Timer/Counter/
Analyzers

PM6680B, PM6681, PM66SIR, PM6685 & PM6685R

Programming Manual

All rights reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.
TimeView is a trademark of Pendulum Instruments AB.
FLUKE is a trademark of Fluke Corporation.
TimeView uses the SPAWNO routines by Ralf Brown to minimize
memory use while shelling to DOS and running other programs.

© Pendulum instruments AB - Sweden - 2000

[}

Table of Contents

1 Getting Started
Finding Your Way Through This Manual. . 1-2

Manual Conventions 1-3

Setting Up the Instrument 1-4

Interface Functions 1-5

2 Bus Commands for the
Benchtop User

Default settings (after *RST)........... 2-8

3 Introduction to SCPI
WhatisSCPI?. 3-2
How does SCPI Work in the Instrument? . 3-4

Program and Response Messages. 3-8
CommandTree 3-11
Parameters 3-12
Macros. ... 3-15
Status Reporting System. 3-18
ErmorReporting 3-19
Initialization and Resetting. 3-21
4 Programming Examples

Introduction 4-2

GW-Basic for National Instruments

PC-HIAceiiiiiinnn. 4-3
Settingup theinterface 4-3
1. LimitTesting 4-4
3. Frequency Profiling 4-5
4 FastSampling.................... 4-7
5.StatusReporting 4-9
6. Statistics 4-11
4822 872 20081
August 2000

i

‘C’ for National Instruments PC-ll1A

............................ 4-13
1.LimitTesting 4-14
2.REAL DataFormat 4-15
3. Frequency Profiling 4-17
4 FastSampling................... 4-19
6.Statistics, 4-21
5 Instrument Model
Introduction 5-2
Measurement Function Block 5-3
Other Subsystems 5-4
Order of Execution. 5-4
MEASurement Function 55
6 Using the Subsystems
Introduction 6-2
Calculate Subsystem. 6-3
Calibration Subsystem. 6-4
Configure Function 6-5
Format Subsystem 6-6
Time Stamp Readout Format 6-6
Input Subsystems 6-7
Measurement Function 6-9
Output Subsystem. 6-12
Sense Command Subsystems 6-14
Status Subsystem 6-15
Trigger/Arming Subsystem 6-30
7 How to Measure Fast
Introduction 7-3

Rough Trigger Subsystem Description . . . 7-4
Some Basic Commands

General Speed Improvements. 7-8
40000 measure- ments/second. 7-11
Supervisinga Process. 7-12
Speed Summary 7-17
8 Error Messages

9 Command Reference

Abort. Ceereriese st 9-3
ABORt 94
Arming Subsystem cenaen 9-5
ARM:COUNt 9-6
AARMDELay............, 9-7
AARMECOunt. 9-7
ARMLAYer2 9-8
:ARM :LAYer2 :SOURce 9-8
ARMSLOPe, 9-9
ARM:SOURce..................... 9-9
‘ARM:STOP DELay................ 8-10
‘ARM:STOP:ECOunt............... 9-10
‘ARM :STOP:SLOPe 9-11
‘ARM :STOP:SOURce 9-11
Calculate Subsystem 9-13
:CALCulate :AVERage :COUNt. 9-14
:CALCulate :AVERage :STATe........ 9-14
:CALCulate :AVERage :TYPE......... 9-15
:CALCulate :DATA?. 9-15
:CALCulate :IMMediate 9-16
:CALCulate :LIMit 9-16
:CALCulate :LIMit :FAIL?. 9-17
:CALCulate :LIMit :LOWer............ 9-17
:CALCulate :LIMit :LOWer :STATe 9-18
:CALCulate :LIMit :UPPer............ 9-18
:CALCulate :LIMjt :UPPer :STATe. 9-19
:CALCulate MATH 9-20
:CALCulate MATH 9-21
:CALCuiate :MATH :STATe. 9-21
:CALCulate :STATe................. 9-22
Calibration Subsystem......... 9-23
:CAL.ibration :INTerpolator :AUTO. S-24
Configure Function............ 9-25

:CONFigure :<Measuring Function> 9-26

:CONFigure :ARRay :<Measuring
Function>

v

Diagnostics Subsystem 9-29
:DIAGnostic:CALibration:INPut]1 |2]:HYSTger§§i
S e -
Display Subsystem 9-31
‘DISPlay ENABle 9-32
FetchFunction................ 9-33
FETCh? ... 9-34
‘FETCh:ARRay?................... 9-35
Format Subsystem 9.37
FORMat 9-38
FORMat, 9-38
‘FORMatFiXed 9-39
:FORMat :SREGister. 9-39
:FORMat :TINFormation 9-40
Initiate Subsystem. 9-41
(INITiate :CONTinuous 9-42
NITiate. 9-42
Input Subsystems 943
(INPut«[1]|2» :COUPling 9-44
(INPut«[1]]2» :ATTenuation. 9-44
ANPut :HYSTeresis. 9-45
ANPut :FlLTer 945
:!INPut :HYSTeresis AUTO 9-46
(INPut«[1]j2» :IMPedance 9-47
AINPut«[1]]2» :LEVel 9-47
ANPut .LEVel. 9-48
(INPut :LEVel AUTO. 9-49
(INPut :.LEVel -AAUTO. 9-50
INPut«[1]|]2/4» :SLOPe. 9-51
ANPut2.COMMon 9-51
Measurement Function......... 9-53
:MEASure :<Measuring Function>? 9-56
:MEASure :ARRay :<Measuring Function3?57
MEASure:MEMory<N>? 9-58
‘MEASure:MEMory?, 9-58
‘MEASure_«:DCYCle/:PDUTycycle» . ..9-59

EXPLANATIONS OF THE MEASURING

FUNCTIONS 9-59
MEASure :FREQuency?. 9-60
:MEASure :FREQuency :BURSt? 9-61
:MEASure :FREQuency :PRF?........ 9-62
MEASure :FALL :TIME?............. 9-63

:MEASure [:VOLT] :MAXimum? 9-64
:MEASure [:VOLT] :MINimum? 9-64
:MEASure :NWIDth? 9-65
‘MEASure :PWIDth? 9-65
:MEASure_«:PDUTycycle/ :DCYCle»? . . 9-66
MEASure_«:NDUTycycle»?.......... 9-66
:MEASure :PERiod? 9-67
:MEASure :PHASe? 9-67
:MEASure [:VOLT] :PTPeak? 9-68
MEASure :RISE:TIME?............. 9-68
:MEASure :TINTerval? 9-69

:MEASure :TOTalize :ACCumulated? . . . 9-70
:CONFigure :TOTalize :CONTinuous . . . 9-71

‘MEASure :TOTalize :GATed? 9-72
MEASure :TOTalize :SSTop?......... 9-72
MEASure :TOTalize :TIMed?......... 9-73
Memory Subsystem 9-75
:MEMory :DELete :MACRo 9-76
:MEMory :FREE :SENSe?............ 9-76
:MEMory :FREE :MACR0O? 9-77
‘MEMory :NSTates? 9-77
Output Subsystem 9-79
OUTPUt. 9-80
:OUTPut:SCALe................... 9-80
Read Function................ 9-81
READ? 9-82
‘READ:ARRay?.................... 9-83
Sense Command Subsystem. ... 9-85
:ACQuisition :APERture. 9-87
:ACQuisition :APERture. 9-87
:ACQuisition :HOFF: ECOunt 9-88
:ACQuisition :HOFF................. 9-88
:ACQuisition :HOFF :TIME 9-89
:ACQuisition :HOFF :MODE 9-89
:ACQuisition :RESolution. 9-90
:ACQuisition :RESolution. 9-90
‘AVERage :MODE 9-91
:‘AVERage :COUNt 9-91
‘FREQuency :RANGe :LOWer 9-92
‘AVERage :STATe. 9-92
(FUNCtion 9-93

:ROSCillator :SOURce 9-96
SDELay 9-96
:TOTalize :GATE 9-97
:'VOLTage:GATed:STATe 9-97
Status Subsystem............. 9-99
:STATus :DREGister0? 9-100
STATus :DREGister0 :ENABLe. 9-100
STATus :OPERation :CONDition? 9-101
STATus :OPERation :ENABle 9-102
STATus:OPERation? 9-103
STATus:PRESet................. 9-103
:STATus :QUEStionable :CONDition?. . 9-104
:STATus :QUEStionable? 9-105
:STATus :QUEStionable :ENABle.. 9-105
System Subsystem........... 9-107
:SYSTem :COMMunicate: GPIB: ADDRess
.............................. 9-108
SYSTem:ERRor?. 9-108
:SYSTem :PRESet 9-109
:SYSTem :SDETect. 9-109
SYSTem:SET 9-110
:SYSTem :TIME :ELAPsed? 9-110
SYSTem:TOUT 9-111
SYSTem :TOUT :TIME............. 9-111
SYSTem :UNPRotect.............. 9-112
SYSTem :VERSion?............... 9-112
Test Subsystem. cheeen 9-113
TEST:CHECK 9-114
:TEST:SElLect.................... 9-114
Trigger Subsystem 9-115
TRIGger:COUNt.................. 9-116
Common Commands 9-117
*CLS 9-118
*DMC. 9-119
*EMC. 9-120
*ESE 9-121
*ESR? ... 9-122
*GMC? 9-122
*IDN?. ... 9-123
*MC?. ... 9-123
*OPC. 9-124
*LRN? ... 9-124

KOPT? . e 9-125
*PSC . 9-126
*PMC. . 9-126
*PUD . ..ot 9-127
*RCOL .ot e 9-127
*FRMC. ..o 9-128
*RST . 9-128
#SAV . 9-129
KSRE ..o 9-130
*STB? . o 9-131
FTRG . o oot 9-131
MTST? ot 9-132
FWAD 9-132
10 Index

Vi

Chapter 1

Getting Started

Getting Started

Finding Your Way Through This Manual

You should use this Programming
Manual together with the
PM6680B/1/5 Operators Manual.
That manual contains specifications
for the counter and explanations of
the possibilities and limitations of the
different measuring functions.

Sections

The chapters in this manual are di-
vided into three sections aimed at dif-
ferent levels of reader knowledge.

The ‘General’ Section, which can be
disregarded by the users who know
the IEEE-488 and SCPI standards:

— Chapter 2 Bus Commands for the
Benchtop User gives bus com-
mands for the front panel keys.

— Chapter 3 Introduction to SCPI
explains syntax data formats, sta-
tus reporting, etc.

The Practical Section of this manual
contains:

— Chapter 4, Programming Exam-
ples, with examples of typical pro-
grams for a wide variety of appli-
cations. These programs are writ-
ten in GW-basic and C.

The ‘Programmers Reference’ Sec-
tion of this manual contains:

— Chapter 5, Instrument Model ex-
plains how the instrument looks
from the bus. This instrument is
not quite the same as the one used
from the front panel.

— Chapter 6 Using the Subsystems
explains more about each subsys-
tem.

— Chapter 7, How to Measure Fast
is a set of measuring situations
which the user is often confronted
with when programming a counter.
This chapter also contains infor-
mation about how to use the more
complex subsystem.

— Chapter 8, Error Messages con-
tains a list of all error messages
that can be generated during bus
control.

— Chapter 9, Command Reference,
This chapter gives complete infor-
mation on all commands. The sub-
systems and commands are sorted
alphabetically.

Index

You can also use the index to get an
overview of the commands. The in-
dex is also useful when looking for
additional information on the com-
mand you are currently working with.

Getting Started

Manual
Conventions

Syntax Specification Form

This manual uses the EBNF (Extended
Backus-Naur Form) notation for describ-
ing syntax. This notation uses the follow-
ing types of symbols:

® Printable Characters:

Printable characters such as Command
headers, etc., are printed just as they are,
e.g. period means that you should type
the word PERIOD.

The following printable characters have a
special meaning and will only be used in
that meaning: # * “ () :; *

Read Chapter 3’ Introduction to SCPI’
for more information.

® Non-printable Characters:

Two non-printable characters are used:

— indicates the space character
(ASCII code 32).

« _indicates the new line character
(ASCII code 10).

m Specified Expressions: < >

Symbols and expressions that are further
specified elsewhere in this manual are
placed between the <> signs.

For example <Dec. data.>. The following
explanation is found on the same page:
“Where <Dec. data> is a four-digit num-
ber between 0.1 and 8*10-9.

m Alternative Expressions Giving
Different Resuit:

Alternative expressions giving different
results are separated by |. For example,
On|Off means that the function may be
switched on or off.

m Grouping: « »

Example: FORMat_«ASCHREAL»
specifies the command header FORMat
followed by a space character and either
ASCII or REAL.

m Optionality: []

An expression placed within [] is op-
tional.

Example: [:VOLT] : FREQuency

means that the command FREQuency
may or may not be preceded by :VOLT.

m Repetition: { }

An expression placed within { } can be
repeated zero or more times.

m Equality: =

Equality is specified with =
Example: <Separator>=,

Mnemonic Conventions

®m Truncation Rules

All commands can be truncated to
shortforms. The truncation rules are as
follows:

— The shortform is the first four characters of
the command.

— If the fourth character in the command is a
vowel, then the shortform is the first three
characters of the command. This rule is not

Manual Conventions 1-3

Getting Started

used if the command is only four charac-
ters.

— If the last character in the command is a
digit, then this digit is appended to the
shortform.

Examples:
Longform Shortform
:MEASURE ‘MEAS
:NEGATIVE :NEG
:DREGISTERO :DREGO
:EXTERNAL4 :EXT4

The shortform is always printed in CAPI-
TALS in this manual: :MEASure, :NEG-
ative, :DREGister0, :EXTernal4 etc.

m Example Language

Small examples are given at various
places in the text. These examples are not
in BASIC or C, nor are they written for
any specific controller. They only contain
the characters you should send to the
counter and the responses that you should
read with the controller.

Example:
SEND— MEAS :FREQ?

This means that you should program the

controller so that it addresses the counter
and outputs this string on the GPIB.

READ« 1.234567890E6

This means that you should program the
controller so that it can receive this data
from the GPIB, then address the counter
and read the data.

1-4 Setting Up the Instrument

Setting Up the
Instrument

Setting the GPIB Address

The address switches on the rear panel of
the counter are set to 10 when it is deliv-
ered. The address used is displayed when
the instrument is turned on.

If you want to use another bus address,
you can set these switches to any address
between 0 and 30 as shown in the follow-
ing table.

Switch Switch
Address | Settings | Address | Settings |
0 00000 16 10000
1 00001 17 10001
2 00010 18 10010
3 00011 19 10011
4 00100 20 10100
5 00101 21 10101
6 00110 22 10110
7 00111 23 10111
8 01000 24 11000
9 01001 25 11001
10 01010 26 11010
11 01011 27 11011
12 01100 28 11100
13 01101 29 11101
14 01110 30 11110

15 01111

Getting Started

The address can also be set via a GPIB
command or from the AUX MENU on
the PM6680B/1/5. The set address is
stored in nonvolatile memory and re-
mains until you change it.

Power-on

When turned on, the counter starts with
the setting it had when turned off.

m Standby

When the counter is in REMOTE mode,
you cannot switch it off. You must first
enable Local control by pressing LO-
CAL.

Testing the Bus

To test that the instrument is operational
via the bus, use *IDN? to identify the in-
strument and *OPT? to identify which
options are installed. (See ‘System Sub-
system’ , *IDN? and *OPT?)

Interface Functions

What can | do with the Bus?

All the capabilities of the interface for the
PM6680B-series are explained below.

® Summary

Description, Code
Source handshake, SH1
Acceptor handshake, AH1
Control function, Cco
Talker Function, T6
Listener function, L4
Service request, SR1
Remote/local function, RL1
Paraliel poll, PPO
Device clear function, DCA1
Device trigger function, DT1
Bus drivers, E2

m SH1 and AH1

These simply mean that the counter can
exchange data with other instruments or a
controller using the bus handshake lines:
DAV, NRFD, NADC.

m Control Function, CO

The counter does not function as a con-
troller.

® Talker Function, T6

The counter can send responses and the
results of its measurements to other de-
vices or to the controller. T6 means that it
has the following functions:

— Basic talker.

— No talker only.

— It can send out a status byte as response to
a serial poll from the controller.

— Automatic un-addressing as a talker when
it 1s addressed as a listener.

Interface Functions 1-5

Getting Started

m Listener Function, L4

The counter can receive programming in-
structions from the controller. L4 means
that it has the following functions:

— Basic listener.

— No listen only.

— Automatic un-addressing as listener when
addressed as a talker.

m Service Request, SR1

The counter can call for attention from
the controller, e.g., when a measurement
is completed and a result is available.

m Remote/Local, RL1

You can control the counter manually (lo-
cally) from the front panel or remotely
from the controller. The LLO, Ilo-

1-6 Interface Functions

cal-lock-out function, can disable the LO-
CAL button on the front panel.

m Parallel Poll, PP0

The counter does not have any parallel
poll facility.

m Device Clear, DC1

The controller can reset the counter via
interface message DCL (Device clear) or
SDC (Selective Device Clear).

m Device Trigger, DT1

You can start a new measurement from
the controller via interface message GET
(Group Execute Trigger).

m Bus Drivers, E2

The GPIB interface has tri-state bus driv-
ers.

Chapter 2

Bus Commands for
the Benchtop User

LUD wuLHTIaAlIuUD 1Vl LHE DEHCHIuP USel

“INPUT B

5000/ 1M COMA § CHECK

REF | LOCAL
ADJ

UNLOCK/
STANDBY ON

2-2 Error Code

Bus Commands tor the Benchtop User

' nnn rin nn '"5 . B
| IU.UUUUUIJU Mess%y SLPEV

FREQA FREQC PERA."RATIOAB _RATIOC/B PWIDTHA TIMEASB PHASE A-B ARM ARM
TOT A:B MAN TOTAJLJ1B TOTAJLB DUTYFA RISEFALLA VOLT A MAXMIN STA+ STO-

- REMCTE EXTREF FUTER 1MQ [™LJ7 A=B .JI™ 5008 COMA CHECK HOLD
: LOBAT . 10X AC BURST DC 1X OFF

"o,

’
REF | LOCAL EXT INPUT A
ADJ | PRESET REF FILTER 50Q/1MO /L.

UNLOCK/
STANDBY ON 1X/10X AC/DC

INPUT B

HOLD OFF
/M. 500/1MQ COMA ON

TOT
ST/STOP

* These commands are from the

SENSE subsystem

Error Code 2-3

DUS LULHITIEIIUS 101 U1e Dencniop user

. o TN N e
Ops/ LMz : —

UNCTION MEASUREMENT .~} [PROCESS TAE
» "HOLD .3 MATH

O
>

Dt O 0- D=3

ME

A

SINGLE RESTART STOP ARIA . STAT

AUX
MENU MENU

SELECT
SET

350%p . IMQ)

*

These commands are from the SENSE subsystem

2-4 Error Code

Bus Commands tor the Benchtop User

500830004z

|

MENU

FUNCTION

>

TIME HOLD

SINGLE RESTART

AUX
MENU

MEASUREMENT

START ARM

STOP ARM

A

TRIG

st

R

DC-300MHz B

MAXA .
12Vims .50 00
350Vp . IMQ

I"PROCESS
. MATH

DATA ENTRY

8

Error Code 2-5

DUS LOITHmanas 1or ine sencniop user

FREQA FREQC PERA RATIOAB RATIOCE PWIDTHA TIMEA-B PHASEA-B
TOTA-BMAN TOTAJLIIB TOTATLB DUTYFA RISEFALLA VOLT A MAXMIN
REMOTE ; 5 :

All commands on this page are from the
SENSE subsystem

2-6 Error Code

Bus Commands for the Benchtop User

PM6680B

278 3 T
G B D o
e 4 e o 4

. .. REARPANEL IHPUTS

EXT REF MULTIPLIER NOTNCL %:1

FAN NOT INCL

PM6681R

This command is from the SENSE subsystem

Error Code 2-7

Bus Commands for the Benchtop User

PARAMETER VALUE/
SETTING
Mathematics OFF
Sample size in Statistics | 100
Sample size in Time In- | 100

terval Average

Mathematical constants:

K= and M= 1
L= 0
Miscellaneous:

Function FREQ A

Timeout 100 ms,
OFF

Measuring time 100 ps

Check OFF

Single cycle OFF

Analog output control OFF

Hold Off Time, OFF

Memory Protection Not

(Memory 10 to19) changed by
reset

Auxiliary functions All switched
OFF

Blank LSD OFF

Default settings
%
(after *RST)
PARAMETER VALUE/
SETTING
input A:
Trigger level AUTO
Impedance 1 MQ
Manual Trigger level ov
(Controlled by autotrigger)
Manual Attenuator 1X
(Controlled by autotrigger)
Coupling AC
Trigger slope Pos
Filter OFF
Input B:
Trigger level AUTO
Impedance 1 MQ
Manual Trigger level ov
(Controlled by autotrigger)
Manual Attenuator 1X
(Controlled by autotrigger)
Coupling DC
Trigger slope Pos
Common OFF
Arming:
Start OFF
Stop OFF
Delay Start, Time,
OFF
Channel Ext Arm
Input E
Statistics:
Statistics OFF

2-8 Default settings (after *RST)

Chapter 3

Introduction to SCPI

Introduction to SCPI

What is SCPI?

SCPI (Standard Commands for
Programmable Instruments) is a standard-
ized set of commands used to remotely
control programmable test and measure-
ment instruments. The CNT-8X firmware
contains the SCPI. It defines the syntax
and semantics that the controller must use
to communicate with the instrument.

This chapter is an overview of SCPI and
shows how SCPI is used in Fluke Fre-
quency Counters and Timer/Counters.

SCPI is based on IEEE-488.2 to which it
owes much of its structure and syntax.
SCPI can, however, be used with any of
the standard interfaces, such as GPIB
(=IEC625/1EEE-488), VXI and RS-232.

Reason for SCPI

For each instrument function, SCPI de-
fines a specific command set. The advan-
tage of SCPI is that programming an
instrument is only function dependent
and no longer instrument dependent. Sev-
eral different types of instruments, for ex-
ample an oscilloscope, a counter and a
multimeter, can carry out the same func-
tion, such as frequency measurement. If
these instruments are SCPI compatible,
you can use the same commands to mea-
sure the frequency on all three instru-
ments, although there may be differences
in accuracy, resolution, speed, etc.

3-2 What is SCPI?

Compatibility

SCPI provides two types of compatibil-
ity: Vertical and horizontal.

:INPut:COUPling AC

Figure 3-1 Vertical

This means that all instruments of the
same type have i‘dentical controls. For
eample, oscilloscopes will have the
same controls for timebase, triggers and
voltage settings

10,1234567890E3

Hoizontal

This means that instruments of different
types that performs the same functions
have the same commands. For exam-
ple, a DMM, an oscilloscope, and a
counter can all measure frequency with
the same commands

Figure 3-2

Introduction to SCPI

Management and
Maintenance of Programs

SCPI simplifies maintenance and man-
agement of the programs. Today changes
and additions in a good working program
are hardly possible because of the great
diversity in program messages and instru-
ments. Programs are difficult to under-
stand for anyone other than the original
programmer. After some time even the
programmer may be unable to understand

A programmer with SCPI experience,
however, will understand the meaning
and reasons of a SCPI program, because
of his knowledge of the standard.
Changes, extensions, and additions are
much easier to make in an existing appli-
cation program. SCPI is a step towards
portability of instrument programming
software and, as a consequence, it allows
the exchange of instruments.

them.

GPIB

GPIB
Interface

Response Program
Messages Messages
L _] *

Output Queue <« > _input Buffer
Response
Messages
Response
Formatter
Response Data

Figure 3-3

Overview of the firmware in a SCPI instrument.

What is SCPI? 3-3

Introduction to SCPI

How does SCPI
Work in the
Instrument?

The functions inside an instrument that
control the operation provide SCPI com-
patibility. Figure 3-3 shows a simplified
logical model of the message flow inside
a SCPI instrument.

When the controller sends a message to a
SCPI instrument, roughly the following
happens:

— The GPIB controller addresses the instru-
ment as listener.

— The GPIB interface function places the
message in the Input Buffer.

— The Parser fetches the message from the
Input Buffer, parses (decodes) the message,
and checks for the correct syntax. The in-
strument reports incorrect syntax by send-
ing command errors via the status system
to the controller. Moreover, the parser will
detect if the controller requires a response.
This is the case when the input message is
a query (command with a “?” appended).

The Parser will transfer the executable
messages to the Execution Control block
in token form (internal codes). The Exe-
cution Control block will gather the infor-
mation required for a device action and
will initiate the requested task at the ap-
propriate time. The instrument reports ex-
ecution errors via the status system over
the GPIB and places them in the Error
Queue.

— When the controller addresses the instru-
ment as talker, the instrument takes data
from the Output Queue and sends it over
the GPIB to the controller.

Message Exchange Control
protocol

Another important function is the Mes-
sage Exchange Control, defined by
IEEE 488.2. The Message Exchange
Control protocol specifies the interactions
between the several functional elements
that exist between the GPIB functions
and the device-specific functions, see
Figure 3-3 .

The Message Exchange Control protocol
specifies how the instrument and control-
ler should exchange messages. For exam-
ple, it specifies exactly how an
instrument shall handle program and re-
sponse messages that it receives from and
returns to a controller.

This protocol introduces the idea of com-
mands and queries; queries are program
messages that require the device to send a
response. When the controller does not
read this response, the device will gener-
ate a Query Error. On the other hand,
commands will not cause the device to
generate a response. When the controller
tries to read a response anyway, the de-
vice then generates a Query Error.

The Message Exchange Control protocol
also deals with the order of execution of
program messages. It defines how to re-
spond if Command Errors, Query Errors,
Execution Errors, and Device-Specific er-
rors occur. The protocol demands that the
instrument report any violation of the
IEEE-488.2 rules to the controller, even
when it is the controller that violates
these rules.

The IEEE 488.2 standard defines a set of
operational states and actions to imple-
ment the message exchange protocol.
These are shown in the following table:

3-4 How does SCPI Work in the Instrument?

Introduction to SCPI

State Purpose

IDLE Wait for messages

READ Read and execute mes-
sages

QUERY Store responses to be
sent

SEND Send responses

RE- Complete sending re-

SPONSE |[sponses

DONE Finished sending re-
sponses

DEADLOCK | The device cannot buffer
more data

Action, Reason

Untermin- |The controller attempts to

ated, read the device without
first having sent a com-
plete query message

Interrupted, |The device is interrupted
by a new program mes-
sage before it finishes
sending a response mes-
sage

Protocol Requirements

In addition to the above functional ele-
ments, which process the data, the mes-
sage exchange protocol has the following
characteristics:

— The controller must end a program mes-
sage containing a query with a message
terminator before reading the response
from the device (address the device as
talker). If the controller breaks this rule,
the device will report a query error
(unterminated action).

— The controller must read the response to a
query in a previously (terminated) program
message before sending a new program

message. When the controller violates this
rule, the device will report a query error
(interrupted action).

— The instrument sends only one response
message for each query message. If the
query message resulted in more than one
answer, all answers will be sent in one re-
sponse message.

® Order of Execution
Deferred Commands

Execution control collects commands un-
til the end of the message, or until it finds
a query or other special command that
forces execution. It then checks that the
setting resulting from the commands is a
valid one: No range limits are exceeded,
no coupled parameters are in conflict, etc.
If this is the case, the commands are exe-
cuted in the sequence they have been re-
ceived; otherwise, an execution error is
generated, and the commands are dis-
carded.

This deferred execution guarantees the
following:

— All valid commands received before a
query are executed before the query is exe-
cuted.

— All queries are executed in the order they
are received.

— The order of execution of commands is never
reversed.

m Sequential and Overlapped
Commands

There are two classes of commands: se-
quential and overlapped commands. All
commands in the CNT-8X counters are
sequential, that is one command finishes
before the next command executes.

How does SCPI Work in the Instrument? 3-5

Introduction to SCPI

Remote Local Protocol

m Definitions
Remote Operation

When an instrument operates in remote,
all local controls, except the local key,
are disabled.

Local Operation

An instrument operates in local when it is
not in remote mode as defined above.

Local Lockout

In addition to the remote state, an instru-
ment can be set to remote with ‘local
lockout’. This disables the return-to-local
button. In theory, the state local with lo-
cal lockout is also possible; then, all local
controls except the return-to-local key
are active.

The Counter in Remote Operation

When the Counter is in remote operation,
it disables all its local controls except the
LOCAL key.

The Counter in Local Operation

When the Counter is in local operation
the instrument is fully programmable
both from the front panel and from the
bus. If a bus message arrives while a
change is being entered from the front
panel, the front panel entry is interrupted
and the bus message is executed.

We recommend you to use Remote mode
when using counters from the bus. If not,
the counter measures continously and the
initiation command :INIT will have no
effect.

3-6 How does SCPI Work in the Instrument?

Introduction to SCPI

Program and Response Messages

The communication between the system
controller and the SCPI instruments con-
nected to the GPIB takes place through
Program and Response Messages. A Pro-
gram Message is a sequence of one or
meore commands sent from the controller
to an instrument. Conversely, a Response
Message is the data from the instrument
to the controller.

Controlier Device
Program Messages [—* Commands
L —— Queries
/
Response Messages

Figure 3-4 Program and response

messages.

The GPIB controller instructs the device
through program messages. The device
will only send responses when explicitly
requested to do so; that is, when the con-
troller sends a query. Queries are recog-
nized by the question mark at the end of
the header, for example: *IDN? (requests
the instrument to send identity data).

Syntax and Style

m Syntax of Program Messages

A command or query is called a program
message unit. A program message unit
consists of a header followed by one or
more parameters, as shown in Figure 3-5 .

__m_

—f <Reader> }~KSpace —ef <Parameter>j-—

Figure 3-5 Syntax of a Program

Message Unit.

One or more program message units
(commands) may be sent within a simple
program message, see Fig. 3-6.

gy B
=l

~+— <Program Message Unit> I——-@-——v
Fig 3-6

Syntax of a terminated
Program Message.

The J is the pmt (program message
terminator) and it must be one of the fol-
lowing codes:

This is <new line>
code sent concur-
rently with the
END message on
the GPIB.

This is the <new
line> code.

This is the END
message sent
concurrently with
the last data byte
<dab>.

J |NL*"END

NL

<dab>*END

NL is the same as the ASCII LE
05" (<line feed> = ASCII 10gecimal).

The END message is sent via the

EOIl-line of the GPIB.

The * character stands for ‘at the

same time as’.

Program and Response Messages 3-7

Introduction to SCPI

Most controller programming languages
send these terminators automatically, but
allow changing it. So make sure that the
terminator is as above.

Example of a terminated program mes-

sage:
:INP:IMP _ 1E6;:ACQ:APER _ 0.1NL"END
\ / \
vy
program message unit terminator

program message unit

This program message consists of two
message units. The unit separator (semi-
colon) separates message units.

Basically there are two types of com-
mands:

Common Commands

The common command header starts with
the asterisk character (*), for example
*RST.

SCPI Commands

SCPI command headers may consist of
several keywords (mnemonics), separated
by the colon character (:).

Root Endnode

Figure 3-7 The SCPI command tree.

Each keyword in a SCPI command
header represents a node in the SCPI
command tree. The leftmost keyword
(INPut in the previous example) is the

3-8 Program and Response Messages

root level keyword, representing the high-
est hierarchical level in the command
tree.

The keywords following represent
subnodes under the root node. See
‘COMMAND TREE’ on page 3-10 for
more details of this subject.

Forgiving Listening

The syntax specification of a command is
as follows:

ACQuisition: APERture_<numeric value>

Where: ACQ and APER specify the
shortform, and ACQuisition and APER-
ture specify the longform. However,
ACQU or APERT are not allowed and
cause a command error.

In program messages either the long or
the shortform may be used in upper or
lower case letters. You may even mix up-
per and lower case. There is no semantic
difference between upper and lower case
in program messages. This instrument be-
havior is called forgiving listening.

For example, an application program may
send the following characters over the
bus:

SEND— iNp:ImP_1E6

The example shows the shortform used in
a mix of upper and lower case

SEND— Input:Imp_lE6

The example shows the a mix of long and
shortform anda mixe of upper and lower
case.

Introduction to SCPI

Notation Habit in Command Syntax

To clarify the difference between short
and longform, the shortform in a syntax
specification is shown in upper case let-
ters and the remaining part of the
longform in lower case letters.

Notice however, that this does not specify
the use of upper and lower case charac-
ters in the message that you actually sent.
Upper and lower case letters, as used in
syntax specifications, are only a notation
convention to ease the distinction be-
tween long and shortform.

® Syntax of Response Messages

The response of a SCPI instrument to a
query (response message unit) consists of
one or more parameters (data elements)
as the following syntax diagram shows.
There is no header returned.

1
==

<Parameter>

Figure 3-8 Syntax of a Response

Message Unit.

If there are multiple queries in a program
message, the instrument groups the multi-
ple response message units together in
one response message according to the
following syntax:

-1
L

———{<Respons Message Unit>|——'g——'
Fig 3-9

Syntax of a Terminated
Response Message.

The response message terminator (rmt) is
always NL"END, where:

NL"END is <new line> code (equal to
<line feed> code = ASCII 10 decimal)
sent concurrently with the END message.
The END message is sent by asserting the
EOI line of the GPIB bus.

Responses:

A SCPI instrument always sends its re-
sponse data in shortform and in capitals.

Example:

You program an instrument with the fol-
lowing command:

SEND— :ROSCillator:SOURce_EX-
Ternal

Then you send the following query to the
instrument:

SEND— :ROSCillator:SOURce?
The instrument will return:
READ« EXT

response in shortform and in capitals.

Program and Response Messages 3-9

Introduction to SCPI

Command Tree

Command Trees like the one below are

used to document the SCPI command set

in this manual. The keyword (mnemonic)

on the root level of the command tree is
the name of the subsystem. The follow-
ing example illustrates the Command
Tree of the INPutl subsystem.

<HEADER> Parameters
JINPut[1]
:IMPedance ~<Numeric value>|MAX|MIN
FiLTer
L, [LPASS]

L [:STATe] _<Boolean>

Figure 3-10 Example of an INPut
subsystem command
tree.

The keywords placed in square
brackets are optional nodes. This
means that you may omit them
from the program message.

Example:

SEND— INPUT1:FILTER:LPASS
: STATE_ON

is the same as
SEND— INPUT:FILTER_ON

Moving down the Command
Tree

The command tree shows the paths you
should use for the command syntax. A
single command header begins from the
root level downward to the ‘leaf nodes’
of the command tree. (Leaf nodes are the
last keywords in the command header,
before the parameters.)

3-10 Command Tree

® Example:
SEND— INPut:EVENt:HYSTeresis

Where: INPut is the root node and HYSTer-
esis is the leaf node.

Each colon in the command header
moves the current path down one level
from the root in the command tree. Once
you reach the leaf node level in the tree,
you can add several leaf nodes without
having to repeat the path from the root
level.

Just follow the rules below:

— Always give the full header path, from the
root, for the first command in a new pro-
gram message.

— For the following commands within the
same program message, omit the header
path and send only the leaf node (without
colon).

ISy

You can only do this if the header
path of the new leaf-node is the
same as that of the previous one. If
not, the full header path must be
given starting with a colon.

Command header = Header path + leaf
node

— Once you send the pmt (program message
terminator), the first command in a new
program message must start from the root.

®m Example:

SEND-> INPut:EVENt :HYSTeresis
MIN;LEVel_ 0.5

Introduction to SCPI

This is the command where:
INPut:EVEN! is the header path and
:HYSTeresis is the first leaf-node and
LEVel is the second leaf node because
LEVel is also a leaf-node under the
header path INPut:EVENL.
There is no colon before LEVel!

IS5y

Parameters

Numeric Data

Decimal data are printed as numerical
values throughout this manual. Numeric
values may contain both a decimal point
and an exponent (base 10).

These numerals are often represented as
NRf (NR = NumeRic, f = flexible) format.

m Keywords

In addition to entering decimal data as
numeric values, several keywords can ex-
ist as special forms of numeric data, such
as MINimum, MAXimum, DEFault,
STEP, UP, DOWN, NAN (Not A Num-
ber), INFinity, NINF (Negative INFi-
nity). The Command Reference chapters
explicitly specify which keywords are al-
lowed by a particular command. Valid
keywords for the CNT-8X counters are
MAXimum and MINimum.

MINimum

This keyword sets a parameter to its min-
imum value.

MAXimum

This keyword sets a parameter to its max-
imum value.

The instrument always allows MINimum
and MAXimum as a data element in com-
mands, where the parameter is a numeric
value. MIN and MAX values of a param-
eter can always be queried.

Example:
SEND— INP:LEV?2_MAX

This query returns the maximum range
value.

m Suffixes

You can use suffixes to express a unit or
multiplier that is associated with the deci-
mal numeric data. Valid suffixes are s
(seconds), ms (milliseconds), mohm
(megaohm), kHz (kilohertz), mV (milli-
volt).

Example:
SEND— :SENS:ACQ:APER.100ms

Where: ms is the suffix for the numeric
value 100.

Notice that you may also send ms as MS
or mS. MS does still mean milliseconds,
not Mega Siemens!

Response messages do not have suffixes.
The returned value is always sent using
standard units such as V, S, Hz, unless
you explicitly specify a default unit by a
FORMat command.

Boolean Data

A Boolean parameter specifies a single
binary condition which is either true or
false.

Boolean parameters can be one of the fol-
lowing:

— ON or 1 means condition true.

— OFF or 0 means condition false.

Parameters 3-11

Introduction to SCPI

m Example

SEND— :SYST:TOUT_ON or
:SYST:TOUT.1

This switches timeout monitoring on.

A query, for instance :SYSTem:TOUT?,

will return 1 or 0; never ON or OFF.
Expression Data

You must enclose expression program
data in parenthesis (). Three possibilities
of expression data are as follows:

— <numeric expression data>
<parameter list>

— <channel list>

An example of <numeric expression data> is:
(X — 10.7E6) This subtracts a 10.7 MHz
intermediate frequency from the mea-
sured result.

An example of <parameter list> is: (5,0.02)
This is a list of two parameters; the
first one is 5 and the second one 0.02.

An example of <channel list> is: (@3),(@1)
This specifies channel 3 as the main
channel and channel 1 as the second

Other Data Types

Other data types that can be used for pa-
rameters are the following:

— String data: Always enclosed between sin-
gle or double quotes, for example
“This is a string” or ‘This is a string.’

— Character data: For this data type, the same
rules apply as for the command header
mnemonics. For example: POSitive, NEG-
ative, EITHer.

— Non-decimal data: For instance, #H3A for hexa
decimal data.

— Block data: Used to transfer any 8-bit
coded data. This data starts with a pream-
ble that contains information about the
length of the parameter.

Example:
#218INP:IMP.50; SENS.10

channel.
Summary
Header separator Semicolon
separates the Single or double separates several A question
different parts of a quote indicates program messages mark indicates
compound header string data in a string that a response

Vv Ty

Square brackets Separates

indicates that the headers
from data

/

text inside is from each other

optional

[:SENS] :FUNC "FREQ:RAT 3,1";:CALC:MATH

Comma separates
several data fields

is requested

~

X - 2); :READ'?4J

N/

/
N

A leading colon

shows that the Parenthesis Ne: line
following indicates ends a
command expression message
starts from the data

root level of the
command tree

3-12 Parameters

Introduction to SCPI

Macros

A macro is a single command, that repre-
sents one or several other commands, de-
pending on your definition. You can
define 25 macros of 40 characters in the
counter. One macro can address other
macros, but you cannot call a macro from
within itself (recursion). You can use
variable parameters that modify the
macro.

Use macros to do the following:

— Provide a shorthand for complex com-
mands.

— Cut down on bus traffic.

Macro Names

You can use both commands and queries
as macro labels. The label cannot be the
same as common commands or queries.
If a macro label is the same as a CNT-8X
command, the counter will execute the
macro when macros are enabled
(*EMC_1) and it will execute the
CNT-8X command when macros are dis-
abled (*EMC_0).

Data Types within Macros

The commands to be performed by the
macro can be sent both as block and
string data.

String data is the easiest to use since you
don’t have to count the number of charac-
ters in the macro. However, there are
some things you must keep in mind:

Both double quote (*) and single quote (°)
can be used to identify the string data. If
you use a controller language that uses
double quotation marks to define strings

within the language (like BASIC) we rec-
ommend that you use block data instead,
and use single quotes as string identifiers
within the macro.

ISy

When using string data for the
commands in a macro, remem-
ber to use a different type of
string data identifiers for strings
within the macro. If the macro
should for instance set the input
slope to positive and select the
period function, you must type:

“:Inp:slope-pos; :Func.’PER.1""
or

‘:Inp:slope_pos; :Func."PER.1"’

Define Macro Command

*DMC assigns a sequence of commands
to a macro label. Later when you use the
macro label as a command, the counter
will execute the sequence of commands.

Use the following syntax:

*DMC <macro-label>, <commands>

m Simple Macros

Example:

SEND— *DMC.‘MyInputSetting’
#255:INP: IMP.50; HYST..1
;LEV_.0.55; : INP:HYST:AUTO
<0;

This example defines a macro
MylInputSetting, which sets the impedance
to 50 Q, sets the sensitivity to 1V, the
trigger level to +0.55V, and switches off
auto sensitivity and auto trigger level.

Macros 3-13

Introduction to SCPI

m Macros with Arguments

You can pass arguments (variable param-
eters) with the macro. Insert a dollar sign
(%) followed by a single digit in the range
1 to 9 where you want to insert the pa-
rameter. See the example below.

When a macro with defined arguments is
used, the first argument sent will replace
any occurrence of $1 in the definition; the
second argument will replace $2, etc.

Example:
SEND— *DMC_‘AUTO’ , #247

:INP:HYST:AUTO_$1;
:INP:IMP.S2

This example defines a macro AUTO,
which takes two arguments, i.e., auto
«ONJ|OFF|JONCE» ($1) and impedance
«50|1E6» (82) .

SEND— AUTO.OFF, 50

Switches off both auto sensitivity and
auto trigger level and sets the input im-

pedance to 50Q.

Deleting Macros

Use the *PMC (purge macro) command

to delete all macros defined with the
*DMC command. This removes all
macro labels and sequences from the
memory. To delete only one macro in the
memory, use the :MEMory:DE-
Lete:MACRo command.

You cannot overwrite a macro;
you must delete it before you can
use the same name for a new
macro.

3-14 Macros

Enabling and Disabling
Macros

m *EMC Enable Macro Command

When you want to execute a CNT-8X
command or query with the same name
as a defined macro, you need to disable
macro execution. Disabling macros does
not delete stored macros; it just hides
them from execution.

Disabling: *EMC._0 disables all macros.
Enabling: *EMC._.1

m *EMC? Enable Macro Query

Use this query to determine if macros are
enabled.

Response:
1 macros are enabled
0 macros are disabled

How to Execute a Macro

Macros are disabled after *RST, so to be
sure, start by enabling macros with
*EMC 1. Now macros can be executed
by using the macro labels as commands.

® Example:

SEND— *DMC_‘LIMITMON’, '
:CALC:STAT_ON;
¢:CALC:LIM:STAT_ON;
:CALC:LIM:LOW:DATA
$1; STAT.ON;
:CALC:LIM:UPP:DATA
$2; STAT.ON'

SEND— *EMC.1
Now sending the command
SEND-—» LIMITMON.1E6,1.1E6

will switch on the limit monitoring to
alarm between the limits 1 MHz and
1.1 MHz.

Introduction to SCPI

Retrieve a Macro m *LMC? Learn Macro Query
® *GMC? Get Macro Contents This query gives a response containing
Que the labels of all the macros stored in the
ry)
Timer/Counter.

This query gives a response containing _
the definition of the macro you specified Example:

when sending the query. SEND— *LMC?
_ ’ _ READ&“MYINPSETTING”, "LIMITMON
Example using the above defined "

macro: :

. Now there are two macros in memory,
SEND— *GMC?._.'LIMITMON and they have the following labels:
READ« #292:CALC: STAT “MYINPSETTING” and “LIMITMON”.

ON; : CALC:LIM:STAT ON;
:CALC:LIM:LOW:DATA
$1;STAT.ON;
:CALC:LIM:UPP:DATA
$2; STAT_ON'

Macros 3-15

Introduction to SCPI

H You can select some conditions in the
Status Reportl ng counter that should be reported in the Sta-
Sy5tem tus Byte Register. You can also select if

some bits in the Status Byte should gen-
. erate a Service Request (SRQ).
Introduction (An SRQ is the instrument’s way to call

Status reporting is a method to let the the controller for help.)

controller know what the counter is do- Read more about the Status Subsystem in
ing. You can ask the counter what status Chapter 6.
it is in whenever you want to know.

Condition Register

Logical OR B

Condition Register

Logical OR J
N EOSERSREEE

a 6i 54 l 3 2| 1|0|Status Byte Register

[Service Request Enable l

[LT P11
[Logical OR]
SRQ message

Figure 3-11 CNT-8X Status register structure.

3-16 Status Reporting System

Introduction to SCPI

Error Reporting

The counter will place a detected error in
its Error Queue. This queue is a FIFO
(First-In First-Out) buffer. When you
read the queue, the first error will come
out first, the last error last.

If the queue overflows, an overflow mes-
sage is placed last in the queue, and fur-
ther errors are thrown away until there is
room in the queue again.

® Detecting Errors in the Queue

Bit 2 in the Status Byte Register shows if
the instrument has detected errors. It is
also possible to enable this bit for Service
Request on the GPIB. This can then inter-
rupt the GPIB controller program when
an error occurs.

B Read the Error/Event Queue

This is done with the :SYSTem:ERRor?
query.
Example:

SEND— :SYSTem:ERRor?
READ« -100, _“Command_Error”

The query returns the error number fol-
lowed by the error description.

Further description of all error
numbers can be found in the Er-
ror Messages chapter

If more than one error occurred, the query
will return the error that occurred first.
When you read an error you will also re-
move it from the queue. You can read the
next error by repeating the query. When
you have read all errors the queue is
empty, and the :SYSTem:ERRor? query
will return:

0, “No error”

When errors occur and you do not read
these errors, the Error Queue may over-
flow. Then the instrument will overwrite
the last error in the queue with the fol-
lowing:

-350, “Queue overflow”

If more errors occur, they will be dis-
carded.

m Standardized Error Numbers

The instrument reports four classes of
standardized errors in the Standard Event
Status and in the Error/Event Queue as
shown in the following table:

Error Class | Range of Standard
Error Num- Event
bers Register
Command -100to | bit 5- CME
Error -199
Execution ~200 to bit 4 - EXE
Error —299
Device- spe-| _300 to bit 3 - DDE
cific Error -399
+100 to
+32767
Query Error —400 to bit 2 -QYE
-499

m Command Error

This error shows that the instrument de-
tected a syntax error.

Error Reporting 3-17

Introduction to SCPI

m Execution Error

This error shows that the instrument has
received a valid program message which
it cannot execute because of some device
specific conditions.

@ Device-specific Error

This error shows that the instrument
could not properly complete some device
specific operations.

® Query Error

This error will occur when the Message
Exchange Protocol is violated, for exam-
ple, when you send a query to the instru-
ment and then send a new command
without first reading the response data
from the previous query. Also, trying to
read data from the instrument without
first sending a query to the instrument
will cause this error.

3-18 Error Reporting

Introduction to SCPI

Initialization and
Resetting

Reset Strategy
There are three levels of initialization:

— Bus initialization
— Message exchange initialization

— Device initialization

® Bus Initialization

This is the first level of initialization. The
controller program should start with this
which initializes the IEEE-interfaces of
all connected instruments. It puts the
complete system into remote enable
(REN-line active) and the controller
sends the interface clear (IFC) command.
The command or the command sequence
for this initialization is controller and lan-
guage dependent. Refer to the user man-
ual of the system controller in use.

m Message Exchange Initialization

Device clear is the second level of initial-
ization. It initializes the bus message ex-
change, but does not affect the device
functions.

Device clear can be signaled either with
DCL to all instruments or SDC (Selective
device-clear) only to the addressed instru-
ments. The instrument action on receiv-
ing DCL and SDC is identical, they will
do the following:

— Clear the input buffer.
— Clear the output queue.
— Reset the parser.

— Clear any pending commands.

The device-clear commands will not do
the following:

— Change the instrument settings or stored
data in the instrument.

— Interrupt or affect any device operation in
progress.

— Change the status byte register other than
clearing the MAV bit as a result of clearing
the output queue.

Many older IEEE-instruments,
that are not IEEE-488.2 compati-
ble returned to the power-on de-
fault settings when receiving a
device-clear command.
IEEE-488.2 does not allow this.

When to use a Device-clear Command

The command is useful to escape from
erroneous conditions without having to
alter the current settings of the instru-
ment. The instrument will then discard
pending commands and will clear re-
sponses from the output queue. For ex-
ample; suppose you are using the Counter
in an automated test equipment system
where the controller program returns to
its main loop on any error condition in
the system or the tested unit. To ensure
that no unread query response remains in
the output queue and that no unparsed
message is in the input buffer, it is wise
to use device-clear. (Such remaining re-
sponses and commands could influence
later commands and queries.)

m Device Initialization

- The third level of initialization is on the

device level. This means that it concerns
only the addressed instruments.

Initialization and Resetting 3-19

Introduction to SCPI

The *RST Command

Use this command to reset a device. It
initializes the device-specific functions in
the Counter.

The following happens when you use the
*RST command:

— You set the Counter-specific functions to a
known default state. The *RST condition
for each command is given in the com-
mand reference chapters.

— You disable macros.

— You set the counter in an idle state (outputs
are disabled), so that it can start new oper-
ations.

The *CLS Command

Use this command to clear the status data
structures. See ‘Status Reporting system’
in this chapter.

The following happens when you use the
*CLS command:

— The instrument clears all event registers
summarized in the status byte register.

— It empties all queues, which are summa-
rized in the status byte register, except the
output queue, which is summarized in the
MAV bit.

3-20 Initialization and Resetting

Chapter 4

Programming
Examples

Programming Examples

Introduction

Each program example in this chapter is
written for IBM-PC compatible comput-
ers equipped with the National Instru-
ments PC-ITA. In addition to that, many
of the examples are written in both
‘GW-BASIC’ and ‘C’.

Even if you do not have these interface
board or use these computer languages,
look at the examples anyway. They give
you a good insight on how to program the
instrument efficiently.

To be able to run these programs
without modification, the address
of your counter must be set to 10.

Example 1. Limit Testing
Example 2. REAL Data Format
Example 3. Frequency Profiling
Example 4. Fast Sampling
Example 5. Status Reporting

Example 6. Statistics, this example is only for
PM6680B and PM6681

4-2 Introduction

Programming Examples

GW-Basic for National
Instruments PC-lIA

Setting up the interface

All these programs start with a declaration containing three lines of setup information
for the interface. This declaration must be merged with the programs prior to running
them. The declaration is printed below, but it is also available as a file on the diskettes
delivered with your interface. The file name is DECL.BAS.

20 CLEAR ,60000! : IBINIT1=60000! : IBINIT2=IBINIT1+3 : BLOAD
“bib.m”, IBINIT1

30 CALL

IBINIT1 (IBFIND, IBTRG, IBCLR, IBPCT, IBSIC, IBLOC, IBPPC, IBBNA,

IBONL, IBRSC, IBSRE, IBRSV, IBPAD, IBSAD, IBIST, IBDMA, IBEOS, IBTMO, IBEO
T, IBRDF, IBWRTF,IBTRAP, IBDEV, IBLN)

40 CALL

IBINITZ2 (IBGTS, IBCAC, IBWAIT, IBPOKE, IBWRT, IBWRTA, IBCMD, IBCMDA,
IBRD, IBRDA, IBSTOP, IBRPP, IBRSP, IBDIAG, IBXTRC, IBRDI, IBWRTI, IBRDIA,
IBWRTIA, IBSTA%, IBERR%, IBCNT%)

GW-Basic for National Instruments PC-lIA, Setting Up the Interface 4-3

rrogialnnningy cxdlipies

1.

Limit Testing

This program uses limit testing to check that the frequency is above a preset value.

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

4-4

CNTNAMES = “DEV10"
CALL IBFIND (CNTNAMES, CNT$%)

\

\

‘' — Set continuous frequency measurement —
WRTS = “*RST; *CLS; :FUNC ‘FREQ 1’; :INIT:CONT ON”
CALL IBWRT (CNT%, WRTS)

‘' — Enable limit monitoring, limit 1 MHz —
WRTS$ = “:CALC:LIM ON; LIM:UPP 1lE6; UPP:STATE ON”
CALL IBWRT (CNT%, WRTS)

WRTS = “:STAT:DREGO:ENAB 2; *SRE 1"

CALL IBWRT (CNT%, WRTS)

A}

V' — Wait until the limit is passed —

PRINT “Waiting for limit to be passed”

MASKS$ = &H800

CALL IBWAIT (CNT%, MASKS%)

‘' — Read status and device status register —
CALL IBRSP (CNT%, SPRS%)

\

' — Read frequency —

WRTS = “READ?”

CALL IBWRT (CNT%, WRTS)

MSG$ = SPACES (255)

CALL IBRD (CNT%, MSGS)

PRINT “Frequency = ”; LEFTS$ (MSG$, IBCNT%)
WRTS$ = “:STAT:DREGO:EVEN?"”

CALL IBWRT (CNT%, WRTS)

MSG$ = SPACES (255)

CALL IBRD (CNT%, MSGS)

\

‘' — Disable continuous measurement —

WRTS = “:INIT:CONT OFF”

CALL IBWRT (CNT%, WRTS)

END

GW-Basic for National Instruments PC-lIA, Setting Up the Interface

Programming Examples

3. Frequency Profiling

Frequency profiling visualizes frequency variations for a certain time. This program
gives an output file called:

PROFILE.DAT. If this file is imported to a spreadsheet program, for instance Excel,
you can create a graph like the one in the figure below.

>
8 200-
5 -
g- 180—
9)_]
£ 1604

140 -

120 -

100 -

0 | 0.02 | 004 Time

Figure 4-1 This figure is the results of frequency profiling on a
sweep generator.

50 ¢

60 OPEN “O”, 1, “PROFILE.DAT”

70 CNTNAMES = “DEV10"

80 CALL IBFIND (CNTNAMES, CNT%)

90

100 °

110 ¢ Enable arming, etc. —

120 WRTS$ = “:TRIG:COUN 1; :ARM:COUN 1; SOUR EXT4"
130 CALL IBWRT(CNT%, WRTS)

140 WRTS = “:INP:LEV:AUTO ONCE

150 CALL IBWRT (CNT$%, WRTS)

160 WRTS = “:DISP:ENAB OFF; :ACQ:APER 1E-6"
170 CALL IBWRT(CNT%, WRTS$)

180

190 ARMDELAY = .0000002

GW-Basic for National Instruments PC-lIA, Setting Up the Interface 4-5

rrugianinmiy CAQatpied

200

210 ' ==== CAPTURE PROFILE =====
220

230 PRINT “Profiling”

240 O

250 FOR I=0 TO 999

260 ‘' — Set arming delay time --

270 WRTS$ = “:ARM:DEL” + STRS (ARMDELAY)
280 CALL IBWRT (CNT%, WRTS)

290 '

300 ‘' — Measure and read result --
310 WRTS = “READ?”

320 CALL IBWRT(CNT%, WRTS)

330 MSG$ = SPACES (255)

340 CALL IBRD(CNT%, MSGS)

350 N

360 ‘' — Write arming delay time and result to file —-

370 PRINT#1, STRS (ARMDELAY), LEFTS$ (MSGS, INSTR(MSGS,
CHRS (10)))

380 '

390 ' — Increase arming delay --

400 ARMDELAY = ARMDELAY + .0000001

410 NEXT I

420

430 WRT$ = “:DISP:ENAB ON”
440 CALL IBWRT (CNT%, WRTS)
450 O

460 CLOSE 1

470 END

4-6 GW-Basic for National Instruments PC-lIA, Setting Up the Interface

Programming Examples

4. Fast Sampling

This program makes a quick array measurement and stores the results in the internal
memory of the counter. Then it writes the results to a file called MEAS.DAT. The
measurement results as a function of the samples can be visualized in a spreadsheet
program such as Excel.

50 °

60 OPEN “0O”, 1, “MEAS.DAT”

70 CNTNAMES = “DEV10"

80 CALL IBFIND (CNTNAMES, CNT%)

90 ¢

100 ¢

110 ¥ — Clear status —

120 WRTS = “*CLS”

130 CALL IBWRT (CNT%, WRTS)

140 ¢

150 ' — Enable 1000 measurement with maximum speed —
160 WRTS$ = “:TRIG:COUN 1000; :ARM:COUN 1"

170 CALL IBWRT (CNT%, WRTS)

180 WRTS = “:INP:LEV:AUTO ONCE; :CAL:INT:AUTO OFF”
190 CALL IBWRT (CNT%, WRTS)

200 WRTS$ = “:DISP:ENABR OFF; :INT:FORM PACKED”
210 CALL IBWRT (CNT%, WRTS)

220 WRTS = “:ACQ:APER MIN; :AVER:STAT OFF”
230 CALL IBWRT (CNT%, WRTS)

240

250 ' — Enable SRQ on operation complete —
260 WRTS = “*ESE 1; *SRE 32"

270 CALL IBWRT (CNT%, WRTS)

280 ¢

290 ' — Start measurement —

300 PRINT “Measuring”

310 WRTS = “INIT; *OPC”

320 CALL IBWRT (CNT%, WRTS)

330 ¢

340 ' — Wait for operation complete —

350 MASK = &H800

360 CALL IBWAIT (CNT%, MASK)

370

380 ' — Read status and event status register —
390 CALL IBRSP (CNT%, SPR%)

400 WRTS = “*ESR?”

410 CALL IBWRT (CNT%, WRTS)

420 MSGS = SPACES$ (255)

430 CALL IBRD (CNT%, MSGS$)

GW-Basic for National Instruments PC-IIA, Setting Up the Interface 4-7

riogiatiiiy cXalnpies

440

450 PRINT “Fetching result”
460

470 FOR I=0 TO 999

480 ‘' — Fetch one result —

490 WRTS = “FETCH?”

500 CALL IBWRT (CNT%, WRTS)

510 MSG$ = SPACES (255)

520 . CALL IBRD (CNT%, MSGS)

530 '

540 ‘' — Write result to file —
550 PRINT#1, I, LEFTS(MSGS$S, INSTR(MSGS$, CHR$(10)))
560 NEXT I

570

580 WRTS$ = “:DISP:ENAB ON”

590 CALL IBWRT (CNT%, WRTS)

600

610 CLOSE 1

620 END

4-8 GW-Basic for National Instruments PC-IIA, Setting Up the Interface

rrogramming £Exampies

5. Status Reporting

This program sets up the status reporting for Service Request on ‘Message Available’
and ‘Command’, ‘Execution’, or Query’ errors.

The program reads a command from the controller keyboard and sends it to the coun-
ter, then it checks the status byte using Serial Poll. It determines the reason for Service
Request, and reads query responses and error messages.

50 CNTNAMES = “DEV10"
60 CALL IBFIND (CNTNAMES, CNT%)

70 ¢

80

90 ' — CLEAR STATUS —

100 WRTS = “*cls”

110 CALL IBWRT (CNT%, WRTS)

120 »©

130 ¥ — SET EVENT STATUS ENABLE —

140 “ Enable Command Error, Execution Error and Query Error

150 WRTS = “*ese 52"

160 CALL IBWRT (CNT%, WRTS)

170

180 ¥ — SET SERVICE REQUEST ENABLE —

190 ' Enable Service Request on Event Status and Message
Available

200 WRTS = “*sre 48"

210 CALL IBWRT (CNT%, WRTS)

220 ¢

230 ' ======== MAIN LOOP

240 WHILE 1

250 \

260 ' — ENTER COMMAND STRING AND SEND TO COUNTER —

270 LINE INPUT “Enter command string (<CR> to end):”, CMD$
280 IF CMDS = “” GOTO 760

290 CMD$ = CMDS
300 CALL IBWRT (CNT%, CMDS)

310 ‘' WAIT for execution

320 FOR I=1 TO 1000

330 CALL IBRSP (CNT%, SPR%)

340 IF SPR% AND 16 THEN GOTO 380

350 NEXT I

360 A

370 ‘' — READ STATUS BYTE —

380 IF SPR% <> 0 THEN PRINT “Status byte = ”; SPR%
390 ELSE GOTO 750

400 A

GW-Basic for National Instruments PC-lIA, Setting Up the Interface 4-9

riogyiainninny cAailpies

410 ‘" — CHECK MESSAGE AVAILABLE BIT —

420 WHILE SPR% AND 16

430 PRINT “ Message available bit set”

440 MSG$ = SPACES (255)

450 CALL IBRD (CNT%, MSGS)

460 LFPOS = INSTR(MSGS, CHRS (10))

470 IF LFPOS <> 0 THEN PRINT “Response = ” LEFTS$ (MSGS,
LFPOS)

480 IF LFPOS = 0 THEN PRINT “Respcnse = ”; MSG$

490 CALL IBRSP (CNT%, SPR%)

500 WEND

510 '

520 ‘" — CHECK EVENT STATUS BIT —

530 IF NOT SPR% AND 32 GOTO 750

540 PRINT “ Event status bit set”

550 WRTS = “*esr?”

560 CALL IBWRT (CNT%, WRTS)

570 ESRS$ = SPACES (255)

580 CALL IBRSP (CNT%, SPR%)

590 CALL IBRD (CNT%, ESRS)

600 ESR% = VAL (ESRS)

610 IF ESR% AND 32 THEN PRINT ™ Command error”

620 IF ESR% AND 16 THEN PRINT *“ Execution error”

630 IF ESR% AND 4 THEN PRINT *“ Query error”

640 N

650 ‘' — READ ERROR MESSAGES —

660 WRTS = “syst:err?”

670 ERRMESSS = SPACES (255)

680 CALL IBWRT (CNT$%, WRTS)

690 CALL IBRD (CNT%, ERRMESSS)

700 WHILE NOT INSTR (ERRMESSS$, “No erroxr”) <> 0

710 PRINT LEFTS$ (ERRMESSS, INSTR(ERRMESSS, CHRS (10)))

720 CALL IBWRT (CNT%, WRTS)

730 CALL IBRD (CNT%, ERRMESSS)

740 WEND

750 WEND

760 PRINT “PROGRAM TERMINATED”

770 END

4-10 GW-Basic for National Instruments PC-lIA, Setting Up the Interface

Programming Examples

6. Statistics

(Only for PM6680B and PM6681)

In this example, the counter makes 10000 measurements and uses the statistical func-
tions to determine MAX, MIN, MEAN, and Standard Deviation. All four results are
sent to the controller.

50 CNTNAMES = “DEV1Q"

60 CALL IBFIND (CNTNAMES, CNT%)

70

80 ¢

90 WRTS$ = “*RST; *CLS; *SRE 16; :FUNC ‘Freq 1’; :ACQ:APER MIN”"
100 CALL IBWRT (CNT%, WRTS)

110 WRTS = “:INP:LEV:AUTO Off”

120 CALL IBWRT (CNT%, WRTS)

130 ¢

140 ¥ — Enable statistics on 10000 measurements —
150 WRTS = “:CALC:AVER:STAT ON; COUN 10000"
160 CALL IBWRT (CNT%, WRTS)

170 °

180 Y ==== Start measurement ====

190 WRTS = “:Init; *OPC?”

200 CALL IBWRT (CNT%, WRTS)

210

220 ' — Wait for operation complete (MAV}) —
230 PRINT “WAITING FOR MEASUREMENT TO GET READY”
240 MASK% = &HS800

250 CALL IBWAIT (CNT%, MASK%)

260

270 ' — Read status and response —

280 CALL IBRSP (CNT%, SPR%)

290 MSG$ = SPACES (255)

300 CALL IBRD (CNT%, MSGS)

310 ¢

320 ' — Maximum —

330 WRTS$ = “:CALC:AVER:TYPE MAX; :CALC:IMM?”
340 CALL IBWRT (CNT%, WRTS)

350 MSGS = SPACES$ (255)

360 CALL IBRD (CNT%, MSGS)

370 PRINT “MAXIMUM = ”; LEFTS(MSGS, IBCNTS%)
380 ¢

390 ¥ — Minimum —

400 WRTS = “:CALC:AVER:TYPE MIN; :CALC:IMM?”
410 CALL IBWRT (CNT%, WRTS)

420 MSGS = SPACES (255)

GW-Basic for National Instruments PC-IIA, Setting Up the Interface 4-11

rrogramming £xamples

430 CALL IBRD (CNT%, MSGS$S)

440 PRINT “MINIMUM ="”; LEFTS$ (MSGS$, IBCNTS%)
450

460 Mean —

470 WRTS = “:CALC:AVER:TYPE MEAN; :CALC:IMM?”

480 CALL IBWRT (CNT%, WRTS)
490 MSGS$ = SPACES (255)
500 CALL IBRD (CNT%, MSGS)

510 PRINT “MEAN ="; LEFTS$ (MSGS$, IBCNT%)
520 ¢
530 ' — Standard deviation —

540 WRTS$ = “:CALC:AVER:TYPE SDEV; :CALC:IMM?”

550 CALL IBWRT (CNT%, WRTS)

560 MSG$ = SPACES$ (255)

570 CALL IBRD (CNT%, MSGS$)

580 PRINT “STANDARD DEVIATION =”; LEFTS$ (MSG$, IBCNT%)
590 END

4-12 GW-Basic for National Instruments PC-lIA, Setting Up the Interface

Programming Examples

‘C’ for National Instruments
PC-lIA

‘C’ for National Instruments PC-lIA

Fiograrinmng £xamples

1. Limit Testing

This program uses limit testing to check that the frequency is above a preset value.

#include “decl.h”
#include <stdio.h>
#include <process.h>

main ()

{
int Counter, Status, 1i;
char InString[80];

Counter = ibfind (“DEV10");

/*Set continuous frequency measurement*/

ibwrt (Counter, “*RST; *CLS; :FUNC ‘Freq 1’; :INIT:CONT ON",
41) ;

/*Enable limit monitoring, limit 1 MHz*/
ibwrt (Counter, “:CALC:LIM ON; LIM:UPP 1lE6; UPP:STAT ON”, 38);
ibwrt (Counter, “:STAT:DREGO:ENAB 2; *SRE 1", 26);

/*Wait until the limit is passed*/
printf (“*Waiting for limit to be passed\n”);
ibwait (Counter, RQS);

/**Read status and device status register**/
ibrsp (Counter, &Status);

ibwrt (Counter, “:STAT:DREGO:EVEN?”, 17);
ibrd(Counter, InString, 80);

/*Read frequency**/

ibwrt (Counter, “READ?”, 5);
ibrd(Counter, InString, 80);
InString{ibcnt] = ‘\0’;

printf (“Frequency = %$s\n”, InString);

/*Disable continuous measurement*/
ibwrt (Counter, “:INIT:CONT OFF”, 14);

exit (0) ;

4-14 ‘C’ for National Instruments PC-lIA, Limit Testing

Programming Examples

2. REAL Data Format

This program uses the REAL data format to speed up the measurement.

/* 1IEEE 488.2 binary real format follows the ‘little-endian’ format with the
most-significant byte first and the least-significant byte last. Intel processors use the
‘big-endian’ format, with the least-significant byte first, so we have to reverse the byte
order of the incoming block when running on a PC (Intel processor).

#include “decl.h”
#include <stdio.h>
#include <process.h>
#include <conio.h>

main ()

{
int Counter, 1i;
char InString([80];
double DoubleFreq;

Counter = ibfind(“DEV10"):;

/*Make the counter output it’s result in real format*/
ibwrt (Counter, “:FORM REAL”, 10);

/*Make continuous measurements until a key is hit*/
do { -

/*Make a measurement and read the result*/
ibwrt (Counter, “READ?”, 5);
ibrd (Counter, InString, 80);

/*Assign the bytes 3...10 of InString to DoubleFreq bytes
7...0.
The format of InString is #18*x****xx*x = ywhere Wx***x*x&kxxw
represents the value.*/
for (i=0; i<8; i++)

((unsigned char *)&DoubleFreq) [7-i] = InString[3+i];

/*Print the result*/
printf (“%le\n”, DoubleFreq) ;
} while (!kbhit()):

/*Restore ascii output format*/
ibwrt (Counter, “:FORM ASCII”, 11);

exit (0);

‘C’ for National Instruments PC-IIA, Real Data Format 4-15

rrogramming £xampies

3. Frequency Profiling

Frequency profiling visualizes frequency variations for a certain time. This program
gives an output file called:

PROFILE.DAT. If this file is imported to a spreadsheet program, such as Excel, you
can create a graph like the one in the figure below.

200 -
180 -
160 -
1401
120 -
100 -

0 | 0.02 | 004 Time

Figure 4-2 This figure is the results of frequency profiling on a
sweep generator.

Frequency

#include “decl.h”
#include <stdio.h>
#include <process.h>
#include <string.h>

main ()
{
int Counter, 1i;
char ArmString[80],
InString([80];
double ArmDelay;
FILE *ofp;

if (ofp = fopen(“PROFILE.DAT”, “w”)) {
Counter = ibfind(“DEV1O0") ;

/*Enable arming, etc.*/
ibwrt (Counter, “:TRIG:COUN 1; :ARM:COUN 1", 25);

4-16 ‘C’ for National Instruments PC-lIA, Frequency Profiling

Programming Examples

ibwrt (Counter, “:INP:LEV:AUTO ONCE”, 18);
ibwrt (Counter, “:DISP:ENAB OFF; :ACQ:APER 1lE-6", 30);

ArmDelay=200e-9;
/*CAPTURE PROFILE*/
Printf (“Profiling”);
for (i=0; i<1000; i++) {
/*Set arming delay time*/
sprintf (ArmString, “:ARM:DEL %le”, ArmDelay);
ibwrt (Counter, ArmString, strlen(ArmString));
/*Measure and read result*/
ibwrt (Counter, “READ?”, 5);
ibrd (Counter, InString, 80};
InString[ibcnt] = *\0’;

/*Write arming delay time and result to file*/
fprintf (ofp, “%le, %s”, ArmDelay, InString);

/*Increase arming delay*/

ArmDelay += 100e-9;
}

ibwrt (Counter, “:DISP:ENAB ON”, 13);

/*Close file*/
Fclose (ofp);

} else
printf (“CANT OPEN FILE”);

exit (0);

4-17 ‘C’ for National Instruments PC-IIA, Frequency Profiling

rroytatiitinigy cAalipies

4. Fast Sampling

This program makes a quick array measurement and stores the results in the internal
memory of the counter. Then it writes the results to a file called MEAS.DAT. The
measurement results as a function of the samples can be visualized in a spreadsheet
program, such as Excel.

#include “decl.h”
#include <stdio.h>
#include <process.h>
#include <string.h>

main ()

{
int Counter, Status, 1i;
char InString[80];
FILE *ofp;

if (ofp = fopen(“MEAS.DAT”, “w”)) {
Counter = ibfind (“*DEV10") ;

/*Clear status*/
ibwrt (Counter, “*CLS”, 4);

/*Enable 1000 measurement with maximum speed*/

ibwrt (Counter, “:TRIG:COUN 1000; :ARM:COUN 1", 28);

ibwrt (Counter, “:INP:LEV:AUTO ONCE; :CAL:INT:AUTO OFF”, 37);
ibwrt (Counter, “:DISP:ENAB OFF; :INT:FORM PACKED”, 32);
ibwrt (Counter, “:ACQ:APER MIN; :AVER:STAT OFF”, 32);

/**Enable SRQ on operation complete**/
ibwrt (Counter, “*ESE 1; *SRE 32", 15);

/*Start measurement*/
printf (“Measuring\n”);
ibwrt (Counter, “INIT; *OPC”, 10);

/*Wait for operation complete*/
ibwait (Counter, RQS);

/**Read status and event status register**/

ibrsp (Counter, &Status);
ibwrt (Counter, “*ESR?”, 5);

4-18 ‘C’ for National Instruments PC-lIA, Fast Sampling

Frogramming Exampiles

ibrd (Counter, InString, 80);
printf (“Fetching result”);

for (i=0; i<1000; i++) {
/*Fetch one result*/
ibwrt (Counter, “FETCH?"”, 6);
ibrd (Counter, InString, 80);
InString[ibcnt] = *\0’;

/*Write result to file*/

fprintf (ofp, “%d, %s”, i, InString):;
}

ibwrt (Counter, “:DISP:ENAB ON”, 13);

/*Close file*/
Fclose (ofp);

} else
printf (“CANT OPEN FILE");

exit (0);

‘C’ for National Instruments PC-IIA, Fast Sampliing 4-19

riuylatiiniigy SAAHIPISS

6. Statistics

(Only for PM6680B and PM6681)

In this example, the counter makes 10000 measurements and uses the statistical func-
tions to determine MAX, MIN, MEAN, and Standard Deviation. All four results are
sent to the controller.

#include “decl.h”
#include <stdio.h>
#include <process.h>

main ()

{

int Counter, Status, i;
char InString(801];

Counter = ibfind (“DEV1O0"):;

ibwrt (Counter, “*CLS; *SRE 16", 13);

ibwrt (Counter, “*RST; :FUNC ‘Freq 1’; :ACQ:APER MIN”, 38);
ibwrt (Counter, “:INP:LEV:AUTO OFF”, 17);

/*Enable statistics on 10000 measurements*/
ibwrt (Counter, “:CALC:AVER:STAT ON; COUN 10000", 30);
ibwrt (Counter, “:TRIG:COUN 10000%, 16);

/*Start measurement*/
ibwrt (Counter, “:Init; *OPC?2”, 12):

/*Wait for operation complete (MAV)*/
printf (“Waiting for measurement to get ready\n”);
ibwait (Counter, RQS);

/**Read status and response**/
ibrsp(Counter, &Status);
ibrd (Counter, InString, 80);

/*Read maximum value**/
ibwrt (Counter, “:CALC:AVER:TYPE MAX; :CALC:IMM?”, 31);

ibrd(Counter, InString, 80);
InString[ibcnt] = ‘\0’;
printf ("Maximum = %s\n”, InString);

4-20 ‘C’ for National Instruments PC-lIA, Statistics

Frogramming kExamples

/*Read minimum value*/

ibwrt (Counter, “:CALC:AVER:TYPE MIN; :CALC:IMM?”, 31);
ibrd (Counter, InString, 80);

InString{ibcnt] = *\0’:

printf (“Minimum = %s\n”, InString);

/*Read mean value*/

ibwrt (Counter, “:CALC:AVER:TYPE MEAN; :CALC:IMM?”, 32);
ibrd (Counter, InString, 80);

InString[ibent] = *\0’;

printf (*Mean = %$s\n”, InString):

/*Read standard deviation value*/

ibwrt (Counter, “:CALC:AVER:TYPE SDEV; :CALC:IMM?”, 32);
ibrd (Counter, InString, 80);

InString[ibcnt] = ‘\0’;

printf (“Standard deviation = %s\n”, InString);

exit (0);

‘C’ for National Instruments PC-IIA, Statistics 4-21

riuylanininiyg cAallpied

This side is intentionally left blank.

4-22 ‘C’for National Instruments PC-IIA

Chapter 5

Instrument Model

Instrument Model

Introduction

The figure below shows how the instru-
ment functions are categorized. This in-
strument model is fully compatible with
the SCPI generalized instrument model.

The generalized SCPI instrument model,
contains three major instrument catego-
ries as shown in the following table:

An instrument may use a combination of
the above functions. The CNT-8X coun-
ters belong to the signal acquisition cate-
gory, and only that category is described
in this manual.

The instrument model in Figure 5-1 de-
fines where elements of the counter lan-
guage are assigned in the command
hierarchy. The major signal function ar-
eas are shown broken into blocks. Each
of these blocks are major command
sub-trees in the counter command lan-

guage.

The instrument model also shows how
measurement data and applied signals
flow through the instrument. The model
does not include the administrative data
flow associated with queries, commands,
performing calibrations etc.

Function |Instrument |Examples
type
Signal ac-| Sense in- |Voltmeter, Os-
quisition |struments |[cilloscope,
Counter

Signal Source in- | Pulse genera-
genera- |struments |tor, Power sup-
tion ply

Signal Switch in- | Scaners,(de)-m
routing struments [ultiplexers
Inputs Channels

A > !

B >

C >

E >
Figure 5-1

able on PM6685.

5-2 Introduction

CNT-8X Instrument model. Note that Input B (channel 2) is not avail-

Instrument Model

Measurement
Function Block

The measurement function block converts
the input signals into an internal data for-
mat that is available for formatting into
GPIB bus data. The measurement func-
tion is divided into three different blocks:
INPut, SENSe and CALCulate. See

Figure 5-3.

m [INPut

The INPut block performs all the signal
conditioning of the input signal before it
is converted into data by the SENSe

block. The INPut block includes cou-
pling, impedance, filtering etc.

m SENSe

The SENSe block converts the signals
into internal data that can be processed by
the CALCulate block. The SENSe com-
mands control various characteristics of
the measurement and acquisition process.
These include: gate time, measurement
function, resolution, etc.

m CALCulate

The CALCulate block performs all the
necessary calculations to get the required
data. These calculations include: calibra-
tion, statistics, mathematics, etc.

Figure 5-2
available on PM6685

CNT-8X Measurement model. Note that Input B (channel 2) is not

Measurement Function Block 5-3

Instrument Model

Other Subsystems

In addition to the major functions (sub-
systems), there are several other subsys-
tems in the instrument model.

The different blocks have the following
functions.

m CAlLibration

This subsystem controls the calibration of
the interpolators used to increase the res-
olution of the CNT-8X counters.

m DISPlay

Commands in this subsystem control
what data is to be present on the display
and whether the display is on or off.

s FORMat

The FORMat block converts the internal
data representation to the data transferred
over the external GPIB interface. Com-
mands in this block control the data type
to be sent over the external interface.

® MEMory

The MEMory block holds macro and in-
strument state data inside the counter.

® OUTPut

This subsystem controls the analog out-
put available in the CNT-8X counters.

m STATus

This subsystem can be used to get infor-
mation about what is happening in the in-
strument at the moment.

5-4 Other Subsystems

® Synchronization

This subsystem can be used to synchro-
nize the measurements with the control-
ler.

m SYSTem

This subsystem controls some system pa-
rameters like timeout.

m TEST

This subsystem tests the hardware and
software of the counter and reports errors.

= TRIGger

The trigger block provides the counter
with synchronization capability with ex-
ternal events. Commands in this block
control the trigger and arming functions
of the Timer/ Counter.

Order of Execution

— All commands in CNT-8X counters are se-
quential, i.e., they are executed in the same
order as they are received.

— If a new measurement command is re-
ceived when a measurement is already in
progress, the measurement in progress will
be aborted unless %WATI is used before the
command.

Instrument Model

MEASurement
Function

In addition to the subsystems of the in-
strument model, which controls the in-
strument functions, SCPI has
signal-oriented functions to obtain mea-
surement results. This group of MEASure
functions has a different level of compati-
bility and flexibility. The parameters used
with commands from the MEASure
group describe the signal you are going to
measure. This means that the MEASure
functions give compatibility between in-
struments, since you don’t need to know

anything about the instrument you are us-
ing. See Figure 5-3.

® MEASure?

This is the most simple command to use,
but it does not offer much flexibility. The
MEASure? query lets the counter config-
ure itself for an optimal measurement,
start the data acquisition, and return the
result.

® CONFigure; READ?

The CONFigure command makes the
counter choose an optimal setting for the
specified measurement. CONFigure
may cause any device setting to change.

GPIB

Figure 5-3

CNT-8X Measurement Function

Note that Input B (channel 2) is not available on PM6685.

MEASurement Function 5-5

instrument Model

READ? starts the acquisition and returns
the result.

This sequence does the same as the MEA-
Sure command, but now it is possible to
insert commands between CONFigure
and READ? to adjust the setting of a par-
ticular function (called fine tuning). For
instance, you can set an input attenuator
at a required value.

® CONFigure; INITiate;FETCh?

The READ? command can be divided
into the INITiate command, which starts
the measurement, and the FETCh? com-
mand, which requests the instrument to
return the measuring results to the con-
troller.

Versatility of Measurement Com-
mands

MEASure? Simple to use,, few
additional possibili-
ties.

CONFigure Somewhat more

READ? difficult,, but some
extra possibilities.

CONFigure Most difficult to

INITiate use,, but many ex-

FETCh? tra features.

5-6 MEASurement Function

Chapter 6

Using the
Subsystems

Using the Subsystems

Introduction

Although SCPI is intended to be self ex-
planatory, we feel that some hints and
tips on how to use the different subsys-
tems may be useful. This chapter does

6-2

not explain each and every command,
but only those for which we believe extra
explanations are necessary.

Using the Subsystems

Calculate Subsystem

The calculate subsystem processes the
measuring results. Here you can recalcu-
late the result using mathematics, make
statistics (not PM6685) and set upper and
lower limits for the measuing result that
the counter itself monitors and alerts you
when the limits are exceeded.

® Mathematics

The mathematic functions are the same as
on the front panel.

B Statistics

The PM6680B and PM6681 can calculate
and display the MIN, MAX, MEAN and
standard deviation of a given number of
samples. The statistic functions are the
same as on the front panel.

® Limit Monitoring

Limit monitoring makes it is possible to
get a service request when the measure-
ment value falls below a lower limit or
rises above an upper limit. Two status
bits are defined to support limit monitor-
ing. One is set when the results are
greater than the UPPer limit, the other is
set when the result is less than the
LOWer limit. The bits are enabled using
the standard *SRE command and
: STAT : DREGO : ENAB. Using both these
bits, it is possible to get a service request
when a value passes out of a band (
UPPer is set at the upper band border and
LOWer at the lower border) OR when a
measurement value enters a band
(LOWer set at the upper band border and
UPPer set at the lower border).

Turning the limit monitoring calculations
on/off will not influence the status regis-
ter mask bits which determine whether or
not a service request will be generated
when a limit is reached. Note that the cal-
culate subsystem is automatically enabled
when limit monitoring is switched on.
This means that other enabled calculate
sub-blocks are indirectly switched on.

Calculate Subsystem 6-3

Using the Subsystems

Calibration

The interpolators used to increase the res-
olution of the measurement result in the
counter must be calibrated to maintain the
highest possible accuracy of the counter.

The calibration method of the PM6681
differs from the method wused in
PM6680B and PM6685.

= PM6680B, PM6685

The intepolators are automatically cali-
brated before each measurement. This
procedure takes only a fraction of a sec-
ond, but to increase speed, you can turn
off the auto calibration.

6-4 Calibration Subsystem

Subsystem

= PM6681

In PM6681, the interpolators are factory
calibrated. Calibration must be performed
only after repair and can be performed at
your local Service centers.

If the calibration is lost for any reason,
the counter will show ZL{AL. LOSEZ.
By pressing PRESET you can bypass this
message and use the counter anyway,
however you must press the front panel
key. No bus command takes you past this
erTor message.

This is so that you cannot bypass the
message by mistake, and run a test sys-
tem without a calibrated instrument.

Using the Subsystems

Configure Function

The CONFigure command sets up the
counter to make the same measurements
as the MEASure query, but without initi-
ating the measurement and fetching the
result. Use configure when you want to

change any parameters before making the
measurement.

Read more about Configure under MEA-
Sure.

Configure Function 6-5

Using the Subsystems

Format Subsystem

Time Stamp
Readout Format

It is not trivial to decide how time
stamped measurements are to be pre-
sented on the bus. If the ‘ADIF’ format
defined by SCPI is adopted, it should be
adopted for all data readout, and switched
on and off by the already standardized
:FORMat:DINTerchange command. This
format covers the appropriate readout for-
mat for time stamped measurements well,
so when it is selected as output format,
there is not any problem. But the user
may still decide not to use the ADIF for-
mat, so we need a solution to the readout
problem whether or not we decide to im-
plement ADIF. The chosen one is as fol-
lows:

For :FETCh:SCALar?, :READ:SCALar?
and :MEASure:SCALar?, the readout
will consist of two values instead of one.

6-6 Format Subsystem

The first will be the measured value, and
the next one will be the timestamp value,
given in seconds in the NR2 format
ddd.ddddddddd (12 digits).

In :FORMat ASCii mode, the result will
be given as a floating-point number (NR3
format) followed by integers (NR1 for-
mat). In :FORMat REAL mode, the result
will be given as an eight-byte block con-
taining the floating-point measured value,
followed by a four-byte block containing
the integer timestamp count, where each
count represents 125 nanoseconds.

When doing readouts in array form, with
:FETCh :ARRay?, :READ :ARRay? or
:MEASure :ARRay?, the response will
consist of alternating measurement values
and timestamp values, formatted the same
way as for scalar readout. All values will
be separated by commas.

Using the Subsystems

Input Subsystems

PM6685

INP:FILT OFF

Comator

INP:SLOP POS

s

A-——I-|:|—H ») Y

INP:FILT ON
INP:IMP 1E6 ¥ INP:IMP 50

INP:HYST <value in Volt>

INP:LEV <value in Volt>

Trigger points

Reset points

INP:SLOP NEG

Figure 6-1 Summary of PM6685 input amplifier settings.

Input Subsystems 6-7

UDIIY UIC OUUSYSLICIIS

PM6680B/PM6681

INP:COUP AC
INP:COUP DC INP:FILT OFF INP:SLOP POS

—HRE

INP:FILT ON INP:SLOP NEG

INP:IMP 1E6 INP:IMP 50

INP:ATT 1 INP:ATT 10

INP2:COUP AC
 —
INP2:COUP DC INP2:COMM ON INP2:SLOP POS

——i/r ‘——K._.g

INP2:COMM OFF
INP2:SLOP NEG
INP2:IMP 1E6 Yy INP2:IMP 50
INP2:ATT 1 INP2:ATT 10
- INP4:SLOP POS
E — 4
INP4:SLOP NEG

Figure 6-2 Summary of PM6680B / PM6681 input amplifier settings.

6-8 Input Subsystems

Using the Subsystems

Measurement Function

The Measure function group has a differ-
ent level of compatibility and flexibility
than other commands. The parameters
used with commands from the Measure
group describe the signal you are going to
measure. This means that the Measure
functions give compatibility between in-
struments, since you don’t need to know
anything about the instrument you are us-
ing.

MEASure?

This is the most simple query to use, but
it does not offer much flexibility. The
MEASure? query lets the instrument con-
figure itself for an optimal measurement,
starts the data acquisition, and returns the
result.

m Example:
SEND— MEASure:FREQ?

This will execute a frequency measurement
and the result will be sent to the controller.
The instrument will select a setting for this
purpose by itself, and will carry out the re-
quired measurement as “well” as possible;
moreover, it will automatically start the
measurement and send the result to the
controller.

You may add parameters to give more

details about the signal you are going to
measure, for example:

SEND— MEASure:FREQ?.20_MHz, 1

Where: 20 MHz is the expected value,
which can, of course, also be sent as
20E6, and 1 is the required resolution.
(1 Hz)

Also the channel numbers can be speci-
fied, for example:

SEND— MEASure:FREQ?.(@3)
SEND— MEASure:FREQ?..20E6,
1, (1)

CONFigure; READ?

The CONFigure command causes the in-
strument to choose an optimal setting for
the specified measurement. CONFigure
may cause any device setting to change.
READ? starts the acquisition and returns
the result.

This sequence operates in the same way
as the MEASure command, but now it is
possible to insert commands between
CONFigure and READ? to fine tune the
setting of a particular function. For exam-
ple, you can change the input impedance
from 1 MQ to 50 Q.

Measurement Function 6-9

Using the Subsystems

m Example:
SEND— CONFigure:FREQ.2EG6, 1

2E6 is the expected value
1 is the required resolution (1Hz)

SEND— INPut:IMPedance50_0OHM

Sets input impedance to 50
SEND- READ?

Starts the measurement and returns the
result.

CONFigure;INITiate;FETCh?

The READ? command can be divided
into the INITiate command, which starts
the measurement, and the FETCh? com-
mand, which requests the instrument to
return the measuring results to the con-
troller.

®m Example:
SEND- CONFigure:FREQ.20E6, 1

6-10 Measurement Function

20E®6 is the expected signal value
1 is the required resolution

SEND— INPut:IMPedancelE_6

Sets input impedance to 1 MQ

SEND— INITiate

Starts measurement
SEND— FETCh?

Fetches the result

Versatility of measurement com-
mands

MEASure? |[Simple to use, few addi-
tional possibilities.

CONFigure |Somewhat more difficult,

READ? but some extra possibili-
ties.

CONFigure |Most difficuit to use, but

INITiate many extra features.

FETCh?

Using the Subsystems

Output Subsystem

The analog output is turned off as a de-
fault. You turn it on/off and set the scal-

ing factor under ANALOG OUT in the
aux menu.

Scaling factor selects

full scale value
67890 on the display 999 scaling factor 1
gives 3.38V with 250 scaling factor 4
scaling factor 1

0as
ANALOG OUT
< connector
E (2244618907~ . ¥ o siaioo :vgj
g = 4—!—-» 4= d @30 0,
Scaling exponent moves = - [« —i 212 2 2f
insertion point i G CHE =
on | N P Lo

Analog Out = ON, set scaling factor and exponent

The analog output func-
tion.

Figure 6-3

Scaling Factor
The scaling factor has two functions:

— Its exponent selects which digits to output
on the analog output.

— Its value sets what reading should represent
full scale.

As default, the scaling factor is 1 (1E0).
This means that the full scale value is
0.999 and the analog output converts the
fraction (digits to the right of the decimal
point) to a voltage.

The scaling factor should1 be:

full scale value

where full scale value is the value for
which you want the analog output to out-
put its maximum voltage (5 V).

Scaling factor=

Example:

— Take a measurement result, for instance:
12.34567890 E+6 Hz

— Represent this result without exponent:
12345678.90 Hz

— Multiply this value with the scaling factor,
for instance 0.001.
12345.67890

— Take the fractional part of the result:
67890

Output Subsystem 6-11

Using the Subsystems

— This is the value that will determine the
output voltage; .00 will give 0 V and .99
will give 5 V. This means that the reading
will give:

.67890*5=3.3945 V.
This is ouput as 3.38 V due to the 0.02 V
resolution of the analog output.

123456 1690 ©

Same exponent, opposite sign

Scaling factor = 1E-6 "“""'—\\
1034956 7830 °

Figure 6-4 To use the shown deci-
mal point as reference,
set the exponent of the
scaling factor to the
same value as the expo-
nent of the measurement
result but with opposite
sign.

6-12 Output Subsystem

m Resolution

The analog output range is 0 to 5 V in
250 steps, so one step is 0.02 V. If the
scaling factor is 1, one such step is taken
each time the display changes with
X.004, and if the scaling factor is 4, one
step is taken each time the display
changes with X.001.

The X in the above paragraph can be any
digit and does not influence the output
voltage. If the display changes from
0.996 to 1.000, the voltage drops from
498 V to OV. If the display value in-
creases further, the output voltage starts

Output voltage Scaling factor 1
4.98 V
0.00V D—»
\L/ el
0.000 [1. /acoo Displayed
0.996 1906 value
Output voltage Scaling factor 4

Figure 6-5 Output voltage versus
displayed value for two
different scaling factors.

to increase again; see .

Using the Subsystems

Sense Command
Subsystems

Depending on application, you can select
different input channels and input charac-
teristics.

® Switchbox

In automatic test systems, it is difficult to
swap BNC cables when you need to mea-
sure on several measuring points. With
PM6680B/1 you can select from three
different basic inputs (A, B and E), on
which the counter can measure directly
without the need for external switching
devices. With PM6685 you can select
from two different basic inputs (A and E).

® Prescaling

For all measuring functions except fre-
quency, the maximum input A frequency
is 160 MHz.

To extend the range for frequency mea-
surements, PM6680B and PM6685 can
divide (scale) the input A frequency by
two, while PM6681 scales by four.

When using channel 1, the counter auto-
matically selects this scaling factor when
measuring FREQ A, giving 300 MHz
max frequency for PM6681 and PM668S5,
and 225 MHz for PM6680B.

For all other measuring functions, and for

frequency if you select negative slope,
the counter does not divide the signal and
the max repetition rate is 160 MHz.

Sense Command Subsystem 6-13

Using the Subsystems

Status Subsystem

Introduction

Status reporting is a method to let the
controller know what the counter is do-
ing. You can ask the counter what status
it is in whenever you want to know.

You can select some conditions in the
counter that should be reported in the Sta-
tus Byte Register. You can also select if
some bits in the Status Byte should gen-
erate a Service Request (SRQ).

(An SRQ is the instrument’s way to call
the controller for help.)

Status Reporting Model

@ The Status Structure

The status reporting model used by
CNT-8X is standardized in IEEE 488.2
and SCPI, so you will find similar status
reporting in most modern instruments.
Figure 6-6 shows an overview of the
complete CNT-8X status register struc-
ture. It has four registers, two queues, and
a status byte:

— The Standard Event Register reports the
standardized IEEE 488.2 errors and condi-
tions.

6-14 Status Subsystem

~— The Operation Status Register reports the
status of the CNT-8X measurement cycle
(see also ARM-TRIG model, page 6-27).

— The Questionable Data Register reports
when the output data from the CNT-8X
may not be trusted.

— The Device Register 0 reports when the
measuring result has exceeded prepro-
grammed limits.

— The Output Queue status reports if there
is output data to be fetched.

— The Error Queue status reports if there
are error messages available in the error
queue.

— The Status Byte contains eight bits. Each
bit shows if there is information to be
fetched in the above described registers
and queues of the status structure.

Using the Registers

Each status register monitors several con-
ditions at once. If something happens to
any one of the monitored conditions, a
summary bit is set true in the Status Byte
Register.

Enable registers are available so that you
can select what conditions should be re-

Using the Subsystems

ported in the status byte, and what bits in
the status byte should cause SRQ.

A register bit is TRUE, i.e., some-
thing has happened, when it is
setto 1. It is FALSE when set to
0.

Note that all event registers and the status
byte records positive events. That is when
a condition changes from inactive to ac-

tive, the bit in the event register is set
true. When the condition changes from
active to inactive, the event register bits
are not affected at all.

When you read the contents of a register,
the counter answers with the decimal sum
of the bits in the register.

Event Register

Logical OR

Condition Register

Logical OR

Condition Reglster

T
SUEREERNREE

Loglcal OR
I

Event Registe

NEERERRNRRNRNN

Enable Register

GEECRACERALE

T

716154 | 3 2[1 | 0 IStatus Byte Register

[Service Request Enable I

NN EE
I |

Logical OR

SRQ message

Figure 6-6

CNT-8X Status register structure.

Status Subsystem 6-15

Using the Subsystems

Example:

The counter answers 40 when you ask for
the contents of the Standard Event Status
Register.

— Convert this to binary form. It will give
you 101000.

— Bit 5 is true showing that a command error
has occurred.

— Bit 3 is also true, showing that a device de-
pendent error has occurred.

Use the same technique when you pro-
gram the enable registers.

— Select which bits should be true.

— Convert the binary expression to decimal
data.

— Send the decimal data to the instrument.

Clearing/Setting all bits

— You can clear an enable register by pro-
gramming it to zero. You can set all bits
true in a 16-bit event enable register by
programming it to 32767 (bit 16 not used).

— You set all bits true in 8-bit registers by
programming them to 255 (Service Re-
quest Enable and Standard Event Enable.)

® Using the Queues

The two queues, where CNT-8X stores
output data and error messages, may con-
tain data or be empty. Both these queues
have their own status bit in the Status
Byte. If this bit is true there is data to be
fetched.

When the controller reads data, it will
also remove the data from the queue. The
queue status bit in the status byte will re-
main true for as long as the queue holds

6-16 Status Subsystem

one or more data bytes. When the queue
is empty, the queue status bit is set false.

Status of the Output Queue (MAV)

The MAV (message available) queue sta-
tus message appears in bit 4 of the status
byte register. It indicates if there are bytes
ready to be read over the GPIB in the
GPIB output queue of the instrument.
The output queue is where the formatted
data appears before it is transferred to the
controller.

The controller reads this queue by ad-
dressing the instrument as a talker. The
command to do this differs between dif-
ferent programming languages. Examples
are IOENTERS and IBREAD.

Status of the Error Message Queue
(EAV)

The EAV (error message available)
queue status message appears in bit 2 of
the status byte register. Use the
:SYSTem: ERRox? query to read the er-
ror messages. Chapter 21 explains all
possible error messages .

B Using the Status Byte

The status byte is an eight bit status mes-
sage. It is sent to the controller as a re-
sponse to a serial poll or a *STB? query,
see Figure 6-7. Each bit in the status byte
contains a summary message from the
status structure. You can select what bits
in the status byte should generate a ser-
vice request to alert the controller.

When a service request occurs, the
SRQ-line of the GPIB will be activated.
Whether or not the controller will react
on the service request depends on the
controller program. The controller may
be interrupted on occurrence of a service

Using the Subsystems

request, it may regularly test the
SRQ-line, it may regularly make serial
poll or *STB?, or the controller may not
react at all. The preferred method is to
use SRQ because it presents a minimum
of disturbance to the measurement pro-
cess.

Selecting Summary Message to Gen-
erate SRQ

The counter does not generate any SRQ
by default. You must first select which
summary message(s) from the status byte
register should give SRQ. You do that
with the Service Request Enable com-
mand *SRE <bit mask>.

Example:
*SRE.16
This sets bit 4 (1 6=2*) in the service request
enable register (see Figure 6-8). This
makes the instrument signal SRQ
when a message is available in the
output queue.

RQS/MSS

The original status byte of IEEE 488.1 is
sent as a response to a serial poll, and bit
6 means requested service, RQS.

IEEE 488.2 added the *STB? query and
expanded the status byte with a slightly
different bit 6, the MSS. This bit is true

R
& R
&
O
¢ Q
A
) A
&
@
o"'&g
7
Service
- Request Stat.us Byte
y [Generation Register
A
SRQ
signal
Figure 6-7 The status byte bits.

Status Subsystem 6-17

Using the Subsystems

as long as there is unfetched data in any
of the status event registers.

— The Requested Service bit, RQS, is set true
when a service request has been signalled.
If you read the status byte via a Serial Poll,
bit 6 represents RQS. Reading the status
byte with a serial poll will set the RQS bit
false, showing that the status byte has been
read.

— The Master Summary Status bit, MSS, is
set true if any of the bits that generates
SRQ is true. If you read the status byte us-
ing *STB?, bit 6 represents MSS. MSS re-
mains true until all event registers are
cleared and all queues are empty.

Setting up the Counter to
Report Status

Include the following steps in your pro-
gram when you want to use the status re-
porting in CNT-8X:

— *CLS Clears all event registers and the er-
TOr queue

— *ESE <bit mask> Selects what condi-
tions in the Standard Event Status register
should be reported in bit 5 of the status
byte

— :STATus:0PERation:ENABle <bit
mask> Selects which conditions in the
Operation Status register should be re-
ported in bit 7 of the status byte

— :STATus:QUEStionable:ENABle
<bit mask> Selects which conditions in
the Questionable Status register should be
reported in bit 3 of the status byte

— :STATus:DREGister0:ENABle
<bit mask> Selects which conditions
in Device Register 0 should be reported in
bit 0 of the status byte

6-18 Status Subsystem

— *SRE <bit mask> Selects which bits
in the status byte should cause a Service
Request

A programming example using status re-
porting is available in the Programming
Examples in chapter 4.

Reading and Clearing Status
m Status Byte

As explained earlier, you can read the sta-
tus byte register in two ways:

Using the Serial Poll (IEEE-488.1 de-
fined).

— Response:

- Bit 6: RQS message, shows that the
counter has requested service via the
SRQ signal.

— Other bits show their summary mes-
sages

— A serial poll sets the RQS bit
FALSE, but does not change other
bits.

Using the Common Query *STB?

— Response:

~ Bit 6: MSS message, shows that
there is a reason for service request.

— Other bits show their summary mes-
sages.

— Reading the response will not alter
the status byte.

m Status Event Registers

You read the Status Event registers with
the following queries:

Using the Subsystems

— *ESR? Reads the Standard Event Status
register

— :STATus:OPERation? Reads the
Operation Status Event register

— :STATus:QUEStionable? Reads the
Questionable Status Event register

— :STATus : DREGister0? Reads Device
" Event register

When you read these registers, you will
clear the register you read and the sum-
mary message bit in the status byte.

You can also clear all event registers with
the *CLS (Clear Status) command.

m Status Condition Registers

Two of the status register structures also
have condition registers: The Status Op-
eration and the Status Questionable regis-
ter.

The condition registers differ from the
event registers in that they are not
latched. That is, if a condition in the
counter goes on and then off, the condi-
tion register indicates true while the con-
dition is on and false when the condition
goes off. The Event register that monitors
the same condition continues to indicate
true until you read the register.

— :STATus:0OPERation:CONDition?
Reads the Operation Status Condition reg-
ister

— :STATus:QUEStionable:CONDi-
tion? Reads the Questionable Status
Condition register

Reading the condition register will not af-
fect the contents of the register.

Why Two Types of Registers?

Let’s say that the counter measures con-
tinuously and you want to monitor the

measurement cycle by reading the Opera-
tion Status register.

Reading the Event Register will always
show that a measurement has started, that
waiting for triggering and bus arming has
occurred and that the measurement is

stopped. This information is not very use-
ful.

Reading the Condition Register on the
other hand gives only the status of the
measurement cycle, for instance “Mea-
surement stopped”.

IS5y

Although it is possible to read the
condition registers directly, we
recommend that you use SRQ
when monitoring the measure-
ment cycle. The measurement
cycle is disturbed when you read
condition registers.

® Summary:

The way to work when writing your bus
program is as follows:

Set up

— Set up the enable registers so that the
events you are interested in are summa-
rized in the status byte.

— Set up the enable masks so that the condi-
tions you want to be alerted about generate
SRQ. It is good practice to generate SRQ
on the EAV bit. So, enable the EAV-bit via
*SRE.

Check & Action
— Check if an SRQ has been received.

- Make a serial poll of the instruments
on the bus until you find the instru-
ment that issued the SRQ (the instru-
ment that has RQS bit true in the Sta-
tus Byte).

Status Subsystem 6-19

Using the Subsystems

- When you find it, check which bits
in the Status Byte Register are true.

— Let’s say that bit 7, OPR, is true.
Then read the contents of the Opera-
tion Status Register. In this register
you can see what caused the SRQ.

— Take appropriate actions depending
on the reason for the SRQ.

Standard Status Registers

These registers are called the standard
status data structure because they are
mandatory in all instruments that fulfill
the IEEE 488.2 standard.

Standard Event

PON URQCME EXE DDE QYE RQC OPC

Status Register | 7

6

204 312

1.0

*ESR?

*ESE <NRf>|Standard Event Status Enable

"ESE? I A A) o
Logical OR Queue
Output Queue not empty
Sonics RQ) Stat.us Byte
rRequest | 7| G |esejmav| 3| 2[4 | Q] Register
rGeneration MS <. ..read by *STB?
SRQ
ignal
slgna Service Request Enable | * SRE_<NRf>
| | I I SRE?
Logical OR

Figure 6-8 Standard status data structures, overview.

6-20 Status Subsystem

Using the Subsystems

m Standard Event Status Register
Bit 7 (weight 128) — Power-on (PON)

PON URQ CME EXE DDE QYE RQC OPC
tandard Event
tatus Register | 7| G| 5| 4| 3| 2| 1| O
*ESR 128 64 32 16 8 4 2 1

Power ON -] l
User Request
Command Error

Execution Error
Device Dependent Error

Query Error
Not used (Request Control) -]
Operation Complete

Figure 6-9 Bits in the standard event
status register

Shows that the counter’s power supply has
been turned off and on (since the last time
the controller read or cleared this register).

Bit 6 (weight 64)—User Request (URQ)

Shows that the user has pressed a key on
the front panel of CNT-8X (except LO-
CAL/PRESET). The URQ bit will be set
regardless of the remote local state of the
counter. The purpose of this signal is, for
example, to call for the attention of the
controller by generating a service request.

Bit 5 (weight 32) — Command Error
(CME)

Shows that the instrument has detected a
command error. This means that it has re-
ceived data that violates the syntax rules
for program messages.

Bit 4 (weight 16) — Execution Error
(EXE)

Shows that the counter detected an error
while trying to execute a command. (See
‘Error reporting’ on page 3-17.) The
command is syntactically correct, but the
counter cannot execute it, for example
because a parameter is out of range.

Bit 3 (weight 8) — Device-dependent
Error (DDE)

A device-dependent error is any device
operation that did not execute properly
because of some internal condition, for
instance error queue overflow. This bit
shows that the error was not a command,
query or execution error.

Bit 2 (weight 4) — Query Error (QYE)

The output queue control detects query er-
rors. For example the QYE bit shows the
unterminated, interrupted, and deadlock
conditions. For more details, see ‘Error re-
porting’ on page 3-17.

Bit 1 (weight 2)—Request Control (RQC)
Shows the controller that the device

wants to become the active control-
ler-in-charge. Not used in the CNT-8X.

Bit 0 (weight 1) — Operation Complete
(OPC)

The counter only sets this bit TRUE in re-
sponse to the operation complete com-
mand (*OPC). It shows that the counter
has completed all previously started ac-
tions.

® Summary, Standard Event
Status Reporting

*ESE <bit mask>

Enable reporting of Standard Event Sta-
tus in the status byte.

*SRE 32

Enable SRQ when the Standard Event
structure has something to report.

Status Subsystem 6-21

Using the Subsystems

ESR?

Reading and clearing the event register of
the Standard Event structure.

SCPI-defined Status
Registers

CNT-8X has two 16-bit SCPI-defined
status structures: The operation status and
the questionable data structure. These
group is 16-bits wide while the status
byte and the standard status groups are
8-bits wide.

Sumndard Svert Raglister

[| |
!

1]
! L

Condition Register

Event Register

Enable Register

Logical OR

Condition Register

Event Register

Sevics Regsler §

SS—

S—

N
d R

SRQ signal

Figure 6-10 Status structure 7, Operation Status Group, and Status structure 3,
Questionable Data Group are SCPI defined.

6-22 Status Subsystem

Using the Subsystems

m Operation Status Group

This group reports the status of the
CNT-8X measurement cycle.

Operation Status Group

ISTATus: OPERat i on: CONDi ti on?
ISTATus: OPERat i on: EVEMN ?

MSP WFA WFT MST
1 |8 6(5|4 0

256 64 32 16

Measurement stopped
Waiting for arming
Waiting for triggerin

Measurement started

Figure 6-11 Bits in the Opeation Sta-
tus Register.

Bit 8 (weight 256) — Measurement
Stopped (MSP)

This bit shows that the counter is not mea-
suring. It is set when the measurement, or
sequence of measurements, Stops.

Bit 6 (weight 64) — Wait for Bus Arm-
ing (WFA)

This bit shows that the counter is waiting
for bus arming in the arm state of the trig-
ger model.

Bit 5 (weight 32) — Waiting for Trigger
and/or External Arming (WFT)

This bit shows when the counter is ready
to start a new measurement via the trigger
control option (488.2), for the shortest
possible trigger delay. The counter is now
in the wait for the trigger state of the trig-
ger model.

Bit 4 (weight 14) — Measurement
Started (MST)

This bit shows that the counter is measur-
ing. It is set when the measurement or se-
quence of measurements start.

m Summary, Operation Status
Reporting

:STAT:OPER:ENAB

Enable reporting of Operation Status in
the status byte.

*SRE 128

Enable SRQ when operation status has
someting to report.

:STAT:OPER?

Reading and clearing the event register of
the Operation Status Register structure

:STAT:OPER:COND?

Reading the condition register of the Op-
eration Status Register structure.

Status Subsystem 6-23

Using the Subsystems

Questionable Data/Signal
Status Group

This group reports when the output data
from the CNT-8X may not be trusted.

Questionable Data/Signal Status
Group orxr. st : conoe

STAT: QUES?

UEP TIO OFL
ha14 [1d 8]]o
163'84 1024 2|56
Unexpected Overflow

parameter
Time out for measurement

Figure 6-12 Bits in Questionable data
register.

Bit 14 (weight 16384) — Unexpected
Parameter (UEP)

This bit shows that CNT-8X has received
a parameter that it cannot execute, al-
though the parameter is valid according
to SCPI. This means that when this bit is
true, the instrument has not performed a
measurement exactly as requested.

6-24 Status Subsystem

Bit 10 (weight 1024) — Timeout for
Measurement (TIO)

The counter sets this bit true when it
abandons the measurement because the
internal timeout has elapsed, or no signal
has been detected.
See also
:SYST:SDET.

Bit 8 (weight 256) Overflow (OFL)

The counter sets this bit true when it can-
not complete the measurement due to
overflow.

:SYST:TOUT and

® Summary, Questionable
Data/Signal Status Reporting

:STAT:QUES:ENAB <bit mask>

Enable reporting of Questionable
data/signal status in the status byte.

*SRE 8

Enable SRQ when data/signal is ques-
tionable.

:STAT:QUES?

Reading and clearing the event register of
the Questionable data/signal Register
structure.

:STAT:QUES:COND?

Reading the condition register of Ques-
tionable data/signal Register structure.

Using the Subsystems

Device-defined Status Structure

CNT-8X has one device-defined status status byte. Its purpose is to report when
structure called the Device Register 0. It the measuring result has exceeded pre-
summarizes this structure in bit 0 of the programmed limits.

Event Register

Enable Register

Logical OR

L.

.Z]."_i_.[.Q_EStatus Byte Register

Figure 6-13 Device-defined status data structures (model).

Status Subsystem 6-25

Using the Subsystems

You set the limits with the following
commands in the calculate subsystem.

:CALCulate:LIMit:UPPer and
:CALCulate:LIMit :LOWer
An example on how to use limit monitor-

ing is available in Chapter 4, ‘Program
Examples.’

Bit Definition

Device Status Register0
STAT : DREGO : COND?
STAT:DREGO0?

2| 1

4 2

15 o

|
Monitoring of high limit
Monitoring of low limit
Figure 6-14 Bits in the Device Status
Register number 0.
:STATus:DREGister(0?
Reads out the contents
of the Device Status
event Register 0 and
clears the register.

Bit 2 (weight 4) — Monitor of Low Limit

This bit is set when the low limit is
passed from above.

Bit 1 (weight 2) — Monitor of High Limit

This bit is set when the high limit is
passed from below.

m Summary, Device-defined
Status Reporting

:STAT:DREGO:ENAB <bit mask>

Enable reporting of device-defined status
in the status byte.

6-26 Status Subsystem

*SRE 1

Enable SRQ when a limit is exceeded.
:STAT:DREGO?

Reading and clearing the event register of
Device Register structure 0.

— If bit 1 is true, the high limit has been ex-
ceeded.

— If bit 2 is true, the low limit has been ex-
ceeded.

Power-on Status Clear

Power-on clears all event enable regis-
ters and the service request enable regis-
ter if the power-on status clear flag is set
TRUE (see the common command
*PSC.)

m Preset the Status Reporting
Structure

You can preset the complete status struc-
ture to a known state with a single com-
mand, the STATus : PRESet command,
which does the following:

— Disables all bits in the Standard Event
Register, the Operation Status Register, and
the Questionable Data Register

— Enables all bits in Device Register 0

— Leaves the Service Request Enable Regis-
ter unaffected.

Using the Subsystems

Trigger/Arming Subsystem

The SCPI TRIGger subsystem enables syn-
chronization of instrument actions with
specified internal or external events. The
following list gives some examples.

Instrument Action

Some examples of events to synchronize
with are as follows:

— measurement

— bus trigger

— external signal level or pulse

—~ 10 occurrences of a pulse on the external
trigger input

— other instrument ready

— signal switching

— input signal present

— 1 second after input signal is present
— sourcing output signal

— switching system ready

The ARM-TRIG Trigger
Configuration

Figure 6-15 gives a typical trigger config-
uration, the ARM-TRIG model. The con-
figuration contains two event-detection
layers: the ‘Wait for ARM’ and ‘Wait for
TRIG’ states.

ABO
Default state .
after power-on RST
or reset

No fonger

Trigger system initiated initiated

Trigger system Initiated

Completed No.
of ARM loops

Wait for ARM

Completed

No. of TRIGger
\ 4 loops
Trigger Layer Wait for TRIG

TRIGger conditions Ilnstrument
Y

Still initiated

Arm Layer

ARM conditions
satisfied

satisfied Actions
complete

Instrument
Actions

Figure 6-15 Generalized ARM-TRIG
model.

Trigger/Arming Subsystem 6-27

Using the Subsystems

This trigger configuration is sufficient for
most instruments. More complex instru-
ments, such as the CNT-8X, have more
ARM layers.

The ‘Wait for TRIG’ event-detection
layer is always the last to be crossed be-
fore instrument actions can take place.

Structure of the IDLE and
INITIATED States

When you turn on the power or send
*RST or :ABORT to the instrument, it
sets the trigger system in the IDLE state;
see .

The trigger system will exit from the
IDLE state when the instrument receives
an INITiate:IMMediate. The in-
strument will pass directly through the
INITIATED state downward to the next
event-detection layers (if the instrument
contains any more layers).

The trigger system will return to the INI-
TIATED state when all events required
by the detection layers have occurred and
the instrument has made the intended
measurement. When you program the
trigger system to INITiate:CONTin-
uous ON, the instrument will directly
exit the INITIATED state moving down-
ward and will repeat the whole flow de-
scribed above. When
INITiate:CONTinuous 1is OFF,
the trigger system will return to the IDLE
state.

6-28 Trigger/Arming Subsystem

IDLE
*RST state
ABORt

pon

INIT[:IMM] or

INITL:IMM] or
ves NIT:CONT ON

Figure 6-16 Flow diagram of IDLE
and INITIADED layers.

m Structure of an Event-detection
Layer

The general structure of all
event-detection layers is identical and is
roughly depicted by the flow diagram in

In each layer there are several program-
mable conditions, which must be satisfied
to pass by the layer in a downward direc-
tion:

m Forward Traversing an
Event-detection Layer

After initiating the loop counters, the in-
strument waits for the event to be de-
tected. You can select the event to be
detected by using the <layer>:SOURce
command. For example:
:ARM:LAYer2:S0OURce BUS

You can specify a more precise character-
istic of the event to occur. For example:
:ARM:LAYer:DELay 0.1

You may program a certain delay be-
tween the occurrence of the event and en-
tering into the next layer (or starting the
device actions when in the TRIGger

Using the Subsystems

layer). This delay can be programmed by
using the <layer>:DELay command.

® Backward Traversing an
Event-detection Layer

The number of times a layer event has to
initiate a device action can be pro-
grammed by using the <layer>:COUNt
command. For example:
:TRIGger:COUNt 3 causes the in-
strument to measure three times, each
measurement being triggered by the spec-
ified events.

Triggering
m *TRG Trigger Command

The trigger command has the same func-
tion as the Group Execute Trigger com-
mand GET, defined by IEEE 488.1.

When to use *TRG and GET

The *TRG and the GET commands have
the same effect on the instrument. If the
Counter is in idle, i.e., not parsing or exe-
cuting any commands, GET will execute
much (= 20 ps) faster than *TRG
(= 4 ms) since the instrument must al-
ways parse * TRG.

Trigger/Arming Subsystem 6-29

Using the Subsystems

Select Jr *
Source
) Event
IMMediate : ;g&g:e detection

Event detection layer

<layer>:IMMediate

\ 4
L 100
<layer>:COUNt | gt oo Yes
Completed
No. of layer
loop counts?
Select
Source
— Select
Characteristics
EXTemald [
IMMediate <layer> Event
:SOURce J1 SLOPe [Pl jetection
<layer>:DELay | wait :DELay
1
Increment
layer-loop

Event detection layer

counter by 1

<layer>:COUNt

Select
Source

Layer loop Yes
counter =0

Completed
No. of layer
loop counts?

IMMediatg g, <layer> \ _g
:SOURce

Event
detection

Event detection layer

Increment
layer-loop
counter by 1

Y

6-30 Trigger/Arming Subsystem

Arming Start
Layer 2
(bus trig)

Arming Start
Layer 1
(External control)

Trigger Start
Layer 1
(Number of
measurements
on each arm)

Chapter 7

How to Measure Fast

How to Measure Fast

Introduction

The CNT-8X counters can complete a
measurement cycle in many different
ways, each with its own advantage. This
means that your first step is to select a ba-
sic “measurement scenario” based on the
requirements of the measurement. This
chapter contains some measurement sce-
narios that you can choose from.

These counters can measure with impres-
sive speed if you program them correctly.
You will find guidelines for speed im-
provements in each of the described mea-
surement scenarios.

Controller Synchronization

The start of measurements can either be
individually or block synchronized by the
controller. The instrument-to-controller
synchronization deals with how to start a
measurement or sequence of measure-
ments and to read data in the most effi-
cient way. You can also synchronize the
measurement with the measuring object
more accurately by using external control
(arming), but this is not described here.

Measurement Cycle
Synchronization

It is a good practice to check that the
measurement proceeds as planned when
the controller has started a measurement,
or block of measurements.

s Start

If the input signal fails, or there is no
arming etc., the measurement cycle will
not start.

7-2 Introduction

Timeout

Turn on timeout and set the time longer
than the expected measurement cycle.
Then wait for the timeout period, and
take actions if you got timeout.

If the measurement time is long, you may
have to wait many seconds or even min-
utes until timeout, just to learn that the
measurement never started.

Measurement started

Before starting a measurement, set up the
status reporting system so that you get a
Service Request on Measure-
ment-in-progress, bit 4 in the Operation
Status Event Register. Check this with se-
rial poll after a reasonable time when the
measurement ought to be started, lets say
after 100ms (time dependent on input sig-
nal frequency). If the bit is true, continue.
If false, abort the measurement and check
the signals, alert the operator etc.

® Stop

You must also know when the measure-
ment is completed in order to read out the
results. Should you read results or send
other commands before the measurement
is completed, the measurement will be in-
terrupted.

You can of course let the controller wait
until you are absolutely certain that the
result is ready, before you fetch it. But it
is better to use *OPC to get an Operation
Complete status message, or *OPC? to
get an ASCii “1” in the output queue,
when the measurement is ready.

*OPC and *OPC? are common com-
mands described on page 9-124 and
9-125.

How to Measure Fast

*OPC reports when operation is com-
plete, via the Status Subsystem described
on page 6-14.

Rough Trigger
Subsystem
Description

The trigger subsystem is the functional
part of the CNT-8X that controls the start
and stop of measurements. This is the
function that the controller interacts with
when it controls the measurement se-
quence.

A simplified model of the CNT-8X’s trig-
ger subsystem is a state-machine with
four different states. These states are as
follows:

IDLE State

— The counter waits for new commands. It is
not measuring

WAIT_FOR_BUS_ARM State

— The counter is ready to receive a bus arm-
ing signal, GET or %TRG

WAIT _ FOR_MEASUREMENT TO_
START State

— The counter waits for the input signal trig-
gering to start the measurement or block of
measurements. If the counter uses arming,
it is waiting for the specified arming event.

MEASUREMENT State

— The counter measures. It monitors the
hardware and controls the measurement
time. If block measurement mode is used,
(ARM: COUN or TRIG: COUN.=22) the
counter stays in this state until all measure-
ments inside the block has been made.

Different actions cause the trigger sub-
system to change between the different
states. The transitions are shown in . The
status is reflected in status byte
:STATus:OPERation:CONDition.

State: IDLE
Operation Condition
register status: 256

INIT or INIT:CONT OFF
INIT:CONT ON Or all measurements

completed

State:
WAIT FOR BUS ARM
Operation Condition register
status: 320

Bustrig received or All ARM and TRIG
OFF (immediate) | | loops completed

State:

WAIT FOR EXT ARM and/or
INPUT TRIG
Operation Condition register
status: 288

(Arming received or .
arm off (immediate)) | | Single measurement

and input trig ¢ | "€2dY

State:
MEASURE
Operation Condition
register status: 16

Figure 7-1 Trigger subsystem states.

Rough Trigger Subsystem Description 7-3

How to Measure Fast

Some Basic
Commands

Here follows a description of some basic
CNT-8X commands that control the mea-
surement sequence.

CONFigure

The CONFigure command sets up the
counter to do the measurement specified
by the parameters of the command. The
command gives a limited number of pa-
rameter options such as:

— Measurement function
— Measurement channel

— Number of measurements and sometimes
also the following:

— Measuring time

— Trigger level

The counter sets up the rest of its func-
tions in the best way for the requested
measurement. This means that any instru-
ment setting may be changed by this
command.

Examples:

— Set up to measure frequency:
CONF: FREQ

— Set up to do 100 frequency measurements:
CONF:ARRay:FREQ..(100)

— Set up to do 100 frequency measurements
on the A-channel:
CONF:ARRay:FREQ_(100), (@1)

— Set up to do 100 frequency measurements
on the A-channel. Expected frequency 10
MHz that should be measured with a reso-
lution of 1 Hz.

CONF:ARRay: FREQ.
(100),10e6,1, (@1)

7-4 Some Basic Commands

INITiate

The INITiate command will normally
start a measurement or measurement se-
quence and store the result internally in
the CNT-8X. However the actual action
is to change the state of the trigger sub-
system from “idle” to
“wait_for_bus_arming”. The result of
changing the state of the trigger subsys-
tem depends on the programming of this
subsystem. For example it could be pro-
grammed to do the following:

— Make 1000 measurements.

— Wait for a GET/*TRG and then start a
measurement.

— Wait for a GET and then make 534 mea-
surements.

— Wait for an arming pulse and make one
measurement.

— Wait for an arming pulse and make 234
measurements.

INITiate :CONTinuous

This command sets the counter in a mode
where it continues with a new measure-
ment immediately after it has finished the
previous one. This is done by not return-
ing the trigger subsystem to the “idle”
state.

ABORt

This command stops the current measure-
ment (if any), and sets the trigger subsys-
tem to the “idle” state. This means that
the counter is only waiting for new com-
mands.

FETCh?

The FETCh query retrieves measurement
data. It could either be a single value
(SCALar) or a series of values (ARRay).

How to Measure Fast

Examples:
— Get one measurement: FETCh?

— Get 100 measurements:
FETCh:ARRay?2.100

The number of measurements is
[@ defined by the setting of the ARM
and TRIG counters. The ARM
counter can be set directly by the
:CONF and :MEAS commands.
The :FETCh:ARRay? query pa-
rameter only decides how many
measurement results to read out.

READ?

This command simply means to start a
measurement or measurement sequence
and read data.

This query is identical to:
ABORt;INITiate; FETCh?

This means that the counter starts a mea-
surement (single or array) after it has
aborted any previous measurements. It
also returns the result.

Examples:

— Start one measurement and fetch result:
READ?

— Start measurements and fetch 100 results:
READ:ARRay?.100

MEASure?

This query is identical to:
CONFigure; READ?

This means that the command sets up the
counter and starts a measurement/mea-
surement sequence.

Examples:

— Make a frequency measurement:
MEAS :FREQ?

— Make 100 frequency measurements:
MEAS:ARRay:FREQ?.(100)

— Make 100 frequency measurements on the
A-channel:
MEAS:ARRay:FREQ? (100), (@1)

— Make 100 frequency measurements on the
A-channel. The expected frequency to be
measured is 10MHz with a resolution of 1
Hz.

MEAS:ARRay:FREQ?
(100),10e6,1, (@1)

MEAS:MEM1?, MEAS:MEM? 10

Memory Recall, Measure and Fetch Result

This command is only for PM6681. Use
it when you want to measure several pa-
rameters fast, i.e., switch quickly be-
tween measurement functions.

MEAS:MEM1? recalls the contents of
memory 1 and reads out the result,
MEAS:MEM2? recalls the contents of
memory two and reads out the result etc.

The equivalent command sequence is
*RCL1;READ?

The allowed range for <N>is 1 to 9. Use
the somewhat slower MEAS:MEM-
ory?.N command if you must use mem-
ories 10 to 19.

TIMING
Data Format
Command ASCIl | REAL
MEAS : MEM1? 79ms |6.7 ms
MEAS :MEM?._1 9.1ms |80 ms
*RCL. 1; READ? 10.1 ms (8.9 ms

Some Basic Commands 7-5

How to Measure Fast

Basic Measurement
Method

A basic measurement method for a sys-
tem composed of signal sources, measur-
ing object, and measuring devices will be
a simple step-by-step procedure. This
procedure goes as follows:

Step 1: Set up signal sources

Step 2: Set up measurement devices
Step 3: Trigger measurement devices
Step 4: Read data

Step S: Evaluate data

The above procedure may be repeated as
many times as required.

The methods described here deal with
how you should do steps 3 and 4 in the

best and most efficient way with the
CNT-8X.

Individually Synchronized
Measurements

This is a method that you should use
when you need to start each measurement
externally from the controller. The most
probable reason that you should use indi-
vidually synchronized measurements is
that you need to evaluate data in real time
and make decisions depending on the ac-
quired data. An example of this could be
to tune an oscillator by measuring the
output frequency and adjust the oscillator
depending on the measured frequency.

Of the many available ways to do this
with the CNT-8X, three should be men-
tioned: READ?, INIT:CONT and GET
and MEASure?

7-6 Basic Measurement Method

m READ?

The READ? query provides a basic
mechanism for this. It ensures that the
measurement is started after the counter
receives the command. It will also send
back the result. The READ? query should
be preceded by setting up the counter by
using either CONFigure or individual
programming commands. This command
should be used if no special speed re-
quirements exists.

® INIT:CONT and GET

In this method the trigger function is con-
tinuously initiated by the command INI-
Tiate:CONTinuous.l. This gives you
the minimal firmware overhead if you
don’t change settings in the counter. Set
up the counter either by using CONFig-
ure, or by using individual programming
commands before starting the measuring
sequence. Setting up includes switching
on the “wait for bus trigger” function
with the following command:

ARM:START:LAY2:SOURce.BUS.

As default, the counter starts a measure-
ment and sends the result to the controller
when receiving a GET or a *TRG com-
mand. This method is the fastest way to
make individually synchronized measure-
ments.

m MEASure?

The MEASure? query sets up the coun-
ter, ensures that the measurement is
started after the command is received,
and also sends the result to the controller.
This command has the highest possible
degree of compatibility to other instru-
ments; however the command reprograms
the counter, and often you need to set up

How to Measure Fast

the counter by yourself. This is primarily
why we recommend the READ? query.

Block Synchronized
Measurements

In the block synchronized mode, the con-
troller only starts a sequence of measure-
ments. The counter then measures,
without any controller intervention, at the
highest possible speed. It “dumps” the re-
sults into internal memory and reads them
out for evaluation later. This method
gives the highest possible data capture
speed.

m READ:ARRay?

This is the basic method for starting up a
measurement sequence and reading the
data. Set up the counter using CONFigure
or individual programming commands
before sending the READ:ARRay?
query. This method will make the mea-
surements with a high measurement rate.
The speed depends on a number of indi-
vidual measurement parameters; see also
“General speed improvements” below.
The counter stores the data in its internal
memory and when it has captured all
data, it transfers the resulting array to the
controller.

m INIT + GET + FETCH:ARRay?

The READ:ARRay? method has one
drawback, it includes some unwanted
firmware overhead between when the
counter receives the command and it
starts the first measurement. This can be
solved by setting up the counter to wait
for a GET before it starts the measure-
ment sequence. The default actions for
GET include sending a single result (the
first value) when the counter has com-
pleted the sequence. This makes it possi-

ble to let the controller wait for the Mes-
sage AVailable status bit to find out when
the data capture is ready. You can read
the complete array by using the
FETCH:ARRay? command. So if, for
example, the array size is 4, GET gives
the first result in the array and
FETC : ARR?.3 fetches result two, three,
and four.

® MEAS:ARRay?

The MEASure:ARRay? query ensures
that the measurement sequence is started
after the command is received. It will also
send back the results. It also includes set-
ting up the counter. This is the command
that has the highest possible degree of
compatibility with other instruments;
however, this command reprograms the
counter and often you need to program
the counter yourself. This is why we rec-
ommend using the READ:ARRay?

query.

General Speed
Improvements

The CNT-8X has many options to im-
prove measurement speed. Here you will
get a list of actions that you can use to
improve the measurement speed. Most of
these commands decrease the average
dead time. The dead time is the time be-
tween measurements, that is, from stop to
the next start. These actions are all gen-
eral, that is, they affect the rate of mea-
surements for all measurement methods
given above; however, they are especially
valuable for the block synchronized mea-
surements. In this mode, the dead time

can be as low as 120us (PM6681).

General Speed Improvements 7-7

How to Measure Fast

AUTO

One of the most timesaving commands
you can use with the CNT-8X is

: INPut : LEVel : AUTO_OFF. This will
save the time it takes to determine the
trigger levels. (About S0ms/measurement
in PM6680B and PM6685, and 85ms in
PM6681.)

Display Control

The display can be switched off with the
command

DISPlay:ENABle.OFF. When you
switch off the display, the counter loses
the measurement data resolution informa-
tion. This means that the counter always
sends all digits independently of whether
or not they are significant. This command
reduces the dead time by about 7ms.

GPIB Data Format

You can select the format of the result
sent on the GPIB using the FORMat
command. Two options exist: ASCii and
REAL. The REAL format saves a lot of
time both in the instrument and the con-
troller for converting data. However,
when the counter uses the REAL format,
you lose the measurement data resolution
information. It sends the REAL format as
a block data element. This means that it
sends data as:

#18< 8 bytes real>.

The <8 bytes real> is a double precision
binary floating-point code according to
IEEE 488.2 / IEEE 754.

7-8 General Speed Improvements

Time Measurement
Resolution

The basic time measurement resolution
can be selected by using the command
SENSe :ACQ:RES_«HIGH | LOW».
When you set the resolution to low it will
be 100ns for PM6680B and PM6685, and
80ns for PM6681. Instead of the high res-
olution, which is 0.25ns for PM6680B
and PM6685, and 0.05ns for PM6681.

If the counter does real-time calculations
and you switch to low resolution, the
measurement dead time decreases about
0.6 to 0.9ms. If the counter does not do
real-time calculations, then it saves only
about 0.05ms per measurement cycle. If
the counter does real time calculations
with the display switched on, then you
can save up to 2ms by selecting the lower
resolution.

Automatic Interpolator
Calibration (PM6680B/85)

The time interpolation technique achieves
the high time resolution. The counter au-
tomatically calibrates these interpolators
once per measurement cycle. You can
control this automatic calibration by us-
ing the command:

CAL:INT:AUTO. «ON|OFF|ONCE» .

When you switch calibration off, the
measurement cycle time decreases.

Disabling this calibration makes the
counter more sensitive to temperature
changes. The measurement values may
drift away, which results in a larger inac-
curacy. However, when the instrument
has been switched on for more than 20
minutes and the ambient temperature is
stable within + 5°C, this is no problem.
You can also easily recalibrate the

How to Measure Fast

interpolators by using the

CAL:INT:AUTO ONCE command.

Block Measurements

When dumping measurement results into
the internal memory, it is important to
program the arming and triggering coun-
ters in the best way. For maximum mea-
surement rate use the block armed mode.
To do this set:
:ARM:STARt:LAYer:COUNt._1

and

TRIG:COUNt. <N>

where <N> is the number of measure-
ments in a block.

Real Time Calculation

Normally the counter calculates the re-
sults in “real time.” This means that for
each measurement, the counter immedi-
ately calculates the result based on the
raw data information in various counting
registers. It needs to do this in order to
display the result, make mathematical
calculations, limit testing and statistical
calculations. It is possible to defer the
calculations until the controller requests
these values. The counter intermediately
stores the measurement data in a packed
format. This is done with the command:

:SENSe:INTernal:FORMat_. PACKed.

This is the most important com-
[@ mand when you want to improve
the measurement rate for block
synchronized measurements.

Note: If you want a very high speed
you must set : AVER: STATE_OFF and
:ACQ:APER. MIN.

40000 measure-
ments/second

(Only PM6681)

PM6681 can make measure every period
of a signal with up to 40 000 Hz. This is
called “Back-to-Back” period measure-
ments and in only available via GPIB.
The high speed is obtained when the
PM6681 measures low-resolution mea-
surements directly to its internal memory.
That memory can store 6143 measure-
ment results. When full, the measurement
must be stopped, and the results fetched
by the controller.)

Note also that some functions are dis-
abled to obtain high measurement speed:
You cannot use external arm/trig or
hold-off. Statistics is also disabled.

Example: 1000 back-to-back periods

: SENS:FUNC."PER._1"

Select period as measurement function

: INP: COUP..DC Select DC coupling

: INP:LEV:AUTO_OFF Turn off Auto Trigger
: INP: LEV._1 Set fixed trigger level

:SENS:ACQ:RES_LOW Select low resolu-
tion/high speed measurements

: SENS : INT: FORM.PACK Suspends the re-
sult calculation until the capture is
ready

:TRIG:COUN.1000; : ARM:COUN.1 Set up
PM6681 for 1000 measurements

: INIT Start a capture

:FETC:ARR?.1000 Fetch the 1000 results
Jfrom the internal PM6681 memory

40000 measure- ments/second 7-9

How to Measure Fast

Supervising a
Process

One typical use of a counter in the indus-

try is to measure a parameter and alert the
adjusting machinery when the parameter
gets close to the correct value. The ma-
chinery now slows down for an accurate
final adjustment of the parameter, and
stops the adjustment procedure when the
value is correct.

An example of such a procedure is when
a laser adjusts the value of a resistor that
is connected to an oscillator. You mea-
sure the frequency of the oscillator and
the laser cuts the resistor until the oscilla-
tor oscillates at the correct frequency.

Obvious Method

The most obvious way to do this may be
.as follows:

— Let the counter measure the frequency.
— Send the result to the controller.

— Let the controller, that controls both the la-
ser cutter and the counter, decide when to
slow down the cutting procedure, and
eventually switch the laser off when the
correct frequency is obtained.

This method works fine for slow pro-
cesses but the bus transfer rate of the
counter limits the measuring speed to
around 125 measurements/s for
PM6680B and PM6685, and 250 mea-
surements/s for PM6681. If all speed in-
creasing actions are taken, and only
around 10 measurements/s if no speed in-
creasing actions taken.

7-10 Supervising a Process

Optimal Method

An experienced CNT-8X programmer
knows that he can increase the process
speed to over 300' measurements/second,
by letting the counter do more and the
controller less of the job:

— Set up the counter to measure continuously
with low resolution, without displaying or
reading out any results.

— Set up limit monitoring so that the counter
issues a service request when the frequency
reaches the limit where the laser should
slow down.

— Proceed with one of the following:

— Alternative 1: The program slows down the
laser and recalls new narrower limits from
the internal counter memory and selects
higher resolution.

— Alternative 2: The program slows down the
laser and reprograms the counter to make
high resolution measurements and reports
each measurement result to the controller.

— The controller stops the process when the
desired result is obtained.

See also the limit monitoring program-
ming example in Chapter 4.

How to Measure Fast

Speed Summary

The following table summarizes the time
that can be gained when fine tuning the
measurement process.

The normal dead time between frequency
measurements is approximately as fol-
lows:

48.8 ms for the PM6680B.
85 ms for the PM6681.
75 ms for the PM6685.

If you should read out the measuring re-
sult to the controller add read out time to
each result. (Consult your controller man-
ual.)

Individually Synchronized Measurements
Speed Improvement
Actions
a) w
-
N8l |8
|k 5
—|0|o (O]
® |- | & =l =
EIS|SIE|2]D
5|8k |0 ff- 8 Dead Time Between Measurements Including
1819|1782 Transfer to Controller
o 9 o .c_Qu- : g ranste
: .. o
212 2 a5 12 ASCII Data Format Real Data Format
PM6680B | PM6681 | PM6685 | PM6680B | PM6681 | PM6685
Approx. | Approx. | Approx. | Approx. | Approx. | Approx.
v 50ms | 85ms*| 75ms | 45ms |85ms* | 75ms
v 19 ms 10ms | 23 ms 15 ms 9 ms 20 ms
v\ v 12ms | 9ms | 20 ms 9ms 8ms | 17ms
vViviv|v 12ms [9.5ms | 12ms 9ms |42ms | 9ms
viviviv|v| 12ms [55ms | 12ms 8ms |[42ms | 8ms

Tuming the real-time calculations on/off will not affect the dead time because the
@ calculations are still done inside the measurement loop during the output of data.

* It takes longer time for PM6681 to determine trigger levels than for PM6680B,
why? The reason is that PM6681 must find the correct level from 16 times as many
triggerlevel setting steps than thePM6680B/85 (1.25 mV steps versus 20mV steps).

Speed Summary 7-11

How to Measure Fast

Measurements/second

Speed, Individually sync. measurements

PM66808B

ﬁcll.m
:2 , 'ASCl, all
60 ‘Rvo-aldata. no
50 \ .
40 Real data, all
30
20
10 5
0 H

BE-07

1E-04

001 1

Measurement Time

Measurements/second

Speed, Individually sync. measurements

130

PM6685

120
110
100
9% ASCII, no
% N \N 'ASCIl, gl
70
60 Real data, no
50
40 gal data, alf
30
20
10 §
0

8,00E-07

1E-04 001 1
Measurement Time

Speed, Individually sync. measurements
PM6681

200
180
160
140
120
100

80

Measurements/second

40
20

0 B s—
8E-08 5E-05
6,4E-07 5

240 mﬂ
220 j :

+

L

X

N

'

\

\

LR R

%

4E.

E-04

0,005 05
0,05
t Time

| -—

ASCI, no
Ascll, all
E°N
Real data, no

-8
Real data, all

7-12 Speed Summary

How to Measure Fast

Block Synchronized Measurements
(ARM:STARt:LAYer:COUNt 1 and TRIG:COUNt <N>)

Speed Improvement Actions
o
b d —
w 2 < o)
o o a
= 30 |sk
- © L e
S |eE |32
e EZ 8=
= > =®m “®
33 (83 |33
a 2 &, Dead Time Between Measurements
PM6680B PM6681 PM6685
9 ms 45 ms 9ms
v 2 ms 1.3 ms 2.5 ms
v 4 0.5ms 0.12 ms 0.6 ms
v v v 0.5 ms 0.025 ms* 0.6 ms

1: The GPIB format command will not affect the dead time for the block synchro-
@ nized mode because the counter captures all data before transferring it to the con-
troller.

2: Switching the real time calculations on/off In the block synchronized mode will
l]g: significantly decrease the dead time; however, the time for calculations (2 ms for
PM6680B/85 and 1 ms for PM6681) is added to the transfer time.

* In PM6681, low resolution is used for Back-to-Back period measurements.
The measuring time has no effect in this mode. Only the Timestamps are used.

Speed Summary 7-13

How to Measure Fast

Speed, Block sync. measurements

Speed, Block sync. measurements

PM6680B PM6685
2000 -yee \ 2000 3- ;
1750 \\ 1750 §:
1500 \ 1500)
)\ 3
2 1250 - € 1250 -
3 Block data, alf g Block data, all
2 1000 - 2 1000 -
g, : ; Block data, no § \ Block data, no
£ 750 A 2 750
3 i) 3 \
: \ $ \
= 500 \ = 500 \
250 \ 250 \)
) : e _ 0 : - =
8E-07 1E-04 0,01 1 8,00E-07 1E-04 0,01 1
Measurement Time M t Time

Speed, Block sync. measurements

PM6681
8
7
6
= -
8 - 5 Block data, all
s k
5 c
<8 4 bud
53 Block data, no
:
53
8
Q
= 2
1
BE-08 S5E-05 0,005 0,5
6.4E-07 5E-04 0.05
M t Time

7-14 Speed Summary

Calculating the Measurement
Speed

When opimizing your program for speed,
add the measuring time you use to the
dead time, and subtract the time gain for
the timesaving commands you intend to
use; all times should be expressed in sec-
onds:

1
Meas. time + DeadTime - 2 TimeGain

= number of measurements / second.

Where:
Meas.time is the measurement time
you use.
Deadtime is the deadtime between
measurements after preset. see page
7-11.
Timegain is the timegain in the table
on page 7-15.

How to Measure Fast

Timesaving Com- Time Gain in ms Sacrifice
mands
PM6680B | PM6681 | PM6685
Freq Freq Freq

FREQ:RANG : LOW_MAX (23) (23) 10kHz lower freq. limit for AUTO. This
Timesaving is only possible when
AUTQ is on.

(55) 50kHz lower freq. limit for AUTO. This
Timesaving is only possible when
AUTO is on.

INP:LEV:AUTO.OFF 40 70 52 |You have to set trigger levels manually.

DISP:ENAB._OFF 5.4 35 7.7 |Only the controller can read the result.

CAL:INT:AUTO_OFF 0.22 NA. 0.22 |You must instruct the counter to cali-
brate the interpolators once in a while
to maintain accuracy.

SENS:ACQ:RES._LOW 0.81 0/0.1 0.81 |Works up to about 40kHz. The resolu-
tion of each measurement drops to
100ns for PM6680B/85 and 80ns for
PM6681
(PM6681 Only: Gives Back-to-back
measurements in period, i.e. every pe-
riod in a block is measured)

TRIG:COUNT.2100 0.69 N.A. 0.69 |No sacrifice, the program loop in the
counter gets shorter, saving time.

TRIG:COUNT.6143 NA. 4.2 NA.

INT: FORM_PACK 1.15 1.2 1.15 |You cannot use limit monitoring, math-
ematics etc. in the CALC subsystem,
nor the Display or the Output subsys-
tems.

TRIG:COUNT.1000 (o NA. 0.13 N.A. | These commands (all together) will in-

; Tg;f g LER ENABO crease measurement speed the last

ARM: STA : L};Yz - SOUR step from about 4000 to over 8000

- IMM measurements/s

INP:LEV:AUTO_OFF

(All together)

FORM: TINF_OFF NA. 0 N.A. |No timestamping possible. This only

influences the read. Time stamps are
always registred internally.

All these time gain estimates are approximations valid for frequency A mea-
surements and may be changed without notice. The time gain/loss depends on
measuring function.

Speed Summary 7-15

How to Measure Fast

Single “Speed Switch”
Command for PM6680B/85

Since many parameters must be set to get
the highest measuring speed, it is simpler
if you use the macro function:

Send the following lines to turn on mac-
ros; define one macro called FASTFREQ
and one macro called SLOWFREQ.

SEND— *EMC.1

SEND— *DMC.‘FastFreq’,
“:ACQ:APER_MIN;
:AVER:STAT.OFF;
:INP:LEV:AUTO OFF;
:DISP:ENAB.OFF;
:CAL: INT:AUTO.OFF;
:SENS:ACQ:RES_LOW”

SEND-— *DMC.‘SlowFreq’,
“:ACQ:APER.200.ms;
:AVER:STAT..ON;
:INP:LEV:AUTO.ON;
:DISP:ENAB_ON;
:CAL:INT:AUTO.ON;
:SENS:ACQ:RES_HIGH”

Now you just have to send FASTFREQ to
the counter to get high measurement
speed for frequency measurements, and
SLOWFREQ to return to normal measur-
ing speed.

Note that these macros include
all speed-increasing commands
from the table on the previous
page. Omit the ones you do not
want to use in your application
and the ones that do not apply to
your counter.

7-16 Speed Summary

Single “Speed Switch”
Command for PM6681

Since many parameters must be set to get
the highest measuring speed, it is simpler
if you use the macro function:

Send the following lines to turn on mac-
ros; define one macro called FASTFREQ
and one macro called SLOWFREQ.

SEND— *EMC.1

SEND— *DMC_‘FastFreq’,
“:ACQ:APER_MIN;
:AVER:STAT_OFF;
:INP: LEV:AUTO_OFF;
:DISP:ENAB_OFF;

: INT: FORM_PACK;
:SENS:ACQ:RES_LOW;
:FORM:TINF._OFF;
:TRIG:COUNT..6143;
:STAT:0PER:ENAB..O;
:ARM:STA:LAYZ2:SOUR..IMM"

SEND— *DMC.‘SlowFreq’,
“:ACQ:APER.200 ms;
:AVER:STAT_ON;
:INP: LEV:AUTO_ON;
:DISP:ENAB_ON;
:INT: FORM_REAL;
:SENS:ACQ:RES._HIGH;
:FORM:TINF_ON;
:TRIG:COUNT.];
:STAT:OPER:ENAB.1;
:ARM:STA:LAY2:SOUR.BUS"

Now you just have to send FASTFREQ to
the counter to get high measurement
speed for frequency measurements, and
SLOWFREQ to return to normal measur-
ing speed.

Note that these macros include
all speed-increasing commands
from the table on the previous
page. Omit the ones you do not
want to use in your application.

Chapter 8

Error Messages

CIHUL VIS DAayeo

Read the Error/Event Queue

You read the error queue with the : SYS-
Tem:ERRor? query.

Example:
SEND— :SYSTem:ERROr?
READ« -100, “Command Error”

The query returns the error number fol-
lowed by the error description.

If more than one error occurred, the query
will return the error that occurred first.
When you read an error, you will also re-
move it from the queue. You can read the
next error by repeating the query. When

you have read all errors, the queue is |

empty, and the :SYSTem:ERRor?
query will return:
0, “No error”

When errors occur and you do not read
these errors, the Error Queue may over-
flow. Then the instrument will overwrite
the last error in the queue with:

-350, “Queue overflow”

If more errors occur they will be dis-
carded.

Read more about how to use er-
[@ ror reporting in the Introduction to
SCPI chapter

Command Errors

Description/Explanation/Examples

Error Error Description
Number

0 No error

-100 [JCommand error

This is the generic syntax error for devices that can-
not detect more specific errors. This code indicates
only that a Command Error defined in IEEE-488.2,
11.5.1.1.4 has occurred.

Invalid character

A syntactic element contains a character which is in-

101 valid for that type; for example, a header containing
an ampersand, SETUP&. This error might be used
in place of errors -114, —-121, —141, and perhaps
some others.

-102 Isyntax error An unrecognized command or data type was encoun-

[Syntax error; unrec- jtered; for example, a string was received when the
ognized data counter does not accept strings.

-103 jInvalid separator The parser was expecting a separator and encoun-
tered an illegal character; for example, the semico-
lon was omitted after a program message unit,
*EMC1:CH1:VOLTSS.

-104 [Data type error The parser recognized a data element different than

one allowed; for example, numeric or string data
was expected but block data was encountered.

8-2 Error Code 0 to -104

Error Messages

Command Errors

Error Description }Description/Explanation/Examples

GET not allowed A Group Execute Trigger was received within a pro-

ram message (see |IEEE-488.2, 7.7).

—108 [Parameter not al- JMore parameters were received than expected for
lowed the header; for example, the *EMC common com-
mand accepts only one parameter, so receiving
*EMCO,,1 is not allowed.
-109 [Missing parameter JFewer parameters were received than required for

the header; for example, the *EMC common com-

mand requires one parameter, so receiving *EMC is

not allowed.

An error was detected in the header. This error

message is used when the counter cannot detect

the more specific errors described for errors —111

though —119.

A character that is not a legal header separator was

encountered while parsing the header; for example,

no space followed the header, thus *GMC"MACRO"

is an error.

—-112 [Program mnemonic JThe header contains more than 12 characters (see
too long IEEE-488.2, 7.6.1.4.1).

Undefined header JThe header is syntactically correct, but it is unde-

fined for this specific counter; for example, *XYZ is

not defined for any device.

Header suffix out of Jindicates that a non-header character has been en-

range countered in what the parser expects is a header el-

ement.

Numeric data error JThis error, as well as errors —121 through ~-129, are

Numeric data error; jgenerated when parsing a data element that ap-

overflow from con- [pears to be of a numeric type. This particular error

version message is used when the counter cannot detect a

Numeric data error; |more specific error.

-110 [JCommand header
error

—-111 [Header separator
error

-113

-114

-120

underflow from con-
version

Numeric data error;
not a number from
conversion

Error Code -105 to -120 8-3

LIV IVIGODAYTD

Command Errors

Error Description JDescription/Explanation/Examples

Invalid character in
number

An invalid character for the data type being parsed
was encountered; for example, an alpha in a deci-
mal numeric or a “0" in octal data.

Exponent too large IThe magnitude of the exponent was larger than
32000 (see |IEEE-488.2, 7.7.2.4.1).

The mantissa of a decimal numeric data element con-
tained more than 255 digits excluding ieading zeros
(see |EEE-488.2, 7.7.2.4.1).

Too many digits

Numeric data not al-JA legal numeric data element was received, but the

lowed counter does not accept it in this position for the
header.
Suffix error This error as well as errors —131 through —139 is

generated when parsing a suffix. This particular er-
ror message is used when the counter cannot detect
a more spegcific error.

Invalid suffix The suffix does not follow the Syntax described in
IEEE-488.2, 7.7.3.2, or the suffix is inappropriate for
this counter.

-134 [Suffix too long The suffix contained more than 12 characters (see
IEEE-488.2, 7.7.3.4).

-138 [JSuffix not allowed A suffix was encountered after a numeric element
that does not allow suffixes.

—-140 [Character data error]This error as well as errors 141 through —149 is gener-
ated when parsing a character data element. This par-
ticular error message is used when the counter cannot
detect a more specific error.

—~141 [Invalid character Either the character data element contains an invalid
data character or the particular element received is not
valid for the header.

-144 [Character data too JThe character data element contains more than 12

jong characters (see |[EEE-488.2, 7.7.1.4).
-148 [Character data not JA legal character data element was encountered
allowed where prohibited by the counter.

-150 [|String data error This error as well as errors —151 through —-159 is gen-
erated when parsing a string data element. This partic-
ular error message is used when the counter cannot
detect a more specific error.

8-4 Error Code -121 to -150

Error Messages

Command Errors

Error Error Description [Description/Explanation/Examples
Number
—-151 [invalid string data _ JA string data element was expected, but was invalid
Invalid string data; Jfor some reason (see IEEE-488.2, 7.7.5.2); for ex-
unexpected end of fample, an END message was received before the
message terminal quote character.

-158 [String data not al- JA string data element was encountered but was not al-

lowed lowed by PM6685 at this point in parsing.

-160 [Block data error This error as well as errors —161 through —169 is
generated when parsing a block data element. This
particular error message is used when PM6685 can-
not detect a more specific error.

—161 [invalid block data JA block data element was expected, but was invalid
for some reason (see |IEEE-488.2, 7.7.6.2); for ex-
ample, an END message was received before the
length was satisfied.

—168 [Block data not al- JA legal block data element was encountered but

lowed fwas not allowed by the counter at this point in pars-
ing.

-170 |JExpression data er- [This error as well as errors ~171 through —179 is

ror

generated when parsing an expression data ele-
ment. This particular error message is used if the
Jcounter cannot detect a more specific error.

Expression data er-
ror; floating-point
underflow

The floating-point operations specified in the expres-
sion caused a floating-point error.

Expression data er-
ror; floating-point
overflow

Expression data er-
ror; not a number

Expression data er-
ror; different number
of channels given

Two channel list specifications, giving primary and
secondary channels for 2-channel measurements,
contained a different number of channels.

Error Code -151to-170 8-5

=11V IVIGOOAYTo

Command Errors

Error Description JDescription/Explanation/Examples

Invalid expression
data

The expression data element was invalid (see
IEEE-488.2, 7.7.7.2); for example, unmatched pa-
rentheses or an illegal character were used.

Invalid expression
data; bad mnemonic

A mnemonic data element in the expression was not
valid.

Invalid expression
data; illegal element

The expression contained a hexadecimal element
not permitted in expressions.

Invalid expression
data; unexpected

End of message occurred before the closing paren-
thesis.

Invalid expression
data; unrecognized

The expression could not be recognized as either a
mathematical expression, a data element list or a
channel list.

—-178 [Expression data not JA legal expression data was encountered but was
allowed not allowed by the counter at this point in parsing.
-180 [Macro error This error as well as errors —181 through —189 is
generated when defining a macro or executing a
macro. This particular error message is used when
the counter cannot detect a more specific error.
-181 [nvalid outside Indicates that a macro parameter placeholder
macro definition ($<number) was encountered outside of a macro
definition.
-183 [invalid inside macro jindicates that the program message unit sequence,
definition sent with a *DDT or *DMC command, is syntacti-
cally invalid (see |IEEE-10.7.6.3).
—184 [Macro parameter findicates that a command inside the macro defini-

error tion had the wrong number or type of parameters.

Macro parameter The parameter numbers given are not continuous;
error; unused pa- jone or more numbers have been skipped.
rameter

Macro parameter er- §The'$’ sign was not followed by a single digit be-
ror; badly formed tween 1 and 9.
laceholder

Macro parameter | The macro was invoked with a different number of
error; parameter parameters than used in the definition.
count mismatch

8-6 Error Code -171 to -184

Error Messages

Execution errors
Error Description Jdescription/explanation/examples
Execution error This is the generic syntax error for devices that can-
not detect more specific errors. This code indicates
only that an Execution Error as defined in
IEEE-488.2, 11.5.1.1.5 has occurred.
" _910 [Trigger error

-211 [Trigger ignored Indicates that a GET, *TRG, or triggering signal was
received and recognized by the counter but was ig-
nored because of counter timing considerations; for
example, the counter was not ready to respond.

—212 JArm ignored Indicates that an arming signal was received and
recognized by the counter but was ignored.

—213 finit ignored Indicates that a request for a measurement initiation
was ignored because another measurement was al-
ready in progress.

—214 [Trigger deadlock Indicates that the trigger source for the initiation of a
measurement is set to GET and subsequent mea-
surement query is received. The measurement can-
not be started until a GET is received, but the GET
would cause an INTERRUPTED error.

-215 IArm deadlock Indicates that the arm source for the initiation of a
measurement is set to GET and subsequent mea-
surement query is received. The measurement can-
not be started until a GET is received, but the GET
would cause an INTERRUPTED error.

—220 JParameter error Indicates that a program-data-element related error
occurred. This error message is used when the
counter cannot detect the more specific errors —221
to —229.

—221 [Settings conflict Indicates that a legal program data element was

Settings conflict; parsed but could not be executed due to the current
PUD memory is |counter state (see IEEE-488.2, 6.4.5.3 and
protected 11.5.1.1.5)

Settings conflict; in- |
Ivalid combination of

channel and function }

Error Code -200 to -221 8-7

1V IVIGODAaYGD

Execution errors

Error Description Jdescription/explanation/examples

Data out of range jindicates that a legal program data element was
parsed but could not be executed because the inter-
preted value was outside the legal range as defined
by the counter (see IEEE-488.2, 11.5.1.1.5.).

The expression was too large for the internal float-
ing-point format.

Data below minimum for this function/parameter.

Data out of range;
exponent too large
Data out of range;
below minimum
Data out of range; [JData above maximum for this function/ parameter.
above maximum

Data out of range; JA number outside 0 to 19 was given for the save/re-
(Save/recall mem- Jcall memory.

ory number)

-223 JToo much data Indicates that a legal program data element of block,
Too much data; expression, or string type received that contained
*PUD string too more data than the counter could handle due to
long memory or related counter-specific requirements.
Too much
data;String or block
too long

—224 |Jllegal parameter jUsed where exact value, from a list of possible val-
value ues, was expected.

-230 fData corrupt or Possibly invalid data; new reading started but not
stale completed since last access.

—231 |Data questionabie
Data questionable; §One or more data elements sent with a MEASure or
one or more data el- JCONFigure command was ignored by the counter.

ements ignored

-240 [Hardware error Indicates that a legal program command or query
could not be executed because of a hardware prob-
lem in the counter. Definition of what constitutes a
hardware problem is completely device specific. This
error message is used when the counter cannot de-
tect the more specific errors described for errors
—241 through —249.

8-8 Error Code -222 to -240

Error Messages

Execution errors

ror

Error Error Description [Jdescription/explanation/examples
Number
-241 [Hardware missing [Jindicates that a legal program command or query
Hardware missing; [could not be executed because of missing counter
(prescaler)" hardware; for example, an option was not installed.
Definition of what constitutes missing hardware is com-
pletely device specific.

—254 [Media full Indicates that a legal program command or query
could not be executed because the media was full;
for example, there is no room on the disk. The defi-
nition of what constitutes a full media is device spe-
cific.

258 [Media protected Indicates that a legal program command or query
could not be executed because the media was pro-
tected; for example, the write-protect tab on a disk
was present. The definition of what constitutes pro-
tected media is device specific.

—260 [Expression error Indicates that an expression-program data-element-
related error occurred. This error message is used
when the counter cannot detect the more specific
errors described for errors —261 through —269.

-261 [Math error in ex- Indicates that a syntactically correct expression pro-

pression gram data element could not be executed due to a
math error; for example, a divide-by-zero was at-
tempted.

—270 [Macro error Ilndicates that a macro-related execution error oc-
curred. This error message is used when the counter
cannot detect the more specific error described for er-
rors —271 through —279.

Macro error; out of |No room for any more macro names.
name space

Macro error; out of No room for this macro definition.
definition space

-271 [Macro syntax error }indicates that a syntactically correct macro program
data sequence, according to IEEE-488.2 10.7.2,
could not be executed due to a syntax error within
the macro definition (see IEEE-488.2, 10.7.6.3)

—272 [Macro execution er- jIndicates that a syntactically correct macro program

data sequence could not be executed due to some
error in the macro definition (see IEEE-488.2,
10.7.6.3)

Error Code -241 to -272 8-9

CHUI IVIESSAayeS

Execution errors

Error Description

description/explanation/examples

lllegal macro label

Indicates that the macro label defined in the *DMC
command was a legal string syntax, but could not be
accepted by the counter (see IEEE-488.2, 10.7.3 and
10.7.6.2); for example, the label was too long, the same
as a common command header, or contained invalid
header syntax.

=274

Macro parameter
error

Indicates that the macro definition improperly used a
macro parameter place holder (see IEEE-488.2,
10.7.3).

=275

Macro definition too
long

Indicates that a syntactically correct macro program
data sequence could not be executed because the

string or block contents were too long for the coun-
ter to handle (see IEEE-488.2, 10.7.6.1).

-276

Macro recursion er-
ror

Indicates that a syntactically correct macro program
data sequence could not be executed because the
counter found it to be recursive (see IEEE-488.2,
10.7.6.6).

=277

Macro redefinition
not allowed

the *DMC command could not be executed because
the macro label was already defined (see
IEEE-488.2, 10.7.6.4).

-278

Macro header not
found

Indicates that a syntactically correct macro label in
the *GMC? query could not be executed because

lndtcates that a syntactically correct macro label in
the header was not previously defined.

8-10 Error Code -273 to -278

Rl

Error Messages

Standardized Device specific errors

Error Description

Device specific errorjThis code indicates only that a Device-Dependent

description/explanation/examples

Error as defined in IEEE-488.2, 11.5.1.1.6 has oc-
curred. Contact your local service center.

Indicates that an error was detected in the counter’s

-311 [Memory error
memory. Contact your local service center.

—312 JPUD memory lost findicates that the protected user data saved by the
*PUD command has been lost. Contact your local
service center.

—314 [Save/recall memory findicates that the nonvolatile calibration data used

lost by the *SAV? command has been lost. Contact your
local service center.

—330 [Self-test failed Contact your local service center.

-350 [JQueue overflow A specific code entered into the queue in lieu of the

code that caused the error. This code indicates that
there is no room in the queue and an error occurred
but was not recorded.

Error Code -300 to -350 8-11

Error viessages

Query errors
Error Description Jdescription/explanation/examples
This code indicates only that a Query Error as de-
fined in IEEE-488.2, 11.5.1.1.7 and 6.3 has oc-
curred

-410 [Query Indicates that a condition causing an INTER-

INTERRUPTED RUPTED Query error occurred (see IEEE-488.2,
6.3.2.3); for example, a query was followed by DAB
or GET before a response was completely sent.
Query INTER- The additional information indicates the IEEE-488.2
RUPTED; in send |[message exchange state where the error occurred.
state
Query INTER-
RUPTED; in query
state
Query INTER-
RUPTED; in re-
sponse state

420 [Query Indicates that a condition causing an

UNTERMINATED JUNTERMINATED Query error occurred (see
IEEE-488.2, 6.3.2.2); for example, the counter was
addressed to talk and an incomplete program mes-
sage was received.

Query The additional information indicates the IEEE-488.2

UNTERMINATED; [message exchange state where the error occurred

in idle state |

Query

UNTERMINATED;

in read state

Query

UNTERMINATED;

in send state

430 [Query Indicates that a condition causing an DEADLOCKED
DEADLOCKED Query error occurred (see IEEE-488.2, 6.3.1.7); for

example, both input buffer and output buffer are full
and the counter cannot continue.

—440 [Query Indicates that a query was received in the same pro-
UNTERMINATED Jgram message after an query requesting an indefi-
after indefinite re- [nite response was executed (see IEEE-488.2,
sponse 6.5.7.5.7.)

8-12 Error Code -400 to -440

Error Messages

i CNT-8X Device specific errors (leading 1 only for PM6681)

Error Error Description Jdescription/explanation/examples

(1)100 Device operation A floating-point error occurred during a counter op-
gave floating-point jeration.
underflow

(1)101 [Device operation JA floating-point error occurred during a counter op-
gave floating-point jeration.

overflow

(1)102 IDevice operation A floating-point error occurred during a counter op-
gave ‘not a number’ Jeration.

(1)110 |Invalid measure- The counter was requested to set a measurement
ment function function it could not make.

(1)120 [Save/recall memory JAn attempt was made to write in a protected mem-
protected ory.

(1)130 fjYnsupported com- findicates a mismatch between bus and counter ca-
mand pabilities.

(1)131 IUnsupported
boolean command

(1)132 [UYnsupported deci-
mal command
(1133 |Unsupported enu-
merated command
(1)134 Unsupported auto
command
Unsupported single
shot command
Command queue |The counter has an internal command queue with
full; last command jroom for about 100 commands. A large nhumber of

(1)135

(1)136

discarded commands arrived fast without any intervening
query.
(1)137 Inappropriate suffix JA suffix unit was not appropriate for the command.
unit Recognized units are Hz (Hertz), s (seconds), Ohm

(Q) and V (Volt).
(1)138 JUnexpected com- A command reached counter execution which
mand to device exe-Jshould have been handled by the bus.

(1)139 IUnexpected query JA query reached counter execution which should
to device execution jhave been handled by the bus.

Error Code (1)100 to -(1)139 8-13

CIIUI IVIESSAUES

CNT-8X Device specific errors (leading 1 only for PM6681)

(1)150

description/explanation/examples

Only a fixed, specific math expression is recognized
by the counter, and this was not it.

(1)160

A new bus command caused a running measure-
ment to be broken off.

(1)170

instrument set to
default

An internal setting inconsistency caused the instru-
ment to go to default setting.

(1)190 IError during calibra- JAn error has occurred during calibration of the in-
tion strument.
(1)191 IHysteresis calibra- [The input hysteresis values found by the calibration
tion failed routine was out of range. Did you remember to re-
move the input signal?
(1)200 IMessage exchange JAn error occurred in the message exchange handler

error eneric error).

(1)201

Reset during bus in-
put

The instrument was waiting for more bus input, but
the waiting was broken by the operator.

(1)202

The instrument was waiting for more bus output to be
read, but the waiting was broken by the operator.

Reset during bus
output

(1)203

|

Bad message ex-
change control state

An internal error in the message exchange handier.

(1)204

Unexpected reason
for GPIB interrupt

A spurious GPIB interrupt occurred, not conforming
to any valid reason like an incoming byte, address
change, etc.

(1)205

No listener on bus
when trying to re-
spond

This error is generated when the counter is an ac-
tive talker, and tries to send a byte on the bus, but
there are no active listeners.

(This may occur if the controller issues the device
talker address before its own listener address, which
some PC controller cards has been known to do)

Mnemonic table er- §An abnormal condition occurred in connection with

(1)210
ror the mnemonics tables (generic error).

(1)211 [Wrong macro table fThe macro definitions have been corrupted (could
checksum found be loss of memory).

(1)212 Wrong hash table | The hash table has been corrupted. Could be bad
checksum found memory chips or address logic. Contact your local

service center.

(1)213 |RAM failure to hold JThe memory did not retain information written to it.
information (hash JCould be bad memory chips or address logic. Con-
table) tact your local service center.

8-14 Error Code (1)150 to -(1)213

Error Messages

7 CNT-8X Device specific errors (leading 1 only for PM6681)

Error Error Description |}description/explanation/exampies
Number
(1)214 |Hash table overflow [The hash table was too smali to hold all mnemon-
ics. Ordinarily indicates a failure to read (RAM or
ROM) correctly. Contact your local service center.
(1)220 [JParser error Generic error in the parser.
(1)221 Illlegal parser call §The parser was called when it should not be active.
(1)222 |Ynrecognized input JA character not in the valid IEEE488.2 character set
character was part of a command.
(1)223 |Intemal parser error | The parser reached an unexpected interal state.
(1)230 [|Response formatter JGeneric error in the response formatter.
error
(1)231 |Bad response for- JThe response formatter was called when it should
matter call not be active.
(1)232 [Bad response for- JThe response formatter was called to output an end
matter call (eom) of message, when it should not be active.
(1)233 [|Invalid function The response formatter was requested to output
code to response |data for an unrecognized function.
formatter
(1)234 [nvalid header type [The response formatter was called with bad data for
to response format- jthe response header (normally empty)
ter
(1)235 [invalid data type to fThe response formatter was called with bad data for
Jresponse formatter jthe response data.
(1)240 JUnrecognized error JAn error number was found in the error queue for

number in error
queue

which no matching error information was found.

See also Error Messages in Appendix 1 of the Operators Manual.

Error Code (1)214 to -(1)240 8-15

11Ul IVIGOOAYTO

This page is intentionally left blank.

8-16 Error Code

Chapter 9

Command Reference

This page is intentionally left blank.

9-2 Command Reference

Abort

:ABORt

Command Reference 9-3

:ABORt [PMB680B/81/85 |

Abort Measurement

The ABORt command terminates a measurement. The trigger subsystem state is
set to “idle-state”.

Type of command:
Aborts all previous measurements if *WAI is not used.

Complies to standards: SCPI 1991.0, confirmed.

9-4 Command Reference

Arming Subsystem

:ARM
[:STARt/ :SEQuence [1]]
(LAYer2
:[IMMediate]
:SOURce . BUS | IMMediate
[:LAYer[1]]
:COUNt — <Numeric value> | MIN | MAX
:DELay . — <Numeric value> | MIN | MAX
:Ecount .. <Numeric value> | MIN | MAX
:SLOPe - POSltiveINEGatlve i
:SOURce . EXTemal2 | Extenal4 | IMMediate
:STOP / SEQuence2
[:LAYer[11]
:DELay — <Numeric value> | MIN | MAX (Only PM6680B /
PM6681)
:ECOunt — <Numeric value> | MIN | MAX (Only PM6680B / PM6681)
:SLOPe — POSitive | NEGative
:SOURce - EXTemal2 | EXTemal4 | IMMediate | TIMerf

Command Reference 9-£

:ARM :COUNt PM6680B/81/85 |

~«<Numeric value>|MIN|MAX»

No. of Measurements on each Bus arm

This count variable controls the upward exit of the “wait-for-bus-arm” state
(:ARM:STARt :LAY1). The counter loops the trigger subsystem downwards
COUNt number of times before it exits to the idle state. -

This means that a COUNt No. of measurements can be done for each Bus arming
or INITiate.

The actual number of measurements made on each INIT is equal to: -
l@ (:ARM:START:COUNT)*(:TRIG:START:COUNT)

Parameters:

<Numeric value> is a number between 1 and 65 535. (1 switches the function OFF))
MIN gives 1
MAX gives 65 535

Returned format: <Numeric value>

Example:
SEND— :ARM:COUN._100Jd

*RST condition: 1

Complies to standards: SCPI 1991.0, confirmed

9-6 Command Reference

PM6680B/81/85 | :ARM :DELSy

— «<Numeric value> | MIN | M

Delay after External Start Arming

This command sets a delay between the pulse on the arm input and the time when
the counter starts measuring. The delay is only active when the following is se-
lected:

:ARM: STARt : SOURce 8 EXT4.

Range: 200 ns to 1.67 s.
The optional node [:FIXed] is only accepted by PM6681.

garameters:

<Numeric value> is a number between 200*107° and 1.67s.
MIN gives 0 which switches the delay OFF.

MAX gives 1.67 s
Returned format: <Numeric value>

Example:

SEND— :ARM:DEL 0.1
*RST condition: 0

Complies to standards: SCPI 1991.0, confirmed.
|
PM6680B PM6681 | :ARM :ECOunt

— «<Numeric value> | MIN | MAX»

External Events before Start Arming

This command sets the number of negative edges required on the B-input (EXT2)
before the counter starts measuring (Start Arming Delay by events). Start Arming
delay by events cannot be used at the same time as stop Arming delay by events
(:ARM:STOP:ECO) .

The delay is only active when : ARM: START : SOUR _EXT2|EXT4 is selected.
nly one of the delays: :ARM:STAR:DEL, :ARM:STOP:DEL,

:ARM:STAR:ECO, and :ARM:STOP:ECO can be used at a time. When you pro-
gram this delay, the other three delays will be reset to their *RST values.

Parameters:

<Numeric value> is a number between 2 and 16 777 215. 1 switches the delay by events OFF.
SEND— :ARM:ECO .25/

Returned format: <Numeric value>
*RST condition: 1

Complies to standards: SCPI 1991.0, confirmed.

Command Reference 9-7

:ARM :LAYer2 PM6680B/81/85 |

Bus Arming Override
This command overrides the waiting for bus arm, provided the source is set to bus.
When this command is issued, the counter will immediately exit the “wait-for-bus-
arm” state.

The counter generates an error if it receives this command when the trigger sub-
system is not in the “wait-for-bus-arm” state.

If the Arming source is set to Immediate, this command is ignored.

Example:
SEND— :ARM:LAY2/

Complies to standards: SCPI 1991.0, confirmed.
|
:ARM :LAYer2 :SOURce PM6680B/81/85]

— «BUS | IMMediate»

Bus Arming On/Off

Switches between Bus and Immediate mode for the “wait-for-bus-arm” function,
(layer 2). GET and *TRG triggers the counter if Bus is selected as source.

If the counter receives GET/ *TRG when not in “wait-for-bus-arm” state, it ignores
the trigger and generates an error.

It also generates an error if it receives GET/ * TRG and bus arming is switched off
(set to IMMediate).

Returned format: BUS|IMM_J

Example:
SEND— :ARM:LAY2:SOUR . BUSJ

Complies to standards: SCPI 1991.0, confirmed.

9-8 Command Reference

PPM6680B/81/85 | :ARM :SLOPe

— «POSitive|NEGative»

External Arming Start Siope
Sets the slope for the start arming condition.

Returned format: POS|NEG.

Example:
SEND— :ARM:SLOP . NEGJ

*RST condition: POS

Complies to standards: SCPI 1991.0, confirmed.
]
[PM6680B/81/85] :ARM :SOURce

- «EXTernal2 | EXTernal4 | IMMediate»

External Arming Start Source
Selects channel 4 (Input E) as arming input, or switches off the start arming func-
tion. When switched off the DELay is inactive.

Parameters:

EXTernal2 is input B (Only PM6680B/81)
EXTernal4 is input E

IMMediate is Start arming OFF
Returned format: EXT2 | EXT4 | IMM_

Example:
SEND— :ARM:SOUR . EXT4J

*RST condition: |IMM

Complies to standards: SCPI 1991.0, confirmed.

'Command Reference 9-9

:ARM :STOP :DELAa)y [PM6680B PM6681 |

—. «<Numeric value> | MIN | M

Delay after External Stop Arming

This command sets a delay between stop slope of the pulse on the arm input and
the time when the counter stops measuring. The delay is only active when the fol-
lowing is selected:

:ARM: STOP:SOURce .. EXT2]|EXTA4.

Range: 200 ns to 1.67 s.
The optional node [:FIXed] is only accepted by PM6681.

%arameters:

<Numeric value> is a number between 200*10°° and 1.67s.
MIN gives 0 which switches the delay OFF.
MAX gives 1.67 s

Returned format: <Numeric value>

Example:
SEND— :ARM:STOP:DEL . 0.1J

*RST condition: 0

Compilies to standards: SCP! 1991.0, confirmed.
|
ARM :STOP :ECOunt [PM6680B/81/85 |

—. «<<Numeric value> | MIN | MAX»

External Events before Stop Arming

This command sets the number of stop slopes are required on the external stop
arming source before the counter stop measuring (Stop Arming Delay by events).
Stop Arming delay by events cannot be used at the same time as start Arming de-
lay by events (:ARM:START:ECO).

The delay is only active when : ARM: STOP: SOUR EXT2 |EXT4 Is selected.
%nly one of the delays: :ARM: STAR: DEL, :ARM:STOP:DEL,

:ARM:STAR:ECO, and :ARM:STOP:ECO can be used at a time. When you pro-
gram this delay, the other three delays will be reset to their *RST values.

Parameters:

<Numeric value> is a number between 2 and 16 777 215. 1 switches the delay by events OFF.
SEND— :ARM:STOP:ECO . 25J

Returned format: <Numeric value>
*RST condition: 1

Complies to standards: SCP! 1991.0, confirmed.

9-10 Command Reference

PPM6680B/81/85) :ARM :STOP :SLOPe

- «POSitive | NEGative»

External Stop Arming Slope
Sets the slope for the stop arming condition.

Returned format: POS|NEG_J

Example:
SEND— :ARM:STOP:SLOP .. NEGJ

*RST condition: POS

Complies to standards: SCPI 1991.0, confirmed.
]
[PM6680B/81/85] :ARM :STOP :SOURce

—. «<EXTernal2 | EXTernal4 | IMMediate»

External Stop Arming Source

Selects between channel 2 (Input B) and channel 4 (Input E) as stop arming input,
or switches off the stop arming function.

Parameters:

EXTernal2 is input B (Only PM6680B/81)
EXTernald is input E

IMMediate is Stop arming OFF
Returned format: EXT4{IMM_

Example:
SEND— :ARM:STOP:SOUR . EXT4J

*RST condition: |IMM

Complies to standards: SCP1 1991.0, confirmed.

Command Reference 9-11

This page is intentionally left blank.

9-12 Command Reference

Calculate Subsystem

:CALCulate
:STATe —. ON|OFF
:DATA?
:IMMediate
‘MATH
[.EXPRession] —. <Numeric expression>
:STATe - OhﬁOFF
:AVERage
[:STATe] —. ON|OFF
“TYPE - MlNlMAmSDEViaﬁonIMEAN
:COUNt « <Numeric value>|MIN|MAX
LIMit
[STATe] ON|OFF
:UPPer
[:DATA] — <Numeric value>|LMlN|MAX
:STATe —. ONI|OFE
:LOWer
[:DATA] — <Numeric value>'LMlN|MAX
:STATe — ON|OF
FAIL?

Command Reference 9-1&

L __]
:CALCulate :AVERage :COUNt PM6680B PM6681 |

— < No. of samples>

Sample Size for Statistics
Sets the number of samples to use in statistics sampling.

Parameters: <No. of samples> is a number in the range of 1 to 65535.

Returned format: < No. of samples>J

*RST condition: 100

.|
:CALCulate :AVERage :STATe [PMB680B PM6681]

- < Boolean >

Enable Statistics

Switches On/Off the statistical function. Note that the CALCulate subsystem is au-
tomatically enabled when the statistical functions are switched on. This means that
other enabled calculate sub-blocks are indirectly switched on. The statistics must
be enabled before the measurements are performed. When the statistical function
is enabled, the counter will keep the trigger subsystem initiated until the

:CALC: AVER: COUNT variable is reached. This is done without any change in the
trigger subsystem settings. Consider that the trigger subsystem is programmed to
perform 1000 measurements when initiated. In such a case, the counter must
make 10000 measurements if the statistical function requires 9500 measurements
because the number of measurements must be a multiple of the number of mea-
surements programmed in trigger subsystem (1000 in this example).

Parameters

<Boolean> = (1/ON | O/OFF)
Returned format: <1|0
*RST condition: OFF

9-14 Command Reference

PM6680B PM6681 | :CALCulate :AVERage :TYPE

— «MAX|MIN|MEAXI|SDE Viation»

Statistical Type
Selects the statistical function to be performed.

You must use :CALC:DATA? to read the result of statistical operations. :READ?,
[@ :FETC? will only send the results that the statistical operation is based on.

Parameters:
MAX returns the maximum value of all samples taken under :CALC:AVER
control.
MIN returns the minimum value of all samples taken under : CALC : AVER control.

MEAN returns the mean value of the samples taken: x = 1 Exi
n i=1

imtinn: © — 1 2 _ 1 2
SDEV Returns the standard deviation: s = F—-_1(EX,. ;(3 X))

Returned format: MAX|MIN|MEAN|SDEV
*RST condition: MEAN

[PM6680B/81/85] :CALCulate :DATA?

Fetch calculated data

Fetches data calculated in the post processing block. Use this command to fetch
the calculated result without making a new measurement.

Returned Format:
<Decimal data>

Exampie for PM6685:
SEND— :CALC:MATH:STAT . ON; :CALC:MATH . (X o - o 10.7E6);:INIT;
*OPC
Wait for operation complete

SEND— :CALC:DATA?
READ<« <Measurement . result . minus . 10.7E6>

Example for PM6680B/81
SEND— :CALC:MATH:STAT_ON; : CALC:MATH_ (((1_-*_X).-_10. TE6) /1)
;:init; *OPC
Wait for operation complete
SEND— :CALC:DATA?
READ<« <Measurement . result . minus o 10.7E6>

*RST condition:
Event, no *RST condition.

Complies to standards: SCPI 1991.0, Confirmed

Command Reference 9-1¢

:CALCulate :IMMediate PM6680B/81/85]

Recalculate Data

This event causes the calculate subsystem to reprocess the statistical function on
the sense data without reacquiring the data. Query returns this reprocessed data.

This command is not very useful in PM6685, but is accepted to maintain com-
patibility with the other counters in the CNT-8X series of counters.

Returned format: <Decimal data>
Where: <Decimal data> is the recalculated data.

Example:
SEND— :CALC:AVER:STAT . ON;TYPE . SDEV;:INIT;*OPC

Wait for operation complete

SEND— :CALC:DATA?

READ< <Value . of . standard . deviation>
SEND— :CALC:AVER:TYPE . MEAN

SEND— :CALC:IMM?

READ<« <Mean .. value>

*RST condition: Event, no *RST condition.

Complies to standards: SCPI 1991.0, Confirmed.

S
:CALCulate :LIMit [PM6680B/81/85]

_ <Boolean>

Enable Monitoring of Parameter Limits
Turns On/Off the limit-monitoring calculations.
Limit monitoring makes it is possible to get a service request when the measure-
ment value falls below a lower limit, or rises above an upper limit.
Two status bits are defined to support limit-monitoring. One is set when the results
are greater than the UPPer limit, the other is set when the result is less than the
LOWer limit. The bits are enabled using the standard *SRE command and
: STAT : DREGO : ENAB. Using both these bits, it is possible to get a service request
when a value passes out of a band (UPPer is set at the upper band border and
LOWer at the lower border) OR when a measurement value enters a band (LOWer
set at the upper band border and UPPer set at the lower border).
Turning the limit-monitoring calculations On/Off will not influence the status regis-
ter mask bits, which determine whether or not a service request will be generated
when a limit is reached. Note that the calculate subsystem is automatically en-
abled when limit-monitoring is switched on. This means that other enabled calcu-
late sub-blocks are indirectly switched on.

Parameters <Boolean> = (1/ON | 0/OFF)
Returned format: 1|0
*RST condition: OFF

See also: Example 1 in Chapter 4 deals with limit-monitoring.
Complies to standards: SCPI 1991.0, confirmed.

9-16 Command Reference

]
[PM6680B/81/85) :CALCulate :LIMit :FAIL?

Limit Fail
Returns a 1 if the limit testing has failed (the measurement result has passed the
limit), and a 0 if the limit testing has passed.

The following events reset the fail flag:
— Power-on

— *RST
— A :CALC:LIM:STAT OFF — :CALC:LIM:STAT - ON transition

— Reading a 1 with this command.

Returned format: 1] 0

Example:
SENB-—> SENS:FUNC . FREQ; :CALC:LIM:STAT . ON; :CALC:LIM . :HIGH.
1E3;READ?; *WAI; : CALC:LIM:FAIL?
READ< 1
if frequency ia above 1kHz, otherwize 0

Complies to standards: SCPI 1991.0, confirmed.
e e
[PM6680B/81/85] :CALCulate :LIMit :LOWer

. «<Decimal data>|MAX|MIN»
Set Low Limit

Sets the value of the ‘Lower Limit’', i.e., the lowest measurement result allowed be-
fore the counter generates a 1 that can be read with : CALCulate:LIMit:FAIL?,
or by reading the corresponding status byte.

Parameters
Parameter range: —9.9*10"%" to +9.9*10"%".

Returned format: < Decimal data>
*RST condition: O

Complies to standards: SCPI 1991.0, confirmed.

Command Reference 9-17

. |
:CALCulate :LIMit :LOWer :STATe PM6680B/81/85 |

—. <Boolean>

Check Against Lower Limit
Selects if the measured value should be checked against the lower limit.

Parameters <Boolean> = (1/ON | 0/OFF)

Returned format: 1| 0 J

*RST condition: O

Complies to standards: SCPI 1991.0 confirmed.
e]
:CALCulate :LIMit :UPPer [PM6680B/81/85]

- «<Decimal data>|MAX|MIN»

Set Upper Limit
Sets the value of the ‘Upper Limit', i.e., the highest measurement result allowed
before the counter generates a 1 that can be read with : CALCu-
late:LIMit:FAIL?, or by reading the corresponding status byte.

Parameters

Range: -9.9*10*% to +9.9*10"%
Returned format: <Decimal data>J
*RST condition: 0

Complies to standards: SCPI 1991.0, confirmed.

9-18 Command Reference

|
PM6680B/81/85 | :CALCulate :LIMit :UPPer :STATe

—. <Boolean>

Check Against Upper Limit
Selects if the measured value should be checked against the upper limit.
Parameters <Boolean> = (1/ON | 0/OFF)

Returned format: 1|0

*RST condition: 0

Complies to standards: SCPI 1991.0, confirmed.

Command Reference 9-18

:CALCulate :MATH

—. (<expression>)

Select Mathematical Expression

Defines the mathematical expression used for mathematical operations. This func-
tion equals the nulling function from the front panel.

The data type <expression data> must be typed within parentheses.

The operand must be surrounded by space characters.

Iy

<expression> is: (X + K) No deviations are allowed from this form.

K can be any positive or negative numerical constant within the range —9.9E+37 to
+9.9E+37
X is the measurement result.

Returned format: <expression>.J Where <expression> is the expression selected.

Example This example subtracts 10700000 from the measurement result.
SEND—:CALC:MATH . (X - - - 10.7E6)

Example 2 This example defines the mathematical expression, enables postprocessing
and mathematics, make a measurement, and fetches the result:
SEND—:CALC:MATH . (X - - - 10.7E6);MATH:STATE . ON; :READ?

*RST condition: (X - 10000 E+7)

Complies to standards: SCPI 1991.0 Confirmed.

9-20 Command Reference

PM6680B PM6681] :CALCulate :MATH

- (<expression>)

Select Mathematical Expression

Defines the mathematical expression used for mathematical operations. This func-
tion equals the nulling function from the front panel.

The data type <expression data> must be typed within parentheses.

lar aééeters

<expression> is one of the following two mathematical expressions:
((Ke* X)o+ L)o/M or ((K-/-X)_+_L)./-M No deviations are allowed.
K, L and M can be any positive or negative numerical constant, or use XOLD for the
last, previously measured value.
Each operand must be surrounded by space characters.

Example
SEND—:CALC:MATH . (((1 o * = X) = - o« 0) - / - XOLD)

This example gives a relative resuit from the last measuring result.

*RST condition:
(((1*X)+0) /19 (No calculation)

Returned format: <expression>

Complies to standards: SCPI 1991.0 Confirmed.
|
[PM6680B/81/85 | :CALCulate :MATH :STATe

— <Boolean>

Enable Mathematics

Switches on/off the mathematical function. Note that the CALCulate subsystem is
automatically enabled when MATH operations are switched on. This means that
other enabled calculate sub-blocks are indirectly switched on. Switching off mathe-
matics, however, does not switch off the CALCulate subsystem.

Parameters:

<Boolean> = (1/0ON | 0/OFF)
Returned syntax: 0|1
Examﬁle
SEND—>:CALC:MATH:STAT . 1
This example switches on mathematics.

*RST condition:. OFF

Complies to standards: SCP! 1991.0, confirmed.

Command Reference 9-21

:CALCulate :STATe PM6680B/81/85 |

- <Boolean>

Enable Calculation

Switches on/off the complete post-processing block. If disabled, neither mathemat-
ics or limit-monitoring can be done.

Parameter

<Boolean> = (1/0ON | 0/OFF)

SEND— :CALC:STAT . 1
Switches on Post Processing.

Returned format: 1|0
+RST condition: OFF

Complies to standards: SCPI 1991.0, Confirmed

9-22 Command Reference

Calibration Subsystem

:CALibration

:INTerpolator
:AUTO — <Boolean>|ONCE (Only PM6680B, PM6685)

PM6681 has factory calibrated interpolators, and calibration cannot be changed
by the operator.
Calibration of the PM6681 input hysteresis is done in the Diagnostis subsystem.

Command Reference 9-23

|
:CALibration :INTerpolator :AUTO [PM6680B/85)

- <Boolean>| ONCE

Calibration of Interpolator

The PM6680B/85 are reciprocai counters that uses an interpolating technique to
increase the resolution. In time measurements, for example, interpolation in-
creases the resolution from 100 ns to 0.25 ns.

The counter calibrates the interpoiators automatically once for every measurement
when this command is ON. When this command is OFF, the counter does no cali-
brations but uses the values from the last preceding calibration. The intention of
this command is to turn off the auto calibration for applications that dump mea-
surements into the internal memory. This will increase the measurement speed.

Parameters

<Boolean>=(1|ON /0| OFF)
Returned format: 1|0/
*RST condition: ON
See also:

Chapter 6, ‘How to Measure Fast'.

9-24 Command Reference

Configure Function

Set up Instrument for Measurement

:CONFigure
[:SCALar]<Measuring Function> - <Parametgrs>,f<Channels>)]
:ARRay<Measuring Function> — (<Amay Size>)[,<Parameters>,(<Channels>)]

The array size for :MEASure and :CONFigure, and the channels, are expression
data that must be in parentheses ().

Measuring Function, Parameters and Channels are explained on page 9-54.

The counter uses the default Parameters and Channels when you omit them in
the command.

Command Reference 9-25

:CONFigure :<Measuring Function> PM6680B/81/85 |

[~ <parameters>[,(<channels>)]]

Configure the counter for a single measurement
Use the configure command instead of the measure query when you want to
change other settings, for instance, the input settings before making the measure-
ment and fetching the resuit.

The :CONFigure command controls the settings of the Input, Sense and Trigger sub-
systems in the counter in order to make the best possible measurement. It also
switches off any calculations with :CALC:STATE _ OFF.

:READ? or :INITiate;:FETCh? will make the measurement and read the resulting
measured value.

Since you may not know exactly what settings the counter has chosen to configure
itself for the measurement, send an *RST before doing other manual set up mea-
surements.

Parameters
<Measuring Function>, <Parameters> and <Channels> are defined on page 9-54.
The optional parameter : SCALar means that one measurement is to be done.

Returned format: <String> |
<String> contains the current measuring function and channel. The response is a
<String data element> containing the same answer as for [: SENSe] : FUNC-
tion?.

Example:

SEND— :CONF:FREQ:RAT_(@3), (@1)
Configures the counter for freq. ratio C/A.

See also: ‘Explanations of the Measuring Functions’ starting on page 9-59.

Complies to standards: SCP! 1991.0, confirmed.

9-26 Command Reference

:CONFigure :ARRay :<Measuring Function>

- (<array size>)[,<parameters> [,(<channels>)]]

Configure the counter for an array of measurements

The :CONFigure:ARRay command differs from the : CONFigure command in
that it sets up the counter to perform the humber of measurements you choose in
the <array size>.

To perform the selected function, you must trigger the counter with the : READ: AR-
Ray? Or : INITiate; : FETCh:ARRay? queries.

Parameters <array size> sets the number of measurements in the array (1 to 2500).

<Measuring Function>, <Parameters>, and <Channels> are defined on page 9-54.

Example:

SEND— :CONF:ARR:PER . (7),5E-3,1E-6, (@4)
This example sets up the counter to make seven period measurements. The ex-
pected result is 5 ms, and the required resolution is 1 pus. The EXT ARM input is
the measuring input.

To make the measurements and fetch the seven measurement results:
SEND— :READ:ARR? . 7

READ< 5.23421E-3,5.12311E-3,5.87526E-3, -
5.50345E-3,5.33901E-3,5.25501E-3, . 5.03571E-3

Complies to standards: SCPI 1991.0, confirmed.

Command Reference 9-27

This page is intentionally left blank.

9-28 Command Reference

Diagnostics Subsystem

:DIAGnostic

:CALibration
:INPut[1]
:HysTeresis.. OFF | ONCE

‘HySTeresis. OFF | ONCE

[INPut2

Command Reference 9-29

L]
:DIAGnostic:CALibration:INPut[1]|2]:HYSTeresis
— «OFF | ONCE»

Input comparator hysteresis calibration

These two commands measure and save the hysteresis levels of the input com-
parator. This makes it possible to achieve a trig level accuracy of 2.5 mV, which is
important in measurement functions such as phase, to get the best possible re-
sults.

Since the calibration compensates for the temperature drift of the input ampli-
fier, it should be made at the same temperature as the accurate measurement
is to be made at.

Before sending these commands, be sure to disconnect any signal leads from the
input connector of the input you want to calibrate.

If error code 1191 is generated, the calibration constants are out of range and you
must calibrate again. Check that no cables are connected to input A or input B be-
fore recalibrating.

When the input calibration procedure can be done without error codes, the calibra-
tion is correct.

Example:
SEND— :DIAG:CAL:INP:HYST . ONCE

This string calibrates both input A and input B.

Returned format: QFF (J
When queried, these commands always return OFF .

*RST condition: *RST does not affect these calibration data.

9-30 Command Reference

Display Subsystem

:DISPlay
:ENABle_ ON OFF

Command Reference 9-31

. |
:DISPIa¥ :ENABIe [PMB680B/81/85]

— < Boolean

Display State
Turns On/Off the updating of the entire display section. This can be used for secu-
rity reasons or to improve the GPIB speed, since the display does not need to be
updated. Turning off the display reduces the dead time between measurements
by about 7 ms.

When the display is turned off, the information about the measurement resolution
is lost. That is, the counter will always send a full 12 digit mantissa independent of
the measurement resolution.

Parameters:

Where <Boolean> = (1 / ON | 0 / OFF)
Returned format: 110 (_J

*RST condition: ON
See also: Chapter 6, ‘How to Measure Fast'.

Complies to standards: SCPI 1991.0, confirmed.

9-32 Command Reference

Fetch Function

:FETCh
[:SCALar]?
:ARRay?.. <Amay Size>|MAX

Command Reference 9-33

:FETCh? PM6680B/81/85]

Fetch One Result

The fetch query retrieves one measuring result from the measurement result buffer
of the counter without making new measurements. Fetch does not work unless a
measurement has been made by the : INITiate, :MEASure?, Or :READ? com-
mands.

If the counter has made an array of measurements, : FETCh? fetches the first
measuring results first. The second : FETCh? fetches the second result and so on.
When the last measuring result has been fetched, fetch starts over again with the
first result.

The same measuring result can be fetched again and again, as long as the result
is valid, i.e., until the following occurs:

— *RST is received.

—an :INITiate, . :MEASure or :READ command is executed
— any reconfiguration is done.

— an acquisition of a new reading is started.
If the measuring result in the output buffer is invalid but a new measurement has
been started, the fetch query completes when a new measuring result becomes
valid. If no new measurement has been started, an error is returned.

Where the optional : SCALar means that one result is retrieved.

Returned format: <data>_|
The format of the returned data is determined by the format commands : FORMat
and :FORMat : FIXed.

Complies to standards: SCPI 1991.0, confirmed.

9-34 Command Reference

PM6680B/81/85 :FETCh :ARRaXx?

— «<fetch array size>|MAX»

Fetch an Array of Results

:FETCh: ARRay? query differs from the : FETCh? query by fetching several mea-
suring results at once.

An array of measurements must first be made by the commands. : INITiate,
:MEASure:ARRay? or :CONFigure:ARRay; :READ?

If the array size is set to a positive value, the first measurement made is the first
~ result to be fetched.

When the counter has made an array of measurements, : FETCh:ARRay? ~ 10
fetches the first 10 measuring results from the output queue. The second
:FETCh:ARRay? . 10 fetches the result 11 to 20, and so on. When the last mea-
suring result has been fetched, fetch:array starts over again with the first result.

In totalizing for instance, you may want to read the last measurement result in-
stead of the first one. This is possible if you set the array size to a negative num-
ber. Example: : FETCh:ARRay? - -5 fetches the last five results. The output
queue pointer is not altéred when the array size is negative. That is, the example
above always gives the last five results every time the command is sent.

:FETCh:ARRay? . -1 is useful to fetch intermediate results in free-running or ar-
ray measurements without interrupting the measurement.

Parameters
:ARRay means that an array of retrievals are done for each : FETCh command.
<fetch array size> is the number of retrievals in the array. This number must not
exceed the number of measuring results in the measurement result buffer. The
<SIZE> parameter maximum limit is depending on the
:SENSe: INTernal:FORMat command as follows:

Array Size

Format : Measuring function PM6680B/85 | PM6681
Real: All functions 2048 7019
Packed: Frequency, Period, Ratio Totalize 2166 6143
Pulse Width 764 4466

Time-Interval, Rise/Fall time 4466

Phase, Duty Cycle,Volt 7019

Low resolution Frequency and Period 8191

Low Res. Time-Interval and Pulse Width 4095

MAX means that all the results in the output buffer will be fetched.

Command Reference 9-35

Returned format: <data>[,<data>]|
The format of the returned data is determined by the format commands : FORMat
and :FORMat : FIXed.

Example:

If :MEAS:ARR:FREQ? . (4) gives the results 1.1000,1.2000,1.3000,1.4000
:FETC:ARR .2 fetches theresults 1.1000,1.2000
:FETC:ARR .2 once more fetches the results 1.3000,1.4000
:FETC:ARR _ -1 always fetches the last result 1.4000

Complies to standards: SCPI 1991.0, confirmed.

9-36 Command Reference

1

Format Subsystem

:FORMat
[:DATA] — ASCii REAL[, <Numeric value> | AUTO]
FiXed — ONOFF .

:SREGister . ASCii | BINary | HEXadecimal | OCTal
:TINFormation[:STATe] ~ <Boolean>

Command Reference 9-37

:FORMat [PM6680B/85]
— «ASCii|REAL»

Response Data Type
Sets the format in which the result will be sent on the bus.

Parameters

ASCii will send the measurement result in ASCii form.<sign><mantissa value>E<sign><expo-
nent value>
<sign> =+ or—
~ <mantissa value> = I to 12 digits (depending on
measuring resolution) plus one decimal point.
<exponent value> = 1 to 3 digits

REAL will send the result in binary IEEE Double Precision floating-point format in a
block-data element. #18<8 bytes real>. The <8 bytes real> is a double precision binary
floating-point response according to IEEE488.2/IEEE754. This means that the eight
bytes are sent in the following order:

First byte: <sign><7 MSB of the exponent>
Second byte: <4 LSB of the exponent><4 MSB of the fraction>
Third through eight byte: <48 LSB of the fraction>

Returned format: ASC|REAL

*RST condition: ASCii
Complies to standards: SCPI 1991.0, confirmed.

:FORMat PM6681
. «ASCIii|REAL»[, <Numeric value> | AUTO]

Response Data Type
Sets the format in which the result will be sent on the bus.

This command is identical to the above described command for the PM6680B/85,
except for the optional length parameter.

Parameters:

ASCii: The length controls the number of digits in the mantissa and may be set to values from
2to 12 or AUTO.

AUTO: The length will be controlled by the resolution of each measurement result. Auto will be
ignored when :INTernal:FORMat . PACKed or
:DISPlay:ENABled .. OFF is selected.

REAL: The length parameter is ignored, ‘reals’ are always output in 8 byte format.

Returned format: ASC|REAL, <Numeric value> | AUTOJ
*RST condition: ASCii, AUTO
See also: :FORMat :TINFormation command

Complies to standards: SCPI 1991.0, confirmed.

9-38 Command Reference

[PM6680B/81/85 | :FORMat :FiXed

- <Boolean>

Response Data Format
Sets the ASCii format to fixed. This results in the following response format:

<sign><mantissa value>E<sign><exponent value>

Where:
<sign> = +|—
<mantissa value> = 12 digits plus one decimal point.
<exponent value> = 3 digits

Parameters <Boolean> = (1/ON | 0/ OFF)

The counter will add leading zeroes when the measurement resolution is less
[than 12 digits.
Returned format: 1|0
*RST condition: OFF

:FORMat :SREGister
— «ASCii | BINary | HEXadecimal | OCTal»

Data Type for Status Messages

This command selects the data type of the response to queries for any CONDition,
EVENt and ENABIe register. This includes the IEEE 488.2 status register queries.

Parameters:

ASCii The data is transferred as ASCii bytes in NR1 format.

HEXadecimal The data is encoded as non-decimal numeric, base 16, pre-
ceded by ‘#H' as specified in IEEE 488.2

OCTal The data is encoded as non-decimal numeric base 8, pre-
ceded by ‘#Q’ as specified in IEEE 488.2

BiNary The data is encoded as non-decimal numeric, base 2, pre-
ceded by ‘#B’ as specified in IEEE 488.2

Returned format: ASCii | BINary | HEXadecimal | OCTal J
*RST condition: ASCii

Command Reference 9-39

]
:FORMat :TINFormation

— Boolean

Timestamping On/Off Timestamping;On/Off
This command turns on/off the time stamping of measurements. Time stamping is
always done at the start of a measurement with a resolution of 125 ns, and is
saved in the measurement buffer together with the measurement result.

The setting of this command will affect the output format of the MEASure, READ
and FETCh queries.

For :FETCh:SCALar?, :READ:SCALar? and :MEASure:SCALar? the readout will con-
sist of two values instead of one. The first will be the measured value and the next
one will be the timestamp value.

In :FORMat ASCii mode, the result will be given as a floating-point number (NR3
format) followed by the timestamp in seconds in the NR2 format ddd.ddddddddd
(12 digits). In :FORMat REAL mode, the resuit will be given as an eight-byte block
containing the floating-point measured value, followed by a four-byte block con-
taining the integer timestamp count, where each count represents 125 nanosec-
onds.

When doing readouts in array form, with :FETCh :ARRay?, :READ :ARRay?, or
:MEASure :ARRay? , the response will consist of alternating measurement values
and timestamp values, formatted the same way as for scalar readout. All values
will be separated by commas.

Parameters <Boolean> = (1 / ON | 0 / OFF)

Returned format: 1|0

*RST condition: OFF

9-40 Command Reference

Initiate Subsystem

:INITiate
[:IMMediate]
:CONTinuous —~ ON|OFF

Command Reference 9-41

-]
:INITiate [PM6680B/81/85]

Initiate Measurement

The :INITwate command initiates a measurement. Executing an : INITiate com-
mand changes the counter’s trigger subsystem state from “idle-state” to
“wait-for-bus-arm-state” (see Figure 6-15). The trigger subsystem will continue to
the other states, depending on programming. With the *RST setting, the trigger
subsystem will bypass all its states and make a measurement, then return to idle
state. See also ‘How to use the Trigger Subsystem’ at the end of this chapter.

Complies to standards: SCPI 1991.0, confirmed.
:INITiate :CONTinuous IPM6680B/81/85
—. <Boolean>

Continuously Initiated
The trigger system could continuously be initiated with this command. When Con-
tinuous is OFF, the trigger system remains in the “idle-state” until Continuous is set
to ON or the : INITiate is received. When Continuous is set to ON, the comple-
tion of a measurement cycle immediately starts a new trigger cycle without enter-
ing the “idle-state”, i.e., the counter is continuously measuring and storing re-
sponse data.

Returned format: <Boolean>
*RST condition: OFF

Complies to standards: SCPI 1991.0, confirmed.

9-42 Command Reference

Input Subsystems

m INPUT A
:INPut{1]
:ATTenuation ~ <Numeric value>|MINJMAX (1]10) }Not PM6685
:COUPIling -~ ACDC Not PM6685
:IMPedance — <Numeric value>|MIN|MAX
[:EVENY
:HYSTeresis — «<Decimal data>|MAX [MIN» OnI PM66853
:AUTO - ON|OFF|ONCE PM668)
:LEVel — <Numeric value>|M| |[MAX
:AUTO - ONEOFFE)NC
:SLOPe — POSINE
FiLTer
[:LPASS]
[:STATe] — ON|OFF
m INPUT B (Not PM6685)
:INPut2
:ATTenuation — <Numeric value>|MIN|MAX (1]10)
:COUPling -~ ACDC
:IMPedance — <Numeric value>|MIN|MAX
[EVENt]
‘LEVel — <Numeric value>|MIN|MAX
:AUTO - ONLOFF!%)N
:SLOPe — POSINE
:COMMon — ON|OFF
®m INPUTE
{INPut4
[EVEN(]
:SLOPe —. POSINEG

Command Reference 9-45

:INPut«[1]|2» :ATTenuation [PM6680B PM6681 |
— «<Numeric value>|MAX|MIN»

Attenuation
Attenuates the input signal with 1 or 10. The attenuation is automatically set if the
input level is set to AUTO.

Parameters:
<Numeric values> ® 5, and MIN gives attenuation 1.
<Numeric values> > 5, and MAX gives attenuation 10.

Returned format:

1.00000000000E+000}1.00000000000E+001 I

Example for Input A (1)
SEND— :INP:ATT . 10

Example for Input B (2)
SEND— :INP2:ATT .. 10

*RST condition Input A (1) and Input B (2): 1 (but set by autotrigger since AUTO is on af-
ter *RST. (: INP: LEV:AUTO . ON).

Complies to standards: SCPI 1991.0, confirmed.
|
:INPut«[1]|2» :COUPIling [PM6680B PM6681 |
— «AC|DC»

AC/DC Coupling

Selects AC coupling (normally used for frequency measurements), or DC cou-
pling (normally used for time measurements).

Returned format: AC|DC_|

Example for Input A (1)
SEND— :INP:COUP . DC

Example for Input B (2)
SEND— :INP2:COUP . AC

*RST condition
Input A (1): AC

Input B (2): DC

Complies to standards: SCPI 1991.0, confirmed.

9-44 Command Reference

PM6680B/81/85 :INPut :FiLTer

— <Boolean>

Low Pass Filter

Switches on or off the low pass filter on input 1 (A). It has a cutoff frequency of 100
kHz.

Parameters:

<Boolean> is (1 / ON | 0/ OFF)
Returned format: 1]0_|
*RST condition OFF

Complies to standards: SCPI 1991.0, confirmed.

PM6685 :INPut :HYSTeresis
— «<Decimal data>|MAX |MIN»

Sensitivity

The sensitivity setting on the front panel is called HYSTeresis from the bus. The
range is 27.12 mV to 75.4 V. This setting has no effect unless autosensitivity is
turned off, see the following page.

Note that the sensitivity setting is coupled with the hysteresis setting according to
the formula:
Trigger Leve; + Hysteresis < 377057 ...

Parameters: <Decimal data> is a number between 27.12E-3 and 75.4.

MAX gives +75.4 V, MIN gives +2.7 mV
When using MAX as data, the counter always tries to set the hysteresis to +75.4 V.
Unless the Trigger level is set to 0, this setting is impossible, and the counter will
return an error message.

Returned format: <Decimal data>

Example:
SEND— :INP:HYST . 0.5;HYST:AUTO - O
This example sets the sensitivity to 0.5 V and switches off autosensitivity.

*RST condition 0.65 V (but controlled by Autotrigger since AUTO is on after *RST)

Command Reference 9-45

:INPut :HYSTeresis :AUTO

—. «<Boolean>|ONCE»

Auto Sensitivity

AUTO from the front panel turns on both auto sensitivity (hysteresis) and auto
waveform compensation(trigger level). From the bus there are two commands, one
for auto hysteresis and one for auto trigger level. However, the function of these
commands are identical. Both commands turn on/off the hysteresis and the trigger
level simultaneously.

The auto sensitivity function normally sets the hysteresis to 33% of Vpp. However,
two exceptions exists: Pulse Width and Duty Cycle, where the hysteresis is set to
min.
if you have a stable amplitude, use the :AUTO .. ONCE, and the autotrigger will de-
termine sensitivity once and then set fixed levels.

Parameters <Boolean> = (1/ON | 0/OFF)

ONCE means that AUTO first switches ON to check the signal. After determining suitable sen-
sitivity and trigger level setting, it programs these values as if they where manually set.
It ends by switching off AUTO. Using ONCE instead of AUTO ON improves measuring
speed.

Returned format: 1|0,/

Example:
SEND— :INP:HYST:AUTO . OFF

This example switches off AUTO, enabling manual sensitivity and trigger level set-
ting.

*RST conditon ON

9-46 Command Reference

L]
PM6680B/81/85 :INPut«[1]|2» :IMPedance
— «<Decimal data>|MAX|MIN»

Input impedance
The impedance can be set to 50 Q or 1 MQ.

Parameters

MIN or <Decimal data> that rounds off to 50 or less, sets the input impedance to 50

MAX or <Decimal data> that rounds off to 1001 or more, sets the impedance to 1 MQ.

Returned format:

5.00000000000E+001}1.00000000000E +6

Exampte for Input A (1)
SEND— :INP:IMP . 50
Sets the input A impedance to 50 Q.

Example for Input B (2) (Only for PM6680B/81)
SEND— :INP2:IMP . 50

Sets the input B impedance to 50 Q.
*RST condition 1 MQ

Complies to standards: SCPI 1991.0, confirmed.

|
[PM6680B PM6681] :INPut«[1 (!2» :LEVel

— «<Decimal data>|MAX|MIN»
Fixed Trigger Level

input A and input B can be individually set to autotrigger or to fixed trigger levels of
between -5 V and +5 V in steps of 0.02 V (1.25mV for PM6681). If the attenuator
is set to 10X, the range is —50 V and +50 V in 0.2 V(12.5mV steps).

For autotrigger, see the following page.

Parameters: <Decimal data> is a number between -5 V and +5 V if att=1X and between
—-50 V and +50 V if att=10X.

MAX gives +50 V and MIN gives -50 V
When using MAX and MIN as data, the counter always tries to set the trigger level to
+50 V and —50 V. If the attenuator is set to 1X, it is impossible to set this trigger level,
and the counter will return an error message.

Returned format: <Decimal data>

Example for Iinput A (1)
SEND— :INP:LEV . 0.01

Exampie for input B (2)
SEND— :INP2:LEV . 2.0

*RST condition O (but controlled by Autotrigger since AUTO is on after *RST)

Command Reference 9-47

:INPut :LEVel

- «<Decimal data>|MAX|MIN»

Waveform compensation

The three-position waveform compensation on the front panel is not available
from the bus. Instead, you can set the trigger level, that is, the level on which the
hysteresis band is centered. How to set the trigger level depends on the duty cycle
and the peak-to-peak voltage of the signal.

Trigger level = V,, * (0.5~ Duty factor)

This setting has no effect unless autosensitivity is turned off, see the following
page.

Parameters

<Decimal data> is a number between approximately —37.7 V and +37.7 V.

MAX gives +37.7 ... V and MIN gives —37.7... V

Note that the .. :INP:LEV command is coupled with the : INP: HYST command.
See page 9-45.

Returned format: <Decimal data>

Example:
SEND— :INP:LEV . 3.75;LEV:AUTO - O

This example sets the trigger level to 3.75 V and switches off auto trigger level.
*RST condition 0 (but controlled by Autotrigger since AUTO is on after *RST)

9-48 Command Reference

[PM6680B PM6681 | :INPut :LEVel :AUTO

—. «<Boolean>|ONCE»

Autotrigger
If set to AUTO, the counter automatically controls both the trigger level and the at-
tenuation'. If you have a stable amplitude, use the : AUTO . ONCE, and the
autotrigger will determine the trigger level once and then set a fixed level.

From the bus, input A and input B are always set to autotrigger individually.

!ara%eters:

<Boolean> = (1/ON | 0/OFF)
ONCE means that the autotrigger switches on, checks the signal, stores the trigger
levels as manually set levels, and then switches off auto. This improves measuring
speed.

Example for Input A (1)
SEND— :INP:LEV:AUTO . OFF

Example for Input B (2)
SEND— :INP2:LEV:AUTO . ON

Returned format: 1|0J
*RST condition ON

1 The autotrigger function normally sets the trigger levels to 50 % of the signal ampli-
tude. Two exceptions exists however:
Rise/Fall time measurements: Here the input 1 (A) trigger level is set to 10% and
the Input 2 (B) trigger level is set to 90% of the amplitude.
Variable Hysteresis mode (channel 7): The input 1 (A) trigger level is set to 75%
and the Input 2 (B) trigger level is set to 25% of the amplitude

Command Reference 9-4§

:INPut :LEVel :AUTO

— «<Boolean>|ONCE»
Autotrigger

:!INPut:AUTO?

If auto is on, the counter automatically controls the trigger level' and the hyster-
esis. If you have a stable amplitude, use the : AUTO ONCE, and auto will determine
the trigger level once, and then set fixed levels.

Parameters

<Boolean> = (1/ON | 0/OFF)

ONCE means that AUTO first switches ON to check the signal. After determining suitable sen-

sitivity and trigger level setting, it programs these values as if they where manually set.
It ends by switching off AUTO.

Using ONCE instead of AUTO ON improves measuring speed.
Returned format: 10

Example:
SEND— :INP;LEV:AUTO . OFF
This example switches off AUTO, enabling the programmed trigger level setting.

*RST condition ON

1 The autotrigger measure peak to peak level, and sets the lower level of the hyster-
esis band to 33%, and the upper level to 66% of the value, (for pulse and duty
factor measurement, both levels are set to 50%).

9-50 Command Reference

|
PM6680B/81/85] :INPut«[1]|2]4» :SLOPe
-~ «POS|NEG»

Trigger Slope
Selects if the counter should trigger on a positive or a negative transition. Selecting
negative slope is useful when measuring negative pulse width and negative duty
cycle.

When you select negative slope, the counter always uses the non-prescaled
mode, limiting the maximum input frequency to 160 MHz. This can be useful when
you want to make fast frequency measurements: Using positive slope, the counter

. needs two input cycles to make a SINGLE frequency measurement, but when set
to negative slope, only one input cycle is required.

Returned format: PQOS | NEG

Example for input A (1)
SEND~— :INP:SLOP . POS

Exampile for input B (2) (Only for PM6680B/81)
SEND— :INP2:SLOP . NEG

Example for Input E (4)
SEND— :INP4:SLOP . NEG

*RST condition POS

Complies to standards: SCPI 1991.0, confirmed.
e e
PPM6630B PM6681] :INPut2:COMMon

ON|OFF

When on, the signal on input A is fed both to Channel 1 and Channel 2. The inter-
connection is made before the filter on input A.

Parameters

<Boolean> = (1/ON | 0/OFF)

ON means that the signal on input A is fed both to Channel 1 and Channel 2. The input signal
on input B is not used in the measurement. But the signal on input B is terminated by
the input impedance of the counter (50Q or 1MQ).

OFF means that inputs A and B works separated from each other.

Returned format: 1|0

Example:
SEND— :INP2:COMM ON

This example switches on common, feeding the same signal to both channel 1 and
channel 2.

*RST condition OFF

Command Reference 9-51

This page is intentionally left blank.

9-52 Command Reference

s

Measurement Function

Set up the Instrument, Perform Measurement, and Read Data

:MEASure
[:SCALar}<Measuring Function>?
{<Parameters>][,(<Channels>)]
:ARRay<Measuring Function>? —. (<Armay Size>)[<Parameters>][,(<Channels>)]
:MEMory?
[<N>]
:MEMory<N>?

The array size for :MEASure and :CONFigure, and the channels, are expression
data that must be in parentheses ().

The default channels, which the counter uses when you omit the channels in
the command, are printed in italics in the channel list on the following pages.

If you want to check what function and channels the counter is currently using,

send :CONF?
This query gives the same answer as :FUNC? in the SENSe subsystem

Command Reference 9-53

- PPWMcosoEPMeseT

:MEASure}:CONFigure
[:VOLTage]
[:SCALar]
:FREQuency
[:CW]? [[<expected value>[,<resolu-
tion>]J(@1/@2|@3|@4 6|
:RATio? <exp. Vall]e][>(<rt|e@s?ollc.j 4 2 3)] @7) @4)]]
:BURSt? - <exp value>[,<resol.>]. /(@ 1|@2|@3|@4
:PRF? ~ [<exp. value>{,<resol.>] (@ 1|@2|@3
:PERiod? ~ [<exp. value>[,<resol.>] (@ 1|@2|@3|@4
:TINTerval? ~ [<exp. value>|,<resol.>|[l(@1|@2 4.8
:PHASe? ~ [<exp. value> <resol.>| (@1 2,(«?1
:NWIDth? ~ [<exp. value>{,<resol.>],Il{@1|@2 g
:PWIDth? ~ [<exp. value>[<resol.>} J[(@1|@2|@4
:DCYCIe|PDUTycycé? [[<exp. value>[<resol>], (g) (% @4)]]
:N ¥ ’x [L<ex . value>[,<resol.>],]{(@1 |
:RISE i J [<lower thresh.>[,<upper thresh.>|,<exp. value>{,<resol. >]]HH&% %Bll]
:FALL:TIME?[[<Iower thresh> ,<upper thresh.>[,<exp. value>[<resol.>
:MAXimum? 2
:MINimum? - 1 2
:PTPeak? - 11@2
:TOTalize -
:GATed? 1 2|@4).(@1 2
:TiMed? [mle@folr%a e(?pe'n@> (?élﬂﬁig 5«}4) (((@1]@ ? ‘R
:ACCumulated? 1' %‘l’lm%for‘1 ate open> @7eded).[@1@d@d)]
[CON?muous'&[‘ @ @ i
.FREQuency
C <Size>)[,[<expected value>| <reso|ut|on> 1 2
Ratlor — (SES) (S Vahe Sesa 0]3!&%@ GG
BURSP <Size>)[,<exp. value>[,<resol.>}, 3
:PRF? — (<Size>)l,<exp. value> <resol.>]. 3
:PERiod? ~ (<Size>)| <exp. value>[<resol.>]. 3
:TINTerval? ~ (<Size>)[,[<exp. value>{ <resol >},), 5?2[@4)]]
:PHASe? — (<Size>)[[<exp. value>{ <resol.>], 2), 1
:NWIDth? ~ (<Size>),[<exp. value> <resol.>], 2
:PWIDth? — (<Size>)[[<exp. value>[<resol.>];

:DCYCIelPDUTycycIe? <Size>)[,[<exp. va ue> <res > 11@2|@4)]]
:NDU ¥| 'xcle? (<Size>)[[<exp. value>[, <resol> [(

:R <Size>), ower thr..>{,<up thr> <exp. value> ,<resol.> 11@2
:FALL TIME? — (<Size>)| [<lower thr >, <upper thr >, <exp value>|, <resol> 1| 2)
:MAXimum? <Size> [gg

~———
v

:MINimum? — (<Size>

:PTPeak? ~ (<Size>

:TOTalize?
:GATed? Size> 11@2|@4).(@1|@2
TMod? — (<Saoll [‘ﬁ’%nle@f e a’té@ép'e% S?R@A@z

:ACCumulated? ' (<Size> |me fo gateo]l lgz@z)'% P@2l@4)]]

‘Teon T.,,uo‘gﬁiﬁe”[[(@” ze SIS lee2@m

9-54 Command Reference

:MEASure|:CONFigure
[:VOLTage]
[:SCALar]
:FREQuency

:PERiod?
:NWIDth?
:PWIDth?

PM6685

[CW]? [— [<expected value>[<resolu-
> 1 4
:RATi0? [~ [<exp. vaﬂ?:>[J]<[r(§ol|@I)]3I%J%ﬂ%ﬂbﬂ@&,
:BURSt? [- &@J}p@eglé@dﬂ/ lfle 6zresolutlon>]][1|@3
:PRF? [- [<expected value>|, <reso on> lg 11@3|@4)]]

[- [<expected va ue>[<reso|ut|on>]][(@1|@
[H

:PDUTycycle|DCYCle?[<thresho|d> 1
:NDUT%;:I? el | 1@ <threshold>][,(@1|@4)]]

:TOTalize*

2322223.8152811 Al

[CONTinuous]'[. (@0|@1I@4)(@0I@"I@4)]

[:ARRay]

:FREQuency
.cw?.. (<Size>)[,[<expected value> <reso|ut|on> 1 3 I
[RAT|0'7 ((<S|zel5 <g§p value>|, <!'esol> l 4)])]]
:BURSt?.. (<Size>)[_ [<expected value>[<reso
:PRF? (Size>)[,[<expected value> <reso ut|on>] 11@3|@4)]]

PERiod? . (<Size>)[[<expected value> <reso|utlon>]][(@ |@3|@4)])

‘NWIDth? _ (<Size>)| [<threshold>], 4

PWIDth? . (<Size>)|[<threshold>

‘PDUTycycle|DCYCle? . (<Size>), [<thres o >][11 @?

:NDUTycycle? — (<Size>)[,[<threshold>][(@1]@4)])

:TOTalize*

[CONTinuous*] . (<Size>)[[(@0I@I@4).(@0I@1|@4)]]

* Only for :CONFigure

(@0) means that

the input is disabled (Only PM6685)

(@1) means input A

(@2) means input B (Not available on PM6685)

(@3) means input C (HF-input option)

(@4) means input E (Rear panel arming input)

(@5) means input A prescaled by 2

(@6) means the internal reference

(@7) means input A with the variable hysteresis mode (Only PM6680B and

PM6681)

Command Reference 9-55

. |
:MEASure :<Measuring Function>? [PM6680B/81/85]

[~ [<parameters>][,(<channels>)]]

Make one measurement

The measure query makes a complete measurement, including configuration and
readout of data. Use measure when you can accept the generic measurement
without fine tuning.

When a CONFigure command or MEASure? query is issued, all counter settings
are set to the *RST settings., except those specified as <parameters> and
<channels> in the CONFigure command or MEASure? query.

You cannot use the :MEASure? query for : TOTalize:CONTinuous, since this
function measures without stopping (continuously forever).

The :MEASure? query is a compound query identical to:
:ABORt; : CONFigure:<Meas_func>; : READ?

Parameters:
<Measuring Function>, <Parameters> and <Channels> are defined on page 9-54.
You may omit <parameters> and <Channels>, which are then set to default.

Returned format: <data>_|

Where: The format of the returned data is determined by the format commands: :FORMat and
:FORMat:FlXed.

Example:

SEND— :MEAS:FREQ? . (@3)

READ< 1.78112526833E+009
This example measures the frequency on the C-input and outputs the result to the
controller.

Type of command: Aborts all previous measurement commands if *WAI is not used.
see also: ‘Explanations of the Measuring Functions’ starting on page 9-59.

Complies to standards: SCPI 1991.0, confirmed.

9-56 Command Reference

L.]
:MEASure :ARRay :<Measuring Function>?

[- (<array size>)[,[<parameters>] [,(<channels>)]]

Make an array of measurements

The :MEASure : ARRay query differs from the : MEASure query in that it performs
the number of measurements you decide in the <array size> and sends all the
measuring results in one string to the controller.

The array size for :MEASure and :CONFigure, and the channels, are expression
[lgb data that must be in parentheses ().

The :MEASure:ARRay query is a compound query identical to:
:ABORt; : CONFigure:ARRay:<Meas-func> _ (<array-size>); :READ:ARRay? -
(<array-size>)

Parameters:

<array size> sets the number of measurements in the array.

Returned format:

<Measuring result>{[,<measuring result>]}]

Example:
SEND— :MEAS:ARR:FREQ? . (10)
Ten measuring results will be returned.

Type of command:
Aborts all previous measurement commands if not *WAI is used, see page 9-132.

Complies to standards: SCPI1 1991.0, confirmed.

Command Reference 9-57

]
:MEASure:MEMory<N>? PM6681
Memory Recall, Measure and Fetch Result

Use this command when you want to measure several parameters fast.

:MEAS :MEM1 ? recalls the contents of memory 1 and reads out the result,
:MEAS :MEM2 ? recalls the contents of memory two and reads out the result etc.

The equivalent command sequence is *RCL1; READ?

The allowed range for <N> is 1 to 9. Use the somewhat slower :MEAS :MEMory?
N command described below if you must use memories 10 to 19.

TIMING
Data Format
Command ASCii REAL
*MEAS : MEM1? 7.9 ms 6.7 ms
:MEAS :MEM? 1 9.1 ms 8.0 ms
*RCL 1;READ? 10.1 ms 8.9 ms

Returned format:
<measurement result>_|

Comﬂlies to standards: SCPI 1991.0, confirmed
:MEASure:MEMory? PM6681

- <N>

Memory Recall, Measure and Fetch Result

Same as above command but somewhat slower. Allows use of all memories (1 to
19).

Example: :MEAS:MEM . 13
This example recalls the instrument setting in memory number 13, makes a meas-
urement, and fetches the result.

Complies to standards: SCPI 1991.0, confirmed

9-58 Command Reference

EXPLANATIONS OF THE MEASURING
FUNCTIONS

This sub-chapter explains the various measurements that can be
done with :MEASure and : CONFigure; : READ. Only the queries
for single measurements using the measure command are given
here, but all of the information is also valid for the : CONFigure
command and for both scalar (single) and array measurements.

]
[PM6680B/81/85] :MEASure_«:DCYCle/:PDUTycycle»
[[<threshold>] [,(@«1[2/4{6)]]

Positive Duty Cycle
Traditional duty cycle measurement is performed. That is, the ratio between the
on time and the off time of the input pulse is measured.

Parameters

<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to
50 percent of the signal.

(@«1|2|4)|6») is the channel to measure on:

(@1) means input A

(@2) means input B (Only PM6680B and PM6681)

(@4) means input E (Rear panel arming input)

(@6) means the internal reference

If you omit the channel, the instrument measures on input A (@1).

Example:
SEND— :MEAS:PDUT?
READ< +5.097555E-001
In this example, the duty cycle is 50.97%

Complies to standards: SCP! 1991.0, confirmed.

Command Reference 9-56

:MEASure :FREQuenc [PM6680B/81/85 |

[._ [<expected value>[,<resolution>]] [y<(@«1|2|3|4|5|6|7»)>]]

Frequency

Traditional frequency measurements. The counter uses the <expected value> and
<resolution> to calculate the Measurement Time (:SENSe:ACQuisition:APER-
ture).

Example:
SEND— :MEAS:FREQ? . (@3)
READ<« 1.78112526833E+009
This example measures the frequency at input C.

The channel is expression data and it must be in parentheses ().

<expected value> is the expected frequency,
<resolution> is the required resolution.

<(@«1|3|4)5\6|7»)> is the channel to measure on:
(@1) means input A’
(@2) means input B (Only PM6680B and PM6681)
(@3) means input C (HF-input option)
(@4) means input E (Rear panel arming input)

(@5) means input A prescaled by 2
(@6) means the internal reference
@?7) means input A with the variable hysteresis mode (Only PM6680B and PM6681)

If you omit the channel, the instrument measures on input A (@1).

1 The Aiinput is always prescaled by 2 when measuring Frequency A and
prescaled by 1 for all other functions.

Complies to standards: SCPI 1991.0, confirmed.

9-60 Command Reference

[PM6680B/81/85] :MEASure :FREQuency :BURSt?

[~ [<expected value>[,<resolution>]] [,<(@«1]2|3|4|5]6]7»)>]]

Burst Carrier Frequency

Measures the carrier frequency of a burst. The burst duration must be less than
50% of the pulse repetition frequency (PRF).

How to measure bursts is described in detail in the Operators Manual.

The counter uses the <expected value> and <resolution> to select a Measurement
Time ([: SENSe] :ACQuisition:APERture), and then sets the sync delay
_ ([:SENSe] : SDELay) to 1.5 * Measurement Time.

Parameters:

<expected value> is the expected carrier frequency,
<resolution> is the required resolution, e.g., 1 gives 1Hz resolution.

<(@«1|2|314|5\6|7»)> is the channel to measure on:
(@1) means input A
(@2) means input B (Only PM6680B and PM6681)
(@3) means input C (HF-input option)
(@4) means input E (Rear panel arming input)
(@5) means input A prescaled by 2
(@6) means the internal reference
(@?7) means input A with the variable hysteresis mode (Only PM6680B/81)

If you omit the channel, the instrument measures on input A (@1).

Complies to standards: SCPI 1992.0, confirmed.

Command Reference 9-61

:MEASure :FREQuency :PRF? PM6680B/81/85
[~ [<exp. val.>[,<res.>]][,<(@«1]2|3]4]5|6|7»)>]]

Puise Repetition Frequency

Measures the PRF (Pulse Repetition Frequency) of a burst signal.The burst dura-
tion must be less than 50% of the pulse repetition frequency (PRF).

It is better to set up the measurement with the [:SENS]:FUNC “.FREQ:PRF”
command when measuring pulse repetition frequency. This command will allow
you to set a suitable sync delay with the [:SENSe]:Sync:DELay command.

How to measure bursts is described in detail in the Operators Manual.
Parameters: <exp. val.> is the expected PRF,

<res.> is the required resolution.

<(@«1|3|4)|5|6»)> is the channel to measure on:
(@1) means input A
(@2) means input B (Only PM6680B and PM6681)
(@3) means input C (HF-input option)
(@4) means input E (Rear panel arming input)
(@S5) means input A prescaled by 2
(@6) means the internal reference
(@7) means input A with the variable hysteresis mode (Only PM6680B/81)

If you omit the channel, the instrument measures on input A (@1).

The <expected value> and <resolution> are used to calculate the Measurement
Time ([: SENSe] :ACQuisition:APERture). The Sync. Delay is always 10 us
(default value)

Complies to standards: SCPI 1992.0, confirmed.

9-62 Command Reference

[PM6680B PM6681 | :MEASure :FALL :TIME?

[~ [<lower threshold> [,<upper threshold>[,<expected value>[,<resolution>]]]} [,(@1)]]

Fall-time
The transition time from 90% to 10% of the signal amplitude is measured.

The measurement is always a single measurement and the Auto-trigger is always
on, setting the trigger levels to 90% and 10 % of the amplitude. If you need an av-
erage transition time measurement, or other trigger levels, use the : SENSe sub-
system and manually set trigger levels instead.

Parameters:

<lower threshold>, <upper threshold>, <expected value> and <resolution are all ignored by
the counter

<(@1)> is the channel to measure on, i.e., input A

Complies to standards: SCPI 1991.0, confirmed.
]
[PM6680B/81/85] :MEASure :FREQuency :RATio?

[T<expected value> [,<resolution>]][,<(@«1{2]3]4|5]6»)>,<(@« 1]2|3|4|5]6»)>]]

Frequency Ratio
Frequency ratio measurements between two inputs.
Example:
SEND— :MEAS:FREQ:RAT? . (@1l), (@3)
READ< 2.345625764333E+000
This example measures the ratio between input A and input C.

The channel is expression data and it must be in parentheses ().

par% eters: <expected value> and <resolution> are ignored

<(@«1]2|3|4)|5|6»)>,<(@«1|2)|3|4|5|6»)> is the channels to measure on:
(@1) means input A
(@2) means input B (Only PM6680B and PM6681)
(@3) means input C (HF-input option)
(@4) means input E (Rear panel arming input)
(@5) means input A prescaled by 2
(@6) means the internal reference
If you omit the channel, the instrument measures between input A and input E.

Complies to standards: SCPI 1991.0, confirmed.

Command Reference 9-63

|
:MEASure [:VOLT] :MAXimum? PM6680B PM6681 |
[~ «@1|@2»)]

Positive Peak Voltage
This command measures the positive peak voltage with the input DC coupled.

Parameters:

(«@I1\@2») is the channel to measure on
(@1) means input A
(@2) means input B

Complies to standards: SCPI 1991.0, confirmed.

[remme———— . - - |
:MEASure [:VOLT] :MINimum? [PM6680B PM6681 .
[- («@1|@2»)]

Negative Peak Voltage
This command measures the negative peak voltage with the input DC coupled

Parameters:

(«@1|@2») is the channel to measure on
(@1) means input A
(@2) means input B -

Complies to standards: SCPI 1991.0, confirmed.

9-64 Command Reference

PM6680B/81/85 | ‘MEASure :NWIDth?

[- [<threshold>] [,<(@«1]2|4]6»)>]]

Negative Pulse Width
A negative pulse width measurement is performed.

This is always a single measurement. If you need an average pulse width mea-
surement, use the : SENSe subsystem instead.

Parameters

<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to
50 percent of the signal.

<(@«1|2|4|6»)> is the channel to measure on:
(@1) means input A
(@2) means input B (Only PM6680B and PM6681)
(@4) means input E (Rear panel arming input)
(@6) means the internal reference
If you omit the channel, the instrument measures on input A.

Complies to standards: SCPI 1991.0, confirmed.
]
PM6680B/81/85 | ‘MEASure :PWIDth?

[[<threshold>] [.<(@«1]2|4]6»)>]]

Positive Pulse Width
A positive pulse width measurement is performed.

This is always a single measurement. If you need an average pulse width mea-
surement, use the : SENSe subsystem instead.
Parameters

<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to
50 percent of the signal.

<(@«1|2|4|6»)> is the channel to measure on:
(@1) means input A
(@2) means input B (Only PM6680B and PM6681)
(@4) means input E (Rear panel arming input)
(@6) means the internal reference

If you omit the channel, the instrument measures on input A.

Complies to standards: SCP! 1991.0, confirmed.

Command Reference 9-6¢

.]
:MEASure «:PDUT}(cyclel :DCYCle»? [pm6680B/81/85]
[[<threshold>] [T@«1[2]4{6»)]

Positive duty cycle: Duty Factor

Traditional duty cycle measurement is performed. That is, the ratio between the on
time and the off time of the input pulse is measured.

Parameters

<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to
50 percent of the signal.

(@«1)2\4|6») is the channel to measure on:
(@1) means input A
(@2) means input B (Only PM6680B and PM6681)
(@4) means input E (Rear panel arming input)
(@6) means the internal reference
If you omit the channel, the instrument measures on input A (@1).

Example:

SEND— MEAS:PDUT?

READ<« +5.097555E-001

In this example, the duty cycle is 50.97%

Complies to standards: SCPI 1991.0, confirmed.
|
‘MEASure «:NDUTycycle»? [PM6680B/81/85 |
[[<threshold>] [T@«1[2}4|6»)]

Negative duty cycie: Duty Factor

Traditional duty cycle measurement is performed. That is, the ratio between the on
time and the off time of the input pulse is measured.

Parameters

<threshold> parameter sets the trigger levels in volts. If omitted, the auto trigger level is set to
50 percent of the signal.

(@«1|2|4|6») is the channel to measure on:
(@1) means input A
(@2) means input B (Only PM6680B and PM6681)
(@4) means input E (Rear panel arming input)
(@6) means the internal reference
If you omit the channel, the instrument measures on input A (@1).

Exampie:
SEND— MEAS:PDUT?

READ<« +5.097555E-001
In this example, the duty cycle is 50.97%

Complies to standards: SCPI 1991.0, confirmed.

9-66 Command Reference

—
PM6680B/81/85] :MEASure :PERiod?

[~ [<expected value> [,<resolution>]]){,<(@«1]|2]|3|4|5]6]7»)>]]

Period
A traditional period measurement is performed.

The <expected value> and <resolution> are used to calculate the Measurement
Time ([: SENSe] :ACQuisition:APERture).

Parameters:

<expected value> is the expected Period,
<resolution> is the required resolution,

<(@«1]2|3|4|5|6»)> is the channel to measure on:
(@1) means input A
(@2) means input B (Only PM6680B and PM6681)
(@3) means input C (HF-input option)
(@4) means input E (Rear panel arming input)
(@5) means input A prescaled by 2
(@6) means the internal reference
(@7) means input A with the variable hysteresis mode (Only PM6680B)PM6681)

If you omit the channel, the instrument measures on input A (@1).

Complies to standards: SCPI 1991.0, confirmed.
e]
[PM6680B PM6681 | :MEASure :PHASe?

[~ [<expected value>[,<resolution>]] [,(@«1]2»),(@«1{2»)]]

Phase
A traditional PHASe measurement is performed.

Parameters:

<expected value> and <resolution> are ignored by the counter

The first (@« 1|2») is the start channel and the second (@«1|2») is the stop channel
(@1) means input A
(@2) means input B

If you omit the channel, the instrument measures between input A and input B.

Complies to standards: SCP1 1991-0, approved.

Command Reference 9-67

.
:[N(Ig«%gl).]lre [:VOLT] :PTPeak? PM6680B PM6681]

Peak-to-Peak Voltage

This command make measures the peak-to-peak voltage with the input DC cou-
pled.

' Parameters:

(@«1]|2») is the channel to measure on
(@1) means input A
(@2) means input B

Complies to standards: SCPI 1991.0, confirmed.

]
‘MEASure :RISE :TIME? |E|M668>OB PM6681|

[~ [<lower threshold> [,<upper threshold>[,<expected value>{,<res

Rise-time
The transition time from 10% to 90% of the signal amplitude is measured.The
measurement is always a single measurement and the Auto-trigger is always on,
setting the trigger levels to 10% and 90 % of the amplitude. If you need an aver-
age transition time measurement or other trigger levels, use the :SENSe subsys-
tem and manually set trigger levels instead.

Parameters:

<lower threshold>, <upper threshold>, <expected value> and <resolution are all ignored by
the counter

<(@l1)> is the channel to measure on, i.e., input A

Complies to standards: SCPI 1991.0, confirmed.

9-68 Command Reference

PM6680B PM6681 | :MEASure :TINTerval?
- (@«1|2]4»),(@«1]|2/4»)]

Time-Interval
Traditional time-interval measurements are performed. The trigger levels are set
automatically, and positive slope is used. The first channel in the channel list is the
start channel, and the second is the stop channel.

Parameters:

The first (@«1|2|4») is the start channel and the second (@«1|2|4») is the stop channel
(@1) means input A
(@2) means input B
(@4) means input E (Rear panel arming input)

If you omit the channel, input A is the start channel, and input B is the stop chan-
nel.

Command Reference 9-6¢

:MEASure :TOTalize :ACCumulated? [Pme6s0B PM6681]
[<time for gate open>][,(@«1]2|4|5|6») [,(@«1|214|5|6»)]

Totalize X gated by Y, accumulated

The counter totalizes the pulses on the primary channel. The totalizing starts when
the gate signal on the secondary channel goes on and stops when the gate signal
goes to off. The polarity of on/off is controlled via the : INPut : SLOPe command of
the gate channel. The result is the sum of counts in all the gate openings that oc-
cur during a preset time <time for gate open>.

If you use the : CONFigure command, you can select if the counter should count
positive or negative transitions with the : INPut : SLOPe command of the measur-
ing channel.

Parameters: <time for gate open> is the time you want the totalizing to proceed. Range
PM6680B: is 0.8E-6, 1.6E~6, 3.2E-6, 6.4E-6, 12.8E-6, and 50E—6 t0 400 s
Range PM6681 and 80E-9, 160E-9, 320E-9, 640E-9, 1.28E-6, and 20E-6 to
400 s.

The first <(@«1]|2|4|516»)> is the channel to measure on.

The second <(@«1|2|4|5\6»)> is the gate channel.
(@1) means input A
(@2) means input B
(@4) means input E (rear panel arming input)
(@5) means input A prescaled by 2
(@6) means the internal reference
If you omit the channels, the instrument measures on input A with input B as

[@ the gate channel.

*RST condition:
Time for gate open = 10 ms ([: SENSe]ACQuisition:APERture)

9-70 Command Reference

]
[PM6680B/81/85] :CONFigure :TOTalize :CONTinuous
[~ (@«1]2]4]|6»)])[.(@«1]2|4]|6»)]

Totalize Manually

This is a count/totalize function controlled from the GPIB interface using the com-
mand SENS : TOT : GATE_ONJ|OFF.

The counter counts up for each event on the primary input channel. and down on
the secondary channel. The result is the difference between the primary and sec-
ondary channel. In addition to selecting totalizing, the : CONF: TOT : CONT com-
mand also selects positive trigger slope. If you want to count negative slopes on in-
put A, send : INPut : SLOPe.. NEG after the : CONF: TOT : CONT command.

Parameters
(@«1|2}416») is the primary (adding)channel:
,(@«1]|2|4)6») is the secondary (subtracting) channel:

(@1) means input A

(@2) means input B (not PM6685)

(@4) means input E (rear panel arming input)
(@6) means the internal reference

Selecting the same channel as both primary and secondary disables the secon-
dary channel.

This measurement cannot be done as a :MEASure, it must be done as a : CON—
Figure followed by : INIT:CONT_ON, gate control with : SENS : TOT : GATE
«ON | OFF» and completed with a : FETCh : ARR? <array size>.

Example:

SEND— :CONF:TOT; : INP:SLOPe neg
This example sets up the counter to totalize the negative slopes on Input A and
disable the secondary channel. (Same as (@1).(@1).)

*RST condition_ (@1),(@2) for PM6680B and PM6681, (@1),(@1) for PM6685

Normal Program Sequence for Totalizing on A

CONF:TOT:CONT. (@1), (@1) |Set up the counter for totalize on A

INIT:CONT..ON Initiate the counter continuously

TOT : GATE_ON Start totalizing

FETC:ARR?..—1 Read intermediate results without stopping the totalizing
TOT : GATE_OFF Stop totalizing

FETC:ARR?.-1 Fetch the final result from the totalizing

The :FETCh:ARR? command can take both positive and negative data. Positive
data, for instance 10, outputs the first 10 measurements in the counter output
buffer. Negative data, for instance ~10, outputs the last ten results.

Intermediate resuits VWhen totalizing you often want to read the intermediate result without
stopping the totalizing process. : FETC: ARR?..—1 outputs such a result.

Command Reference 9-71

‘MEASure :TOTalize :GATed? PM6680B PM6681 |
[~ (@«1]|2]4]5|6») [,(@«1]2]4]5|6»)]]

Totalize X gated by Y

The counter totalizes the pulses on the primary channel. The totalizing starts when
the gate signal on the secondary channel goes on and stops when the gate signal

goes to off. The polarity of on/off is controlled via the : INPut : SLOPe command of
the gate signal.

Select if the counter should count positive or negative transitions with the
: INPut : SLOPe command of the measuring channel.

Parameters

The first <(@«1|2|4|5|6»)> is the channel to measure on, the second one is the gate channel:
(@1) means input A
(@2) means input B
(@4) means input E (rear panel arming input)
(@5) means input A prescaled by 2
(@6) means the internal reference
If you omit the channels, the instrument measures on input A with input B as the
gate channel.

|
:MEASure :TOTalize :SSTop? [PM6680B PM6681
[~ .(@«1]2]4|5|6») [,(@«1]|2|4|5]6»)]]

Totalize X start/stop by Y

The counter totalizes the puises on the primary channel. The totalizing starts when
the gate signal on the secondary channel goes on and stops the next time the gate
signal goes on. The polarity of ON is controlied via the : INPut : SLOPe command
of the Start /stop channel.

Select if the counter should count positive or negative transitions with the : IN~
Put : SLOPe command of the measuring channel.

Parameters:

The first <(@«1|2|4|5|6»)> is the channel to measure on, and the second one is the start/stop
channel:
(@1) means input A
(@2) means input B
(@4) means input E (rear panel arming input)
(@5) means input A prescaled by 2
(@6) means the internal reference

If you omit the channels, the instrument measures on input A with input B is the
start/stop channel.

9-72 Command Reference

[PMB680B PM6681 | :MEASure :TOTalize :TiMed?

[~ [<time for gate open> [,(@«1]2]4»)][,(@«1]2]4»)]]]

Totalize X-Y During a Preset Time

This is a count/totalize function during a predefined time. The start/stop signal is
generated by the counter and set by <time for gate open>.

The counter counts up for each event on the X-channel and down for each event
on the Y-channel. The result is the difference between the two channels.

If you only want to Totalize on X, you must disable Y by setting both X and Y to the
same channel or disconnecting the signal from Y.

Totalize -Y MANUAL, negative totalizing, is possible if you physically disconnect
the signal on the X input.

Select if the counter should count positive or negative transitions with the IN-
Put:SLOPe command of the channels.

Parameters:

<time for gate open> is the time you want the totalizing to proceed. The range is the same as
for Measurement Time.

The first <(@«1|2|4»)> is the channel that counts up, and the second one is the channel that
counts down:

(@1) means input A
(@2) means input B
(@4) means input E (rear panel arming input)

If you omit the channels, the instrument counts up on input A and down on input B.

Example:
SEND— :MEAS:TOT:TIM? - 1, (@1l), (@1)

In this example the counter totalises the pulses on Channel 1 for one second. Any
signals on channel 2 and 4 are ignored.

*RST condition:
Time for gate open = 10 ms ([: SENSe] :ACQuisition:APERture)

Command Reference 9-73

This page is intentionally left blank.

9-74 Command Reference

Memory Subsystem

‘MEMory
:DELete
:‘MACRo.. ‘<Macro name>’
‘FREE
:SENSe?
:NSTates?
:MACRo?

Related Common Commands:

*DMC
*EMC
*GMC?
*LMC?
*LRN?
*PMC
‘RCL
*RMC
*SAV

Command Reference 9-75

. __ |
:MEMory :DELete :MACRo [PM6680B/81/85)

- ‘<Macro name>’

Delete one Macro
This command removes an individual MACRo'.

Parameters

‘<Macro name>is the name of the macro you want to delete.

<Macro name> is String data that must be surrounded by quotation marks.

ee diso:
*PMC, if you want to delete all macros.

1 The proposed IEEE488.2 command *RMC (Remove Macro command) also works
on PM6685. It preforms exactly the same action as :MEMory:DELete :MACRoO.
Note however that this command is not yet (1993) a certified IEEE488.2 com-
mand.

e
:MEMory :FREE :SENSe?

Memory Free for results

This command gives information of the free memory available for sense data
(measuring results) in the counter.

Returned format:
<Data positions available>, <Data positions in use>_

9-76 Command Reference

PM6680B/81/85] :MEMory :FREE :MACRo0?

Memory Free for Macros
This command gives information of the free memory available for MACRos in the
counter. If no macros are specified, 1160 bytes are available.

Returned format:
<Bytes available>, <Bytes used>_|

Complies to standards: SCPI 1991.0, confirmed.
]
[PM6680B/81/85| :MEMory :NSTates?
Memory States

The Number of States query (only) requests the number of *SAv/ #RCL instrument
setting memory states available in the counter. The counter responds with a value
that is one greater than the maximum that can be sent as a parameter to the *sav
and *RCL commands. (States are numbered from 0 to max-1.)

Returned format:
<the number of states available>

Complies to standards: SCPI 1991.0, confirmed

Command Reference 9-77

This page is intentionally left blank.

9-78 Command Reference

Output Subsystem

:OUTPut

[:STATe] . ON|OFF
:SCALe —. <Numeric value>

Command Reference 9-79

:OUTPut PM6680B/81/85 |

— <Boolean>

Enable Analog Out

This command switches on/off the analog output. See also : OUTput : SCALe com-
mand on the next page.

Parameters

<Boolean> = (1/0ON | O/OFF)
Returned format: <1|0>

Example:
Send— :0UTP _ 1
Switches on the analog output.

*RST condition: OFF

Complies to standards: SCPI 1991.0 confirmed.
- -]
:OUTPut :SCALe [PM6680B/81/85)

- < Decimal data >

Scaling Factor, Analog Output

This command sets the scaling factor for the analog output The measurement re-
sult is scaled after math, if math is used.

If you want a full-scale output for a specific readout, the formula is:

1
full scale value

Scaling factor =

Parameters
<Decimal data> is the scaling factor. The range is —1020 to +1020.

Returned format: < Decimal data>J

Example:
If you want full scale output (5 V) for a reading of 0.00359,
Scaling factor = 299359 _ 0000718

Send— :0UTP:SCAL . 718E-6
*RST condition: 1

9-80 Command Reference

Read Function

Perform Measurement and Read Data

:READ
[:SCALar]?
:ARRay?_. <Array Size>|MAX

Command Reference 9-81

‘READ? [PM6680B/81/85]

Read one Result

The read function performs new measurements and reads out a measuring result
without reprogramming the counter. Using the : READ? query in conjunction with
the :CONFigure command gives you a measure capability where you can fine tune
the measurement.

If the counter is set up to do an array of measurements, : READ? makes all the
measurements in the array, stores the results in the output buffer, and fetches the
first measuring result. Use FETCh? to fetch other measuring results from the out-
put buffer. The : READ? query is identical to : ABORt; : INITiate; : FETCh?

Returned format: <data>
The format of the returned data is determined by the format commands :FORMat
and FORMat : FIXed.

Example:
SEND— :CONF:FREQ; : INP:FILT . ON; :READ?

This example configures the counter to make a standard frequency measurement
with the 100 kHz filter on. The counter is triggered, and data from the measure-
ment are read out with the :READ? query.

SEND— :READ?

This makes a new measurement and fetches the result without changing the pro-
gramming of the counter.

Type of command: Aborts all previous measurement commands if *WAI is not used.

Complies to standards: SCPI 1991.0, confirmed.

9-82 Command Reference

[PM6680B/81/85 | :READ:ARRa%(?

- «<array size for FETCh>|MAX»

Read an array of resulits
The :READ:ARRay? query differs from the : READ? query by reading out several
results at once after making the number of measurements previously set up by
:CONFigure:ARRay —Or . :MEASure:ARRAY?.

The :READ:ARRay? query is identical to:
:ABORt; : INITiate; : FETCh:ARRay?_<array size for FETCh>

The <array size for FETCh> does not tell :READ to make that many measure-
l]gb ments, only to fetch that many results. :CONF:ARR, . :MEAS:ARR,
:ARM:LAY 1:COUN or :TRIG:LAY'1:COUN sets the number of measurements.

Parameters:

<array size for FETCh> sets the number of measuring results in the array. This size must be
equal or less than the number of measurements specified with : CONFigure.

MAX means that all the results in the output buffer will be fetched.

Returned format: <data>[,<data>]. ,
The format of the returned data is determined by the format commands : FORMat
and : FORMat:FIXed.

SEND— :ARM:COUN . 10;:READ:ARR? . 5

This example configures the counter to make an array of 10 standard measure-
ments. The counter is triggered and data from the first five measurements are read
out with the :READ? query.

Type of command: Aborts all previous measurement commands if *WAT is not used.

Complies to standards: SCPI 1991.0, confirmed.

Command Reference 9-83

This page is intentionally left blank.

9-84 Command Reference

1

Sense Command Subsystem

[:SENSe]

:ACQuisition
:APERture
:HOFF

[:STATe]
:ECOunt
:MODE
:TIME
:RESolution
:AVERage

:COUNt

:STATe
:FREQuency

:RANGe

LOWer
:FUNCtion
ANTernal

:FORMat
:ROSCillator

:SOURce
:TOTalize

:GATE

[:STATe)
:VOLTage

:GATed
:STATe

rreorert {

m Sense Subsystem command tree for PM6680B and PM6681

<meas time> | MIN | MAX

ON | OFF

<hold off event count value> | MIN | MAX
TIME | EVENt

<hold off time value> | MIN | MAX

HIGH | LOW

<Number of samples> | MIN | MAX
- TIME}COUNts
— ONJOFF

<Minimum frequency for autotrigger> | MIN | MAX
‘Measuring function [Primary channel { , Secondary channel] 1"

REAL | PACKed
INTemal | EXTemal

ON | OFF

ON | OFF

Command Reference 9-85

m Sense Subsystem command tree for PM6685

[:SENSe]
:FUNCtion — ‘Measuring function [_ Primary channel [, Secondary channel]] '
:EVEN'
‘LEVel — <Trigger level in Volts> | MIN | MAX
AUTO = ONTOFF | ONCE
:HYSTeresis ~ <Sensitivity band in Volts> | MIN | MAX
:AUTO — ON OFFEONCE
:SLOPe -
:ACQuisition
:APERture — <Measurement Time> | MIN | MAX
:HOFF?
‘TIME — <Hold off time> | MIN | MAX
:AVERage
:STATe — ON|OFF
:ROSCiliator
:SOURce — INTemal | EXTemal
:SDELay . <Burst sync. delay> | MIN | MAX
:TOTalize
:GATE
[[STATe] . <ON|OFF
:[INTernal
:FORMat — REAL | PACKed

1 Alias commands for commands in the Input subsystem.

2 Alias commands fot the: SDELay command for compatibility with the PM6680B.

9-86 Command Reference

:ACQuisition :APERture

- «<Decimal value > [MIN|MAX»

Set the Measurement Time
Sets the gate time for one measurement.

Parameters: <decimal value> is 0.8E-6, 1.6E-6, 3.2E-6, 6.4E-6, or 12.8E-6 and
50E-6 to 400s.
MIN gives 800 ns and MAX gives 400 s.
Measurement Times of 800 ns to 12.8 us work in : FREQ: CW, FREQ: BURST,
:FREQ:PRF, . :FREQ:RAT and : PERiod. If one of these short times is selected
when the counter makes other measurements, it will use 50 ps.

If you want to switch between Average and Single measurements, use the :AV-
ERage:STATe . ON|OFF in the Sense Subsystem.

When Single is selected and an array measurement is done, the Measurement

Time, set by :Acquisition:APERture, sets the time between the measure-

ments in the array. This means that if you want a very high speed, you must set
:AVER:STATE - OFFand :ACQ:APER .. MIN.

Returned format: <Decimal value >
*RST condition: 10 ms
SYST:PRESet condition: 200 ms

:ACQuisition :APERture

— «<Decimal value > | MIN | MAX»

Set the Measurement Time
Sets the gate time for one measurement.

Measurement Times of 80 to 1280 ns work in : FREQ:CW, FREQ:BURST,
:FREQ: PRF, . :FREQ:RAT and :PERiod. If one of these short times is selected
when the counter makes other measurements, it will use 5 us.

If you want to switch between Average and Single measurements, use the :AV-
[@3 ERage:STATe_. ON|OFF in the Sense Subsystem.

When Single is selected and an array measurement is done, the Measurement

Time, set by :Acquisition:APERture, sets the time between the measure-

ments in the array. This means that if you want a very high speed, you must set
:AVER:STATE - OFF and :ACQ:APER .. MIN.

Parameters: <decimal value> is 80, 160, 320, 640, 1280 ns and 20 us to 400 s.
MIN gives 80 ns and MAX gives 400 s.

Returned format: <Decimal value > (_J
*RST condition: 10 ms
SYST:PRESet condition: 200 ms

Command Reference 9-87

... |
:ACQuisition :HOFF PM6680B PM6681 |

—. <boolean>
Hold Off On/Off
Switches the Hold Off function On/Off.

Parameters:
<Boolean> =1/0ON | 0/ OFF

Returned format: 1| 0
*RST condition: OFF

|
-:ACQuisition :HOFF: ECOunt PM6680B PM6681]

- «<Decimal value>|MIN|MAX»

Hold Off, set event counter

Sets the Hold Off event value. The counter counts negative events on the B input
(channel 2).

Parameters:

<decimal value> is a number in the range 2 to 16 777 2135.

Returned format: <Decimal value>J

*RST condition: 100

9-88 Command Reference

-

. |
IPM6680B PM6681 :ACQuisition :HOFF :MODE

— «TIME|EVENt»

Hold Off Mode

Selects if triggering is going to be disabled for a preset time or for a preset number
of events.

When set to event, the counter counts negative edges on the B input (channel 2).

This function is coupled to the : ARM: START : DEL, : ARM: START :ECO,

:ARM: STOP:DEL and :ARM: STOP:ECO. The different delays must all be of the
same type, (Time or Event). This means that setting one of them to Event delay
causes the others to be set to Event delays.

Parameters:

TIME
EVENt

Returned format:

TIME| EVENtJ

*RST condition:
TIME

PM6680B PM6681 | :ACQuisition :HOFF :TIME

— «<Decimal value> |MIN|JMAX»

Hold Off Time
Sets the Hold Off time value.

Parameters:

<Decimal data> = a number between 200E-9 and 1.6777215 for PM6680B,
and between 40E-9 and 1.34217727 for PM6681.

Returned format:
<Decimal value> |

*RST condition:
10 us for PM6680B and 1 us for PM6681

Command Reference 9-89

U
:ACQuisition :RESolution PM6680B
— «HIGH|LOW»

Resolution
Selects basic measurement mode for all time-related measurements.

Parameters:
HIGH: The resolution is the full 0.25 ns

LOW: The resolution is limited to a 100-ns clock. You can use this to increase the
bus speed. Saves about 0.6 to 0.9 ms if the counter does real-time calculations,
otherwise, only 0.05 ms.

Returned format:

HIGH|LOW
*RST condition:
HIGH
:ACQuisition :RESolution

— «HIGH|LOW»

Resolution
Turns off interpolator usage and also ignores the high resolution part of the count
registers. Low Resolution functions only for Frequency, Period, Time-Interval and
Pulse Width

Parameters:

HIGH: The resolution is the full 50 ps
LOW: The resolution is limited to 125 ns.

At low resolution no special arming and trig options are supported. There is no
handling of Abort messages from the bus after the measurement series has been
started. That means you cannot break off a low-resolution measurement series.

The results are based primarily on the timestamp values with 125-ns resolution.
Single mode is forced on, and every period of a signal is measured. This mode is
limited in frequency to <40 kHz for Frequency and Period, and <20 kHz for Time-
Interval and Pulse Width. At 40 kHz the resolution is 1/400, or 2.6 digits.

Returned format:

HIGH|LOW.|

*RST condition: HIGH

9-90 Command Reference

PM6680B PM6681 | :AVERage :COUNt

— «<Decimal data>|MIN] MAX»

Average Samples

Sets the number of samples to use when doing time-interval averaging measure-
ments in : AVER:MODE .. COUN. Applies to the functions:
PWIDTH, TIME, RISE and FALL TIME.

Parameters:

<Decimal data> is a number between land 65535.

Returned format: <Decimal data>_|

*RST condition: 100

Command Reference 9-91

:AVERage :STATe

PM6680B/81/85 |
— <Boolean>

Average or Single?
Switch on/off the average function.

Parameters: <Boolean>=1|ON/0 | OFF
ON means multiple period measurements for period related measurements and time-interval av-

erage for Time-Interval measurements.

OFF means that the counter measures on a single cycle. This is the same as when pressing the
SINGLE key on the front panel.

When Single is selected and an array measurement is done, the Measurement
Time, set by :Acquisition:APERture, sets the time between the measure-
ments in the array. This means that if you want a very high speed yo must set
:AVER:STATE . OFF and :ACQ:APER . MIN.

Returned format: <Boolean>

*RST condition: ON

:FREQuency :RANGe :LOWer [PM6680B/PM6681 |

— «<Numeric value>|MINJMAX»

High Speed Voltage Measurements

Use this command to speed up voltage measurements and Autotrigger functions
when you don’'t need to measure on low frequencies.

Time to determine trigger levels
. Min frequency limit (Defaulit) Max frequency limit
Measuring
function PM6680B PM6681 PM6680B PM6681
Freq A 48 ms 85 ms 26 ms 30 ms
Time A-B 82 ms 38 ms
Parameters:

<Numeric value> for PM6680B, 100 gives the lower frequency limit of 100 Hz
and 10000 for a lower frequency limit of 10 kH:z.
MIN gives 100 Hz frequency limit for PM6680B and 1Hz for PM6681.
MAX gives 10 kHz frequency limit forPM6680B and 50 kH: for PM6681.

Returned format: <Numeric value><J

*RST condition: 100

Complies to standards: SCPI 1991.0, confirmed.

9-92 Command Reference

.
PM6680B/81/85] :FUNCtion

— ‘<Measuring function>[_<Primary channel> [,<Secondary channel>]]’

Select Measuring Function

Selects which measuring function is to be performed and on which channel(s) the
instrument should measure.

Parameters:

<Measuring function> is the function you want to select, according to the SENSe subsystem
command trees on page 9-85 and page 9-86.

<Primary channel> is the channel used in all single-channel measurements and the main chan-
nel in dual-channel measurements.

<Secondary channel> is the ‘other’ channel in dual-channel measurements. Only the primary
channel may be programmed for all single channel measurements.

The measuring function and the channels together form one <String> that must
3" be placed within quotation marks.

Returned format: “<Measuring function>_<Primary channel>[,<Secondary channel>]"J

Example Select a puise period measurement on input A (channel 1):
Send — :FUNC . ‘PER . 1’

*RST condition: FREQuency_1

Complies to standards: SCPI 1991.0, confirmed.
® Functions and channels in PM6685

:FREQuency [:CW } [~
:FREQuency [:CW] :RATio [—
:FREQuency :BURSt [=
:FREQuency :PRFrequency [—~
:PERiod [—
:NWIDth [—
:PWIDth [—
:PDUTycycle | DCYCle [~
:NDUTycycle [
:TOTalize [:CONTinuous] [—

& Input channels PM6685

means that the input is disabled

means input A

means input C (HF-input option)

means input E (Rear panel arming input)
means input A prescaled by 2

means the internal reference

[= P N N N T RNy
Db AAWWWWW

ONPW-L0

Command Reference 9-93

e
® Functions and channels in PM6680B and PM6681

:FREQuency [:CW] (- ‘A
:FREQuency [:CW] :RATio [1
:FREQuency :BURSt [‘1
:FREQuency :PRF [~ ‘1

‘PERiod (- ‘1]2]3|4]5|6]|7"]

:TINTerval [— '1|2|4:1|2|4‘]6‘]
:PHASe - '1]2]6,1|2]6"

:NWIDth [~ !
:PWIDth [

S
(=21]

e S 3

T
-

-

:DCYCle | PDUTycycle
:NDUTycycl [

»5

7
i

‘RISETIME [
:FALL:TIME [—

- -

[S——

‘VOLT:MAXimum [—
:‘VOLT:MINimum [—
‘VOLT:PTPeak [—

e e 3

-
PR TTON T NN OGN N
S

S

—a—

:TOTalize:GATed [—
:TOTalize:TiMed [
:TOTalize:ACCumulated [—
:TOTalize:SSTop [—

6,112|4|6"
6,1(2|4|6°
6,112]416"
6.1121416"]

e Y L Y

#® Input channels PM6680B and PM6681

means input A

means input B

means input C (HF-input option)

means input E (Rear panel arming input)
means input A prescaled by 2

means the internal reference

~N OO O W -

means input A with the variable hysteresis mode

9-94 Command Reference

PM6680B/81/85 | :INTernal :FORMat
«REALJPACKed»

Internal Format

This command selects the internal data format of the measurement result from the
SENSe block. The purpose of the command is to increase the measurement
speed.

Parameters:

REAL means that the result is calculated in real-time after each measurement.

PACKed means that the raw measurement data is stored internally and the result is not calcu-
lated in real-time between measurements. The results are calculated later when they are
sent to the controller. Since the result is not calculated, other blocks cannot use this
data. That means that you cannot have the DISPlay, OUTPut, and CALCulate blocks
switched on when using PACKed format.

The following measuring functions in PM6680B/81 cannot be used with PACKed
format: Phase, Duty Cycle and Volt.

PM6685 cannot used PACKed format with Duty Cycle.

The internal format affects the number measuring results that the measurement re-
sult buffer can hold.

Number of Results in
Buffer

Format Measuring Function PM6680B/85| PM6681
Real- All functions . 2048 7019
Packed: Frequency, Period, Ratio Totalize 2166 6143
Pulse Width, Time-Interval, Rise/Fall time 764 4466
Phase, Duty Cycle, Volt N.A. N.A.
Low resolution Frequency and Period N.A. 8191
Low Res. Time-Interval and Pulse Width N.A. 4095

You must consider this when fetching resuits with the : FETCh: ARRay query.
*RST condition: REAL

Command Reference 9-95

:ROSCillator :SOURce PM6680B/81/85

— «INT|EXT»

Select Reference Oscillator

Selects the signal from the external reference input as timebase instead of the in-
ternal timebase oscillator.

Returned format: <INT|EXT>
*RST condition: INT

Complies to standards: SCPI 1991.0, confirmed.

:SDELa

- «<Numeric value>|MIN|MAX»

BURST/PRF Synchronization Delay
Sets the synchronization delay time used in FREQuency:BURSt | PRF measure-
ments.

Parameter range: 200 ns to 1.6777215 s
*RST condition: 10 ms

9-96 Command Reference

PM6630B/81/85] :TOTalize :GATE

— <Boolean>

Gate On/Off
Open/closes the gate for : TOTalize[:CONTinuous].

Before opening the gate with this command, the counter must be in the ‘contin-
l]g uously initiated’ state , (: INIT : CONT .. ON)or else the totalizing will not start.

Parameters: <Boolean> = (1/ON | 0/ OFF)
Returned format: <Boolean>

Example:
Send - :FUNC . ‘TOT . 1’ Selects totalizing
on input A
Send — :INIT:CONT . ON;TOT:GATE . ON
This will initiate totalizing, reset the totalizing value to zero, and start totalizing.

Send — TOT:GATE . OFF Stop totalizing
Read < :FETCh:ARRay? . -1 Read the final result

*RST condition: OFF

|
[PM6680B PM6681 | :VOLTage:GATed:STATe
— <Boolean>

Gated Voltage Measurement

Selects the gated mode for the : VOLTage : MAX | MIN | PTPeak measuring func-
tions and for the Autotrigger function.

The gated mode is useful for removing overshoot and undershoot. The gate signal
is controlled by the : ARM:STOP:SLOPe and : ARM: STOP: SOURce commands. If
channel 2 (B) is the source for the gating signal, all other characteristics of that
channel can be used. When Gated Voltage is selected, the Stop Arming function is
disabled from its normal stop arming usage. When gated voltage mode is selected,
high enables measurement and low disables measurements. Use the slope if you
want it the other way around.

Parameters:

<Boolean> = 1/ON|0/OFF
Returned format: 110 (_|

*RST condition: OFF

Command Reference 9-97

This page is intentionally left blank.

9-98 Command Reference

Status Subsystem

:STATus

:DREGister0
:ENABle — <bit mask>
[.EVEN{]?

:OPERation
:CONDition?
:ENABle — <bit mask>
[:EVENt]?

:QUEStionabie
:CONDition?
:ENABle — <bit mask>
[:EVEN1)?

:PRESet

Related Common Commands:

*CLS
*ESE — <bit mask>
*ESR?
*PSC — <bit mask>
*SRE — <bit mask>
*STB?

I 111

Command Reference 9-99

L
:STATus :DREGister0? |—El
80B/81/85

Read Device Status Event Register

This query reads out the contents of the Device Event Register. Reading the De-
vice Event Register clears the register. See Figure 6-14.

Returned format:

<dec.data> = the sum (between 0 and 6) of all bits that are true. See table below:

Bit No. Weight |Condition
2 4 Last measurement below low limit.
1 2 Last measurement above high limit.
:STATus :DREGister0 :ENABIle el —
_ <bit mask> 80B/81/85

Enable Device Status Reporting
This command sets the enable bit of the Device Register 0.

Parameters:

<dec.data> = the sum (between 0 and 6) of all bits that are true. See table below:

Bit No. Weight |Condition
2 4 Enable monitoring of low limit
1 2 Enable monitoring of high limit

Returned format: <bit mask>

9-100 Command Reference

s
Lz_] :STATus :OPERation :CONDition?
0B/81/85

Read Operation Status Condition Register
Reads out the contents of the operation status condition register. This register re-
flects the state of the measurement process. See figure below. Note that bits O to
3,7, and 9 to 15 are not used.

Returned Format:

<Decimal data> = the sum (between 0 and 368) of all bits that are true. See table below:

Bit No. Weight Condition
8 256 Not Measurement
6 64 Waiting for bus arming
5 32 Waiting for triggering and/ or external arming
4 16 Measurement
Complies to standards: SCPI 1991.0, confirmed

Device status continously monitored

| | Operation status condition
register
1 | 0 | STATus:OPERation:CONDition?

15| 14 | ——

|
2
i
IS ISR Transition filter

Fixed in the counters

Operation status event
|14 | —0| 2| 1] 0| registers

, (Latched conditions)

& | STATus:OPERation:EVENt?

Logical
OR

&

‘ —& g Operation status enable
] | register
l B5l14]——l2]11]0 Selects which events can set

the summary message
STATus:OPERation:ENABle?

Summary message : lon:
OPR bit In status byte STATus:OPERation:ENABle

Command Reference 9-101

]
:STATus :OPERation :ENABIle l.z—

80B/81/85 ~

—. <Decimal data>

Enable Operation Status Reporting

Sets the enable bits of the operation status enable register. This enable register N
contains a mask value for the bits to be enabled in the operation status event reg-

ister. A bit that is set true in the enable register enables the corresponding bit in

the status register. See figure on page 9-101.

An enabled bit will set bit #7, OPR (Operation Status Bit), in the Status Byte Regis-
ter if the enabled event occurs. See also status reporting on page 3-14.

Power-on will clear this register if power-on clearing is enabled via *pscC.

Parameters: <dec.data> = the sum (between 0 and 368) of all bits that are true. See ta-
ble below:

Bit No. Weight |Condition
8 256 No measurement
6 64 Waiting for bus arming
5 32 Waiting for triggering and/or external arming
4 16 Measurement)

Returned Format: <Decimal data> .|

Example:
SEND— :STAT:OPER:ENAB . 288

In this example, waiting for triggering, bit 5, and Measurement stopped, bit 8, will
set the OPR-bit of the Status Byte. (This method is faster than using *opc if you
want to know when the measurement is ready.) -

Complies to standards: SCPI 1991.0, confirmed.

9-102 Command Reference

:STATus:OPERation?

-
0B/81/85

Read Operation Status, Event

Reads out the contents of the operation event status register. Reading the Opera-
tion Event Register clears the register. See figure on page 9-101.

Returned Format: <Decimal data>|
<dec.data> = the sum (between 0 and 368) of all bits that are true. See table on page 9-102.

Complies to standards: SCPI 1991.0, confirmed.
|
[PM6680B/81/85] :STATus :PRESet

Enable Device Status Reporting

This command has an SCPI standardized effect on the status data structures. The
purpose is to precondition these toward reporting only device-dependent status
data.

— It only affects enable registers. It does not change event and condition registers.
— The IEEE-488.2 enable registers, which are handled with the common commands *SRE and

*ESE remain unchanged.

— The command sets or clears all other enable registers. Those relevant for this counter are as
follows:

— Tt sets all bits of the Device status Enable Registers to 1.

— It sets all bits of the Questionable Data Status Enable Registers and the Operation Status En-
able Registers to 0.

— The following registers never change in the counter, but they do conform to the standard
:STATus : PRESet values.

— All bits in the positive transition filters of Questionable Data and Operation status registers
are 1.

— All bits in the negative transition filters of Questionable Data and Operation status registers
are 0.
Complies to standards: SCPI 1991.0, confirmed.

Command Reference 9-103

STATus :QUEStionable :CONDition?

e

IPM6680B/81/85 |

Read Questionable Data/Signal Condition Register
Reads out the contents of the status questionable condition register.

teturned Format:

{dec.data> = the sum (between 0 and 17920) of all bits that are true. See table below:

Bit No. Weight Condition
14 16384 Unexpected parameter
10 1024 Timeout or no signal detected
9 512 Overflow

>omplies to standards:

SCPI 1991.0, confirmed.
Device status continously monitored

I J | I | Questionable data/signal status
' : condition register
|_15 “|—2 | 1 | 0]| STATus:QUEStionable:CONDition?
Transition filter
I_'F__j__ Ji__‘;__'f_l Fixed in the counters
Questionable data/signal status
15| 14 [| 2 [1 | 0 | eventregisters
(Latched conditions)
- & I STATus:QUEStionable:EVENt?
Logical [~ |— &
oR e |—=|——%& ,
- | I___ — & Questionable data/signal status
, | — T enable register
15 | 14 2 i 0 | Selects which events can set
the summary message
. STATus:QUEStionable:ENABle
summary message STATus:QUEStionable:ENABIe?

AUE bit in status byte

-104 Command Reference

—

]
mfa :STATus :QUEStionable :ENABIle

|PM6680B/81/85 |

- <Decimal data>

Enable Questionable Data/Signal Status Reporting

Sets the enable bits of the status questionable enable register. This enable register
contains a mask value for the bits to be enabled in the status questionable event
register. A bit that is set true in the enable register enables the corresponding bit in
the status register. See figure on page 9-104.

An enabled bit will set bit #3, QUE (Questionable Status Bit), in the Status Byte
Register if the enabled event occurs. See also status reporting on page 3-14.

Power-on will clear this register if power-on clearing is enabled via *PscC.
Parameters:
<dec.data> = the sum (between 0 and 17920) of all bits that are true. See the table on page
9-104.
Returned Format: <Decimal data>

Example:

Send — :STAT:QUES:ENAB . 16896
In this example, both ‘unexpected parameter’ bit 14, and ‘overflow’ bit 8, will set
the QUE-bit of the Status Byte when a questionable status occurs.

Complies to standards: SCPI 1991.0, confirmed.

- __|
e :STATus :QUEStionable?
PM6680B/81/85 |

Read Questionable Data/Signal Event Register

Reads out the contents of the status questionable event register. Reading the
Status Questionable Event Register clears the register. See figure on page 9-104.

Returned Format:

<dec.data> = the sum (between 0 and 17920) of all bits that are true. See the table on page
9-104.

Complies to standards: SCPI 1991.0, confirmed.

Command Reference 9-105

This page is intentionally left blank.

-106 Command Reference

)

System Subsystem

:SYSTem
:COMMunicate
:GPIB

:ADDRess -
:ERRor?

:PRESet
:SYSTem:SDETect[:ENABle] —
SET
-TIME
:ELAPsed?
:TOUT
[:STATe]} -
TIME
:UNPRotect

‘VERSion?
Related common command:

*IDN?
*OPT?

*PUD _ <arbitrary block program data>
*RST

<Numeric value> | MIN | MAX

ON | OFF (Only PM6685)
— <Block data>

ON | OFF
- <timeout value>

Command Reference 9-107

L]
SYSTem :COMMunicate: GPIB: ADDRess

«<Numeric value>|MAX|MIN» [,«<Numeric value>|MAX|MIN»]

et GPIB Address

This command sets the GPIB address. This selection overrides the switches on
the rear panel of the counter. The set address is valid until a new address is set,
either by bus command, switch setting, or via the front panel AUX-MENU.

arameters:
<Numeric value> is a number between 0 and 30.
MIN sets address 0.
MAX sets address 30.
[,<Numeric value>|MAX|MIN] sets a secondary address. This is accepted but not
used in PM6681 and PM6685. PM6680B does not accept a secondary address.

[:SELF] . This optional parameter is accepted by PM6681 and PM6685.
PM6680B does not accept [: SELF].

eturned format:> <Numeric value>J

xample:
END—> :SYST:COMM:GPIB:ADDR . 12

his example sets the bus address to 12.

omplies to standards: SCPI 1991.0, confirmed.
- |
SYSTem :ERRor? [PM6680B/81/85

Queries for an ASCii text description of an error that occurred. The error mes-
sages are placed in an error queue, with a FIFO (First In-First Out) structure. This
queue is summarized in the Error AVailable (EAV) bit in the status byte.

eturned format:
<error number>,"<Error Description String>"

"here:
<Error Description String> = an error description as ASCii text.

ee also: Chapter 8, error messages.

omplies to standards: SCPI 1991.0, confirmed.

-108 Command Reference

]
[PM6680B/81/85) :SYSTem :PRESet

Preset
This command sets the counter to the same default settings as when the front
panel key LOCAL/PRESET is pressed in local mode.

These are not exactly the same settings as after *RST,
l]gD SYST:PRES gives 200 ms Measurement Time and signal detection ON, while
*RST gives 10-ms Measurement Time and signal detection OFF.

See also: Default settings on page -.

Complies to standards: SCPI 1991.0, confirmed.

:SYSTem :SDETect

— <Boolean:

Signal Detection

This command switches on or off the signal detection, that is, the ability to show
NO SIGNAL, NO TRIG on the display.

When signal detection is enabled, the measurement attempt will be abandoned
when the no signal is detected. A zero result will be sent to the controller instead o
a measurement result, and the timeout bit in the STATus QUEStionable register
will be set.

Returned format: «0]1» |

Where:
0 means no signal detection
1 means signal detection ON.

*RST condition: 0

Command Reference 9-10!

SYSTem :SET PMB680B/81/85)

<Block data>

tead or Send Settings

Transmits in binary form the complete current state of the instrument. This data
can be sent to the instrument to later restore this setting. This command has the
same function as the *LRN? common command with the exception that it returns
the data only as response to : SYST:SET?. The query form of this command re-
turns a definite block data element.

arameters:

Block data> is the instrument setting previously retrieved via the : SYSTem: SET? query.

eturned format: <Block data>

’here:
<Block data> is #292<92 data bytes> for PM6680B
<Block data> is #3104<104 data bytes> for PM6681
<Block data> is #276<76 data bytes> for PM6685
END— :SYST:SET?

'EAD< #2764...-- .- .C&...... d...o

P i S, m D ittt d
omplies to standards: SCPI 1991.0, confirmed.
[rUEEE—————— e e, e -
SYSTem :TIME :ELAPsed? PM6680B/81/85

lead On-time

Use this command if you want to know (in seconds) how long the counter has
been on.

eturned format:
<String>=Power-on time.

For PM6680B and PM6685, this is the time elapsed since the last power-on.

For PM6681, this is the total elapsed time since the counter was new.

-110 Command Reference

PM6680B/81/85 | :SYSTem :TOU1

—. <Boolean:

Timeout On/Off
This command switches on or off the timeout. When timeout is enabled, the mea-
surement attempt will be abandoned when the time set with : SYST: TOUT: TIME
has elapsed. A zero result will be sent to the controller instead of a measurement
result and the timeout bit in the STATus QUEStionable register will be set.

Returned format: 0 means no timeout; 1 means that the timeout set by : SYS-
Tem: TOUT:TIME is used.

Example:
SEND— :8YST:TOUT . 1;TOUT:TIME . 0.5;:STAT:QUES:ENAB .
1024; :*SRE . 8
This example turns on timeout, sets the timeout to 0.5 s, enables status reporting of
questionable data at timeout, and enables service request on questionable data.

SEND— *STB? If bit 3 in the status byte is set, read the
questionable data status.

SEND— :STAT:QUES:EVEN? This query reads the ques-
tionable data status.

READ< «1024|0» 1024 means timeout has occurred, and 0
means no timeout.

*RST condition: 0

]
PMB680B/81/85] :SYSTem :TOUT :TIME

~ «<Numeric value>|MIN|MAX:

Timeout, Set
This command sets the timeout in seconds.

The timeout starts when a measurement starts and, if no result is obtained when
the set timeout has elapsed the measurement is terminated.

Note that you must enable timeout using :SYST:TOUT_ON for this setting to take
effect.

Parameters:

<Numeric value> is the timeout in seconds. The range is 0.1 to 25.5 s for PM6680B and
PM6685. The range is 64 ms to 400 s for PM6681

MIN gives 0.1 s (64 ms for PM6681)
MAX gives 25.5 s (400 s for PM6681)

Returned format: <Numeric value>J
*RST condition: 0.1 (6.4E-2 for PM6681)

Complies to standards: SCPI! 1991.0, confirmed.

Command Reference 9-11

..]
SYSTem :UNPRotect [PM6680B/81/85 |

Inprotect
This command will unprotect the user data (set/read by *PUD) and front setting
memories 10-19 until the next PMT (Program message terminator) or Device clear
or Reset (*RST) . This makes it necessary to send an unprotect command in the
same message as for instance *pUD.

xample
end — :SYST:UNPR; *PUD . #240Calibrated . 1992-11-17, . inven-
tory No.1234

’here:
means that <arbitrary block program data> will follow.
2 means that the two following digits will specify the length of the data block
40 is the number of characters in this example

SYSTem :VERSion? PM6680B/81/85 |

ystem Version
This query returns the SCPI system version that this instrument complies to.

eturned format:
<year>.<revision>/

Where <year> is the year of publication of the complied standard and <revision> is
the number of the SCPI standard.

xample
end - :SYST:VER?
‘ead« 1991.0

omplies to standards: SCPI 1991.0, confirmed.

-112 Command Reference

Test Subsystem

:TEST

:CHECk - le OFF .
:SELect - | ROM | LOGic | DISPlay | ALL

m Related common command:

*TST

Command Reference 9-11.

.]
TEST:CHECK PM6680B/81/85)

<Boolean>

elect Check signal

This command connects the internal reference signal to the measuring logic, in-
stead of an external measuring signal. This makes it possible to test all functions.

The frequency of the reference is 10 MHz for PM6680B and PM6685, and
100 MHz for PM6681.

arameters:

.Boolean> =1/0ON | 0/ OFF
1 and ON means test signal connected
0 and OFF means test signal disconnected.
Selecting channel 6 when entering measuring channel for :CONFigure :MEA-
Sure, efc., also selects the reference.

eturned format: 1|0
ST condition: 0

TEST :SElLect PM6680B/81/85 |

«RAM | ROM | LOGic | DISPlay | ALL»

elect Self-tests
Selects which internal self-tests shall be used when self-test is requested by the
*TST command.

eturned format:

«RAM | ROM | LOGic | DISPlay | ALL»_|

ST condition: ALL

-114 Command Reference

[

Trigger Subsystem

:TRIGger
[STARt/ :SEQuence [1]]
[:LAYer[1]]
:COUNt. <Numeric value> | MIN | MAX

m Related common command:
*TRG

Command Reference 9-11

TRIGger:COUNt PM6680B/81/85

. «<Numeric value> | MIN | MAX»

lo. of Triggerings on each Ext Arm start
Sets how many measurements the instrument should make for each ARM:STARt
condition, (block arming).

These measurements are done without any additional arming conditions before
the measurement. This also means that stop arming is disabled for the measure-
ments inside a block.

The actual number of measurements made on each INIT equals to:
J3J~ (:ARM:START:COUN)*(:TRIG:START:COUNT)

‘arameters:

‘Numeric value> is a number between 1 and 65535.
MAX gives 65535
MIN gives 1

xample:
'>END—> : TRIG:COUN -~ 50

‘eturned format: <Numeric value>
RST condition: 1

;omplies to standards: SCPI 1991.0, confirmed.

-116 Command Reference

S

—_—

*CLS

*DMC
*EMC
*ESE
*ESR?

*GMC?
*IDN?

*LMC?
*LRN?
*oPC

*OPC?

*OPT?
*PMC
*PSC
*PUD
*RCL
*RMC
‘RST
*SAV
*SRE
*STB?
“TRG
TST?
*WAI

Common Commands

f

4

Lot

(

[

<Macro label> , <Program messages>
<Decimal data>
<Decimal data>

<Macro label>

<Decimal data>
<Arbitrary block program data>
<Decimal data>
<Macro name>

<Decimal data>
<Decimal data>

Command Reference 9-11

‘CLS PM6680B/81/85

slear Status Command

The *CLS common command clears the status data structures by clearing all event
registers and the error queue. it does not clear enable registers and transition fil-
ters. It clears any pending *WAI, *OPC, and *OPC?.

xample:
send — *CLS

.omplies to standards: IEEE 488.2 1987.

-118 Command Reference

Nt

PM6680B/61/85) *DM(
— <Macro label> , <Program messages:

Define Macro
Allows you to assign a sequence of one or more program message units to a
macro label. The sequence is executed when the macro label is received as a
command or query. Twenty five macros can be defined at the same time, and eact
macro can contain an average of 40 characters.

If a macro has the same name as a command, it masks out the real command witl
the same name when macros are enabled. If macros are disabled, the original
command will be executed.

If you define macros when macro execution is disabled, the counter executes the
*DMC command fast, but if macros are enabled, the execution time for this com-
mand is longer.

Parameters:

»

<Macro label> = 1 to 12-character macro label. (String data must be surrounded by * ” or
as in the example below.)

<Program messages> = the commands to be executed when the macro label is received, both
block data and string data formats can be used.

Example 1:
SEND— *DMC ‘AMPLITUDE?’,":FUNC . ‘FREQ . 1’;:INP:HYST:AUTO ONCE
— ;:INP:HYST?; :INP:LEV?"
This example defines a macro called amplitude?.
SEND— AMPLITUDE?
The macro makes an AUTO ONCE and reads out the hysteresis and trigger level

that auto selects. (Macros must be enabled; otherwise, the : AMPLITUDE? query
will not execute, see @EMC)).

READ< +3.46125461E-001;+3.64852399E-001
Auto selects 33% of Vpp as hysteresis, so multiplying the first part of this reading
by 3 will give you the signal amplitude (0.346*3=1.04 V in this example). You can

also calculate positive peak voltage: ystoresis * 3 + Trigger Level and negative

Hysteresis * 3

peak voltage: Vp 5

- Trigger Level

Example 2:
SEND— *DMC . ‘AUTOFILT’,":INP:HYST:AUTO . $1;:INP:FILT . $1

This example defines a macro AUTO which takes one argument, i.e., auto
«ON|OFF|ONCE» ($1) .

SEND— AUTOFILT . OFF
Turns off both the auto function and the filter.

Compilies to standards: IEEE 488.2 1987.

Command Reference 9-11

EMC [PM6680B/81/85 |
<Decimal data>

nable Macros

This command enables and disables expansion and execution of macros. If mac-
ros are disabled, the instrument will not recognize a macro although it is defined in
the instrument. (The Enable Macro command takes a long time to execute.)

arameters:

Decimal data> = is 0 or 1. A value which rounds to 0 turns off macro execution. Any other
value turns macro execution on.
Note that 1 or 0 is <Decimal data>, not <Boolean>!
J~ ON|OFF is not allowed here!

sturned format: «0|1» J
1 indicates that macro expansion is enabled.
0 indicates that macro expansion is disabled.

<ample:
END—*EMC . 1

Enables macro expansion and execution.

»mplies to standards: IEEE 488.2 1987.

-120 Command Reference

-

o] *ESE

PM6680B/81/85 |

—. <Decimal data:

Standard Event Status Enable
Sets the enable bits of the standard event enable register. This enable register
contains a mask value for the bits to be enabled in the standard event status regis-
ter. A bit that is set true in the enable register enables the corresponding bit in the
status register. An enabled bit will set the ESB (Event Status Bit) in the Status Byte
Register if the enabled event occurs. See also status reporting on page 3-14.

Parameters: <dec.data> = the sum (between 0 and 255) of all bits that are true.

Event Status Enable Register (1 = enable)

Bit Weight Enables

7 128 PON, Power-on occurred

6 64 URQ, User Request

5 32 CME, Command Error

4 16 EXE, Execution Error

3 8 DDE, Device Dependent Error
2 4 QYE, Query Error

1 2 RQC, Request Control (not used)
0 1 Operation Complete

Returned Format: <Decimal data> _J
Example:

SEND— *ESE _ 36
In this example, command error, bit 5, and query error, bit 2, will set the ESB-bit of
the Status Byte if these errors occur.

PON URQ CME EXE DDE QYE RQC OPC
Standard Event

StatusRegister | 7 6| 5| 4| 3| 2| 1] O
*ESR 128 64 32 16 8 4 2 1

Power ON —J l
User Request
Command Error

Execution Error
Device Dependent Error ————

Query Error
Not used (Request Control)

Operation Complete

Figure 9-3 Bits in the standard event status register.

Complies to standards: |EEE 488.2 1987.

Command Reference 9-12

:ESR? o

IPM6680B/81/85 |

‘'vent Status Register

Reads out the contents of the standard event status register. Reading the Stan-
dard Event Status Register clears the register.

eturned Format:

dec.data> = the sum (between 0 and 255) of all bits that are true. See table on page 9-121.

omplies to standards: IEEE 488.2 1987.

GMC? PM6680B/81/85]

< macro label>

jet Macro Definition

This command makes the counter respond with the current definition of the given
macro label.

arameters:

‘Macro label> = the label of the macro for which you want to see the definition. (String data

“ 9

must be surrounded by or ‘ ‘as in the example below.)
eturned Format: <Block data>

xample:
END— *GMC? . ‘AMPLITUDE?’

Gives a block data response, for instance:

\EAD<—
#255:FUNC ‘FREQ I’;:INP:HYST:AUTO ONCE;:INP:HYST?;INP:LEV?

omplies to standards: IEEE 488.2 1987.

-122 Command Reference

-y

.
[PM6680B/81/85] *IDN?

Identification query
Reads out the manufacturer, model, serial number, Firmware level for main and
GPIB program in an ASCii response data element. The query must be the last
query in a program message.

Response is <Manufacturer> , <Model> , <Serial Number>, <Firmware Level>.

<Serial number> is not implemented in PM6680B and PM6685 and will always re-
turn a zero. Please look at the type plate at the rear panel of the counter if you are
interested in the serial number. PM6681 returns the correct serial number.

Example

SEND —*IDN?

READ< Fluke, o - - . PM6685, . 0, - MAIN . V1.01 - 19 Nov .
1992 - / o GPIB . V1.12 . o 28 o Oct .. 1992

Complies to standards: IEEE 488.2 1987.
[]
PM6680B/81/85 | *LMC?

Learn Macro ,
Makes the instrument send a list of string data elements, containing all macro la-
bels defined in the instrument.

Returned Format:
<String> { ,<String> }J
<String> = a Macro label. (String data will be surrounded by “ ” as in the example below.)

Example:
SEND— *1LMC?

May give the following response:
READ<—"AUTOFILT”, "AMPLITUDE?"

Compilies to standards: IEEE 488.2 1987.

Command Reference 9-12%

.
‘LRN? PM6680B/81/85 |

.earn Device Setup
Learn Device Setup Query. Causes a response message that can be sent to the
instrument to return it to the state it was in when the *LRN? query was made.

teturned Format:

:SYST:SET_<Block data>

Vhere:
<Block data> is #292<92 data bytes> for PM6680B
<Block data> is #3104<104 data bytes> for PM6681
<Block data> is #276<76 data bytes> for PM6685

xample
S END— *LRN?

omplies to standards: IEEE 488.2 1987.

‘OPC PM6680B/81/85 |

Jperation Complete

The Operation Complete command causes the device to set the operation com-
plete bit in the Standard Event Status Register when all pending selected device
operations have been finished. See also Example 4 in Chapter 4.

xample:

‘nable OPC-bit
3 END— *ESE _ 1

itart measurement (INIT). *OPC will set the operation complete bit in the status register when the
reasurement is done.
’>END— :INIT; *OPC

Vait 1s for the measurement to stop. Read serial poll register, will reset service request
sPOLL

heck the Operation complete bit (0) in the serial poll byte. If it is true the measurement is
ompleted and you can fetch the result.
SEND— FETCh?

‘hen read the event status register to reset it:
S END— *ESR?

" bit O is false, abort the measurement.
’>END— :2ABORt

omplies to standards: |EEE 488.2 1987.

1-124 Command Reference

PM6680B/81/85) *OPC*%

Operation Complete Query
Operation Complete query. The Operation Complete query places an ASCii char-
acter 1 into the device’s Output Queue when all pending selected device opera-
tions have been finished.

Returned Format: 1.

See also:

Example 6 is Chapter 4.

Complies to standards: IEEE 488.2 1987.
|
PM6680B/81/85] *OPT"

Option Identification
Response is a list of all detectable options present in the instrument, with absent
options represented with an ASCii ‘0’.

Returned format:
<Bus option>,<Prescaler option>

Where:
<Bus option> = GPIB
<Prescaler option> = 0[10(20
0 for prescaler option means that no prescaler is installed.

Oscillator type are not detectable and can therefore, not be reported.

IS5y

Complies to standards: IEEE 488.2 1987.

Command Reference 9-12

PMC PM6680B/81/85

urge Macros
Removes all macro definitions.

tample: *PMC

je also:
:MEMory:DELete:MACRo . ‘<Macro-name>’ if you want to remove a single
macro.

omplies to standards: IEEE 488.2 1987.

PSC PM6680B/81/85 |
<Decimal data>

ower-on Status Clear

Enables/disables automatic power-on clearing. The status registers listed below
are cleared when the power-on status clear flag is 1. Power-on does not affect the
registers when the flag is 0.

Service request enable register (*SRE)

Event status enable register (*ESE)

Operation status enable register (: STAT : OPER : ENAB)
Questionable data/signal enable register (: STAT : QUES : ENAB)
Device enable registers (: STAT : DREGO : ENAB)

*RST does not affect this power-on status clear flag.

wrameters: <Decimal data> = a number that rounds to O turns off automatic power-on
clearing. Any other value turns it on.

sturned Format: «1 | O»
is enabled and 0 is disabled.

<ample: *PSC _ 1
This example enables automatic power-on clearing.

>mplies to standards: |EEE 488.2 1987.

-126 Command Reference

PMB680B/81/85) *PUD
— <Arbitrary block program data>

Protected User Data
Protected user data. This is a data area in which the user may write any data up to
64 characters. The data can always be read, but you can only write data after un-
protecting the data area. A typical use would be to hold calibration information, us-
age time, inventory control numbers, etc.

The content at delivery is: #234 FACTORY CALIBRATED ON: 19YY-MM-DD
— YY = year, MM = month, DD = day

Retummed format: <Arbitrary block response data>_|
— Where:
<arbitrary block program data> is the data last programmed with *PUD.

Example
Send — :SYST:UNPR; *PUD . #240Calibrated . 1993-07-16, . inven-

tory - No.1234

means that <arbitrary block program data> will follow.
2 means that the two following digits will specify the length of the data block.
40 is the number of characters in this example.

\

Complies to standards: IEEE 488.2 1987.
|
PM6680B/81/85 | *RCL

—. <Decimal data:
Recall

Recalls one of the up to 20 previously stored complete instrument settings from the
internal nonvolatile memory of the instrument.

Memory number 0 contains the power-off settings for PM6685. For PM6681 mem-
ory number O contains the power-off settings until PRESET is pressed. After pre-
set, memory 0 contains the pre-preset settings.

Parameters:
<Decimal data> = a number between 0 and 19.

Example:
SEND— *RCL . 10J

Complies to standards: IEEE 488.2 1987.

Command Reference 9-12

RMC PM6680B/81/85)
‘«Macro name>’

ielete one Macro
This command removes an individual MACRo.

arameters:
‘<Macro name>' is the name of the macro you want to delete.

<Macro name> is String data that must be surrounded by quotation marks.

3@ also:
*PMC, if you want to delete all macros.

|
RST PM6680B/81/85]

eset
The Reset command resets the counter. It is the third level of reset in a 3-level re-
set strategy, and it primarily affects the counter functions, not the IEEE 488 bus.

The counter settings will be set to the default settings listed on page -. All previous
commands are discarded, macros are disabled, and the counter is prepared to
start new operations.

<ample: *RST

3e also:
Default settings on page -.

ymplies to standards: IEEE 488.2 1987.

-128 Command Reference

G o

]
[PM6680B/81/85) *SAV

_ <Decimal data>

Save
Saves the current settings of the instrument in an internal nonvolatile memory.
Nineteen memory locations are available. Switching the power off and on does not
change the settings stored in the registers.

Note that memory positions 10 to 19 can be protected from the front panel auxiliary
menu. If this has been done, use the : SYSTem: UNPRotect command, then you
can alter these memory positions.

Parameters
<Decimal data> = a number between 1 and 19.

Example:

SEND— *sav . 10d

Complies to standards: |EEE 488.2 1987

Command Reference 9-12!

SRE PM6680B/81/85]
<Decimal data>

ervice Request Enable
The Service Request Enable command sets the service request enable register
bits. This enable register contains a mask value for the bits to be enabled in the
status byte register. A bit that is set true in the enable register enables the corre-
sponding bit in the status byte register to generate a Service Request.

arameters: <dec.data> = the sum (between 0 and 255) of all bits that are true.
See table below:

Service Request Enable Register (1 = enable)

3it Weight Enables

4 128 OPR, Operation Status

3 64 RQS, Request Service

) 32 ESB, Event Status Bit

} 16 MAV, Message Available

3 8 QUE, Questionable Data/Signal Status
2 4 EAV, Error Available

I 2 Not used

) 1 Device Status

sturned Format: <integer>_|

’here:
<lInteger> = the sum of all bits that are set.

xample: *SRE _ 16
In this example, the counter generates a service request when a message is avail-
able in the output queue.

>mplies to standards: IEEE 488.2 1987.

-130 Command Reference

.
PM6680B/81/85 | *STB"

Status Byte Query
Reads out the value of the Status Byte. Bit 6 reports the Master Summary Status
bit (MSS), not the Request Service (RQS) The MSS is set if the instrument has
one or more reasons for requesting service.

Returned Format:
<Integer> = the sum (between 0 and 255) of all bits that are true. See table below:

Status Byte Register (1 = true)

Bit Weight Name Condition

7 128 OPR Enabled operation status has occurred.

6 64 MSS Reason for requesting service

5 32 ESB Enabled status event condition has occurred

4 16 MAV An output message is ready

3 8 QUE The quality of the output signal is guestionable
2 4 EAV Error available

1 2 Not used

0 1 DREGO Enabled status device event conditions have

occurred

See also: If you want to read the status byte with the RQS bit, use serial poll.

Complies to standards: IEEE 488.2 1987.
|
[PM6680B/81/85] *TRC
Trigger

The trigger command *TRG starts the measurement and places the result in the
output queue.

It is the same as:
:ARM:STARt :LAYer2:IMM; *WAI; :FETCh?

The Trigger command is the device-specific equivalent of the IEEE 488.1 defined
Group Execute Trigger, GET. It has exactly the same effect as a GET after it has
been received, and parsed by the counter.

However, GET is much faster than *TRG, since GET is a hardware signal that does
not have to be parsed by the counter.

Example:

SEND— :ARM:START:LAY2:SOURCE . BUS
SEND— :INIT:CONT . ON

SEND— *TRG

READ< +3.2770536E+004

Type of Command:
Aborts all previous measurement commands if not *WATI is used.

Complies to standards: IEEE 488.2 1987.

Command Reference 9-13

]
TST? [PM6680B/81/85]

elf Test

The self-test query causes an internal self-test and generates a response indicat-
ing whether or not the device completed the self-test without any detected errors.

eturned Format: <Integer>.

’here:
<Integer> = a number indicating errors according to the table below.

PM6680B Error PM6681, PM6685 Er-
<integer> = ror

0 No error

1 RAM Failure Display Failure

2 ROM 1 Failure Logic Failure

4 Logic Failure RAM Failure

8 Display Failure Bus ROM Failure

16 Not used ROM Bank 1 Failure

32 Not used ROM Bank 2 Failure
omplies to standards: IEEE 488.2 1987
WAI PM6680B/81/85 |

/ait-to-continue
The Wait-to-Continue command prevents the device from executing any further
commands or queries until execution of all previous commands or queries has
been completed.

<ample:
END—:MEAS:FREQ?; *WAI;:MEAS:PDUT?

In this example, *WAI makes the instrument perform both the frequency and the
Duty Cycle measurement. Without *WAI, only the Duty Cycle measurement would
be performed.

EAD< +5.1204004E+002;+1.250030E-001

ymplies to standards: IEEE 488.2 1987.

-132 Command Reference

Chapter 10

IndeXx

Index

!
Mohm 9.47
io ohms 9_47
A
\bort 7.4
Measurement 9_4
\CIDC 2_2,9_44

\ccumulated, totalize X gated by Y 9-70
\ddress

GPIB - s veie i 9-108
Switches + - -+ - re i 1-4
\nalog
Filter-- -« vvree. Q.45
\nalog Out
Enable-- -+ -cceevin. 9-80
Scaling factor- - - -+ - -+ -- - 9-80
\perture 9-87
\rbitrary block data- - ---------- 9-112
\rming 0-8
Busarmmode: -« -« cc-reeennn 9-8
Delay by events ----- - 9-7,9-10
Event countrange- - ------- 9-7,9-10
External Events before Start- 9-7,9-10
Start de|ay -7
Startslope -+ - e 0-9
Startsource -+« v - c e g-9
Stopslope -« -t 9-11
Stop SOUICE * + + <+t oremnennas 9-11
Subsystem 9-5
Waitforbus - -+ -+ -c«-«----- 6-23

Array: -« - 7-4 -7-5,7-7
Fetch 9_35
ASCII
Dataformat-------------- 7-8,9-38
Fixed format 9_39
Aftenuation =« -+ - 2_2,9_44
Auto
Attenuation 9_44
Gated voltage mode - -~ ------- 9-97
Levels selected by- - ---------- 9-49
Off -« oo v v ve e ive e 9-45,9-48
Once:-------vnvvee 9-46,9-49 - 9-50
Power on clearing - --------- 9-126
Sensitivity 9_46
Speed 9-92
Trigger 9_50’9_97
Trigger level- - - - - - - - - v eve e 9-49
Trigger On/Off - - - oo oo veeee e 9-49
Triggering 2_2
Auto calibration on/off- - -+ -+ - - 9-24
Average
For a presettime------------. 9-91
Measurements: - - - - - - - -0 e 9-92
Mode 9_91
onloﬁ' 2_4’9_92
Samplesize- -+ - 9-91
Samples 9-91
Samples in averaging - - -+ - - - - 9-91
State 9_92
Average or Single? - - - -+ - v -t 9-92

o

B
Back_to_back 7_1 5
PeriOd 7_9'7_1 3
Block arming -« -« -« cco e 9-116
Blockdata - -------c--- 3-12,7-8,9-38
Block measurements - - - .- - 7-8
BO()'ean 3_1 1
Burst
Carrier Frequency - - - - -+ ------ 9-61
Repetition Frequency -« - ----- 9-62
Synchronization (PM6685) - - - - - 9-96
Bus
Drivers 1 _6
BUS Arm 9_6
EXlt 9_8
MOde 9_8
On/Off 9_8
Override 9_8
Bus initialization - - - - - - - - - - - - 3-19
C
Calculate
BIOCk 5_3
Enab'e 9_22
Mathematics - - - - - - -+ - - 9-20 - 9-21
Readingdata:---------------- 9-15
Rea| t,me 7_9
Subsystem 9_1 3
Calibration - --------- 7-8,9-112,9-127
Of Comparators- -« - -+ ------- 9-30
Of Interpolators - - - - == - -+« ---- 9-24
Subsystem: - -« e 9-23
Change function fast
MEASMEM17 7_5
Channel
Llst 3_ 1 2
SeleCting 6_1 319_93
Characterdata - - -------------- 3-12
CheCk 2_3
Check Against Lower Limit- - - - - - - 9-18

I

Check Against Upper Limit- - - - - - - 9-19
Check signal < -« - ----cvvevene 9-114
C|ear StatUS 9_11 8
Clearing

status registers ----------- - 9-126
CME_bn 6_21 ’9_1 21
Co|0n 3_8’3_1 0
Command

Error - -----vovren 3-4,3-17,9-121

EITOI' (CME) 6_21

Header 3_1 0

Tre@ -« - - o v rere e 3-10
Command Error (CME)

COde hst 8_2
Commandtree -« -« ---ct-even- 3-8
Commands -+ - -----reorenrenons 3-20

*OLS - - v v v 3-20,9-118

*DMC-----veeeees 3-13,9-117,9-119

*EMC 3_14’9_120

*ESE v v v 9-117,9-121

*ESR') 9_122

*GMC?: - c s 3-15,9-122

AIDN? -« ccvvrmreneamnnnen 9-123

MG - - - srere e 9-117,9-123

*LMC? 3_1 5

*LRN') 9_1 24

*OPT’) 9_125

*PMC- - -eeeee 3-14,9-117,9-126

*PSC 9_117’9_126

*RCL 9_1 27

*RST 9-117

*QRE -+ - ccerrereneens 6-17,9-130

*GQTB? -+ - -vrrrree 9-117,9-131

*TRG 6_29,9_8’9_1 31

*TST') 9_1 1 7'9_1 32

*WA| 9_1 32

ABORYL- «c - v vverrmnnneeenn 9-4

:ACQuisition:APERture - - - - - - - - 9-87

‘Acquisition:HOFF - - - - - - -« - - - 9-88

:Acquisition:HOFF:ECOunt- - - - - 9-88

:Acquisition:HOFF:MODE - - - - - - 9-89

:Acquisition:HOFF:TIMe - - - - - - - 9-89
:Acquisition:RESolution- - - - - - - - 9-90
ARM 9_8
:ARM:LAYer2:.SOURce - - -+ -+ - -~ 9-8

:ARM:SEQuence:LAYer1:COUNt - 9-6

:ARM:SEQuence:LAYer1:DELay
........................ 9-7,9-10

:ARM:SEQuence:LAYer1:SOURce 9-9

:ARM:SEQuence1:LAYer1:ECOunt
........................ 9-7,9-10

:ARM:SEQuence1:LAYer1:SLOPe 9-9
:ARM:SEQuence2:SLOPe ----- 9-11
:ARM:SEQuence2:SOURce - - - - 9-11
‘ARMSTARt 9_8
:ARM:STARt:LAYer1:COUNt- - - - - 9-6
:ARM:STARt:LAYer1:DELay - 9-7,9-10
:ARM:STARt:LAYer1:ECOunt 9-7,9-10
:ARM:STARt:LAYer1:SLOPe- - - - - 9-9
:ARM:STARt:LAYer1:SOURce - - - 9-9

:ARM:STOP:SLOPe - --------- 9-11
:ARM:STOP:SOURce - - -« -+ - - 9-11
:AVERage:COUNts - - - = -+ -+ 9-91
:AVERage:MODE ------------ 9-91
:AVERage:STATe- - -+ - -+ --- - 9-92

:CALCulate :AVERage :COUNt - 9-14
:CALCulate:AVERage:STATe - - - 9-15
:CALCulate:AVERage:TYPE- - - - 9-15

:CALCulate:DATA - --- -+ 9-15
:CALCulate:IMMediate -------- 9-16
:CALCulate:LIMit[:STATe] - - - 6-3,9-16
:CALCulate:LIMit:FAIL- - - ---- - 9-17
:CALCulate:LIMit:LOWer:STATe - 9-18
:CALCulate:MATH:STATe - - - - - - 9-21
:CALCulate:STATe- - - - -+ -+ -~ 9-22

:CALibration:INTerpolator:AUTO- 9-24
:COMMunicate:GPIB:ADDRess 9-108

CON Figure 9_26
:CONFigure:ARRay: -« -« -+« 9-27
:CONFigure:DCYCle- - - - - - 9-59,9-66
:CONFigure:FREQuency - - - - - 9-60

v

:CONFigure:FREQuency: BURSt :PRF

........................... 9_62
:CONFigure:FREQuency:BURSt

CARRler 9_61
:CONFigure:FREQuency:RATio - 9-63
:CONFigure:FTIMe - - -+ ------- 9-63
:CONFigure:MAXimum - - - - - - -+ 9-64
:CONFigure:MINimum- - - - --- - - 9-64
:CONFigure:NDUTycycle - -- - - - 9-66
:CONFigure:NWIDth - - -+ - - - 9-65
:CONFigure:PDUTycycle - ----- 9-66
:CONFigure:PERiod - --------- 9-67
:CONFigure:PHASe ---------- 9-67
:CONFigure:PTPeak - - - - ---- - 9-68
:CONFigure:PWIDth - - - ----- - 9-65
:CONFigure:RTIMe- - - - - - 9-63,9-68
:CONFigure:TINTerval- - ----- - - 9-69

:CONFigure:TOTalize:ACCumulated

........................... 9-70

:CONFigure:TOTalize:CONTinuous

........................... 9-71

:CONFigure:TOTalize:GATed - - - 9-72
:CONFigure:TOTalize:GATed? - - 9-72
:CONFigure:TOTalize:SSTop - - - 9-72
:CONFigure:TOTalize:TIMed- - - - 9-73

:DISPlay:ENABIe- - -+ -+ - 9-32
:FETCh:ARRay?:------- 9-34 -9-35
FETCh’) 9_34
‘FORMat:FIXed-------------- 9-39
:FREQuency:RANGe:LOWer - - - 9-92
FUNCtlon 9_93
:'NlTiate 9_42
INITiate:CONTinuous - - - - - - - - - 9-42
:INPut:ATTenuation- - --------- 9-44
ANPut:COUPIling - - - -+ -------- 9-44
ANPut:FILTer - -« - - -« eeeeee e 9-45
:INPut:IMPedance - - ---------- 9-47
|NPut:LEVe| 9_47
:!INPut:LEVellAUTO- - --------- 9-49
INPUtSLOPe 9_51
:MEASure:ARRay? - -+ -------- 9-57
:MEASure:DCYCle? - ----- 9-59,9-66

:MEASure:FREQuency: BURSt :PRF?

........................... 9_62
:MEASure:FREQuency:BURSt
-CARRler? 9_61
:MEASure:FREQuency:RATio? - 9-63
:MEASure:FREQuency? - ----- 9-60
:MEASure:FTIMe?- - - -+ -+ -+ - 9-63
MEASure:MAXimum? - - - - 9-64
:MEASure:MEMory? - - --- -+ - 9-58
:MEASure:MEMory<N>?- - - - - - - 9-58
:MEASure:MINimum? - -------- 9-64
:MEASure:NDUTycycle?: - - - - - 9-66
:MEASure:NWIDth? ---------- 9-65
:MEASure:PDUTycycle?- - - - - - - 9-66
:MEASure:PERiod?- - - ------ - 9-67
:MEASure:PHASe?----------- 9-67
:MEASure:PTPeak? ---------- 9-68
:MEASure:PWIDth?----------- 9-65
:MEASure:RTIMe? ------- 9-63,9-68
:MEASure:TINTerval? - ------ - - 9-69
:MEASure:TOTalize:ACCumulated? 0
........................... 9-7
:MEASure:TOTalize:CONTinuous?
........................... 9_71

:MEASure:TOTalize:GATed?
....................... 9_70 ’9_72

:MEASure:TOTalize:SSTop?- - - - 9-72
:MEASure:TOTalize:TIMed? - - - - 9-73

:MEASUT&? 9_56
:MEMory:DELete:MACRo- 9-76,9-128
:MEMory:FREE:MACRo? - - - - - - 9-77
:MEMory:FREE:SENSe? ------ 9-76
:MEMory:NSTates? - -+ -« -~ 9-77
‘READ:ARRay?----------+--: 9-83
:READ') 9_82
:ROSCillator:SOURce - - - - - - - 9-96
SDELay - - -« -cc-eoins 0-96
:SENSe:Acquisition:APERture - - 9-87
:SENSe:Acquisition:HOFF - - - - - 9-88
:SENSe:Acquisition:HOFF:ECOunt

........................... 9_88

:SENSe:Acquisition:HOFF:MODE
........................... 9_89

:SENSe:Acquisition:HOFF:TIMe- 9-89
:SENSe:Acquisition:RESolution - 9-90
:SENSe:AVERage:COUNts - - - - 9-91

:SENSe.AVERage:MODE - - - - - - 9-91
:SENSe:AVERage:STATe - - - - - - 9-92
:SENSe:FREQuency:RANGe:LOWer
........................... 9_92
:SENSe:FUNCtion- -« -« -« ---- 9-93
:SENSe:ROSCillator:SOURce - - 9-96
:SENSe:SDELay -~ ----------- 9-96
:SENSe:TOTalize:GATE - - - - - - - 9-97
:SENSe:VOLTage:GATed:STATe 9-97
:STATus:DREGister0?- - - - - - - - 9-100
:STATus:OPERation:CONDition?

.......................... 9_101

:STATus:OPERation:ENABIe - - 9-102
:STATus:QUEStionable: CONDition?

.......................... 9-1 04
:STATus:QUEStionable:ENABIe 9-105
:STATus:QUEStionable?- - - - - - 9-105
:SYSTem:ERRor? - -+ -+ -+ -+ 9-108
:SYSTem:PRESet - - - -« -----" 9-109
SYSTem:SET - ------c v v v v 9-110
:SYSTem:TIME.:ELAPsed - - - - - 9-110
SYSTem:TOUT----------- - 9-111
:SYSTem:UNPRotect - - 9-111 - 9-112
:TEST:SELect -------+------ 9-114
‘TOTalize:GATE- - - ---------+" 9-97
:TRIGger [:SEQuence1]: COUNt 9-116
:TRIGger[:STARt]:COUNt - - - - - 9-116
:VOLTage:GATed:STATe - - - - - - - 9-97
RCL 9_1 1 7
SOC? 9_1 01
SOEn 9_1 02
SOEV7 9_1 03
Common Commands -- - - - - - 3-8,9-117
Common Via A 2_2
Comparator Calibration - -------- 9-30
Configure: - -+« --- 5-5 - 5-6,7-4,9-26

Array 9_27

Description: =« -+ -« s o v i 6-9

Function -+« «-+===--- 9-25,9-53

Scalar 9_26
sontinuous

Period measurements- - - - - - 7-9,7-15
>ontinuously Initiated - - - - - - - - - - - 9-42
>ontrol function- - - - - -+ n 1-5
>ontroller synchronization - ---- - -- 7-2
30nventions 1 -3
soupling

See AC/DC
sutoff frequency - - - - - - oo e e 9-45
SW et 9-61

D
Jata

Reca|cu|ate 9-1 6
)ata format 7-8

|nterna| 9_95
)ata Format 9_39
data Type:- - -+« ---voees 9-38 - 9-39
)C coupling

See AC/DC
)CL 3_1 g
)DE'blt 6_21 ’9_121
)eadk)Ck 3_5
)ecima| data 3_11
Jeclaration

For GPIB interface- - - ---------- 4-3
default <« - - - s - c e 2-3,9-128

Presetting the counter- - - - - - - - 9-109
Jeferred commands - - ----------- 3-5
)efine Macro 9_1 1 9
delay

After external start arming - - 9-7,9-10

After External Stop Arming - - - - - 9-11
)elete one Macro- - - - - 3-15,9-76,9-128
deviceclear - -+ -l 1-6,3-19
Jevice dependent Error (DDE)
....................... 6-21 ,9_1 21
Jevice initialization- - - - - - - -+ - - 3-19

Device Setup - - -+ et 0-124
Device specific errors - - - 3-4,3-18,8-13
Standardized 8_1 1
Device Status - --------- -0 9-130
Device Status Register
Enable 9-100
Event 9_1 00
NO. 0 9_100
Device Trigger, 1-6
Diagnostics Subsystem --------- 9-29
Display
Enable: -+« cccauernnn 2-3'9_32
Off 9_32
On 9_32
State 9_32
Subsystem- -+ - - - 9-31
Double Precision floating point format
............................ 9_38
Double quotes 3-12
DREGO 9-1 31
Dumping measurement results - - - - 7-9
Duration
See Pulse width
Duty cycle measurements - - - - - - - 9-59
Dutyfactor- -« - -+ ccoovvveennnn 9.95
E
EAV-------- 6-16,9-108,9-130 - 9-131
Enable
AnalogOut: -« - - oeieeie 9-80
Ca|cu|ation 9_22
Display: -« -+« :-ccrieeennn 9-32
Macros 9_1 20
Mathematics 9_21
Monitoring of Parameter Limits- - 9-16
Service Request - ------- - .- 9-130
Standard Event Status- - --- - - 9-121
Statistics 9_14
Error
ASCII description - -+ --- 9-108
Ava"ab|e 9_1 30

Clearingqueue - - -+« ----- 9-118
Command 8_2
Device specific, code list- - - - - - - 8-13
Escape from condition- - - - - - - - 3-19
EXQCUtion 8_7
|n Self test 9_1 32
Message available: - - - -+ 6-16
Query, code list = ==+« - o v oo e 8-12
Queue 3_1 7’6_1 6,8_2
Reporting: - - ===« vvmeens 3-17
Standardized device specific list - 8-11
Standardized numbers - - - - - - - 3-17
ESB-----c-ve e 9-121,9-130 - 9-131

Escape from erroneous conditions- 3-19
Event

Clearing registers - -« -«---- - 9-118
Detection---------+«-+ccee.n 6_28
Read Device Status Event Register
.......................... 9_1 00
Status bit- - - - - - - o e 9-121,9-130
Status Register -« - ..o 9-122
Events
Before Start Arming, External 9-7,9-10
HO’d Off 9_88
Example language - - - - - e 1-4
EXE-bIt 6_21 ,9_1 21
Execution
COﬂtrOl 3_4
Error---------- 3-4,3-18,6-21,9-121
EITOI' COde ||St 8_7
Expression - - - - - cccoeee 9-20 - 9-21
data 3-12
Extoref. <« ccverreennennnnn 9-96
External Events before Start Arming
......................... 9-7,9-10
External reference - - ------ - 2-3,9-96
ONJOFf « -« v v v vt e 2-3
F
Fail
lelt 9_1 7

Falltime »---«-««ccevii. 9_91
Measurements 9-63
Fast
Autotrigger- - -« - - - e e 9-92
Period measurements - - - -« - - - - 7-9
Recall and measure - - - ------ 7-5
Fetch--- -« -+t ctrmmenennnn 5-6,7-4
An Array of Results = -+ -+ -+ - - 9-35
Array - coceee 9-35
Calcutated Data- - - - -« -------- 9-15
Description: -+ =<+ - e s e 6-10
Function: -+ - - -+« con 9-33
One Result 9-34
Several measurement results - - - 9-35
Filter - - -+« 9-45
Onfoff- - -« v v vreee e 2.2
Fixed data format - - - - - - -+ -- - 9-39
Fixed Trigger Level- - - -« -------- 9-47
Format
Internaldata - -------+----«-- 9-95
ResponseData - -« -« -« ---- 9-39
Subsystem 9-37
Formula
Mathematics - - -+ - -+ - - 9-20 - 9-21
Macro:-:----+ st eeceean. 9-76 - 9-77
Freerun -« -« 9-42
Frequency
Low limit for volt/autotrig- - - - - - - 9-92
Measurement: - - - - - - a 9-60
Ratio measurements - - - - - - - - - - 9-63
Front panel memories: - - - - - - - - - 9-129
FU“CﬁOn 2_4
Change fast 7-5
G
Gate
oOn/off - -+« v 9-97
Tme:------ i, O-87
Gatetime -+ i 9-87
Gated by Y
Accumulated, Totalize X - -- - - - - 9-70

vil

Totalize X 9_72
Sated Voltage Measurement - - - - - 9-97
€] =) BRI 6-29,7-6,9-8,9-131
3et Macro 9_1 22
SPIB Address- - - - - - c e e e 1-4,9-108
Sroup Execute Trigger--------- 9-131

H .
4eader path 3_10
Header separator - - - - - 3-8

High Speed Period Measurements - 7-9
digh Speed Voltage Measurements 9-92

.lold Off 2-3
Eventcount: - :-----v- - 9-88 - 9-89
Event fange: - - - e 9-88
Events - - - e 9_88
MOde 9_89
ON/OSf -+ -+ v v vemeni e, 9-88
Setting time: -+ +--rrrrrenns 9-89
Time: «---««--cr e 9_89
Time mode:- - «------cceeen 9_89
Time range 0-89

"ystereSiS 9-45
I

dentification query - - - - - - - -+ - -+ 9-123

dle State 6_28

FC <+ -rrvvrimeen e, 3-19

mmediate mode- - - - - - - e s e 9-8

mpedance - - - 2-2,9-47

nitiate - - - e 3-19 - 3-20,5-6,7-4
Continuous - - ---vvev e 6-28,7-4
Continuously - - - ==+ --- - 7-6,9-42
Description 6_1 0
Immediate - - - - - 6-28
Measurement: - - -« - oo e e 9-42
Subsystem 9-41

nitiated state - - - - oc el e 6-28

nput
AC/DC 9-44
Attenuation - - - - e e 2-2,9-44

Auto trigger - - - - - 2.2
Common 2_2
Coupling - «rrerreveenses 2-2,9-44
Fi'tef 2_2
Impedance + - 2-2,9-47
Selecting -+« c e 6-13
Selecting channel - - ---------- 9-93
Slope -+ - 2-2
Subsystems - - sl 9-43
SWap - s 2-2
Triggerlevel- - -« -c--oveenennn 2-2

'Nput blOCk 5_3

Instrument model - - - - - 5-2

‘nterface Clear 3_19

Internal format- - - - - -+ - -l 9-95

Internal reference- - - -------- 2-3,9-96

Interpolators
Calibrationof - -----ccccvvve 9-24

lnterrupted 3-5

Interval, Time + - cevvecnenes 9-69
K

K’ L and M 9_20 - 9_21

Keywords 3-11
L

Leading zeroes - - - - - - - - - 9-39

Leaf nOde 3_1 0

Learn Device Setup - -« -------- 9-124

Learn MaCTO 9_123

Level
Fixed trigger 9_47
Set Trigger 9_48

Limit
CheCk Iower 9_1 8
Check Upper---«----«------- 9-19
Enab|e 9_1 6
Enable monitoring- - - - -+ --- .- 9-22
Example - ----ccoeeie e 4-4 4-14
Fall 9_1 7
Monitoring = - - - - - c e e 6-26

viil

e

Passed: - - -+ ot craian 9-100

Set |owe'- 9_1 7
Setupper- -« e 9-18
Listener function----------o00n-n 1-6
Loca| 1-5
ContrOl 1-5
LOCkOUt 3_6
Operation- - -« - -« -« oreveeennn 3-6
Longform - - ----vcevvenennann. 3-8
Low Pass Filter---------------- 9-45
Lower CASE " " -t e 3_8
Lower Limit
Check 9_1 8
Fa” 9_1 7
Set 9_1 7
M
MaCrO 3_13 - 3_15
Data types 3_1 3
Deﬁne 9_1 1 9
Delete - - ---------- 3-15,9-76,9-128
Delete a" 9_1 26
Descri ption 3_1 3
Enable 9-1 20
Get: v -rrrrrernanniianaes 9-122
Howtoexecute - - ---------- - 3-14
Learn = -:--- - e evmennenn 9-123
Memory states- -+ - - -0 - e e - 9-77
Names 3_1 3
Purge 9_1 26
M athematics 2_5
Enable-:----«----vc--- 9-21-9-22
Select expression - - - - - - - 9-20 - 9-21
MAV - - -ceeeennt 3-19,9-130 - 9-131
MAX 3_1 1 ’9_1 5
M E AN 9-1 5
Measure:--:««---+++««-- 5-5,7-5-7-6
Array 9_57
Description: -« - -+ c s o 6-9
Functions:- - -+ cverreennnn. 9-59
Once 9_56

Scalar -+ - 9-56
Volt neg. peak - -« ovees 9-64
Voltpeak « - -« -+« cceerennnn 9-64
Measurement :
Abort - - - s st 9-4
Basic method- - - - -cveeee e 7-6
Continuously initiated - -+ - -« - - - 9-42
Fetch Results - -------v- 9-35
Function- -+ -+ -+ cccveen 5-5
Gated Voltage 9-97
High Speed Voltage: - - ------ - 9-92
Initiate - - - - - e e 9-42
No. of, on extarm start - - - - - - - 9-116
No. on each busarm----------- 9-6
Startsync_ 7_2
Started - - - - - - e 7-2
Started (MST) 6-23
Status - - 9-101 - 9-102
Stop SYNC. - == ssssmr e 7_2
Stopped (MSP) 6-23
Terminate- - -+« - -+« o e 7-4
Tme:- -« 9-87
Time, fange -« -« 9-87
Time’ setting 9-87
Trigger 9-131
Measurement Function- - - ----- - 9-53
Measurement Time- - ----------- 9-87
Seﬁing 9-87
Measuring
BurstCW:--------cve 9-61
Duty Cycle: «------+----- 9-59,9-66
Fa" Time 9_63
Frequency - - - -« -« -cn-- 9-60
Frequencyratio-------------- 9-63
Input selection--------------- 6-13
Period 9_67
Phase- -+ -«+-++cceeea. 9-67
PRF---«-- i 9-62
Pulsewidth ---------«-«-«+---. 9-65
Rise Time - -« «---------- 9-63,9-68
Select function- - - - - - oo oo e - 9-26

IX

Selecting function - - -« - - oo - - e 9-93
Terminate 9_4
Time_'nterva| 9_69
Totalize X gated by Y - -------- 9-72
Transition time- - - - ----- -~ 9-63,9-68
Aeasuringtime - -« -« - oo 2-4
Range ««-«««rrrrrererenaes 9-87
ABMOMY - - o 2-5
Fast 9-58
Free for Macros - ----- - 9-76 - 9-77
Recall and measure fast- - - - 7-5,9-58
Subsystem:- - - 9-75
JAessage
Avai|ab|e 9_1 30
Exchange Control - -« - -vc- - 3-4
exchange initialization- - - - - - - - - 3-19
terminator 3_5
V“N 9-1 5
JAAinemonic conventions: « - - - - - - 1-3
Anemonics 3_8
ﬁOde, HOld Off 9,89
Jonitor
leltS 6_3’9_1 6
Monitor of low limit - ---------- 6-26
of highlimit - - - ---cvovvvennn 6-26
Asp_bﬁ 6_23
“SS 9_1 31
ﬁST—blt 6_23
Jultiple measurements
See Array
Jlultlple queries 3_9
N
Jegative slope = -~ ---oeee e 9-51
Jon-decimal data - - - -+« ----- - 3-12
Jotation habit - - - -+ -- e 3-9
URF « - crrree e 3-11
“U"lng 9_20 - 9_21
Jumericdata- -+ - e e 3-11
Jumeric expressiondata - - - - - - - - 3-12

O
OFL-bIt 6_24
On/Off’ HOld Off 9_88
On_time Read 9_1 1 O
OPC-blt 6_21
Operation

Complete- - -- -+ cvvvvennn 9-124

Complete (OPC)-------- 6-21,9-121

Complete Query - ----------- 9-125
Operation Status

Blt 9_1 30

Bitsinregister - - - -+ --- -0t 6-23

Condition 9_1 01

Enab|e 9_1 02

Event 9_1 03

Group Overview - ----:------- 6-22
OPR 9_130 - 9_131
Optionalnodes « « -+« - - - - oo v v - 3-10
Options

Identification - -« ------c e 0 - 9-125
Outputqueue « -+« ==« ---ceeees 6-16
Output Subsystem - - ----------- 9-79
Overﬂow 6_24

Message "~ ::-+-resceienns 3-17

Status 9-1 04
Override

BUS Arm 9,8

P
Packed :

Data fOl'm at 9_95
Para"el pO”, 1_6
Parameter ||St 3_12
Parenthesis 3_12
Parser 3_4
Peak-to-Peak

Voltage: « - -+ -+ v - v 9-68
Period measurements - ----:---- 9-67

Back-to_back 7_9
Phase 9_67

Pmt 3_7,3-10
PON"blt 6_21 '9_1 21
Positive slope - - - - - - - - - o e e 9-51
POWBT On 6_21 ’9_1 21
Status C|ear 9_126
Preset: -« - --c-ceccerenns 2-3,9-109
Status at poweron ----- .- 9-126
Status registers - - - - - - - -0 9-103
Preset Time, totalize X-Y During a- 9-73
PRF----+ i 9-62
Synchronization (PM6685) - - - - - 9-96
Program message terminator - 3-7,3-10
Program messages- - - -« --------" 3-7
Protected User Data- - - - - ------ 9-127
Pulse
Repetition Frequency - - -« ----- 9-62
Width-«-----«+-ccecn... 9_65,9_91
PurgeMacro -« «--«--crcreeen- 0-126
Q
QUE 9_130 - 9,131
Query
Error- - 3-4 - 3-5,3-18,6-21,8-12,9-121
Multiple - -« - - oo v 3-9
Questionable Data/signal - - - - - - - 9-130
COﬂdiﬁOn 9_1 04
Enable - -+ -+ --rvceerccannnn 9-105
Event:-------vvveveencenenn 9-105
Status group - 6-24
QUOteS 3_12
QYE-bit- - - - e e 6-21,9-121
R
Ratio 9_63
Read--------"«==«+«+-- 5-6,7-5-7-6
ArTay « - vcee e 9-83
Function- - -« ----cevvreeennn 9-81
OneResuUlt -+ -+ ccermeens 9-82
Scalar « -+ - e 9-82
Read or Send Settings -+ - -+ - - 9-110
Real

Data format--------- - 7-8,9-38,9-95
Recalculate Data - - - - ---------- 9-16
Recall------------ 2-5,7-5,9-58,9-127
Reference

Se|ecti0n 9_96
REMOTE 1_5
Remote operation« - - - - - - - e o e e 3-6
Remote/local- - -+ -« e i 1-6
Remove

A" MAaCroS « -« -+« s ==n 9_126

Onemacro ------------ 9-76,9-128
Repetition « - - - - -« - - oo 1-3
Request Control (RQC) - - - - 6-21,9-121
Request Service- - - - - - - 9-130
Reset---------- 2-3,3-19,9-109,9-128
Resolution: - - ==+ eveevenn 7-8,9-90
Response

Data 3_9

Data Format - ----------- 9-39,9-43

Data Type----------- 6-7 - 6-8,9-38

Message -« ----csrerrreee s 3-5

Message terminator- - - =+ - - - 3-9

Messages -« «--rrrr e 3-7
Result

FetCh ONE:- - """ s 9_34

Reading:----:---- - e-rree-e 9-82
Retrieve

Front panel setting ---------- 9-127

Measurementdata ------------ 7-4

Measurementresult ---------- 9-34
RiseTime - -+ «-cscrmeeenn- 9-91

Measurements: - - - - - e e e 9-68

Triggerlevels- - - -« -+« -- 9-49
Rmt - - eereemmee e 3-9
Rootlevel -« v v, 3-8
Rootnode -+ - -erenmnnnns 3-8
RQC-blt 6_21 ,9_1 21
RQS 9_1 30
RST - et eee i 3-20

Xl

S

Sample Size for Average - -+ - - 9-91
Sample Size for Statistics- - ---- - - 9-14
3aV@ - e 2_5,9_1 29
3caling Factor
Analog Output - - - - -+ - - -+ 6-11,9-80
;CP' 3_2
Compliance of instrument - - - - - 9-112
SDC 3_1 9
;DEV 9_1 5
select Mathematical Expression-- - - - -
....................... 9_20 - 9_21
Selective device clear- -« - - - --- - - 3-19
self Test
Activate 9_1 32
Se|ect 9_1 1 4
Semicolon 3_8
;END 1_4
;ENSe block 5_3
sense Command Subsystem: - - - - 9-85
Sensitivity < - - - e 9-45
Triggerlevel- - - - -« - oonennen 9-45
Sequential commands - - - - - 3-5
service Request - - -+ - - -+ - -0 e e 3-17
Capability: - -+« - - oo 1-6
Enab'e 9_1 30
et
Lower lelt 9_1 7
Upper Limit = - -« - oo vvvveeeenn 0-18
>ettings
Reading 9_1 1 0
;hort form 3_8
signal Detection -« - - - - -0 e e e 9-109
;ingle 2_4
Measurements: - - - - o - e e 9-90
On/Off + -+« + v v 9-92
Or Average? 9_92
;ingle quotes - - s 3-12
;'ope 2_2’9_51
Arming start- - - - 9_9

Stoparming -« c-cc e 9-11
Source

Startarming- - 9-9

Stoparming - -« - - 9-11
Speed

Autotrigger 9-92

Individually sync. meas. - ----- - 7-6

Resolution 9_90

Summary 7_1 1

Voltage measurements, high - - - 9-92
Standard deviation - - - - -0 c -t 9-15
Standard Event Status

Enab|e 9_1 21
Standard event status register - - - - 6-21

Standardized Device specific errors 8-11
Standardized Error numbers - - 3-17,8-2

Start arming
De|ay 9,7’9_10
Delay by events - - -------- 9-7,9-10
External Events before - - - - - 9-7,9-10
S'Ope 9_9
Start measurement - - - - - - - - - 9-42
Sync. 7-2
Start source
Afming 9_9
Start/stop
Totalize 9_97
Start/stop by Y, totalize X - - - - - - - - 9-72
Statistics 2_5
Enab|e 9_14
Recalculating data- - ---------- 9-16
Samp|e Size 9_14
Type 9_1 5
Status
C|ear 9_1 1 8
Clear data structures- - - -+ - - - - 3-20
Enable reporting - - - - - - -0 - - 9-103
Enabling Standard Event Status 9-121
Event Status Register - - - - - - - - 9-122
Limit monitor - - =+ -« - e 0 v o e e e 9-100
Measurement started - ---- - - - 9-102

Xl

Measurement stopped - ---- - - 9-102

Operationevent- - ------+---- 9-103
OverﬂOW 9_1 04
preset 9_1 03
Questionable Data/signal - - - - - 9-104
Questionable Data/signal, Event
.......................... 9_1 05
Register structure « -« - - -+« 3-16
Subsystem:- - -+ - 09-99
Timeout 9_1 04
Unexpected parameter - - - - - - - 9-104
Using the reporting - - - - - - - 3-16,6-14
Waiting for bus arming - - -+ - - - 9-102
Waiting for triggering- - - -+ - - - 9-102
Statusbyte - - -« - -- 3-16,6-14
Blt 0 9_1 00
Blt 2 6_1 6
Blt 3 9_104 - 9_1 05
BltS 9_121 - 9,122
Blt 6 9_1 31
Blt? 9_101 - 9_103
QuUEry:« -« - c e 9-131
Reading:----+-+-+ - 6-16,9-131
Status reporting - - - - - - 3-16,6-14
Stop Arming
Slope - -+ c e 9-11
SOUI’CE 9_1 1
Stop Measurement - - - - - - - - - 7-4
SYNC. -+ s v e 7-2
Store
Front panel settings- - -------- 9-129
Stringdata: - - - - - 3-12
SUbnOdeS 3-8
Sufﬁxes 3_1 1
Summary
Instrument states- - - - - -0 - 000 e 7-3
Measurement commands - - - - - - 6-10
Of command syntax - - -------- 3-14
Of input amplifier settings: - - 6-7 - 6-8
Speed -+ 7-11 - 7-16
SwapA-B - - 2.2

Synchronization - -+ - - - - et 7-2,7-6
Syntax
and Style -+ -+ 3-7
Summary 3-14
System Subsystem- - - - - .- 9-107
System Version- -« -0 e e 9-112
T
Ta"(er fUﬂCtiOﬂ 1_5
tatus
See Message Data Type
Terminate
Measurement - ---- - - 7-4,9-4
Terminator 3_8
50ohms/1Mohm- - = - - -+ v oo e e e 9-47
Test
Activating- - -+ - - o e 9-132
Selecting internal self-test- - - - - 9-114
signal - 9-114
Subsystem: + e 9-113
Time
HOld Off 9_89
"“erval 9_69’9_91
Measure Rise 9-68
Read Elapsed -« ------------ 9-110
Riseffall -« -+« -ccccceereean.. 9-91
Selecting Measurement Time - - - 9-87
Totalize X-Y During a Preset: - - - 9-73
Time out
For measurement (TIO) -« -+ --- 6-24
Timebase
External/internal - - - -« .- 9-96
Timeout 7_2
On/Off 9_1 1 1
Range:- -« -« - rreereeeens 9-111
Set 9_1 1 1
StatUS 9_1 04
T|O_b|t 6_24
Totalize
X-YManually -+« 9-71
Gate On/Off 9_97

Xl

Start/stop 2-3
X gated by Y 9_72
X gated by Y, accumulated - - - - - 9-70
X start/stop by Y « - o 9-72
ransition time - - 9-91
Tigger- - 6-29
See Also Command: *TRG
No. of, onextarm start - - - - - - - 9-116
Slope 9-51
Subsystem: - - ¢ o v e 9-14,9-115
'rigger |eve| 2_2
Auto 9_49
Fixed-:--«-vvcrv-- 9-45,9-47 - 9-48
Set-+rrrrre e 9-45,9-48
runcationrules -+ - 1-3
'ype’ Statistica| 9_1 5
U
,Ep_bn 6,24,9_1 04
Inexpected parameter (UEP) - - - - 6-24
Status 9_1 04
Initseparator- - - - - oo 3-8
Inprotect: - -+« - s e 9-112
‘nterminated 3_5
Jppercase - - - - c e 3-8
Ipper Limit
CheCk 9_1 9
Fa" 9_17
Set 9_1 8
IRQ_b|t 6_21 '9_1 21
Iser data 9_112
Iser request (URQ) - ---- - 6-21,9-121
\"/

‘ariable hysteresis

Auto |eve|s 9_49
Volt

Gated Measurements - - - - -~ - - - 9-97
High Speed Measurements- - - - - 9-92
Negative Peak -« -« -« ---v- - 9-64
Peak: v vrreeneiiannn 9-64
Peak_to_Peak 9_68
W
WA| 5_4
Wait for bus arming (WFA)- - - - - - - 6-23
Waiting for bus arming
Status 9,102
Waiting for trigger and/or ext. arming
(WFT) 6_23
Waiting for triggering
Statusg: - - - et e e 9-102
Wait-to-continue - - - - - - -0 - 9-132
Waveform compensation - - - - - - - - 9-48
WFA-blt 6_23
WFT-bit::- - e, 6-23
X
X 3_8
X gated by Y, accumulated, totalize 9-70
X gated by Y, totalize ---------- - 9-72
X start/stop by Y, totalize -+ ---- - - 9-72
X1/X10 attenuation- - -+ -+ 9-44
xn_1 2_5
XOLD 9_21
X-Y During a Preset Time, totalize- 9-73
Y
Y, accumulated, totalize X gated by 9-70
Y, totalize X gatedby +---------- 9-72
Y, totalize X start/stop by ------- - 9-72

Xlv

