TEK OPERATOR'S Part No. 070-4344-00
MANUAL Product Group 57

GPIB
COMM Pack

1200C02

FIRST PRINTING MAY 1983 w(tronix@

REVISED PRINTING NOVEMBER 1986

GPIB COMM Pack

Copyright © 1983, 1986, Tektronix, Inc. All rights reserved.
Contents of this publiation may not be reproduced in any
form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered
by U. S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and @ are
registered trademarks of Tektronix, Inc. TELEQUIPMENT is
a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges
are reserved.

Tektronix, Inc.

Walker Road Industrial Park
P.O. Box 4600

Beaverton, Or. 97076

GPIB COMM Pack

PREFACE

This manual is a supplement to the 71240/1241 Logic Analyzer Operator's Manual. 1t
provides the additional information necessary to operate the 1240 or 1241 with the
1200C02 GPIB COMMunications Pack. Operation of the 1241 with the 1200C02 is
much the same as for the 1240. Unless otherwise noted, it should be assumed that
text supporting the 1240 is also true for the 1241. This manual was written for both
novice and more experienced GPIB users. It assumes familiarity with both the 1240
Logic Analyzer, and the controller being used.

Users unfamiliar with GPIB should begin by reading Appendix E, which provides a
GPIB overview.

All service information is located in the 1240 Service Manual.
Sections 1 and 2 provide reference information relating the 1240 to the GPIB.

Section 3 provides generic programming examples to illustrate the use of the 1240
commands. These programming examples are designed to aid the programmer in
organizing his thoughts. However, they should not be entered as code in a program.

Section 4 describes formats of 1240 setups, memories, and ROM and RAM packs.

Appendix A provides the necessary information for formatting 1240 setups, memo-
ries, and ROM and RAM packs.

Appendix B describes 1240 and 1241 Display Codes.
Appendix C lists 1240 Key Codes.

Appendix D is a table of Error and Event Codes.

This manual describes GPIB only in relation to the 1240.
This instrument complies with Tektronix codes and formats.

For more information about GPIB, refer to the IEEE 488-1978 standard, which is
published by:

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47 Street
New York, New York 10017

REV NOV 1985

GPiB COMM Pack

PREFACE

Section 1

Section 2

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS
LIST OF TABLES

INTRODUCTION

OVERVIEW .
Capabilities
Limitations
Optional Accessories
Selecting a Controller

INSTALLATION ... i,

PRELIMINARY OPERATION INFORMATION
Power-Up Diagnostics
Menus

COMM Port Control Menu

Port Status Display
Selectable Parameters

1240 Soft Function Keys

Error Messages

Remote Menu

GPIB COMM Pack LEDs
THE STATUS BYTE

PROGRAMMING

DEVICE-DEPENDENT MESSAGES
Remote and Local States
Device-Dependent 1240 Messages
GPIB Data Transfers

DATA BLOCK FORMAT
DATA TRANSFER—ACQMEM and
REFMEM/CONTROLLER
Uploading
Downloading
DATA TRANSFER—INSETUP and RAMPACK
Uploading,
Downitoading
Interrupting and Aborting Data Transfer in Progress

1240 GPIB INTERFACE

Page

GPIB COMM Pack

TABLE OF CONTENTS (cont.)

Section 3 PROGRAMMING EXAMPLES

RECEIVING A SETUP FROM THE 1240 3-1
SENDING A SETUP TO THE 1240 3-1
GETTING THE ACQMEM FROM THE 1240 3-2
SENDING A REFMEM TO THE 1240 3-2
PERFORMING A REMOTE DATA ACQUISITION 3-2
GETTING KEYSTROKES FROM THE 1240 FRONT PANEL 3-3
WRITING TO THE 1240 DISPLAY 3-4
HANDLING SERVICE REQUESTS (SRQs) 3-4
SUPPORTING THE COMM PORT CONTROL MENU'S FUNC-

TION KEYS . 3-5
PERFORMING A REMOTE AUTO-RUN 3-7
GETTING A COPY OF A 1240 RAM PACK 3-8

Section 4 USER-GENERATED RAM AND ROM PACKS

CONTENTS ... 41
REQUIRED EQUIPMENT 4-1
SERVICE INFORMATION 41
THEORY .. 4.1
Format 4.1
Pack Header 4.2
Directory Format 4.2
Files ... 4.3
Trailer ... 4-4
Trailer Format 4-4
CREATING A ROM PACK 4-5
Upload 4-6
Header 4-6
Directory 4-6
Files ... 4-6
Change Directory 4-6
Trailer ... 4-6
Download and Burn 4-7

Appendix A Instrument Setup, Memory Image and Radix Table Formats

INSTRUMENT SETUP A-1
Variable Descriptions ..., A-4
Description of a 'PRLWORD" A-14

MEMORY IMAGE A-15
Variable Descriptions A-15
General Discussion of the Memory Image Structure A-19
Overview of Data Correlation A-20
Locating the Trigger A-21

RADIX TABLE A-22
Overview A-22
ROM Radix Tabie (RTABLE) Format A-22

GPIB COMM Pack

TABLE OF CONTENTS (cont.)
Appendix B 1240 and 1241 Display Codes
Appendix C 1240 Key Codes

Appendix D Error and Event Codes

CODE TABLES

Appendix E Introduction to GPIB
ELECTRICAL ELEMENTS

MECHANICAL ELEMENTS
Connecting GPIB Systems

GPIB Connector

GPIB

FUNCTIONAL ELEMENTS
Typical GPIB System
Controllers, Talkers, and Listeners
Interface Messages

Addressed Commands
Universal Commands
Listen Addresses
Talk Addresses
Secondary Addresses or Commands
GPIB Signal Line Definitions
TheDataBus
The Transfer Bus
Data Valid (DAV)
Not Ready For Data (NRFD)
Not Data Accepted (NDAC)
The Management Bus
Attention (ATN)
End or Identify (EOQl)
Interface Clear (IFC)
Remote Enable (REN)
Service Request (SRQ)
Interface Functions
Source and Acceptor Handshake Functions
Talkker Function
Listener Function
Service Request Function
Remote-Local Function
Parallel Poll Function
Device Clear Function
Device Trigger Function
Controller Function

TYPICAL ACTIVITY
Remote to Local Changes
Serial Polls

iv

REV NOV 1985

GPIB COMM Pack

LIST OF ILLUSTRATIONS

Figure

No. Title Page
1-1 COMM pack installed in 1240 communication port 1-3
1-2 Typical 1240 screen display in COMM Port Control

MENU ... 1-4
2-1 Controller uploads acquisition memory contents with

ACQMEM? command 210
2-2 Controller downloads data to 1240 compressed memory

with ACQMEM command 2-11
2-3 Controller modifies 1240 acquisition memory with

LOAD command 2-12
2-4 Controller uploading Setup information with

INSETUP? command 2-13
2-5 Controller downloading the Setup memory with the

INSETUP command 2-14
4-1 Basic ROM and RAM Pack format 4-1
4.2 How up to four RAM Packs are reorganized for storage

inone ROM Pack 4.5
4.3 Relationship between physical location and address

contents ... 4.7
A-1 Data correlation A-21
E-1 GPIB interface connector plug, with pin locations E-2
E-2 The GPIB bus lines E-3
E-3 A typical GPIB system setup with four primary-addressed

devices E-4
E-4 The GPIB code chart E-6
E-5 An example of data byte traffic on the GPIB E-8

E-6 A typical handshake timing sequence E-9

GPIB COMM Pack

LIST OF TABLES

Table
No Title Page
1-1 Operating Specifications 1-2
1-2 The Status Bits 1-6
1-3 Status Byte Interpretation 1-7
2-1 GPIB Interface Functions Supported by the 1240 2-15
2-2 Controller to 1240 2-16
2-3 1240 to Controller 2-17
4-1 Directory Entry Format, 4-3
4-2 ROM Pack Trailer Addresses 4-4
A-1 Setup Memory Locations A-1
B-1 1240 Video Codes B-1
B-2 1240 Changeable Characters B-2
B-3 1240 Copycat Characters B-3
B-4 1241 Video Codes B-4
B-5 1241 Changeable Characters B-5
B-6 1241 Changeable Characters (cont.) B-6
C-1 1240 Key Codes C-1
D-1 System Events, Priority 1 D-1
D-2 Command Errors, Priority 2 D-1
D-3 Execution Errors, Priority 3 & 4 D-2
D-4 Soft Key Events, Priority 5 D-3
D-5 Operation Complete Events, Priority 6 D-4
D-6 Normal Device-Dependent Status, Priority 7 D-4
E-1 GPIB Interface Functions—General E-10

Vi REV NOV 1985

GPiB COMM Pack

OPERATOR’S SAFETY SUMMARY

Specific notes and cautions will be found throughout the manual where they apply, but
may not appear in this summary.

TERMS
In This Manual. CAUTION statements identify conditions or practices that could
result in damage to the equipment or other property.

As Marked on Equipment. CAUTION indicates a personal injury hazard not immedi-
ately accessible as one reads the marking, or a hazard to property including the
equipment itseif.

Refer to the Operator’'s Safety Summary in the 1240 Operator’'s Manual for more
information.

vii

Section 1 — GPIB COMM Pack

INTRODUCTION

OVERVIEW

1240 Operation can be controlled via the IEEE 488 General Purpose Interface Bus
(GPI1B).

With the GPIB COMM Pack, the 1240 conforms to the IEEE specification 488-1978,
Standard Digital Interface for Programmable Instrumentation.

Capabilities
The GPIB COMM Pack allows the controller to do:
ACQUISITION CONTROL

The Controller can:

* start a data acquisition

¢ start the auto-run function

* stop an acquisition or autc-run

The 1240 will notify the controller when:
* a controller-initiated acquisition is over
* 3 controller initiated auto-run is over

DISPLAY CONTROL
* The controller can write to the 1240 display

FRONT PANEL CONTROL
* The controlier can request 1240 keystrokes
¢ The controlier can request an auditory tone from the 1240

DIAGNOSTICS
* The controller can initiate 1240 diagnostics
* The controller can request diagnostic information

BLOCK TRANSFERS - The following structures can be sent to and received from the
1240 as a block of data (not as a sequence of keystrokes):

* instrument Setup

® acquisition Memory

* reference Memory

RAM Pack contents

Limitations

The 1240/GPIB Interface allows communication only with a controller programmed for
this purpose. The 1240 can function as a talker or fistener, but not as a controller.

Optional Accessories

The following optional accessories are available for use with the 1200C02 GPIB
COMM Pack:

* (Cable, 2-meter, part no. 012-0630-01
* Cable, 4-meter, part no. 012-0630-02
* (Cable, 1-meter, double-shielded, low EMI, part no. 012-0991-01
* Cable, 2-meter, double-shielded, low EMI, part no. 012-0991-00
* Cable, 4-meter, double-shielded, low EMI, part no. 012-0991-02

1-1

Introduction — GPIB COMM Pack

Selecting a Controller

The controller for the 1240 must have a GPIB connector and software compatible with
the |IEEE 488-1978 Standard.

For flexibility and ease of use, the controller should be able to respond to a service
request, poll devices serially in any order, evaluate status bytes bit-by-bit, and execute
user-defined code.

Table 1-1
OPERATING SPECIFICATIONS
Characteristic Description
Temperature -
Operating: —15°C. to +55°C.
Storage: —62°C. to +85°C.
Humidity: 95-97% relative humidity for five days cycled
from 30°C. to 60°C.
Altitude -
Operating: 4.5 km (approx. 15,000 ft.}
Non-operating: 15 km (approx. 50,000 ft)
Vibration 0.64 mm (0.025 in.), 10 Hz to 55 Hz, 75 minutes
Shock 50 g (1/2 sine wave), 11 ms; 18 shocks, 3 on

each face.

INSTALLATION

To use the interface, power off the 1240 and controller. Plug the COMM Pack into the
back panel of the 1240. Secure the bow handle to the spurs on the mainframe to
prevent the COMM Pack from accidentaily working loose.

Then plug the GPIB interface from the controller into the COMM Pack. Tighten the
strain-relief screws to prevent the interface plug from slipping out of the COMM Pack.

See Figure 1-1.

NEEAAaaaas

z CAUTION 2

P o i S S N

Make sure the 1240 and controller are powered OFF before plugging in the
COMM Pack.

1-2 REV SEP 1983

introduction — GPIB COMM Pack

RETAINING SPURS. Snap the handle on the
pack over these spurs to secure the pack firmly
to the 1240.

CAUTION MAIN POWER SwITCH

pe. ¥IDE O CRT CONTROL

O OPERATOR SERVICEABLE PARTS
INSIDE REFER SERVICING 7O ON out CONTRAST
QUALIFED PEASONNEL DISCOM
NECT POWER BEFCRE SERVICING OFF
FGH LEARAGE CURRENT TO avOilt
ELECTRIC SHOCK THE PROTECTIVE FUSE

oF

@ oug

GROUNDING COMDUCTOR MUS™
CONNECTED TO GROUNG

EXT TRIG

CAUTION
198 comtatl ¢

IN

00 VA MAX
FREGUENCY 48-63Hx

RArr] FUSE 296
LOREED) Y

X
| TR D

THIS INSTAUMENT I WrLi

PaRT MAY BE PROT © BY ONE
O MORE U S OR £OREIGN PATENTS
A PATERT AFPLICATIONS
INEDAMATIDN PAOVICFD ON
REUUEST BY "EXTHONIY INC

P BOX 0D BEAVEATON OREGON
mtusa

5
i
M H

H

INTERFACE
CONNECTOR.

HANDLE. Pull the handle to remove the pack.
Secure the pack firmly to the 1240 by snapping
the handle over the retaining spurs.

4340-8

Figure 1-1. COMM pack installed in 1240 communication port.

PRELIMINARY OPERATION INFORMATION
Power-Up Diagnostics

If 1240 power-up diagnostics reveal an error, the 1240 remains under diagnostic
monitor control. You must exit the diagnostic monitor before GPIB communication is
possible. If no error is present, the 1240 exits the diagnostic monitor automatically.

Menus

Each 1240 menu is designed to perform a specific function. When a menu is called up,
it assumes control of the instrument. The two menus discussed in this manual are
COMM Port Control, and Remote.

1-3

Introduction — GPIB COMM Pack

COMM Port Control Menu. Once the COMM Pack has been installed, enter the menu
by pressing the UTILITY key, and then the COMM PORT CONTROL soft key. Figure 1-2
shows a typical COMM Port Control menu display.

Use the COMM Port Control menu to select port status, GPIB address, and message
termination type. You may also initiate data transfers with the soft keys.

Port Status Display - When in COMM Port Control menu (ONLINE), or Remote menu,
the top line of the 1240 screen displays the status of the GPIB port hardware. The
display contains three fields: left, center, and right.

Left — Remote/Local State of Interface (see IEEE Std. 488-1978)

LOCAL local or local with lockout state
REMOTE (STOP=RTL) remote state
REMOTE WITH LOCKOUT remote with lockout
Center - Service Request
SERVICE REQUEST SRQ being asserted
(blank) SRQ not being asserted
Right - Listener/Talker
LISTENER 1240 addressed to Listen
TALKER 1240 addressed to Talk
(blank) not addressed

SERVICE REQUEST KNOB=SELECT

GPIB PORT STATUS - WTINTTAE

1240°5 GPIB ADORESS
MESSAGE TERMINATION

4344-02
Figure 1-2. Typical 1240 screen display in COMM Port Control menu.

Introduction — GPIB COMM Pack

Selectable Parameters. Some GPIB communication parameters are selected
through input fields in the 1240 COMM Port Control menu. The 1240 non-volatile
memory stores the parameters at power-down. The following parameters are avail-
able in the COMM Port Control menu:

* GPIB PORT STATUS. Valid selections are ONLINE and OFFLINE. In OFFLINE, no
communication occurs between the controller and 1240. Before changing any
other parameters, the 1240 must be OFFLINE. When the 1240 goes ONLINE, it
sends a service request to the controller, notifying the controlier of its ONLINE
status.

e 1240'S GPIB ADDRESS. Valid addresses are 0-30.
* MESSAGE TERMINATION. Valid types are EOI, and LF OR EOI.

If EOI is selected, messages are terminated by sending EQOI concurrent with the last
byte of the message. During message reception, receiving an EOIl is the only
recognized message terminator.

If LF OR EOI is selected, a CR followed by LF concurrent with EQl is sent as a message
terminator. When receiving, a terminator is LF or EOL.

1240 Soft Function Keys. Use the soft function keys at the bottom of the COMM Port
Control Menu to request a data transfer. Each soft key, when pressed, sends a unique
message, a service request {SRQ), to the controller. See the Event Codes for these
keys in Appendix D.

The soft keys are:
REQUEST SETUP UPLOAD
REQUEST SETUP DOWNLOAD
REQUEST REFMEM UPLOAD
REQUEST REFMEM DOWNLOAD
REQUEST ACQMEM UPLOAD

NOTE

These keys do not perform data transfers automatically. They merely notify the
controffer that the 1240 user requests an upload to the controller, or a
download from the controller.

Error Messages

The following error messages may appear on the 1240 screen in COMM PORT
CONTROL menu:

PORT STATUS MUST BE OFFLINE TO CHANGE THIS VALUE
PORT STATUS MUST BE ONLINE TO DO THIS OPERATION

Remote Menu. This menu can only be called by the controller. The 1240 enters this
menu when the GPIB interface enters the Remote State (REMS) or the Remote With
Lockout State (RWLS). The 1240 returns to the previous menu when the GPIB
interface enters the Local State (LOCS) or the Local With Lockout State (LWLS).
While in Remote menu, the 1240 screen display, if present, is produced by the
controller.

The 1240 does not have to be in Remote menu to communicate with GP1B. Some of
its device-dependent messages can be used in either Remote or Local mode. See
Device-Dependent Messages for more information.

The 1240 STOP key causes a return to local (if the 1240 is not in Remote with Lockout
state).

1-5

Introduction — GPIB COMM Pack

GPIB COMM PACK LED’S

When listening, the two LEDs refiect the 1240's assertion of the NRFD and NDAC
interface signal lines. When the 1240 is a talker, the NRFD and NDAC LEDs indicate
the current bus status.

THE STATUS BYTE

When the controller serial-polls the 1240 for its status, the 1240 returns an eight-bit
status byte.

The status byte bits are numbered DIO1 to DIO8, (least significant to most significant
bit). Following is an Mustration of the status byte.

Table 1-2
THE STATUS BITS

Bit Use

DI01-DI04 Used to specity system or device status, in con-
junction with DIO8.

D105 Busy bit
O0=ready
1=processing or executing a command

DIO6 Error bit
0=normal condition
1=error condition

D107 RQS bit.
: 0=not requesting service
1 =requesting service

D108 Device/System Status bit.
0—bits DI0O1-DI04 contain system status code
1=bits DI01-DI04 contain device status code

1-6 REV SEP 1983

Introduction — GPIB COMM Pack

Table 1-3

STATUS BYTE INTERPRETATION
Status 8765 4321 Hex Decimal
power on (online) 010X 0001 41 or 51 65 or 81
command error 011X 0001 61 or 71 97 or 113
execution error 011X 0010 62 or 72 98 or 114
no status, 1240 idle 100X 0000 80 or 90 128 or 144
performing an acquisition 100X 0001 81 or 91 129 or 145
performing an auto-run 100X 0010 82 or 92 130 or 146
performing a key operation 100X 0011 83 or 93 131 or 147
request ACQMEM upload 110X 0000 C0 or DO 192 or 208
request REFMEM upload 110X 0001 C1 or D1 193 or 209
request REFMEM download 110X 0010 C2 or D2 194 or 210
request SETUP upload 110X 0011 C3 or D3 195 or 211
request SETUP download 110X 0100 C4 or D4 196 or 212
acguisition complete 110X 0101 C5 or D5 197 or 213
autc-run complete 110X 0110 C6 or D6 198 or 214
key operation complete 110X 0111 C7 or D7 199 or 215
test complete 110X 1000 C8 or D8 200 or 216
auto-run complete, 110X 1001 C9 or D9 201 or 217
memories equal
auto-run complete, 110X 1010 CA or DA 202 or 218
memories not equal
input error 111X 0000 EO or FO 224 or 240

See Appendix D for more information about error messages.

1-7

Section 2 — GPIB COMM Pack

PROGRAMMING

This section lists the device-dependent messages the controlier may use to operate
the 1240 and the GPIB interface functions supported by the 1200C02.

DEVICE DEPENDENT MESSAGES
Following is a list of 1240-specific messages supported by the 1240.

Remote and Local States

Each message has a notation (Local/Remote) or (Remote). Local/Remote commands
are received by the 1240 when it is in either local or remote state. Remote commands
are executed by the 1240 only when in remote state.

For the purposes of this discussion, local state means any 1240 menu except the
Remote menu. The 1240 enters the Remote menu when it receives REN and MLA
interface messages from the controller. When this occurs, the 1240 screen is blanked,
and the Port Status Display line changes to indicate Remote menu.

In Remote menu, the 1240 keyboard is disabled, with the exception of the STOP key.
The STOP key causes a return to local state if pressed -- unless the 1240 is in lockout
state.

Lockout state is caused by reception of the LLO interface message from the
controller. When the 1240 is in lockout state, no key, including the STOP key, has any
effect.

At power-up, the 1240 is in Jocal state.

Device-Dependent 1240 Messages

The following messages are supported by the 1240. Note that some of the characters
in each message are shown in bold face. The bold face characters are the abbreviated
form of the command. The abbreviated command is the minimum character set that
can be entered for the message. For example, the ACgmem? message will be
recognized if only AC? is entered.

Here is an alphabetical tist of the messages:

ACgmem KEy?
ACgmem? LOad

BEI MSgdim
DAtafmt MSgdim?
DAtafmt? RAmpack
DIAg? RAmpack?
DISplay REfmem
DT REfmem?
DT? RPHelp?
ERr? RQs
EVent? RQs?
HEIp? SEt?

ID? STArt

INIt STOp
INSetup TEST
KEy

REV SEP 1983

Programming -— GPIB COMM Pack

ACgmem <data block>>, <data block> . .. (Remote)

Modity a variable number of bytes of the Compressed Memory Image. Arguments are
a variable number of data blocks in ASCIHl Hex, or standard or IEEE 728 Binary Block.
For example, this command is used to return the controller's copy of the 1240
Acquisition Memory to the 1240 temporary, compressed, memory image. See LOAD
and GPIB Data Transfers.

ACgmem? {Remote)

Compress and send a copy of the current 1240 acquisition memory to the controller.
See GPIB Data Transfers.

To determine the approximate number of characters in the response to the query, use
the following formula:

For ASCI Hex format:

2.4 X (590 + 9 X ((number of 9-channel cards X 65) + (number of 18-channel
cards X 130))

For Binary Block format:

1.2 X (590 + 9 X ((number of 9-channel cards X 65) + (number of 18-channel
cards X 130))

BEI (Remote)

Ring the 1240 bell. Note that a string of these commands may not cause the bell to
ring once for each command.

Aschex
DAtafmt Binbik (Local/Remote)
leee728

Set upload data block format for either ASCH Hex, Binary Biock (standard, or IEEE
728 format). The 1240 will accept either format, regardiess of DATAFMT setting,
when downloading. See GP/B Data Transfers. Acceptable arguments are:

Aschex — ASCII Hex format (default state)
Binblk — Standard Binary Block format
leee728 — The IEEE 728 Binary Block format
The IEEE 728 standard calls for a #B block preamble.

2-2 REV SEP 1983

Programming — GPIB COMM Pack

DAtafmt? (Local/Remote)

Send the current data block format status. Response is either
DATAFMT Aschex - ASCII Hex
-0r-

DATAFMT Binblk -- Binary Block
-0r-

DATAFMT leee728 -- IEEE 728 Binary Block format
See GPIB Data Transfers.

DIAg? (Local/Remote)

Send diagnostic results from the 1240.

If any diagnostics have been run, the results are printed in the following format:
DIAG ERRORS NNNNN NNNNN NNNNN NNNNN . . .

or

DIAG “ERRORS NOT FOUND"

The leftmost digit of NNNNN is the test sequence number. If more than one of any type
of acquisition module is installed, two 9-channel modules for example, this digit will
show which module has the error. Use the other four digits to locate the troubleshoot-
ing information in the Diagnostic Error Indexes of the 1240 Logic Analyzer Service
Manual, to interpret your diagnostic results.

DiSplay <line #>, <column #>, <data type>, <data> (Remote)

Display data (one line maximum) on the 1240 display. All areas of the display can be
written to, except line 1. For 1241 display code, refer to Appendix B.

line # — 02-30
column # — 01-64
data type — Ascii, or Code (1240 display code, see Appendix B)

data — ASCH data must be enclosed in double quotes; or must be a #H followed by
1240 display code (ASCII characters converted to two hex digits). 1240
display code data should be sent as an ASCIl Hex argument only.

Examples:
DISPLAY 5,7,ASCIl, *HELLO, 1240°

DISPLAY 10,1,CODE, #H110E151518262401020400.

REV NOV 1986 2-3

Programming — GPIB COMM Pack

OFf

DT ACq (Local/Remote)
AUto

Sets the 1240 for reception of a GET interface message. Acceptable arguments are:

OFf — Disables the function. Nothing happens when the 1240 receives a GET
message (default state).

ACq — Starts a normal data acquisition when the 1240 receives a GET message.
AUto — Starts an auto-run when the 1240 receives a GET message.

DT? (Local/Remote)

Send the current Device Trigger setting. The 1240 responds with DT OFF, DT ACQ, or
DT AUTO.

ERr? (Local/Remote)

Send an error code. The 1240 responds by sending the error code corresponding to
the previously read status byte or highest priority pending status, in the following
format:

ERR error code
For a list of error codes, see Appendix D.
The 1240's response to the error query is identical to EVENT? except for the header.

EVent? (Local/Rernote)

Send an event code. The 1240 responds by sending the event code corresponding to
the previously read status byte or highest priority pending status. The format is:

EVENT event code

For a list of event codes, see Appendix D. For a description of the status byte, see
Section 1.

HEIp? (Local/Remote)

List valid command headers. The list includes all commands except those handied by
routines in an installed ROM pack.

2-4 REV SEP 1983

Programming — GPIB COMM Pack

ID? (Local/Remote)
Send identity string. The 1240 responds with
ID TEK/1240,VXX.X,SYS:Va.b,COMM:Vd.e, ACQ:f:g:h:i
where:
VXX.X — Code and format version
a.b — System software version
d.e — COMM Pack software version
f — Slot 0 acquisition module
0 — no module installed
1 — 9-channel card
2 — 18-channel card
g — Slot 1 acquisition module
h — Slot 2 acquisition module
i — Slot 3 acquisition module

INIt (Remote)

Perform power-up initialization of the 1240 setup. Internal diagnostics are not run, the
power-on SRQ is not sent, and the 1240 is not unlistened. See The 1240 Operator’s
Manualtor default setup values. Only the 1240 setup is initialized. The communication
parameters are not changed.

INSetup < data block:-, <data block> . .. (Remote)

Modify the 1240 setup. The setup includes configuration and trigger information.

INSetup? (Remote)

Upload a copy of the current setup. The 1240 responds with the INSETUP header,
followed by a series of data blocks in either ASCII Hex, or standard or IEEE 728 binary
block format. The Setup includes configuration and trigger information. The 1240's
response to the INSETUP? can be stored by the controller and downloaded to the
1240 later.

Number of characters sent to controlier in response to this query is <2500 ASCII Hex,
and <1250 Binary Block.

REV SEP 1983 2-5

Programming — GPIB COMM Pack

KEy (Remote)
Notify the controller of the next keystroke.

The 1240 responds by going into a loop waiting for a keystroke. A DCL, GTL, or
unassertion of REN interface message, or the 1240 STOP key, terminates the KEY
operation. All other remote-only commands will not be executed while the 1240 waits
for a key. The STOP command from the interface will terminate the KEY operation. If
the 1240 is not in remote with lockout state, the front panel STOP button will also
terminate the KEY operation.

When a key is pressed, an SRQ goes to the controller if RQS is on (if RQS is off, the
status change is saved when a keystroke occurs).

KEy? (Remote)

Send the keycode for the key pressed during the previous KEY operation. Valid
keycodes are listed in Appendix C. The keycode is initialized to 99 (invalid keycode)
when remote state is entered, when INIT is executed, and when the KEY command is
sent to the 1240.

ACgmem
LOad {Remote)
REfmem

Expand and load temporary compressed memory into Acquisition or Reference
Memory.

Foliowing are the valid arguments:

ACgmem — Expands and loads temporary compressed memory into Acquisition
Memory.

REfmem — Expands and loads temporary compressed memory into Reference
Memory.

See ACQMEM and REFMEM. Also see GPIB Data Transfer.

Lf

MSgdim { } (Local/Remote)

Semicolon
This command sets the message unit separator. The user may sefect
Lf
-or-

Semicolon (default)

The IEEE-728 standard calls for Lf message unit separators along with EOl message
termination.

2-6 REV SEP 1983

Programming — GPIB COMM Pack

MSgdim? (Local/Remote)
Request from the controller for current MSGDLM mode.
Answers are:

MSGDLM LF

-or-

MSGDLM SEMICOLON.

RAmpack <:data block>, < data block > (Remote)

Modify the RAM Pack contents. Arguments may be in ASCII Hex, or standard or IEEE
728 Binary block. See GPIB Data Transfers.

RAmpack? (Remote)

Send the entire contents of the RAM Pack to the controller. If no RAM Pack is
installed, an error message is returned.

Number of characters sent to controller in response to this query is <2.5 times the
number of bytes in the pack, ASCII Hex format. For Binary Block format, compute the
ASCII Hex format count and divide by two.

REfmem < data block>, <<data block> . .. (Remote)

Modity a variable number of bytes of the Compressed Memory Image. Arguments are
a variable number of data blocks in ASCH Hex, or standard or IEEE 728 Binary Block.
Example: return the controller's copy of the 1240 Reference Memory to the 1240
temporary, compressed, memory image. See LOAD and GPIB Data Transfers.

REfmem? (Remote)
Compress and send a copy of the current Reference Memory to the controller.

To determine the approximate number of characters in the response to the guery, use
the following formula:

For ASCIl Hex format:

2.4 X (590 + 9 X ((number of 9-channel cards X 65) + (number of 18-channel
cards X 130))

For Binary Block.format:

1.2 X (590 + 9 X ((number of 9-channel cards X 65) + (number of 18-channel
cards X 130)))

RPHelp? (Local/Remote)
List valid command headers in an installed ROM pack.

REV SEP 1983 2-7

Programming —~ GPIB COMM Pack

ON
RQs (Local/Remote)
OFf

Disable or enable the 1240's ability to generate SRQs. Default state is ON.

If RQS is OFf, the 1240 stores up all SRQs until the controller sends the RQS ON
instruction. Then all SRQs are sent to the controller.

While RQS is OFf, the controller can poll the 1240 for waiting SRQs with a serial poll.

RQs? (Local/Remote)

Send the current 1240 RQS state. The 1240’s response is either:
RQS OFF
-0Or-
RQS ON

SEt? (Remote)
Send current settings of RQS, DT, DATAFMT and INSETUP.

Response is:
DAT <data format seiection:>:

RQS <rgs setting>;
DT < dt setting>;

INS <zdata block >, < data bloeck>, . . .

ACq
STArt (Remote)
AUtO

Begin data acquisition.

If RQS is ON, the 1240 will send an SRQ to the controller when the acquisition is
complete, or when the Auto-run stop condition has been encountered.

If RAS is OFf, the 1240 will not send SRQ's, so the EVent query should be used to poll
for SRQ’s.

Valid arguments:
ACq — Normal data acquisition.

AUto — 1240 performs Auto-run.

STOp (Remote)

Halt data acquisition, KEY operation, or Auto-run. Pressing the 1240 STOP key has
the same effect (if the 1240 is in local state).

2-8 REV SEP 1983

Programming — GPIB COMM Pack

TEST (Remote)

Execute power-up diagnostics. When the diagnostics are completed, the 1240 is
initialized. The 1240 notifies the controller that the diagnostics are completed with the
Test Complete SRQ. TEST will not be executed if RQS is OFF.

After receiving TEST, but before sending the SRQ, the 1240 ignores all bus activity.

GPIB Data Transfers

Uploads to the controller and downloads to the 1240 are composed of a series of data
blocks in a choice of three formats: ASCII Hex, standard binary block, or IEEE 728
Binary Block (see DATAFMT message). Each data block is a self-contained message
with address, byte count, data, and checksum information. When the 1240 receives or
transmits a data block, the location field (aloc or bloc) identifies the source or
destination or the data.

Data Block Format. — When the 1240 uploads data to the controlier, the response is
the query header followed by a series of data blocks separated by commas, like this:

INSETUP

ACQMEM
<<data block >(,<data block>,. . .); (EOI)
REFMEM
RAMPACK
< data block> = #H<labc> <aloc> < ascii data>> <cacs>> (ASCIl Hex)

-0r-
% <<bbc > < bloc> <binary data> < bcs>> (Binary Block)

-0r-
#B-<bbc> <bloc>> <binary data>><ics> (IEEE 728 Binary
Block)

<abc>> — Two ASCIl Hex digits representing the number of characters in the

<aloc>>, <ascii data>-, and <acs> fields, divided by two. The maximum
number is 61 hex

<aloc> — Six ASCII Hex digits representing the starting relative location of < ascii
data> within the 1240 port-addressable memory.

<ascii data> — This field contains the data itself. Each byte of the data is
represented as two ASCIlI Hex digits.

<acs> — Two ASCII Hex digits representing the two's complement of the modulo
256 sum of the hex digit pairs in the <abc>-, <aloc>-, and <ascii data>
fields.

<bbec> — A 16-bit binary value specifying the number of bytes in the <bloc>,
<binary data>>, and <bcs> fields, most significant byte first. The
maximum permissible value for <<bbc> is 61 pex.

<bloc> — A 24-bit binary value specifying the starting relative location of < binary
data>> within the 1240 port-addressable memory.

<binary data>> — This field contains the binary data.

REV SEP 1983 2-9

Programming — GPIB COMM Pack

<bes:> — An 8-bit value containing the two's complement of the modulo 256 sum
of the bytes in <bbc>, <bloc>, and <binary data> fields.

<ies> — An 8-bit value containing the two's complement of the modulo 256 sum of
the bytes in bloc and binary data fields.

Data downloads to the 1240 (i.e. ACQMEM, REFMEM, RAMPACK, and INSETUP
commands) must also conform to the format described above.

Data Transfer, Acqmem and Refmem/Controller. Here is a diagram of Acquisition
Memory memory uploading to the controller and downloading to the 1240. The
Reference Memory is uploaded and downloaded the same way, only instead of using
ACQMEM? and ACQMEM, use REFMEM? and REFMEM.

* Uploading — Controller sends the following message:

REN
MLA
ACQMEM? (EQI)

The 1240 compresses its acquisition memory and sends it to the controller. See
Figure 2-1.

conmesse> | fucouen
IMAGE
(Location 00XXXX)
r—=— ™7/
: REFMEM |
o= ——=——n '
SETUP b

CONTROLLER (Location 01XXxx) |

|
-

f— — — —=—=—1
| RAMPACK I
L (Location 02XXXX)

—_————]

4344-03

Figure 2-1. Controller upioads Acquisition Memory contents with ACQMEM? command.

2-10 REV SEP 1983

Programming — GPIB COMM Pack

The controller receives the data in the format:

MTA

ACQMEM <data block >,
< data block>,

< data block>,. . .

< data block >

EQI

* Downloading — The controller sends the following message:

REN

MLA

ACQMEM

<zdata block >,
<<data block >,
<data block>,. . .
<data block >
EOI

The data biocks are sent to the 1240 Temporary Compressed Memory Image. See
Figure 2-2.

TEMPORARY r— ——1
COMPRESSED | ACQMEM |
MEMORY e
IMAGE
(Location 00XXXX)
r—— ™/
| REFMEM |
| R L —J
SETUP —_——
CONTROLLER I (Location 01XXXX) I
R |
i_RAMPACK 1
(Location 02XXXX) I
|
434404

Figure 2-2. Controller downloads data to 1240 compressed memory with ACQMEM
command.

The controller now sends the following message:
REN

MLA

LOAD ACQMEM (EOI)

The Compressed Memory Image is loaded in the Acquisition Memory. See Figure 2-3.

REV SEP 1983 2-11

Programming — GPIB COMM Pack

TEMPORARY
COMPRESSED [ACQMEM
MEMORY
IMAGE
(Location 00XXXX)
r— /"
| rRermEM |
B . R-' I serop il L _J
| CONTROLLE l I (Location O1XXXX)|
— R |
{ RAMPACK 1
(Location 02XXXX)
I

4344.05

Figure 2-3. Controller modifies 1240 Acquisition Memory with LOAD command.

2-12

Programming — GPIB COMM Pack

Data Transfer, INSETUP and RAMPACK. Here is a diagram of SETUP uploading and
downloading. The RAMPACK is uploaded and downloaded the same way, only
instead of using INSETUP? and INSETUP, use RAMPACK? and RAMPACK.

¢ Uploading — The controller sends the following message:

REN
MLA
INSETUP? (EOI)
MTA

The 1240 sends the contents of the SETUP memory in the following format:

INSETUP

< data block>>,

< data block=,. . .
< data block:=EOQI

| COMPRESSED
MEMORY

| maGe

| (Location 0oxxxx) |

[TEMPORARY -"]

NTR R SETUP
co OLLE - (Location 01XXXX)

RAMPACK
(Location 02XXXX) '
L _J

{'__'_"_"_'"1

L
| ACOMEM |
L——

i

| REFMEM |
|

4344.06

Figure 2-4. Controller uploading setup information with INSETUP? command.

* Downloading — The controller loads the SETUP memory with the following

message:

REN

MLA

INSETUP

< data block >,

<< data block>,. . .
< data block >EQI

The data blocks are then loaded into the SETUP memory. See Figure 2-5.

REV SEP 1983

2-13

Programming — GPIB COMM Pack

™ TEMPORARY B '____:
| compressep | | ACQMEM |
| MEMORY | L
| IMAGE |
L (Location OOXXXX)_’
r— —"
| REFMEM |
SETUP —
CONTROLLER " | 5cation 01XXXX)
~ —
| RAMPACK i
(Location 02XXXX) l
(. — |
434407

Figure 2-5. Controller downloading the Setup Memory with the INSETUP command.

Interrupting and Aborting Data Transfer in Progress

An IFC interface message received by the 1240 during execution of INSETUP?,
ACQMEM?, RAMPACK?, or REFMEM? temporarily interrupts execution. Execution
continues when the 1240 is talk addressed.

A DCL or SDC command received by the 1240 will terminate (INSETUP?) execution
{upload).

if the user presses the STOP key on the 1240 front panel during INSETUP? execution
(upload), the 1240 returns to local state, and sends a warning message to the
controller. To prevent this, enter LLO (local lockout) state.

Aborting a data transfer in progress, upload or download, can be done in two ways:

1. If the 1240 is not in an LLO state, press the STOP key on the front panel. This
causes a return to local state. The 1240 terminates the transfer in progress by
sending an SRQ notifying the controller that data may have been lost by a
change to local state. If the 1240 is in an LLO state, the 1240 keyboard is locked
out and the 1240 STOP key won't operate.

2. The controller can send DCL (or SDC), or GTL interface messages. Either of
these will terminate the transfer.

During uploading or downloading, if a transmission error occurs, or if the transmission
s aborted because of a return to local state, you should begin transmission again from
the beginning. Any data bytes received after the SRQ should be ignored.

2-14 REV SEP 1983

Programming — GPIB COMM Pack

1240 GPIB INTERFACE
Table 2-1 lists the GPIB interface function subsets supported by the 1240:

Table 2-1
GPIB INTERFACE FUNCTIONS SUPPORTED BY THE 1240

IEEE Symbol Capability
SH1 Full Source Handshake capability.
AH1 Full Acceptor Handshake capability.
T6 Basic Talker, serial poll capability, unaddress if MLA. No Talk Only

capability.
L4 Basic Listener, unaddress if MTA, No Listen Only capability.
SR1 Full Service Request capability.
RL1 Full Remote Local capability.
PPO No Parallel Poll capability.
DC1 Full Device Clear capability.
DT1 Full Device Trigger capability.
co No Controller capability.

The 1240 is a tri-state, or E2, device.

NOTE

The above mnemonics are used in the IEEE Standard and identify both the
interface function and the subset implemented. For example, T6 means Talker

function, subset 6.

Interface Control Messages

Interface control messages are sent with the ATN line asserted, and are of two types:
Uniline messages sent on the GPIB signal lines (see Data, Management, and
“Handshake™ Buses in Appendix E), and Multiline messages sent over the data bus
and signal lines.

Interface control messages include the primary talk and listen addresses for instru-
ments on the bus, addressed commands (for previously-addressed instruments),
universal commands (for all instruments), and secondary addresses.

The Interface control messages are divided into two categories: messages the 1240 is
capable of receiving (controller to 1240), and messages that the 1240 is capable of
sending (1240 to controller).

REV SEP 1983 2-15

Programming — GPIB COMM Pack

Table 2-2
CONTROLLER TO 1240
Message Description

ATN (Attention) tells the 1240 that the accompanying muitiline message
should be interpreted as an Interface message.

DAB (Data Byte) is a data byte received by the 1240 from the bus. The data
byte will become part of a device dependent message.

DAC (Data Accepted) is the message received when the NDAC signal line is
unasserted. It is used to indicate the condition of acceptance of data by
the controlier or a device. See DAV and RFD.

DAV (Data Valid) is the message received when the DAV signal line is
asserted. It is used to indicate to the 1240 that the data on the DIO
signal lines is valid. See DAC and RFD.

DCL (Device Clear) is sent to the 1240 by the controller to restart the
communication process. None of the 1240’s settings are changed,
but the 1240 will halt execution of any previously received com-
mand, clear the pipeline of input and output buffers, clear SRQ, the
status byte, and any pending status.

END (End) is the interface message sent to the 1240 with the last data
byte to indicate End Of Message.

GET {Group Execute Trigger) is an addressed command. It is used in
association with the Device Trigger (DT) commands to start a data
acquisition or Auto-run. If the DT is turned off, GET has no effect.

GTL (Go To Local) causes the 1240 to go to local state from remote if it is
listen-addressed.

IFC (Interface Clear) resets the talk and listen interface functions.
Reception of this message does not terminate any device operation.

LLO (Local Lockout) causes the remote state 1240 keyboard to become
inoperative (except for the KEY command). To exit the locked out
state, the REN line must be unasserted.

MLA {(My Listening Address) causes the 1240 to listen.

MTA (My Talk Address) causes the 1240 to talk. If the 1240 has no data
to transmit, it sends the “talked with nothing to say” message (FF
hex).

REN (Remote Enable) is the message sent to the 1240 when the REN line
is asserted. This message, plus the MLA message, causes the 1240
to enter remote state.

RFD (Ready for Data) is the message the 1240 receives when the NRFD
line is unasserted. See DAV and DAC.

SDC (Selected Device Clear) has the same function as the DCL, except
that it is acted upon only by listen-addressed devices.

2-16 REV SEP 1983

Programming — GPIB COMM Pack

Table 2-2 (cont.)
CONTROLLER TO 1240

Message Description

SPD {Serial Poll Disable) sets the 1240 for data output rather than for serial
poll status bytes when it is talker addressed (power-on default).

SPE (Serial Poll Enable) sets the 1240 to output serial poll status bytes when
it is talker addressed.

UNL (Unlisten) causes the 1240 to stop listening for data. No data is lost.
The MLA message causes the 1240 to start listening again.

UNT (Untalk) causes transmission from the 1240 to be interrupted. No data
is lost. The MTA message will restart the transmission from where it left
off.

Table 2-3
1240 TO CONTROLLER
Message Description

DAB (Data Byte) 1240 indicates a byte of data sent to the controller.

DAC (Data Accepted) indicates to the controller that the 1240 has
accepted the data.

DAV (Data Valid) indicates to the controller that the data on the DIQ
signal lines is valid.

END (End) indicates end of message when received with a DAB.

RFD (Ready for Data) indicates to the controlier that the 1240 is ready
for data.

RQS (Request Service) is the message sent when DIO7 of the status
byte is set, and indicates that the 1240 is requesting service from
the controller.

SRQ (Service Request) is sent via the SRQ interface line to signal the
controller. The controller then polis each device on the bus. The
device requesting service sends the RQS message bit by setting
DIO7 in its status byte.

STB (Status Byte) is sent to the controller during a serial poll operation.

It contains summary status information about the 1240.

REV SEP 1983

2-17

Section 3 — GPIB COMM Pack

PROGRAMMING EXAMPLES

The program segments shown in this section are designed to illustrate the GPIB
capabilities of the 1240 Logic Analyzer. They are written in generic language. To
execute one of these program segments on your controller, translate each statement
into your controller's programming language.

Strings written in capital letters and enclosed in double quotes, “INSETUP?" and
"START ACQ" for example, are the actual strings that should be sent to the 1240. X$
denotes a string variable. Check your controller's string capability before entering
strings.

RECEIVING A SETUP FROM THE 1240

The following program segment extracts the current 1240 setup and stores it on a
mass storage device.

100 put 1240 in Remote menu

110 output to 1240 “INSETUP?"

120 input from 1240 S$

130 put 1240 back in Local (if desired)
140 output to mass storage S$ (if desired)

Line 100 causes the 1240 to change to the Remote menu. This is necessary because
the following INSETUP? query is a Remote Only command. An error will occur if this
command is sent to the 1240 when it is not in Remote menu. The INSETUP? query
causes the 1240 to send a copy of its current setup to the controller. Line 110 sends
the query to the 1240, and line 120 receives the 1240's response to the query and
places it in string variable S$.

Line 130 gives control of the 1240 back to the 1240 user. This step is not necessary
and would, in fact, be undesirable if further communication between the controller and
the 1240 were to take place soon. if the controller has some form of mass storage at
its disposal it may want to store the 1240 setup just received (line 140).

SENDING A SETUP TO THE 1240
The following program segment sends a previously stored setup to the 1240.

100 input from mass storage S$ (the setup)
110 put 1240 in Remote menu

120 output to 1240 S$

130 put 1240 back in Local (if desired)

Line 100 loads a string variable (S$ in this case) with a 1240 setup stored on mass
storage. The setup retrieved is probably a copy of the 1240's response to an
INSETUP? query sent earlier. The 1240 must be in Remote menu for it to accept a
setup from the controller (line 110). Line 120 sends the setup to the 1240 and line 130,
which may or may not be necessary, gives control of the 1240 back to the local 1240
user.

3-1

Programming Examples — GPIB COMM Pack

GETTING THE ACQMEM FROM THE 1240

This program segment could be used to have the 1240 send the controller a copy of its
current Acquisition Memory.

100 put 1240 in Remote menu

110 output to 1240 “"ACQMEM?”

120 input from 1240 A$

130 put 1240 back in Local (if desired)
140 ouput to mass storage A$ (if desired)

Line 100 places the 1240 in Remote menu. This is necessary because the ACQMEM?
query is a Remote Only command. Line 110 sends the ACQMEM? query to the 1240
and line 120 receives the 1240’s response to the query and puts that response in a
string variable (A$ in this case). If it is desirable to give control of the 1240 back to the
1240 local user, line 130 can be used to put the 1240 back in a Local menu. Line 140
stores the 1240's response to the ACQMEM? guery on the mass storage device.

This same program segment couid be used to request a copy of the 1240's Reference
Memory, except that the string “REFMEM?" is used in line 110 instead of
“ACQMEM?".

SENDING A REFMEM TO THE 1240

The following program segment sends a Reference Memory to the 1240.

100 input from mass storage R$

110 put 1240 in Remote menu

120 output to 1240 R$

130 output to 1240 “LOAD REFMEM”

140 put 1240 back in a Local menu (if desired)

Line 100 retrieves a memory image previcusly extracted from the 1240 and stored on
the mass storage device. The 1240 must be in Remote menu when a memory image
{acquisition or reference) is sent. Line 120 sends the memory image (string variable R$
in this case) to the 1240. After sending the memory image to the 1240, it is necessary
to send a LOAD command to the 1240 to cause the compressed memory image to be
expanded and placed in the desired memory area (Reference Memory or Acquisition
Memory). Line 130 sends the LOAD REFMEM command to the 1240 to cause the
Reference Memory to be loaded with the memory image sent. Line 140 gives control
of the 1240 back to the local 1240 user.

PERFORMING A REMOTE DATA ACQUISITION

The following program segment sends a setup to the 1240, acquires data using that
setup, and then retrieves a copy of the 1240’s Acquisition Memory.

100 input from mass storage S$ (setup)
110 put 1240 in Remote menu

120 put 1240 in Local Lockout mode
130 output to 1240 S§

140 trigflag = FALSE

150 output to 1240 "START ACQ”

160 if trigflag = TRUE then goto 200
170 goto 160

200 output to 1240 “ACQMEM?”

210 input from 1240 A$

220 put 1240 back in Local (if desired)
230 output to mass storage A$ (if desired)

3-2

Programming Examples — GPIB COMM Pack

Line 100 gets the desired setup from mass storage and puts it in a string variable (S$
in this case). Lines 110 and 120 cause the 1240 to go to Remote menu with Lockout.

The lockout prevents the iocal 1240 user from pressing the STOP (return to local) key
and terminating the data acquisition. The setup is sent to the 1240 in line 130. The
1240 is now set up and ready to acquire data. The START ACQ command is sent to
the 1240 (line 150) to start a data acquisition.

When the acquisition is over (when the 1240 triggers and fills its memory), the 1240
generates an SRQ. Normally, an SRQ causes an interrupt at the controller. In this
case, itis assumed that the SRQ interrupt handler will set “trigflag” to TRUE when the
“1240 data acquisition over SRQ” is detected. The loop in lines 160 and 170 causes
the controller to wait for the occurrence of this “acquisition over SRQ" from the 1240.

When the acquisition is over, execution begins at line 200. Line 200 sends the
ACQMEM? query to the 1240 and line 210 gets the response to the query.

NOTE

There are several things the controller can do instead of simply waiting in a loop
for the end of the acquisition. See the START command in Device-Dependent
Messages, Section 2.

GETTING KEYSTROKES FROM THE 1240 FRONT PANEL

The following program segment can be used to aliow the controller to be notified of the
next 1240 front panel keystroke.

100 put 1240 in Remote menu

110 keyflag = FALSE

120 output to 1240 “KEY”

130 if keyflag = TRUE then goto 200
140 goto 130

200 output to 1240 “KEY?"
210 input from 1240 K$
220 put 1240 in Local menu (if desired)

Line 100 puts the 1240 in Remote menu. This is necessary because the KEY
command and the KEY? query are Remote Only commands. Line 120 sends the KEY
command to the 1240 which causes the 1240 to enable its keyboard and wait for the
local 1240 user to press a key. When the local 1240 user presses a key, the 1240
asserts SRQ which causes an interrupt at the controller. The controller's SRQ
interrupt handler routine (not shown) determines the source of the SRQ (which device
on the bus) and the reason for it. If the source is the 1240 executing a KEY command,
the interrupt handler should set “keyflag™ to TRUE. Control remains in the loop in lines
130 and 140 until this “end of key operation” SRQ occurs causing “keyflag” to be set
to TRUE.

After the keystroke has occurred, the KEY? query is sent to the 1240 (iine 200) to
determine which key was pressed. Line 210 places the response to this query in a
string variable (K$ in this case).

What the controller does with this key information is not shown, but a likely application
would be for the controller to examine K$ and, based on the value of the key, decide
what operation to perform next. See Appendix C for a list of the keycodes returned by
the KEY? query.

REV SEP 1983 3-3

Programming Examples — GPIB COMM Pack

WRITING TO THE 1240 DISPLAY

The following program segment puts the 1240 in Remote menu and then writes a text
string to the 1240 display.

100 put 1240 in Remote menu

110 output to 1240 "DISPLAY 5,20,ASCII,
"THIS 1S THE REMOTE MENU™"

120 output to 1240 “DISPLAY 7.20,ASCII,
"PLEASE PRESS THE STOP KEY™™

130 output to 1240 "DISPLAY 9,20,ASCII,
“TO EXIT THIS MENU™"

Line 100 puts the 1240 in Remote menu because the foilowing DISPLAY command is
a Remote Only command. Lines 110 through 130 write text strings to the display. Line
110 displays "THIS IS THE REMOTE MENU" on line 5, column 20.

Other formats for the DISPLAY command are available. See the DISPLAY command
in Device-Dependent Messages, Section 2.

HANDLING SERVICE REQUESTS (SRQs)

Most controllers can give the programmer the choice of polling for SRQs or having an
SRQ cause an interrupt. This is an example of an SRQ interrupt service routine.

A routine similar to this could be used to handle SRQs in a system where an SRQ
causes an interrupt.

100 on SRQ then call 2000

2000 éerial poll the device(s)
2010 output to console “SRQ received”, device address, status byte
2020 if SRQ came from 1240 then goto 3000

3000 output to 1240 "EVENT?"

3010 input from 1240 E$

3020 output to console E$ (event code)

3030 if event code indicates a transfer request then goto 4000
3040 if event code indicates end of acquisition then goto 5000
3050 if event code indicates 1240 keystroke then goto 6000

(other special checks)

3500 return from interrupt

4000 set transfer request flag {transflag) to TRUE
4010 request = eventcode

4020 return from interrupt

5000 trigflag = TRUE

5010 return from interrupt

6000 keyflag = TRUE

6010 return from interrupt

3-4

Programming Examples — GPIB COMM Pack

Line 100 enables SRQ interrupts and informs the controller that when an SRQ occurs
it should call the routine at line 2000 (the SRQ interrupt service routine).

When an SRQ from any device on the bus occurs, execution begins at line 2000. The
first thing the service routine should do is determine which of the devices on the bus is
causing the SRQ.

The serial poll performed in line 2000 finds the device causing the SRQ and the status
byte returned by the device in response to the serial poll. Line 2010 displays the device
and the status byte on the controller’s console. If the 1240 s causing the SRQ, control
is passed to line 3000 - the section of the interrupt handler which handies 1240 SRQs.

The best way to determine why the 1240 sent an SRQ to the controller is to do an
EVENT? query. The status byte (returned by the serial poll) contains some information
about the reason for the SRQ, but it may not be specific. The EVENT? query will
extract the most detailed information available about the most recent SRQ. Line 3000
sends the EVENT? query to the 1240 and line 3010 puts the response in a string
variable (E$ in this case). The 1240's response, which is an event code, is displayed on
the controller’'s console in line 3020.

In most cases control can be returned to the main program at this point. But some
SRQs are special and may require some special processing. In this example, transfer
requests, the end of acquisition SRQ, and the 1240 keystroke are special.

In the COMM Port Control menu, there are five soft function keys at the bottom of the
display. Each of these is a transfer request capable of causing an SRQ to to be sent to
the controller. So, there are five different transfer request SRQs. Line 3030 checks to
see if the SRQ is a transfer request SRQ. If so, control is passed to a section of code
which sets a flag telling the main program that a transfer request has occurred.

Line 3040 checks to see if the SRQ is the SRQ indicating that a remotely-started data
acquisition has just completed. If so, “trigflag” is set to TRUE to notify a loop in the
main routine that the acquisition is complete.

tine 3050 checks to see if the SRQ is the SRQ indicating that the 1240 front panel
keystroke requested by the controller has occurred. If so, “keyflag” is set to TRUE so
the main routine will know the keystroke has been found.

SUPPORTING COMM PORT CONTROL MENU’S SOFT FUNCTION KEYS

The following example is a segment of a program that responds to the five soft
function keys (transfer requests) at the bottom of the COMM Port Control Menu.

100 on SRQ then call 2000

110 put 1240 in Local

120 transflag = FALSE

130 if transflag = TRUE then goto 200
140 goto 130

200 put 1240 in Remote menu

210 output to 1240 “DISPLAY 5,20,ASCIi,""REMOTE MENU"""

220 output to 1240 “DISPLAY 7,20,ASCIl,*"DATA TRANSFER IN
PROGRESS""”

230 if request = event code for “SETUP UPLOAD" then goto 500

240 if request = event code for “SETUP DOWNLOAD" then goto 600

250 if request = event code for “REFMEM UPLOAD" then goto 700

260 if request — event code for “REFMEM DOWNLOAD" then goto 800

270 if request = event code for “ACQMEM UPLOAD" then goto 900

Programming Examples — GPIB COMM Pack

500 output to 1240 “INSETUP?"
510 input from 1240 S$

520 output tc mass storage S$
530 goto 110

600 input from mass storage S$
610 output to 1240 S$
620 goto 110

700 output to 1240 “REFMEM?”
710 input from 1240 R$

720 output to mass storage R$
730 goto 110

800 input from mass storage R$
810 output to 1240 R$
820 goto 110

900 output to 1240 “"ACQMEM?”
910 input from 1240 A%

920 output to mass storage A$
930 goto 110

SRQ INTERRUPT HANDLER

2000 serial poll the device(s) on the bus
2010 if SRQ came from 1240 then goto 3000

3000 output to 1240 “EVENT?"
3010 input from 1240 E$ (event code)
3020 if event code indicates a transfer request SRQ then goto 4000

4000 transflag — TRUE
4010 request = event code
4020 return from interrupt

When a local 1240 user presses one of the five soft function keys (transfer requests) at
the bottom of the COMM Port Control Menu, an SRQ is sent to the controller.

In most cases the SRQ will interrupt the controller. Line 100 enables these SRQ
interrupts. Since the transfer request keys are in the COMM Port Control menu, the
1240 must be in Local for a transfer request to occur. Line 110 places the 1240 in
Local.

Transflag is set to FALSE (line 120) to indicate that a transfer request has not yet
occurred; and then a loop occurs (lines 130 and 140) waiting for a transfer request
(transflag to become TRUE). Transflag is set to TRUE in the SRQ interrupt handler
(line 4000) when one of the five possibie transfer request SRQs is received from the
1240.

When a transfer request occurs, the 1240 is put intc Remote menu {line 200) and a
message is written to the 1240 display (lines 210,220). The variable, “Request,”
contains the event code received from the 1240. This event code indicates which of
the five transfers has been requested.

3-6

Programming Examples — GPIB COMM Pack

See Appendix D for event codes.

Lines 500 through 930 handle the requests. After a request is handled, control returns
to line 110 which puts the 1240 back in Local and then waits for the next transfer
request.

PERFORMING A REMOTE AUTO-RUN

The following program segment sends a setup and a Reference Memory to the 1240
and then starts a 1240 auto-run. When the auto-run terminates, a copy of the 1240's
Acquisition Memory is uploaded and saved on mass storage.

100 input from mass storage S$ (setup)
110 put 1240 in Remote menu

120 put 1240 in Local Lockout mode

130 output to 1240 S$

140 input from mass storage R$ (REFMEM)
150 output to 1240 R$

160 arunflag = FALSE

170 output to 1240 “START AUTO"

180 if arunflag = TRUE then goto 200
190 goto 180

200 output to 1240 "ACQMEM?”

210 input from 1240 A$

220 put 1240 back in Local (if desired)
230 output to mass storage A$ (if desired)

Line 10G gets the desired setup from mass storage and puts it in a string variable (S$
in this case}. Lines 110 and 120 cause the 1240 to go to Remote menu with Lockout.
The lockout prevents the local 1240 user from pressing the STOP (return to local) key
and terminating the data acquisition. The setup is sent to the 1240 in line 130. An auto-
run typically does repeated data acquisitions, comparing the Acquisition Memory with
the Reference Memory each time an acquisition is complete. The appropriate Refer-
ence Memory is retrieved from mass storage and sent to the 1240 (lines 140 and 150).
The 1240 is now set up and ready to dc an auto-run. The command is sent to the 1240
(line 170) to start the auto-run.

The auto-run is over when the conditions specified in the Auto-run Spec Menu (part of
the setup) have been satisfied. When the auto-run is over the 1240 causes an SRQ.
Normally, an SRQ causes an interrupt at the controller. In this case, it is assumed that
the SRQ interrupt handler (not shown) will set “arunflag” to TRUE when the “1240
auto-run over SRQ" is detected. The loop in lines 180 and 190 waits for the
occurrence of this “auto-run over SRQ" from the 1240.

When the auto-run is over, execution begins at line 200. Line 200 sends the
ACQMEM? query to the 1240 and line 210 gets the response to the query.

NOTE

There are several things the controller can do instead of simply waiting in a loop
for the end of the auto-run. See the discussion of the START command in
Device-Dependent Messages, Section 2.

Programming Examples — GPIB COMM Pack

GETTING A COPY OF A 1240 RAM PACK

The following program segment extracts a copy of a 1240’s currently installed RAM

Pack.

100
110
120
130
140

put 1240 in Remote menu

output to 1240 "RAMPACK?”

input from 1240 P$

put 1240 back in Local (if desired)
output to mass storage P$ (if desired)

The RAMPACK? query is used to get a copy of the 1240 RAM Pack. This queryis a
Remote Only command, so the 1240 must be put into Remote menu before sending
the query (line 100). The query is sent to the 1240 (line 110) and the response is placed
in string variable P$ (line 120).

3-8

Section 4 — GPIB COMM Pack

USER GENERATED RAM AND ROM PACKS

CONTENTS

These instructions contain directions for loading a 32K ROM pack with the contents of
up to four full BK RAM packs. (More than four RAM packs may fit in one ROM pack if
they are less than full.) This allows for indelible storage of reference memories and
setups. For example, this might be a very useful way for a central service organization
or a manufacturing engineering group to provide 1240 reference information to their
technicians in the field or on the floor.

REQUIRED EQUIPMENT

The procedure outlined in these instructions requires a 1240 Logic Analyzer, a RAM
pack, a COMM pack, a host computer, an EPROM burner, and either an empty ROM
pack (12RS11) or a blank ROM pack (12RS12). If you purchased an empty pack, you
will need four Motorola 68766s or 68764s or their equivalents.

SERVICE INFORMATION

Service information for the 020-0905-00 and 020-0905-01 ROM packs is contained in
the 1240 Logic Analyzer Service Manual.

THEORY

Format

The same basic format is used by both ROM and RAM packs. Each contains a
header, a directory, a number of files, and a trailer. Except for the checksum in the
pack trailer, all 16-bit quantities in the header and directory must be stored low-order
byte first. The size of the directory and the maximum number of files may vary. Refer
to Figure 4-1.

0000nex HEADER
0015rex | DIRECTORY
??77? hex FILES
2?77 hex UNUSED
*FF8hex TRAILER

* See Table 4-2. 4344.08

Figure 4-1. Basic ROM and RAM Pack format.

4-1

User Generated Packs — GPIB COMM Pack

Pack Header
The first 21 bytes of the pack are reserved for the header. The header consists of:

Byte 0: “pack ID" code (01). In a user-generated pack, the “pack ID” byte must always
be 01.

Bytes 1-2: length of directory (in bytes). The directory length is variable and indicates
the amount of storage allocated to the directory; it does not all have to be used. This
entry is stored low-order byte first. For example, a length of 40decimar bytes should be
stored as 28,00nex.

Bytes 3-4: pack trailer address. The pack trailer address (the eighth byte from the end
of the pack) allows the 1240 to find a ROM trailer in the pack. The address of this trail-
er is placed in bytes 3 and 4, low-order byte first. For a 32K pack, this will be F8,7Frex.

Bytes 5-20: all zeroes.

Directory Format

The directory immediately follows the pack header. A directory contains a variable
number of entries. There must be a directory entry for each file in the pack. The last en-
try in the directory must always be the UNUSED entry. It acts as the directory
terminator. Only one UNUSED entry may appear in the directory.

There are five types of file entries, corresponding to the four file types and the
UNUSED entry. Refer to Tabie 4-1, Directory Entry Format and the Files section, both
following.

NOTE
All 16-bit values should be stored low-order byte first.

4-2

User Generated Packs — GPIB COMM Pack

Table 4-1
DIRECTORY ENTRY FORMAT

Byte (decimal) Description
INSTRUMENT
SETUP:

0 type code (01)

1 length of directory entry (12)

2-3 address of file

4-5 length of file in bytes

6-11 file name (1240 display codes)
MEMORY
IMAGE:

0 type code (02)

1 length of directory entry (12)

2-3 address of file

4-5 length of file in bytes

6-11 file name (1240 display codes)
RADIX TABLE:

0 type code (03)

1 length of directory entry (6)
2-3 address of file

4-5 length of file in bytes

RESERVED:
0 type code (16-63)
1 length of directory entry (18)
2-3 address of file
4-5 length of file in bytes
6-11 file name (1240 display codes)
1217 type label (1240 display codes)
UNUSED:

type code (00)

1 length of directory entry (6)

2-3 address of first byte of unused space
4-5 length of unused area in bytes

Files

Files are placed immediately following the directery. They need not appear in the same
order as they appear in the directory or be contiguous, but they must not overlap. The
following four types of files may appear in 1200 Series ROM and RAM Packs:

INSTRUMENT SETUP - 1240 setup

* MEMORY IMAGES - 1240 memory

* RADIX TABLE - Radix table

* RESERVED - Special-purpose internally-generated files

INSTRUMENT SETUP and RADIX TABLE files have fixed (but different) lengths. Only one
RADIX TABLE file may appear in a pack. Any RADIX TABLE files after the first one are
ighored.

4-3

User Generated Packs — GPIB COMM Pack

MEMORY IMAGE and RESERVED files may vary in length. RESERVED files are files built
and used by some Tektronix-generated ROM packs.

The internal formats of INSTRUMENT SETUP, MEMORY IMAGE, and RADIX TABLE files
are described in Appendix A.
Trailer

The last eight bytes of a user-generated pack are reserved for the ROM trailer. In a
32K pack these are the bytes from 7FF8hex to 7FFFnex. The trailer address in a user-
generated pack depends on the capacity of the ROM pack.

Table 4-2
ROM PACK TRAILER ADDRESSES
ROM Pack Trailer Address
8K 1FF8
16K 3FF8
24K 5FF8
32K 7FF8

Trailer Format

In all ROM packs, the least significant bytes of the trailer addresses are F8-FF. The
following describes the Trailer format.

F8 — The most significant digit in the Trailer address prefixed by a 1. See Table 4-2.
For example, 17 for a 32K ROM Pack.

F9 — The first and second most significant digits in the Trailer address. See Table 4-2.
For example, 7F for a 32K ROM Pack.

FA — 00
FB — 00
FC — 00
FD — FF

FE — High order byte of the checksum.
FF — Low order byte of the checksum.

4-4

User Generated Packs — GPIB COMM Pack

CREATING A ROM PACK

You may place the contents of up to four RAM packs in one ROM pack. (Even more, if
they are not full.) Figure 4-2 shows how the contents of the four RAM packs are
reorganized for storage in one ROM pack.

When you put more than one RAM pack intc a ROM pack, you must modify the pack
header, combine the directories and the files, and compute a new checksum for the
trailer.

4 RAM PACKS ROM PACK

OLD NEW
ADDRESS ADDRESSES

HEADER NEW HEADER

DIRECTORY
| MERGED
DIRECTORY

FILES -~

14

UNUSED -
TRAILER

HEADER —
DIRECTORY

FILES

MERGED
FILES I

UNUSED
TRAILER

KRR

HEADER
DIRECTORY

FILES

UNUSED
TRAILER

HEADER
DIRECTORY

FILES

UNUSED

UNUSED
TRAILER

NEW
TRAILER

4344.11

Figure 4-2. How up to four RAM Packs are reorganized for storage in one ROM Pack.

4-5

User Generated Packs — GPIB COMM Pack

Upload

Upload the contents of the RAM Packs that you wish to put into the ROM pack into
the host computer. See the RAMPACK? message in Section 2.

Header

Place 01 in the “Pack ID" byte of the first header and delete the other headers (first 21
bytes).

Directory

Count the number of files that will be in the new ROM pack. Setup and memory
directory entries each require 12 bytes, radix table and unused directory entries 6
bytes, and reserved directory entries 18 bytes. Multiplying the number of each type of
file by the length of the directory entry for that type of file and summing the results will
determine the size of the whole directory. Enter this directory size in bytes 1 and 2 of
the HEADER, low order byte first.

Place the value of the last location in the pack, minus 7, in the pack trailer address of
the HEADER, low order byte first. For example, in a 32K pack this will be 7FF8. So byte
3 will contain F8, and byte 4 will contain 7F.

Files
Concatenate all of the files from the RAM packs and place them immediately following
the directory.

Change Directory

Put directory entries for each file in the one directory which will be the directory for the
ROM pack.

For each directory entry, update the file address. Terminate the directory by adding an
UNUSED entry.

Trailer

Compute the new pack checksum. The checksum is a 16-bit value. To calculate the
checksum for a user-generated pack, use the following procedure (shown in pseudo
code):

¢ Initialize the variable CHECKSUM to 0.

* Set the variable PACKSIZE to the number of bytes in the pack (8000nex for a 32K
ROM Pack).

¢ [nitialize the variable POINTER to the value PACKSIZE - 3 (7FFDnex for an 32K ROM
pack).
* While POINTER=0

Clear the carry flag.
Rotate CHECKSUM left through the carry (16-bit rotate; carry = msb, Isb = 0).

Move the byte pointed to by POINTER to the low end of TEMP and set the high-
order byte to all 0s.

Add-with-carry TEMP 10 CHECKSUM.
POINTER = POINTER - 1

* Store CHECKSUM in the last two bytes of the pack (high-order byte followed by
low-order byte).

4-6

User Generated Packs — GPIB COMM Pack

To verify your checksum routine, run it on an 8K (8192decimal) block of 55'stex. The
computed checksum shouid be 542Bhex.

Download & Burn

You should now be ready to download the ROM pack image and load your EPROMs.
To gain access to the EPROMs, remove the four screws that hold the pack together.
The total 32K of ROM contents must be loaded into four 8K EPROMSs. The
relationship between the locations of the particular EPROM’s and the addresses
associated with them are shown in Figure 4-3.

2 1
4000- 2000-
5FFF 3FFF

0 3
0000- || 6000-
1FFF 7FFF

4344.09

Figure 4-3. Relationship between physical location and address contents.

PR A A

Observe static precautions to avoid damaging the EPROMs.

4-7

Appendix A — GPIB COMM Pack
APPENDIX A

INSTRUMENT SETUP, MEMORY IMAGE,
AND RADIX TABLE FORMATS

The following tables describe the formats of the Instrument Setups, Memory Images
and Radix Tables.

1

INSTRUMENT SETUP

The following is a description of the Instrument Setup.

Table A-1
SETUP MEMORY LOCATIONS
Location Menu
Within Variable in which Field Name
Setup Name Specified in Menu
0: trigposition Trigger Spec TRIGGER POSITION
1: holdoff Trigger Spec LOOK FOR TRIGGER
2: pwrcmd Trigger Spec GLOBAL EVENT
3: pwrpolarity Trigger Spec Global Event ON/ON NOT
4: pwrctremd Trigger Spec Global Event Ctr/Timer
Action
5-6: pwrtbfltr Trigger Spec Global Event Filter
Timebase

7: pwrentfltr Trigger Spec Global Event Filter
8-13: pwrctrval Trigger Spec IF COUNT/TIMER =
14: seqdepth Trigger Spec Not an input field
15: seqemd Trigger Spec Final Sequence Action
16: seqstore Trigger Spec Final Sequence Storage
17-128: seqvalue Trigger Spec Sequence Step Fields

17-24 step 1

25-32 step 2

33-40 step 3

41-48 step 4

49-56 step 5

57-64 step 6

65-72 step 7

73-80 step 8

81-88 step 9

89-96 step A

97-104 step B

105-112 step C

113-120 step D

121-128 step E

A-1

Appendix A — GPIB COMM Pack

Table A-1 (cont.)

SETUP MEMORY LOCATIONS

Location Menu
Within Variable in which Field Name
Setup Name Specified in Menu
129-398: trigwrval Trigger Spec Global and Sequence wr's
129-146 global wr
147-164 step 1 wr
165-182 step 2 wr
183-200 step 3 wr
201-218 step 4 wr
219-236 step 5 wr
237-254 step 6 wr
255-272 step 7 wr
273-290 step 8 wr
291-308 step 9 wr
309-326 step A wr
327-344 step B wr
345-362 step C wr
363-380 step D wr
381-398 step E wr
399: autocondition Auto-run Spec AUTO-RUN CONDITION
400: autopulse Auto-run Spec EXTERAL TRIGGER OUT
401; complimit Auto-run Spec COMPARISON LIMITS
402-403: limit1 Auto-run Spec LIMITS
404-405: limit2 Auto-run Spec LIMITS
406: autotruecmd Auto-run Spec WHEN EQUAL
407: autofalsecmd Auto-run Spec WHEN NOT EQUAL
408: audiotrig Auto-run Spec AUDIBLE TRIGGER
409-426: automask Auto-run Spec MASK
427: autodelay Auto-run Spec DISPLAY DATA AT LEAST
428: oplevel Operation OPERATION LEVEL
Level
429: tpgpat Operation TPG MODE
Level
430-437: memstat Memory n/a
Config
438-441: datasrc Memory INPUT POD fields
Config
442: glitches Memory GLITCHES ON/OFF
Config
443-450: threshold Memory CARD THRESHOLD
Config
451-466: memtb Memory TB fields
Config
467-468: w_vs_d9 Memory 9-CHANNEL CARDS
Config
469-470: w_vs_d18 Memory 18-CHANNEL CARDS
Config
471-486: polarity Memory POLARITY
Config

A-2

Table A-1 (cont.)

Appendix A — GPIB COMM Pack

SETUP MEMORY LOCATIONS

Location Menu
Within Variable in which Field Name
Setup Name Specified in Menu
487: tbactive Timebase ACTIVE TIMEBASES
488: tb1type Timebase TIMEBASE 1
489: tblasync Timebase Asynchronous Clock
Period
490: pwrclock Timebase GLOBAL EVENT =
491-498: tbiclock Timebase T1 Sync Clock Definition
499-506: tb1qual Timebase T1 Sync Clock
Qualification
507: tb2type Timebase TIMEBASE 2
508-515: tb2clock Timebase T2 Clock Definition
516-523: tb2qual Timebase T2 Clock Qualification
524-531: tb2Iclock Timebase T2-Last Clock Definition
532-539: tb2lqual Timebase T2-Last Clock
Qualification
540-683: serieslist Timing n/a
Diagram
683-707: chansel Timing Timing Trace Labels
Diagram
708: curseries Timing PAGE
Diagram
709: cardselect Channel CARD TYPE
Grouping
710-829: grouplayout Channel NAME, INPUT and DISP
Grouping
710-721 group O
722-733 group 1
734-745 group 2
746-757 group 3
758-769 group 4
770-781 group 5
782-793 group 6
794-805 group 7
806-817 group 8
818-829 group 9
830-901: channelgroup Channel n/a
Grouping
902-921: setupmisc (reserved)

A-3

Appendix A — GPIB COMM Pack

Variable Descriptions:

audiotrig — Corresponds to the AUDIBLE TRIGGER field in the Auto-run Spec menu. It
takes the values 0 and 1, indicating whether or not an audio response to trigger
recognition is required

0 = OFF (no audio response)
1 = ON (audio response)

autofalsecmd — Corresponds to the WHEN NOT EQUAL field in the Auto-run Spec
menu. It takes the values 0-2, representing the auto-run trigger condition for a talse
comparison. The mapping is:

0 = DISPLAY AND STOP
1 = DISPLAY AND REACQUIRE
2 = DISCARD AND REACQUIRE

autocondition — Corresponds to the AUTO-RUN CONDITION field in the Auto-run Spec
Menu. It takes the values 0-3, representing the auto-run test condition. The mapping
is:

= COMPARE ACQMEM TO REFMEM
= CONTINUOUS TRIGGER OUT

= TRIGGER IN

STORE AFTER TRIGGER

autodelay — Corresponds to the DISPLAY DATA AT LEAST field in the Auto-run Spec
menu. It takes the values 0-99 (BCD), representing the minimum time in seconds
between acquisitions during an auto-run. This variable contains a two-digit BCD
value. The mast significant four bits and the least significant four bits must each have
a value within the range of 0 to 9. For example, to set the field to 13 seconds, the bina-
ry value of this variable should be 00010011.

automask — Corresponds to the MASK field in the Auto-run Spec menu. it is a
“priword” structure (see the description of “prlword” at the end of this appendix)
indicating which channels are to be considered when doing memory comparisons
during autorun. The “val” bit for a channel indicates a value of 0 or 1 unless the
corresponding “mask” bit is set. For example:

W =20

mask val

0 0 = “0 (don't use the channel in comparisons)
0 1 = *1" (use the channel)

1 1 = “X” (don’t use the channel)

autopulse — Corresponds to the EXTERNAL TRIGGER OUT field in the Auto-run Spec
menu. It takes the values 0 and 1, representing whether the signal on the EXT TRIG
QUT BNC is pulsed or latched during autorun operation.

0 = LATCHED
1 = PULSED

autotruecmd — Corresponds to the WHEN EQUAL field in the Auto-run Spec Menu, It
takes the values 0-2, representing the auto-run trigger condition for a true compari-
son. The mapping is:

0 = DISPLAY AND STOP
1 = DISPLAY AND REACQUIRE
2 = DISCARD AND REACQUIRE

Appendix A — GPIB COMM Pack

cardselect — Corresponds to the CARD TYPE field in the Channel Grouping menu. it
has the following legal values:

0 = 9-channel card groups
1 = 18-channel card groups

channelgroup — This is a 72-element array used in the channel grouping scheme to
link the array “grouplayout” with actual data, and to reconstruct the Channel Grouping
menu display. Alf of the channels for a given group are assigned consecutive elements
in the array, with the higher-order channels appearing eartier in the array. All channels
from 8-channel cards are of a higher order than channels from 18-channel cards. Only
the channels currently assigned to a group appear in this array. Unused channels have
entries that appear at the end of the array and have a value of FF. For example, if there
are five channels not currently assigned to a group, the last five entries in “channel-
group” will contain the value FF. Deletion/insertion of a channel from/into a group
implies movement of succeeding elements up/down one postion in the array. Each
element of the array contains a value which identifies the memory and channel
associated with that bit in the group. The high order three bits (5-7) identify the
memory number (0-7) and the low order four bits (0-3) identify the channel number (0-
8).

Chansel — This is an array of 12 two-byte values. Each element corresponds to a
Trace Label field in Timing Diagram menu. For each element, the first byte (byte 0) is
the group number and the second byte (byte 1) is the channel number within that
group, counted from the LEFT (i.e., the most significant bit in a group is 0). If the group
number is GFFH then the channel is selected as *OFF’. Possible values for byte 0 are 0-
8 or OFFH. Possible values for byte 1 are 0-35.

complimit — Corresponds to the COMPARISON LIMITS field in the Auto-run Spec
menu. It takes the values 0 and 1, representing the auto-run comparison limit type.
G = FIXED
1 = BETWEEN CURSORS

curseries — Corresponds to the PAGE field in the Timing Diagram menu. The legal
values are 0-5.

datasrc — This is an array with one element for each of the possible acquisition cards.
Each element corresponds to an INPUT POD field in the Memory Config Menu. Element
N (N=0-3) indicates the data source for the odd memory module of card N.

0 = data source is the even pod
1 = data source is the odd pod

NOTE: iF CARD N IS A 9-CHANNEL CARD, datasrc[N] HAS NO MEANING.

glitches — Corresponds to the GLITCHES ON/OFF field in the Memory Config menu. It
takes the values 0 and 1, representing whether glitches are to be stored.

0 = GLITCHES OFF
1 = GLITCHES ON

A-5

Appendix A — GPIB COMM Pack

grouplayout — An array containing information about each of the 10 groups that can
be set up in the Channel Grouping menu. It is a 10-element array of “glaelement”
structures. Elements 0-4 contain information about the 9 channel groups and ele-
ments 5-9 contain information about the 18-channel groups. Each element of grou-
playout has the following structure:

bytes G-3: This corresponds to the NAME field for a group. The name is stored in

byte 4:

byte 5:
byte 6:
byte 7:

byte 8:

byte 9:

byte 10:

byte 11:

1240 display code.
The group timebase:

0 = timebase 1
1 = timebase 2
2 = unassigned

The number of channels assigned to the group
The offset into “channeigroup” to the first (leftmost) channel in the group

This corresponds to the INPUT field for a group.

0 = HEX
1 =0CT
2 = BIN

The offset from the base horizontal display position for the word
recognizer value to the first character of the group when displayed using
the input radix.

NOTE

For groups with no channels assigned to them, this vaiue must be
equal to this value for the next group which has channels assigned to
it.
This byte should be set to 1 if there is a ROM or RAM Pack instalied
which contains a Radix Table. Otherwise, this byte should be set to 0.

This corresponds to the DISP field for a group.

= HEX
= OCT
= BIN
= OFF
= ASC
= EBC
= ROM

SO AW O

A value of 6 is only valid if byte 9 is 1.

The number of characters needed to display the group using the input
radix.

holdoff — Corresponds to the LOOK FOR TRIGGER field in the Trigger Spec menu. It
takes the values 0 and 1, representing the conditions under which a trigger search is

begun.

I

0

IMMEDIATELY

1 = AFTER MEMORY FULL

Appendix A — GPIB COMM Pack

limit1, limit2 — These correspond to the LIMITS fields in the Auto-run Spec menu.
They take values in the range 0 - 8190 (decimal), representing the limits of the auto-run
comparison. A value of 4095 is the trigger position. To compare from five locations
before the trigger to five locations after the trigger limit1 should be set to 4090 and limit
2 should be set to 4100. If “complimit” says that the cursors should be used for
comparisens, the valued in “limit1™ and “limit2” are assumed to be meaningless. The
variables must be stored with the low-order byte first, followed by the high-order byte.

memstat — The values in this array do not directly correspond to fields in a menu, but
information in the Memory Config menu affects these values. Entry N in this array
shows the current status of memory module N. Possible values are:

= missing (no card, or odd module of 9-channel card)
= 9-channel card, unchained

= 18-channel card, unchained

= chained

W= o

memtb — Each element in this array corresponds to one of the eight possible TB
fields in the Memory Config menu. Element 0 corresponds to memory module 0 and
element 7 corresponds to memory module 7. Each element consists of two bytes. The
valid values for byte 0 and byte 1 of each element are given in the table below (empty
boxes indicate invalid values). Note that a text field is displayed instead of a select in
the cases when byte 0 is 0 or 1.

BYTE 1
BYTE 0 0 1 2 FF
0 (T1 ONLY) T1
1 (T2 ONLY, T2=SYNC) T2 memory
2 (T2 ONLY, T2—=SPLIT) T2 L T2 F | not
3 (Tt & T2, T2=SYNC) T1 T2 installed
4 (T1 & T2, T2=SPLIT) T1 T2 L T2 F

NOTES ON BYTE 1:

The value in a chained memory module should always be current with the value of the
head of the chain.

0 ALWAYS indicates T1.

1 indicates EITHER T2 (T2=SYNCH) or T2 L (T2=SPLIT).
2 ALWAYS indicates T2 F.

FF ALWAYS indicates the memory module is not installed.

oplevel — Corresponds to the OPERATION LEVEL field in the Operation Level menu.
Valid values are 0-3.

Appendix A — GPIB COMM Pack

polarity — Each element of this array corresponds to one of the eight possible
POLARITY fields. Each element is 16 bits long but only the low-order 9 bits of each
value are signficant; each corresponds to one chanrnel in the memory module, with the
low-order bit corresponding to channel 0. For each bit:

0
1

negative true
positive true

pwrclock — Corresponds to the GLOBAL EVENT = field in the Timebase menu. It
takes the following values:

0 = pwr is CLOCKED
1 = pwr is UNCLOCKED

pwremd — Corresponds to the GLOBAL EVENT field in the Trigger Spec menu. It takes
the values 0-5, representing the five pwr command options. The mapping is:

= OFF
TRIGGER
RESET
STORE
START TIMER
= INCR CNTR
= TIME WHILE

ONEAWN=O
I

pwrentfitr — Corresponds to the Globai Event FILTER field in the Trigger Spec menu.
It takes the values 0-15, representing pwr filter counts of 1-16 in the user interface.

pwrctremd — Corresponds to the Global Event Counter/Timer Action field in the
Trigger Spec menu. It takes the vaiues 0-2:

0 = TRIGGER
1 = BESET
2 = DO NOTHING

pwrctrval — Corresponds to the tF TIMER/COUNT = field in the Trigger Spec menu. it
is an 11-digit bed value stored in six consecutive bytes. The most significant four bits
of the first byte are ignored. Each of the remaining eleven groups of 4 bits should
contain one BCD digit (0-9), most significant digit first. A value of 00000000000 is not
legal. The valid range for this field is 00000000001 to 99999999999.

pwrpolarity — Corresponds to the ON/ON NOT field in the Trigger Spec menu. It takes
on the values 0 and 1:

0 = ON
1 = ON NOT

A-8

Appendix A — GPIB COMM Pack

pwrtbfltr — Two bytes corresponding to the ON fietd in the Trigger Spec menu (global
event filter timebase). The following values are legal:

0 — If “tbactive” is T1 ONLY, this byte should contain 0. If “tbactive” is T2 ONLY, this
byte should contain 2. If “tbactive” is T1 & T2, this byte should contain 1.

1 — If byte 0 is O:

0=IONS
1=T1

If byte 0 is 1:
0=10 NS
1=T1
2=T2

tf byte 0 is 2:
0=tONS
1=T2

seqcmd — Corresponds to the Final Sequence Action field in the Trigger Spec menu.
It takes the values 0-2:

0 = TRIGGER
1 = RESET
2 = DO NOTHING

seqdepth - This does not correspond to a field. It takes the values 0-14, indicating
the number of sequence steps currently programmed.

seqstore — If the Final Sequence Action is DO NOTHING, the value of this variable in-
dicates whether data storage is enabled or disabled while in the Final Sequence
action.

0 = storage disabled
1 = storage enabled

i

seqvalue — This is an array of 14 elements; one element for each of the possible
sequence steps. Element 0 corresponds to step 1 and element 13 corresponds to step
E (14). Each element contains eight bytes of data and has the same format.

byte O: This corresponds to the Sequential Event Timebase field in a sequence
step.
0=T1
1=T2
byte 1: This corresponds to the Sequence Step Action field in a sequence step.
0 = WAIT FOR
1 = WAIT FOR NOT
2 = TRIGGER IF
3 = TRIG IF NOT
4 = RESETIF
5 = RESET IF NOT
6 = JUMP IF
7 = JUMP IF NOT
8 = DELAY
byte 2: This corresponds to the TO LEVEL field in a sequence step. It is only

necessary if byte 1 for the same step is JUMP IF or JUMP IF NOT. Legal
values are 1 through E (hex) representing the step to be jumped to.

A-9

Appendix A — GPIB COMM Pack

byte 3: This corresponds to the NNNN CLOCKS field in a sequence step. It is not
necessary if byte 1 of the same step is DELAY. Legal values are 0
through 15 which translate on the dispiay to filter values of 1 through 16.

bytes 4-6: This corresponds to the TO OCCUR field in a sequence step. It is only
necessary if byte 1 is WAIT FOR, WAIT FOR NOT, or DELAY. This is a four-
digit BCD value stored in 3 bytes. The first byte should set to 0. Each of
the four remaining four-bit quantities is a BCD digit (0-9), most significant
digit first. 0000 is an illegal value for this field. The legal range is 0001 to
9999.

byte 7: This corresponds to the WITH STORAGE field in a sequence step. It
indicates whether data storage is enabled or disabled in the sequence
step.

0 = storage disabled
1 = storage enabled

serieslist — This is an array of arrays defining the 6 possible display sets in the Timing
Diagram menu. Each element of “serieslist” is a 12-by-2 byte array defining one
display set. The first index defines a particular trace being displayed, there are 12 per
display set. The second index defines the particular channel to display: “display
set[n][0]" indexes “grouplayout” (a group number) and “dispiay set[nj[1]" defines the
particular channel in that group.

setupmisc -Ten bytes reserved for future use by Tektronix. Entries to this area could
cause the loss of essential code. If the user must enter data in this fieid, it should be
0's.

tblasync — Corresponds to the Asynchronous Clock Period field in the Timebase
menu. Valid only if timebase 1 is asynchronous (tb1type is ASYNC). It takes the values
0-24.

0 = 10 NS
1 = 20 NS
2 = 50 NS
3 = 100 NS
4 = 200 NS
5 = 500 NS
6 = 1uS

7 =2US

8 = 5uS

9 = 10 uS
10 = 20 uS
11 = 50 uS
12 = 100 uS
13 = 200 uS
14 = 500 uS
15 = 1 MS
16 = 2 MS
17 = 5 MS
18 = 10 MS
19 = 20 MS
20 = 50 MS
21 = 100 MS
22 = 200 MS
23 = 500 MS
24 =18

A-10

Appendix A — GPIB COMM Pack

A value of 0 (10 NS) is illegal unless glitch storage is turned off (“glitches” is “glitches
stored”) and there are no 18-channel cards assigned to T1.

tbiclock — This is an array in which each element corresponds to one of the
Timebase 1 Synchronous Clock Definition fields in the Timebase menu. Element 0
corresponds to pod 0, element 1 corresponds to pod 1, etc.

0 = falling edge
1 = rising edge
2 = don't care

NOTE: Non-existent lines should be don’t-cared. VALID ONLY IF TIMEBASE 1 IS
SYNCHRONOQUS.

tbiqual — Thisis an array in which each element corresponds to one of the Timebase
1 Synchronous Clock Qualification fields in the Timebase menu. Element 0 corre-
sponds to pod 0, etc.

0=20
1 1
2=X

NOTE: Non-existent lines should be don’t-cared.

tb1type — Corresponds to the TIMEBASE 1 field in the Timebase menu. It takes the
values 0 and 1:

0 = ASYNC
1 = SYNC

tb2lclock — This is an array in which each element corresponds to one of the T2 Last
Clock Definition fields in the Timebase menu. Element 0 corresponds to pod 0 and so
on. The following values are valid:

0 = falling edge
1 rising edge
2 don't care

NOTE: Non-existent lines should be don't-cared. VALID ONLY IF TIMEBASE 2 IS SPLIT.

f

tb2lqual — This is an array in which each element corresponds to one of the T2 Last
Clock Qualification fields in the Timebase menu. Element 0 corresponds to pod 0 and
so on. The following values are valid:

0=0
1 =1
2 - X

NOTE: Non-existent lines shouid be don’t-cared. VALID ONLY IF TIMEBASE 2 IS SPLIT.

tb2clock — This is an array in which each element corresponds to one of the
Timebase 2 Clock Definition fields in the Timebase menu. Element O corresponds to
pod 0 and so on. The following values are valid:

0 = falling edge
1 = rising edge
2 = don't care

NOTE: Non-existent lines should be don't-cared. IF TIMEBASE 2 IS SPLIT, THIS IS
ACTUALLY THE DEFINI{TION OF THE FIRST CLOCK (T2- F).

A-11

Appendix A — GPIB COMM Pack

tb2qual — This is an array in which each element corresponds to one of the Timebase
2 Clock Qualification fields in the Timebase menu. Element 0 corresponds to pod 0
and so on. The following values are valid:

0=0
1 —1
2 =X

NOTE: Non-existent lines should be don't-cared. IF TIMEBASE 2 IS SPLIT, THIS IS
ACTUALLY THE QUALIFIER FOR THE FIRST CLOCK (T2- F).

th2type — Corresponds to the TIMEBASE 2 field in the Timebase menu. It takes the
values 0 and 1:

0 = DEMUX
1 = SYNC

tbactive — Corresponds to the ACTIVE TIMEBASES field in the Timebase menu
indicating the active timebases, as follows:

0 = T1 ONLY (1-timebase mode)
1 = T2 ONLY (1-timebase mode})
2 = T1 AND T2 (2-timebase mode)

threshold — This is an array of 4 16-bit values in which each element corresponds to
one of the four possible CARD THRESHOLD fields in the Memory Config menu. The
range of legal values is:

0 = -6.35v

1 = -6.30V

2 = -6.25V
126 = -0.05V
127 = 0.00V
128 = +0.05V
253 = +6.30V
254 = +6.35V
265 = -ECL
256 = TPG
257 = TTL

For all elements except the first, an additional value of 258 is legal. This value means
“CARD 0".

tpgpat — Corresponds to the TPG MODE field in the Operation Level menu. Valid
values are 0-3.

0 = 12 MHz, no glitches
1 = 6 MHz with glitches
2 = T1, no glitches

3 = T1/2 with glitches

A-12

Appendix A — GPIB COMM Pack

trigposition — Corresponds to the TRIGGER POSITION field in the Trigger Spec menu.
It takes the values 0-4, representing the five different trigger positions possible in the
acquisition memory.

0 = trigger at 3% point
1 = trigger at 25% point
2 = trigger at 50% point
3 = trigger at 75% point
4 = trigger at 97% point
trigwrval — This is an array of 15 “priword” structures (see the description of

“priword” in this appendix). The value in “trigwrval[0]" is the global event word
recognizer value; the value in “trigwrval[N]" is sequence word recognizer N's value.
The “val” bit for a channel indicates the value of the channel (0 or 1) unless the
corresponding “mask” bit is set. The value for all unused entries, or channels not in
groups, should be "DON'T CARE" (X).

mask val

0 0 = “Q”

0 1 = “1”

1 0 = *G”" (glitch)

1 1 = “X" (don’t care)

For sequence step wr values, only the bits belonging to the wr's timebase need be
valid. The bits in the “other” timebase may contain garbage.

w__vs__d9 — Corresponds to the 9 CHANNEL CARDS field in the Memory Config
menu. It represents the width and depth cenfiguration of the installed 9-channel cards.
This variable consists of two bytes. Byte 0 is THE NUMBER OF 9-CHANNEL CARDS
INSTALLED. Byte 1 indicates the width and depth, dependent on byte 0 and whether or
not glitches are on, as follows:

BYTE 0 BYTE 1 WIDTH DEPTH DEPTH
w__vs__ d9[0] w__vs _dI[1] gl. off gl. on
0 0 0 0 0

1 0 9 512 256

2 0 18 512 256

1 9 1024 512

3 0 27 512 256

1 9 1536 768

4 0 36 512 256

1 18 1024 512

2 9 2048 1024

A-13

Appendix A — GPIB COMM Pack

w__vs__d18 — Corresponds to the 18 CHANNEL CARDS field in the Memory Config
Menu. It represents the width and depth configuration of the installed 18-channel
cards. This variable consists of two bytes. Byte 0 is THE NUMBER OF 18-CHANNEL
CARDS INSTALLED. Byte 1 indicates the width and depth selection, dependent on byte
0, as follows:

BYTE 0O BYTE 1 WIDTH DEPTH
w__vs_ di8[0] | w__vs__18[1]
0 0 0 0
] 0 18 512
2 0 36 512
1 18 1024
3 0 54 512
1 18 1536
4 0 72 512
1 36 1024
2 18 2048

Description of a 'PRLWORD’

A “priword” is 18 bytes of data used to store word recognizer values and the Auto-run
mask value. A single "prlword” consists of nine bytes (72 bits) of “val” data followed by
nine bytes of “mask” data. There is one bit of “val” and one bit of “mask” for each pos-
sible 1240 input channel. The “val” and “mask” values for a channel, taken together,
specify the word recognizer setting for that channel. The “val” bit for a channel
indicates a value of 0 or 1 unless the corresponding “mask” bit is set, as follows:

mask val

00 = "0

01 = =1

1 0 = *G (glitch)
11 = *X"(don't care)

Each of the 72 channels is represented, whether or not instailed and regardiess of
chaining. Channel grouping is not taken into account. Within the “val” and “mask”
sections of the “priword”, the input channels are ordered as follows:

byte 0 byte 1 byte 2
Pod ojofofofojojo]o O 11t 114141 1 | etc.
Channel [0 11 (2|3 |4 |5 (6|7 Bl0O|1([2]|3|4]|5]6 7
MSB LSB MSB LSB
4344-12

A-14

Appendix A — GPIB COMM Pack

MEMORY IMAGE

The following is a description of the Memory Image.

Location in Variable

Memory Name

Image

0-256: rawcor1
257-513: rawcor2
514.529: rawpodlen
530-545: rawoldest
546-561: rawyoungest
562-569: rawempty
570-571: rawtpil
572-573: rawtpi2

574: rawtrig

575: rawc1pod
576: rawc2pod
577: rawiast

578: rawctrunits
579: rawglitches
580: rawtb1type
581: rawtb1asynch
582: rawtimevalid
583-584: rawd9
585-586: rawd18
587-594: rawtb
595-599: rawctr
600-601: rawlength
602-603: rawpostfig
604-613: rawmisc

614-5293: rawdata

Variable Descriptions

rawc1pod, rawc2pod - These variables tell which pods generated the correlation
information for timebases 1 and 2, respectively. It shows which entries of “rawoldest”
and “rawyoungest” define the bounds of meaningful data in “rawcor1” and “rawcor2”.
In other words, the youngest location in “rawcort” is indicated by “rawyoungest[rawc-
1pod]” and the oldest by ‘rawoldest[rawc1pod]”. It also indirectly shows whether the
correlation data is in glitch form or non-giitch form (it is in glitch form if the pod it copies
is in glitch formy.

rawcorl, rawcor2 - Each of these is a 2056-element bit-array containing the correla-
tion information for TB1 and TB2, respectively. The oldest location in rawcorQ is
indicated by “rawoldest[rawcQpod]”, and the youngest by “rawyoungest[rawcQ-
pod]”. The data is stored in glitch format or non-glitch format, depending on the source
pod indicated by “rawcQpod”. (For information about “glitch” versus “non-glitch”
format, see ‘rawdata”, in this Appendix.)

rawctr - This is five bytes containing the 37-bit value from the ctr/timer when the
acquisition was performed. The first byte contains the lowest eight bits, and so on.
The three unused bits (in the fifth byte) are set to 0. This item is meaningless if
‘rawctrunits” (see below) contains 2.

A-15

Appendix A — GPIB COMM Pack

rawctrunits - This variable identifies the units of the ctr/timer value in “rawctr’.

0 = events
1 = time
2 = should not be displayed

rawd9 - This is actually two one-byte quantities. The first byte is the number of 9-
channel cards installed in the instrument when the acquisition was taken.

The second byte indicates the width and depth, dependent on the first byte and
whether or not glitches are on (see “rawglitches”), as follows:

First Second WIDTH DEPTH DEPTH
Byte Byte gl. off gl. on
0 0 0 0 0

1 0 9 513 257

2 0 18 513 257

1 9 1025 513

3 0 27 513 257

1 9 1537 769

4 0 36 513 257

1 18 1025 513

2 9 2049 1025

rawd18 - As with “rawd9", this is actually two one-byte quantities. The first byte is the
number of 18-channel cards installed in the instrument when the acquisition was
taken.

The second byte indicates the width and depth, dependent on the first byte, as
follows:

First Second WIDTH DEPTH
Byte Byte
0 0 0 0
1 0 18 513
2 0 36 513
1 18 1025
3 0 54 513
1 18 1537
4 0 72 513
1 36 1025
2 18 2049

A-16

Appendix A — GPIB COMM Pack

rawdata - This is a colossal bit-array which contains the data readout of the memory.

Each acquisition channel occupies a contiguous stream of bits in “rawdata”. All of the
memory for Pod 0/Channel 0 appears first, followed by all of the memory for Pod
0/Channel 1, and so on up to Pod 7/Channel 8. Only the pods which are currently
active input pods are represented in “rawdata’.

Its size is allocated to handle the worst case: 4680 = 72 channels x {65 bytes per
channel).

For more specifics on the layout, see the more specific discussion in this specification.

rawglitches - This indicates whether glitch storage was enabled or disabled when the
acquisition was performed. Glitch storage only applies to 9-channel cards, 18-channel
cards are always in non-glitch format.

rawempty - This is an eight element array (one byte per element). For each pod, this
entry tells if there was any data collected for that pod. Entries for pods that were not
installed or were followers in a chain are meaningless.

0 = nonempty
1 = empty

rawlast - This indicates which of the timebases was the last to store a cycle in the
memory. (This information is needed to decode the correlation channels.)

0 = timebase 2 was last to store
1 = timebase 1 was last to store

rawlength - This tells how many locations (in bytes) of “rawdata” contain meaningful
information. When the 1240 sends a memory to a controller, only the meaningful
portion of “rawdata” is transferred. In other words, only ‘rawlength” bytes of
‘rawdata” are transferred.

This variable is a 16-bit quantity, with the low-order byte stored first.

rawmisc -Ten bytes reserved for future use by Tektronix. Entries to this area couid

cause the loss of essential code. If the user must enter data in this field, it should be
0's.

rawoldest - This is an eight-element array (two bytes per element). Entries in this
array correspond to acquisition pods. For each pod that was used, the entry in
‘rawoldest” indicates the oldest meaningful bit of the memory block in “rawdata” (for
channels from that pod).

Entries for pods that were not installed or were followers in a chain are meaningless.

Entries for pods that were empty (see “rawempty”’) are also meaningless. The
convention for “bit offsets” for non-glitch memories is as follows: The MSB of the
highest-addressed byte in the channel is considered 0, with the next most significant
bit being -1, and so on, until the LSB of that byte is -7. The MSB of the next lower ad-
dressed byte is -8, and so on.

For glitch memories, the convention is the same, except that each byte has only four
meaningful “bits” in it.

Each element of this array is stored low-order byte first.

A-17

Appendix A — GPIB COMM Pack

rawpodlen - This is an eight-element array (two bytes per element). Each entry in this
array corresponds to one of the pods. The entry tells how many bytes of data in
‘rawdata’ is allocated per channel for that pod. If a pod is not instaited. or if the pod is
a follower in a chain, then the entry in *rawpodlen” will be 0. For a pod that is instalied
andis the head of a chain, its length will be: (chaindepth) X 64 + 1, where “chaindepth”
is the number of memories that were behind the pod (which will alwaysbe 1,2, 3, or 4).

EXCEPTION: If “rawempty” for the pod is true, then no memory is allocated for it even
ifit was the head of a chain.

Each element is stored with the low-order byte first.

rawpostfig - This indicates whether or not the data in the memery image has been
modified after the acquisition by a data formatting routine in a ROM pack.

0 = not modified

1 = modified
If non-zero, the value of rawpostfig contains the ROM pack id of the ROM pack the
modified the memory image.

rawtb - This is an eight-element array (one byte per element). Each entry of this array
corresponds to one of the possible pods.

0 = this pod was the head of a chain and was assigned to TB1.
1 = this pod was the head of a chain and was assigned to TB2.
2 = this pod was a follower in a chain.

FF = there is no memory installed behind this pod position.

rawtb1type - This variable takes the values 0 and 1, representing the timebase 1 clock
(0-async, 1-sync).

rawtblasync - takes the values 0-24, representing timebase 1 asynchronous clock
rates of 10ns, 20ns, 50ns, 100ns, ..., 500ms, 1sec. Valid only if timebase 1 is
asynchronous (i.e., ‘rawtblasync” contains 0).

rawtimevalid - This variable indicates whether or not it is possible to accurately
determine the amount of real-time between each successive sampie on TB1 (for delta-
time readouts). It is possible if TB1 was asynchronous and used no clock qualification,
and if the Global Event was not being used as a storage qualifier.

0 = real-time computations not possible
1 = real-time computations are possible

i

rawtpil, rawtpi2 - ‘rawtpiQ” tells how many valid qualified clocks there were on TBQ
on or after a trigger occurred. More information about them and how they are used
can be found in the OVERVIEW OF DATA CORRELATION later in this appendix. Each of
these variables is a 16-bit quantity, with the low-order byte first.

rawtrig - This variable indicates whether or not a trigger occurred during the
acquisition.

0 — trigger occurred

1 = trigger did not occur

rawyoungest - This is an eight element array (two bytes per element). It is identical to
‘rawoldest” except that it indicates the offset of the youngest meaningful bit instead of
the oldest.

Each element is stored with the low-order byte first.

A-18

Appendix A — GPIB COMM Pack

General Discussion of The Memory Image Structure

Each channel of each active pod that collected any data will have a block of memory in
‘rawdata’. These channel blocks are in order by channel number within pod number
(thus Pod 0 Channel 0 is first, followed by Pod 0 Channel 1, etc.). Note that this refers
to active pods, hot to active memories. Data from memories that are followers in
chains do not have a separate existence in this structure--they appear as part of the
data from the pod that was the head of the chain. Each channel block will occupy
sufficient memory to hold its worst case amount of valid data, based on its chaining
level. Within this biock, the values of “rawoldest[podnum]” and “rawyoungest|pod-
numj” contain the bounds of the valid data. (There is always invalid data somewhere in
the block, due to the architecture of the acquisition hardware.)

“rawdata”
pod # O[O jetc...[1]1]1 etc. 7177
chan # O (1]etc... (O] 1] 2 etc. 6718

Organization of “rawdata” for four 18-channel acquisition cards
and no chaining (72 X 513).

“rawdata”

pod # Oj0f....[2]....]6|®6 empty
chan # 0 |1 0 718

Organization of “rawdata” for four 9-channel acquisition cards and
no chaining (36 X 513). Only pods 0, 2, 4, and 6 appear.

The following diagram illustrates a channel's data in ‘rawdata” when glitches are not
stored. O is the oldest bit stored.

MSB LSB

byte0 | 7 |6 | 5 | 4| 3| 2| 1] o

byte 1 15 (14 13 12 11 10 9 8

byte 2 23 |22 21 20 19 18 17 16

etc.

A-19

Appendix A — GPIB COMM Pack

If glitches were stored:

MSB LSB

byte 0 3D |3G | 2D (2G| 1D | 1G | OD | OG

byte 1 7D |7G | 6D | 6G | 5D | 5G | 4D | 4G

byte 2 11D | 11G; 10D [10G| 9D | 9G | 8D | 8G

etc.

The glitch-format storage only applies to 9-channe! cards. Regardless of the value of
‘rawglitches”, 18-channel cards are stored in the non-glitch format.

If a given pod was assigned to a timebase that had no qualified cycles during the
acquisition, then its “rawempty” entry will be TRUE, and no memory will be allocated
for it in “rawdata”.

The correlation channels are each formatted as a channel from one of the pods. The
pod chosen will be the one associated with the proper timebase having the longest
chaining. If that pod happens to be in glitch format, then the correlation is in glitch
format; otherwise itis not. (In such cases, the correlation information is the “Data” bit,
while the “Glitch” bit is unused.)

The correlation channels are allocated memory to handle the worst case. However,
not all of that memory is necessarily used. The earliest Q bytes (where Q is the
‘rawpodlen” value of the pod that the correlation information was read from) will be
organized exactly the same as the data channels from that pod. Any other bytes in
“rawcorQ” are meaningless. (Indeed, some of the bytes within the first Q could be
meaningless as well, but they will be the same as for the data channels.)

Overview of Data Correlation

Briefly, “data correlation” is a term for a proprietary Tektronix hardware feature, and
for a way of processing the data received from that hardware in order to bring the data
from two timebases into time relationship. This involves inserting cycles of “no data”
into one or both data streams where needed.

The terms “oldest”, “older”, "youngest”, and “younger” are used throughout this
discussion. They have approximately their normal meanings.

If one cycle is “younger” than another, then that means that it happened later in time
than the other. The “youngest” cycle in a memory is the last one to be sampled. The
‘oldest” cycle in the memory is the earliest one to be sampled.

The information derived from the proprietary hardware is found in “rawcor1”, “raw-
cor2”, and “rawlast”.

A-20

Appendix A — GPIB COMM Pack

(Oldest) (Youngest)
Rawcor1 1 0 1 0 0 1 1
Bk L1 111 1 I
TB2chk J L . T I I | .
Rawcor?2 0/1? 1 1 0 1 1 0
4344.10

Figure A-1. Data correlation.

The hardware for each correlation channel looks at the other clock. A 1 is stored on
‘rawcor2” if there was at least one qualified edge on TB1 between the current edge on
TB2 and the last edge on TB2. The assumption in Figure A-1 is that there is earlier ac-
tivity to the left. If so, there is no way to know whether the first bit shown of “rawcor2”
is a 0 or a 1. If that bit was the first of the acquisition, it would be 0.

If a clock edge from TB1 happens simultaneously with an edge from TB2, then the
hardware indicates that TB1 happened first. For the purposes of correlation, there is
no such thing as “simultaneous”.

Time relationships are reconstructed beginning from the youngest cycle in the
memory, proceeding backwards. It can be seen that the data consists of alternating
packets of cycles--first one timebase, then the other, then back to the first. The
packets of cycles are a series of zero or more 0's, terminated by a 1 (on the old end of
the packet). The reconstruction algorithm starts from the “last stored” timebase and
scans backwards until a “1" is encountered on the correlation channel, then switches
to the other timebase. It then scans its corretation channel until a “17 is encountered,
and then switches back to the original again, and continues in this fashion until all
cycles have been used up on one of the timebases. At this point, all the remaining
cycles from the other timebase, regardiess of their values in the correlation channels,
are appended to the oldest end of the memory.

Locating The Trigger

The values “rawtpi1” and “rawtpi2” (tpi means Trigger Position Indicator) are used
after the time reiationships have been reconstructed in the data to locate the trigger
point. Each indicates the number of valid cycles that occurred on that timebase on or
after the trigger.

Thus, in a one-timebase case, if the trigger was on the Jast cycle, then the TPI would
contain 1. If on the next-to-last cycle, 2; and so on

In a two-timebase case, each TPI should be used to count from the end of the memory
backwards to a certain location in the memory. Only valid cycles for that timebase
should be counted. Each of the two TPI's will indicate a location in the reconstructed
memory. If they don't agree, the earlier of the two is the trigger. (Note that both TPI's
must be searched in the memory. It is not the case that the TPI with the highest value
must necessarily be the earlier in the memory.)

There are certain extremely obscure cases in which the trigger location will be one
earlier in memory than it shouid be. These cannot be corrected for in the memory
reconstruction, and will not come up often enough to bother the average user.

A-21

Appendix A — GPIB COMM Pack

RADIX TABLE

The following is a description of the Radix Table.

Overview

One of the types of files that can be placed in a user-generated pack (RAM or ROM
Pack) is a file containing a Radix Table (RTABLE). Radix Tables allow the user to define
his own mnemonics.

For each group defined in the Channel Grouping menu, there is a DISP field. This field is
used to select the display radix for the group. The possible selections are HEX, OCT,
BIN, OFF, ASC (ASCII) and, EBC (EBCDIC). In addition, if a ROM pack with a radix table is
instalied, ROM may be selected. If ROM is chosen, the mnemonics in the Radix Table
are used to display the data in the group.

ROM Radix Table (RTABLE) Format

A Radix Table can be up to 769 bytes in length. The first byte of the radix table
indicates the number of bits that should be considered a “digit” (the number of bits
used as an index to the table of mnemonics). The maximum permissible value for this
byte is 8.

Following the first byte is an array of up to 256 three-character mnemonics. The
mnemonics are specified in 1240 Display codes.

0: number of bits used for index (8 maximum)
1-3: mnemonic for index ¢
4.6: mnemonic for index 1
7-9: mnemonic for index 2
10-12: mnemonic for index 3

766-768: rﬁnemonic for index 255
Take the following Radix Table as an example:

Index
0: 8 bits used
1-3:*A 7 0
4-6:B 1
7-9.°C 7 2
10-12:'D 7 3
766-768:"222" 255

The following table shows how data would be displayed on the 1240 using HEX, BIN,
and ROM display radices, using the ROM radix table above.

HEX BIN ROM

01 00000001 B
03 00000011 D
FF 11111111 zZ7
00 00000000 A

A-22

Appendix A — GPIB COMM Pack

Here's another example:

Index
4 bits used

0:
1-3: S0 " 0
4-6: “S1 " 1
7-9: ‘RO 2
10-12: “Wo0 " 3

46.48: “END” 15

The following table shows how data would be displayed on the 1240 using HEX, BIN
and ROM display radices.

HEX BIN ROM

01F 0000011111 SO S1 END
23F 1000111111 RO WO END
022 0000100010 SO RO RO

Itis not necessary to use all 769 bytes of the Radix Table. You may specify four bits as
the index to the table. The maximum index is 15, so only 16 elements of the possible
256 are used.

A-23

Appendix B — GPIB COMM Pack

APPENDIX B
1240 DISPLAY CODE

This portion of Appendix B lists the 1240 Display Code characters and values.
Notice that there are two different tables of characters, Changeable and Copycat.

Changeable characters have values up to 3F, or XX11 1111. This leaves the top two
bits free for video display code.

Tabie B-1 shows the videc codes.

Table B-1
1240 VIDEO CODES
Video Selection Code
Video Form (bits 8 and 7) Description
regular video 00 light type on black background
highlighted video 01 light type on grey background
reverse video 10 dark type on white background

To select a video display cther than regular video, the first character of any string must
be selected from the Changeable Character list.

All other characters in the string may be selected from either the Changeable
Character or Copycat Character lists. Copycat characters are displayed in the
previously-selected video form.

Example: Suppose you wanted to display the string “ABC" in reverse video on the
1240.

First, you determine the video selection code for reverse video, which, according to
Table B-1, is 10.

Next, you obtain the values of your characters, making sure the first character of the
string comes from the Changeable Character list:

A=0A (hex), or XX001010 (binary}
B=0B (hex), or XX001011 (binary)
C=0C (hex), or XX001100 (binary)
Then, add the video selection code for reverse video:

A=10001010
B=10001011
C=10001100

Last, convert the values to hex, and enter them in your program.

REV APR 1986 B-1

Appendix B — GPIB COMM Pack

Table B-2
1240 CHANGEABLE CHARACTERS
value display value display value display
00 0 15 | 2A | ¢
01 1 16 M 2B | open delim.
02 7 17 N 2C | close delim
03 3 18 0 2D | (unused)
04 4 19 P 28 | X
05 5 1A Q oF | ¢
06 G 1B R 0 |+
07 I 1C S 31 | -
08 8 1D T 32 |]
09 g 1€ U 33 | [
0A A 1F V 3 | ¥
0B B 20 W 35 |4
oc C 21 X 36 | |
0D D 22 Y 37 | ¢
0E E 23 / 38 |)
OF F 24 (space) 39 | = (and)
10 (3 25 . 3A* | alt. space
11 H 26 ’ 3B — (cursor 1)
12 [27 / 3C | -- (cursor 2)
13 J 28 . 3D | / (rising edge)
14 K 29 A 3E | "\ (falling edge)
3F |\

4344-15

* Use the space character 3A for radix tables, instead of the space character 24.

B-2

REV NOV 1985

Appendix B — GPIB COMM Pack

Table B-3
1240 COPYCAT CHARACTERS
value display value display value display
co 1 D5 I ea | | (hist3)
C1 # D6 . EB B hist 4
c2 7 D7 { ec | P st
c3 & D8 } ep | [(hist6)
C4 ’ D9 N EE B oist7)
c5 (DA T er | [l ist 8)
cé) o | U Fo | "
o4 = DC A ol
cs \ DD | F2 l
C9 (unused) DE | (nist 1) F3 T
CA > DF | (st 2) F4 | -
cB A o |y F5s | I*
cc Lt E1 1||||| F6 | h
CD < E2 { F7 |
CE) E3 g Fs | d
CF . E4 T F9 A
DO ’) E5 4 FA | I
DT © E6 b Fe |
D2 (! e | Fc | i)
D3 = (not) EB + FD (unused)
D4 : E9 v (space) FE D
FF (switch to tim,
diag.)

REV NOV 1985

4344.16

B-3

Appendix B — GPIB COMM Pack

1241 DISPLAY CODE

This portion of Appendix B lists the 1241 Display Code characters and values.
Changeable characters have values up to 7F, or X111 1111. This leaves the top bit (bit
8) free for the video selection code (Table B-4).

Table B-4
1241 VIDEO CODES

Video Selection Code
Video Form (bit 8) Description
regular video 0 color type on black background
reverse video 1 color type on color background

To produce a color video display, the first two bytes of every text string that is sent
must contain a color identifier and color type. In the text string #H2D01XXXXX.., the
color identifier is 2D and the color type is the byte following. In this case, the color
type, 01, specifies red characters on a black background. The length of the text string,
including color identifier and color type, should be no longer than approximately 58
bytes total. The valid color types are identified as follows:

00 = green characters on black background
01 = red characters on black background
10 = yellow characters on black background

11 = yellow characters on red background

If the text string is to be displayed in the default color (green on black), it is not
necessary to specify the color identifier (2D) and color type (00). The reason being that
the 1241 string #H2D0001.. and the 1240 string #HO01.. will produce the same
results, a green 1 character printed on a black background.

The video form operates similarly for the 1240 monochrome strings as for the 1241
color strings. The video form changes between regular characters and reverse
characters by manipulation of bit 8 for each character.

Example: Suppose you wanted to display the string “ABC” in reverse red video on
the 1241 (black characters on a red background).

First, you determine the video selection code for reverse video, which, according to
Table B-1, is 1. Next, you obtain the values of your characters from the Changeable
Character list:

A=0A (hex), or 00001010 (binary)

B=0B (hex), or 00001011 (binary)

C=0C (hex), or 00001100 (binary)

Then, add the video selection code for reverse video by making bit 8=1;

A=10001010
B=10001011
C=10001100
Last, convert the values to hex, and enter them in your program. For example: the text

string DISPLAY 2,1,CODE #H2D018A8B8C will produce a display showing a re-
verse red ABC on line 2, starting at column 1.

B-4 REV APR 1986

Appendix B — GPIB COMM Pack

Table B-5
1241 CHANGEABLE CHARACTERS
value display value display value display
00) 15 L o | $
01 1 16 M 0B open dehm.
02 2 17 N oC close delim
03 3 18 0 op | (unused)
04 4 19 P e | X
05 9 1A Q oF | ¢
06 6 18 R 0 | 1
07 ! 1C § 3t | ~
08 8 1D T 2 | |
09 g 1E U 33 [
0A A 1F \/ 34 ¥
0B B 20 W 35 ¢
0C C 21 X 36 |
0D D 22 Y a7 | 4
0E b 23 7 38 | P
OF F 24 (space) 29 s (and)
10 G 25 . 3A* alt. space
11 H 26) 3B — (cursor 1)
12 I 27 / 3C -~ (cursor 2)
13] 28 . 3D | J/ (nsing edge)
14 K 29 A 3E U (faling edge)
3F |\
434417

* Use the space character 3A for radix tables, instead of the space character 24.

ADD NOV 1985

B-5

Appendix B — GPIB COMM Pack

Table B-6
1241 CHANGEABLE CHARACTERS (cont.)
value display value display value display
40 | 55 I ea | | (nist3)
41 it 56 t eg | B sty
42 7 57 { 6c | B (st 5
43 & 58 s 60 | B (hsto)
44 : 59 ~ 6 | W (st
45 (5A I o | I sty
46) 58] 70 | "
47 = 5C H 71 :
48 \ 5D | 72 .
49 (unused) 5E | (hist 1) 73 | 7T
4A) 5F | hst2) 74 -
4B A 60 ‘U“” 75 |
4AC L 61 m 76 | &
4D < 62 | 77 |
4E) 63 (i 78 | 4
4F . 64 T 79 i
50 I 65 i A |
51 @ 66 b 78 |
52 ¢ 67 i 7c | I,
53 - (not) 68 + = D
s | 6 | space) | FD | gede
FF (switch to tim.
diag.)
4344.18
B-6 ADD NOV 1985

Appendix C — GPIB COMM Pack

APPENDIX C
1240 KEY CODES

When the controller sends a KEY command to the 1240, the 1240 stores a key code
for the next 1240 key pressed. The controller then requests the key code with a KEY?
query. The 1240 responds with the message KEY < keycode:>. If no KEY operation
was performed, or if it was terminated before compietion, the 1240 sends an invalid
key code to the controller.

Table C-1
1240 KEY CODES

1240 Key Key Code
Hard keys:
0 00
1 01
2 02
3 03
4 04
5 05
6 06
7 07
8 08
9 09
A 10
B 11
C 12
D 13
E 14
F 15
DON'T CARE 16
GLITCH 17
(up arrow) 18
(down arrow) 19
(left arrow) 20
(right arrow) 21
SELECT UP 22
SELECT DOWN 23
NEXT 24
TRIGGER 25
CONFIG 26
DATA 27
EDIT 28
uTILITY 29
START 30
STOP (not monitored)
AUTO 31

C-1

Appendix C — GPIB COMM Pack

Table C-1 (cont.)
1240 KEY CODES

1240 Key Key Code
Soft Keys:

Top left 70
Top 2nd 71
Top Middle 72
Top 4th 73
Top right 74
Bottom left 75
Bottom 2nd 76
Bottom Middle 77
Bottom 4th 78
Bottom right 79
Invalid Key: 99

Appendix D — GPIB COMM Pack

APPENDIX D
ERROR AND EVENT CODES

Table D-1
SYSTEM EVENTS, PRIORITY 1
Hex Decimal Event Name
41 or 51 65 or 81 10y ONLINE (Power On)
Table D-2

COMMAND ERRORS, PRIORITY 2
Hex Decimal Event Name
61 or 71 97 or 113 101 Command header error
61 or 71 97 or 113 102 Header delimiter error
61 or 71 97 or 113 103 Command argument error
61 or 71 97 or 113 104 Argument delimiter error
61 or 71 97 or 113 105 Non-numeric Argument (nu-

meric expected)

61 or 71 97 or 113 106 Missing argument
61 or 71 97 or 113 107 Invalid message unit delimiter
61 or 71 97 or 113 108 Binary block checksum error
61 or 71 97 or 113 109 Binary block byte count error
61 or 71 97 or 113 121 lllegal Hex Character
61 or 71 97 or 113 122 Unrecognized argument type
61 or 71 97 or 113 123 Argument is too large
61 or 71 97 or 113 124 Non-binary Argument (binary

or hex expected)

D-1

Appendix D — GPIB COMM Pack

Table D-3
EXECUTION ERRORS, PRIORITY 3 and 4

Hex Decimal Event Name

Priority 3

62 or 72 98 or 114 201 Remote Only command re-
ceived while in local mode

62 or 72 98 or 114 202 Command aborted - change
to to local

62 or 72 98 or 114 203 I/O Deadlock detected

62 or 72 98 or 114 205 Argument out of range

62 or 72 98 or 114 206 Group execute trigger ignored

62 or 72 98 or 114 251 Header/Location conflict in
ACQMEM, REFMEM, INSE-
TUP, or RAMPACK

62 or 72 98 or 114 252 System error (illegat
command)

62 or 72 98 or 114 253 Integer overflow (range 0 -
65535)

62 or 72 98 or 114 254 RAM pack not installed.

62 or 72 98 or 114 255 lllegal ROM pack command

62 or 72 98 or 114 256 REFMEM not compatible with
ACQMEM

62 or 72 98 or 114 257 TEST command cannot be

executed when RQS is off

D-2

REV SEP 1983

Appendix D — GPIB COMM Pack

Table D-3 (cont.)
EXECUTION ERRORS, PRIORITY 3 and 4

Hex Decimal Event Name

Priority 4

62 or 72 98 or 114 261 Possible loss of data - change
to local during upload

62 or 72 98 or 114 262 Acquisition terminated -
change to local

62 or 72 98 or 114 263 Auto-run terminated - change
to local

62 or 72 98 or 114 264 Key operation terminated -
change to local

62 or 72 98 or 114 265 Conflict in SETUP memory

62 or 72 98 or 114 266 Data block location out of
range

EQ or FO 224 or 240 271 Output buffer full

EO or FO 224 or 240 272 Command too long

Table D-4

SOFT KEY EVENTS, PRIORITY 5

The following events may be generated by pushing one of the soft keys in the COMM
Port Controi menu. This is a mechanism for the 1240 to tell the controller to perform
one of the following.

Hex Decimal Event Name

CO or DO 192 or 208 711 Request ACQMEM upload
ClorD1 193 or 209 712 Request REFMEM upload
C2or D2 194 or 210 713 Request REFMEM downioad
C3 or D3 195 or 211 714 Request SETUP upload

C4 or D4 196 or 212 715 Request SETUP download

D-3

Appendix D — GPIB COMM Pack

Table D-5
OPERATION COMPLETE EVENTS, PRIORITY 6
Hex Decimal Event Name
C5 or D5 197 or 213 721 End of acquisition
C6 or D6 198 or 214 722 End of auto-run
C7 or D7 199 or 215 723 End of KEY
C9 or D9 201 or 217 724 End of auto-run, memories
equal
CA or DA 202 or 218 725 End of auto-run, memories not
equal
C8 or D8 200 or 216 731 Diagnostics test complete
Table D-6

NORMAL DEVICE-DEPENDENT STATUS, PRIORITY 7

The following are normal device-dependent status and do not generate SRQ's.

Hex Decimal Event Name

80 or 90 128 or 144 000 ldle (No status to report)
81 or 91 129 or 145 600 Acquisition in process
82 or 92 130 or 146 000 Auto-run in process

83 or 93 131 or 147 000 Waiting for key press.

EVENT CODE EXPLANATIONS

101—Command Header Error. The command header received was not a valid
command header. The command could have been misspelled or was perhaps
too abbreviated. The HELP? query returns a list of valid headers.

102—Header Delimiter Error. The 1240 was expecting a space, comma or legal
argument.

103—Command Argument Error. The argument contains an illegal character or
missing character.

104—Argument Delimiter Error. The comma is missing.
105—Non-numeric Argument.

106—Missing Argument.

107 —Invalid Message Unit Delimiter.

108—Binary Block Checksum Error. The 1240 received a data block in Binary Block
format. It computed the checksum and compared it with the checksum in the
data block. The two did not match.

D-4

Appendix D — GPIB COMM Pack

109—Binary Block Byte Count Error. Data block byte count exceeds maximum. For
data block format, see Data Block Format, Section 2,

121—lliegal Hex Character. A non-hexadecimal character is present. Legal hexadec-
imal characters include 0-9 and A-F or a-f. An odd number of hexadecimal
characters in an argument can cause this error.

122—Unrecognized Argument Type.
123—Argument is Too Large. Byte count maximum is 97.
124—Non-binary Argument. The 1240 was expecting a binary argument.

201 —Remote Only command received while in Local. A Remote Only command was
received by the 1240 while it was in Local state.

202—Command Aborted—Change to Local. A transition to Local state caused a
previously received but unexecuted Remote Only command to be aborted.

203-—1/0 Deadlock Detected. Both input and output buffers are full. The Output
buffer is flushed.

205—Argument Out of Range. The range of legal values has been exceeded.

206—Group Execute Trigger Ignored. A Device Trigger is received while the 1240 is
in Local State. Also sent when the DT is off.

251—Header/Location Conflict. During a download (controller to 1240), the location
field in a data block did not agree with the command header sent at the
beginning of the message. For exampie: INSETUP #H3400000001FF75C4
states that the data blocks are going to the instrument setup. The first two
digits of the 6-digit location field of the data block also indicate the destination
of the data block {(Setup, Memory Image, or RAM Pack). In this case, the
location field indicates that the destination is the Memory image. This conflicts
with the header. (Memory Image address is 00XXXX, SETUP address is
01XXXX, and RAM Pack address is 02XXXX.)

252—System Error. lllegal command.
253—Integer Overflow. The integers have exceeded 0 to 65535.

254—RAM Pack Not Installed. The RAMPACK? query was received by a 1240
without an installed RAM Pack.

255—Illlegal ROM Pack Command. A command dedicated to a ROM Pack was sent
to a 1240 without an installed ROM Pack.

256—REFMEM not Compatible with ACQMEM. The controller attempted to per-
form an Auto-run comparing Reference Memory to Acquisition Memory. The
memories were acquired with different 1240 SETUP configurations and can-
not be compared.

257-—RQS off; cannot execute command.

261 —Possible Loss of Data— Change to Local. A transition from Remote to Local
occurred while an upload was in progress. This terminated the upload at that
point. It is likely that the upload i1s incomplete.

262—Acquisition Terminated—Change to Local. An acquisition was terminated
when the 1240 returned to Local state.

263—Auto-run Terminated—Change to Local. An auto-run was terminated when
the 1240 returned to Local state.

264--Key Operation Terminated—Change to Local. A KEY operation was terminat-
ed prematurely when the 1240 returned to Local state.

REV SEP 1983 D-5

Appendix D — GPiB COMM Pack

265—Conflict in Setup. An instrument setup error exists. Acquisiticn or auto-run
cannot begin until it is corrected.

266—Data Block Location Out of Range. The location field in a data block consists
of 6 digits (or three bytes in Binary Block format). The first two digits indicate
type of memory (Setup or Memory Image). The last four digits indicate the
address within the memory. This error indicates that the address digits ex-
ceeded the memory range limit.

271—0utput Buffer Full. Too many queries have been received in a particular
command.

272—Input Buffer Full. The command was too long to fit into the input buffer.

401—This SRQ informs the controller that the 1240 is now ONLINE and can func-
tion as an active member of the system. This event code is sent when the
1240 user causes a transition from OFFLINE to ONLINE, and when the 1240
is powered on after having been powered off when ONLINE.

711 —REQUEST ACQMEM UPLOAD 1240 soft key was pressed.
712—REQUEST REFMEM UPLOAD 1240 soft key was pressed.
713—REQUEST REFMEM DOWNLOAD 1240 soft key was pressed.
714—REQUEST SETUP UPLOAD 1240 soft key was pressed.
715—REQUEST SETUP DOWNLOAD 1240 soft key was pressed.
721—End of Acquisition.

722—End of Auto-Run. An auto-run not involving comparison of the Acquisition
Memory to the Reference Memory is complete.

723—End of Key Operation. A KEY operation is complete. A subsequent KEY?
query will reveal the keycode of the 1240 key pressed.

724—End of Auto-Run, memories equal. An auto-run invelving comparison of Acqui-
sition and Reference memories is complete. The most recent comparison
shows the two memories to be equal, using the limits defined in the Auto-Run
Spec menu {in the SETUP).

725—End of Auto-Run, memories not equal. Similar to 724, only memories are not
equal.

731—Diagnostics Test Complete. The TEST command sequence is complete.

Appendix E — GPIB COMM Pack

APPENDIX E
INTRODUCTION TO GPIB

‘GPIB” and "General Purpose Interface Bus” are terms applied to interfaces conform-
ing to IEEE Standard 488-1978. This standard describes a digital interface that allows
efficient communications between instruments interconnected in a system, regardless
of its purpose.

The IEEE 488 standard defines three parts of the interface: efectrical elements,
mechanical elements, and functional elements.

In a working GPIB system, additional operational elements are required to define the
device-dependent messages that control each instrument’s operations. Device--
dependent messages are not defined by IEEE, since they are different for each
instrument. See Device-Dependent Messages in Section 2 for a list of the messages
supported by the 1240,

ELECTRICAL ELEMENTS

The GPIB is TTL-compatible. The power source for bus drivers and receivers cannot
exceed +5.25 V, referenced to logic ground. Bus drivers are typically open-collector
devices, but may be tri-state under some circumstances. The standard defines logic
levels as follows:

Logic Electrical Properties Other References
0 20V -52v High State, unasserted, false
1 oo0VvV-08V Low State, asserted, true

MECHANICAL ELEMENTS

Mechanical elements are the bus connector and the cable.

A 24-pin bus connector and cable are used to connect one instrument to another.
Connecting GPIB Systems

1. A maximum of 15 primary-addressed devices, including the controller, can be
connected to the bus cable at one time.

2. At least one device must be connected for every two meters of cable, average.
(For example, an 8-meter cable must have at least 4, but no more than 15,
devices connected to it.)

The combined bus cable length cannot exceed 20 meters.

Any primary-addressed device may have secondary-addressed devices attached
to it. For example, a primary-addressed mainframe may contain secondary-
addressed plug-ins.

5. At least 2/3 of the primary devices must be powered-on.

NOTE
The 1240 can only be a primary-addressed device.

E-1

Appendix E — GPIB COMM Pack

GP{B Connector

The 24-pin GPIB Connector Plug Interconnecting Cables include both piug- and
receptacle-connector types at each end, to allow either a star or linear bus structure.

Connectors may be rigidly stacked, using standard counter-bored captive screws. A
Connector Plug is shown in Figure E-1.

SHIELD SRQ NDAC DAV DI04 DIO2

ATN IFC |NRFD{ EOI D103 | D101

GND | GND | GND | REN | Dl07 | DIOS
11 9 7

LOGIC GND GNP GND DIo8 DI06
GND 10 8 6

2056-01

Figure E-1. GPIB Interface Connector Plug, with pin locations.

E-2

Appendix E — GPIB COMM Pack

GPIB

The GPIB cable system consists of eight data I/O lines, five control lines for bus
management, and three data handshake lines. Figure E-2 shows a breakdown of the
cable system.

DATA BUS

NRFD
DAV

~——-———NDAC

HANDSHAKE BUS

GPIB CONNECTOR

EOI
MANAGEMENT BUS

{2056)-3917-17

Figure E-2. The GPIB Bus Lines.

E-3

Appendix E — GPIB COMM Pack

FUNCTIONAL ELEMENTS
Typical GPIB System

Only four instruments are shown, but the GPIB can support up to 15 instruments
connected directly to the bus. More than 15 devices can be connected if they are
interfaced through a primary device rather than connected directly to the bus. These
become secondary-addressed devices.

Controlier
able to talk,
listen and control

N DATA BUS
dp

HMMIT/\

i/\

X p——
Logic Analyzer - r'y
able to talk and listen el
—d s J
[o
- * DATA BYTE
[« TRANSFER
1 CONTROL
q1D
V4
=t
Signal generator: :
able to listen only Lo P
Lt -9
—— L
hp—— * GENERAL
INTERFACE
"ﬁﬁ‘“\ MANAGEMENT

Counter:
able to talk only

IAAPITL/\ N

” . > DIO1 through DIOS
;. DAV

—— ® NRFD
= NDAC

= |FC
= ATN
—&= SRO
- REN
= EOI 3288-01

Figure E-3. A typical GPIB system setup with four primary-addressed devices.

E-4

Appendix E — GPIB COMM Pack

Controllers, Talkers, and Listeners

A GPIB system device may be a controfler, a talker, a fistener, or a combination of all
three. The 1240, for example, is a talker and listener, but not a controller.

A talkeris an instrument that can be addressed with interface messages to send data
over the data bus. Only one instrument at a time in a system can be addressed as a
talker.

A listener is an instrument that can be addressed with interface messages to accept
data from the data bus. Any number of instruments at a time can be addressed as
listeners.

The controller, using interface messages, addresses instruments as talkers and
listeners. The controller also has the ability to address itself as a talker or listener
whenever the need arises. In addition to designating the current talker and listeners
for a particular communication sequence, the controller has the task of sending other
interface messages to any or all of the instruments on the bus.

More than one controlier may exist on the bus at one time. If more than one controller
is on the bus, the following rules apply: Only one controller may be designated as the
system controller. The system controller is distinguished as the only controller that:

1. may take control of the bus by clearing it with the /FC (Interface Ciear) interface
message.

2. controls the REN line.

Otherwise, controliers and system controllers are identicai. One controller may pass
control to another with the TCT (Take Control) interface message. Only one controtler
may act as a controller at any one time. H is called the controller-in-charge. The other
controllers may act as talkers or listeners, if desired.

Interface Messages

Interface messages are commands sent by the controller-in-charge to perform certain
operations on the bus. Only the controller-in-charge may send interface messages.
Interface messages are of two types:

* Uniline messages (sent over a single line of the data transfer control or general
interface management bus). Uniline messages are ATN, SRQ, IFC, REN and EOI.

* Muitiline messages (sent over the data bus with the ATN line asserted). Most
messages are multiline.

All interface messages are listed in Section 2.

Figure E-4 is a chart that relates multiline message coding to various formats. This
chart provides binary, octal, decimal, hexadecimal, and ASCII formats for the interface
messages.

Appendix E — GPIB COMM Pack

ASCII & IEEE 488 [GPIB) CODE CHART

7 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
DIO
NUMBERS
432 CONTROL SYMBOLS UPPER CASE |LOWER CASE
0 20 40 60 100 120 140 160
o000 NUL| DLE | SP o @ P ' p
a 0| to 1620 32|30 48 40 84] 50 80 60 96170 112
1 GTL |21 LLO |41 >3 10t 121 1401 161
000 SOH | DC1 ! 1 A a q
1 I BRI 17821 33131 49191 654 51 B1j61 a7 |71 113
2 22 42 " 62 102 122 142 162
00 1 STX | DC2 2 B R b r
2 2|12 1822 34132 50g42 66} 52 82162 8|72 114
3 23 43 63 103 123 143 163
00 1 ETX | DC3 | # 3 c S c s
3 3(13 1523 35|33 51043 67|53 83363 39173 115
4 SDC |24 DCL Jaq 64 104 124 144 164
010 EOT | DC4 S 4 D T d t
Q|14 20024 36134 52044 68|54 g4]ea 10|74 16
S PPC |25 PPU |45 65 105 125 145 165
01 0 ENQ | NAK % 5 E U e u
5 5115 21§25 37135 53145 6955 Bsj6s 10175 17
6 26 a6 86 106 126 146 166
0 1 1 ACK | SYN & 6 F v f v
3] 6116 22426 38|36 54446 7G| 56 B6 66 10276 118
7 27 ar 67 107 127 147 1h7
1
901 1 BEL | ETB 7 G w g w
7 7|17 23} 27 39137 55047 7157 a7]87 103|177 119
10 GET |30 SPE] a0 70 110 130 150 170
1.0 0 BS CAN (8 H X h b 4
a8 8118 2428 40|38 56 fas 72¢{58 58168 104178 120
" TCT |31 SPDY51 7 1M1 131 151 t71
100 HT EM) 9 I Y i y
9 9113 25029 41139 57149 73|59 8969 105179 121
12 3z 52 72 12 132 152 172
* »
101 LF SUB : J Z i z
A 10|1A 26 24a 42| 3A SERAA 74| 5A a0 e 10674 122
13 33 a3 73 113 133 153 173
1o VT |ESC | + ; K k {
8 11|18 27428 43| 3B 591 4B 75]5B 9168 107|7B 143
14 34 54 74 114 134 154 1?31‘
11 0 FF FS . < L \] f
C 12 |1C 28] z2C 4a13C 60f4acC 76| 5C g2{6C 108|7C 124
15 35 55 75 115 135 155 t75
1101/ CR | GS | = = | ™] m }
D 13 (1D 29420 15| 30 614D 77150 9360 109)7D 125
16 36 56 76 116 136 156 176
11 SO RS . > N A n N
E 14 |'E 30 3 2E 46| 3E 62]4E 78| 5E GaQ6E 110]7E 126
17 37 57 77 UNLE11? 137 UNT 157 177 T
RUBOU
117 S us / ? (o) — o
F 15 |1F 31 | 2F a7 | 3F 63]4F 79}5F 95 |6F 111 |7F 127
ADORESSED UNIVERSAL LISTEN TaALK SECONDARY ADDRESSES
COMMANDS COMMANDS ADDRESSES ADDRESSES OH COMMANDS
oclal | 25 PPU| GPIB coce
NAK | Ascichaacier
hex | 15 21] decimal

2690-10

Figure E-4. The GPIB Code Chart.

Appendix E — GPIB COMM Pack

Interface messages are divided into five categories.

Addressed Commands. Only instruments on the bus that are addressed to listen
receive addressed commands. (The exception is the command TCT, which requires
that the instrument receiving it be addressed to talk.)

Universal Commands. Ali instruments on the bus will receive universal commands
regardless of whether the instrument is addressed or unaddressed.

Listen Addresses. The available range of listen addresses is 0 to 30. An address of
31 will unlisten (UNL) all instruments on the bus.

Talk Addresses. The available range of talk addresses is 0 to 30. A talk address of 31
will untalk (UNT) all instruments on the bus.

Secondary Addresses or Commands. The range of secondary addresses is 0 to 30.
This is useful with instruments that have a mainframe and several plug-ins. The
mainframe may be set to a primary talk or listen address and each plug-in set to a
secondary address.

GPIB Signal Line Definitions

Figure E-3 illustrates the 16 signal lines of the GPIB functionally divided into three
component buses:

1. Eight-bit data /O bus
2. Three-line transfer (handshake) bus
3. Five-line management bus

The Data Bus. The data bus has eight bidirectional signal lines. It carries all multiline
interface messages and the device dependent messages. A handshake sequence
between the source device and the acceptor device transfers one data byte at a time.
Since the GPIB handshake sequence is an asynchronous operation, the data transfer
rate is only as fast as the slowest instrument involved in a data byte transfer at any
one time. A talker cannot place data bytes on the bus faster than any one listener can
accept them.

Figure E-5 illustrates the flow of data bytes when a typical controller sends ASCI| data
to an assigned listener on the bus. The first data byte, 44gecimal, enables primary-
addressed device 12 as a listener. The second data byte, 108adecima, enables a
secondary-addressed plug-in (number 12) as the final destination of the data. The data
consists of two ASCI! characters A and B (65decimar and 66decima).

Appendix E — GPIB COMM Pack

PRIMARY
wme .n. SECONDARY LISTEN
UNT UNL B ADDRESS ADDRESS

|

i

OIOl-‘ O|| -—————
O.D
OI—IDlOl

: D108 o) : o :
: t 1 wmf)
2l ' ol f DATA
g af o enf %1 BUS
B o/ ol KRk]
g 1) o (o]! 0 |-
H ([{1 |
E D101) 1j——ol—o

—F - 66 65 108 44

@ ATN EOI ATN

ASSERTED ASSERTED ASSERTED
CONTROLLER INSTRUMENTS

2690-11

Figure E-5. An example of data byte traffic on the GPIB.

The EOI line is asserted along with data byte B to signify the end of the device-
dependent message. The controller activates the ATN line again and sends the UNL
(unlisten) and UNT (untalk) commands to clear the bus. In this case the UNT command
was not necessary, but many controllers, as a matter of practice, send UNT and UNL
after a transaction. Six handshake cycles on the transfer bus are required to send the
six data bytes.

Notice that the most significant bit on the data bus, DI08, is not used for interface
messages; the chart in Figure E-4 shows only DI0O1-DI07.

The Transfer Bus. Each time a data byte is sent over the data bus the source device
and the acceptor device execute a handshake sequence via the transfer bus. Figure E-
6 illustrates the basic timing relationship between the three transfer bus lines, DAV,
NRFD, and NDAC. The ATN line is included to illustrate its role in the process.

E-8

Appendix E — GPIB COMM Pack

ATN
(CONTROLLER)

DAV
(TALKER)

(LISTENER)

DAC

NDAC
(LISTENER)

|
|
|
|
|
| 1
| |
! |
] |
| |
| |
| |
| !
I |
1 [

¥

|
!
I
]
[
I
|

NRFD I
[
I
!
l
|
1
|
I “BYTE CAPTURE TIME» L
I I

DATA
BUS

LAST INTERFACE MSG BYTE FIRST DATA BYTE FROM TALKER
FRCM CONTROLLER DEVICE DEPENDENT MSG

2680-12

Figure E-6. A typical handshake timing sequence.

Data Valid (DAV) - The DAV signal is asserted (low) by the talker after the talker
places a data byte on the data bus. When asserted. DAV tells each assigned
listener that a new data byte is on the data bus. The talker is inhibited from
asserting DAV as long as any listener holds the NRFD signal asserted.

Not Ready For Data (NRFD) - An asserted (low) NRFD signal indicates that one or
more assigned listeners are not ready to receive the next data byte from the talker.

Not Data Accepted (NDAC) - Each assigned listener holds the NDAC signal low-
true untit the listener accepts the data byte currently on the data bus. When all
assigned listeners accept the current data byte, the NDAC line becomes unassert-
ed (high), telling the talker that all assigned listeners accepted the current data
byte, and to remove the data byte from the bus.

The Management Bus. The management bus is a group of five lines which are used to
send uniline interface messages.

Attention (ATN) - A controlier asserts the ATN signal line when a controtler wants
to send a multiline interface message to one or more instruments on the bus. Only
a controller may assert the ATN line.

End or Identify (EOI) - A talker can use the EQOI signal line to indicate the end of a
data transfer sequence. The talker asserts the EQI signal line along with the last
byte of data transmitted. The EOl line is also used when conducting a parallel poll.
A controller may assert ATN with EOI when conducting a paratllel poll sequence.

Interface Clear (IFC) - The interface clear line untalks and unlistens all of the
instruments on the bus. Only the system controller may assert |FC. Only three
messages may be recognized while IFC is asserted: Device Clear (DCL), Local
Lockout (LLO), and Parallel Poll Unconfigure (PPU). Interface clear is usually
necessary only when there is more than one controller on the bus and the system
controller wants to regain control.

E-9

Appendix E — GPIB COMM Pack

Remote Enable (REN) - The system controller asserts the REN signal fine
whenever the interface system operates under Remote program control. The REN
line, in conjunction with other interface messages, causes an instrument on the
bus to respond to program control (Remote) when true, and to its front panel
controls {Local) when false.

Service Request (SRQ) - Any instrument connected to the bus can request the
controller’s attention by asserting the SRQ line. The controller may respond by
asserting ATN and executing a serial poll of the status byte of each instrument to
determine which instrument is requesting service. After the instrument requesting
service is found, program contro! is transferred to a service routine for that
instrument. When the service routine is completed, program control returns tc the
main program. When polled, the instrument requesting service unasserts the SRQ
fine.

Interface Functions

The following discussion provides general information about the 10 GPIB interface
functions, and their relationship to various interface messages. The 10 interface
functions provide a variety of capabilities for each device within a system. These
functions may be implemented within an instrument by either hardware or software.
Only those functions necessary for an instrument’s purpose are implemented by the
instrument’s designer. It is unlikely that a single instrument will have all ten interface
functions. For exampie, the 1240 does not support the PP or C functions.

For information about the interface function subset supported by the 1240, see
Section 2.

Table E-1
GPIB INTERFACE FUNCTIONS -- GENERAL
Symbol Interface Function
SH Source Handshake
AH Acceptor Handshake
T Talker
L Listener
SR Service Request
RL Remote Local
PP Parallel Poll
DC Device Clear
DT Device Trigger
C Controller

E-10

Appendix E — GPIB COMM Pack

Source and Acceptor Handshake Functions. These functions contro! the data
transfer control bus handshake. The Source Handshake function guarantees proper
transmission of data, while the Acceptor Handshake function guarantees proper
reception of data.

The SH function must wait for at least 2 us after receiving the RFD message before
sending DAV. The additional time allows data to settle on the data bus. If tri-state
drivers are used, the settling time is reduced tc 1.1 microseconds after RFD is true.

The time it takes for the AH function to accept a message (signified by sending the
DAC message) depends only on how the device implements the function.

Talker Function. The T function provides an instrument with the ability to send
device-dependent data (including status bytes during serial polis) over the GPIB. The
T function becomes active when a talker receives a one-byte primary address code
cailed MTA (My Talk Address). Only one device may be addressed to talk at any one
time.

* ATN - The T function suspends any current activity when the ATN line is true, and
watches the data bus for interface messages that may affect the function’'s
operation. If the device is addressed as a talker, it begins to transmit data when
ATN becomes false.

* END - The talker may send the END message (EOI asserted) while sending a data
byte to indicate that the byte is the last of a device-dependent message.

* |FC - The T function becomes unaddressed when the IFC line is pulsed for at least
100 microseconds.

* MLA - i a device contains both talker and listener functions, the talker function is
usually disabled when the MLA message is true. Typically, a device's listen
address is the same as its talk address.

* MTA - The T function within a device is enabled when the MTA message is sent.

* SPD - The serial poll response capability of a T function is disabled when SPD is
received.

* SPE - The serial poll response capability of the T function is enabled when SPE is
received. If a device is talk-addressed after it receives SPE, it sends its status byte
after ATN becomes false.

* STB - The STB message represents a device's status during a serial poll. The
devices's status also contains the RQS message.

* UNT - The T function is disabled when the controller sends the UNT message.

Only one instrument in a GPIB system can be the active talker at any given time.

Listener Function. The L (listener) functions provide an instrument with the ability to
receive interface and device-dependent messages from the GPIB. The L function
becomes active when a listener receives a one-byte primary address code, MLA. Any
number of devices on the bus may be enabled as listeners at one time.

* ATN - The L function receives device-dependent data when the ATN line is high, if

the device has been previously addressed as a listener. When ATN is low, the
device monitors the bus for interface messages.

E-11

Appendix E — GPIB COMM Pack

¢ IFC - The T function becomes unaddressed when the IFC line is pulsed for at least
100 microseconds.

* MLA - The L function becomes addressed after receiving the MLA message.

* MTA - if adevice contains both talker and listener functions, the listener function is
usually unaddressed when the MTA message is sent.

* UNL - All listeners are unaddressed when the UNL message is sent.

Service Request Function. The Service Request function provides a device with the
ability to asynchronously interrupt the controller. The device requests service by
sending the SRQ message. Typical reasons for requesting service include reporting
the results of an operation or reporting an error.

Several devices can request service at the same time. Since the SRQ line is driven by
open-collector devices, the line represents the logical OR of all pending SRQ
messages.

The controller may choose to respond or not respond to an SRQ message, depending
upon the specific controller program. When a controiler responds to the SRQ
message, the controller performs a serial poll sequence (described later in this section)
to service interrupting devices.

Remote-Local Function. The RL function enables an instrument to select between
two sources of input information. The function indicates to the instrument that its
internal operation should be controlled from the front panel (Local), or over the GPIB
(Remote).

* REN - The Remote Enable line indicates that instruments must go to the Remote
state if the controller addresses them to listen. When the REN line goes high, all
instruments return to the Local state.

* MLA - The device's listen address. After a device is listen-addressed, Remcte-to-
Local transitions are generated.

* GTL - Go To Local returns an addressed listener to the Local state, even if the
REN line is still low.

¢ LLO - The Local Lockout message tells all instruments to ignore the operator
control that usually forces the instrument into the Local state. If an instrument is in
the Local state when it receives LLO, the effects of the LLO message begin once
the instrument goes to the Remote state.

Parallel Poll Function. Parallel Poll capability allows an instrument to send one bit of
status information to the controller without being previously addressed to talk. The
parailel poll function wili allow up to 8 instruments to be polled by the controlier
simultaneously. (If the Data Bus lines are shared, up to 15 instruments can be polled
simultaneously.)

The 1240 does not support the Paraliel Poll function.

E-12

Appendix E — GPIB COMM Pack

Device Clear Function. The DC function enables the controller to put a device into a
predefined state.

There are two interface messages associated with the DC function:

* DCL - When the controller sends the Device Clear message, the DC function is
activated in all instruments that implement the function.

* SDC - When the controller sends the Selected Device Clear message, the DC
function is activated in all addressed listeners that implement the function.

The IEEE 488 standard does not specify the settings an instrument goes to as a resuilt
of receiving the DCL or SDC commands. Tektronix instruments use these messages
only to clear the GPIB communication circuits within an instrument. Instruments from
other manufacturers often reset to a power-up state after receiving these messages.

Device Trigger Function. The DT function allows the controller to have a device
execute a basic operation. The particular operation is device-dependent. The GET
message activates the DT function within an addressed fistener. If several devices
have been addressed as listeners, the operation of the system can be synchronized
with the GET command.

Once an instrument starts operating in response to the GET message, the instrument
will not respond to subsequent triggers until after the current operation is complete.
The duration of an instrument’s operation thus determines how fast an instrument can
be repeatedly triggered by commands from the bus.

Controller Function. The controller-in-charge may relinquish control to any other
instrument in the system with controller capability. (The 1240 does not have controller
capability.)

TYPICAL ACTIVITY

Remote to Local Changes

Suppose your system consists of a controller and three instruments. The instruments
have addresses of 03, 09, and 12.

When the system is powered up, all instruments are in the Local state, and may be ad-
justed by the operator. When the operator starts the controller's program running, the
controller asserts the REN line (causing all instruments to go to the Remote state
when they are listen-addressed). The controller may then address each instrument
and send data.

During program operation, Devices 03 and 09 return to Local after operating in the
Remote state. The following example shows two possible ways for the return-to-local
transition to occur:

1. The‘operator pushes Device 03's “Return-to-Local” button. When this occurs,
the Instrument obeys commands from (or displays readings on) its front panel,
and ignores any Remote commands on the GPIB.

2. The system program requires an operator to intervene at some point, and sends
the GTL message to Device 09. This message has the same effect as pushing
the "Return-to-Local” button. The GTL message only affects instruments that
have first been addressed to listen.

E-13

Appendix E — GPIB COMM Pack

In the next case, the system program addresses the instruments, putting them in the
Remote state. The controller then issues the LLO command, causing all devices in the
system to invoke Local lock-out. The results of this command can be seen after the
system program has performed several tasks. When an operator pushes a device’s
Return-to-Local button, nothing happens. The operator cannot manually return an
instrument to the Local state for front pane! operations. All instruments remain in the
Remote state, and the system program continues its tasks. As this example shows,
the LLO message is used to prevent undesirable alterations of instrument settings by
manual operation.

Serial Polls

The poll may be initiated at any time by the system program, or it may occur in
response to the SRQ (service request) message.

The controller first unlistens all instruments to clear the bus, and then issues the Serial
Poll Enable message. The SPE message tells all devices with serial poll capability to
place their status byte on the bus when the controller addresses them to talk. The
controller then addresses each device to talk in turn, and the device responds with its
status byte. After the poll the controller issues the SPD (Serial Poll Disable) message,
and optionally issues UNL (Unlisten) and UNT (Untalk) as a safeguard that the bus will
be clear for subsequent activity.

Depending on the controller type and the system program, the controller may modify
this sequence. The controller typically polls instruments untii SRQ is no longer
asserted. Controllers generally examine the RQS bit of each device's status byte to
determine if the device was requesting service (asserting the SRQ line). Individual
service requests may be handled either during or after the poll occurs, depending on
the controller and the system program.

OPERATIONAL ELEMENTS

Device-dependent messages are used in system programs to operate the various
devices. Device-dependent messages are sent over the GPIB data bus with the ATN
line unasserted (high).

For a list of the device-dependent messages supported by the 1240, see Section 2.

E-14

Index — GPIB COMM Pack

INDEX Page
Aborting a Data Transfer 2-13
ACCESSONBS 1-1
ACQMEM .. . 2-2,3-2
ACOMEM? messageco e i, 2-2, 3-5
ASCIl Hex data block format 2-9
ATN interface message 2-15, E-5, E-9, E-14
BELL message 2-2
Binary Block data block format, (Standard, or IEEE 728) 2-9
Compressed Memory Image 2-11
Controllers 1-1, 1.2, E-5
DAB interface message 2-16, 2-17
DAC interface message 2-16, 217, E-11
Data Block Format, ASCIl HEX and Binary Block 2-9
DATAFMT message i i 2-2
DATAFMT? MeSS8GEo oo ot 2-3
Data Transfer, Interrupting 2-14
DAV interface message 2-16, 2-17, E-8, E-11
DCL interface message 2-14, 2-16, E-9, E-13
Device Address 1-5, E-1
DIAG? message i 2-3
Directory, ROM or RAM Pack 4-2
DISPLAY MeSSage oo 2-3
Display code, 1240 2-3, B-1
Downloading 2-9, example of, 3-5
DT message 2-4
DT?2 messageooiiuni i 2-4
END interface message 2-16, 2-17, E-11
ERR? message 2-4
Error Messages 1-5, Appendix D
Event Codes 3-4, 3-6, D-1
EVENT? message i ... 1-5, 2-4, 3-6
GET interface message 2-16, E-13
GTL interface messagec.ccouin i .. 2-16
Header, ROM or RAM Pack 41
HELP? message 2-4
ID? message 2-5
IEEE Standard 1-1, 1-2, 1-4, E-1
IFC interface message 2-16, E-11
INIT message 2-5
INSETUP message i i . 2-5
INSETUP? message 2-5, 3-1, 3-5

index — GPIB COMM Pack

INDEX (Cont.)

Page
Installation, about, 1-2, E-1
INSTRUMENT SETUP i 4-3, A-1
Interface functions 2-15, E-5, E-10
Iinterruptinga Data Transfer 2-14
Key Codes C-1
KEYmessage 2-6, 3-3, C-1
KEY?message 2-6, 3-3, C-1
LEDS .. 1-6
LLO interfacemessage 2-16, £-9
LLO (Local Lockout state) 2-14
LOAD Message, 2-6, 3-2
Local commands state 1-4,1-5, 2-1, 3-1, 3-2, 3-5, 3-8, E-10, E-12
MEMORY IMAGE 4.3, A-15
Menu, COMM PORT CONTROL 1-3,1-4,1-5
Menu, Remote 1-3, 1-4, 1-5
Message Termination 1-4, 1.5
MLA interface message 2.16, E-11
MTA interface messageiiiiinan.. 2-16, E-11
Onling, Offline Status 1-4, 1-5, status bytes 1-7
Port Status Display 1-4
RADIX Tables 4.3, A-22
RAM Packs 1-1, 3-8, 4-1
RAMPACK MeSSage oot e e e e 2-7
RAMPACK? message, 2-7, 3-8
REFMEM message 2-7, 3-2
REFMEM? message 2-7,3-2, 3-6
Remote commands, state 1-5, 2-1, E-12
Remotemenu e 1-5, 3-1
REN interface message 2-16, E-5, E-10
RFD interfacemessage 2-16, E-11
ROM Packs 4-1
RPHeID .. e 2-7
RQS interfacemessage 2-17
RAS message it 2-8
RQS? MeSSageo 2-8
SDC interface messagec. it 2-16, E-13
Serial Polls 3-4, E-11, E-12, E-14
Service Requests Port Status Display of, 1-4, 1-5
SET7message e 2-8
Soft Keys, 1240 1-4,1-5, 3-5
SoftKeycodes e Cc-2
SPDinterfacemessage, 2-17, E-11
SPE interface message i, 2-17, E-11
Specifications, instrument operating 1-2
SRQinterfacemessage 2-17, E-5, E-10
START Key, COOB i e e e C-1,
START messaget i, 2-8, 3-2, 3-7

-2 REV SEP 1983

Index — GPIB COMM Pack

INDEX (Cont.)

Page
Status Byte 1-6, 3-4, E-10
STB interface message 2-17, E-11
STOP Key 2-8, 3-3, 3-7
STOP message oo 2-8
TESTmessage 2-9
Test Complete SRQ 2-9
Trailer, ROM or RAM Pack 4-4
Tri-State 2-15
UNL interface message 2-17, E-8, E-12
UNT interface message 2-17, E-8, E-11
Uploading 1-5, 2-10, 3-5
UTILITY key, 1240 1-4, code C-1

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	I-01
	I-02
	I-03

