TEKTRONIX®

067-0746-00 SYSTEM TEST FIXTURE

Tektronix, Inc. P.O. Box 500 Beaverton, Oregon 97077 070-2304-00 Copyright © 1977 by Tektronix, Inc. Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one or more U.S. or foreign patents or patent applications. Information provided on request by Tektronix, Inc., P.O. Box 500, Beaverton, Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.

Portions of this manual were reprinted with permission of Motorola, Inc., Phoenix, Arizona.

This manual supports the following versions of this product: B010100 and up

REV. DATE DESCRIPTION @ 5/77 Original Issue

MANUAL REVISION STATUS

i

. -

CONTENTS

SECTION 1	INTRODUCTION
	Overview
	Standard Configuration 1-3
	Available Test Fixture Memory
	Installation
	Routine Maintenance 1-4

WARNING

The remaining portion of this Table of Contents lists servicing instructions that expose personnel to hazardous voltages. These instructions are for qualified service personnel only.

SECTION 2 OPERATION Getting Started 2-1 Operating Procedures 2-1

SECTION 3	CIRCUIT DESCRIPTION
	Introduction
	General
	Definitions Of Signal Names
	Circuitry
	Block Diagram Overview 3-9
	Power

SECTION 4 6800 MICROCOMPUTER SPECIFICATIONS

- **SECTION 5 REPLACEABLE PARTS**
- **SECTION 6 SCHEMATICS**
- **CHANGE INFORMATION**

LIST OF ILLUSTRATIONS

Figure Description Page 1-1 067-0746-00 System Test Fixture 1-2 Equipment that can be tested is based on a 6800 microcomputer system 1-2 1-3 Memory address space utilization 1-4 1-4 System Test Fixture installation hardware 1-5 3-1 System Test Fixture showing microcomputer interface 3-2 6800 Microcomputer Block Diagram 3-3 3-3 3-4 EXAMINE and DEPOSIT timing 3-10 3-5 System Test Fixture timing 3-11 3-6 Comparative timing for memory write operations (4051 and System Test Fixture) 3-13

Fig. 1-1. 067-0746-00 System Test Fixture.

Section 1

INTRODUCTION

Overview

The 067-0746-00 System Test Fixture (Fig. 1-1) is a general purpose test device for Tektronix equipment that uses 6800 microprocessors. Several manufacturers make the 6800 microprocessors modeled after a design introduced by Motorola Semiconductor Products, Inc. Due to the sophisticated intelligence offered by these microprocessor devices, Tektronix has developed the System Test Fixture as an aid to troubleshooting these intelligent machines.

Typical systems offered by Tektronix using 6800 microprocessor technology include computing systems like the 4051 Graphic System, data storage devices like the 4924 tape unit, data display devices like the 4662 Digital Plotter and other equipment (Fig. 1-2), many of which can directly interface with the IEEE-488-1975 Standard Digital Interface for Programmable Instrumentation.

There are optional cables and accessories available to use the System Test Fixture with a number of intelligent systems offered by Tektronix, Refer to the section at the back of the manual that describes the various cables, auxiliary test boards and interface adapters for the various systems.

Microprocessors, when used as controllers for an intelligent device, must be treated much like a computer. The System Test Fixture connects directly to the microprocessor bus and control lines or their buffered equivalent. After the electrical connection is made, System Test Fixture operations closely resemble the control console operations of any mainframe computer system. Binary data can be stored and retrieved from specified addressable locations. Programs can be run. Processes can be stopped and the microinstrucitons can be executed one at a time for each pressing or a switch. Running test programs can also output data to the lights on the System Test Fixture in accordance with procedures dependent upon the operations of the specific test program.

Microprocessor devices residing in the addressable space of 65,536 possible address locations can be of various types. Most of the devices are components directly supported by the manufacturers of the 6800 microprocessors. They include random access memory (RAM) for temporary data storage, read only memory (ROM) for permanent data and program storage, and peripheral interface devices (PIA's and ACIA's) for equipment control and data transfer. Some intelligent systems may even have discrete logics that decode address information, latch data, and perform special operations.

Fig. 1-2. Equipment that can be tested is based on a 6800 microcomputer system.

Standard Configuration

The standard configuration of the System Test Fixture contains the test fixture, two ribbon cables and an adapter board for connecting the device to a 4051 Graphic Sytem. Other adapter boards are required if the System Test Fixture is to be used with other equipment. The two PROM devices that come standard with the System Test Fixture contain firmware tests for the 4051 Graphic System.

Available Test Fixture Memory

The System Test Fixture contains a possible 4K of programmable read-only memory (PRDM). Within the System Test Fixture, the address strap is set to give the PROM devices an address space in the 4K address region bounded by 9000 and 9FFF (Fig. 1-3). The internal fixture PROMs contain special test programs for the 4051 Graphic System. The strap can be changed to select any 4K address partition in the upper 32K of the microprocessor's 64K address space for PROM addressing.

System test programs can be changed by replacing the existing PROMs in the System Test Fixture with a new set.

The System Test Fixture also contains random access memory (RAM) for the highest 32 memory locations in the microprocessor's 64K address space (Fig. 1-3).

Installation

Several devices and systems manufactured by Tektronix utilize the System Test Fixture as part of the standard service equipment. Specific documentation as to the tests performed by the firmware test PROMS can be found in the appropriate service documentation that is available for each respective product. Consult the appropriate service manual for the connecting procedures for your system and the cautions to be taken. Figure 1-4 illustrates some of the devices necessary to make the System Test Fixture usable as a service troubleshooting tool.

(INTERRUPT VECTORS)

2304-3

Fig. 1-3. Memory address space utilization.

Routine Maintenance

Routine maintenance of the System Test Fixture consists of occasional cleaning. If the electronics are to be serviced, this service should be performed at a static-free work station.

There are no adjustments within the System Test Fixture housing except for the jumper that selects the PROM address space. The PROM address jumper should be set to be compatible with the system (or instrument) being tested.

1-4

INTRODUCTION

2304-4

.

Section 2

OPERATION

Getting Started

- 1. Review the service documentation for the equipment to be tested.
- 2. Check to see that the appropriate programs are installed in the System Test Fixture. The test programs are available through the regional field service centers as programmable read only memory (PROM) devices.
- Be sure you have the appropriate interface adapters and cables for the system to be tested.
- 4. Connect the System Test Fixture to your equipment as described in the appropriate service documentation for the equipment to be tested.

Operating Procedures

The switches and lamps on the System Test Fixture are used in a manner similar to the control console of a mainframe computer. The switches are used to load and retrieve data to and from memory. The switches are also used to execute programs, provide data input and enable data display operations under program control. Debugging breakpoints that monitor data at specified addresses or address monitoring of specified data values can be implemented by appropriate switch settings.

NOTE

If the HAUT line goes active during the last processor cycle of an instruction, one more instruction will be executed before the halt is affected and the microprocessor finally stops.

The switches and indicators perform the following functions.

@

All slide switches

Up = 1 or true Down = 0 or false

OPERATION

16 Address Switches

8 Data Switches

STOP

STEP

ABA LED

EXAMINE

DEPOSIT

AB15-AB0 left to right in groups of four switches, AB15 is the most significant and AB0 is the least significant address bit.

DB7-DB0 left to right in two groups of four switches,DB7 is the most significant and DB0 is the least significant data bit.

This signal will cause a HALT signal to be sent to the 6800 microprocessor. After completing the current instruction, the 6800 microprocessor will make the busses available for other uses and assert Bus Available (BA).

Once the microprocessor halts, the STEP switch can be used to step through the microinstructions, one instruction at a time. Each of the instructions may comprise 1, 2 or 3 memory locations (8-bits each).

This lamp turns on when the microprocessor stops and makes the busses available. The microprocessor asserts BA, which is used as ABA meaning the address bus is available.

This switch, when pressed, causes data found at a memory location determined by the address switches to be displayed in the Data LEDs. The microprocessor must be halted in order for this switch to have any affect.

This switch, when pressed, causes data found in the Data Switches to be loaded into the memory location. as determined by the Address

@

DEPOSIT (cont'd)

RESTART

LATCH DATA

LATCH ADDRESS

FIXTURE PROM

FIXTURE RAM

Switches. The microprocessor must be halted in order for this switch to have any affect.

This switch is tied directly to the RESTART line and causes a vectored restart interrupt to occur whenever this switch is pressed.

This slide switch will enable memory address comparison with the Address Switches and will capture the data contents written to or read from that memory location. The data contents will be displayed on the Data LEDS.

This slide switch will enable data comparison with the Data Switches and will capture the address bits that are active when the data comparison is sensed. The captured address is displayed in the Address LEDs. The address displayed is the location where the data was found.

This slide switch activates the INTERNAL PROM ENABLE SIGNAL. As a result, the RBC (ROM BANK CONTROL) signal is made false to disable a 4K byte memory address region in the upper 32K of the equipment under test. The firmware tests stored in the System Test Fixture on programmable read only memory (PROM) are enabled.

This slide switch activates the INTERNAL RAM ENABLE signal. As a result, the ROM DIS signal is asserted to disable the microprocessor interrupt vectors found in the equipment under test. The 32K RAM memory location can then be programmed to contain interrupt and restart vectors used by the PROM test programs.

Section 3

CIRCUIT DESCRIPTION

INTRODUCTION

General

The 067-0746-00 System Test Fixture is most effectively understood as a control panel for a 6800 microcomputer system. Using the System Test Fixture, data contents of addressable locations may be changed or examined while the processor is stopped. A restart vector can be executed. Other functions performed by computer control panels can also be performed using the System Test Fixture (see Section 2 on Operation).

Figure 3-1 shows the System Test Fixture keyboard layout along with signals found on the microcomputer bus cables. Meanings of each signal name are described later. The pushbutton switches (STOP, START, STEP, EXAMINE, DEPOSIT and RESTART) cause the specified operation to be performed. The microprocessor must be stopped and the ABA lamp must be on in order for the STEP, EXAMINE and DEPOSIT switches to have any affect.

The seven function slide switches are to the right of the push-button switches. The microprocessor must be running for these switches, with the exception of INSTR CYCLE, to be useful. The LATCH DATA and LATCH ADDRESS switches enable data bus and address bus contents to be displayed as a program is running. The FIXTURE PROM and FIXTURE RAM switches select internal PROM and internal RAM when on. The BREAK DATA and BREAK ADDR switches forces a microprocessor halt upon a valid data or address comparison. The INSTR CYCLE, when on, allows an instructioon address and OP-CODE information to be displayed when single-stepping through a program of microcode instructions.

The DATA and ADDRESS switches are used to enter values on the microcomputer data bus and address bus. The corresponding LEDs can display data bus and address bus information.

2304-5

Fig. 3-1. System Test Fixture showing microcomputer interface signal lines.

SYSTEM TEST FIXTURE

@

3-2

A typical 6800 microcomputer system that can be exercised by the System Test Fixture is shown in fig. 3=2. This illustration shows how the basic interfacing signals used by the System Test Fixture are generated. See the reprinted specification sheets in Section 4 of this manual for detailed 6800 microcomputer system timing and operations. These specifications are reprinted by permission of Motorola Semiconductor, Inc.

Fig. 3-2. 6800 Microcomputer Block Diagram.

A block diagram of System Test Fixture functions (Fig. 3-3) shows the switches, circuitry being controlled, and the interface lines to a 6800 microcomputer system (Fig. 2). Detailed circuitry of each block in the diagram can be found on the schematics at the end of this section. This block diagram is a convenient map to understanding the internal circuitry of the System Test Fixture. The rest of the documentation in the manual relates to this diagram and functions being performed.

Signal mnemonics found on the schematics and in the text of this manual have the following voltage level interpretation. If the signal name is appended by a dash-one (NAME-1), then the true state of the logic signal is high. If the signal name is appended by a dash-zero (NAME-0), then the true state of the logic signal is low. If a dash-one or dash-zero is missing from a schematic mnemonic, an analog signal is generally assumed. In the text of the manual and tables, the dash-one and dash-zero are often not shown; the true state or false state mentioned for these signals is dependent upon the appended one or zero as found on the schematic diagram.

Definitions Of Signal Names

ABO thru AB15

ADDRESS BUS These signal lines are the address bus that is used by the 6800 microprocessor and its associated memories and peripheral interfaces.

The bus available (BA) on the 6800 microprocessor, when buffered, is used as the source for the ABA

ABA

AD COM

ADDRESS COMPARE This signal is true whenever the address on the address bus matches the data keyed into the Address Switches.

BRK DATA COM BREAK ON DATA COMPARE This signal reflects the state of the BREAK=DATA switch and, when ac= tive, forces a HALT signal whenever the data bus value reflects the pattern set in the Data Switches,

ADDRESS BUS AVAILABLE

@

signal.

@

SYSTEM TEST FIXTURE

3-5

BRK ADRS COM

DA COM

ENADR

ENDA

HALT

IPE

BREAK ON ADDRESS COMPARE

This signal reflects the state of the BREAK-ADDRESS switch and, when active, forces a HALT signal whenever the addresses on the address bus reflect the pattern keyed into the Address Switches.

DATA COMPARE

This signal is true whenever data on the data hus is the same as data entered into the Data Switches.

ENABLE ADDRESSING

The ENADR signal, when true, places the contents of the Address Switches onto the address bus. This allows the System Test Fixture to address any memory location when the microprocessor is stopped. The signal becomes true for one memory cycle when either the EXAMINE or DEPOSIT switches is pressed.

ENABLE DATA

The ENDA signal, when true, places the contents of the Data Switches onto the data bus, This allows the System Test Fixture to place data into memory locations and peripheral registers when the microprocessor is stopped.

HALT THE MICROPROCESSOR When this signal becomes true, the microprocessor will stop after completing the instruction in which HALT went true, When HALT goes false, microprocessor operations will again resume.

INTERNAL PROM ENABLE

This is the internal programmable read only memory (PROM) enable signal that is activated by a test fixture switch having the same meaning (FIXTURE PROM), This signal activates RBC to disable a bank or ROM within the device under test that occupies the same address

@

IPE (cont^ed)

IRE

LAT ADR

LAT DATA

PIAE

RBC

space as the test fixture PROMS. The jumper strap should be set such that the fixture PROMS occupy the bank switched address space of the device under test.

INTERNAL RAM ENABLE

This is the internal random access memory (RAM) enable signal that is activated by a test fixture switch having the same meaning (FIXTURE RAM). This signal activates ROM DIS to disable the interrupt vector address space within the device under test.

LATCH ADDRESS This signal is activated by the LATCH ADDRESS switch and the data compare signal to strobe the contents of the memory address bus into the Address LEDs.

LATCH DATA

This signal is used to strobe the contents of the data bus into the Data LEDs. When the EXAMINE switch is pressed, the data found at the address specified by the Address Switches is displayed. When the LATCH DATA switch is true, data that accompanies the memory address as determined by the Address Switches is displayed whenever the microprocessor addresses the specified memory address location.

PERIPHERAL INTERFACE ADAPTER ENABLE This signal is true if data on the address bus is the same as the pattern found in the System Test Fixture Address Switches,

ROM BANK CONTROL

This signal goes false whenever the addresses for the internal PRUMS are activated. The signal is used to disable a memory address space in the device under test and make the addresses available to the Sys-

3-7

RBC (cont'd)

RCE

RESTART

ROM DIS

tem Test Fixture. This provides an area of addresses that can be used by the System Test Fixture firmware.

RAM CHIP ENABLE This signal allows the test fixture or microprocessor to address any of 32 random access memory locations in which temporary interrupt vectors may be stored.

RESTART OR INITIALIZE This signal forces a vectored interrupt to a special test program as determined by the restart interrupt vector (FFFE-FFFF).

ROM DISABLE

This is the read only memory (ROM) disable signal line that is used to disable the ROM containing the interrupt vectors for the processor. The System Test Fixture provides vector address space whenever the internal PAM enable switch is true. The switch, when true, causes the ROM DIS signal to be asserted. The internal RAM occupies the highest 32 memory locations in the 64K address space of the microprocessor.

RAM WRITE ENABLE This signal is true whenever data is to be written to memory by any other peripheral device.

READ/WRITE OUTPUT COMMAND This signal is the system read/write (R/W) signal that is generated by the microprocessor or System Test Fixture.

RWOC

CIRCUITRY

Block Diagram Overview

Refer to the block diagram of Fig. 3-3. The "control switches and buffers" block contains the microprocessor control and function switches. Also included are flip-flops on each switch to keep switching transients out of the internal control circuits.

The "data and address switch enable logic" and the "address compare logic." When ENDA is true, data from the "data switches" can be placed on the data bus (DBO=DB7). When LATDA is true, the contents of the data bus are strobed into a buffer register and displayed on the "data LEDS." Whenever the contents of the "data switches" matches the contents of the data bus, DACOM becomes true.

The "address compare logic" is controlled by LATADR and ENADR and produces ADCOM in much the same way as the "data compare logic" is controlled by LATDA and ENDA and produces DACOM.

The RAM block contains data storage registers to allow the user to modify the interrupt vectors. This data storage is addressed only when IRE is true.

The PROM block contains data storage registers for test programs. This block of memory can be addressed only if IPE is true. The "PROM enable" block contains an address jumper to determine the address space occupied by the PROMS.

HALT requests are generated by the "halt on compare logic" and by pressing the STOP switch.

"Test fixture timing" controls the time sequencing of operations necessary for data transfer operations, halt operations, single instruction execution, and any time-dependent microcomputer interface functions.

Power

Power for the System Test Fixture comes from power supplies within the instrument being tested. Required voltages and their usage appear in table 3-1.

@

Table 3-1

POWER REQUIREMENTS

+5 VOLTS Used by all logic circuits. +12 VOLTS Used by PROM devices. =12 VOLTS Used to generate=5 volt supply for PROMS.

Test Fixture Timing

Timing for examine and deposit operations is illustrated in Fig. 3-4. U431A and U431B are two monostable devices shown on the schematic fold-out at the end of this chapter. These devices, along with microprocessor clock signals MCP1 (01) and PIAE (02) are used for System Test Fixture timing clocks. Whenever an EXAMINE or DEPOSIT switch is pressed, the value of ENADR goes true for one microprocessor cycle. If the EXAMINE switch was pressed, the LAT DA line goes true and the contents of the dta bus are strobed into the DATA LEDs. When LAT DA goes false, U431 provides timing for the memory devices. If the DEPOSIT switch was pressed, LAT DA remains false whereas RWE and ENDA go true. This causes data to be strobed into memory via U431 pulses.

Fig. 3-4. EXAMINE And DEPOSIT Timing.

Refer to the composite timing diagram of Fig, 3-5. U101B and U101C provide debouncing for the EXAMINE and DEPOSIT switches respectively. U401A is cleared by pressing the EXAMINE switch or DEPOSIT switch and is set after MCP1 triggers U401B.

Halt mode timing and single instruction step timing are illustrated in the timing diagram of Fig. 3-5. The STEP switch has debounce flip-flops that perform much the same as flip-flops on the EXAMINE and DEPOSIT switches. If the

Fig. 3-5. System Test Fixture Timing.

microprocessor is halted, the STEP switch causes the HALT-0 signal to go high for one machine cycle thus causing a single microprocessor instruction to be executed. DHALT-1 is a delayed HALT signal that is used to latch data pertaining to the instruction being executed as a result of single-step operation, U421B provides the pulse that is used to latch the OP-CODE of the instruction being executed. Any time the HALT line goes true, the microprocessor continues to execute the current instruction and stops at the end of the current instruction except, if the HALT occurs during the last machine cycle fo an instruction, the 6800 microprocessor will continue to execute one more machine instruction before stopping.

When the microprocessor is stopped, PIAE remains false because the microprocessor cannot assert VMA. Unly when the microprocessor is operating can VMA be issued to allow the phase two microprocessor clock MCP2 (02) to become the PIAE signal used by the System Test Fixture.

Figure 3-6 compares memory write operations between microprocessor initiated writes (RWDC line from a 4051) and System Test Fixture initiated writes using the DEPOSIT switch.

Fig. 3-6. Comparative timing for memory write operations (4051 and System Test Fixture).

SYSTEM TEST FIXTURE

, ,

Section 4

6800 MICROCOMPUTER SPECIFICATIONS

These specification sheets are reprinted by permission of Motorola Semiconductor, Inc. The specification information is current as of the first printing of this manual. Updates and corrections and design changes made by Motorola will not necessarily be reflected in later reprints of this manual.

The purpose of this section is to give users of the System Test Fixture a ready access to general specifications tht apply to most systems using 6800 microprocessors. It is advisable to understand thoroughly the specifications that apply to your system being tested as documented in the service manual for that product.

Data Registers Registers and Buffers Bandom Buffers Access Memory Interface Adapter ALU Input/ Interface Modem Output Control Adapter Control Address Data Bus Bus

,

MC6800

Characteristic		Symbol	Min	Тур	Max	Unit
Input High Voltage	Logic ¢1,¢2	V _{IH} VIHC	$V_{SS} + 2.0$ $V_{CC} - 0.3$	-	V _{CC} V _{CC} + 0.1	Vdc
Input Low Voltage	Logic ¢1,¢2	VIL VILC	$\begin{array}{c} V_{SS}-0.3\\ V_{SS}-0.1 \end{array}$	-	V _{SS} + 0.8 V _{SS} + 0.3	Vdc
Clock Overshoot/Undershoot – Input High Level – Input Low Level		Vos	$\begin{array}{c} V_{CC}-0.5\\ V_{SS}-0.5 \end{array}$	-	V _{CC} + 0.5 V _{SS} + 0.5	Vdc
Input Leakage Current {V _{in} = 0 to 5.25 V, V _{CC} = max} (V _{in} = 0 to 5.25 V, V _{CC} = 0.0 V)	Logic* φ1,φ2	lin		1.0	2.5 100	μAdc
Three-State (Off State) Input Current (V _{in} 0.4 to 2.4 V, V _{CC} = max)	D0-D7 A0-A15,R/W	ITSI	-	2.0	10 100	μAdc
Output High Voltage (I _{Load} = -205 μAdc, V _{CC} = min) (I _{Load} = -145 μAdc, V _{CC} = min) (I _{Load} = -100 μAdc, V _{CC} = min)	D0-D7 A0-A15,R/W,VMA BA		V _{SS} + 2.4 V _{SS} + 2.4 V _{SS} + 2.4 V _{SS} + 2.4			Vdc
Output Low Voltage (I _{Load} = 1.6 mAdc, V _{CC} = min)		VOL	-	-	V _{SS} + 0.4	Vdc
Power Dissipation		PD	-	0.600	1.2	W
Capacitance [#] (V _{in} = 0, T _A = 25 ^o C, f = 1.0 MHz)	φ1,φ2 TSC D8E D0-D7 Logic Inputs	Cin	80 	120 7.0 10 6.5	160 15 10 12.5 8.5	pF
	A0-A15,R/W,VMA	Cout	-		12	pF
Frequency of Operation Clock Timing (Figure 1) Cycle Time		f t _{cyc}	0.1		1.0 10	MHz μs
Clock Pulse Width (Measured at $V_{CC} = 0.3 V$)	φ1 φ2	PW _{¢H}	430 450	-	4500 4500	ns
Total ϕ 1 and ϕ 2 Up Time		t _{ut}	940	· _	-	ns
Rise and Fall Times ϕ 1, ϕ 2 (Measured between V _{SS} + 0.3 V and V _{CC} $-$ 0.3 V)		tφr, tφf	5.0	Name in the second s	50	ns
Delay Time or Clock Separation (Measured at $V_{\rm OV}$ = $V_{\rm SS}$ + 0.5 V)		td	0	-	9100	ns
Overshoot Duration		tos	0		40	ns

*Except IRQ and $\overline{NM1}$, which require 3 k Ω pullup load resistors for wire-OR capability at optimum operation. *Capacitances are periodically sampled rather than 100% tested.

MC6800

MAXIMUM RATINGS

Rating	Symbol	Value	Unit Vdc	
Supply Voltage	Vcc	-0.3 to +7.0		
Input Voltage	Vin	-0.3 to +7.0	Vdc	
Operating Temperature Range	TA	0 to +70	°C	
Storage Temperature Range	Tstg	-55 to +150	°C	
Thermal Resistance	θJA	70	°C/W	

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

READ/WRITE TIMING Figures 2 and 3, f = 1.0 MHz, Load Circuit of Figure 6.

Characteristic	Symbol ·	Min	Тур	Max	Unit
Address Delay	^t AD	-	220	300	ns
Peripheral Read Access Time $t_{acc} = t_{ut} - (t_{AD} + t_{DSR})$	t _{acc}		-	540	ns
Data Setup Time (Read)	^t DSR	100	-		ns
Input Data Hold Time	tн	10		-	ns
Output Data Hold Time	tH	10	25	-	ns
Address Hold Time (Address, R/W, VMA)	^t AH	50	75	-	ns
Enable High Time for DBE Input	teh	450	-	-	ns
Data Delay Time (Write)	tDDW	-	165	225	ns
Processor Controls* Processor Control Setup Time Processor Control Rise and Fall Time Bus Available Delay Three State Enable Three State Delay Data Bus Enable Down Time During ¢1 Up Time (Figure 3) Data Bus Enable Delay (Figure 3) Data Bus Enable Rise and Fall Times (Figure 3)	tPCS tPCr, tPCf tBA tTSE t <u>TSD</u> tDBE tDBED tDBED	200 150 300			ns ns ns ns ns ns ns

*Additional information is given in Figures 12 through 16 of the Family Characteristics — see pages 17 through 20.

MC6800

MPU SIGNAL DESCRIPTION

Proper operation of the MPU requires that certain control and timing signals be provided to accomplish specific functions and that other signal lines be monitored to determine the state of the processor.

Clocks Phase One and Phase Two $(\phi 1, \phi 2)$ – Two pins are used for a two-phase non-overlapping clock that runs at the V_{CC} voltage level.

Address Bus (A0-A15) – Sixteen pins are used for the address bus. The outputs are three-state bus drivers capable of driving one standard TTL load and 130 pF. When the output is turned off, it is essentially an open circuit. This permits the MPU to be used in DMA applications.

Data Bus (D0-D7) – Eight pins are used for the data bus. It is bi-directional, transferring data to and from the memory and peripheral devices. It also has three-state output buffers capable of driving one standard TTL load and 130 pF.

Halt — When this input is in the low state, all activity in the machine will be halted. This input is level sensitive. In the halt mode, the machine will stop at the end of an instruction, Bus Available will be at a one level, Valid Memory Address will be at a zero, and all other three-state lines will be in the three-state mode.

Transition of the Halt line must not occur during the last 250 ns of phase one. To insure single instruction operation, the Halt line must go high for one Clock cycle.

Three-State Control (TSC) – This input causes all of the address lines and the Read/Write line to go into the off or high impedance state. This state will occur 700 ns after TSC = 2.0 V. The Valid Memory Address and Bus Available signals will be forced low. The data bus is not affected by TSC and has its own enable (Data Bus Enable). In DMA applications, the Three-State Control line should be brought high on the leading edge of the Phase One Clock. The ϕ 1 clock must be held in the high state and the ϕ 2 in the low state for this function to operate properly. The address bus will then be available for other devices to directly address memory. Since the MPU is a dynamic destruction of data will occur in the MPU.

Read/Write (R/W) – This TTL compatible output signals the peripherals and memory devices whether the MPU is in a Read (high) or Write (low) state. The normal standby state of this signal is Read (high). Three-State Control going high will turn Read/Write to the off (high impedance) state. Also, when the processor is halted, it will be in the off state. This output is capable of driving one standard TTL load and 90 pF.

Valid Memory Address (VMA) – This output indicates to peripheral devices that there is a valid address on the address bus. In normal operation, this signal should be utilized for enabling peripheral interfaces such as the PIA and ACIA. This signal is not three-state. One standard TTL load and 90 pF may be directly driven by this active high signal. Data Bus Enable (DBE) — This input is the three-state control signal for the MPU data bus and will enable the bus drivers when in the high state. This input is TTL compatible; however in normal operation, it would be driven by the phase two clock. During an MPU read cycle, the data bus drivers will be disabled internally. When it is desired that another device control the data bus such as in Direct Memory Access (DMA) applications, DBE should be held low.

Bus Available (BA) – The Bus Available signal will normally be in the low state; when activated, it will go to the high state indicating that the microprocessor has stopped and that the address bus is available. This will occur if the Halt line is in the low state or the processor is in the WAIT state as a result of the execution of a WAIT instruction. At such time, all three-state output drivers will go to their off state and other outputs to their normally inactive level. The processor is removed from the WAIT state by the occurrence of a maskable (mask bit I = 0) or nonmaskable interrupt. This output is capable of driving one standard TTL load and 30 pF.

Interrupt Request (IRQ) - This level sensitive input requests that an interrupt sequence be generated within the machine. The processor will wait until it completes the current instruction that is being executed before it recognizes the request. At that time, if the interrupt mask bit in the Condition Code Register is not set, the machine will begin an interrupt sequence. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away on the stack. Next the MPU will respond to the interrupt request by setting the interrupt mask bit high so that no further interrupts may occur. At the end of the cycle, a 16-bit address will be loaded that points to a vectoring address which is located in memory locations FFF8 and FFF9. An address loaded at these locations causes the MPU to branch to an interrupt routine in memory.

The Halt line must be in the high state for interrupts to be serviced. Interrupts will be latched internally while Halt is low.

The \overline{IRQ} has a high impedance pullup device internal to the chip; however a 3 k Ω external resistor to V_{CC} should be used for wire-OR and optimum control of interrupts.

Reset — This input is used to reset and start the MPU from a power down condition, resulting from a power failure or an initial start-up of the processor. If a high level is detected on the input, this will signal the MPU to begin the restart sequence. This will start execution of a routine to initialize the processor from its reset condition. All the higher order address lines will be forced high. For the restart, the last two (FFFE, FFFF) locations in memory will be used to load the program that is addressed by the program counter. During the restart routine, the interrupt mask bit is set and must be reset before the MPU can be interrupted by IRQ.

MOTOROLA Semiconductor Products Inc. —

Figure 9 shows the initialization of the microprocessor after restart. Reset must be held low for at least eight clock periods after V_{CC} reaches 4.75 volts. If Reset goes high prior to the leading edge of $\phi 2$, on the next $\phi 1$ the first restart memory vector address (FFFE) will appear on the address lines. This location should contain the higher order eight bits to be stored into the program counter. Following, the next address FFFF should contain the lower order eight bits to be stored into the program counter.

Non-Maskable Interrupt (NMI) – A low-going edge on this input requests that a non-mask-interrupt sequence be generated within the processor. As with the Interrupt Request signal, the processor will complete the current instruction that is being executed before it recognizes the NMI signal. The interrupt mask bit in the Condition Code Register has no effect on NMI. The Index Register, Program Counter, Accumulators, and Condition Code Register are stored away on the stack. At the end of the cycle, a 16-bit address will be loaded that points to a vectoring address which is located in memory locations FFFC and FFFD. An address loaded at these locations causes the MPU to branch to a nonmaskable interrupt routine in memory.

 $\overline{\text{NMI}}$ has a high impedance pullup resistor internal to the chip; however a 3 k Ω external resistor to VCC should be used for wire-OR and optimum control of interrupts.

Inputs \overline{IRQ} and \overline{NMI} are hardware interrupt lines that are sampled during $\phi 2$ and will start the interrupt routine on the $\phi 1$ following the completion of an instruction.

Figure 10 is a flow chart describing the major decision paths and interrupt vectors of the microprocessor. Table 1 gives the memory map for interrupt vectors.

REPRINTED BY PERMISSION OF MOTOROLA, INC.

@

MPU REGISTERS

The MPU has three 16-bit registers and three 8-bit registers available for use by the programmer (Figure 11).

Program Counter — The program counter is a two byte (16-bits) register that points to the current program address.

Stack Pointer – The stack pointer is a two byte register that contains the address of the next available location in an external push-down/pop-up stack. This stack is normally a random access Read/Write memory that may have any location (address) that is convenient. In those applications that require storage of information in the stack when power is lost, the stack must be non-volatile.

Index Register – The index register is a two byte register that is used to store data or a sixteen bit memory address for the Indexed mode of memory addressing.

Accumulators – The MPU contains two 8-bit accumulators that are used to hold operands and results from an arithmetic logic unit (ALU).

MOTOROLA Semiconductor Products Inc. -

Condition Code Register – The condition code register indicates the results of an Arithmetic Logic Unit operation: Negative (N), Zero (Z), Overflow (V), Carry from bit 7 (C), and half carry from bit 3 (H). These bits of the Condition Code Register are used as testable conditions for the conditional branch instructions. Bit 4 is the interrupt mask bit (I). The unused bits of the Condition Code Register (b6 and b7) are ones.

Figure 12 shows the order of saving the microprocessor status within the stack.

MPU INSTRUCTION SET

The MC6800 has a set of 72 different instructions. Included are binary and decimal arithmetic, logical, shift, rotate, load, store, conditional or unconditional branch, interrupt and stack manipulation instructions (Tables 2 thru 6).

MPU ADDRESSING MODES

The MC6800 eight-bit microprocessing unit has seven address modes that can be used by a programmer, with the addressing mode a function of both the type of instruction and the coding within the instruction. A summary of the addressing modes for a particular instruction can be found in Table 7 along with the associated instruction execution time that is given in machine cycles. With a clock frequency of 1 MHz, these times would be microseconds.

Accumulator (ACCX) Addressing – In accumulator only addressing, either accumulator A or accumulator B is specified. These are one-byte instructions.

Immediate Addressing – In immediate addressing, the operand is contained in the second byte of the instruction except LDS and LDX which have the operand in the second and third bytes of the instruction. The MPU addresses

this location when it fetches the immediate instruction for execution. These are two or three-byte instructions.

Direct Addressing – In direct addressing, the address of the operand is contained in the second byte of the instruction. Direct addressing allows the user to directly address the lowest 256 bytes in the machine i.e., locations zero through 255. Enhanced execution times are achieved by storing data in these locations. In most configurations, it should be a random access memory. These are two-byte instructions.

Extended Addressing – In extended addressing, the address contained in the second byte of the instruction is used as the higher eight-bits of the address of the operand. The third byte of the instruction is used as the lower eight-bits of the address for the operand. This is an absolute address in memory. These are three-byte instructions.

Indexed Addressing — In indexed addressing, the address contained in the second byte of the instruction is added to the index register's lowest eight bits in the MPU. The carry is then added to the higher order eight bits of the index register. This result is then used to address memory. The modified address is held in a temporary address register so there is no change to the index register. These are two-byte instructions.

Implied Addressing – In the implied addressing mode the instruction gives the address (i.e., stack pointer, index register, etc.). These are one-byte instructions.

Relative Addressing – In relative addressing, the address contained in the second byte of the instruction is added to the program counter's lowest eight bits plus two. The carry or borrow is then added to the high eight bits. This allows the user to address data within a range of -125 to +129 bytes of the present instruction. These are two-byte instructions.

TABLE 2 - MICROPROCESSOR INSTRUCTION SET - ALPHABETIC SEQUENCE

ABA	Add Accumulators	CLR	Clear	PUL	Pull Data
ADC	Add with Carry	CLV	Clear Overflow	ROL	Rotate Left
ADD	Add	CMP	Compare	ROR	Rotate Right
AND	Logical And	COM	Complement	RTI	Return from Interrupt
ASL	Arithmetic Shift Left	CPX	Compare Index Register	RTS	Return from Subroutine
ASR	Arithmetic Shift Right	DAA	Decimal Adjust	SBA	Subtract Accumulators
BCC	Branch if Carry Clear	DEC	Decrement	SBC	Subtract with Carry
BCS	Branch if Carry Set	DES	Decrement Stack Pointer	SEC	Set Carry
BEQ	Branch if Equal to Zero	DEX	Decrement Index Register	SEI	Set Interrupt Mask
BGE	Branch if Greater or Equal Zero	EOR	Exclusive OR	SEV	Set Overflow
BGT	Branch if Greater than Zero			STA	Store Accumulator
BHI	Branch if Higher	INC	Increment	STS	Store Stack Register
BIT	Bit Test	INS	Increment Stack Pointer	STX	Store Index Register
BLE	Branch if Less or Equal	INX	Increment Index Register	SUB	Subtract
BLS	Branch if Lower or Same	JMP	Jump	SWI	Software Interrupt
BLT	Branch if Less than Zero	JSR	Jump to Subroutine	TAB	Transfer Accumulators
BMI	Branch if Minus		•	TAP	Transfer Accumulators to Condition Code Reg
BNE	Branch if Not Equal to Zero	LDA LDS	Load Accumulator Load Stack Pointer	TBA	Transfer Accumulators
BPL	Branch if Plus Branch Always	LDS	Load Index Register	TPA	Transfer Condition Code Reg. to Accumulator
BRA BSR	Branch to Subroutine	LSR	Logical Shift Right	TST	Test
BVC	Branch if Overflow Clear		v	TSX	Transfer Stack Pointer to Index Register
BVS	Branch if Overflow Set	NEG	Negate	TXS	Transfer Index Register to Stack Pointer
		NOP	No Operation		•
CBA	Compare Accumulators	ORA	Inclusive OR Accumulator	WAI	Wait for Interrupt
CLC	Clear Carry				
CLI	Clear Interrupt Mask	PSH	Push Data		

MOTOROLA Semiconductor Products Inc.

		[]	MMED	, 1	D	REC		DRES	NDE)			XTN	D	IA	APLI	ED	BOOLEAN/ARITHMETIC OPERATION (All register labels	-	_	2 1	
OPERATIONS	MNEMONIC	OP	~	=	OP	~	=		~	=		~	=		~		refer to contents)			zν	
Add	ADDA ADD8	88 CB	2 2	2	98 D8	3 3	2 2	A8 E8	5 5	2	BB FB	4	3 3				$A + M \rightarrow A$ $B + M \rightarrow B$	1 t	• 1		
Add Acmitrs	ADDB	LB	2	-	UB	3	2	68	5		FB	4		18	2	1	$B + M \rightarrow B$ A + B $\rightarrow A$		• ‡	11	
Add with Carry	ADCA ADCB	89 C9	2 2	2	99 D9	3 3	2	A9 E9	5 5	2 2	89 F9	4 4	3 3				$A + M + C \rightarrow A$ $B + M + C \rightarrow B$		• 1	1.1.	
And	ANDA	84	2	2	94	3	2	A4	5	2	84	4	3				A·M→Ą	•	• 1	t F	3 •
Bit Test	ANDB BITA	C4 85	2 2	2	D4 95	3 3	2 2	E4 A5	5 5	2 2	F4 85	4	3 3				B·M→B A·M	:	• 1	1.1.	
	BITB	C5	2	2	D5	3	2	E5	5	2	F5	4	3				B · M	•	• 1	t F	•
Clear	CLR CLRA							6F	7	2	7F	6	3	4F	2	1	$00 \rightarrow M$ $00 \rightarrow A$:	• R • R		R R R
•	CLRB												•	5F		1	00 → B	•	• R • t	I S F	R R
Compare	CMPA CMPB	81 C1	2 2	2	91 D1	3 3	2 2	A1 E1	5 5	2 2	81 F1	4 4	3 3				A – M B – M		• 1	1111	
Compare Acmitrs Complement, 1's	CBA COM							63	7	2	73	6	3	11	2	1	A – B M → M	:	• 1		
	COMA									-			Ĩ	43		1	$\overline{A} \rightarrow A$	•	• 1	1 F	3 8
Complement, 2's	COMB NEG							60	1	2	70	6	3	53	2	1	$\overline{B} \rightarrow B$ $00 - M \rightarrow M$		•		IS D
(Negate)	NEGA									_				40		1	00 – A → A	•	• 1	10	DØ
Decimal Adjust, A	NEGB DAA													50 19		1	00 B → B Converts Binary Add. of BCD Characters		• ;		0
								64	7	•	7A	c	3				into BCD Format		• :		
Decrement ,	DEC DECA							οA	'	2	/ [^]	U	3		2		$ \begin{array}{c} M - 1 \rightarrow M \\ A - 1 \rightarrow A \end{array} $	•	• 1	1 4	• • •
Exclusive OR	DECB Eora	88	2	2	98	3	2	A8	5	2	B8	4	3	5A	2	1	$B - 1 \rightarrow B$ $A \oplus M \rightarrow A$:	• 1		* • * •
	EORB	C8	2	2	D8	3	2	E8	5	2	F8	4	3				B⊕M→B	•	• ‡	‡ F	3 •
Increment	INC INCA							6C	7	2	70	6	3	4C	2	1	$ \begin{array}{c} M + 1 \rightarrow M \\ A + 1 \rightarrow A \end{array} $:	• :		
Load Apple	INCB		•		00	•			F	•	Pr		•		2		B + 1 → B	•	• 1	10	9•
Load Acmitr	LDAA LDAB	86 C6	2 2	2 2	96 D6	3 3	2 2	A6 E6	5 5	2 2	86 F6	4 4	3 3				M → A M → B		•		₹ • ₹ •
Or, Inclusive	ORAA ORAB	8A CA	2 2	2	9A DA	3 3	2	AA EA	5 5	2 2	BA FA	4 4	3 3				$ \begin{array}{c} A + M \rightarrow A \\ B + M \rightarrow B \end{array} $	1:	• 1	1.1.1	
Push Data	PSHA	UA	2	-	UA	3	'	LA	5	2	1	4	3	36		1	$A \rightarrow M_{SP}, SP - 1 \rightarrow SP$		• •	• • •	• •
Pull Data	PSHB PULA													37	4	1	$B \rightarrow M_{SP}, SP \rightarrow 1 \rightarrow SP$ SP + 1 \rightarrow SP, M_{SP} \rightarrow A	:	•		1 1
	PULB							c 0	7	2	70	6	2	33	4	1	$SP + 1 \rightarrow SP, M_{SP} \rightarrow B$:	• •	• • •	. 1 1
Rotate Left	ROL ROLA							69	'	2	/9	D	3	49	2	1			• 1	10	
Rotate Right	ROLB							66	7	2	76	6	3	59	2	1	B C b7 - b0	:	•		
notate ragin	RORA								'	·		U	Ŭ		2			•	• 1	10	D t
Shift Left, Arithmetic	RORB ASL							68	7	2	78	6	3	56	2	1	B C b7 - b0	:	• •		
	ASLA ASLB													48 58	2 2	1	$ \begin{vmatrix} A \\ B \end{vmatrix} = \begin{pmatrix} - & - & - & - & - & - & - & - & - \\ \hline B & C & b7 & b0 \end{pmatrix} = \begin{pmatrix} A \\ b & - & - & - & - & - & - & - \\ \hline B & C & b7 & b0 \end{pmatrix} $:	• 1		
Shift Right, Arithmetic	ASR							67	7	2	77	6	3				M)	•	• 1	10	
	ASRA ASRB													47		1		:	• 1	1.12	
Shift Right, Logic	LSR							64	7	2	74	6	3				[M] -	•	• 8		
	LSRA LSRB													44 54		1	$ \begin{vmatrix} A \\ B \end{vmatrix} \qquad \begin{array}{c} 0 - \begin{array}{c} - \end{array} \\ b7 \\ b7 \\ b0 \\ \end{array} \\ \begin{array}{c} c \\ c \\ \end{array} $		• R • R		
Store Acmitr.	STAA STAB				97 D7	4 4	2	A7 E7	6 6	2 2	87 F7	5 5	3 3				A → M B → M	:	• 1	1.1.	
Subtract	SUBA		2	2	90	3	2	AO	5	2	во	4	3				A – M → A	•	• 1	11	
Subtract Acmitrs.	SUBB SBA	CO	2	2	00	3	2	EO	5	2	FO	4	3	10	2	1	$B \rightarrow M \rightarrow B$ $A - B \rightarrow A$:	• 1		
Subtr. with Carry	SBCA		2	2	92	3	2	A2		2	B2		3		-	•	$A - M - C \rightarrow A$	•	• 1	11	t t l
Transfer Acmitrs	SBCB TAB	62	2	2	02	3	2	E2	5	2	F2	4	3		2		$B - M - C \rightarrow B$ $A \rightarrow B$		• 1	1 F	
Test, Zero or Minus	TBA TST							6D	7	2	70	6	3	17	2	1	B → A M - 00	:	• 1		
	TSTA							-		-		-	-		2	1	A - 00	•	•		
	TSTB	L												50	2	1	8 - 00	• H	• 1 		
GEND:																	CONDITION CODE SYMBOLS:	Ë	<u> </u>	<u> </u>	ت
GEND: Operation Code (Hexade	cimal);					+		Bool	ean h	nclus	sive O	R;					CONDITION CODE STMDULS:				
Number of MPU Cycles;						G)	Bool	ean E	xclu	sive O						H Half-carry from bit 3; I Interrupt mask				
Number of Program Byt Arithmetic Plus;	z5,					N	•	Com Tran	sfer l	nto;							N Negative (sign bit)				
Arithmetic Minus; Boolean AND;						0		Bit= Byte									Z Zero (byte) V Overflow, 2's complement				
p Contents of memory loc	ation pointed t	o be S	tack P	aint	er;	J		o y te	- 28	,							C Carry from bit 7				
te - Accumulator addressin	g mode instruct	ions a	re incl	udec	l in th	ne col	lumn	for li	MPLI	ED a	nddres	sing					R Reset Always S Set Always				
									,			,					Test and set if true, cleared o	therv	vise		
																	 Not Affected 				
_	_																				

COND. CODE REG.

MC6800

	٦	rabl	.Ε	4	IND	EX	RE	GIS	TER	A I	ND S	STA	СК	MA	NIP	UL	TION INSTRUCTIONS						
																		CO	NC), C	odi	e RI	EG.
		11	MME	D	D	IREC	т	1	NDE	x	E	XTN	D	IN	PLI	ED		5	4	3	2	1	0
POINTER OPERATIONS	MNEMONIC	OP	~	#	OP	~	#	OP	~	#	OP	~	#	OP	~	#	BOOLEAN/ARITHMETIC OPERATION					v	
Compare Index Reg	CPX	8C	3	3	9C	4	2	AC	6	2	BC	5	3				X _H – M, X _L – (M + 1)	•	•	1	1	8	•
Decrement Index Reg	DEX													09	4	1	$X - 1 \rightarrow X$	•	•	•	11	•	•
Decrement Stack Pntr	DES													34	4	1	$SP - 1 \rightarrow SP$		1.1		•	•	
Increment Index Reg	INX										1			08	4	1	$X + 1 \rightarrow X$		•		1	•	
Increment Stack Pntr	INS					l l	ł							31	4	1	SP + 1 → SP					•	
Load Index Reg	LDX	CE	3	3	DE	4	2	EE	6	2	FE	5	3				$M \rightarrow X_{H}$, (M + 1) $\rightarrow X_{L}$	•				R	
Load Stack Potr	LDS	8E	3	3	9E	4	2	AE	6	2	BE	5	3				M→ SPH, (M + 1) → SPL			9		R	
Store Index Reg	STX				DF	5	2	EF	7	2	FF	6	3				$X_H \rightarrow M, X_L \rightarrow (M+1)$			9		R	
Store Stack Pntr	STS				9F	5	2	AF	7	2	BF	6	3				$SP_H \rightarrow M, SP_L \rightarrow (M + 1)$	1		9			•
Indx Reg→Stack Pntr	TXS													35	4	1	$X - 1 \rightarrow SP$	1	•	1	•		•
Stack Pntr → Indx Reg	TSX													30	4	1	$SP + 1 \rightarrow X$	•	•	•	•	•	•

TABLE 5 - JUMP AND BRANCH INSTRUCTIONS

		RE	LATI	VE	1	NDE	x	E	XTN	D	IMPLIED		D]		4	3	2	1	0
OPERATIONS	MNEMONIC	OP	~	#	OP	~	#	OP	~	#	OP	~	#	BRANCH TEST	H	I	N	Z	۷	C
Branch Always	BRA	20	4	2										None	•	0	•	•	•	•
Branch If Carry Clear	BCC	24	4	2										C = 0	•	0	•	•		•
Branch If Carry Set	BCS	25	4	2								1		C = 1	•	۰	•	•	•	•
Branch If = Zero	BEQ	27	4	2										Z = 1	•	•	•	•		•
Branch If ≥ Zero	BGE	2C	4	2										N ⊕ V = 0	•	•	0	•		•
Branch If >Zero	BGT	2E	4	2		:								Z + (N ⊕ V) = 0	•	•	•	•	•	•
Branch If Higher	BHI	22	4	2										C + Z = 0	•	•	•	•	•	•
Branch if ≤ Zero	BLE	2F	4	2										Z + (N ⊕ V) = 1	•				•	•
Branch If Lower Or Same	BLS	23	4	2										C + Z = 1	•	۰	8		•	•
Branch If < Zero	BLT	2D	4	2										N ⊕ V = 1	•	۲	•	•		•
Branch If Minus	BMI	28	4	2										N = 1	•	•		•		•
Branch If Not Equal Zero	BNE	26	4	2										Z = 0	•			•	•	•
Branch If Overflow Clear	BVC	28	4	2										V = 0	•	•		•	۰	•
Branch If Overflow Set	BVS	29	4	2										V = 1	•	•		•	۰	•
Branch if Plus	BPL	2A	4	2										N = 0	•	•		•	۰	•
Branch To Subroutine	BSR	8D	8	2											•		•	•		•
Jump	JMP		1	1	6E	4	2	7E	3	3				See Special Operations	•		•	•	۰	•
Jump To Subroutine	JSR		1		AD	8	2	BD	9	3)	•	٠		•		•
No Operation	NOP										01	2	1	Advances Prog. Cntr. Only	•	•	•	•		•
Return From Interrupt	RTI										3B	10	1		1		- (i) -		
Return From Subroutine	RTS										39	5	1		•		•	•	•	•
Software Interrupt	SWI										3F	12	1	See Special Operations	•	•	•	•		•
Wait for Interrupt *	WAI						Ļ			L,	3E	9	1		•	1	•	•	•	•

"WAI puts Address Bus, R/W, and Data Bus in the three-state mode while VMA is held low.

REPRINTED BY PERMISSION OF MOTOROLA, INC.

SUMMARY OF CYCLE BY CYCLE OPERATION

Table 8 provides a detailed description of the information present on the Address Bus, Data Bus, Valid Memory Address line (VMA), and the Read/Write line (R/W) during each cycle for each instruction.

This information is useful in comparing actual with expected results during debug of both software and hard-

ware as the control program is executed. The information is categorized in groups according to Addressing Mode and Number of Cycles per instruction. (In general, instructions with the same Addressing Mode and Number of Cycles execute in the same manner; exceptions are indicated in the table.)

Address Mode and Instructions	Cycles	Cycle #	VMA Line	Address Bus	R/W Line	Data Bus
MMEDIATE	•	A	·			
ADC EOR		1	1	Op Code Address	1	Op Code
ADD LDA AND ORA	2	2	1	Op Code Address + 1	1	Operand Data
BIT SBC	-					
CMP SUB	_					0- 0-4-
CPX LDS		1	1	Op Code Address	1	Op Code Operand Data (High Order Byte)
LDX	3	2	1	Op Code Address + 1		Operand Data (High Order Byte) Operand Data (Low Order Byte)
010 5 0 -	1	3	1	Op Code Address + 2		Operand Data (Low Order Byte)
DIRECT					1	Op Code
ADC EOR ADD LDA		1	1	Op Code Address	1	Address of Operand
AND ORA	3	2		Op Code Address + 1		Operand Date
BIT SBC CMP SUB		3	1	Address of Operand	'	
CPX	1	1	1	Op Code Address	1	Op Code
LDS	4	2	1	Op Code Address + 1	1	Address of Operand
LDX	4	3	1	Address of Operand	1	Operand Data (High Order Byte)
		4	1	Operand Address + 1	1	Operand Data (Low Order Byte)
STA		1	1	Op Code Address	1	Op Code
	4	2	1	Op Code Address + 1	1	Destination Address
	-	3	0	Destination Address	1	Irrelevant Data (Note 1)
		4	1	Destination Address	0	Data from Accumulator
STS		1	1	Op Code Address	1	Op Code
STX		2	1	Op Code Address + 1	1	Address of Operand
	5	3	0	Address of Operand	1 1	Irrelevant Data (Note 1)
	ł	4	1	Address of Operand	0	Register Data (High Order Byte)
		5	1	Address of Operand + 1	0	Register Data (Low Order Byte)
INDEXED	1					
JMP	1	1	1	Op Code Address	1	Op Code
	4	2	1	Op Code Address + 1	1	Offset
	4	3	0	Index Register	1	Irrelevant Data (Note 1)
		4	0	Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
ADC EOR	1	1	1	Op Code Address	1	Op Code
ADD LDA AND ORA		2	1	Op Code Address + 1	1	Offset
BIT SBC	5	3	0	Index Register	1	Irrelevant Data (Note 1)
CMP SUB		4	0	Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
		5	1	Index Register Plus Offset	1	Operand Data
CPX	1	1	1	Op Code Address	1	Op Code
LDS		2	1	Op Code Address + 1	1	Offset
LUA	6	3	0	Index Register	1	Irrelevant Data (Note 1)
	Ŭ	4	0	Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
		5	1	Index Register Plus Offset	1	Operand Data (High Order Byte)
		6	1	Index Register Plus Offset + 1	1	Operand Data (Low Order Byte)

TABLE 8 - OPERATION SUMMARY

MOTOROLA Semiconductor Products Inc. _

				LE 8 – OPERATION SUMMARY (Contin		
Address Mode and Instructions	Cycles	Cycle #	VMA Line	Address Bus	R/W Line	Data Bus
INDEXED (Continued) STA		1	1	Op Code Address	1	Op Code
JIA		2	1	Op Code Address + 1	1	Offset
		3	o	Index Register		Irrelevant Data (Note 1)
	6	4	o	Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
		5	0	Index Register Plus Offset		Irrelevant Data (Note 1)
		6	1	Index Register Plus Offset	o	Operand Data
		1	1	Op Code Address	1	Op Code
ASL LSR ASR NEG		2	1	Op Code Address + 1		Offset
CLR ROL		2	0	Index Register		Irrelevant Data (Note 1)
COM ROR DEC TST	7	4	o	Index Register Plus Offset (w/o Carry)		Irrelevant Data (Note 1)
INC		++ 5	1	Index Register Plus Offset	1	Current Operand Data
		6	0	Index Register Plus Offset		
		ю 7	1/0		0	Irrelevant Data (Note 1)
		,	(Note 3)	Index Register Plus Offset		New Operand Data (Note 3)
STS		1	1	Op Code Address	1	Op Code
STX		2	1	Op Code Address + 1	1	Offset
,	_	3	0	Index Register	1	Irrelevant Data (Note 1)
	7	4	0	Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
		5	о	Index Register Plus Offset	1	Irrelevant Data (Note 1)
		6	1	Index Register Plus Offset	0	Operand Data (High Order Byte)
		7	1	Index Register Plus Offset + 1	0	Operand Data (Low Order Byte)
JSR		1	1	Op Code Address	1	Op Code
		2	1	Op Code Address + 1	1	Offset
		3	0	Index Register	1	Irrelevant Data (Note 1)
		4	1	Stack Pointer	0	Return Address (Low Order Byte)
	8	5	1	Stack Pointer – 1	0	Return Address (High Order Byte)
		6	0	Stack Pointer – 2	1	Irrelevant Data (Note 1)
		7	0	Index Register	1	Irrelevant Data (Note 1)
		8	0	Index Register Plus Offset (w/o Carry)	1	Irrelevant Data (Note 1)
EXTENDED	L			· · · · · · · · · · · · · · · · · · ·		
JMP		1	1	Op Code Address	1	Op Code
	3	2	1	Op Code Address + 1	1	Jump Address (High Order Byte)
		3	1	Op Code Address + 2	1	Jump Address (Low Order Byte)
ADC EOR		1	1	Op Code Address	1	Op Code
ADD LDA	4	2	1	Op Code Address + 1	1	Address of Operand (High Order Byte)
AND ORA BIT SBC	1	3	1	Op Code Address + 2	1	Address of Operand (Low Order Byte)
CMP SUB		4	1	Address of Operand	1	Operand Data
CPX		1	1	Op Code Address	1	Op Code
LDS LDX		2	1	Op Code Address + 1	1	Address of Operand (High Order Byte)
	5	3	1	Op Code Address + 2	1	Address of Operand (Low Order Byte)
		4	1	Address of Operand	1	Operand Data (High Order Byte)
		5	1	Address of Operand + 1	1	Operand Data (Low Order Byte)
STA A		1	1	Op Code Address	1	Op Code
STA B		2	1	Op Code Address + 1	1	Destination Address (High Order Byte)
	5	3	1	Op Code Address + 2	1	Destination Address (Low Order Byte)
		4	0	Operand Destination Address	1	Irrelevant Data (Note 1)
		5	1	Operand Destination Address	0	Data from Accumulator
ASL LSR		1	1	Op Code Address	1	Op Code
ASR NEG		2	1	Op Code Address + 1	1	Address of Operand (High Order Byte)
CLR ROL COM ROR	6	3	1	Op Code Address + 2	1	Address of Operand (Low Order Byte)
DEC TST		4	1	Address of Operand	1	Current Operand Data
INC		5	0	Address of Operand	1	Irrelevant Data (Note 1)
		6	1/0 (Note	Address of Operand	0	New Operand Data (Note 3)

REPRINTED BY PERMISSION OF MOTOROLA, INC.

66

XTENDED (Continued)						
		1	1	Op Code Address	1	Op Code
STX		2	1	Op Code Address + 1	1	Address of Operand (High Order Byte)
	6	3	1	Op Code Address + 2	1	Address of Operand (Low Order Byte)
		4	0	Address of Operand	1	Irrelevant Data (Note 1)
		5	1	Address of Operand	0	Operand Data (High Order Byte)
		6	1	Address of Operand + 1	0	Operand Data (Low Order Byte)
SR		1	1	Op Code Address	1	Op Code
		2	1	Op Code Address + 1	1	Address of Subroutine (High Order Byte
		3	1	Op Code Address + 2	1	Address of Subroutine (Low Order Byte
		4	1	Subroutine Starting Address	1	Op Code of Next Instruction
	9	5	1	Stack Pointer	0	Return Address (Low Order Byte)
		6	1	Stack Pointer – 1	0	Return Address (High Order Byte)
		7	0	Stack Pointer – 2	1	Irrelevant Data (Note 1)
		8	0	Op Code Address + 2	1	Irrelevant Data (Note 1)
		9	1	Op Code Address + 2	1	Address of Subroutine (Low Order Byte
NHERENT						0-0-4-
ABA DAA SEC	2	1	1	Op Code Address	1	Op Code
ASR INC SEV CBA LSR TAB CLC NEG TAP CLI NOP TBA CLR ROL TPA		2	1	Op Code Address + 1	1	Op Code of Next Instruction
CLV ROR TST COM SBA					1	Op Code
DES DEX		1	1	Op Code Address		Op Code of Next Instruction
NS	4	2	1	Op Code Address + 1 Previous Register Contents	1	Irrelevant Data (Note 1)
NX		3	0	•		Irrelevant Data (Note 1)
		4	0	New Register Contents Op Code Address	1	Op Code
'SH		1	1	Op Code Address + 1	1	Op Code of Next Instruction
	4	2	1	Stack Pointer	o	Accumulator Data
		3	1	Stack Pointer – 1		Accumulator Data
		4	1	Op Code Address	1	Op Code
UL I		1		Op Code Address + 1	1	Op Code of Next Instruction
	4	2	1	Stack Pointer		Irrelevant Data (Note 1)
		3	0			Operand Data from Stack
	,	4	1	Stack Pointer + 1	1	Op Code
rsx		1	1	Op Code Address		Op Code of Next Instruction
	4	2	1	Op Code Address + 1		Irrelevant Data (Note 1)
		3	0	Stack Pointer		Irrelevant Data (Note 1)
		4	0	New Index Register		
rxs		1	1	Op Code Address		Op Code
	4	2	1	Op Code Address + 1		Op Code of Next Instruction
		3	0	Index Register		Irrelevant Data
		4	0	New Stack Pointer	1	Irrelevant Data
RTS	:	1	1	Op Code Address	1	Op Code
		2	1	Op Code Address + 1	1	Irrelevant Data (Note 2)
	5	3	0	Stack Pointer	1	Irrelevant Data (Note 1)
		4	1	Stack Pointer + 1	1	Address of Next Instruction (High Order Byte)
		5	1	Stack Pointer + 2	1	Address of Next Instruction (Low Order Byte)

(ᄊ) MOTOROLA Semiconductor Products Inc. –

Address Mode	Τ	Cycle	VMA		R/W	
and Instructions	Cycles	=	Line	Address Bus	Line	Data Bus
NHERENT (Continued) NAI	T	1	1	Op Code Address	1	Op Code
		2	1	Op Code Address + 1	1	Op Code of Next Instruction
		3	1	Stack Pointer	0	Return Address (Low Order Byte)
		4	1	Stack Pointer – 1	0	Return Address (High Order Byte)
	9	5	1	Stack Pointer – 2	0	Index Register (Low Order Byte)
		6	1	Stack Pointer – 3	0	Index Register (High Order Byte)
		7	1	Stack Pointer – 4	0	Contents of Accumulator A
		8	1	Stack Pointer – 5	0	Contents of Accumulator B
		9	1	Stack Pointer – 6 (Note 4)	1	Contents of Cond. Code Register
RTI	<u>+</u>	1	1	Op Code Address	1	Op Code
		2	1	Op Code Address + 1	1	Irrelevant Data (Note 2)
		3	о	Stack Pointer	1	Irrelevant Data (Note 1)
		4	1	Stack Pointer + 1	1	Contents of Cond. Code Register from Stack
	10	5	1	Stack Pointer + 2	1	Contents of Accumulator B from Stack
		6	1	Stack Pointer + 3	1	Contents of Accumulator A from Stack
		7	1	Stack Pointer + 4	1	Index Register from Stack (High Order Byte)
		8	1	Stack Pointer + 5	1	Index Register from Stack (Low Order Byte)
		9	1	Stack Pointer + 6	1	Next Instruction Address from Stack (High Order Byte)
		10	1	Stack Pointer + 7	1	Next Instruction Address from Stack (Low Order Byte)
SWI		1	1	Op Code Address	1	Op Code
		2	1	Op Code Address + 1	1	Irrelevant Data (Note 1)
• · · · ·		3	1	Stack Pointer	0	Return Address (Low Order Byte)
	}	4	1	Stack Pointer 1	0	Return Address (High Order Byte)
		5	1	Stack Pointer – 2	0	Index Register (Low Order Byte)
	12	6	1	Stack Pointer - 3	0	Index Register (High Order Byte)
		7	1	Stack Pointer – 4	0	Contents of Accumulator A
		8	1	Stack Pointer – 5	0	Contents of Accumulator B
		9	1	Stack Pointer – 6	0	Contents of Cond. Code Register
		10	0	Stack Pointer 7	1	Irrelevant Data (Note 1)
		11	1	Vector Address FFFA (Hex)	1	Address of Subroutine (High Order Byte)
		12	1	Vector Address FFFB (Hex)	1	Address of Subroutine (Low Order Byte)
RELATIVE						
SCC BHI BNE		1	1	Op Code Address	1	Op Code
BCS BLE BPL BEQ BLS BRA	4	2	1	Op Code Address + 1	1	Branch Offset
BGE BLT BVC		3	0	Op Code Address + 2	1	Irrelevant Data (Note 1)
BGT BMI BVS		4	0	Branch Address	1	Irrelevant Data (Note 1)
SR	1	1	1	Op Code Address	1	Op Code
	1	2	1	Op Code Address + 1	1	Branch Offset
		3	0	Return Address of Main Program	1	Irrelevant Data (Note 1)
	8	4	1	Stack Pointer	0	Return Address (Low Order Byte)
		5	1	Stack Pointer – 1	0	Return Address (High Order Byte)
		6	0	Stack Pointer – 2	1	Irrelevant Data (Note 1)
		7	0	Return Address of Main Program		Irrelevant Data (Note 1)
	l	8	0	Subroutine Address cycle uses VMA, then the Data Bus will g	1	Irrelevant Data (Note 1)

 $\gamma_{i} \cdot$

Note 3. For ISI, VMA = 0 and Operand data does not change. Note 4. While the MPU is waiting for the interrupt, Bus Available will go high indicating the following states of the control lines: VMA is low; Address Bus, R/W, and Data Bus are all in the high impedance state.

MOTOROLA Semiconductor Products Inc. -

REPRINTED BY PERMISSION OF MOTOROLA, INC.

AA

REPRINTED BY PERMISSION OF MOTOROLA, INC.

Memory Address and

Control

Interrupt

and

Cont

÷

MC6820

Interface

Adapter

Address Data Bus Bus Modem

Peripheral

Data

ELECTRICAL CHARACTERISTICS (V _{CC} = 5.0 V ±5%, V _{SS} = 0, T _A Characteristic	Symbol	Min	Тур	Max	Unit
Input High Voltage Enable Other Inputs	⊻ін	V _{SS} + 2.4 V _{SS} + 2.0	-	V _{CC} V _{CC}	Vdc
Input Low Voltage Enable Other Inputs	VIL	V _{SS} -0.3 V _{SS} -0.3	_	V _{SS} + 0.4 V _{SS} + 0.8	Vdc
Input Leakage Current R/W, Reset , RS0, RS1, CS0, CS1, CS2, CA1, (Vin = 0 to 5.25 Vdc) CB1, Enable	lin	-	1.0	2.5	μAdc
Oto Control Do-D7, PB0-PB7, CB2 (Vin = 0.4 to 2.4 Vdc) 0	ITSI		2.0	10	µAdc
Open PAO-PA7, CA2 (V IH = 2.4 Vdc) V	ін	-100	-250	-	μAdc
Input Low Current PA0-PA7, CA2 (VIL = 0.4 Vdc)	ΊL	-	-1,0	-1.6	mAdc
Utput High Voltage (I_Load = -205 μAdc, Enable Pulse Width < 25 μs) D0-D7 (I_Load = -100 μAdc, Enable Pulse Width <25 μs) Other Outputs	∨он	V _{SS} + 2.4 V _{SS} + 2.4		- -	Vdc
Output Low Voltage (I _{Load} = 1.6 mAdc, Enable Pulse Width < 25 μs)	VOL	-	_	V _{SS} + 0.4	Vdc
Output High Current (Sourcing) (V _{OH} = 2.4 Vdc) D0·D7 Other Outputs	юн	-205 -100	-	-	μAdc μAdc
$(V_O = 1.5 \text{ Vdc}, \text{ the current for driving other than TTL, e.g.,} Darlington Base) PB0-PB7, CB2$		-1.0	-2.5	-10	mAdo
Output Low Current (Sinking) (VOL = 0.4 Vdc)	IOL	1.6	-	-	mAdo
Output Leakage Current (Off State) IRQA, IRQB (VOH = 2.4 Vdc)	ILOH	-	1,0	10	µAdc
Power Dissipation	PD	-	_	650	mW
Input Capacitance Enable (V _{in} = 0, T _A = 25 ^o C, f = 1.0 MHz) D0-D7	C _{in}	-	-	20 12.5 10	pF
PA0-PA7, PB0-PB7, CA2, CB2 R/W, Reset, RS0, RS1, CS0, CS1, CS2, CA1, CB1		-		7.5	<u> </u>
Output Capacitance IRQA, IRQB (Vin = 0, TA = 25°C, f = 1.0 MHz) PB0-PB7	Cout	-	-	5.0 10	pF
Peripheral Data Setup Time (Figure 1)	tPDSU	200	-		ns
Delay Time, Enable negative transition to CA2 negative transition (Figure 2, 3)	^t CA2	-	-	1.0	μs
Delay Time, Enable negative transition to CA2 positive transition (Figure 2)	^t RS1	-	-	1.0	μs
Rise and Fall Times for CA1 and CA2 input signals (Figure 3)	t _r ,t _f	-	-	1.0	μs
Delay Time from CA1 active transition to CA2 positive transition (Figure 3)	tRS2	-	-	2.0	μs
Delay Time, Enable negative transition to Peripheral Data valid (Figures 4, 5)	^t PDW		-	1.0	μs
Delay Time, Enable negative transition to Peripheral CMOS Data Valid (V _{CC} - 30% V _{CC} , Figure 4; Figure 12 Load C) PA0-PA7, CA2	^t CMOS	-	-	2.0	μs
Delay Time, Enable positive transition to CB2 negative transition (Figure 6, 7)	tCB2	-	-	1.0	μs
Delay Time, Peripheral Data valid to CB2 negative transition (Figure 5)	^t DC	20	-	-	ns
Delay Time, Enable positive transition to CB2 positive transition (Figure 6)	tRS1	-	-	1.0	μs
Rise and Fall Time for CB1 and CB2 input signals (Figure 7)	t _r ,t _f	-	-	1.0	μs
Delay Time, CB1 active transition to CB2 positive transition (Figure 7)	^t RS2	-	-	2.0	μs
Interrupt Release Time, IRQA and IRQB (Figure 8)	ЧR	-	-	1.6	μs
Reset Low Time* (Figure 9)	1 TRL	2.0	1 -		μs

*The Reset line must be high a minimum of 1.0 μs before addressing the PIA.

AA

MOTOROLA Semiconductor Products Inc. ----

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to +7.0	Vdc
Input Voltage	Vin	0.3 to +7.0	Vdc
Operating Temperature Range	· TA	0 to +70	°c
Storage Temperature Range	Tstg	-55 to +150	°c
Thermal Resistance	^{ℓ/} JA	82.5	°C/W

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

BUS TIMING CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Enable Cycle Time	^t cycE	1.0	- 1	1 –	μs
Enable Pulse Width, High	PWEH	0.45	-	25	μs
Enable Pulse Width, Low	PWEL	0.43	-		μs
Setup Time, Address and R/W valid to Enable positive transition	tAS	160	-	- 1	ns
Data Delay Time	^t DDR		-	320	ns
Data Hold Time	tн	10	-	-	ns
Address Hold Time	^t AH	10	-	-	ns
Rise and Fall Time for Enable input	tEr, tEf	-	-	25	ns
WRITE (Figures 11 and 12)			•		•
Enable Cycle Time	^t cycE	1.0	-	-	μs
Enable Pulse Width, High	PWEH	0,45	-	25	μs
Enable Pulse Width, Low	PWEL	0.43	-	- 1	μs
Setup Time, Address and R/W valid to Enable positive transition	tAS	160	-	-	ns
Data Setup Time	tDSW	195	- 1	-	ns
Data Hold Time	tн	10	-	-	ns
Address Hold Time	t _{AH}	10		-	ns
Rise and Fall Time for Enable input	tEr, tEf	-	- 1	25	ns

PIA INTERFACE SIGNALS FOR MPU

The PIA interfaces to the MC6800 MPU with an eightbit bi-directional data bus, three chip select lines, two register select lines, two interrupt request lines, read/write line, enable line and reset line. These signals, in conjunction with the MC6800 VMA output, permit the MPU to have complete control over the PIA. VMA should be utilized in conjunction with an MPU address line into a chip select of the PIA.

PIA Bi-Directional Data (D0-D7) – The bi-directional data lines (D0-D7) allow the transfer of data between the MPU and the PIA. The data bus output drivers are three-state devices that remain in the high-impedance (off) state except when the MPU performs a PIA read operation. The Read/Write line is in the Read (high) state when the PIA is selected for a Read operation.

PIA Enable (E) – The enable pulse, E, is the only timing signal that is supplied to the PIA. Timing of all other signals is referenced to the leading and trailing edges of the E pulse. This signal will normally be a derivative of the MC6800 ϕ 2 Clock.

PIA Read/Write (R/W) — This signal is generated by the MPU to control the direction of data transfers on the Data Bus. A low state on the PIA Read/Write line enables the input buffers and data is transferred from the MPU to the PIA on the E signal if the device has been selected. A high on the Read/Write line sets up the PIA for a transfer of data to the bus. The PIA output buffers are enabled when the proper address and the enable pulse E are present.

Reset – The active low Reset line is used to reset all register bits in the PIA to a logical zero (low). This line can be used as a power-on reset and as a master reset during system operation. PIA Chip Select (CS0, CS1 and $\overline{CS2}$) – These three input signals are used to select the PIA. CS0 and CS1 must be high and $\overline{CS2}$ must be low for selection of the device. Data transfers are then performed under the control of the Enable and Read/Write signals. The chip select lines must be stable for the duration of the E pulse. The device is deselected when any of the chip selects are in the inactive state.

PIA Register Select (RS0 and RS1) – The two register select lines are used to select the various registers inside the PIA. These two lines are used in conjunction with internal Control Registers to select a particular register that is to be written or read.

The register and chip select lines should be stable for the duration of the E pulse while in the read or write cycle.

Interrupt Request (IRQA and IRQB) — The active low Interrupt Request lines (IRQA and IRQB) act to interrupt the MPU either directly or through interrupt priority circuitry. These lines are "open drain" (no load device on the chip). This permits all interrupt request lines to be tied together in a wire-OR configuration.

Each Interrupt Request line has two internal interrupt flag bits that can cause the Interrupt Request line to go low. Each flag bit is associated with a particular peripheral interrupt line. Also four interrupt enable bits are provided in the PIA which may be used to inhibit a particular interrupt from a peripheral device.

Servicing an interrupt by the MPU may be accomplished by a software routine that, on a prioritized basis, sequentially reads and tests the two control registers in each PIA for interrupt flag bits that are set.

The interrupt flags are cleared (zeroed) as a result of an

MOTOROLA Semiconductor Products Inc. -

MPU Read Peripheral Data Operation of the corresponding data register. After being cleared, the interrupt flag bit cannot be enabled to be set until the PIA is deselected during an E pulse. The E pulse is used to condition the interrupt control lines (CA1, CA2, CB1, CB2). When these lines are used as interrupt inputs at least one E pulse must occur from the inactive edge to the active edge of the interrupt input signal to condition the edge sense network. If the interrupt flag has been enabled and the edge sense circuit has been properly conditioned, the interrupt flag will be set on the next active transition of the interrupt input pin.

PIA PERIPHERAL INTERFACE LINES

The PIA provides two 8-bit bi-directional data buses and four interrupt/control lines for interfacing to peripheral devices.

Section A Peripheral Data (PA0-PA7) – Each of the peripheral data lines can be programmed to act as an input or output. This is accomplished by setting a "1" in the corresponding Data Direction Register bit for those lines which are to be outputs. A "0" in a bit of the Data Direction Register causes the corresponding peripheral data line to act as an input. During an MPU Read Peripheral Data Operation, the data on peripheral lines programmed to act as inputs appears directly on the corresponding MPU Data Bus lines. In the input mode the internal pullup resistor on these lines represents a maximum of one standard TTL load.

The data in Output Register A will appear on the data lines that are programmed to be outputs. A logical "1" written into the register will cause a "high" on the corresponding data line while a "0" results in a "low". Data in Output Register A may be read by an MPU "Read Peripheral Data A" operation when the corresponding lines are programmed as outputs. This data will be read properly if the voltage on the peripheral data lines is greater than 2.0 volts for a logic "1" output and less than 0.8 volt for a logic "0" output. Loading the output lines such that the voltage on these lines does not reach full voltage causes the data transferred into the MPU on a Read operation to differ from that contained in the respective bit of Output Register A.

Section B Peripheral Data (PB0-PB7) — The peripheral data lines in the B Section of the PIA can be programmed to act as either inputs or outputs in a similar manner to PA0-PA7. However, the output buffers driving these lines differ from those driving lines PA0-PA7. They have three-

state capability, allowing them to enter a high impedance state when the peripheral data line is used as an input. In addition, data on the peripheral data lines PB0-PB7 will be read properly from those lines programmed as outputs even if the voltages are below 2.0 volts for a "high". As outputs, these lines are compatible with standard TTL and may also be used as a source of up to 1 milliampere at 1.5 volts to directly drive the base of a transistor switch.

Interrupt Input (CA1 and CB1) – Peripheral Input lines CA1 and CB1 are input only lines that set the interrupt flags of the control registers. The active transition for these signals is also programmed by the two control registers.

Peripheral Control (CA2) — The peripheral control line CA2 can be programmed to act as an interrupt input or as a peripheral control output. As an output, this line is compatible with standard TTL; as an input the internal pullup resistor on this line represents one standard TTL load. The function of this signal line is programmed with Control Register A.

Peripheral Control (CB2) – Peripheral Control line CB2 may also be programmed to act as an interrupt input or peripheral control output. As an input, this line has high input impedance and is compatible with standard TTL. As an output it is compatible with standard TTL and may also be used as a source of up to 1 milliampere at 1.5 volts to directly drive the base of a transistor switch. This line is programmed by Control Register B.

NOTE: It is recommended that the control lines (CA1, CA2, CB1, CB2) should be held in a logic 1 state when Reset is active to prevent setting of corresponding interrupt flags in the control register when Reset goes to an inactive state. Subsequent to Reset going inactive, a read of the data registers may be used to clear any undesired interrupt flags.

MOTOROLA Semiconductor Products Inc. -

INTERNAL CONTROLS

There are six locations within the PIA accessible to the MPU data bus: two Peripheral Registers, two Data Direction Registers, and two Control Registers. Selection of these locations is controlled by the RS0 and RS1 inputs together with bit 2 in the Control Register, as shown in Table 1.

TABLE 1 - INTERNAL ADDRESSING

\square		Con Regist	trol ter Bit	
RS1	RSO	CRA-2	CRB-2	Location Selected
0	0	1	х	Peripheral Register A
0	0	0	х	Data Direction Register A
0	1	х	х	Control Register A
1	0	х	1	Peripheral Register B
• 1	0	х	0	Data Direction Register B
1	21	x	×	Control Register B
X = D	on't Car	e		• • • • • • • • • • • • • • • • • • •

X = Don't Care

INITIALIZATION

A low reset line has the effect of zeroing all PIA registers. This will set PAO-PA7, PBO-PB7, CA2 and CB2 as inputs, and all interrupts disabled. The PIA must be configured during the restart program which follows the reset. Details of possible configurations of the Data Direction

and Control Register are as follows.

DATA DIRECTION REGISTERS (DDRA and DDRB)

The two Data Direction Registers allow the MPU to control the direction of data through each corresponding peripheral data line. A Data Direction Register bit set at "0" configures the corresponding peripheral data line as an input; a "1" results in an output.

CONTROL REGISTERS (CRA and CRB)

The two Control Registers (CRA and CRB) allow the MPU to control the operation of the four peripheral control lines CA1, CA2, CB1 and CB2. In addition they allow the MPU to enable the interrupt lines and monitor the status of the interrupt flags. Bits 0 through 5 of the two registers may be written or read by the MPU when the proper chip select and register select signals are applied. Bits 6 and 7 of the two registers are read only and are modified by external interrupts occurring on control lines CA1, CA2, CB1 or CB2. The format of the control words is shown in Table 2.

TABLE 2 -	CONTROL W	ORD FORMAT
-----------	-----------	------------

	7	6	5	4	3	2	1	0
CRA	IRQA1	IRQA2	CA2 Control			DDRA Access		Control
	7	⁻ 6	5	4	3	2	· 1	0
CRB	IRQB1	IROB2	СВ	2 Cont	rol	DDRB Access	CB 1	Control

Data Direction Access Control Bit (CRA-2 and CRB-2) – Bit 2 in each Control register (CRA and CRB) allows selection of either a Peripheral Interface Register or the Data Direction Register when the proper register select signals are applied to RSO and RS1.

Interrupt Flags (CRA-6, CRA-7, CRB-6, and CRB-7) — The four interrupt flag bits are set by active transitions of signals on the four Interrupt and Peripheral Control lines when those lines are programmed to be inputs. These bits cannot be set directly from the MPU Data Bus and are reset indirectly by a Read Peripheral Data Operation on the appropriate section.

CRA-1 (CRB-1)	CRA-0 (CRB-0)	Interrupt Input CA1 (CB1)	Interrupt Flag CRA-7 (CRB-7)	MPU Interrupt Request IRQA (IRQB)
0	0	↓ Active	Set high on ↓ of CA1 (CB1)	Disabled — IRQ re- mains high
0	1	↓ Active	Set high on ↓ of CA1 (CB1)	Goes low when the interrupt flag bit CRA-7 (CRB-7) goes high
1	0	† Active	Set high on † of CA1 (CB1)	Disabled — IRQ re- mains high
1	1	↑ Active	Set high on ↑ of CA1 (CB1)	Goes low when the interrupt flag bit CRA-7 (CRB-7) goes high

TABLE 3 - CONTROL OF INTERRUPT INPUTS CA1 AND CB1

Notes: 1.
† indicates positive transition (low to high)

2. 1 indicates negative transition (high to low)

 The Interrupt flag bit CRA-7 is cleared by an MPU Read of the A Data Register, and CRB-7 is cleared by an MPU Read of the B Data Register.

 If CRA-0 (CRB-0) is low when an interrupt occurs (Interrupt disabled) and is later brought high, IRQA (IRQB) occurs after CRA-0 (CRB-0) is written to a "one".

MOTOROLA Semiconductor Products Inc. -

Control of CA1 and CB1 Interrupt Input Lines (CRA-0, CRB-0, CRA-1, and CRB-1) — The two lowest order bits of the control registers are used to control the interrupt input lines CA1 and CB1. Bits CRA-0 and CRB-0 are used to enable the MPU interrupt signals IROA and IROB, respectively. Bits CRA-1 and CRB-1 determine the active transition of the interrupt input signals CA1 and CB1 (Table 3).

TABLE 4 – CONTROL OF CA2 AND CB2 AS INTERRUPT INPUTS CRA5 (CRB5) is low

CRA-5 (CRB-5)	CRA-4 (CRB-4)	CRA-3 (CRB-3)	Interrupt Input CA2 (CB2)	Interrupt Flag CRA-6 (CRB-6)	MPU Interrupt Request IRQA (IRQB)
0	0	0	↓ Active	Set high on ↓ of CA2 (CB2)	Disabled — IRQ re- mains high
0	0	1	↓ Active	Set high on ↓ of CA2 (CB2)	Goes low when the interruptflagbitCRA-6 (CRB-6) goes high
0	1	0	↑ Active	Set high on ↑ of CA2 (CB2)	Disabled — IRQ re- mains high
0	1	1	↑ Active	Set high on ↑ of CA2 (CB2)	Goes low when the interrupt flag bit CRA-6 (CRB-6) goes high

Notes: 1. ↑ indicates positive transition (low to high)

2. \downarrow indicates negative transition (high to low)

3. The Interrupt flag bit CRA-6 is cleared by an MPU Read of the A Data Register and CRB-6 is cleared by an MPU Read of the B Data Register.

4. If CRA-3 (CRB-3) is low when an interrupt occurs (Interrupt disabled) and is later brought high, IRQA (IRQB) occurs after CRA-3 (CRB-3) is written to a "one".

	1		C	B2
CRB-5	CRB-4	CRB-3	Cleared	Set
1	0	0	Low on the positive transition of the first E pulse following an MPU Write "B" Data Register operation.	High when the interrupt flag bit CRB-7 is set by an active transi- tion of the CB1 signal.
1	0	1	Low on the positive transition of the first E pulse after an MPU Write "B" Data Register opera- tion.	High on the positive edge of the first "E" pulse following an "E" pulse which occurred while the part was deselected.
1	1	0 ·	Low when CRB-3 goes low as a result of an MPU Write in Control Register "B".	Always low as long as CRB-3 is low. Will go high on an MPU Write in Control Register "B" that changes CRB-3 to "one".
1	1	1	Always high as long as CRB-3 is high. Will be cleared when an MPU Write Control Register "B" results in clearing CRB-3 to "zero".	High when CRB-3 goes high as a result of an MPU Write into Control Register "B".

TABLE 5 – CONTROL OF CB2 AS AN OUTPUT CRB-5 is high

MOTOROLA Semiconductor Products Inc. –

Control of CA2 and CB2 Peripheral Control Lines (CRA-3, CRA-4, CRA-5, CRB-3, CRB-4, and CRB-5) – Bits 3, 4, and 5 of the two control registers are used to control the CA2 and CB2 Peripheral Control lines. These bits determine if the control lines will be an interrupt input or an output control signal. If bit CRA-5 (CRB-5)

is low, CA2 (CB2) is an interrupt input line similar to CA1 (CB1) (Table 4). When CRA-5 (CRB-5) is high, CA2 (CB2) becomes an output signal that may be used to control peripheral data transfers. When in the output mode, CA2 and CB2 have slightly different characteristics (Tables 5 and 6).

TABLE 6 - CONTROL	OF CA-2	AS AN	OUTPUT
CBA-	5 is hiah		

			CA	CA2			
CRA-5	CRA-4	CRA-3	Cleared	Set			
1	0	0	Low on negative transition of E after an MPU Read "A" Data operation.	High when the interrupt flag bit CRA-7 is set by an active transi- tion of the CA1 signal.			
1	0	1	Low on negative transition of E after an MPU Read "A" Data operation.	High on the negative edge of the first "E" pulse which occurs during a deselect.			
1	1	0	Low when CRA-3 goes low as a result of an MPU Write to Control Register "A".	Always low as long as CRA-3 is low. Will go high on an MPU Write to Control Register "A" that changes CRA-3 to "one".			
1	1	1	Always high as long as CRA-3 is high. Will be cleared on an MPU Write to Control Register "A" that clears CRA-3 to a "zero".	High when QRA-3 goes high as a result of an MPU Write to Control Register "A".			

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	Vcc	-0.3 to +7.0	Vdc
Input Voltage	Vin	-0.3 to +7.0	Vdc
Operating Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stq}	-55 to +150	°C
Thermal Resistance	θJA	82.5	°C/W

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this highimpedance circuit.

ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V ±5%, V_{SS} = 0, T_A = 0 to 70°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input High Voltage	VIH	V _{SS} + 2.0	_	Vcc	Vdc
Input Low Voltage	VIL	V _{SS} -0.3	-	V _{SS} + 0.8	Vdc
Input Leakage Current R/W,CS0,CS1,CS2,Enable (Vin = 0 to 5.25 Vdc)	lin	-	1.0	2.5	μAdc
Three-State (Off State) Input Current D0-D7 (Vin = 0.4 to 2.4 Vdc)	ITSI	-	2.0	10	μAda
Output High VoltageD0-D7 $(I_{Load} = -205 \ \mu Adc, Enable Pulse Width < 25 \ \mu s)$ Tx Data, \overline{RTS} $(I_{Load} = -100 \ \mu Adc, Enable Pulse Width < 25 \ \mu s)$ Tx Data, \overline{RTS}	Voн	V _{SS} + 2.4 V _{SS} + 2.4	_		Vdc
Output Low Voltage (I _{Load} = 1.6 mAdc, Enable Pulse Width <25 μs)	VOL	-	•	V _{SS} + 0.4	Vdc
Output Leakage Current (Off State) IRQ (V _{OH} = 2.4 Vdc)	1LOH	-	1.0	10	μAdo
Power Dissipation	PD	-	300	525	mW
Input Capacitance (Vin = 0, T _A = 25 ^o C, f = 1.0 MHz) E, Tx Clk, Rx Clk, R/W, RS, Rx Data, CS0, CS1, CS2, CTS, DCD	Cin		10 7.0	12.5 7.5	pF
Output Capacitance RTS, Tx Data (Vin = 0, TA = 25°C, f = 1.0 MHz) IRQ	Cout		-	10 5,0	pF
Minimum Clock Pulse Width, Low (Figure 1) ÷16, ÷64 Modes	PWCL	600		-	ns
Minimum Clock Pulse Width, High (Figure 2) ÷16, ÷64 Modes	PWCH	600		-	ns
Clock Frequency ÷1 Mode ÷16, ÷64 Modes	fC		_	500 800	kHz
Clock-to-Data Delay for Transmitter (Figure 3)	tTDD	-	-	1.0	μs
Receive Data Setup Time (Figure 4) ÷1 Mode	^t RDSU	500	-	-	ns
Receive Data Hold Time (Figure 5) ÷1 Mode	^t RDH	500		-	ns
Interrupt Request Release Time (Figure 6)	tIR	-	-	1.2	μs
Request-to-Send Delay Time (Figure 6)	^t RTS	-		1.0	μs
Input Transition Times (Except Enable)	t _r ,t _f	-	-	1.0*	μs

*1.0 μ s or 10% of the pulse width, whichever is smaller.

AA

BUS TIMING CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Enable Cycle Time	^t cycE	1.0		-	μs
Enable Pulse Width, High	PWEH	0,45	-	25	μs
Enable Pulse Width, Low	PWEL	0.43	-	-	μs
Setup Time, Address and R/W valid to Enable positive transition	tAS	160	-	-	ns
Data Delay Time	^t DDR	-	-	320	ns
Data Hold Time	tн	10	-	-	ns
Address Hold Time	^t AH	10	-	-	ns
Rise and Fall Time for Enable input	t _{Er} , t _{Ef}	-	-	25	ns
WRITE (Figure 8 and 9)					
Enable Cycle Time	^t cycE	1.0		-	μs
Enable Pulse Width, High	PWEH	0.45	-	25	μs
Enable Pulse Width, Low	PWEL	0.43	-	-	μs
Setup Time, Address and R/W valid to Enable positive transition	tAS	160	-	-	nş
Data Setup Time	tDSW	195	-	-	ns
Data Hold Time	tH	10	-	-	ns
Address Hold Time	tah (10	-	-	ns
Rise and Fall Time for Enable input	tEr, tEf	-	-	25	ns

MOTOROLA Semiconductor Products Inc. —

DEVICE OPERATION

At the bus interface, the ACIA appears as two addressable memory locations. Internally, there are four registers: two read-only and two write-only registers. The read-only registers are Status and Receive Data; the write-only registers are Control and Transmit Data. The serial interface consists of serial input and output lines with independent clocks, and three peripheral/modem control lines.

REPRINTED BY PERMISSION OF MOTOROLA, INC.

MOTOROLA Semiconductor Products Inc. -

POWER ON/MASTER RESET

The master reset (CR0, CR1) should be set during system initialization to insure the reset condition and prepare for programming the ACIA functional configuration when the communications channel is required. Control hits CR5 and CR6 should also be programmed to define the state of RTS whenever master reset is utilized. The ACIA also contains internal power-on reset logic to detect the power line turn-on transition and hold the chip in a reset state to prevent erroneous output transitions prior to initialization. This circuitry depends on clean power turn-on transitions. The power-on reset is released by means of the bus-programmed master reset which must be applied prior to operating the ACIA. After master resetting the ACIA, the programmable Control Register can be set for a number of options such as variable clock divider ratios, variable word length, one or two stop bits, parity (even, odd, or none), etc.

TRANSMIT

A typical transmitting sequence consists of reading the ACIA Status Register either as a result of an interrupt or in the ACIA's turn in a polling sequence. A character may be written into the Transmit Data Register if the status read operation has indicated that the Transmit Data Register is empty. This character is transferred to a Shift Register where it is serialized and transmitted from the Transmit Data output preceded by a start bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character and will occur between the last data bit and the first stop bit. After the first character is written in the Data Register, the Status Register can be read again to check for a Transmit Data Register Empty condition and current peripheral status. If the register is empty, another character can be loaded for transmission even though the first character is in the process of being transmitted (because of double buffering). The second character will be automatically transferred into the Shift Register when the first character transmission is completed. This sequence continues until all the characters have been transmitted.

RECEIVE

Data is received from a peripheral by means of the Receive Data input. A divide-by-one clock ratio is provided for an externally synchronized clock (to its data) while the divide-by-16 and 64 ratios are provided for internal synchronization. Bit synchronization in the divide-by-16 and 64 modes is initiated by the detection of the leading mark-to-space transition of the start bit. False start bit deletion capability insures that a full half bit of a start bit has been received before the internal clock is synchronized to the bit time. As a character is being received, parity (odd or even) will be checked and the error indication will be available in the Status Register along with framing error, overrun error, and Receive Data Register full. In a typical receiving sequence, the Status Register is read to determine if a character has been received from a peripheral. If the Receiver Data Register is full, the character is placed on the 8-bit ACIA bus when a Read Data command is received from the MPU. When parity has been selected for an 8-bit word (7 bits plus parity), the receiver strips the parity bit (D7 = 0) so that data alone is transferred to the MPU. This feature reduces MPU programming. The Status Register can continue to be read again to determine when another character is available in the Receive Data Register. The receiver is also double buffered so that a character can be read from the data register. The above sequence continues until all characters have been received.

INPUT/OUTPUT FUNCTIONS

ACIA INTERFACE SIGNALS FOR MPU

The ACIA interfaces to the MC6800 MPU with an 8-bit bi-directional data bus, three chip select lines, a register select line, an interrupt request line, read/write line, and enable line. These signals, in conjunction with the MC6800 VMA output, permit the MPU to have complete control over the ACIA.

ACIA Bi-Directional Data (D0-D7) – The bi-directional data lines (D0-D7) allow for data transfer between the ACIA and the MPU. The data bus output drivers are three-state devices that remain in the high-impedance (off) state except when the MPU performs an ACIA read operation.

ACIA Enable (E) – The Enable signal, E, is a high impedance TTL compatible input that enables the bus input/output data buffers and clocks data to and from the ACIA. This signal will normally be a derivative of the MC6800 ϕ 2 Clock.

Read/Write (R/W) – The Read/Write line is a high impedance input that is TTL compatible and is used to control the direction of data flow through the ACIA's input/output data bus interface. When Read/Write is high (MPU Read cycle), ACIA output drivers are turned on and a selected register is read. When it is low, the ACIA output drivers are turned off and the MPU writes into a selected register. Therefore, the Read/Write signal is used to select read-only or write-only registers within the ACIA.

Chip Select (CSO, CS1, \overline{CS2}) — These three high impedance TTL compatible input lines are used to address the ACIA. The ACIA is selected when CSO and CS1 are high and $\overline{CS2}$ is low. Transfers of data to and from the ACIA are then performed under the control of the Enable signal, Read/Write, and Register Select.

Register Select (RS) — The Register Select line is a high impedance input that is TTL compatible. A high level is used to select the Transmit/Receive Data Registers and a low level the Control/Status Registers. The Read/ Write signal line is used in conjunction with Register Select to select the read-only or write-only register in each register pair.

Interrupt Request (IRQ) - Interrupt Request is a TTL compatible, open-drain (no internal pullup), active low

MOTOROLA Semiconductor Products Inc. -

output that is used to interrupt the MPU. The \overline{IRQ} output remains low as long as the cause of the interrupt is present and the appropriate interrupt enable within the ACIA is set. The IRQ status bit, when high, indicates the \overline{IRQ} output is in the active state.

Interrupts result from conditions in both the transmitter and receiver sections of the ACIA. The transmitter section causes an interrupt when the Transmitter Interrupt Enabled condition is selected (CR5 \cdot CR6), and the Transmit Data Register Empty (TDRE) status bit is high. The TDRE status bit indicates the current status of the Transmitter Data Register except when inhibited by Clear-to-Send (CTS) being high or the ACIA being maintained in the Reset condition. The interrupt is cleared by writing data into the Transmit Data Register. The interrupt is masked by disabling the Transmitter Interrupt via CR5 or CR6 or by the loss of CTS which inhibits the TDRE status bit. The Receiver section causes an interrupt when the Receiver Interrupt Enable is set and the Receive Data Register Full (RDRF) status bit is high, an Overrun has occurred, or Data Carrier Detect (DCD) has gone high. An interrupt resulting from the RDRF status bit can be cleared by reading data or resetting the ACIA. Interrupts caused by Overrun or loss of DCD are cleared by reading the status register after the error condition has occurred and then reading the Receive Data Register or resetting the ACIA. The receiver interrupt is masked by resetting the Receiver Interrupt Enable.

CLOCK INPUTS

Separate high impedance TTL compatible inputs are provided for clocking of transmitted and received data. Clock frequencies of 1, 16 or 64 times the data rate may be selected.

Transmit Clock (Tx Clk) – The Transmit Clock input is used for the clocking of transmitted data. The transmitter initiates data on the negative transition of the clock.

Receive Clock (Rx Clk) – The Receive Clock input is used, for synchronization of received data. (In the \div 1 mode, the clock and data must be synchronized externally.) The receiver samples the data on the positive transiton of the clock.

SERIAL INPUT/OUTPUT LINES

Receive Data (Rx Data) — The Receive Data line is a high impedance TTL compatible input through which data is received in a serial format. Synchronization with a clock for detection of data is accomplished internally when clock rates of 16 or 64 times the bit rate are used. Data rates are in the range of 0 to 500 kbps when external synchronization is utilized.

Transmit Data (Tx Data) – The Transmit Data output line transfers serial data to a modem or other peripheral. Data rates are in the range of 0 to 500 kbps when external synchronization is utilized.

PERIPHERAL/MODEM CONTROL

The ACIA includes several functions that permit limited

control of a peripheral or modem. The functions included are Clear-to-Send, Request-to-Send and Data Carrier Detect.

Clear-to-Send (CTS) — This high impedance TTL compatible input provides automatic control of the transmitting end of a communications link via the modern Clear-to-Send active low output by inhibiting the Transmit Data Register Empty (TDRE) status bit.

Request-to-Send (RTS) – The Request-to-Send output enables the MPU to control a peripheral or modem via the data bus. The RTS output corresponds to the state of the Control Register bits CR5 and CR6. When CR6 = 0 or both CR5 and CR6 = 1, the RTS output is low (the active state). This output can also be used for Data Terminal Ready (DTR).

Data Carrier Detect (DCD) – This high impedance TTL compatible input provides automatic control, such as in the receiving end of a communications link by means of a modem Data Carrier Detect output. The DCD input inhibits and initializes the receiver section of the ACIA when high. A low to high transition of the Data Carrier Detect initiates an interrupt to the MPU to indicate the occurrence of a loss of carrier when the Receive Interrupt Enable bit is set.

ACIA REGISTERS

The expanded block diagram for the ACIA indicates the internal registers on the chip that are used for the status, control, receiving, and transmitting of data. The content of each of the registers is summarized in Table 1.

TRANSMIT DATA REGISTER (TDR)

Data is written in the Transmit Data Register during the negative transition of the enable (E) when the ACIA has been addressed and RS $\cdot RW$ is selected. Writing data into the register causes the Transmit Data Register Empty bit in the Status Register to go low. Data can then be transmitted. If the transmitter is idling and no character is being transmitted, then the transfer will take place within one bit time of the trailing edge of the Write command. If a character is being transmitted, the new data character will commence as soon as the previous character is complete. The transfer of data causes the Transmit Data Register Empty (TDRE) bit to indicate empty.

RECEIVE DATA REGISTER (RDR)

Data is automatically transferred to the empty Receive Data Register (RDR) from the receiver deserializer (a shift register) upon receiving a complete character. This event causes the Receive Data Register Full bit (RDRF) in the status buffer to go high (full). Data may then be read through the bus by addressing the ACIA and selecting the Receive Data Register with RS and R/W high when the ACIA is enabled. The non-destructive read cycle causes the RDRF bit to be cleared to empty although

REPRINTED BY PERMISSION OF MOTOROLA, INC.

MOTOROLA Semiconductor Products Inc. —

TADIE 1	DEEINITION OF ACIA	A REGISTER CONTENTS
IABLE I -		A REGISTER CONTENTS

	1. J.		Buffer Address	•
Data Bus	RS ● R/W Transmit	RS • R/W Receive	RS • R/W	RS ● R/W
Line Number	Data Register	Data Register	Control Register	Status Register
	(Write Only)	(Read Only)	(Write Only)	(Read Only)
0	Data Bit 0*	Data Bit 0	Counter Divide Select 1 (CR0)	Receive Data Register Full (RDRF)
1	Data Bit 1	Data Bit 1	Counter Divide Select 2 (CR1)	Transmit Data Register - Empty (TDRE)
2	Data Bit 2	Data Bit 2	Word Select 1 (CR2)	Data Carrier Detect (DCD)
3	Data Bit 3	Data Bit 3	Word Select 2 (CR3)	Clear-to-Send (CTS)
4	Data Bit 4	Data Bit 4	Word Select 3 (CR4)	Framing Error (FE)
5	Data Bit 5	Data Bit 5	Transmit Control 1 (CR5)	Receiver Overrun (OVRN)
6	Data Bit 6	Data Bit 6	Transmit Control 2 (CR6)	Parity Error (PE)
7	Data Bit 7***	Data Bit 7**	Receive Interrupt Enable (CR7)	Interrupt Request (IRQ)

Leading bit = LSB = Bit 0

Data bit will be zero in 7-bit plus parity modes.
Data bit is "don't care" in 7-bit plus parity modes.

the data is retained in the RDR. The status is maintained by RDRF as to whether or not the data is current. When the Receive Data Register is full, the automatic transfer of data from the Receiver Shift Register to the Data Register is inhibited and the RDR contents remain valid with its current status stored in the Status Register.

CONTROL REGISTER

The ACIA Control Register consists of eight bits of write-only buffer that are selected when RS and R/W are low. This register controls the function of the receiver, transmitter, interrupt enables, and the Request-to-Send peripheral/modem control output.

Counter Divide Select Bits (CR0 and CR1) - The Counter Divide Select Bits (CR0 and CR1) determine the divide ratios utilized in both the transmitter and receiver sections of the ACIA. Additionally, these bits are used to provide a master reset for the ACIA which clears the Status Register (except for external conditions on CTS and DCD) and initializes both the receiver and transmitter. Master reset does not affect other Control Register bits. Note that after power-on or a power fail/restart, these bits must be set high to reset the ACIA. After reseting, the clock divide ratio may be selected. These counter select bits provide for the following clock divide ratios:

CR1	CR0	Function
0	0	÷ 1
0.	1	÷ 16
1	0	÷ 64
1	1	Master Reset

Word Select Bits (CR2, CR3, and CR4) - The Word

Select bits are used to select word length, parity, and the number of stop bits. The encoding format is as follows:

CR4	CR3	CR2	Function	
0	0	0	7 Bits + Even Parity + 2 Stop Bits	
0	0	1	7 Bits + Odd Parity + 2 Stop Bits	
0	1	0	7 Bits + Even Parity + 1 Stop Bit	
0	1	1	7 Bits + Odd Parity + 1 Stop Bit	
1	0	0	8 Bits + 2 Stop Bits	
1	0	1	8 Bits + 1 Stop Bit	
1	1	0	8 Bits + Even Parity + 1 Stop Bit	
1	1	1	8 Bits + Odd Parity + 1 Stop Bit	

Word length, Parity Select, and Stop Bit changes are not buffered and therefore become effective immediately.

Transmitter Control Bits (CR5 and CR6) - Two Transmitter Control bits provide for the control of the interrupt from the Transmit Data Register Empty condition, the Request-to-Send (RTS) output, and the transmission of a Break level (space). The following encoding format is used:

CR6	CR5	Function
0	0	RTS = low, Transmitting Interrupt Disabled.
0	1	RTS = low, Transmitting Interrupt Enabled.
1	0	RTS = high, Transmitting Interrupt Disabled.
1	1	RTS = low, Transmits a Break level on the
		Transmit Data Output. Transmitting
		Interrupt Disabled.

Receive Interrupt Enable Bit (CR7) - The following interrupts will be enabled by a high level in bit position 7 of the Control Register (CR7): Receive Data Register Full, Overrun, or a low to high transistion on the Data Carrier Detect (DCD) signal line.

MOTOROLA Semiconductor Products Inc. –

REPRINTED BY PERMISSION OF MOTOROLA, INC.

1

STATUS REGISTER

Information on the status of the ACIA is available to the MPU by reading the ACIA Status Register. This read-only register is selected when RS is low and R/W is high. Information stored in this register indicates the status of the Transmit Data Register, the Receive Data Register and error logic, and the peripheral/modem status inputs of the ACIA.

Receive Data Register Full (RDRF), Bit 0 – Receive Data Register Full indicates that received data has been transferred to the Receive Data Register. RDRF is cleared after an MPU read of the Receive Data Register or by a master reset. The cleared or empty state indicates that the contents of the Receive Data Register are not current. Data Carrier Detect being high also causes RDRF to indicate empty.

Transmit Data Register Empty (TDRE), Bit 1 - The Transmit Data Register Empty bit being set high indicates that the Transmit Data Register contents have been transferred and that new data may be entered. The low state indicates that the register is full and that transmission of a new character has not begun since the last write data command.

Data Carrier Detect (DCD), Bit 2 – The Data Carrier Detect bit will be high when the DCD input from a modem has gone high to indicate that a carrier is not present. This bit going high causes an Interrupt Request to be generated when the Receive Interrupt Reable is set. It remains high after the DCD input is returned low until cleared by first reading the Status Register and then the Data Register or until a master reset occurs. If the DCD input remains high after read status and read data or master reset has occurred, the interrupt is cleared, the DCD status bit remains high and will follow the DCD input.

 $\label{eq:clear-to-Send} \begin{array}{c} \hline \textbf{(CTS)}, \ \textbf{Bit 3} - \textbf{The Clear-to-Send} \ \textbf{bit} \\ \hline \textbf{indicates the state of the Clear-to-Send input from a} \\ \hline \textbf{modem.} \ A \ \textbf{low CTS} \ \textbf{indicates that there is a Clear-to-Send} \\ \hline \textbf{from the modem.} \ \textbf{In the high state, the Transmit Data} \\ \hline \textbf{Register Empty bit is inhibited and the Clear-to-Send} \\ \hline \textbf{status bit will be high.} \ \ \textbf{Master reset does not affect the} \end{array}$

Clear-to-Send Status bit.

Framing Error (FE), Bit 4 – Framing error indicates that the received character is improperly framed by a start and a stop bit and is detected by the absence of the 1st stop bit. This error indicates a synchronization error, faulty transmission, or a break condition. The framing error flag is set or reset during the receive data transfer time. Therefore, this error indicator is present throughout the time that the associated character is available.

Receiver Overrun (OVRN), Bit 5 - Overrun is an error flag that indicates that one or more characters in the data stream were lost. That is, a character or a number of characters were received but not read from the Receive Data Register (RDR) prior to subsequent characters being received. The overrun condition begins at the midpoint of the last bit of the second character received in succession without a read of the RDR having The Overrun does not occur in the Status occurred. Register until the valid character prior to Overrun has been read. The RDRF bit remains set until the Overrun is reset. Character synchronization is maintained during the Overrun condition. The Overrun indication is reset after the reading of data from the Receive Data Register or by a Master Reset.

Parity Error (PE), Bit 6 – The parity error flag indicates that the number of highs (ones) in the character does not agree with the preselected odd or even parity. Odd parity is defined to be when the total number of ones is odd. The parity error indication will be present as long as the data character is in the RDR. If no parity is selected, then both the transmitter parity generator output and the receiver parity check results are inhibited.

Interrupt Request (IRQ), Bit 7 – The IRQ bit indicates the state of the \overline{IRQ} output. Any interrupt condition with its applicable enable will be indicated in this status bit. Anytime the \overline{IRQ} output is low the IRQ bit will be high to indicate the interrupt or service request status. IRQ is cleared by a read operation to the Receive Data Register or a write operation to the Transmit Data Register.

.

ł.

. .

Section 5 **REPLACEABLE PARTS**

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number

00X Part removed after this serial number

FIGURE AND INDEX NUMBERS

Items in this section are referenced by figure and index numbers to the illustrations.

FLCTRN

ELCTLT

ELEC

ELEM

EPL EQPT

EXT

FIL

FLEX

FLH

FR

FXD

GSKT

HDL

HEX

HEX HD

HLCPS

HLEXT

IDENT

IMPLR

н٧ IC

1D

HEX SOC

FLTR

FSTNR

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

1 2 3 4 5

Name & Description

Assembly and/or Component Attaching parts for Assembly and/or Component ---*---

Detail Part of Assembly and/or Component Attaching parts for Detail Part - - - * - -

Parts of Detail Part.

Attaching parts for Parts of Detail Part - - - * - - -

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol - - - * - - - indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

н	INCH
#	NUMBER SIZE
ACTR	ACTUATOR
ADPTR	ADAPTER
ALIGN	ALIGNMENT
AL	ALUMINUM
ASSEM	ASSEMBLED
ASSY	ASSEMBLY
ATTEN	ATTENUATOR
AWG	AMERICAN WIRE GAGE
BD	BOARD
BRKT	BRACKET
BRS	BRASS
BRZ	BRONZE
BSHG	BUSHING
CAB	CABINET
CAP	CAPACITOR
CER .	•=···
CHAS	CHASSIS
CKT	CIRCUIT
COMP	COMPOSITION
CONN	CONNECTOR
COV	COVER
CPLG	COUPLING
CRT	CATHODE RAY TUBE
DEG	DEGREE

ABBREVIATIONS

IN

NIP

OD

PL

PN

RLF

ELECTRICAL ELECTROLYTIC ELEMENT ELECTRICAL PARTS LIST EQUIPMENT EXTERNAL FILLISTER HEAD FLEXIBLE FLAT HEAD FILTER FRAME or FRONT FASTENER FOOT GASKET HANDLE HEXAGON HEXAGONAL HEAD HEXAGONAL SOCKET HELICAL COMPRESSION HELICAL EXTENSION HIGH VOLTAGE INTEGRATED CIRCUIT INSIDE DIAMETER IDENTIFICATION IMPELLER

FLECTRON

INCH INCAND INCANDESCENT INSUL INSULATOR INTL LPHLDR LAMPHOLDER MACHINE MACH MECH MECHANICAL MOUNTING MTG NIPPLE NON WIRE NOT WIRE WOUND ORDER BY DESCRIPTION OBD OUTSIDE DIAMETER OVH OVAL HEAD PHOSPHOR BRONZE PH BRZ PLAIN or PLATE PLSTC PLASTIC PART NUMBER PNH PAN HEAD POWER PWR RECEPTACLE RCPT RESISTOR BES RGD RIGID RELIEF RTNR RETAINER SOCKET HEAD SCH SCOPE OSCILLOSCOPE SCR SCREW

SINGLE END SE SECT SECTION SEMICOND SEMICONDUCTOR SHLD SHIELD SHLDR SHOULDERED SOCKET SKT SL SLIDE SLFLKG SELF-LOCKING SLEEVING SLVG SPR SPRING SQUARE so SST STAINLESS STEEL STL STEEL SWITCH SW TUBE т TERM TERMINAL THREAD THD THICK тнк TENSION TNSN TAPPING TPG TRUSS HEAD TRH VOLTAGE VAR VARIABLE W/ WITH WSHR WASHER TRANSFORMER XFMR XSTR TRANSISTOR

DRAWER

DWR

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip
00779	AMP, INC.	P O BOX 3608	HARRISBURG, PA 17105
01121	ALLEN-BRADLEY COMPANY	1201 2ND STREET SOUTH	MILWAUKEE, WI 53204
01295	TEXAS INSTRUMENTS, INC., SEMICONDUCTOR		
	GROUP	P O BOX 5012, 13500 N CENTRAL	
	·	EXPRESSWAY	DALLAS, TX 75222
01963	CHERRY ELECTRICAL PRODUCTS CORPORATION	3600 SUNSET AVENUE	WAUKEGAN, IL 60085
02735	RCA CORPORATION, SOLID STATE DIVISION	ROUTE 202	SOMERVILLE, NY 08876
04222	AVX CERAMICS, DIVISION OF AVX CORP.	P O BOX 867, 19TH AVE. SOUTH	MURTLE BEACH, SC 29577
04713	MOTOROLA, INC., SEMICONDUCTOR PROD. DIV.	5005 E MCDOWELL RD, PO BOX 20923	PHOENIX, AZ 85036
05574	VIKING INDUSTRIES, INC.	21001 NORDHOFF STREET	CHATSWORTH, CA 91311
07910	TELEDYNE SEMICONDUCTOR	12515 CHADRON AVE.	HAWTHORNE, CA 90250
10389	CHICAGO SWITCH, INC.	2035 WABANSIA AVE.	CHICAGO, IL 60647
22526	BERG ELECTRONICS, INC.	YOUK EXPRESSWAY	NEW CUMBERLAND, PA 17070
27014	NATIONAL SEMICONDUCTOR CORP.	2900 SEMICONDUCTOR DR.	SANTA CLARA, CA 95051
28480	HEWLETT-PACKARD CO., CORPORATE HQ.	1501 PAGE MILL RD.	PALO ALTO, CA 94304
56289	SPRAGUE ELECTRIC CO.		NORTH ADAMS, MA 01247
71279	CAMBRIDGE THERMIONIC CORP.	445 CONCORD AVE.	CAMBRIDGE, MA 02138
72982	ERIE TECHNOLOGICAL PRODUCTS, INC.	644 W. 12TH ST.	ERIE, PA 16512
73138	BECKMAN INSTRUMENTS, INC., HELIPOT DIV.	2500 HARBOR BLVD.	FULLERTON, CA 92634
75037	MINNESOTA MINING AND MFG. CO., ELECTRO		
	PRODUCTS DIVISION	3M CENTER	ST. PAUL, MN 55101
78189	ILLINOIS TOOL WORKS, INC.		
	SHAKEPROOF DIVISION	ST. CHARLES ROAD	ELGIN, IL 60120
78488	STACKPOLE CARBON CO.		ST. MARYS, PA 15857
80009	TEKTRONIX, INC.	P O BOX 500	BEAVERTON, OR 97077
83385	CENTRAL SCREW CO.	2530 CRESCENT DR.	BROADVIEW, IL 60153
91637	DALE ELECTRONICS, INC.	P. O. BOX 609	COLUMBUS, NE 68601

@

REPLACEABLE PARTS

Electrical

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name & Description	Mfr Code	Mfr Part Number
Al	670-4101-00		CKT BOARD ASSY:MCM SYSTEMS TEST	80009	670-4101-00
A2	670-4171-00		CKT BOARD ASSY:CONNECTOR INTERFACE	80009	670-4171-00
Al	670-4101-00		רצה בהאבה אכצייארא כאכעיביים	80009	670-4101-00
			CKT BOARD ASSY:MCM SYSTEMS TEST	80009	670-4101-00
C31	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C41	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C51	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C60 C61	283-0010-00 283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289 56289	273C20 273C20
001	205 0010 00		CRI., IND CER DI.0.0301, 100-208, 500	50289	273020
C71	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C80	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C81	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C85	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C101	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C111	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C131	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C141	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C171	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C181	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C211	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C311	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C321	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C331	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C341	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C361	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C381	283-0010-00		CAP., FXD, CER DI:0.050F, +100-20%, 50V	56289	273C20
C382	283-0010-00		CAP., FXD, CER DI:0.050F, +100-20%, 50V	56289	273C20
C411	283-0010-00		CAP., FXD, CER DI:0.050F, +100-20%, 50V	56289	273C20
C421	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C421	202 0144 00			70000	001 547506000
C431	283-0144-00		CAP., FXD, CER DI:33PF, 1%, 500V	72982	801-547P2G330G
C432	283-0144-00		CAP., FXD, CER DI:33PF, 1%, 500V	72982	
C441	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C471 C501	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
001	283-0010-00		CAP:,FAD,CER DI:0.050F,+100-20%,50V	56289	273C20
C521	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V	56289	273C20
C525	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C531	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
C535 C561	281-0540-00 283-0010-00		CAP.,FXD,CER DI:51PF,5%,500V CAP.,FXD,CER DI:0.05UF,+100-20%,50V	· 72982 56289	301-000U2J0510J 273C20
C571	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
2601	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V	56289	273C20
2621	283-0010-00		CAP.,FXD,CER DI:0.05UF,+100-20%,50V		273C20
2671	283-0111-00		CAP.,FXD,CER DI:0.1UF,20%,50V		8121-N088Z5U104M
2673	290-0246-00		CAP.,FXD,ELCTLT:3.3UF,10%,15V	56289	162D335X9015CD2
2680	290-0746-00		CAP.,FXD,ELCTLT:47UF,+50-10%,16V	56289	502D226
2681	281-0524-00		CAP., FXD, CER DI:150PF, +/-30PF, 500V		7001-1381
2711	283-0010-00		CAP., FXD, CER DI:0.05UF, +100-20%, 50V		273C20
2712	283-0000-00		CAP., FXD, CER DI:0.001UF, +100-0%, 500V		831-516E102P
2721	283-0010-00	•	CAP.,FXD,CER DI:0.05UF,+100-20%,50V		273C20
2770	290-0746-00		CAP.,FXD,ELCTLT:47UF,+50-10%,16V	56700	5020226
2770 2780	290-0746-00		CAP.,FXD,ELCTLT:470F,+50-10%,16V CAP.,FXD,ELCTLT:47UF,+50-10%,16V		502D226 502D226
			CAP, FXD, BLCCCCC44708, +50-108, 16V	56289	DU/U//b

Elevation and a

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name & Description	Mfr Code	Mfr Part Number
CR621	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	07910	1N4152
CR671	152-0581-00		SEMICOND DEVICE:SILICON, 20V, 1A	04713	1N5817
541	150 1001 00		TAND THD. DED 317 100NA	20100	5082-4403
DS1	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480 28480	
DS2	150-1001-00		LAMP, LED: RED, 2V, 100MA		5082-4403
DS3	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS4	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS5	150-1001-00		LAMP, LED:RED, 2V, 100MA	28480	5082-4403
DS11	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS12	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS15	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS14	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS31	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS32	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS33	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS34	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS51	150-1001-00		LAMP, LED:RED, 2V, 100MA	28480	5082-4403
DS52	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
					5000 4400
DS53	150-1001-00		LAMP, LED:RED, 2V, 100MA	28480	5082-4403
DS54	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS61	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	
DS63	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	
DS71	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
5970	150 1001 00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS72	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	
DS81	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	
DS82	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS83	150-1001-00		LAMP, LED: RED, 2V, 100MA	28480	5082-4403
DS84	150-1001-00		HATE, HED, ADD, 2V, HOOMA	20400	
L571	108-0839-00		COIL, RF: FXD, 0.729MHZ, SWITCHING REGULATOR	80009	108-0839-00
L671	276-0507-00		SHIELDING BEAD,:0.6UH	78488	57-0180-7D 500B
Q621	151-0188-00		TRANSISTOR:SILICON, PNP	01295	2N3906
Q671	151-0136-00		TRANSISTOR:SILICON, NPN	02735	35495
Rl	315-0511-00		RES., FXD, CMPSN:510 OHM, 5%, 0.25W		CB5115
R2	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W		CB5115
R3	315-0511-00		RES., FXD, CMPSN:510 OHM, 5%, 0.25W		CB5115
R4	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W		CB5115
R5	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115
D11	216-0511 00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115
R11	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W RES.,FXD,CMPSN:510 OHM,5%,0.25W		CB5115
R12	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W RES.,FXD,CMPSN:510 OHM,5%,0.25W		CB5115
R13	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	
R14	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	
R31	315-0511-00		RES., FAD, CMPSN: 510 OHM, 5%, 0.23W	01121	CDSIIS
R32	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115
R33	315-0511-00		RES., FXD, CMPSN:510 OHM, 5%, 0.25W	01121	
R34	315-0511-00		RES., FXD, CMPSN:510 OHM, 5%, 0.25W	01121	
R51	315-0511-00		RES., FXD, CMPSN:510 OHM, 5%, 0.25W	01121	
R52	315-0511-00		RES., FXD, CMPSN:510 OHM, 5%, 0.25W	01121	CB5115
R53	315-0511-00)	RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	
R54	315-0511-00	1	RES.,FXD,CMPSN:510 OHM,5%,0.25W		CB5115
R61	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115
R62	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	
R63	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115

5-4
	.	o			
	Tektronix	Serial/Model No.		Mfr	
Ckt No.	Part No.	Eff Dscont	Name & Description	Code	Mfr Part Number
R64	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115
R71	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115
R72	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115
R73	315-0511-00		RES., FXD, CMPSN:510 OHM, 5%, 0.25W	01121	CB5115
R81	315-0242-00		RES., FXD, CMPSN: 2.4K OHM, 5%, 0.25W		CB2425
1001	515 0242 00		NEB: / I AD / CAL DA . Z . 4 K OHA / D 0 / 0 . Z J W	UTTET	CDZ4Z5
R82	215-0242-00		RES., FXD, CMPSN: 2.4K OHM, 5%, 0.25W	01101	CB2425
	315-0242-00				
R83	315-0242-00		RES., FXD, CMPSN:2.4K OHM, 5%, 0.25W		CB2425
R84	315-0242-00		RES.,FXD,CMPSN:2.4K OHM,5%,0.25W		CB2425
R85	315-0511-00		RES.,FXD,CMPSN:510 OHM,5%,0.25W	01121	CB5115
R431	321-0289-00		RES.,FXD,FILM:10K OHM,1%,0.125W	91637	MFF1816G10001F
R432	321-0289-00		RES.,FXD,FILM:10K OHM,1%,0.125W	91637	MFF1816G10001F
R535	315-0101-00		RES.,FXD,CMPSN:100 OHM,5%,0.25W	01121	CB1015
R571	315-0112-00		RES., FXD, CMPSN:1.1K OHM, 5%, 0.25W		CB1125
R572	307-0111-00		RES.,FXD,CMPSN:3.6 OHM,5%,0.25W		CB36G5
R621	321-0289-00		RES.,FXD,FILM:10K OHM,1%,0.125W	91037	MFF1816G10001F
200					G7 2 2 2 5
R622	315-0332-00		RES., FXD, CMPSN: 3.3K OHM, 5%, 0.25W		CB3325
R672	321-0289-00		RES.,FXD,FILM:10K OHM,1%,0.125W	91637	
R673	321-0289-00		RES.,FXD,FILM:10K OHM,1%,0.125W	91637	MFF1816G10001F
R674	315-0271-00		RES.,FXD,CMPSN:270 OHM,5%,0.25W	01121	CB2715
R711	315-0201-00		RES., FXD, CMPSN: 200 OHM, 5%, 0.25W	01121	CB2015
Sl	260-0760-00		SWITCH, SENS: 10A, 250V, SPDT, SNAP ACTION	01963	E62-10A
S2	260-0760-00		SWITCH, SENS: 10A, 250V, SPDT, SNAP ACTION		E62-10A
S3	260-0760-00		SWITCH, SENS: 10A, 250V, SPDT, SNAP ACTION		E62-10A
S4	260-0760-00		SWITCH, SENS: 10A, 250V, SPDT, SNAP ACTION	01963	
S5	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S6	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S7	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S11	260-0760-00		SWITCH, SENS: 10A, 250V, SPDT, SNAP ACTION	01963	E62-10A
S12	260-0760-00		SWITCH, SENS: 10A, 250V, SPDT, SNAP ACTION	01963	E62-10A
s13	260-0760-00		SWITCH, SENS: 10A, 250V, SPDT, SNAP ACTION	01963	E62-10A
913	200-0700-00		SWITCH, BEND. ION, 2500, BIDI, BARE ACTION	01903	102-10A
S14	260-1116-00		CHIMON CLIDE CDDW	10389	23-021-144
	260-1116-00		SWITCH, SLIDE: SPDT		
S15	260-1116-00		SWITCH, SLIDE: SPDT	10389	
S16	260-1116-00		SWITCH, SLIDE: SPDT	10389	
S17	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S31	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S32	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S 33	260-1116-00		SWITCH, SLIDE: SPDT		
s34	260-1116-00		SWITCH, SLIDE:SPDT	10389	23-021-144
S34 S35	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
			-		23-021-144
S36	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
~~~				10000	<u></u>
S37	260-1116-00		SWITCH, SLIDE: SPDT		
s41	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S42	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S43	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S44	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S51	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
s52	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S53			•		
s54	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S61	260-1116-00	•	SWITCH, SLIDE: SPDT	10389	23-021-144
		·			
S62	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
<b>S6</b> 3	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S64	260-1116-00		SWITCH, SLIDE: SPDT		23-021-144
			,		

-

	Tektronix	Serial/Model No.		Mfr	
Ckt No.	Part No.	Eff Dscont	Name & Description	Code	Mfr Part Number
	Fall NU.			COUR	
S81	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S82	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S83	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
S84	260-1116-00		SWITCH, SLIDE: SPDT	10389	23-021-144
		•			
Ul	307-0422-00		RES., FXD, FILM: 15 RES. NETWORK	73138	898-1-R242J
<b>U11</b>	307-0422-00		RES., FXD, FILM: 15 RES. NETWORK	73138	898-1-R242J
U21	156-0381-00		MICROCIRCUIT, DI: QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U31	156-0093-00		MICROCIRCUIT, DI: HEX. INVERTER	01295	SN7416N
U41	156-0093-00		MICROCIRCUIT, DI: HEX, INVERTER	01295	SN7416N
U51	156-0093-00		MICROCIRCUIT, DI : HEX. INVERTER	01295	SN7416N
U60	156-0472-00		MICROCIRCUIT, DI:13-INPUT NAND GATE	01295	SN74S133N
U61	307-0422-00		RES.,FXD,FILM:15 RES. NETWORK	73138	898-1-R242J
U70	156-0469-00		MICROCIRCUIT, DI:3-LINE TO 8-LINE DECODER	01295	SN74LS138N
U71	156-0093-00		MICROCIRCUIT, DI: HEX. INVERTER	01295	SN7416N
U80	156-0541-00		MICROCIRCUIT, DI: DECODER/DEMULTIPLEXER	01295	SN74LS139N
<b>U101</b>	156-0382-00		MICROCIRCUIT, DI:QUAD 2-INPUT NAND GATE	01295	SN74LSOON
<b>U111</b>	156-0382-00		MICROCIRCUIT, DI:QUAD 2-INPUT NAND GATE	01295	SN74LSOON
<b>U121</b>	156-0381-00		MICROCIRCUIT, DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
<b>U131</b>	156-0220-00		MICROCIRCUIT, DI: DUAL 4-BIT LATCH W/CLEAR	80009	156-0220-00
U141	156-0220-00		MICROCIRCUIT, DI: DUAL 4-BIT LATCH W/CLEAR	80009	156-0220-00
<b>U171</b>	156-0220-00		MICROCIRCUIT, DI: DUAL 4-BIT LATCH W/CLEAR	80009	156-0220-00
<b>U181</b>	156-0708-09		MICROCIRCUIT, DI: PROM U181	80009	156-0708-09
U201	156-0386-00		MICROCIRCUIT, DI: TRIPLE 3-INPUT NAND GATE	01295	SN74LS10N
U <b>211</b>	156-0386-00		MICROCIRCUIT, DI: TRIPLE 3-INPUT NAND GATE	01295	SN74LS10N
U221	156-0383-00		MICROCIRCUIT, DI:QUAD 2-INPUT NOR GATE	01295	SN74LS02N
U301	156-0464-00		MICROCIRCUIT, DI: DUAL 4-INPUT NAND GATE	01295	SN74LS20N
U311	156-0383-00		MICROCIRCUIT, DI:QUAD 2-INPUT NOR GATE	01295	SN74LS02N
U321	156-0478-00		MICROCIRCUIT, DI: DUAL 4-INPUT AND GATE	01295	SN74LS21N
U331	156-0535-00		MICROCIRCUIT, DI: TRI-STATE HEX BUFF	27014	DM8097M
U341	156-0535-00		MICROCIRCUIT, DI:TRI-STATE HEX BUFF	27014	DM8097M
U351	156-0381-00		MICROCIRCUIT, DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U361	156-0381-00		MICROCIRCUIT, DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U371	156-0535-00		MICROCIRCUIT, DI:TRI-STATE HEX BUFF	27014	DM8097M
U381	156-0708-10		MICROCIRCUIT, DI: PROM U381	80009	156-0708-10
	156 0000 00		VIODOGIDGUITE DI DUDI DI MUDE MILE MICO	01 205	CN7 47 C7 4N
U401	156-0388-00		MICROCIRCUIT, DI:DUAL D-TYPE FLIP-FLOP	01295	SN74LS74N
U411	156-0382-00		MICROCIRCUIT, DI:QUAD 2-INPUT NAND GATE	01295 01295	SN74LSOON
U421 U431	156-0480-00 156-0172-00		MICROCIRCUIT, DI:QUAD 2-INPUT AND GATE MICROCIRCUIT, DI:DUAL RETRIG MONOSTABLE MV	80009	SN74LS08N 156-0172-00
			•		
U441	156-0535-00		MICROCIRCUIT, DI:TRI-STATE HEX BUFF	27014	DM8097M
U461	156-0381-00		MICROCIRCUIT, DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U481 U471	156-0381-00		MICROCIRCUIT, DI:QUAD 2-INPUT EXCL OR GATES MICROCIRCUIT, DI:QUAD 2-INPUT EXCL OR GATES	01295	SN74LS86N
U501	156-0388-00		MICROCIRCUIT, DI: DUAL D-TYPE FLIP-FLOP	01295	SN74LS88N SN74LS74N
U511	156-0382-00		MICROCIRCUIT, DI:DUAL D-TIPE FLIP-FLOP MICROCIRCUIT, DI:QUAD 2-INPUT NAND GATE	01295	SN74LS74N SN74LS00N
U521	156-0599-00		MICROCIRCUIT, DI:RAM THREE STATE	80009	156-0599-00
0041	100 0000-00		DIALE	23005	
U525	156-0599-00		MICROCIRCUIT, DI:RAM THREE STATE	80009	156-0599-00
U531	156-0385-00		MICROCIRCUIT, DI:HEX.INVERTER	01295	SN74LS04N
U535	156-0385-00		MICROCIRCUIT, DI:HEX.INVERTER	01295	SN74LS04N
U541	156-0383-00		MICROCIRCUIT, DI:QUAD 2-INPUT NOR GATE	01295	SN74LS02N
U561	156-0465-00		MICROCIRCUIT, DI:8-INPUT NAND GATE	01295	SN74LS30N
	0.00 00				
U571	156-0383-00		MICROCIRCUIT, DI: QUAD 2-INPUT NOR GATE	01295	SN74LS02N
U601	156-0388-00		MICROCIRCUIT, DI:DUAL D-TYPE FLIP-FLOP	01295	SN74LS74N
U611	156-0093-00		MICROCIRCUIT, DI:HEX.INVERTER	01295	SN7416N
U621	156-0599-00		MICROCIRCUIT, DI:RAM THREE STATE	80009	156-0599-00

1

#### **REPLACEABLE PARTS**

Ckt No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name & Description	Mfr Code	Mfr Part Number
U681	156-0096-00		MICROCIRCUIT, LI: VOLTAGE COMPARATOR	27014	'LM311H
U701	156-0382-00		MICROCIRCUIT, DI:QUAD 2-INPUT NAND GATE	01295	SN74LS00N
U711	156-0382-00		MICROCIRCUIT, DI:QUAD 2-INPUT NAND GATE	01295	SN74LSOON
U721	156-0599-00		MICROCIRCUIT, DI RAM THREE STATE	80009	156-0599-00

@



Index No.	Tektronix Part No.	Serial/ Eff	'Model No. Dscont	Qty	12345	Name & Description	Mfr Code	Mfr Part Number
	067-0746-0	00		1	FIXTURE, CAI	MEM 6800 SYSTEM	80009	067-0746-00
-1	390-0498-0	00		1	. CAB., TOP,	TST EQ: (ATTACHING PARTS)	80009	390-0498-00
-2	211-0008-0	00		· 6	. SCREW, MAC	HINE:4-40 X 0.25 INCH, PNH STL	83385	OBD
-3	129-0080-0	00`		6	. POST,ELEC	-MECH:0,875 INCH LONG	80009	129-0080-00
-4	333-2107-0	00	•	1	. PANEL, FRO	NT: (ATTACHING PARTS)	80009	333-2107-00
-5	210-0586-0	00		5	. NUT, PLAIN	,EXT W:4-40 X 0.25 INCH,STL	78189	OBD
-6	210-0994-0	00		5	. WASHER, FI	AT:0.125 ID X 0.25" OD,STL	83385	OBD

Fig. & Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	1	2	345		Name & Description	Mfr Code	Mfr Part Number
-7			1		CK	T BOA	RD ASSY:CO	ONN INTERFACE (SEE A2 EPL)		
-8	131-0589-0	0	50			CONTA	CT,ELEC:0	.46 INCH LONG	22526	47350
	131-0608-0	C	100	•		CONTA	CT,ELEC:0	.365 INCH LONG	22526	47357
-9	214-1458-0	D	1	•	•	KEY,C	ONN PLZN:		05574	091-0071-00
-10	131-1359-0	כ	1	•	•	CONN,	RCPT,ELEC	CKT BD,25/50 CONTACT	05574	3VH25/1JN5
	175-1737-0	D	2	٠	CA	ASSY		50,28 AWG,15.0 LONG H CABLE INCLUDES)	80009	175-1737-00
-11	131-1781-0	2	2	•	•	CONN,	PLUG ELEC	RIBBON CA,2/25 FEM 1A CO	NT 80009	131-1781-00
-12	175-1689-0	כ	FT	•	•	CABLE	,SP,ELEC:	(50) 28 STD,W/PVC JKT	75037	3365-50 COND
-13	jand ager field field data . Hink tarb Mills field d	-	1	•	CK	T BOA		CM TEST(SEE Al EPL) ACHING PARTS)		
-14	211-0008-00	ס	8	•	sc	REW,M		40 X 0.25 INCH,PNH STL	83385	OBD
		-	-	•	•	СКТ В	OARD ASSY	INCLUDES:		
-15	131-0608-00	)	118	•	. 1	CONTA	CT,ELEC:0.	365 INCH LONG	22526	47357
-16	131-0993-00	)	4	•	•	LINK,	TERM. CONNI	E:2 WIRE BLACK	00779	530153-2
-17	136-0594-00	)	4	•	•	SOCKE	r,PLUG-IN:	24 LED	71279	703-3790-01-0416
-18	260-0760-00		. 6				•	A,250V,SPDT,SNAP ACTION	01963	E62-10A
-19	260-1116-00		31				H,SLIDE:SI	PDT	10389	23-021-144
-20	390-0500-00	)	1	•	CA	P.,FR	, TSTEQ : (ATTI	ACHING PARTS)	80009	390-0500-00
-21	211-0008-00	)	3	•	SC:	REW,M		0 X 0.25 INCH, PNH STL	83385	OBD
-22	390-0499-00	)	1	•	CA	B.,RE	AR,TSTEQ: (ATTZ	ACHING PARTS)	80009	390-0499-00
-23	211-0008-00	0	3	•	SC	REW,M		0 X 0.25 INCH, PNH STL	83385	OBD
-24	348-0187-00	)	04	•	FO	OT,CA		0 X 1.650 INCH LONG ACHING PARTS)	80009	348-0187-00
-25	211-0504-00	)	1	•	SCI	REW,M	•	2 X 0.25 INCH, PNH STL	83385	OBD
-26	390-0501-00	)	1	•	CA	з.,во	r,tsteq:		80009	390-0501-00

@

5-9

.

# DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

#### Symbols and Reference Designators

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Values one or greater are in picofarads (pF). Capacitors = Values less than one are in microfarads ( $\mu$ F). Ohms  $(\Omega)$ . Resistors =

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices. Y14.2, 1973 Line Conventions and Lettering. Letter Symbols for Quantities Used in Electrical Science and Y10.5, 1968 Electrical Engineering.

The following prefix letters are used as reference designators to identify components or assemblies on the diagrams.

А	Assembly, separable or repairable (circuit board, etc)	н	Heat dissipating device (heat sink, heat radiator, etc)	S T	Switch or contactor Transformer
AT	Attenuator, fixed or variable	HB	Heater	тс	Thermocouple
В	Motor	HY	Hybrid circuit	TP	Test point
вт	Battery	J	Connector, stationary portion	U	Assembly, inseparable or non-repairable
C	Capacitor, fixed or variable	к	Relay		(integrated circuit, etc.)
СВ	Circuit breaker	L	Inductor, fixed or variable	V	Electron tube
CR	Diode, signal or rectifier	м	Meter	VR	Voltage regulator (zener diode, etc.)
DL	Delay line	Р	Connector, movable portion	w	Wirestrap or cable
DS	Indicating device (lamp)	Q	Transistor or silicon-controlled	Y	Crystal
E	Spark Gap, Ferrite bead		rectifier	Z	Phase shifter
F	Fuse	R	Resistor, fixed or variable		
FL	Filter	RT	Thermistor		

The following special symbols may appear on the diagrams:



Plug to E.C. Board

## 1. TRUE HIGH and TRUE LOW Signals

Signal names on the schematics are followed by -1 or -0. A TRUE HIGH signal is indicated by -1, and a TRUE LOW signal is indicated by -0.

SIGNAL-1 = TRUE HIGH SIGNAL-0 = TRUE LOW

### 2. Cross-References

Schematic cross-references (from/to information) are included on the schematics. The "from" reference only indicates the signal "source," and the "to" reference lists all loads where the signal is used. All from/to information will be enclosed in parenthesis.



R85 R84 R83	SW84 DS84	<u>C81 - C85 -</u>	( <u>C181</u> , C192)	C381 C382	p.	-	C780
R82 R81 J103 U80	SW83 DS83 SW82 DS82	<u>U81</u>	<mark>U85</mark>	U181	U381	R572 R571	U681 8 C770
C80	SW81 DS81	-				NY:	R674 C673 J101 R673
U70	SW64 DS72 R73   R72 R72   SW63 DS71 R71	U71	U171	U371	U471	U571	R672 L671 CR671 671 C690
C61	SW62 DS63 R64 R63	C71		C361	C461	C571 (	CR681
	SW61 DS61 R62 R61	U61	C171	U361	U461	U561	Q621
U60	SW54 DS54 R54 SW53 DS53 R53	C51	C141	U351		C561	R621
C60	SW52 DS52 R52	U51	U141	C341	U441	U541	J100
SW43 SW42	SW51 DS51 R51			U341	C441 (	R535	TESTED
SW41 0	SW44 DS34 R34	U41	C131	C331	C432 R432	U535	D BY
SW34	SW37 DS33 R33 SW36 DS32 R32	C41 U31	U131	U331	U431	C531	
SW32	SW35 DS31 R31	C31			R431 C431	U531	
SW31	SW17 DS14 R14	U21	J121 U221	C321 U321	C421 U421	U521 U	525 U621 U721
SW13	SW16 DS13 R13			<b>1</b>	1.8	C521 C	
SW12	SW15 DS12 R12 SW14 DS11 R11		C211				C621 C721
DS5 R5	BA	U11 U	111 U211	U311	U411	U511	U611 U711
SW3	SW7 DS4 R3 SW6 DS3		C101 R211	C311	C411	C501	C712 R711 C711 C601
SW2	SW5 DS2 R2	U1 U	1101 U201	U301	U401	U501	U601 U701
SW1	SW4 DS1			-	-	•	- 00

System Test Fixture component locations.



CONTROL



DATA



@ 2304-18

ADDRESS