Racal

Low Frequency converter

RA-337

Operations & maintenance manual

LOW FREQUENCY CONVERTER RA. 337

CONTENTS

Page

	TECHNICAL SPECIFICATION	
CHAPTER I	GENERAL DESCRIPTION Brief Technical Description	1 - 1
CHAPTER 2	INSTALLATION	2 - 1
CHAPTER 3	OPERATING INSTRUCTIONS R.F. Attenuator Tuning R.F. Range kHz	3 - 1 3 - 1 3 - 1
CHAPTER 4	DETAILED TECHNICAL DESCRIPTION Antenna Input Circuits R. F. Amplifier Balanced Mixer Output Amplifier Harmonic Generator and Amplifier Power Supply	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
CHAPTER 5	ALIGNMENT	5 - 1
CHAPTER 6	LIST OF PARTS	6 - 1
	ILLUSTRATIONS	
Fig. 1. 2. 3.	Block Diagram Front and Rear Panels R.F. Attenuator and L.P. Filters	

4. L.F. Pre-selector and Tuned Filters

- 5. Low-Pass Filters Circuit
- 6. Circuit: RA. 337, Sheet 1
- 7. Circuit: RA. 337, Sheet 2

TECHNICAL SPECIFICATION

Frequency Range:

Input Impedance:

Input VSWR:

Tuning:

R. F. Attenuator:

Sensitivity:

Noise Figure: (Tuned Mode)

Gain:

Output Impedance:

3 kHz to 980 kHz

75 ohms nominal

2:1 or better

(a) Double tuned circuits in five ranges:
 3 - 10 kHz
 10 - 30 kHz

30 - 100 kHz

100 - 300 kHz

- 300 980 kHz
- (b) Two low-pass filter sections with cut-offs at 1 MHz and 500 kHz.

In addition to the switched ranges, two wide-band positions are included; wb-500 and wb-980. A range is also provided to cover 300-500 kHz using the 300-980 kHz double tuned circuits with the 500 kHz low-pass filter.

A five position attenuator provides up to 40 dB attenuation in 10 dB steps.

100 kHz to 980 kHz: bandwidth 3 kHz; 1 microvolt e.m.f. c.w. for 15 dB signal-to-noise ratio.

3 kHz to 100 kHz: bandwidth 200 Hz; l microvolt e.m.f. c.w. for 15 dB signal-to-noise ratio.

100 kHz to 980 kHz; 10 dB minimum. 3 kHz to 100 kHz; 20 dB minimum.

Voltage gain from the antenna (75 ohms) to the output sockets terminated by 2k ohms is 50 dB nominal.

200 ohms or less. (Output load approximately 2000 ohms).

3MHz Leakage to Output:	Less than 30 mV under all conditions.
3MHz Leakage to Antenna:	Less than 5 microvolts under all conditions with antenna terminated by 75 ohms.
1MHz Input:	Not less than 100 mV e.m.f. from 75 ohms source.
Power Requirements: (from associated receiver)	-16V d.c. stabilized. 30mA.
Environmental Conditions:	Operating : 0°C to +55°C Storage : -40°C to +70°C
Rear Connections:	Antenna Input 1MHz Input 2-3MHz Output AGC from associated receiver -16V d.c. Ground
Front Panel Controls:	R.F. Atlenuator R.F. Range Tuning
Dimensions:	$l\frac{3}{4}$ in. high : 19 in. wide (unit width $5\frac{1}{2}$ in.) 16 in. deep from rear of front panel to rear of chassis (not including rear connectors).
Weight:	5 lbs.

.

•

GENERAL DESCRIPTION

INTRODUCTION

1. The low frequency converter RA. 337 is designed for use with the RA. 217, 1217/9 series of receivers to extend the usable frequency range down to 3 kHz. The composite equipment then provides coverage of the frequency range 3 kHz to 30 MHz.

2. With r.f. input signals in the range 3 kHz to 980 kHz the RA. 337 produces an inverted output spectrum (2.997 MHz to 2.02 MHz) which is fed to the interpolation section of the receiver.

3.

The 1 MHz input signal, a.g.c. signal, and -16V d.c. operating power are taken from the associated receiver to the RA. 337 via a rear panel connector.

BRIEF TECHNICAL DESCRIPTION

4.

The block diagram in figure 1 is provided for reference with these notes.

R.F. Amplifier and Filter

5.

Signals from the antenna are fed to the r.f. amplifier via an antenna attenuator and a 1 MHz low-pass filter. The 500 kHz low-pass filter can also be switched into the circuit to discriminate against high level signals in the broadcast band. Any of five double tuned input filters covering the range 3 kHz to 980 kHz can also be selected as required.

6. The r.f. amplifier output circuit is a 1 MHz low-pass filter coupling the 3 kHz to 980 kHz spectrum to the balanced mixer.

Harmonic Generator and Filter

7. The 1 MHz input from the receiver's oscillator is fed to a harmonic generator where the amplifier and band-pass filter in the output circuit select the third harmonic which is fed to the balanced mixer.

Balanced Mixer

8. The mixer combines the 3 MHz input with the 3 kHz to 980 kHz signal from the antenna and provides a difference frequency in the range 2.997 MHz to 2.02 MHz. This signal is taken via the 2-3 MHz band-pass filter to the output amplifiers and 3 MHz crystal notch filters.

RA.337

Output Amplifiers

9. The output amplifiers raise the required signal to a level suitable for application to the interpolation section of the receiver; the required signal being selected finally by the kHz control of the receiver.

-

10.

The 3 MHz crystal notch filters serve to reduce the level of any 3 MHz breakthrough from the balanced mixer. This avoids possible overloading of the following receiver stages.

INSTALLATION

INTRODUCTION

1. The only fuse in the RA. 337 is a 500 mA fuse in the antenna input circuit and should be checked.

ANTENNA

2. Connect a suitable antenna to the 'ANT. INPUT' socket on the rear panel of the converter. The input impedance of the unit is 75 ohms nominal.

CONNECTIONS TO RECEIVER (Rear Panels)

3.

(a) Coaxial cables:

Receiver (1217 Series)

1 MHz output

L.F.

RA. 337

1 MHz input 2-3 MHz output Antenna input

(b) 3 wire cable:

Receiver

RA. 337

-16V (Terminal strip) -16V d.c. (Switched. See Chap. 4) 11 AGC AGC Ground 11 Ground

RA.337

ff

11

OPERATING INSTRUCTIONS

1. These instructions should be used in conjunction with the operating instructions for the associated receiver.

2. Details of the filtering arrangements for the tuned ranges and wide-band positions of the 'R. F. RANGE' switch will be found in Chapter 4 'DETAILED CIRCUIT DESCRIPTION'.

R.F. ATTENUATOR

3. This control attenuates the input signal from the antenna. Starting at the 'min' position, 40 dB of attenuation is available in 10 dB steps by rotating the switch counter-clockwise.

4. This facility enables the operator to reduce the level of incoming signals when very strong unwanted signals are present and which cannot be rejected sufficiently by the tuning control. It should also be used if the required signal is causing overloading in the early stages of the associated receiver.

TUNING

5.

This control adjusts a ganged variable capacitor and is used to tune the antenna input filters for maximum sensitivity.

6. If maximum sensitivity is not required the tuning control need not be used except when strong unwanted signals are present. The presence of strong signals, anywhere within the spectrum, may cause crossmodulation unless the antenna is tuned. Care should be taken to avoid tuning the input to the interfering signal instead of the signal required.

R.F. RANGE kHz (see Fig. 2)

7.

This is an eight position switch which covers the following ranges:

	kHz
Tuned ranges: .	3 - 10
	10 - 30
	30 - 100
	100 - 300
	300 - 500 (see Chap. 4 - 5)
	300 - 980
Wideband ranges:	wb 500 (500 kHz low-pass filter) wb 980 (980 kHz low-pass filter)

8. The ranges marked in red (10 - 30 and 100 - 300) correspond to the red numbers on the tuning scale.

9. Chapter 4 'DETAILED CIRCUIT DESCRIPTION' - 'Antenna Input Circuits' provides details of the filtering arrangements for the tuned ranges.

-

DETAILED TECHNICAL DESCRIPTION

ANTENNA INPUT CIRCUITS (Figs. 3, 4 and 5)

1. The input impedance at the antenna input J2601 is 75 ohms nominal under all operating conditions. Signals are fed via a 500 mA fuse to a five position attenuator which provides up to 40 dB of attenuation.

2. The 1 MHz low-pass filter is permanently in circuit. A 500 kHz low-pass filter is included in the r.f. range switch positions except 'wb 980' and the tuned range position '300-980 kHz'.

3. The r.f. range switch selects either of two wide-band input conditions 'wb 980' or 'wb 500' or any of the five double tuned filters.

4. The double tuned filters consist of the paired transformers T2801 to T2810; their associated trimmer cpacitors C2801 to C2805; the common variable capacitors C2601A, C2601B, and fixed capacitor C2602.

5. A sixth tuned range is provided to cover 300-500 kHz with the 500 kHz low-pass filter in series with the 300-980 kHz tuned filters. The filters are tuned over an approximate 3 : 1 frequency range by the Tuning control on the front panel (C2601).

6. In the wide-band input positions an auto-transformer (Fig. 7) steps up the antenna impedance to the base of Ql (Fig. 6). This keeps the system gain and noise figure essentially constant in both wide-band and tuned modes. (See Fig. 4 for switching details).

7. A spark gap (E2601) is included for protection against short duration, high voltage transients.

For alignment procedures see Chapter 5.

R.F. AMPLIFIER (Fig. 6)

8. The selected input spectrum is capacitance coupled via C2-C3 to the base of r.f. amplifier Ql. Diode CR1 protects Q1 against overload. A.G.C. and/or manual gain control is effected by means of Q2 which acts as a variable emitter impedance that changes with the circuit d.c. conditions. 9. D.C. conditions corresponding to maximum gain are set by potentiometer R3 with -4V applied to the a.g.c. line. Under these conditions Q2 has a low collector impedance and little degeneration occurs in the emitter of Q1.

10. The action of the a.g.c. circuit is to cause the a.g.c. voltage to move toward zero, thereby increasing the collector impedance of Q2 and decreasing the gain of Q1. The control characteristic is made more linear by the clamp circuit consisting of R7, R8, CR2, and Zener diode VR1.

11. The output circuit of the r.f. stage is a 1 MHz low-pass filter consisting of coil assemblies A1, A2, and capacitors C4, C8, and C9. This filter couples the amplified signal spectrum to the balanced mixer, and also discriminates against 3 MHz heterodyne signal leakage back into the r.f. stage and antenna circuits.

BALANCED MIXER (Fig. 6)

12. Q3 and Q4 are connected as a balanced mixer so that the 3 MHz heterodyne signal and the input signal spectrum tend to cancel in the output circuit.

13. Balance adjustment is provided by potentiometer R12.

14. The input spectrum is applied to Q3 base via C10, C11 in parallel, and also to Q4 emitter via C13, C14 in parallel. The 3 MHz heterodyne signal is applied to Q4 base via C35, C36, and to Q3 emitter via C15, C16, at a suitable mixing level.

15. The required output spectrum in the range 2.997 MHz to 2.02 MHz is selected by the 2-3 MHz band-pass filter consisting of coils A3-A6, and is then fed to the following output amplifier.

OUTPUT AMPLIFIER (Fig. 7)

 R3, C21, and the 3 MHz crystal Y1 constitute a notch filter with maximum attenuation at the series resonant frequency of Y1 and C21. By adjusting C21 the resonant frequency is set to 3 MHz to trap the heterodyne signal.

- 17. The first 3 MHz trap circuit is followed by buffer Q5 and amplifier Q6 which is RC coupled to a second notch filter Y2, R31, and C27.
- 18. Emitter follower Q7 provides a low impedance drive to the input of the associated receiver.

HARMONIC GENERATOR AND 3 MHz AMPLIFIER (Fig. 6)

19. The 1 MHz output supplied by the associated receiver is fed via transformer L1 to the harmonic generator stage Q8. The collector voltage of Q8 is limited by voltage divider R38 and R39. The Q8 collector load consists of a 3 MHz tuned circuit A7 with a capacitance tap at terminal 6 to provide a low impedance drive to amplifier Q9.

20. The gain of Q9 can be varied by potentiometer R42 to provide the correct drive level to the balanced mixer via the double tuned
3 MHz transformer A8, and A9. The secondary of A9 is tapped to provide a low impedance output, and the large coupling capacitors C35, and C36 are used to preserve the symmetry of the balanced mixer.

POWER SUPPLY

21. The -16V d.c. power supply for the RA. 337 is provided by the associated receiver. The switching in the receiver is so arranged that when the MHz control is set to '00' the receiver front end is muted, and a -16V d.c. supply is switched to a terminal on the receiver's rear panel.

ALIGNMENT

INTRODUCTION

1. The procedures in this section provide data which is typical of a correctly functioning unit. They include individual circuit tests in addition to overall gain tests.

2. The procedures should be carried out independently of the associated receiver, or until any fault in the RA. 337 has been definitely isolated from the receiver.

3. The power supply, a.g.c. potential, and 1 MHz supply can be derived from the receiver in lieu of other sources.

EQUIPMENT REQUIRED

- 4.
- (1) Signal Generator : 3 kHz to 30 MHz. 75 ohms impedance.
- (2) Electronic Voltmeter : 3 MHz. 0-100 mV.
- (3) Oscilloscope.
- (4) $l\mu F$ Capacitor.

R.F. ATTENUATOR

5.

- (a) Connect the signal generator to the antenna input.
- (b) Connect the voltmeter to terminal E2701 on the low-pass filter board.
- (c) Set the 'r.f. att.' switch to 'min', and the 'r.f. range kHz' switch to 'wb 500'.
- (d) Determine that an input signal of 500 kHz at 60 mV e.m.f. produces 30 mV at E2701.
- (e) Switch the 'r.f. att.' step by step to maximum and check that each step produces a 10 dB drop in level at E2701. (At each step, increase the input level by 10 dB to maintain the output at E2701 at 30 mV).
- (f) Return the 'r.f. att.' switch to 'min', and the signal generator output to 60 mV e.m.f.

LC

LOW-PASS	FIL	TERS: 500 kHz and 1 MHz
6.	(a)	Connect the signal generator to the antenna input socket (60 mV e. m. f.) .
	(Ъ)	Set R3 (Fig. 6) and the 'r.f. att. ' switch to minimum.
	(c)	Connect the voltmeter to terminal E2703.
	(d)	Set the 'r.f. range' to 'wb 980'.
	(e)	Vary the signal generator frequency from 3 kHz to 1 MHz while peaking coils L2705 to L2708 (on the 1 MHz board) to obtain not more than 6 dB peak to trough ripple across the pass band.
	(f)	Set the 'r.f. range' to 'wb 500' and peak coils L2701 to L2704 on the 500 kHz board to obtain not more than 3 dB peak to trough ripple across the pass band 3 kHz to 500 kHz.
	(g)	Connect the voltmeter to E2501.
	(h)	Set the 'r.f. range' switch to 'wb 980'.
	(i)	Set the signal generator to 980 kHz and determine that 60 mV e.m.f. input produces approximately 60 mV on the voltmeter.
	(j)	Set the signal generator to 3 kHz and 60 mV e.m.f.; the volt- meter should read at least 20 mV (still connected to $E2501$).
	<u>(</u> k)	Set the 'r.f. range' to 'wb 500'.
	(1)	Set the signal generator to 500 kHz when a 60 mV e.m.f. input should produce 60 mV on the voltmeter.
TUNED FI	LTE	R CIRCUITS
7.	<u>3 k</u>	Hz to 10 kHz
	(a)	Set the 'r.f. range' switch to 3-10 kHz.
	(b)	Connect the signal generator to the antenna input socket and

- 3-10 kHz.
- set to 3 kHz (30 mV e.m.f.).

(c) Connect the voltmeter to E2501.

.

(d) Adjust the 'tuning' control for maximum reading on the voltmeter.

- (e) Loosen the dial set screw and, without moving the tuned position of capacitor C2601, set the dial to 3 kHz and tighten the set screw.
- (f) Set the signal generator to 10 kHz and tune the RA. 337 to 10 kHz. Adjust C2801 for maximum reading on the voltmeter. Determine that 60 mV e.m.f. 'nput produces approximately 60 mV output.

10 kHz to 30 kHz

- (a) See para. 7 (3 kHz to 10 kHz) for dial calibration procedure of the 'tuning' control.
- (b) Set the signal generator to 10 kHz (60 mV e. m. f.).
 - (c) Set the 'r.f. range' switch to 10 30 kHz.
 - (d) Tune the RA. 337 to 10 kHz.
 - (e) Adjust transformers T2803 and T2804 for maximum reading on the voltmeter connected to E2501 terminal.
 - (f) Tune the signal generator and the RA. 337 to 30 kHz.
 - (g) Adjust C2802 for maximum reading on the voltmeter.
 - (h) Determine that 60 mV e.m.f. input produces 60 mV output.

OTHER RANGES

9.

8.

For the ranges shown below repeat the procedure detailed above for 10 - 30 kHz.

R.F. Range	Transformers	Capacitor
kHz		
30 - 100	T2805, T2806	C2803
100 - 300	T2807, T2808	C2804
300 - 980	T2809, T2810	C2805

10.

The 300 - 500 kHz range is aligned when adjusting the 300 - 980 kHz range.

L.F. CONVERTER

•

.

....

÷ .

. .

2500 Series

.

Cet.			m - 1		
Ref.	Description	Value	Tol. %	Rat.	Mfr. Part No.
			^/	hau.	MIT. Parc No.
Resistors	5	01			
Rl	Fixed Composition	Ohms 5.lk	5	watts 1/4	RC07GF512J
R2	Fixed Composition	470	5 5	1/4	RC07GF471J
R3	Potentiometer	1k	30	1/2	Beckman 62P-R1K
R4	Fixed Composition	220			
R5	Fixed Composition	680	5	1/4	RC07GF221J
1()	TIXED COMPOSICION	000	5	1/4	RC07GF681J
Rб	Fixed Composition	27	5	1/4	RC07GF270J
R7	Fixed Composition	1.8k	5	1/4	RC07GF182J
r8	Fixed Composition	220	5 5 5 5 5	1/4	RC07GF221J
R9	Fixed Composition	2.7k	5	$\frac{1}{1}$	RC07GF272J
RIO	Fixed Composition	.15k	ś	1/4 1/4	RC07GF153J
1120	Tiked Composition	.ц)д)	1/4	RCOTGET750
Rll	Fixed Composition	4.7k	5	1/4	RC07GF472J
R12	Potentiometer	lOk	5	1/2	Beckman 62P-R10K
R13	Fixed Composition	120	5	1/4	RC07GF121J
R14	Fixed Composition	lk	5 5 5 5 5 5	1/4	RC07GF102J
R15	Fixed Composition	120	5	1/4	RC07GF12LJ
>	121104 001100010101			<u>-</u> /-	NCC GF 1215
RIG	Fixed Composition	15k	5	1/4	RC07GF153J
R17	Fixed Composition	4.7k	5 5	1/4	RC07GF472J
r18	Fixed Composition	6.8k	5	1/4	RC07GF652J
R19	Fixed Composition	10	5	1/4	RC07GF100J
R20	Fixed Composition	3.9k	5 5 5	1/4	RC07GF392J
	_ _	<i>J·)</i>		-/ ·	
R21	Fixed Composition	lk	5	1/4	RC07GF102J
R22	Fixed Composition	4.7k	5	1/4	RC07GF472J
R23	Fixed Composition	10k	5 5	1/4	RC07GF103J
R24	Fixed Composition	220	5	1/4	RC07GF221J
R25	Fixed Composition	220	5 5	1/4	RC07GF221J
-				-, -	1001011220
R26	Fixed Composition	lOk	5	1/4	RC07GF103J
R27	Fixed Composition	15k	5	1/4	RC07GF153J
R28	Fixed Composition	3.9k		1/4	RC07GF392J
R29	Fixed Composition	820	ś	1/4	RC07GF821J
R30	Fixed Composition	lk	5 5 5	1/4	RC07GF102J
	Timed Composition			±/ +	NCO (GF 1025
R31	Fixed Composition	3.9k	5	1/4	RC07GF392J
R32	Fixed Composition	4.7k	5	1/4	RC07GF472J
R33	Fixed Composition	lOk	5	1/4 1/4	RC07GF103J
R34	Fixed Composition	220	5 5 5 5	1/4	RC07GF221J
R35	Not Used	220)	-/+	TOOLOLEETO

1

L.F. CONVERTER - 2500 Series contd

`

Cct. Ref.	Description	Value	rol. %	Rat.	Mfr. Part No.
R36 R37	Fixed Composition Fixed Composition	Ohms 3.3k 1.8k	5	watts 1/4 1/4	RC07GF332J RC07GF182J
R38	Fixed Composition	4.7k	5	1/4	RC07GF472J
R39 R40	Fixed Composition Fixed Composition	150 3.9k	5 5	1/4 1/4	RC07GF151J RC07GF392J
R41	Fixed Composition	15k	5	1/4	RC07GF153J
R42 R43	Potentiometer		30 ·	1/2 1/4	Beckman 62P-R100 RC07GF152J
R45 R44	Fixed Composition Fixed Composition	1.5k 100	5	1/4	RC07GF1925 RC07GF101J
R45	Fixed Composition	10	5 5	1/4	RC07GF100J
R46	Fixed Composition	lk	5	1/4	RC07GF102J
Capacito	ors	-			
Cl	Electrolytic	μF 5	+100-20	volts 25	Sprague TE-1202
C2	Ceramic, Disc	.1	20	25	
C3	Electrolytic	5	+100-20		
C ¹ 4	Fixed Mica	1500pF	5	500	
C5	Ceramic, Disc	•1.	20	25	Sprague Monolythic 507
C6	Electrolytic	5 5	+100-20		Sprague TE-1202
C7	Electrolytic		+100-20		Sprague TE-1202
C8	Fixed Mica	1800pF	5	500	CMO6F182JN3
C9	Fixed Mica	1200pF	5	500	CMO6F122JN3
C10	Electrolytic	5	+100-20	27	Sprague TE-1202
Cll	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C12	Ceramic, Disc	.1	20	25	Sprague Monolythic 5C7
C13	Electrolytic	5	+100-20		Sprague TE-1202
C14	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C15	Ceramic, Disc	.1	20	25	Sprague Monolythic 5C7
C16	Electrolytic	5	+100-20		Sprague TE-1202
C17	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C18	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C19	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C20	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C21	Variable	7-35pF	(Temp co	oef N-	1500) RCI 28021
C22	Ceramic, Disc	.1	20	25	Sprague Monolythic 5C7
C23	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C24	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
025	Ceramic, Disc	.1	20	25	Sprague Monolythic 5C7

•

.

Cet. Ref.	Description	Value	Tol. %	Rat.	Mfr. Part No.
-		μF		volts	
C26	Ceramic, Disc	.1	20	25	Sprague Monolythic 5C7
C27 C28	Variable				500) RCI 28021
C28 C29	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C30	Not Used Ceramic, Disc	7	00	05	
0,0	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C31	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C32	Fixed Mica	5000pf	5	500	CM07F502JN3
C33	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C34	Ceramic, Disc	.047	20	25	Sprague Monolythic 3015
C35	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
076		_			
C36	Electrolytic	5	+100-20	-	Sprague TE-1202
C37 C38	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
C39	Ceramic, Disc	.1	20	25	Sprague Monolythic 507
679	Ceramic, Disc	.1	20	25	Sprague Monolythic 5C7
Inductor	5				
Al	Coil Assembly				RCI D-02253
A2	Coil Assembly				RCI D-02254
A3	Coil Assembly				RCI D-02255
A4	Coil Assembly				RCI D-02256
A5	Coil Assembly				RCI D-02257
Аб	Coil Assembly				RCI D-02258
Α7	Coil Assembly				RCI D-02259
А8	Coil Assembly				RCI D-02260
A9	Coil Assembly				RCI D-02261
12501	Coil Assembly, Wide	Band Tran	sformer		RCI D-02262
Transform	mer				
T2501	RF Wide Band Transfo	rmer			RCI D-02252
Diodes					
VR2501	Zener 1N702	,			RCI 33503
CRL	Germanium 1N281				RCI 35508
CR2	Germanium 1N281				RCI 35508
Transist	ors		-		
Ql	TI-363				RCI 30004
ର୍2	2N2996				RCI 30252
Q3	TI-363				RCI 30004
Q4 ·	TI-363				RCI 30004
પડ્					

L.F. CONVERTER - 2500 Series contd

.

.

: --.

•

L.F. CONVERTER - 2500 Series contd

Cct. Ref.	Description	Value	%	Rat.	Mfr. Part No.
ବ୍କରି. ବ୍ୟୁମ ବ୍ୟୁଥି ବୁର୍ଭ	2N3283 2N3323 2N3323 2N3323 2N3323				RCI 30500 RCI 30251 RCI 30251 RCI 30251
<u>Crystals</u>					• .
Y1 Y2	2.9997 mc 2.9997 mc				Perrott Eng. Labs. CR69/U Perrott Eng. Labs. CR69/U
	<u>R.F. Â</u>	TTENUATO	R AND TU	NED FII	TERS
		<u>2600 s</u>	Series		
<u>Resistors</u> R2601 R2602 R2603 R2604 R2605 R2605 R2606 R2607 R2608 R2609 <u>Capacito</u> C2601A&E C2602	Composition Composition Composition Composition Composition Composition Composition Composition Composition	Ohms 15 56 56 47 33 56 56 15 Ganged 7pf	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	watts 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	RCO7GF RCO7GF RCO7GF RCO7GF RCO7GF RCO7GF RCO7GF RCO7GF RCO7GF RCO7GF
Miscella	neous				
E2601	Lightning Arrester				Siemens Bl-A230
52601 (A8	B) 5 position, 2 wafer Switch Assembly		ed enuator)		RCI A-02841 (40 dB)
Connecto	ors (Rear Panel)				
J2601 J2602 J2603 TB2601	Coaxial, ENC, UG-109 Coaxial, UG-1094/U Coaxial, UG-1094/U Terminal Block	Male	.e ''		Transradio BN12/5 Transradio BN12/5 Transradio BN12/5 Cinch 351-28-03-001

.

.

R.F. ATTENUATOR AND TUNED FILTERS

2800 Series

Cct.			Tol.				
Ref.	Description	Value	%	Rat.	Mfr.	Part No	•
Capacitors							
C2801 C2802 C2803 C2804 C2805	Variable Variable Variable Variable Variable	4.5-20(4.5-20(7-35 (1	Temp. Temp. Cemp. C	Coef. N-7 Coef. N-7 Coef. N-7 coef. N-15 Coef. N-15	50)7S 50)7S 00)7S	Triko Triko Triko	RCI 28020 RCI 28020 RCI 28020 RCI 28021 RCI 28021
C2806 C2807 C2808	Mica Ceramic, Disc Ceramic, Disc	12 •047 •047	10 20 20	500 25 25	Spra	C120JN3 gue 3C15 gue 3C15	

Switch (Front Panel)

S2801 (A, B, C, D, E, &F) 8 position, 6 wafer (RF Range kHz) RCI C-02097

Transformers

.

T2801 T2802 T2803 T2804 T2805		RCI D-02181 RCI D-02182 RCI D-02183 RCI D-02184 RCI D-02185
T2806 T2807 T2808 T2809 T2810		RCI D-02186 RCI D-02187 RCI D-02188 RCI D-02189 RCI D-02190
Fuse		
F2801	Pigtail, 500 mA, 125V	Littlefuse 279.500
Chales		

Choke

12801 680 µH, ±5%

L.P. FILTERS

	2700 Series						
Capacito	ors	pf		volts			
C2701	Mica	5000	5	500	CM07F502JN3		
C2702	Mica	910	5	500	CM06F911JN3		
C2703	Mica	6200	5	500	CM07F622JN3		
C2704	Mica	5600	5	500	CM07F562JN3		
C2705	Mica	3600	5	500	CM07F362JN3		

Miller 9220-20

Cct. Ref.	Description	Value	Tol. %	Rat.	Mfr. Part No.
C2706	Mica	9100	5	500	CM07F912JN3
C2707	Mica	4300	5 5 5 5 5 5	500	CMO6F432JN3
C2708	Mica	3300	5	500	CMOGF332JN3
C2709	Mica	910	5	500	CMO6F911JN3
C2710	Mica	2400	5	500	CMO6F242JN3
C2711	Mica	680	5	500	CM06F681JN3
C2712	Mica	2700	5 5	500	CMO6F272JN3
C2713	Mica	4700	5	500	CMOGF472JN3
C2714	Mica	1300	5 5 5	500	CMO6F132JN3
C2715	Mica	7500	5	500	CM07F752JN3
C2716	Mica	1800	5	500	CM07F182JN3
C2717	Mica	2700	5	500	CM06F272JN3
C2718	Mica	1300	5	500	CMO6F132JN3
Inductors	5	μH			
12701	Filter Coil Assembly	27			Nytronics Wee VL-27
12702	Filter Coil Assembly	15			Nytronics Wee VL-15
12703	Filter Coil Assembly	10			Nytronics Wee VL-10
12704	Filter Coil Assembly	18			Nytronics Wee VL-18
12705	Filter Coil Assembly	12			Nytronics Wee VL-12
L2706	Filter Coil Assembly	4.7			Nytronics Wee VL-4.7
L2707	Filter Coil Assembly	-			Nytronics Wee VL-3.3
12708	Filter Coil Assembly				Nytronics Wee VL-6.8

.

L.P. FILTERS - 2700 Series contd

•

FRONT & REAR PANELS : RA.337

293/2

FIG. 2

H293/3 R.F. ATTENUATOR & L.P. FILTER RA.337

FIG. 3

FIG. 4

H293/4

5/C62H

FIG. 5

CIRCUIT: L.F. CONVERTER RA.337 (SHEET I)

FIG. 6

9/667H

CIRCUIT L.F. CONVERTER RA.337 (SHEET 2)

F1G. 7

H 293 / 9

LIST OF COMPONENTS

ORDERS FOR SPARE PARTS

In order to expedite handling of spare part orders, please quote:-

- (1) Type and serial number of equipment.
- (2) Circuit reference, description, manufacturer of part required and part number.
- (3) Quantity required.
- NOTE: If the equipment is designed on a modular basis, please include the type and description of the module for which the replacement part is required.

K4XL's 🌮 BAMA

This manual is provided FREE OF CHARGE from the "BoatAnchor Manual Archive" as a service to the Boatanchor community.

It was uploaded by someone who wanted to help you repair and maintain your equipment.

If you paid anyone other than BAMA for this manual, you paid someone who is making a profit from the free labor of others without asking their permission.

You may pass on copies of this manual to anyone who needs it. But do it without charge.

Thousands of files are available without charge from BAMA. Visit us at http://bama.sbc.edu