SEMICONDUCTOR DIODES AND TRANSISTORS

PROGRAMED INSTRUCTION

MANUFACTURERS OF CATHODE-RAY OSCILLOSCOPES

VOLUME 2 DIODE DEVICES

TEKTRONIX PUBLICATION 062-0112-00

SEMICONDUCTOR DIODES AND TRANSISTORS

VOLUME 2

DIODE DEVICES

TEKTRONIX, INC. P. O. BOX 500 BEAVERTON, OREGON

062-0112-00

Sixth printing APRIL 1968

MARKETING TECHNICAL TRAINING © 1964, 1966, TEKTRONIX, INC. ALL RIGHTS RESERVED

SEMICONDUCTOR DIODES AND TRANSISTORS

VOLUME 2

DIODE DEVICES

This volume is about the theory of operation and construction of semiconductor diode devices. It discusses their characteristics and parameters and methods of measuring them. It further discusses some typical uses and effects of external environment, including applied energy and surrounding temperature.

PREREQUISITES:

This volume assumes the reader's successful completion of Semiconductor Diodes and Transistors - Volume 1 - Basic Semiconductors and Diodes, or its equivalent. If the reader does not have this background, some outside study is indicated before starting this volume.

BROAD OBJECTIVES:

On <u>successful</u> completion of this volume, the reader will have applied the knowledge gained from Volume 1, Basic Semiconductors and Diodes, to the study of Diode Devices and shall have knowledge of the diode devices discussed in this volume. He shall <u>also have prepared himself and met one of the prerequisites for Volume 3 and 4 of</u> this semiconductor program series.

SPECIFIC OBJECTIVES:

On successful completion of this volume, the reader will be able to do the following:

- 1. Recall that doping by diffusion is the process of heating the basic material while surrounding it with dopents in a gaseous form and that the dopents are taken into the basic material during the process, allowing close control of doping.
- Recall that silicon rectifiers can be made by diffusing a junction into high resistivity silicon and that this allows close control of the diodes characteristics.
- 3. Recall that diodes constructed of such materials as copper oxide, selenium and germanium are limited to less than 100° centigrade maximum operating temperature, while a diode made of silicon can operate to 175° centigrade.
- 4. Recall that silicon rectifiers have the added advantages over other semiconductor rectifiers of high reverse breakdown (1000 volts), low reverse leakage current and high forward current handling capabilities due to the ability to withstand high densities of electrical charge.

- 5. Recall that a silicon PN junction can conduct heavily when forward biased, but that only a small current flows when it is reverse biased. Recall that forward bias current is limited by the series resistance in the circuit.
- 6. Recall that a forward biased junction has a low voltage across it, and that the forward voltage at low currents varies inversely with changes in temperature and is said to have a negative temperature coefficient of voltage.
- 7. Recall that the application of an excessive reverse voltage will result in the diode entering avalanche breakdown (above 6 volts) or tunneling breakdown (below 6 volts), but that tunneling breakdown only occurs in very heavily doped junctions.
- Recall that a junction in avalanche breakdown has a positive temperature coefficient of voltage and that a junction that is in tunnel breakdown has a negative temperature coefficient of voltage.
- Recall that an a-c voltage applied across a silicon rectifier will alternately forward bias and reverse bias the junction, and that most of the a-c voltage is across the diode during the period that it is reverse biased.
- 10. Recall that a silicon diode in series with a load and an a-c source will result in pulsating d-c being supplied to the load, and that reversing the diode will reverse the polarity of pulsating d-c.
- 11. Recall that the maximum reverse bias voltage that can be applied to the device at a given temperature without breakdown occuring is termed Peak Inverse Voltage and that the peak inverse voltage rating of the diode should be greater than the maximum expected peak input a-c voltage when the diode is employed in an a-c circuit.
- 12. Recognize diode rectifier characteristics, including Peak Inverse Voltage, Average Half Wave Rectified Current, Maximum Forward Voltage Drop, Maximum Reverse Current, Peak One Cycle Surge Current, Maximum Operating and Storage Temperature, and be able to define each of these characteristics.
- 13. Recall that the maximum forward voltage drop of the diode and forward bias current can be used to find power dissipation to determine if the diode is working within its limits.
- 14. Recall that the maximum reverse current and peak inverse voltage may be used to determine the reverse resistance of the diode.
- 15. Recall that the maximum power dissipation is limited by the maximum allowable junction temperature, the ambient temperature, and the total thermal resistance for both the forward and reverse biased conditions.
- 16. Recall that using an external heat sink with a diode reduces the total thermal resistance and for a given diode and ambient temperature, increases the maximum power dissipation capabilities of the diode.
- 17. Recall that the Peak Inverse Voltage rating may be increased by stacking silicon rectifiers in series, but care must be taken to have equal reverse resistances and storage times in all the diodes used, or to compensate the circuit by

adding shunt resistors and/or capacitors.

- 18. Recall that the shunting compensating resistors used with series stacked rectifiers should be made as small as possible while still offering a high resistance to reverse current and typical values are about one half the reverse resistance of the diode.
- 19. Recall that the differences in storage times in stacked rectifiers can be compensated with shunt capacitors and that the value of shunting capacitor can be calculated using the formula:

$$C = \frac{t_{s} (total)}{R_{l}}$$

- 20. Recall that high voltage rectifier stacks are available with diodes cut from the same crystal to minimize the differences involved when dealing with peak inverse voltage.
- 21. Recall that a diode at equilibrium has an area about the junction that is depleted of carriers and that the N and P regions separated by the depletion region can serve as a capacitor that can have its capacity varied by varying the bias voltage applied.
- 22. Recall that specially made diodes are in use as voltage variable capacitors and recognize the symbol for the voltage variable capacitor, and be able to name the parts.
- 23. Recognize an example of a zener diode as a diffused silicon P-N junction operating in the avalanche breakdown region above 6 volts and the tunnel breakdown region below 6 volts (typically).
- 24. Recall that rigid control of the diffusion of impurities in zener diodes is a method that allows close tolerance of breakdown voltage levels and that breakdown voltages up to several hundred volts are obtainable.
- 25. Recall that the voltage across the diode terminals changes very little over a wide range of currents once into the avalanche breakdown region, and that the point of breakdown is termed the zener knee.
- 26. Recognize the voltage versus current curve for a zener diode and recall that the term zener diode is misleading because a great number of zener diodes work in the avalanche breakdown region (above 6 volts).
- 27. Recall that with a series impedance to drop the added voltage and an applied voltage above the zener knee, the zener diode will maintain a near constant voltage across itself.
- 28. Recall that the power limiting factors for zener diodes are the same as for any semiconductor diode and be able to recognize the symbol for a zener diode, and indicate the direction of electron current when the diode is in reverse breakdown.
- 29. Recognize a basic zener diode circuit and compare its operation to the operation

of the gaseous V-R tube basic circuit.

- 30. Recall that the minimum V-R tube voltage is limited to about 70 volts, while zener diodes are available over the entire voltage range up to several hundred volts.
- 31. Recall that the gas V-R tube is limited between two current levels set by the internal geometry of the tube, while the zener diode current is limited by the junction geometry and thermal dissipation, allowing a wide range of zener voltages and power dissipations.
- 32. Recall that the noise in a zener diode is of the same magnitude as that generated by the gaseous discharge in the V-R tube, but that a shunt capacitance of 0.01 to 0.1 μ fd or more will reduce the noise by a factor of 10 in a zener diode, while this method of noise suppression is impractical with the V-R tube because it breaks into relaxation oscillations.
- 33. Recall that a V-R tube will have voltage drift for several minutes when first turned on, while the zener diode has no measureable drift when turned on.
- 34. Recall that the zener diode in avalanche has a positive temperature coefficient of voltage, while a forward biased diode has a negative temperature coefficient of voltage, and that forward biased diodes may be used to temperature compensate zener diodes.
- 35. Recall that series opposed zeners find use in a-c circuits and that they tend to temperature compensate each others voltage as a result of opposing temperature coefficients of voltage.
- 36. Recall that a zener diode has similar specifications to the rectifier with the added zener information, and be able to read a specification sheet for a zener diode and determine its characteristics and limitations.
- 37. Recall that some diodes are designed for rectifier service that have controlled doping for a reverse breakdown point that offers, along with rectification, peak inverse limiting.
- 38. Recall that as the doping levels in a diode are increased, the voltage at which the diode enters reverse breakdown is reduced. Recall that a level of doping can be reached where tunnel breakdown occurs with forward voltage applied, and that tunnel diodes and backward diodes are this heavily doped.
- 39. Recognize the energy band diagrams of a heavily doped junction where tunneling is enhanced, and be able to explain the results of biasing the junction with forward and reverse voltage.
- 40. Recognize the portion of the tunnel diode El curve which represents a negative resistance or conductance, and be able to explain the tunnel diode El curve with the use of energy band diagrams.
- 41. Recognize the parameters of a tunnel diode to include Peak Current (I_p) , Valley Current (I_v) , Peak Voltage (V_p) , and Valley Voltage (V_v) , and be able to define

them. Recall the factors that determine the magnitude of these parameters.

42. Make measurements on the tunnel diode El curve using the cathode ray tube display of the type 575 Transistor-Curve Tracer, determining approximate negative conductance by use of the formula:

$$-gd \approx \frac{2 (I_p - I_v)}{V_v - V_p}$$

and recall that a separate variable resistor may be added to aid in the measurement.

- 43. Recall that the negative conductance characteristic of the tunnel diode allows amplification with a <u>two</u> terminal device and recognize the symbols for a tunnel diode, and be able to name the parts.
- 44. Recall that since the tunnel diode must remain in the negative resistance region to serve as a linear amplifier, the current swing of a tunnel diode is limited between l_p and l_v , and the voltage swing is limited between V_p and V_v .
- 45. Recall that for amplifier service, the load line when plotted on the tunnel diode El curve must have a steeper slope than the negative resistance region of tunnel diode curve, therefore, the total positive resistance must be less than the absolute value of the diodes negative resistance.
- 46. Recognize a basic series tunnel diode amplifier circuit and explain the amplifier action by use of the tunnel diode curve or the parameters and circuit components. Be able to predict voltage gain using the formula:

$$A_{v} = \frac{r_{L}}{r_{L} + (-r_{d})}$$

where A_v is voltage gain, r_L is the positive resistance, and $-r_d$ is the negative resistance of the tunnel diode.

47. Recognize a basic parallel tunnel diode amplifier circuit and explain the amplifier action using the tunnel diode parameters and circuit components. Be able to predict the current gain using the formula:

$$Ai = \frac{g_L}{g_1 + (-g_d)}$$

where Ai is current gain, g_{L} is the conductance of the positive resistance, and $-g_{d}$ is the negative conductance of the tunnel diode.

48. Recall that sufficient stray or lumped reactance will result in the tunnel diode breaking into oscillations and, therefore, the layout for low frequency circuits is not feasible.

49. Recall that a total series positive resistance greater than the negative

resistance of the tunnel diode results in the tunnel diode acting as a switch, and be able to explain the switching action for current drive and voltage using the tunnel diode EI curve and loadlines.

- 50. Recall the circuit requirements for the three modes of operation of the tunnel diode; switching, stable, and oscillations.
- 51. Recall that special tunnel diodes constructed to have low peak currents and to conduct heavily with a reverse bias applied are called "Backward Diodes" and that they have the advantage of a much lower conducting voltage drop than the conventional diode.
- 52. Recall that fast switching diodes are constructed for low capacity and stored charge to enhance fast forward and reverse recovery.
- 53. Recall the definition of the parameters and specifications of a fast switching diode, and recall that maximum current, voltage, and power dissipation are limited by the same factors as all diodes.
- 54. Recall that a reduction of the minority carrier lifetime will reduce storage time and reduce switching time for a given forward current.
- 55. Recall the definition of the forward and reverse recovery parameters of fast switching diodes, and relate them to the display on the cathode ray tube in a sampling system when using the Type 291 Diode Switching Time Tester.
- 56. Recall that the "Snap-Off" diode has a controlled steep falling portion of the reverse recovery waveform and that this is accomplished by controlling minority carrier lifetime and shaping reverse recovery in the doping process.
- 57. Recall that the Snap-Off diode, when switched from forward conduction to a reverse bias condition, will continue to conduct for the duration of the stored charge, but will cut-off or snap-off in a fractional nanosecond.
- 58. Recall that using the snap-off portion of the snap-off diodes characteristic as the leading edge of a generated pulse results in a fractional nanosecond rise-time pulse.
- 59. Recognize the construction of symbols for the El curve of the four layer diode, and be able to explain its operation using its El curve.
- 60. Recognize the construction of, the symbols for, and the EI curve of the Silicon Control Rectifier, and recall the effects of changing the magnitude of the applied gate current.

The reader will know when he has met these objectives by correctly answering 90% of the questions in the self test at the back of this volume.

INSTRUCTIONS

The material in this volume is presented in a series of numbered statements. Each numbered statement is termed a "frame" and each group of frames bearing the same first number (3, 3.1, 3.2, etc.) is termed a "set". The answer to each frame is in a small box in the lower left hand corner of the <u>following</u> frame.

The material is presented in three types of frames within a set; the "gating frame", the "teaching frame", and the "criterion frame".

The first frame in each set is the gating frame. Cover the following frame which contains the answers with the mask provided. Read the frame carefully, studying any diagrams that are provided, and fill in the blanks. <u>Do not</u> look at the answer until you fill in the blanks.

Since there is no clue given to the answer, you must know something about the material to fill in the blanks in the gating frame. If you can answer the gating frame and you are sure of the material, skip to the next gating frame and continue. The gating frames are designed to give the student that is familiar with the subject an indication of the information contained in the set and allow him to skip the set if he feels he knows the information covered.

If you <u>cannot</u> answer the gating frame, continue with the teaching frames in that set, covering the answers and filling in the blanks. You <u>will</u> find clues to the answers in the teaching frames or their diagrams.

The last frame in each set will have two (**) asterisks following the number. This is the criterion frame and, once again, no clue is given to the answers. The preceding teaching frames should have provided the information needed to work the criterion frame. If your answer is wrong, go back and review the material in the teaching frames.

You may progress through the program at any speed you select. Don't miss an opportunity to review the material in a set if you <u>can</u> answer the gating frame, but are a little hazy on the subject.

This is <u>not</u> a <u>test</u>. You are not being graded and you are not expected to be able to answer the gating frames unless you have the knowledge to let you skip a set. If you answer the teaching frames or the criterion frames incorrectly, don't be concerned, but go back and review the previous frame or frames as needed. Answer from the information presented and, if your answer does not match, review the material before going on.

If you would like to measure your gains with this volume, answer the self test in the back of the volume <u>without</u> grading it, before proceeding into the programed material. After completing the programed material, answer the self test again grading both attempts. This will give an indication of the gains realized with this volume.

Do each set in sequence, starting with set 1.

If you are ready to proceed with the programed material, turn to the first gating frame - - -

GATING FRAME - 1

Doping or adding impurities to the basic semiconductor by ______ is the process of heating the basic semiconductor while surrounding it with the impurities in a ______ form. The impurities are taken into the basic semiconductor during the process and this method of doping gives the advantage of close ______ of impurity levels.

1.1 Raising the temperature of a material increases the molecular and atomic activity. A temperature is reached at which impurities can enter the structure being heated.

> diffusion gaseous control

1

1.2

Doping by the diffusion process involves surrounding the material to be doped with the impurities in a gaseous form. The impurities will "diffuse" or spread into the material when it is ______ to the proper temperature.

no answer needed

1.3 By controlling the amount of impurities gas present, and by masking off or protecting the areas not to be doped, a close control of doping by can be obtained.

heated

1.4

Figure 1 shows a sketch of the <u>process</u> of doping by diffusion. The diffused area and the basic structure form a PN _____

diffusion

1.5 Covering part of the semiconductor to be doped with a material that will not pass the impurity gas is termed "masking" the semiconductor for diffusion. Diffusion of impurities will take place only where the semiconductor is not _____.

junction or diode

1.6

Masking, limiting the impurity gas present, and setting the temperature allows close ______ of doping by ______.

masked

1.7** Causing gaseous impurities to enter a piece of semiconductor by applying heat is termed doping by the ______ process. Good control of doping can be obtained by controlling the temperature, the amount of gas present, and by ______ the

basic crystal.

control diffusion

1.8 END OF SET

diffusion impurity masking

GATING FRAME - 2

Silicon rectifiers are constructed by ______ a junction into resistivity silicon. This process allows close ______ (high, low) of the diodes characteristics. Silicon diodes can operate up to ______ degrees centigrade, while other semiconductor diodes are limited to below _______ degrees centigrade.

2.1

Silicon rectifiers are PN junctions that have been diffused into a silicon crystal.

diffusing high control 175 100

2.2 Starting with high resistivity silicon and diffusing in the desired junction allows close ______ of the diodes characteristics.

no answer needed

2.3 Damage to the junction occurs at or above 100 degree centigrade in most semiconductor junctions. In ______ junctions, however, this does not occur below approximately 175 degrees centigrade.

control, tolerance, etc.

2

Maximum allowable junction operating temperature is approximately ______ degrees centigrade for germanium diodes, and _____ degrees centigrade for silicon diodes.

silicon

Since silicon diodes can tolerate a higher junction temperature, they can handle ______ power for a given ambient temperature and total ther-______ (more, less) mal resistance.

100 175

more

2.7**

Diffused junction techniques in high resistivity silicon allows close control of silicon rectifier ______. It is possible for a ______ diode to tolerate a junction operating temperature of 150 degrees centigrade, but not a ______ diode.

lower

2.4

2.5

characteristics, parameters, etc. silicon Germanium (or most semiconductors)

GATING FRAME - 3

Silicon rectifiers designed for high power, low frequency service (below 500 cycles) have the advantage over other semiconductor rectifiers of ______ reverse breakdown voltage, ______ reverse leakage currents, and ______ forward current handling capabilities.

3.1 Germanium and other semiconductor diodes generally have to be stacked in series for a high reverse breakdown voltage rating, while silicon diodes have been made with reverse breakdown voltages to 1000 volts and beyond.

higher	
lower	
higher	

3.2 At a given temperature, there will be less minority carriers present in a silicon diode than other semiconductor diodes. Diode reverse current magnitude is dependent on the number of ______ carriers present in the two sides.

no answer needed

3.3

At a given temperature, there will be less reverse bias current in a ______ diode than other semiconductor diodes, since there are less ______ carriers available.

minority

3

3.4 Two advantages of silicon rectifiers over other semiconductor types are higher _____ breakdown voltage and lower _____ bias current.

silicon minority

3.5 Silicon diodes can withstand higher densities of electrical charge than other semiconductor diodes. Germanium diodes can handle (more, less) forward current at a given temperature than silicon diodes.

reverse reverse

3.6 Silicon diodes can handle more heat producing power at the junction at a given ambient (surrounding air) temperature because the maximum allowable junction ______ is higher than other semiconductor diodes.

less

3.7** Silicon diodes lend themselves well to rectifier service since they can withstand high ______ bias voltages, high ______ bias currents while offering low ______ bias currents.

temperature

3.8 END OF SET

reverse forward reverse

GATING FRAME - 4

When a silicon diode is forward biased by a voltage greater than approximately 1 volt, the _______ is limited by the series resistance in the circuit. Very little current flows when the diode is reverse biased until the ______ breakdown point is reached and then _______ is limited by the series resistance in the circuit.. The point at which reverse breakdown occurs is _______ dependent.

4.1

4

Figure 4A shows the forward characteristic of a silicon diode. The forward voltage point at which there is a significant increase in forward current is approximately ______ volts of forward voltage.

current avalanche (reverse) current temperature

4.2

The only difference in the two measurements shown in figure 4A is the resistance in series with the diode. With a greater resistance in series with the diode, $\frac{1}{(more, less)}$ current can flow for a given applied voltage.

4.3 In figure 4A, with a series resistance of 50 ohms and the applied voltage shown, a maximum of about _____ma of forward current can flow. With a series resistance of 100 ohms, a maximum of only about _____ma of forward current can flow with the same applied voltage.

^{0.6}

Current is primarily limited by the ______ once the diode has been essentially turned on in the forward direction, and the current will vary ______ as the value of series resistance varies.

250 125

4.5

4.4

With reverse voltage applied, only a small current flows, limited by the number of ______ carriers available.

series resistance inversely

4.6 When the avalanche breakdown point is reached, multiplication of carriers results in the current increasing sharply. Once into avalanche, the current is primarily limited by the series ______ in the circuit.

minority

4.7 When used as a rectifier, the voltage point at which avalanche breakdown occurs, limits the ______ a-c voltage which can be applied to the diode.

resistance

4.8 Figure 4B shows a test set-up to measure the reverse breakdown of a silicon diode. The diode shown breaks down at about 1480 volts of reverse voltage.

peak (maximum)

4.9

Mod 122C is a modification to the Type 575 to extend its voltage range to 1.5K volts to observe the reverse _____ characteristics of diodes and transistors.

no answer needed

4.10

The diode shown in figure 4B will break down at (the same, a different) reverse voltage if measured at a different surrounding air temperature.

breakdown

Since a change in temperature effects the reverse breakdown voltage, the 4.11 should be specified when stating the maximum reverse voltage that can be applied to a diode.

a different

4.12** Once effectively turned on by forward voltage, the diode current is primarily limited by the ______ in series. Only thermally generated ______ carrier current flows when the diode is reverse biased until avalanche breakdown is reached. Once in avalanche breakdown, current is limited primarily by the ______ in the circuit and the voltage point at which breakdown occurs is _______ dependent.

temperature

4.13 END OF SET

resistance minority series resistance temperature

GATING FRAME - 5

With forward voltage applied and significant forward conduction, approximately ______ volts appear across a silicon rectifier at room temperature. At low currents, this voltage will vary _____ with temperature changes, and the diode is said to have a _____ temperature coefficient of voltage.

5

5.1 At 25 degrees centigrade, a forward biased silicon rectifier has approximately 0.7 volts across its terminals and the remainder of the applied voltage appears across the series impedance in the circuit.

The voltage across the series impedance of the circuit will be the 5.2 difference between applied voltage and the voltage across the

no answer needed

5.3 The current in the circuit will be equal to the voltage across the series impedance divided by the series impedance. The current will be primarily limited by the series ______ of the circuit when the diode is in forward conduction.

diode

5.4 When forward voltage is applied to a diode, the total circuit series must limit the forward bias current below the maximum allowable forward current of the diode.

impedance

5.5 The voltage across the diode will change with a change in temperature. The diagram indicates that, at low forward currents, the voltage across the diode will ______ with an increase in junction temperature.

ł ۱_F 100°C 25°C 0.5 V_F-1 V

impedance

5.6 The diode is said to have a negative temperature coefficient of voltage at low forward currents. The forward voltage drop of the diode goes with a decrease in junction temperature.

decrease

5.7

Since the forward voltage drop varies inversely as the temperature varies at low currents in a silicon rectifier, it is said to have a ______ temperature ______ of voltage.

5.8

up

The forward current in the circuit shown is approximately ____

5.9** The forward biased silicon rectifier has approximately volts dropped across the diode and the remainder of the voltage is across the series impedance of the circuit. The forward voltage across the diode with temperature changes, and the diode is varies (directly, inversely) said to have a ______ temperature coefficient of voltage when forward biased.

> considering 0.7 volts across the diode and 19.3 volts across 200 ohm, $I \approx \frac{19.3V}{200\Omega} \approx 96.5 \text{ ma}$

OR neglecting the drop across the diode,

$$I \approx \frac{20V}{200\Omega} \approx 100 \text{ ma}$$

END OF SET 5.10

> 0.7 inversely negative

Heavily doped junctions with reverse breakdown voltages below 6 volts have a _______ temperature coefficient of voltage in the breakdown region, and lighter doped junctions with breakdown voltages above 6 volts have a ______ temperature coefficient of voltage in the breakdown region.

6.1

6

An increase in temperature increases the voltage requirements to cause avalanche breakdown in a silicon rectifier. Avalanche breakdown occurs at reverse voltages ______6 volts.

negative positive

6.2

Tunnel or zener breakdown occurs in heavily doped junctions with reverse breakdown voltages ______6 volts. (above, below)

above

6.3 An increase in temperature causes a decrease in the voltage across a diode in tunnel breakdown, and it is said to have a ______ tempera-ture coefficient of voltage when operated in tunnel breakdown.

below

6.4 A silicon rectifier in avalanche breakdown is said to have a ____ temperature coefficient of voltage, and a decrease in temperature results in a _____ in the voltage across the diode.

negative

A diode in avalanche breakdown will have greater than 6 volts across the 6.5 diode, and a positive temperature _____

positive decrease

A diode in tunnel breakdown will have less than 6 volts across the diode, 6.6 temperature coefficient of voltage. and a

> coefficient of voltage

6.7** Voltage across the diode varies directly with temperature when the diode (above, below) 6 volts, and the voltage across is in the breakdown region the diode varies inversely with temperature when the diode is in breakdown 6 volts. (above, below) negative 6.8 END OF SET above below

Placing a silicon rectifier in series with an a-c source and a load resistance results in the a-c source alternately ______ and ______ biasing the diode on alternate half cycles and delivering pulsating ______ to the resistance. Reversing the connections on the diode reverses the ______ of the voltage across the load resistance.

GATING FRAME - 7

7.1

7

The instantaneous polarity of the a-c source shown will ______ bias the diode and result in the greatest portion of the applied voltage being across the ______.

7.2

The instantaneous polarity of the a-c source shown will ______ bias the diode and result in the greatest portion of the applied voltage appearing across the ______.

load resistor

7.3 • A reverse biased diode _____ an open circuit and has _____ (is, is not)

(some, no)

current flowing.

reverse silicon rectifier or diode

7.4

With reverse current flowing when the diode is reverse biased, there will be some voltage across the load. This voltage will be proportional to the amount of reverse ______.

is not some

7.5

The diode in the diagram can allow a large electron current to flow

(limited by the load resistance) when forward biased, and only a small reverse current when reverse biased. The voltage across the load will be pulsating d-c and point 1 will be negative, positive) with respect to

current

Reversing the connections on the diode, as shown, results in point I being with respect to point 2.

The silicon rectifier allows easy conduction when forward biased, and very little conduction when reverse biased. Placed in series with an a-c source, it will deliver ______ to the load.

positive

7.8 The polarity of the pulsating d-c can be changed by reversing the connections on the _____.

pulsating d-c

7.6

7.7

7.9**	The silicon rectifier will convert a-c to			
	The a-c will alternately	bias and	bias	the
	diode. Reversing the connections on the	diode reverses the		. 8
	of the pulsating d-c.			

diode

7.10 END OF SET

pulsating d-c forward reverse polarity
The maximum reverse voltage at a given temperature than can be applied to a diode before breakdown occurs is termed the

______ rating and this should be greater than the maximum expected ______ value of applied a-c voltage. Maximum reverse current is also measured at this point, and the two values may be used to determine the reverse ______ of the diode.

8.1

8

With the instantaneous polarity of the a-c source shown, most of the applied voltage is across the diode. If the <u>peak</u> value of the applied a-c voltage is too high, the diode will _____

8.2

The maximum <u>peak</u> reverse or inverse voltage that can be applied <u>before</u> breakdown occurs is termed peak inverse voltage. The peak value of applied a-c voltage should be _______ than this value. (more, less)

break down (avalanche)

less

8.4

The reverse resistance of the diode can be found by dividing peak inverse voltage by maximum

peak

8.5

Given a peak inverse voltage rating of 500 volts and a maximum reverse current of 10 μ amps (both given at 25 degrees centigrade), the reverse resistance of the diode is _____ ohms.

reverse current

8.6

The same diode as stated in frame 8.5 has a maximum reverse current of 500 µamps at 150 degrees centigrade. Its reverse resistance has decreased to approximately ______ ohms at this temperature.

50 meg

8.3

8.7 The product of maximum reverse current and reverse resistance is equal to the ______ rating of the diode.

l meg

_____ rating.

peak inverse voltage

8.9 END OF SET

peak inverse voltage reverse current

The maximum forward voltage drop is the maximum voltage across the ______ when forward biased at a given forward current and ______. Maximum forward current is the maximum steady state current that can be passed by the rectifier at a given ______. The product of forward voltage and current gives the _______.

9.1

9

The forward voltage drop of the diode will vary with both forward current and temperature. The forward voltage drop (at low currents) will

with a decrease in temperature.

(increase, decrease)

diode temperature temperature power dissipation resistance

9.2 Since forward voltage drop will vary with ______ and forward ______, both must be specified when a maximum value of forward

voltage is given.

increase

9.3 The product of maximum forward current and voltage will give the maximum power dissipation of the diode. Dividing forward voltage by forward current gives the forward ______ of the diode.

temperature current

9.4 The product of total thermal resistance and forward power dissipation gives the rise in junction temperature due to power dissipation. Adding this rise in junction temperature to ambient temperature gives the junction temperature.

resistance

9.5

The product of power dissipation and the thermal resistance of the diode plus ambient temperature must be less than the maximum operating of the diode.

no answer needed

9.6

If the product of total thermal resistance (Θ_{JA}) and power dissipation (P_d) added to the ambient temperature is higher than the maximum operating temperature of the diode, the diode will be

temperature

"Average half-wave rectified current" is used to designate maximum steady state current. Peak one cycle surge current indicates a non-repetitive peak of current. Maximum peak one cycle surge current will have a value than average half-wave rectified current. (higher, lower)

damaged (destroyed)

9.8

The maximum allowable operating temperature of the junction and the ambient temperature set a limit on the maximum power dissipation (current and voltage) of a diode, therefore, maximum values of current and voltage should be given at a value of ______ temperature.

higher

9.9**

The product of forward voltage and current gives the ______ dissipation. Maximum forward voltage drop is the maximum voltage across the diode at a given forward ______ and temperature. Average half-wave rectified current is the maximum ______ forward current that can be passed through the diode at a given temperature. Forward voltage divided by ______ gives the forward resistance.

ambient

9.10

END OF SET

power current steady state (d-c) forward current

10

Power dissipation in silicon rectifiers as in all diode devices, is limited by maximum allowable _______ temperature, ______ temperature, and total _______ for both the forward and reverse biased conditions. Attaching the diode thermally to an external heat sink increases power handling for a given diode and

10.1 The difference between the ambient temperature and the maximum allowable temperature of the junction gives the allowable rise in junction temperature due to ______ dissipation.

junction ambient (surrounding air) thermal resistance ambient temperature

10.2 The product of forward current and voltage must not cause the junction temperature to go above maximum diode operating temperature. This is also true of the ______ voltage and current product.

power

10.3 The maximum power dissipation of a forward biased and a reverse biased diode is limited by _________ factors.

reverse

10.4 A diode operating in avalanche breakdown has its power dissipation limited by the same factors as a forward biased diode. A given diode can dissipate ______ power at a lower ambient temperature.

the same

10.5

Heat sinking a diode reduces its total thermal resistance, junction to ambient, and allows more power dissipation for a given diode and

more

10.6

Heat sinking serves _____ purpose when the diode is (the same, a different)

operated in a reverse biased mode as/than when it is operated in the forward biased mode.

ambient temperature

10.7** Total ______, ambient temperature, and maximum allowable _______ temperature limits power dissipation in all semiconductor diodes whether they are ______ or ______ biased. Heat sinking increases possible power dissipation for a given diode and

the same

thermal resistance junction forward reverse ambient temperature

A higher peak inverse voltage rating may be obtained by stacking rectifiers in series. For proper operation, the series rectifiers must have near equal reverse ______ and _____ times.

11.1

Stacking three silicon rectifiers with peak inverse voltage ratings of 500 volts in series should result in a combined peak inverse voltage rating of ______ volts.

11.2

If the three stacked rectifiers have equal reverse resistances, the applied reverse voltage will divide equally across the three. If the reverse resistances are not equal, the largest reverse resistance will have the greater reverse voltage drop.

1500

11.3 The reverse voltage across the series diodes will be proportional to the reverse resistance of the diodes. If the reverse resistances are not _______, one of the diodes may have too much reverse voltage across it and enter a breakdown condition (assuming the applied voltage is greater than the diodes breakdown voltage).

no answer needed

11.4

When a diode is changed from a forward biased condition (conducting) to a reverse biased condition, the stored charge about the junction must be removed before the current can decrease to its normal low value.

equal (the same, etc.)

11.5

As the stored charge is removed, the reverse voltage starts appearing across the diode. Current must fall to its minimum value before the entire ______ is across the diode.

no answer needed

11.6 If series rectifiers have different stored charges, it will take different times to remove the stored charge when reverse voltage is applied to the conducting diodes. One diode will attempt to become essentially _-conducting before the others.

reverse voltage

11.7 When one series rectifier loses its stored charge before the others, nearly the entire applied ______ will appear across the faster diode.

non

11.8

With unequal stored charges in series rectifiers, the diode with the smallest stored charge can be harmed since it will have the full peak is removed inverse voltage across it until the _____ from the other series diodes.

inverse voltage or reverse voltage

11.9**

When diodes are placed in series to increase the peak inverse voltage rating, they should be checked for similar _____ charges and resistances.

stored charge

11.10 END OF SET

stored reverse

The effects of different reverse resistances in series rectifiers can be 12 reduced by shunting ______. The optimum value is approximately one half of the _____ of the diode.

12.1

Shunting all of the stacked series diodes with resistors will reduce the effects of the differences in reverse resistances of the diodes. Care have equal values. should be taken that the _____

resistors reverse resistance

The shunting resistors should be high enough in value to limit reverse 12.2 current, but low enough in value to aid in distributing the applied equally among the diodes.

shunting resistors

12.3

The reverse resistance of the diode can be found by dividing peak inverse voltage by maximum reverse

inverse voltage or reverse voltage

12.4

Typical values of shunting resistors are one half the reverse resistance of the individual diodes. This is small enough to aid in distribution of the applied reverse voltage while large enough to limit

current

Shunting resistors reduce the possibility of breakdown as a result of un-12.5** equal reverse ______ in series stacked rectifiers. The optimum value of shunting resistors is approximately one _____ of the _____ of the diode.

reverse current

END OF SET 12.6

> resistances half reverse resistance

13

Unequal storage times in series stacked silicon rectifiers can be compensated by use of shunting ______. Optimum values can be found by the formula $= \frac{t_s(total)}{R_L}$ where R_L is the total series

_____ and t_{s(total)} is the sum of the diode _____ times.

13.1 Shunting the individual series stacked diodes with capacitors slows the response of the diodes, but minimizes the possibility of reverse breakdown as a result of different ______ times in the individual diodes.

capacitors С resistance storage

13.2 Shunt capacitors slow the fall time of the reverse current when the diode is switched from forward conduction to a reverse biased condition, and the diode will take ______ time to change from a low to a high resistance.

storage

13.3 With capacitors shunting the individual diodes and slowing their transition from conducting to non-conducting, there is less chance of a damaging reverse ______ appearing across one diode in a series stack.

more

For optimum performance, the time constant of the shunting capacitors and the series resistance in the circuit should be equal to the total storage time of the diodes or C $R_L = t_s(total)$, where C is the shunting capacitor, R_L is the series resistance in the circuit, and t_s is the sum of the of all the diodes.

voltage

Transposing the formula $C R_L = t_s(total)$, $C = \frac{t_s(total)}{R_L}$, the value of the shunting capacitor is equal to the total storage time divided by the series

storage times

13.6

13.4

13.5

Using three diodes in a series stack whose average storage time is 2 μ seconds and a series resistance in the circuit of 600 Ω , the optimum value of shunting capacitor is _____.

$$C = \frac{\frac{t_{s(total)}}{R_{L}}}{R_{L}} = \frac{6 \times 10^{-6}}{600\Omega} = ?$$

resistance

If we assume that the capacitors shown have been properly selected to protect the diodes, we might approximate the average storage time of the diodes by transposing the formula:

$$s(average) = \frac{t_s(total)}{(\# \text{ of diodes})} = \frac{0.02 \times 10^{-6} \ 600}{3} = \frac{?}{2}$$

0.01 µfd

t

13.8** Shunting ______ reduce the effects of different storage times in series stacked rectifiers. The optimum value for compensation may be found using the formula ______

$$- = \frac{\frac{t_s(total)}{R_L}}{R_L}$$

where t_s(total) equals total ______ time, and R_L equals total ______ terms _____.

4 µseconds

13.9 END OF SET

capacitors C storage resistance

High voltage silicon rectifier stacks that do not need compensating capacitors and resistors are made with all ______ cut from the same ______. This minimizes the problems encountered when dealing with applied ______ voltages.

14.1

14

Diodes carefully made from the same crystal will have similar forward and reverse characteristics.

diodes (junctions) crystal (piece of silicon) reverse

14.2 With similar forward and reverse characteristics, compensating ______ and/or ______ are not normally necessary when the diodes are stacked in series to increase the peak inverse voltage rating.

no answer needed

and/or _____.

resistors capacitors

14.4 END OF SET

crystal resistors capacitors

15

A junction at equilibrium has a ______ region about the junction and the junction appears as a charged ______ which may be varied by applying forward or reverse bias voltage. Diodes which are constructed to use this characteristic in circuitry are referred to as variable ______.

15.1

When a junction is formed, recombination occurs until a state of equilibrium or balance is reached and a ______ difference exists across the junction.

depletion capacitance, capacitor, etc. voltage capacitors

15.2 The formation of ions in the two sides of the junction during initial recombination results in an area around the junction that is depleted of carriers and referred to as the ______ region.

15.3 The two ends of the diode separated by the depletion region serve as a

depletion

15.4 Forward bias forces carriers into the depletion region which, in effect, moves the plates of the capacitor closer together, capacitance.

capacitor

15.5 Reverse bias widens the depletion region by moving carriers farther from the junction, decreasing capacitance. An a-c voltage applied to a diode will alternately ______ and _____ the capacitance.

increasing

> increase decrease

15.7 Voltage variable capacitors are simply diodes constructed with a predictable ______ versus voltage characteristic at a given temperature.

voltage capacitors

15.8

Figure 15A shows a voltage versus current and <u>capacitance</u> chart for a diode. The diode will have the greatest change in capacitance for a change in voltage in the ______ biased region.

capacitance

15.9

In figure 15A, the capacity falls to minimum when point 1 is reached, since the sharp increase in current, effectively ______ out the capacitor.

forward

15.10 Figure 15B shows a test set-up to measure capacitance of a junction. The dashed line indicating ______ in figure 15A can be obtained using this set-up.

shorts

15.11** A voltage variable capacitor is a diode constructed to have predictable _________ versus capacity characteristics. The capacity is varied by application of _______ or ______ bias. The capacitance is made up of the two ends of the diode separated by the region.

capacitance

15.12 END OF SET

voltage forward reverse depletion ______ is the symbol for a voltage variable capacitor. The capacitance is controlled and varied by the applied

16.1 A voltage variable capacitor is a semiconductor diode designed to serve as a variable capacitor. In the diode symbol shown, A is the ______ and B is the ______.

16.2

The diode symbol is modified to indicate a voltage variable capacitor. The capacitor symbol is added to the diode symbol as shown. The added arrow indicates that it is ______.

cathode

anode

16

16.3 In the voltage variable capacitor symbol shown, A is the ______ and B is the anode.

variable

16.4 The polarity of bias shown will ______ bias the capacitor and the capacitance of the diode with respect to its static condition.

16.5 To reduce the capacity of the diode shown, point A must become negative.

16.6**	видетиче в Р. 🖌			
		the symbol for	a	
	A indicates the		and B indicate	
	The capacitance is va	ried by changing	the applied	

to yr tease more then bobbo as it to not prince to to you and pair of the second states and pair of the second

16.7

END OF SET

voltage variable capacitor cathode anode voltage

17 A diode designed to operate in the reverse breakdown region with a near constant voltage drop is termed a ______ diode. The name is misleading, as many of these diodes operate in ______ breakdown. Close control of doping by the ______ process allows the fabrication of diodes with reverse breakdown voltages from a few volts to several hundred volts.

zener avalanche diffusion

17.2

The greater the amount of doping impurities, the ______ the reverse breakdown voltage.

reverse

17.3 Doping by diffusion allows close control of the doping levels and the reverse ________ voltage of a zener diode.

lower

17.4 Zener diodes designed to break down below 6 volts are probably doped heavy enough to enhance tunneling.

breakdown

17.5 Tunneling or zener breakdown occurs in very narrow junctions as a result of heavy doping, and breakdown occurs below ______ volts of reverse voltage.

no answer needed

17.6

The name zener diode is often misleading as many zener diodes have breakdown voltages above 6 volts and operate in ______ breakdown.

6

17.7 Once into the breakdown region, the voltage across the terminals changes very little over a wide range of currents.

17.8

With an impedance in series with the zener diode to drop any extra voltage and an applied voltage greater than the reverse breakdown voltage of the diode, the voltage across the ______ will change very little with changes in applied voltage or current through the diode.

Operated in the breakdown region, the zener diode will maintain a near 17.9 constant ______ across its terminals with changes in applied ______ and _____

diode

17.10 Zener diode voltages from a few volts to several hundred volts have been obtained by controlling the ______ levels with the diffusion process.

voltage voltage current

doping or impurity

17.12 END OF SET

avalanche doping voltage

TEST SET-UP: TEKTRONIX TYPE 575 TRANSISTOR-CURVE TRACER WITH DIODE ADAPTER AND TYPE C-12 OSCILLOSCOPE CAMERA

 $I_F = FORWARD CURRENT$ $I_R = REVERSE CURRENT$ $V_F = FORWARD VOLTAGE$ $V_R = REVERSE VOLTAGE$

COMPOSITE: DOUBLE EX-POSURE SHOWING BOTH FORWARD AND REVERSE EI CHARACTERISTICS OF A Z EN ER DIODE

Point A in figure 18A is the ______ and, with 40 ma of reverse current, there will be approximately ______ volts of ______ voltage across the diode. With 20 ma of forward current flowing, there will be approximately ______ volts of ______ voltage across the diode. This diode is designed to work in the ______ region of its characteristics.

18.1

zener knee 25 reverse 0.7 forward reverse breakdown

18.2 The zener diode is designed to work beyond the zener knee or, in the case of the diode in figure 18A, in _____ breakdown (breakdown occurs above 6 volts).

zener knee

 $I_F = FORWARD CURRENT$ $I_R = REVERSE CURRENT$ $V_F = FORWARD VOLTAGE$ $V_R = REVERSE VOLTAGE$

COMPOSITE: DOUBLE EX-POSURE SHOWING BOTH FORWARD AND REVERSE EI CHARACTERISTICS OF A ZENER DIODE The curve tracer in figure 18A is first adjusted for a horizontal sensitivity of 0.2 volts/division, and a vertical sensitivity of 10 ma/division and a plus polarity. The resultant display is the plot of diode

	versus	
(forward, reverse)		

avalanche

18.4

18.3

The curve tracer in figure 18A is then adjusted for a horizontal sensitivity of 5 volts/division, and a vertical sensitivity of 10 ma/division and a minus polarity. The resultant display is a plot of reverse

versus

forward voltage current

18.5

A photographic exposure is made of both the forward and reverse display, and the resultant curve shows both the forward and reverse characteristics of the zener diode. The exact center of the scale used in figure 18A indicates (#) volts and (#) current.

voltage current

18.6

If it is desired to have 25 volts across the diode in figure 18A, it should be operated near a reverse current of ______ ma.

0 0

FORWARD CHARACTERISTIC

REVERSE CHARACTERISTIC

TEST SET-UP: TEKTRONIX TYPE 575 TRANSISTOR-CURVE TRACER WITH DIODE ADAPTER AND TYPE C-12 OSCILLOSCOPE CAMERA.

COMPOSITE

DOUBLE EXPOSURE SHOWING BOTH THE FORWARD AND REVERSE CHARACTERISTIC OF A ZENER DIODE 18.7 Operating with 40 ma of reverse current and 25 volts, the diode will dissipate ______ watt/s of power.

40

18.8

The center of the scale or graticule used in figure 18B indicates zero ____and zero ___

18.9

one

The horizontal scale of reverse voltage (V_R) in figure 18B is 20 volts/ major division. The zener knee occurs at approximately 4.6 major divisions from zero or approximately _____ volts of reverse voltage.

voltage current

18.10 With forward voltage applied and the diode conducting 50 ma of forward current, the diode in figure 18B will have about ______ volts across its terminals. (Remember to use the horizontal and vertical sensitivities for the forward characteristic.)

92

FORWARD CHARACTERISTIC

REVERSE CHARACTERISTIC

COMPOSITE

DOUBLE EXPOSURE SHOWING BOTH THE FORWARD AND REVERSE CHARACTERISTIC OF A ZENER DIODE

18.11 With 10 ma of reverse current flowing through the diode in figure 18B, about ________ volts appears across the diode. (Use the horizontal and vertical sensitivities for the reverse characteristics.)

0.7

18.12** Properly biased for normal zener diode operation, the diode in figure 18B will have about ______ volts of ______ voltage across its terminals.

93

18.13 END OF SET

is the symbol for a zener diode. Operated in breakdown, electron current will flow _______ the arrow in the (with, against) symbol. Power dissipation is limited by ______ considerations as other diodes.

19.1 A Z is added to the conventional diode symbol to indicate a zener diode. The zener diode is normally ______ biased in circuitry. (forward, reverse)

19.2 Rectifier diodes conduct heavily when forward biased and depend on carriers crossing the junction and becoming (majority, minority)

carriers which find imperfections and recombine.

19

reverse

19.3 The zener diode operates in a reverse biased mode and depends on carriers crossing the junction for current.

majority minority

19.4 Electrons from the P side of zener diodes are accelerated toward the N side and result in avalanche ______ beyond the zener knee.

19.5 Electrons will flow from the P side to the N side, or (with, against) the arrow in the zener diode symbol.

breakdown

0.7

FIGURE 20

19.9** A is the symbol for a ______ diode. Normal operation has electron current flowing from ______ to _____ in the symbol. ______ factors limit power dissipation in (The same, Different) this diode as/than other diodes.

reverse

19.10 END OF SET

Figure 20 compares the basic zener diode circuit with the familiar gas filled regulator tube or VR tube circuit. The VR tube is limited to a minimum voltage of about _______ volts, and current levels set by the internal geometry of the tube. The VR tube will have ______ drift for several minutes when first turned on.

20.1 The basic operations of the VR tube and the zener diode in figure 20 are the same. The applied voltage is ______ than the breakdown (higher, lower) voltage of the zener and the ionization level of the VR tube. The series ______ drops the added voltage.

70 voltage

20.2 The circuit to be supplied is connected across the output terminals and receives a regulated voltage. If the load current changes, the ______ of a zener diode (or VR tube) will change to compensate.

higher resistor

20.3 If the voltage of the d-c source in figure 20 changes value, the zener diode (or the VR tube) changes its current, dropping a different voltage across the ______ while holding output voltage constant.

current

20

20.4 One advantage of the zener diode over the VR tube is its availability over the entire voltage range from a few volts to several hundred volts. The VR tube is limited to the minimum ionization voltage of the gas used.

resistor

20.5 The minimum _______ voltage of gas used in VR tubes is about 70 volts. This means that VR tubes must operate at ______ volts or above.

no answer needed

20.6

The current in a VR tube is limited by the internal size and shape or geometry of the tube. If too much current flows, the tube burns up and, if too little current flows, the gas ______ and the tube does not function.

ionization 70

20.7

When first turned on, the VR tube gas takes a few minutes to stabilize. During this "warm up" period, the output voltage of the VR tube is not stable, while the zener has no measureable drift when first turned on.

de-ionizes

20.8 The output voltage of the VR tube will ______ when first turned on, while the zener diode output voltage will not.

no answer needed

20.9** The zener diode and the ______ tube are similar in operation, but with the zener diode offering a wider variety of ______, less ______ when first turned on and a wider range of currents, while holding ______ voltage near constant.

drift, vary, etc.

20.10 END OF SET

VR (voltage regulator voltages output or voltage drift output or diode

GATING FRAME - 21

21

The noise levels generated by the gaseous discharge in a VR tube and a magnitude. The zener diode in avalanche are of (the same, different) _____ can be suppressed by a shunting noise in a capacitor, while the same compensation on a _____ could cause it to break into relaxation oscillations. Optimum values of capacitors range from _____ to _____ $\mu fd.$

21.1

The continuous ionization and de-ionization of the gas in a VR tube, and the avalanche effects of the zener diode generate about the same amount of noise.

the same zener diode VR tube 0.01 0.1

21.2 A capacitor placed in shunt with the zener diode will reduce the by a factor of 10 when the capacitor has a value of

21.3 When placing a capacitor in shunt with a VR tube, the limited ionization current levels of the VR tube cause it to break into relaxation oscillations. Although the zener diode generates about the same amount of noise, it can be compensated with a shunt

noise

- 21.4
- A 0.01 μ fd to 0.1 μ fd capacitor in shunt with a zener diode will reduce the noise level by a factor of about 10.

21.5 The noise generated in a zener diode can be reduced to about one tenth its magnitude by addition of a shunt capacitor of about _____ μ fd to μ fd.

no answer needed

<pre>can be compensated with a shunt capacitor of 0.01 to</pre>
result in relaxation oscillation occuring.
0.01 0.1
0.01 0.1
0.1
0.1
0.1
21 / END UF SEL
a sector section out at escenses to it structure actives at the voltage sectors a
avalanche ionized zener diode 0.1 VR tube

22

A zener diode in avalanche breakdown has a _______temperature coefficient of voltage, and a forward biased diode has a ______ temperature coefficient of voltage at low currents. In series, they _______ compensate each other. Series opposed _______ diodes tend to temperature compensate each other.

22.1 An increase in temperature results in a decrease in the voltage across a forward biased diode. This is termed a negative temperature coefficient of voltage.

positive negative temperature zener

22.2 A diode in avalanche breakdown has a positive temperature coefficient of voltage, and the voltage across the diode will _______ with an increase in temperature.

no answer needed

22.3 Placed in series, the decrease in voltage across one will tend to offset the increase in voltage across the other with changes in

22.4 If one forward biased diode gives insufficient compensation, more may be added in ______ with the zener diode.

22.5

Since forward biased diodes and zeners (operating in avalanche breakdown) have opposite temperature coefficients of voltage, connected in series they temperature ______ each other and maintain a more constant output ______ with changes in temperature.

series

22.6 A forward biased zener diode in series with a zener diode operating in avalanche breakdown will have __________temperature (the same, opposite)

22.7 Zeners are available, connected in series opposition in the same encapsulation. This type of zener will tend to ______ compensate the ______ across its terminals.

22.8 Forward biased diodes in series with zener diodes are used for temperature compensation of voltage. An increase in temperature will cause an increase in the voltage across diode ______, and a decrease in the voltage across diode ______ in the diagram.

22.9** Compensating the positive temperature coefficient of voltage of a ________ with the negative temperature coefficient of voltage of a _______ diode results in very little change in voltage across both devices for a change in ______. Zener diodes connected in series opposition tend to temperature compen-

sate the _____ across the two devices.

B A

22.10 END OF SET

zener diode forward biased temperature voltage

신지 가격화 중 중

COURTESY: MOTOROLA SEMICONDUCTOR PRODUCTS, INC., PHOENIX, ARIZONA

0111900	51025180	Nominal Zamas Valtage	Test	Ma	x Zener Impedance		Max DC Zener	Max Forward	Typical
JEDEC TYPE NUMBER	MOTOROLA TYPE NO.	Zener Voltage (V_z) Volts	Current (I _{ZT}) mA	Z _{zT} @ I _{zT} ohms	Z _{zĸ} @ I _{zĸ} ohms	I _{ZK} mA	Current 55°C Base	Voltage (V_F) Volts $@I_F = 2$ Amps	Zener Voltage Temp. Coeff.
1N2970 1N2971 1N2972 1N2973	10M6.8Z 10M7.5Z 10M8.2Z 10M9.1Z	6.8 7.5 8.2 9.1	370 335 305 275	1.2 1.3 1.5 2.0	500 250 250 250	1.0 1.0 1.0 1.0	1,320 1,180 1,040 960	1.5 1.5 1.5 1.5	.040 .045 .048 .051
1N2974 1N2975 1N2976 1N2977	10M10Z 10M11Z 10M12Z 10M12Z 10M13Z	10 11 12 13	250 230 210 190	3 3 3 3	250 250 250 250 250	1.0 1.0 1.0 1.0	860 780 720 660	1.5 1.5 1.5 1.5	.055 .060 .065 .065
1N2979 1N2980 1N2982	10M15Z 10M16Z 10M18Z	15 16 18	170 155 140	3 4 4	250 250 250	1.0 1.0 1.0	560 530 460	1.5 1.5 1.5	.070 .070 .075
1N2984 1N2985 1N2986 1N2988	10M20Z 10M22Z 10M24Z 10M27Z	20 22 24 27	125 115 105 95	4 5 5 7	250 250 250 250	1.0 1.0 1.0 1.0	420 380 350 300	1.5 1.5 1.5 1.5	.075 .080 .080 .085
1N2989 1N2990 1N2991 1N2992 1N2993	10M30Z 10M33Z 10M36Z 10M39Z 10M43Z	30 33 36 39 43	85 75 70 65 60	8 9 10 11 12	300 300 300 300 400	1.0 1.0 1.0 1.0 1.0	280 260 230 210 195	1.5 1.5 1.5 1.5 1.5 1.5	.085 .085 .085 .085 .090
1N2995 1N2997 1N2999	10M47Z 10M51Z 10M56Z	47 51 56	55 50 45	14 15 16	400 500 500	1.0 1.0 1.0	175 160 150	1.5 1.5 1.5	.090 .090 .090
1N3000 1N3001 1N3002 1N3003 1N3004	10M62Z 10M68Z 10M75Z 10M82Z 10M91Z	62 68 75 82 91	40 37 33 30 28	17 18 22 25 35	600 600 600 700 800	1.0 1.0 1.0 1.0 1.0	130 120 110 100 85	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .090 .090
1N3005 1N3007 1N3008 1N3009	10M100Z 10M110Z 10M120Z 10M120Z	100 110 120 130	25 23 20 19	40 55 75 100	900 1,100 1,200 1,300	1.0 1.0 1.0 1.0	80 72 67 62	1.5 1.5 1.5 1.5	.090 .095 .095 .095
1N3011 1N3012 1N3014 1N3015	10M150Z 10M160Z 10M180Z 10M200Z	150 160 180 200	17 16 14 12	175 200 260 300	1,500 1,600 1,850 2,000	1.0 1.0 1.0 1.0	54 50 45 40	1.5 1.5 1.5 1.5	.095 .095 .095 .100
JEDEC TYPE NO.	MOTOROLA Type No.	$\begin{array}{c} \begin{array}{c} \text{Nominal} \\ \text{Zener Voltage} \\ \textcircled{0}{2} I_{ZT} \\ (V_Z) \text{ Volts} \end{array}$	Test Current (I _{ZT}) mA	Max Z _{ZT} @ I _{ZT} Ohms	Zener Impedance Z _{ZK} @ I _{ZK} Ohms	I _{zĸ} mA	Max DC Zener Current 55°C Base (I _{ZM}) mA	Max Forward Voltage V _F @ 10 amps	Typical Zener Voltage Temp. Coeff. % / ° C
1N2804 1N2805 1N2806 1N2807 1N2808	50M6.8Z 50M7.5Z 50M8.2Z 50M9.1Z 50M10Z	6.8 7.5 8.2 9.1 10	1850 1700 1500 1370 1200	0.2 0.3 0.4 0.5 0.6	70 70 70 70 80	5 5 5 5 5 5	6,600 5,900 5,200 4,800 4,300	1.5 1.5 1.5 1.5 1.5 1.5	.040 .045 .048 .051 .055
1N2809 1N2810 1N2811 1N2813 1N2814	50M11Z 50M12Z 50M13Z 50M15Z 50M15Z 50M16Z	11 12 13 15 16	1100 1000 960 830 780	0.8 1.0 1.1 1.4 1.6	80 80 80 80 80	5 5 5 5 5 5	3,900 3,600 3,300 2,800 2,650	1.5 1.5 1.5 1.5 1.5 1.5	.060 .065 .065 .070 .070
1N2816 1N2818 1N2819 1N2820 1N2822	50M18Z 50M20Z 50M22Z 50M24Z 50M24Z 50M27Z	18 20 22 24 27	700 630 570 520 460	2.0 2.4 2.5 2.6 2.8	80 80 80 80 90	5 5 5 5 5 5	2,300 2,100 1,900 1,750 1,500	1.5 1.5 1.5 1.5 1.5 1.5	.075 .075 .080 .080 .085
1N2823 1N2824 1N2825 1N2826 1N2827	50M30Z 50M33Z 50M36Z 50M39Z 50M43Z	30 33 36 39 43	420 380 350 320 290	3.0 3.2 3.5 4.0 4.5	90 90 90 90 90	5 5 5 5 5	1,400 1,300 1,150 1,050 975	1.5 1.5 1.5 1.5 1.5	.085 .085 .085 .090 .090
1N2829 1N2831 1N2833 1N2834 1N2835	50M47Z 50M51Z 50M62Z 50M68Z 50M75Z	47 51 62 68 75	270 245 200 180 170	5.0 5.2 7 8 9	100 100 120 140 150	5555	880 810 660 600 540	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .090 .090
1N2836 1N2837 1N2838 1N2840 1N2841	50M82Z 50M91Z 50M100Z 50M110Z 50M120Z	82 91 100 110 120	150 140 120 110 100	11 15 20 30 40	160 180 200 220 240	5 5 5 5 5 5 5	490 420 400 365 335	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .095 .095
1N2842 1N2843 1N2844 1N2845 1N2845	50M130Z 50M150Z 50M160Z 50M180Z 50M200Z	130 150 160 180 200	95 85 80 68 65	50 75 80 90 100	275 400 450 525 600	5 5 5 5 5 5	310 270 250 220 200	1.5 1.5 1.5 1.5 1.5	.095 .095 .095 .095 .100

FIGURE 23

The 10 watt, 47 volt zener diode listed in figure 23 will offer ______ ohms impedance to an a-c signal when operated at the nominal zener voltage, and has a _____%/°C zener voltage temperature coefficient.

23.1 The number preceeding the M in the Motorola type number indicates the wattage rating, while the number following the M indicates the nominal zener voltage.

14 0.09

23

23.2 The IN2_____ is a 10 watt, 47 volt zener diode, and the nominal zener voltage was measured at a test current of _____ma.

no answer needed

23.3 The zener voltage of a given zener diode will vary with both zener current and ______.

995 55

COURTESY: MOTOROLA SEMICONDUCTOR PRODUCTS	, INC.,	, PHOENIX,	ARIZONA
---	---------	------------	---------

	MOTOROLA TYPE NO.	Nominal Zener Voltage @ I _{ZT} (Vz) Volts	Test Current (I _{ZT}) mA	Ma	x Zener Impedance		Max DC Zener Current 55°С Base (І _{гм}) mA	Max Forward Voltage	
JEDEC TYPE NUMBER				Z _{zT} @ I _{zT} ohms	Z _{zk} @ I _{zk} ohms	Izĸ mA		(V_F) Volts $@I_F = 2$ Amps	
1N2970	10M6.8Z	6.8	370	1.2	500	1.0	1,320	1.5	.040
1N2971	10M7.5Z	7.5	335	1.3	250	1.0	1,180	1.5	.045
1N2972	10M8.2Z	8.2	305	1.5	250	1.0	1,040	1.5	.048
1N2973	10M9.1Z	9.1	275	2.0	250	1.0	960	1.5	.051
1N2974	10M10Z	10	250	3	250	1.0	860	1.5	.055
1N2975	10M11Z	11	230	3	250	1.0	780	1.5	.060
1N2976	10M12Z	12	210	3	250	1.0	720	1.5	.065
1N2977	10M13Z	13	190	3	250	1.0	660	1.5	.065
1N2979	10M15Z	15	170	3	250	1.0	560	1.5	.070
1N2980	10M16Z	16	155	4	250	1.0	530	1.5	.070
1N2982	10M18Z	18	140	4	250	1.0	460	1.5	.075
1N2984	10M20Z	20	125	4	250	1.0	420	1.5	.075
1N2985	10M22Z	22	115	5	250	1.0	380	1.5	.080
1N2986	10M24Z	24	105	5	250	1.0	350	1.5	.080
1N2988	10M27Z	27	95	7	250	1.0	300	1.5	.085
1N2989	10M30Z	30	85	8	300	1.0	280	1.5	.085
1N2990	10M33Z	33	75	9	300	1.0	260	1.5	.085
1N2991	10M36Z	36	70	10	300	1.0	230	1.5	.085
1N2992	10M39Z	39	65	11	300	1.0	210	1.5	.085
1N2993	10M43Z	43	60	12	400	1.0	195	1.5	.090
1N2995	10M47Z	47	55	14	400	1.0	175	1.5	.090
1N2997	10M51Z	51	50	15	500	1.0	160	1.5	.090
1N2999	10M56Z	56	45	16	500	1.0	150	1.5	.090
1N3000 1N3001 1N3002 1N3003 1N3004	10M62Z 10M68Z 10M75Z 10M82Z 10M91Z	62 68 75 82 91	40 37 33 30 28	17 18 22 25 35	600 600 600 700 800	1.0 1.0 1.0 1.0 1.0	130 120 110 100 85	1.5 1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .090 .090
1N3005	10M100Z	100	25	40	900	1.0	80	1.5	.090
1N3007	10M110Z	110	23	55	1,100	1.0	72	1.5	.095
1N3008	10M120Z	120	20	75	1,200	1.0	67	1.5	.095
1N3009	10M120Z	130	19	100	1,300	1.0	62	1.5	.095
1N3011 1N3012 1N3014 1N3015	10M150Z 10M160Z 10M180Z 10M200Z	150 160 180 200	17 16 14 12	175 200 260 300	1,500 1,600 1,850 2,000	1.0 1.0 1.0 1.0	54 50 45 40	1.5 1.5 1.5 1.5 1.5	.095 .095 .095 .100
JEDEC TYPE NO.	MOTOROLA Type No.	Nominal Zener Voltage @ I _{ZT} (V _Z) Volts	Test Current (I _{ZT}) mA	Z _{ZT} @ I _{ZT} Ohms	Zzκ @ Izκ Ohms	$I_{z\kappa}$ mA	Max DC Zener Current 55°C Base (I _{ZM}) mA	Max Forward Voltage V _F @ 10 amps	Typical Zener Voltag Temp. Coeff %/°C
1N2804 1N2805 1N2806 1N2807 1N2807 1N2808	50M6.8Z 50M7.5Z 50M8.2Z 50M9.1Z 50M10Z	6.8 7.5 8.2 9.1 10	1850 1700 1500 1370 1200	0.2 0.3 0.4 0.5 0.6	70 70 70 70 80	5 5 5 5 5 5	6,600 5,900 5,200 4,800 4,300	1.5 1.5 1.5 1.5 1.5	.040 .045 .048 .051 .055
1N2809 1N2810 1N2811 1N2813 1N2814	50M11Z 50M12Z 50M13Z 50M15Z 50M15Z 50M16Z	11 12 13 15 16	1100 1000 960 830 780	0.8 1.0 1.1 1.4 1.6	80 80 80 80 80	5 5 5 5 5	3,900 3,600 3,300 2,800 2,650	1.5 1.5 1.5 1.5 1.5 1.5	.060 .065 .065 .070 .070
1N2816	50M18Z	18	700	2.0	80	5	2,300	1.5	.075
1N2818	50M20Z	20	630	2.4	80	5	2,100	1.5	.075
1N2819	50M22Z	22	570	2.5	80	5	1,900	1.5	.080
1N2820	50M24Z	24	520	2.6	80	5	1,750	1.5	.080
1N2822	50M27Z	27	460	2.8	90	5	1,500	1.5	.085
1N2823	50M30Z	30	420	3.0	90	5	1,400	1.5	.085
1N2824	50M33Z	33	380	3.2	90	5	1,300	1.5	.085
1N2825	50M36Z	36	350	3.5	90	5	1,150	1.5	.085
1N2826	50M39Z	39	320	4.0	90	5	1,050	1.5	.090
1N2827	50M43Z	43	290	4.5	90	5	975	1.5	.090
1N2829 1N2831 1N2833 1N2834 1N2835	50M47Z 50M51Z 50M62Z 50M68Z 50M75Z	47 51 62 68 75	270 245 200 180 170	5.0 5.2 7 8 9	100 100 120 140 150	5 5 5 5 5 5	880 810 660 600 540	$ \begin{array}{r} 1.5 \\ 1$.090 .090 .090 .090 .090
1N2836 1N2837 1N2838 1N2840 1N2841	50M82Z 50M91Z 50M100Z 50M100Z 50M120Z	82 91 100 110 120	150 140 120 110 100	11 15 20 30 40	160 180 200 220 240	5 5 5 5 5 5	490 420 400 365 335	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .095 .095
1N2842	50M130Z	130	95	50	275	5	310	1.5	.095
1N2843	50M150Z	150	85	75	400	5	270	1.5	.095
1N2844	50M160Z	160	80	80	450	5	250	1.5	.095
1N2845	50M180Z	180	68	90	525	5	220	1.5	.095
1N2845	50M200Z	200	65	100	600	5	200	1.5	.100

FIGURE 23

temperature

23.5

A change in temperature of 10°C will cause a change of ______ the nominal zener voltage of a 1N2995 zener diode. % of

degree centigrade

23.6 A zener diode operating at its nominal voltage has sufficient 60 cycle voltage applied to cause an a-c current to flow equal to one-tenth of the zener current. The opposition to a-c current is calculated and given the symbol Z_{ZT}. The IN2995 in figure 23 has a Z_{ZT} of ______ ohms.

 $0.09\%/^{\circ}C \times 10^{\circ}C = 0.9\%$

23.7

The a-c impedance is also measured in the same fashion just beyond the zener knee and given the symbol Z_{ZK} . Z_{ZK} of the IN2995 is ______ ohms.

14

COURTESY: MOTOROLA SEMICONDUCTOR PRODUCTS, INC., PHOENIX, ARIZONA

JEDEC TYPE NUMBER	MOTOROLA TYPE NO.	Nominal Zener Voltage @ I _{ZT} (Vz) Volts	Test Current - (I _{ZT}) mA	Ma	x Zener Impedance		Max DC Zener	Max Forward Voltage	Typical Zener Voltage Temp. Coeff. %/°C
				Z _{zT} @ I _{zT} ohms	Z _{zĸ} @ I _{zĸ} ohms	I _{zĸ} mA	Current 55°C Base (I _{ZM}) mA	(V_F) Volts $@I_F = 2$ Amps	
1N2970 1N2971 1N2972 1N2973	10M6.8Z 10M7.5Z 10M8.2Z 10M9.1Z	6.8 7.5 8.2 9.1	370 335 305 275	1.2 1.3 1.5 2.0	500 250 250 250	1.0 1.0 1.0 1.0	1,320 1,180 1,040 960	1.5 1.5 1.5 1.5	.040 .045 .048 .051
1N2974 1N2975 1N2976 1N2977	10M10Z 10M11Z 10M12Z 10M13Z	10 11 12 13	250 230 210 190	3 3 3 3	250 250 250 250	1.0 1.0 1.0 1.0	860 780 720 660	1.5 1.5 1.5 1.5	.055 .060 .065 .065
1N2979 1N2980 1N2982	10M15Z 10M16Z 10M18Z	15 16 18	170 155 140	3 4 4	250 250 250	1.0 1.0 1.0	560 530 460	1.5 1.5 1.5	.070 .070 .075
1N2984 1N2985 1N2986 1N2988	10M20Z 10M22Z 10M24Z 10M27Z	20 22 24 27	125 115 105 95	4 5 5 7	250 250 250 250	1.0 1.0 1.0 1.0	420 380 350 300	1.5 1.5 1.5 1.5	.075 .080 .080 .085
1N2989 1N2990 1N2991 1N2992 1N2993	10M30Z 10M33Z 10M36Z 10M39Z 10M43Z	30 33 36 39 43	85 75 70 65 60	8 9 10 11 12	300 300 300 300 400	1.0 1.0 1.0 1.0 1.0	280 260 230 210 195	1.5 1.5 1.5 1.5 1.5 1.5	.085 .085 .085 .085 .085 .090
1 N2995 1 N2997 1 N2999	10M47Z 10M51Z 10M56Z	47 51 56	55 50 45	14 15 16	400 500 500	1.0 1.0 1.0	175 160 150	1.5 1.5 1.5	.090 .090 .090
1N3000 1N3001 1N3002 1N3003 1N3004	10M62Z 10M68Z 10M75Z 10M82Z 10M91Z	62 68 75 82 91	40 37 33 30 28	17 18 22 25 35	600 600 600 700 800	1.0 1.0 1.0 1.0 1.0	130 120 110 100 85	1.5 1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .090 .090
I N3005 I N3007 I N3008 I N3009	10M100Z 10M110Z 10M120Z 10M120Z	100 110 120 130	25 23 20 19	40 55 75 100	900 1,100 1,200 1,300	1.0 1.0 1.0 1.0	80 72 67 62	1.5 1.5 1.5 1.5	.090 .095 .095 .095
IN3011 IN3012 IN3014 IN3015	10M150Z 10M160Z 10M180Z 10M200Z	150 160 180 200	17 16 14 12	175 200 260 300	1,500 1,600 1,850 2,000	1.0 1.0 1.0 1.0	54 50 45 40	1.5 1.5 1.5 1.5	.095 .095 .095 .100
JEDEC YPE NO.	MOTOROLA TYPE NO.	Nominal Zener Voltage @ I _{ZT} (V _Z) Volts	Test Current (I _{ZT}) mA	Max Z _{zr} @ I _{zr} Ohms	Zener Impedance Z _{ZK} @ I _{ZK} Ohms	I _{zĸ} mA	Max DC Zener Current 55°C Base (I _{ZM}) mA	Max Forward Voltage V _F @ 10 amps	Typical Zener Voltag Temp. Coeff %/°C
1N2804 1N2805 1N2806 1N2807 1N2808	50M6.8Z 50M7.5Z 50M8.2Z 50M9.1Z 50M10Z	6.8 7.5 8.2 9.1 10	1850 1700 1500 1370 1200	0.2 0.3 0.4 0.5 0.6	70 70 70 70 80	5 5 5 5 5 5 5 5 5	6,600 5,900 5,200 4,800 4,300	1.5 1.5 1.5 1.5 1.5 1.5	.040 .045 .048 .051 .055
IN2809 IN2810 IN2811 IN2813 IN2814	50M11Z 50M12Z 50M13Z 50M15Z 50M15Z 50M16Z	11 12 13 15 16	1100 1000 960 830 780	0.8 1.0 1.1 1.4 1.6	80 80 80 80 80	55555	3,900 3,600 3,300 2,800 2,650	1.5 1.5 1.5 1.5 1.5	.060 .065 .065 .070 .070
IN2816 IN2818 IN2819 IN2820 IN2822	50M18Z 50M20Z 50M22Z 50M24Z 50M27Z	18 20 22 24 27	700 630 570 520 460	2.0 2.4 2.5 2.6 2.8	80 80 80 80 90	5 5 5 5 5	2,300 2,100 1,900 1,750 1,500	1.5 1.5 1.5 1.5 1.5 1.5	.075 .075 .080 .080 .085
IN2823 IN2824 IN2825 IN2826 IN2827	50M30Z 50M33Z 50M36Z 50M39Z 50M43Z	30 33 36 39 43	420 380 350 320 290	3.0 3.2 3.5 4.0 4.5	90 90 90 90 90	5 5 5 5 5 5 5	1,400 1,300 1,150 1,050 975	1.5 1.5 1.5 1.5 1.5	.085 .085 .085 .090 .090
IN2829 IN2831 IN2833 IN2834 IN2835	50M47Z 50M51Z 50M62Z 50M68Z 50M75Z	47 51 62 68 75	270 245 200 180 170	5.0 5.2 7 8 9	100 100 120 140 150	5 5 5 5 5 5	880 810 660 600 540	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .090 .090
1 N2836 1 N2837 1 N2838 1 N2840 1 N2841	50M82Z 50M91Z 50M100Z 50M110Z 50M120Z	82 91 100 110 120	150 140 120 110 100	11 15 20 30 40	160 180 200 220 240	ភភភភភ	490 420 400 365 335	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .095 .095
1N2842 1N2843 1N2844 1N2845 1N2846	50M130Z 50M150Z 50M160Z 50M180Z 50M200Z	130 150 160 180 200	95 85 80 68 65	50 75 80 90 100	275 400 450 525 600	5 5 5 5 5 5	310 270 250 220 200	1.5 1.5 1.5 1.5 1.5	.095 .095 .095 .095 .100

FIGURE 23

23.8 The nominal zener voltage is followed by a Z in the Motorola type number, indicating a zener diode. The number following the Z indicates the tolerance.

400

23.9

No number following the Z indicates 20% tolerance. A 10 following the Z indicates a 10% ______.

no answer needed

23.10 A 10M100Z10 is a ______ watt, _____ volt zener diode having a _____% voltage tolerance.

tolerance

10 100 10

23.11 The zener diode 10M100Z10 can have a zener voltage ranging from a low of ______ volts to a high of ______ volts.

COURTESY: MOTOROLA SEMICONDUCTOR PRODUCTS, INC., PHOENIX, ARIZONA

		Nominal	Test	Max	Zener Impedance	1101110	Max DC Zener	Max Forward	herwise specif
JEDEC TYPE UMBER	MOTOROLA TYPE NO.	Zener Voltage @ I _{ZT} (V _Z) Volts	(I _{ZT}) mA	Z _{zT} @ I _{zT} ohms	Z _{zк} @ I _{zк} ohms	Izĸ mA	Current 55°C Base (I _{ZM}) mA	Voltage (V_F) Volts $@I_F = 2$ Amps	Zener Voltage Temp. Coeff. %/°C
1N2970 1N2971 1N2972 1N2973	10M6.8Z 10M7.5Z 10M8.2Z 10M9.1Z	6.8 7.5 8.2 9.1	370 335 305 275	1.2 1.3 1.5 2.0	500 250 250 250 250	1.0 1.0 1.0 1.0	1,320 1,180 1,040 960	1.5 1.5 1.5 1.5	.040 .045 .048 .051
IN2974 IN2975 IN2976 IN2977	10M10Z 10M11Z 10M12Z 10M12Z	10 11 12 13	250 230 210 190	3 3 3 3 3	250 250 250 250	1.0 1.0 1.0 1.0	860 780 720 660	1.5 1.5 1.5 1.5	.055 .060 .065 .065
1N2979 1N2980 1N2982	10M15Z 10M16Z 10M18Z	15 16 18	170 155 140	3 4 4	250 250 250	1.0 1.0 1.0	560 530 460	1.5 1.5 1.5	.070 .070 .075
1N2984 1N2985 1N2986 1N2988	10M20Z 10M22Z 10M24Z 10M27Z	20 22 24 27	125 115 105 95	4 5 5 7	250 250 250 250	1.0 1.0 1.0 1.0	420 380 350 300	1.5 1.5 1.5 1.5	.075 .080 .080 .085
1N2989 1N2990 1N2991 1N2992 1N2993	10M30Z 10M33Z 10M36Z 10M39Z 10M43Z	30 33 36 39 43	85 75 70 65 60	8 9 10 11 12	300 300 300 300 400	1.0 1.0 1.0 1.0 1.0	280 260 230 210 195	1.5 1.5 1.5 1.5 1.5 1.5	.085 .085 .085 .085 .090
1 N2995 1 N2997 1 N2999	10M47Z 10M51Z 10M56Z	47 51 56	55 50 45	14 15 16	400 500 500	1.0 1.0 1.0	175 160 150	1.5 1.5 1.5	.090 .090 .090
1N3000 1N3001 1N3002 1N3003 1N3004	10M62Z 10M68Z 10M75Z 10M82Z 10M91Z	62 68 75 82 91	40 37 33 30 28	17 18 22 25 35	600 600 600 700 800	1.0 1.0 1.0 1.0 1.0	130 120 110 100 85	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .090 .090
1N3005 1N3007 1N3008 1N3009	10M100Z 10M110Z 10M120Z 10M120Z	100 110 120 130	25 23 20 19	40 55 75 100	900 1,100 1,200 1,300	1.0 1.0 1.0 1.0	80 72 67 62	1.5 1.5 1.5 1.5	.090 .095 .095 .095
IN3011 IN3012 IN3014 IN3015	10M150Z 10M160Z 10M180Z 10M200Z	150 160 180 200	17 16 14 12	175 200 260 300	1,500 1,600 1,850 2,000	1.0 1.0 1.0 1.0	54 50 45 40	1.5 1.5 1.5 1.5 1.5	.095 .095 .095 .100
JEDEC YPE NO.	MOTOROLA TYPE NO.	Nominal Zener Voltage @ I _{ZT} (V _Z) Volts	Test Current (I _{ZT}) mA	Max Z _{ZT} @ I _{ZT} Ohms	Zener Impedance Z _{ZK} @ I _{ZK} Ohms	I _{zĸ} mA	Max DC Zener Current 55°C Base (I _{ZM}) mA	Max Forward Voltage V _F @ 10 amps	Typical Zener Voltag Temp. Coeff %/°C
1N2804 1N2805 1N2806 1N2807 1N2808	50M6.8Z 50M7.5Z 50M8.2Z 50M9.1Z 50M10Z	6.8 7.5 8.2 9.1 10	1850 1700 1500 1370 1200	0.2 0.3 0.4 0.5 0.6	70 70 70 70 80	5 5 5 5 5 5	6,600 5,900 5,200 4,800 4,300	1.5 1.5 1.5 1.5 1.5	.040 .045 .048 .051 .055
1N2809 1N2810 1N2811 1N2813 1N2814	50M11Z 50M12Z 50M13Z 50M15Z 50M15Z	11 12 13 15 16	1100 1000 960 830 780	0.8 1.0 1.1 1.4 1.6	80 80 80 80 80	5 5 5 5 5	3,900 3,600 3,300 2,800 2,650	1.5 1.5 1.5 1.5 1.5	.060 .065 .065 .070 .070
1N2816 1N2818 1N2819 1N2820 1N2822	50M18Z 50M20Z 50M22Z 50M24Z 50M27Z	18 20 22 24 27	700 630 570 520 460	2.0 2.4 2.5 2.6 2.8	80 80 80 80 90	5 5 5 5 5 5	2,300 2,100 1,900 1,750 1,500	1.5 1.5 1.5 1.5 1.5 1.5	.075 .075 .080 .080 .085
1N2823 1N2824 1N2825 1N2826 1N2827	50M30Z 50M33Z 50M36Z 50M39Z 50M43Z	30 33 36 39 43	420 380 350 320 290	3.0 3.2 3.5 4.0 4.5	90 90 90 90 90	5 5 5 5 5	1,400 1,300 1,150 1,050 975	1.5 1.5 1.5 1.5 1.5	.085 .085 .085 .090 .090
1N2829 1N2831 1N2833 1N2833 1N2834 1N2835	50M47Z 50M51Z 50M62Z 50M68Z 50M75Z	47 51 62 68 75	270 245 200 180 170	5.0 5.2 7 8 9	100 100 120 140 150	5 5 5 5 5 5 5	880 810 660 600 540	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .090 .090
1N2836 1N2837 1N2838 1N2840 1N2841	50M82Z 50M91Z 50M100Z 50M110Z 50M120Z	82 91 100 110 120	150 140 120 110 100	11 15 20 30 40	160 180 200 220 240	5 5 5 5 5 5 5 5	490 420 400 365 335	1.5 1.5 1.5 1.5 1.5	.090 .090 .090 .095 .095
1N2842 1N2843 1N2844 1N2845	50M130Z 50M150Z 50M160Z 50M180Z 50M200Z	130 150 160 180 200	95 85 80 68 65	50 75 80 90 100	275 400 450 525 600	5 5 5 5	310 270 250 220 200	1.5 1.5 1.5 1.5 1.5	.095 .095 .095 .095 .100

FIGURE 23

23.12 The a-c impedance of the 10M100Z is ______ ohms at the nominal zener voltage and test current.

 $\frac{90}{110}$

23.13** A 1N2835 can pass a maximum of ______ma of zener current (at 55°C), and dissipate ______watts of power (at 30°C), and has a nominal zener voltage of ______volts. (Refer to figure 23.)

40

23.14 END OF SET

540 50 75 Some diodes designed for power rectifier service have controlled doping for a predictable ______ breakdown voltage. This gives the added advantage of peak inverse ______.

24.1 Controlling the doping levels and the geometry of the junction of power rectifier diodes allows the reverse breakdown point to be controlled as with the diode.

reverse clipping or limiting

24.2 If the applied voltage swings above the reverse breakdown of the diode, clipping occurs. During clipping, the current is limited by the in the circuit.

zener

24.3 Such a diode will serve as a rectifier and give the added advantage of peak ______.

series resistance

24.4 Power rectifiers with predictable reverse breakdown voltages may be used to set voltage levels or clip at a given voltage where the accuracy is not too critical.

inverse (reverse) limiting (clipping)

24.5 Sometimes termed an avalanche diode, this device may be used to insure that the output point of a vacuum tube or transistor circuit does not swing beyond an approximate level (as an example).

no answer needed

24.6

Constructing a power rectifier with a predictable reverse breakdown voltage combines some of the characteristics of the ______ diode with the power rectifier.

no answer needed

24.7** Diodes with predictable reverse breakdown voltage, while designed to function as rectifiers, give the added advantage of

zener

peak inverse limiting

that the cutors point of a vacuum tube or

25

Sufficient impurities can be added to an intrinsic semiconductor forming a PN junction that is in tunnel breakdown with zero bias applied and does not come out of breakdown until a value of ______ bias is applied. ______ and _____ diodes are formed in this fashion.

25.1

Increasing the amount of doping impurities used to form the PN junction reduces the voltage level at which the diode enters breakdown. Breakdown occuring below approximately 6 volts is generally due to _____

25.2

tunneling

Increasing the doping levels beyond the point where breakdown occurs at zero volts, results in the diode remaining in breakdown with forward voltage applied. 100 ma 10 ma

25.4 The diode exhibits a near zero volt turn-on characteristic when doped heavy enough to have ______ breakdown occuring in the

_____ voltage region.

tunnel

25.5 Tunnel diodes and backward diodes are both heavily doped junctions that have ______ breakdown occuring with forward voltage applied.

tunnel forward 25.6 An El curve of a diode showing the diode in tunnel breakdown with forward bias applied must be for a ______ or a _____ diode.

tunnel

25.7

Tunnel diodes and backward diodes are doped with sufficient impurities to cause tunnel breakdown to occur between the ______ volts point and the normal forward turn on voltage point.

25.8

The tunnel and the backward diode are constructed in much the same fashion. Heavy doping causes a very ______ junction and enhances ______ breakdown.

zero

25.9**

diodes and _____ diodes are formed

by heavy doping, causing the tunnel breakdown point to occur in the

bias region.

(forward, reverse)

narrow tunnel

25.10 END OF SET

> tunnel backward forward

Tunnel diodes are so heavily doped that the fermi levels are moved into the _____ band in the N side and into the _____ band in the P side. The fermi levels must line up for a state of balance or equilibrium to exist, and in a tunnel diode the bands of the two sides when the diode is at equilibrium.

side doped heavy enough to 26.1 The tunnel diode has the move the fermi level into the band as shown in the

diagram.

EN ERGY

conduction valence overlap

CRYSTAL WIDTH SEMICONDUCTOR HEAVILY DOPED WITH DONOR INPURITIES

FERMI

CONDUCTION BAND

VALENCE BAND

The tunnel diode has the ______ side doped heavy enough to 26.2 move the fermi level into the diagram.

CONDUCTION BAND

band as shown in the

ENERGY

FERMI VALENCE BAND

CRYSTAL WIDTH

SEMICONDUCTOR HEAVILY DOPED WITH ACCEPTOR IMPURITIES

N conduction

levels

26.4 With the tunnel diode fermi levels lined up with no external energy applied, there is an overlapping of the ______ band in the P side.

CONDUCT ION RAND FERMI LEVEL **OVERLAP** BAND fermi

26.5

For this program, the process known as "quantum mechanical tunneling" will be simplified to the process of an electron on one side of the junction or barrier crossing the junction without having sufficient energy to do so in the normal fashion. It is possible in narrow junctions when the bands are overlapped for electrons to move with great speed from the valence band of the P side to the conduction band of the N side and vice versa, instead of moving from the conduction band of one side to the conduction band of the other side.

conduction valence

With no external energy applied, carriers are sitting at the same energy levels on both sides of the junction. Tunneling takes place in both directions by the same amount, and the net current flow is

no answer needed

26.7**

Tunnel diodes are formed by doping N and P sides into a semiconductor so heavily that the fermi level is in the conduction band of the _______ side, and in the valence band of the _______ side, and these two bands _______ at zero bias.

26.8 END OF SET

N P overlap

26.6

GATING FRAME - 27

Tunneling at zero bias is possible when there is an ______ of the energy bands. The negative resistance region of the tunnel diode curve occurs as the bands _______ when ______ bias is applied. Reverse bias results in an increase in tunneling from the ______ to the ______ side.

27.1

27

Figure 27A is the energy band diagram of a tunnel diode at equilibrium. The ______ levels are alligned, and the net current is

overlap uncross forward P N

27.2

The net current is zero in figure 27A, because the number of ______ electrons is the same from N to P material and vice-versa.

fermi zero

27.3

For this program, the process known as "quantum mechanical tunneling" will be simplified to the process of an electron on one side of the junction or barrier crossing the junction without having sufficient energy to do so in the normal fashion. It is possible in narrow junctions when the bands are overlapped for electrons to move with great speed from the valence band of the P side to the conduction band of the N side and vice-versa, instead of moving from the conduction band of one side to the conduction band of the other side.

tunneling

27.4 Figure 27B has a small amount of forward bias applied, and increased tunneling is enhanced from the ______ side to the ______ side.

no answer needed

27.5

Tunneling from the N side to the P side is increased with application of a small ______ bias.

27.6 The net current is no longer zero, but depends on the increase in the number of electrons that ______ as a result of the application of forward bias.

forward

27.7 The letter designations on the tunnel diode El curve in figure 27 indicate the points on the curve that correspond to the energy band diagram marked with the same letter.

tunnel

Figure 27C has sufficient forward bias applied to start uncrossing the bands. Part of the conduction band of the N side has been lifted opposite the band

no answer needed

27.9

Tunneling is reduced when the bands start to uncross. The current will start to with the condition in figure 27C. (increase, decrease)

27.10

A further increase in forward bias, as shown in figure 27D, results in the complete uncrossing of the bands, and current falls to its _____ value.

decrease

gap

27.11 A still further increase in forward bias lifts the _____ band of the N side opposite the conduction band of the P side, and normal diode forward current results, as shown in figure 27E.

minimum

27.8

27.12 The portion of the diode curve in figure 27 between points B and D has current decreasing with an increase in voltage. This represents a _ resistance or conductance. (negative, positive)

conduction

27.13

Figure 27F has reverse bias applied, and tunneling is increased from the ______ side to the ______ side.

negative

27.14 The complete El curve in figure 27 shows the tunnel diode turning on at or near zero volts of ______ or _____ voltage.

Ρ Ν

27.15 The portion of the El curve (in figure 27) from A to F and from A to B represents a _____ resistance, while the portion from B to D represents a _____ resistance, and then the portion from D on once again represents a _____ resistance.

> forward reverse

27.16

At zero bias, the tunnel diode has the conduction band of the N side and the valence band of the P side overlapped and separated by a

junction.

positive negative positive

narrow

27.17 The ______ of the bands at zero bias enhances tunneling. Application of ______ voltage increases tunneling from the (forward, reverse) N to the P side.

27.18**

A tunnel diode has the conduction band of the N side and the valence band of the P side _______ at zero bias. As forward voltage is applied, the bands uncross and a negative _______ characteristic results. Further increase in ______ voltage after the bands are uncrossed results in normal diode current. The tunnel diode turns on at near zero volts of ______ or

voltage.

overlap forward

27.19 END OF SET

overlapped, opposite one another resistance or conductance forward forward reverse

TEST SET-UP: TEKTRONIX TYPE 547 OSCILLOSCOPE, TYPE 'O' OPERATIONAL AMPLIFIER PLUG-IN WITH TUNNEL DIODE DRIVER ADAPTER*. PHOTO BELOW TAKEN WITH TEKTRONIX TYPE C-12 OSCILLOSCOPE CAMERA.

* NON-PRODUCTION ITEM

FIGURE 28

GATING FRAME - 28

Point A in figure 28 is termed	, and its
magnitude is determined by junction	Point B is
termed	, and its magnitude is a
measure of the	of the tunnel diode. Point C
is termed	, and Point D is termed
	Both of their magnitudes are de-
termined by the type of	used. The portion of the
tunnel diodes El curve between C and	D represents a
resistance or conductance.	

28.1 Point A in figure 28 is the point at which the bands start to uncross. Tunnel current is at its <u>peak</u> and the magnitude at this point is termed current.

peak current
geometry, size, etc.
valley current
merit, etc.
peak voltage
valley voltage
semiconductors
negative

28.2

Peak current magnitude is dependent on the number of electrons that can tunnel. A large junction cross section will allow _______ electrons (more, less)

28

peak

TEST SET-UP: TEKTRONIX TYPE 547 OSCILLOSCOPE, TYPE 'O'' OPERATIONAL AMPLIFIER PLUG-IN WITH TUNNEL DIODE DRIVER ADAPTER*. PHOTO BELOW TAKEN WITH TEKTRONIX TYPE C-12 OSCILLOSCOPE CAMERA.

* NON-PRODUCTION ITEM

STREET FRANKE ... SH

Peak current magnitude is determined by the geometry of the junction. 28.3 Tunnel diodes are etched to size, and this sets the value of _____

more

Point B in figure 28 is termed valley current. This is the point of 28.4 minimum current as the bands uncross. It gets its name because it lies in the _____ between the two slopes.

peak current

28.5

Point C in figure 28 is the voltage point at which peak current occurs and is termed

valley

Point D is the voltage point at which valley current occurs and is 28.6 termed

peak voltage

TEST SET-UP: TEKTRONIX TYPE 547 OSCILLOSCOPE, TYPE 'O' OPERATIONAL AMPLIFIER PLUG-IN WITH TUNNEL DIODE DRIVER ADAPTER*. PHOTO BELOW TAKEN WITH TEKTRONIX TYPE C-12 OSCILLOSCOPE CAMERA.

* NON-PRODUCTION ITEM

28.7 The type of semiconductor used determines the magnitude of peak and valley voltage. Typical peak and valley voltage for germanium tunnel diodes are 100 mvolts and 350 mvolts respectively.

valley voltage

28.8

The El curve in figure 28A ______ for a germanium tunnel diode.

no answer needed

28.9 Figure 28A is an El curve of a germanium tunnel diode. V_p (peak voltage) is approximately ______ mvolts, and V_V (valley voltage) is approximately ______ mvolts.

is

28.10 I_P (peak current) in figure 28A is approximately _____ ma, and I_V (valley current) is approximately _____ ma.

> 100 325

TEST SET-UP: TEKTRONIX TYPE 547 OSCILLOSCOPE, TYPE 'O'' OPERATIONAL AMPLIFIER PLUG-IN WITH TUNNEL DIODE DRIVER ADAPTER*. PHOTO BELOW TAKEN WITH TEKTRONIX TYPE C-12 OSCILLOSCOPE CAMERA.

* NON-PRODUCTION ITEM

DOUBLE EXPOSURE SHOWING TUNNEL DIODE EI CURVE (TOP) AND CONDUCTANCE CURVE (BOTTOM)

FIGURE 28B

28.11 Figure 28B indicates that the peak current point is the point of change from a positive to a ______ conductance.

10 0.5

28.12 The negative conductance (or resistance) portion of the tunnel diode curve occurs between ______ voltage and ______ voltage.

negative

28.13 The negative conductance changes to a ______ conductance at the valley current point, as shown in figure 28B.

peak valley

28.14

The amount of noise generated in the tunnel diode appears to be related to the amount of valley current flowing. The greater the magnitude of valley current, the greater the ______.

positive

28.15 The magnitude of negative conductance depends on the ratio of peak current to valley current. The lower the magnitude of <u>estimate was a</u> current, the better the tunnel diode in most cases.

noise

28.16 A figure of merit for a tunnel diode is the magnitude of _____ current.

valley

The magnitude of peak current is determined by junction 28.17** Valley current magnitude is a figure of ______ of the tunnel diode. __________voltage and _______voltage magnitudes are determined by the type of semiconductor used. The portion of the tunnel diodes operation between peak current and valley current is an area of ______ conductance or resistance.

valley

28,18 an END OF SET as about a construction of the construction of

geometry, cross section, etc. merit peak valley negative

If a positive resistance is definied as a resistance that dissipates power, then a negative resistance can be defined as a resistance that will power. Operated in the _____ resistance region, the tunnel diode can serve as an amplifier, with either a or _____ or _____ connection with a positive resistance.

GATING FRAME - 29

29.1 A generator supplying current to two positive resistances as shown will have total current distributed between the two resistances. The voltage across the two resistors will be the same.

29.2 A generator supplying current to a positive and a negative resistance, as shown, finds the ______ resistance supplying current to the _____ resistance. The current in the positive resistor can be greater than the input current.

29

29.3 Current gain can be accomplished by driving a positive resistance in parallel with a negative resistance. Since the voltage across the resistors is the same as that across the input generator, only ______ gain is possible.

29.4 A negative resistance generates power, allowing amplification. A _______ connection of a negative and positive resistance allows current gain.

29.5 The tunnel diode operated in the proper portion of its characteristics will serve as a negative resistance, and will give current gain when placed in ______ with a positive resistance and properly biased.

parallel

The tunnel diode operated as a parallel amplifier will offer a power gain 29.6 equal to the _____ gain, since the _____ gain is (current, voltage) unity.

parallel

29.7 A tunnel diode placed in series with a positive resistance as shown, shows the generator a resistance which is the algebraic of the positive and negative resistance.

current voltage

29.8 In the circuit shown, the input generator sees _ ohms of resistance.

29.9 The current in the circuit shown is _____ ma and will develop volts across the positive resistance.

29.10 Since there is -48 mvolts across the positive resistance and an input of 2 mvolts, a voltage gain of _____ has occurred.

 $\frac{2 \text{ mvolts}}{1 \text{ max}} = -1 \text{ max}$ -20 -1 ma x $48\Omega = -48$ mvolts

29.11 Since the current through the resistors and the input generator is the same, current gain is ______, and power gain is proportional to the gain.

29.12 A negative resistance in ______ with a positive resistance can offer voltage gain.

unity, one voltage

29.13

A tunnel diode can serve as the negative resistance if properly biased in a proper circuit and, when placed in series with a positive resistance,

offers _____ gain. _____

series

29.14** A ______ resistance can be defined as a resistance that generates power, while a ______ resistance is defined as a resistance that dissipates power. A tunnel diode has a negative resistance characteristic and, in _____ with a positive resistance, can offer current gain.

voltage

29.15 END OF SET

negative positive parallel

is the symbol for a tunnel diode. When used as an amplifier, the combination of the negative and positive conductances must give a resultant conductance that is ______. This (negative, positive) requires that the positive resistance be ______ than the nega-(greater, less) tive resistance of the tunnel diode. Tunnel diodes, as amplifiers, are limited to ______ frequency operation.

30.1

In most diagrams, the normal diode symbol is modified by the addition of lines to indicate a tunnel, or a -g to indicate negative conductance.

30.2

The symbol shown is also used to indicate the tunnel diode. The small rounded portion of the symbol represents the ______

30

When used as an amplifier, the combination of the positive and negative conductances must give a resultant positive conductance. This means the resistance must be the larger of the two.

cathode

30.4

A requirement for tunnel diode amplifier operation is that the in the circuit be less than the negative resistance of the tunnel diode.

negative

If the positive resistance is equal to or greater than the diodes nega-30.5 tive resistance, the diode will switch between the positive slopes, as region. it cannot enter the negative _____

positive resistance

In figure 30, the dashed curve is the tunnel diode curve, the dotted 30.6 line is the resistors El characteristic, and the solid curve is the combination of their characteristics when they are placed in parallel. To serve as an amplifier, A to B must represent a _____ conductance.

resistance (or conductance)

30.3

The negative resistance of the diode in figure 30 is greater than the positive resistance. Small changes in the input current cause changes in the output or load current.

(the same, larger)

positive

30.8

The load resistor of 12.6 Ω in figure 30 has a conductance (g_L) of 79,400 µmhos, and the negative conductance (-g_d) of the tunnel diode is 71,400 µmhos. The conductance of the parallel combination is a

µmhos.

(negative, positive)

larger

30.9

The sum of the conductances in parallel give the slope of the resultant curve between A and B in figure 30. A conductance of 8000μ mhos is a resistance of ______ ohms.

positive 8000

30.10 The generator driving the tunnel diode circuit in figure 30 sees an input resistance of ______ ohms.

= 125 8000×10^{-6}

30.7

30.11 The input current is the change in input voltage divided by the input resistance. In figure 30, with an input voltage of Δ0.1 volts, the input current is _____ ma.

125

30.12

The output current is measured between C and D on the resistor line in figure 30, and is ______ ma.

 $\frac{100 \text{ mvolts}}{125\Omega} = 0.8 \text{ ma}$

30.13 The current gain is found by dividing the output current by the input current, and in figure 30, the current gain is _____.

1000

30.14

The current gain is essentially the load conductance divided by the input conductance. In figure 30, $\frac{g_L}{g_{in}} \approx -----$.

10

8

TUNNEL DIODE EI CURVE

RESULTANT OF RESISTOR AND TUNNEL DIODE IN PARALLEL

TEST SET-UP: TEKTRONIX TYPE 547 OSCILLOSCOPE, TYPE ''O'' OPERATIONAL AMPLIFIER PLUG-IN WITH TUNNEL DIODE DRIVER ADAPTER* AND TYPE C-12 OSCILLOSCOPE CAMERA

* NON-PRODUCTION ITEM

NOTE: The non-linearity of the resistor El characteristic at the start (left hand) side is due to using the oscilloscope sweep waveform to drive the adapter. The sweep starts below ground and a diode in the adapter disconnects during this period. The non-linearity at the end (right hand) of the resistor El characteristic is due to limited current in the adapter power supply. The area of interest is linear, however.

FIGURE 30A

TRIPLE EXPOSURE COMPARING THE THREE CURVES

30.15 Since the current gain is equal to the load conductance divided by the input conductance, the current gain can be predicted by the formula:

$$A_i = \frac{g_L}{g_{in}}$$
 where $g_{in} =$

$$\frac{79,400 \times 10^{-6}}{8,000 \times 10^{-6}} \approx 10$$

30.16

The tunnel diode breaks into oscillations when small amounts of inductance and/or capacitance are present. The layout for low frequency operation adds enough inductance and/or capacitance to cause the diode to

g_L + (-g_d)

30.17

The tunnel diode, as an amplifier, is limited to high frequency operation where the inductance and capacitance may be kept ______.

oscillate

30.18

Figure 30A shows the test set-up used to obtain the information in figure 30. The resultant curve represents a ______ conductance. (positive, negative)

small, minimum, low

30.19**

A is the ______ and B is the ______ in the symbol shown for a ______ diode. The parallel combination of positive and negative conductance must give a positive conductance resultant if the tunnel diode is to serve as an ______, and the negative resistance of the tunnel diode must be (less, greater) than the positive resistance. Tunnel diode amplifiers are limited to high operation so that the reactances may be kept to

a minimum.

В

positive

30.20 END OF SET

cathode anode tunnel amplifier greater frequency

GATING FRAME - 31

31	The series tunnel diode amplifier must have a negative resistance
	(less, greater) than the total series positive resistance. The total
	possible current and voltage changes are limited by the
	resistance area of the tunnel diodes characteristic for both series and
	parallel amplifier configurations. The series amplifier offers
	(voltage, current) gain, and the algebraic sum of the positive and nega-
	tive resistances is the resistance of the amplifier
	circuit.

31.1

In order to serve as an amplifier, the tunnel diode must be biased in and operate in the negative resistance region of its characteristic. Maximum current change is limited between peak current and _____

current.

greater negative voltage input

31.2

Since the tunnel diode must remain in the negative resistance region to serve as an amplifier, maximum possible voltage change is limited between _______ voltage and _______ voltage points.

valley
31.3 Figure 31 is a set of curves for a series tunnel diode amplifier. The dashed curve is the tunnel diodes El curve. The dotted line is the load resistors El characteristic, and the solid curve is the series resultant curve and results from the algebraic ______ of the series resistances.

peak valley

31.4 The algebraic sum of the load resistor (r_L) and the negative resistance of the tunnel diode $(-r_d)$ in figure 31 is ______ ohms.

 $r_{L} + (-r_{d}) = 12.6\Omega + (-14\Omega) = ?$

sum

31.5

The generator in figure 31 sees an input resistance of -1.4Ω . An input voltage change of 11.9 mvolts causes a current change of _____ ma.

$$\frac{\Delta V}{r_{in}} = \frac{11.9 \text{ mvolts}}{-1.4\Omega} = ?$$

$$r_{L} + (-r_{d}) = 12.6\Omega + (-14\Omega) = -1.4\Omega$$

31.6 The 8.5ma change flows in the positive resistor (r_L) of 12.6 ohms and develops a voltage change of ______ mvolts.

$$\Delta E = \Delta I$$
 r₁ = -8.5ma 12.6 Ω = ?

 $\frac{11.9 \text{ mvolts}}{-1.4\Omega} = -8.5 \text{ma}$

7 The voltage gain is found by dividing the output voltage by the input voltage, and in figure 31, the voltage gain is ______.

-107.1

31.8

The voltage gain is essentially equal to the load resistance divided by the input resistance. In figure 31, $\frac{12.6\Omega}{-1.4\Omega} = ----$.

 $\frac{107.1\text{mv}}{11.9\text{mv}} = -9$

31.9 Since input resistance is equal to the algebraic sum of the positive resistance and the diodes negative resistance $(r_L + (-r_d))$, the gain can be predicted by the formula:

 $A_v = \frac{r_L}{r_{in}}$ where $r_{in} =$ _____

-9

31.10** In order to serve as a series amplifier, the total series positive resistance must be ______ than the negative resistance of the tunnel (less, more) diode. The amplifiers input resistance is equal to the algebraic ______ of the series positive and negative resistances. The series tunnel diode amplifier gives ______ gain.

31.7

less sum voltage

TUNNEL DIODE IN DIODE ADAPTER

TEST SET-UP: TEKTRONIX TYPE 575 TRANSISTOR-CURVE TRACER WITH DIODE ADAPTER. PHOTO ABOVE TAKEN WITH TEKTRONIX TYPE C-12 OSCILLOSCOPE CAMERA.

FIGURE 32

The negative resistance region cannot be seen in figure 32 because the tunnel diode is in the ______ mode. The 575 does not give a true and complete display of the tunnel diode EI curve because of internal ______ in the instrument. The tunnel diodes' negative resistance can be approximated from the display in figure 32 using the formula ______. A variable ______ can be placed in parallel with the tunnel diode and the 575 used to measure

32.1 The internal resistance of the Tektronix Type 575 Transistor-Curve Tracer is, in most cases, too large to allow abservation of the negative conductance region of a tunnel diode. Because of the high internal resistance, the tunnel diode is forced to <u>switch</u> between its positive slopes.

switching resistance $-r_d \approx \frac{\text{peak voltage - valley voltage}}{2 (\text{peak current - valley current})} \approx \frac{V_p - V_v}{2 (I_p - I_v)}$ resistor negative resistance

32.2

The curve displayed on the 575 is actually a result of the algebraic addition of the _____ resistance of the tunnel diode, and the resistance in series.

no answer needed

TUNNEL DIODE IN DIODE ADAPTER

TEST SET-UP: TEKTRONIX TYPE 575 TRANSISTOR-CURVE TRACER WITH DIODE ADAPTER. PHOTO ABOVE TAKEN WITH TEKTRONIX TYPE C-12 OSCILLOSCOPE CAMERA.

FIGURE 32

A good approximation of the negative resistance of the tunnel diode can be made by solving from the 575 display and then multiplying the calculated value by one half.

$$-r_{d} \approx \frac{V_{p} - V_{v}}{I_{p} - I_{v}} \times -$$

negative positive

32.4

The negative conductance formula can be found by taking the reciprocal of the negative resistance formula.

$$g_{d} \approx \frac{1}{\frac{V_{p} - V_{v}}{1_{p} - 1_{v}}} \approx \frac{2 (1_{p} - 1_{v})}{V_{p} - V_{v}}$$

0.5 or 1/2

32.5 The negative resistance of the tunnel diode in figure 32 is approximately ohms, and the negative conductance is approximately ______µmhos.

p - I_v).

$$-r_{d} \approx \frac{V_{p} - V_{v}}{2(I_{p} - I_{v})} -g_{d} \approx \frac{2(V_{p} - V_{v})}{V_{v}}$$

no answer needed

32.6

The negative resistance can be measured more accurately by adding a parallel variable resistor to the tunnel diode in the test set-up in figure 32A.

$$-r_{d} \approx \frac{V_{p} - V_{v}}{2 (I_{p} - I_{v})} \approx \frac{0.075V - 0.375}{2 (10ma - 1.5ma)} \approx -17.6\Omega$$

$$-g_{d} \approx \frac{2 (I_{p} - I_{v})}{V_{p} - V_{v}} \approx \frac{2 (10ma - 1.5ma)}{0.075V - 0.375V} \approx -56,666 \ \mu \text{mhos}$$

32.3

32.7 The parallel resistance is started at its maximum value so that it has very little effect, as shown in figure 32A1.

no answer needed

32.8

As the resistance of the variable resistor is decreased, the algebraic sum of the positive and negative conductances becomes less

as shown in figure 32A2.

(negative, positive)

no answer needed

32.9 As the positive resistance value approaches the diodes' negative resistance value, as shown in figure 32A3, the diode is still switching between the first and second positive slopes, but some oscillation is apparent in the negative resistance region.

negative

32.10 As the positive resistance becomes less than the negative resistance, the diode will stop switching to the second positive slope, as shown in figure 32A4. The resultant conductance is now ______ at all points on the curve.

no answer needed

32.11 The diode is removed from the circuit and the resistance of the variable resistor measured. The value measured is slightly less than the of the tunnel diode.

positive

32.12

The value measured for the tunnel diode used in figure 32 and 32A was 14 ohms. The value <u>approximated</u> for this tunnel diode was 17.6 ohms.

negative resistance

32.13** The 575 internal resistance is high enough in most cases to cause a tunnel diode to switch between the _______ slopes, and the El curve seen is a resultant and not a true representation of the diodes characteristics. The ______ resistance region cannot be seen at all. The negative conductance can be approximated by the formula ______, or a variable resistor can be placed in ______ with the tunnel diode and used as an aid in measuring negative resistance.

no answer needed

32.14 END OF SET

positive negative $-g = \frac{2 (1 - 1)}{V_{p} - V_{v}}$ parallel

33 The tunnel diode will serve as a ______ when the series positive resistance is greater than the diodes negative resistance and proper circuitry is used. In this mode, the diode only operates on the slopes of its El curve with fast transitions through the remaining region. The transitions can take place in fractional __seconds. The load line for this mode of operation cannot intersect the ______ resistance region alone.

For linear amplification, the tunnel diode must be biased and operate 33.1 only in the negative resistance region of its characteristic. This requires that the total series positive resistance be ______ than the (less, more) diodes resistance.

switch positive nano negative

33.2

Plotting the load line on the tunnel diode El curve for a positive resistance less than the tunnel diodes negative resistance, the slope of the load line will be (steeper, less steep) than the negative resistance

region of the tunnel diode curve.

less negative

FIGURE 33B

33.3 For linear amplifier action, the load line must intersect the resistance portion of the tunnel diode EI curve. (negative, positive)

steeper

33.4

The diagram in figure 33A shows a load line and proper biasing for amplifier operation. The load line intersects the ______ resistance region.

negative

33.5 The diagram in figure 33B has a load line with a slope that is not as steep as the negative resistance region. It is not possible for this load line to intersect the negative resistance region without also intersecting the ______ resistance region.

negative

33.6 The tunnel diode _______ serve as a linear amplifier with the con-(can, cannot) ditions in figure 33B.

positive

FΙ	GU	R	Е	3	3A	

UNSTABLE MODE: SWITCHING

FIGURE 33B

33.7 If the series positive resistance is greater than the tunnel diodes negative resistance, it cannot serve as a linear _____

cannot

33.8 With the conditions in the diagram in figure 33B, the diode can rest on the first or second ______ slope, but not in the ______ resistance region.

amplifier

33.9 If forced beyond the first positive slope, the diode will switch rapidly to the second ______ slope with the load line in figure 33B.

positive negative

33.10 With a series positive resistance greater than the tunnel diodes negative resistance, the tunnel diode (when driven by an appropriate source) will ______ between the ______ slopes of its El curve.

positive

+

33.11 The switching time between the positive slopes can occur in a fraction of a nanosecond when the tunnel diode is used in proper circuitry.

switch positive

no answer needed

33.13** Since the tunnel diode switch has a load line that is not as steep as the negative resistance region of the tunnel diode El curve, it cannot intersect the negative resistance region without also intersecting the resistance region. The tunnel diode can switch in fractional ______seconds.

greater

33.14 END OF SET

positi ve nano

GATING FRAME - 34

The tunnel diode in figure 34A is a ______ driven, ______ stable switch. Figure 34B is a ______ driven, ______ stable switch. When the input generator in figure 34A exceeds the _______ of the tunnel diode, it switches to its high state and, when the input generator reduces below _______, the tunnel diode switches to its low state. When the input generator in figure 34B moves the load line past _______ voltage, the tunnel diode switches to its high state and, when the load line is moved below ________ voltage, the tunnel diode switches to its high state and, when the load switches back to its low state.

34.1

34

current bi voltage bi peak current valley current peak valley

34.2

With the tunnel diode resting at point A in figure 34A, the greater part of the supply voltage is across the ______.

(load resistor, diode)

3 greater

34.3 If the input generator in figure 34A tries to increase the current beyond the diode's peak current, the tunnel diode will switch rapidly to somewhere near point B and then rest at point _____ on the diode curve.

load resistor

34.4

34.5

The tunnel diode in figure 34A is a current driven switch and, when in its high state, the majority of the supply voltage is across the

(diode, load resistor)

low high

С

34.6 With the diode in figure 34A in its high state (resting at point C), the input generator must reduce the current below ______ current to cause it to switch back to its low state.

diode

34.7 The tunnel diode in figure 34A is a bi-stable, current driven switch. It is driven by current changes and has ______ stable states.

34.8

two

34.9 With the tunnel diode in figure 34B resting at point A, the majority of the supply voltage is across the

(diode, load resistor)

voltage two

34.10

If the input generator increases the supply voltage, as shown in figure 34B, the load line (as shown by the dotted line) no longer intersects the first positive slope, and the tunnel diode must ______.

load resistor

34.11 The diode switched to somewhere near point B and then rests at point C in figure 34B. In this state, the majority of the supply voltage is across the ______.

(diode, load resistor)

switch

34.12

With the tunnel diode resting at point C, if the input generator reduces the supply voltage until the load line no longer intersects the second positive slope (as shown by the dashed line in figure 34B), the tunnel diode switches to its ______ state.

diode

34.13 The tunnel diode initially switches to a point near point D in figure 34B when switched from its high to its low state. It then rests at point A again. The driving generator must move the load line below the _______ voltage to switch the diode from its high to its low state.

low

valley

FIGURE 35

With a value of total positive resistance (r) equal to A in figure 35, the tunnel diode circuit will operate in the ______ mode and can be used as an ______. The total positive resistance (r) is ______ than the ratio of total inductance (L) to the product of the absolute value of negative resistance (r_d), and the total capacitance (C). Tunnel diode amplifier operation requires a ______ power supply resistance.

35.1

Using the graph in figure 35, a value of r greater than r_d results in the tunnel diode operating in the _____ mode.

stable (amplifier) amplifier greater low

35.2

A low value of L is indicated by figure 35 if unstable operation and are to be avoided.

unstable (switching)

oscillations

FIGURE 35

Tunnel diodes have values of negative resistances ranging from a few ohms to several hundred ohms. The bias power supply used must have a low internal ______ when biasing a tunnel diode amplifier.

low

4

5

6

7**

Referring to figure 35, if it is desired for the tunnel diode to oscillate, the positive resistance must be less than ______ and

resistance

rd

L r_d C

 $\frac{L}{r_d C} \langle r \langle r_d \rangle$

_____ < r < _____

Figure 35 outlines the stability requirements for all modes of operation. The stability requirements for linear amplifier operation are

and

COMPARING A CONVENTIONAL AND A BACKWARD GERMANIUM DIODE

36.12 Figure 36A compares the backward diode to the conventional diode. The backward diode has a _______ forward conducting drop and a _______

_____peak inverse voltage rating when compared to the conventional (low, high) diode.

backward

36.13

An example of a circuit application of the backward diode is as a coupling diode in a tunnel diode switching circuit. The conducting drop of a conventional diode in larger than the switching voltage of a tunnel diode, therefore, the conventional diode cannot be used.

1				
ł	OW			
ï		 		
۱	OW			

36.14** The P side serves as the ______ in a backward diode, and it is used where a low conducting ______ drop is desirable, and a limited non-conducting mode ______ voltage can be tolerated.

no answer needed

36.15 END OF SET

cathode voltage breakdown
GATING FRAME - 37

37 Fast switching diodes are designed for ______ capacitance and low ______ charge for faster forward and reverse recovery. Forward recovery occurs during the time it takes the diode to switch from ______ current to a given ______ equilibrium value. Reverse ______ is the time interval between the time of application of a reverse switching voltage to a conducting diode, and the time at which reverse ______ reaches a predetermined recovery level.

37.1

Diodes designed for fast switching service have their capacitance held to a minimum to enhance switching ______.

low, small stored zero forward recovery current

37.2 When a non-conducting diode has a forward switching voltage applied in an attempt to turn it on, it will take a period of time to reach full conduction.

speed, time, etc.

37.3 When a diode in full conduction is switched with a reverse switching voltage in an attempt to turn if off, a period of time is required to remove the ______ charge.

no answer needed

37.4

A diode with zero applied voltage is at equilibrium, and a _____ region exists about the junction.

stored

37.5 The depletion region can be likened to the dialectric in a charged capacitor. The N and P regions on either side of the depletion region serves as the ______ of the capacitor.

depletion

37.6 Majority carriers must be moved into the depletion region and across the junction before the diode can conduct. This can be compared to charging

plates

a

37.7 A period of time is required to move majority carriers into the depletion region and across the junction where they become minority carriers and recombine. Moving carriers into the two sides can be related to a capacitor.

37.8

Once in full conduction, a stored charge of minority carriers exists about the junction. In order to turn the diode on, this ______ must be established.

charging

37.9 When an attempt is made to turn on a non-conducting diode very rapidly, the period of time between the 10% and 90% points on the forward current rise is termed forward recovery time.

stored charge

38.3 A reverse switching voltage should reverse bias the diode to turn it off.
A _______ voltage applied to the anode, or a ______
voltage applied to the cathode will reverse bias a diode.

forward

38.4

A reverse switching voltage of sufficient magnitude will turn _____ a conducting diode.

negative positive

38.5 The diode reverse recovery time is measured between the time of application of a reverse switching voltage and the time the reverse current has reached a predetermined recovery level. This current level is termed reverse ______ current.

off

recovery

TEST SET-UP: TEKTRONIX TYPE 661 OSCILLOSCOPE WITH TYPE 5T1A TIMING UNIT AND TYPE 4S1 DUAL TRACE SAMPLING VERTICAL, TYPE 109 PULSE GENERATOR, AND TYPE 291 DIODE SWITCHING TIME TESTER. TOP PHOTO TAKEN WITH TYPE C-12 OSCILLOSCOPE CAMERA.

FIGURE 38A

y a re-		t _{fr} of the diode in	figure 38A is approximately	_	
near		seconds.			
		forward			
cting		Figure 38B is a test	set-up and measurement of diod		
ise is		The Type 291 has the	diode initially seadent:	e reverse recovery time.	
		current.	diode initially conducting	ma of	
		current.			
		1440 Colorest and and			
		0.6 nano			
covery	In figure 38B, a		Switching voltage	switching voltage is applied to turn	
: conds.		the diode	switching vortag	e is applied to turn	

20 forward

38A to

When the reverse switching voltage is applied in figure 38B, the current switches from forward to ______.

reverse off

TEST SET-UP: TEKTRONIX TYPE 661 OSCILLOSCOPE WITH TYPE 5T1A TIMING UNIT AND TYPE 4S1 DUAL TRACE SAMPLING VERTICAL, TYPE 109 PULSE GENERATOR, AND TYPE 291 DIODE SWITCHING TIME TESTER. TOP PHOTO TAKEN WITH TYPE C-12 OSCILLOSCOPE CAMERA.

FIGURE 38B

reverse

38.16 The stored charge must be removed to turn off the diode. When sufficient stored charge has been removed for the current to reach reverse recovery current level $\frac{1}{(\text{symbol})}$, the diode is considered to be recovered.

stored charge

i rr

38.18 The diode in figure 38B is considered to be recovered when the reverse current reaches _____ma.

4

TEST SET-UP: TEKTRONIX TYPE 661 OSCILLOSCOPE WITH TYPE 5T1A TIMING UNIT AND TYPE 4S1 DUAL TRACE SAMPLING VERTICAL, TYPE 109 PULSE GENERATOR, AND TYPE 291 DIODE SWITCHING TIME TESTER. TOP PHOTO TAKEN WITH TYPE C-12 OSCILLOSCOPE CAMERA.

FIGURE 38B

38.19 The current above the zero current line in figure 38B is a result of the diode's ______.

10

38.20 Increasing the forward current that the diode is conducting will the stored charge and the reverse recovery time.

stored charge

38.21**

A is a ______ switching voltage and B is a ______ switching voltage. Forward recovery time is measured between the 10% and 90% points on the forward _______ waveform of a diode driven by a forward switching voltage. Reverse recovery time is measured between the time of application of a reverse switching voltage to a conducting diode and the time that the reverse current reaches the ______ _____ current level (i_{rr}) .

increase

forward reverse current reverse recovery 39

Stored charge is given in ______ of pico-______ and is the amount of charge stored by a forward conducting diode. τ_q is given as a ratio of stored charge and forward ______. It is generally stated in pico-coulombs per ______ of forward _______. Power handling of fast switching diodes is limited by _______ factors as/than other diodes.

(the same, different)

39.1

Stored charge is given in coulombs or pico-coulombs and its magnitude is dependent on the lifetime of the minority carriers and the amount of forward current in the diode.

coulombs coulombs current milliampere current the same

39.2 Since minority carrier lifetime is constant for a given diode, the variable effecting stored charge is the magnitude of forward current.

no answer needed

39.3 The minority carrier lifetime which governs the magnitude of stored charge per unit of forward current is given the symbol " τ " and is constant for a given diode.

no answer needed

39.4 τ_q^{relation} is generally stated as a ratio of stored charge to forward current, rather than stating time as its dimension.

no answer needed

39.5

Stored charge (Q_s) is dependent on the magnitude of forward current. The amount of stored charge will vary directly with the amount of forward for a given diode.

no answer needed

39.6

 $au_{
m q}$ serves as a convenient factor that may be used to determine the amount of stored charge for a given amount of forward current.

 $Q_{c} = (forward current) \times ($ _____)

current

τq

39.7 τ_q is generally given in pico-coulombs per milliampere. Total stored charge can be found by taking the product of ______ and the forward current in milliamperes.

39.8 Given: $\tau_{q} = 10$ pico-coulombs per milliampere, forward current = 0.06 amperes, stored charge = _____ pico-coulombs.

τ_q

39.9

Fast switching diodes have design considerations for switching speed, but power limitations are set by the same factors as other diodes.

600

no answer needed

39.11 Switching diodes will have most of the same parameters and specifications as the rectifier diode with the addition of diode ______ times and characteristics.

thermal

39.12**

coulombs. ______ (Q_s) is given in coulombs or picoampere. Switching diode maximum power is set by _______(the same, different) factors as/than other diodes.

switching

39.13 END OF SET

stored charge ⁷q the same

GATING FRAME - 40

The snap-off diode is designed for τ_q or stored charge per milliampere of forward current. Its distinguishing feature is a fractional nano-second ______ current fall time when switched with a reverse switching voltage. This portion of its characteristic is used for ______ risetime pulse generation. Adjusting the ______ current changes the storage time.

40.1

The term snap-off refers to the speed at which the diode reverse current cuts off when switched with a reverse switching voltage.

large reverse fast forward

40.2 The snap-off diode is designed for a large τ_q , but care is taken that reverse current due to stored charge will decrease abruptly or ______ off.

no answer needed

40.3

The conventional switching diode is designed for low minority carrier lifetime for low ______ charge.

snap

40

40.4 Figure 40A indicates that the snap-off diode has very much (more, less) stored charge per unit of forward current than the conventional switching diode.

stored

40.5 The conventional diode in figure 40A has a low stored charge, but the fall time of the reverse current of the snap-off diode is much $\overline{(faster, slower)}$ than the conventional diode.

40.6

faster

more

TEST SET-UP: SAME AS FIGURE 40A EXCEPT LOWER PHOTO HAS TIME EXPANDER SET AT X5.

FIGURE 40B

snap-off

40.8

nano

40.9

The snap-off diode is used in circuitry to shape up the leading edge of generated current or voltage pulses. This is possible due to the rapid snap-off of its ______ current.

rise

40.10

When switched from forward conduction with a reverse switching voltage, the snap-off diode will continue to conduct for the duration of the stored charge and then _______ in a fractional ______second.

reverse or storage

40.7

WITH 50ma OF FORWARD CURRENT

TEST SET-UP: SAME AS FIGURE 40A WITH THE EXCEPTION OF THE TYPE 291 CURRENT INCREASED TO 50ma FOR THE LOWER PHOTO

FIGURE 40C

> snap**-**off nano

40.12

The lower photo in figure 40C has the forward current increased to 50 ma, and the storage time has increased to over ______ nano-seconds.

6

7

40.14

The amount of delay between the application of the reverse switching voltage and the time snap-off occurs can be varied by varying ______

storage

40.15** The snap-off diode has a large stored charge per unit of forward current and, when switched with a reverse switching voltage, continues to conduct for the duration of the ______ and then ______ abruptly. Varying the forward current varies the stored charge and the storage time. Using the snap-off region in pulse generation gives fast ______ time pulses.

forward current

40.16 END OF SET

 Stored charge

 snaps-off

 rise

 snaps

 snap

NOTE: Coaxial cable risetime is generally given as 0 to 50% risetime. To convert this to 10% to 90% risetime, use the factor 30 (i.e. $30 \times 0-50\%$ risetime $\approx 10 - 90\%$ risetime).

FIGURE 41A

A diode's risetime is measured on the system in figure 41A, and the measurement taken on the cathode ray tube is 0.65 nanoseconds. This is not the true diode risetime. The diode's risetime may be calculated from the formula

or the risetime of the _____ without the _____ may be measured and used in conjunction with the 0.65 nanosecond measurement to solve for true diode risetime.

41.1

41

A risetime measurement of 0.65 nanoseconds on the system in figure 41A is approximately equal to the square root of the sum of the squares of all the risetimes of the diode and the measurement system.

RT diode $\approx \sqrt{RT_{measured}^2 - RT_{109}^2 - RT_{291}^2 - RT_{4S1/661}^2 - RT_{cables}^2}$ system diode

41.2

 $RT \text{ measured} \approx \sqrt{RT_{diode}^2 + RT_{109}^2 + RT_{291}^2 + RT_{451/661}^2 + RT_{cables}^2}$

no	answer	needed	

41.3 Squaring both sides and transposing:

$$RT_{measured}^2 - RT_{109}^2 - RT_{291}^2 - RT_{4S1/661}^2 - RT_{cables}^2 \approx RT_{diode}^2$$

no answer needed

FIGURE 41B

time/CM of 0.2 nanosec/CM.)

41.4

Taking the square root of both sides:

$$RT_{diode} \approx \sqrt{RT_{measured}^2 - RT_{109}^2 - RT_{291}^2 - RT_{4S1/661}^2 - RT_{cables}^2}$$

no answer needed

41.5

To simplify the calculations, the risetime of the system without the diode can be measured and used in solving for ______ risetime.

no answer needed

41.6 Figure 41B is the measurement of system risetime. The risetime of the system is about ______ nanoseconds.

diode

41.7

In figure 41B, the diode is simply shorted out and the system risetime checked. This risetime can then be used in calculating diode _____

41.8 Diode risetime is equal to:

$$RT_{diode} \approx \sqrt{RT_{measured}^2 - RT_{system}^2}$$

risetime

41.9

The risetime of the system in figure 41B is 0.5 nanoseconds. A measured risetime of 0.65 nanoseconds would indicate that the diode's risetime is approximately _____ nanoseconds.

$$RT_{diode} \approx \sqrt{RT_{measured}^2 - RT_{system}^2}$$
$$\approx \sqrt{(0.65 \times 10^{-9})^2 - (0.5 \times 10^{-9})^2}$$

no answer needed

A diode's risetime is measured as 0.8 nano-seconds on the system in figure 41.10** 41A. The true diode risetime is approximately _____ nanoseconds.

0.4146

41.11 END OF SET

> $RT_{diode} \approx \sqrt{RT_{measured}^2 - RT_{system}^2}$ $\approx \sqrt{0.8 \text{ nanosec}^2 - 0.5 \text{ nanosec}^2}$ $\approx \sqrt{(0.64 - 0.25)}$ nanosec $\approx \sqrt{.39}$ nanosec \approx 0.625 nanoseconds

is the symbol for a four layer or shockley diode. It will remain non-conducting until the applied voltage exceeds the switching voltage. With _______ voltage applied, it will show the characteristics of a silicon rectifier. The diode will switch from ''on'' to ''off'' when the current is reduced to below minimum ______

42.1 The four layer or shockley diode is a four layer, triple junction device.

42

9.47 FEB 19.0 FEB 46

interfactor and antion for a four layer or shockley diods. It will remain partocolucting unit: the applied voltage exceeds the unitabling poltage. If the the obscattor structure of the sectifier. The diode will switch from four of 66.00 when the content in reduced to below withtee.

and the P type and serves

42.3 Applying a positive voltage to the anode or a negative voltage to the cathode is forward voltage to the four layer diode.

cathode anode

42.4 Forward voltage will attempt to forward bias two of the junctions, but bias the third junction.

42.5

The point at which the center junction starts to avalanche is termed the forward switching voltage and the diode switches <u>on</u> at this point.

reverse

42.6 When the forward switching voltage is exceeded, the diode switches to its conducting state. Its resistance changes from megohms to a few ohms in a micro-second, typically.

no answer needed

42.7

no answer needed

42.8

Figure 42 shows the El curve of a four layer diode. Point A indicates the

decreases

42.9

Point B is the minimum current that will maintain the diode in the condition and it is termed "holding current".

forward switching voltage
42.10 Reducing the current below the minimum holding current (I_h) level will cause the diode to switch back to the non-______ state.

on or conducting

42.11 To maintain the diode in the ON condition, the current must be held above the minimum ______ level.

conducting

42.12 The symbols used for the four layer or shockley diode both indicate that four layers are present. Symbol A is used by Tektronix.

holding current

42.13 The point of the four in one symbol for the four layer diagram indicates the ______ end of the device. In the symbol used by Tektronix, the tip of the arrow pointing away from the center indicates the end of the device.

no answer needed

42.14 Application of reverse voltage to a four layer diode reverse biases
(#) of the three junctions, and the reverse EI curve resembles
that of a silicon rectifier. Reverse current will increase greatly when avalanche breakdown occurs. (LIMITED BY THE SERIES RESISTANCE.)

cathode cathode

42.15**

A is the	and B is the of the symbols
shown for the	diode. The diode will turn on
when the	is exceeded and will
switch off when curren	t is reduced below the minimum
	The reverse voltage El curve resembles the
	reverse voltage El curve.

two

42.16 END OF SET

the tip of the arrow pointing user from the center indicates the

anode cathode four-layer forward switching voltage holding current silicon rectifier

Ť		GATING FI	IG FRAME - 43	
B A is the	is the symbol for a, B is the		ctifier. A the	
	It is similar in construc	ction to the four lay	yer diode	
with the a	addition of the	Applying a		
current re	educes the forward switching or	V0	oltage. The	
device may	be switched on with a	current pulse	e, but the	
current mu	ust be reduced below minimum	current to	o return it	
to the "of	f" condition.			

43.1

The construction of the silicon control rectifier (SCR) is similar to the four layer diode with the addition of the _____ connection.

MAGTERISTIC		ANOD E
silicon control cathode gate anode gate gate blocking	/	N N N
gate holding	GATE	CATHODE

gate

43.2 The gate connection allows control of the current in the junction nearest the cathode and, at zero gate current, the SCR will have an El curve similar to the _____ layer diode.

43

TEST SET-UP: TEKTRONIX TYPE 575 TRANSISTOR-CURVE TRACER MOD 122C TOP PHOTO TAKEN WITH TYPE C-12 OSCILLOSCOPE CAMERA

FIGURE 43A

43.3 Application of a gate current to the SCR will raise the cathode current level and reduce the forward voltage required to switch to an "on" condition.

four

43.4 Figure 43A shows the EI characteristics of the SCR with zero gate current and with an applied gate current. The forward switching voltage varies as gate current varies.

(inversely, directly)

no answer needed

43.5 With the applied voltage at point A in figure 43A, the diode will be quiescently with zero gate current applied. (on, off)

inversely

43.6 Applying a gate current of the magnitude shown in figure 43A will reduce the diode's forward switching voltage below point A and the diode will switch on.

off

43.7	The diode current must	be reduced	below minim	um	current	to
	turn the diode off.					

no answer needed

43.8 The gate has no control when the SCR is in its ______ state.

holding

TOUT MONE TROP

on

43.9

The SCR symbol uses the conventional diode symbol with the addition of the line indicating the ______.

NOTE: GATE CURRENTS INCREASE WITH 1 THE LOWEST MAGNITUDE.

FIGURE 43B

43.10 The symbol for an SCR is shown with a rough cross section. A is the ______, and C is the ______.

gate

43.11 Figure 43B shows the SCR at several values of gate currents. Forward switching or blocking voltage decreases as gate current is _____

cathode gate

43.12

A small current pulse applied to the gate can switch large amounts of power with the SCR in suitable circuitry.

increased

43.13 A large switched power gain can be accomplished with an SCR with the as the input.

43.14** ______ is the symbol for a silicon control rectifier. Except for the gate, it is similar in construction to the _______ as gate diode. The forward switching voltage varies _______ as gate (inversely, directly) current varies. Application of a gate current can be used to turn the diode on, but diode current must be reduced below minimum to turn it off.

gate

43.15 END OF SET

1
(\neg)
X
four layer
inversely
holding current

SELF TEST

Read each question carefully studying any diagrams provided and select the most correct answer.

- 1. Surrounding the material to be doped with the dopent in a gaseous form, and then subjecting it to heat is termed doping by _____.
 - a. thermodynamics
 - b. diffusion
 - c. epitaxial deposition
 - d. planar masking
- 2. Close control of silicon rectifier characteristics is accomplished by doping

 - with the _____ process in high ______ silicon.
 - a. epitaxial layers, resistance
 - b. rate growing, resistance
 - c. diffusion, resistance
 - d. rate growing, reactance
- Maximum operating temperature of silicon rectifiers is about degrees centigrade.
 - a. 175
 - b. 100
 - c. 325
 - d. 75

4. When sufficient voltage is applied to turn on a diode in the forward direction, or cause breakdown in the reverse direction, the current is

limited.

- a. resistance
- b. depletion layer
- c. stored charge
- d. majority carrier
- 5. A forward biased silicon diode exhibits a ______ temperature coefficient of voltage at low currents, which means the diode voltage will with an increase in temperature.
 - a. positive, increase b. negative, increase c. positive, decrease d. negative, decrease

 A silicon diode in avalanche breakdown has a _______ temperature coefficient of voltage.

- a. negative
- b. positive
- c. 0%
- d. -1.2V/degree centigrade

7. The peak value of a-c voltage that can be applied to a silicon rectifier is

limited by the diodes' _____ rating.

- a. peak forward voltage drop
- b. maximum forward current
- c. maximum reverse current
- d. peak inverse voltage
- 8. The forward voltage drop of a silicon diode will vary with _____

and

- a. forward current, series resistance
- b. junction capacity, ambient temperature
- c. forward current, ambient temperature
- d. ambient temperature, stored charge
- 9. The diode's forward current and voltage can be used to calculate diode's forward

- s istabilar

and

- a. power dissipation, resistance
- b. biasing, resistance
- c. capacitance, time constant
- d. reactance, resistance

10. Maximum steady state power dissipation of a silicon rectifier is limited by the

, and _____.

- a. series resistance, thermal resistance, maximum junction capacity
- b. thermal resistance, maximum junction temperature, ambient temperature
- c. thermal resistance, thermal time constant, thermal capacity
- d. series resistance, applied voltage, ambient temperature

11. Attaching a silicon rectifier to an external heat sink reduces total

- a. power dissipation
- b. ambient temperature
- c. thermal capacity
- d. thermal resistance

12. Silicon rectifiers are stacked in series to increase the _____ rating.

- a. peak inverse voltage
- b. forward current
- c. forward voltage
- d. reverse current

13. For proper operation, series stacked rectifiers must have near equal ____

and ______, or they may be damaged.

- a. reverse resistances, forward voltages
- b. stored charges, reverse resistances
- c. forward voltages, forward currents
- d. peak inverse voltages, reverse currents and barrand mode

14. Shunting resistors may be added to series stacked silicon rectifiers to minimize the effects of unequal _____.

- a. stored charges
- b. forward voltages
- c. reverse resistances
- d. forward currents

15. Shunting capacitors may be added to series stacked silicon rectifiers to minimize the effects of unequal

- a. reverse resistances
- b. forward currents
- c. stored charges
- d. forward voltages

16. A junction at equilibrium has the two ends separated by a depletion region,

and serves as a ______ that may be varied by application of ______.

- a. resistor, light energy
- b. inductor, voltage
- c. capacitor, voltage
- d. conductor, pressure

17.

is the symbol for a

- a. voltage variable capacitor
- b. snap-off diode
- c. step recovery diode
- d. temperature compensated zener diode

18. The name zener diode is misleading because _____

- a. it was developed by Mr. Esaki
- b. many zeners operate in avalanche breakdown serios busies
- c. it is not really a diode at all
- d. most zeners operate in tunnel breakdown

19. The zener diode normally operates in the _____ region of its El characteristic.

- a. reverse breakdown
- b. low reverse current
- c. high forward current and a second se
- d. forward saturation

20. The point of entry into the normal zener diode operating region of the El curve is termed the ______.

- a, zener zone
 - b. push through point
 - c. diffusion point
 - d. zener knee

21. When operated as a voltage reference, the zener diode circuit shown will have electron movement from ______ to _____ through the diode.

> a. B, A b. A, B

22. Power dissipation by the zener diode is limited by ______ considerations as/than other diodes.

- a. different
- b. the same

23. The number 10M47Z5 indicates a ______ watt zener diode.

- a. 47
- b. 5
- c. 10
- d. 1/4

24. The number 50M47Z indicates that the zener diode has a _____% nominal zener voltage tolerance.
a. 50
b. 47
c. 5
d. 20
e. 10

25. The voltage regulator (VR) tube is limited to a minimum voltage of about

volts, while the zener is available over the entire voltage range up to several hundred volts.

a. 12.3 b. 70 c. 105 d. 28

26. The noise level generated in a zener diode is ______ as/than the noise level generated in a VR tube.

- a. much less
- b. about the same
- c. much greater

27. A shunting ______ will reduce the noise level in the zener diode.

- a. capacitor
- b. conventional diode
- c. resistor
- d. inductor

28. A zener diode operating in ______ breakdown has a positive temperature coefficient of voltage.

- a. zener
- b. tunnel
- c. avalanche
- d. punch through

29. A forward biased diode at low currents has a ______ temperature coefficient of voltage.

- a. positive
- b. negative
- c. zero

the to the side.	
a. N, P	
b. P, N	
The magnitude of tunnel diode peak current (I_p) is determined as the set of the set	ermined by junction
a. geometry	
b. doping levels	
c. forward voltage d. reverse voltage	
apatiew salina all need alle bars a sass all alle	
Valley current is measured at a point between	and
a. tunnel breakdown, avalanche breakdown	
b. zero bias, peak current	
 c. peak current, normal forward turn on d. normal forward turn on, avalanche breakdown 	
A negative resistance can be defined as a resistance th	nat will
power.	
a. generate	1961 Abum 16
b. dissipate c. store	
0. 50010	
The tunnel diode will serve as an amplifier when placed	in proper circuitry
	in proper circuitry
and operated a. on the first and second positive slopes	in proper circuitry
and operated a. on the first and second positive slopes b. on the first positive slope only	7. A stucting a capaditor
and operated a. on the first and second positive slopes	7. A stucting a capaditor
and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the first	7. A stucting a capaditor
and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the firs d. in the negative resistance region only.	t positive slope
and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the first	t positive slope the tunnel diode in an
<pre>and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the firs d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its l a. series</pre>	t positive slope the tunnel diode in an
<pre>and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the firs d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its l</pre>	t positive slope the tunnel diode in an oad resistor.
<pre>and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the firs d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its l a. series</pre>	t positive slope the tunnel diode in an oad resistor.
<pre>and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the firs d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its l a. series</pre>	t positive slope the tunnel diode in an oad resistor.
<pre>and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the firs d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its l a. series</pre>	t positive slope the tunnel diode in an oad resistor.
<pre>and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the firs d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its l a. series</pre>	t positive slope the tunnel diode in an oad resistor.
and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the first d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its 1 a. series b. parallel $\downarrow \downarrow \downarrow \downarrow$	the tunnel diode in an oad resistor.
and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the first d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its 1 a. series b. parallel A B C D	the tunnel diode in an oad resistor.
and operated a. on the first and second positive slopes b. on the first positive slope only c. in the negative resistance region and the first d. in the negative resistance region only. Current amplification can be accomplished by operating amplifier configuration in with its 1 a. series b. parallel A B C $DSymbol is not a symbol for a tunnel diode.$	the tunnel diode in an oad resistor.

43. To serve as an amplifier, the negative resistance of the tunnel diode must be to/as/than the total circuit positive resistance.

- a. greater
- b. less
- c. as large
- d. equal

44. The total resultant conductance of a tunnel diode amplifier circuit must be

- a. inductive
- b. capacitive
- c. negative
- d. positive

45. The tunnel diode will switch between positive slopes when the circuit positive resistance is the tunnel diode negative resistance.

- a. less than
- b. equal to
- c. greater than
- 46. The positive resistance of the Type 575 Transistor Curve Tracer generally makes it impossible to observe the negative resistance region of the tunnel diode El curve, since it forces the tunnel diode to operate in the ______ mode.
 - a. switching
 - b. amplifier
 - c. stable
 - d. carrier insertion

47. A tunnel diode switch can be current or voltage driven and will switch be-

- is lov
 - a. negative, pico
 - b. positive, milli
 - c. positive, atto
 - d. positive, nano

48. To switch a tunnel diode from its high state to its low state requires that the current be ______.

- a. increased above peak current
- b. decreased below valley current
- c. cut-off completely
- d. increased to diode saturation

49. The majority of the supply voltage in a tunnel diode switching configuration will be across the diode when it is in its ______ state. a. high b. low 50. A diode with doping levels and construction similar to a tunnel diode, but with near zero peak current, is termed a _____ diode. a. voltage variable capacitor b. snap-off c. half tunnel d. backward 51. A diode that offers a very low conducting voltage drop when used as a conventional rectifying diode is the _____ diode. a. snap-off b. snap-on c. step recovery d. half tunnel e. backward 52. Forward recovery in a fast switching diode occurs during the time the current changes from ______ to _____ when switched with a switching voltage. a. zero, a forward equilibrium value b. a forward equilibrium value, zero c. a forward equilibrium value, a designated recovery level d. on, off 53. Forward recovery is measured between the _____% and _____% current points when the diode is switched with a ______ switching voltage. a. 90, 10, reverse b. 50, 50, forward c. 10, 90, forward d. +50, -50, reverse 54. Reverse recovery is the time interval between the application of a _____ switching voltage to a conducting diode, and the point at which reverse current reaches a. reverse, designated recovery level b. forward, designated recovery level c. reverse, zero d. forward, zero

55.	Forward switching voltage is a voltage applied to a diodes cathode, or a voltage applied to a diodes anode. a. positive, negative b. negative, positive
56.	The carriers recovered during reverse recovery time make up the diodes
	a. depletion region b. surface leakage c. contact resistance d. stored charge
57.	${\tt Q}_{\tt s}$ is the symbol for diode stored charge, but a convenient unit of measure
	s usually given in pico-coulombs per milliampere, is given the symbol
	a. ϕ_q b. τ_q c. Q_q^q d. ϕ_q
58,	Stored charge varies directly as and
	 a. minority carrier lifetime, forward current b. minority carrier lifetime, reverse switching voltage c. forward current, reverse switching voltage d. forward switching voltage, minority carrier lifetime
59.	The snap-off diode is designed for a stored charge per unit of
	forward current, and a fast time of the reverse recovery
	waveform.
	a. low, fall b. high, rise c. high, fall d. low, rise
60.	The snap-off diode continues to conduct for the duration of the
	when swreened with a reverse swreening receiper
	 a. reverse switching voltage b. stored charge c, carrier cancellation time d. week

ANSWERS TO SELF TEST

1.	b	22.	b	43.	а
2.	С	23.	С	44.	d
3.	а	24.	d	45.	С
4.	a	25.	b	46.	а
5.	d	26.	b	47.	d
6.	b	27.	a	48.	b
7.	d	28,	С	49.	а
8.	c	29.	b	50.	d
9.	a	30.	b	51.	е
10.	b	31.	a	52.	а
11.	d	32.	b	53.	С
12.	a	33.	с	54.	а
13.	b	34.	с	55.	b
14.	С	35.	с	56.	d
15.	C	36.	b	57.	b
16.	С	37.	a	58.	а
17.	а	38.	с	59.	С
18.	b	39.	a	60.	b
19.	a	40.	d	61.	е
20.	d	41.	b	62.	d
21.	a	42.	с		

