System Multimeter PM2534 - PM2535

Service Manual

4822 872 35313 900205

PHILIPS

IMPORTANT

In correspondence concerning this system, please quote the type number and serial number of the units as given on the type plate.

NOTE: The design of this system is subject to continuous development and improvement. Consequently, this system may incorporate minor changes in detail from the information contained in this manual.

THIS SERVICE MANUAL REPLACES:

- the first edition Service Manual 4822 872 35302
- the second edition Service Manual 4822 872 35312
- Service note SME 126, 4822 872 38308
- Service note SME 130, 4822 872 38313
- Service note SME 132, 4822 872 38315

4.2

III

CONTI	ENTS		
1.	SAFETY INSTR	RUCTIONS	1-1
2.	CHARACTERIST	TICS AND PERFORMANCE TEST	2-1
3.	CIRCUIT DESC	CRIPTION	3-1
	3.1	Explanation of the block diagram	3-1
	3.2	Detailed description	3-6
	3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.9.1 3.3.9.2 3.3.9.1 3.3.9.2 3.3.9.3 3.3.9.4 3.3.10 3.3.11	Analog section V dc measurement V ac measurement DC/AC current measurements Resistance measurement Temperature measurement Multiplexer Control of analog section Guard circuit Analog to Digital conversion General ADC principle Automatic zero DAC Reference voltages Inguard-outguard connection	3-7 3-9 3-11 3-12 3-12 3-12 3-12 3-12 3-13 3-13
	3.4 3.4.1 3.4.2 3.4.3 3.5 3.5.1	Digital section Software description RAM/ROM I ² C bus IEEE/IEC interface Receiving	3-15 3-16 3-16 3-17 3-17
	3.5.2	Transmitting	
	3.6 3.7 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5 3.7.6 3.7.7 3.7.8 3.7.9 3.7.10 3.7.11 3.7.12	Display/keyboard Data of components 8031 AH microcomputer MAF 8441 DAC 08 E TL 7705A OM 503 SA 1045 OQ 0300 OQ 0301 SA 1300 PCF 8574 OQ 0068 LTC 1052	3-18 3-22 3-24 3-25 3-26 3-27 3-28 3-29 3-31 3-31 3-33
4.	DISMANTLING	THE INSTRUMENT	4-1
	4.1	Removing the cover	4-1

Removing the top screening 4-2

	4.3	Removing the bottom screening	4-2
	4.4	Removing the front assembly	4-2
5.	CHECKING AND	ADJUSTING	5-1
	5.1	General information	5-1
	5.2	Calibration adjustments	5-1
	5.3	Adjusting the PM2534/PM2535 using a controller	5-4
6.	CORRECTIVE N	1AINTENANCE	6-1
	6.1	Special parts	6-1
	6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	Replacing parts Parts on the PCB LX-display, window and interconnection rubber Input unit Interchanging input unit Fuses	6-2 6-2 6-3 6-4
	6.3	Trouble shooting	6-5
7.	SAFETY INSP PRIMARY CIR	ECTION AND TESTS AFTER REPAIR AND MAINTENANCE IN THE CUIT	7-1
	7.1	General directives	7-1
	7.2	Safety components	7-1
	7.3	Checking the protective earth connection	7-1
	7.4	Adaption to the local mains	7-2
	7.5	Adaption to the local mains frequency	7-2
8.	PARTS LIST		8-1
	8.1	Mechanical parts	8-1
	8.2	Electrical parts	8-3
9.	CIRCUIT DIA	GRAMS AND PRINTED CIRCUIT BOARDS LAY-OUTS	9-1
10.	GLOSSARY OF	TERMS	10-1
11.	MODIFICATIO	NS	
	11.1	Hardware modifications	11-1
	11.2	Software modifications	11-7

1. SAFETY INSTRUCTIONS

Read this page carefully before installation and use of the instrument.

The following clauses contain information, cautions and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition. Adjustment, maintenance and repair of the instrument shall be carried out only by qualified personnel.

- 1.1 GENERAL CLAUSES
- 1.1.1 WARNING: The opening of covers or removal of parts, except those to which access can be gained by hand, is likely to expose live parts and accessible terminals which can be dangerous to life.
- 1.1.2 The instrument shall be disconnected from all voltage sources before it is opened.
- 1.1.3 Bear in mind that capacitors inside the instrument can hold their charge even if the instrument has been separated from all voltage sources.
- 1.1.4 WARNING: Any interruption of the protective earth conductor inside or outside the instrument, or disconnection of the protective earth terminal, is likely to make the instrument dangerous. Intentional interruption is prohibited.
- 1.1.5 Components that are important for the safety of the instrument may only be renewed by components obtained through your local Philips organisation.
- 1.1.6 After repair and maintenance in the primary circuit, safety inspection and tests, as mentioned in Section 7 must be performed.

CHARACTERISTICS AND PERFORMANCE TEST

CHARACTERISTICS

For the characteristics of the PM2534 and PM2535 refer to chapter 2 of the operating manuals of these instruments.

The hardware of the PM2534 and the PM2535 is almost identical. Differences are indicated were neccessary.

PERFORMANCE TEST FOR THE PM2534 AND PM2535

The meter should be calibrated and in operating condition when the customer receives it.

The following performance tests are provided to ensure that the meter is in a proper operating condition. If the instrument fails any of the performance tests, then calibration adjustment and /or repair is needed. To perform these tests, you will need a :

- * Fluke 5700 A Multifunction calibrator (or equivalent).
- * Philips PM9264/01 four wire OHM cable.

Each of the measurements listed in the following steps assume the instrument is being tested after a one-hour warmup, in an environment with an ambient temperature of 18 to 28° C, and a relative humidity of less than 80 %.

NOTE: All measurements listed in the performance test tables are made in the initial measuring speeds. These speeds are automatically switched on when the functions are selected. The ranges of the meter must be selected in the manual ranging mode.

PROCEDURE

- 1. Power-up the meter and allow it to stabilize for one hour.
- 2. Connect a cable from the output HI and LO connectors of the Fluke 5700 A to the V- Ω -mA and 0 connectors on the PM2534/PM2535.

Select the function and range on the meter and the input level from the calibrator using the values listed in the tables. The display should read between the minimum and the maximum values listed in the tables.

Archief RadioDatabase.nl	
--------------------------	--

2		2
~	-	2

FUNC.	RANG	GE	IN	IPUT LEVI	EL	FRI	EQ.	N	DISI MINIMUM		AY MAXIMUM
Vdc	300	mV	sh	nort			-		000.005	+	000.005
	300	mV	+	300.000	mV	.	-	+	299.974	+	300.026
	300	mV	-	300.000	mV	.	-		300.026	-	299.974
	3	v	+	3.00000	v	.	-	+	2.99981	+	3.00019
	3	v	-	3.00000	v	-	-		3.00019	-	2.99981
	30	v	+	10.0000	v	.	-	+	09.9989	+	10.0011
	30	v	+	15.0000	v	-	-	+	14.9986	+	15.0014
	30	v	+	30.0000	v] -	-	+	29.9985	+	30.0015
	30	v	-	30.0000	v	-	-		30.0015		29.9985
	300	v	+	300.000	v	-	-	+	299.978	+	300.022
	300	v		300.000	v	-	-	-	300.022	-	299.978
Vac	300	mV		short		-			000.00		000.00
	300	mV		300.00	mV	400	Hz *		299.10		300.90
-	300	mV		200.00	mV	40	Hz		199.30	I I	200.70
	300	mV		200.00	mV	1	KHz		199.30		200.70
	300	mV		200.00	mV	50	KHz		193.00		207.00
	3	v		3.0000	v	40	Hz		2.9910		3.0090
	3	v		3.0000	v	400	Hz		2.9910		3.0090
	3	v		3.0000	v	400	Hz *		2.9910		3.0090
	3	v		3.0000	v	50	KHz		2.9100		3.0900
	30	v		12.000	v	1	KHz		11.946		12.054
	30	v		20.000	v	20	KHz		19.720		20.280
	30	v		30.000	v	50	KHz		29.100		30.900
	300	v		100.00	v	1	KHz		099.50		100.50
	300	v		200.00	v	1	KHz		199.30		200.70
	300	v		300.00	v	1	KHz		299.10		300.90

* = Filter off.

FUNC.	RANGE	INPUT LEVEL	FREQ.	DISI MINIMUM	PLAY MAXIMUM
RTW	3 KM 3 KM 3 KM 30 KM 300 KM 300 KM 30 MM 300 MM	short 100 Ω 1 KΩ 10 KΩ 100 KΩ 1 MΩ 10 MΩ		- 0.09988 0.99970 09.9970 099.970 0.99950 09.989 098.3	$\begin{array}{c} 0.00010\\ 0.10012\\ 1.00030\\ 10.0030\\ 100.030\\ 1.00050\\ 10.011\\ 101.7 \end{array}$
RFW **	3 kn 3 Kn 3 Kn 30 Kn 300 Kn 3 Mn	100 Ω 1 ΚΩ 10 ΚΩ 100 ΚΩ		- 0.09988 0.99970 09.9970 099.970 0.99950	0.00010 0.10012 1.00030 10.0030 100.030 1.00050
°C	0 °C	100 Ω **	-	- 0.2	+ 0.2

****** = Use the four wire ohm cable PM9264/01

Connect the PM9264/01 to the PROBE connector of the PM 2534/2535 and the HI and LO connectors of the Fluke 5700. Remove the leads from the V- Ω -A and 0 connector of the

PM 2534/2535.

FUNC.	RA	NGE	INPUT LEVEL		FREQ.		DISPLAY				
								1	IINIMUM	1	AXIMUM
Idc	30	mA		opei	n	-	-				00.0015
	30	mA	+	10	mA	-	-	+	09.9955	+	10.0045
	30	mA	+	20	mA	•	-	+	19.9925	+	20.0075
	30	mA	+	30	mA	-	-	+	29.9895	+	30.0105
	3	Α	+	50	mA	•	-	+	0.04984	+	0.05016
	3	Α	-	50	mA	-	-	-	0.05016	-	0.04984
	3	A	+	200	mA	-	-	+	0.19979	+	0.20021
	3	A	-	200	mA	•	-	-	0.20021	-	0.19979
	3	A	+	2	A	-	-	+	1.99670	+	2.00330
	3	A	١	2	A		-	-	2.00330	-	1.99670
Iac	30	mA		20	mA	50	Hz		19.930		20.070
	30	mA		20	mA	400	Hz		19.930		20.070
	30	mA		20	mA	1	KHz		19.930		20.070
	3	A		2	Α	50	Hz		1.9930		2.0070
	3	A		2	A	400	Hz		1.9930		2.0070
	3	A		2	A	1	KHZ		1.9930		2.0070

3. CIRCUIT DESCRIPTION

3.1. EXPLANATION OF THE BLOCK DIAGRAM (refer to figure 3.2)

The PM2534 can be subdivided into three parts.

- Analog part
- 2. Digital part
- 3. Display-keyboard part

In the analog section all signals to be measured are converted into DC voltages. These DC voltages are attenuated by a DC attenuator or amplified by a DC amplifier.

AC voltages are attenuated by an AC attenuator or amplified by an AC amplifier. The signal is converted into a DC voltage and applied to a multiplexer.

For AC/DC current measurements two shunts are used, one for 30 mA and one for 3A measurement.

For resistance measurements the PM2534 uses a programmable current source.

For ^{O}C measurements a Pt-100 temp. probe (PM9249 e.g.) must be used. The measured analog signals are multiplexed, and via an ADC and a buffer sent to the microprocessor.

The digital part has as most important; the microprocessor (8031). The microprocessor takes care, together with the software in the ROM (and RAM) that the instructions are carried out. It communicates via I²C bus. Also there are possibilities for connecting instruments with an IEC-625 and IEEE-488 bus. System 21 can be connected as well. In event of a microprocessor failure that mixes data and adresses the watchdog takes care of automatic initialisation. This causes an interrupt on the microprocessor.

The display is an LCD display and consist of 7 segments - and two numeric displays. It contains also status indicators. The keyboard consists of sixteen pushbuttons to control and select the functions.

Archief RadioDatabase.nl

3-3

3-4/3-5

Figure 3.1

3.2 DETAILED DESCRIPTION

The PM2534 automatic multimeter can be subdivided into four functional sections, which are:

- 1. Analog section
- 2. Digital section
- Interface
- 4. Display/keyboard section

The Analog section and the ADC are situated in the inguard section. The inguard section is the part of the instrument situated in an additional screening. The control section, display keyboard section and the interfaces are situated in the outguard section.

3.3 ANALOG SECTION

General

The analog section converts all the quantities to be measured into DC voltages which are then applied via a DC amplifier, or an AC amplifier and RMS converter, (in case of AC quantities) to the analog-digital converter (ADC). All measuring functions are manually selected, but microprocessor controlled. The ranges can either be selected manually or automatically, also microprocessor controlled. It is possible to start a measurement on the instrument and a provision is made to start external (TRIGGER).

3.3.1 V ... measurement

The input voltage to be measured is applied to a DC attenuator and a DC amplifier:

Figure 3.3 V ... measurements

The attenuator is a thin film resistor network (R1101). The attenuation is switched by FET (V1101), amplification is switched by reed relay (K1102), both are controlled by microprocessor.

The combination of attenuation and amplification gives the ranges.

Range	Attn.	GAIN DC AMPL.	Range end
300 mV	1	10	-3 V
3 V	1	1	
30 V	100	10	
300 V	100	1	

A DC voltage of -3 V is applied to the ADC at positive input voltage.

The DC amplifier is a chopper-stabilised, low drift amplifier. It uses an integrated switching oscillator to chop the DC signal into a square wave. This signal can be amplified more easily. An equivalent drift voltage of approximately $0,01 \,\mu \, \text{V/}^{\text{O}}\text{C}$ can be obtained in this way. The DC input is chopped by an electronic switch, amplified and fed back to compensate for the offset voltage due to temperature drift. The principle of the DC amplifier is shown in a simple diagram.

Figure 3.4 DC amplifier principle

The chopper-stabilised amplifier is a negative feedback amplifier, with a virtual earth. When the switch is open, the gain is 10, when closed, the gain is 1.

NOTE: The LO input is not connected to circuit zero.

The resistors R1108 and R1109 are used to give an amplification of 10 (K1102 open) and an amplification of 1 (K1102 closed). V1110 is closed before K1102 opens (make before break) to get always a defined amplification. R1110 and R1111 are used to give the gate of V1110 the same voltage as the source, so Ugs = 0V. The current delivered by the chopper amplifier is too low, so V1111 is used to help the chopper amplifier.

Protection.

When a higher voltage is on the input sockets, than the range allows, the voltage on pin 6 of N1101 drifts to -4,5 V or +4,5 V (depending on the polarity of the input signal). The result is that diodes V1102, V1104 and V1106 will conduct, and the

voltage on pin 6 is clamped.

When the diodes start conducting, the output of the comparator (N1531) changes and this state is kept by the flip-flop D1531. It is indicated on the display as f clipping, BSY will reset this (end of measurement).

Figure 3.5 Clip indication

V~ measurement

The input voltage to be measured is applied to the AC voltage attenuator where, by means of a RC networks switched by a FET, the attenuation factor is changed (figure 3.6). The attenuated signal is then passed to the RMS converter which produces a DC signal between 0 and 3 V depending on the RNG input.

When measuring AC voltages, the series capacitor blocks any DC input. The 100x attenuation is achieved by V1301.

RANGE	ATTN.	0Q0068 sensitivity	RANGE END
300 mV	1	300 mV	3 V
3 V	1	3 V	
30 V	100	300 mV	
300 V	100	3 V	

In the RMS converter the difference between I_1 , and I_2 is converted into current in a dual V - I converter. The current is determined by Vin/R and the state of the RNG signal (where R is either R1308 or R1309). This RNG selects the input sensitivity of the RMS converter. The current in the AC-to-DC converter is rectified and then converted into a current again by the RMS section. This current is proportional to the RMS value of the input signal. Capacitor C1311 and C1310 provide the automatic zero (AZC) compensation for the RMS converter. The output of the RMS converter is converted into a voltage by resistor R1310. In the RMS converter there is also an output to indicate whether the crest factor has been exceeded. When point 9 of the OQ0068 becomes logic 1, the CF (point 9) indicates via latch D1531 to the microcomputer that the crest factor is exceeded. K1303 is closed during measurement. With the filter pushbutton the measurable frequency range is shifted from 400 Hz (filter off) to 40 HZ (filter on). This is achieved with V1303 and V1304 which switch additional capacitors into the RMS circuit.

3.3.3 DC/AC current measurements

In the function A, two ranges are available (30 mA and 3 A). The ranges are determined by shunt R1153 and the input impedance of the ADC. The ranges are protected by fuse F1102. If the voltage across NTC R1152 becomes too high, the thyristor starts conducting and the fuse will blow.

Range	Shunt	DC ampl
+ 30 mA	150 mV	10x
+ 3 A	150 mV	10x

The AC input current ranges are shunted in the same way as the DC currents. The voltage from the shunt is supplied to the I_1 input of the RMS converter. Input I_2 of the OQ0068 is earthed via resistor R1307.

Range	Shunt	sensitivity via 000068
30 mA	150 mV	0,3 V
3 A	150 mV	3 V

3.3.4 Resistance measurement

The unknown resistance is connected between $V\Omega$ and 0 V input sockets and supplied internally by a constant current source (figure 3.7). This current results in a potential difference across the resistor that is proportional to the resistance value.

The unknown resistance may either be connected to the V Ω input socket for two wire measurements in this way, or connected in a 4-wire configuration to the Probe socket using a four-wire test lead.

Figure 3.7 Current source

The measuring currents are derived from the current source which is built around N2101. By switching resistors in the feedback of this opamp it will change the currents.

RANGE	MEASURING CURRENT	
3 ks 30 ks 300 ks 300 ks 3 Ms 30 Ms 300 Ms	100 ліА 10 ліА 1 ліА 300 пА	

On pin 3 half of the negative reference voltage is present. As the amplification of opamp N12O1 is 1, the voltage across R12O7 is 5 V : 2 = 2.5 V. This is valid when V12O7 is closed. If transistor V12O7 conducts, the voltage across R12O7 will decrease to 250 mV. Depending on whether transistor V12O5 and/or V12O6 is openend, the current through the unknown resistor is changed or constant.

For 2-wire measurement, K1202 is closed, K1201 and K1203 are closed to perform 4-wire measurements. In this case (4-wire) the resistance of the measuring leads is compensated.

3.3.5 Temperature measurement

When ^{O}C is selected, the constant current 1 mA is routed from pin 2 of the probe connector X201 or X202, which is connected via the probe to one end of the Pt-100 resistance thermometer. The other lead is connected to earth. This current gives a voltage drop which depends on the resistance value across the Pt-100 probe. The voltage drop is measured via two other points of X201 or X202 (4-wire measurement). $0^{O}C$ will give a voltage of 100 mV. The 100 mV offset is subtracted in the microcomputer so that $0^{O}C$ will be displayed.

3.3.6 Multiplexer

All the measuring signals are supplied to a multiplexer. This multiplexer connects one input to the output (D1402 pin 3), depending on the code on pins 11, 10 and 9 of D4051. The signals are indirectly controlled by the μ P.

3.3.7 Control of Analog Section

The selection of the analog measuring functions is made under μP control by the manually-selected or remote commands from the keyboard or interface. Analog control actions are carried out from the μP . These actions are performed with the aid of an I²C device (I/O expander) and a part of the OQ0301.

3.3.8 Guard circuit

The front-panel guard can be internally connected (via a switch) to a shield that isolates the O (Lo) input socket of the PM2534 from ground (earth). This shield increases the impedance between the LO terminal and ground to improve common-mode rejection, which gives an improved measuring acurracy, especially for small input signal.

The guard should be connected to the same input potential as the Lo input terminal. For asymmetrical inputs, this will usually be earth.

3.3.9 Analog to Digital conversion. (ADC)

3.3.9.1 General

The ADC converts the analog quantities to be measured into their digital equivalents for measurement by the μ P. The operating and timing functions for the ADC are derived from the μ P via the OQO301. The basic principle used for the ADC is the conversion of analog signals into digital form by integration (the dual slope system).

Figure 3.8 Dual slope system

3.3.9.2 ADC principle

The quantity to be measured (the unknown voltage Vx presented to the input) is applied together with a precise reference voltage via switching circuits to an integrator stage. This integrator is followed by a comparator, as shown:

Figure 3.9 ADC principle

The integrator is charged linearly via the switch for a fixed time by an unknown voltage V_x , and then discharged over a variable time T_x by the reference voltage V_{ref} .

If the value of Vx is different, then the charging voltage amplitude is different (Vc2) and consequently the time taken to discharge is different. The fixed charging time Tm (ramp-up time) is measured by counting a pre-determined number of pulses in a counter (OQO301). This counter is then used to count the number of pulses during the discharge time Tx (ramp-down time). The END of the ramp-down phase is detected by the comparator. This detection occurs as the integrator voltage reaches zero volts.

At the END of the ramp-up time, the polarity of the comparator output determines which reference voltage, + Vref or- Vref has to be chosen in the ramp-down period.

This depends on the input signal: a negative signal requires a positive reference voltage and vice versa.

3.3.9.3 Automatic zero

Incorrect Zero-crossing of the comparator can occur after the rampdown phase because of drift offsets in the integrator and comparator circuits. This is eliminated in practice by automatic zero correction. During the AZC phase, the input of the integrator is shortcircuited and any offset voltage of the integrator and comparator is loaded into a capacitor. This offset voltage is substracted or added depending on polarity at the result.

3.3.9.4 DAC

A DAC is added in the ADC circuit to obtain higher resolution. The zero of the ADC is shifted every measurement to obtain the last digit of the reading.

Assume that the first measurement consist of 18201 points. After ten measurement the reading still will be 18201. By shifting the zero of the ADC in a positive or negative direction an extra digit is obtained. The counter which counts the pulses during the ramp-down period is stopped if the ramp-down signal crosses the zero. When the zero is next shifted the crossing will be on another point. If this is done ten times then there are also results with 18200 points. Adding these results and dividing them by 10 will give a reading with an extra digit. In speed 1, 100 results are used in a similar way to obtain the last two digits.

3.3.10 Reference Voltage (Source + 5 V and - 5 V)

The reference voltage source circuit is shown in figure 3.10.

Figure 3.10 Reference Voltage

The current through V1452 must be 2 mA. This is performed with R1457, R1458, R1459 and R1460. The voltage drop is then 6,5 V with a very low temperature coefficient. The cathode of V1452 will be + 5 V, so between pin 2 and pin 3 must be 1,5 V. The negative voltage is made with an inverter. The + 5 V is supplied to pin 2 from the N1406, and the output will be - 5 V. The resistors R1453, R1454, R1455, R1458, R1459 and R1460 are for adjustment.

3.3.11 Inguard-outguard connection

To reduce the influence of inteference between the measuring circuits (INGUARD) and the digital circuits (OUTGUARD) the PM2534 is provided with a galvanic separation.

The galvanic separation consists of opto-couplers (H1802 - H1805). The communication between inguard and outguard is provided by the I^2C bus.

On the bus the traffic is bi-directional. Two opto-couplers are used for the SCL line, and two opto-couplers are used for the SDA line. One optocoupler is used to indicate that the ADC is ready with a measurement. The OQ0300's are used to control the direction on the bus.

3.4 DIGITAL SECTION

The PM2534 uses the 8031 microcomputer and one ROM in the digital part to control the multimeter. (For details of the 8031 refer to section 3.7.1)

3.4.1 Software description

The software carries out some routines to measure and evaluate the applied input signal. The main tasks of the software are mentioned here:

- 1. Output/input to the IEEE-488/IEC-625 interface.
- 2. Carry out the different trigger modes.
- 3. Perform the status byte.
- 4. Translate the input of the interface to a internal code.
- 5. Carry out all System 21 actions.
- 6. Read the function switch, data-hold probe etc.
- 7. Measure the input signal.

The last action can be subdivided into the following flow-chart.

Figure 3.11 Flow chart

The routines outlin follows.	ed in the main flow-chart can be outlined as	
SET-UP routine	This routine sets-up the OQ 0301. The microcomputer reads the calibrated value out of the RAM and sends it to the OQ 0301. The relay and FET switches in the analog part are set.	
Measure routine	In this routine the PM2534 is measuring. It starts the measurement and collects the counts of the OQ 0301.	
Calculate routine	 This routine obtains the final measuring value from the following calculations. The following calculations may be made: Calculate the temperature in the ^OC function (linearisation) Calculate with the offset (substract from measured value) 	
Output routine	The output routine translates the measure result to ASCII for display or interfaces.	

3.4.2 RAM/ROM

The PM2534 has a 2 K or 8 K RAM (see Modifications 11.1 :9). In this RAM all the calibration values are stored. A battery Gl601 supplies the RAM if the power is switched off. In the PM2535 a RAM of 8 kbytes is used. In this RAM, additional information is stored like burst measurements and sequence parameters.

The PM2534 has a 16 or 32 K ROM (see Modifications 11.1 :7), in the PM2535 a 32 K ROM is used.

External trigger circuit

Via the external trigger input a measurement can be started. When the input is pulled down, a pulse on pin 9 of D 1802 will interrupt the processor. After the interrupt, the processor starts a new measurement.

3.4.3 I²C bus

The I^2C bus differs considerably from the conventional bus structures in that data-transfer is effected in a bit-serial, rather than in byte-parallel format.

In a conventional microcomputer such as the 8048 for instance, 12 address, 8 data and 4 control lines are necessary for parallel data transfer. The I²C 8440 microcomputer on the other hand requires only 2 lines to transfer serially the same amount of data. Chips used for ADC, RAM and LCD drivers are I²C compatible and also use the same two lines.

These two lines are respectively the SDL (serial data line) and the SCL (serial clock line), the function of which is to synchronise data-transfer between the appropriate I^2C devices.

Almost any number of devices can be connected to the I²C bus. Each device is allocated its own specific 7-bit address which enables any two of these devices to communicate with each other upon receipt of a message prefixed with the appropriate 7-bit address. This specific 7-bit address usually comprises a fixed address part (4 bits) and a user definable part (3 bits). The latter is assignable by tying "Define Address" pins to high or low levels. Address recognition is effected in the I²C interface hardware of each device and this eleminates the need for decoding logic. The use of an automatically invoked arbitration procedure, which prevents two or more devices from transmitting simultaneously, makes I²C technology eminently suitable for a multiprocessor system.

For further information about I²C see: Philips Data Handbook: Integrated circuits for digital systems in radio, audio and video equipment.

3.5 IEEE/IEC INTERFACE

The IEEE/IEC interface processor communicates with the main processor via the I²C bus. It acts as a slave of the main processor. This interface processor handles the complete handshake of the IEC/IEEE interface.

3.5.1 Receiving

If the system controller sends a listen address (MLA) via the DIO lines (ATN is true), D1905 and D1906 are switched to the receive direction. Also via the hardware NDAC (no data accepted) is generated. The TA (talker active) signal is high so that the input of D1905 and D1906 (Special GPIB devices) is low. This means that a part of D1906 acts as input and another part as output.

D1906 iutputs: NDAC, NRFD, SRQ

D1906 inputs: DAV, REN, ATN, EOI, IFC

Then the microcomputer starts handshaking the device address on the bus. If the device address on the bus is the same as the device address selected, the microprocessor starts to handshake in the other data bytes.

3.5.2 Transmitting

After the microcomputer has received MTA (my talk address) or in talkonly mode as described, the interface becomes talker. This means that D1905 and D1906 are now transmitters. The bytes on PO are now data for the controller. If the interface becomes talker, it makes P13 low.

The GPIB device D 1906 is switched to the following configuration.

D1906 outputs: DAV, SRQ, EOI D1906 inputs: NDAC, NRFD, REN, ATN, IFC

The PM2534 is now handshaking so that the bytes are sent to a controller or another device. At the end of the databytes the PM2534 generates EOI. The interface will remain talker until the Listener address is again on the bus, or after an IFC command is connected to the interrrupt system of the interface.

3.6 DISPLAY/KEYBOARD

The PCF 8576 is a circuit designed to drive a Liquid Crystal Display with up to 160 segments. A 2-line I²C bus structure enables serial data transfer with the microcomputer. A LCD is an AC device. Therefore, for multiplexing, the information of the segment line is important for each segment that will be driven by that line. The reference voltage for the driver is obtained from transistor V2102 and zener diode V2101. To change the viewing angle the reference voltage can be adjusted with potentiometer R2105.

On the same PCB the keyboard is situated. Pushing a switch will be read by the microcomputer via the I^2C bus. This is done by scanning lines PO to P7 to obtain which switch is pressed.

3.7 DATA OF COMPONENTS

3.7.1 8031AH single-component 8-bit microcomputer

- 8031AH Control-Oriented CPU with RAM and I/O
- 128K Accessible External Memory
- 218 User Bit-Addressable Locations
- 128 x 8 RAM
- 32 I/O Lines (Four 8-Bit Ports)
- Two 16-Bit Timer/Counters
- Programmable Full-Duplex Serial Channel

The 8031AH is Intel's HMOS version of the High performance 8-bit 8031 microcomputer. While the 8031AH features the same powerful architecture and instruction set as its HMOS predecessor, it offers the additional benefit of lower power supply current.

The 8031AH provides a cost-effective solution for those controller applications requiring up to 64 Kbytes of program and/or 64 Kbytes of data storage. Specifically, the 8031AH contains 128 bytes of read/write data memory; 32 I/O lines configured as four 8-bit parallel ports; two 16-bit timer/counters.

Figure 3.12 Block Diagram

Figure 3.13 Pin Configuration

3 - 20**8031AH PIN DESCRIPTIONS** V_{SS} Circuit ground potential. v_{CC} 5V power supply input for normal operation and program verification. Port 0 Port 0 is an 8-bit open drain bidirectional I/O port. It is also the multiplexed low-order address and data bus when using external memory. It is used for data output during program verification. Port 0 can sink (and in bus operations can source) eight LS TTL loads. Port 1 Port 1 is an 8-bit quasi-bidirectional I/O port. It is also used for the low-order address byte during program verification. Port 1 can sink/source four LS TTL loads. Port 2 Port 2 is an 8-bit quasi-bidirectional I/O port. It also emits the high-order address byte when accessing external memory. It is used for the high-order address and the control signals during program verification. Port 2 can sink/source four LS TTL loads. Port 3 Port 3 is an 8-bit bidirectional I/O port with internal pullups. It also serves the functions of various special features of the MCS-51 Family, as listed below: Port Pin Alternate Function P3.0 RXD (serial input port) P3.1 TXD (serial output port) P3.2 INTO (external interrupt) P3.3 INT1 (external interrupt) P3.4 TO (Timer/counter 0 external input) Tl (Timer/counter 1 external input) P3.5 P3.6 WR (external Data Memory write strobe) P3.7 RD (external Data Memory read strobe) The output latch corresponding to a secondary function must be programmed to a one (1) for that function to operate. Port 3 can sink/source four LS TTL loads.

RST

A high on this pin for two machine cycles while the oscillator is running resets the device. A small external pulldown resistor (-8.2k Ω) from RST to V_{SS} permits power on reset when a capacitor (-10µF) is also connected from this pin to V_{CC}.

ALE

Address Latch Enable output for latching the low byte of the address during accesses to external memory. ALE is activated at a constant rate of 1/6 the oscillator frequency except during an external data memory access at which time one ALE pulse is skipped. ALE can sink/source 8 LS TTL inputs.

PSEN

The Program Store Enable output is a control signal that enables the external Program Memory to the bus during external fetch operations. It is activated every six oscillator periods except during external data memory access. PSEN remains high during internal program execution.

EA

When held at a TTL high level, the 8051AH executes instructions from the internal ROM when the PC is less than 4096. When held at a TTL-low level, the 8031AH/8051AH fetches all instructions from external Program Memory. Do not float EA during normal operation.

XTAL 1

Input to the inverting amplifier that forms part of the oscillator. This pin should be connected to ground when an external oscillator is used.

XTAL 2

Output of the inverting amplifier that forms part of the oscillator, and input to the oscillator signal when an external oscillator is used.

3.7.2 MAF 8441 single-chip 8-bit microcontroller

DESCRIPTION

The MAB/F8441 is a device with 4K ROM/128 RAM bytes plus 8-bit LEDdriver

It has 20 quasi-bidirectional I/O port lines, one serial I/O line, one single-level vectored interrupt, an 8-bit timer event counter and on-board clock oscillator and clock circuits.

This microcontroller is designed to be an efficient controller as well as an arithmetic processor. The microcontrollers have extensive bit handling abilities and facilities for both binary and BCD arithmetic.

For detailed informations see the "Users manual Single-chip microcomputers".

Features:

- 8-bit: CPU, ROM, RAM and I/O in a single 28-lead DIL package
- 128 RAM bytes
- 20 quasi-bidirectional I/O port lines
- Two testable inputs: one of which can be used to detect zero crossover, the other is also the external interrupt input
- Serial I/O that can be used in single or multi-master systems (serial I/O data via an existing port line and clock via a dedicated line)
- Internal oscillator, generated with inductor, crystal, ceramic resonator or external source
- Over 80 instructions all of 1 or 2 cycles
- Single 5 V power supply (± 10%)

Figure 3.14 Pinning

2	22
ാ~	23

PINNING	DESIGNATION	
Vec	14	Ground
V	28	Power supply, + 5 V
V _{SS} V _{CC} P00-P07	4-11	Port 0, 8-bit quasi-bidirectional I/O port
P10-P17	18-25	Port 1, 8-bit quasi-bidirectional I/O port
P20-P23	26, 27, 1, 2	
SCLK	3	Bidirectional clock for serial I/O
INT/TO	12	External interrupt input (sensitive to a
		<pre>negative-going edge min LOW > 7 clock pulses, min HIGH > 4 clock pulses), testable using</pre>
		the JTO or JNTO instructions.
T1	13	Input pin, testable using the JT1 or JNT1
		instructions. It can be designated as event
		counter input using the STRT CNT
		instruction. It can also be used to detect
		zero cross-over of slowly moving AC inputs.
RESET	17	Input to initialize the processor (active
VIII AT 1	15	HIGH).
XTAL1	15	Connection to timing component (crystal) that
		determines the frequency of the internal
		oscillator. It is also the input for an external clock source.
WTAT O	16	
XTAL2	16	Connection to other side of the timing component.

3.7.3 D/A convertor DAC-08 E

DESCRIPTION

The DAC-08 series of 8-bit monolithic digital-to-analog converters provide very high-speed performance coupled with outstanding applications flexibility.

Advanced circuit design achieves 85ns setting times with very low "glitch" energy and at low power consumption.

Figure 3.15 Block diagram

Figure 3.16 Pin connections

- 3.7.4 TL7705A, supply voltage supervisor (watchdog)
 - Power-On Reset Generator
 - Automatic Reset Generation After Voltage Drop
 - Wide Supply Voltage Range ... 3 V to 18 V
 - Precision Voltage Sensor
 - Temperature-Compenstated Voltage Reference
 - True and Complement Reset Outputs
 - Externally Adjustable Pulse Width

Description

The TL7702A series are monolithic integrated circuit supply voltage supervisors specifically designed for use as reset controllers in microcomputer and microprocessor systems. During <u>power</u>-up the device tests the supply voltage and keeps the RESET and RESET outputs active (high and low, respectively) as long as the supply voltage has not reached its nominal voltage value. Taking RESIN low has the same effect. To ensure that the microcomputer system has reset, the TL7702A then initiates an internal time delay that delays the return of the reset outputs to their inactive states. Since the time delay for most microcomputers and microprocessors is in the order of several machine cycles, the device internal time delay is determined by an external capacitor connected to the $D_{\rm T}$ input (pin 3).

 $t_d = 1.3 \times 10^4 \times C_T$ Where: C_T is in farads (F) and t_d is in seconds(s)

Figure 3.17 Functional block diagram

6 🗍 RESET

5 RESET

3.7.5 OM 503 Thin Film resistor network This is a specially-made resistor network.

Figure 3.18

Resistor values

Name	nom. value	abs. tol.
R1	8998K	0,8 %
R2	4K668	2 %
R3	898K	0,95 %
R4	518E4	2 %
R5	89K78	0,95 %
R6	52K32	2 %
R7	9K98	0,95 %

3.7.6 SA 1045 P D²B driver comparator circuit

FUNCTION

: Driver comparator Circuit for Domestic Digital Bus D²B.

PACKAGE

: 8 pins plastic DIL SOT97C.1

Figure 3.19

PINNING

PIN	SIGNAL	TYPE		
1 2 3 4 5 6 7 8	V _{SS} DBP DBN Compout clock LBD LBS V _{DD}	0 V Supply ODP/CI ODN/CI OP IP IP IP OP + Supply	IP CI OP ODN ODP	Input Comparator Input Push-pull Output Open Drain N-output Open Drain P-output

The driver / detector chip consists of 3 main blocks:

- -1- analog driver / detector
- -2- digital filter
- -3- power-on-reset
- 1. The analogue driver / detector is a copy of the same part in the D^2B -IC. It performs the driving and sensing of the D^2B -lines. The sensing happens on certain levels with a certain hysteresis over a high common-mode-range. The driver is either tri-state or puts defined levels on the lines. This part meets the electrical D^2B -specification.
- 2. The digital filter cannot follow high frequent changes on the bus lines and so performs the necessary noise-reduction. The input data must be stable within 2 clocks or it is not taken in.
- 3. The power-on-resets the whole chip at power-on. It resets the filter and switches off the analogue part.

The driver can be controlled by signal LBD, the output of the detection is LBS. DBN and DBP is the bus line I/O and Compout is the direct comparator output.

3.7.7 0Q0300 bus control

Description

The OQO300 consists of two equal circuits with a common supply current source and voltage reference. Each of these equal circuits interfaces one of the I^2C bus lines to a pair of opto-couplers. One of these couplers transmits the I^2C information to the other side of the galvanic separation while the other coupler receives information from the other side of the galvanic separation.

In case of a multimaster system, attention should be given to the the over all propagation delay of the galvanic separation.

The 000300 can be adapted to the dark current - light current ratio of the photodiode used in the optocoupler.

The enable input enables both LED driver stages.

ST4948 860228

Figure 3.20 Pinning
3.7.8 OQ 0301 ADC Control

General

The OQO301 is designed as an ADC control circuit for a 3-phase integrating ADC system with I²C compatible serial data transfer. It contains three 24-bit serial in-parallel out shift register, a 23bit synchronous counter which can be parallel loaded from one of the 3 shift-registers, a 24-bit parallel in-serial out shift-register for reading the result of the counter and a full comparator for timing possibilities of the counter.

Further, it contains the ADC-control logic for controlling a 3-phase integrating ADC circuit and a clock oscillator controlled by an external crystal.

The 000301 has an I^2 C-interface (with slave control).

The timing for the several phases is done by the OQO301 and also the counting of clock pulses for the result of an ADC cycle:

Figure 3.21

If the ADC control is in the WAIT-state a start can be generated and the ADC control starts the UP-phase. The timing of the UP-phase is done by presetting a 23-bit synchronous upcounter and by upcounting until the counter is full.

Then the DOWN-phase is started. In the DOWN-phase the counter counts the clock pulses to get the result and is stopped by a COMP(arator) signal, which comes from the analog ADC-circuit. If in case of a fault the DOWN-phase is not stopped by the COMP signal, it will be stopped when the counter is full (therefore the counter is also presettable for the DOWN-phase to get a defined max. DOWN-timing in case of a fault). When the DOWN-phase is ready, the contents of the counter is transferred to the output shiftregister and the AZ-phase is started. The timing of the AZ-phase is done by presetting the counter and then by upcounting until the counter is full. After the AZ-phase is done, the ADC control goes to the WAIT-state and the next ADC-cycle can be started.

Figure 3.22 Pinning

Inputs	
SDA SCL X1 X2	I ² C-BUS CRYSTAL INPUTS FOR INTERNAL OSCILLATOR AND ALSO FOR INPUT OF EXTERNAL CLOCK
TRIG	TRIGGER INPUT
COMP	COMPARTOR INPUT (FROM ADC)
RESET	RESET OQ0301 (SAME AS POWER ON)
V _{DD} V _{DDI} V _{SS}	SUPPLY

Outputs	
SVUP SAZ SDWN1 SDWN2	ADC CONTROL LINES
O _A O _B O _C O _D	OUTPUTS OR ADC CONTROL LINES (SELECTABLE)
BUSY	OUTPUT LINE FOR DIRECT BUSY OR READY CONTROL

3.7.9 SAA1300 tuner switching circuit

The SAA1300 is used for switching on and off the supply lines of various circuit parts via an I^2C bus signal. It contains 5 output stages which are capable of supplying up to 100 mA in the ON state or sinking up to - 100 µA in the OFF state. Current limiting and short-circuit protection are included.

Figure 3.23 Block diagram

PINNING

pin no.	symbol	function
1	GND	ground
2	VP	positive supply
3	OŪT5	
4	OUT4	
5	OUT 3	outputs
6	OUT2	
7	OUT1	output and subaddressing input
8	SDA	serial data line I^2 bus
9	SCL	serial clock line ^{1-C} bus

3.7.10 PCF8574 remote 8-bit
$$1/0$$
 for 1^2 C bus

DESCRIPTION

The PCF8574 is a single-chip silicon gate CMOS circuit. It provides remote I/O expansion for the MAB8400 and PCF8500 microcomputer families via the two-line serial bidirectional bus (I^2C) . The device consists of an 8-bit quasi-bidirectional port and an I^2C interface. The PCF8574 has low current consumption and includes latched outputs with high current drive capability for directly driving LEDs.

Features

- Operating supply voltage 2,5 V to 6 V
- Bidirectional expander
- Open drain interrupt output
- 8-bit remote I/0 port for the I^2C bus
- Latched outputs with high current drive capability for directly driving LEDs
- Address by 3 hardware address pins for the use of up to 8 devices (up to 16 possible with mask option)

Figure 3.24 Block diagram

A0 1	-0	16 V _{DD}
A1 2		15 SDA
A2 3		14 SCL
P0 4	PCFB574	13 INT
P1 5		12 P7
P2 6		11 PB
P3 7		10 P5
Vss ₿		9 P4

Figure 3.25 Pinning diagram

1 to 3	AO to A2	address inputs
1	PO to P3 P4 to P7	8-bit quasi-bidirectional I/O port
8 13	V _{SS} INT	negative supply interrupt output
14	SCL	serial clock line
15	SDA	serial data line
16	v _{DD}	positive supply

3.7.11 OQ0068A AC/DC convertor (RMS)

DESCRIPTION

The OQ0068 is an integrated AC voltage to DC current converter for use in measuring equipment. The output current is proportional to the RMS value of the input voltage. Special features are:

- Enable input for power-down mode
- Range input for selection of 2 resistor programmed ranges
- Crest Factor or Zero Crossing output selection
- Low leakage input clamp
- Automatic offset compensation

Figure 3.26 Block diagram OQ0068A

Figure 3.27 Pinning Q00068A

OPERATION MODES

ENA	SEL	CF/ZC	SEL RNG	FUNCTION
1		x	X	Power-down mode
0		1	0	Low range measurement mode
0		1	1	High range measurement mode
0		0	0	Low range Counter mode
0		0	1	High range Counter mode

PIN DESCRIPTION

- 1 RB Range resistor B
- 2 RB Range resistor B
- 3 Il Input l
- 4 RA Range resistor A
- 5 VN Negative supply
- 6 CAZ Autozero capacitor
- 7 CAZ Autozero capacitor
- 8 GND Ground
- 9 CF/ZC OUT Digital output

- 10 CF/ZC SEL Digital output select
- 11 PROT Input protection clamp
- 12 CRMS Integrating capacitor
- 13 IOUT Current output
- 14 VP Positive supply
- 15 RNG SEL Range selection
- 16 ENA Enable input
- 17 12 Input 2
- 18 RA Range resistor A

3.7.12 Linear LTC1052 chopper-stabilized operational amplifier

DESCRIPTION

The LTC1052 are low noise chopper-stabilized opamps manufactured using Linear Technology's enhanced LTCMOSTM silicon gate process. Chopper-stabilization constantly corrects offset voltage errors. Both initial offset and changes in the offset due to time, temperature and common-mode voltage are corrected. This, coupled with picoampere input currents, gives these amplifiers unmatched performance.

Low frequency (1/f) noise is also improved by the chopping technique. Instead of increasing continuously at a 3dB/octave rate, the internal chopping causes noise to decrease at low frequencies.

Figure 3.28 Pin connections

4–1

4. DISMANTLING THE INSTRUMENT

GENERAL INFORMATION

This section provides the dismantling procedures required for the removal of components during repair operations. All circuit boards removed from the instrument must be adequately protected against damage, and all normal precautions regarding the use of tools must be observed. During dismantling a careful note must be made of all disconnected leads so that they can be reconnected to their correct terminals during re-assembly.

CAUTION: Damage may result if:

- the instrument is switched on when a circuit board has been removed.
- a circuit board is removed within one minute after switching-off the instrument.

Disconnect measuring terminals before opening.

4.1 REMOVING THE COVER (Figure 4.1)

- Remove the fixing screws (rear and bottom of the instrument)
- Pull the cover back from the front
- Remove the plastic connecting rails

Figure 4.1

- 4.2 REMOVING THE TOP SCREENING (Printed circuit board, component side)
 - Remove the cover
 - Remove the two fixing screws of the screening (bottom)
 - Push the screening in the direction of the front
 - (figure 4.2 arrow 1)
 - Lift up the screening (figure 4.2 arrow 2)
- 4.3 REMOVING THE BOTTOM SCREENING (Printed circuit board, conductor side)
 - Place the instrument upside down
 - Push screening in the direction of the rear (figure 4.2 arrow 3)
 - Lift up screening (figure 4.2 arrow 4)

Figure 4.2

- 4.4 REMOVING THE FRONT ASSEMBLY
 - Remove the cover
 - Remove the screening
 - Disconnect the front assembly from the motherboard (by connector X2101)
 - Bend out the two hooks of the front assembly at the component side of the printed circuit board (figure 4.3)
 - Pull back the front assembly

5. CHECKING AND ADJUSTING

5.1 GENERAL INFORMATION

The following information provides the complete checking and adjusting procedures. As various control functions are interdependent, a certain order of adjustment is necessary. The procedure is, therefore, presented in a sequence which is best suited to this order, crossreference being made to any circuit which may affect a particular adjustment. Before any check or adjustment, the instrument must attain its normal operating temperature.

- Warming-up time under average conditions is 30 minutes.
- Where possible, instrument performance should be checked before any adjustment is made.
- All limits and tolerances given in this Section are calibration guides, and should not be interpreted as instrument specifications. The latter are published in the operating manual of this instrument.
- Tolerances given are for the instrument under test and do not include test equipment error.
- All controls which are mentioned without item numbers are located on the outside of the instrument.

5.2 CALIBRATION ADJUSTMENTS

The calibration adjustment procedure consists of two parts:
Part A, to be used when components in the reference voltage circuit or the ADC circuit are replaced.

- Part B, to be used in all other cases.

PART A, adjustment of reference voltages and ADC

REFERENCE VOLTAGE ADJUSTMENT

If components in the reference voltage circuit are replaced, the reference voltage must be adjusted. Proceed as follows:

- Replace the wires 1 to 6 next to the resistors R1453, R1554, R1455, R1458, R1459 and R1460 if cut.
- Measure the voltage Uref between points P and N (Fig. 6.5, bottom right hand corner) with an acurracy better than 0.1 %.
- Depending on the measured Uref, the wires indicated in the table below with an asterisk (*) must be cut.

Uref>	1	2	3	4	5	6
10.00	-	-	-	*	*	*
10.20	-	-	*	*	*	-
10.40	-	*	-	*	-	*
10.55	- 1	*	*	*	-	-
10.70	*	-	-	-	*	*
10.85	*	-	*	-	*	*
11.00	*	*	-	-	-	*
11.15	*	*	*	-	-	-

- Measure again the voltage between point P and N. If the voltage is lower than 10.00 volt replace the wires again and choose a value in the table which belongs to a lower value of Uref.

ADC ADJUSTMENT

If components in the ADC circuit are replaced, or when the instrument must be set to another mains voltage frequency (see chapter 7), the dead band zero must be adjusted.

Proceed as follows:

- Set the instrument in function Vdc, range 3 V and speed 2.
- Supply alternating a voltage of +0.3 mV and -0.3 mV to the input
 Replace R1424 with a resistance box (5 kOhm up to 20 kOhm, steps according to the E96 resistance series). Adjust the resistance value until the difference between the displayed values for an input voltage of +0,3 mV and -0,3 mV is 60 counts ± 1 count. Only the difference between the indications is important!
- Replace the resistance box with a resistor (MR25, E96, 1%) of the found value

example: +0.3 mV shows 0.00020 V-0.3 mV shows -0.00040 V difference = 60 counts

PART B, CALIBRATION ADJUSTMENT

PROCEDURE (See figure 5.1)

- Via the CAL switch (pencil operation) the CALIBRATION ENABLE mode is entered. While pressing the CAL switch, the RESET switch must be pressed. Release the RESET switch before releasing the CAL switch. In the CALIBRATION ENABLE mode the instrument is normally measuring.
- Press the CHECK key (PM2535 SHIFT CHECK) to start CALIBRATING
- Select the FUNCTION and RANGE to be calibrated with the FUNCTION and UP/DOWN keys respectively
- supply the required INPUT SIGNAL (see tables on page 5-5 to 5-9) to the input terminals The accuracy of the input signal, mentioned in the table part B is 5 times better than the 90 days accuracy of the meter.
- press SINGLE TRIGGER to calibrate.
 If the calibration is successfull, the meter responds with a r (ready) at the end of the displayed value.
 If the supplied signal is not correct (out of range), or the range cannot be calibrated the meter responds with FAIL.
- Repeat this procedure for all functions and ranges to be calibrated.

By pressing the END (SHIFT CHECK for the PM2535) key, the meter leaves the CALIBRATION MODE, but stays in the CALIBRATION ENABLE mode. After RESET or POWER ON the CALIBRATION ENABLE mode is left.

Flow chart of the CALIBRATION ADJUSTMENT procedure:

Figure 5.1 Calibration adjustment procedure

RECOMMENDED CALIBRATION EQUIPMENT:

- * Fluke 5700 calibrator
- * Valhalla 2724A Programmable resistance standard for the resistance ranges up to and including 3 MOhm; not for the ranges 30 and 300 MOhm !
- * Resistance box 8122 240 29971 for the 30 MOhm and 300 MOHM ranges. The box, providing a 30 MOhm and 300 MOhm resistance with the required accuracy can be ordered at the T&M Supply Centre Almelo in the Netherlands.

5.3 ADJUSTING THE PM2534/PM2535 USING A CONTROLLER

The calibration mode can be called via the IEC/IEEE-bus. To use this feature, a program string must be sent to the PM2534/PM2535. First the calibration enable mode must be entered. (Press the CAL and RESET switch and release the RESET switch before releasing the CAL switch). Via the command CAL ON the calibration mode is enabled. To calibrate a function with a range, select via the commands described in the operating manual, the function and range. The calibration can be started by sending a trigger command "X1" or "GET". After the calibration is finished the next function/range can be selected. The calibration mode is left by sending CAL OFF to the instrument. By this the calibration enable mode is entered again.

Figure 5.3 Flow-chart

Example with P2000C controller (cal enable mode already entered!)

		INIT		
20	IEC	PRINT #22,	"CAL ON"	: cal-mode enabled
30	IEC	PRINT #22,	"FNC VDC"	: function volt DC
40	IEC	PRINT #22,	"RNG 30"	: range 30 volt
50	IEC	PRINT #22,	"X1"	: trigger
60	IEC	PRINT #22,	"CAL OFF"	: cal enable mode entered
70	IEC	END		

No	Adjustment	Preparation	Input signal	Display before calibration	Press	Display after calibration (displays first) Values ±1 count	Remarks
_	Vdc 300 mV						
	ZETO	Set instrument in: V=, 300mV	Short-circuit the V and O-socket	300.00 C mV=	Single Trigger	+000.000r mV=	
	+300 mV		+300 mV ±0.0017%	300.00 C mV=	Single Trigger	+300.000r mV=	
	-300 mV		-300 mV ±0.0017%	300.00 C mV=	Single Trigger	-300.000r mV=	
2	Vdc 3 V						
	ZETO	Set instrument in: V=, 3 V	Short-circuit the V and O-socket	3.0000 C V=	Single Trigger	+0.0000r V*	
	+3 V		+3 V <u>+</u> 0.0013%	3.0000 C V=	Single Trígger	+3.00000r V=	
	-3 V		-3 V <u>+</u> 0.0013%	3,0000 C V=	Single Trigger	-3.0000r V≖	
3	Vdc 30 V						
	zero	Set instrument in: V≖, 30 V	Short-circuit the V and O-socket	30.000 C V=	Single Trigger	+00.0000r V=	
	+30 V		+30 V ±0.0023%	30.000 C V=	Single Trigger	+30.0000r V=	
	- 30 V		-30 V ±0.0023%	30.000 C V=	Single Trigger	-30.000r V=	
4	Vdc 300 V						After the 300 V calibra-
	zero	Set instrument in: V=, 300 V	Short-circuit the V and O-socket	300.00 C V=	Single Trigger	+000,000r V=	tion you must wait at least 1 minute before continuing with another calibration!
	+300 V		+300 V ±0.0015%	300.00 C V=	Single Trigger	+300.000r V=	
	- 300 V		-300 V ±0.0015%	300,00 C V=	Single Trigger	-300.000r V=	

CALIBRATION TABLES

Archief RadioDatabase.nl

No	Adjustment	Preparation	Input signal	Display before calibration	Press	Display after calibration (displays first) Values ±1 count	Remarks
1	Vac 300 mV						
	300 mV 400 Hz	Set instrument in: V~, 300mV	300 mV ±0.06% 400 Hz	300.00 C mV~	Single Trigger	300.00 r mv~	
	Vac 3 V						
	3 V 400 Hz	Set instrument in: v~, 3 v	3 V ±0.06% 400 Hz	3.0000 C V~	Single Trigger	3.0000 r v~	
	Vac 30 V						
	30 V 400 Hz	Set instrument in: v~, 30 v	30 V ±0.06% 400 Hz	30.000 c v~	Single Trigger	30.000 r V~	
	Vac 300 V						After the 300 V calibra-
	300 V 400 Hz	Set instrument in: V ⁻ , 300 V	300 V ±0.06% 400 Hz	300.00 C V~	Single Trigger	300.00 r v~	continuing with the next calibration!
	Ohm 2-wire						
	pre cal zero	Set instrument in: Ω-2w, autoranging	Short-circuít the V Ω and O-socket	00.00 PC M.Q	Single Trigger	OP.EN PC M Q	
	precal open input		open input	OP.EN PC MA	Single Trigger	30.000 PC M.Ω	
	precal 30 M <u>O</u>		30 MΩ±0.02%	30.000 PC MA	Single Trigger	30.000 C M Ω	
10	Ohm 2-wire				-		
	zero	Set instrument in: Ω-2w, 3 kΩ	Short-circuit the V Ω and O-socket	3.0000 C kΩ	Single Trigger	0.00000r kΩ	
	3 k Ω		3 kΩ±0.004%	3.0000 C kΩ	Single Trigger	3.0000r kΩ	

Å	Adjustment	Preparation	Input signal	Display before calibration	Press	Display after calibration (displays first) Values ±l count	Remarks
=	Ohm 2-wire zero	Set instrument in: Ω-2w, 30 kΩ	Short-circuit the V Ω and O-socket	30,000 C k a	Single Trigger	00.0000r k.D	
	30 k Q		30 kΩ±0.004%	30.000 C kΩ	Single Trigger	30.0000r kû	
12	Ohm 2-wire zero	Set instrument in: Ω-2w, 300 kΩ	Short-circuit the V Ω and O-socket	300.00 C k n	Single Trigger	000.000r k.a	
	300 kΩ		300 kΩ±0.004%	300.00 C kΩ	Single Trigger	300.000r k.D	
13	Ohm 2-wire zero	Set instrument in: Ω-2w, 3 MΩ	Short-circuit the V Ω and O-socket	3.0000 C M Q	Single Trigger	0.00000r M.Ω	
	3 N.D		3 MΩ±0.008%	3.0000 C M Ω	Single Trigger	3.00000r M.Q	
14	Ohm 2-wire zero	Set instrument in: Ω-2w, 30 MΩ	Short-circuit the V Ω and O-socket	30.000 C M Ω	Single Trigger	00.0000r M.Ω	
	30 M Ω		30 MΩ±0.02%	30,000 C M Ω	Single Trigger	30.0000r M. Q	
15	Ohm 2-wire zero	Set instrument in: Ω-2w, 300 MΩ	Short-circuit the V Q and O-socket	300.00 C M.Q	Single Trigger	000.00F M.Ω	
_	300 M.Ω		300 MΩ±0.3%	300.00 C M.Q	Single Trigger	300.00r M.Ω	

Remarks																
Display after calibration (displays first) Values ±l count		0.0000r kΩ	3.0000r kΩ		00.0000r kΩ	30.0000r kΩ		000.000r kû	300.000r kΩ		0.00000F M Q	3.0000r M.Ω		+00.0000r mA=	+30.0000r mA=	-30.0000r mA=
Press		Single Trigger	Single Trigger		Single Trigger	Single Trigger	Single Trigger									
Display before calibration		3.0000 C kΩ	3.0000 C kΩ		30.000 C kΩ	30.000 C kΩ		300.00 C kΩ	300.00 C kū		3.0000 C MΩ	з.0000 с ма		30.000 C mA=	30.000 C mA=	30.000 C mÅ≖
Input signal		Short-circuit the Q-4w input socket	3 kΩ±0.004%		Short-circuit the Ω-4w input socket	30 kΩ±0.004%		Short-circuit the Ω-4w input socket	300 kΩ±0.004%		Short-circuit the Ω-4w input socket	3 MΩ±0.008%		open input	+30 mA ±0.007%	-30 mA ±0.007%
Preparation		Set instrument in: Ω-4w, 3 kΩ			Set instrument in: Ω-4w, 30 kΩ			Set instrument in: Ω-4w, 300 kΩ			Set instrument in: Q-4w, 3 MΩ			Set instrument in: A=, 30 mA		
Adjustment	Ohm 4-wire	zero	3 kΩ	Ohm 4-wire	zero	30 kΩ	Ohm 4-wire	zero	300 kΩ	Ohm 4-wire	zero	3 М.Ω	Adc 30 mA	Zero	+30 mA	-30 mA
Ŷ	16			17			18			19			20			

No.	Adjustment	Preparation	Input signal	Display before calibration	Press	Display after calibration (displays first) Values ±l count	Remarks
21	Adc 3 A						
	zero	Set instrument in: A=, 3 A	open input	3.0000 C A =	Single Trigger	+0.00000r A~	
	+2 A		+2 A ±0.023%	3.0000 C A =	Single Trigger	+2.00000r A ⁻	
	-2 A		-2 A ±0.023%	3.0000 C A =	Single Trigger	-2.00000 A ⁻	
22	Аас 30 шА						
	30 mA 400 Hz	Set instrument in: A [*] , 30 mA	30 mA ±0.06% 400 Hz	30.000 C mA~	Single Trigger	30.000г шА~	
23	Aac 3 A				-		
	2 A 400 Hz	Set instrument in: A [°] , 3 A	2 A ±0.07% 400 Hz	3.0000 C A	Single Trigger	2.000r Å~	

6. CORRECTIVE MAINTENANCE

6.1 SPECIAL PARTS

In addition to the standard electronic components, some special components are used:

- Components, manufactured or selected by Philips to meet specific performance requirements.
- Components which are important for the safety of the instrument.
- ATTENTION: Both type of components may only be replaced by components obtained through your local Philips organisation or representative. These components have been marked in the Parts List by a *.
- 6.2 REPLACING PARTS

NOTE: SWITCH OFF MAINS BEFORE REMOVING PARTS.

- 6.2.1 Parts on the PCB
 - Dismantle PM2534 (refer to section 4.1)
 - Remove screening
- 6.2.2 LX- display, window and interconnection rubber
 - Dismantle PM2534 (refer to section 4.1)
 - Remove screening (refer to section 4.2)
 - Remove front assembly (refer to section 4.4)
 - Bend out the six hooks and lift the PCB out of the front assembly (figure 6.1)
 - Push the attach hooks out of the holes at the component side of the PCB and lift the LCD display from the PCB (see figure 6.2).

The assembly of the display consists of four main parts (figure 6.2). All parts can be replaced seperately.

Figure 6.2

6.2.3 Input unit

- Dismantle the PM2534 (refer to section 4.1).
- Remove the screening (refer to section 4.2).
- Remove the fixing screw (figure 6.3).
- Pull out the input from the front assembly.
- Remove the wires from the input unit.
- Remove fixing screw in the fuseholder.
- Desolder the two wires of the switch.
- Lift-up PCB.
- Take care of the contact springs (ZERO and GUARD).
- Demount switch by using a pair of tweezers (be careful not to break the plastic mounting pins).

Figure 6.3

- 6.2.4 Interchanging input unit (figure 6.4)
 - It is possible to mount the input unit at the rear, often used in system configuration.

To do this proceed as follows:

- Dismantle PM2534
- Remove screening
- Remove fixing screws (front and rear) from the input unit front and the coverplate (rear)
- Pull the input unit out of the front assembly
- Remove the wires from the input unit
- Remove coverplate at the rear
- Place coverplate in front assembly

		Tp 1010	$RED = V\Omega$
-	Connect the input cables	Tp 1009	BLACK = O(V)
	and place the input unit	Tp 1006	BLEU = guard
	in the rear	Tp 1007	BROWN = A
		Tp 1008	GREY = 0 (A)
-	Screw coverplate and input	unit to the	instrument

ST4977

Figure 6.4

6.2.5 Fuses

Change fuse on the input unit

- Remove fixing screw in the input unit
- Pull the input unit out of the frontassembly
- Replace fuse F1102 3,15A Fast blow

Change fuse F1901 on the motherboard (SYST 21) - Dismantle PM2534

- Replace fuse F1901 200 mA Slow blow

6.3 TROUBLESHOOTING

The troubleshooting can be subdivided into two parts.

A: NORMAL MEASUREMENTS

For measurements with a multimeter and oscilloscope, the testpoints on the printed circuit board can be used. This part provides a diagram with testpoint locations (figure 6.5), and an overview of wave forms and voltages on these testpoints. The testpoint numbers correspond with the those in the circuit diagrams (section 9).

Built-in tests are provided for the RAM, ROM and display (page 6-12)

A switching table, indicating the status of switching FETS and relays is given on page 6-13.

B: REPAIR BY SIGNATURE ANALYSIS USING A TESTROM.

Repair can be done with the aid of a testrom (ordering code 5322 694 54039). In this testrom, tests are implemented for signature analysis, ADC and display testing.

If repair has to be carried out, the following points should be taken in to account in order not to damage the instrument.

- Take care to avoid short-circuiting with measuring clips
- Use a miniature soldering iron (35 W max.)
- Use an acid-free solder
- After repair, the instrument should be calibrated (section 5)

Figure 6.5 TEST PIN LOCATION

PART A

SIGNALS ON TESTPINS (refer to figure 6.5) * = INGUARD SIGNALS WITH RESPECT TO ZERO INGUARD (NO) = OUTGUARD SIGNALS WITH RESPECT TO ZERO OUTGUARD

Remark: Take care with earthing in the d.c. functions

Testpin Figure	SIGNAL NAME (BEGINS WITH START)	PICTURE
(<u>1</u>) 9.4	X - TAL IEC 6 MHz (D1902/15)	Б МНZ 519053 860429
2 9.3	* OHM = Current source (V1202)	DC voltage $\approx -1,5$ V lk input dependent on current
(3) 9.3	* DCO = DCout amplifier (N1101/6)	DC voltage + input = -V - input = +V range end = 3 V clamp = 5 V
(4) 9.1	-L = -Logic supply +L = +Logic supply	-6 V +6 V
	-A = -Analog supply +A = +Analog supply	-8 V +8 V
	0 = Zero supply	Ļ
(5) 9.3	* CF = Crest factor AC amplifier AC voltage in ≈ 8 V~	ND CF = D <u>1ms</u> <u>1ms</u> <u>0</u> CF CF MOMENT ST4922 86D228
6 9.3	* ACO = AC out a.c. amplifier (R1311/C1315)	DC voltage 0V Clamp= -3 V
⑦ 9.3	* S = slope ADC (N1402/7)	Input = +2,7 V, speed 2

8 9.3	* I = Integration ADC (N1402/1)	Input +2,7 V, speed 2
		20ms_10ms_10ms
		At - input, the signal is reversed
9 9.3	* V = Input volt rms converter (C1303)	Follows AC input voltage to rms converter
(10) 9.3	* IA = Input ampère rms convertor (C1301)	AC voltage from shunt to rms convertor
(1) 9.3	* TEST = ADC test input (A1409/R1404)	To set a DC voltage in ADC test mode (to be followed)
(12) 9.3	* B = output Buffer (N1401/6)	Input +2,7 V, speed 2
9.3		+5% -2.7V -2.7
		UP = input connected DN = + ref connected ZERO = zero connected
(13) 9.3	<pre>* P = Positive + reference (N1403/11) * N = Negative - reference (N1403/1)</pre>	+5 V -5 V
(14) 9.3	* Z = Auto zero (D1401/7) ADC control	+5V − 30ms 10ms − 5v 866728
(15) 9.3	* U = Up integration (D1401/4) ADC control	Input +2,7 V, speed 2
(16) 9.3	* D = Dac output (N1404/4)	Input +2,7 V, speed 2 20ms 0ms 0ms 574926 860228
<u> </u>	· · · · · · · · · · · · · · · · · · ·	

(17) 9.4	A = ALE (D1701/30)	Input +2,7 V, speed 2 +§♥
(18) 9.3	* C = Comparator output	Input +2,7 V, speed 2
(19) 9.3	* X = X-TAL ADC 5 MHz (D1401/7)	MWWWM SMH7 ST4930 860228
20 9.4	B = Bleeper O = O bleeper	+5V 0 ≈ 2kHz + INTERMITTENT ST4932 860228
21 9.4	X = X-TAL up (D1701/18) 12 MHz	12MH2 574933 8660228
22 9.4	RES = Reset (D1701/9)	+5V F FORCED WITH 0 W RES 278m5 5*4934 860228
23 9.4	WD = Watchdog (D1802/6)	+5V AS LONG AS WD RES IS 1 574939 86C228
24) 9.4	I = IEC interrupt (IEC INT-) (D1701/2)	Only when bus instr. is connected
25 9.4	<pre>K = Interrupt from keyboard (D1701/5) (INTK-)</pre>	+5v
26 9.4	S = Reset sys 21 (D1701/6)	Logic 1 (+5 V)
27 9.4	W = WD Reset (D1701/3) (watch dog)	57

	1	I
28 9.4	B = Busy outguard (D1701/7)	Input +2,7 V, speed 2
29 9.4	T = transmit sys 21 (D1701/11) R = receive sys 21 (D1701/10)	W W W D D W W W D +5v D \$140ms 0.5us 574935 860228
30 9.3	B = Busy inguard	0 - 5V 10 30 10 30ms REFER 10 BUSY OUTGUARD \$14943 860-79
31 9.3	SC = SCL I^2C inguard SD = SDA I^2C inguard	-5v -5v -5v -5v -5v -5v -5v -5v
32 9.4	SD = SDA I2C outguard	+5v c
(33) 9.4	TS = Trigger sys 21 (D1701/14)	Logic 1
34) 9.4	RS = Ready sys 21 (D1701/12)	Logic l
35 9.4	SC = SCL I ² C outguard	514941 B60429
36) 9.4	E = External Start (Outguard) O = Zero	Refer to specification Signal "EXINT-" +5V - 100µs - 515054 860429

Built-in tests

The ROM, RAM and display of the PM2534 and PM2535 can be tested by the standard software of the instrument. These tests only indicate a failure (ERROR on display); they do not locate the faulty component.

To activate the PM2534 test proceed as follows:

-	Push 4 times the "CHECK" switch. Push the "1" switch. Push the "END" switch.	Display ==> tESt O Display ==> tESt l START of internal tests
То	activate the PM2535 test proceed as	follows:
	Push the "SHIFT" switch. Push the "CHECK" switch. Push 3 times the "ENTER" switch. Push the "1" switch. Push the "ENTER" switch.	Display ==> tESt 0 Display ==> tESt 1 START of internal tests

The flow chart below shows how to select the tests after the procedure described above has been carried out.

START	START of internal tests, see above
SOFT XX	Displays software version (not for PM2534 S02,S03)
DISPLAY TEST	Display tests, approx. 5 seconds (fig. 6.7, 6.8).
↓ ▼	* If "END" (PM2535 "ENTER") is pushed continuously the instrument stays in the display test
ROM TEST V	"ERROR 2" on display in case of a checksum error.
RAM TEST V	"ERROR 3" on display in case of an error.
ADC TEST	"ERROR 4" on display in case of an error.
END	"tESt Ok" on display, Instrument returns to normal operation

Figure 6.6 Built-in tests

In the display test of the PM2534, the following is displayed:

Figure 6.7 PM2534 display in display test

In the display test of the PM2535, the following is displayed:

Figure 6.8 PM2535 display in display test

Table	of	control	signals	for	relays	and	FETs:	
-------	----	---------	---------	-----	--------	-----	-------	--

		1	015	13				D1 9	512				נם	140	1	
Function	Range	7 01	6 02	5 03	4 04	3 05	5 R1	6 R2	7 R3	10 R5	11 R6	12 R7	8 OA	9 0B	10 0C	11 OD
V dc	300 mV 3 V 30 V 300 V	0000	0 0 0 0	0 1 0 1	1 1 0 0	0 0 0 0	0 0 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	*a *a		0 0 0 0	1 0 1 0
Vac	300 mV 3 V 30 V 300 V	0 0 0	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1	0 1 0 1	x x x x	0 0 0	0 0 0 0	1 1 1 1	0 0 0 0
Ohm-2₩	3 k 30 k 300 k 3 M 30 M 300 M	1 1 1 1 1 1	0 0 0 0 0	1 1 1 1 1 1	1 1 1 1 1	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 1 0 1 1 1	0 0 1 1 0 0	1 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
Ohm-4W	3 k 30 k 300 k 3 M	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1	0 1 0 1	0 0 1 1	1 1 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0
A dc	30 mA 3 A	0 0	0 0	0 0	0 0	1 0	0 0	1 1	0 0	0 0	0 0	0 0	*a *a	*b *b	0 0	1 1
A ac	30 mA 3 A	0	0 0	0 0	0 0	1 0	0 0	0 0	0 0	0 0	0 0	x x	0 0	0 0	1 1	0 0
°c	850 ^o C	0	0	0	0	0	0	0	1	0	0	1	1	1	0	0

x depends on FILTER ON/OFF

filter on : x = 1filter off: x = 0

*a and *b depend on MEASURING SPEED:

speed 1+2 : *a = 0 ; *b = 1speed 3+4 : *a = 1 ; *b = 0

1 = 0 Volt (+6 Volt for D1401); relay contact closed, FET conducting 0 = -6 Volt; relay contact open, FET not conducting

PART B Tests with Signature Analysis and Testrom

Brief description of Signature Analysis.

1. General

For repair by signature analysis a testrom has been developed. This testrom enables the user to test the digital part of the PM2534 by means of Signature Analysis. Troubleshooting is now possible to component level by a circuit under test, by comparing the actual signature with the correct one. In total there are 10 tests. In the testrom, 9 tests have been implemented and one test is made with the free-run facility of the PM2534.

2. Why use a Signature Analyser?

When using a microcomputer, the bus structure is very complex. In case of a failure, it cannot be analysed with an oscilloscope or voltmeter. The signature analyser can be used now. Finding faults in a difficult bus system can best be done by opening the feedback part, and then it will become easy.

Brief description of the tests.

Free-run test:

With this test it is possible to measure signatures on the address latches and the databus of the processor. This is necessary to check if the data can be taken from the testrom.

Test 0 (digital part and galvanic separation). This test checks the I/O parts and the galvanic separation between inguard and outguard.

Test 1 (I^2C bus and switch decoding) In this test the I^2C lines are checked. Also the decoding of the switches on the display pcb are tested.

Test 2 - Test 4 (ADC) These tests are for testing the ADC. A voltage (depends on which test) on the input of the ADC is present. In the ADC circuit the various voltages can be measured.

Test 5 - Test 9 With these tests the display is tested. A short-circuit between two segments, backplanes etc. can be seen on the display.

- 3. Free-run test
- Remove jumper S1702
- Signals with a * seem to be logic 0 or logic 1 but still show activity (blinking LED)
- Reference: logic 0 = 0000
 - logic 1 = 0003

Setting signature analyser

Setting	Edge/Mode	Connections	Test point	Signal name
start		start	D1701 pin 28	AD 15
stop		stop	D1701 pin 28	AD 15
clock	e	clock	D1701 pin 29	program store enable
ground		ground	0	0

NAME	LOCATION	
ADDRESS BUS	D1702	SIGNATURES
A O	pin 6	ບບບບ
A 1	pin 9	FFFF
A 2	pin 12	8484
A 3	pin 5	P763
A 4	pin 2	1U5P
A 5	pin 15	0356
A 6	pin 16	4759
A 7	pin 19	6F9A
	D1701	
A 8	pin 21	7791
A 9	pin 22	6321
A 10	pin 23	3705
A 11	pin 24	6U28
A 12	pin 25	4FCA
A 13	pin 26	4868
A 14	pin 27	94P1
A 15	pin 28	0002

For measuring signatures on the data bus the clock must be connected to ALE (D1701 pin 30). On the signature analyser the falling edge of the clock must be selected.

Setting	Edge mode	Connections	Testpoint	Signal name
clock		clock	A	ALE

DATABUS	D1701	SIGNATURES
D 0	pin 39	UUUU
D 1	pin 38	FFFF
D 2	pin 37	8484
D 3	pin 36	P763
D 4	pin 35	1U5P
D 5	pin 34	0356
D 6	pin 33	4759
D 7	pin 32	6F9A

SIGNATURES ON THE DATA BUS

If a PM2544 signature analyser is used, the following can also be measured.

Frequencies: { D1701 pin 18 XTAL/1 and 19 XTAL/2, 12 MHz D1701 pin 29 PSEN and 30 ALE, 2 MHz

TEST EXT.START CIRCUIT

Time measurements

Settings PM2544	
Start Connect start and stop to EXINT	^{up} /13
Stop	

Short-circuit the EXT TRIG input to earth. The time measured must be between 40-150 us.

TEST WATCHDOG

Settings PM2544	
Start	
Stop	

Short-circuit test pin W to earth. The time measured must be between 200-600 msec.

- 4. Test O
- Switch off the POWER and remove the EPROM D1703
- Check your testrom type, it must be a 256 K type (27256); if it is a 64 K type (2764), refer to section 10.1 Modification 6.
- Place the TEST ROM in the socket of D1703.
- Connect the anode of V1703 (located near D1703) to test pin 0 (zero outguard, see figure 6.5 on page 6-7), to avoid a reset of the RAM
- Connect test pin -L (logic supply -6 V inguard) to the zero of the +5 V outguard supply (test pin 0, refer to figure 6.5 on page 6-7).
- Switch on the meter (the display shows tESt 0) and measure the signatures as given on the next pages.

- Signals with a * seem to be logic 0 or 1 but still show activity (blinking LED)
 - Reference: logic 0 = 0000 logic 1 = 82CP

Setting signature analyser

Setting	Edge/Mode	Connections	Testpoint	Signal name
Start/stop		Start/stop	RS	RDY SYS
Clock	~~~	Clock	А	ALE
Qualifier	-	Qualifier	тs	TRI SYS
Ground	•	Ground	0	0

		
D1701 pin	SIGNATURE	
1	82CP*	
2	0000	
3	FFAP	
4	AU4A	
5	PAOF	
6	PPA8	
7	0000	
8	Н9А5	> Signature on test pin SD
9	0000	(inguard and outguard)
10	282P	
11	4578	
12	82CP*	
13	33 83	
14	82CP*	
15	0439	-> Signature on test pin SC
16	6573	(inguard and outguard)
17	8240	
18	82CP	
19	0000	
20	0000	
21	82CP	
22	82CP	
23	0000	
29	82CP	
31	0000	
33	82CP	
34	458A	
35	C334	
36	U6CP	
37	39C2	
38	72AH	
39	6UPP	
40	82CP	
		j

IC D1401		IC D1401	
Pin	Signature	Pin	Signature
1	CCAA	15	CCAA
4	0000	16	CCAA
5	0000	17	Unstable
6	0000	18	CCAA
7	CCAA	19	0000
8	7743	20	Unstable
9	C96F	21	0000
10	FAP1	22	CCAA
11	C631	23	CCAA
12	0000	24	CCAA
		I	

RES SYS 21 (27)

The next signatures must be measured on test pin S (outguard). If an IC, connected with the I^2C bus, is receiving data, it sends back an acknowledge. If no acknowledge is received from that I^2C , the signature changes.

All I²C integrated circuits ok, signature: 0462 (RES SYS 21 (27))

The following signatures can be measured on pin S if the devices mentioned in the table not sending acknowledge:

IC's not sending acknowledge	SIGNATURES	
ALL IC'S OK	0462	
D1404	781H	
D1511	067U	
D1512	APC9	
D1513	1H56	
D1902	C8P9	
D2101	PO2C	
D2201	31C4	

5. Test 1 (I²C devices)

```
Select test 1 with S1701 (test 1 on display)
Reference: logic 0 0000
```

- logic l CCAA
- The anode of V1703 must be connected to test pin 0 (zero outguard) to avoid reset of RAM
- Test pin -L (inguard) must be connected 0 (zero outguard)

Setting signature analyser

Setting	Edge/Mode	Connections	Testpoint	Signal name
Start/stop		Start/stop	RS	RDY SYS
Clock		Clock	A	ALE
Qualifier		Qualifier	TS	TRI SYS
Ground		Ground	O	O

6-	1	9

IC D1511		IC D1512		IC D1513	
Pin	Signatures	Pin	Signatures	Pin	Signatures
1	0000	1	CCAA	1	0000
2	CCAA	2	0000	2	CCAA
3	CCAA	3	CCAA	3	8999
4	F7C7	4	P3C9	4	Unstable
5	2P1P	5	CA9A	5	4P43
6	A3C1	6	999F	6	9P08
7	133P	7	1CAO	7	FFPF
8	0000	8	0000		
9	5C47	9	6AHO		
10	2299	10	641F		
11	F6F1	11	1AA2		
12	5H93	12	74HC		
13	CCAA	13	0000		
16	CCAA	16	CCAA		

- Pushing a switch on the front will also give a different signature on PIN S (outguard).

PUSHBUTTON	SIGNATURE	
0	92P4	
1	A365	
2	9HUF	
3	6AU5	
4	08PP	
5	C479	
6	F683	
7	0P92	
8	1760	
9	PUC7	
INT	H4F9	
SINGLE	8595	
CHECK	6817	
DOWN	628U	
UP	7UA7	
AUT/MAN	485H	

The following signatures can be measured on the I/O expander D2201 (display pcb).

IC D2201			
Pin	Signature	Pin	Signature
1	CAAA	9	0000
2	-	10	C607
3	-	11	1022
4	CAAA	12	2U3U
5	0AC2	13	3203
6	C1F7	14	CCAA
7	P8FH	15	0000
8	2656	16	0000

- Test 4 signals Test 4 can be selected with S1701 (Test 4 on display) TESTPIN B (UF) TESTPIN C (OMP) 5T4983 900126 Figure 6.11 Test 4 signals 7. Test 5-9 Test 5 - Test 9 are for testing the display (visual), they can be selected with S1701. Test 5 _ In test 5 all segments are on. SHIFT LIM A% MIN MAX MING STRG V SPEED 1234 V FILT NULL V HOLD PROBE V TERO SET ST4962 Figure 6.12 Test 5 signals Test 6 In this test all even segments $(S_0, S_2, S_4 - etc.)$ are on. LIM CAL MIN READ SEQU DELAY SPEED 12 NULL V ZERO SET FILT ST4963 Figure 6.13 Test 6 signals Test 7 In this test all odd segments $(S_1, S_3, S_5, etc.)$ are on. SHIFT ۵%

Figure 6.14 Test 7 signals

Test 8 All segments from backplanes 1 and 3 are on.

Figure 6.15 Test 8 signals

Test 9

All segments from the backplanes 0 and 2 are on.

REM	SRQ	LSTN					 s	44	_	LIMI 4%
•	,				,		A.	Δ.	^_	READ BURST
		V	SPEED)	▼ FIL1	r			▼	SET
										ST4966

Figure 6.16 Test 9 signals

7. SAFETY INSPECTION TESTS AFTER REPAIR AND MAINTENANCE IN THE PRIMARY CIRCUIT

7.1 GENERAL DIRECTIVES

- Take care that the creepage distance and clearances have not been reduced.
- Before soldering, the wires should be bent through the holes of solder tags, or wrapped around the tag in the form of an open U, or Wiring ridigity shall be maintained by cable clamps or cable lacing.
 Replace all insulating guards and plates.
- 7.2 SAFETY COMPONENTS

Components in the primary circuit may only be replaced by components selected by Philips, see also 8.

7.3 CHECKING THE PROTECTIVE EARTH CONNECTION

The correct connection and condition is checked by visual control and by measuring the resistance between the protective lead connection at the plug and the cabinet/frame. The resistance shall not be more than 0,5 Ohm. During measurements the mains cable should be removed. Resistance variations indicate a defect.

ADAPTATION TO THE LOCAL MAINS 7.4

For adaptation to the local mains the wiring positioned under the mains transformer must be altered. Proceed as follows:

- Remove the cover
- Change the drawing as shown in figure 7.1 (230 V, 1 connection; 115 V, 2 connections).

Figure 7.1 Adaption to the local mains

7.5 ADAPTATION TO THE LOCAL MAINS FREQUENCY

For adaptation to 60 Hz the 5 MHz X-tal (G1401) must be changed for a 6 MHz X-tal (codenr. 5322 242 74364). Also a new adjustment must be made for the ADC control (refer to Chapter 5 page 5.4 adjustment number 2).

8. PARTS LIST

NOTE: if a component is marked *x (x is a number), you must refer to modification x, in Section 11, "MODIFICATIONS".

8.1 MECHANICAL PARTS

- • • •		
Description	Ordering no.	Figure
L.C.D.	5322 130 90279	6.2
Pushbutton knob all functions	5322 414 20031	6.2
Pushbutton knob		
SHIFT/ENTER (white)	5322 414 60146	
Window	5322 450 60633	6.2
Front assembly (PM2534)	5322 447 70087	
Front assembly (PM2535)	5322 447 90691	
Input unit	5322 694 54034	6.3
Contact spring (input)	4822 530 80158	
Fuseholder	5322 256 34079	6.3 and 8.1
Slide switch (guard)	5322 277 21046	6.3
Reed contact	5322 280 24126	8.1
Flat cable	5322 321 21307	8.1
Jumper	5322 263 60062	8.1
Foot (rear)	5322 462 10258	8.2
Footplug (rear)	5322 462 40109	8.2
Foot (bottom)	5322 462 10259	8.2
Footplug (bottom)	5322 462 44148	8.2
Lever (left)	5322 405 90307	8.2
Lever (right)	5322 405 90308	8.2
Handle	5322 498 50193	8.2
PCB guide	5322 290 60588	
Plastic connecting rail	5322 460 60398	4.1
Coverplate (input unit)	5322 460 60397	6.4
Coverplate (options)	5322 460 60399	6.4
Measuring pin black	5322 264 20045	
Measuring pin red	5322 264 20046	
Lead black	5322 321 20572	
Lead red	5322 321 20573	
Adapter red	5322 264 20051	
Adapter black	5322 264 20052	
Mains cable	5322 321 10388	
Fuse F 5x20 3,15 A	4822 253 20025	
Fuse T 5x20 63 mA	4822 253 30004	
Fuse T 5x20 125 mA	4822 253 30007	
Fuse T 5x20 200 mA	4822 253 30012	
Screw special M3x13	5322 502 13163	
Inter connection rubber	5322 267 50753	
8-p Din plug, male	5322 266 44031	
Mains input connector	5322 265 30406	
(fuse holder and mains		
switch included)		

Figure 8.1

Figure 8.2

8.2 ELECTRICAL PARTS

8.2.1 Capacitors

posno. description ordering no.

C 1101	2% 100PF	5322 122 32655
C 1102	63V 10% 390NF	5322 121 42502
C 1103	63V 10% 390NF	5322 121 42502
C 1104	2% 18PF	4822 122 31061
C 1105	-20+80% 22NF	4822 122 30103
C 1106	-20+80% 22NF	4822 122 30103
C 1107	100V 10% 1UF	5322 121 40197
C 1201	630V 1% 1NF	4822 121 50591
C 1202	-20+80% 22NF	4822 122 30103
C 1203	-20+80% 22NF	4822 122 30103
C 1204	2% 33PF	5322 122 32072
C 1303	400V 10% 68NF	4822 121 42078
C 1304	2% 12PF	4822 122 31196
C 1305	2% 12PF	4822 122 31196
C 1306	0.25PF 0.68PF	4822 122 31215
C 1307 C 1308 C 1310 C 1311 C 1311 C 1312	63V 1% 2150PF 2% 330PF 2% 100PF 10V 20% 15UF -20+80% 22NF	5322 121 50985 5322 122 32704 4822 122 31316 5322 124 14036 4822 122 30103
C 1313 C 1314 C 1315 C 1316 C 1317	-20+80% 22NF 63V 10% 150NF 100V 10% 1.5UF 63V 10% 100NF 100V 10% 1UF	4822 122 30103 4822 121 41854 5322 121 40227 5322 121 40227 5322 121 42386 5322 121 40197
C 1401	-20+80% 22NF	4822 122 30103
C 1402	-20+80% 22NF	4822 122 30103
C 1403	-20+80% 22NF	4822 122 30103
C 1404	-20+80% 22NF	4822 122 30103
C 1404	-20+80% 22NF	4822 122 30103
C 1405	-20+80% 22NF	4822 122 30103
C 1406	-20+80% 22NF	4822 122 30103
*3 C 1407	63V 1% 160NF	5322 121 54116
C 1408	63V 10% 220NF	5322 122 32255
C 1409	100V 10% 3.3UF	5322 121 40283
C 1410	-20+80% 22NF	4822 122 30103
C 1411	2% 220PF	5322 122 34047
C 1412	-20+80% 22NF	4822 122 30103
C 1413	-20+80% 22NF	4822 122 30103
C 1413	-20+80% 22NF	4822 122 30103
C 1414	-20+80% 22NF	4822 122 30103
C 1415	2% 18PF	4822 122 31061
C 1416 C 1417 C 1418 C 1433 C 1433 C 1434	2% 18PF -20+80% 22NF -20+80% 22NF 50V 10% 22NF 50V 10% 22NF	4822 122 31061 4822 122 30103 4822 122 30103 5322 122 30103 5322 122 10356 5322 122 10356
C 1451 C 1452 C 1454 C 1455 C 1455 C 1456	50V 10% 22NF 50V 10% 22NF 50V 10% 22NF 630V 1% 51.1PF 2% 18PF	5322 122 10356 5322 122 10356 5322 122 10356 5322 122 10356 5322 121 50984 4822 122 31061
C 1457	2% 100PF	4822 122 31316
C 1458	50V 10% 22NF	5322 122 10356
C 1501	-20+80% 22NF	4822 122 30103
C 1502	-20+80% 22NF	4822 122 30103
C 1503	-20+20% 10UF	5322 124 21731
C 1504	-20+80% 22NF	4822 122 30103
C 1505	-20+80% 22NF	4822 122 30103
C 1506	50V 10% 22NF	5322 122 10356
C 1507	-20+80% 22NF	4822 122 30103
C 1508	-20+80% 22NF	4822 122 30103

posno.	description	ordering no.
C 1509 C 1510 C 1511 C 1512 *8 C 1513	-20+80% 22NF -20+80% 22NF -20+80% 22NF -20+80% 22NF -20+80% 22NF -20+80% 22NF	4822 122 30103 4822 122 30103 4822 122 30103 4822 122 30103 4822 122 30103 4822 122 30103
C 1514 C 1515 C 1516 C 1531 C 1601	-20+80% 22NF -20+80% 22NF -20+80% 22NF -20+80% 22NF -20+20% 4700UF	4822 122 30103 4822 122 30103 4822 122 30103 4822 122 30103 4822 122 30103 5322 124 21504
C 1602	-20+20% 1UF	5322 124 41098
C 1603	-20+20% 10UF	5322 124 21731
C 1611	-20+20% 1UF	5322 124 41098
C 1612	-20+80% 22NF	4822 122 30103
C 1613	-20+20% 1UF	5322 124 41098
C 1614	-20+80% 22NF	4822 122 30103
C 1615	-10+50% 330UF	4822 124 20694
C 1616	-20+20% 10UF	5322 124 21731
C 1617	-20+80% 22NF	4822 122 30103
C 1618	-20+80% 22NF	4822 122 30103
C 1619	-20+20% 1UF	5322 124 41098
C 1620	-20+80% 22NF	4822 122 30103
C 1621	-20+20% 1500UF	4822 124 21505
C 1701	-20+20% 10UF	5322 124 21731
C 1702	2% 33PF	5322 122 32072
C 1703	2% 33PF	5322 122 32072
C 1704	-20+80% 22NF	4822 122 30103
C 1705	-20+80% 22NF	4822 122 30103
C 1706	-20+20% 10UF	5322 124 21731
C 1708	-20+80% 22NF	4822 122 30103
C 1801	-20+50% 10NF	4822 122 31414
C 1802 C 1803 C 1804 C 1805 C 1806	-20+80% 22NF -20+80% 22NF -20+80% 22NF -20+80% 22NF -20+80% 22NF -20+80% 22NF	4822 122 30103 4822 122 30103 4822 122 30103 4822 122 30103 4822 122 30103 4822 122 30103
C 1807	-20+20% 10UF	5322 124 21731
C 1808	-20+20% 1UF	5322 124 41098
C 1809	-20+20% 10UF	5322 124 21731
C 1810	-20+80% 22NF	4822 122 30103
C 1901	-20+80% 22NF	4822 122 30103
*13 C 1902	2% 5P6	5322 122 32163
*13 C 1903	2% 5P6	5322 122 32163
C 1904	-20+80% 22NF	4822 122 30103
C 1905	-20+20% 10UF	5322 124 21731
C 1906	-20÷80% 22NF	4822 122 30103
C 1907	-20+80% 22NF	4822 122 30103
C 1908	-20+80% 22NF	4822 122 30103
C 2101	10% 22NF	5322 122 10457
C 2102	-20+80% 22NF	4822 122 30103

,

5322 116 5322 116

5322 116 4822 116

4822 116 4822 116

4822 116

4822 116 51253 5322 116 54557

5322 116 55604

5322 116 50583

4822 116 51235 4822 116 51253 5322 116 54704

51498

50514

55367 51253

51253

51253

51235

8.2.2 Resistors description ordering no. posno. R 1101 5322 111 94044 R 1102 **MR25** 1% 100E 5322 116 55549 5% 100K 1% 6K19 R 1103 R 1104 5322 116 51722 5322 116 55426 VR68 MR25 R 1105 **MR25** 1% 10K 4822 116 51253 R 1106 **MR25** 1% 6K19 5322 116 55426 5322 116 54502 5322 116 53206 R 1107 MR25 1% 261E 0.1% 1K33 0.1% 147E R 1108 5322 116 53199 R 1109 1% 133K 1% 14K7 R 1110 **MR25** 5322 116 54708 **MR25** 5322 116 R 1111 54632 MR25 1% 4822 116 R 1112 10K 51253 MR25 4822 116 51235 R 1113 1% 1K 1% 22K6 R 1114 MR25 5322 116 50481 R 1115 MR25 1% 100K 4822 116 51268 1% 1K 1% 19E6 1K 4822 116 MR25 51235 1116 R 5322 116 50473 R 1151 MR25 5322 116 34035 5322 209 50548 see figure 4.3 and 8.1 2.2A 15E R 1152 R 1153 Shunt assy 25 1% 100K 245V 750E-1K5 245V 750E-1K5 245V 750E-1K5 0.25% 2K52 4822 116 51268 5322 116 44006 5322 116 44006 5322 116 53195 R 1154 R 1201 R 1202 MR25 R 1203 5322 116 50556 5322 116 53196 R 1204 MR25 1% 4K42 0.25% 357K MR25 1% 10K 0.25% 845K R 1205 4822 116 51253 5322 116 53204 R 1206 R 1207 R 1208 0.25% 5322 116 53194 14K R 1209 1% 10K 4822 116 51253 MR25 0.25% 249K 0.25% 249K 5322 116 53205 5322 116 53205 4822 116 51268 4822 116 51253 R 1210 R 1211 R 1213 MR25 1% 100K R 1301 MR25 1% 10K MR25 R 1302 1% 681K R 1303 R 1304 1% 511K 1% 511K MR30 MR30 5322 116 5322 116 R 1305 MR25 1% 681K 55284 R 1306 MR25 1% 2K55 54577 5322 116 54716 5322 116 50664 5322 116 55419 5322 116 54635 5322 116 50442 1307 1% 162K 1% 2K05 R MR25 R 1308 MR25 R 1309 MR25 1% 20K5 R 1310 MR25 1% 16K9 1311 MR25 1% 48K7 R R 1401 MR25 1% 10K 4822 116 51253 4822 116 51253 R 1402 MR25 1% 10K MR25 MR25 4822 116 4822 116 R 1403 1% 1K 51235 R 1404 1% 10K 51253 1405 **MR25** 1% 14K7 5322 116 54632 R R 1406 MR25 1% 10K 4822 116 51253

R

R

R R

R

R 1415

R

R

R 1418

R 1419

R

R

R 1422

R

1407

1411 1412 1413

1414

1416 1417

1420 1421

1423

MR25

MR25

MR25

MR25

MR25

MR25

MR25

MR25

MR25

MR25

MR25

MR25

MR25

MR25

1% 8K25

1% 64K9

1% 3K48

1%

1%

1%

1% 1% 1K21

1%

1%

1%

1%

1%

1%

10K

10K

10K

10K

5K9

1K 10K

1K

121K

1E47

posno.	description	ordering no.
R 1425 R 1426 R 1431 R 1432 R 1433	MR25 1% 11E MR25 1% 2K15 MR25 1% 5K62 MR25 1% 4K02 MR25 1% 4K42	5322 116 54059 5322 116 50767 4822 116 51281 5322 116 55448 5322 116 50556
R 1434 R 1435 R 1436 R 1437 R 1438	MR25 1% 10K MR25 1% 10K MR25 1% 10K MR25 1% 10K MR25 1% 10K	4822 116 51253 4822 116 51253 4822 116 51253 4822 116 51253 4822 116 51253 4822 116 51253
R 1439 R 1440 R 1441 R 1451 R 1452	MR25 1% 10K MR25 1% 10K -101-333 33K MR25 1% 1K 0.1% 3K09	4822 116 51253 4822 116 51253 5322 111 90881 4822 116 51235 5322 116 53201
R 1453 R 1454 R 1455 R 1455 R 1456 R 1457	0.25% 1K54 0.25% 768E MR25 1% 383E 0.1% 10K 0.1% 1K58	5322 116 53192 5322 116 53193 5322 116 55368 5322 116 53198 5322 116 53197
R 1458 R 1459 R 1460 R 1461 R 1462	0.25% 187E MR25 1% 95E3 MR25 1% 46E4 MR25 1% 46E4 MR25 1% 1K54	5322 116 53191 5322 116 50569 5322 116 50492 5322 116 50492 5322 116 50586
R 1463 R 1464 R 1470 R 1501 R 1502	0.1% 10K 0.1% 10K MR25 1% 1M MR25 1% 100E MR25 1% 100E	5322 116 53198 5322 116 53198 5322 116 55535 5322 116 55549 5322 116 55549 5322 116 55549
R 1503 R 1504 R 1505 R 1506 R 1507	MR25 1% 100E MR25 1% 100E MR25 1% 287E MR25 1% 100E MR25 1% 100E	5322 116 55549 5322 116 55549 5322 116 54506 5322 116 54569 5322 116 55549 5322 116 55549
R 1508 R 1509 R 1510 R 1511 R 1512	MR25 1% 100E MR25 1% 100E MR25 1% 100E MR25 1% 100E MR25 1% 100E MR25 1% 5K9	5322 116 55549 5322 116 55549 5322 116 55549 5322 116 55549 5322 116 55549 5322 116 50583
R 1513 R 1514 R 1515 R 1516 R 1517	MR25 1% 5K9 MR25 1% 5K11 MR25 1% 11K MR25 1% 11K MR25 1% 715E	5322 116 50583 5322 116 54595 5322 116 54623 5322 116 54623 5322 116 54623 5322 116 50571
*8 R 1518 R 1519 R 1520 R 1521 R 1522	MR25 1% 287E MR25 1% 10K MR25 1% 287E MR25 1% 10K MR25 1% 100E	5322 116 54506 4822 116 51253 5322 116 54506 4822 116 51253 5322 116 51253 5322 116 55549
R 1523 R 1531 R 1532 R 1533 R 1533 R 1534	MR25 1% 100E MR25 1% 13K3 MR25 1% 10K MR25 1% 10K MR25 1% 1K	5322 116 55549 5322 116 55276 4822 116 51253 4822 116 51253 4822 116 51235
R 1535 R 1601 R 1602 R 1603 *8 R 1604	MR25 1% 22K6 MR25 1% 619E MR25 1% 2K26 351V 429V 10% MR25 1% 1K	5322 116 50481 4822 116 51232 5322 116 50675 5322 116 21072 4822 116 51235

1

	posno.	descriptio	n	ordering	no.
	R 1701 R 1702	MR25 1% -105-103	1K 10K	4822 116 5322 111	51235 90473
	R 1703 R 1704 R 1705 R 1706 R 1707	MR25 1% MR25 1% MR25 1% MR25 1% MR25 1%	10K 10K	5322 116 5322 116 4822 116 4822 116 4822 116 4822 116	51253 51253
	R 1708 R 1709 R 1713 R 1802 R 1803	MR25 1%	100K 1K 4K64	4822 116 4822 116 4822 116 5322 116 4822 116 4822 116	51268 51235
	R 1804 R 1805 R 1806 R 1807 R 1808	MR25 1% MR25 1% MR25 1%	100K 18K7 2K05 301K 226E	4822 116 5322 116 5322 116 5322 116 5322 116 5322 116	55362 50664 54743
	R 1809 R 1810 R 1811 R 1812 R 1813	MR25 1% MR25 1% MR25 1%	226E 8K25 11K 11K 100E	5322 116 5322 116 5322 116 5322 116 5322 116 5322 116	51498 54623 54623
	R 1814 R 1815 R 1816 R 1817 R 1818	MR25 1% MR25 1% MR25 1%	100E 10K 2K74 1K 100K	5322 116 4822 116 5322 116 4822 116 4822 116 4822 116	51253 50636 51235
*8	R 1819 R 1820 R 1821 R 1822 R 1823		4K64 1M 10K	4822 116	54655 50484 55535 51253 51253
*13	R 1901 R 1902 R 1903 R 1904 R 1905	MR25 1% MR25 1% MR25 1% MR25 1% MR25 1%	10K 10K	5322 116 5322 116 4822 116 4822 116 5322 116	55549 51253 51253
	R 1906 R 1907 R 1908 R 1909 R 1910	MR25 1%		5322 116 5322 116 5322 116 5322 116 5322 116 5322 116	55549 55549 50636 50484 55549
	R 1911 R 2101 R 2102 R 2103 R 2103 R 2104	MR25 1% MR25 1% MR25 1% MR25 1% MR25 1%	196K 3K48 3K32	5322 116	54426 55364 55367 51247 50561
	R 2105 R 2201	CTP10 20% MR25 1%	220E 10K	4822 100 4822 116	10019 51253

8.2.3	Semicon	Semiconductors		
	posno.	description		ordering no.
	V 1103 V 1104 V 1105 V 1106 V 1107 V 1108 V 1109	BAS45 BAW62 BAW62 BZX79-C4V3 BZX79-C4V3 BZV85-C5V6 BZV85-C5V6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	V 1110 V 1111 V 1112 V 1151 V 1151 V 1152	BF256A BC559B BAW62 BC337 BC337	PEL PEL PEL PEL PEL	5322 130 44418 4822 130 44358 4822 130 30613 4822 130 40855 4822 130 40855
	V 1153	BT139-600	PEL	5322 130 24079
	V 1154	BFW13	PEL	5322 130 40516
	V 1201	BF256B	PEL	5322 130 44744
	V 1202	BFW13	PEL	5322 130 40516
	V 1203	BC337	PEL	4822 130 40855
	V 1204	BC337	PEL	4822 130 40855
	V 1205	BC337	PEL	4822 130 40855
	V 1206	BC549C	PEL	4822 130 44246
	V 1207	BC549C	PEL	4822 130 44246
	V 1208	BAW62	PEL	4822 130 30613
	V 1209	BAW62	PEL	4822 130 30613
	V 1210	BAW62	PEL	4822 130 30613
	V 1301	BSV80	PEL	5322 130 34044
	V 1303	BF256B	PEL	5322 130 44744
	V 1304	BSV80	PEL	5322 130 34044
	V 1401	BAS45	PEL	5322 130 32256
	V 1402	BAS45	PEL	5322 130 32256
	V 1403	BF256B	PEL	5322 130 44744
	V 1404	BAW62	PEL	4822 130 30613
	V 1405	ON528	PEL	5322 130 44405
	V 1406	BAW62	PEL	4822 130 30613
	V 1407	BF256B	PEL	5322 130 44744
	V 1408	BAW62	PEL	4822 130 30613
	V 1409	BAW62	PEL	4822 130 30613
	V 1451	BAW62	PEL	4822 130 30613
*	5 V 1452	ZENER SPEC.	PEL	5322 130 80211
	V 1453	BAW62	PEL	4822 130 30613
	V 1501	BC547B	PEL	4822 130 40959
	V 1502	BC547B	PEL	4822 130 40959
	V 1503	BAX12 DO-35	PEL	5322 130 34605
	V 1504 V 1505 V 1506 V 1507 V 1508	BAX12 DO-35 BAX12 DO-35 BAX12 DO-35 BAX12 DO-35 BAX12 DO-35 BAX12 DO-35	PEL PEL PEL	5322 130 34605 5322 130 34605 5322 130 34605 5322 130 34605 5322 130 34605 5322 130 34605
	V 1509 V 1510 V 1531 V 1532 V 1601	BAX12 DO-35 BAX12 DO-35 BAW62 BAW62 BYW54		5322 130 34605 5322 130 34605 4822 130 30613 4822 130 30613 5322 130 34919
	V 1602 V 1611 V 1612 V 1613 V 1614	BYW54 BAX18 BAX18 BAX18 BAX18 BAX18	PEL PEL PEL PEL PEL	5322 130 34919 4822 130 34121 4822 130 34121 4822 130 34121 4822 130 34121 4822 130 34121
	V 1615	BAX18	PEL	4822 130 34121
	V 1616	BZX79-C3V3	PEL	5322 130 31504
	V 1617	BAX18	PEL	4822 130 34121
	V 1618	BZV46-C1V5	PEL	5322 130 34865
	V 1619	BAX18	PEL	4822 130 34121

posno.	description		order	ing	no.
V 1620 V 1621 V 1622	BAX18 BAX18 BZX79-B3V9	PEL PEL	4822 4822 4822	130	34121 34121 31981
V 1701 V 1702 V 1703	BAW62 BAW62 BZX79-B3V9	PEL PEL PEL	4822 4822 4822	$130 \\ 130 \\ 130 \\ 130$	30613 30613 31981
V 1706 V 1707 V 1801 V 1802 V 1803	BC547B BAW62 BC559B BAW62 BC547B	PEL PEL PEL PEL PEL		130 130 130	40959 30613 44358 30613 40959
V 2101 V 2102	BZV46-C1V5 BC547B	PEL PEL	5322 4822		34865 40959

8.2.4	Integra	ted circuits	
	posno.		ordering no.
*11	D 1301	0Q0068A	5322 209 81884
*8		DEVICE SPEC. (OQO301) HEF4051BD PEL HEF4066BD PEL OQ 0300A PCF8574P PEL	532220911127482220910262532220910357532220911126532220910883
*14 *14	D 1531 D 1701 D 1701 D 1702 D 1702 D 1703 D 1703	SN74LS373 T.I 74HC373 EPROM PM2534 *14	5322 209 10883 4822 209 81338 4822 209 10248 5322 209 11128 5322 209 73932 5322 209 86062 5322 209 11366 5322 209 50551 (id. 2583.) 5322 209 50712 (id. 2590.)
*9 *9 *8	D 1705 D 1705 D 1801 D 1802	OQ 0300A HEF4528BD PEL	5322 209 50644 (PM2534 + PM2535) 5322 209 11126 4822 209 10277
	D 1901 D 1902 D 1902 D 1903	SA1045 MAF8441P/T008 PCF84C41 SN74LS02N T.I	5322 209 83269 5322 209 11131 5322 209 62359 5322 209 85312
	 D 1904 D 1905 D 1906 D 2101 D 2201 	SN74LSO5N T.I SN75160AN T.I SN75161AN T.I PCF8576T PEL PCF8574P PEL	532220984994532220981807532220981842532220911129532220910883
	N 1101 N 1201 N 1401 N 1402 N 1403 N 1404	LTC1052CN8 L.T UA308ATC FSC LF356N N.S NE5532P T.I LM311N N.S DAC-08EP PMI	532220983378532220983377532220986422532220981919532220985503532220983154
	N 1405 N 1406 N 1531 N 1601 N 1611	UA308ATC FSC UA308ATC FSC LM358N N.S UA7805UC FSC LM78L05ACZ N.S	532220983377532220983377482220981472532220984841532220980903
	N 1612 N 1613 N 1614 N 1801	LM78L05ACZ N.S LM337T N.S LM79L05ACZ N.S TL7705ACP T.I	5322 209 80903 5322 209 81236 5322 209 86434 4822 209 82386
	H 1801 H 1803 H 1804 H 1805	CNX36 PEL CNX36 PEL CNX36 PEL CNX36 PEL	5322 130 90097 5322 130 90097 5322 130 90097 5322 130 90097 5322 130 90097
	Н 1807	PS20-01-0	5322 280 10148

8-	1	1
----	---	---

8.2.5	Miscell	aneous	
	posno.	description	ordering no.
	G 1601	3 V 1,2 Lithium batt 17X33	5322 138 10223
	G 1701 G 1901	UNIT 12000 KHZ 6000,000KHZ	5322 242 71226 4822 242 70392
	K 0002 K 1101 K 1102 K 1151 K 1201 K 1202 K 1203 K 1301 K 1302	5 V. 6VDC DIPS 5 V. 5VDC 1A 5 V. 5VDC 1A	532228020162532228160162532228020163532228020339532228020122532228020161532228020339532228020339532228020161532228020161532228020339
	K 1303 L 0001 L 0002	5 V. H F CHOKE 3B H F CHOKE 3B	5322 280 20339 5322 158 10052 5322 158 10052
	X 0001	TRIGGER INPUT	4822 267 14027
	X 1901 X 1902 X 1903	MAINS CONNECTOR	532226530406532226754107532226750594532226760162532226540485532226540486
	G 1401 G 1401	(ADC - 50 Hz)	532224270362532224270392
*4	т 1601	Mains transformer	5322 148 60189

9.

CIRCUIT DIAGRAMS AND PRINTED CIRCUIT BOARDS LAY-OUTS

Figure 9.1 Power supply

Figure 9.2 Display pcb, component side

ST4801 860305

Figure 9.3 Display pcb, solder side

Figure 9.4 Display pcb, circuit diagram

Figure 9.5 Main pcb, analog part circuit diagram

Figure 9.6 Main peb, digital part circuit diagram

Figure 9.7 Main pcb version 4022 325 8051.2 additional components

Figure 9.8 Main pcb version 4022 325 8051.2, component side

ST4736 900126

Figure 9.9 Main pcb version 4022 325 8051.2, solder side

Figure 9.10 Main pcb version 4022 325 8051.3, component side

Figure 9.11 Main pcb version 4022 325 8051.3, solder side

ST5741 900207

Figure 9-12 Main pcb parts location (version 4022 325 8051.3, 41894almost equal to version 4022 325 8051.2)

10. GLOSSARY OF TERMS

A0-A14	Address lines
ALE	Address Latch Enable
ATACK	Attention acknowledge
ATN	Attention
ATNR	Attention received
CAL	Calibrate
CFI	Crest factor indication
D0-D7	Data lines
DAV	Data valid
DAVS	Data valid send
ENINI	Enable I ² C transport
	Enable interrupt
ENINT EOI	End or identity
EOIS	End or identity send
EXINT	External interrupt
IECINT	IEC interrupt
IFC	Interface clear
IFCR	Interface clear received
INTK	Interrupt keyboard
NDAC	No data accepted
NRFD	Not ready for data
OL	Overload (on display 🕇)
PSEN	Program store enable
RxD	Receive data
RDYSYS	Ready System 21
RD	Read data
REC	Receive
REF+	Positive reference
REF-	Negative reference
REN	Remote enable
RENR	Remote received
RESET	Reset
RESSYS	Reset System 21
RFDS	Ready for data send
SCL	Serial clock
SDA	Serial data
SRQ	Service request
TXD	Transmit data
ТА	Talker active
TRISYS	Trigger System 21
WDRES	Watchdog reset
WR	Write

MODIFICATIONS

11.1 Hardware modifications

Modifications described in this manual are indicated on the relevant place in this documentation by a mark *x or

mark the number (x) corresponds to the modification number described below

Printed circuit board versions

For some modifications reference is made to the printed circuit board version. This number is placed on the left front edge of the p.c.b. component side. It becomes visible when you remove the front assembly, refer to section 4.4.

The following pcb versions are used:

4022 325 8051.2	First pcb version delivered. Used in the: PM2534 up to serial number DY0102166 PM2535 up to serial number DY0101370
4022 325 8051.3	Modifications in the previous pcb are

- incorporated in the print lay-out. Used in present deliveries of the PM2534 and PM2535.
- 4022 325 8051.4 Minor modifications; positioning of IEEE-bus connector X1902 improved. Used in future deliveries of the PM2534 and PM2535.

Modifications

1. Problem: non-linearity

Cause: deviation in the ADC

Remedy: additional ADC adjustment

Action: in case the meter shows a non-linear behaviour, you must adjust the DEAD BAND ZERO, as described in section 5.2, part A-2 (page 5.4). The adjustment can be carried out in all instruments. In old instruments no solder pins for R1424 may be provided.

2.	Problem:	reference	numbers	of	the	reference	voltage
		adjustment	: wires r	not	indi	cated.	

Remedy: drawings are updated.

3. Problem: instability in the Vac ranges.

Cause: interference susceptibility of C1407.

Remedy: C1407 must be mounted with the marking (bar) at the correct side.

- Action: Check the mounting position of C1407 if the instrument shows instability on the Vac ranges (see MAIN pcb lay-out).
- 4. Problem: instability in the 300 mV dc range, speed 4

Cause: introduction of a new, VDE approved, mains transformer (T1601).

- Remedy: the screen (pin 9) of the transformer is disconnected from the guard and connected to the zero of the in-guard supply (pin 11 of the transformer).
- Action: if you replace an old transformer T1601 by a new one, you must:
 - cut the trace between T1601:9 and test pin G (uard) at the component side of the main pcb (version 4022 325 80512)
 interconnect pins 9 and 11 of T1601 at the conductor side

Old transformers are marked with number 4022 369 7063x; new transformers with 4022 369 7100x. The x is the version number. Transformers delivered by Concern Service are of the new type. For ordering code see PARTS LIST 8.2.5.

- 5. Problem: the Vdc ranges are out of specification within the re-calibration period.
 - Cause: long term drift of the ADC reference zener diode V1452.
 - Remedy: the diodes are aged before use; pre-aged diodes are marked with a black bar in the axial direction.

Introduction: Aged diodes are used in the:

PM2534, from DY0101520 onwards PM2535, from DY0100908 onwards

Action:	if an involved instrument goes out of its
	specification within the re-calibration
	period, you must replace V1452 by an aged
	type (marked with a black bar). See PARTS
	LIST 8.2.3. for the ordering code.

- 6. Concerns: test ROM D1704
 - Modification: the test ROM socket will be omitted - a 256 K instead of a 64 K EPROM is used for the test programs. The test software has not been changed!
 - Reason: socket not required - as the socket is omitted, the test ROM must be fitted in the firmware EPROM socket. If the firmware EPROM is a 256 K type (PM2535 and later versions of the PM2534, see modification 7), a 64 K test ROM can not be used. The 256 K test ROM can be used in all instruments!
 - Action: order a new test ROM 5322 694 54039; the 256 K type will be delivered. If you have already a 64 K test ROM, you can load its contents into a 27C256 EPROM. In this case it must be loaded twice, the first time starting at address 00000 (start address when A14 is low), the second time starting at address 04000 (start address when A14 is high, PM2534 old versions). You can use the old (64 K) testrom in the PM2534 if it is provided with a 128 K firmware EPROM: - in the firmware EPROM socket: S1702 in
 - position Normal Operation
 - in the test rom socket (D1704), if provided: S1702 in Test Operation

- 7. Modification: the PM2534 firmware is loaded in a 256 K EPROM (was a 128 K EPROM). As a consequence the print has been modified as follows: address line A14 of the EPROM (D1703:27) is disconnected from the +5 V supply (+Vs) and then connected to A14 of the μ P (D1701:27).
 - Reason: In the PM2535 also a 256 K EPROM is used.

Introduction: the 256 K EPROM is introduced in the:

PM2534 from DY0102160 onwards, with software version S04 PM2535 in all instruments

- Action: if you want to replace a 128 K firmware EPROM of a PM2534 by a 256 K EPROM (for a software update to S04 or later), you must: - remove the socket for D1703 carefully - cut the trace between D1703:27 and
 - D1703:28 (component side of main p.c.b. 4022 325 80512)
 - fit the socket
 - interconnect D1703:27 and D1701:27 at the solder side of main pcb 4022 325 80512.
 If you order a firmware EPROM you will receive the latest version. For ordering codes see PARTS LIST 8.2.4, page 8-10.
- 8. Problem: Instrument "hang-up"
 - Cause: The interference immunity is insufficient. The meter is sensitive to voltage spikes.

Remedy:

 a new version of the OQ0300, version 4, is installed.

- 2. the I'C bus in-guard/out-guard isolation circuit has been modified:
 - H1802, C1513, R1518 and R1822 omitted
 - pins 4 (emitter) and 5 (collector) of optocouplers H1803, H1804 and H1805 are interconnected

9.

3. the GUARD terminal is connected to the instrument guard via a 1 k Ω resistor R1604 in one of the following ways: 1) according to the figure below FRONT BLUE GUARD LEAD MAIN PCB MOUNTING PIN GUARD GUARD LEAD TERMINAL ST5262 2) the guard track to TP1006 is cut. A 1 kn resistor is soldered across the cut. Introduction: Modification 1 is introduced in the: PM2534 from DY0101620 onwards PM2535 from DY0100961 onwards Modifications 2 + 3 are introduced in the: PM2534 from DY0101808 onwards PM2535 from DY0101061 onwards Action: 1. Replace D1501 and D1801 with version 4 types if old types are installed. Concern Service delivers the new types. For ordering codes see page 8-10. Remove H1802, C1513, R1518, R1822 - Interconnect pins 4 and 5 of H1803, of H1804 and of H1805 3. Cut the track between TP1006 and the big solder spot at the other end of this track (see Main pcb 4022 325 80512, solder side). Solder a 1 k Ω resistor (4822 116 51235) across the cut. Modification: In the PM2534 the 2K x 8 RAM D1705 has been replaced with a 8K x 8 RAM. The socket for D1705 is omitted. same RAM for the PM2534 and the PM2535 Reason: use the correct type for replacement. Action: 10. NOT USED.

- 11. Problem: deviation of the 0 Vac indication
 - Cause: the selection procedure of the OQ 0068 RMS converter was not carried out correctly.
 - Remedy: the OQ 0068 is selected in the correct way.

Introduction: Correct OQ 0068 IC's are used in:

PM2534, from DY0102521 onwards PM2535, from DY0101612 onwards

- Action: if an involved instrument shows a deviation of zero on the Vac ranges with the input shorted, you must replace D1301. OQ 0068 deliveries from Concern Service are correct and are marked with a paint dot. For ordering see PARTS LIST 8.2.4, p 8-10.
- 12. NOT USED
- 13. Modification: for C1902 and C1903 other capacitance values are used: 5p6 instead of 33pF.
 R1905 is omitted
 another type is used for IEEE bus controller D1902: PCF84C41 instead of MAF8441
 - Reason: to fulfill the demands of IEEE488-2 and to limit the power consumption.
 - Introduction: PM2534 from DY0103168 onwards PM2535 from DY0102131 onwards
 - Action: if you replace D1902 type MAF 8441 with a PCF 84C41, you must also replace C1902 and C1903 by 5p6 capacitors, and remove R1905. For ordering codes see PARTS LIST 8.2.1 (page 8-4) and 8.2.4 (page 8-10).
- - Reason: to limit the power consumption.

Introduction: PM2534 from DY0103168 onwards PM2535 from DY0102131 onwards

Action: if a RS232 interface must be installed, you must carry out this modification, in combination with modification 13. For ordering codes see page 8-10.

11.2 SOFTWARE MODIFICATIONS.

Software modifications are indicated on the relevant place in the documentation by modification number 50

v.	Introduced at ser.no	PROM id. 4022 320	Check sum	Remarks
S01	DY0100611	25834	-	128 K EPROM; install a later version!
S02	DY0100631	25835	F6EE	128 K EPROM
S03	DY0101798	25836	FC34	128 K EPROM
S04	DY0102166	25837	7608	256 K EPROM; see "11.1 HARDWARE MODIFICATIONS, 7"

Software versions PM2534

Software versions PM2535

v.	Introduced at ser.no	PROM id. 4022 320	Check sum	Remarks
S01	none			
S02	DY0100600	25903	B14E	256 K EPROM
S03	DY0101061	25904	A826	256 K EPROM
S04	DY0101370	25905	6C14	256 K EPROM

Modifications S02 ---> S03

Nr. Concerns Description

1 2534-2535 processing of the ADC DEAD BAND ZERO adjustment is improved Modifications S03 ---> S04

The following errors in S03 have been corrected and improvements are introduced:

- Nr. Concerns Error in S02/S03 improvement in S04
- 1 2534 "return to local" procedure must be: - press CHECK (rtl 0 on display) - press 1 (rtl 1 on display) - press END ---> meter returns to local In S03 the meter also returns to local when rtl 0 is displayed (1 not pressed) and then END is pressed.
- 2 2534 the display does not always indicate "TALK ONLY" when the talk only mode is selected via the keyboard. However this has been improved, it can still happen in S04.
- 3 2534-2535 if NULL is pressed (300 mV dc) when the FILTER is on, the displayed value is not 000.0000 mV (at a stable input signal).
- 4 2534 in the internal trigger mode is the BUSY bit of the status byte sometimes erroneously "0"
- 5 2534-2535 after a device clear in the internal trigger mode must the BUSY bit be "1"; this was not correct.
- 6 2534-2535 SRQ (service request) generation when output data is available is not reliable. In SO4 this still can cause problems in internal trigger mode, speed 4, display off, help functions off.
- 7 2534 the IEEE interface is not in "lockout" after a LLO (Local Lock Out) command if the meter is not in the remote mode
- 8 2534 if NULL is pressed (300 mV dc), the first value should be displayed after approx. 3 seconds; it must be 000.0000 mV (like in the PM2535). This was not correct.
- 9 2534 PM2534 in remote, keyboard trigger (TRG K); when output data is asked after changing the setting, the instrument sends "999.9999+E9". This is not correct, the instrument may not send anything without a trigger command.
- 10 2534 behaviour of the PM2534 after a trigger via the BNC plug at the rear, during a measurement, is different from the PM2535. Triggers during a measurement must be ignored.

- 11 2434-2435 via the interface, the following non existing settings can be programmed: - ranges 30 MΩ and 300 MΩ in Ohm-4w (PM2534) - range 3 MΩ, speed 4
- 12 2534-2535 at single trigger or delay on, an internal digital filter was switched on; as a result, previous measurements influenced the actual measurement. With the new software the displayed value is the real measured value after the trigger or delay.
- 13 2534 software version was not displayed during the internal tests (refer to page 6-12)
- 14 2534 in speed 1 it lasts about 3 seconds before the real measurement result becomes available. After about 0.5 seconds however, a so called "partial result" is given as an pre-indication of the measured value. In SINGLE TRIGGER mode this unwanted, but in software version S02 and S03 it occurs after changing the range or function.
- 15 2534 the instrument leaves the TALK ONLY mode on pressing: CHECK (displays t.ONLY 0) --> END (so without pressing 1). This must be: CHECK (t.ONLY 0) --> 1 (t.ONLY 1) --> END
- 16 2534 erroneously an ERROR indication can be given in speed 1 (e.g. OL) or in the CAL mode.
- 17 2534 the command TXT xxxxxx (display text) via the IEEE bus is not always carried out correctly.
- 18 2534 during the CAL mode it is possible to select AUTO RANGING via the interface. This is impossible in S04.
- 19 2534-2535 an erroneous calibration value in a particular function/range, causes a N C indication (not calibrated) in another range/function.
- 20 2534-2535 S04 processes input data for SYSTEM21 faster
- 21 2534 if a dump string containing CAL OFF, is sent to the meter, the STATUS byte reports erroneously a program failure.
- 22 2534-2535 different measurement results for speed 1 and speed 2 (a few counts)

- 23 2534-2535 S04 is better prepared for use of the PM2534 with an optional RS232 interface:
 - faster I/O handling via optional interface; slows down the IEEE interface!
 - command EMO is implemented to enable output of measurement data
 - for output data to printer, the meter must be in TALK ONLY mode.
- 24 2534-2535 the execution of long programming strings (over 30 characters) is improved in S04: when a program string is sent, it is interpreted after the last character has been received (was the 30th character). E.g. OUT_N,6 eoi. If the comma (,) is the 30th character, in S03 the command is interpreted as "only numeral results must be output". In S04 it is interpreted as "only 6 numeral results must be output".
- 25 2535 lower case characters in the argument of program data were not always allowed (e.g. OUT s). In S04 they are allowed.
- 26 2535 in the measurement data output string, the LIMIT EXCEEDED indication L was not given. In S04 an L is given on the 6th position.
- 26 2535 if the meter is made TALK ONLY in speed 4, the keyboard is locked.
- 27 2535 erroneous display indication of ° (degree), m (milli), k (kilo), M (Mega) in the modes AX+B, dB, % and ZERO (in an activated help function). In S04 this has been omitted.
- 28 2535 if during reading the BURST BUFFER, the burst mode is switched off, the instrument sends rubbish. In S04 the instrument continues with sending normal measurement data.
- 29 2535 if the programming of AX+B or LIMIT via the keyboard is broken off, this resulted in an error in the status byte. In S04 it does not.
- 30 2535 like in the PM2534, in SO4 a partial result is displayed in speed 1 (see 14)
- 31 2535 after FILTER ON or OFF, the MIN/MAX buffers are cleared in S04.
- 32 2535 in the error output string 999.9+E09 (at overload), the position of the + and the E must be interchanged. S04 outputs 999.9E+09.

33	2535	the ANALOG OUTPUT interface does not function with SO2 and SO3.
34	2535	the only allowed argument type for the commands DMP, MIN, MAX and TST is a question mark (?). In SO2 and SO3 there was no check on the argument types.
35	2534-2535	<pre>remote/local protocol for output data is for S04 implemented as follows: - control via IEEE controller: set multimeter addressable (tONLY 0) - IEEE listen only printer connected: set multimeter talk only (tONLY 1), remove other interface options. - analog output option: set multimeter tONLY 0 - RS232 printer connected: set multimeter talk only (tONLY 1) - control via RS232 controller: set multimeter addressable (tONLY 0), remote mode (<esc>2).</esc></pre>

Errors in SO2, SO3 and SO4 of the PM2534 and PM2535

1. PM2534 and PM2535.

The following commands in combination with the listed selected settings will cause a "program failure" in the status byte. The commands will be correctly executed.

Command Settings (as returned on DMP command) MSP 1 (VDC or RTW or RFW) + CAL ON (IDC or VAC or IAC or TDC) + CAL ON MSP 2 (VDC or IDC or RTW or RFW or TDC) + FIL OFF CAL ON FIL ON (VAC or IAC) + CAL ON CAL ON or MSP 4 or not VDC 300 mV or NULL OFF/ON SCL ON or DBM ON or PRC ON or ZER ON or BUR ON or SEQ ON SCL OFF[,aaa,bbb] CAL ON DBM OFF[,rrr] CAL ON PRC OFF[,rrr] CAL ON ZER OFF[, rrr] CAL ON BUR OFF[,nnn] CAL ON

2. PM2535

After the command SEQ ON in the calibration mode, the PM2535 recalls a its stored settings, even when these settings are not allowed in the calibration mode.

3. PM2534

If in the calibration mode, the PM2534 does not give a program error in the status byte after sending the command FNC TDC via the interface. The command will be executed (°C selected), but the PM2534 does not measure.

Algeria

Bureau de Liaison Phillps 24 rue Bougainville El Mouradia, Alger Tel: 60 14 05 TLX: 62221

Antilles

Philips Antillana N.V. (For Philips products) Schottegatweg Oost 146 PO Box 3523 Willemstad, Curacao Tel: 599-9-615277 Fax: 599-9-612772 TLX: 1047 Tel: 599-9-414071/74*

Argentina

Phillps Argentina S.A. (For Philips products) Casilla Correo 3479 Vedia 3892 1430 Buenos Aires Tel: 54-1-5414106/5417141 Fax: 54-1-7869818 Tel: 54-1-5422411/5422451* TLX: 21359/21243

Coasin S.A.

(For Fluke products) Virrey del Pino 4071 DEP E-1 1430 CAP FED Buenos Aires, Argentina Tel: (54) (1) 552-5248 TLX: (390) 22284 COASN AR

Australia/New Zealand Philips Scientific & Industrial PTY Ltd. Test & Measurement Dept. NZ Head Office 2 Wagner Place PO Box 4021 Auckland 3 New Zealand Tel: 09-894160 Fax: 09-862728 TI X NZ 2395

Australla Head Office Philips Scientific & Industrial PTY Ltd. Test & Measurement Dept. Centrecourt 25-27 Paul Street North Ryde Sydney New South Wales 2113 Tel: 02-888 0416 Tel: 02-888 8222* Fax: 02-888 0440 TLX: AA 20165 philind ausnrsi

Philips Scientific & Industrial PTY Ltd. Test & Measurement 23 Lakeside Drive East Burwood Melbourne Victoria 3151 Tel: 03-235 3666 Fax: 03-235 3618

Philips ScientIflc & Industrial PTY Ltd. Test & Measurement 348 Torrens Road Croyden Adelaide South Australia 5008 Tel: 08-3482888 Fax: 08-3482813

Philips Scientific & Industrial PTY Ltd. Test & Measurement 299 Montagne Road West End Brisbane Queensland 4101 Tel: 07-8440191 Fax: 07-8448537

*Service Center

Philips SclentIflc & Industrial PTY Ltd. Test & Measurement 1 Frederick Street

Belmont Perth West Australia 6104 Tel: 09-277-4199 Fax: 09-277-1202

Austria Oesterreichlsche Philips Industrie GmbH Geschaftsbereich I & E Marktbereich Test und Messgeraten Triesterstrasse 64 1101 Wien Tel: 0222/60101 ext. 1772 Fax: 0222-6272165 TLX: 131670

Oesterrelchische Philips* Industrie GmbH Geschaftsbereich I & E Technischer Kundendienst Triesterstrasse 64 1101 Wien Tel: 0222-60101 ext. 818

Bahrain Messrs. Mohamed Fakhroo & Bros PO Box 439 Bahrain Tel: 973-253529 Fax: 973-275996 TLX: 8679 alfaro bn

Bangladesh Philips Bangladesh Ltd. (For Philips products) PO Box 62, Ramna 16/17 Kawaran Bazar C/A Dhaka Tel: 325081-5 Tel: 234280*

Motherland Corporation

TLX: 65668

(For Fluke products) 24 Hatkhola Road. Tikatuli Dacca-3, Bangladesh Tel: 257249 TLX: (950) 642022 PCO BJ

Belalum Philips Professional Systems S.A. Test & Measurement Department Tweestationstraat 80 1070 Brussel Tel: 02-525 6692 Tel: 02-525 6694' Fax: 02-230-2856* yhyg Fax: 02-525 6483

TLX: 61511 belbrms

Brazil ATP Hi-Tek Electronica Ltda. Al. Amazonas 422, Alphaville 06400, Barueri Sao Paulo, Brazil Tel: (55) (11) 421-5477 TLX: (391) 1171413 HITK BR

ATP/HI-Tek Electronica Ltda. Ave. Henrique Valadares, 23-4 Andar-Sala 401 20231, Rio de Janeiro, RJ Brazil Tel: (55) (21) 252-1297

Brunei

Brunei (vla Singapore) (For Philips products) Philips Project Development (S) PTY Ltd. Lorong 1, Toa Payoh Singapore 1231 PO Box 340 Tao Payoh C.P.O. Tel: 65-3502000 TLX: philips rs/21375

Rank O'Connor's, 5nd Bhd (For Fluke products) No. 8 Block D. Sufri Shophouse Complex Mile 1 Jalan Tutong Bandar Seri Begawan Negara Brunei Darussalam Tel: (673) (2) 23109 or 23557 TLX: (799) BU 2265 RANKOC

Canada

Fluke Electronics Canada Inc. 400 Britannia Rd. East Unit #1 Mississauga, Ontario L4Z 1X9 Canada Tel: (416) 890-7600 Fax: (416) 890-6866

Fluke Electronics Canada Inc. 1690 Woodward Drive

Suite 216 Ottawa, Ontario

K2C 3R8 Canada Tel: (613) 723-9453 Fax: (613) 723-9458

Fluke Electronica Canada Inc.

1255 Trans Canada Highway Suite 120 Dorval, Quebec H9P 2V4, Canada Tel: (514) 685-0022 Fax: (514) 685-0039

Fluke Electronics Canada Inc. 101, 1144 - 29th Ave, N.E. Calgary, Alberta T2E 7P1 Canada Tel: (403) 291-5215 Fax: (403) 291-5219

Chile

Philips Chilena S.A. de Product Electr. (For Philips products) Avenida Santa Maria 0760 Casilla 2678 Santiago de Chile Tel: 56-2-770038 Fax: 56-2-776730 TXL: 240239

Itronsa

(For Fluke products) Casilla 16228 Santiago, Chile Tel: (56) (2) 232-4308 Fax: (56) 2-2322694 TLX: (332) 346351

China, Peoples Republic (via Hong Kong) Philips Hong Kong Ltd. (For Philips products) 29 F Hopewell Centre 17 Kennedy Road G.P.O. Box 2108 Hong Kong Tel: 852-5-8215888 Fax: 852-5-8655408 TLX: 73660 philh hx

China, People's Republic of Fluke International Corp. PO Box 9085 Beijing People's Republic of China Tel: (86) (1) 512-3435 Fax: (86) 1-512-3437

TLX: (716) 222529 FLUKE CN

Instrimpex - Fluke Service Center (For Fluke products)

Scite Tower Room 2101 22 Jiam Guo Man Wal Dajie PO Box 9085 Beijing People's Republic of China Tel: 86 01 512-3436

Colombia Industrias Philips de Columbia S.A. (For Philips products) Apartado Aereo 4282 Calle 13 No. 51-39 Bogota Tel: 57 1-2600600 Fax: 57-1-2610139 TLX: philcolon 44776

Sistemas E Instrumentation, Ltda.

(For Fluke products) Carrera 21, No. 39A - 21, Of. 101 Ap. Aereo 29583 Bogota, Colombia Tel: (57) 232-4532 Fax: (57) 1-287-2248

Costa Rica

Electrocom Apartado 7742 San Jose Costa Rica Tel: 53-0083 n. TLX; 3050 elecorn cr

Cyprus D. Ouzounian M. Soultanlan & Co. Ltd. PO Box 1775 45, Evagoras Avenue Nicosia Tel: 357-2-442220 Fax: 357-2-459885 TLX: 2315 cy automobil

Denmark Philips A/S Test &

Measurement Prags Boulevard 80 DK 2300 Kobenhavn S Tel: (31) 572222 Fax: (31) 570044 TLX: 31201

Egypt

Philips Egypt Branch of Philips Middle East B.V. 10, Abdel Rahman el Rafie st. PO Box 242 Dokki, Cairo Tel: 20-2-3490922 Fax: 20-2-3492142 TLX: 22816 phegy un

Ethiopia

Ras Abebe Areguay Avenue PO Box 2565 Addis Ababa Tel: 010-231-1-518300 Fax: 251-1-52845 TLX: 021319 phaddis

Finland

OY Philips AB Sinikalliontie 3 PO Box 75 02631 Espoo Tel: 0-5026371 Fax: 0-529558 TLX: 1248 1150 Phil Tel: 0-50261* Fax: 0-529570* TLX: 1248 1152 phil*

OY Phillps AB*

Kaivokatu 8 PO Box 255 00101 Helsinki 10 Tel: 0-52571

Instrumentarium Elektronika* PO Box 64 Vitikka 1 02631 Espoo 63 Tel: 0-5281

Sales and Service all over the world

France S.A. Philips Industrielle et Commerciale **Division Science et Industrie** 105 Rue de Paris, BP 62 93002 Bobigny Cedex Tel: (1) 49428080 Tel: (1) 49428073* Fax: (1) 49428100 TLX: 235546

Germany Philips GmbH - EWI Head Office Miramstrasse 87 D-3500 Kassel Tel: 0561-501466 Fax: 0561-501590 TLX: 997070

Philips GmbH - EWI Martin Luther Strasse 3-7 D 1000 Berlin 30 Tel: 030-21006364 TLX: 185532

Philips GmbH - EWI Wieselweg 5 D 4300 Essen 11 Tel: 0201-3610-245 Fax: 0201-3610265 TLX: 857-226

Philips GmbH - EWI Th. Heuss Allee 106 D 6000 Frankfurt 90 Tel: 069-794093-31 Fax: 069-794093-91 TLX: 413611

Philips GmbH - EWI Meiendorferstrasse 205 D 2000 Hamburg 73 Tel: 040-6797-278 Tel: 040-6797471 TLX: 2116625

Philips GmbH - EWI Ikarusallee 1A D 3000 Hannover 1 Tel: 0511-6786-120 TLX: 923950

Philips GmbH - EWI Oskar Messterstrasse 18 (For Fluke products) D 8045 Ismaning Tel: 089-9605-121 TLX: 21701380 phd, memo = de73txm

Philips GmbH - EWI Kilianstrasse 142 D 8500 Nuernberg 12 Tel: 0911-3603293 TLX: 21701 380 phd, memo = de73txn

Philips GmbH - EWI Hoehenstrasse 21 D 7012 Fellbach Tel: 0711-5204-121 Tel: 0711-5204150* Fax: 0711-5204136 TLX: 7254669

Great Britain Phillps Scientific Test & Measurement Colonial Way Watford Herts WD2 4TT Tel: 0923-240511 Fax: 0923-225067 TLX: 934583 phitmd

Philips Scientific Test & Measurement Yorkstreet Cambridge CB1 2PX Tel: 0223-358866 Fax: 0223-321764 TLX: 817331 phsc cam g

Greece Philips S.A. Hellénique PO Box 3153 15, 25th March Street 15 GR 17778 Tavros/Athens Tel: 30-1-4894911 Fax: 30-1-4815180 TLX: 241566 PHAT GR

Hong Kong Phillps Hong Kong Ltd. (For Philips products) 29/F Hopewell Centre 17 Kennedy Road G.P.O. Box 2108 Hong Kong Tel: 852-5-8215888 Fax: 852-5-8655408 TLX: 73660 philh hx

Schmidt & Co (H.K.), Ltd. (For Fluke products) 18th Floor, Great Eagle Centre 23 Harbour Road Wanchai, Hong Kong Tel: (852) (5) 8330-222 Fax: (852) 5-836-2652 TLX: (780) 74766 or 76762 SCHMC HX

Iceland* Heimellstaeki S.F. (For Philips products) Saetun 8 125 Reykjavik Tel: 1-691500 Fax: 1-691555

Semeind (for Fluke products) Brautarholt 8 125 Reykjavik Tel: 1-25833 Eax: 1-621531 TLX: 3136 samein is

India Pelco Electronics & Electricals Ltd. I&E Division (For Philips products) Band Box House 254 Dr. Annie Besant Road Bombay 400 025 Tel: 022 4930311/4930590 Fax: 022-4941698 TLX: 76049

Peico Electronics & Electricals Ltd. I&E Division (For Philips products) 7 Justice Chandra Madhab Road Calcutta 700 020 Tel: 473621

Peico Electronics & Electricals Ltd. I&E Division (For Philips products) 68, Shivaji Marg New Delhi 110 015 Tel: 530153 Tel: 533956/57* TLX: 031 3142

Peico Electronics & Electricals Ltd. **I&E Division** (For Philips products) No 3 Haddows Road Madras 600 006 Tel: 472341 TLX: 041 499

Peico Electronics & Electricals Ltd. I&E Division (For Philips products) 7311 St Mark's Road Bangalore 560 001 Tel: 579119/579164 TLX: 0845-8185

Hinditron Services Pvt., Ltd. (For Fluke products) Industry House 23-B Mahal industrial Estate Mahakali Caves Road Andherl (E) Bombay 400 093, India Tel: (91) (22) 636-4560 (91) (22) 634-8268 Fax: (91) 22-822-0197 TLX; (953) 11-79286 HIPL IN

Indonesia

P.T Daeng Brothers (For Philips products) Centre Point Building, 3rd Fl. Jalan Gatot Subroto Kav. 35/36 PO Box 41 Tebet Jakarta Tel: 62-21-5207335 Fax: 62-21-5207550 TLX: 62798 phdc ia

P.T. Lamda Triguna (For Fluke products) PO Box 6/JATJG, Jakarta 13001 Indonesia Tel: (62) (21) 819-5365 Fax: (62) 21-819-9631 TLX: (796) 63938 KA IA

Iran Philips Iran Ltd. Private Joint Stock Comp. PO Box 11365-3891 TEHRAN Tel: 98-21-674138/675158 TLX: 212545 phps in

Ireland Circuit Specialists Ltd. Unit 5, Enterprise Centre, Plassey Technology Park Castleroy, Limerick Tel: 061 330333

Italy Philips S.p.A. Sezione S & I, T & M Dept. Viale Elvezia 2 20052 Monza Tel: (039) 3635240/8/9 Fax: 039-3635309 TLX: 333343

Japan NF Circuit Design Block Co., Ltd. (For Philips products) 3-20 Tsunashima Higashi, 6 Chome, Kokokuku, Yokohama 223 Tel: (045) 452-0411 TLX: 3823-297

Japan Nihon Philips Corporation* Shuwa Shinagawa Building 26/38 Tahanawa 3-Chrome Minatu-ku Tohyo 108 Tel: 4485511

John Fluke Mfg. Co., Inc. Japan Branch (For Fluke products) Sumitomo Higashi ShinbashBldg, 1-1-11 Hamamatsucho Minato-ku, Tokyo 105, Japan Tel: (81) (3) 434-0181 Fax: (81) 3-434-0170 TLX: (781) 2424331 FLUKJPJ

Jordan Jordan Medical Supplies & Services PO Box 140415 Al Biader Amman Jordan Tel: 962-6-819929 Fax: 962-2-823556 TLX: 22161 jms jo

Kenva

Philips Kenya Ltd. Ol Kalou Road. Industrial Area PO Box 30554 Nairobi Tel: 254-2-557999 Fax: 254-2-543135 TLX: 24033

Korea, Republic of

Myoung Corporation (For Fluke products) Yeo Eui Do PO Box 14 Seoul Korea Tel: (82) (2) 784-9942 Fax: (82) 2-784-2387 TLX: MYOUNG K24283

South Korea

Philips Industries (Korea) Ltd. (For Philips products) CPO Box 3680, Philips House 260-199, Itaewon-Dong Youngsan-Ku Seoul Tel: 82-2-7970378 Fax: 82-2-7978048 TLX: philkor k 27291

Lebanon

Electronic Supplies S.A.R.L. Autostrade Dora, Hayek Bldg. PO Box 90 1388 Beyrouth Tel: 01-894243 TLX: 42950 DICI

Luxemburg Philips Luxembourg

Professional Systems S.A. Rue des Joncs 4 I-1818 Howald Tel: 496111 Fax: 400577 TLX: 60572

Malaysia Electronic Systems (Malaysia) Sdn. Bhd.

(For Philips products) Lot 51 Section 13 Jalan University Petaling Jaya - Selangor 46200 Tel: 60-3-7560112 Fax: 60-3-7560761

Mecomb Malaysia Sdn. Bhd.

(For Fluke products) PO Box 24 46700 Petaling Jaya Selangor, Malaysia Tel: (60) (3) 774-3422 Fax: (60) 3-774 3414 TLX: (784) MA37764 MECOMB

Malta

Charles A. Micallef & Co. Ltd. PO Box 527 217 St. Paul str. Valletta Tel: 356-234313/233506 TLX: 1651 mica mw

Mexico

Mexicana de Electronica Industrial S.A. (Mexel) Diagonal No. 27 Entre Calle de Eugenia Y Ave. Colonia del Valle C.P. 03100, Mexico Tel: (90) (5) 680-4323 Fax: (525) 687-8695 TLX: (383) 177 1823 MDEIME

Mexel Servicios en Computacion* Instrumentation Y Perifericos Blvd. Adolfo Lopez Mateos No. 163 Col. Mixcoac Mexico D.F. Tel: 90-5-563-5411

Sales and Service all over the world

Morocco Samtel* 2 Rue de Bapaume

Casablanca Tel: 243050

Somaclel 304 Boulevard Mohammed V Casablanca 05 Tel: 308051/52 TLX: 27021

Nepal

Bahajurana Engineering & Sales (P) Ltd. (For Philips products) Jyoti Bhawan PO Box 133 Kantipath Kathmandu Tel: 2-25134 TLX: jyoti np

Associated Enterprises (For Fluke products) GPO Box 790, Pyaphal Tole Kathmandu, Nepal Tel: 13868 TLX: (947) 2588 ASCENT NP

Netherlands Phillps Nederland B.V. Test en Meetapparaten Hoevenseweg 55A Postbus 115 5000 AC Tilburg Tel: 013-390112

Fax: 013-427528 TLX: 52683 Philips Nederland Technische Service Prof. Akt.* Hurksestraat 2C Gebouw HBR

5652 AJ Eindhoven

New Zealand Philips Scientific & Industrial PTY Ltd. Test & Measurement Dept. 2 Wagner Place PO Box 4021 Auckland 3 Tel: 09-084-160 Fax: 09-862728 TLX: N2 2395

Nigeria Associated Electronic Products (Nigeria) Ltd. KM 16. Ikorodu Road Ojota PO Box 1921 Lagos Tel: 234-1-900160/69 Tel: 234-1-932825* Fax: 234-1-615601 TLX: 21961 NG

Norway Norsk Philips AS Dept. I & E Test & Measurement Sandstuveien 70 PO Box 1 Manglerud 0612 Oslo 6 Tel: 47-2-356110 Tel: 47-2-680200* Fax: 47-2-381457 TLX: 856-71719

Oman Messrs, Mustafa Jawad Trading Co. PO Box 4918 Ruwi, Sultanate of Oman Tel: 968-709955 Fax: 968-7972 77 TLX: 3731 mujatra on

Pakistan Philips Electrical Co. of

Pakistan (Private) Ltd. (For Philips products) Philips Markaz, M.A. Jinnah Road PO Box 7101 Karachi 3 Tel: 92-21-725772/9 Fax: 92-21-726694 TLX: 2874 phpak pk

International Operations

(PAK Private), Ltd. (For Fluke products) 505 Muhammadi House I.I. Chundrigar Road PO Box 5323 Karachi 2, Pakistan Tel: (92) (21) 221127 Fax: (92) 21-2411241 TLX: (952) 24494 PIO PK

Paraguay Philips del Paraguay S.A. (For Philips products) Avenida Artigas 1519 Casilla de Correo 605 Asuncion Tel: 595-21-291924 Fax: 595-21-211662 TLX: py 215

Peru Philips Peruana S.A. Carretera Central KM 6.5 Apartado 1841 Lima 1000 Tel: 51-14-350059 Fax: 51-14-423107

Importaciones y Representaciones Electronicas S.A. (For Fluke products) Avda. Franklin D. Roosevelt 105 Lima 1. Peru Tel: (51) (14) 28-8650 TLX: (394) 25663 PE IREING

Philippines, Republic of Philips Industrial Development Inc. (For Philips products) 2246, Pasong Tamo PO Box 911 MCCPO Makati Riazal D Metro Manilla Tel: 63-2-8100161/69 Fax: 817-3474

Spark Radlo & Electronics, Corp. (For Fluke products) PO Box 610, Greenhills Metro Manila 1502 Philippines Tel: (63) (2) 775192 Fax: (63) (2) 7220313 TLX: (712) 4005 RLA PH PU

Portugal Philips Portuguesa, S.A.R.L. Division of I & E Test & Measurement Av. Eng. Duarte Pacheco 6 1009 Lisboa Codex Tel: 1-657181

Fax: 1-658013

Phillps Portuguesa* Division I & E Rua Eng Erequli de Campos 182 4100 Porto Tel: (2) 678278 TLX: 28790

Oatar Darwish Trading Company PO Box 92 Doha, Qatar Tel: 974-422781 ext. 228 Fax: 974-426378 TLX: 4298 tradar dh

Saudi Arabia Messrs. A. Rajab & A. Silsilah Head Office PO Box 203 Jeddah 21411 Tel: 966-2-6610006 Fax: 966-2-6610164-6610558 TLX: 601180 arndas sj

Messrs. A. Rajab & A. Sllsilah PO Box 260 Riyadh 11411 Tel: 966-1-4122425 Fax: 966-1-4122366 TLX: 404787 arndas sj

Messrs. A. Rajab & A. Sllsilah PO Box 587 Damman Tel: 966-3-8322596/8331870 Fax: 966-3-8271962 TLX: 601044 arndas sj

Singapore Philips Project Development (S) PTY Ltd. (For Philips products) Lorong 1, Toa Payoh Singapore 1231, PO Box 340 Toa Payoh Central Post Office Singapore 9131 Tel: 65-3502000 Fax: 65-2535873 TLX: philips rs/21375

Rank O'Connor's Pte Ltd. (For Fluke products) O'Connor House 98 Pasir Panjang Road Singapore 0511 Republic of Singapore Tel: (65) 473-7944 Fax: (65) 472-4508 TLX: (766) RS 21023 OCONSIN

South Africa South African Philips PTY Ltd. I & E Division Test & Measurement 10 Bondstreet, Randburg Johannesburg 2000 Tel: 27-11-889-3911 Fax: 27-11-889-3098/889 3191 TLX: 4-26152-sa

South African Philips PTY Ltd.* I & E Customer Support Centre 195 Mai Road, PO Box 58088 Martindale, New Ville 2092 Tel: 27-11-470-5937 Fax: 27-11-470-5166 TLX: 4-26152 SA

Spain

Philips Iberica SAE Depto Instrumentacion de Medida Poligono Industrial Zona Franca Sector C-calle F 08004 Barcelona Tel: 34-3-3361061 Fax: 34-3-3355838 TLX: 51293/59292

Philips Iberica*

Depto Instrumentacion de Medida Martinez Villergas 2 28027 Madrid Tel: 34-1-4042200 Fax: 34-1-4048603 TLX: 27710

Phillos Iberica SAE*

Jose Olabarria 6 48012 Bilbao Tel: 34-4-4313800 Fax: 34-4-432 0961 TLX: 31230

Srl Lanka Hayleys Electronicss & Engineering Ltd. (For Philips products) PO Box 70 400 Deans Road Colombo 10 Tel: 599087 Fax: 598786 TLX: 21146/21384

Computerlink Data Systems, Ltd. (For Fluke products) 68 Havelock Rd. Colombo, 5, Sri Lanka Tel: (94) (1) 502202/3 Fax: (94) 1-502203 TLX: (954) 22455 COLINK CE

Sweden Phillps Kistaindustrier AB PO Box 33 16493 Kista

Tel: 08-7031000 Fax: 08-752 0831 TLX: 17173 philkis

Svenska A.B. Philips* Div. Industrielektronik Avd, Matinstrument

11584 Stockholm Tel: 782-1800 Switzerland Phillps AG Test und Messtechnik Postfach 670

8027 Zurich Tel: 01 4882390 Fax: 01 4828595 TLX: 815780-0

Philips SA Test et Mesure Avenue du Mont Blanc 1196 Gland Tel; 022/647171

Syria Phillps Moyen-Orient S.A.R.L. Rue Fardoss 79 PO Box 2442 Damascus Tel: 218605/221650

TLX: phisyr 411203 sy Taiwan

Philips Taiwan Ltd. (For Philips products) 150, Tun Hua North Road PO Box 22978 Taipei Tel: 886-2-7120500 Fax: 886-2-7125442 TLX: 21570 philipei

Schmidt Electronics Corp.

(For Fluke products) 5th Floor, Cathay Min Sheng Commercial Building, 344 Min Sheng East Road Taipel, Taiwan R.O.C. Tel: (886) (2) 501-3468 Fax: (886) 2-502-9692 TLX: (785) 11111 SCHMIDT

Tanzania

Philips (Tanzania) Ltd. T.D.F.L. Building - 1st Floor PO Box 20104 Ohio/Upanga Rd. Dar es Salaam Tel: 29571/4 TLX: 41016

Thailand Philips Electrical Co. of Thalland Ltd. (For Philips products) 283, Silom Road PO Box 961 Bangkok 10500 Tel: 66-2-233-6330/9 TLX: 87327 philtha th

Measuretronix Ltd.

(For Fluke products) 210231 Ramkamhaeng Road Bangkok 10240 Thailand Tel: (66) (2) 375-2733 Fax: (66) 2-374-9965 TLX: (788) 82796 HUAMARK TH

Tunesia

S.T.I.E.T. 32 bis rue Ben Ghedahem Tunis Tel: 348666 TLX: 14512

Turkey

Türk Philips Ticaret A.S. Talatpasa Caddesi no. 5 PO Box 161 80640 Levent-Istanbul Tel: 90-1-1792770 Fax: 90-1-1693094 TLX: 24192 phtr tr

United Arab EmIrates Al Sanani Trading Est.

PO Box 7187 Abu Dhabi, U.A.E. Tel: 971-2-771370 Fax: 971-2-728963 TLX: 23966 Sanani em

Haris Al-Afaq Ltd.

PO Box 8141 Dubai, U.A.E. Tel: 971-4-283625 TLX: 48168 Afag em

Uruguay Cossin Uruguaya S.A. (For Fluke products) PO Box 1400 Libertad 2529 Montevideo, Uruguay Tel: (598) (2) 789015 TLX: (398) 23010 COAUR UY

Venezuela

Inds. Venezolanas Phillps S.A. (For Philips products) Av. Francisco de Miranda Urb. La Carlota Edf. Centro Empresarial Parque del Este Apartado 1167 Caracas 1010-A Tel: 58-2-203, 71111 Fax: 58-2-2391090 TLX: 25267 ivpsa vc

Cossin C.A.

(For Fluke products) Calle 9 Con Calle 4, Edifl Edinurbi Apartado de Correos NR-70.136 Los Ruices Caracas 1070-A, Venezuela Tel: (58) (2) 241-03-09 TLX: (395) 21027EMVEN VC

Yemen Arab Republic

Rashed Trading & Travel Agency Ali Abdulmugni st. PO Box 1221 Sana'a, Yemen Arab Republic Tel: 967-2-273231 TLX: 2230 abgbar ye

Zaire Philips Electronics S.A.R.L. BP 16636 Kinshasa Tel: 31693 TLX: 21078 kinshasa

Zambia

Philips Electrical Zambia Ltd. Mwenbeshi Road PO Box 31878 Lusaka Tel: 218511/218701 TLX: za 41220

Zimbabwe Philips Electrical (Pvt.) Ltd.

62 Mutare Road PO Box 994 Harare Tel: 47211/48031 Fax: 263-4-47966 TLX: 2236 For Countries not listed above:

Philips Export B.V. 1 & E Export Test & Measurement building HVW-3 PO Box 218 5600 MD Eindhoven The Netherlands Tel: +31 40 711546 Fax: +31 40 711508 TLX 35000 phtc nl

Fluke Int'l Corp. PO Box 9090 Mail Stop 206A Everett, WA 98206-9090 Tel: 206-356-5500 Fax: (206) 356-5116 TLX: 185103 FLUKE UT

U.S.A.

Alabama Huntsville 4920 Corporate Drive Suite J Huntsville, AL 35805-6202 (205) 837-0581

Arizona Phoenix 2211 S. 48th Street Suite B Tempe, AZ 85282 (602) 438-8314

Callfornia Irvine* PO Box 19676 Irvine, CA 92713-9676 16969 Von Karman Ave. Suite 100 Irvine, CA 92714 (714) 863-9031

Northern* 46610 Landing Parkway Fremont, CA 94538 (415) 651-5112

Colorado Denver' 14180 E. Evans Ave. Aurora, CO 80014 (303) 695-1000

Connecticut Hartford Glen Lochen East 41-C New London Turnpike Glastonbury, CT 06033 (203) 659-3541

Florida Altamonte Springs* 550 South Northlake Blvd. Altamonte Springs, FL 32803 (407) 331-4881

Georgia Atlanta 2700 Delk Road Suite 150 Marietta, GA 30067 (404) 953-4747

IllInois Chicago* 1150 W. Euclid Avenue Palatine, IL 60067 (708) 705-0500

Indiana Indianapolis 8777 Purdue Road Suite 101 Indianapolis, IN 46268 (317) 875-7870

Massachusetts Boston Middlesex Technology Center 900 Middlesex Tumpike Building 8 Billerica, MA 01821 (508) 663-2400

Marvland Rockville* 5640 Fishers Lane Rockville, MD 20852 (301) 770-1570

Michigan Detroit 45550 Helm Street Plymouth, MI 48170 (313) 522-9140

Minnesota

Minneapolis 1380 Corporate Center Curve Suite 113 Eagan, MN 55121 (612) 854-5526

Missouri St. Louis 11756 Borman Drive Suite 160 St. Louis, MO 63146 (314) 993-3805

New Jersey Paramus* PO Box 930 Paramus, NJ 07653-0930 West 75 Century Road Paramus, NJ 07652 (201) 262-9550

New York Rochester 4515 Culver Road Bochester, NY 14622 (716) 323-1400

North Carolina Greensboro 1310 Beaman Place Greensboro, NC 27408 (919) 273-1918

Ohio Cleveland Plaza South Three Sulte 402 7271 Engle Road Middleburg Heights, OH 44130 (216) 234-4540

Pennsylvania Philadelphia 200 Lindenwood Drive Malvern, PA 19355 (215) 647-9550

Texas Dallas* 1801 Royal Lane Suite 307 Dallas, TX 75229 (214) 869-0311

San Antonio 10417 Gulfdale San Antonio, TX 78216 (512) 340-0498

Washington Seattle* 2375 130th Ave. N.E. Suite 100 Bellevue, WA 98005 (206) 881-6966