Solving
the GPIB
puzzle:

Talking to the 7854 Oscilloscope
with TEK SPS BASIC

Fig. 1. The 7854 Oscilloscope with its attached
Waveform Calculator keypad.

The new TEKTRONIX 7854 Oscilloscope goes
far beyond what its name implies. It is much more
than a standard oscilloscope. Waveforms acquir-
ed through its 400 MHz mainframe can be
displayed in real time or digitized and stored in
memory for later analysis. And a good share of
that waveform analysis can be done via the 7854’s
internal microprocessor and firmware. Many
individual functions—waveform maximum, min-
imum, RMS value, integration, differentiation,
etc.—are provided as single keys on the attached
Waveform Calculator (Fig. 1). Also, you can
combine and store these keystroke functions as
programs. In short, the 7854 is an oscilloscope
enhanced by a small onboard computer.

HANDSHAKE, WINTER 1980-81

Beyond being a powerful stand-alone measure-
ment and analysis tool, the 7854 can also be used
as a system component. It contains a GPIB
interface conforming to IEEE Standard 488-1978.
Thus, the 7854’s capabilities and capacities can be
further extended by adding a GPIB compatible
desk-top computer or a minicomputer. The
combination can be for any purpose, from simply
providing more program and waveform storage
space to providing additional computational
power.

One such combination, offering an extraordi-
nary variety of possibilities, is the pairing of the
7854 with a Digital Equipment Corporation PDP*-
11 series minicomputer using a Tektronix GPIB
interface and running with TEK SPS BASIC
software. But before any of the possibilities can be
realized, communication over the GPIB must be
established. Here’s how to do it with TEK SPS
BASIC.

Getting plugged in

GPIB compatibility means, in the simplest
sense, that you can plug your GPIB instrument
and minicomputer or controller together without
encountering any mechanical or electrical diffi-
culties. There is a standard GPIB cable that
matches the GPIB connectors on the instrument
and controller, and the electrical levels and
activities of the interface and bus lines are all
standardized for compatibility. So you can plug
things together as indicated in Fig. 2 without
having to know anything about GPIB operation
other than there must be a device load for every
two meters of cable.

But just plugging things together doesn’t mean
they’re going to work together!

*PDP is a trademark of Digital Equipment Corporation.

page 3

Talking to the 7854...

Peripheral
Storage

Hard
Copy

)

e

Graphics I

GPIB ‘ '_|
l'-"|ugs 7854 Other

+— GPIB

Terminal

| | Instruments

PDP-11 Series
Controller

[

Fig. 2. The 7854 and PDP-11 based GPIB system. Backplane space permitting, SPS TEK BASIC can
support up to four Tektronix GPIB interface cards. Each interface card and bus can support 15 devices (14
instruments plus controller) with one device load per two meters of cable.

GPIB compatibility also means there is a
defined set of interface functions that must be
used in governing bus operations and traffic. The
rub is that not all of those functions have to be
used to comply with the standard. In fact, most
instruments and controllers implement only a
subset of the available functions, and there are
usually differences from one type of instrument to
the next in what functions are implemented and
how they are implemented. In other words, it’s
possible to come up with two devices, each
complying with the standard while not being
functionally compatible with each other.

As an example, consider message terminators.
The GPIB has an EOI line (End Or Identify)
which can be asserted with the last byte of a
message as a message terminator. EOI can be
used as a message terminator, but it doesn’t
have to be. In fact, there are three typical
methods of message termination, all allowed by
the standard, in use:

1. line feed
2. EOI
3. line feed and EOI

Now, should you have an instrument using line
feed for message termination and a controller
expecting EOI for message termination, you have
a basic incompatibility.

Fortunately, most devices are strappable for
various message terminations. But this does

page 4

mean, however, that you will have to determine
the message terminator recognized by your
controller and strap your instrument for compati-
bility.

In the case of PDP-11 series controllers using
TEKTRONIX CP4100/IEEE 488 or CP1100/
IEEE 488 Interface Boards, TEK SPS BASIC
recognizes EOI as the message terminator. This
means that, for compatibility with TEK SPS
BASIC, your instruments must be strapped to
generate EOI as the message terminator. The 7854
has a set of switches for that purpose (see Fig. 3).
These switches also allow selection of a talk only,
listen only, or talk/listen communication mode for
the 7854. To set the 7854 for GPIB operation
with a PDP-11 and TEK SPS BASIC
software, set switch 1 to 1 (ON LINE) and
switches 2 and 3 to 0 (EOI, TALK/LISTEN
communication mode).

The remaining GPIB selection switches (4-8) are
used to set the 7854’s primary address. Possible
selections for the primary address run from
decimal 0 to 31. Which address you select depends
upon several things. First of all, although address
31 is a possible switch setting, it is not a valid
primary address. The instrument will essentially
be off line if a primary address of 31 is used. So
don’t use address 31. Secondly, each device on a
bus must have a different primary address. And
finally, some controllers reserve an address for

HANDSHAKE, WINTER 1980-81

GPIB ADDRESS SELECTION

00 £O1 ONLY
01LF OR EOI

1 10 TALK ONLY
11 LISTEN ONLY

{EEE 4881975

Fig.3. 7854 Oscilloscope’s GPIB connector and
selection switches for setting primary address and
communication mode.

themselves. This means that you cannot use that
controller address for any other device on the bus.
The TEKTRONIX 4050-Series Graphic Compu-
ting Systems, for example, reserve address O.
However, PDP-11 series controllers operating
with Tektronix GPIB interface boards and TEK
-SPS BASIC software, assume no address. So you
can use anything from 0 to 30 for your 7854.
Generally, it’s more convenient to use address 1
for the first or only instrument on the bus, address
2 for the second instrument, 3 for the third, etc.

For the purposes of this article, the 7854 primary
address is set to 1. That means that 7854 GPIB
selector switches 4 through 7 should be putin the0
position and switch 8 in the 1 position.

Powering up with TEK SPS BASIC

Once your GPIB system is cabled and the
message terminator and addresses selected, it is
ready for power up. With Tektronix supplied
systems operating under TEK SPS BASIC, the
power-up sequence is not critical. However, for
GPIB systems in general, it’s good practice to
power up the controller and its peripherals first,
then load system software, and then power up the
instruments on the bus. (For multiple instrument
systems, more than halfthe bus-connected devices
have to be powered up.)

When the 7854 is powered up, it goes through a

self-test sequence. When the self test completes,
the 7854 asserts an SRQ (service request). This

HANDSHAKE, WINTER 1980-81

SRQ should be serviced by reading the status byte
to make sure the instrument’s power-up sequence
completed successfully.

This preliminary activity—servicing the SRQ
by reading the status—is done with the POLL
statement of the TEK SPS BASIC Low-Level
GPIB driver. To perform the poll, the driver must
first be loaded. This is done by entering the
following statement from your terminal.

LOAD "GPI.SPS"

The poll is then performed by entering a statement
similar to the following.

POLL @¢,S,ST,SS;65

In actual practice, some variation of this
statement might be required. Any variation,
however, will relate to the @0 and 65 used above.

The @0 used here refers to controller interface
board number zero. As pointed out in Fig. 3, it is
possible to support up to four GPIB interface
boards (numbers 0-3) with a PDP-11 series
controller and TEK SPS BASIC. So, in order to
address an instrument on a particular bus, it is
necessary to first address the controller interface
board supporting that bus. In the example here,
interface board number 0 is being addressed.

The 65 used in the example POLL statement
refers to the talk address of the instrument having
a primary address of 1. The talk address is
obtained by adding 64 to the primary address. So,
in cases where your instrument has a primary
address other than 1, the talk address used will be
different.

A talk address is used in the POLL statement
because the poll is asking the instrument for
information. In order for the instrument to send
information (talk) to the controller, it has to be
addressed to be a talker. If, on the other hand, it
were being asked to receive information (listen)
from the controller, as is the case for some other
types of statements, it would need to be addressed
as a listener (primary address + 32).

The variables S, ST, and SS will contain the
information obtained by the POLL statement. S
will be the value of the instrument status byte, ST
will be the primary address of the instrument
polled, and SS will be the secondary address. For
example, after polling the 7854 power-up SRQ, the
values of S, ST, and SS can be observed by using

page 5

Talking to the 7854...

the PRINT statement as follows.

POLL @¢,S,ST,SS;65
PRINT S,ST,SS
65 65 9

The first number printed is the decimal value of
the status byte. In this case it is 65, indicating
power on for the instrument. (A full list of status
byte meanings is provided in the 7854 Operators
Manual.) The second value printed, again 65 in the
example, is the talk address of the instrument
serviced by the poll. The third output, zero in the
example, is the secondary address of the serviced
‘nstrument. In the case of the 7854, secondary
addressing is not used, hence the returned value of
zero for SS.

It should be pointed out that the primary
purpose of a poll is to service an SRQ to find out
what the asserting device wants. If POLL is
executed when an SRQ isn’t being asserted, the
routine returns zeros to its status and address
variables. To get the status of an instrument
regardless of whether it is asserting SRQ, use the
GETSTA statement. For example,

GETSTA @9¥,S,65

gets the status byte of the instrument on interface
0 and having a primary talk address of 65. If that
instrument happens to have SRQ asserted,
reading its status clears the SRQ.

In general operation, an initialization routine is
used to take care of power-up SRQs, addressing,
checking status, etc. A very simple TEK SPS
BASIC example is listed below.

1@ REM INITIALIZATION ROUTINE
15 LOAD "GPI.SPS"

20 Pl=]

25 L1=P1+32

3@ T1=P1l+64

35 POLL @¢,S,ST,SS;T1

4@ IF S=65 THEN 55

45 PAGE\PRINT S,ST,SS

5@ PRINT "POWER-UP STATUS 65 NOT DETECTED"\GOTO 6@
55 PAGE\PRINT "POWER UP OKAY"
6@ END

This routine loads the GPIB low-level driver
(line 15) and then sets variables for the primary,
talk, and listen addresses (lines 20-30). Using
address variables is a matter of convenience—
mnemonically related variables are easier to
remember than the numbers and the required
increments, and changing addresses requires only
changing the value of one variable (P1) rather
than changing a numeric constant in each

page 6

program statement. The poll occurs in line 35, and
the line following that determines action based on
the status byte value. If the status is 65 (reserved
in Tektronix GPIB instruments for valid power
up), line 40 causes a brahch to line 55. If the status
is not 65, the routine prints the status and address
values obtained by POLL and then prints a
message indicating that the expected status was
not detected. The printed value of the status byte
gives an indication of what may be amiss.

Although this example initialization routine is
quite simple and directed toward a single
instrument, the same basic concept applies to
multiple instrument systems. Multiple instrument
systems just require more housekeeping tasks.

Simple instrument-controller dialog

Once your system is powered up and intialized,
you can begin transferring commands and data
back and forth between the 7854 and the
controller. A good share of this is done with the
PUT, RASCII, and WASCII statements of TEK
SPS BASIC.

Learning to use these statements is best done by
executing some simple operations in the im-
mediate mode. In other words, sit down at your
terminal and type in statements without line
numbers so that they execute as soon as you press
the return key. For example, if you’d like to put the
7854 into the SCOPE display mode, simply type

PUT '"SCOPE'" INTO @@,Ll

To put the 7854 into the STORED display mode,
type
PUT '"STORED" INTO @¢,Ll

To put it into the BOTH display mode, type
PUT "BOTH" INTO @@,Ll

Each of these examples could also be followed by a
GETSTA or POLL to clear resulting SRQs. But,
when operating the 7854 in the immediate mode
with TEK SPS BASIC, you can just ignore the
SRQs.

For the above three examples, it is assumed the
7854 is on the bus serviced by controller interface
board number 0, hence the @0. L1 is the listen
address and is used because the 7854 has to be in
the listen mode to receive the message contained
in the PUT statement.

The message is enclosed in quotes and is device
dependent. Device dependent means it is specific
to an instrument, in this case the 7854. The

HANDSHAKE, WINTER 1980-81

message causes certain activities to take place
within the instrument. Specifically, SCOPE,
STORED, and BOTH cause the instrument to
react exactly as if you'd physically pressed the
SCOPE, STORED, or BOTH buttons on the 7854.
SCOPE causes a real-time waveform from the
plug-ins to be displayed, STORED causes a
waveform from 7854 memory to be displayed, and
BOTH causes simultaneous display of stored and
real-time waveforms.

All of the labels above the keys on the 7854
measurement keyboards correspond to device-
dependent messages that can be sent to the 7854
with a PUT statement. For example, the 7854
keystroke sequence for storing a waveform by
signal averaging 100 times and then finding the
peak-to-peak value can be executed by sending the
following PUT statement sequence.

PUT "BOTH" INTO @¢,Ll
PUT "1 @ @ AVG" INTO @¢,Ll
PUT "P-P" INTO @¢,Ll

With regard to the second statement in the
sequence, several subtle items of 7854 format
should be noted. First, 1 0 0 AVG is the
command sequence for signal averaging 100
times. Notice that the command sequence is given
in Reverse Polish Notation; that is, the argument
(100) precedes the command (AVG). Also, notice
that each digit in the argument is separated by a
space. This again is 7854 format, which requires
that each keystroke be delimited by a space. Since
numbers are entered one keystroke per digit, each
digit must be separated by a space. And finally,
more than one keystroke or device-dependent
message can be included in a PUT statement. For
example, the sequence could be reduced to the
following.

PUT "BOTH 1 # @ AVG P-P" INTO @¢,Ll

In either case, the result is the same—the 7854
signal averages a waveform 100 times and then
computes its peak-to-peak value and stores it in
the instrument’s X register. An example of the
resulting 7854 display is given in Fig. 4.

To transfer the X register contents (the peak-to-
peak value in Fig. 4) out of the 7854 to the system
controller, the 7854 must first be prepared for
sending data from the X register. This can be done
using the SENDX message as shown below.

PUT "SENDX" INTO @@,Ll
Following this with
RASCII X FROM @@, T1

HANDSHAKE, WINTER 1980-81

Zero Ref in
divisions from
screen center

Horizontal
Scale Factor

Designated
Waveform for Vertical
Operation Scale Factor

OPH & UZR 0.057 © 200n¢

RS- e e

SN s30zh e

Y-Register X-Register Last Function
Contents Contents Performed

Fig. 4. Example of 7854 display showing a
stored waveform with its peak-to-peak value in the
X register. .

causes the value in the 7854’s X register to be
transferred over the bus into variable X of TEK
SPS BASIC.

Going the other way, you might rather read the
contents of a TEK SPS BASIC variable into the
7854’s X register. To do this, the 7854 must first be
prepared to read data from the bus. This can be
done using the READX message as follows.

PUT "READX" INTO @@,Ll

The 7854 is now waiting for the data. To send the
data, the contents of TEK SPS BASIC variable ZZ

for example, use the following statement.
WASCII ZZ INTO @¢,Ll

This causes the contents of ZZ to be converted to
ASCII and sent over the bus to listen address L1.
The 7854, listen address L1, reads the ASCII data
into its X register and also displays the value at
the X register location on its screen.

Transferring bigger chunks— wave-
form data

Generally, the choice will be to process
waveforms within the 7854. Eventually, however,
there’ll be a need to transfer waveforms into the
system controller. This might be for the more
extensive processing available with TEK SPS

page 7

Talking to the 7854...

BASIC, to archive waveforms in disk memory, or
simply to use the more convenient hard copy
capabilities for documenting waveforms. What-
ever the case, there is a substantial amount of
information to be handled in a waveform transfer
and a variety of control tasks to be performed.
Because of this increased complexity, successful
transfer will be more likely when done under
program control rather than from the terminal
keyboard.

In programming GPIB communication with
any instrument, there are a number of general
items that should be taken into consideration.

First of all, there is the interface time-out period.
Generally, GPIB controllers have a fixed or
default interface time-out value. If a bus hand-
shake cycle is not completed within that time, a
time-out error occurs. In short, the activity is not
completed in the alotted time, so the program is
aborted. This prevents the bus from being tied up
waiting for handshake completion should there
ever be an instrument malfunction. However,
there are also some normal operating cases where
the handshake cycle can take longer than usual.
This can occur with slow instruments or because a
program asks for a response to a time consuming
operation before the operation is complete.

In some cases, a time-out situation can be
avoided by careful programming. In TEK SPS
BASIC, however, time-out problems can easily be
avoided by using the SIFTO (set interface time-
out) command to select your own time-out value
before communicating with an instrument.

For just getting your programs running, it is a
good idea to put in a 1000-millisecond time-out
value (actual time varies slightly with controller
speed). This doesn’t slow anything down or
change anything other than just set up a condition
where software will wait longer (1000 milli-
seconds) if it has to for handshake completion.
Then, after the program is debugged and working
as it should, you can reduce the time-out value. For
simple programs this may not be necessary. But,
for multiple instrument applications requiring
fast completion, you may not want an instrument
malfunction tying up the bus while along time-out
expires. In such cases, experimentally reduce the
time-out value to the minimum required for
successful program operation.

After time-out considerations, the next con-
sideration is what you want your program to do
while an instrument is busy. There are two general
cases.

page 8

The first case is when a program needs
information from an instrument before going any
further. An example of this is telling an
instrument to send a waveform to the controller
for processing or storage. Naturally software
cannot process or store the waveform until the
instrument sends it. But it takes time for the
instrument to decode the SENDX message and
prepare for waveform transfer, and during that
time the program goes on executing commands
unless you make it wait for the instrument. This
waiting is often accomplished with a program
statement that loops on itself until the desired
instrument status is achieved. Then the program
picks up the information from the instrument and
goes on to process it.

The second case is somewhat opposite of the
first. It is where you set the instrument about some
task, but want your program to continue normal
execution until the instrument has completed the
task and is ready with information. Instruments
generally indicate completion of a task or
readiness with information by asserting SRQ
(service request). There are power-up SRQs,
command-completion SRQs, and so forth. With
TEK SPS BASIC, any SRQ can be recognized by a
WHEN statement and given a higher priority
than normal program execution. The WHEN
statement is a way of telling the program, “when
this particular condition or event occurs, stop
what you are doing, take care of the situation, then
return to what you were doing.” Typically, WHEN
statements are used in TEK SPS BASIC programs
to branch to polling routines for servicing
instrument SRQs as they occur.

Data format is the final major consideration in
waveform transfers over the GPIB. The data
format the instrument uses needs to be determined
so that you can either preserve that format for
easier transfers back to the instrument or modify
it as needed for external processing.

For the 7854, the waveform data format is
described in Fig. 5. The waveform data is sent in
three major parts. There is an ASCII waveform
preamble consisting of a header and then a string
of descriptors giving pertinent information about
waveform size, scaling, etc. This is followed by a
separator which is either a carriage return or
carriage return with line feed, depending on the
instrument’s message terminator setting (see Fig.
3). Following the separator is the curve header
(CURVE) and then the curve data points, which
are sent as ASCII-coded decimal numbers. All of
this is sent as a single message terminated by
EOI.

HANDSHAKE, WINTER 1980-81

Waveform Data:
WFMPRE ENCDG:ASC,NR.PT:512,PT.FMT:Y,XZERO:0,XINCR:9.766E-06,
XUNIT:S,YZERO:2.704, YMULT:1,YUNIT:V;
CURVE 1.3779,1.3777,1.3778,1.3777,...,1.3777,-2.6953,-2.6955,-2.6954,

-2.6955

Definitions:
WFMPRE' waveform preamble (header)
ENCDG:ASC’ curve data encoded ASCII decimal
NR.PT:(P/W) number of points/waveform
PT.FMT:Y' point format (curve data in vert. div.)

XZERO:0' no horizontal offset
XINCR:[10°"HSCL/(P/W)] horizontai increment between points
XUNIT:S horizontal scale factor units (S=seconds)
YZERO:[-(VSCL"'VZR)] vertical zero offset

YMULT:(VSCL) vertical scale factor

YUNIT:V vertical scale factor units (V=voits)
CURVE waveform data header

Fixed value. cannot be changed

Curve values are ASCI! coded decimal numbers separated by commas. Each
number represents a point on the waveform and is the vertical distance of that
point above (+) or below (-) the center horizontal graticule line of the 7854
display.

Fig. 5. Data format for waveforms sent over the bus by the 7854 Oscilloscope. The waveform is sent as one
message consisting of a waveform preamble, separator (carriage return for EOI or carriage return and line

feed for LF OR EOI), and the curve data.

The above points—interface time-out, SRQ
handling, status detection, and waveform mes-
sage format—are taken into account variously in
the sample TEK SPS BASIC programs of Figs. 6
and 7. Figure 6 lists two programs—one for
reading a waveform out of a 7854 and onto a
floppy disk and one for writing the waveform back
into a 7854. The program in Fig. 7 is slightly
different in that it only reads the waveform into
the controller, where it is then converted to TEK
SPS BASIC format for waveform processing.

Starting at line 105 of the program for
transferring a waveform to a floppy disk (Fig. 6),
the interface time-out value is set to 1000. This is
followed in line 110 by setting the status variable,
S, to zero. Then an array, ZW, is dimensioned to
receive the curve data. In this case, it is presumed
the curve contains 512 data values (points 0
through 511); however, the dimension will need to
be changed for curves of other lengths. The next
line, line 120, uses a WHEN statement to cause
branching to the subroutine at line 1000 whenever
an SRQ interrupt occurs. Note that the subroutine
at line 1000 is simply a POLL to read the
instrument status into S. This concludes the
preliminary set up of conditions for transfer of a
7854 waveform.

HANDSHAKE, WINTER 1980-81

The program goes on at line 125 to send a
message telling the 7854 to put 0 WFM on the bus.
At this point the program must wait (loop) until
the 7854 is ready to send the waveform. Line 130
does this waiting by looping continuously while
checking the value of S until S reaches 210. S does
not reach 210 until the 7854 initiates the SENDX,
at which time the 7854 sets its status to 210
(SENDX initiated) and asserts SRQ. The WHEN
condition, set by line 120, recognizes the SRQ and
causes a branch to service it (POLL at line 1000). S
is set to 210 as a result of the POLL. Upon return
from the POLL subroutine, the statement at line
130 finds S to be equal to 210 (waveform ready to
send), and program execution moves to the next
line, line 135.

Line 135 sets the termination character
(STERMC) to a semicolon. In the next line,
RASCII begins reading the waveform message
into ZW$ until a semicolon is reached, which
denotes the end of the 7854 waveform preamble.
At that point, it switches to reading the waveform
data an element at a time into numeric array ZW.
Since RASCII is reading into a numeric rather
than string variable, it discards the data header
(CURVE) and all other characters except
numerics and +, -, ., and the letter E. The EOI, sent

page 9

Talking to the 7854...

109 REM STORE 7854 § WFM ON FLOPPY
185 SIFTO @4,190¢

110 s=¢

115 DIM ZW(511)

120 WHEN @d HAS "SRQ" AT 51 GOSUB 190¢
125 PUT "¢ WFM SENDX" INTO @4,Ll

138 IF S<>21# THEN 139

135 STERMC @9,";"

148 RASCII ZW$,ZW FROM @9,TI

165 CANCEL DX1:"WAF.1"

156 OPEN #1 AS DX1:"WAF.1" FOR WRITE
155 WRITE #1,ZWS,2w

168 CLOSE #1

165 END

200 REM READ WAF.1 BACK TO 7854 § WFM
2@5 OPEN #1 AS DX1:"WAF.1" FOR READ
218 READ #1,2ZW$,zw

215 CLOSE #1

220 SIFTO @9,100¢

225 ZWS=ZWS&";CURVE "

238 s=g

235 WHEK @9 HAS “SRQ" AT 51 GOSUB 109¢
248 PUT "9 WPM READX" INTO @9,Ll

245 IF S<>211 THEN 245

259 WASCI1 ZWS,ZW;INTO @9,Ll

255 END

1099 POLL @9,S,ST,SS;T1

1895 RETURN

Fig. 8. TEK SPS BASIC programs for transfer-
ring 7854 waveforms to a floppy disk (lines 100-
165) and back to the 7854 (lines 200-255).

by the 7854 with the last byte of its message,
terminates the RASCII. At this point, the
waveform exists in the controller as the preamble
stored in ZW$ and the data values stored in array
ZW. The rest of the program uses standard
procedure to write these variables out to a floppy
disk.

The second program in Fig. 6 reads the
waveform data back out to the 7854 by essentially
just reversing the process. The disk file is opened
and the information read into ZW$ and array ZW.
After setting the interface time-out, the program
adds ;CURVE to ZW$ since those characters were
discarded by the RASCII in the preceding
program. Then, after setting up for communica-
tion over the bus, the waveform is written as two
parts, ZW$ and ZW, back out to the 7854.

While the programs listed in Fig. 6 perform 7854
waveform transfers with a minimum of data
format change, the program listed in Fig. 7 takes a
different tack. Its purpose is to read a 7854
waveform into the controller and then convert it to
the waveform processing format of TEK SPS
BASIC.

The difference begins in line 330 where the
termination character is set to a comma. This
allows the RASCII in the next line to read each
waveform preamble component, except the last
one, into separate variables for individual use

page 10

380 REM GET WAVEFORM FROM 7854

305 SIFTO @d,1000

314 s=¢

315 WHEN @0 HAS "SRQ" AT Sl GOSUB 1909
329 PUT "¢ WFM SENDX" INTO @@,Ll

325 IF $<>218 THEN 325
339 STERMC @9,","

335 RASCII 21$,22,23$,24$,25,26$,27,28 FROM @@,T!
340 STERMC @¢,";"

345 DELETE B

350 WAVEFORM WB IS B(Z2-1),HB,HBS,VBS

355 RASCII 29§ FROM @@,T!

368 STERMC @@,""

365 RASCII B FROM @@,T1

370 B=B*28+27

375 HB=Z5\HBS=SEG(Z6$,7,LEN(Z6$))

380 VBS=SEG(Z9S$,7,LEN(29S))

385 PAGE

398 GRAPH WB

395 END

1999 POLL @¢,S,ST,SS;T1

189S RETURN

.

Fig. 7. TEK SPS BASIC program to get a
waveform from the 7854 and convert it to TEK
SPS BASIC format for signal processing.

later. Once the preamble is read in, the
termination character is set to a semicolon (line
340), and a TEK SPS BASIC WAVEFORM is
specified using the points-per-waveform informa-
tion (Z2) from the preamble. The last preamble
element, terminated by a semicolon, is then read
into Z9$ by line 335. Line 360 sets the termination
character to a null, indicating termination on EQI
only. Then the remaining waveform points are
read into array B of WAVEFORM WB.

Immediately following this, in line 370, thedata
points are converted from divisions to waveform
values by multiplying by the scale factor (Z8, read
from preamble in line 335) and offset by the
appropriate amount (Z7). The next two lines deal
with setting the WAVEFORM’s digital increment
and units variables. Some string processing is
necessary to segment out the desired characters
for the units. Line 380 completes formatting of the
7854 waveform data to the WAVEFORM format
used by TEK SPS BASIC in signal processing.
The waveform is now ready for fast Fourier
transformation, convolution, correlation, or what-
ever TEK SPS BASIC capabilities you wish to
bring to bear on the analysis.

Program transfers

The final form of communication you might
want to set up is that of transferring 7854
programs back and forth between disk storage
and the 7854. The uses of this vary from the simple
one of providing permanent storage for 7854
programs to the more complex one of a multi-
instrument, distributed processing system where

HANDSHAKE, WINTER 1980-81

programs are down loaded from the host
controller to various 7854 stations as needed. For
either case, the basic idea of 7854 program
transfer is embodied in the two TEK SPS BASIC
programs listed in Fig. 8.

480 REM TRANSFER 7854 PROG. TO FLOPPY
495 SIFTO @d,1000

419 S=g\FL=¢

415 WHEN @9 HAS "SRQ" AT 51 GOSUB 1999
420 PUT "EXECUTE # GOTO PROGRAM SAVE" INTO @9,Ll
425 IF $<>288 THEN 425

438 CANCEL DX1:"P7854.PRO"

435 OPEN #1 AS DX1:"P7854.PRO" FOR WRITE
440 STERMC @9,CHR(13)

445 WHEN @J HAS "EOI" GOSUB 475

458 RASCII PLS FROM @¢,TI

455 PRINT #1,PLS

460 IF FL*§ THEN 450

465 CLOSE #1

479 END

475 FL=l

488 RETURN

599 REM TRANSFER PROG. TO 7854

505 SIFTO @9,100¢

519 s=¢

515 WHEN @9 HAS "SRQ" AT 51 GOSUB 1999
520 PUT "PROGRAM CLP NEXT" INTO @¢,Ll
525 IF $<>66 THEN 525

539 OPEN #1 AS DX1:"P7854.PRO" FOR READ
535 EOF #1 GOTO 555

S48 INPUT #1,PLS

545 WASCI1 PLS INTO @d,Ll

558 GOTO 548

555 CLOSE #1

560 END

1099 POLL @9,S,ST,SS;T1

189S RETURN

Fig. 8. TEK SPS BASIC programs for transfer-
ring a 7854 program to floppy disk (lines 400-480)
and back to the 7854 (lines 500-560).

Assuming you’ve developed a 7854 program and
have it keyed into a 7854, the first TEK SPS
BASIC program (Fig. 8, lines 400 to 408) allows
transfer of that program from the 7854 to a floppy
disk for storage. This program is quite similar in
many respects to those used for waveform
transfer. Interface time out is set in line 405, line
410 sets some variables for control use, and line
415 sets up a WHEN for the same reasons as
discussed before. The EXECUTE 0 GOTO
PROGRAM SAVE in line 420 is the command
sequence to the 7854 for setting up transfer of its
program, and the looping in the following line is
set for exit on a status value of 208, which
indicates initiation of the SAVE command.

Since the 7854 sends each of its program lines
terminated by a carriage return, line 440 sets the
termination character for RASCII to carriage
return (ASCII decimal code 13). Each line of 7854
program is then read into PL$ by RASCII (line

450) and printed to the disk (line 455). Line 460
causes a loop back to read in and print the next

line, and so on until the end of the program is
reached.

The 7854 asserts EOI at the end of the program.
The EOI is detected by the WHEN set up by line
445. This results in the looping variable, FL, being
set to a value of one so that an exit occurs after the
last line of the program is read into PL$ and
printed to the disk. That completes transfer and
storage of the 7854 program, and the file is closed
at line 465.

The second program in Fig. 8 (lines 500 through
560) reads the 7854 program from the disk and
back into 7854 memory. This program is quite
similar to the one for transfer to the disk. A loop is
used to input the program a line at a time and write
it out to the 7854 (lines 540 through 550). When the
end of the file(EOF) is reached on the disk, line 535
causes a branch out of the loop, the file is closed,
and the transfer program ended.

Taking the next step

All of the basic communication concepts and
tools for building a GPIB system based on TEK
SPS BASIC and the 7854 are embodied in the
programming examples given here. Constants,
commands, waveforms, and programs can all be
easily transferred back and forth between the
instrument and controller as needed.

The next step is to use these tools to build larger,
more specific programs for your particular
waveform capture, storage, and analysis needs.
Tektronix maintains a network of Field Offices
and overseas representatives that will be glad to
assist you in defining those measurement needs
and in selecting an instrumentation system to
meet them. If you would like one of our field people
to contact you, simply check the appropriate box
on the reply card bound into this issue of
HANDSHAKE. L ¥

By Bob Ramirez, HANDSHAKE Staff,
with grateful acknowledgment to
David Haworth, SID Scope Evaluation,
and Mark Tilden. HANDSHAKE Staff,
for their programming assistance.

HANDSHAKE, WINTER 1980-81

page 11

