 and R254. Amplifier U2 will sense a difference between its inputs and produce an output voltage which adjusts the bias in the ac coupled amplifier to return the output to 0 volts. Because R218 and R223 form half of a balanced bridge, and R253, R256 and R257 form the second half, the amplifier node at the junction of R218 and R223 will be held at 0 volts as U2 has returned the junction of R253 and R256 to 0 volts. A dc input of +1 volt at R218 and R253 is sensed as a positive increase at U2 pin 2, causing U2 pin 6 to go negative. The ac amplifier output goes negative in response to the dc control input. This continues until the output becomes sufficiently negative to sink all the input current, and return U2 pin 2 to 0 volts. The bridge circuit causes the ac amplifier node to be 0 volts. If the input is +1 volt and the node at the junction of R218 and R223 is 0 volts then the input current is 1/12 I = 8.26 mA. All of this current must flow in R223. Because the node is at 0 volts, the output voltage must be -8.26 mA \times $2k\Omega$ = -16.52V. Therefore the amplifier voltage gain = R223/R218 = 16.52. Above about 16 kHz, the ac amplifier controls the summing node directly, sinking or sourcing current through R223 by adjusting the output voltage to hold the node at 0 volts. The ac amplifier gain is also R223/R218 = 16(25) This is divided by 2 at the output terminal, due to the 50Ω source impedance resistors R222 and R224, providing the output is also terminated into 50Ω . Refer to sheet 7. The top half of the circuit amplifies the positive portion of the signal, and the bottom half amplifies the negative part. Q30 and Q31 form an ac gain stage. An emitter follower stage is formed by Q32 and Q33, to provide a low impedance drive to the second voltage gain stage Q36 and Q39. This stage drives the parallel output emitter followers Q37 and Q38 on the positive side, and Q40 and Q41 on the negative. Diodes CR23 and CR26 set thermally stable bias for the output transistors. Networks R211, R212, C94 and C93 bypass emitter resistor R208, while R245, R246, C107 and C106 bypass R244. As frequency is increased, these components decrease the local negative feedback in the driver stage, increasing the high frequency gain. Voltage regulators VR5 and VR6 have external current limiting circuitry set to limit at about 220 mA to prevent damage in the event of a shorted transistor. When the offset button is depressed, offset current is injected directly into both nodes in proportion to the feedback resistor values. The amplifier responds exactly as described above for a dc input. #### 4.3.14 Output Attenuator Refer to sheet 7. Each attenuator button selects an independent voltage divider, which has 50Ω input and output impedances to correctly load the amplifier and to provide a constant 50Ω impedance at the FUNC OUT terminal. The 10dB attenuator has a 3.16/1 voltage division ratio. The 20dB attenuator has a 10/1 voltage division ratio, and the 40dB stage has a 100/1 ratio. These ratios multiply in voltage. For example if the 20dB and 40dB buttons are depressed, the voltage division ratio is 1000/1. The attenuators add algebraically in dB, therefore any attenuation from 10 to 70dB may be selected in 10dB steps. # SECTION **CALIBRATION** #### 5.1 FACTORY REPAIR Wavetek maintains a factory department for those customers not possessing the necessary personnel or test equipment to maintain the instrument. If an instrument is returned to the factory for calibration or repair, a detailed description of the specific problem should be attached to minimize turnaround time. #### 5.2 REQUIRED TEST EQUIPMENT Voltmeter Millivolt dc measurement (0.1% accuracy), true rms Oscilloscope, Dual Channel 100 MHz bandwidth Counter 20 MHz (0.01% accuracy) ±0.1% accuracy, 2W 50Ω Distortion Analyzer RG58U Coax Cable To 200 kHz 3 ft length BNC male contacts Spectrum Analyzer To 20 MHz 5.3 COVER REMOVAL #### NOTE Before removing the covers, disconnect the instrument from the ac power source. Invert the instrument and remove the four screws in the bottom cover. Remove the bottom cover. #### NOTE Remove the cover only when it is necessary to make adjustments or measurements. #### 5.4 CALIBRATION After referring to the following preliminary data, perform calibration, as necessary, per table 5-1. If performing partial calibration, check previous settings and adjustments for applicability. Calibration points are shown in figure 5-1. #### NOTE The completion of the calibration procedure returns the instrument to correct alignment. #### CALIBRATION LIMITS AND TOLERANCES ARE NOT INSTRUMENT SPECIFICATIONS 1. All measurements made at the FUNCTION OUT connector must be terminated into a
50Ω ($\pm 0.1\%$) load. #### WARNING With the covers removed, dangerous voltage points may be exposed. Contact with any of these points could cause serious injury or death. 2. Start the calibration by removing covers as described in paragraph 5.3, connecting the unit to an ac source and setting these front panel switches as follows: SYM Off (extended) TRIG LEVEL 12 o'clock DC OFFSET Off (extended) OUTPUT ATTEN 0 dB (all extended) 3. Allow the unit to warm up at least 30 minutes for final calibration. Keep the instrument covers on to maintain heat. Remove covers only to make adjustments or measurements. Table 5-1. Generator Board Calibration Procedure Note: Where there are no entries, open column indicates previous entry is applicable. | Step | Test | Freq/
Start
Freq | Freq
Mult | Vern/
Sym | Mode | Func | Ampl | Test
Point | Tester | Adjust | 50Ω
Load | Result | Remarks | |--------|------------------------------|------------------------|---|--------------|-----------------|---|------|----------------|------------------|----------------|-------------|-----------------------------|---| | 1 (1) | ± 15V Balance | 2.0 | 1K | cw | CONT | Sqr | cw | Board
+ 15V | DVM | R3 | No | + 15 ± 75 Vdc | Ref gnd is TP7 | | 1 (2) | | | - | _ | | _ | - | Board
- 15V | _ | Verity | 1 _ | - 15 ± 75Vdc
See remarks | - 15V = - + 15V (reading)
± 10 mV , if not retouch R3 | | 2 | + 5V Supply | | _ | _ | - | - | - | + 5V |] – | _ | | + 5 ± 25 Vdc | | | 3 | - 5V Supply | _ | - | | | | | - 5V | 1 _ | | | + 5 ± 25 Vdc | 1 | | 4 | + 23V Supply |] - | _ | - | _ | _ | _ | FB1 | - | | _ | +219 ± 110 Vdc | 1 | | 5 | - 23V Supply |] _ | _ | _ | - | | _ | FB2 |] | _ | _ | -219 ± 110 Vdc | | | 6 | Power Ampl Zero | _ | _ | | | DC | ccw | FUNC
OUT | _ | R258 | Yes | 0 ± 20 mVdc | | | 7 | Preamp Zero |] – | - | l – | _ | | cw | | | R185 | 1 _ | | | | 8 | Top of Dial Symmetry | | | | | Sqr | - | | Scope | R96 | | Asym < 1µs | Set for min asym. (Set by alternate triggering of scope ± slope.) | | 9 | VCG Null | 02 | 100K | | | - | - | | _ | R6F | erasor-ra | See remarks | Set for min freq shift when VCG IN is grounded. Repeat steps 8 and 9 as necessary | | 10 | 100 1 Symmetry | | - | _ | | - | | | | R94 | | Asym < 1µs | et for min asym | | 11 | 1000 1 Frequency | | | ccw | - | - | - i | | Counter | R63 | - | 160 (+ 0. – 20) Hz | | | 12 | Triangle Offset | 2.0 | 1K | Cw | - [| Tn | - | | DVM | R17 | _ | 0 ± 20 mVdc | | | 13 | Sine Distortion | _ | - | | _ | Sine | - | | Dist
Analyzei | R159.
R165 | _ | < 18% | | | 14 | Triangle Trigger
Baseline | | _ | _ | TRIG | Tri | - | vanian | DVM | R51 | _ | 0 ± 20 mV | | | 15 (1) | Dial Alignment | _ | - | - | CONT | Sqr | - [| SYNC
OUT | Counter | Fi81 | | 2 kHz ± 10 Hz | | | 15 (2) | unemakken | 0.2 | | | | - | - | | | Verify | - | 200 ± 10 Hz | If satisfactory skip to step 16 (1) | | 15 (3) | - | See
remarks | *************************************** | _ | "TOWN SALES AND | | - | - | _ | R81 | | 2 088 kHz ± 10
Hz | Remove dial and set the shaft ccw | | 15 (4) | | | | | - | - | - | | | See
remarks | | 200 ± 10 Hz | Replace dial, align to 0.2, tighten set screw and verify setting | | 16 (1) | X10M Frequency | 20 | 10M | | | - | - | | - | C37 | | 20 MHz ± 600
kHz | Optimize C66 value if setting is out of range for C37 | | 16 (2) | | See
remarks | | | - | | - | | | Verify | | Dial mark ± 600
kHz | Verify frequency at each major dial mark | | 17 (1) | X1M Frequency | 20 | 1M | | | - | - | | | - | - [| See remarks | Trim C33 to set 2 MHz freq at 2 MHz ± 40 kHz | | 18 | X100K Frequency | - | 100K | | | *************************************** | - | | | | - [| 200 ± 4.0 kHz | Optimize R39 value if necessary | Table 5-1. Generator Board Calibration Procedure (Continued) Note: Where there are no entries, open column indicates previous entry is applicable. | Step | Test | Freq/
Start
Freq | Freq
Mult | | Mode | Func | Ampl | Test
Point | Tester | Adjust | 50Ω
Load | Result | Remarks | |--------|-------------------------------|------------------------|--------------|----|------|------|------|---------------|---------|--------------|-------------|-----------------|--| | 19 | Capacity Mult
Symmetry | 0 1 | 100 | cw | CONT | Sqr | CW | FUNC
OUT | Scope | R106 | | < 200µs | Set for min asym (Very important for low freq sine dist.) | | 20 (1) | Capacity Mult
Frequency | 20 | | _ | _ | _ | - | SYNC
OUT | Counter | R102 | - | 199 5 ± 5 Hz | | | 21 | Low Frequency
Aberrations | | 1K | | _ | - | | FUNC
OUT | Scope | R254 | | See remarks | Adjust the "Corner Shape" for just noticeable peaking | | 22 (1) | Function Output
Amplitude | | | _ | - | Sine | - | | DVM | R203 | _ | 5 35 Vrms ± 01V | | | 23 | High Frequency
Aberrations | 5 | 10M | | | Sqr | _ | _ | Scope | R245
R211 | | < 0 6 Vp-p | Worst case aberrations not to exceed 4% of full amplifor each peak | Figure 5-1. Calibration Points # SECTION 6 TROUBLESHOOTING #### 6.1 FACTORY REPAIR Wavetek maintains a factory repair department for those customers not possessing the necessary personnel or test equipment to maintain the instrument. If an instrument is returned to the factory for calibration or repair, a detailed description of the specific problem should be attached to minimize turnaround time. #### 6.2 BEFORE YOU START Since no troubleshooting guide can possibly cover all the potential problems, the aim of this guide is to give a methodology which, if applied consistently, will lead to the problem area. Therefore, it is necessary to familiarize yourself with the instrument by reviewing the functional description and the detailed circuit description in conjunction with the schematic. Successful troubleshooting depends upon understanding the circuit operation within each functional block as well as the block relationships. #### 6.3 TROUBLESHOOTING #### **WARNING** With the covers removed, dangerous voltage points may be exposed. Contact with any of these points could cause serious injury or death. Table 6-1 gives an index of common symptoms. For each symptom a troubleshooting guide is referenced (Paragraphs 6.3.1 through 6.3.15) that, when correctly followed, will lead to a solution to the problem. The troubleshooting guide is arranged in three (3) levels: - 1. Identify improperly set controls. - Isolate the faulty functional blocks. - 3. Identify the faulty circuit or component. Individual component troubleshooting is given in paragraph 6.5, recommended test equipment is given in paragraph 5.2 and circuit schematics are in the back of this manual. In all problems: - 1. Double check for proper control settings. - Calibrate or rule out calibration as a problem. - 3. Inspect components, wiring and circuit boards for heat damage. - 4. Recalibrate as necessary after circuit repair. Find the instrument symptom in table 6-1 and proceed as directed to the proper troubleshooting paragraph. Table 6-1. Symptoms | Symptom | Paragrapi | |---|-----------| | Fuse blows, no dial lamp. | 6.3.1 | | Power supply > 100 mVp-p ripple or out of specification. | 6.3.2 | | Function out (all functions) distorted or missing. | 6.3.3 | | Square output distorted or missing. | 6.3.4 | | Sine wave output distorted or missing. | 6.3.5 | | Triangle output distorted or missing. | 6.3.6 | | Sync output distorted or missing (FUNC OUT normal). | 6.3.7 | | Excessive high frequency sine or triangle roll off, excessive square wave overshoot and | 6.3.8 | | rise/fall time. | | | Low frequency square wave tilt. | 6.3.9 | | Time symmetry cannot be adjusted within specification. | 6.3.10 | | Frequency accuracy and dial response problems. | 6.3.11 | | Trigger, gate and trigger baseline problems. | 6.3.12 | | Voltage at VCG IN connector not changing frequency properly. | 6.3.13 | | DC offset not functioning correctly. | 6.3.14 | | Variable symmetry problems | 6.3.15 | #### 6.3.1 Fuse Blows, No Dial Lamp - 1. Fuse size incorrect for voltage setting. - 2. Line voltage selector incorrectly positioned. - Disconnect P5. If ac voltages are now correct, refer to the power supply guide, paragraph 6.4.1. If not, inspect the transformer and power receptacle. ## 6.3.2 Power Supply > 100 mVp-p Ripple or Out of Specification - 1. Check line voltage selector for correct position. - 2. If the supply is 0V, check for a short between the faulty supply and ground by lifting the jumpers at rear of the board. - 3. Lift P5 from the board. If the voltages at P5 are not close to the values shown on the schematic table, inspect the transformer and power receptacle. If the voltages are normal, connect P5, then lift the jumpers (rear of board) for faulty supply. If the supplies are still bad, refer to paragraph 6.4.1. If not, the problem is caused by an excessive current drain by the generator circuits. ## 6.3.3 All Waveforms at FUNC OUT Distorted or Missing Improperly set controls: - OUTPUT ATTEN or AMPLITUDE controls incorrectly set too low for scope gain or voltmeter range. - 2. FUNCTION switch incorrectly set to DC. - 3. MODE switch incorrectly set to TRIG or GATE. - 4. SYM or DC OFFSET buttons depressed. Functional block isolation: - Verify power supply voltages are within ±5% of nominal, with less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1. - Check for a nonlinear triangle. If the triangle is nonlinear on only one range, check for a leaky capacitor on that range. If the triangle is nonlinear in more than one range, check for leaky capacitors or faulty active components in the frequency multiplier and triangle buffer circuits. - 3. If the waveform is bad in one of the four lowest ranges (.1, 1,
10, 100), but the remaining ranges are normal, refer to the capacitance multiplier guide 6.4.9. - If the waveform is bad only in 1M or 10M FREQ MULT positions, refer to paragraph 6.4.3. If the delay compensation circuit appears normal, refer to figure 6-1. - 5. If square wave symmetry, measured at FUNC OUT, is out of specification and cannot be calibrated, refer to paragraph 6.3.10. - 6. If none of the above conditions apply, refer to figure 6-1. #### 6.3.4 Square Wave Distorted or Missing improperly set controls: - SYM button depressed. - 2. Excessive dc offset overdriving output amplifier. Functional block isolation: - Verify power supply voltages are within ±5% of nominal, with less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1. - 2. If the waveform is bad in one or more of the four lowest ranges (.1, 1, 10, 100), but the remaining ranges are normal, refer to paragraph 6.4.9. - 3. If symmetry is not in specification and cannot be calibrated refer to paragraph 6.3.10. - 4. If none of the above conditions apply, refer to figure 6-2. #### 6.3.5 Sine Wave Distorted or Missing Improperly set controls: - SYM button depressed - 2. Excessive dc offset overdriving output amplifier. Functional block isolation: - Verify power supply voltages are within ±5% of nominal, with less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1. - Check the triangle for nonlinearity at FUNC OUT. If it is nonlinear, but only on one range, check for a leaky capacitor on that range. If the triangle is nonlinear on more than one range, check for a leaky capacitor or faulty active component in the frequency multiplier and triangle buffer circuits. (NOTE: Some nonlinearity above 200 kHz is normal and not specified.) - 3. If the waveform is bad in one or more of the four lowest ranges (.1, 1, 10, 100), but the remaining ranges are normal, refer to paragraph 6.4.9. - 4. Verify that square wave symmetry, at FUNC OUT, is in specification. If not and cannot be calibrated, refer to paragraph 6.3.10. - 5. If none of the above conditions apply, refer to figure 6-3. #### 6.3.6 Triangle Distorted or Missing Improperly set controls: - 1. SYM button depressed. - 2. Excessive dc offset overdriving output amplifer. Functional block isolation: Verify power supply voltages are within ±5% of nominal with less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1. Figure 6-1. Function Output Troubleshooting Figure 6-2. Square Output Troubleshooting - 2. Check the triangle for nonlinearity at FUNC OUT. If it is nonlinear, but only on one range, check for a leaky capacitor on that range. If the triangle is nonlinear on more than one range, check for a leaky capacitor or faulty active component in the frequency multiplier and triangle buffer circuits. (NOTE: Some nonlinearity above 200 kHz is normal and not specified.) - 3. If the waveform is bad in one or more of the four lowest ranges (.1, 1, 10, 100), but the remaining ranges are normal, refer to paragraph 6.4.9. - 4. Verify square wave symmetry at FUNC OUT is in specification. If not and cannot be calibrated, refer to paragraph 6.3.10. - 5. If none of the above conditions apply, refer to figure 6-4. ## 6.3.7 Sync Output Distorted or missing (FUNC OUT Normal) Improperly set controls: Because the FUNC OUT is normal, this cannot be caused by improperly set controls. Functional block isolation: If there is no ECL square wave at U6 pin 10, refer to paragraph 6.4.7. If there is an ECL square wave, refer to paragraph 6.4.8. ## 6.3.8 Excessive High Frequency Sine or Triangle Roll Off Improperly set controls: 1. Excessive dc offset overdriving output amplifier. Figure 6-3. Sine Output Troubleshooting Figure 6-4. Triangle Output Troubleshooting Figure 6-5. High Frequency Waveform Troubleshooting - 2. Verify 50Ω load on the cable at oscilloscope end. Functional block isolation: - Verify power supply voltages are within ±5% of nominal with less than 100 mVp-p of ac ripple. If not refer to paragraph 6.4.1. Use a X10 probe with a very short ground lead and a spectrum analyzer, RF voltmeter or a 200 MHz bandwidth scope when performing sine or triangle roll-off tests. - 2. If none of the above conditions apply, refer to figure 6-5. #### 6.3.9 Low Frequency Square Wave Tilt Improperly set controls: 1. Scope improperly set to ac. Functional block isolation: - Verify power supply voltages are within ±5% of nominal, and less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1 - 2. If none of the above conditions apply, refer to figure 6-6. ## 6.3.10 Time Symmetry Cannot Be Adjusted To Within Specifications Improperly set controls: 1. SYM button depressed. Functional block isolation: Verify power supply voltages are within ±5% of nominal, with less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1. Figure 6-6. Low Frequency Square Wave Troubleshooting - 2. If symmetry is out of specification in one of the four lowest ranges (.1, 1, 10, 100), but the remaining ranges are normal, refer to paragraph 6.4.9. - 3. If symmetry is out of specification on FREQ MULT settings 1M or 10M only, refer to paragraph 6.4.3. - 4. If the voltages across R86 and R97 are not equal (typically 3.8V, Freq Dial: 2.0 Freq Mult: 100K or less), refer to paragraph 6.4.2. ## 6.3.11 Frequency Accuracy and Dial Response Problems Improperly set controls: - 1. SYM button depressed. - 2. External signal connected to VCG in BNC. - VERNIER not in FREQ CAL position. #### Functional block isolation: - Verify power supply voltages are within ±5% of nominal with less than 100 mVp-p ac ripple. If not, refer to paragraph 6.4.1. - 2. If the problem occurs in one of the four lowest frequency ranges (.1, 1, 10, 100), but the remaining ranges are normal, refer to paragraph 6.4.9. - 3. If the frequency accuracy is out of specification on FREQ MULT settings 1M and 10M, refer to paragraph 6.4.3. - If the frequency is out of specification, but only on one range, check the range capacitor for that range. - 5. If the problem occurs on the 1K, 10K, or 100K range, check the range capacitor. - On the 1K range and frequency dial set at 2.0, check for 3.8V across R86 and R97. As the dial is rotated, this voltage should linearly track the dial settings within ±3% of full scale. If not, refer to paragraph 6.4.2. - 7. If none of the above conditions apply, refer to figure 6-7. ### 6.3.12 Trigger, Gating and Trigger Baseline Problems. Improperly set controls: - 1. MODE incorrectly set to CONT. - FUNCTION incorrectly set to DC. - 3. DC OFFSET overdriving output amplifier. #### Functional block isolation: - Verify power supply voltages are within ±5% of nominal, with less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1. - If the trigger baseline cannot be calibrated within specification, set MODE to GATE and monitor the emitter of Q19. With TRIG IN disconnected, rotate the TRIG LEVEL ccw. The voltaged should go about -0.7 Vdc. Rotating the TRIG LEVEL cw should change this voltage to about +1.8 Vdc. If these voltage readings are normal, check CR18 and CR19. Figure 6-7. Frequency Accuracy Troubleshooting - If none of the above conditions apply, refer to figure 6-8. - For high frequency (1M and 10M ranges) trigger or gate problems, set the controls as follows: Frequency Dial 2.0 FREQ MULT: 10M SYM: OFF MODE: TRIG or GATE (Depends on symptom- GATE preferred) TRIG LEVEL: 12 o'clock Set the scope as follows: Horizontal: 20 ns/div Vertical: 1 V/div Inject a 15 MHz 1 Vp-p trigger signal and refer to figure 6-9. ## 6.3.13 Voltage At VCG IN Connector Not Changing Frequency Properly Improperly set controls: 1. Excessive VCG IN voltage for dial setting (maxi- mum input voltage is +5.0 Vdc with the dial set at .02 and the Freq VERNIER turned ccw). #### Functional block isolation: Set the frequency dial to 2.0, FREQ MULT to 1K, and VCG IN with no input. Measure voltage across R86 and R97 (+3.8 Vdc). In addition, as the frequency dial is rotated, the voltage linearly tracks the dial settings within ±3% full scale. If it functions properly, check R67, R68, R69 and associated circuitry, but if not, refer to paragraph 6.3.11. #### 6.3.14 DC Offset Not Functioning Correctly Improperly set controls: - 1. Signal peak plus offset exceeding + or 7.5V (with a 50 Ω load), or \pm 15V open circuit. - Check OUTPUT ATTEN since this also attenuates output offset. #### Functional block isolation: 1. Verify power supply voltages are within $\pm 5\%$ of Figure 6-8. Trigger Gate Troubleshooting Figure 6-9. High Frequency Trigger/Gate Troubleshooting nominal with less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1. - Take the following voltage measurements with the DC OFFSET button depressed and the DC OFFSET control rotated cw: - a) The junction of R260 and C116 should vary from +8.0V to -8.0V as control is rotated. - b) U2 pin 2 should hold at 0.0V. - U2 pin 6 should vary from -1.0V to +1.0V. (Drifting of this voltage is typical because of - constant compensation by U2 of variations in output transistor currents.) - 3. If none of the above conditions apply, refer to paragraph 6.4.15. #### 6.3.15 Variable Symmetry Problems Improperly set controls: - SYM button is incorrectly extended. - 2. Note: When SYM is depressed the output frequency should be one-tenth the selected frequency. - 3. DC offset is overdriving the output amplifier. #### Functional block isolation: - Verify power supply voltages within ±5% of nominal with less than 100 mVp-p of ac ripple. If not, refer to paragraph 6.4.1. - When the voltage at the right leg of R88 (VERNIER/SYM CW) is -15V and when the voltage at the left leg of R88 (VERNIER/SYM) is -15V, refer to paragraph 6.4.2. If not, check R88 and SW8. #### 6.4 CIRCUIT GUIDES Circuit guides provide listings of voltage levels, waveforms, and hints that, when used with the schematics, are helpful in isolating faulty circuits. Table 6-2 is an index of circuit guides. Table 6-2. Circuit Guide Index | Table
0-E. Offdatt dailed fillex | | | |----------------------------------|-----------|--| | Circuit Guide | Paragraph | | | Power Supply | 6.4.1 | | | Current Source | 6.4.2 | | | Loop Delay Compensation | 6.4.3 | | | Current Switch | 6.4.4 | | | Hysteresis Switch | 6.4.5 | | | Triangle Buffer | 6.4.6 | | | Zero Crossing Detector | 6.4.7 | | | Sync | 6.4.8 | | | Capacitance Multiplier | 6.4.9 | | | Trigger | 6.4.10 | | | Trig Baseline | 6.4.11 | | | Square Shaper | 6.4.12 | | | Sine Converter | 6.4.13 | | | Preamplifier | 6.4.14 | | | Output Amplifier | 6.4.15 | | #### 6.4.1 Power Supply Guide - To determine a faulty power supply, check for the voltages given in table 6-3. - 2. If the regulator input is bad, remove P5 and check for: - a. Shorted or open diodes (CR1, CR2, or CR3). - b. Shorted or open capacitors at the input of the regulator. - c. Short between the regulator metal mounting tab and chassis ground. - 3. If the regulator input is good, check for: - a. Shorted or open capacitors at the output of the regulator. - b. Short between regulator metal mounting tab and chassis ground. - Excessive loading by main board circuits; to verify, lift jumper of the appropriate supply. - d. If all of the above conditions appear normal, replace the voltage regulator. Table 6-3. Power Supply Checks | Supply | Voltage
Tolerance | Maximum
Regulator
Input
Ripple
(p-p) | Maximum
Regulator
Output
Ripple
(p-p) | |---------------|----------------------|--|---| | ± 15V Balance | 30 ± 1.5 Vdc
(a) | | | | + 15V | (b) | 1.5 Vac | 10 mV | | - 15V | (c) | 1.5 Vac | 10 mV | | + 5V | ± 750 mV | 1.5 Vac | 10 mV | | - 5V | ± 750 mV | 1.5 Vac | 10 mV | | + 23V | ±1.15 Vdc | 1.5 Vac | 10 mV | | – 23V | ± 1.15 Vdc | 1.5 Vac | 10 mV | ⁽a) Measured between + 15V and - 15V supplies. #### 6.4.2 Current Source Guide **Top of Dial Check:** Set the controls as follows; then perform the checks in table 6-4. | Control | Setting | |----------------|----------------| | Frequency Dial | 2.0 | | FREQ MULT | 1K | | VERNIER | FREQ CAL | | SYM | Off (extended) | | VCG IN | Disconnected | **VCG Check:** Set the controls as follows; then perform the checks in table 6-5. | Control | Setting | |----------------|----------------| | Frequency Dial | .02 | | FREQ MULT | 1K | | VERNIER | Full ccw | | SYM | Off (extended) | | VCG IN | +5.0 Vdc input | | | | ⁽b) Measure and note +15V supply (V_{+15}) . ⁽c) -15V supply = $-|V_{+15} \pm .01V|$. Table 6-4. Current Source Check (Top of Dial) | (.op o. o | | |----------------------------|------------------| | Test Point | Desired Results | | U14 pin 7 | -5 ± .5 Vdc | | U13 pins 1, 2 | -5 ± .5 Vdc | | Measure across R83 | +3.8 ± .38 Vdc | | U8 pin 6 | -10.3 ± 1.03 Vdc | | Measure across R84 and R93 | +3.8 ± .38 Vdc | | U13 pin 6 | 0 ± .01 Vdc | | U7 pin 6 | +10.2 ± 1.02 Vdc | | Measure across R86 and R97 | +3.8 ± .38 Vdc | Table 6-5. Current Source (VCG IN) | Test Point | Desired Results | |------------------------------|-------------------| | U7 pin 6 | +14.38 ± 1.44 Vdc | | U8 pin 6 (disconnect VCG IN) | -14.3 ± 1.43 Vdc | **10 MHz Range Check:** Set the controls as shown below, then perform the checks in table 6-6. | Control | Setting | |----------------|----------------| | Frequency Dial | 2.0 | | FREQ MULT | 10 M | | VERNIER | FREQ CAL | | SYM | Off (extended) | | VCG IN | Disconnected | Table 6-6. Current Source Check (10 MHz Range) | Test Point | Desired Results | |--------------------|----------------------------| | Measure across R99 | +5.9 ± .59 Vdc | | Measure across R83 | +6.05 ± .61 Vdc | | U8 pin 6 | $-8.2 \pm .82 \text{Vdc}$ | **Variable Symmetry Check:** Set the controls as shown then measure the voltage across resistors R84, R85, R86, R87, R93, and R97. The measured voltages should read $\pm 0.38 \pm .04V$. | Control | Setting | |----------------|---------------------| | Frequency Dial | 2.0 | | VERNIER | 12 c'clock position | | VCG IN | Disconnected | | FREQ MULT | 1K | | SYM | On (depressed) | # 6.4.3 Loop Delay Compensation Guide Set the controls as shown; then perform the checks in table 6-7. | Control | Setting | |----------------|----------------| | Frequency Dial | 2.0 | | VERNIER | FREQ CAL | | VCG IN | Disconnected | | FREQ MULT | 10M | | SYM | Off (extended) | Table 6-7. Loop Delay Compensation Checks | Test Point | Desired Results | |--------------------------------|--| | Q1 and Q2 emitters | + 9.2 ± .92 Vdc | | Q1 base and collector, Q2 base | +8.5 ± .9 Vdc | | Q2 collector | +0.68 ± .07 Vdc | | Q3 and Q4 emitter | -9.05 ± .91 Vdc | | Q3 and Q4 base
Q3 collector | -8.32 ± .83 Vdc | | Q4 collector
U10 pin 4 | -4.2 ± .42 Vdc
-1.6 ± .16 Vdc
(+ Peak reference) | | U10 pin 9 | -2.17 ± .22 Vdc
(- Peak reference) | #### 6.4.4 Current Switch Guide Set the controls as shown; then take waveform measurements. Refer to figure 6-10. | Control | Setting | |----------------|----------------| | Frequency Dial | 2.0 | | FREQ MULT | 1K | | SYM | Off (extended) | | MODE | CONT | Figure 6-10. Current Switch Waveforms #### 6.4.5 Hysteresis Switch Guide Set the controls as shown; then perform the checks in table 6-8 and take waveform measurements. Refer to figure 6-11. | Setting | |---------| | 2.0 | | 1K | | Off | | CONT | | | Table 6-8. Hysteresis Switch Guide | Test Point | Desired Results | |--------------------|--------------------------------------| | U10 pin 4 | -0.9 ± .09 Vdc
(+ Peak reference) | | U10 pin 9 | -2.8 ± .28 Vdc
(- Peak reference) | | Q7 and Q8 emitters | -3.0 ± .3 Vdc | Figure 6-11. Hysteresis Switch Waveforms #### 6.4.6 Triangle Buffer Guide Set the controls as shown; then perform the checks in table 6-9 and take waveform measurements. Refer to figure 6-12. If, after setting the controls, the generator loop does not run, lift R45 at E23 and inject a ± 1.0V triangle into R45. | Control | Setting | |----------------|---------| | Frequency Dial | 2.0 | | FREQ MULT | 1K | | SYM | Off | | MODE | CONT | Table 6-9. Triangle Buffer Checks | Test Point | Desired Results | |---------------|---| | Q11 drain | +6.5 ± .65 Vdc | | Q12 emitter | $0.3 \pm .03$ Vp-p trianle, offset -10 ± 1 Vdc | | Q12 base | $0.3 \pm .03$ Vp-p triangle, offset $-9.3 \pm .9$ Vdc | | Q13 collector | +5.0 ± .5 Vdc | Figure 6-12. Triangle Buffer Waveforms #### **6.4.7 Zero Crossing Detector Guide** Set the controls as shown; then take waveform measurements. Refer to figure 6-13. | Control | Setting | |----------------|---------| | Frequency Dial | 2.0 | | FREQ MULT | 1K | | SYM | Off | | MODE | CONT | Figure 6-13. Zero Crossing Detector Waveforms #### 6.4.8 Sync Guide Set the controls as shown then perform the checks in table 6-10 and take waveform measurements. See figure 6-14. | Control | Setting | |----------------|---------| | Frequency Diai | 2.0 | | FREQ MULT | 1K | | SYM | Off | | MODE | CONT | Table 6-10. Sync Check | | Desired Results | | Desired R | |------------------|---------------------------------------|--------------------------|-----------| | Test Point | Function:
Sine or Triangle
Wave | Function:
Square Wave | | | CR4 cathode | +1.2 ± .12 Vdc | -5 ± .5 Vdc | | | U6 pins 4 and 6 | -1 ± .1 Vdc | -4.3 ± .43 Vdc | | | U6 pins 2 and 11 | -1.8 ± .18 Vdc | -0.8 ± .08 Vdc | | | Q5/Q6 emitters | -1.6 ± .16 Vdc | -1.6 ± .16 Vdc | | #### 6.4.9 Capacitance Multiplier Guide Set the controls as shown; then take the waveform measurements. Refer to figure 6-15. | Control | Setting | |----------------|---------| | Frequency Diai | 2.0 | | FREQ MULT | 100 | | SYM | Off | | MODE | CONT | Figure 6-14. Sync Waveforms Figure 6-15. Capacitance Multiplier Waveforms #### 6.4.10 Trigger Guide Control **TRIG or CONT Check:** Set the controls as shown; then take the waveform measurements. Refer to figure 6-16. Setting | Frequency Dial | 2.0 | |----------------|------------------| | FREQ MULT | 1K | | MODE | TRIG or CONT | | TRIG IN | ±1V 1 kHz Square | | | wave | **GATE Checks:** Set the controls as shown; then take the waveform measurements. Refer to figure 6-17. | Control | Setting | |----------------|-------------------| | Frequency Dial | 2.0 | | FREQ MULT | 1K | | MODE | GATE | | TRIG IN | ± 1V 1 kHz Square | | | wave | #### 6.4.11 Trigger Baseline Guide **Trigger or Gate Mode Problems:** Set the controls as shown; then take the waveform measurements. Refer to tigure 6-18. | Control | Setting | |----------------|-------------------| | Frequency Dial | 2.0 | | FREQ MULT | 10K | | SYM | Off | | MODE | TRIG or GATE | | | (Depends on symp- | | | tom—GATE pre- | | | ferred | | TRIG LEVEL | Approximately | | | centered | | TRIG IN | ±1V 10 kHz Square | | | wave | | | | Figure 6-18. Trigger Baseline Waveforms **Continuous Mode Problems:** Set the controls as shown; then take the waveform measurements. Refer to table 6-11. | Control | Setting | |----------------|---------| | Frequency Dial | 2.0 | | FREQ MULT | 10K | | SYM | Off | | MODE | CONT | Table 6-11. Trigger Baseline Check (Continuous) | | • | |-------------|-----------------| | Test Point | Desired Results | | U5 pin 12 | -0.8 ± .08 Vdc | | U5 pin 14 | -1.8 ± .18 Vdc | | Q17 emitter | -1.5 ± .15 Vdc | | Q19 base | +2.6 ± .26 Vdc | | Q19 emitter | +1.7 ± .17 Vdc | | Q20 emitter | +5.5 ± .55 Vdc | | Q21 emitter | +5.5 ± .55 Vdc | | Q13 emitter | ± 1.0V triangle | | | | # 6.4.12 Square Shaper Guide Set the controls as shown; then perform the checks in table 6-12, and take waveform measurements. Refer to figure 6-19. | Control | Setting | |----------------|--------------------| | Frequency Dial | 2.0 | | FREQ MULT | 1 K | | SYM | Off | | MODE | CONT | | FUNCTION | See Table 6-12 and | | | Figure 6-19 | | | | Table 6-12. Square Shaper Checks | | Desired Results | | | | | | |-------------
---------------------------|----------------------------|--|--|--|--| | Test Point | Sine or Triangle | Square | | | | | | Q22 emitter | $-3.0 \pm .3 \text{Vdc}$ | $-3.0 \pm .3 \text{ Vdc}$ | | | | | | U4 pin 13 | -0.8 ± .08 Vdc | $-4.3 \pm .43 \text{Vdc}$ | | | | | | Q26 base | -0.8 ± .08 Vdc | -4.2 ± .42 Vdc | | | | | | Q26 emitter | -1.6 ± .16 Vdc | $-4.0 \pm .4 \text{ Vdc}$ | | | | | | CR24 anode | +1.6 ± .16 Vdc | $-1.5 \pm .15 \text{Vdc}$ | | | | | #### 6.4.13 Sine Converter Guide Set the controls as shown; then perform the checks in table 6-13 and take waveform measurements. Refer to figure 6-20. | Control | Setting | |----------------|---------| | Frequency Dial | 2.0 | | FREQ MULT | 1K | | SYM | Off | | MODE | CONT | | FUNCTION | Sine | Table 6-13. Sine Converter Checks | Test Point | Desired Results | | | |------------------------|---------------------------------|--|--| | Junction R170 and R171 | +14.8 ± 1.5 Vdc | | | | Junction R173 and R174 | $-14.8 \pm 1.5 \text{Vdc}$ | | | | U3 pin 2 | 0.0V (Full scale current = 2 mA | | | Figure 6-19. Square Shaper Waveforms # 6.4.14 Preamplifier Guide **DC Problems:** Set the FUNCTION control to DC; then perform the checks in table 6-14. Table 6-14. Preamplifier Checks (DC) | Test Point | Desired Results | |---------------|----------------------------| | U1 pin 2 | +14.86 ± 1.5 Vdc | | U1 pin 3 | $-0.7 \pm .07 \text{Vdc}$ | | U1 pin 13 | -1.4 ± .14 Vdc | | U1 pin 9 | $-0.7 \pm .07 \text{Vdc}$ | | U1 pin 4 | 0.0 ± 10 mV | | U1 pin 8 | $6.0 \pm 10 \text{mV}$ | | U1 pin 12 | +5.8 ± .58 Vdc | | U1 pin 11 | +6.6 ± .66 Vdc | | Q27 base | +9.6 ± .96 Vdc | | Q27 emitter | +10.3 ± 1 Vdc | | Q28 collector | +11.3 ± 1.1 Vdc | | | | Figure 6-20. Sine Converter Waveforms **Function Problems:** Set the controls as shown; then take the waveform measurements. Refer to figure 6-21. | Control | Setting | | |----------------|---------|--| | Frequency Dial | 2.0 | | | FREQ MULT | 1K | | | SYM | Off | | | MODE | CONT | | | FUNCTION | Square | | #### 6.4.15 Output Amplifier Guide Set the controls as shown; then take the waveform measurements. Refer to table 6-15. | Control | Setting | |-----------|---------| | FUNCTION | DC | | DC OFFSET | Off | # 6.5 TROUBLESHOOTING INDIVIDUAL COMPONENTS #### 6.5.1 Transistor - A transistor is defective if more than one volt is measured across its base-emitter junction in the forward direction. - A transistor when used as a switch may have a few volts reverse bias voltage across base emitter junction. - If the collector and emitter voltages are the same, but the base emitter voltage is less than 500 mV forward voltage (or reversed bias), the transistor is defective. - 4. A transistor is defective if its base current is larger than 10% of its emitter current (calculate currents from voltage across the base and emitter series resistors). Table 6-15. Output Amplifier Checks | Te | st Point | Desired Results | |-------------|-----------|------------------------------| | | Base | + 11.7 ± 1.2 Vdc | | Q30 | Emitter | +11 ± 1.1 Vdc | | | Collector | +19 ± 1.9 Vdc | | Q32 | Collector | + 22.8 ± 2.3 Vdc | | | Base | -12 ± 1.2 Vdc | | Q31 | Emitter | -11.3 ± 1.1 Vdc | | Q31 | Collector | -19 ± 1.9 Vdc | | Q33 | Collector | -22.7 ± 2.3 Vdc | | | Base | +18.3 ± 1.8 Vdc | | Q36 Emitter | | +19 ± 1.9 Vdc | | | Collector | +0.7 ± .07 Vdc | | Q37 | Emitter | +0.05 ± .003 Vdc | | US1 | Collector | +22.5 ± 2.3 Vdc | | Q38 | Emitter | +0.05 ± .005 Vdc | | CR27 | Cathode | +23 ± 2.3 Vdc | | 01127 | Anode | +0.6 ± .06 Vdc | | VR5 | Input | +31 ± 3.1 Vdc | | V115 | Output | +24 ± 2.4 Vdc | | Q34 | Collector | +22.8 ± 2.3 Vdc | | | Base | $-18.3 \pm 1.8 \text{Vdc}$ | | Q39 | Emitter | -19 ± 1.9 Vdc | | | Collector | -0.05 ± .005 Vdc | | Q40 | Emitter | -0.05 ± .005 Vdc | | | Collector | -21 ± 2.1 Vdc | | Q41 | Emitter | -0.05 ± .005 Vdc | | CR28 | Anode | $-23 \pm 2.3 \text{Vdc}$ | | Q35 | Base | $-0.6 \pm .06 \text{Vdc}$ | | | IN | $-31 \pm 3.1 \text{Vdc}$ | | VR6 | ADJ | $-21.3 \pm 2.1 \text{ Vdc}$ | | | OUT | -23.6 ± 2.4 Vdc | | U2 | Pin 2 | $0.0 \pm 10 \text{ mVdc}$ | | | Pin 6 | $-0.05 \pm .005 \text{Vdc}$ | 5. In a transistor differential pair (common emitter stages), either their base voltages are the same in normal operating condition, or the one with less forward voltage across its base emitter junction should be off (no collector current); otherwise, one of the transistors is defective. #### 6.5.2 Dlode A diode (except a zener) is defective if there is greater than one volt (typically 0.7 volt) forward voltage across it. #### 6.5.3 Operational Amplifier - 1. The "+" and "-" inputs of an operational amplifier will have less than 15 mV voltage difference when operating under normal conditions. - When the output of the amplifier is connected to the "-" input (voltage follower connection), the output should be the same voltage as the "+" input voltage; otherwise, the operational amplifier is defective. - 3. If the output voltage stays at maximum positive, the "+" input voltage should be more positive than "-" input voltage, or vice versa; otherwise, the operational amplifier is defective. #### 6.5.4 FET Transistor - 1. No gate current should be drawn by the gate of an FET transistor. If so, the transistor is defective. - 2. The gate-to-source voltage is always reverse biased under a normal operating condition; e.g., - the source voltage is more positive than the gate voltage for 2N5485, and the source voltage is more negative than gate voltage for a 2N5462. Otherwise, the FET is defective. - 3. If the device supplying gate voltage to an FET saturates, the FET has too large a Vgs (pinch off) for the circuit and should be replaced. # 6.5.5 Capacitor - 1. Shorted capacitors have 0V across their terminals. - Opened capacitor can be located (but not always) by using a good capacitor connected in parallel with the capacitor under test and observing the resulting effect. - Leaky capacitors will often have a decreased voltage across their terminals. #### 6.5.6 Digital ECL ICs - The device is operating correctly if the output high state is -0.81 to -0.96V and low state is -1.65 to -1.85V. - 2. The input must show the same two levels as in step 1. # SECTION PARTS AND SCHEMATICS # 7.1 DRAWINGS The following assembly drawings (with parts lists) and schematics are in the arrangement shown below. # 7.2 ERRATA Under Wavetek's product improvement program, the latest electronic designs and circuits are incorporated into each Wavetek instrument as quickly as development and testing permit. Whenever this occurs, errata pages are prepared and placed in the shipping container along with the instrument and current manual. If no such pages exist, the manual is correct as printed. #### 7.3 ORDERING PARTS When ordering spare parts, please specify part number, circuit reference, board, serial number of unit, and, if applicable, the function performed. # NOTE An assembly drawing number is not necessarily the assembly part number. However, the assembly parts list number is the assembly part number. **DRAWING NUMBER** #### DRAWING | Instrument Schematic | 0004-00-0167 | |-----------------------------------|--------------| | Chassis Assembly | 0102-00-0838 | | Chassis Parts List | 1101-00-0838 | | Generator Board Schematic | 0103-00-2926 | | Generator Board Assembly | 1100-00-2926 | | Generator Board Assembly | 0101-00-2926 | | Generator Board Parts List | 1100-00-2926 | | Generator Board Switch Detent | 0102-00-0958 | | Generator Board Switch Parts List | 1202-00-0958 | | Subassembly Mounting Angle | 0102-00-1024 | | Subassembly Parts List | 1206-00-1024 | | Rear Panel Assembly | 0102-00-0957 | | Rear Panel Parts List | 1101-00-0957 | | nedi rallel rallo Liol | 1101-00-0937 | | Front Panel Assembly | 0102-00-0980 | | Front Panel Parts List | 1101-00-0980 | | | | 7-1 MADE FROM 0100-00-0834-3H | REMOVE ALL BURRS
AND BREAK SHARP EDGES | DFAN'. | tia:- | WAV | ETEK SAN DIEGO . C | A. # 085 | | |---|----------------|--------|---------|--------------------|----------|--| | MATER: AL | 9407F464 | | T+TLE | | | | | FINISH | TOLERANCE UND | | (ED) | | RD | | | WAVETEK PRUCESS | 4 K K () 10 AN | GLES 1 | | | | | | | DRI NOT SCALE | DWG | MUDE: N | DNI, NO | ME S | | | | 1 A.F | | 190 | 1100-00-2926 | | | | | | | 2333 | 8 SHEET | OF. | | THIS DOCUMENT CONTAINS PROPRIETARY INFOR-MATION AND DESIGN RIGHTS BELONGING TO WAVETEK AND MAY NOT BE REPRODUCED FOR ANY REASON EXCEPT CALIBRATION, OPERATION, AND MAINTENANCE WITHOUT WRITTEN AUTHORIZATION D DRIG-MFCR-PART-NO MECR WAVETEK NO GTY/PT REFERENCE DESIGNATORS REFERENCE DESIGNATORS PART DESCRIPTION DRIG-MECR-PART-NO MECR MAVETEK NO GTY/PT REFERENCE DESIGNATORS PART DESCRIPTION DRIG-MFCR-PART-ND GTY/PT MFGR HAVETEK NO. NONE ASSY DRAWING 0101-00-2926 ASSY DRAWING C34 CAP, MYLR, . 0047MF, 50V C5R472F **ELPAC** 1500-44-7203 SCHEMATIC 0103-00-2926 NONE ASSY, PC BD PREPPED 1208-00-2928 WVTK 1208-00-2928 C35 CAR MYLR. . 047MF. 50V C5R473F 1500-44-7303 190-0834 SPK ASSY, XSISTER MNTG BRACKET NONE CAP, MYLR, . 47MF, 50V C5R474F 1500-44-7403 ELPAC CAP, CER C153 C66T C85 0311-00018 MVTK 1500-00-5011 DISK. 5PF. 1KV. 10% C37 C81 CAP, VAR, 3.5-13PF, 1300-51-3000 75-TRIKO-02 3.5/13PF TRIKO 1206-00-1024 NONE SPK ASSY, BOARD MNTG 190-1024 C156 C30 C73 C86 CAP. CER. 10PF. 1KV DD-100 1500-01-0011 NONE TRANSIPAD 10123N 2900-11-0003 ASSY, KIT PREMAVE LOAD 190-0834 1208-00-2927 1208-00-2927 CAP, CER, 100PF, 1KV DD-101 CRL 1500-01-0111 NONE TRANSIPAD 531-218 2800-11-0004 C104 C105 C91 CAP, CER, . 001UF, 1KV DD-102 CRL 1500-01-0211 CAP, CER, MON, . 1MF, 50V, CAC03Z5U104Z050A 1500-01-0405 C122 FB3 FB4 FERRITE BEAD 56-590-65/3 FERRX 3100-00-0001 C1 C10 C100 C101 C103 C108 CAP, CER, MON., 1MF, 50V-CAC03Z5U104Z0504 CORNO 1500-01-0405 FB1 FB2 BALUN CORE 2873000902 FARIT 3100-00-0002 C331 CAP, MICA, 56PF, 500V DM15-560J ARCO 1500-15-6000 R17 R203 R211 R245 R96 POT. TRIM. 100 91AR100 BECK 4600-01-0103 CAP. ELECT. 1000MF/50V RADIAL LEAD, SP . 30
NRE102M50V16X25 NIC 1500-31-0203 C13 C158 C18 C20 C21 C22 C23 C26 C27 C28 C29 C38 C39 C40 POT, TRIM, 10H 91AR10K BECK 4600-01-0315 C41 C42 C43 C44 C46 C47 C48 1-640386-0 2100-02-0079 J5 CONN, HEADER C49 C5 C50 C52 C53 C54 C58 POT, TRIM, 100 R165 R63 R65 91AR100H BECK 4600-01-0402 ROBNU NONE SOCKET, PIN NS-430-25 2100-03-0064 R159 R254 R3 POT. TRIM. 200 91AR200 BECK 4400-02-0101 C83 C87 C88 C92 C96 C97 C98 TP7 BUSS BAR STANDOFF 2110-001 ARTHR 2100-05-0024 R102 POT. TRIM. 2K 91AR2K BECK L6/50 LAMF 2400-02-0014 C102T CAP, CER, 150PF, 1KV DD-151 1500-01-5111 POT, TRIM, 20K 91AR20M BECK 4600-02-0301 SUPER KIT 2500-0190-01 2500-0190-01 NONE 059 CAP. CER NCD1. 5PF1KVK750-CR NIC POT, TRIM, 500 91AR500 BECK 4600-05-0104 DISK, 1. 5PF, 1KV, TEMP NONE SUPER KIT 2500-0190-02 WVTK 2500-0190-02 R213 R220 R221 R228 R230 RES, C. 1/2W. 5%, 10 ! RC-1/2-100J STRPI 4700-25-0100 WAVETEK 1100-00-2926 WAVETEK ASSEMBLY NO. ASSEMBLY NO. REV 1208-00-2927 WAVETEK 1208-00-2927 ASSY, KIT PREWAVE LOAD 190-0834 ASSY, PCA GENERATOR BD 190-0834 PARTS LIST PARTS LIST ASSY, KIT PREWAVE LOAD PARTS LIST PACE 1 PACE 1 ORIG-MEGR-PART-NO MECR WAVETER NO. GTY/PT REFERENCE DESIGNATORS REFERENCE DESIGNATORS PART DESCRIPTION DRIG-MFCR-PART-NO GTY/PT MFCR WAVETEK NO. REFERENCE DESIGNATORS PART DESCRIPTION STANDOFF, SHACE . 187L BR6911SPB-0. 197-34 NONE LYNTR - 2800-Us-U018 C17 CAP, CER, 22PF, 1KV DD-220 250DIA, 4-40, KNURL RES, C, 1/2W, 5%, 2. 7H RC-1/2-275J STRPI 4700-25-2704 C107 C94 CAP, CER, 220PF, 1KV DD-221 1500-02-2111 HEATSINK 2800-11-0008 RES. C. 1/2W, 5%, 3. 9M RC-1/2-395J 4700-25-3904 STKPL C16 C24, C25 C60 C68 C69 CAP, CER. 30PF, 1KV DD-300 CRL 1500-03-0001 PDT, CONT, 500 FROM: 4600-05-0105 R201 4609-75-0106 4609-75-0106 R103 R138 R139 R166 R167 R169 R171 R172 R174 R180 R226 R256 R28 R29 R89 R95 RES, MF, 1/84, 12, 100 4701-03-1000 RN55D-1000 TRN 1500-03-301 C45 C51 C62 C82 CAP, CER, 33PF, 1KV 0EE-00 CRL R222 RES. MF. 1W. 1%, 100 RN70D-1000F 4701-33-1000 C56 CAP, CER. . 005MF, 50V CK-502 1500-05-0210 R10 R121 R125 R130 R133 R134 R14 R140 R15 R200 R R46 R48 R53 R6 R74 R82 R R84 R85 R86 R87 R93 R97 RES. MF. 1/8H. 1%, 1K RN55D-1001F TPU 4701-03-1001 P 2N5160-18 MOT 4901-05-1600 C115 CAP, CER, 560PF, 1KV DD-5615LL CRL 1500-05-6101 4998-00-0051 037 038 TRANS, SEL, 2N3866 1778-00-0051 C15 CAP, MICA, 150PF, 500V DM15-151J ARCO 1500-11-5100 GTY: 1: 4901-03-8660 C32 CAP, MICA, 560PF, 300V CD15FC561F03 CDE 1500-15-6102 R151 R190 R260 R36 R67 R69 RES. MF, 1/8W, 1%, 10K RN55D-1002F TRW 4701-03-1002 SW1 SW2 SW3 SW4 SWITCH 5102-00-0009 WVTK 5102-00-0009 CAP, ELECT, 10MF/25V RADIAL LEAD, SP . 10 C106 C19 C93 NIC NRE 10/63 1500-31-0002 R110 RES, MF, 1/8W, 1%, 100M TRE 4701-03-1003 SWITCH, 2PDT, MOM. 5102-00-0010 MOTE 5102-00-0010 R111 R52T R64 4701-03-1004 SWITCH, 4PDT, P-P 5102-00-0011 5102-00-0011 CAP, ELECT, 100MF, 35V C11 C110 C12 C2 C6 C95 NRE101835V8X11 NIC 1500-31-0102 RADIAL LEAD, SP . 20 R104 R113 R162 R182 R196 RES. MF. 1/8W. 12, 10 5043ED10R100F 4701-03-1009 MEPCO F01-01 (BLACK) NONE BUTTON, CONICAL SHADU 5103-04-0006 R204 R205 R206 R248 R251 R252 R255 R45 R54 R55 CAP. ELECT. 1000HF/50V RADIAL LEAD, SP . 30 C14 C3 C4 1500-31-0203 THERMISTER: 10: 0000HMS | 155-180FAK-80; R161 FFMA 5300-00-0002 R21 R253 RES, MF, 178W, 1%, 1, 1K RN55D-1101F 4701-03-1101 C7 CAP, ELECT, 2200MF, 16V ECEA1CV222SC PANAS 1500-32-2201 RADIAL LEAD, SP . 50 R1 R143 R218 R5 RES. MF, 1/8W, 12, 121 4701-03-1210 CAP, ELECT, 6800MF, 16V RADIAL LEAD, SP . 50 NRE682M16V22X41 C9 R16 R192 R2 R216 R229 R4 RES. MF, 1/8W, 1X, 1, 21K | RN55D-1211F TRW 4701-03-1211 R170 R175 RES, MF, 1/8H, 1%, 12, 1K + RN55D-1212F TRW 4701-03-1212 2 C55 CAP, MYLAR, . 1MF, 100V 225P10491WD3 SPRAC 1500-41-0444 R163 R31 RES. MF. 1/8W. 1%, 124 RN55D-1240F 4701-03-1240 2 ASSEMBLY NO. TITI F WAVETEK WAVETEK 1100-00-2926 REV 1209-00-2927 WAVETEK 1208-00-2927 ASSY, PCA GENERATOR BD 190-0834 ASSY, KIT PREHAVE LOAD ASSY, KIT PREWAVE LOAD 190-0834 PARTS LIST PARTS LIST PARTS LIST 190-0834 PAGE 2 PAGE 2 PAGE 4 REMOVE ALL BURRS AND BREAK SHARP EDGES VAVETEK SAN DIEGO - CALIFORN PARTS LIST PCA, GENERATOR FINISH WAVETEK PROCESS DO NOT SCALE DWG NOTE UNLESS OTHERWISE SPECIFIED 190 1100-00-2926 SHEET 1 OF 23338 REDREET NO AUTO 1 5 3 7 6 2 1 8 7 6 5 4 2 8 | | | | | | | | | | | | | | | R | IEV | ECN BY | DATE | |---|--|---|---|--|---|---|--|--|--|--|---|---|--
--|--|--|---| | THIS DOCUMENT CONTAINS PROPRI
MATION AND DESIGN RIGHTS B
WAVETEK AND MAY NOT BE REPROD
REASON EXCEPT CALIBRATION, OF
MAINTENANCE WITHOUT WRITTEN AL | BELONGING TO
DUCED FOR ANY
PERATION, AND | | | · | | | , | | | | | | · | | • | | - | | TELEVISION DECIDIATIONS | DANT DESCRIPTION | TOYO MEOD BARTANO | MEOR | 110. TTPU NO | | | | T | T | | T | | | | | 7 | | | EFERENCE DESIGNATORS | PART DESCRIPTION | ORIG-MFCR-PART-NO | MFGR | WAVETEK NO. | GTY/PT | REFERENCE DESIGNATORS | PART DESCRIPTION | DRIG-MFGR-PART-ND | MFGR | WAVETEK NO. | QTY/PT | REFERENCE DESIGNATORS | PART DESCRIPTION | ORIG-MFGR-PART-NO | MFCR | WAVETEK NO. | QTY/PT: | | 39 | RES, MF, 1/8W, 1%, 12, 4K | RN55D-1242F | TRW | 4701-03-1242 | 1 | R131 R141 R22 | RES, MF, 1/8W, 1%, 4, 64K | RN55D-4641F | TRW | 4701-03-4641 | 3 | CR32 CR33 | DIODE TENED BOOM | | | | | | 231 R262 | RES, MF, 1/8W, 1%, 140 | RN55D-1400F | TRW | 4701-03-1400 | 2 | R44 R57 | | 2N55D-46R4F | TRW | 4701-03-4649 | 2 | CR32 CR33 | DIODE, ZENER SOOMW
SILICON PLANAR | 1N959 | SIEM | 4801-01-0959 | 2 | | 152 | RES, MF, 1/8W, 1%, 150 | RN55D-1500F | TRW | 4701-03-1500 | 1 | R120 R129 R155 R181 R207
R250 R41 | RES. MF, 1/8, 1%, 499 | RN55D-4990F | TRW | 4701-03-4990 | 7 | CR7 | DICODE, HIGH
CONDUCTANCE, ULTRA | 1N5282 | FAIR | 4801-01-5282 | 1 | | 114 R117 | RES, MF, 1/8W, 1%, 1, 5K | RN55D-1501F | TRW | 4701-03-1501 | 2 | R100 R105 R178 R189 R71 R7 | 172 RES. MF. 1/84, 1%.4. 99K | RN550-4991F | TRW | 4701-03-4991 | 6 | | FAST | | | | | | 168 R173 | RES, MF, 1/8W, 1%, 15K | RN55D-1502F | TRW | 4701-03-1502 | 2 | R164 R98 | RES. MF. 1/8H. 1%, 49. 9K | RN55D-4992F | TRW | 4701-03-4992 | 2 | CR1 CR3 | DIODE, RECTIFIER,
BRIDGE | 3N254 | MOT | 4801-02-0254 | 2 | | 202 R34 | RES, MF, 1/8W, 1%, 15 | RN55D-15ROF | TRW | 4701-03-1509 | 2 | R129 R136 R197 | RES, MF, 1/8W, 1%, 51, 1 | RN35D-31R1F | TRW | 4701-03-5119 | 3 | CR22 CR23 CR24 | DIODE, ULTRA FAST | FD777 | FAIR | 4807-02-0777 | 3 | | R150 | RES, MF, 1/8W, 1%, 1, 62K | RN55D-1621F | TR₩ | 4701-03-1621 | 1 | RBO | | RN55D-5230F | TRW | 4701-03-5230 | 1 | CR10 CR11 CR12 CR13 CR14
CR16 CR20 CR25 CR26 CR4 | DIGDE 1N4148
CR5 COMPUTER, 6/P, 75V, 200 | 1N4148 | FAIR | 4807-02-6666 | 11 | | R267 | RES, MF, 1/8W, 1%, 165 | RN55D-1650F | TRW | 4701-03-1650 | 1 | R208 R244 | RES.MF. 1/8H. 1%, 59 | RN55D-59R0F | TRW | 4701-03-5909 | 2 | ones ones ones ones on. | A, SWITCHING | 7 | | | | | RB
R142 R144 R146 R158 R210 | RES, MF, 1/8W, 1%, 182
RES, MF, 1/8W, 1%, 200 | RN55D-1820F | TRW | 4701-03-1820 | 1 | R70 | RES. MF. 1/8W. 1%, 604 | RN55D-6040F | TRW | 4701-03-6040 | 1 | CR30 CR31 CR8 CR9 | DIODE 5082-2811
SCHOTTKY, 15V, 20MA | 5082-2811 | HP | 4809-02-2811 | 4 | | R214 R243 R249 R30 R32 R73 | | RNJJD-ECCOI | ine. | 4/01-03- 2000 | 11 | R145 R209 R242 | RES. MF. 1/8W. 1%, 619 | RN55D-6190F | TRW | 4701-03-6190 | 3 | CR18 19 | DIODE, SET, 2-FD-777 | 4898-00-0003 | KLC | 4878-00-0003 | 1 | | R223 R35T R40 | RES, MF, 1/8W, 1%, 2K | RN55D-2001F | TRW | 4701-03-2001 | 3 | R240 R266
R115 R116 R122 R123 | | RN55D-61R9F | TRW | 4701-03-6199
4701-03-6810 | 2 | | 9TY: 2: 4807-02-0777 | | İ | | - | | R257 R59 | RES, MF, 1/8W, 1%, 20K | RN55D-2002F | TRW | 4701-03-2002 | 2 | R13 | RES, MF, 1/8W, 1%, 6, 81K | RN550-6811F | TRW | 4701-03-6810 | 1 | CR2 | BRIDGE ASSY. 4 AMP | RS602 | DIODE | | 1 | | R188 | RES, MF, 1/8W, 1%, 215 | RN55D-2150F | TRW | 4701-03-2150 | ! | R263 R268 | | RN55D-68R1F | TRW | 4701-03-6819 | 2 | RV1 | DIODE, VARISTOR | V56ZA8 | GE | 4899-00-0045 | 1 | | R191 R193 | RES, MF, 1/8W, 1%, 21, 5K | | TR₩ | 4701-03-2152 | 1 | R179 R195 R261 R42 R43 | - | RN55D-7500F | TRW | 4701-03-7500 | 5 | 434 | TRANS 2N2219A NPN
CENEFAL PURPOSE TO-5 | 2N2219A | NSC | 4901-02-2191 | 1 | | R126 R153
R11 R37T R39T | RES, MF, 1/8W, 1%, 221 | RN55D-2210F | TRW | 4701-03-2210
4701-03-2211 | | R246 R47 | i | RN55D-76R7F | TRW | 4701-03-7879 | 2 | Q5 Q6 | TRANE, SILICON, PLANAR,
EPITAXIAL, NPN, TO-18 | 2N2369A | MOT | 4901-02-3691 | 2 | | II nort nort | RESIDE, I/OW, I/C. E. | KNOJD-EZII | 1111 | 4/01 03 2211 | 3 | | | | | | | *** | | | | | | | WAVETEK TITE | | ASSEMBLY NO | 1208 | 3-00-2927 | REV | WAVETEK TITE | TLE | ASSEMBLY NO | 0. 1208-00 | n-2927 | REV | WAVETEK T | ITLE | ASSEMBLY | Y NO | | REV | | PARTS LIST ASS | SY, KIT PREWAVE LOAD
0-0834 | | PAGE 5 | | A | PARTS LIST ASS | SSY, KIT PREWAVE LOAD
90-0834 | | PAGE 7 | | A | PARTS LIST A | SSY, KIT PREWAVE LOAD
90-0834 | | 1206- | 00-2927 | A | | EFERENCE DESIGNATORS | PART DESCRIPTION | DRIG-MFGR-PART-NO | MFGR | WAVETEK NO. | GTY/PT | REFERENCE DESIGNATORS | PART DESCRIPTION | ORIG-MFGR-PART-NO | MFGR | WAVETEK NO. | QTY/PT | REFERENCE DESIGNATORS | PART DESCRIPTION | ORIG-MFGR-PART-NO | MFGR | WAVETEK NO. | GTY/PT | | | | | | | GTY/PT | REFERENCE DESIGNATORS | PART DESCRIPTION RES. MF, 1/8H, 1%, 8, 25K | | +i | | QTY/PT | | | | | | GTY/PT | | R18 | RES, MF, 1/8W, 1%, 240 | RN55D-2400F | MEPCO | 3 4701-03-2400 | 1 | | RES, MF, 1/8W, 1%, 8, 25K | | +i | WAVETEK NO.
4701-03-8251
4701-03-9090 | GTY/PT 1 1- | 935 | TRANE 2N2905A PNP
GENERAL PURPOSE TO-5 | ORIG-MFCR-PART-ND | MFGR
NSC | HAVETEK NO.
4901-02-9051 | QTY/PT | | R18
R20 R232 R233 R234 R265 | RES. MF, 1/8W, 1%, 240 | RN55D-2400F
RN55D-2490F | MEPCO
TRW | 4701-03-2400
4701-03-2490 | 1 | R60 | RES, MF, 1/8W, 1%, 8, 25K | RN35D-8251F
RN35B-9090F | TRW | 4701-03-8251 | GTY/PT 1 1- 1 | 935
912 913 917 918 919 922
925 926 928 93 939 932 9 | TRANE 2N2905A PNP
GENERAL PURPOSE TO-5 | | | | GTY/PT 1 16 | | R18
R20 R232 R233 R234 R265
R147 R157 R215 R225 R66 R7
R91 | RES. MF, 1/8W, 1%, 240
RES. MF, 1/8W, 1%, 249
78 RES. MF, 1/8W, 1%, 2, 49K | RN55D-2400F
RN55D-2490F
RN55D-2491F | MEPCO | 3 4701-03-2400 | 1 | R60
R101 | RES, MF, 1/8W, 1%, 8, 25K | RN55D-8251F
RN55D-9090F
RN55D-9091F | TRW | 4701-03-8251
4701-03-9090 | GTY/PT 1 1- 1 | 935
012 013 017 018 019 922
025 026 028 03 030 032 0
07 98 | TRANE 2N2905A PNP
CENERAL PURPOSE TD-5
Q23 TRANS. NPN., TO-92 | 2N2905A
2N3563 | NSC
FAIR | 4901-02-9051
4901-03-5630 | 1 | | R18
R20 R232 R233 R234 R265
R147 R157 R215 R225 R66 R7
R91
R107 | RES, MF, 1/8W, 1%, 240 RES, MF, 1/8W, 1%, 249 78 RES, MF, 1/8W, 1%, 2, 49K RES, MF, 1/8W, 1%, 24, 9K | RN55D-2400F
RN55D-2490F
RN55D-2491F
RN55D-2492F | MEPCO
TRW
TRW | 4701-03-2400
4701-03-2490 | 1 5 7 | R60
R101
R108 | RES. MF, 1/8H, 1%, 8, 25K
RES. MF, 1/8H, 1%, 909
RES. MF, 1/8H, 1%, 9, 09K | RN55D-8251F
RN55D-9090F
RN55D-9091F | TRW TRW TRW | 4701-03-8251
4701-03-9090
4701-03-9091 | 1
1-
1
1
3 | 935
G12 G13 G17 G18 G19 G22
G25 G26 G28 G3 G30 G32 G
G7 G8
G10 | TRANE 2N2905A PNP
GENERAL PURPOSE TO-5
Q23
TRANS. NPN, TO-92
TRANS. NPN, -TO-92 | 2N2905A
2N3563
MP53646 | NSC
FAIR
MOT | 4901-02-9051
4901-03-5630
4901-03-6460 | 1 | | R18
R20 R232 R233 R234 R265
R147 R157 R215 R225 R66 R7
R91
R107
R177 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 78 RES. MF, 1/8W, 1%, 2, 49K RES. MF, 1/8W, 1%, 24, 9K | RN55D-2400F
RN55D-2490F
RN55D-2491F
RN55D-2492F
RN55D-2741F | MEPCO
TRW
TRW
TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741 | 1 5 7 1 1 1 | R60
R101
R108
R154
R217 R219 R227
R25 R26 | RES, MF, 1/8H, 12, 8, 25K RES, MF, 1/8H, 12, 909 RES, MF, 1/8H, 12, 9, 09K RES, MF, 1/8H, 12, 90, 9 RES, MF, 1/4H, 12, 1K RES, MF, 1/4H, 12, 49, 9 |
RN55D-8251F
RN55D-9090F
RN55D-9091F
RN55D-90R9F
RN60D1001F | TRW TRW TRW TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099 | GTY/PT 1 1 1 3 | 935
012 013 017 018 019 922
025 026 028 03 030 032 0
07 98 | TRANE 2N2905A PNP
CENERAL PURPOSE TD-5
Q23 TRANS. NPN., TO-92 | 2N2905A
2N3563 | NSC
FAIR | 4901-02-9051
4901-03-5630 | 1 | | R18
R20 R232 R233 R234 R265
R147 R157 R215 R225 R66 R7
R91
R107
R177
R160 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 78 RES. MF, 1/8W, 1%, 2, 49K RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 27, 44 | RN55D-2400F
RN55D-2490F
RN55D-2491F
RN55D-2492F
RN55D-2741F
RN55D-2774F | MEPCO
TRW
TRW
TRW
TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-2749 | 1 5 7 1 1 1 1 1 1 | R60
R101
R108
R154
R217 R219 R227
R25 R26
R184 | RES, MF, 1/8H, 12, 8, 25K RES, MF, 1/8H, 12, 909 RES, MF, 1/8H, 12, 9 09K RES, MF, 1/8H, 12, 90, 9 RES, MF, 1/4H, 12, 1K RES, MF, 1/4H, 12, 49, 9 RES, MF, 1/4H, 12, 619 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4989F | TRW TRW TRW TRW TRW TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4999
4701-13-6190 | GTY/PT 1 1 1 2 1 1 | 935
G12 G13 G17 G18 G19 G22
G25 G26 G28 G3 G30 G32 G
G7 G8
G10 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 023 TRANS. NPN, TO-92 TRANS. NPN, -TD-92 TRANS. GENERAL PURPOSE NPN. TD-92 TRANS 2N3904 NPN | 2N2905A
2N3563
MP53646
2N3903 | NSC
FAIR
MOT | 4901-02-9051
4901-03-5630
4901-03-6460 | 16 | | R18
R20 R232 R233 R234 R265
R147 R157 R215 R225 R66 R7
R107
R177
R160
R194 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 2. 49K RES. MF, 1/8W, 1%, 24. 9K RES. MF, 1/8W, 1%, 27. 4 RES. MF, 1/8W, 1%, 27. 4 | RN55D-2400F
RN55D-2490F
RN55D-2491F
RN55D-2492F
RN55D-2741F
RN55D-2784F
RN55D-3010F | MEPCO TRW TRW TRW TRW TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-2749
4701-03-3010 | 1 5 7 1 1 1 1 1 1 1 1 | R60
R101
R108
R154
R217 R219 R227
R25 R26
R1B4
R235 R236 | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 9, 09K RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 15, 16 RES, MF, 1/4H, 1%, 49, 9 RES, MF, 1/4H, 1%, 619 RES, MF, 1/2H, 1%, 95, 3 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN65D1001F RN60D-49R9F RN60D-4190F RN65D-9083F | TRW TRW TRW TRW TRW TRW TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4999
4701-13-6190
4701-23-9539 | GTY/PT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 935
912 913 917 918 919 922
925 926 928 93 930 932 9
97 98
910
929 | TRANE 2N2905A PNP CENERAL PURPOSE TD-5 Q23 TRANS. NPN, TD-92 TRANS. NPN, -TD-92 TRANS. NPN, -TD-92 TRANS. GENERAL PURPOSE, NPN, TD-92 | 2N2905A
2N3563
MP53646
2N3903 | NSC FAIR MOT NSC FAIR | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9030
4901-03-9040 | 16 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R91 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 78 RES. MF, 1/8W, 1%, 2, 49K RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 27, 44 | RN55D-2400F
RN55D-2490F
RN55D-2491F
RN55D-2492F
RN55D-2741F
RN55D-2784F
RN55D-3010F | MEPCO
TRW
TRW
TRW
TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-2749 | 1 5 7 1 1 1 1 1 1 1 1 | R60
R101
R108
R154
R217 R219 R227
R25 R26
R1B4
R235 R236 | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 9 09K RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1%, 1K RES, MF, 1/4H, 1%, 49, 9 RES, MF, 1/4H, 1%, 619 RES, MF, 1/2H, 1%, 95, 3 RES, MF, 1H, 1%, 100 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN65D-9383F RN70D-1000F | TRW TRW TRW TRW TRW TRW TRW TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4999
4701-13-6190
4701-23-9539
4701-33-1000 | GTY/PT 1 1 1 2 1 2 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. SENERAL PURPOSE NPN. TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 | 2N2905A
2N3563
MP53646
2N3903
2N3904 | MOT
NSC
FAIR | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9030
4901-03-9040
4901-03-9060 | 16 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R91 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 3, 01K | RN55D-2400F
RN55D-2490F
RN55D-2491F
RN55D-2492F
RN55D-2741F
RN55D-2784F
RN55D-3010F
RN55D-3011F | MEPCO TRU | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011 | 1 5 7 1 1 1 1 1 8 8 1 1 | R60
R101
R108
R154
R217 R219 R227
R25 R26
R184
R235 R236
R224
R237 R238 R239 R241 | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 9 09K RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 49, 9 RES, MF, 1/4H, 1%, 619 RES, MF, 1/2H, 1%, 95, 3 RES, MF, 1H, 1%, 100 RES, MF, 1H, 1%, 61, 9 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN65D-9089F RN60D-4989F RN60D-4989F RN60D-6190F RN65D-9583F RN70D-1000F RN70D-6189F | TRW TRW TRW TRW TRW TRW TRW TRW TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4999
4701-13-6190
4701-23-9539
4701-33-1000
4701-33-6199 | GTY/PT 1 1 1 2 1 2 1 | 935 G12 013 017 018 019 022 025 026 028 03 030 032 0 07 08 G10 G29 014 G15 016 020 021 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE, NPN, TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS | 2N2905A
2N3563
MP53646
2N3903
2N3904
2N3906 | MOT NSC FAIR | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9030
4901-03-9040
4901-03-9060
4901-03-1600 | 16 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 | RES. MF, 1/8W, 1%, 240 RES. MF, 1/8W, 1%, 249 78 RES. MF, 1/8W, 1%, 24. 9K RES. MF, 1/8W, 1%, 24. 9K RES. MF, 1/8W, 1%, 27. 4 RES. MF, 1/8W, 1%, 27. 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301K RES. MF, 1/8W, 1%, 301K | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2784F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-30R1F | MEPCO TRW TRW TRW TRW TRW TRW TRW TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3013
4701-03-3019 | 1 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 | RES, MF, 1/8H, 12, 8, 25K RES, MF, 1/8H, 12, 909 RES, MF, 1/8H, 12, 9 09K RES, MF, 1/8H, 12, 90, 9 RES, MF, 1/4H, 12, 1K RES, MF, 1/4H, 12, 49, 9 RES, MF, 1/4H, 12, 419 RES, MF, 1/2H, 12, 51, 3 RES, MF, 1H, 12, 100 RES, MF, 1H, 12, 61, 9 RES, MF, 1H, 12, 61, 9 RES, MF, 1H, 12, 61, 9 RES, MET, WORK 470, 10PIN SIP BUSS | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN60D1001F RN60D-49R9F RN60D-4190F RN60D-6190F RN65D-95R3F RN70D-1000F RN70D-61R9F 4310R-101-471 | TRW TRW TRW TRW TRW TRW TRW TRW TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4999
4701-13-6190
4701-23-9539
4701-33-1000 | GTY/PT 1 1 1 2 1 2 1 4 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. OFFINE TO-92 TRANS. OFFINE TO-92 TRANS 2N2904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 183904 PNP GENERAL PURPOSE TO-92 TRANS 183904 PNP GENERAL PURPOSE TO-92 TRANS 183904 PNP | 2N2905A
2N3563
MP53646
2N3903
2N3904
2N3906
2N5160-18
2N5486 | MOT MOT MOT FAIR MOT MOT MOT | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-03-960
4901-03-4860 | 1 1 1 1 1 1 1 1 1 1 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R107 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 301 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-27R4F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-30R1F RN55D-30R1F | MEPCO TRW TRW TRW TRW TRW TRW TRW TRW TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3013
4701-03-3019
4701-03-3019 | 1 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | R60
R101
R108
R154
R217 R219 R227
R25 R26
R184
R235 R236
R224
R237 R238 R239 R241 | RES, MF, 1/8H, 12, 8, 25K RES, MF, 1/8H, 12, 909 RES, MF, 1/8H, 12, 9 09K RES, MF, 1/8H, 12, 90, 9 RES, MF, 1/4H, 12, 1K RES, MF, 1/4H, 12, 49, 9 RES, MF, 1/4H, 12, 419 RES, MF, 1/2H, 12, 51, 3 RES, MF, 1H, 12, 100 RES, MF, 1H, 12, 61, 9 RES, MF, 1H, 12, 61, 9 RES, MF, 1H, 12, 61, 9 RES, MET, WORK 470, 10PIN SIP BUSS | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN65D-9089F RN60D-4989F RN60D-4989F RN60D-6190F RN65D-9583F RN70D-1000F RN70D-6189F | TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4999
4701-13-6190
4701-23-9539
4701-33-1000
4701-33-6199 | OTY/PT 1 1- 1 3 2 1 1 4 1 | 935 G12 013 017 018 019 022 025 026 028 03 030 032 0 07 08 G10 G29 014 G15 016 020 021
| TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE, NPN, TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS | 2N2905A
2N3563
MP53646
2N3903
2N3904
2N3906 | MOT NSC FAIR | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9030
4901-03-9040
4901-03-9060
4901-03-1600 | 1 1 1 1 1 1 1 1 1 1 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 | RES. MF, 1/8W, 1%, 240 RES. MF, 1/8W, 1%, 249 78 RES. MF, 1/8W, 1%, 2, 49K RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301K RES. MF, 1/8W, 1%, 30, 1 RES. MF, 1/8W, 1%, 30, 1 RES. MF, 1/8W, 1%, 332 RES. MF, 1/8W, 1%, 33, 32K | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-27R4F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-30R1F RN55D-3020F RN55D-3320F | MEPCO TRU | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3320
4701-03-3321 | 1 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 | RES, MF, 1/8W, 1%, 8, 25K RES, MF, 1/8W, 1%, 909 RES, MF, 1/8W, 1%, 909 RES, MF, 1/8W, 1%, 90, 9 RES, MF, 1/4W, 1%, 1%, 49, 9 RES, MF, 1/4W, 1%, 49, 9 RES, MF, 1/4W, 1%, 619 RES, MF, 1/4W, 1%, 619 RES, MF, 1W, 1%, 100 RES, MF, 1W, 1%, 61, 9 RES NETWORK 470 10PIN SIP BUSS RES NETWORK 68002% BPIN SIP BUSS | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN60D1001F RN60D-49R9F RN60D-4190F RN60D-6190F RN65D-95R3F RN70D-1000F RN70D-61R9F 4310R-101-471 | TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4199
4701-13-6190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009 | GTY/PT 1 1- 1 2 1 4 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 GESTAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 17405 PNP GENERAL PURPOSE TO-92 TRANS 17405 PNP GENERAL PURPOSE TO-92 TRANS 17405 PNP SMITC-1 TO-92 TRANS 2N5771 PNP SMITC-1 TO-92 | 2N2905A
2N3563
MP53646
2N3903
2N3904
2N3906
2N5160-18
2N5486 | MOT MOT MOT FAIR MOT MOT MOT | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-03-960
4901-03-4860 | 1 1 1 1 1 1 1 1 1 1 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 301 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-27R4F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3320F | MEPCO TRU | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-3010
4701-03-3011
4701-03-3013
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651 | 1 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 | R60 R101 R108 R154 R217 R219 R227 R23 R26 R194 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 90, 9 RES, MF, 1/4H, 1%, 49, 9 RES, MF, 1/4H, 1%, 619 RES, MF, 1/4H, 1%, 61, 9 RES, MF, 1H, 1%, 61, 9 RES NETWORK 470 10PIN SIP BUSS RES NETWORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 1%, 10M DIODE, ZENOR, 5, 1V, | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-90R9F RN60D1001F RN60D-49R9F RN60D-6190F RN65D-95R3F RN70D-1000F RN70D-61R9F 4310R-101-471 | TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4999
4701-13-6190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009 | GTY/PT 1 1 1 2 1 4 1 2 | 935 012 913 917 918 919 922 925 926 928 93 930 932 9 910 929 914 915 916 920 921 936 911 91 92 924 927 931 933 | TRANS 2N2905A PNP GENERAL PURPOSE TO-5 Q23 TRANS. NPN, TO-92 TRANS. SENERAL PURPOSE TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 1 | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 | MOT NSC FAIR MOT MOT MOT MOT MOT | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-05-1600
4901-05-4860
4901-05-7710 | 1 1 1 1 1 4 1 1 1 6 6 1 1 | | REFERENCE DESIGNATORS R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R91 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES, MF, 1/8W, 1%, 240 RES, MF, 1/8W, 1%, 249 78 RES, MF, 1/8W, 1%, 2, 49K RES, MF, 1/8W, 1%, 24, 9K RES, MF, 1/8W, 1%, 2, 74K RES, MF, 1/8W, 1%, 27, 4 RES, MF, 1/8W, 1%, 301 RES, MF, 1/8W, 1%, 301K RES, MF, 1/8W, 1%, 30, 1 RES, MF, 1/8W, 1%, 30, 1 RES, MF, 1/8W, 1%, 30, 2 RES, MF, 1/8W, 1%, 30, 32K RES, MF, 1/8W, 1%, 3, 32K RES, MF, 1/8W, 1%, 3, 32K | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-27R4F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-30R1F RN55D-3020F RN55D-3320F | MEPCO TRU | 4701-03-2400
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-3010
4701-03-3011
4701-03-3013
4701-03-3019
4701-03-3320
4701-03-3511
4701-03-3511
4701-03-3511
4701-03-3651
4701-03-3920 | 1 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 R112 CR29 | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 49, 9 RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 61, 9 RES, MF, 1H, 1%, 61, 9 RES, METHORK 470 10PIN SIP BUSS RES, METHORK 48002% BPIN SIP BUSS RES, MF, 6H, 1%, 10M DIDDE, ZENDR, 5, 1V, 500MH, GIB, IN751A | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN65D-9089F RN60D-4989F RN60D-6190F RN60D-6190F RN65D-95R3F RN70D-1000F RN70D-61R9F 4310R-101-471 4308R-101-681 ML-181 | TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4999
4701-13-6190
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751 | GTY/PT 1 1 1 1 2 1 4 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 | TRANS 2N2905A PNP GENERAL PURPOSE TO-5 Q231 TRANS. NPN, TO-92 TRANS. NPN, -TO-92 TRANS. GENERAL PURPOSE TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS TRANS N-CHANNEL JFETS TRANS 2N5771 PNP SWITC-1 TO-92 TRANS TRANS SEL, 2N3866 | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 | MOT NSC FAIR MOT MOT MOT MOT NSC INTSL | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-03-9660
4901-05-1600
4901-05-7710
4902-00-1390 | 1 1 1 1 4 4 1 1 1 6 6 1 1 1 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R117 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 | RES, MF, 1/8W, 1%, 249 RES, MF, 1/8W, 1%, 249 RES, MF, 1/8W, 1%, 24, 9K RES, MF, 1/8W, 1%, 27, 44 RES, MF, 1/8W, 1%, 27, 4 RES, MF, 1/8W, 1%, 301 RES, MF, 1/8W, 1%, 30, 1 RES, MF, 1/8W, 1%, 30, 1 RES, MF, 1/8W, 1%, 30, 1 RES, MF, 1/8W, 1%, 33, 25 RES, MF, 1/8W, 1%, 3, 35K RES, MF, 1/8W, 1%, 3, 35K | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-27R4F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-302F RN55D-3320F RN55D-3321F RN55D-3321F RN55D-3321F | MEPCO TRU | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-3010
4701-03-3011
4701-03-3013
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651 | 1 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : R112 | RES. MF, 1/8H, 1%, 8, 25K RES. MF, 1/8H, 1%, 909 RES. MF, 1/8H, 1%, 909 RES. MF, 1/8H, 1%, 90, 9 RES. MF, 1/8H, 1%, 90, 9 RES. MF, 1/4H, 1%, 1% RES. MF, 1/4H, 1%, 49, 9 RES. MF, 1/4H, 1%, 619 RES. MF, 1H, 1%, 100 RES. MF, 1H, 1%, 61, 9 RES. NETHORK 470 10PIN SIP BUSS RES. METHORK 48002% BPIN SIP BUSS RES. METHORK 48002% BPIN SIP BUSS RES. MF, 6H, 1%, 10M DIDDE, ZENOR, 5, 1V, 500MH, GIB, IN751A | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-90R9F RN60D1001F RN60D-49R9F RN60D-6190F RN65D-95R3F RN70D-1000F RN70D-61R9F 4310R-101-471 4308R-101-681 | TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031 | GTY/PT 1 1 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 | 035 012 013 017 018 019 022 025 026 028 03 030 032 0 07 98 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE. NPN. TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS TRANS N-CHANNEL JFETS TRANS 2N5771 PNP SWITC-1 TO-92 TRANS TRANS SEL, 2N3866 GTY. 1: 4701-03-8660 OP AMP | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 | MOT MOT MOT MOT MOT MOT MOT MOT MSC INTSL WVTK | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-03-960
4901-05-1600
4901-05-7710
4902-00-1390
4998-00-0051 | 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33
| RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 22, 74K RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301K RES. MF, 1/8W, 1%, 301K RES. MF, 1/8W, 1%, 30, 1 RES. MF, 1/8W, 1%, 33, 32K RES. MF, 1/8W, 1%, 3, 32K RES. MF, 1/8W, 1%, 3, 35K RES. MF, 1/8W, 1%, 3, 464 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2784F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3920F RN55D-3651F RN55D-3920F RN55D-3920F | MEPCO TRU | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : R112 CR29 CR27 CR28 | RES, MF, 1/8H, 12, 8, 25K RES, MF, 1/8H, 12, 909 RES, MF, 1/8H, 12, 909K RES, MF, 1/8H, 12, 909K RES, MF, 1/8H, 12, 16 RES, MF, 1/4H, 12, 16 RES, MF, 1/4H, 12, 49, 9 RES, MF, 1/4H, 12, 419 RES, MF, 1/2H, 12, 95, 3 RES, MF, 1H, 12, 100 RES, MF, 1H, 12, 100 RES, MF, 1H, 12, 100 RES, METHORK 470 10PIN SIP BUSS RES, METHORK 480022 BPIN SIP BUSS RES, MF, 6H, 12, 10M DIDDE, ZENGR, 5, 1V, 500MH, 618, 1N751A DIODE, ZENGR, 6, 2V, 1N823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9099F RN55D-9089F RN60D1001F RN60D-49R9F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-101-471 4308R-101-481 ML-181 1N751A | TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 3 2 1 4 1 1 2 1 1 2 2 | 035 012 013 017 018 019 022 025 026 028 03 030 032 0 07 98 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 Q231 TRANS. NPN, TO-92 TRANS. NPN, -TO-92 TRANS. GENERAL PURPOSE TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS TRANS N-CHANNEL JFETS TRANS 2N5771 PNP SWITC-1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4901-03-8660 OP AMP CP AMP, DUAL JFET INPUT | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN | MOT NSC FAIR MOT MOT MOT MOT NSC INTSL WVTK TI TI | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-03-960
4901-05-1600
4901-05-7710
4902-00-1390
4998-00-0051 | 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 24, 9K RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30, 1 RES. MF, 1/8W, 1%, 30, 2 RES. MF, 1/8W, 1%, 332 RES. MF, 1/8W, 1%, 3, 35K RES. MF, 1/8W, 1%, 3, 45K RES. MF, 1/8W, 1%, 392 RES. MF, 1/8W, 1%, 392 RES. MF, 1/8W, 1%, 392 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-27R4F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-302F RN55D-3320F RN55D-3321F RN55D-3321F RN55D-3321F | MEPCO TRU | 4701-03-2400
4701-03-2490
4701-03-2491
4701-03-2492
4701-03-2741
4701-03-3010
4701-03-3011
4701-03-3013
4701-03-3019
4701-03-3320
4701-03-3511
4701-03-3511
4701-03-3511
4701-03-3651
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9089F RN65D-9089F RN60D-4989F RN60D-6190F RN60D-6190F RN65D-95R3F RN70D-1000F RN70D-61R9F 4310R-101-471 4308R-101-681 ML-181 | TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | GTY/PT 1 1- 1 1 2 1 4 1 1 2 1 4 1 2 1 A A | 035 012 013 017 018 019 022 025 026 028 03 030 032 0 07 98 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U13 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS TRANS N-CHANNEL JFETS TRANS 2N5771 PNP SWITC-1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4901-03-8660 OP AMP CP AMP, DUAL JFET INPUT | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5771 IT 139 4998-00-0051 TL080CP | MOT NSC FAIR MOT MOT MOT MOT NSC INTSL WVTK TI TI | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-05-1600
4901-05-7710
4902-00-1390
4998-00-0051
7000-00-8300 | 1 1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R108 R1194 R118 R183 R49 R50 R7 R79 R128 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301K RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30, 1 RES. MF, 1/8W, 1%, 33, 32K RES. MF, 1/8W, 1%, 3, 32K RES. MF, 1/8W, 1%, 3, 32K RES. MF, 1/8W, 1%, 3, 454 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRU | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 12, 8, 25K RES, MF, 1/8H, 12, 909 RES, MF, 1/8H, 12, 909K RES, MF, 1/8H, 12, 909K RES, MF, 1/8H, 12, 90, 9 RES, MF, 1/4H, 12, 1K RES, MF, 1/4H, 12, 49, 9 RES, MF, 1/4H, 12, 419 RES, MF, 1/2H, 12, 95, 3 RES, MF, 1H, 12, 100 RES, MF, 1H, 12, 100 RES, METHORK 470 10PIN SIP BUSS RES, METHORK 480022 BPIN SIP BUSS RES, MF, 6H, 12, 10M DIODE, ZENDR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENDR, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 Q231 TRANS. NPN, TO-92 TRANS. NPN, -TO-92 TRANS. GENERAL PURPOSE TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS TRANS N-CHANNEL JFETS TRANS 2N5771 PNP SWITC-1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4901-03-8660 OP AMP CP AMP, DUAL JFET INPUT | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN | MOT NSC FAIR FAIR MOT MOT NSC INTSL WVTK TI TI NO. 1208-0 | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-05-1600
4901-05-7710
4902-00-1390
4998-00-0051
7000-00-8300 | 1 1 1 1 4 4 1 1 1 1 1 1 1 1 2 1 1 2 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R147 R157 R215 R225 R66 R7 R177 R160 R174 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R17 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 2 RES. MF, 1/8W, 1%, 32 32 RES. MF, 1/8W, 1%, 33 25K RES. MF, 1/8W, 1%, 39 2 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F
RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW TRW TRW TRW TRW TRW TRW BOURN BOURN CADDO FAIR MOT | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANS 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. QENERAL PURPOSE TO-92 TRANS. QENERAL PURPOSE TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS 2N5701 PNP SWITC-1 TO-92 TRANS TRANS SEL. 2N3866 GTY: 1: 4901-03-8660 OP AMP CP AMP CP AMP TREBUTATION TRANS SEL. 2N3866 GTY: 1: 4901-03-8660 OP AMP CP AMP CP AMP TRANS SEL. 2N3866 GTY: 1: 4901-03-8660 TRANS SEL. 2N3866 GTY: 1: 4901-03-8660 TRANS SEL. 2N3866 GTY: 1: 4901-03-8660 TRANS SEL. 2N3866 | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN | MOT MOT MOT MOT MOT MOT MOT MOT MOT TI | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-05-1600
4901-05-7710
4902-00-1390
4998-00-0051
7000-00-8300 | 1 1 1 1 4 4 1 1 1 1 1 1 1 1 2 1 1 2 1 | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R1 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R22 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 2 RES. MF, 1/8W, 1%, 32 32 RES. MF, 1/8W, 1%, 33 25K RES. MF, 1/8W, 1%, 39 2 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW TRW TRW TRW TRW TRW TRW BOURN BOURN CADDO FAIR MOT | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE. NPN. TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3905 PNP GENERAL PURPOSE TO-92 TRANS TRANS N-CHANNEL JFETS TRANS 2N5771 PNP SWITC 1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4701-03-8660 OP AHP OP AHP OP AHP OP AHP TRANS SEL, 2N3866 GTY: 1: 4701-03-8660 OP AHP | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN ASSEMBLY | MOT NSC FAIR MOT MOT MOT MOT NSC INTSL WVTK TI TI NO. 1208-0 | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9040
4901-05-1600
4901-05-1600
4901-05-7710
4902-00-1390
4998-00-0051
7000-00-8001
7000-00-8300 | 1 1 1 1 1 1 1 1 2 REV | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R91 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 2 RES. MF, 1/8W, 1%, 32 32 RES. MF, 1/8W, 1%, 33 25K RES. MF, 1/8W, 1%, 39 2 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW TRW TRW TRW TRW TRW TRW BOURN BOURN CADDO FAIR MOT | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE, NPN, TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS 2N5771 PNP SHITC-1 TO-92 TRANS TRANS 2N5771 PNP SHITC-1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4901-03-8660 OP AHP CP AHP, DUAL JFET INPUT TLE SSY, KIT 3REHAVE LOAD REMO SELAK SHARP EDGES AND SELAK SHARP EDGES | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN ASSEMBLY | MOT NSC FAIR MOT MOT MOT MOT NSC INTSL WVTK TI TI NO. 1208-0 | 4901-02-9051
4901-03-5630
4901-03-6460
4901-03-9040
4901-03-9060
4901-05-1600
4901-05-7710
4902-00-1390
4998-00-0051
7000-00-8300 | 1 1 1 1 1 1 1 1 2 REV | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R107 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 2 RES. MF, 1/8W, 1%, 32 32 RES. MF, 1/8W, 1%, 33 25K RES. MF, 1/8W, 1%, 39 2 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW TRW TRW TRW TRW TRW TRW BOURN BOURN CADDO FAIR MOT | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. NPN, TO-92 TRANS. QENERAL PURPOSE. NPN. TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3905 PNP GENERAL PURPOSE TO-92 TRANS TRANS N-CHANNEL JFETS TRANS 2N5771 PNP
SWITC 1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4701-03-8660 OP AHP | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN ASSEMBLY | MSC FAIR MOT NSC FAIR FAIR MOT MOT NSC INTSL WVTK TI TI NO. 1208-C | 4901-02-9051 4901-03-5630 4901-03-6460 4901-03-9040 4901-03-9060 4901-03-7060 4901-05-1600 4901-05-7710 4902-00-1390 4998-00-0051 7000-00-8300 | 1 1 1 1 1 1 1 1 2 REV | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 2 RES. MF, 1/8W, 1%, 32 32 RES. MF, 1/8W, 1%, 33 25K RES. MF, 1/8W, 1%, 39 2 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW TRW TRW TRW TRW TRW TRW BOURN BOURN CADDO FAIR MOT | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANS 2N3905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE, NPN, TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS TRANS 2N5771 PNP SHITC-1 TO-92 TRANS TRANS 2N5771 PNP SHITC-1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4901-03-8660 OP AHP CP AHP, DUAL JFET INPUT TLE SSY, KIT 3REHAVE LOAD AND STEAK SHARP EDGES MATER A. BURRS AND STEAK SHARP EDGES | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TLOBOCP TLO | MOT NSC FAIR HOT NSC FAIR HOT MOT NSC INTSL HVTK TI TI NO. 1208-0 | 4901-02-9051 4901-03-5630 4901-03-6460 4901-03-9040 4901-03-9060 4901-03-4860 4901-05-1600 4901-05-7710 4902-00-1390 4998-00-0051 7000-00-8001 7000-00-8300 PARTS LIST | 1 1 1 1 1 1 1 1 1 1 2 REV A | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 1 RES. MF, 1/8W, 1%, 30 2 RES. MF, 1/8W, 1%, 32 32 RES. MF, 1/8W, 1%, 33 25K RES. MF, 1/8W, 1%, 39 2 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW TRW TRW TRW TRW TRW TRW BOURN BOURN CADDO FAIR MOT | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS 2N3906 PNP GENERAL PURPOSE TO-92 TRANS TRANS 2N5771 PNP SWITC-1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4901-03-8660 OP AMP | 2N2905A 2N3563 MP53646 2N3903 2N3904 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN ASSEMBLY TOLERANCE UNLESS OTHERWISE SPECIFIED | MOT NSC FAIR HOT NSC FAIR HOT MOT NSC INTSL HVTK TI TI NO. 1208-0 | 4901-02-9051 4901-03-5630 4901-03-6460 4901-03-9040 4901-03-9060 4901-03-7060 4901-05-1600 4901-05-7710 4902-00-1390 4998-00-0051 7000-00-8300 | 1 1 1 1 1 1 1 1 1 1 2 REV A | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R107 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%, 27, 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30, 1 RES. MF, 1/8W, 1%, 33, 324 RES. MF, 1/8W, 1%, 33, 324 RES. MF, 1/8W, 1%, 34, 35 RES. MF, 1/8W, 1%, 34, 36 RES. MF, 1/8W, 1%, 34, 36 RES. MF, 1/8W, 1%, 36 RES. MF, 1/8W, 1%, 36 RES. MF, 1/8W, 1%, 364 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW TRW TRW TRW TRW TRW TRW BOURN BOURN CADDO FAIR MOT | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANE 2N2905A PNP GENERAL PURPOSE TO-5 TRANS. NPN, TO-92 TRANS. NPN, TO-92 TRANS. GENERAL PURPOSE. NPN, TO-92 TRANS 2N3904 NPN GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS TRANS N-CHANNEL JFETS TRANS 2N5771 PNP SWITC 1 TO-92 TRANS TRANS SEL, 2N3866 GTY: 1: 4901-03-8660 OP AHP OP AHP, DUAL JFET INPUT THE SSY, KIT PREHAVE LOAD OO-0834 PROFESSY NATERIAL BURRS AND STEAK SHARP EDGES MATERIAL PROFESSY NATERIAL N | 2N2905A 2N3563 MP53646 2N3903 2N3906 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN ASSEMBLY TOLEHANCE UNLESS OTHERWISE SPECIFIED | MOT NSC FAIR MOT NSC FAIR MOT MOT NSC INTSL HVTK TI TI TI PAGE 10 | 4901-02-9051 4901-03-5630 4901-03-6460 4901-03-9040 4901-03-9060 4901-03-4660 4901-05-1600 4901-05-7710 4902-00-1390 4908-00-0051 7000-00-8001 7000-00-8001 7000-00-8001 7000-00-8001 | 1 1 1 1 1 1 1 1 1 1 1 1 1 2 REV A | | R18 R20 R232 R233 R234 R265 R147 R157 R215 R225 R66 R7 R117 R107 R177 R160 R194 R118 R183 R49 R50 R7 R79 R92 R99 R186 R212 R259 R19 R77 R90 R132 R149 R176 R33 WAVETEK PARTS LIST LIST LIST LIST LIST LIST LIST LIST | RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 249 RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 24 9K RES. MF, 1/8W, 1%, 27 4 RES. MF, 1/8W, 1%,
27, 4 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 301 RES. MF, 1/8W, 1%, 30, 1 RES. MF, 1/8W, 1%, 33, 324 RES. MF, 1/8W, 1%, 33, 324 RES. MF, 1/8W, 1%, 34, 35 RES. MF, 1/8W, 1%, 34, 36 RES. MF, 1/8W, 1%, 34, 36 RES. MF, 1/8W, 1%, 36 RES. MF, 1/8W, 1%, 36 RES. MF, 1/8W, 1%, 364 | RN55D-2400F RN55D-2490F RN55D-2491F RN55D-2492F RN55D-2741F RN55D-2741F RN55D-3010F RN55D-3011F RN55D-3013F RN55D-3081F RN55D-3081F RN55D-3081F RN55D-3920F RN55D-3651F RN55D-3651F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-3920F RN55D-364640F | MEPCO TRW | 4701-03-2490
4701-03-2490
4701-03-2491
4701-03-2741
4701-03-2749
4701-03-3010
4701-03-3011
4701-03-3019
4701-03-3320
4701-03-3321
4701-03-3651
4701-03-3651
4701-03-3920
4701-03-3920
4701-03-3920 | 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 | R60 R101 R108 R154 R217 R219 R227 R25 R26 R184 R235 R236 R224 R237 R238 R239 R241 R12 R124 R24 : :::::::::::::::::::::::::::::::::: | RES, MF, 1/8H, 1%, 8, 25K RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 909 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/8H, 1%, 90, 9 RES, MF, 1/4H, 1%, 1% RES, MF, 1/4H, 1%, 619 RES, MF, 1H, 1%, 619 RES, MF, 1H, 1%, 619 RES NETHORK 470 10PIN SIP BUSS RES NETHORK 470 10PIN SIP BUSS RES, MF, 6H, 1%, 10M DIODE, ZENGR, 5, 1V, 500MH, GIB, IN751A DIODE, ZENER, 6, 2V, IN823 | RN55D-8251F RN55D-9090F RN55D-9091F RN55D-9091F RN55D-9089F RN60D1001F RN60D-4989F RN60D-4190F RN60D-6190F RN70D-1000F RN70D-1000F RN70D-1010471 4308R-101-471 4308R-101-681 IN751A IN823A ASSEMBLY NO | TRW TRW TRW TRW TRW TRW TRW BOURN BOURN CADDO FAIR MOT | 4701-03-8251
4701-03-9090
4701-03-9091
4701-03-9099
4701-13-1001
4701-13-4190
4701-23-9539
4701-33-1000
4701-33-6199
4770-00-0009
4770-00-0031
4799-00-0003
4801-01-0751
4801-01-0823 | 1 1 1 3 2 1 1 4 1 1 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 | 935 012 013 017 018 019 022 025 026 028 03 030 032 0 07 08 010 029 014 015 016 020 021 036 011 01 02 024 027 031 033 U7 039 U9 U11 U12 | TRANS 2N2905A PNP CENERAL PURPOSE TO-5 Q23 TRANS. NPN, TO-92 TRANS. SPNERAL PURPOSE TO-92 TRANS. CENERAL PURPOSE TO-92 TRANS 2N3904 NPN CENERAL PURPOSE TO-92 TRANS 2N3904 PNP GENERAL PURPOSE TO-92 TRANS 2N5771 PNP SWITC 1 TO-92 TRANS TRANS SEL. 2N3866 GTY: 1: 4901-03-8660 OP AHP OP AHP, DUAL JFET INPUT ILLE SSY, KIT 3REHAVE LOAD REMOREAL BURRS AND SESAK SHARP EDGES MATER A. PROCESS MATER A. PROCESS MATER A. PROCESS MATER A. PROCESS NAVETIK PROCESS XI | 2N2905A 2N3563 MP53646 2N3903 2N3906 2N3906 2N5160-18 2N5486 2N5771 IT 139 4998-00-0051 TL080CP TL083CN ASSEMBLY TOLEHANCE UNLESS OTHERWISE SPECIFIED | NSC FAIR MOT NSC FAIR FAIR MOT NSC INTSL WVTK TI TI TI TI PAGE 10 | 4901-02-9051 4901-03-5630 4901-03-6460 4901-03-9040 4901-03-9060 4901-05-1600 4901-05-7710 4902-00-1390 4998-00-0051 7000-00-8001 7000-00-8300 PARTS LIST A, GENERATOR | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |