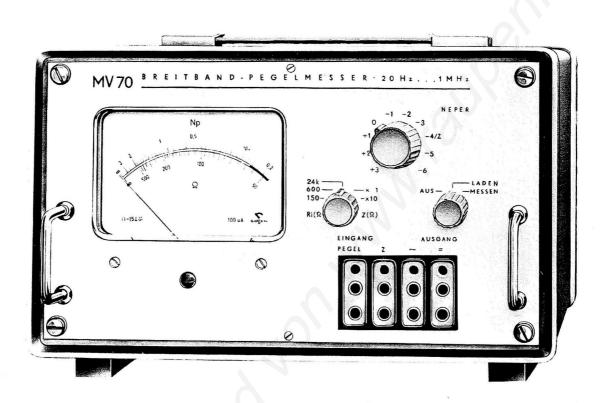
Beschreibung und Bedienungsanleitung


BREITBAND - PEGELMESSER

MV 70

VEB PRÄCITRONIC - DRESDEN 8016 Dresden, Fetscherstraße 72 - Telefon: 66401, Telex: 2458

Inhalt

		Seite
1.	Beschreibung	7
1.1.	Verwendungszweck	7
1.2.	Technische Kennwerte	8
1.3.	Zubehör	9
1.4.	Wirkungsweise und Aufbau	9
2.	Bedienungsanleitung	12
2.1.	Abbildung	12
2.2.	Inbetriebnahme	12
2.3.	Messen	13
2.4.	Wartung	15
2.5.	Schaltteilliste	17
2.6.	Stromlaufolan	29

1. Beschreibung

1.1. Verwendungszweck

Der volltransistorisierte Pegelmesser MV 70 ist für breitbandige und symmetrische Messungen an Rundfunkübertragungseinrichtungen und Fernmeldesystemen bestimmt. In Verbindung mit einem Pegelsender, z. B. dem GF 70, gestattet er Verstärkungs-, Dämpfungs-, Pegel- und Scheinwiderstandsmessungen. Spezielle Ausgänge für Schreiber und Kopfhörer vereinfachen viele Meßaufgaben. Mit den eingebauten Akkumulatoren, die bei Netzbetrieb durch die interne Stromversorgung automatisch geladen werden, seiner geringen Masse und dem kleinen Volumen, ist er sehr gut für netzunabhängige Messungen bei transportablem Einsatz geeignet.

Außer den genannten Anwendungen ist der Pegelmesser auch im Laboratorium oder Prüffeld mit Vorteil in den Fällen einzusetzen, wo kleine Spannungen symmetrisch und unsymmetrisch mit hoher Genauigkeit gemessen werden müssen.

Der Pegelmesser MV 70 kann als 2/4—Einschub, Einzelgerät oder mit dem Niederfrequenz-Pegelsender GF 70 als Meßplatz in einem gemeinsamen Gehäuse geliefert werden.

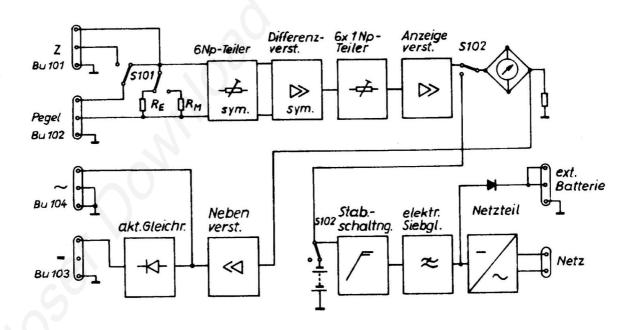
1.2. Technische Kennwerte 20 Hz...1 MHz Frequenzbereich Pegelmeßbereich (in 1 Np-Schritten -6/-5/.../+3 Np umschaltbar) <2,75 NpMaximal-Pegel bei Ri = 150Ω -3...+0,25 Np Instrumentenbereich $> 20 k\Omega$ Eingangswiderstand (symmetrisch) 600Ω+ 1% (Eingangskapazität ≈ 250 pF) 150Ω+ 1% Meßunsicherheit <0,02 Np <0,015 Np <0,02 Np 1 kHz) Grundunsicherheit (O Np. Teilungsfehler des Bereichsschalters Frequenzgang, bezogen auf 1 kHz Skalenteilungsfehler (-1...0...+0,25 Np) <(0,04...0,0...0,005) Np Transistorspeisespannungseinfluß, <0,01 Np pro V bezogen auf 14 V Temperatureinfluß, bezogen auf +20 °C <0,005 Np pro 10 °C Symmetriedampfung (Unsymmetriespannung <-0,6 Np für Bereiche -6...-1 Np <+2 Np für Bereiche 0...+3 Np) >5 Np Meßunsicherheit des Rufpegels <0.05 Np500/20 Hz bei -0,5 Np Anzeige $(50...500) \Omega$ Bereich x 1 Scheinwiderstandsmessung Bereich x 10 (0,5...5) kΩ < 5 % Meßunsicherheit (Generatorinnenwiderstand $O\Omega$) Ausgang (f < 20 kHz) $(Ra < 4 k\Omega)$ 0...1 mA Gleichstrom Verstärkerausgang (Ra $\rightarrow \infty$, Ri $\approx 2,5$ k Ω) 0...0,8 V Amplitude des 25 Hz-Rufs am Eingang (t < 5s) <100 V Betriebsstundenzahl mit eingebautem Akkumulatorensatz ohne Nachladung $\approx 30 \text{ h}$ Akkumulatorenbestückung 7 x RZP 2 eingebaute Akkumulatoren Speisespannungen und/oder 220 V / 50 Hz 4 VA und/oder Fremdbatterie (18 ... 24) V Abmessungen Einschub 2/4-Teileinschub nach TGL 200-7094 Einzelgerät ohne Deckel $253 \times 168 \times 180 \text{ mm}$ 4,5 kg Masse

1.3. Zubehör

Netzkabel

Sicherungen

Zeichn.-Nr.: 405-9-2/0


 $1 \times 0,05 A, 1 \times 0,16 A$

Skalenlämpchen 1x Soffittenglühlampe 6 V, 3 W, Sockel F 5,5

1.4. Wirkungsweise und Aufbau

Das prinzipielle Zusammenwirken der Schaltungsgruppen ist aus dem Blockschaltbild und dem Stromlaufplan (Seite 27) zu ersehen.

Mit dem Schalter S 101 erfolgt wahlweise die direkte Anschaltung der Eingangsbuchse bei Pegelmessungen an den Verstärkerteil oder bei Scheinwiderstandsmessungen deren Reihenschaltung mit der Z-Buchse. Wird in dieser Stellung an den Eingang ein Pegel von -2 Np gelegt, kann der Scheinwiderstand des an die Z-Buchse angeschlossenen Zweipols nach dem Durchgangsprüferprinzip gemessen werden. Der Schalter S 101 dient gleichzeitig zur Wahl des Eingangswiderstandes R_E bei Pegelmessungen bzw. des Widerstandsbereiches bei Scheinwiderstandsmessungen.

Blockschaltbild

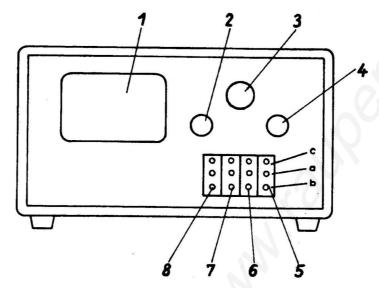
Der an R_E bzw. an R_M anliegende Pegel gelangt über den 6 Np-Teiler (S 103/1/2) an die zwei Eingänge des Differenzverstärkers (T 201...T 204), dessen unsymmetrische Ausgangsspannung gleichfalls mit dem Pegelschalter (S 103/3/4) im 1 Np-Teiler abgeschwächt und dem 3-stufigen Anzeigeverstärker (T 401 ... T 403) als bereichsunabhängige Spannung zugeführt wird. Das verstärkte Signal wird in einer Brückenschaltung gleichgerichtet und am Instrument (J 101) angezeigt, wobei die starke Gegenkopplung des Verstärkers sowie die Anordnung der Brükkenschaltung im Gegenkopplungszweig weitgehende Unempfindlichkeit der Anzeige gegenüber Gleichrichtertoleranzen, Speisespannungs- und Temperaturänderungen sichert.

Von dem anzeigeproportionalen Ausgangsmeßstrom wird ein kleiner Teil ausgekoppelt, in dem Nebenverstärker (T 404) verstärkt und der Ausgangsbuchse [~] zugeführt, so daß Oszillographen, Kopfhörer usw. angeschaltet werden können. Gleichzeitig dient diese Spannung zur Ansteuerung einer als aktiver Gleichrichter im C-Betrieb arbeitenden Transistorstufe (T 405), deren pulsierender Kollektorstrom für Rückmeldezwecke über freie Leitungen, Schreiber u.a. an der Gleichstrombuchse [=] entnommen werden kann.

Die Stromversorgung gestattet den Betrieb aus

- eingebauten Akkumulatoren
- Fremdbatterien
- Netzspannung
- Kombinationen obiger Möglichkeiten, z.B. für Ladezwecke, so daß große Universalität des Einsatzes gewährleistet ist. Ein leicht auswechselbarer Akkumulatorensatz dient zur Speisung der Verstärker bei netzunabhängigen Messungen. Beim Betrieb des Pegelmessers ohne eingebaute Akkumulatoren, aber mit Netzspannung, erfolgt die Gleichrichtung der Trafo-Sekundärspannung in einer Graetz-Schaltung und die Brummspannungssiebung mit einem elektronischen Spezialsiebglied (T 207, T 208), sowie durch die Stabilisierungsschaltung (T 205, T 206). Bei Netzbetrieb mit internen Akkumulatoren werden diese über einen strombegrenzenden Widerstand (R 224) automatisch geladen und durch die Stabilisierungsschaltung vor

Überladung geschützt. In dieser Betriebsart wird die Stabilisierungsschaltung als Spannungsbegrenzer wirksam und trägt praktisch nicht zur Brummspannungssiebung bei, so daß der empfindliche Differenzverstärker über eine zusätzliche Stabilisierungsschaltung (T 209) gespeist werden muß. Ist ein längerer, netzunabhängiger Betrieb erforderlich, kann der Pegelmesser über den Anschluß für die Fremdbatterie gespeist werden, wobei ein Germaniumgleichrichter (Gr 601) Schäden durch falsche Polung verhindert. Die eingebauten Akkumulatoren werden bei dieser Betriebsart gleichzeitig aufgeladen.


Für den Pegelmesser MV 70 ist ein 2/4-Einschub gewählt worden, der je nach Ausführung für Gestelleinbau mit speziellen Abschirmblechen, als Einzelgerät mit separatem Gehäuse oder als "Kleine Pegelmeßeinrichtung" (Meßplatz) mit dem Niederfrequenz-Pegelsender GF 70 im Doppelgehäuse komplettiert wird.

Das Gerät ist weitgehend in Baugruppen mit gedruckter Schaltung untergliedert, so daß trotz gedrängten Aufbaues große Servicefreundlichkeit gewährleistet ist. Die Anordnung der Bedienungselemente unter Berücksichtigung formgestalterischer Prinzipien führt trotz der Kleinheit des Gerätes zu einer übersichtlichen Frontplattenaufteilung und erleichtert damit die Meßaufgaben.

Die sieben eingebauten Kleinstakkumulatoren sind durch einen Preßstoffbehälter zu einem Block vereinigt, der durch eine Bodenklappe des Gehäuses bequem zugänglich ist.

2. Bedienungsanleitung

2.1. Abbildung

1	Anzeigeinstrument	J	101
2	Ri/Z-Wahlschalter	s	101
3	Pegelschalter	S	103
4	Betriebsschalter	· s	102
5	Gleichstromausgang	Bu	103
6	Wechselspannungsausgang	Bu	104
7	Z-Anschluß	Bu	101
8	Pegel-Eingang	Bu	102

2.2. Inbetriebnahme

2.2.1. Verwendung des Einschubs für Einfachoder Doppelgehäuse

Mit dem Schalter 4 ist die Stellung "Messen" einzustellen. Das Gerät ist praktisch sofort betriebsbereit. Um die eingebauten Akkumulatoren zu schonen, wird der Anschluß an die Netzspannung oder Fremdbatterie empfohlen. Bei Netzbetrieb wird der eingeschaltete Zustand durch die Skalenbeleuchtung angezeigt.

2.2.2. Gestelleinbau

Die Netzspeisung erfolgt über die im Stromlaufplan ersichtlichen Messerleistenkontakte. Nach dem Einschalten von Schalter 4 in Stellung "Messen" ist das Gerät praktisch sofort betriebsbereit, wobei die Instrumentenbeleuchtung diesen Zustand anzeigt.

2.3. Messen

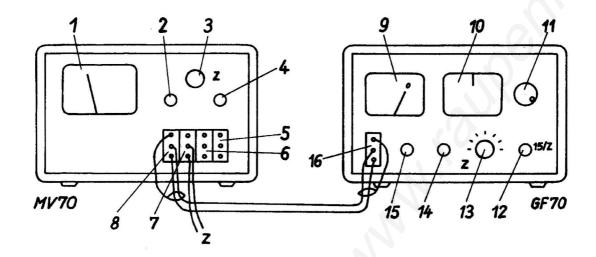
2.3.1. Pegelmessung

Mit dem Wahlschalter (2) wird der gewünschte Eingangswiderstand eingestellt und der zu messende Pegel an die Buchse (8) mit symmetrischem Kabel angeschlossen. Am Pegelschalter (3) ist die Geräteempfindlichkeit so einzustellen, daß sich der Zeiger des Anzeigeinstrumentes (1) möglichst oberhalb des Wertes -0,75 Np befindet, um höchste Genauigkeit zu sichern. Der gemessene Pegel ergibt sich dann aus der Summe der Werte des Pegelschalters (3) und der Instrumentenanzeige. Bei unsymmetrischen Messungen ist eine beliebige Seite des symmetrischen Einganges (Buchse a oder b) mit Masse zu verbinden. Zur kontinuierlichen Überwachung von Pegeln mittels Schreibern, für Anschluß von Zweitinstrumenten oder andere Aufgaben können zwischen a und b der Buchse (5) entsprechende Schreiber oder Strommesser eingeschaltet werden. Hierbei ist deren Anzeige annähernd der des Einbauinstrumentes (1) proportional. Bei Anschaltung eines oder mehrerer Instrumente ist zu beachten, daß der gesamte Außenwiderstand (der eventuellen Reihenschaltung) den Wert von 4 kΩnicht überschreitet.

Im Tonfrequenzbereich kann an der Buchse 6 zwischen a und b eine der Instrumentenanzeige proportionale Wechselspannung für Kopfhöreranschluß, Oszillographen oder zur Speisung weiterer Verstärker entnommen werden.

Besondere Schaltungsmaßnahmen schützen die Eingangsschaltung vor Beschädigungen durch unerwartet auftretende 25 Hz-Rufspannungen bei Leitungsmessungen.

2.3.2. Messung des Rufpegels 500/20 Hz


Der Rufpegel 500/20 Hz wird an die Buchse (8) angeschlossen und Pegelschalter (3) so eingestellt, daß die Anzeige unterhalb -0,45 bleibt, wodurch eine Übersteuerung der Verstärker infolge der Impulsform vermieden wird. Der interessierende Effektivwert des Rufpegels ergibt sich nach der Formel

Effektivwert = Instrumentenanzeige + Schalter (3) Wert + 0,35 Np

Zur Bedienungserleichterung befindet sich auf der Skala die Symbolik 500/20, um auf den beiRufpegelmessungen eingeschränkten Skalenbereich und Korrektursummanden hinzuweisen.

2.3.3. Scheinwiderstandsmessungen

In Verbindung mit dem Pegelsender GF 70 sind Scheinwiderstandsmessungen in folgender Weise möglich:

- mit "Z" markierte Stellungen der Schalter (3, 12, 13) einstellen
- gewünschten Widerstandsbereich am Schalter (2) wählen
- interessierende Frequenz mit Kurbel (11) an Skala (10) einstellen
- mittels Pegelfeinregler (14) Instrumentenmarke ONpeinregeln
- Buchsen (8) und (16) mit abgeschirmtem, symmetrischen Kabel verbinden
- unbekannten Scheinwiderstand an Buchse (7) zwischen a und b anschließen
- Widerstandswert an der Ohmskala des MV 70-Instrumentes (1) ablesen und mit dem am Schalter (2) eingestellten Faktor multiplizieren.

Ist der Pegelsender GF 70 nicht verfügbar, kann jeder beliebige Pegelsender, dessen Ausgangswiderstand $< 2\,\Omega$ ist, verwendet werden, wobei ein Sendepegel von -2 Np einzustellen ist.

Sollte der vorgesehene Bereich von $50 \,\Omega$... $5 \,k\,\Omega$ nicht ausreichen, kann der Widerstandsbereich (x 10) in (x 20) erweitert werden, indem der Pegelschalter (13) auf die Stellung -1 Np und die Anzeige des Instrumentes (9) mit dem Feinregler (14) auf -0,3 Np eingeregelt wird.

2.4. Wartung

Die Wartung beschränkt sich im wesentlichen auf folgende Punkte, für die gegebenenfalls nach Lösen der 4 Frontplattenschrauben der Einschub aus dem Gehäuse bzw. Gestell zu ziehen ist.

2.4.1. Überwachung der Akkumulatoren

Bei netzfreiem Betrieb muß die Akkumulatorenspannung in der Kontrollstellung des Betriebsschalters (4) bei abgetrenntem Eingangspegel überwacht werden. Liegt die Instrumentenanzeige unterhalb des schwarzen Bereiches, ist der Akkumulatorensatz sofort zu laden oder durch eine neue Bestückung zu ersetzen.

Die Ladung erfolgt durch mindestens 15-stündige Anschaltung des Gerätes an die Netzspannung bzw. Fremdbatterien in den Stellungen "Messen" oder "Batteriekontrolle" des Betriebsschalters. Bei voller Kapazität der Akkumulatorenbestückung steht der Zeiger in der Kontrollstellung am oberen Ende des schwarzen Bereiches. Eine längere Anschaltung an das Netz ist unschädlich und führt zu keiner Überladung.

Zum Auswechseln des Akkumulatorensatzes ist die Bodenklappe zurückzukippen und der Akkukasten so weit in das Gerät zu schieben, bis der Haltebügel zurückgedrückt werden kann. Durch Nachlassen des Druckes auf den Akkukasten gleitet dieser jetzt am Haltebügel vorbei und kann endgültig herausgezogen werden. Beim Einsetzen einer neuen Bestückung ist auf deren richtige Lage zu achten und der Kasten so weit hineinzuschieben, bis die Haltefeder einrastet.

Ist ein Akkumulatorensatz vollständig entladen, so verlieren einzelne Exemplare zuweilen ihre Ladefähigkeit, so daß eine komplette neue Bestückung zweckmäßig ist. Zum Auswechseln des verbrauchten Satzes kann nach leichtem Zurückbiegen zweier Blattfedern der Batteriekastendeckel entfernt werden.

Beim Einsetzen der Akkumulatoren auf richtige Polung achten!

2.4.2. Auswechseln der Skalenlämpchen

Nach Herausziehen des Einschubes sind die Soffitten am oberen Teil des Instrumentes leicht zugänglich.

2.4.3. Nachjustieren der Meßbereiche

Das Gerät wird vor Auslieferung sorgfältig abgeglichen, so daß ein Nachjustieren nur selten erforderlich ist und möglichst in Vertragswerkstätten oder im Herstellerbetrieb erfolgen sollte. Für Ausnahmefälle gelten folgende Hinweise:

- Eine Abweichung sämtlicher Bereiche um den gleichen prozentualen Betrag wird mit dem Regler R 429 auf der Leiterplatte 425-4 bei einer Meßfrequenz von ca. 1 kHz korrigiert.
- Eine Abweichung einzelner Bereiche wird mit den Reglern R 401 ... R 406 auf der Leiterplatte 425-4 bei der gleichen Frequenz korrigiert.

Bereich	-6	N	Regler R	406
Bereich	- 5	N	Regler R	405
Bereich	-4	N	Regler R	404
Bereich	- 3	N	Regler R	403
Bereich	-2	N	Regler R	402
Bereich	-1	N	Regler R	401

Eine größere Korrektur des 6 Np-Hauptteilers sollte ausschließlich in Vertragswerkstätten oder im Herstellerbetrieb erfolgen.

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	101a	Metall-Schichtwiderstand	155 Ω 0,5% 11.720	TK 100 TGL 14133
R	101b	Schichtwiderstand	5,9 kΩ 5% 25.311	TGL 8728
R	102a	Metall-Schichtwiderstand	620 Ω 0,5% 11.720	TK 100 TGL 14133
R	102b	Schichtwiderstand	75 kΩ 5% 25.311	TGL 8728
R	103	Metall-Schichtwiderstand	10 Ω 1% 11.310	TK 100 TGL 14133
R	104	Metall-Schichtwiderstand	100 Ω 1% 11.310	TK 100 TGL 14133
R	105	Metall-Schichtwiderstand	11 kΩ 1% 11.310	TK 100 TGL 14133
R	106	Metall-Schichtwiderstand	28,5 Ω 0,5% 11.310	TK 100 TGL 14133
R	107	Metall-Schichtwiderstand	28,5 Ω 0,5% 11.310	TK 100 TGL 14133
R	108	Metall-Schichtwiderstand	11,5 kΩ 0,5% 11.310	TK 100 TGL 14133
R	109	Schichtdrehwiderstand	P 1 kΩ 05	TGL 11886 GMD
R	110	Metall-Schichtwiderstand	155 kΩ 1% 11.310	TK 100 TGL 14133
R	111	Metall-Schichtwiderstand	36 Ω 1% 11.310	TK 100 TGL 14133
R	112	Metall-Schichtwiderstand	62 Ω 1% 11.310	TK 100 TGL 14133
R	113	Metall-Schichtwiderstand	170 Ω 1% 11.310	TK 100 TGL 14133
R	114	Metall-Schichtwiderstand	450 Ω 1% 11.310	TK 100 TGL 14133
R	115	Metall-Schichtwiderstand	1,25 kΩ 1% 11.310	TK 100 TGL 14133
R	116	Metall-Schichtwiderstand	3,3 kΩ 1% 11.310	TK 100 TGL 14133

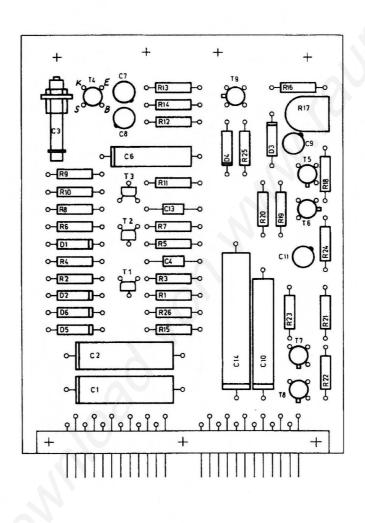
Blatt 17

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
С	101	Rohrtrimmer	4353.10 Ag	
С	102	Rohrtrimmer	4353.10 Ag	
С	103	Elyt-Kondensator	50/10	TGL 7198 is
С	104	Rohrkondensator	P 033-22/2-500	TGL 5345
С	105	L-Kondensator	1/63	TGL 10793
С	106	KF-Kondensator	150/5/63	TGL 5155
С	107	KF-Kondensator	150/5/63	TGL 5155
S	101	Drehschalter, vollst.	425-1-4/0 (4)	
S	102	Drehschalter, vollst.	425-1-5/0 (4)	
S	103	Drehschalter, vollst.	425-1-6/0 (3)	
S	104	Mikrotaster	Typ C 3 250 V 4 A	mit Plastestößel
I	101	Drehspulinstrument	100 μΑ	IBV.67 bzw. IBV.70
Si	101	C-Schmelzeinsatz	0,05 C	TGL 0-41571
Bu	101	Buchse	3050.034-00041	Bu 101 104
		ungeschirmt, vierreihig		
La	101	Soffitten-Glühlampe	6 V 3 W Sockel S 5,5	

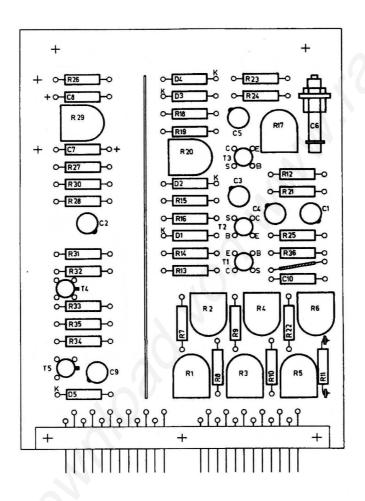
lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	201	Schichtwiderstand	82 kΩ 5% 25.311	TGL 8728
R	202	Schichtwiderstand	360 kΩ 5% 25.311	TGL 8728
R	203	Metall-Schichtwiderstand	1,5 kΩ 1% 11.310	TK 100 TGL 14133
R	204	Schichtwiderstand	3 kΩ 5% 25.311	TGL 8728
R	205	Schichtwiderstand	82 kΩ 5% 25.311	TGL 8728
R	206	Schichtwiderstand	360 kΩ 5% 25.311	TGL 8728
R	207	Metall-Schichtwiderstand	1,5 kΩ 1% 11.310	TK 100 TGL 14133
R	208	Metall-Schichtwiderstand	3,6 kΩ 1% 11.310	TK 100 TGL 14133
R	209	Schichtwiderstand	2,4 kΩ 5% 25.311	TGL 8728
R	210	Schichtwiderstand	1,5 kΩ 5% 25.311	TGL 8728
R	211	Schichtwiderstand	14 kΩ 5% 25.311	TGL 8728
R	212	Schichtwiderstand	16 kΩ 5% 25.311	TGL 8728
R	213	Schichtwiderstand	2,4 kΩ 5% 25.311	TGL 8728
R	214	Schichtwiderstand	10 kΩ 5% 25.311	TGL 8728
R	215	Schichtwiderstand	300 kΩ 5% 25.311	TGL 8728
R	216	Schichtwiderstand	3,9 kΩ 5% 25.311	TGL 8728
R	217	Schichtdrehwiderstand	S 1 kΩ 05	TGL 11886 GMD
R	218	Schichtwiderstand	4,3 kΩ 5% 25.311	TGL 8728
R	219	Schichtwiderstand	2 kΩ 5% 25.311	TGL 8728
R	220	Schichtwiderstand	680 Ω 5% 25.311	TGL 8728
R	221	Schichtwiderstand	82 kΩ 5% 25.311	TGL 8728
R	222	Schichtwiderstand	22 Ω 5% 25.311	TGL 8728
R	223	Schichtwiderstand	33 kΩ 5% 25.311	TGL 8728
R	224	Schichtwiderstand	100 Ω 5% 25.311	TGL 8728
R	225	Schichtwiderstand	1,8 kΩ 5% 25.311	TGL 8728
R	226	Schichtwiderstand	300 kΩ 5% 25.311	TGL 8728

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
С	201	MKC-Kondensator	2,2/10/100	TGL 200-8447
С	202	MKC-Kondensator	2,2/10/100	TGL 200-8447
С	203	Rohrtrimmer	4353.10 Ag	
С	204	Rohrkondensator	No 75-68/5-160	TGL 5345
С	206	MKC-Kondensator	1/10/100	TGL 10793
С	207	Elyt-Kondensator	100/10	TGL 200-8308
С	208	Elyt-Kondensator	200/3	TGL 200-8308
С	209	Elyt-Kondensator	50/15	TGL 200-8308
С	210	Elyt-Kondensator	100/25	TGL 7198
С	211	Elyt-Kondensator	100/10	TGL 200-8308
С	213	Rohrkondensator	No 75-120/5-160	TGL 5345
С	214	Elyt-Kondensator	500/15	TGL 7198 is
С	215	Papierkondensator	0,022/63-445	TGL 9291

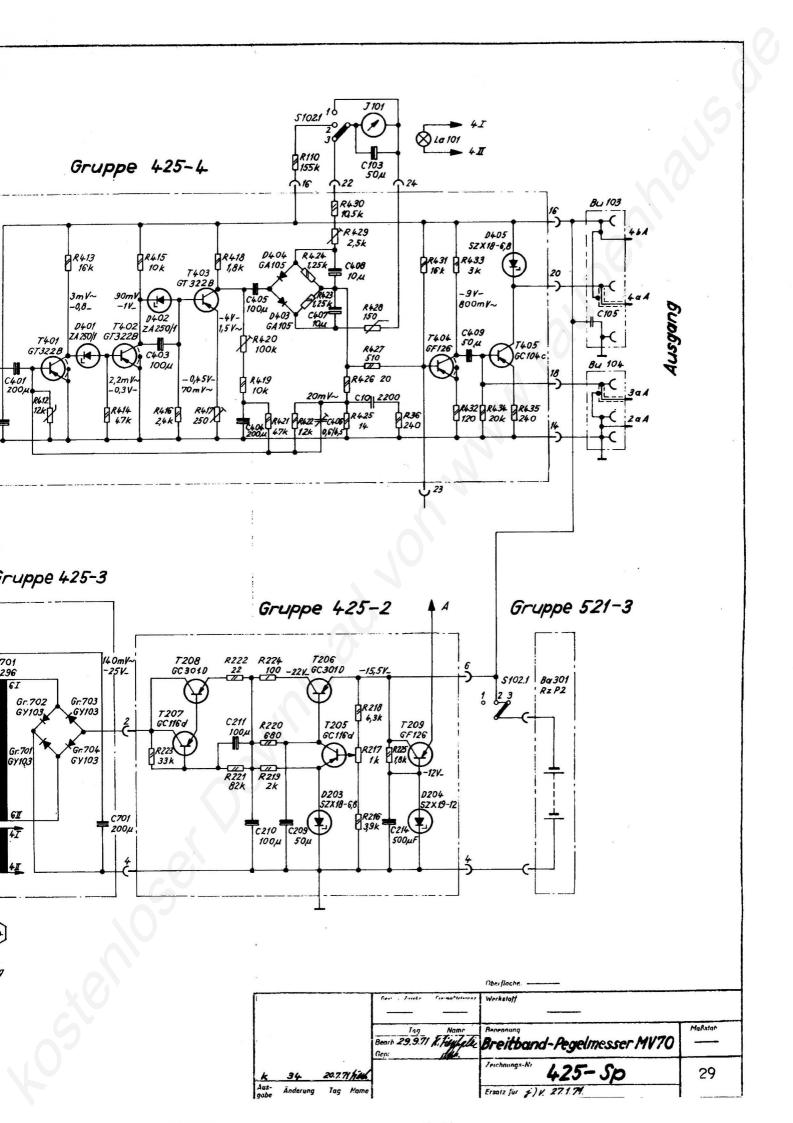
lfd.Nr.	St	Benennung	SachNr.	Bemerkung
Т	201	Transistor	SC 207 df	
Т	202	Transistor	SC 207 df	
Т	203	Transistor	SC 207 df	
Т	204	Transistor	GT 322 B	
Т	205	Transistor	GC 116 d	
Т	206	Transistor	GC 301 D	
Т	207	Transistor	GC 116 d	
Т	208	Transistor	GC 301 D	
Т	209	Transistor	GC 126 d	
D	201	Zenerdiode	SZX 18-6,8	
D	202	Zenerdiode	SZX 18-6,8	X 0
D	203	Zenerdiode	SZX 18-6,8	
D	204	Zenerdiode	SZX 19-12	
D	205	Silizium-Schaltdiode	SAY 11	1 4
D	206	Silizium-Schaltdiode	SAY 11	

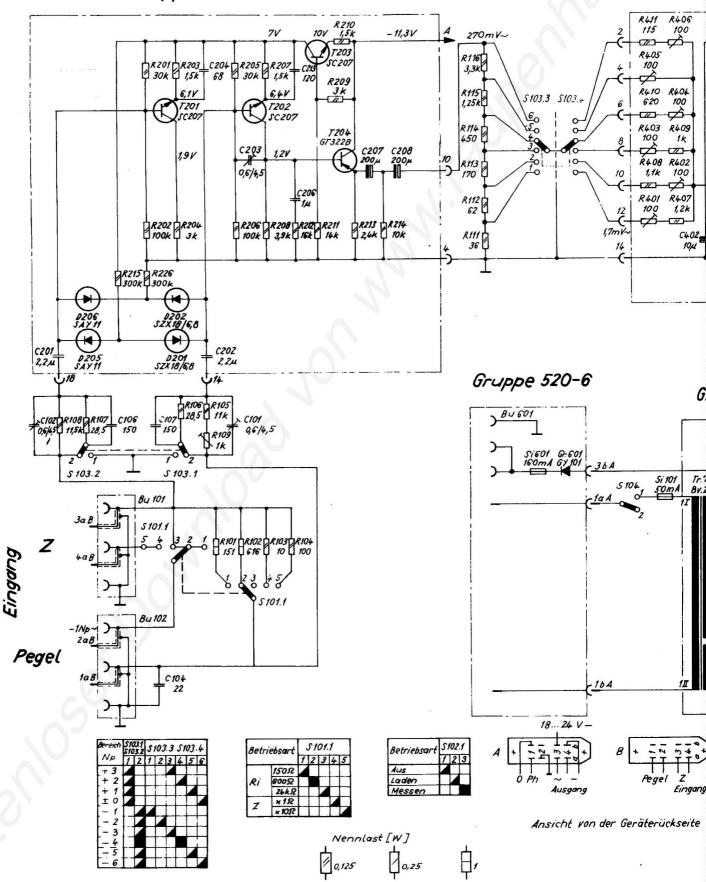

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
С	701	Elyt-Kondensator	200/25	TGL 7198 is
Gr	701	Germaniumgleichrichter	GY 103	. ~'()
Gr	702	Germaniumgleichrichter	GY 103	
Gr	703	Germaniumgleichrichter	GY 103	
Gr	704	Germaniumgleichrichter	GY 103	
Tr	701	Netztrafo	520-7-3/0	Bv.Nr. 296

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	401	Schichtdrehwiderstand	S 100 Ω 05	TGL 11886 GMD
R	402	Schichtdrehwiderstand	S 100 Ω 05	TGL 11886 GMD
R	403	Schichtdrehwiderstand	S 100 Ω 05	TGL 11886 GMD
R	404	Schichtdrehwiderstand	S 100 Ω 05	TGL 11886 GMD
R	405	Schichtdrehwiderstand	S 100 Ω 05	TGL 11886 GMD
R	406	Schichtdrehwiderstand	S 100 Ω 05	TGL 11886 GMD
R	407	Metall-Schichtwiderstand	1,2 kΩ 1% 11.310	TK 100 TGL 14133
R	408	Metall-Schichtwiderstand	1,1 kΩ 1% 11.310	TK 100 TGL 14133
R	409	Metall-Schichtwiderstand	1 kΩ 1% 11.310	TK 100 TGL 14133
R	410	Metall-Schichtwiderstand	620 Ω 1% 11.310	TK 100 TGL 14133
R	411	Metall-Schichtwiderstand	1,15 kΩ 1% 11.310	TK 100 TGL 14133
R	412	Thermistor TNM	12 kΩ 10%	
R	413	Schichtwiderstand	16 kΩ 5% 25.311	TGL 8728
R	414	Schichtwiderstand	47 kΩ 5% 25.311	TGL 8728
R	415	Schichtwiderstand	10 kΩ 5% 25.311	TGL 8728
R	416	Schichtwiderstand	2,4 kΩ 5% 25.311	TGL 8728
R	417	Schichtdrehwiderstand	S 250 Ω 05	TGL 11886 GMD
R	418	Schichtwiderstand	1,8 kΩ 5% 25.311	TGL 8728
R	419	Schichtwiderstand	10 kΩ 5% 25.311	TGL 8728
R	420	Schichtdrehwiderstand	S 100 Ω 05	TGL 11886 GMD
R	421	Schichtwiderstand	47 kΩ 5% 25.311	TGL 8728
R	422	Metall-Schichtwiderstand	12 kΩ 1% 11.310	TK 100 TGL 14133
R	423	Metall-Schichtwiderstand	1,25 kΩ 1% 11.310	TK 100 TGL 14133
R	424	Metall-Schichtwiderstand	1,25 kΩ 1% 11.310	TK 100 TGL 14133
R	425	Metall-Schichtwiderstand	14 Ω 1% 11.310	TK 100 TGL 14133
R	426	Schichtwiderstand	20 Ω 5% 25.311	TGL 8728
R	427	Schichtwiderstand	510 Ω 5% 25.311	TGL 8728


lfd.Nr.	St	Benennung	SachNr.	Bemerkung
R	428	Thermistor TNK	150 Ω 10%	
R	429	Schichtdrehwiderstand	S 2,5 kΩ 05	TGL 11886 GMD
R	430	Metall-Schichtwiderstand	10,5 kΩ 1% 11.310	TK 100 TGL 14133
R	431	Schichtwiderstand	16 kΩ 5% 25.311	TGL 8728
R	432	Schichtwiderstand	120 Ω 5% 25.311	TGL 8728
R	433	Schichtwiderstand	3 kΩ 5% 25.311	TGL 8728
R	434	Schichtwiderstand	20 kΩ 5% 25.311	TGL 8728
R	435	Schichtwiderstand	240 Ω 5% 25.311	TGL 8728
R	436	Schichtwiderstand	240 Ω 5% 25.311	TGL 8728
С	401	Elyt-Kondensator	200/3	TGL 200-8308
С	402	Elyt-Kondensator	10/15	TGL 200-8308
С	403	Elyt-Kondensator	100/3	TGL 200-8308
С	404	Elyt-Kondensator	200/3	TGL 200-8308
С	405	Elyt-Kondensator	100/10	TGL 200-8308
С	406	Rohrtrimmer	4353.10 Ag	
С	407	Elyt-Kondensator	10,3	TGL 7198
С	408	Elyt-Kondensator	10,3	TGL 7198
С	409	Elyt-Kondensator	50/15	TGL 200-8308
С	410	KF-Kondensator	2200/5/25	TGL 5155
-	405	-	CT 222 P	
T	401	Transistor	GT 322 B	
T	402	Transistor	GT 322 B	
T	403	Transistor	GT 322 B	
Т	404	Transistor	GF 126	
T	405	Transistor	GC 104c	

lfd.Nr.	St	Benennung	SachNr.	Bemerkung
D	401	Zenerdiode	ZA 250/1	
D	402	Zenerdiode	ZA 250/1	
D	403	Universaldiode	GA 105	
D	404	Universaldiode	GA 105	. ~ ()
D	405	Zenerdiode	SZX 18-6,8	


lfd.Nr.	St	Benennung	SachNr.	Bemerkung
Ва	301	Bleiakkumulatoren	Typ Hz P2	


		ļ							
				1970	Tag	Name	Benennung	Maßstab	
				Bearb.	29.6.	Gem.	Differenzverstärker	1:1	
				Gepr.	3.7.	Kum.			
				N-Gepr			Schaltteilanordnung		
a	36	3.3.72	tient.				Zeichnungs-Nr.		
-	30	13.7.70	hisal.				425-2 (4) Sa MV70	27	
Aus- Anderung		Tag	Name				Ersatz für		

Gepr. 3.7. Kum. Schaltteilanordnung 7. 36 3.3.72 him Zeichnungs-Nr.				1970	-		Name	Breitbandverstärker	Maßsta
Zeichnungs-Nr.					Bearb Gepr.	29.6. 3.7.	Gem Kum.		1:1
					N-Gepr.			Schaltteilanordnung	
- 30 13.770 from 425-4 (4) Sa MV70 28	a	36	3.3.72	him.				Zeichnungs-Nr. 425-4 (4) Sa MV 70	
		30	13.7.70	treat.					

Gruppe 425-2

