K4XL's 🌮 BAMA

This manual is provided FREE OF CHARGE from the "BoatAnchor Manual Archive" as a service to the Boatanchor community.

It was uploaded by someone who wanted to help you repair and maintain your equipment.

If you paid anyone other than BAMA for this manual, you paid someone who is making a profit from the free labor of others without asking their permission.

You may pass on copies of this manual to anyone who needs it. But do it without charge.

Thousands of files are available without charge from BAMA. Visit us at http://bama.sbc.edu

INSTRUCTION MANUAL

Serial Number

•

Tektronix, Inc. S.W. Millikan Way ● P. O. Box 500 ● Beaverton, Oregon 97005 ● Phone 644-0161 ● Cables: Tektronix

WARRANTY

All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are warranted for the life of the instrument.

Any questions with respect to the warranty mentioned above should be taken up with your Tektronix Field Engineer.

Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replacement parts should be directed to the Tektronix Field Office or Representative in your area. This procedure will assure you the fastest possible service. Please include the instrument Type and Serial number with all requests for parts or service.

Specifications and price change privileges reserved.

Copyright © 1964 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.

CONTENTS

Warranty

Section	1	Characteristics
Section	2	Operating Instructions
Section	3	Applications
Section	4	Theory of Operation
Section	5	Maintenance
Section	6	Calibration Procedure
Section	7	External Programming
Section	8	Glossary
Section	9	Parts List and Schematics

A list of abbreviations and symbols used in this manual will be found on page 9-1. Change information, if any, is located at the rear of the manual.

Г

F

Type 6R1A Digital Unit.

Þ

SECTION 1 CHARACTERISTICS

General Information

The Type 6R1A Digital Unit is designed to use in the Tektronix Type 567 Readout Oscilloscope in conjunction with certain 3-Series plug-in units for making automatic digital measurements of voltage, time between percentages of pulse amplitudes, and time difference between pulses. The Type 6R1A provides a 4-digit readout plus unit of measure.

OPERATING CHARACTERISTICS

Input

Internally from horizontal and vertical plug-in units.

Units of Measure

Volts: Readout in millivolts (MV) and volts (V). **Time:** Readout in nanoseconds (NS), microseconds (μ S), milliseconds (MS), and seconds (S).

Numerical Range

Readout from .0000 to 9999.

Accuracy of Readout

The accuracy of the number shown on the readout depends on the accuracy of the plug-in units, the difference in comparator delay, start and stop multivibrators, counters, and pickoff ability. Readout accuracy is always better than that of an operator reading from the crt.

Display Time

Variable from \approx 0.1 second to \approx 5 seconds.

Preset No-Go Limits

Front-panel controls set lower and upper limits. Frontpanel indicator lights show whether the number on the readout is less than, between, or greater than the preset limits.

Start and Stop Timing

A or B Trace %: Seven fixed percentages (10% through 90%), accurate to within 0.25%.

Manual Control: Uncalibrated.

Start and Stop Voltages: Precision dials to measure crt divisions from the 0% Zone, accurate to within 1% at about 8 cm of deflection.

Maximum Sweep Rate

Non-Sampling Sweep: 20 µsec/div maximum useful rate.

Sampling Sweep: Not limited.

NOTE

When the memory **RESPONSE** switches are set to FAST and the memory MODE switches are set to PEAK (these switches are all on the Memory circuit cards), the memories will charge 4 volts in 2 µsec. With these switch settings, the leakdown rate is 300 mv/sec. If the RESPONSE switches are set to SLOW, the memories charge to 4 volts in 20 μ sec, and the leakdown rate is 6 mv/sec. With the RESPONSE switches set to SLOW, the memories will charge with no more than 2 dots delay even at the fastest sampling sweep rate. Because of the previously listed leakdown rates, the switch combination of PEAK mode, FAST response, and AVERAGE OF TEN SWEEPS resolution should not be used with real-time sweep speeds of 0.1 cm/sec or slower, or with sampling rates less than 1000 samples/sec.

External Programming

The Type 6R1A can be programmed externally from remote or automatic equipment. Readout information is available for external readout.

MECHANICAL CHARACTERISTICS

Construction

Aluminum-alloy chassis. Anodized aluminum front panel.

CIRCUIT CARD IDENTIFICATION

The end plate of each circuit card contains the name or function of the card, such as Counter, Voltmeter, etc., and a letter to show its location in the Type 6R1A chassis. The Counter cards, for example, have the letter A as a location guide; the Voltmeter card has the letter E as a location guide.

Circuit cards now under development for other instruments may also operate in the Type 6R1A. These cards may be indentified by two location guide letters. For example, a new Counter card may be indentified as A/Z. This card will fit location A in the Type 6R1A, and location Z in another instrument.

Accessories

Information on accessories for use with this instrument is included at the rear of the mechanical parts list.

NOTES

SECTION 2

OPERATING INSTRUCTIONS

Introduction

To get the most from your instrument, it is important to understand the function of each front-panel control. This section of the manual describes each control and its use in the operation of the instrument.

For the purpose of this procedure, the terms "intensified zone" and "slope" should be clearly understood. The following explanations define these terms as they apply to Type 6R1A.

The Type 6R1A produces four intensified zones on the crt as shown in Fig. 2-1. Each zone appears as a brightened portion of the trace.

Fig. 2-1. Four types of intensified zones.

The first intensified zone is the dead zone. This zone appears at the start of the trace and has a fixed width and position.

The second intensified zone is the 0% zone. Its position is variable with the A or B 0% Zone Position control. The 0% memory circuit takes a voltage sample at this point.

The third intensified zone is the start-to-stop zone. Its position and width depend on the setting of the TIMING START and TIMING STOP switches. When the MODE switch is in the TIME position, this zone shows the portion of the waveform being measured. The start-to-stop zone is extinguished when the MODE switch is set to the A or B VOLTAGE position.

The fourth intensified zone is the 100% zone. Its position is variable with the A or B 100% Zone Position control. The 100% memory circuit takes a voltage sample at this zone.

All of the intensified zones can be turned off with the CRT INTENSIFICATION switches.

The term "slope" refers to the rising or falling portion of a pulse, as shown in Fig. 2-2. There are two kinds of slopes; a rising slope (positive-going) and a falling slope (negative-going). The SLOPE switches select the slope on which the measurement (time) starts and stops. The FIRST-SECOND SLOPE switch selects either the first or second positive-going slope, if the \pm SLOPE switch is in the + position. If the \pm SLOPE switch is in the - position, the FIRST-SECOND SLOPE switch will select either the first or second negative-going slope on the crt. To use the second slope you need at least two pulses or cycles on the crt, since the second slope refers to the slope on the second pulse or cycle. Any slope occuring during the dead zone will not be recognized.

Fig. 2-2. Pulse slope definitions.

FUNCTION OF CONTROLS, SWITCHES, AND INDICATORS

START Block

The switches and controls in the START block are used only for time measurements.

SLOPE Switches

+

FIRST-SECOND Selects the first or. second slope on the display at which the measurement begins. To start on the second slope you need at least two cycles or pulses displayed on the crt. Always keep this switch in the FIRST position unless making a second-slope measurement.

Starts the measurement on the positive (+) or negative (-) slope of the pulse. To measure on a positive-going slope, use the + position. To measure on a negative-going slope, use the - position. This switch, in conjunction with a similar switch in the STOP block, gives a variety of combinations. Keep in mind that the START must be set to precede the STOP, otherwise the display will be meaningless. Detailed use of this switch is covered later in this section. TIMING START Switch MANUAL: In this position of the TIMING START switch, you can turn the red knob on the front of the switch to manually set the start point of the measurement. (Be sure the SLOPE switches are in the FIRST and + positions.) For example, if there were two pips on a waveform and you wanted to measure the time between them, first use this control to set the start of the intensified zone at the first pip, then use the MANUAL control on the TIMING STOP switch to set the end of the intensified zone at the second pip. The readout would give the time between pips.

A TRACE %: This precisely sets the percentage point at which the time measurement will start on the Channel A trace. For example, in a risetime measurement, set this switch to A TRACE 10% to start, and set the TIMING STOP switch to A TRACE 90%. The readout would give the risetime of the waveform.

B TRACE %: This starts the measurement on the Channel B trace when dualtrace plug-in units are used. Normally, when you start on B TRACE %, you also stop on B TRACE %. However, there are various combinations of A TRACE % and B TRACE % which will be described later in this section.

TRACE A-B — START VOLTAGE: In these positions of the TIMING START switch, use the precision dial just below the switch. The A-B refers to Channel A or B and is set to the channel in use.

To start a measurement above the 0% zone, use + (plus); to start below, use — (minus).

START VOLTAGE A precision potentiometer and dial calibrated to move the start of the intensified zone 1 vertical graticule division for each major division (unit) on the dial. For example, with the dial set at 1, the time measurement will start 1 vertical division up from the 0% zone. The dial consists of ten unit numbers (shown in the window) with one unit per complete turn. Each unit is divided into 100 increments (numbers around the knob). For example, a 2 in the window and the number 43 opposite the index mark is a reading of 2.43.

> If the 3-DOT DELAY switches on the Signal comparator circuit cards are at the IN position, the start of a measurement always has a 3 count or dot delay. Since the stop point has this same delay, the accuracy of a measurement is not affected. On fast-rising pulses the crt will show the start-to-stop zone 3 dots later than (or to the right of) the start point and

3 dots later than the stop point. Moving the 3-DOT DELAY switches to the OUT position eliminates the delay.

Center Controls

	TIME STOP (—) START: Position used for all time measurements.
	VOLTAGE A-B: Position used for voltage measurements. The A and B refer to the channel of the vertical amplifier plug-in unit.
	EXT PROGRAM: Used when the instrument is set up to operate on external commands.
Switch	Set the polarity to match the polarity of the 100% memory when the MODE switch is on Channel B.
Switch	Set the polarity to match the polarity of the 100% memory when the MODE switch is on Channel A.
Switch	AVERAGE OF TEN SWEEPS — LO-HI: Counts ten continuous sweeps, and moves the decimal point to indicate average. Right-hand digit (units) blanked ir LO, visible in HI.
	ONE SWEEP—LO: Measures one sweep of the displayed waveform.
	UNSCALED (MAX): Turns off unit of measure (right-hand indicator tube) and decimals. Also, the count is direct (not divided down by the \div 1, 2, 5 circuit), and so gives maximum number resolution; but not necessarily in commonly accepted units, i.e., volts, seconds.
DISPLAY TIME Control	Varies the time from one readout display to the next. During this period the read- out holds the last number counted. No further count will be made until the dis- play periods ends (≈ 0.1 to ≈ 6 sec).
MEMORY MODE Indicators A 0% A 100% B 0% B 100%	These four neon lights indicate the mode of operation (peak or average) of the memory circuits. The mode of operation for each memory is selected by individual MODE switches on the memory cards.
ZONE POSITION Controls A 0%	Positions the 0% zone (intensified) on Channel A waveform.
A 100%	Positions the 100% zone on Channel A waveform.

- B 0% Positions the 0% zone on Channel B waveform.
- B 100% Positions the 100% zone on Channel B waveform.

 \pm

CRT INTENSIFICATION Switches

MEMORY ZONES	Turns off the intensified portion of the waveform at the 0\% and 100% zones.
START TO	Turns off the intensified part of the wave-
STOP	form between the start-to-stop zone.

STOP Block

The switches and controls in the STOP block are used only for time measurements.

SLOPE Switches

- FIRST-SECOND Selects the slope on the waveform at which the measurement stops. For example, the time of one cycle is found by setting the TIMING START and STOP switches to 50%, the START block SLOPE switch to FIRST, and the STOP block SLOPE switch to SECOND.
- Stops the measurement on the positive (+) or negative (-) slope of the waveform.
- TIMING STOP Switch MANUAL: The red knob on the front of the switch sets the stop point on the displayed waveform. (Be sure the SLOPE switches are in FIRST and +.)

A TRACE %: Sets the percentage point on Channel A at which the measurement will stop.

B TRACE %: Sets the percentage point on Channel B at which the measurement will stop.

TRACE A-B — STOP VOLTAGE: In this position of the TIMING STOP switch, use the precision dial just below the switch.

- To stop a measurement above the 0% zone, use + (plus); to stop below, use (-) (minus).
- STOP VOLTAGE A precision potentiometer and dial calibrated to move the stop point of the intensified zone one vertical graticule division for each major division (unit) on the dial. For example, with the dial set at 3, the measurement will stop 3 divisions up or down from the 0% zone. The dial consists of ten unit numbers (shown in the window) with one unit per complete turn. Each unit is divided into 100 increments (numbers around the knob). For example, a 2 in the window and the number 43 opposite the index mark is a reading of 2.43.

Upper Controls

LOWER LIMIT SET Dials and Lamp

In go no-go (accept or reject) type measurements, these dials set the lower acceptable limit. If the number on the readout (indicator tubes) is less than the number shown on these dials, the LOWER LIMIT lamp will light. This information is also present at the external program plug for automatic reject mechanisms.

- MID-ZONE Lamp This lamp lights when the number on the readout is within the limits (inclusive) set on the LOWER LIMIT SET and the UPPER LIMIT SET dials.
- UPPER LIMIT SET Dials and Lamp SET Dials and Lamp SET Dials and Lamp SET Dials and Lamp Sets the upper acceptable limit. If the number on the readout is greater than the number shown on these dials, the UPPER LIMIT lamp will light. This information is also present at the external program plug. The limit lamps also serve as a ready light to show that the instrument has completed a count. While the instrument is counting, these lamps are extinguished.
- Digital Readout The numbers (indicator tubes) are read Indicators direct.
- Unit of Measure The right-hand indicator tube gives the unit of measure in NS, μ S, MS, MV, and V. This tube is dark when the RESOLU-TION switch is in the UNSCALED (MAX) position or when either the VOLTS/DIV or TIME/DIV variable controls on the plug-in units are in the uncalibrated position.
- Decimal Point Indicator Indicator Indicator Indicator The decimal point is automatically placed in the proper position by the TIME/DIV switch of the horizontal timebase plug-in unit when you measure time, and by the VOLTS/DIV switch of the vertical amplifier plug-in unit when you measure voltage. No interpolation is necessary, since the reading is always direct.

MEASUREMENTS WITH THE TYPE 6R1A DIGITAL UNIT

The following paragraphs describe four basic measurements that can be made with the Type 6R1A.

In addition to the Type 567 Oscilloscope and two plug-in units (such as the Type 3S76 and 3T77), a signal source is required. A Tektronix Type 109, 110, or 111 Pulse Generator, or a similar type generator, will serve this purpose.

Preliminary Setup

Set the front-panel controls and switches as follows:

START Block	
SLOPE Switches	FIRST and $+$
TIMING START	A TRACE 10%
START VOLTAGE	+
Dial	0.00
STOP Block	
SLOPE Switches	FIRST and $+$
TIMING STOP	A TRACE 90%
STOP VOLTAGE	+

Dial	0.00
MODE	TIME STOP () START
B VOLTAGE	Up
A VOLTAGE	Up
RESOLUTION	ONE SWEEP LO
DISPLAY TIME	Fully clockwise
Zone Position Controls	
A 0%	Midrange
A 100%	Midrange
B 0%	Midrange
B 100%	Midrange
CRT INTENSIFICATION Switches	
MEMORY ZONES	Up
START TO STOP	Up
LOWER LIMIT SET	0000
UPPER LIMIT SET	0000

Risetime Measurement

Risetime is the time required for a pulse to rise from 10% to 90% of its amplitude. For example, assume that you have a 100 mv peak-to-peak pulse. The pulse begins at zero and starts to rise. When it reaches 10 mv (10% point) the count starts (μ sec, msec, ect.). When the pulse amplitude reaches 90 mv (90% point), the count stops. The readout indicates the risetime of the pulse.

To make a risetime measurement proceed as follows (any control not mentioned should remain in the position called out in the preliminary setup):

- 1. Apply the signal to Channel A of the vertical amplifier plug-in unit and display a single pulse on the crt. (Adjust the delay or trigger on the horizontal plug-in unit so that the intensified dead zone is on a flat portion of the trace before the rise of the vertical signal.)
- 2. Adjust the A 0% control to place the 0% zone at the start of the waveform.
- 3. Adjust the A 100% control to place the 100% zone at the peak of the waveform. Be sure the TIMING START switch is set to A TRACE 10% and the TIMING STOP switch to A TRACE 90%.
- 4. Turn the DISPLAY TIME control to midrange. Each change of the readout represents a new count.
- 5. Read the risetime directly from the readout. This is the risetime of the pulse (see Fig. 2-3).

Notice the four intensified zones. First, on the left is the dead zone. Second, is the 0% zone. Next is the zone between 10% and 90% (start-to-stop zone) which was just measured. Last is the 100% zone. You can turn off the 0% and 100% zones by moving the MEMORY ZONES switch to OFF.

Fig. 2-3. Risetime measurement.

Falltime Measurement

This is similar to the risetime measurement except that this is the time it takes the pulse to fall from 90% of its amplitude to 10% of its amplitude. In the case of a positive pulse, the measurement is on the first negative slope of the pulse. Return all controls and switches to their preliminary positions.

- 1. Adjust the time-base plug-in controls to trigger on the negative slope of the pulse. Place the 0% zone on the waveform peak. Set the 100% zone to the lowest point on the waveform (see Fig. 2-4).
- 2. Set the SLOPE switches in the START block to FIRST and —.

Fig. 2-4. Falltime measurement.

- 3. Set the TIMING START switch to A TRACE 10%.
- 4. Set the SLOPE switches in the STOP block to FIRST and
- 5. Set the TIMING STOP switch to A TRACE 90%.
- 6. Read the falltime on the readout.

Voltage Measurement

Using the same pulse as for the risetime measurement, the following steps describe how to measure the peak amplitude (voltage) of this pulse.

- 1. Set the MODE switch to VOLTAGE A.
- 2. Set the A VOLTAGE switch up.
- 3. Turn the A 0% control until the 0% zone is at the start of the pulse. Turn the A 100% control until the 100% zone is on the peak of the pulse. (In cases where the pulse has overshoot, set the 100% zone on the flattened part of the pulse beyond the overshoot.)
- 4. Read the voltage shown on the readout. This is the peak amplitude of the pulse.

This measurement shows that voltage readings are taken between the 0% and 100% zones. Since the zones can be moved to any point, the amplitude of any point on a waveform can be measured.

Frequency Measurement

This measurement counts the repetition rate in cycles per second (cps) or pulses per second (pps). The counter starts at the 50% point on one pulse and stops at the 50% point on the following pulse. This gives the time of one pulse or cycle. The reciprocal of the time, in seconds, equals the frequency in cps or pps (F = 1/T). Return all controls to their preliminary positions.

To measure frequency, proceed as follows:

- 1. Adjust the horizontal time-base plug-in unit to display 2 cycles or pulses (see Fig. 2-5).
- 2. Adjust the 0% control to place the 0% zone on the first negative peak.

Fig. 2-5. Frequency measurement.

Operating Instructions—Type 6R1A

- 3. Adjust the 100% control to place the 100% zone on the positive peak of the second pulse or cycle.
- 4. Set the MODE switch to TIME STOP (---) START.
- 5. Set the TIMING START switch to A TRACE 50%.
- 6. Set the SLOPE switch in the STOP block to SECOND.
- 7. Set the TIMING STOP switch to A TRACE 50%.
- 8. Read the time for one pulse or cycle on the readout. The reciprocal of the time is the frequency in cps or pps.

Phase or Time-Difference Measurement

The following steps describe how to measure the time difference between two similar pulses or cycles; one in Channel A and the other in Channel B (see Fig. 2-6). This procedure measures the time from the 50% point on the Channel A pulse to the 50% point on the Channel B pulse or the time difference between Channel B and A. Return the controls to their preliminary setting. To make a time-difference measurement proceed as follows:

- 1. Set both START and STOP SLOPE switches to FIRST and +.
- 2. Set the TIMING START switch to A TRACE 50%.
- 3. Set the TIMING STOP switch to B TRACE 50%.
- 4. Set the A 0% intensified zone to the <u>negative peak</u> of the pulse or cycle on A trace and set the B 0% intensified zone to the negative peak of the pulse or cycle on B trace.
- Set the A 100% intensified zone to the <u>positive peak</u> of the pulse on A trace and set the B 100% intensified zone to the positive peak of the pulse or cycle on B trace.
- 6. The number shown on the readout is the delay of Channel B with respect to Channel A.

Fig. 2-6. Delay or time-difference measurement.

SECTION 3 APPLICATIONS

Introduction

This section describes some typical applications of the Type 6R1A Digital Unit. Among these are transistor, diode, and delay-time measurements. In addition, other applications are illustrated to point out various features designed into the instrument. Since there are many applications for the Type 6R1A, this manual covers only a few of the more general ones.

Transistor Characteristics

This application is illustrated in Fig. 3-1. A pulse is fed to one channel of a dual-trace vertical amplifier plug-in unit (such as the Type 3S76). The pulse is also fed to the transistor under test and the output from the transistor is fed to the other channel of the vertical plug-in unit. With the proper program set into the Type 6R1A, a large variety of transistor characteristics can be measured. The equipment needed for this application is as follows:

- 1. Pulse generator, 0.5-nsec risetime (such as Tektronix Type 109, 110, or 111).
- 2. Transistor test fixture (such as Tektronix Type 290 Transistor Switching Time Tester).
- 3. Assorted 50 Ω cables.

Adjust the trigger stability of the time-base plug-in, and the pulse amplitude and polarity of the vertical amplifier plug-in, for a display similar to that shown in Fig. 3-2.

The following steps and Type 6R1A Program Chart outline a method for measuring eight different parameters of the transistor under test.

1. Set the MODE switch to TIME STOP (-) START.

2. Set the START and STOP SLOPE switch to FIRST.

PROGRAM CHART

		PROC	GRAM		
MEASUREMENT	START SLOPE	TIMING START	STOP SLOPE	TIMING STOP	
Risetime B	_	10% B	-	90% B	
Falltime B	+	90% B	+	10% B	
Delay A to B		10% A	_	10% B	
Storage A to B		90% A	+	90% B	
Turn-on A to B	+	10% A	-	90% B	
Turn-off A to B		90% A	+	10% B	
Width A	+	50% A		50% A	
Width B	_	50% B	+	50% B	

Fig. 3-1. Test setup for transistor measurements.

Fig. 3-2. Typical waveform display for NPN transistor measurements. The Channel A display is the pulse input to the transistor; the Channel B display is the output signal from the transistor.

- 3. The position of the ± SLOPE switches and the setting of the TIMING START and STOP switches for each measurement are listed in the chart.
- 4. Position the 0% and 100% zones. Each measurement is read directly from the readout indicator.

Delay-Line Measurements

The delay time of a coaxial cable can be measured using the Type 6R1A with sampling plug-in units (Tektronix Type 3S76 and 3T77). A pulse is fed directly to Channel A of a dual-trace vertical unit (Fig. 3-3). With a Tee connector (GR 874) at the input to Channel A, the cable under test couples the pulse to the Channel B input connector. The Type 6R1A measures the time between the 50% point on the rise of the Channel A pulse and the 50% point on the rise of the Channel B pulse. This time is the delay of the cable under test.

Set up the equipment as follows:

- 1. Adjust the pulse generator and sampling plug-in units to display a pulse through a Tee connector (GR 874) to Channel A of the Type 3S76.
- 2. Connect the cable under test from the Tee connector to the Channel B input connector. Turn the MODE switch on the Type 3S76 to DUAL-TRACE.
- 3. Adjust the 0% and 100% zones on the Type 6R1A to corresponding points on the Channel A and B pulses.
- 4. Set the Type 6R1A switches as follows:

START Block: FIRST + SLOPE: A TRACE 50% STOP Block: FIRST + SLOPE: B TRACE 50%

5. The time shown on the readout is the delay time of the cable under test.

Another method for measuring cable delay uses the charge line connector on the pulse generator. This method requires only a single-channel vertical amplifier plug-in:

Fig. 3-3. Test setup for delay-line measurement.

- 1. Connect the pulse generator through a 50 Ω cable to Channel A of the vertical amplifier plug-in.
- 2. Connect a charge line (50 $\Omega)$ to the pulse generator and display a pulse.
- Set the Type 6R1A switches as follows:
 STOP Block: FIRST SLOPE: A TRACE 50%
 STOP Block: FIRST SLOPE: A TRACE 50%
- 4. Record the time shown on the readout.
- 5. Add the cable to be measured to the charge line on the pulse generator. Record the readout.
- Subtract the reading in step 4 from the reading of step
 Divide the remainder by 2. The result is the delay time of the cable under test.

For example, assume the charge line produced a 50 nsec pulse width. When the cable to be measured is added, the pulse width increases to 70 nsec.

Subtract: 50 from 70 = 20Divide by 2: $20 \div 2 = 10$ Delay of Cable = 10 nsec.

Diode Meaurements

Switching and recovery time can be measured when the Type 6R1A is used with sampling plug-in units. Also, diodes

can be compared and matched for particular response characteristics. Two basic diode test circuits are illustrated in Figs. 3-4 and 3-6.

To make these measurements, set the A and B 0% and 100% MODE switches on the Memory circuits cards to PEAK. Position the 0% zone on the zero-current level of the diode. The recovery-time measurement starts when the waveform rise crosses the zero-current level (0% zone) and stops when the waveform falls to the selected level (e.g. 1 to 3 ma).

A pulse generator is connected through a 50 Ω cable to a test jig which mounts the diode in series with the transmission line. A decoupling capacitor or dc current source are built into the jig as shown in Fig. 3-4.

A pulse generator (such as the Tektronix Type 109, 110 or 111) with a fast-rise pulse abruptly shuts off forward current through the diode. The leading edge of the pulse causes a reverse current peak followed by a drop to zero. The diode reverse recovery time is shown in Fig. 3-5.

The second diode test measures turn-on time. A pulse generator is connected through a 50 Ω cable to a diode test jig which mounts the diode in series with the transmission line and a dual-trace plug-in unit (sampling type).

If a Tektronix Type 291 Diode Switching Time Tester or Type 292 Semiconductor Tester is available, make the diode

Fig. 3-4. Test setup for diode reverse-recovery measurements.

Fig. 3-5. Waveform measurement points for diode recovery time.

measurements as described in the Operating Instructions of the Type 291 or 292 instruction manuals.

Time Constants

The Type 6R1A with real-time plug-in units (Tektronix Type 3A2 and 3B2) can be used for production testing of capacitors and inductors. The component under test becomes part of an RC or RL circuit and the time constant is measured. The TIMING START and STOP switches have been designed to measure one RC time between the 27% and 73% points of a waveform (see Fig. 3-7).

The acceptable tolerance limits of the component are calculated and these values are set on the UPPER and LOWER LIMIT SET dials. A component within the acceptable range will light a green indicator while component values

Fig. 3-7. Universal time constant chart.

Fig. 3-6. Test setup to measure turn-on time.

outside the acceptable range will light either a yellow or red indicator.

Linearity Measurements

The rate-of-rise or linearity of a waveform such as a sawtooth can be checked with the calibrated START and STOP VOLTAGE dials as follows:

- 1. Display the waveform on the crt. Adjust the amplitude for between 6 and 8 divisions of vertical deflection.
- 2. Adjust triggering and delay controls to set the start of the waveform to the right of the dead zone.
- 3. Set the Type 6R1A controls and switches as follows:

START Block FIRST + SLOPE: A TRACE START VOLTAGE +

 $\left. \begin{array}{c} \text{STOP} \\ \text{Block} \end{array} \right\}$ FIRST + SLOPE: A TRACE STOP VOLTAGE +

MODE Switch: TIME STOP (--) START

4. Set the START VOLTAGE dial to 0.00. Turn the STOP VOLTAGE dial to 1.00. Note the readout.

- 5. Set the START VOLTAGE dial to 1.00 and the STOP VOLTAGE dial to 2.00. Note the readout.
- 6. Continue to move each dial 1 division higher and note the readout.

An exact linear rise will give the same reading for each part of the waveform measured.

External Programming

The Type 6R1A is designed to operate with the Tektronix Type 262 Programmer or similar equipment when external programming is desired. A completely automatic system can be built that will make a series of tests, record the results of the tests, reject any component that fails to meet preset limits (go no-go), and signal the end of the test series.

Section 7 of this manual contains general information on external programming. Instructions for externally programming the Type 6R1A with the Type 262 are contained in the Type 262 instruction manual. For further information consult your Tektronix Field Engineer.

NOTES

SECTION 4

THEORY OF OPERATION

Introduction

The Type 6R1A Digital Unit consists of a plug-in type chassis with controls, switches, and a readout on the front panel. The circuits of the unit are contained on 17 plug-in etched circuit cards.

This discussion will first describe the theory of operation of the instrument with block diagrams, followed by an explanation of the makeup of the front-panel controls, and a detailed description of each etched circuit card.

THEORY OF OPERATION

The usual way to measure time periods with an oscilloscope is to count the horizontal divisions on the crt between the points to be measured. This distance multiplied by the sweep rate equals the elapsed time.

With the Type 6R1A, the elapesd time between two points on a waveform display is measured with a counter and presented as a digital readout. To do this, the instrument needs specific information from the vertical amplifier and timebase plug-in units.

The information required from the vertical plug-in unit includes:

- 1. The signal to be measured.
- 2. The unit of measure (mv, etc.).
- 3. The position of the decimal point for voltage measurements.

The information required from the time-base plug-in includes:

- 1. Horizontal sweep waveform.
- 2. Horizontal gate waveform.
- 3. Clock pulses (time measurements).
- 4. Unit of measure (nsec, etc.).
- 5. The position of decimal point for time measurements.

Fig. 4-1 shows the time relationship between a typical vertical signal and the horizontal waveform. In the description that follows, the 0% intensified zone of the crt is set for the minimum amplitude point of the input signal, and the 100% zone is set for the maximum amplitude. In addition, the output of the vertical amplifier plug-in unit has a quiescent dc level between +5 and +15 volts set by the amplifier position controls.

The horizontal sweep is applied to the 0% and 100%zone circuits as shown in Fig. 4-2. The horizontal sweep voltage is combined with the voltage from the zone position potentiometers to form gate pulses that are variable in time. These gate pulses are applied to the memory circuits. When the 0% gate pulse occurs, the 0% memory takes a sample of the vertical signal ('A' voltage, Fig. 4-1) at point A. This sample is stored in the 0% memory circuit. The output of the 0% memory circuit is applied to the bottom of a string of precision resistors (see Fig. 4-3).

When the horizontal sweep reaches point B (Fig. 4-1), the sweep voltage and the voltage from the 100% zone postion potentiometer combine to form a gate pulse that activates the 100% memory circuit. The 100% memory circuit takes a sample of the vertical signal at point B and stores it. The output of the 100% memory is applied to the top of the precision resistor string (Fig. 4-3).

The intensified zone at the start of the sweep is called the "dead zone" and its position is fixed in relation to the start of the sweep, and no memory gates can be generated during "dead" time. The position of the 0% and 100%zones can be moved to any point on the display by turning the 0% and 100% controls on the front panel.

The precision resistors mentioned previously and shown in Fig. 4-3 make up the TIMING START and TIMING STOP switches. The voltage from the 0% memory is applied to the bottom, and voltage from the 100% memory is applied to the top of both the TIMING START and TIMING STOP switches. Thus, the voltage across the switches represents 100% of the voltage between the 0% and 100% points on the display. These switches allow the operator to make measurements between preselected points from 10% to 90%.

Since the memory circuits take a sample of the vertical signal on each sweep, any change in signal voltage will cause a like change in the memory outputs. Thus, the memory circuits automatically adjust to the signal voltage with each sweep.

There are two memory circuit cards; one for Channel A and one for Channel B. The precision resistors that make up the TIMING START and TIMING STOP switches are switched from one channel to the other as the memories are switched.

The next part of the system contains the circuits that feed the start and stop signal comparators (see Fig. 4-4). Since the comparator inputs are different for each mode of operation, the modes will be described separately, starting with time measurements.

Time Measurements

Each comparator needs two input voltages:

- 1. A reference voltage that sets the point of comparison (start and stop of measurement).
- The signal from the vertical amplifier plug-in. The START SLOPE and STOP SLOPE switches (Fig. 4-4) are front-panel switches set to the polarity of the waveform slope being measured (+ positive-going, — negative-going). The two inputs to each switch pass to the MODE switch (time measurements) and on to the comparators.

The operator has a choice of reference voltages:

1. A voltage from the floating power supply that allows the operator to start and stop a time measurement an exact amount of crt divisions from the 0% zone. The front-panel precision dial is used for this purpose.

Fig. 4-1. Time relationship between the horizontal sweep and the vertical signal.

Fig. 4-3. Timing switch example.

Fig. 4-2. Formation of 0% and 100% zones.

Fig. 4-4. Connection to comparators in time measurements.

Fig. 4-5. Signal comparator start and stop pulses to master gate.

- 2. Precise percentage points, such as 10%, 20%, 27%, etc., between the 0% and 100% levels on the display.
- 3. A manually controlled voltage (uncalibrated) that allows the operator to set the start and stop points visually from the display. The second input to the comparators, in the MANUAL position of the TIMING switches, is the horizontal sweep voltage.

Fig. 4-5 shows the comparators and the time relationship between the reference and signal voltage. To illustrate the operation, a 10% to 90% time measurement is programmed into the instrument.

- 1. 10% of the memory difference voltage from the TIMING START switch is applied through the MODE switch to one input of the start comparator.
- 2. 90% of the memory difference voltage from the TIMING STOP switch is applied through the MODE switch to one input of the stop comparator.

The other input of each comparator receives the vertical signal from the MODE switch. When the vertical signal rises to 10% of its amplitude, the start comparator switches and sends a pulse to the master gate. The master gate opens and clock pulses pass to the counter.

Fig. 4-6. Connections to signal comparators with MODE switch set to VOLTAGE. Voltages shown are used as examples in text.

When the vertical signal reaches 90% of its amplitude, the stop comparator switches and sends a pulse to the master gate. This pulse closes the gate and blocks the clock pulses to the counter.

As a result, the number shown on the readout is the time between the 10% and 90% voltage points of the vertical signal.

This illustration has been simplified to show the basic operation of the system to this point. The variety of programs such as negative-going signals, 2nd slope measurements, average of ten sweeps, start on Channel A, stop on Channel B, etc., can be understood by studying the individual circuits.

Voltage Measurements

Fig. 4-6 shows the connections to the comparators when making voltage measurements. Notice that the signal volt-

ages are the outputs of the 0% and 100% memory circuits. The reference voltages for the comparators are the signal voltages from the memories while the variable voltage is the voltmeter ramp. The two voltages from the memory circuits pass through either the A VOLTAGE or B VOLTAGE switch and the MODE switch to the comparator inputs. The output voltages of the 0% and 100% memory circuits are always positive to ground.

The voltmeter ramp input to the comparators is linear, and the voltage rise is constant per unit of time. For example, with a ramp rise of 1 volt in 100 μ sec, the 10 volts will take 1000 μ sec. In the example of Fig. 4-6, the start comparator has a 5-volt reference (signal level at 0% zone). When the ramp rises to 5 volts, the start comparator switches and sends a pulse to the master gate and the counter starts. The stop comparator has a 15-volt reference (signal level at 100% zone). When the ramp reaches 15 volts, the stop compartor switches and sends a pulse to the master gate and the counter stops. At a rate of rise of 1 volt per 100 μ sec, the readout shows 10.00 V. The position of the decimal point and unit of measure is explained later in the text.

If the 100% zone is moved down the slope of the signal waveform to 12 volts, the difference between the two memory circuits is 7 volts. The counter counts 700 μ sec and the readout shows 07.00 V. Since both the 0% and 100% zones can be manually adjusted from the front panel, the voltage between any two points on the display can be measured.

For a negative-going signal, the voltage from the 100% memory is less than that from the 0% memory. (Both voltages still positive to ground.) The A VOLTAGE or B VOLTAGE switch reverses the inputs to the comparators and the voltage from the 100% memory is used as the reference for the stop comparator.

Note that the START block and STOP block controls are not used during voltage measurements.

Master Gate

The master gate circuit is an "and" gate that controls the flow of clock pulses to the counter. Fig. 4-7 shows the four elements of the "and" gate and the conditions necessary to allow clock pulses to pass through the gate. Elements 1, 2, and 3 must be turned on before clock pulses can pass through element 4. Element 1 is turned on by the delay gate from the time-base plug-in unit. Element 2 is turned on by a pulse from the start comparator. Element 3 is turned on at the start of a cycle and then turned off by a pulse from the stop comparator to close the gate.

When the "and" gate closes, a digital display-time circuit prevents the gate from being reopened until the display period is ended (see Fig. 4-8). This time period is set by the front-panel DISPLAY TIME control. When the display period ends, a reset pulse is sent to the counter circuit and the readout reverts to all zeros.

To improve the resolution, the end of measurement input to element 1 is switched through $a \div 10$ circuit. This allows the counter to accumulate the sum of 10 consecutive counts before the display time and counter reset. The RESOLUTION switch also causes the decimal point of the readout to move one place to the left and the resultant number is the average of 10 counts.

To summarize the operation of the master gate: Element 1 is turned on by the delay gate. While this element is on, the start and stop comparators can allow clock pulses to pass through to the counter. At the end of measurement, a — pulse turns off element 1 which closes the "and" gate and also starts the display-time period (viewing period).

Fig. 4-7. Simplified illustration of the "AND" gate portion of the master gate.

Theory of Operation—Type 6R1A

Fig. 4-8. Display time, reset, and \div 10 circuit relationship to the master gate.

At the end of this period, a reset pulse passes to the counter and it returns to zero. Since the end of measurement pulse turns off element 1 (closes "and" gate), this waveform can be passed through a \div 10 circuit and the counter will cccumulate the total count of 10 consecutive sweeps before display time and reset. Fig. 4-9 shows the time relationship in the AVERAGE OF TEN SWEEPS position of the RESOLU-TION switch.

The clock pulses from the master gate circuit pass to the \div 1, 2, 5 circuit before they are applied to the counter (see Fig. 4-10). When using sampling plug-in units, this circuit is necessary since the number of clock pulses that pass through the master gate is directly proportional to the number of crt divisions between the start and stop of a measurement. In time measurements, the correct division circuit is controlled by the TIME/DIV switch in the time-base plug-in unit.

In voltage measurements, the selection of the proper division circuit is controlled by the VOLTS/DIV switch in the vertical amplifier plug-in unit. Also, the clock pulses that pass through the master gate are directly proportional to the amount of vertical crt divisions between the 0% and 100% zones.

The clock pulses from the \div 1, 2, 5 circuit pass directly to the counter that, in turn, drives the readout.

Fig. 4-10 also shows the location of the no-go limit circuits.

Limit Circuits

The upper and lower limit circuits operate in conjunction with the counter. During the display-time period, each counter card has a staircase output voltage that is proportional to the number stored within the counter card Thus, there are four separate voltages from the four counter cards. These voltages are applied to both the Upper Limit and Lower Limit No-Go circuit cards. The front-panel

Fig. 4-9. Condition of the master gate with RESOLUTION switch in AVERAGE OF TEN SWEEPS.

Fig. 4-10. Position of the \div 1, 2, 5 circuit in the overall system.

UPPER LIMIT SET and LOWER LIMIT SET dials also apply a voltage to the limit circuits that is proportional to the dial numbers.

With the voltage information described, the logic circuits on the Upper Limit and Lower Limit No-Go cards cause the front-panel lamps to indicate a high, low, or mid-zone readout. The switches are identical except that the start voltage from the TIMING START switch connects through the \pm SLOPE switch to the start comparator circuit, while on the TIMING STOP switch, these points connect through the \pm SLOPE switch to the stop comparator circuit.

In the MANUAL position of the TIMING START and TIM-ING STOP switches, a dc voltage set by the MANUAL controls on the front panel is connected to each signal comparator. The second input to the comparators is the sweep voltage from the 0% zone circuit card.

Note on the Timing Start Switching and the Timing Stop Switching schematics that the A 0% memory is applied to the bottom of a string of precision resistors and the A 100% memory is connected to the top of the string. While measurements are made on Channel A, the Channel B memory circuits are terminated by R429. This resistor is switched across Channel A when Channel B is in use. Since both TIMING switches have this resistor across the unused memory, the memories always have this resistance shunted across their output. When the TIMING switches are turned to a percentage position (10%, 20%, 27%, etc.), the signal comparators receive a percentage of the total memory signal. The other input of each signal comparator is the signal from the vertical plug-in unit.

With the TIMING switches in the A or B position, the signal comparator inputs are connected to the wiper arm of a 10-turn precision potentiometer that is connected across the floating power supplies located on the Voltmeter circuit card. The other input of each signal comparator is the signal received from the vertical plug-in unit.

The analog display wafers of the TIMING switches ground either pin 5 or pin 10 of the Analog Display circuit card to intensify the proper channel.

CIRCUIT DESCRIPTION

0% Zone Circuit Card

Circuits on the 0% Zone circuit card (see schematic) generate the delayed plus gate pulse and the time-variable 0% zone memory-gate pulses. In addition, a phase splitter on the circuit card converts Channel A chopped-trace pulses from the vertical plug-in unit into both plus (+) and minus (--) gate signals. Signal inputs to the 0% Zone circuit card are the horizontal sweep voltage and the horizontal sweep gate from the horizontal-sweep plug-in unit, variablelevel negative dc offset voltages from the A and B 0% Zone Position controls, and the Channel A chop signal from the vertical plug-in unit. Outputs from the 0% Zone circuit card consist of the horizontal sweep ramp or staircase to the TIMING switches, the delayed plus gate pulse to the master gate, analog display and other circuits, the time-variable A and B 0% zone memory gate pulses to the A and B memories, and the plus (+) and minus (--) chop gates to the Analog Display circuit card.

Formation of the A and B 0% Zone Memory Gate Pulses. Except for part numbers, the two 0% zone memory gate pulse generators are alike, and a description of the operation of one generator serves for the operation of the other.

The A 0% zone memory gate pulse generator is composed of Schmitt circuit transistors Q35 and Q45, gating transistors Q23 and Q33, and associated circuit elements. In operation, the horizontal sweep voltage from emitter follower transistor Q3 is applied through R22 to the base of Q23. An adjustable negative voltage from the A 0% Zone Position potentiometer is also applied to the base of Q23 through R21. At the start of the sweep, the horizontal sweep voltage is zero volts and the negative voltage from the A 0% Zone Position potentiometer has Q23 biased to cutoff. D22 keeps the voltage on the base of Q23 from going more negative than approximately -0.3 volts. Q33 is biased to cutoff by a positive voltage at the junction of R31 and R33. With both Q23 and Q33 cut off, the base of Q35 in the Schmitt circuit has no current source and Q45 is the conducting transistor. When the sweep starts and the horizontal sweep voltage starts to rise, the current flowing through R21 and D23 is diverted through R22 to the positive-going emitter of Q3.

At a point determined by the setting of the A 0% Zone Position control, all of the current through R21 is diverted away from D23, and the voltage at the base of Q23 starts to go positive, forward biasing Q23. As the voltage on the base of Q23 goes positive, the emitter goes positive also, and starts to draw current from the base of Q35. The increasing current flow causes an increasing voltage drop across R23 and R25 (A Zone Width control) and the voltage at the collector of Q23 starts in a negative direction. A fraction of the negative-going voltage is coupled back to the base of Q23 through R27, and opposes the rising sweep voltage. The negative feedback to the base of Q23 slows down but does not stop the positive rise at that point, and finally the voltage on the emitter of Q23 is sufficient to bias Q35 into conduction, switching the Schmitt circuit on. With the Schmitt circuit switches and Q45 cut off, the collector voltage of Q45 rises to +18 volts, forming the leading edge of the positive 0% zone memory gate pulse. The voltage on the base of Q23 continues to rise, increasing current flow through Q23 and increasing the voltage drop across R23 and R25. At a point determined by the setting of the tap on R25, the increasing voltage drop permits Q33 to conduct. The conduction of Q33 effectively grounds the base of Q35 and resets the Schmitt circuit. Resetting the Schmitt circuit ends the 0% zone memory gate pulse. Q23 and Q33 remain in conduction until the end of the horizontal sweep staircase. When the sweep voltage falls to zero, the negative voltage from the A 0% Zone position potentiometer again cuts off Q23. The 0% zone memory gate pulse goes to the A and B Memory circuit cards.

Formation of the Plus Gate. The plus-gate pulse generator is a gated Schmitt circuit. The inputs are the horizontal sweep staircase voltage from emitter follower Q3 and the sweep-gate pulse from the horizontal-sweep plug-in unit.

In operation, the sweep-gate pulse drops to approximately -1.6-volts at the instant the sweep staircase voltage drops to zero. With -1.6 volts applied to its base, Q4 is cut off, opening the current paths of the base of Q15 and the collector of Q5. Neither Q5 nor Q15 can conduct, and the voltage across R14 falls to zero. At this point, Q13 is biased into heavy conduction, effectively grounding the plus-gate output terminal (terminal 13). With approximately zero volts on the emitter of Q13, Q14 is biased into conduction and applies a positive lock voltage to the Schmitt circuits in both 0%-zone pulse generators.

At the moment the sweep starts, the sweep gate pulse jumps to approximately +0.8 volts, turning on Q4 which in turn permits Q5 to conduct. Due to the biasing network consisting of R6 and R7, Q5 barely has conducting bias. When the sweep voltage rises approximately 2 volts, Q5 is biased into cutoff and the Schmitt circuit switches. The voltage on the collector of Q15 jumps to approximately 20 volts, and the positive pulse is coupled through D13 to terminal 13 on the circuit card. The circuit remains in this condition until the sweep ends and the sweep gate pulse again cuts off Q4.

Formation of the Plus and Minus Chop Gates. Q84 and Q94 and associated resistors form a conventional paraphase amplifier that is used as a phase splitter. Channel A chop signals, approximately 2 volts in amplitude, are applied to the paraphase amplifier. The output signals from the paraphase amplifier are opposite in phase and approximately 20 volts in amplitude.

Memory Circuit Cards

Two identical Memory circuit cards are used in the Type 6R1A; one for A trace and one for B trace. Each of the Memory cards contains two memory circuits, one for the 0% voltage and the other for the 100% voltage. Except for information processed, the operation of the circuits on the two Memory cards is the same.

Operation of the 100% Memory Circuit. The inputs to the 100% memory circuit (see 0% and 100% Memory Card schematic) are the plus gate on terminal 12, the print command pulse on pin 13, and a variable voltage on terminal 14. The plus gate is received from the 0% Zone circuit card. A time-variable positive pulse (100% zone) is synthesized from the horizontal sweep ramp voltage and a negative dc offset voltage from the 100% Zone Position potentiometer.

In operation, the start of the negative portion of the plus gate and the end of the horizontal sweep ramp voltage occur simultaneously. At the end of the horizontal sweep ramp, the ramp voltage and the plus gate both go in a negative direction. The negative going portion of the plus gate is applied to the base of Q4, placing it in conduction. With Q4 in conduction, the base of Q25 is effectively connected to +20 volts. This prevents the Schmitt circuit, composed of Q25 and Q35, from generating a memory gate pulse for the duration of the negative portion

of the plus-gate signal. When the plus gate goes positive, the lockout voltage from Q4 is removed from the Schmitt circuit. The ramp voltage starts up, and at some point on the ramp, (determined by the setting of the 100% Zone Position potentiometer) the voltage on terminal 14 goes from -0.25 volt to +0.6 volt. The +0.6 volt biases Q14 into conduction.

Q14 draws current through R4 (100% Zone Width potentiometer) and R3. A fraction of the resulting voltage drop across R3 and R4 is applied as negative feedback through R12 to the base of Q14. The negative feedback causes the collector voltage of Q14 to fall at a fairly linear rate. As the collector voltage falls, a point is reached where Q25 in the Schmitt circuit is biased into conduction, and the Schmitt circuit switches. When the Schmitt circuit switches the votage on the collector of Q35 goes from approximately +20 volts to 0 volts and forms the leading edge of the negative memory gate pulse. As the voltage on the collector of Q14 continues to fall, Q4 is biased into conduction. When Q4 starts to conduct, it applies +20volts to the base of Q25, resetting the Schmitt circuit and ending the negative memory-gate pulse. Q4 and Q14 remain in conduction until the end of the horizontal sweep ramp when the voltage on terminal 14 again goes to -0.25 volt, and the voltage on pin 12 goes to zero.

When the 100% MODE switch (SW46) on the circuit card is in the AVG position, the negative memory gate pulse is applied through R45 and SW46 to the memory capacitor in use. If there is no vertical signal input on terminal 5, the negative pulses discharge the capacitor after a few cycles. In operation, each time the memory gate pulse removes a portion of the charge on the memory capacitor, the voltage on the cathode of V63 decreases accordingly. The voltage at the junction of R65 and R67 goes in a negative direction. The voltage at this junction is applied to the base of Q54B, which is one half of a longtailed comparator. Q54A, the other half of this comparator, is connected to the vertical input signal from terminal 5. If the voltage at the junction of R65 and R67 drops below the level of the vertical input signal, Q54A starts to conduct. The current flow through Q54A in conjunction with the negative memory gate pulse through R46 can now turn on Q64 and charge the memory capacitor. (Note that Q64 cannot be turned on by either the negative memory gate pulse or the current flow through Q54A alone, but rather a combination of the two.) As the memory capacitor charges, the increasing positive voltage is applied to the grid of V63, and the cathode of V63 increases positive accordingly. The voltage at the junction of D64 and R65 goes positive as a result. When the charge on the memory capacitor is representative of the vertical signal input, the comparator increases or decreases current flow through Q54A during zone time as required to keep the charge on the memory capacitor representative of the vertical input signal. It generally requires several cycles for the memory circuit to adjust to large changes in the vertical input signal.

When the 100% MODE switch (SW46) is in the PEAK position, the memory capacitor in use is discharged during retrace time by transistor Q44. During retrace time, the negative going portion of the plus gate biases Q34 off. The collector voltage of Q34 goes positive, biasing Q44

into heavy conduction, which discharges the memory capacitor. Discharge is inhibited when print command is negative. The MODE switch also connects the emitter of Q64 directly to +20 volts, making large charging currents available when Q64 is turned on by the combination of the negative memory gate pulse and the conduction of Q54A. With large charging currents and a low-impedance discharge path available, any change in the vertical input signal is duplicated in the memory capacitor during the period of one horizontal sweep.

Operation of the 0% Memory Circuit. Operation of the 0% memory circuit is similar to the operation of the 100% memory circuit. The Schmitt circuit and gating transistors which generate the 0% memory gate pulse are located on the 0% zone circuit card and have been previously described. The time-variable 0% zone pulse from the 0% Zone circuit card is applied to terminal 2 of the 0% and 100% Memory circuit card. From terminal 2, the 0% zone pulse is applied through an OR gate composed of Q24 and D46 to terminal 10. In addition, the time-variable 0% zone memory gate pulse is applied to two points in the 0% memory circuit. One connection to the memory circuit is through R77 and the AVG contacts of the 0% MODE switch (SW76) to the memory capacitors. The other connection goes through R87 to the base of Q94.

When the circuit is first turned on, there is no charge in the memory capacitor, the cathode of V93 is consequently below ground, and Q84B is in conduction due to the vertical signal in, and the conduction of Q84A keeps Q94 cut off. When the first 0% zone memory gate pulse arrives, it is applied through R77 to the memory capacitor and to the base of Q94. The memory gate pulse by itself cannot overcome the negative bias on the base of Q94, so the only action that takes place is that the memory capacitor in use is partially charged. The charge on the memory capacitor is increased with each succeeding 0% zone memory gate pulse. The increasing positive voltage on the grid of V93 also increases the positive voltage on its cathode. which in turn causes Q84B to increase its conduction. As Q84B increases conduction, it robs current from Q84A. As the current through Q84A decreases, its collector voltage goes positive, and a point is finally reached where the combined collector voltage of Q84A and the 0% zone memory gate pulse can forward bias Q94. When Q94 starts to conduct, its collector voltage goes negative, providing a discharge path for the memory capacitor in use. From this point on, the circuit adjusts the charge on the memory capacitor to reflect the changes in the vertical input signal. If the vertical signal increases, Q84A increases its conduction and lowers the drive to Q94. If the vertical signal decreases, Q84B robs current from Q84A and permits Q94 to conduct heavier.

When the 0% MODE switch (SW76) is in the PEAK position, the charge path for the memory capacitor is through the collector circuit of Q34. Q34 operates an inverter with its base signal being the plus gate; thus the memory capacitor is charged during retrace time (except when inhibited by the print command signal through Q73). Discharge of the memory capacitor and operation of the remainder of the 0% zone memory circuit is the same as when the 0% MODE switch is in the AVG position, except that more discharge current is available as the Q94 emitter is tied to ground through the 0% MODE switch.

Signal Comparator Circuit Cards

The Type 6R1A contains two identical Signal Comparator circuit cards. The purpose of the cards is to form the start and stop pulses that control the master gate circuit when measurements are being made. In making time measurements, the TIMING START switch (front-panel control) sets the point at which the start Signal Comparator circuit card delivers a pulse, and the TIMING STOP switch (front-panel control) sets the point at which the stop Signal Comparator circuit card delivers a pulse. Except for the source of the input signals and the timing of the output pulse, the operations of the circuits on the two cards are the same.

When making time measurements, the inputs to the timing-start Signal Comparator card are the output of the TIMING START switch and the signal from the vertical plug-in unit on pins 8 and 9, the plus gate on pin 1, ground signals as required from the START FIRST-SECOND SLOPE switch on pins 4 and 5, and clock pulses on pin 16. The inputs on pins 8 and 9 may be reversed by the START + — SLOPE switch on the front panel to permit the time measurement to be started on either a positive-going or a negativegoing portion of the vertical waveform. When making voltage measurements, the inputs are the same except for the inputs to pins 8 and 9. The inputs to pins 8 and 9 are a ramp voltage from the Voltmeter circuit card and a memory output from the appropriate Memory circuit card.

The inputs on pins 8 and 9 are applied to the two sides of a longtailed comparator which is arranged so that the side receiving the most positive input conducts and cuts the other side off. Assuming that time measurements are to be made, and that the START + — SLOPE switch is set to +, a positive reference voltage from the TIMING START switch is applied to pin 9 and the vertical signal from the vertical plug-in unit are applied to pin 8. Q13B and Q14B are conducting and have Q13A and Q14A cut off. The conduction of Q14B biases Q24 into conduction. The conduction of Q24 raises the emitter voltage of Q23 to approximately 20 volts, which cuts it off.

With conditions as explained in the preceding paragraph, the positive clock pulses on pin 16 are inverted by Q34 and applied through C34 and D39 to Q44 and C40. If the 4-DOT DELAY switch SW42 is closed, the negative pulses are also applied to C42. Each negative pulse removes some charge from C40 and C42 until the voltage drops to approximately -4.2 volts, biasing Q44 into conduction. The conduction of Q44 switches tunnel diode D55 to its low-voltage state, and Q54 is cut off. With the comparator circuit now quiescent and awaiting the proper vertical signal, it is now necessary to set the second slope flip-flop to the proper state.

When it is desired to start the time measurement on the second occurrence of a particular point on the vertical signal, the START FIRST-SECOND SLOPE switch is set to SEC-OND. Setting this switch to the SECOND position grounds pin 5, effectively grounding the junction of R71 and D72, D76, and D73. When the positive portion of the plus gate pulse arrives (immediately after the beginning of the horizontal sweep), it reverse biases D63 and forces the base voltage of Q85 to go more positive. Application of the positive portion of the plus gate waveform to Q85 ensures that it is cut off. These are the conditions at the start of the sweep.

As the sweep starts to run up, the comparator switches at the selected portion of the vertical signal and turns Q24 off. With Q24 turned off, the Clock Pulses pass through emitter follower Q23, C24 and D29 to C40 and C42. The capacitors are charged faster than Q34 and the associated circuit can discharge them, and finally the capacitors accumulate enough charge to switch tunnel diode D55 to its high-voltage state. When D55 switches to its high-voltage state, it turns on Q54. Q54 amplifies the output of D55 and applies the positive-going pulse to the base of Q85 or Q95 through C82 and C92 and steering diode D82 or D92. The multivibrator switches, and the output on pin 2 falls to zero. When the selected event occurs a second time on the same sweep, the switching of the Comparator and D55 causes a second pulse to be applied to Q85 and Q95, switching the flip-flop the other way and delivering a positive output on pin 2. This positive pulse is the start pulse and is sent to the Master Gate circuit card.

If it is desired to start the time measurement from the first occurrence of an event, the START FIRST-SECOND SLOPE switch is placed in the FIRST position. In this position, the switch grounds pin 4, effectively grounding the junction of D62 and R62. The positive portion of the plus gate which occurs immediately after the start of the sweep is applied through D73 and D76 to the base of Q95, ensuring that it is cut off. When the comparator switches at the first occurrence of the selected event, tunnel diode D55 switches to its high-voltage state, and through Q54 applies a switching pulse to Q85 and Q95. The multivibrator switches and Q95 becomes the conducting transistor. The conduction of Q95 applies a positive pulse to the output.

The purpose of the 3-DOT DELAY switch and capacitor is to prevent the tunnel diode from being switched to its high state if the comparator is momentarily switched by a noise transient. When 3-DOT DELAY switch SW42 is placed in the IN position, it takes three clock pulses to charge C40 and C42 to a voltage high enough to switch tunnel diode D55 to its high-voltage state. This three-pulse delay does not affect accuracy since the same delay exists in the stop comparator. The three-dot delay feature may be disabled by moving 3-DOT DELAY switch to the OUT position.

When the front-panel TIMING switches are set to the MANUAL position, the comparator reference is a dc voltage set by the MANUAL controls. The signal side of the comparators now receive the horizontal sweep voltages. As the sweep voltage rises, it reaches the voltage set by the TIM-ING START MANUAL control and the comparator delivers a pulse. As the sweep voltage continues to rise, it reaches the point set by the TIMING STOP MANUAL control in the stop comparator and that circuit delivers a pulse. Both pulses pass to the master gate circuit and determine the start and finish of the time measurement. The MANUAL positions of the TIMING START and TIMING STOP switches were included primarily for use in calibrating and troubleshooting the Type 6R1A.

Master Gate Circuit Card

The Master Gate circuit card (see Master Gate Schematic) performs six functions:

1. Gates clock pulses to the \div 1, 2, 5 circuit card.

Theory of Operation—Type 6R1A

- 2. Forms a start-to-stop pulse which is applied to the analog display (intensified zone).
- 3. Delivers a stop-pulse output to the RESOLUTION switch.
- 4. Forms a print-command pulse.
- 5. Controls the display time of the readout.
- 6. Forms a counter reset pulse.

The inputs to the Master Gate circuit card are the plus gate on pin 9; the start pulse from the start comparator on pin 2; the stop pulse from the stop comparator on pin 19; clock signals on pin 4; an adjustable dc current from the DISPLAY TIME control on pin 12; an end-of-measurement pulse derived from the stop pulse on pin 7; and a rampgate pulse on pin 17. The outputs are clock bursts to the \div 1, 2, 5 circuit card on pin 5; the start-to-stop zone intensification pulse to the Analog Display circuit card on pin

18; a stop pulse to the \div 10 circuit card on pin 16; the print command to the Limit Light Driver and Memory circuit cards on pin 13; and the reset pulse to the Counter circuit card on pin 8, (see Fig. 4-11).

Gating the Clock Bursts. When the MODE switch is set to VOLTAGE and the RESOLUTION switch is set to LO, the current from the DISPLAY TIME potentiometer starts to charge C42. As C42 charges, the voltage on the base of Q45 rises in the positive direction. During the time C42 is charging, the divide-by-two multivibrator is switching each time the plus gate goes negative. When the positive voltage on C42 and the base of Q45 rises high enough, the negative pulses from Q25 to Q55 cause the display-time multivibrator to switch, and both Q45 and Q55 conduct. The conduction of Q55 cuts off Q93 and pulls the base of Q83 to ground. Cutting off Q93 enables one input of AND gate Q93, Q153, Q163 and R163. With the base of Q83 at

Fig. 4-11. Time relationships of waveforms in the master gate circuit.

ground, its emitter is low enough to bias Q84 into conduction. When Q84 conducts, its collector pulls up on the base of Q25 and holds it on, inhibiting divide-by-two multivibrator Q15 and Q25. The conduction of Q55 also terminates the positive portion of print command at the emitter of Q83. The negative level of print command is applied to the Voltmeter circuit card where, in conjunction with the plus gate, it ends the ramp gate and begins the voltmeter ramp runup.

The conduction of Q45 in the display-time multivibrator biases Q64 into conduction, in turn biasing Q73 into conduction. (Series M, Model 5-up) The positive-going emitter voltage of Q73 is applied through diodes D72 and D74 to the start and stop multivibrators, ensuring that Q105 and Q125 are turned off and that Q115 and Q135 are turned on at the end of display time. (For Series M. Models 1 through 4, the positive-going emitter voltage of Q73 is applied through R74 to the stop multivibrator, ensuring that Q125 is turned off and Q135 is turned on at the end of display time.) When Q135 starts to conduct, it sends a stop pulse through the RESOLUTION switch to the base of Q55, but the displaytime multivibrator cannot be switched at this time since the capacitor in its base circuit (C42) has not yet had time to discharge. Also at the beginning of the negative portion of the plus gate, the voltmeter ramp gate is positive, enabling one input of an AND gate consisting of Q3, D5 and D6.

As the negative portion of the plus gate ends and the gate signal goes positive, the ramp gate goes negative, but the emitter of Q3 is connected to C3 which discharges at an exponential rate. For a time determined by C3, both inputs of the AND gate are enabled, and the gate passes a positive pulse to both the start and stop multivibrators. The positive spike from Q3, D5 and D6 makes Q105 the conducting transistor in the start multivibrator and Q125 the conducting transistor in the stop multivibrator. The conduction of Q105 biases Q143 into conduction and prevents clock pulses from passing through Q163. The conduction of Q125 cuts off Q135 which cuts off Q173 in turn. The master gate circuit card is now ready to receive the pulse from the start Signal Comparator circuit card.

When the positive pulse from the start comparator occurs, it switches the start multivibrator, cutting off Q105. Cutting off Q105 causes the voltage on the emitter of Q143 to go negative, which cuts off Q153. With Q93 and Q153 cut off, the clock pulses pass through Q163 and are amplified by Q164 during the time between the occurrence of the start pulse and the occurrence of the stop pulse. The burst of clock pulses out of the Master Gate circuit card pass to the \div 1, 2, 5 circuit card and from there to the counters. The burst of clock pulses is ended when the stop pulse from the stop comparator switches the stop multivibrator and makes Q135 the conducting transistor. The conduction of Q135 biases Q173 into conduction, which in turn biases Q153 into conduction and closes the AND gate.

The output of Q135 is applied through Q173 and the RESOLUTION switch back to the base of Q55 in the displaytime multivibrator. The pulse, now called the end-of-measurement pulse, causes the display multivibrator (Q55 and Q45) to turn off. Q55 and Q45 stay cut off until C42 in the base circuit of Q45 charges through the DISPLAY TIME control. When Q55 turns off, it biases Q83 into conduction. The conduction of Q83 applies a positive pulse to the printcommand output. The conduction of Q83 also turns off Q84 and removes the positive lock voltage from the base of Q25 in the divide-by-two multivibrator. The divide-by-two multivibrator is now free to switch each time a plus gate pulse is applied. During the charge time of C42, the divide-by-two multivibrator and the stop multivibrator switch with each plus gate pulse until finally the combination of signals shown on the schematic again opens the AND gates and allows the passage of clock pulses.

Formation of the Start-to-Stop Zone Pulse. With either Q173 or Q143 turned on, the voltage at pin 18 is approximately 20 volts. When both transistors are turned off during the time the clock bursts are being gated, the voltage on pin 18 falls to approximately +2 volts. The waveform at pin 18 is applied to the Analog Display circuit card where it is used to generate the start-to-stop zone trace brightening pulse.

Forming the Stop-Output Pulse. A stop-pulse output is formed each time Q135 in the stop multivibrator conducts. The conduction of Q135 turns on Q173. The conduction of Q173 raises the voltage on pin 16 to approximately ± 20 volts. The stop pulse on pin 16 is applied to the ± 10 circuit card and to one side of the RESOLUTION switch. When the RESOLUTION switch is placed in either of the ONE SWEEP positions, the stop pulse is routed directly back to pin 7 on the Master Gate circuit card. If the RESOLU-TION switch is placed in either of the AVERAGE OF TEN SWEEPS positions, the ± 10 card counts the stop pulses and delivers one output pulse to the Master Gate circuit card for every ten input pulses. The pulse returned to pin 7 is now called the "end-of-measurement pulse".

Forming the Print-Command Pulse. The positive pulse on pin 7 is coupled through C30 and D31 to the base of Q55. The positive pulse turns off Q55, cutting off Q45 also. Q45 and Q55 form a bistable multivibrator which is stable whenever both transistors are on or both transistors are off. When Q45 is cut off, its collector voltage rises towards +125 volts. The positive-going voltage on the collector of Q45 is coupled through C46 and R46 back to the base of Q55, ensuring that Q55 will stay cut off when the end-ofmeasurement pulse terminates. When Q55 cuts off, the voltage at its emitter goes positive since it is connected to +20volts through R80. The positive voltage turns on Q83. The positive-going output of Q83 is applied to pin 13 and to the base of Q84. Q84 cuts off as a result of the positive voltage on its base; its collector voltage goes to zero and unlocks the divide-by-two multivibrator. The positive output of Q83 applied to pin 13 is the positive print-command signal; if a negative print-command signal is required on pin 20, the moveable strap is changed to connect pin 20 with the collector of Q84.

The positive voltage at the emitter of Q55 and the base of Q83 (which results from the application of the end-ofmeasurement pulse) is also applied to the base of Q93. The positive voltage biases Q93 into conduction, closing the AND gate to the passage of clock pulses. The gate remains closed until Q45 and Q55 in the display time multivibrator are again turned on. C42 in the base circuit of Q45 has very little charge on it as long as Q45 and Q55 are conducting, but when the end-of-measurement pulse cuts the transistors off, C42 starts to charge to +20 volts through the 5-meg DISPLAY TIME potentiometer. The display-time multivibrator transistors Q45 and Q55 remain cut off until the voltage on C42 reaches approximately +18 volts. When the voltage reaches approximately +18 volts, the circuit waits until Q25 in the multivibrator has been switched into conduction by the plus gate pulse. When Q25 becomes the conducting transistor, a switching pulse from its collector is coupled through C35 and D36 to the base of Q55. Q55 starts to conduct, forcing Q45 into conduction. The negative-going voltage on the collector of Q45 is coupled back to the base of Q55 and holds Q55 in conduction until Q55 is again turned off by an end-of-measurement pulse. The time during which Q45 and Q55 are cut off is the display time. During display time, Q93 is conducting and keeps the clock pulse gate closed, and no measurements are made.

Formation of the Reset Pulse. When the combination of charge on C42 and a reset pulse from Q25 force Q45 and Q55 into conduction, the negative-going voltage on the collector of Q45 is coupled through C60 to the base of Q64. Q64 starts to conduct and biases Q73 into conduction. The output pulse from Q73 is differentiated by C76 and sent to the counter circuit cards as a reset pulse for the counters.

(Series M, Model 5-up) The output of Q73 is also applied to base of Q105 (start multivibrator) and to the base of Q125 (stop multivibrator). The reset pulse from Q73 switches both multivibrators, causing Q135 in the stop multivibrator to conduct and Q105 in the start multivibrator to cut off. The resulting conduction of Q135 causes Q173 and Q153 to conduct, inhibiting the passage of clock pulses.

(Series M, Models 1 through 4) The output of Q73 is applied to the base of Q125 in the stop multivibrator. The reset pulse from Q73 switches in the stop multivibrator, causing Q135 to conduct, and turning on Q173 and Q153 to inhibit the passage of clock pulses.

The next plus gate returns both multivibrators to their original state; Q135 cut off, Q105 turned on. Conduction through Q105, Q143 and Q153 continues to hold the clock gate in an inhibitated state until the next start pulse from the start comparator causes the start multivibrator to switch again. The ramp gate pulse in at pin 17 prevents a reset from being formed while the ramp circuit on the Voltmeter circuit card is running up.

÷1, 2, 5 Circuit Card

This circuit uses three binary sets (bistable multivibrators) to divide by 5, and 1 binary set to divide by 2. The divideby-1 is a straight-through transistor amplifier. Refer to the Counter circuit description for details on binary set operation. A positive clock pulse enters the circuit at pin 7 and moves in three directions:

- 1. Through C2, to the \div 5 circuit.
- 2. Through C62, to the \div 2 circuit.
- 3. Through C80 and R80 to the base of Q84.

Selecting Division by 1, 2, or 5. Note that the base of Q44, Q74, and Q84 is connected through one side of a divider to a circuit card pin (Q44 to pin 2, Q74 to pin 10, Q84 to pin 1). These pins connect through the instrument wiring to the sampling horizontal time base and vertical plug-in units. When the Type 6R1A MODE switch is in the TIME position, a ground connection is made at the TIME/DIV switch in the horizontal plug-in unit. The ground is alternately connected to pins 1, 10, and 2 of the \div 1, 2, 5 circuit card. The transistors connected to the ungrounded pins are biased to cutoff.

For example, if the TIME/DIV switch on the horizontal plug-in unit is set at 10 μ sec/div, pin 1 of the \div 1, 2, 5

circuit card is grounded and the number of positive clock pulses at pin 6 (output) is the same as the number at pin 7 (input). If the TIME/DIV switch is set at 5 μ sec/div, pin 10 of the circuit card is grounded and the number of clock pulses at pin 6 (from Q74) is one-half the number at pin 7 (input). Finally, if the TIME/DIV switch is set to 2 μ sec/div, pin 2 of the circuit card is grounded and the number of clock pulses at pin 6 (from Q44) is one-fifth the number at pin 7.

Each position of the TIME/DIV switch will ground either pin 1, 10, or 2, when the Type 6R1A MODE switch is in the TIME position.

When the Type 6R1A MODE switch is in a VOLTAGE position, a ground connection is made at the MV/DIV switch in the vertical plug-in unit. When the MV/DIV switch is set at 10, pin 1 of the \div 1, 2, 5 circuit card is grounded. The 5 mv/div position grounds pin 10, and the 2 mv/div position grounds pin 2.

Though the setting of the MV/DIV switch on the vertical plug-in unit may be changed, the readout will remain the same due to the \div 1, 2, 5 circuit. This is also true of time measurements, and changes in the setting of the TIME/DIV switch on the horizontal plug-in unit will not affect the readout.

All of the binary sets on the circuit card are reset at the beginning of a new count by a reset pulse at pin 8 from the master gate circuit.

Counter Circuit Card

Each Counter circuit card consists of four binary sets (bistable multivibrators), ten driver transistors, and a staircase emitter follower.

Since all binary sets are similar, only the first will be described in detail.

In a binary set, when one transistor is turned on, the other is off. Before a count is made, a positive reset pulse from the master gate is applied to the base of Q5 and this transistor turns off. Q15 turns on and its collector rises to +20 volts. D12, connected to the base of Q15, is forward biased. With Q5 turned off, its collector is at about 3 volts and D2 is back biased. A positive pulse coupled through C12 finds a path through D12 but is blocked by D2. The positive clock pulse passes through D12 to the base of Q15. Q15 turns off and its collector goes negative. This negative-going pulse couples through C16 to the base of Q5 and this transistor turns on. The binary set has changed states. D2 is now forward biased and D12 back biased. The next pulse coupled through C2 will pass through D2 to the base of Q5. The binary set will change again and a positive voltage will appear at the collector of Q15. This is coupled as a pulse through C32 to the next binary set

It takes two positive pulses at the input to a binary set to get one positive pulse in the output. Thus, it divides by two.

By connecting a second binary set to the output of the first, the circuit divides by 4. A third divides by 8, and a fourth divides by 16.

To divide by 10, it is necessary to use feedback. C38 in the base circuit of Q35, and C58 in the base circuit of Q55, couple pulses back and change the states of the previous binary set to make the circuit divide by 10.

)	(b					a)	((
-		y Set	Binar		Pulse		y Set	Binar		Pulse
-	4	3	2	1	Number	4	3	2	1	Number
-	0	0	0	•0	0	0	0	0	0	0
-	0	0	0	1	1	0	0	0	1	1
	0	0	1	0	2	0	0	1	0	2
Feedbac	0	0	1	1	3	0	0	1	1	3
	_ 0	1	1	0	4	0	1	0	0	4
Feedbac	0	1	1	1	5	0	1	0	1	5
	1	1	0	0	6	0	1	1	0	6
-	_ 1	1	0	1	7	0	1	1	1	7
_	1	1	1	0	8	1	0	0	0	8
_	1	1	1	1	9	1	0	0	1	9
_	0	0	0	0	0	1	0	1	0	10
						1	0	1	1	11
						1	1	0	0	12
						1	1	0	1	13
						1	1	1	0	14
						1	1	1	1	15
						0	0	0	0	0

Fig. 4-12. Comparison between scale of 16 (a) and scale of 10 (b) counter.

Fg. 4-13. Waveform relationship of binary sets showing feedback.

Fig. 4-12a shows the state of each binary set in a scaleof-16 circuit without feedback. A one (1) in the column means that the input transistor of a binary set is turned on; a zero is an off condition.

A count-by-ten counter must have 10 different arrangements of its binary sets caused by 10 consecutive pulse inputs, and must also return to its start point on the 10th input pulse.

Fig. 4-12b shows the change caused by feedback. On the 4th input pulse, the circuit "skips" ahead to a condition that represents the number "6" (although the readout shows a 4). Note that the only difference between four and six is the state of the 2nd binary set. The feedback pulse holds the 2nd binary set on, and the counter has instantaneously skipped ahead two counts, passing 4 and 5.

The 6th input pulse to the counter causes a feedback pulse from the last binary set to couple back to the 3rd binary set. This causes the counter to skip ahead four counts to the condition for number "12" (the readout shows a 7). The remaining pulses move the counter to the end of a cycle and it returns to zero on the 10th count. By skipping ahead a total of six counts, the circuit returns to zero on the 10th count (instead of the 16th count) and a count-of-ten is complete.

Fig. 4-13 shows the waveform condition of each binary set and includes the feedback points that convert the circuit to a scale -of-ten counter.

As each pulse passes through the counter circuit it should light a corresponding number on the readout tube. This is accomplished by readout driver transistors Q100 through Q109.

Notice that the emitters of the odd transistors are connected to R109 in the collector of Q15. With Q15 turned on, the positive voltage developed across R109 will back bias these odd transistors and prevent them from turning on. The even transistors are connected to R110 in the collector of Q5 and they become back biased when this transistor is turned on. Thus, the state of the first binary set determines whether the number on the readout is odd or even. Because of this, the bases of the pairs of transistors (Q108 and Q109, etc.) can be connected together since only one of the pair can turn on.

Q100 and Q101 drive the numbers 0 and 1. The voltage developed across R100 in the base circuit of this pair will determine whether they can be turned on. At the beginning of a count, a counter reset pulse from the master gate circuit enters the board at pin 8 and resets each binary set. After reset, the right-hand transistor in each binary set is turned on. Since Q5 in the first binary set is turned off, the number will be even. Notice that R100 in the base circuit of Q100 is connected through R75 to the collector of Q75, which is turned on. Also, R100 is connected through R35 to the collector of Q35, which is turned on. The combined current from these two transistors add across R100, and Q100 turns on. The number zero (0) will show on the readout. Each pair works in the same way with the current being derived from the transistors in the binary sets.

The staircase voltage required by the no-go circuits is formed by a voltage divider in the base circuit of Q83. The output level at the emitter of this transistor changes linearly with each count. For example, if the counter stops at the number 5, there will be a 12.4-volt dc level at pin 2 of the circuit card. R81, in the base circuit of Q83, together with R3, R23, R43, and R63, form a voltage divider that changes the value of voltage at the base of Q83 with each count. Each of these four resistors is connected in the collector circuit of the left-hand transistors of each binary set. The on or off condition of these transistors determines the value of voltage applied to the base of Q83.

Analog Display Circuit Card

The analog display circuit intensifies the crt display during the dead zone, 0% zone, 100% zone, and the area of the trace being measured (during time measurements).

The trace is intensified by an increased dc level coupled from the collector of Q94 to the crt grid.

Intensified Dead Zone. A negative pulse from the 0% Zone circuit card is received at pin 8. The pulse is applied to the base of Q43 which turns on. Its emitter follows the base and a negative pulse is applied to the base of Q53. This pulse appears in the emitter of Q53 and passes to the base of Q94 through R91 and C91. Q94 turns on and a positive pulse is coupled from its collector to the crt grid.

0% and 100% Intensified Zones. The 0% and 100% zone pulses from the Memory circuit card enter the circuit through pin 14 (Channel A) and pin 2 (Channel B). The Channel A pulse passes through Q3 and D12 to the base of Q53. The Channel B pulse passes through Q23 and D32 to the base of Q53.

Start-To-Stop Intensified Zone. A negative pulse from the Master Gate circuit card enters at pin 13 and is applied to the base of Q83 (emitter follower). The emitter of this transistor is coupled to the base of Q94. The positive pulse to the crt is taken from the collector of Q94.

CRT INTENSIFICATION Switches. Pin 15 of the Analog Display circuit card is connected to the CRT INTENSIFICA-TION - MEMORY ZONES switch on the front panel. When this switch is turned to OFF, +20 volts is applied to the junction of R52 and D52. D52 becomes forward biased and the +20 volts is applied to the base of Q53, which is held in cutoff. Pin 1 of the circuit card connects to the CRT INTENSIFICATION - START TO STOP switch on the front panel. When this switch is turned to OFF, +20 volts is applied to the junction of R82 and D82. D82 is forward biased and holds Q83 in cutoff.

Dual Trace. Due to the use of dual-trace, it is necessary to use a chopped signal in the analog display. Q13 and Q63 are controlled by the minus (—) chopped pulse from the 0% Zone circuit card. The plus (+) chopped signal controls Q33 and Q73. The action of the chopping pulses can be seen by examining Q3 and Q13. These two transistors are an AND gate that require a negative signal on both bases to get an output. With either transistor turned on, its emitter is near +20 volts and D12 is back biased. The junction of D12 and R42 is near +20 volts and Q53 (connected to this junction) is turned off. When both Q3 and Q13 receive a negative pulse, they both turn off, and D12 becomes forward biased through R13. Thus, the junction of D12 and R42 drops to about +3 volts and Q53 turns on.

Q63 and Q73 are used to gate the start-to-stop zone to the proper channel during dual-trace operation (for example, a risetime measurement on Channel A with both traces on the crt). Pin 5 is grounded by the TIMING START and STOP switches and Q73 is electrically removed from the circuit. Q63 receives the minus chop pulses from pin 12. During the time that the chopped trace on the crt is on Channel A, Q63 does not affect the start-to-stop pulse to the base of Q83. When the crt trace switches to Channel B, the minus chop pulse is at +20 volts and this voltage turns Q63 off. The emitter of Q63 rises to about +15 volts. This forward biases D63, which applies the positive voltage to the base of Q83. This transistor is cutoff for the duration of the chopped pulse and this period of time coincides with the time that the crt trace is on Channel B.

If both channels are intensified for a measurement made from one channel to the other, both pin 5 and pin 10 are grounded by the TIMING START and STOP switches and these two transistors (Q63 and Q73) are not used.

Voltmeter Circuit Card

The Voltmeter circuit card contains four separate circuits: the voltmeter ramp generator, clock crystal oscillator, and two floating power supplies. Each circuit is described separately in this section.

Functions. The Type 6R1A uses Counter circuit cards which count clock pulses to make voltage measurements. In making voltage measurements, the clock pulses counted are produced by a 1-mc crystal oscillator mounted on the Voltmeter circuit card. To maintain the correct reading when the MV/DIV switch is changed, the clock pulses pass through a \div 1, 2, 5 circuit card before being counted.

Voltage measurements are made between the 0% zone memory voltage and the 100% zone memory voltage. The voltage of the 0% memory circuit is applied to one side of the start comparator and the voltage of the 100% zone memory is applied to one side of the stop comparator. A ramp voltage (starting at zero) from the ramp generator on the Voltmeter circuit card is applied to the opposite

Fig. 4-14. Voltmeter ramp.

sides of both start and stop comparators. When the ramp voltage equals the 0% zone voltage level (at least 5 volts) the start comparator sends a pulse to the master gate circuit. The master gate opens and clock pulses pass to the counter. When the ramp reaches the voltage of the 100% zone (up to 15 volts) applied to the stop comparator, the stop comparator sends a pulse to the master gate circuit which closes the gate. When the master gate closes, the counter stops and the time shown on the readout is read as volts, mv, or μv . Consider a linear ramp (part of a sawtooth) such as shown in Fig. 4-14. It takes 1000 μ sec for the ramp to rise 10 volts. Each volt takes exactly 100 μ sec. This waveform is used to measure voltage, where the 100% zone is more negative than the 0% zone, the polar-

ity switch (A VOLTAGE or B VOLTAGE) is pushed down. This reverses the inputs to the comparators and the measurement starts at the 100% zone and stops at the 0% zone.

Ramp Generator Circuit. The voltmeter ramp is formed by a self-restoring Miller sawtooth generator. The inputs to the ramp generator are the print command from the Master Gate card on pin 15 and the plus gate from the 0% Zone circuit card to pin 8. Q104 requires the print command and voltmeter ramp to be in the negative-going portion of the cycle before the plus gate signal can pass to Q115. When these conditions are met, the positivegoing trailing edge of the plus gate cuts off Q115 in the voltmeter gating multivibrator. With Q115 cut off, its collector voltage, the ramp gate on pin 4, and the base voltage of Q141 start to go negative. As the base voltage on Q141 goes negative, its collector voltage starts positive, biasing Q153 into conduction. As Q153 starts to conduct, its emitter voltage goes positive, and the positive going waveform is coupled through C140 to the base of Q141. At the same time, C140 starts to charge due to the rising emitter voltage of Q153. The capacitor draws current through R140 and RAMP SLOPE resistor R141. The rising voltage on the emitter of Q153 continues to raise the voltage toward which C140 is charging. This "boot-straping" keeps C140 charging at a constant rate. The linear decrease in the base current of Q141 results in a linear ramp voltage output from the emitter of Q153.

The ramp voltage output of Q153 is coupled through R158 to the base of Q104. When the ramp voltage reaches approximately +20 volts, Q104 cuts off. With Q104 cut off, the lockout voltage from the collector of Q104 to the base of Q115 is removed, and the ramp voltage biases Q125 into cutoff. Cutting off Q125 resets the voltmeter gating multivibrator. Q115 starts to conduct, ending the

Fig. 4-15. Simplified diagram of circuits used for voltage measurements.
Theory of Operation-Type 6R1A

negative part of the ramp gate output to pin 4, and resets the ramp generator. C141 prevents noise from modulating the ramp

Clock Crystal Oscillator. The voltmeter clock oscillator is a conventional transistorized crystal oscillator with the crystal connected between the base and collector of Q10. The output of the clock oscillator is applied to shaping amplifier transistor Q14, which operates as an "overdriven" amplifier. The output of Q14 is applied to the base of Q24. When the MODE switch is in either of the VOLTAGE (A or B) positions, pin 12 is floating and pin 18 is grounded through the MODE switch. Grounding pin 18 biases Q24 into conduction and the clock pulses pass through Q24 to the clock output amplifier. The clock output amplifier is a conventional complementary emitter follower whose output is applied to pin 16.

If the MODE switch is in the TIME (STOP-START) position, pin 18 is floating and pin 12 is grounded through the MODE switch. With pin 18 floating, Q24 is biased to cutoff by the current flow through D24 and R21. The ground on pin 12 biases Q34 into conduction. With Q34 conducting, clock pulses from the horizontal plug-in unit are amplified by Q4 and pass through Q34 to the clock output amplifier.

Floating Power Supplies. The Voltmeter circuit card contains two identical power supplies, one for the START VOLT-AGE control, and one for the STOP VOLTAGE control. Each supply consists of two transistors with an 11-volt Zener diode connected between their collectors. Q68 and Q78 supply the timing start voltage and Q88 and Q98 supply the timing stop voltage. The outputs are taken from across the Zener diodes and connected across the START VOLT-AGE and STOP VOLTAGE controls located on the front panel. One side of the supply, depending on polarity switch (+ -), is connected to A or B 0% memory. One output lead of each supply contains a variable resistor (START VOLTAGE CAL and STOP VOLTAGE CAL). These controls adjust the current to place 10 volts across the START VOLT-AGE and STOP VOLTAGE controls.

+ 10 Circuit Card

The $\div10$ circuit card is used when the RESOLUTION switch is in either of the AVERAGE OF TEN SWEEPS positions.

This circuit is almost the same as the binary set portion of the counter circuit and will not be described. For every ten pulses applied to pin 15 (input) of the circuit card, one pulse is present at pin 4 (output).

Lower Limit No-Go Circuit Card

The Lower Limit No-Go circuit card sends a signal to the limit lamp driver circuit when the number on the readout is below the number set on the LOWER LIMIT SET dials. If a number on the readout exceeds the numbers dialed on the LOWER LIMIT SET dials, the lockout portion of the circuit prevents the lower limit lamp from lighting.

The circuit consists of seven comparators; four of these compare the four digits of the readout and the other three

are lockout comparators. Each digit comparator receives two voltages. The first is set by the LOWER LIMIT SET dials and corresponds to the number shown on the dials. The second is a staircase voltage that corresponds to the number on the readout and comes from the counter circuit. If the voltage from the counter circuit is below that supplied by the LOWER LIMIT SET dials, the lower limit lamp lights.

The voltages from the LOWER LIMIT SET dials are derived from a precision voltage divider. Two voltages are delivered to the tens, hundreds, and thousands comparatorlockout pairs of the Lower Limit No-Go circuit card. The lower value of the two voltages represents the number shown on the dial and the higher value represents one digit higher in value than the number shown on the dial. The voltage values are included on the Lower Limit Switches schematic.

To understand the circuit operation, consider only the thousands digit. Assume that the extreme left (thousands) digit shown on the LOWER LIMIT SET dials is 5. In the circuit, 11.4 volts is applied through pin 5 to the base of Q134. A count is made and the left-hand digit on the readout is 5. The counter circuit delivers 12.4 volts through pin 4 to the base of Q124. The base of Q134 has 11.4 volts and the base of Q124 has 12.4 volts; therefore Q134, being least positive, turns on. Due to current through Q134, its collector is positive and D141 is back biased. With this diode back biased, no signal is applied to the base of output transistor Q143 and this transistor cannot turn on.

If the number on the readout had been 4 instead of 5, then 10.7 volts would have been applied to the base of Q124, and this transistor, being least positive, would have turned on. In this case. Q134 would be turned off and D141 would be forward biased with -12 volts on its cathode. This -12 volts would turn on Q143 and the signal to the limit lamp driver circuit would light the lower limit lamp.

The other three comparators work the same way. Since each digit of the readout is compared with each digit on the LOWER LIMIT SET dials, it is possible for the total number to exceed the lower limit, yet one or more individual digits can be below the digits on the LOWER LIMIT SET dials. For example, assume the dials are set at 5678 and the readout shows 6000. The total number on the readout is higher than the lower limit, but the units, tens, and hundreds digits are lower.

Since each comparator compares the individual digits, either the units, tens, or hundreds digit would light the lower limit lamp. To prevent this, each comparator has a second comparator that will lock out all other comparators when the total readout exceeds the total number on the LOWER LIMIT SET dials.

From the simplified diagram in Fig. 4-16 the LOWER LIMIT SET dials (set at 5678) put 11.4 volts on the base of Q134. The staircase voltage from the thousands counter puts 14.1 volts (6000) on the bases of Q124 and Q104. The LOWER LIMIT SET dials also put 13.0 volts on the base of Q114.

The comparator traisistor with the least positive base turns on. The first comparator has 11.4 volts on Q134 and

Fig. 4-16. Simplified diagram of lower limit no-go circuit.

14.1 volts on Q124, so Q134 turns on. Current flows through R134 and D141 is back biased. No negative signal reaches the base of Q143.

Since the number of the readout (6000) is larger than the number on the LOWER LIMIT SET dials (5678), the second comparator must lock out the remainder of the circuit. Q104 has 14.1 volts on its base while Q114 has 13.0 volts. Q114 is least positive and turns on. Three current paths are formed. Path 1 through D114 draws current through R94 and D142 is back biased. Path 2 turns Q113 on and draws current through D112 and R54, and D143 is back biased. Path 3 draws current through D113 and R14, and D144 is back biased.

With current through each of the four resistors, across the bottom of the diagram, the four diodes are back biased, and no negative voltage is applied to the base of Q143. In this condition, neither the hundreds, tens, nor units comparators can affect the circuit since they are locked out.

Each of the comparators except the units comparator has an associated lockout comparator. When the digits on the readout are read from the left, and each one is compared with the digit on the LOWER LIMIT SET dials, the first digit on the readout that exceeds its counterpart on the LOWER LIMIT SET dials will lock out all remaining digits to the right and their respective comparators will have no effect.

Upper Limit No-Go Circuit Card

This circuit is identical to the lower limit no-go circuit with the following exceptions:

- 1. The voltage applied to the base of the first comparator (Q124) by the UPPER LIMIT SET dials is higher than the voltage supplied by the counter staircase.
- 2. The voltage applied to the base of Q104 in the lockout comparator is approximately 1.8 volts lower than the voltage applied to the first comparator.

Limit Lamp Driver Circuit Card

The Limit Lamp Driver circuit card takes the outputs from the upper and lower limit no-go circuits and drives transistors that control the proper limit lamp on the front panel of the instrument.

The circuit is initially gated by a print-command pulse (a positive pulse from the master gate circuit). Without this pulse, none of the lamps can light. The pulse length of the gate is set by the DISPLAY TIME control on the front panel of the instrument. The positive print command is applied to the base of Q14 which is guiescently conducting. Q14 turns off and its collector goes to -12 volts. The base of Q13 is connected to the collector of Q14 and the -12 volts turns Q13 on. The emitter of Q13 then becomes the source voltage for Q43, Q23, and Q64.

Q64 may be considered as a switch to ground. When the transistor is turned on, R64 is almost grounded and the -12 volts cannot be applied to the base of Q63 (MID-ZONE lamp). If a -12-volt signal is received from the

upper limit no-go circuit, Q23 turns on and applies -12 volts to the base of Q33 (the upper limit lamp). At the same time, the voltage across R60 is sufficient to turn Q64 on which switches the voltage across R64 almost to ground.

The signal from the lower limit no-go circuit works the same way. Without a signal from either the upper or lower limit no-go circuits, Q64 remains off and -12 volts turns on Q63 and lights the MID-ZONE lamp.

.

SECTION 5 MAINTENANCE

PREVENTIVE MAINTENANCE

Cleaning the Interior

Internal cleaning should precede calibration since the cleaning process could alter the setting of certain calibration controls.

One way to clean the interior is by vacuum and/or lowpressure compressed air (high-velocity air could damage certain components). Hardened dirt may be removed with a soft paint brush, cotton-tipped swab, or cloth dampened with a water and mild detergent solution. Pay special attention to high-voltage circuits where conductive dust can cause arcing.

The contacts on the plug-in interconnecting jacks and plugs should be lightly lubricated with an oil of the type used on rotary-switch contacts. To extend the life of the contacts, clean and relubricate if the oil becomes contaminated with abrasive dust.

The plug-in unit frame-rod contact springs (located just inside the upper corners of the plug-in unit compartments) should be lubricated with a grease of the type used on rotary-switch detents (e.g. Beacon No. 325).

Visual Inspection

The instrument should be inspected occasionally for such defects as poor connections, broken or damaged ceramic terminal strips, improperly seated tubes or transistors, and heat-damaged parts. The remedy for most visible defects is obvious. But overheating is usually a symptom of other unseen defects and unless the cause is determined before parts are replaced, the damage may be repeated.

Tube and Transistor Checks

Periodic preventive maintenance checks on the tubes and transistors used in the instrument are not recommended. The circuits within the instrument generally provide the most satisfactory means of checking tube or transistor performance. Performance of the circuits is throughly checked during recalibration so that substandard tubes and transistors will usually be detected at the time.

Recalibration

To insure accurate measurements, the instrument calibration should be checked after each 500 hours of operation or every six months if used intermittently. Complete calibration instructions are contained in Section 6 of this manual.

The calibration procedure can be helpful in isolating major troubles in the instrument. Moreover, minor troubles not apparent during regular operation may be revealed and corrected during calibration.

Cleaning the Exterior

Loose dust may be removed with a cloth and a dry paint brush. Water and mild detergents such as Kelite or Spray White may be used. Abrasive cleansers should not be used.

The graticule and crt face-plate may be cleaned with a soft, lint-free cloth dampened with denatured alcohol.

CORRECTIVE MAINTENANCE

General Information

Certain parts in the instrument are best replaced if definite procedures are followed as outlined in the following paragraphs.

Many electrical components are mounted in a particular way to reduce or control stray capacitance and inductance. When selecting replacement parts, it is important to remember that the physical size and shape of a component may affect its performance at high frequencies. After repair, portions of the instrument may require recalibration; see Section 6.

Standard Parts

Many components in the instrument are standard electronic parts available locally. However, all parts can be obtained through your Tektronix Field Engineer or Field Office. Before purchasing or ordering, consult the parts list to determine the value, tolerance, and rating required.

Special Parts

Some parts are manufactured or selected by Tektronix to satisfy particular requirements, or are manufactured for Tektronix to our specifications. These and most mechanical parts should be ordered directly from your Tektronix Field Engineer or Field Office. See "Parts Ordering Information" and "Special Notes and Symbols" on the first page of Section 9.

Soldering

Special silver-bearing solder is used to establish a bond to the ceramic terminal strips in Tektronix instruments. This bond may be broken by repeated use of ordinary tinlead solder or by excessive heating. We recommend solder containing about 3% silver. Silver-bearing solder is usually available locally or may be purchased in one-pound rolls through your Tektronix Field Engineer or Field Office. Order by part number 251-514.

Soldering to Ceramic Strips:

- 1. Use a wedge-shaped soldering-iron tip about $1_{/_{B}}$ -inch wide. This will allow you to apply heat directly to the solder in the terminal without touching the ceramic, thereby reducing the amount of heat required.
- 2. Maintain a clean, properly tinned tip.
- 3. Use a hot iron for a short time. A 50- to 75-watt iron with good heat storage and transfer properties is adequate.
- 4. Avoid putting pressure on the strip with the soldering iron or other tools. Excessive pressure may cause the strip to crack or chip.

Ceramic Terminal Strips

Fig. 5-1 shows an assembled ceramic terminal strip. Replacement strips with studs attached are supplied under a single part number and spacers under another number. The original spacers may be reused if undamaged.

Fig. 5-1. Ceramic strip assembly.

Usually, a strip can be pried out of the chassis or pulled out with a pair of pliers. In some cases, you may choose to use a hammer and punch to drive out the studs from the opposite side of the chassis.

When the damaged strip has been removed, place new or used (but undamaged) spacers in the chassis holes. Then carefully force the studs of the new strip into the spacers until they are completely seated. If necessary, use a softfaced mallet, tapping lightly directy over the stud area of the strip.

Switch Replacement

Individual wafers normally are not replaced in switch assemblies. Replacement switches may be ordered from Tektronix either unwired or with the associated wires and components attached. See Parts List, Section 9.

When soldering leads to a switch, do not let solder flow around and beyond the terminal rivet as this may destroy the contact spring tension.

Tubes and Transistors

Tubes and transistors should not be replaced unless actually defective. When a defect is suspected, it is suggested that circuit conditions be checked first to be certain that a replacement tube or transistor will not be immediately destroyed. In some cases, these checks will also show whether or not the tube or transistor is at fault.

When circuit conditions are known to be safe, install a tube or transistor of the same type that is known to be good and check for proper operation. If the original tube or transistor proves acceptable, return it to its original socket to avoid unnecessary recalibration.

TROUBLESHOOTING

General Information

This portion of the manual is intended as an aid for troubleshooting the Type 6R1A. Information in other parts of the manual, particularly the circuit description, may also prove helpful.

If trouble develops, first operate the front-panel controls to see what effect they may have. The operation of a control may help establish a symptom. (The location of trouble which occurs only in certain control positions can usually be found immediately from the symptom.) Once the trouble symptoms are established, look for obvious causes; check to see that the power is on, feel for irregularities in control operation, listen for unusual sounds, and visually check the instrument.

Transistor Checks

If you doubt that a transistor is good, substitute another in its place; but be sure the voltage and loads are normal before making the substitution. Be sure to return transistors to their original sockets unless they are defective.

If you have a Tektronix Type 575 Transistor Curve Tracer, the transistors in a suspected circuit can be quickly checked. If you do not have such an instrument, the transistors may be checked for opens or shorts with an ohmmeter. Check the resistance in both directions, between each of the transistor elements.

CAUTION

When checking transistors with an ohmmeter, the $R \times 1$ scale meter voltage may cause damage. Use only the $R \times 10$ or $R \times 100$ scale.

Switch Wafer Code

Switch wafers shown on the schematics are coded to show their position on a switch. The number in the code refers to the wafer number on the switch assembly. Wafers are numbered from front to rear. The letters F and R show whether the front or rear of the wafer is used. The number that follows the code letter indentifies the pin on the wafer.

Wire Code

All power-supply wiring in the Type 6R1A is color coded. The widest stripe indintifies the first color in the code. White wire is used for plus (+) voltages (regulated). Tan wire is used for minus (-) voltages (regulated). Grey wire is used for unregulated voltages.

Voltage	Color Code								
—12	Tan wire with brown and red stripes.								
+20	White wire with red and black stripes.								
-100	Tan wire with brown, black and brown stripes.								
+75 (unreg.)	Grey wire with brown and violet stripes.								
+125	White wire with brown, red, and brown stripes.								
+225 (unreg.)	Grey wire with brown and yellow stripes.								
+300	White wire with orange, black, and brown stripes.								
1400 (uprog.)	Grov wire with another and real states								

+400 (unreg.) Grey wire with orange and red stripes.

Test Equipment Required

The following test equipment or equivalent is required:

- 1. Wideband osiclloscope, such as Tektronix Type 541, 543, or 545, with Type K Plug-in Unit.
- 2. Ohmmeter, 20,000 ohms/volt, calibrated to 1% accuracy.
- 3. 20-pin etched circuit card extender, Tektronix part number 012-068.
- 4. 15-pin etched circuit card extender, Tektronix part number 012-067.

Power Supply Checks

The oscilloscope power supply should be checked before proceeding with the Type 6R1A. Remove the top panel of the oscilloscope and check the pins of J31 for the following voltages. (J31 is the connector at the top rear of the Type 6R1A compartment.)

J31 Pin No.	Voltage
13	+225 unregulated
14	+300
15	+125
16	+20
17	—12
18	100
19	6.3 vac
20	ground
21	+75 unregulated
24	+400 unregulated

NOTE

Circuit Substitution

Because several of the circuit cards are indentical, the defective circuit can often be verified by substitution. For example, if measurements cannot be made on Channel A and the Memory circuit card is suspected, reverse the positions of the Channel A and B Memory circuit cards. If Channel B is now inoperative, the Memory circuit card is defective.

Similar substitutions can be made with the Signal Comparator and Counter circuit cards.

Circuit Card Input and Output Checks

The schematics show waveforms and voltages normally present at the pins of each circuit card. They also indicate the circuit from which each signal is obtained or the circuit to which a signal is applied. Where trouble in a circuit card is not obivous, check each of the connector pins for the proper voltage or waveform.

NOTES

SECTION 6 CALIBRATION PROCEDURE

Introduction

This section contains a complete calibration procedure for the Type 6R1A Digital Unit. The step by step instructions that follow are in proper sequence to calibrate the instrument and avoid unnecessary repetition of checks and adjustments.

Troubles in the instrument are often caused by changes in component values. These troubles can usually be found by checking the calibration of the suspected circuit. When transistors, tubes and other components are changed, the calibration of the circuit under repair should be checked.

Equipment Required

- 1. Vertical amplifier plug-in unit, Tektronix Type 3S76.
- 2. Horizontal time base plug-in unit, Tektronix Type 3T77.
- 3. Differential voltmeter (to resolve \pm 1 mv) such as John Fluke Model 801B or 825A, or Tektronix Type D High Gain Differential Plug-in Unit and a Tektronix Type 540-Series oscilloscope. Either of these instruments can be used as a dc voltmeter in the calibration procedure.
- Square-wave generator with variable frequency (100 cycles to 1 mc) and variable output (0 to 20 volts); Tektronix Type 105 is recommended.
- 5. A 15-pin extender card (etched circuit) Tektronix part number 012-067.
- A 20-pin extender card (etched circuit) Tektronix part number 012-068.

Adjustment Procedure

Connect the output of the square-wave generator through a $5 \times$ attenuator to the Channel A input of the vertical amplifier plug-in unit. Trigger the time base plug-in unit externally by connecting a coaxial lead from the sync output of the square-wave generator to the external input (trigger) of the time base plug-in unit. Let the equipment warm up for $\frac{1}{2}$ hour before proceeding. After warmup, proceed as follows:

1. Comparators and Memories

- a. On the Memory circuit cards (see Fig. 6-1) set the MEMORY MODE switch to AVG and the RESPONSE switch to SLOW. Set the square-wave generator for a 1-mc output. Display two complete waveforms on the crt. Set the Type 6R1A MODE switch to TIME, and the CRT INTENSIFICATION START TO STOP switch off. Position the 0% and 100% intensified zones to make a measurement with the 0% zone on the negative peak and the 100% zone on the positive peak.
- b. Switch the START TO STOP switch on, then switch the TIMING STOP switch to manual operation and move the end of the intensified start-to-stop zone 1 cm in

from the right side of the graticule. Set the TIMING START switch to the A TRACE 50% position. Set both SLOPE switches to + FIRST.

- c. Slowly reduce the amplitude of the displayed pulse while adjusting the start DC BAL (upper Signal Comparator circuit card) so that the start comparator will switch on the positive- and negative-going edges of the pulse. It is necessary to switch the START \pm SLOPE switch back and forth and watch the start-tostop intensified zone while reducing the amplitude of the square-wave generator output. Note that as the START \pm SLOPE switch is moved from the +to — and back, the start of the intensified zone changes from the positive-going slope of the pulse to the negative-going slope. Find a pulse amplitude where the comparator will not switch on either the plus or minus slope, and where the start-to-stop zone jitters due to noise pulses causing the start comparator to switch.
- d. Adjust DC BAL control R19 so that the jitter is minimum but equal in both positions of the START \pm SLOPE switch. A small increase in the amplitude of the pulse input from the square-wave generator will allow the start comparator to switch in both the plus and minus positions of the START \pm SLOPE switch; this is balance.
- e. Turn the TIMING START switch to MANUAL and position the beginning of the start-to-stop intensified zone to the left of the first pulse on the crt. Set the TIM-ING STOP switch to the A TRACE 50% position. Set both START and STOP SLOPE switches to FIRST and +. Increase the pulse amplitude until the stop (righthand end) of the intensified start-to-stop zone switches on either edge of the pulse as the ± SLOPE switch is moved back and forth from + to -. Slowly reduce the amplitude of the pulse while adjusting the DC BAL control (R19) on the stop Signal Comparator circuit card (lower of the two cards). Find the balance point as in step (d).
- f. Set the TIMING STOP switch at A TRACE 10% and increase pulse amplitude until the stop comparator switches on the normal and the inverted pulse as the normal-invert switch on the vertical amplifier plug-in unit is switched from normal to invert. Slowly reduce the amplitude of the input from the squarewave generator while adjusting the Channel A 0% BAL control (R96) on the A Memory circuit card (lower of the two Memory cards). Adjust the 0% BAL control so that the stop comparator continues to switch as the vertical plug-in unit normal-invert switch is moved from normal to invert. Find an amplitude where the comparator will not switch with either polarity pulse, and where a slight increase in pulse amplitude will let it switch on either the pulse or noise as the normal-invert switch is thrown; this is balance.

Calibration Procedure—Type 6R1A

- g. Set the TIMING STOP switch to A TRACE 90% and adjust the Channel A Memory 100% BAL (R66) for balance as in step (f).
- h. Repeat steps (e) and (f) until no further change is noted.
- Apply the output of the square-wave generator to Channel B of the vertical plug-in unit. Repeat steps (e), (f), and (g), substituting the Channel B signal and memory.

When balance is achieved, a 2 mm display of a 1-mc square-wave signal should cause the comparators to switch when the TIMING START and TIMING STOP switches are set to 10% or 90%, the SLOPE switches set to + or -, or the vertical plug-in unit normal-invert switch set to either position. In balancing the memories, be careful not to readjust a previously set control.

If a mating plug for J34 is available, the memories can be given a preliminary adjustment with the aid of a 50or a 100-µamp meter. On the mating plug, solder leads to M, K, a, b, g, and h. Set up the equipment as in the preceding steps but with no signal applied. Connect the meter as follows for the individual adjustments:

> M to g for A Memory 0% BAL M to a for A Memory 100% BAL K to h for B Memory 0% BAL K to b for B Memory 100% BAL

In each case, turn the BAL control for a zero reading on the meter. The BAL control settings are now close to being correct.

2. 3-Dot Delay

- a. Free-run the sweep and set the MODE switch to TIME.
- b. Set the MANUAL adjustments for 6 cm of sweep intensification from start to stop (make sure the Crt Intensification START TO STOP switch is in the up position).
- c. With the horizontal POSITION control on the horizontal plug-in unit, position the trace so that the start of the intensified zone is at the center of the graticule. Set the vertical plug-in unit for 10 dots per division. With the POSITION control, locate the beginning of the dots representing the intensified zone (it helps to turn the 0% Zone Position control fully counterclockwise and the 100% Zone Position control fully clockwise).
- d. Switch the 3-DOT DELAY switch on the Signal Comparator circuit card in and out. As the switch is moved to the IN position, three dots should disappear from the start of the string of dots representing the intensified zone. If the number of dots that disappear is more or less than 3, turn off the oscilloscope, remove the start Signal Comparator circuit card and place it in an extender (see Fig. 6-2). Plug the start Signal Comparator card and extender back into the Type 6R1A. Turn on the oscilloscope. Adjust

Fig. 6-1. Circuit card identification.

Fig. 6-2. Extender cards used for circuit calibration.

C24 on the start Signal Comparator circuit card for 3 dots.

e. Repeat steps (a) through (d) for the stop comparator, except in this case, the stop end of the intensified start-to-stop zone is positioned at the center of the graticule. Leave the 3-DOT DELAY switches on both the start and stop Signal Comparator circuit cards at the IN position.

3. 0% Zone Width

- a. Turn the vertical plug-in unit to Channel A and display a free-running trace on the crt.
- b. Adjust R25A (0% ZONE WIDTH control on 0% zone card) to make the 0% intensified zone on the trace 3 mm in width.
- c. Change the vertical plug-in unit to Channel B and adjust R55 (B 0% ZONE WIDTH) to make the B 0% zone 3 mm in width.

4. 100% Zone Width

- a. Use the same trace as in step 3.
- b. Adjust R4 (100% ZONE WIDTH control on Channel B Memory card) to make the 100% intensified zone on the trace 3 mm in width.
- c. Turn the vertical plug-in unit to Channel A and display a free-running trace on the crt.

d. Adjust R4 (100% ZONE WIDTH control on Channel A Memory card), to make the 100% intensified zone on the trace 3 mm in width.

5A. Voltmeter Calibration (sampling plug-in units only)

- a. Connect the square-wave generator to Channel A of the vertical plug-in unit and display a single pulse of approximately 7 divisions in amplitude. Set the 100% intensified zone to the peak of the pulse.
- b. Connect a 10-meg dc voltmeter (1%) to the Channel A output of the vertical amplifier plug-in unit.
- c. Set the time-base plug-in unit for manual sweep mode and position the dot on the display at the 0% zone. Record the voltmeter reading.
- d. Use the time-base plug-in manual scan control to position the dot at the 100% zone. Record the voltmeter reading.
- e. Set the time base plug-in for the normal sweep mode and Type 6R1A MODE switch to A VOLTAGE. Set RESOLUTION switch to UNSCALED (MAX).
- f. Subtract the voltmeter reading in step (c) from the reading in step (d). The result should be the same as the number shown on the readout. If it is not, adjust R141 (RAMP SLOPE on the Voltmeter card) to make the reading the same. For example, assume the voltmeter reading in step (c) is 7.25 volts and the reading in step (d) is 12.50 volts. 12.50 7.25 = 5.25 (number on readout).

NOTE

With the RESOLUTION switch in UNSCALED (MAX), the decimal point and unit of measure are both turned off. The actual readout from the preceding example would show 0525.

5B. Voltmeter Calibration (real-time plug-in units only)

 a. Connect a 5-volt (0.5% amplitude accuracy) squarewave generator to the Channel A input connector (see note below). Be sure the vertical amplfier plug-in unit is accurately calibrated (1 volt/cm).

NOTE

The Tektronix Type 105 Square-Wave Generator can be standardized at 5 volts by comparison in the Tektronix Type Z Differential Comparator Plug-In Unit. This plug-in fits all Tektronix Type 530- and 540-Series oscilloscopes.

- b. Adjust the triggering controls for a single pulse stable display with the 0% intensified zone at the bottom of the waveform.
- c. Adjust the 100% Zone Position control to place the 100% intensified zone on the top of the square wave.
- d. Set the Type 6R1A MODE switch to VOLTAGE A with the A VOLTAGE switch pushed up.
- e. Turn the RESOLUTION switch to HI AVERAGE OF TEN SWEEPS.
- f. Adjust R112 (RAMP SLOPE on Voltmeter card) until the readout shows exactly 5.000 V.

6. Start and Stop Voltage Calibration

- a. With the equipment set up as in step 5B, adjust the signal input for a readout of 500 with the Type 6R1A set to measure voltage, unscaled.
- b. Turn the Type 6R1A MODE switch to TIME. Turn the TIMING STOP switch to MANUAL, and position the right (stop) end of the start-to-stop intensified zone on the 9th graticule mark. Turn the TIMING START switch to A TRACE (START VOLTAGE). Set the START VOLTAGE - CRT DIVISIONS FROM 0% ZONE switch to +. Adjust the triggering so that the first waveform on the trace goes positive. Set the START VOLT-AGE helidial to read 5.00.
- c. Adjust START VOLTAGE CAL control R67 on the Voltmeter circuit card so that the start-to-stop intensified zone just starts to jitter at the top of the first waveform. The intensified start-to-stop zone should completely disappear if the START VOLTAGE helidial is now turned 4 minor divisions past 5.00.
- d. Swith the TIMING START switch to Manual, turn the TIMING STOP switch to A TRACE (STOP VOLTAGE). Manually position the start of the start-to-stop intensified zone between the dead zone and the start of the first positive pulse. Turn the STOP VOLTAGE helidial to read 5.00.
- e. Adjust STOP VOLTAGE CAL control R87 on the Voltmeter circuit card until the intensified start-to-stop

zone ends at the top of the first positive pulse. When the adjustment is close to being correct, the intensified zone will start to jitter. Turning the STOP VOLT-AGE helidial 4 minor divisions above 5.00 should cause the intensified zone to "break over" and intensify the trace to the right of the stop point; turning the helidial 4 minor divisions below 5.00 should remove any jitter in the intensified zone at the top of the first pulse.

NOTE

When making the preceding adjustments, make sure that the waveform used is flat topped. Otherwise, the intensified zone will start or stop on the highest point of the waveform and make adjustment difficult.

7. System Linearity Check

- a. Connect a square-wave generator to Channel A of the vertical plug-in unit and adjust the controls for a stable display of 1 division in amplitude.
- b. Set the Type 6R1A to read the voltage of the waveform.
- c. Use the vertical amplifier POSITION control and move the display to the bottom of the graticule and note the readout. Then move the display to the top of the graticule and note the readout. The count deviation on the readout should not exceed ± 1 count.

8. 0% And 100% Zone Position Range

- a. Set the vertical plug-in for dual-trace operation, freerun the sweep, and display two traces. Set the Type 6R1A MODE switch to TIME.
- b. Turn both Type 6R1A A and B 0% Zone Position controls from fully counterclockwise to fully clockwise. It should be possible to position the 0% zones into the first and tenth centimeters of graticule area.
- c. Turn both the Type 6R1A A and B 100% Zone Position controls from fully counterclockwise to fully clockwise. It should be possible to position the 100% zones into the first and tenth centimeters of graticule area.

9. Start-to-Stop FIRST \pm and SECOND \pm SLOPE

- a. Connect the square-wave generator to Channel A of the vertical amplifier plug-in unit (Calibrator waveform with real-time plug-in units) and adjust for two cycles of display.
- b. Set the TIMING START switch to A TRACE 10%, TIMING STOP switch to A TRACE 90%, both START and STOP block SLOPE switches to FIRST +, and MODE switch to TIME. The start-to-stop zone should be on the rising portion of the first cycle between the 10% and 90% points on the waveform.
- c. Change both START and STOP block SLOPE switches to SECOND +. The start-to-stop intensified zone should now be on the rising portion of the second cycle between the 10% and 90% points on the waveform.

- d. Set both START and STOP block SLOPE switches to SECOND —. Set TIMING START to A TRACE 90% and TIMING STOP to A TRACE 10%. The start-tostop intensified zone should be on the falling portion of the second cycle between the 10% and 90% points on the waveform.
- e. Set both START and STOP block SLOPE switches to FIRST —. The start-to-stop intensified zone should now be on the falling portion of the first cycle between the 10% and 90% points on the waveform.

10. Readout Counting, Sampling Sweep

- a. Set the square-wave generator to its lowest frequency. Set the Type 6R1A MODE switch to TIME. Set the TIMING START and TIMING STOP switches to MAN-UAL. Set the RESOLUTION switch to AVERAGE OF TEN SWEEPS HI. The units indicator tube should count from 0 through 9.
- b. Increase the square-wave generator frequency and check each successive indicator tube for a correct count of 0 through 9. At the same time check that when an indicator tube count reaches 9, the next count transfers to the next tube on the left.

11A. ÷ 1, 2, 5 Circuit Check (sampling plug-in units only)

- a. Set the MODE switch to TIME. Set both TIMING START and STOP switches to MANUAL, and the RES-OLUTION switch to ONE SWEEP LO.
- b. Free-run a trace (no input signal needed) on the crt and adjust the TIMING START and STOP MANUAL controls for an 8-division start-to-stop intensified zone.
- c. Set the time base plug-in for a 1 $\mu sec/div$ sweep rate; the readout should show 08.00 $\mu S.$
- d. Set the time base plug-in for a .5 $\mu sec/div$ sweep-rate; the readout should show 04.00 $\mu S.$
- e. Set the time base plug-in for a .2 μ sec/div sweep rate; the readout should show 01.60 μ S.

11B. ÷ 1, 2, 5 Circuit Check (real-time plug-in units only)

- a. Connect a jumper from the 5-volt jack of the Type 567 SQUARE-WAVE CALIBRATOR to the Channel A input of the vertical amplifier.
- b. Set the vertical plug-in for a 5 volt/cm sensitivity.
- c. Set the Type 6R1A MODE switch to A VOLTAGE. The readout should show 005.0 V.
- d. Set the vertical plug-in for a 2 volt/cm sensitivity. The readout should still show 005.0 V. Finally set sensitivity for 1 volt/cm; the readout should still show 005.0 V.
- 12A. Time Readout Check (real-time plug-in units only)
 - a. Use the same connections as described in step 11B. Adjust the time base plug-in to display two pulses on the crt.
 - b. Set the Type 6R1A MODE switch to TIME.

- c. Set the TIMING START and STOP switches to A TRACE 10%, START block SLOPE switches to FIRST +, and STOP block SLOPE switches to SECOND +.
- d. The readout should show 16.66 MS ± 2 counts.
- e. Set the TIMING START and STOP switches to A TRACE 20%; the readout should remain the same. Make this same check for all numbered percentages on the A TRACE % side of the TIMING START and STOP switches.
- f. Connect the signal to Channel B and repeat steps (c) through (e), substituting B TRACE % for A TRACE %. The readout should remain at 16.66 MS ± 2 counts.

12B. Time Readout Check (sampling plug-in units only)

- a. Connect the sine-wave generator of known frequency (between 10 and 50 megacycles with an accuracy of 0.5%) to the Channel A input of the vertical plug-in. Adjust the time base plug-in to display two cycles.
- b. Calculate the period of one cycle by taking the reciprocal of the frequency. For example, the period of one cycle at 50 megacycles is 1/50 mc = 20 nsec.
- c. Set the TIMING START and STOP switches to A TRACE 10%, START block SLOPE switches to FIRST +, STOP block SLOPE switches to SECOND +, and MODE switch to TIME.
- d. The time shown on the readout should be the period of one cycle.
- e. Check each percentage position of the TIMING START and STOP switches by setting both switches to the same percentage. The period should remain the same.
- f. Connect the generator to Channel B and repeat steps
 (c) through (e), substituting B TRACE % for A TRACE
 %. The period should remain the same.

13. UPPER and LOWER LIMIT SET Dials Check

- a. Set the MODE switch to TIME. Set both TIMING START and STOP switches to MANUAL, and the RES-OLUTION switch to AVERAGE OF TEN SWEEPS HI.
- b. Free-run a trace on the crt (either channel) and adjust the TIMING START and STOP MANUAL switches for a four-digit count (any count). Stop the sweep; the count will remain. Do this several times until the readout shows a count with no zeros or nines, such as 3258.
- c. Set both UPPER and LOWER LIMIT SET dials to the count left in step (b). The MID-ZONE lamp (green) should turn on.
- d. Turn the UPPER LIMIT SET units dials one number counterclockwise (lower); the UPPER LIMIT lamp (red) should turn on. Return the dial to the original number. Turn the tens dial one number counterclockwise; the UPPER LIMIT lamp should turn on. Continue this procedure with the UPPER LIMIT SET hundreds and thousands dials. When this check is finished, return the dials to the original number.
- e. Turn the LOWER LIMIT SET units dial one number clockwise (higher); the LOWER LIMIT SET lamp (yellow) should turn on. Continue this procedure with the LOWER LIMIT SET tens, hundreds, and thousands dials.

NOTES

SECTION 7

EXTERNAL PROGRAMMING

Introduction

This section of the manual describes the principles of external programming and readout. Since each user may have different applications for the Type 6R1A, this section should serve only as a system design guide. Many external programming problems can be solved by using the Tektronix Type 262 Programmer. In special cases, consult your Tektronix Field Engineer.

External programming and readout is divided as follows:

- 1. Externally controlling the Type 6R1A circuits to make a measurement or series of measurements (measurement program).
- 2. Recording the test results with external equipment when the instrument has completed a measurement program (external readout).

Many combinations of measurement program and external readout can be used. For example, the controls on the instrument con be set by hand and the test results automatically recorded on a typewriter. Or, the measurement program can be set by an automatic programmer and the test results recorded by hand.

A completely automatic system can be built that will make a series of tests, record the results of each test, reject any component that fails to meet preset limits (go no-go), and signal the end of the test.

Measurement Program

External programming can:

- 1. Start and stop a time measurement:
 - a. On first or second slope.
 - b. On a (+) or (-) slope.
 - c. On A trace or B trace.
 - d. On either trace at any percentage.
 - e. Start or stop at some preselected voltage level.
- 2. Measure the voltage between 0% and 100% on either trace.
- 3. Override the A and B 0% and 100% zone settings.
- 4. Control the display time.
- 5. Provide voltage for go no-go comparisons (counter staircase voltages).

When the Type 6R1A MODE switch is set to EXT PRO-GRAM, several circuit connections within the instrument are broken, and the inputs and outputs of these circuits are connected to J34 on the rear of the instrument chassis. The circuits affected are the TIMING START and TIMING STOP switches, both (+) and (-) SLOPE switches, both FIRST and SECOND SLOPE switches, and both precision dials. These switches and controls must be supplied externally if they are needed for a planned program.

Typical Program Plan

Consider a transistor program for measuring:

- 1. Risetime
- 2. Falltime
- 3. Storage
- 4. Delay
- 5. Saturation

Because each measurement involves a different set of connections between similar points, a mechanical switch can be used. A driven-type multiple-contact switch, such as a stepper, should suffice (relays can also be used).

The switch can be advanced through each measurement by pushbutton control, or by using the print command voltage present at pin GG of J133 at the completion of a measurement.

With this type of external program, the operator plugs the test transistor into a fixture, starts the programmer, and records the values shown on the readout as the programmer passes through its cycle.

This is one method of external programming. Many variations of this system are possible. Plug-in program cards, the Tektronix Type 262 Programmer, punched tape, punched cards, and pushbutton switches are just a few of the possible methods.

Go No-Go Programming

Because the acceptable limits of each measurement may be different, separate no-go comparisons are needed.

One method is to remove the Upper and Lower Limit circuit cards from the instrument and reinstall them in an external fixture. This fixture should supply the limit voltage in the same manner as the limit dials in the instrument. Thus, a second rotary switch can supply the correct limit voltages for each measurement in the program. The staircase voltages that represent the number shown on the readout are available at pins j, g, p, and y of J34.

The operator can be alerted to an out-of-limit measurement by limit lamps, bells, buzzers, or rejection relays. If a typewriter readout is used, the ribbon can be made to change automatically from black to red when the limit is exceeded.

No-go outputs (limit lamps) are shown in Fig. 7-1. 50 ma is available for external circuit operation. This can be increased to 200 ma by removing the Type 6R1A front-panel limit lamps.

Fig. 7-1. External connections to limit lamps.

External Readout: Information From Connector J33

The number, decimal point, and unit of measure information shown on the Type 6R1A readout is present at J33 at the completion of a measurement. (The designer of a readout system can use either parallel or serial entry data recorders.)

Several commerically available printers are suitable for this purpose. Usually they consist of number wheels that are positioned to the correct number by data from the device to be read.

One type of printer uses the four 10-line output from the indicator tubes. When the command from the Type 6R1A is received, a clutch engages and turns number wheels. The number wheels turn until their individual armatures contact a negative voltage. The clutch disengages and the wheel stops at the correct number position. A print is made and the paper advances to display the count.

Some printers are designed to accept BCD code. With this type of instrument, a decimal-to-binary converter must be used between the output of the Type 6R1A and the printer.

Fig. 7-2. Connection from indicator tube to external program jack.

Fig. 7-3. Simplified decimals and unit of measure external outputs.

External Programming—Type 6R1A

There are four 10-line outputs from the cathodes of each number indicator tube in the readout. Of the 10 cathodes from an indicator tube, one will be at about +0.5 volt (turned-on cathode), while all others will range from about +40 to +140 volts. The turned-on indicator tube driver transistor (on the counter card) will supply about 1.5 ma for external circuits. See Fig. 7-2.

Decimal location data is contained on five lines. Output on the "on" decimal line will be about +0.5 volt, while others are approximately +50 volts through 1.5 meg. See Fig. 7-3.

Outputs of the "on" units of measurement (M, N, or μ , and V or S) are about +0.5 volt, while others are approximately +150 volts.

A and B 0% and 100% Zone Override

Pins X and Z of J34 are used for 0% zone override, and pins R and J of J34 are used for 100% zone override. 100 k

variable resistors should be connected between these points and ground. The A and B 0% and 100% Zone Position controls on the Type 6R1A front panel should be turned fully clockwise. The external variable resistors can be mounted on the external program fixture and used to control the A and B 0% and 100% zone positions.

A +20-volt print-command voltage is available at pin GG. The duration of this voltage is the same as the display time period. Whenever pin HH is grounded, the voltage at pin GG is +20 volts.

If a negative print command is desired, change the strap on the master gate card as described on page 4-13 in the paragraph "Forming The Print Command Pulse".

The display time waveform is present at pin HH. Grounding this point holds the Type 6R1A display and prevents it from making another measurement. When the ground is removed, the instrument waits through the display time set by the front-panel DISPLAY TIME control before making the next measurement.

SECTION 8 GLOSSARY

- ALTERNATE TRACE A method of dual-trace where a Channel A signal is displayed on the first sweep, a Channel B signal on the second sweep, Channel A again on the third sweep, etc.
- ANALOG DIS- A crt display. PLAY
- "AND" GATE A circuit with two or more inputs and common output that produces an output signal only when all inputs are activated (positive or negative depending on the circuit arrangement).
- BINARY SET A bistable multivibrator used in counting and dividing. A single binary set divides by 2.
- CHOPPED TRACE A method of dual-trace where the signals from two separate channels applied to the crt are switched.
- CIRCUIT CARDS The etched cards with mounted components that plug into the Type 6R1A chassis.

CLOCK The time pulses used to drive the counter circuits. In voltage measurements, clock pulses are obtained from a crystal oscillator on the voltmeter circuit card. In time measurements, they are obtained from the horizontal plug-in unit.

CRT The cathode-ray tube in the indicator unit.

DIFFERENTIAL AMPLIFIER An amplifier that measures the difference between two voltages. The ability to resolve this difference is set by the common-mode rejection ratio of the amplifier.

DIGITAL Quantities presented in regular rational numbers, such as 6.23 volts, 832.0 milliseconds, etc.

DISPLAY TIME The time that the readout remains steady between counts. The DISPLAY TIME control (front panel) varies this time from approximately 0.1 second to approximately 6 seconds.

÷ 10 A circuit consisting of 4 binary sets that extends the time between start and stop to allow 10 cumulative counts on the readout.

÷ 1, 2, 5 A circuit that uses several binary sets to divide the count and show a correct read-

out as either the VOLTS/DIV or TIME/DIV switch is changed.

- DOUBLE-A two-transistor circuit (PNP and NPN) with good switching characteristics when EMITTER FOLLOWER used with a capacitive load. DUAL-TRACE A method where two signals from two separate channels are displayed on the crt at the same time. EXTERNAL A feature of the Type 6R1A where the instrument can be controlled by external PROGRAM equipment or use external readouts. Or, both control and readout can be done externally. Two connectors on the rear of the chassis provide inputs and outputs for this purpose. FIRST SLOPE The first rise (+ slope) or fall (- slope) of
 - The first rise (+ slope) or fall (— slope) of a waveform to the right of the intensified dead zone.

FLOATING POWER SUP-PLIES A Zener diode and two transistors between the +125-volt and --100-volt supplies make up this supply. It is used across precision potentiometers to establish calibrated start and stop voltages.

GO NO-GO A clear-cut line of accept or reject. Refers to limits. Between limits, the item under test is "go". Outside the limits it is "nogo".

INTENSIFIED Brightened portions of the crt display. ZONES

LOWER LIMIT The number set on the LOWER LIMIT SET dials. When this number exceeds the number on the readout, the LOWER LIMIT lamp (yellow) lights.

MASTER GATE An arrangement of 3 transistors where 2 must be turned off to allow the 3rd to pass a signal. Also called an "And" gate.

MEMORY A circuit that receives a voltage sample and holds the voltage level until the arrival of the next sample.

MID-ZONE Any number between and including the numbers set on the UPPER and LOWER LIMIT SET dials.

MODE The type of operation taking place. For example, voltage mode or time mode.

ONE SWEEP The total count between the start and stop points during one sweep of the display.

Glossary—Type 6R1A

- OR GATE A circuit with two or more inputs and a common output. Produces an output when any one of the inputs is activated.
- PERCENTAGE OF A PULSE If the start of a pulse is termed 0% and the peak amplitude represents 100%, the in-between points represent percentages of the pulse. For example, risetime is the time required for a pulse to rise from 10% to 90% of its maximum amplitude.
- PLUG-IN Any type unit designed to plug into or be withdrawn from an indicator unit or other housing. For example, the Type 6R1A is a plug-in designed to plug into the Tektronix Type 567 Readout Oscilloscope.
- PROGRAM Refers to the setting of the controls on the instrument. For example, one setting or program will measure risetime and another falltime.
- READOUT The five indicator tubes mounted across the top of the Type 6R1A front panel.

RESET PULSE A pulse used to set the counters and divider circuits to the proper condition for the start of a measurement (for example, returning all numbers to zero).

- RESOLUTION The number of significant figures in the readout. HI resolution is the total of ten cumulative counts with the decimal point moved one place to the left.
- SAMPLING SYSTEM A method that takes amplitude samples from a repetitive input signal with each sample at a progressively later time, then reconstructs these samples into a replica of the original waveform at a much lower frequency.
- START COM-PARATOR A circuit with two inputs. A reference level is applied to one and a varying signal to the other. Each time the signal equals the reference, the comparator delivers a pulse. Used to start the counter.

- STAIRCASE A voltage from each counter circuit that VOLTAGE represents the number stored in the counter.
- STOP COM-PARATOR A circuit with two inputs. A reference level is applied to one and a varying signal to the other. Each time the signal equals the reference, the comparator delivers a pulse. Used to stop the counter.
- SECOND SLOPE The second rise (+ slope) or fall (- slope) of a waveform to the right of the intensified dead zone.
- START BLOCK A group of controls that set the point on the display where a measurement starts.
- STOP BLOCK A group of controls that set the point on the display where a measurement stops.
- (MAX) The total count between the start and (MAX) stop zones. Not divided by the ÷ 1, 2, 5 card. Decimal-point and unit-of-measure indicator tubes are turned off.
- UPPER LIMIT The number set on the UPPER LIMIT SET dials. When this number is exceeded by the number on the readout, the UPPER LIMIT lamp (red) turns on.
- VOLTMETER
RAMPA linear, precise sawtooth waveform used
in voltage measurements.
- DEAD ZONE Established by the sweep voltage and shown as an intensified zone at the extreme left side of the display.
- 0% ZONE A point of measurement on a waveform; usually the lowest amplitude. Shows as an intensified zone that can be moved across the display by the 0% Zone Position control.
- 100% ZONE A point of measurement on a waveform; usually set to the highest amplitude of the waveform. Shows as an intensified zone that can be moved across the display by the 100% Zone Position control.

SECTION 9 PARTS LIST AND SCHEMATICS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix Field Office.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number including any suffix, instrument type, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix Field Office will contact you concerning any change in part number.

ABBREVIATIONS AND SYMBOLS

SPECIAL NOTES AND SYMBOLS

X000	Part first added at this serial number.					
000X	Part removed after this serial number.					
*000-000	Asterisk preceding Tektronix Part Number indicates manufactured by or for Tektronix, or reworked or checked components.					
Use 000-000	Part number indicated is direct replacement. Internal screwdriver adjustment.					

Front-panel adjustment or connector.

EXPLODED VIEW

EXPLODED VIEW

REF.	PART NO.	SERIAL/I	MODEL NO.	Q	
NO.	FART NO.	EFF.	DISC.	T Y.	DESCRIPTION
1	406-0761-00			1	BRACKET, alum. Mounting Hardware: (not included)
2	210-0006-00 210-0407-00 136-0120-00			4 4 5	LOCKWASHER, internal, #6 NUT, hex, 6-32 x ¼ inch SOCKET, 13 pin
3 4 5	213-0044-00 348-0003-00 136-0026-00 352-0038-00			2 1 3 5	Mounting Hardware For Each: (not included) SCREW, thread forming, 5-32 x ³ / ₁₆ inch PHS GROMMET, rubber, ⁵ / ₁₆ inch SOCKET, light HOLDER, single, neon Mounting Hardware, internal, #4
6	210-0004-00 210-0406-00 211-0086-00 210-0207-00			1 1 1 1	LOCKWASHER, internal #4 NUT, hex, 4-40 x ³ / ₁₆ inch SCREW, 4-40 x ³ / ₄ inch FHS 100° CSK LUG, solder Mounting Hardware: (not included)
7 8 9	210-0407-00 211-0538-00 406-0757-00 387-0894-00 384-0566-00			1 1 2 1 2	NUT, hex, 6-32 x 1/4 inch SCREW, 6-32 x ⁵ /16 inch FHS 100° CSK BRACKET, spacer switch PLATE, subpanel, front ROD, frame spacing
10	212-0043-00 212-0044-00 387-0610-00	995	1219X	2 2 1	Mounting Hardware For Each: (not included) SCREW, 8-32 x ¹ / ₂ inch FHS 100° CSK SCREW, 8-32 x ¹ / ₂ inch RHS PLATE, left Mounting Hardware: (not included)
11 12 13	211-0538-00 211-0507-00 211-0504-00 387-0881-00 387-0881-01	995 17850 995 1530	17849 1529	2 3 3 1 1	SCREW, 6-32 x ⁵ / ₁₆ inch FHS 100° CSK SCREW, 6-32 x ⁵ / ₁₆ inch BHS SCREW, 6-32 x ¹ / ₄ inch, BHS PLATE, right PLATE, right
14 15 16 17	211-0538-00 210-0006-00 210-0407-00 211-0507-00 211-0504-00 387-0607-00 210-0207-00 210-0207-00 210-0978-00 210-0590-00 210-0201-00 210-0204-00 131-0149-00	995 1530 1530 995 17850	1529 17849	2 2 2 3 3 1 2 1 1 1 3 2 2 2 -	Mounting Hardware: (not included) SCREW, 6-32 x ⁵ / ₁₆ inch FHS 100° CSK LOCKWASHER, internal, #6 NUT, hex, 6-32 x ¹ / ₄ inch SCREW, 6-32 x ⁵ / ₁₆ inch BHS SCREW, 6-32 x ¹ / ₄ inch, BHS PLATE, rear POT mounting hardware for each: (not included w/pot) LOCKWASHER, internal, ³ / ₈ x ¹ / ₂ inch LUG, solder, ³ / ₈ inch WASHER, ³ / ₈ ID x ¹ / ₂ inch OD NUT, hex, ³ / ₈ -32 x ⁷ / ₁₆ inch LUG, solder, SE4 LUG, solder, DE6 CONNECTOR, chassis mount Mounting Hardware For Each: (not included)
	210-0004-00 210-0201-00 210-0406-00 211-0011-00			1 1 2 2	LOCKWASHER, internal, #4 LUG, solder NUT, hex, 4-40 x ³ /16 inch SCREW, 4-40 x ⁵ /16 inch BHS

EXPLODED VIEW (Cont'd)

NO. DESC Y. DESCRPTION 18 136-0122.00	REF.	=	SERIAL/A	AODEL NO.	9	
1		PART NO.			T Y.	DESCRIPTION
1	18	136-0122-00			9	SOCKET, 20 pin
19 136-0123-00 - - Mounting Hardware For Each: (not included) 20 343-0089-00 2 SCREW, thread forming, 5-32 x 3/16 inch PHS 21 343-0089-00 2 CLAMP, coble, delrin 22 333-0003-00 1 PANEL, front 23 336-0026-00 3 RING, pilot light 24 354-0164-00 3 RING, pilot light 25 378-0530-00 1 FILTER, light, pilot, green 27 378-0529-00 1 FILTER, light, pilot, green 28 376-06532-00 1 FILTER, light, pilot, green 29 366-0166-00 1 KNOB, LOWER LIMIT SET, charcoal, large, left 10cludes: 131-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 213-0004-00 2 SCREW, set, 6-32 x 3/16 inch HSS 213-0004-00 2 SCREW, set, 6-32 x 3/16 inch HSS 213-0004-00 2 SCREW, set, 6-32 x 3/16 inch HSS 213-0004-00 2 SCREW, set, 6-32 x 3/16 inch HSS 23-3004-00 2 SCREW, set, 6-32 x 3/16 inch HSS 23-30004-00 1 SCREW, set, 6-32					-	Mounting Hardware For Each: (not included)
213.0044.00 2 213.0044.00 2 213.0044.00 2 213.0044.00 2 213.0044.00 2 213.0044.00 2 213.0044.00 2 213.0044.00 3 213.0044.00 3 213.0044.00 3 213.0044.00 3 213.0044.00 3 213.0044.00 3 213.0044.00 3 213.004.00 1 213.004.00 1 213.004.00 1 211.004.00 1 213.004.00 1 213.004.00 1 213.004.00 1 213.004.00 1 213.004.00 2 213.004.00 2 213.004.00 2 213.004.00 2 213.004.00 2 213.004.00 2 213.004.00 2 213.004.00 2 213.004.00 2 213.004.00 1 213.004.00		213-0044-00				SCREW, thread forming, 5-32 x ³ / ₁₆ inch PHS
213:0044.00 2 SCREW, "hread forming, 5:32 x ³ / ₁₆ inch PHS 20 343:0089:00 2 CLAMP, cable, delrin 21 343:0089:00 1 PANEL, front 21 354:0164:00 3 BUSHING, (included with Ref. No. 4) 24 354:0164:00 3 RING, pilot light 25 378:0530:00 1 FILTER, light, pilot, green 27 378:0529:00 1 FILTER, light, pilot, red 28 370:045:00 1 SHIED, hood 29 366:0164:00 1 KNOB, LOWER LIMIT SET, charcoal, large, left 213:0004:00 1 SCREW, set, 6:32 x ³ / ₁₆ inch HSS 31 20:00374:00 2 COVER, dial 211:0538:00 2 SCREW, 6:32 x ³ / ₁₆ inch HSS 32 366:0164:00 1 KNOB, LOWER LIMIT SET, charcoal, small, left 1 Includes: SCREW, 6:32 x ³ / ₁₆ inch HSS 32 366:0164:00 1 SCREW, 6:32 x ³ / ₁₆ inch HSS 33 366:0164:00 1 SCREW, 6:32 x ³ / ₁₆ inch HSS 33 366:0165:00 1 SCREW, 6:32 x ³ / ₁₆	19	136-0123-00			8	
20 343-0089-00 21 343-0089-00 23 333-0080-00 23 333-0080-00 24 354-0164-00 25 378-0530-00 26 378-0530-00 27 378-0530-00 28 337-045-00 29 366-0168-00 29 366-0168-00 20 366-0168-00 21 320004-00 29 366-0166-00 21 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 30 366-0166-00 211-0538-00 1 221-0004-00 1 23 366-0166-00 211-0538-00 2 2211-0538-00 2 23 366-0166-00 211-0538-00 2 23 366-0166-00 211-0538-00 2 23 366-0166-00 211-0538-00 2 23 366-0166-00 211-0538-00 2 23 366-0169-00 211-0538-00 2 23 3					-	
1 343-0088-00 1 CLAMP, coble, delrin 21 333-0003-00 3 BUSHING, (included with Ref. No. 4) 23 354-0164-00 3 RING, pilot light 25 378-0530-00 1 FILTER, light, pilot, yellow 27 378-0529-00 1 FILTER, light, pilot, red 28 337-0485-00 1 FILTER, light, pilot, red 29 366-0168-00 1 SKNOB, LOWER LIMIT SET, charcoal, large, left 213-0004-00 1 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 30 366-0166-00 1 Includes: 213-0004-00 1 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 31 200-0374-00 2 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 31 200-0374-00 2 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 32 366-0165-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 33 1 SCREW, set, 6-32 x 3/ ₁₆ inch HSS SCREW, set, 6-32 x 3/ ₁₆ inch HSS 33 366-0160-00 1 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x 3/ ₁₆ inch HSS						
1 PANEL, front 333-0803-00 3 1 PANEL, front 3 BUSHING, (included with Ref. No. 4) 23 378-0530-00 24 354-0164-00 25 378-0530-00 26 378-0529-00 27 378-0529-00 28 337-0485-00 378-0529-00 1 29 366-0168-00 1 213-0004-00 1 30 366-0166-00 1 213-0004-00 1 31 200-0374-00 1 213-0004-00 1 32 366-0166-00 1 213-0004-00 2 32 366-0169-00 1 211-0538-00 2 32 366-0169-00 1 33 366-0169-00 1 213-0004-00 1 33 366-0169-00 -						
22 134-0026-00 3 BUSHING, finduded with Ref. No. 4) 24 354-0164-00 3 RING, pilot light 25 378-0530-00 1 FILTER, light, pilot, green 27 378-0529-00 1 FILTER, light, pilot, green 28 37-0485-00 1 FILTER, light, pilot, green 29 366-0168-00 1 FILTER, light, pilot, red 213-0004-00 1 KNOB, LOWER LIMIT SET, charcoal, large, left 213-0004-00 1 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 210-0374-00 2 COVER, dial 211-0538-00 2 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 23 366-0165-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 1-1-1 1-1000 1 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 23 366-0165-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 1-101des: 1-101des: SCREW, set, 6-32 x 3/ ₁₆ inch HSS 23 366-0160-00 1 SCREW, set, 6-32 x 3/ ₁₆ inch HSS 34 366-0160-00 1 Includes: SCREW, set, 6-32 x 3/ ₁₆ inch HSS 35 3						
24 354-0164-00 25 378-0530-00 27 378-0530-00 28 378-0530-00 28 337-0485-00 378-0532-00 1 29 366-0168-00 1 213-0004-00 1 336 366-0168-00 1 213-0004-00 1 366-0166-00 1 1 213-0004-00 1 31 200-0374-00 21-0538-00 32 366-0169-00 1 211-0538-00 2 32 366-0169-00 213-0004-00 33 366-0169-00 1 213-0004-00 1 33 366-0169-00 1 213-0004-00 1 33 366-0169-00 1 213-0004-00 1 34 366-0169-00						
25 378.0530.00 1 FILTER, light, pilot, yellow 21 378.0529-00 1 FILTER, light, pilot, green 28 337.0485.00 1 FILTER, light, pilot, red 29 366.0186.00 1 FILTER, light, pilot, red 213.0004.00 1 FILTER, light, pilot, red 30 366.0166.00 1 SCREW, set, 6-32 x 3/ ₁₄ inch HSS 213.0004.00 1 SCREW, set, 6-32 x 3/ ₁₄ inch HSS 31 200.0374.00 2 COVER, dial 211.0538.00 2 SCREW, set, 6-32 x 3/ ₁₄ inch HSS 32 366.0169.00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 213.0004.00 2 SCREW, set, 6-32 x 3/ ₁₄ inch HSS 33 366.0165.00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 213.0004.00 1 SCREW, set, 6-32 x 3/ ₁₄ inch HSS 34 366.0165.00 1 KNOB, LOWER LIMIT SET, charcoal, small, right 213.0004.00 1 SCREW, set, 6-32 x 3/ ₁₄ inch HSS 34 366.0160.00 1 SCREW, set, 6-32 x 3/ ₁₄ inch HSS 35 366.0160.00 1						
26 378-0531-00 1 FILTER, light, pilot, green 27 378-0529-00 1 SHIELD, hood 29 366-0168-00 1 KNOB, LOWER LIMIT SET, charcoal, large, left 213-0004-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 30 366-0166-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 213-0004-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 31 200-0374-00 2 COVER, dial 211-0538-00 2 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 32 366-0169-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 1 Includes: 2 SCREW, set, 32 x ³ / ₁₆ inch HSS 33 366-0169-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 1 Includes: 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 33 366-0169-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 34 366-0169-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 33 366-0169-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS						
28 337-0485-00 29 366-0168-00 213-0004-00 1 30 366-0166-00 213-0004-00 1 30 366-0166-00 213-0004-00 1 31 200-0374-00 213-0004-00 2 321-00-02 1 321-00-02 1 321-00-02 1 321-00-02 1 321-00-02 2 321-00-02 2 321-00-02 2 331 200-0374-00 211-0538-00 2 32 366-0169-00 211-0538-00 2 33 366-0169-00 213-0004-00 2 33 366-0165-00 213-0004-00 1 33 366-0165-00 213-0004-00 1 34 366-0160-00 213-0004-00 1 35 366-0160-00 213-0004-00 1 36 366-0160-00 213-0004-00 1 <td< td=""><td></td><td>378-0531-00</td><td></td><td></td><td>1</td><td></td></td<>		378-0531-00			1	
378-0532-00 1 FILTER, polarized, light 29 366-0168-00 1 KNOB, LOWER LIMIT SET, charcoal, large, left 10 10-1-1-2 1 KNOB, LOWER LIMIT SET, charcoal, small, left 11 11 KNOB, LOWER LIMIT SET, charcoal, small, left 1213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 213-004-00 2 SCREW, set, 6-32 x 3/16 inch HSS 211-0538-00 2 COVER, dial 211-0538-00 2 SCREW, set, 6-32 x 3/16 inch HSS 213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 233 366-0169-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 11 Includes: 1 SCREW, set, 6-32 x 3/16 inch HSS 233 366-0169-00 1 SCREW, set, 6-32 x 3/16 inch HSS 34 366-0169-00 1 SCREW, set, 6-32 x 3/16 inch HSS 34 366-0169-00 1 SCREW, set, 6-32 x 3/16 inch HSS 34 366-0169-00 1 SCREW, set, 6-32 x 3/16 inch HSS 35 366-0169-00 1 SCREW, set, 6-32 x 3/16						
29 366-0168-00 1 KNOB, LOWER LIMIT SET, charcoal, large, left Includes: 30 366-0166-00 1 SCREW, set, 6-32 x 3/16 inch HSS 31 200-0374-00 1 SCREW, set, 6-32 x 3/16 inch HSS 213-0004-00 2 COVER, dial 1 213-0004-00 2 SCREW, set, 6-32 x 3/16 inch HSS 10 213-0004-00 2 SCREW, set, 6-32 x 3/16 inch HSS 10 213-0004-00 2 SCREW, 6-32 x 3/16 inch HSS 10 213-0004-00 2 SCREW, 6-32 x 3/16 inch HSS 10 32 366-0169-00 1 SCREW, set, 6-32 x 3/16 inch HSS 33 366-0169-00 1 SCREW, set, 6-32 x 3/16 inch HSS 33 366-0165-00 1 SCREW, set, 6-32 x 3/16 inch HSS 34 366-0165-00 1 SCREW, set, 6-32 x 3/16 inch HSS 35 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0100 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0010 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS </td <td>28</td> <td></td> <td></td> <td></td> <td></td> <td></td>	28					
213.0004.00 1 SCREW, set, 6-32 x 3/16 inch HSS 30 366-0166-00 1 KNOB, LOWER LIMIT SET, charcoal, small, left 213.0004.00 1 SCREW, set, 6-32 x 3/16 inch HSS 31 200-0374-00 2 SCREW, set, 6-32 x 3/16 inch HSS 211-0538-00 2 SCREW, set, 6-32 x 3/16 inch HSS 32 366-0169-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 1 Includes: 2 SCREW, set, 6-32 x 3/16 inch HSS 33 366-0165-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 1 Includes: 1 SCREW, set, 6-32 x 3/16 inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 35 366-001 1 KNOB, LOWER LIMIT SET, charcoal 1 SCREW, set, 6-32 x 3/16 inch HSS Includes: 213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>FILTER, polarized, light</td></t<>						FILTER, polarized, light
213.0004.00 366-0166-001SCREW, set, $6.32 \times 3/_{16}$ inch HSS KNOB, LOWER LIMIT SET, charcoal, small, left Includes: SCREW, set, $6.32 \times 3/_{16}$ inch HSS31200-0374.00 201-0538-002SCREW, set, $6.32 \times 3/_{16}$ inch HSS COVER, dial 	29					
30 366-0166-00 213-0004-00 1 31 200-0374-00 211-0538-00 2 32 366-0169-00 213-0004-00 2 33 366-0169-00 213-0004-00 2 34 366-0165-00 213-0004-00 1 34 366-0165-00 213-0004-00 1 34 366-0165-00 213-0004-00 1 34 366-0165-00 213-0004-00 1 34 366-0160-00 213-0004-00 1 34 366-0180-00 35 366-0031-00 213-0004-00 1 35 366-0172-00 213-0004-00 1 36 366-0172-00 213-0004-00 1 36 366-020 36 366-031-00 36 1 36 366-0172-00 36 366-0250-00 37 366-0250-00 38 366-0140-00					Ī	
13.0004.00 1 SCREW, set, 6.32 x 3/16 inch HSS 200.0374.00 2 COVER, dial 211.0538.00 2 SCREW, set, 6.32 x 3/16 inch HSS 211.0538.00 2 SCREW, 6.32 x 5/16 inch HSS 100° CSK 32 366-0169-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 1.01udes: 1 SCREW, set, 6.32 x 3/16 inch HSS 33 366-0165-00 1 KNOB, LOWER LIMIT SET, charcoal, small, right 1.01udes: 1 SCREW, set, 6.32 x 3/16 inch HSS 34 366-0160-00 1 KNOB, LOWER LIMIT SET, charcoal 1.13.0004.00 1 SCREW, set, 6.32 x 3/16 inch HSS 35 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 360-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 31.0004.00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS	30					
$213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS $200.0374.00$ 2 COVER, dial $211.0538.00$ 2 SCREW, $6.32 \times 5'_{16}$ inch HS 100° CSK 32 $366.0169.00$ 1 SCREW, $6.32 \times 5'_{16}$ inch HS 100° CSK $213.0004.00$ 1 SCREW, $6.32 \times 5'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS Includes: $213.0004.00$ 1 SCREW, set, $6.32 \times 3'_{16}$ inch HSS SCREW, set, $6.32 \times 3'_{16}$ inch HSS 37 $366.0250.00$ 1 KNOB, RESOLUTION, charc					<u>-</u>	
211-0538-00 2 SCREW, 6-32 x 5/16 inch FHS 100° CSK 32 366-0169-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 1 Includes: SCREW, set, 6-32 x 3/16 inch HSS 33 366-0165-00 1 KNOB, LOWER LIMIT SET, charcoal, small, right 1 Includes: SCREW, set, 6-32 x 3/16 inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 35 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0031-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS <td></td> <td>213-0004-00</td> <td></td> <td></td> <td>1</td> <td>SCREW, set, 6-32 x 3/16 inch HSS</td>		213-0004-00			1	SCREW, set, 6-32 x 3/16 inch HSS
211-0538-00 2 SCREW, 6-32 x 5/16 inch FHS 100° CSK 32 366-0169-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 213-0004-00 3 366-0165-00 1 213-0004-00 3 SCREW, set, 6-32 x 3/16 inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 35 366-00140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 35 366-00140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 366-00140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 366-00172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-01	31	200-0374-00			2	
32 366-0169-00 1 KNOB, LOWER LIMIT SET, charcoal, large, right 33 366-0165-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 35 366-0160-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 36 366-001400 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 35 366-0031-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 36 366-00172-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 37 366-0250-00 1 KNOB, MODE, charcoal 37 366-0250-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-					-	
33 $366-0165-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 34 $366-0165-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 34 $366-0160-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 35 $366-0160-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 35 $366-0160-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 35 $366-0031-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 36 $366-0172-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 37 $366-0250-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 38 $366-0140-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 38 $366-0140-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 38 $366-0140-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 38 $366-0140-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 38 $366-0140-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 38 $366-0140-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS 38 $366-0140-00$ 1 SCREW, set, $6-32 \times 3/_{16}$ inch HSS					1	SCREW, 6-32 x $\frac{3}{16}$ inch FHS 100° CSK
213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 33 366-0165-00 1 KNOB, LOWER LIMIT SET, charcoal, small, right 213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 34 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 35 366-01300 1 KNOB, MANUAL START, charcoal 1 SCREW, set, 6-32 x 3/16 inch HSS Includes: 213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00	32	366-0169-00			1 '	
33 366-0165-00 213-0004-00 34 366-0160-00 213-0004-00 35 366-0130-00 213-0004-00 35 366-0031-00 213-0004-00 366-0172-00 213-0004-00 366-0172-00 213-0004-00 366-0172-00 213-0004-00 366-0172-00 213-0004-00 366-0172-00 213-0004-00 37 366-0250-00 213-0004-00 38 366-0140-00 38 366-0140-00 38 366-0140-00 39 39 39 39 39 39 39 360-0140-00 39 39 39 39 39 39 39 39 39 39 39 39 <tr< td=""><td></td><td>213 0004 00</td><td></td><td></td><td></td><td></td></tr<>		213 0004 00				
34 366-0160-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 35 366-0160-00 1 KNOB, TIMING START, charcoal 36 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 36 366-0031-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 36 366-0031-00 1 KNOB, MANUAL START, red 36 366-0172-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS	33				4 · ·	KNOB, LOWER LIMIT SET, charcoal, small, right
34 366-0160-00 1 SCREW, set, 6-32 x 3/16 inch HSS 35 366-0031-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0031-00 1 SCREW, set, 6-32 x 3/16 inch HSS 36 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x 3/16 inch HSS					-	
35 366-0031-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 36 366-0031-00 1 KNOB, MANUAL START, red 36 366-0172-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS		213-0004-00			1	
35 213-0004-00 35 366-0031-00 213-0004-00 1 36 366-0172-00 37 366-0250-00 213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 1 KNOB, MODE, charcoal 1 Includes: 213-0004-00 1 36 366-0172-00 1 SCREW, set, 6-32 x 3/16 inch HSS 37 366-0250-00 1 KNOB, RESOLUTION, charcoal 1 Includes: 213-0004-00 1 38 366-0140-00 38 366-0140-00 1 KNOB, DISPLAY TIME, red 1 Includes: 1 KNOB, DISPLAY TIME, red	34	366-0160-00			1	
35 366-0031-00 1 KNOB, MANUAL START, red 213-0004-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 36 366-0172-00 1 KNOB, MODE, charcoal 213-0004-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 213-0004-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 KNOB, DISPLAY TIME, red Includes: 1 Includes: 1						
36 366-0172-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 37 366-0250-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS	25				1 .	
36 213-0004-00 36 366-0172-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 1 KNOB, MODE, charcoal 1 Includes: 213-0004-00 1 37 366-0250-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 38 366-0140-00 1 KNOB, DISPLAY TIME, red 1 Includes: 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS	35					
37 366-0250-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS					1	
37 213-0004-00 37 366-0250-00 213-0004-00 38 366-0140-00 38 366-0140-00 38 366-0140-00 38 366-0140-00 39 39 39 30 30<	36	366-0172-00			1	
37 366-0250-00 1 KNOB, RESOLUTION, charcoal 213-0004-00 1 SCREW, set, 6-32 x 3/16 inch HSS 38 366-0140-00 1 KNOB, DISPLAY TIME, red					:	
- Includes: 213-0004-00 1 38 366-0140-00 - Includes: - Includes: - Includes: - Includes:						
38 213-0004-00 1 SCREW, set, 6-32 x ³ / ₁₆ inch HSS 38 366-0140-00 1 KNOB, DISPLAY TIME, red - - - - - - - - - - - -	3/	366-0250-00				
38 366-0140-00 1 KNOB, DISPLAY TIME, red - - - - -		213.0004.00				
- includes:	38					
213-0004-00					-	
		213-0004-00			1	SCREW, set, 6-32 x 3/16 inch HSS
					[
					I I	
					1	
					1	
		I	l			

EXPLODED VIEW (Cont'd)

EXPLODED VIEW (Cont'd)					
REF. NO.	PART NO.	SERIAL/ EFF.	MODEL NO. DISC.	— Ţ — Ţ	DESCRIPTION
39 40 41 42 43 44 45 46 47 48 49 50 50 50	331-0085-00 366-0249-00 213-0004-00 366-0255-00 213-0004-00 366-0255-00 213-0004-00 366-0165-00 213-0004-00 366-0165-00 213-0004-00 366-0165-00 213-0004-00 366-0166-00 213-0004-00 366-0160-00 213-0004-00 366-0160-00 213-0004-00 366-0160-00 213-0004-00 366-0160-00 211-0538-00 406-0976-00 210-0457-00 210-0407-00 210-0407-00 211-0538-00			1 1 1 1 1 1 1 1 1 1 1 1 1 1	 DIAL, START VOLTAGE with brake and charcoal knob KNOB, MEMORY MODE 100% "A", charcoal Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, MEMORY MODE 0% "B", red Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, MEMORY MODE 0% "B", red Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS DAIL, STOP VOLTAGE with brake and charcoal knob KNOB, UPPER LIMIT SET, charcoal, large, left Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, UPPER LIMIT SET, charcoal, small, left Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, UPPER LIMIT SET, charcoal, small, left Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, UPPER LIMIT SET, charcoal, large, right Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, UPPER LIMIT SET, charcoal, small, right Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, UPPER LIMIT SET, charcoal, small, right Includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, UPPER LIMIT SET, charcoal knob includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, MANUAL STOP, red knob includes: SCREW, set, 6-32 x 3/₁₆ inch HSS KNOB, TIMING STOP, charcoal knob includes: SCREW, 6-32 x 3/₁₆ inch HSS PLATE, top brace, alum. Mounting Hardware: (not included) NUT, kes, 6-32 x 3/₁₆ inch HSS BRACKET, transistor, alum. Mounting Hardware: (not included) NUT, kes, 6-32 x 3/₁₆ inch FHS 100° CSK BRACKET, transistor, alum. Mounting Hardware: (not included) LOCKWASHER, internal, #6 LUG, solder, SE6, with 2 wire holes NUT, hex, 6-32 x 3/₁₆ inch FHS 100° CSK

EXPLODED VIEW (Cont'd)

REF.		SERIAL/M	MODEL NO.	Q	
NO.	PART NO.	EFF.	DISC.	T Y.	DESCRIPTION
53	124-0148-00			2	STRIP, ceramic, 9 notches x $17_{16} \times 7_{16}$ inch
				-	Mounting Hardware For Each (not included)
	361-0007-00			2	SPACER, nylon
54	124-0146-00			2	STRIP, ceramic, 16 notches $\times 27/_{16} \times 7/_{16}$ inch
				-	Mounting Hardware For Each: (not included)
	361-0007-00			2	SPACER, nylon
55	124-0145-00			2	STRIP, ceramic, 20 notches x 3 x 7/16 inch
				-	Mounting Hardware For Each: (not included)
	361-0007-00			2	SPACER, nylon
56	179-0606-00			1	CABLE HARNESS, neon
57	179-0844-00				CABLE HARNESS, Stop-Start
58	179-0843-00				CABLE HARNESS, No-Go
59	179-0842-00			1	CABLE HARNESS, 55 pin
60	131-0322-00				cable harness includes:
	131-0322-00				CONNECTOR, 55 pin mounting hardware: (not included)
	211-0016-00			4	SCREW, 4-40 x ⁵ / ₈ inch BHS
	166-0107-00			4	TUBE, spacing
	210-0004-00			4	LOCKWASHER, internal, #4
	210-0406-00			4	NUT, hex, $4-40 \times \frac{3}{16}$ inch
61	441-0417-00			1	CHASSIS, No-Go
				-	Mounting Hardware: (not included)
	210-0006-00			2	LOCKWASHER, internal, #6
	210-0407-00			2	NUT, hex, 6-32 x ¼ inch
62	179-0847-00			1	CABLE HARNESS, 41 pin
				-	cable harness includes:
63	131-0321-00			1	CONNECTOR, 41 pin
				-	mounting hardware: (not included)
	211-0016-00			4	SCREW, 4-40 × 5/8 inch BHS
	166-0107-00			4	TUBE, spacing
	210-0004-00			2	LOCKWASHER, internal, #4
	210-0201-00 210-0406-00			2 4	LUG, solder, SE4
64	407-0152-00	X1530		1	NUT, hex, 4-40 x ¾,6 inch BRACKET, front guide mount
04	407-0152-00	×1550			mounting hardware: (not included w/bracket)
	213-0107-00			3	SCREW, thread forming, $4-40 \times \frac{1}{4}$ inch FHS
65	407-0153-00	X1530		ĩ	BRACKET, center guide mount
					mounting hardware: (not included w/bracket)
	213-0107-00			3	SCREW, thread forming, $4-40 \times \frac{1}{4}$ inch FHS
66	407-0154-00	X1530		1	BRACKET, rear guide mount
				-	mounting hardware: (not included w/bracket)
	213-0107-00			3	SCREW, thread forming, $4-40 \times \frac{1}{4}$ inch FHS
67	351-0087-00	X1530		34	GUIDE, circuit board, plastic
68	407-0072-00	X1530		34	BRACKET, circuit board guide
69	352-0006-00	995	1789	2	HOLDER, neon, double, black
	352-0064-00	1790		2	HOLDER, neon, double, gray
	011 0001 00	005	1700	.	mounting hardware for each: (not included w/holder)
	211-0031-00	995	1789		SCREW, 4-40 x 1 inch FHS SCREW, 4-40 x 7/8 inch FHS
	211-0109-00 210-0406-00	1790		12	SCREW, 4-40 x $\frac{7}{8}$ inch FHS NUT, hex, 4-40 x $\frac{3}{16}$ inch
	378-0541-00	X1 790		4	FILTER, lens, neon
	57 0-0541-00			-	
				l I	
				[
				•	

SLIDE SWITCHES

PRINTED CIRCUIT CARDS

Parts List — Type 6R1A

PRINTED CIRCUIT CARDS

A

CIRCUIT CARDS

REF.	PART NO.	SERIAL/A	AODEL NO.	Q T	DESCRIPTION
NO.	PART NO.	EFF.	DISC.	Υ.	DESCRIPTION
1	670-0047-00			1	CARD, Upper Limit No-Go /F/ (wired) Includes:
2 3	388-0576-00 388-0576-01 136-0062-00 136-0183-00 406-0970-00	MODEL 1 MODEL 3 MODEL 1 MODEL 3	MODEL 2 MODEL 2	1 1 17 17 1	BOARD, circuit BOARD, circuit SOCKET, 4 pin SOCKET, 3 pin BRACKET
4 5	211-0008-00 670-0048-00			2 1	Mounting Hardware For Brkt. SCREW, 4-40 x ¼ inch BHS CARD, Lower Limit No-Go /G/ (wired) Includes:
6 7	388-0577-00 388-0577-01 136-0062-00 136-0183-00 406-0971-00	MODEL 1 MODEL 3 MODEL 1 MODEL 3	MODEL 2 MODEL 2	1 1 17 17 1	BOARD, circuit BOARD, circuit SOCKET, 4 pin SOCKET, 3 pin BRACKET Mounting Hardware For Brkt.
8 9	211-0008-00 670-0049-00			2	SCREW, ¼ inch BHS CARD, Limit Light Driver /H/ (wired) Includes:
10 11 12	388-0507-00 388-0507-01 136-0062-00 136-0183-00 210-0006-00 210-0407-00 211-0511-00 406-0972-00	MODEL 1 MODEL 4 MODEL 1 MODEL 4	MODEL 3 MODEL 3	1 5 5 2 2 2 2 2 1	BOARD, circuit BOARD, circuit SOCKET, 4 pin SOCKET, 3 pin Transistor Mounting Hardware For Each: TUBE, spacer LOCKWASHER, int. #6 NUT, hex, 6-32 x ¹ / ₄ inch SCREW, 6-32 x ¹ / ₂ inch BHS BRACKET
12 13 14	211-0008-00 670-0050-00			2 1	Mounting Hardware For Brkt. SCREW, 4-40 x ¼ inch BHS CARD, ÷ 10 /1/ (wired)
15 16	388-0508-00 388-0508-01 136-0062-00 136-0183-00 406-0973-00	MODEL 1 MODEL 4 MODEL 1 MODEL 4	MODEL 3 MODEL 3	- 1 1 9 9 1	Includes: BOARD, circuit BOARD, circuit SOCKET, 4 pin SOCKET, 3 pin BRACKET
17 18	211-0008-00 670-0051-00			2 1	Mounting Hardware For Brkt. SCREW, 4-40 x ¼ inch BHS CARD, Analog Display /J/ (wired)
20 20 21	388-0509-00 388-0509-01 406-0974-00 136-0183-00 406-0974-00 211-0008-00	MODEL 1 MODEL 3 MODEL 3	MODEL 2	1 1 10 1 2	Includes: BOARD, circuit BOARD, circuit SOCKET, 4 pin SOCKET, 3 pin BRACKET Mounting Hardware For Brkt. SCREW, 4-40 x 1/4 inch BHS

CIRCUIT CARDS (Cont'd)

REF.	PART NO.		NODEL NO.	Q T	DESCRIPTION
NO.		EFF.	DISC.	Y.	
22	670-0055-00			1	CARD, 0% Zone /O/ (wired) Includes:
23 24 25	388-0585-00 136-0183-00 210-0046-00 210-0583-00 387-0794-00 406-0980-00			1 16 - 1 1 1	BOARD, etched circuit SOCKET, 3 pin Pot Mounting Hardware For Each: LOCKWASHER, int. NUT, hex, ⁵ / ₁₆ x ¹ / ₄ -32 inch double chamfer PLATE, mounting ¹ / ₂ x ⁴¹ / ₆₄ inch BRACKET
26 27	211-0008-00 670-0058-00 670-0083-00	995 1544	1543	222	Mounting Hardware For Brkt. SCREW, 4-40 x ¼ inch BHS CARD, memory /P/ (wired) (MODEL 1-3) CARD, memory /P/ (wired) (MODEL 4-up)
28 29 30	388-0586-00 388-0586-01 136-0186-00 136-0183-00 136-0220-00 136-0101-00 136-0125-00 387-0603-00	MODEL 1 MODEL 4 MODEL 1 MODEL 4 MODEL 1 MODEL 4 MODEL 4	MODEL 3 MODEL 3 MODEL 3	1 1 2 10 9 2 2 2 2	each card includes: BOARD, circuit BOARD, circuit SOCKET, 8 pin SOCKET, 3 pin transistor SOCKET, 3 pin transistor SOCKET, 5 pin SOCKET, 5 pin PLATE, insulator Mounting Hardware For Each Socket To Bracket
31	213-0055-00 210-0215-00 406-0975-00	MODEL 1 MODEL 1 MODEL 1	MODEL 3X MODEL 3X MODEL 3X	2 1 1	SCREW, 2-32 x 3/16 inch PHS LUG, banana, pee wee BRACKET, transistor
32 33 34 35 36 37 38	210-004-00 210-046-00 211-0008-00 210-0583-00 287-0794-00 260-0583-00 260-0723-00 260-0723-00 260-0723-00 260-0723-00 260-0723-00 260-0723-00 260-0723-00 260-0723-00 260-0723-00 211-0062-00 406-0981-00 406-0981-01 211-0008-00	MODEL 1 MODEL 1 MODEL 1 MODEL 1 MODEL 4 MODEL 1 MODEL 4 MODEL 1 MODEL 1 MODEL 1 MODEL 1 MODEL 1 MODEL 1 MODEL 1 MODEL 1	MODEL 3X MODEL 3X MODEL 3X MODEL 3 MODEL 3 MODEL 3 MODEL 3X MODEL 3X MODEL 3X MODEL 3X	2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Mounting Hardware, Bracket To Card LOCKWASHER, int. #4 NUT, hex, 4-40 x ³ / ₁₆ inch SCREW, 4-40 x ¹ / ₄ inch Pot Mounting Hardware For Each LOCKWASHER, int. NUT, hex, ⁵ / ₁₆ x ¹ / ₄ -32 x inch double chamfer PLATE, mounting, ¹ / ₂ x ⁴ / ₆₄ inch SWITCH, 100% MODE, unwired SWITCH, 100% MODE, unwired SWITCH, SLOW-FAST, unwired SWITCH, 0% MODE, unwired SWITCH, 10% MODE, unwired SWITCH, 10% MODE, unwired SWITCH, 0% MODE, unwired SWITCH,

CIRCUIT CARDS (Cont'd)

REF.	PART NO.	SERIAL/MODEL NO.		Q		
NO.		EFF.	DISC.	Y.	DESCRIPTION	
39	670-0053-00 388-0580-00 136-0183-00 406-0978-00			4 - 1 19	CARD, Counter [*] /A/ (wired) Each Includes: BOARD, circuit SOCKET, 3 pin	
41 42 43	211-0008-00 670-0052-00			1 - 2 1	BRACKET Mounting Hardware For Bracket SCREW, 4-40 x ¼ inch BHS CARD, ÷ 1, 2, 5 /B/ (wired)	
44 45	388-0581-00 388-0581-01 136-0062-00 136-0183-00 406-0977-00	100 2320 100 2320	2319 2319	- 1 11 11 1	Includes: BOARD, circuit BOARD, circuit SOCKET, 4 pin BRACKET Mounting Hardware For Bracket	
46 47	211-0008-00 670-0054-00			2 1	Mounting Hardware For Bracket SCREW, 4-40 x ¼ inch CARD, Master Gate /M/ (wired)	
48 49	388-0582-00 136-0183-00 406-0979-00			- 1 19 1	Includes: BOARD, circuit SOCKET, 3 pin BRACKET	
50 51	211-0008-00 670-0057-00			- 2 2	Mounting Hardware For Bracket SCREW, 4-40 x ¼ inch BHS CARD, Signal Comparator /N/ (wired)	
52	388-0583-00 260-0583-00			- 1 1	Each Includes: BOARD, circuit SWITCH, OUT-IN, unwired	
53 54 55 56 57	166-0024-00 210-0405-00 211-0062-00 136-0183-00 136-0186-00 210-0046-00 210-0583-00 387-0794-00 406-0982-00 211-0008-00			- 2 2 2 8 2 - 1 1 1 1 2	Mounting Hardware For Switch SPACER, steel, ${}^{3}/{}_{16}$ OD x ${}^{1}/_{6}$ inch long NUT, hex, 2-56 x ${}^{3}/{}_{16}$ inch SCREW, 2-56 x ${}^{5}/{}_{16}$ inch RHS SOCKET, 3 pin SOCKET, 8 pin Pot Mounting Hardware LOCKWASHER, int. NUT, hex, ${}^{5}/{}_{16}$ x ${}^{1}/{}_{4}$ -32 inch double chamfer PLATE, mounting, ${}^{1}/{}_{2}$ x ${}^{4}/{}_{64}$ inch BRACKET Mounting Hardware For Bracket SCREW, 4-40 x ${}^{1}/{}_{4}$ inch BHS	
57 59 60 61 62	211-0008-00 670-0056-00 388-0584-00 136-0183-00 210-0046-00 210-0583-00 387-0794-00 406-0983-00 210-0004-00 210-0406-00 211-0101-00			2 1 - 1 1 6 - 1 1 1 1 1 1 1 2 2 2 2	SCREW, 4-40 x $\frac{1}{4}$ inch BHS CARD, Voltmeter, $/Q/$ (wired) Includes: BOARD, circuit SOCKET, 3 pin Pot Mounting Hardware For Each LOCKWASHER, int. NUT, hex, $\frac{5}{16} \times \frac{1}{4}$ -32 inch double chamfer PLATE, mounting $\frac{1}{2} \times \frac{41}{64}$ inch BRACKET Mounting Hardware For Bracket LOCKWASHER, int. #4 NUT, hex, 4-40 x $\frac{3}{16}$ inch SCREW, 4-40 x $\frac{1}{4}$ inch FHS	

Parts List — Type 6R1A

SWITCHES (Cont'd)

REF.	PART NO.		Q T	DESCRIPTION		
NO.	FARI NO.	EFF.	DISC.	Υ.	DESCRIPTION	
3	262-0459-00 260-0418-00 210-0419-00			1 - 1 - 1	SWITCH, wired—UPPER LIMIT SET (RIGHT) switch includes: SWITCH, unwired mounting hardware: (not included w/switch) NUT, shoulder, ³ /8-32	
4 5	262-0632-00 260-0420-00 179-0845-00 210-0978-00 210-0590-00			1 - 1 - 1 1	SWITCH, wired—MODE switch includes: SWITCH, unwired CABLE HARNESS, switch mounting hardware: (not included w/switch) WASHER, 3/8 ID x 1/2 inch OD NUT, hex, 3/8-32 x 7/16 inch	
6 7 8 9 10	262-0630-00 260-0419-00 384-0077-00 376-0014-00 386-0450-00 210-0049-00 210-0449-00 210-0413-00 210-0012-00 210-0207-00 210-0012-00 210-0978-00 210-0590-00			2 1 1 1 2 2 2 1 1 1 1 1 1	SWITCH, wired—TIMING START/STOP each switch includes: SWITCH, unwired ROD, extension COUPLING, pot PLATE, switch LOCKWASHER, internal, #6 NUT, hex, $5-40 \times 1/4$ inch pot mounting hardware: NUT, hex, $3/8-32 \times 1/2$ inch LOCKWASHER, internal, $3/8 \times 1/2$ inch LUG, solder, $3/6$ inch mounting hardware: (not included w/switch) LOCKWASHER, internal, $3/8 \times 1/2$ inch WASHER, $3/6$ ID x $1/2$ inch OD NUT, hex, $3/8-32 \times 7/16$ inch	
11 12 13 14	262-0631-00 260-0588-00 179-0846-00 384-0302-00 376-0033-00 376-0050-00 213-0075-00 213-0075-00 213-0022-00 354-0251-00 376-0046-00 210-0583-00 210-0012-00 210-0978-00 210-0590-00	995 1580 995 1580 X1580 X1580	1579 1579	1 1 1 1 1 1 1 2 4 2 1 - 2 1 1 1 1 1	SWITCH, wired—RESOLUTION switch includes: SWITCH, unwired CABLE HARNESS, switch ROD, extension COUPLING, pot COUPLING, flexible coupling includes: SCREW, set, 4-40 x ³ / ₃₂ inch SCREW, set, 4-40 x ³ / ₁₆ inch RING, coupling COUPLING, delrin pot mounting hardware: NUT, hex, ¹ / ₄ -32 x ⁵ / ₁₆ inch LOCKWASHER, internal, .400 OD x .261 inch ID mounting hardware: (not included w/switch) LOCKWASHER, internal, ³ / ₈ x ¹ / ₂ inch WASHER, ³ / ₈ ID x ¹ / ₂ inch OD NUT, hex, ³ / ₈ -32 x ⁷ / ₁₆ inch	
	070-0411-00			2	STANDARD ACCESSORIES MANUAL, instruction (not shown)	

ELECTRICAL PARTS

Values are fixed unless marked Variable.

Ckt. No.	Tektronix Part No.	iriable.	Descript	ion		S/	N Range
			Buli	bs			
B361 B361 B362 B362 B363	150-025 150-0030-00 150-025 150-0030-00 150-025	Neon, NE-2E Neon, NE-2V Neon, NE-2E Neon, NE-2V Neon, NE-2E					995-2469 2470-up 995-2469 2470-up 995-2469
B363 B364 B364 B365 B365 B560	150-0030-00 150-025 150-0030-00 150-025 150-0030-00 150-001	Neon, NE-2V Neon, NE-2E Neon, NE-2V Neon, NE-2E Neon, NE-2V Incandescent, #	47			UPPER LIMIT	2470-up 995-2469 2470-up 995-2469 2470-up
B561 B562 B570 B570 B576	150-001 150-001 150-027 150-0030-00 150-027	Incandescent, # Incandescent, # Neon, NE-23 Neon, NE-2V Neon, NE-23				MID ZONE LOWER LIMIT	995-1789 1790-up 995-1789
B576 B580 B580 B586 B586	150-0030-00 150-027 150-0030-00 150-027 150-0030-00	Neon, NE-2V Neon, NE-23 Neon, NE-2V Neon, NE-23 Neon, NE-2V					1790-up 995-1789 1790-up 995-1789 1790-up
-			Capacit	ors			
Tolerance of al 3V — 50V == 51V — 350V ==	% unless otherwise electrolytic capac = —10%, +250% = —10%, +100% = —10%, +50%		vith excep tic	ons):			
C409 C411 C459 C461 C550 C552	283-000 283-001 283-000 283-001 290-162 290-162	0.001 μf 0.005 μf 0.001 μf 0.005 μf 22 μf 22 μf	Cer Cer Cer EMT EMT		500 v 500 v 500 v 500 v 35 v 35 v		
C554 C556 C558 C559 C574 C584	290-162 290-162 290-162 290-162 283-001 283-001	22 μf 22 μf 22 μf 22 μf 0.005 μf 0.005 μf	EMT EMT EMT Cer Cer		35 v 35 v 35 v 35 v 500 v 500 v		
D207	150 001	7		•	75		005 0500
D387 D387	152-091 152-0286-00	Zener Zener	1N982 1N982B	0.4 w, 75 v, 5%	75 v		995-2529 2530-up
Resistors							
Resistors are fixed, composition, $\pm 10\%$ unless otherwise indicated.							
R360 R361 R362 R363 R364	301-274 301-394 301-394 301-394 301-394 301-394	270 k 390 k 390 k 390 k 390 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w			5% 5% 5% 5% 5%	

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description			S/N	l Range
R365 R370 R372 R374 R376	301-394 301-823 301-823 301-823 301-823	390 k 82 k 82 k 82 k 82 k 82 k	$\frac{1}{2} \le \frac{1}{2} \le \frac{1}$			5% 5% 5% 5% 5%	
R381 R382 R383 R384 R385	301-563 301-563 301-563 301-563 301-563	56 k 56 k 56 k 56 k 56 k	$\frac{1}{2} \le \frac{1}{2} \le \frac{1}$			5% 5% 5% 5% 5%	
R386 R387 R388 R389 R390	301-563 303-303 315-105 315-105 315-105	56 k 30 k 1 meg 1 meg 1 meg	$\frac{1}{2} \approx \frac{1}{2} \approx \frac{1}{2} \approx \frac{1}{4} \approx \frac{1}$			5% 5% 5% 5% 5%	
R407 R408 R410 R411 R420	321-347 321-289 Use 301-333 311-224 322-632	40.2 k 10 k 33 k 50 k 1 k	1/8 W 1/8 W 1/2 W 1/2 W	Var	Prec Prec Prec	1% 1% 5% MANUAL START ¼%	
R421 R422 R423 R424 R425	322-632 322-631 322-633 322-633 322-633 322-631	1 k 696 Ω 2.304 k 2.304 k 696 Ω	$\frac{1}{4} \le \frac{1}{4} \le \frac{1}$		Prec Prec Prec Prec Prec	1/4 % 1/4 % 1/4 % 1/4 % 1/4 %	
R426 R427 R429 R430 R460	322-632 322-632 301-103 311-318 Use 301-333	1 k 1 k 10 k 30 k 33 k	1/4 w 1/4 w 1/2 w 1/2 w	Var	Prec Prec WW	1/4 % 1/4 % 5% START VOLTAGE 5%	
R461 R470 R471 R472 R473	311-224 322-632 322-632 322-631 322-633	50 k 1 k 1 k 696 Ω 2.304 k	1/4 w 1/4 w 1/4 w 1/4 w	Var	Prec Prec Prec Prec	MANUAL STOP 1/4 % 1/4 % 1/4 % 1/4 %	
R474 R475 R476 R477 R479	322-633 322-631 322-632 322-632 301-103	2.304 k 696 Ω 1 k 1 k 10 k	$\frac{1}{4} \le \frac{1}{4} \le \frac{1}$		Prec Prec Prec	1/4 % 1/4 % 1/4 % 1/4 % 5 %	
R480 R500 R501 R502 R503	311-318 321-097 321-097 321-097 321-097 321-097	30 k 100 Ω 100 Ω 100 Ω 100 Ω	1/8 w 1/8 w 1/8 w 1/8 w	Var	WW Prec Prec Prec Prec	STOP VOLTAGE 1% 1% 1% 1%	

Resistors (Cont'd)

			Resistors (Con	r aj			
Ckt. No.	Tektronix Part No.		Description				S/N Range
R504 R505 R506 R507 R508	321-097 321-097 321-097 321-097 321-097 321-097	100 Ω 100 Ω 100 Ω 100 Ω 100 Ω	!∕a w !∕a w !∕a w !∕a w !∕a w		Prec Prec Prec Prec Prec	1% 1% 1% 1% 1%	
R509 R510 R550 R552 R554	321-097 323-120 307-060 307-060 307-060	100 Ω 174 Ω 6.8 Ω 6.8 Ω 6.8 Ω	∕ ₈ w ⁄ ₂ w ∕ ₂ w ∕ ₂ w		Prec Prec	1% 1% 5% 5% 5%	
R556 R559 R569 R570 R571	307-060 307-015 307-025 301-393 301-203	6.8 Ω 3.3 Ω 3.3 Ω 39 k 20 k	1/2 w 1 w 1/2 w 1/2 w 1/2 w 1/2 w			5% 5% 5%	
R572 R573 R574 R575 R576A,B	311-075 301-473 301-203 Use 301-433 311-414	5 meg 47 k 20 k 43 k 2 x 100 k	1/2 w 1/2 w 1/2 w 1/2 w	Var Var		DISPLAY TIME 5% 5% B 0% ZON B 100% ZON	e set
R577 R57 8 R579 R580 R581	Use 301-433 316-470 316-470 316-470 316-470	43 k 47 Ω 47 Ω 47 Ω 47 Ω	1/2 W 1/4 W 1/4 W 1/4 W 1/4 W			5%	X1160-ир X1160-ир X1160-ир X1160-ир
R583 R584 R585 R586A,B	301-473 301-203 Use 301-433 311-414	47 k 20 k 43 k 2 x 100 k	1/2 W 1/2 W 1/2 W 1/2 W	Var		5% 5% 5% A 0% ZON A 100% ZON	ie set ie set
R587	Use 301-433	43 k	1∕₂ w			5%	

Switches

SW310	260-451	Slide	MEMORY ZONES
SW311	260-451	Slide	START TO STOP
SW320	260-420 *262-632	Rotary	MODE
SW330	260-447	Slide	START SLOPE (±)
SW331	260-449	Slide	START SLOPE (FIRST-SECOND)
SW340	260-447	Slide	STOP SLOPE (±)
SW341	260-449	Slide	STOP SLOPE (FIRST-SECOND)
SW350	260-447	Slide	A VOLTAGE
SW351	260-447	Slide	B VOLTAGE
SW360	260-588 *262-631	Rotary	RESOLUTION
	260-447	Slide	START VOLTAGE
	260-419 *262-630	Rotary	TIMING START
	260-447	Slide	STOP VOLTAGE
	260-419 *262-630	Rotary	TIMING STOP
	3 260-417 *262-458	Rotary	LOWER LIMIT SET (LEFT)

Unwired Wired
Switches (Cont'd)

Ckt. No.	Tektronix Part No.		Description	S/N Range
Unv	vired Wired			
SW502A,B 260 SW504A,B 260 SW506A,B 260	-417 *262-458	Rotary Rotary Rotary	LOWER LIMIT SET (RIGHT UPPER LIMIT SET (LEFT) UPPER LIMIT SET (RIGHT))

Electron Tubes

V370	154-326	B5094
V371	154-327	B5092
V372	154-327	B5092
V373	154-327	B5092
V374	154-327	B5092

COUNTER CARD (4) SERIES A

Ckt. No.	Tektronix Part No.		Description			Model No.
	*670-053	Complete Ca	rd (Model 3-up)			
			Capacitors			
C2 C6	281-518 281-540	47 pf 51 pf	Cer Cer	500 v 500 v	5%	
C12 C16	281-518 281-540	47 pf 51 pf	Cer Cer	500 v 500 v	5%	
C22	281-518	47 pf	Cer	500 v		
C26 C32	281-540 281-518 281-540	51 pf 47 pf	Cer Cer	500 v 500 v	5%	
C36 C38 C42	281-540 281-524 281-518	51 pf 150 pf 47 pf	Cer Cer Cer	500 v 500 v 500 v	5%	
					E 0/	
C46 C52 C56	281-540 281-518 281-540	51 pf 47 pf 51 pf	Cer Cer Cer	500 v 500 v 500 v	5%	
C58 C62	281-524 281-518	150 pf 47 pf	Cer Cer	500 v 500 v	5%	
C66	281-540	51 pf	Cer	500 v	5%	
C72 C76	281-518 281-540	47 pf 51 pf	Cer Cer	500 v 500 v	5%	

Diodes

D2	*152-075	Germanium	Tek Spec
D12	*152-075	Germanium	Tek Spec
D22	*152-075	Germanium	Tek Spec
D32	*152-075	Germanium	Tek Spec
D38	*152-075	Germanium	Tek Spec

COUNTER CARD (4) SERIES A (Cont'd)

Diodes (Cont'd)

Ckt. No.	Tektronix Part No.		Description		Model No.
D42 D52 D58 D62 D72	*152-075 *152-075 *152-075 *152-075 *152-075 *152-075	Germanium Germanium Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec Tek Spec Tek Spec		
			Transistor s		
Q5 Q15 Q25 Q35 Q45	*151-054 *151-054 *151-054 *151-054 *151-054 *151-054	Selected from Selected from Selected from Selected from Selected from	2N1754 2N1754 2N1754		
Q55 Q65 Q75 Q83 Q100	*151-054 *151-054 *151-054 *153-520 *151-059	Selected from Selected from Selected from 2N404 Check Selected from	1 2N1754 1 2N1754 ked		
Q101 Q102 Q103 Q104 Q105	*151-059 *151-059 *151-059 *151-059 *151-059 *151-059	Selected from Selected from Selected from Selected from Selected from	2N1893 2N1893 2N1893		
Q106 Q107 Q108 Q109	*151-059 *151-059 *151-059 *151-059	Selected from Selected from Selected from Selected from	2N1893 2N1893		
			Resistors		
R2 R3 R5 R6 R7	301-103 323-414 301-162 301-123 301-134	10 k 200 k 1.6 k 12 k 130 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	Prec	5% 1% 5% 5% 5%
R12 R15 R16 R17 R22	301-103 301-162 301-123 301-154 301-103	10 k 1.6 k 12 k 150 k 10 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		5% 5% 5% 5% 5%
R23 R24 R25 R26 R27	323-385 301-432 301-432 301-123 301-134	100 k 4.3 k 4.3 k 12 k 130 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	Prec	1% 5% 5% 5% 5%

COUNTER CARD (4) SERIES A (Cont'd)

Resistors (Cont'd)

Ckt. No.	Part No. Tektronix		Description			Model No.
R32 R34 R35 R36 R37	301-103 301-432 301-432 301-123 301-154	10 k 4.3 k 4.3 k 12 k 150 k	$\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$		5% 5% 5% 5% 5%	
R38 R39 R42 R43 R44	301-223 301-473 301-103 323-385 301-432	22 k 47 k 10 k 100 k 4.3 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	Prec	5% 5% 5% 1% 5%	
R45 R46 R47 R52 R54	301-432 301-123 301-134 301-103 301-432	4.3 k 12 k 130 k 10 k 4.3 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		5% 5% 5% 5% 5%	
R55 R56 R57 R58 R59	301-432 301-123 301-154 301-223 301-473	4.3 k 12 k 150 k 22 k 47 k	Y₂ w Y₂ w Y₂ w Y₂ w Y₂ w Y₂ w		5% 5% 5% 5%	
R62 R63 R64 R65 R66	301-103 323-636 301-432 301-432 301-123	10 k 50 k 4.3 k 4.3 k 12 k	$\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$	Prec	5% 1% 5% 5% 5%	
R67 R72 R74 R75 R76	301-134 301-103 301-432 301-432 301-123	130 k 10 k 4.3 k 4.3 k 12 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		5% 5% 5% 5% 5%	
R77 R81 R83 R100 R102	301-154 301-474 301-104 321-125 321-125	150 k 470 k 100 k 196 Ω 196 Ω	1/2 w 1/2 w 1/2 w 1/2 w 1/8 w 1/8 w	Prec Prec	5% 5% 5% 1% 1%	
R104 R106 R108 R109 R110	321-125 321-125 321-125 321-105 321-105	196 Ω 196 Ω 196 Ω 121 Ω 121 Ω	1/ ₈ w 1/ ₈ w 1/ ₈ w 1/ ₈ w 1/ ₈ w	Prec Prec Prec Prec Prec	1% 1% 1% 1% 1%	

\div 1, 2, 5 CARD (1) SERIES B

*670-052

÷ 1, 2, 5 CARD (1) SERIES B (Cont'd)

Capacitors

Ckt. No.	Tektronix Part No.		Description			Model No.
C1 C2 C6 C16 C22	290-162 281-549 281-523 281-523 281-518	22 μf 68 pf 100 pf 100 pf 47 pf	EMT Cer Cer Cer Cer	35 v 500 v 350 v 350 v 500 v	10%	
C26 C36 C38 C42 C46	281-523 281-523 Use 281-0543-00 281-518 281-523	100 pf 100 pf 270 pf 47 pf 100 pf	Cer Cer Cer Cer Cer	350 v 350 v 500 v 500 v 350 v	10%	
C50 C52 C56 C62 C66	281-573 283-024 281-523 281-549 281-523	11 pf 0.1 μf 100 pf 68 pf 100 pf	Cer Cer Cer Cer Cer	500 v 30 v 350 v 500 v 350 v	10% 10%	
C70 C72 C76 C80 C82	281-501 283-024 281-523 281-501 283-024	4.7 pf 0.1 μf 100 pf 4.7 pf 0.1 pf	Cer Cer Cer Cer Cer	500 v 30 v 350 v 500 v 30 v	$\pm 1 \ pf$ $\pm 1 \ pf$	
			Dio des			
D2 D12 D18 D22 D32	*152-075 *152-075 *152-075 *152-075 *152-075	Germanium Germanium Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec Tek Spec Tek Spec			
D38 D42 D44 D52 D62	*152-075 *152-075 *152-075 *152-075 *152-075	Germanium Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec Tek Spec Tek Spec Tek Spec			
D72 D74 D84	*152-075 *152-075 *152-075	Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec			
			Transistors			
Q5 Q15 Q25 Q35 Q44	*151-054 *151-054 *151-054 *151-054 *151-054	Selected from Selected from Selected from Selected from Selected from	2N1754 2N1754 2N1754			

÷ 1, 2, 5 CARD (1) SERIES B (Cont'd)

Transistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description		Model No.
Q45 Q55 Q65 Q74 Q75 Q84	*151-054 *151-054 *151-054 *151-054 *151-054 *151-054	Selected from 2 Selected from 2 Selected from 2 Selected from 2 Selected from 2 Selected from 2	2N1754 2N1754 2N1754 2N1754 2N1754		
			Resistors		
R1 R2 R5 R6 R7	307-060 301-563 301-222 301-153 301-154	6.8 Ω 56 k 2.2 k 15 k 150 k	Y₂ w Y₂ w Y₂ w Y₂ w Y₂ w Y₂ w	5% 5% 5% 5% 5%	
R15 R16 R17 R22 R25	301-222 301-153 301-154 301-563 301-222	2.2 k 15 k 150 k 56 k 2.2 k	$\frac{1}{2}$ w $\frac{1}{2}$ w $\frac{1}{2}$ w $\frac{1}{2}$ w $\frac{1}{2}$ w $\frac{1}{2}$ w	5% 5% 5% 5% 5%	
R26 R27 R35 R36 R37	301-153 301-154 301-222 301-153 301-154	15 k 150 k 2.2 k 15 k 150 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	5% 5% 5% 5% 5%	
R38 R39 R42 R44 R45	301-223 301-473 301-563 301-222 301-222	22 k 47 k 56 k 2.2 k 2.2 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	5% 5% 5% 5% 5%	
R46 R47 R50 R51 R52 R55	301-153 301-154 301-273 301-104 301-243 301-222	15 k 150 k 27 k 100 k 24 k 2.2 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	5% 5% 5% 5% 5% 5%	
R56 R57 R62 R65 R66	301-153 301-154 301-563 301-222 301-153	15 k 150 k 56 k 2.2 k 15 k	$\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$	5% 5% 5% 5% 5%	
R67 R70 R71 R72 R75	301-154 301-273 301-104 301-243 301-222	150 k 27 k 100 k 24 k 2.2 k	$\frac{1}{2}$ w $\frac{1}{2}$ w $\frac{1}{2}$ w $\frac{1}{2}$ w $\frac{1}{2}$ w	5% 5% 5% 5% 5%	

÷ 1, 2, 5 CARD (1) SERIES B (Cont'd)

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description	Model No.
R76	301-153	15 k	½ ₩	5%
R77	301-154	150 k	½ ₩	5%
R80	301-273	27 k	½ w	5%
R81	301-104	100 k	½ w	5%
R82	301-243	24 k	½ w	5%

UPPER LIMIT NO-GO CARD (1) SERIES F

Diodes

D14 D34 D73 D74 D112	*152-075 *152-075 *152-075 *152-075 *152-075	Germanium Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec Tek Spec Tek Spec
D113 D114 D141 D142 D144	*152-075 *152-075 *152-075 *152-075 *152-075 *152-075	Germanium Germanium Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec Tek Spec Tek Spec
D153	*152-075	Germanium	Tek Spec

Transistors

Q4	151-071	2N1305
Q14	151-070	2N1377
Q24	151-071	2N1305
Q34	151-070	2N1377
Q44	151-071	2N1305
Q54	151-070	2N1377
Q64	151-071	2N1305
Q73	*151-059	Selected from 2N1893
Q74	151-070	2N1377
Q84	151-071	2N1305
Q94	151-070	2N1377
Q104	151-071	2N1305
Q113	*151-059	Selected from 2N1893
Q114	151-070	2N1377
Q124	151-071	2N1305
Q134	151-070	2N1377
Q143	151-071	2N1305

^{*670-047} Complete Card (Model 2-up)

UPPER LIMIT NO-GO CARD (1) SERIES F (Cont'd)

Resistors

Ckt. No.	Te ktronix Part No.		Description	Model No.
R3 R14 R23 R43 R54	301-393 301-392 301-393 301-393 301-392	39 k 3.9 k 39 k 39 k 3.9 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	5% 5% 5% 5% 5%
R63	301-363	36 k	1/2 w	5%
R72	301-473	47 k	1/2 w	5%
R83	301-393	39 k	1/2 w	5%
R94	301-392	3.9 k	1/2 w	5%
R103	301-363	36 k	1/2 w	5%
R112	301-473	47 k	½ w	5%
R123	301-393	39 k	½ w	5%
R134	301-392	3.9 k	½ w	5%
R142	301-222	2.2 k	½ w	5%

LOWER LIMIT NO-GO CARD (1) SERIES G

*670-048

Complete Card (Model 2-up)

Diodes

D14	*152-075	Germanium Tek Spec
D34	*152-075	Germanium Tek Spec
D73	*152-075	Germanium Tek Spec
D74	*152-075	Germanium Tek Spec
D112	*152-075	Germanium Tek Spec
D113	*152-075	Germanium Tek Spec
D114	*152-075	Germanium Tek Spec
D141	*152-075	Germanium Tek Spec
D142	*152-075	Germanium Tek Spec
D143	*152-075	Germanium Tek Spec
D144	*152-075	Germanium Tek Sp e c Transistors
Q4	151-071	2N1305
Q14	151-070	2N1377
Q24	151-071	2N1305
Q34	151-070	2N1377
Q44	151-071	2N1305
Q54	151-070	2N1377

/-4-

LOWER LIMIT NO-GO CARD (1) SERIES G (Cont'd)

Transistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description	Model No.
Q94 Q104 Q113 Q114 Q124	151-070 151-071 *151-059 151-070 151-071	2N1377 2N1305 Selected from 2N 2N1377 2N1305	1893	
Q134 Q143	151-070 151-071	2N1377 2N1305		
			Resistors	
R3 R14 R23 R43 R54	301-393 301-392 301-393 301-393 301-392	39 k 3.9 k 39 k 39 k 3.9 k	$\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$	5% 5% 5% 5% 5%
R63 R72 R83 R94 R103	301-363 301-473 301-393 301-392 301-363	36 k 47 k 39 k 3.9 k 36 k	$\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$	5% 5% 5% 5% 5%
R112 R123 R134 R142	301-473 301-393 301-392 301-222	47 k 39 k 3.9 k 2.2 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	5% 5% 5% 5%
		limit light e	DRIVER CARD (1) SERIES H	
	*670-049	Complete Card		
			Transistors	
Q13 Q14 Q23 Q33 Q43	151-070 151-070 151-071 Use 151-137 151-071	2N1377 2N1377 2N1305 2N2148 2N1305		
Q53 Q63 Q64	Use 151-137 Use 151-137 151-071	2N2148 2N2148 2N1305		
			Resistors	
R13 R14 R20 R23 R33	301-472 301-332 301-103 301-272 306-470	4.7 k 3.3 k 10 k 2.7 k 47 Ω	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 2 w	5% 5% 5% 5%

*670-050

LOWER LIMIT LIGHT DRIVER CARD (1) SERIES H (Cont'd)

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description	Model No.
R40	301-103	10 k	1/2 w	5%
R43	301-272	2.7 k	1/2 W	5%
R53	306-470	47 Ω	2 w	
R60	301-680	68 Ω	1∕₂ w	5%
R63	306-470	47 Ω	2 w	
R64	301-102	1 k	½ w	5%

÷ 10 CARD (1) SERIES I

35 v 500 v 500 v 500 v

500 v

500 v 500 v 500 v 500 v 500 v

500 v 500 v 500 v 500 v 500 v

Complete Card (Model 3-up)

			- (
			Capacitors	
C1 C2 C6 C16 C22	290-162 281-524 281-525 281-525 281-524	22 μf 150 pf 470 pf 470 pf 150 pf	EMT Cer Cer Cer Cer	
C26 C36 C38 C42 C46	281-525 281-525 281-525 281-525 281-524 281-525	470 pf 470 pf 470 pf 150 pf 470 pf	Cer Cer Cer Cer Cer	
C56 C58 C62 C66 C76	281-525 281-525 281-524 281-525 281-525	470 pf 470 pf 150 pf 470 pf 470 pf	Cer Cer Cer Cer Cer	
			Diodes	
D2 D12 D22 D32 D38	*152-075 *152-075 *152-075 *152-075 *152-075 *152-075	Germanium Germanium Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec Tek Spec Tek Spec	

D42	*152-075	Germanium	Tek Spec
D52	*152-075	Germanium	Tek Spec
D58	*152-075	Germanium	Tek Spec
D62	*152-075	Germanium	Tek Spec
D72	*152-075	Germanium	Tek Spec

Transistors

Q5	151-071	2N1305
Q15	151-071	2N1305
Q25	151-071	2N1305
Q35	151-071	2N1305
Q45	151-071	2N1305

÷ 10 CARD (1) SERIES I (Cont'd)

Transistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description		Model No.
Q55 Q65 Q75 Q83	151-071 151-071 151-071 151-069	2N1305 2N1305 2N1305 2N1304			
			Resistors		
R1 R2 R5 R6 R7	307-060 301-563 301-332 301-203 301-204	6.8 Ω 56 k 3.3 k 20 k 200 k	$\begin{array}{c} 1/_2 \\ 1/$	5% 5% 5% 5% 5%	
R15 R16 R17 R22 R25	301-332 301-203 301-204 301-563 301-332	3.3 k 20 k 200 k 56 k 3.3 k	$\begin{array}{c} 1/_2 \\ 1/$	5% 5% 5% 5% 5%	
R26 R27 R35 R36 R37	301-203 301-204 301-332 301-203 301-204	20 k 200 k 3.3 k 20 k 200 k	$\begin{array}{c} V_2 \\ V_2 \end{array}$	5% 5% 5% 5% 5%	
R38 R39 R42 R45 R46	301-223 301-473 301-563 301-332 301-203	22 k 47 k 56 k 3.3 k 20 k	½ w ½ w ½ w ½ w ½ w ½ w	5% 5% 5% 5% 5%	
R47 R55 R56 R57 R58	301-204 301-332 301-203 301-204 301-223	200 k 3.3 k 20 k 200 k 220 k	$\begin{array}{c} V_2 \\ W \end{array}$	5% 5% 5% 5% 5%	
R59 R62 R65 R66 R67	301-473 301-563 301-332 301-203 301-204	47 k 56 k 3.3 k 20 k 200 k	$V_{2} w$ $V_{2} w$ $V_{2} w$ $V_{2} w$ $V_{2} w$ $V_{2} w$	5% 5% 5% 5% 5%	
R75 R76 R77 R83	301-332 301-203 301-204 301-392	3.3 k 20 k 200 k 3.9 k	½ w ½ w ½ w ½ w	5% 5% 5% 5%	

ANALOG DISPLAY CARD (1) SERIES J

*670-051

Complete Card (Model 2-up)

ANALOG DISPLAY CARD (1) SERIES J (Cont'd)

Capacitor

Ckt. No.	Tektronix Part No.		Description			Model No.
C91	281-511	22 pf	Cer	500 v	10%	
			Diodes			
D12 D32 D52 D62 D63	*152-075 *152-075 152-025 *152-075 *152-075	Germanium Germanium Germanium Germanium Germanium	Tek Spec Tek Spec 1N634 Tek Spec Tek Spec			
D72 D73 D82	*152-075 *152-075 152-025	Germ a nium Germanium Germ a nium	Tek Spec Tek Spec 1N634			
			Transistors			
Q3 Q13 Q23 Q33 Q43	151-069 151-069 151-069 151-069 151-071	2N1304 2N1304 2N1304 2N1304 2N1304 2N1305				
Q53 Q63 Q73 Q83 Q94	151-071 151-071 151-071 151-071 151-071 151-071	2N1305 2N1305 2N1305 2N1305 2N1305 2N1305				
			Resistors			
R2 R10 R13 R20 R30	301-103 301-103 301-222 301-103 301-103	10 k 10 k 2.2 k 10 k 10 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		5% 5% 5% 5% 5%	
R33 R40 R42 R43 R50	301-222 301-103 301-123 301-222 301-103	2.2 k 10 k 12 k 2.2 k 10 k	1/2 w 1/2		5% 5% 5% 5%	
R52 R53 R60 R62 R63	301-333 301-392 301-103 301-333 301-392	33 k 3.9 k 10 k 33 k 3.9 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		5% 5% 5% 5% 5%	

ANALOG DISPLAY CARD (1) SERIES J (Cont'd)

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description			Model No.
R70	301-103	10 k	1/		E 0/	
R72	301-333	33 k	¹ /₂ w ¹ /₂ w		5%	
R73	301-392	3.9 k	/2 ₩ //2 ₩		5%	
R74	301-123	12 k	/2 ₩ /⁄2 ₩		5%	
R80	301-103	10 k	/2 ₩ 1⁄2 ₩		5% 5%	
NOU	001-100	IOK	/2 **		5%	
R82	301-333	33 k	½ w		5%	
R90	301-104	100 k	1∕₂ w		5%	
R91	301-103	10 k	% √2 w		5%	
		MASTER	GATE CARD (1) SE	RIES M		
	*670-054 *670-0054-01		d (Model 1,2,3,4) d (Model 5-up)			
			Capacitors			
C3	281-536	0.001 μf	Cer	500 v	10%	
C12	281-523	100 pf	Cer	350 v	10%	
C16	281-550	120 pf	Cer	500 v		
C22	281-523	100 pf	Cer	350 v		
C26	281-550	120 pf	Cer	500 v		
		· Þ.		300 V		
C30	281-524	150 pf	Cer	500 v		
C35	281-504	10 pf	Cer	500 v	10%	
C42	285-623	0.47 μf	PTM	100 v	,.	
C46	281-525	470 pf	Cer	500 v		
C60	281-536	0.001 μf	Cer	500 v	10%	
C62	283-010	0.05 μf	Cer	50 v		
C63	285-572	0.1 μf	PTM	200 v		
C76	285-572	0.1 µf	PTM	200 v		
C102	Use 281-516	39 pf	Cer	5 00 v	10%	
C106	281-550	120 pf	Cer	500 v		
C112	Use 281-524	150 pf	Cer	500		
C116	281-550	120 pf		500 v		
C121	281-523	120 pf	Cer	500 v		
C121 C122	281-523	100 pf	Cer Cer	350 v		
C122 C126	281-523	120 pf	Cer	350 v 500 v		
	201-000	120 01		200 V		
C132	2 81-523	100 pf	Cer	350 v		
C136	281-550	120 pf	Cer	500 v		
C166	281-516	39 pf	Cer	500 v	10%	
			Diodes			
D5	*152-075	Germanium	Tek Spec			
<u> </u>	102-0/0	Containoni	IGN JUCC			

D5	*152-075	Germanium	Tek Spec
D6	*152-075	Germanium	Tek Spec
D12	*152-075	Germanium	Tek Spec
D22	*152-075	Germanium	Tek Spec
D30	*152-075	Germanium	Tek Spec
			Tex oper

MASTER GATE CARD (1) SERIES M (Cont'd)

Diodes (Cont'd)

Ckt. No.	Tektronix Part No.		Description		Model No.
D31 D35 D36 D41 D41	*152-075 *152-075 *152-075 152-141 152-0141-02	Germanium Germanium Germanium Silicon Silicon	Tek Spec Tek Spec Tek Spec 1N4152 1N4152		1,2,3,4,5 6-up
D45 D45 D71 D72 D72	152-141 152-0141-02 *152-107 152-0141-00 152-0141-02	Silicon Silicon Silicon Silicon Silicon	1N4152 1N4152 Replaceable by 1N6 1N4152 1N4152	ı 4 7	1,2,3,4,5 6-up X5 6-up
D74 D74 D76 D81 D102	152-0141-00 152-0141-02 *152-107 *152-075 *152-075	Silicon Silicon Silicon Germanium Germanium	1N4152 1N4152 Replaceable by 1N6 Tek Spec Tek Spec	. 47	Х5 6-ир
D112 D121 D122 D132 D140	*152-075 *152-075 *152-075 *152-075 *152-075 *152-075	Germanium Germanium Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec Tek Spec Tek Spec		1,2,3,4X
D143 D164 D173	*152-075 *152-075 *152-075	Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec		
			Transistors		
Q3 Q15 Q25 Q45 Q55	151-071 *151-103 *151-103 *151-103 151-071	2N1305 Replaceable by Replaceable by Replaceable by 2N1305	/ 2N2219		
Q64 Q73 Q83 Q84 Q93	151-093 *151-059 151-069 151-071 151-069	2N2043 Selected from 2N1304 2N1305 2N1304	2N1893		
Q105 Q115 Q125 Q135 Q143	*151-054 *151-054 *151-054 *151-054 151-069	Selected from Selected from Selected from Selected from 2N1304	2N1754 2N1754		
Q153 Q163 Q164 Q173	151-069 151-069 *151-054 151-069	2N1304 2N1304 Selected from 1 2N1304	2N1754		
			Resistors		
R3 R5 R12 R14 R16	301-393 303-273 301-393 301-222 301-153	39 k 27 k 39 k 2.2 k 15 k	$\frac{1}{2} w$ 1 w $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$		5% 5% 5% 5%

MASTER GATE CARD (1) SERIES M (Cont'd)

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description		Model No.
					Model 140.
R17 R22	301-474 301-393	470 k	1/2 W	5%	
R22 R24	301-393	39 k 2.2 k	1∕2 w 1∕2 w	5%	
R26	301-153	15 k	/2 ₩ /2 ₩	5%	
R27	301-474	470 k	⁷² w ¹ / ₂ w	5% 5%	
			72	5 /6	
R30	301-103	10 k	½ ₩	5%	
R35	301-103	10 k	½ ₩	5%	
R40 R41	301-183 Use 301-0302-00	18 k	1/2 W	5%	
R42	301-363	3 k 36 k	1/2 w	5%	
N-72	301-303	30 K	¹∕₂ w	5%	
R43	301-201	200 Ω	1∕2 w	5%	
R44	301-433	43 k	¹∕₂ w	5%	
R46	301-223	22 k	½ ₩	5%	
R47	301-823	82 k	½ w	5% 5% 5%	
R60	301-104	100 k	1∕₂ w	5%	
R61	301-822	8.2 k	1∕₂ w	5%	
R62	301-183	18 k	1/2 w	5%	
R63	301-124	120 k	1/2 w	5%	
R64	301-104	100 k	½ w	5%	
R72	301-0104-00	100 k	½ w	5%	X5-up
R73	301-223	22 k	1/2 W	5%	
R74	301-104	100 k	1/2 w	5%	
R80	301-332	3.3 k	1∕₂ w	5%	
R81	301-274	270 k	1/2 W	5%	
R82	301-103	10 k	½ w	5%	
R83	301-332	3.3 k	½ w	5%	
R84	301-682	6.8 k	1/2 w	5%	
R85	301-103	10 k	1/2 w	5%	
R102	301-393	39 k	1∕₂ w	5%	
R104	301-222	2.2 k	1/2 w	5%	
R106	301-153	15 k	1/2 w	50/	
R107	301-474	470 k	/2 ₩ V/2 ₩	5% 5%	
R112	301-393	39 k	1/2 w	5%	
R114	301-222	2.2 k	1/2 w	5%	
R116	301-153	15 k	₩/2 w	5% 5% 5%	
D117	201 474	470 L	1/	P -1	
R117 R121	301-474 301-393	470 k 39 k	½ ₩ ½ ₩	5%	
R121	301-393	39 k	72 ₩ 1⁄2 ₩	5%	
R124	301-222	2.2 k	⁷² ₩ ⁷ / ₂ ₩	5% 5%	
R126	301-153	15 k	⁷² ₩ ¹ / ₂ ₩	5%	
R127	301-274	270 k	½ ₩	5%	
R132 R134	301-393 301-222	39 k 2.2 k	1/2 w	5%	
R134 R136	301-222	2.2 k 15 k	½ w ½ w	5% 5%	
R137	301-474	470 k	72 ₩ 1⁄2 ₩	5%	
R140	301-103	10 k	1/2 W	5%	
				- 70	

.

*670-057

MASTER GATE CARD (1) SERIES M (Cont'd)

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description	Model No.
R143 R163 R164 R166 R167 R173	301-362 301-332 301-362 301-393 301-394 301-223	3.6 k 3.3 k 3.6 k 39 k 390 k 22 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w	5% 5% 5% 5% 5% 5%

SIGNAL COMPARATOR CARD (2) SERIES N

Complete Card

			-				
			Capaci	tors			
C24	281-044	80-480 pf		Ma			
C24	283-003	0.01 μf	Mica Cer	Var	150		
C31	281-576	11 pf	Cer		150 v	F 0/	
C34	281-578	200 pf	Cer Cer		500 v	5%	
C40	281-551				500 v	1000	
C40	201-551	390 pf	Cer		500 v	10%	
C42	283-000	0.001 μf	Cer		500 v		1, 2, 3, 4
C42	283-0594-00	0.001 µf	Mica		100 v	1%	5-up
C44	283-000	0.001 µf	Cer		500 v	• 70	0.05
C62	283-003	0.01 μ [′] f	Cer		150 v		
C69	Use 281-543	270 pf	Cer		500 v	10%	
670	000 000	<i>.</i>					
C72	283-003	0.01 μf	Cer		150 v		
C80	283-081	0.1 µf	Cer		25 v		
C82	281-528	82 pf	Cer		500 v	10%	
C86	281-524	150 pf	Cer		500 v		
C92	281-528	82 pf	Cer		500 v	10%	
C96	281-524	150 pf	Cer		500 v		
			Diode	s			
D24	*152-075	Germanium	Tek Spec				
D 27	*152-075	Germanium	Tek Spec				
D29	152-141	Silicon	1N4152				1,2,3,4,5
D29	152-0141-02	Silicon	1N4152				6-up
D37	*152-075	Germanium	Tek Spec				0-04
D39	152-141	Silicon	1N4152				1,2,3,4,5
D39	152-0141-02	Silicon	1N4152				6-up
D44	152-141	Silicon	1N4152				1,2,3,4,5
D44	152-0141-02	Silicon	1N4152				6-up
D54	152-141	Silicon	1N4152				1,2,3,4,5
D54	152-0141-02	Silicon	1N4152				6-up
D55	152-093	Tunnel	1N3716	4.7 MA			0.00
D62	*152-075	Germanium	Tek Spec				
D63	*152-075	Germanium	Tek Spec	•			
D66	*152-075	Germanium	Tek Spec				
570	*150 075	<u> </u>					
D72	*152-075	Germanium	Tek Spec				
D73	*152-075	Germanium	Tek Spec				
D76	*152-075	Germanium	Tek Spec				
D82	*152-075	Germanium	Tek Spec				
D92	*152-075	Germanium	Tek Spec				
D99	*152-075	Germanium	Tek Spec				

.

SIGNAL COMPARATOR CARD (2) SERIES N (Cont'd)

Transistors

Ckt. No.	Tektronix Part No.		Description			Model No.
Q13A,B Q14 Q18 Q23 Q24	*151-104 *151-104 *151-103 151-069 *151-054	Replaceable by Replaceable by Replaceable by 2N1304 Selected from 2	2N2913 2N2219			
Q34 Q44 Q54 Q85 Q95	*151-103 *151-103 *151-054 *151-054 *151-054	Replaceable by Replaceable by Selected from 2 Selected from 2 Selected from 2	2N2219 N1754 N1754			
			Resistors			
R14 R18 R19 R24 R26	301-513 Use 301-0132-00 311-086 Use 303-132 301-471	51 k 1.3 k 2.5 k 1.3 k 470 Ω	1/2 ₩ 1/2 ₩ .5 ₩ 1 ₩ 1/2 ₩	Var	5% 5% DC BAL 5% 5%	
R27 R31 R32 R34 R36 R37	301-911 301-223 301-333 301-102 301-912 301-102	910 Ω 22 k 33 k 1 k 9.1 k 1 k	$\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$		5% 5% 5% 5% 5% 5%	
R44 R45 R54 R54 R55 R 55	301-102 301-302 301-752 301-562 301-680 301-910	1 k 3 k 7.5 k 5.6 k 68 Ω 91 Ω	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		5% 5% 5% 5% 5% 5%	1, 2 3-up 1, 2 3-up
R57 R60 R61 R62 R69	301-752 301-105 301-104 301-513 301-362	7.5 k 1 meg 100 k 51 k 3.6 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		5% 5% 5% 5% 5%	
R70 R71 R72 R80 R82	301-105 301-104 301-513 301-101 301-822	1 meg 100 k 51 k 100 Ω 8.2 k	½ ₩ ½ ₩ ½ ₩ ½ ₩ ½ ₩ ½ ₩		5% 5% 5% 5%	
R85 R86 R87 R92 R95	301-512 301-223 301-474 301-822 301-512	5.1 k 22 k 470 k 8.2 k 5.1 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		5% 5% 5% 5% 5%	
R96 R97 R99	301-223 301-474 301-393	22 k 470 k 39 k	¹/₂ ₩ ¹/₂ ₩ ¹/₂ ₩		5% 5% 5%	

SIGNAL COMPARATOR CARD (2) SERIES N (Cont'd)

Switch

Ckt. No.		Fektronix Part No.		Descripti	on			Model	No.
SW42	Unwired 260-583	Wired	Slide		3 DOT DELAY				
			0% Z	ONE CARD	1) SERIES O				
		*670-055	Complete Carc	1					
				Capacito	ors				
C11 C23 C36 C53 C66		281-536 283-001 281-543 283-001 281-543	0.001 μf 0.005 μf 270 pf 0.005 μf 270 pf	Cer Cer Cer Cer Cer		500 v 500 v 500 v 500 v 500 v	10% 10% 10%		
Diodes									
D2 D2 D5 D13 D15		152-094 152-0150-00 *152-075 *152-075 *152-075	Zener Zener Germanium Germanium Germanium	¾M50Z10 1N3037B Tek Spec Tek Spec Tek Spec	¾ w, 50 v, 10% 1 w, 51 v, 5%				1 2-սթ
D23 D42 D53 D72		*152-075 *152-075 *152-075 *152-075	Germanium Germanium Germanium Germanium	Tek Spec Tek Spec Tek Spec Tek Spec					
				Transista	ors				
Q3 Q4 Q5 Q13 Q14		*151-096 *151-103 *151-054 *151-054 *151-054	Selected fro Replaceable Selected fro Selected fro Selected fro	by 2N2219 m 2N1754 m 2N1754					
Q15 Q23 Q33 Q35 Q45		*151-054 *151-103 151-071 *151-103 *151-103	2N1305 Replaceable	om 2N1754 by 2N2219 by 2N2219 by 2N2219 by 2N2219					
Q53 Q63 Q65 Q75 Q84 Q94		*151-103 151-071 *151-103 *151-103 *151-103 *151-103	2N1305 Replaceable Replaceable Replaceable	by 2N2219 by 2N2219 by 2N2219 by 2N2219 by 2N2219 by 2N2219					

0% ZONE CARD (1) SERIES O (Cont'd)

Resistors

Ckt. No.	Te ktronix Part No.		Description				Model	No.
R3	301-104	100 k	¹∕₂ w			50/		
R3 R4	301-102	1 k				5%		
			1/2 W			5%		
R5	301-392	3.9 k	1/2 W		_	5%		
R6	323-318	20 k	1/2 W		Prec	1%		
R7	323-392	118 k	1/2 W		Prec	1%		
R10	301-224	220 k	1∕₂ w			5%		
R11	301-223	22 k	1/2 w			5%		
R12	301-470	47 Ω	1/2 w			5 /o 5 0/		
R13	301-624	620 k	1/2 W			5% 5%		
R13 R14						5%		
	301-222	2.2 k	1/2 W			5%		
R17	301-223	22 k	1/2 W			5%		
R18	301-474	470 k	¹/₂ w			5%		
R19	301-392	3.9 k	½ w			5%		
R21	301-203	20 k	1/2 w			5%		
R22	301-473	47 k	1∕₂ w			5%		
R23	301-433	43 k	1∕2 w			5%		
			<i>,,,,,,,,,,,,,</i>			5%		
R25	311-329	50 k		Var		ZONE WI	חדח	
R27	301-473	47 k	1∕₂ w	, <u>u</u>	· · · · ·	5%		
R31	301-243	24 k	1/2 w			J /0 E0/		
R33	301-104	100 k	/2 W			5%		
			1⁄₂ ₩			5%		
R35	301-392	3.9 k	¹∕₂ w			5%		
R36	301-223	22 k	½ w			5%		
R37	301-224	220 k	½ w			5%		
R42	301-682	6.8 k	1/2 w			5%		
R45	301-122	1.2 k	1∕ ₂ w			5%		
R47	301-470	47 Ω	1∕₂ w			5%		
			/2			J /0		
R51	301-203	20 k	½ w			5%		
R52	301-473	47 k	72 ₩ 1⁄2 ₩			5%		
R53	301-433	43 k	/₂ ₩ /⁄₂ ₩			5%		
R55			72 **	M - 1		5%		
	311-329	50 k	1/	Var	B	ZONE WIL	ЛН	
R57	301-473	47 k	½ ₩			5%		
R61	301-243	24 k	% v/₂ w			5%		
R63	301-104	100 k	¹/₂ w			5%		
R65	301-392	3.9 k				5%		
			1/2 W			5%		
R66	301-223	22 k	1/2 W			5%		
R67	301-224	220 k	1∕₂ w			5% 5% 5%		
R72	301-682	6.8 k	1∕₂ w			5%		
R75	301-122	1.2 k	1/2 w			5%		
R77	301-470	47 Ω	1/2 w 1/2 w			50/		
R82	301-102	1 k	72 ₩ 1⁄2 ₩			5% 5% 5% 5% 5%		
R84		104	72 ₩ 1/			5%		
	301-103	10 k	½ w			5%		
R89	303-473	47 k	1 w			5%		
R94	301-103	10 k	¹⁄₂ w			5%		

MEMORY CARD (2) SERIES P

Use *670-0083-00

Complete Card

Capacitors

Ckt. No.	Tektronix Part No.		Description		м	odel No.
C1 C1	290-135 283-0059-00	15 μf 1 μf 150 f	EMT Cer	20 v 25 v	+80% -20%	1, 2, 3 4-up
C12 C23 C48	281-524 281-525 285-569	150 pf 470 pf 0.01 μf	Cer Cer PTM	500 v 500 v 200 v		1, 2, 3
C48 C49	285-0596-00 285-623	0.01 μf 0.47 μf	РТМ РТМ	100 v 100 v	1%	4-up 1, 2, 3
C49 C63 C64	285-0701-00 281-0636-00 281-551	0.47 μf 100 pf 390 pf	PTM Cer Cer	50 v 500 v 500 v	+80% —20% 10%	4-up X4-up 1, 2, 3X
C74 C78	283-081 285-569	0.1 μf 0.01 μf	Cer PTM	25 v 200 v		1, 2, 3X 1, 2, 3
C78 C79 C79	285-0596-00 285-623 285-0701-00	0.01 μf 0.47 μf 0.47 μf	PTM PTM PTM	100 v 100 v 50 v	1%	4-up 1, 2, 3 4-up
C82 C93	281-551 281-0636-00	390 pf 100 pf	Cer Cer	500 v 50 v	10% +80% —20%	1, 2, 3X X4-up
C94	281-551	390 pf	Cer	500 v	+80% -20% 10%	1, 2, 3X

Diodes

D4	*152-075	Germanium Tek Spec	1, 2, 3
D4	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D14	*152-075	Germanium Tek Spec	1, 2, 3
D14	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D34	*152-075	Germanium Tek Spec	1, 2, 3
D34	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D35	*152-075	Germanium Tek Spec	1, 2, 3
D35	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D46	*152-075	Germanium Tek Spec	1, 2, 3
D46	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D47	*152-0185-00	Silicon Replaceable by 1N4152	X4-up
D48	Use *050-232	Replacement Kit	1
D48	*152-165	Silicon Selected from 1N3579	2, 3, 4, 5
D48	*152-0323-00	Silicon Tek Spec	6-up
D49	*152-185	Silicon Replaceable by 1N4152	X2-3X
D52	*152-075	Germanium Tek Spec	1, 2, 3X
D57	152-141	Silicon 1N4152	1, 2, 3
D57	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D58	152-141	Silicon 1N4152	1, 2, 3
D58	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D59	*152-075	Germanium Tek Spec	1, 2, 3
D59	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D60	*152-185	Silicon Replaceable by 1N4152	Х2-ир
D61	*152-075	Germanium Tek Spec	1, 2, 3
D61	*152-0185-00	Silicon Replaceable by 1N4152	4-ир
D62	Use *050-232	Replacement Kit	1
D62	*152-165	Silicon Selected from 1N3579	2, 3, 4, 5
D62	*152-0323-00	Silicon Tek Spec	6-ир

Diodes (Cont'd)

Ckt. No.	Tektronix Part No.	Description	Model No.
D63	*152-075	Germanium Tek Spec	1, 2, 3
D63	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D64	152-141	Silicon 1N4152	1, 2, 3X
D66	152-0246-00	Silicon Low Leakage 0.25 w, 40 v	X5-up
D65	*152-075	Germanium Tek Spec	1, 2, 3X
D74	*15 2-0 75	Germanium Tek Spec	1, 2, 3X
D75 D75 D77 D78 D78 D78 D78	*152-075 *152-0185-00 *152-0185-00 Use *050-232 *152-165 *152-0323-00	Germanium Tek Spec Silicon Replaceable by 1N4152 Silicon Replaceable by 1N4152 Replacement Kit Silicon Selected from 1N3579 Silicon Tek Spec	1, 2, 3 4-up X4-up 1 2, 3, 4, 5 6-up
D79	*152-185	Silicon Replaceable by 1N4152	2, 3X
D82	*152-075	Germanium Tek Spec	1, 2, 3X
D84	*152-0185-00	Silicon Replaceable by 1N4152	X4-up
D85	152-142	Zener 1N972A, 30 v	1, 2, 3, 4, 5, 6
D85	152-0282-00	Zener 1N972B 0.4 w, 30 v, 5%	7-up
D86	*152-075	Germanium Tek Spec	1, 2, 3
D86 D87 D87 D88 D88 D88 D90	*152-0185-00 152-141 *152-0185-00 152-141 *152-0185-00 *152-185	Silicon Replaceable by 1N4152 Silicon 1N4152 Silicon Replaceable by 1N4152 Silicon 1N4152 Silicon Replaceable by 1N4152 Silicon Replaceable by 1N4152	4-up 1, 2, 3 4-up 1, 2, 3 4-up X2-up
D91	*152-075	Germanium Tek Spec	1, 2, 3
D91	*152-0185-00	Silicon Replaceable by 1N4152	4-up
D92	Use *050-232	Replacement Kit	1
D92	*152-165	Silicon Selected from 1N3579	2, 3, 4, 5
D92	*152-0323-00	Silicon Tek Spec	6-up
D93	*152-075	Germanium Tek Spec	1, 2, 3
D93	*152-0185-00	Silicon Replaceable by 1N4152	4-υ ρ
D94	152-141	Silicon 1N4152	1, 2, 3X
D95	*152-075	Germanium Tek Spec	1, 2, 3X
D96	152- 0246 -00	Silicon Low Leakage 0.25 w, 40 v	Χ5-υρ
		Transistors	
Q4	Use 151-0164-00	2N3702	
Q14	Use 151-0166-00	2N2923	
Q24	Use 151-0166-00	2N2923	
Q25	Use 151-0164-00	2N3702	
Q34	Use 151-0166-00	2N2923	
Q35	Use 151-0164-00	2N3702	
Q44	Use 151-0166-00	2N2923	
Q54A,B	*151-104	Replaceable by 2N2913	
Q63	*151-103	Replaceable by 2N2219	
Q64	Use 151-0164-00	2N3702	
Q73	151-071	2N1305	1, 2, 3X
Q84A,B	*151-104	Replaceable by 2N2913	

Q84A,B	*151-104	Replaceable by 2N2913	, _,
Q93	*151-103	Replaceable by 2N2219	1, 2, 3
Q93	151-0164-00	2N3702	4-up
Q94	*151-103	Replaceable by 2N2219	

Resistors

	-		Resistors			
Ckt. No.	Tektronix Part No.		Description		Мо	del No.
R1 R2 R3 R4 R4	315-100 301-100 301-433 311-326 311-0267-00	10 Ω 10 Ω 43 k 10 k 10 k	¼ w ½ w ½ w	Var Var	5% 5% 5% 100% ZONE WIDTH 100% ZONE WIDTH	1, 2, 3 4-up
R5 R6 R12 R14 R21	315-103 315-133 315-473 315-103 315-470	10 k 13 k 47 k 10 k 47 Ω	1/4 w 1/4 w 1/4 w 1/4 w 1/4 w		5% 5% 5% 5% 5%	
R22 R23 R25 R26 R27	315-394 315-203 315-392 315-393 315-754	390 k 20 k 3.9 k 39 k 750 k	1/4 w 1/4 w 1/4 w 1/4 w 1/4 w		5% 5% 5% 5% 5%	
R28 R28 R35 R35 R36	315-103 315-0203-00 301-202 301-0362-00 315-393	10 k 20 k 2 k 3.6 k 39 k	$\frac{1}{4} \le \frac{1}{4} \le \frac{1}$		5% 5% 5% 5% 5%	1, 2, 3 4-up 1, 2, 3 4-up
R37 R38 R41 R42 R42	315-754 303-223 315-223 301-434 315-0474-00	750 k 22 k 22 k 430 k 470 k	1/4 w 1 w 1/4 w 1/2 w 1/4 w		5% 5% 5% 5% 5%	1, 2, 3 4-up
R43 R44 R45 R46 R48	315-102 315-123 315-303 315-912 315-100	1 k 12 k 30 k 9.1 k 10 Ω	1/4 w 1/4 w 1/4 w 1/4 w 1/4 w 1/4 w		5% 5% 5% 5% 5%	1, 2, 3
R48 R49 R49 R52 R53	315-0470-00 307-106 307-0104-00 315-0472-00 311-0550-00	47 Ω 4.7 Ω 3.3 Ω 4.7 k 25 k	1/4 w 1/4 w 1/4 w 1/4 w 1/4 w	Var	5% 5% 5% 5% 100% BAL	4-up 1, 2, 3 4-up X4-up X4-up
R54 R54 R55 R55 R60	301-473 301-0333-00 301-333 303-0303-00 315-393	47 k 33 k 33 k 30 k 39 k	1/2 w 1/2 w 1/2 w 1/2 w 1 w 1/4 w		5% 5% 5% 5% 5%	1, 2, 3 4-up 1, 2, 3 4-up
R61 R62 R63 R64 R64	315-823 315-154 315-102 Use 315-390 315-0392-00	82 k 150 k 1 k 39 Ω 3.9 k	1/4 w 1/4 w 1/4 w 1/4 w 1/4 w		5% 5% 5% 5% 5%	1, 2, 3 4-υp

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description				
R65 R66 R67 R67	301-363 311-097 315-471 315-0472-00	36 k 200 Ω 470 Ω 4.7 k	½ w .5 w ¼ w ¼ w	Var		5% 100% BAL 5% 5%	1, 2, 3X 1, 2, 3 4-up
R68 R69 R69 R73 R74	315-470 301-363 304-0222-00 315-103 315-202	47 Ω 36 k 2.2 k 10 k 2 k	1/4 w 1/2 w 1 w 1/4 w 1/4 w			5% 5% 5%	1, 2, 3 4-up 1, 2, 3X
R76 R77 R78 R78 R78 R79	315-102 315-303 315-100 315-0470-00 307-106	1 k 30 k 10 Ω 47 Ω 4.7 Ω	1/4 w 1/4 w 1/4 w 1/4 w 1/4 w			5% 5% 5% 5% 5%	1, 2, 3X 1, 2, 3 4-up 1, 2, 3
R79 R82 R83 R84 R84	307-0104-00 315-0472-00 311-0556-00 301-473 301-0433-00	3.3 Ω 4.7 k 50 k 47 k 43 k	1/4 w 1/4 w 1/2 w 1/2 w	· Var		5% 5% 0% BAL 5% 5%	4-up X4-up X4-up 1, 2, 3 4-up
R85 R85 R86 R86 R87	301-393 322-0383-00 315-392 323- 038 0-00 315-103	39 k 95.3 k 3.9 k 88.7 k 10 k	1/2 w 1/4 w 1/4 w 1/2 w 1/2 w		Prec Prec	5% 1% 5% 1% 5%	1, 2, 3 4-up 1, 2, 3 4-up 1, 2, 3
R87 R90 R91 R92 R93	321-0312-00 315-393 315-113 315-156 315-102	17.4 k 39 k 11 k 150 k 1 k	1/8 w 1/4 w 1/4 w 1/4 w 1/4 w		Prec	1 % 5% 5% 5% 5%	4-up
R94 R94 R95 R96 R96	Use 315-390 315-0392-00 301-363 311-097 301-0363-00	39 Ω 3.9 k 36 k 200 Ω 36 k	1/4 w 1/4 w 1/2 w .5 w 1/2 w	Var		5% 5% 5% 0% BAL 5%	1, 2, 3 4-up 1, 2, 3 4-up
R97 R97 R98 R99 R99	315-471 315-0472-00 315-470 301-363 301-0152-00	470 Ω 4.7 k 47 Ω 36 k 1.5 k	1/4 w 1/4 w 1/4 w 1/4 w 1/2 w 1/2 w			5% 5% 5% 5% 5%	1, 2, 3 4-up 1, 2, 3 4-up
	Unwired	Wired	Switches				
SW46 SW46 SW50 SW50 SW76 SW76	260-583 260-0723-00 260-583 260-0723-00 260-583 260-0723-00		Slide Slide Slide Slide Slide Slide	100% MODE 100% MODE RESPONSE RESPONSE 0% MODE 0% MODF			1, 2, 3 4-up 1, 2, 3 4-up 1, 2, 3 4-up

Electron Tubes

Ckt. No.	Tektronix Part No.		Description	Model No.
V63	154-323	6CW4		
V93	154-323	6CW4		

VOLTMETER CARD (1) SERIES Q

	*670-056	Complete Ca	rd				
			Capaci	tors			
C1 C2 C6 C10 C11	283-059 281-605 283-003 283-000 Use 281-550	1 μf 200 pf 0.01 μf 0.001 μf 120 pf	Cer Cer Cer Cer		25 v 500 v 150 v 500 v 500 v		
C12 C14 C16 C102 C116	283-029 281-516 283-003 281-523 281-543	0.02 μf 39 pf 0.01 μf 100 pf 270 pf	Cer Cer Cer Cer Cer		25 v 500 v 150 v 350 v 500 v		
C126 C140 C140 C142	281-543 285-650 *285-663 283-003	270 pf 0.027 μf 0.1 μf 0.01 μf	Cer PTM PTM Cer		500 v 100 v 100 v 150 v	5% 3.5%	1, 2 3-up
			Diode	95			
D4 D14 D24 D34 D67	*152-075 *152-075 *152-075 *152-075 152-075 152-055	Germanium Germanium Germanium Germanium Zener	Tek Spec Tek Spec Tek Spec Tek Spec 14M11Z5	1⁄4 w, 11 v, 5%			
D87 D104 D105 D115 D125	152-055 *152-075 *152-075 *152-075 *152-075	Zener Germanium Germanium Germanium Germanium	1/2M11Z5 Tek Spec Tek Spec Tek Spec Tek Spec	¼ w, 11 v, 5%			
D132 D132 D140 D140 D142	152-141 152-0141-02 152-141 152-0141-02 152-141	Silicon Silicon Silicon Silicon Silicon	1N4152 1N4152 1N4152 1N4152 1N4152				1,2,3,4 5-up 1,2,3,4 5-up 1,2,3,4
D142 D153 D156	152-0141-02 *152-075 *152-075	Silicon Germanium Germanium	1N4152 Tek Spec Tek Spec	4			5-ир

Transistors

Q4	*151-103	Replaceable by 2N2219
Q10	151-069	2N1304
Q14	*151-103	Replaceable by 2N2219
Q24	*151-054	Selected from 2N1754
Q33	*151-1 03	Replaceable by 2N2219

VOLTMETER CARD (1) SERIES Q (Cont'd)

Transistors (Cont'd)

Transistors (Cont'd)						
Ckt. No.	Tektronix Part No.		Description	n		Model No.
Q34 Q43 Q68 Q78 Q88	*151-054 *151-054 *151-133 *151-103 *151-133	Selected from 21 Selected from 21 Selected from 21 Replaceable by Selected from 21	N1754 N3251 2N2219			
Q98 Q104 Q115 Q125 Q141 Q153	*151-103 151-071 151-071 151-071 *151-103 *151-103	Replaceable by 2N1305 2N1305 2N1305 Replaceable by Replaceable by	2N2219			
			Resistors			
R1 R2 R4 R5 R6	301-100 301-470 301-392 301-273 301-273	10 Ω 47 Ω 3.9 k 27 k 27 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w			5% 5% 5% 5% 5%
R10 R11 R12 R14 R15	301-563 Use 301-103 301-470 301-392 301-273	56 k 10 k 47 Ω 3.9 k 27 k	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w			5% 5% 5% 5% 5%
R16 R21 R31 R34 R35	301-273 301-104 301-104 301-103 301-470	27 k 100 k 100 k 10 k 47 Ω	1/2 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w			5% 5% 5% 5% 5%
R45 R60 R61 R64 R67	301-471 323-336 323-300 321-405 311-326	470 Ω 30.9 k 13 k 162 k 10 k	½ w ½ w ½ w ⅓ w	Var	Prec Prec Prec	5% 1% 1% 1% START VOLTAGE CAL
R74 R80 R81 R84 R87	321-405 323-336 323-300 321-405 311-326	162 k 30.9 k 13 k 162 k 10 k	1∕8 w 1∕2 w 1⁄2 w 1⁄2 w 1∕8 w	Var	Prec Prec Prec Prec	1% 1% 1% 1% STOP VOLTAGE CAL
R94 R100 R101 R102 R104	321-405 323-317 323-358 301-102 301-202	162 k 19.1 k 52.3 k 1 k 2 k	1/8 w 1/2 w 1/2 w 1/2 w 1/2 w 1/2 w		Prec Prec Prec	1% 1% 1% 5% 5%
R105 R116 R117 R124 R126	301-183 301-433 301-474 301-392 301-433	18 k 43 k 470 k 3.9 k 43 k	$\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$ $\frac{1}{2} w$			5% 5% 5% 5% 5%

VOLTMETER CARD (1) SERIES Q (Cont'd)

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Description				Model No.
R127	301-474	470 k	½ w			5%	
R130	301-113	11 k	1∕₂ w			5%	1, 2
R130	301-822	8.2 k	1/2 w			5%	3-up
R131	301-163	16 k	1/2 w			5%	•
R140	323-438	357 k	√₂ w		Prec	1%	1, 2
R140	323-384	97.6 k	½ ₩		Prec	1%	3-ир
R141	311-329	50 k		Var		RAMP SLOPE	1, 2
R141	311-326	10 k		Var		RAMP SLOPE	3-up
R144	301-474	470 k	1/2 w			5%	1-
R153	303-183	18 k	1 w			5%	
R154	301-202	2 k	% √2 W			5%	
R155	Use 301-333	33 k	1∕₂ w			5%	
R156	301-202	2 k	1/2 w			5%	
R157	301-104	100 k	½ ₩			5%	
R 158	323-308	15.8 k	1∕₂ w		Prec	1%	
R114	301-622	6.2 k	1∕₂ w			5%	
R115	301-102	1 k	1∕₂ w			5%	

Crystal

Y10	158-014	1000 K C	Type H17	$\pm 0.01\%$

IMPORTANT

The waveform photographs shown on certain of the 6R1A schematics were taken from the crt face of a Tektronix Type 545A/CA oscilloscope system. The equipment was initially set up as listed below. After the initial setup was made, the controls were changed as necessary to obtain the individual photographs.

545A

TIME/CM	2 mSEC/CM
MAGNIFIER	OFF
Triggering controls	To obtain stable display

CA Unit

VOLTS/CM	1
Probe	10X
POLARITY	NORMAL
	DC
CHOPPED mode was used when photograph	ing two time related signals.

3576

MV/DIV	100
Mode	A ONLY
Polarity	NORM.
INTERNAL TRIGGER	Α
Signal input	2 cm of 1 mc squarewave

TYPE GRIA

Α,

REFERENCE DIAGRAMS

- MODE SWITCH
- 5 READOUT TUBES
- PLUG-IN CIRCUIT BOARD CONNECTORS
- SEXTERNAL READOUT & PROGRAMMING CONNECTORS
- CONNECTORS TO INDICATOR UNIT

TYPE GRIA

А

RESOLUTION SWITCH <2> GАВ 364

+ TYPE GRIA

1

B

١

в

+

B

BI

 \backslash

READOUT TUBES (5) GAB

TYPE GRIA

(?) (8)

A

REFERENCE DIAGRAMS

DUPPER LIMIT SWITCHES

B PLUG-IN CIRCUIT BOARD CONNECTORS

LOWER LIMIT SWITCHES

/

Α

A

TYPE GRIA

A

REFERENCE DIAGRAMS

C LOWER LIMIT SWITCHES

PLUG-IN CIRCUIT BOARD CONNECTORS

UPPER LIMIT SWITCHES

D

PLUG-IN CIRCUIT CARD CONNECTORS (8) 929

	EXTERNAL READOUT J33	C O YO Y
A	10005'-1 19-9	f 105'-9 J7-12 🚯
В	10005'-2 J9-17 🚷	g 105'-0 J7-10 🚯
c	10005'-3 J9-15 (8)	h 15'-1 J6-9
D -	1000 s'-4 J 9-20 (8)	i 15 ⁷ -2 J6-17 (8)
E	10005'-5 J9-19 (8)	$\frac{1}{2}$ 15 ³ - 3 J6 - 15 8
F	10005'-6 J9-6 🚷 10005'-7 J9-5 🚷	<u>k</u> 15'-4 J6-20 (8) m 15'-5 J6-19 (8)
ы н	10005'-8 J9-13 (8)	m 15'-5 J6-198 n 15'-6 J6-68
J	10005'-9 J9-12	p 15'-7 16-5
ĸ	10005'-0 J9-10 (8)	q 15'-B J6-13
L	1005'-1 J8-9 🚯	r 15'-9 J6-12
м	1005'-2 J8-17 🛞	5 15'-0 J6-10
N	1005'-3 J8-15 🛞	t DECIMAL I FROM SW 360-2F
Ρ	1005'-4 J8-20 🛞	y DECIMAL 2 FROM SW 360-2FER 2
P.	1005'-5 J8-19 🚯	Y DECIMAL 3 FROM SW 360-2FER 📀
S	1005'-6 J8-6 🔕	W DECIMAL 4 FROM SW 360-2FER
т	1005'-7 J8-5 🚯	X DECIMAL 5 FROM SW 360-2R
U	1005'-8 J8-13 (8)	Υ m FROM P31-8 10
۷	1005'-9 J8-12	<u>z</u> n from P31-10(10)
w	1005'-0 J8-10 🛞	AA μ FROM P31-910
X	105'-1 J7-9	BB V FROM P31-6
Y 7	105'-2 J7-17	CC S FROM P31-7
Z ð.	105'-3 J7-15 🛞 105'-4 J7-20 🛞	DD NO-GO UPPER LIMIT FROM JI7-14
ь	105'-5 J7-19	EE NO-GO MID-ZONE FROM J17-13 🛞 FF NO-GO LOWER LIMIT FROM J17-15 🚷
ç	105'-6 J7-6	GG PRINT COMMAND FROM J4-20
≚ d	105' - 7 J7 - 5 🚯	HH DISPLAY HOLD FROM J3-12
e	105' - 8 J7 - 13 🚯	
	\checkmark	

A GROUND SWEEP (в C VOLTME D A VERT E A VERT -STOP F G +20V - START н B 100% J B VER ĸ DEC, U L M A VERT + 1,2, Ν + STAR Ρ A 10**0%** R. + 5TOP 5 B VERT т υ B VERI HORIZ ۷ HORIZ w A 0% х 10005' Y z B 0%

TYPE GRIA

Aı

/

.


```
GROUND
  SWEEP OUT FROM J12-10
  VOLTMETER RAMP FROM JI-17
  A VERT +1,2,5 GND TO P32-21
D
  A VERT DEC, UNITS GND TO P32-19
  -STOP COMPARATOR TO SW 320-IR
  +207
G
  -START COMPARATOR TO SW320-IR
   B 100% OVERPIDE TO JII-14 THRU P574
   B VERT SIGNAL OUT, SW440-3FER 3
   DEC, UNITS RETURN FROM SW320-3R
  A VERT SIGNAL OUT, SW490-3FER 4
w
  + 1,2,5 RETURN FROM SW 320-3R
Ν
  + START COMPARATOR TO SW 320-2F
  A 100% OVERRIDE TO JIO-14 THRU 2584
  + STOP COMPARATOR TO SW320-2R
   B VERT DEC, UNITS GND TO P32-20 10
т
   B VERT +1,2,5 GND TO P32-22 10
υ
  HORIZ DEC, UNITS GND TO P32-23
٧
   HORIZ +1,2,5 GND TO P32-24 10
W
  A 0% OVERRIDE FROM J12-12
х
   10005' STAIRCASE FROM J9-2 (8)
Y
   B 0% OVERRIDE FROM JI2-8
z
```

A

a 100% A MEMORY FROM JIO-8 (8) 100% B MEMORY FROM JII- 8 8 IN START SLOPE TO SW320-4F ç 21 START SLOPE TO SW 320-3F () d e 1 STOP SLOPE TO SW320-5F € f 2₩ STOP SLOPE TO SW320-3F 0% A MEMORY FROM JIO-7 (8) g 0% B MEMORY FROM JII-7 (8) h i SPARE į. IS' STAIRCASE FROM JO-2 -12,2V F M TIME CLOCK TO JI-12 PRINT COMMAND, FROM J4-13 (8) n 1005' STAIRCASE FROM J8-2 P q 105' STAIRCASE FROM J7-2 r DISPLAY HOLD TO J3-12 S VOLTMETER OSC TO JI-18 (8) t VOLTMETER OSC, TIME CLOCK RETURN FROM SW 320-4R

REFERENCE DIAGRAMS

- ANDE SWITCH
- 2 RESOLUTION SWITCH
- 3 TIMING START SWITCHING
- TIMING STOP SWITCHING
- B PLUG-IN CIRCUIT BOARD CONNECTORS

GAB 364

/

CONNECTOR TO INDICATOR UNIT

EXTERNAL READOUT & PROGRAMMING CONNECTORS 🔊

P '

REFERENCE DIAGRAMS

- MODE SWITCH
- 2 RESOLUTION SWITCH
- TIMING START SWITCHING
- TIMING STOP SWITCHING
- 5 READOUT TUBES
- B PLUG-IN CIRCUIT BOARD CONNE
- S EXTERNAL READOUT & PROGRAM

TYPE GRIA

ERENCE DIAGRAMS

ODE SWITCH

ESOLUTION SWITCH

IMING START SWITCHING

IMING STOP SWITCHING

EADOUT TUBES

LUG-IN CIRCUIT BOARD CONNECTORS

XTERNAL READOUT & PROGRAMMING CONNECTORS

CONNECTORS TO INDICATOR UNIT

765 11-

Α2

TYPE GRIA

A2

TYPE GRIA

+

Þı

20m SEC/CM

TYPE GRIA A

+

20mSEC/CM

SEE IMPORTANT NOTE ON 0% ZONE DIAG.

÷5

A SEPIES I MODEL 3 A IO GAB 304

i

╉

/

E۱

+ TYPE GRIA

/

c

+

+

1

٤.

SIGNAL COMPARATOR

GAB 965 +

D

TYPE GRIA

/

A,

SERIES & MODEL IA LOWER LIMIT NO-GO

A,

TYPE GRIA

1

 \mathbf{A}^{\dagger}

SERIES F MODEL IA UPPER LIMIT NO-GO

A,

I.

TYPE GRIA

А

1

TYPE GRIA

١

Aı

A,

ANALOG DISPLAY

SERIES J MODEL I

А

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Sections of the manual are often printed at different times, so some of the information on the change pages may already be in your manual. Since the change information sheets are carried in the manual until ALL changes are permanently entered, some duplication may occur. If no such change pages appear in this section, your manual is correct as printed.

SCHEMATIC CORRECTION

PARTIAL-0% \$ 100% MEMORIES

C3/1169

SCHEMATIC CORRECTION

÷1,2,5 <15

Series B Model 3-5

CHANGE: the position of D43 as shown below:

C4/270

al s

TYPE 6R1A

TEXT CORRECTION

Section 6 Calibration

Page 6-2 Column 2, Step 2(c)

CHANGE: Line 4 to read:

the horizontal plug-in unit for 10 dots per division.

÷

C1/169 (Revised)

• .

TYPE 6R1A

TEXT CORRECTION

Section 6 Calibration

Page 6-1 Column 1

ADD:

NOTE

If done in sequence, the following procedure returns the instrument to original performance standards. Limits, tolerances and waveforms in this procedure are given as calibration guides and are not instrument specifications.

C2/769

ELECTRICAL PARTS LIST CORRECTIONS

÷ 1, 2, 5 CARD (1) Series R

CHANGE :

R44	301-0332-00	3.3 kW	1/2 W	5%	Model 1-up
ADD:					
D43	152-0141-02	Silicon	1N3605		Model 1-up

•

•

M11,465/669

M11,465/669