# GPIB INTERFACE SEC 1022 SER 1023 SECTION



**PROGRAMMED TEST SOURCES**, inc.

Littleton, Massachusetts, USA.

# **TABLE OF CONTENTS**

|                                   | Page |
|-----------------------------------|------|
| Introduction                      | 1    |
| Functional Purpose                | 1    |
| Physical Aspects                  | 2    |
| Operation                         | 4    |
| Setup                             | 5    |
| Programmable Instrument Functions | 6    |
| Programming Examples              | 8    |
| Principles of Operation           | 11   |
| Condensed GPIB Concept            | 11   |
| Execution of a Valid Bus Command  | 13   |
| Listing of Key Signals            | 16   |
| Specifications                    | 17   |
| Service                           | 18   |
| Maintenance                       | 18   |
| Troubleshooting                   | 18   |
| General                           | 18   |
| Digital Fault Tracking            | 19   |
| Major Faults                      | 20   |
| 1. No Local Control               | 20   |
| 2. No Response                    | 20   |
| 3. No Data Transfer               | 22   |
| 4. Single Digit Error             | 23   |
| 5. Same Bit Error                 | 23   |
| Parts List, SEC 1022              | 24   |
| Parts List, SER 1023              | 26   |
| Figure 1 (Schematic SEC 1022)     | 28   |
| Figure 2 (Schematic SER 1023)     | 29   |
| Figure 3 (PC Assembly, SEC 1022)  | 30   |
| Figure 4 (PC Assembly, SER 1023)  | 31   |

Copyright 1982 by Programmed Test Sources, Inc., Littleton, Massachusetts

# INTRODUCTION

The GPIB interface implements a standardized form of serial remote control and provides the necessary hardware to connect an instrument to the GPIB, also referred to as the 488-bus.

#### **Functional Purpose**

The GPIB interface allows remote programming of the synthesizer via the GPIB (General Purpose Interface Bus) in accordance with the IEEE Std 488-1978.

| SHØ | Source handshake   | None                        |
|-----|--------------------|-----------------------------|
| AH1 | Acceptor handshake | Complete                    |
| ТØ  | Talk               | None                        |
| L1  | Listen             | Basic listener; Listen Only |
| SRØ | Service request    | None                        |
| RL2 | Remote/Local       | No local lockout            |
| PP0 | Parallel poll      | None                        |
| DCØ | Device clear       | None                        |
| DT0 | Device trigger     | None                        |
| CØ  | Controller         | None                        |
| E1  | Driver type        | Open collector drivers      |

The following subset describes the specific capabilities.

Three basic functions are accessible through appropriate commands: frequency, output level and Local/Remote mode. In the "LISTEN ONLY" mode **all** valid commands are accepted without regard to the device address, but in the "ADDR'D" mode only commands preceded by the selectable "LISTEN" address.

## **Physical Aspects**

Two piggy-backed and interconnected boards the SEC 1022 and the SER 1023 make up an interface unit.

They are mechanically attached to the rear panel by 4 screws: the SEC facing to the rear with the standard bus connector, a switch for address and listen mode, a "LISTEN" LED, and a second connector intended for an external attenuator or another BCD controlled device.

Internally all ("parallel") connections are made through a single-row header/plug arrangement located on the SER board. These are compatible with the pinout of the PE 1021 (parallel interface) board.

The physical interconnection to the GPIB through the 23 pin rear panel connector has the standard pinout:

| PIN | SIGNAL    | FUNCTION              |                               |
|-----|-----------|-----------------------|-------------------------------|
| 1   | DIO1      | Bit 1                 | data bus                      |
| 2   | DIO2      | Bit 2                 | data bus                      |
| 3   | DIO3      | Bit 3                 | data bus                      |
| 4   | DIO4      | Bit 4                 | data bus                      |
| 5   | EOI       | End or Identify       | management bus - inactive-    |
| 6   | DAV       | Data Valid            | byte transfer bus (handshake) |
| 7   | NRFD      | Not Ready for Data    | byte transfer bus (handshake) |
| 8   | NDAC      | Not Data Accepted     | byte transfer bus (handshake) |
| 9   | IFC       | Interface Clear       | management bus                |
| 10  | SRQ       | Service Request       | management bus —inactive—     |
| 11  | ATN       | Attention             | management bus                |
| 12  | Shield    | Shield                |                               |
| 13  | DIO5      | Bit 5                 | data bus                      |
| 14  | DIO6      | Bit 6                 | data bus                      |
| 15  | DIO7      | Bit 7                 | data bus                      |
| 16  | DIO8      | Bit 8                 | data bus —inactive—           |
| 17  | REN       | Remote Enable         | management bus                |
| 18  | GND(6)    | Ground return for DAV |                               |
| 19  | GND(7)    | Ground return for NRF | D                             |
| 20  | GND(8)    | Ground return for NDA | C                             |
| 21  | GND(9)    | Ground return for IFC |                               |
| 22  | GND(10)   | Ground return for SRQ |                               |
| 23  | GND(11)   | Ground return for ATN |                               |
| 24  | GND,LOGIC | Logical ground        |                               |

#### **OPERATION**

Basically two modes of operation are implemented and are initially selected in the setup procedure:

- (a) An "addressed" mode where only "addressed commands" (AC-class) and "device dependant commands" (DD-class) are being executed.
- (b) A "LISTEN ONLY" mode where any valid command is carried out nonselectively.

Actual command details depend upon the type of controller which is expected to send the appropriate serial characters and control signals. In any case however, the command string or message consists of a number of serial bytes (characters) with the same general pattern:

[Address] if any [Code letter for desired function] [NUMERICAL VALUE, possibly up to 10 digits long] [Terminator]

The programming section shows examples for two different makes of controller/computers.

# Setup

Connect bus cable.

Set rear panel switch "S6" to desired mode: LISTEN ONLY or "ADDR'D".

If the addressed mode of operation is selected, check and set if necessary the 5 bit address switch to the chosen one of 31 numbers.

To set a desired address from 0 to 30 follow this table:

| ADDRESS | Equivalent | 7bit | ASCII | Switch Settings |    |    |    |    |  |
|---------|------------|------|-------|-----------------|----|----|----|----|--|
| (5bits) | character  | dec. | codes | A5              | A4 | A3 | A2 | A1 |  |
| 0       | SP         | 32   |       | 0               | 0  | 0  | 0  | 0  |  |
| 1       | !          | 33   |       | 0               | 0  | 0  | 0  | 1  |  |
| 2       | "          | 34   |       | 0               | 0  | 0  | 1  | 0  |  |
| 3       | #          | 35   |       | 0               | 0  | 0  | 1  | 1  |  |
| 4       | \$         | 36   |       | 0               | 0  | 1  | 0  | 0  |  |
| 5       | %          | 37   |       | 0               | 0  | 1  | 0  | 1  |  |
| 6       | &          | 38   |       | 0               | 0  | 1  | 1  | 0  |  |
| 7       | '          | 39   |       | 0               | 0  | 1  | 1  | 1  |  |
| 8       | (          | 40   |       | 0               | 1  | 0  | 0  | 0  |  |
| 9       | )          | 41   |       | 0               | 1  | 0  | 0  | 1  |  |
| 10      | *          | 42   |       | 0               | 1  | 0  | 1  | 0  |  |
| 11      | +          | 43   |       | 0               | 1  | 0  | 1  | 1  |  |
| 12      | ,          | 44   |       | 0               | 1  | 1  | 0  | 0  |  |
| 13      | -          | 45   |       | 0               | 1  | 1  | 0  | 1  |  |
| 14      |            | 46   |       | 0               | 1  | 1  | 1  | 0  |  |
| 15      | /          | 47   |       | 0               | 1  | 1  | 1  | 1  |  |
| 16      | 0          | 48   |       | 1               | 0  | 0  | 0  | 0  |  |
| 17      | 1          | 49   |       | 1               | 0  | 0  | 0  | 1  |  |
| 18      | 2          | 50   |       | 1               | 0  | 0  | 1  | 0  |  |
| 19      | 3          | 51   |       | 1               | 0  | 0  | 1  | 1  |  |
| 20      | 4          | 52   |       | 1               | 0  | 1  | 0  | 0  |  |
| 21      | 5          | 53   |       | 1               | 0  | 1  | 0  | 1  |  |
| 22      | 6          | 54   |       | 1               | 0  | 1  | 1  | 0  |  |
| 23      | 7          | 55   |       | 1               | 0  | 1  | 1  | 1  |  |
| 24      | 8          | 56   |       | 1               | 1  | 0  | 0  | 0  |  |
| 25      | 9          | 57   |       | 1               | 1  | 0  | 0  | 1  |  |
| 26      | :          | 58   |       | 1               | 1  | 0  | 1  | 0  |  |
| 27      | ;          | 59   |       | 1               | 1  | 0  | 1  | 1  |  |
| 28      | <          | 60   |       | 1               | 1  | 1  | 0  | 0  |  |
| 29      | =          | 61   |       | 1               | 1  | 1  | 0  | 1  |  |
| 30      | >          | 62   |       | 1               | 1  | 1  | 1  | 0  |  |

**Note** that 31 is reserved for the "UNLISTEN" command, and cannot be used as a valid Listen address.

#### **Programmable Instrument Functions**

The GPIB interface will respond to the following "ADDRESS" (AD) and "ADDRESSED COMMANDS" (AC) which are sent in the command mode with ATN true:

|          |                      |       | ŀ             | ASCII          |                                                               |
|----------|----------------------|-------|---------------|----------------|---------------------------------------------------------------|
| Mnemonic | Command              | Class | char.         | dec.code       | Resulting action                                              |
| MLA      | My Listen<br>Address | AD    | SP<br>to<br>> | 32<br>to<br>62 | Device listens and<br>goes remote on 1st<br>numeric character |
| UNL      | Unlisten             | AD    | ?             | 63             | Device unlistens, but<br>stays in remote.                     |
| GTL      | Go to<br>Iocal       | AC    | SOH           | 1              | Returns to local, if in<br>remote. No action if<br>in local.  |

The following device dependent functions can be controlled by the "DD" type commands with ATN false when in the "LISTEN" state:

| FUNCTION                                                                                                   | ASCII coded<br>command string<br>(characters) | Notes                                         |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| (1) Frequency, all 10 digits                                                                               | F, 10 numerals, LF                            | 1st numeral = MSD                             |
| <li>(2) Frequency, N least<br/>significant digits</li>                                                     | F,N numerals, LF                              | 1st numeral = MSD                             |
| <ul><li>(3) Output level only in -dbV,</li><li>9 db range in 1 db steps</li></ul>                          | A, one numeral, LF                            | numeral = $x 1 db$                            |
| <ul> <li>(4) Output level with optional<br/>attenuator in -dbV in 1dB<br/>steps, range 00 to 99</li> </ul> | A, two numerals,<br>LF                        | 1st numeral = x 10 db<br>2nd numeral = x 1 db |
| (5) Return to local mode                                                                                   | GTL (SOH)                                     |                                               |
| (6) Transfer data to output<br>registers                                                                   | LF                                            | SEE NOTE BELOW                                |

The last character in a command string (LF) affects internal transfer of the stored data word. It is usually appended automatically by the controller.

**Note** that the additional ASCII characters used in the command strings have these code values:

| GPIB |  |
|------|--|
|------|--|

 $\bigcirc$ 

| Character | Dec. code | Character | Dec. code |
|-----------|-----------|-----------|-----------|
| GTL       | 1         | 0         | 48        |
| LF        | 10        | 1         | 49        |
| A         | 65        | 2         | 50        |
| F         | 70        | 3         | 51        |
|           |           | 4         | 52        |
|           |           | 5         | 53        |
|           |           | 6         | 54        |
|           |           | 7         | 55        |
|           |           | 8         | 56        |
|           |           | 9         | 57        |

# **Programming Examples**

Keep in mind that the basic data transfer on the bus is bit parallel byte serial, one byte at a time. Any program therefore has to generate data words made up of a string of ASCII characters. Each character represents a specific control code. The required characters for a desired function are listed under Programmable instrument functions (page 00). Specific details for using them depend upon the programming language of the particular controller.

However, in any case, when executing a program the controller has to send the following sequence to the instrument:

| 1st byte:       | MLA (ASCII code range 32-62). Not needed for "LISTEN ONLY".                                  |
|-----------------|----------------------------------------------------------------------------------------------|
| 2nd byte:       | ASCII character code for desired function (1, 65 or 70)                                      |
| 3rd byte:       | ASCII character code for 1st digit of associated numerical value, if any (between 48 and 57) |
| 4th byte:       | ASCII character code for 2nd digit, if any                                                   |
| ith byte:       | ASCII character code for last digit, if any                                                  |
| (i + 1)th byte: | ASCII code for other function if any                                                         |
| (i + 2)th byte: | ASCII code for 1st digit relating to "other" function if any                                 |
| nth byte:       | ASCII code for last digit, if any                                                            |
| (n + 1)th byte: | ASCII code for LF (10)                                                                       |
| optional byte:  | ASCII code for UNL (63)                                                                      |

To give a numerical example, assume we want to set the instrument to: 123.4567890 MHz at a level of -3dbV and use address 13.

The command string would be: (expressed in ASCII decimal code.)

|       |     |   |    | 1    |               |                |                   |
|-------|-----|---|----|------|---------------|----------------|-------------------|
| Byte  | 1   | : | 45 | (-)  | MLA           | with ATN true  | = AD type command |
| Byte  | 2   | : | 70 | (F)  | DAB 1         | with ATN false | = DD type command |
| Byte  | 3   | : | 49 | (1)  | DAB 2         | with ATN false | = DD type command |
| Byte  | 4   | : | 50 | (2)  | DAB 3         | with ATN false | = DD type command |
| Byte  | 5   | : | 51 | (3)  | DAB 4         | with ATN false | = DD type command |
| Byte  | 6   | : | 52 | (4)  | DAB 5         | with ATN false | = DD type command |
| Byte  | 7   | : | 53 | (5)  | DAB 6         | with ATN false | = DD type command |
| Byte  | 8   | ; | 54 | (6)  | DAB 7         | with ATN false | = DD type command |
| Byte  | 9   | : | 55 | (7)  | DAB 8         | with ATN false | = DD type command |
| Byte  | 10  | : | 56 | (8)  | DAB 9         | with ATN false | = DD type command |
| Byte  | 11  | ÷ | 57 | (9)  | DAB 10        | with ATN false | = DD type command |
| Byte  | 12  | ţ | 48 | (0)  | <b>DAB 11</b> | with ATN false | = DD type command |
| Byte  | 13  | : | 65 | (A)  | DAB 12        | with ATN false | = DD type command |
| Byte  | 14  | ÷ | 51 | (3)  | DAB 13        | with ATN false | = DD type command |
| Byte  | 15  | ; | 10 | (LF) | DAB 14        | with ATN false | = DD type command |
| optio | nal | : | 63 | (?)  | UNL           | with ATN true  | = AD type command |
|       |     |   |    |      |               |                |                   |
|       |     |   |    | L    |               | (Commentary no | otations)         |

- 9 -

This example implemented in BASIC with a PET controller would require these program lines:

10 OPEN 200, 13 or OPEN 200, 45 20 PRINT #200, "F1234567890A3"

A subsequent change in level to 0dbV would be commanded by

30 PRINT #200, "A0"

A return to local would be affected by

40 PRINT #200, CHR\$(1)

**Note** that in this example with PET/BASIC language, the PRINT #200 portion generates the MLA byte, also the LF and UNL bytes are automatically appended.

Using an HP model 9825A calculator as controller would require the following program:

| 0: | wrt713, ''F1234567890A3'' | (equivalent of line 20) |
|----|---------------------------|-------------------------|
| 1: | wrt713, "A0"              | (equivalent of line 30) |

It should also be noted that the sequential order of dual function commands is immaterial.

#### Note:

A frequency command string with less than the full 10 digits will update only the least significant digits.

### Example:

Assume previous setting : 125000680.0 Hz Next command string containing: F1234 The resulting new frequency setting is: 125 000 123.4 Hz

Note: Only the 4 least significant digits were changed.

### PRINCIPLES OF OPERATION

In order to follow the later part better, a general understanding of the GPIB concept is more or less assumed. A very brief summary is included here with the intent to help clarify the other part.

#### Condensed GPIB Concept

It is a standardized form of a serial digital data transfer system. Messages (addresses, addressed commands and data) are being sent over an 8 bit wide bus from a designated "Talker" to one or more "Listeners" supervised by a controller, usually a computer. The controller uses a set of 5 management lines to keep order and to maintain priorities. One of these lines called ATN (attention) determines how data on the bus are to be interpreted. A Low (also TRUE) state signifies commands of various kinds whereas the high state (False) identifies the message bytes as data, typically functions and related values. Any actual transfer of a message byte is also verified through a 3-line handshake procedure, which is to ensure that no new data are being sent until the last and slowest listener has accepted them and is ready for new data. The rate of transfer is both variable and asynchroneous. Theoretically, rates up to 1MHz are possible.

There can be up to 15 devices on one bus, however, address space is provided for up to 31 talkers and listeners.

Bus connections can be either star-like or in tandem, but are limited in total length to 20m.

The physical connector is a 24 contact ribbon connector with metric hardware. Standard cable plugs have a male/female configuration to facilitate throughconnections. The logic convention for all bus signals is negative true, i.e.,

a low state = true = Logic 1 (< 0.8V) a high state = false = Logic Ø (> 2.0V)

In summary there are:

| Line                  | Mnemonic | Origin of signal   |
|-----------------------|----------|--------------------|
| 8 lines for data byte | DAB      | controller, talker |
| 5 management lines:   |          |                    |
| Attention             | ATN      | controller         |
| Interface clear       | IFC      | controller         |
| End or Identify       | EOI      | controller, talker |
| Service request       | SRQ      | talker, listener   |
| Remote enable         | REN      | controller         |
| 3 handshake lines:    |          |                    |
| Data valid            | DAV      | talker             |
| Not data accepted     | NDAC     | listener           |
| Not ready for data    | NRFD     | listener           |

#### **Execution of a Valid Bus Command**

All data transfers from the GPIB involve an "acceptor handshake" operation. The interface will handshake only under two conditions:

- when ATN is true (low), which is a universal command in anticipation of an "addressed command".
- 2. when it is in the "LISTEN" state, set by either S6 to position "LISTEN ONLY", or by the listen flipflop U19. (See schematics Fig. 1 and Fig. 2.)

Either of these conditions forces HSE high and gates NRFD and NDAC signals to be sent out in response to an incoming DAV low signal, which indicates the presence of a valid data byte on the D10 lines. DAV triggers a 1  $\mu$ s strobe pulse STR from U18 which acts as a master clock within the module. If the handshake is enabled, as described before then STR sets NRFD low and NDAC high, subject to a possible delay by the INH signal from U21. Finally, when DAV goes high again indicating the end of valid data, NDAC clears first, then NRFD is released (goes high).

The associated data byte on the DIO lines is processed depending on the state of ATN. When ATN is low (true) incoming data are handled as addresses or addressed commands. If the received byte matches the address register (switches S1 through S5), the comparator U2, U16 set the MLA line high which allows the listen clock pulse LCK to set the listen flipflop U19, which in turn enables subsequent data acceptance.

Once set to listen, and with ATN high (false), incoming bytes are now handled as functional data in various ways through the STR derived data clock DCK. Comparator U11 discriminates against any other characters but numerals 0 through 9 and gates DCK to become the number clock pulse NCK. Also the remote ff U17 is set by NCK and DAV, putting the module in the REMOTE mode. An UNL byte decoded by U5 does the opposite and clears the listen ff without affecting the remote ff. A GTL command (DD or AC-type) will clear the remote ff U17.

NCK is gated once more and turns into the frequency clock FCK following receipt of the ASCII"F" byte, or becomes the A-clock ACK after receiving the "A" character. Only one of these two clocks can be active at a time. The "A" and "F" characters are decoded by U6 and U14 and cause proper gating of the A & F dual ff U8.

**Note** that ACK or FCK has as many pulses or transitions as the number of numerals following the "A" or "F" character.

The end of a data string is recognized by the LF character. Decoder U10 and DCK generate the transfer pulse TRA, which in turn triggers reset signals ARES and FRES, all being used eventually in the serial to parallel conversion process on the SER board. The previously mentioned INH signal, also triggered by TRA in U21 is timed to ensure a minimum waiting period of 20  $\mu$ s before another transmission cycle.

A few more signals are derived from REM. One is called OC for output control and affects the tristate output registers. Another, called FPE for front panel enabling, involves U15 and Q1 and generates nominally 5V in the LOCAL mode. Q2 produces similarly 5V in the REMOTE mode, the signal is called REL for remote LED. Also a monitor signal LIL provides a low state in the LISTEN state.

The circuits described so far are all located on the SEC 1022 board (Serial entry control). The serial to parallel conversion takes place on the SER 1023 (serial register) board as follows.

Four bits of the 7bit (ASCII) byte, called SB1, 2, 4, 8 are passed on for conversion. Since only numerals enable the applicable serial clock nothing else can be converted. Numerical data following "F" are clocked into a set of 10 bit shift registers U11, 19, 14, 22, 4 by FCK, those following "A" are clocked into a set of 2 bit shift registers U6, 13 by ACK. The respective clock pulse also generates an enabling signal, FE1 - 10 in the F-channel with U1, 2, 3, and AE1 - 2 in the A-channel with U5. When the output registers, U9, 17, 10, 18, 12, 20, 15, 23, 24 of the F-channel and U7, 21 of the A-channel are thus enabled, the following transfer pulse TRA stores the available data from the shift registers in the output registers, overwriting any previously stored data. Finally the stored data appear at the output lines whenever OC is low, i.e., being in the REMOTE mode. Otherwise, with OC high, the outputs are in a high impedance state, but stored data are not affected.

Responding to the last digit in the A-channel is a D to A converter implemented by the 10 to 1 decoder U8 and a bank of resistors. The resulting analog voltage ANL is tailored to produce 1db incremental changes in the rf output level of the instrument.

Option 1023/160 uses a BCD to BIN converter U16A to convert the 4 digit #9 lines to a hexadecimal format, equivalent to decimal 0 to 15. (0-150MHz)

Option 1023/200 uses another output register U16B to provide one least significant bit of the 10th digit. (100MHz)

Option 1023/500 (1023 Rev. 2) uses a different enlarged shift register U4 and provides additional output lines for handling the '200' and '400' MHz bits through U16B.

The following list in section 2.3 summarizes the key signals and associated functions.

# List of Key Signals

|        | Origin     | Quiesc. |                                                                                 |
|--------|------------|---------|---------------------------------------------------------------------------------|
| Name   | board/IC   | State   | Comments                                                                        |
| AB1    | SER/U21    | x       | Bit weight 1 of A lines, for attenuator control                                 |
| AB2    | SER/U21    | x       | Bit weight 2 of A lines                                                         |
| AB4    | SER/U21    | x       | Bit weight 4 of A lines                                                         |
| AB8    | SER/U21    | x       | Bit weight 8 of A lines                                                         |
| ACK    | SEC/U1     | Ĺ       | STR derived clock pulse for A-channel conversion                                |
| AE1    | SER/U5     | . H     | ACK triggered enabling signal for digit #1 of A-channel,                        |
| ,      |            |         | reset by ARES                                                                   |
| AE2    | SER/U5     | н       | ACK triggered enabling signal for digit #2 of A-channel                         |
| ANL    | SER/U8     | x       | Analog voltage for level control, appr. range 2V                                |
| ATN    | Bus,SEC/U7 | х       | Low in "command mode", high in "DD mode"                                        |
| ARES   | SEC/U1     | н       | TRA triggered reset pulse for A-channel                                         |
| DAV    | Bus,SEC/U7 | н       | Goes low after talker has valid data on bus                                     |
| DCK    | SEC/U16    | L       | STR derived pulse, occurs for each byte in DD mode                              |
| FCK    | SEC/U1     | L       | NCK derived pulse, enabled after "F" byte                                       |
| FE1-10 | SER/U1,2,3 | н       | FCK triggered enabling signal for F-channel                                     |
| FPE    | SEC/Q1     | н       | Feeds front panel switches & local light. Goes low in                           |
|        |            |         | remote                                                                          |
| FRES   | SEC/U18    | н       | TRA triggered reset pulse for F-channel                                         |
| GTL    | SEC/U12    | L       | Goes high on data byte with code value 1, clears REMOTE                         |
|        |            |         | in either AC or DD command mode                                                 |
| HSE    | SEC/U20    | L       | Goes high in command mode (ATN Low) or LISTEN state,                            |
|        |            |         | enables NDAC and NRFD for handshake                                             |
| IFCI   | Bus,SEC/U1 | н       | Clears Listen ff on either power-on or bus command                              |
| INH    | SEC/U21    | L       | 20 μs pulse, TRA triggered, inhibits handshake                                  |
| LIL    | SEC/U13    | н       | Listen monitoring signal low when in LISTEN mode                                |
| LIST   | SEC/U19    | L       | Goes high when addressed, enables DD mode, clears<br>when receiving UNL command |
| LOC    | SEC/U17    | н       | Goes low when REM is set (high) by NCK, resets high on                          |
|        |            |         | GTL command or REN high or power-on                                             |
| MLA    | SEC/U16    | L       | Goes high when receiving address = switch settings                              |
| NCK    | SEC/U6     | L       | DCK derived clock pulse, enabled by numerals, one pulse                         |
|        |            |         | per digit, also sets REM.                                                       |
| NDAC   | SEC/U13    | х       | Controlled by all Listeners, low when enabled by HSE,                           |
|        |            |         | temporarily high = Data accepted following DAV if                               |
|        |            |         | LISTENER responds.                                                              |
| NRFD   | SER/U13    | н       | Controlled by all Listeners on bus, pulled Low = Not Ready                      |
|        |            |         | following DAV, if listener responds. Released high again                        |
|        |            |         | after NDAC gone low.                                                            |
| OC     | SEC/U15    | н       | Goes low in REMOTE mode, enabling output registers                              |
| PUR    | SEC/U9     | н       | Goes temporarily low on power-on.                                               |
| QHS    | SEC/U19    | L       | Controls handshake signals, goes temp. high in normal<br>handshake cycle.       |
| RCL    | SEC/U15    | н       | Initializing signal, temporarily low only on power-on.                          |
| REL    | SEC/Q2     | L       | Feeds REMOTE light on front-panel, goes high in remote.                         |
| REM    | SEC/U17    | L       | Complementary signal to LOC, high in REMOTE Mode                                |
| REN    | Bus,SEC/U9 | х       | Low in remote enable state, set by controller                                   |
| SB1    | SEC/U4     | x       | DIO1 derived data bit, weight 1, high when true                                 |
| SB2    | SEC/U4     | x       | DIO2 derived data bit, weight 2, high when true                                 |
| SB4    | SEC/U4     | x       | DIO3 derived data bit, weight 4, high when true                                 |
| SB8    | SEC/U4     | ×       | DIO4 derived data bit, weight 8, high when true                                 |
| STR    | SEC/U18    | L       | DAV derived master clock pulse, one per byte                                    |
| TRA    | SEC/U13    | L       | DCK derived, LF enabled pulse, stores outputs.                                  |
|        |            |         |                                                                                 |

## SPECIFICATIONS

The interface consists of the SEC 1022 board and the SER 1023 board.

## 1. Interface Functions:

Subset implemented as per IEEE-Std 488-1978. SH0, AH1, T0, L1, SR0, RL2, PP0, DC0, DT0, C0 Output driver type E1 = Open collector

#### 2. Inputs:

GPIB signals via J1 as per standard with DIO8, EOI and SRQ inactive.

#### 3. Internal Decoding:

| Name     | ASCII<br>char. | ASCII<br>dec. | Function               |
|----------|----------------|---------------|------------------------|
| GTL      | SOH            | 1             | Local mode             |
| LF       | LF             | 10            | Transfer data          |
| LAD      | SP>            | 32-62         | Listen addresses       |
| Numerals | 0-9            | 48-57         | Control parameter      |
| UNL      | ?              | 63            | Unlisten               |
| А        | Α              | 65            | Level control code     |
| F        | F              | 70            | Frequency control code |

#### 4. Outputs via P1:

For **frequency** control, tristate, LS-TTL compatible Option/160: 36 parallel bits, digit #1 through digit #8 BCD coded, digit #9 hexadecimal coded: **0**-F Option/200: 37 parallel bits, all digits BCD coded, digit #10 one bit only: **0**-1 Option/500: 39 parallel bits, all digits BCD coded, digit #10 three bits only: **0**-7, (4)

For level control, all options:

4 parallel bits, BCD coded for attenuator control LSTTL compatible, tristate, also available via J2.

+ analog level control voltage, 2V maximum.

Controlled voltage for panel switches, 5V max. (FPE)

Monitor signals for REMOTE, LOCAL and LISTEN status.

## 5. Power requirements:

5.4 V @ 520-540 mA typical

### SERVICE

#### Maintenance

No maintenance is normally required. Only components subject to wear are the external connectors and the address switches. They are expected to outlast the normal life expectancy of the instrument.

#### **Trouble Shooting**

#### General

The interface circuitry is essentially digital, involving basically TTL type integrated circuits. Generally speaking, fault finding techniques require the use of logic probes and or logic analyzers, since many of the digital processes are sequential in nature.

Furthermore, with any bus controlled instrument, malfunctions may also be caused by the controller, by program errors (software) and possibly by other devices on the bus. Such possible causes have to be eliminated first:

Verify, if possible the proper operation of the bus controller. Suitable bus testers are available from several sources.

Check operation without any other devices on the bus to eliminate possible hangup problems caused by another device.

Check operation of the instrument in the "LOCAL" mode with the bus cable disconnected. If this mode cannot be established, as evidenced by the front panel LED, trouble could also be elsewhere in the instrument. If "LOCAL" is O.K., then the interface is most likely at fault. For most of the following checks we require access to the inside. Remove both covers which allows limited probing on many key points.

Before performing any digital tests, check first:

The 5.4V rail at the power supply board. If O.K., check the supply voltages on pin #6 interconnecting SEC and SER to be the same as on the rail, on an accessible Vcc pin #16 of each board: A1 on SEC, U1 on SER. These voltages are typically  $5.0 \pm 0.2V$ . If less than 4.7V, decoupling resistors R23 on SEC and R33, 34 on SER are suspect. Any required repair requires removal of the interface. Proceed further only after the power supply conditions are normal.

#### **Digital Fault Tracking**

The following covers a few major fault conditions and related fault finding checks, but limited to what can be diagnosed without removing the interface. Probing points are therefore restricted to those on the bus connector, the contact points on J1, SER, on some IC's at the edge of SER and the output connections P1, SER.

If these tests are inconclusive, return of the suspect unit for factory test repair is recommended. If test results and inspection indicate specific defects, repair may be attempted after removing and disassembling the interface.

In the following test procedures we try first static checks using simple logic probes or a voltmeter. Dynamic test are necessary to check on sequential logic and require at least a pulse indicating probe; a transition counter would be useful in tracing more subtle faults. When a signal name is referred to in capital letters, consult also the list of key signals for more information which should prove helpful in diagnosing the problem. For static tests good/bad limits are:

| State | Good      | Bad   |
|-------|-----------|-------|
| Low   | >ØV, <.8V | >0.8V |
| High  | >2.4V     | <2.4V |

unless otherwise noted. Note that with a good Low, there is a small positive voltage, never 0. A 0 voltage indicates a **short**.

#### **Major Faults**

#### 1: No "LOCAL" control function

Disconnect bus cable. Static tests. Check progressively.

| Signal | At                                        | On  | Good<br>State | Possible defects if test result is bad |
|--------|-------------------------------------------|-----|---------------|----------------------------------------|
| FPE    | Coll. Q1                                  | SEC | >4V           | short, Q1, U15, R22, OC<br>stuck low   |
| FPE    | 17J1                                      | SER | >4V           | interconnection open, shorts           |
| FPE    | 34P1                                      | SER | >4V           | track on SER, shorts                   |
| FPE    | common rail on<br>front panel<br>switches |     | >4V           | track on SER, shorts                   |
| oc     | 16J1                                      | SER | High          | U15, shorts (SEC,SER)                  |
| LOC    | 19J1                                      | SER | High          | Shorts, U17                            |
| RCL    | R29, C7                                   | SEC | Low           | U7, 9, 15                              |

The following tests are done with bus connected, but no other devices on bus.

#### 2: No response to commands, does not go remote

Verify first proper match of address setting on rear panel switch with address used by controller/talker.

If O.K., set switch to "LISTEN ONLY" and execute a command sequence. If instrument responds, trouble could be in address related circuits on SEC; suspects are S1-5, U2, 3, 4, 5, 9, 16. However, there could also be a controller problem, not sending the correct address. If no response, reset switch to "ADD'D" position, and try first:

Static Tests, with controller idling, but REN asserted (low).

Check progressively.

|          |       | On         | State      | if bad                   | Comments       |
|----------|-------|------------|------------|--------------------------|----------------|
| 15       |       | bus<br>SEC | Low<br>Low | controller<br>connection |                |
| RCL R    | 29,C7 | SEC        | High       | U7, 9, U15, C7           |                |
| IFC pi   | in 9  | bus        | High       | controller, short        |                |
| IFCI 14  | 4U9   | SEC        | High       | C2,U19                   |                |
| ATN pi   | in 11 | bus        | High       | controller, short        |                |
| ATN 21   | U20   | SEC        | Low        | U7, open                 |                |
| ATN 3L   | U16   | SEC        | High       | U7, short                |                |
| NRFD pi  | in 7  | bus        | High       | controller, short, U13   | Handshake      |
| QHS 51   | U19   | SEC        | Low        | U19, U9                  | related        |
| PUR 4l   | U19   | SEC        | High       | U9, 19, C1, shorts       | related        |
| HSE 11   | 1U20  | SEC        | Low        | U20, 7                   | related        |
| DAV pi   | in G  | bus        | High       | controller, short        |                |
| NDAC pi  | in 8  | bus        | High       | controller, short, U13   | related        |
| DAV 2L   | U18   | bus        | Low        | U7                       | related        |
| DIO7 pi  | in 15 | bus        | High       | controller, short        | affects:       |
| D7 1l    | U165  | SEC        | High       | U3, 7, Open              | Listen address |
| Clock 13 | 3U19  | SEC        | High       | U20, short               | Listen Clock   |

If earlier test in LISTEN ONLY mode was good, but addr'd mode was not, check also other data lines.

| DIO6              | pin 14        | bus        | High        | controller, short             | may impair         |
|-------------------|---------------|------------|-------------|-------------------------------|--------------------|
| D6                | 2U3           | SEC        | High        | U3,U4, Open                   |                    |
| DIO5              | pin 13        | bus        | High        | controller, short             | proper addressing  |
| D5                | 4U3           | SEC        | High        | U3, U4, Open                  |                    |
| $\frac{DIO4}{D4}$ | pin 4<br>1OJ1 | bus<br>SER | High<br>Low | controller, short<br>U4, Open | proper addressing  |
| DIO3              | pin 3         | bus        | High        | controller, short             | proper addressing  |
| D3                | 9J1           | SER        | Low         | U4, Open                      |                    |
| $\frac{DIO2}{D2}$ | pin 2<br>8J1  | bus<br>SER | High<br>Low | controller, short<br>U4, open | proper addresssing |
| DIO1              | pin 1         | bus        | High        | controller short              | proper addressing  |
| D1                | 7J1           | SER        | Low         | U4, open                      |                    |

If static tests indicate normal conditions proceed with:

Send a command string containing at least **one** numeral and monitor with a pulse indicating probe at the same time progressively. Command string assumed to end with UNL.

|        |       |     | Good                     | Possible defects | ,         |
|--------|-------|-----|--------------------------|------------------|-----------|
| Signal | At    | On  | Condition                | if bad           | Comments  |
| DAV    | pin 6 | bus | one ─∟─ each byte        | controller       | All       |
| DAV    | 2U18  | SEC | one _n_ each byte        | U7, conn         | functions |
| STR    | 5U16  | SEC | same as $\overline{DAV}$ | U1R, R45, C3     | impaired  |
| MLA    | 11U19 | SEC | once/mes.                | U2, U16          | Listening |
| LIST   | 9U19  | SEC | once/mes.                | U19, 20          | impaired  |
| HSE    | 11U20 | SEC | once/mes.                | U20, U13         | impaired  |
| LIL    | 20J1  | SER | □ once/mes.              | U13              | Impaired  |

3: No data transfer (goes remote, but no data transfer or only partial)

Static tests, with interface set to remote state. Controller idle. Check progressively.

| OC   | 10U15 | SEC | Low  | U15              |
|------|-------|-----|------|------------------|
| OC   | 16J1  | SER | Low  | connection       |
| TRA  | 8U13  | SEC | Low  | U13              |
| TRA  | 13J1  | SER | Low  | connection       |
| FRES | 12U18 | SEC | High | U18, short       |
| FRES | 14J1  | SER | High | connection       |
| FCK  | 11J1  | SER | Low  | U1,8, connection |

If O.K. so far, proceed with:

## **Dynamic Tests**

Send a frequency command with 10 digits, monitor simultaneously progressively.

| Signal | At    | On  | Good                    | Possible defects          | s,<br>Comments         |
|--------|-------|-----|-------------------------|---------------------------|------------------------|
| Signal | AL    | 011 | GOOU                    | II Dau                    | Comments               |
| TRA    | 13J1  | SER | _⊓_ once per<br>command | U10,13,R24,49, connection | impairing<br>transfer  |
| TRA    | 7U9   | SER | _⊓_ once per<br>command | track                     | to output<br>registers |
| FRES   | 12U18 | SEC | ⊂∟⊂ once per<br>command | U18, connection           |                        |
| FRES   | 14J1  | SER | □_ once per<br>command  | connection                |                        |
| FRES   | 1U4   | SER | ⊂∟⊂ once per<br>command | track                     |                        |
| FCK    | 11J1  | SEC | _⊓_ 10 times<br>each    | U1, 8, 6, 14              | impairing<br>serial    |
| FCK    | 9U4   | SER | command                 | track                     | conversion             |
| FE2    | 8U1   | SER | □ once per<br>command   | U1, Conn.                 | impairing<br>output    |
| FE2    | 15U17 | SER |                         |                           | registers              |
| FE6    | 14U2  | SER | □ once per<br>command   | U2, U1                    |                        |
| FE6    | 15U20 |     |                         |                           |                        |
| FE100  | 14U3  | SER | □ once per<br>command   | U3, 2, 1                  |                        |
| FE100  | 9U16  | SER | ⊂∟⊏ once per<br>command |                           |                        |

If all of these checks prove O.K., check continuity of TRA line to all points on SER. If this is O.K., problem is more deep seated.

#### 4: Single digit in error, otherwise OK

Most likely cause if faulty output register or an open control line FEx, TRA or OC to the particular digit. Check operation of these control lines **at the associated pins** of the IC in question, as indicated before. Check also the 4 output bit lines for possible-connection problems, open or shorts.

#### 5: Same bit error in all digits

Example: Only even numbers would implicate bit 1, originating from **SB1** through U11, SER.

Check suspected **SB**xLine for activity. If dead, suspect SEC or interconnection. If O.K., check D1 line for activity. If bad, suspect associated IC, U11 for bit "1", U19 for bit "2", U14 for bit "4", U22 for bit "8".

Most any other problem is likely to be more complex and not expected to be resolved or repaired in the field.

# SEC-1022 Parts List

| Schematic<br>Design | Description                                 | PTS P/N            |
|---------------------|---------------------------------------------|--------------------|
| Design              | <ul> <li>Boscher L.</li></ul>               | 1101/14            |
|                     | CAPACITORS                                  |                    |
| C1                  | 47uF, El. Tant. 6V                          | 30-5102            |
| C2                  | 10nF, 80/20%, 50V, 25V                      | 23-0103            |
| C3                  | 47pF, 10%, 500V, X5F                        | 22-0470            |
| C4                  | 100pF, 10%, 500V, X5F                       | 22-0101            |
| C5<br>C6            | 1nF, 10%, 500V, X5F<br>6.8uF, El. Tant. 16V | 22-0102<br>30-5101 |
| C7                  | 10nF, 80/20%, 50V, Z5V                      | 23-0103            |
| C8                  | 50nF, 80/20%, 50V, Z5V                      | 23-0503            |
| C9                  | 50nF, 80/20%, 50V, Z5V                      | 23-0503            |
| C10                 | 50nF, 80/20%, 50V, Z5V                      | 23-0503            |
| C11                 | 50nF, 80/20%, 50V, Z5V                      | 23-0503            |
| C12                 | 50nF, 80/20%, 50V, Z5V                      | 23-0503            |
| C13                 | 50nF, 80/20%, 50V, Z5V                      | 23-0503            |
|                     | DIODES                                      |                    |
| CR1                 | LED, green                                  | 88-4955            |
|                     | CONNECTORS                                  |                    |
| J1                  | 24 contact, PC mount                        | 78-1024            |
| J2                  | 5 contact, receptacle                       | 79-1005            |
| P1                  | header strip, 20 contacts                   | 79-1002            |
|                     | TRANSISTORS                                 |                    |
| Q1                  | 2N2905                                      | 42-2905            |
| Q2                  | 2N2905                                      | 42-2905            |
|                     | RESISTORS                                   |                    |
| A1                  | Resistor network, 28 resistors              | 66-5001            |
| R5                  | 100, 5%, ¼W                                 | 10-0101            |
| R12                 | 4.7K, 5%, ¼W                                | 10-0472            |
| R16                 | 100, 5%, ¼W                                 | 10-0101            |
| R18                 | 1.5K, 5%, ¼W                                | 10-0152            |
| R19                 | 150, 5%, ¼W                                 | 10-0151            |
| R20                 | 4.7K, 5%, ¼W                                | 10-0472            |
| R21<br>R22          | 2.2K, 5%, ¼W<br>1K, 5%, ¼W                  | 10-0222<br>10-0102 |
| R23                 | 2.2, 5%, ¼W                                 | 10-0102            |
| R24                 | 2.2K, 5%, 1/4W                              | 10-0222            |
| R29                 | 330, 5%, ¼W                                 | 10-0331            |
| R42                 | 4.7K, 5%, ¼W                                | 10-0472            |
| R43                 | 220, 5%, ¼W                                 | 10-0221            |
| R44                 | 4.7K, 5%, ¼W                                | 10-0472            |
| R45                 | 6.8K, 5%, ¼W                                | 10-0682            |
| R46                 | 10K, 5%, ¼W                                 | 10-0103            |
| R47                 | 6.8K, 5%, ¼W                                | 10-0682            |

# SEC-1022 Parts List (continued)

| Description                                                                                                                                                                                                          | PTS P/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>RESISTORS</b> (cont.)                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15K, 5%, 1/4W<br>1.5K, 5%, 1/4W<br>22K, 5%, 1/4W<br>4.7K, 5%, 1/4W<br>4.7K, 5%, 1/4W<br>4.7K, 5%, 1/4W<br>4.7K, 5%, 1/4W<br>4.7K, 5%, 1/4W                                                                           | 10-0153<br>10-0152<br>10-0223<br>10-0472<br>10-0472<br>10-0472<br>10-0472<br>10-0472<br>10-0472<br>10-0472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                      | 10-0472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                      | 07.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6 PST DIL                                                                                                                                                                                                            | 87-1006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| INTEGRATED CIRCUITS                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 93L24<br>74LS04<br>74LS14<br>74LS21<br>74LS21<br>74LS14<br>74LS107<br>74LS04<br>74LS04<br>74LS30<br>93L24<br>74LS21<br>7438<br>74LS21<br>7438<br>74LS21<br>7405<br>74LS11<br>74LS123<br>74LS123<br>74LS112<br>74LS00 | 61-0024<br>63-0004<br>63-0021<br>63-0021<br>63-0021<br>63-0014<br>63-0107<br>63-0004<br>63-0030<br>61-0024<br>63-0021<br>60-0038<br>63-0021<br>60-0005<br>63-0011<br>63-0051<br>63-0123<br>63-0112<br>63-0000<br>64-0555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                      | <b>RESISTORS</b> (cont.)         15K, 5%, 1/4 W         1.5K, 5%, 1/4 W         22K, 5%, 1/4 W         4.7K, 5%, 1/4 W         6 PST DIL <b>SWITCHES</b> 74LS08         93L24         74LS04         74LS14         74LS14         74LS14         74LS14         74LS14         74LS107         74LS04         74LS01         74LS1         74LS13 |

# SER-1023 Parts List

| Schematic<br>Design                                                                                                                                    | Description                                                                                                                                                                                                                                                      | PTS P/N                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design                                                                                                                                                 | Description                                                                                                                                                                                                                                                      | FIS F/N                                                                                                                                                                                                       |
|                                                                                                                                                        | CAPACITORS                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |
| C1<br>C2<br>C3<br>C4<br>C5<br>C6                                                                                                                       | 6.8uF, El. Tant. 16V<br>6.8uF, El. Tant., 16V<br>50nF, 80/20%, 50V, Z5V<br>50nF, 80/20%, 50V, Z5V<br>50nF, 80/20%, 50V, Z5V<br>50nF, 80/20%, 50V, Z5V                                                                                                            | 30-5101<br>30-5101<br>23-0503<br>23-0503<br>23-0503<br>23-0503                                                                                                                                                |
|                                                                                                                                                        | CONNECTORS                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |
| J1<br>P1                                                                                                                                               | Connector strip, female, 20 cont.<br>Header strip, 25 contacts<br>Header strip, 25 contacts                                                                                                                                                                      | 79-1004<br>79-1003<br>79-1003                                                                                                                                                                                 |
|                                                                                                                                                        | RESISTORS                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |
| R1-R32<br>R33-R34<br>R35<br>R36<br>R37<br>R38<br>R39<br>R40<br>R41<br>R42<br>R43<br>R44<br>R45<br>R44<br>R45<br>R46<br>R47<br>R48<br>R49<br>R50<br>R51 | 2.2K, 5%, ¼W (32x)<br>2.2K, 5%, ¼W (2x)<br>1.21K, 1%<br>1.21K, 1%<br>1K, 10%, .75W<br>100K, 5%, ¼W<br>4.7K, 5%, ¼W<br>2.2K, 5%, ¼W<br>1.3K, 1%<br>866, 1%<br>634, 1%<br>470, 5%<br>365, 1%<br>301, 1%<br>243, 1%<br>2.2K, 5%, ¼W<br>2.2K, 5%, ¼W<br>2.2K, 5%, ¼W | 10-0222<br>10-1220<br>14-5110<br>14-5110<br>17-5104<br>10-0104<br>10-0472<br>10-0222<br>14-5111<br>14-5109<br>14-5108<br>10-0471<br>14-5106<br>14-5105<br>10-0222<br>10-0222<br>10-0222<br>10-0222<br>10-0222 |

# SER-1023 Parts List (continued)

| Schematic<br>Design   | Description                  | PTS P/N            |
|-----------------------|------------------------------|--------------------|
| INTEGRATED CIRCUITS   |                              |                    |
| U1                    | 74LS74                       | 63-0074            |
| U2                    | 74LS175                      | 63-0175            |
| U3                    | 74LS175                      | 63-0175            |
| U4                    | 74LS174                      | 63-0174            |
| U5                    | 74LS74                       | 63-0074            |
| U6                    | 74LS174                      | 63-0174            |
| U7                    | 74LS173                      | 63-0173            |
| U8                    | 74LS145                      | 63-0145            |
| U9                    | 74LS173                      | 63-0173            |
| U10                   | 74LS173                      | 63-0173            |
| U11                   | 74LS164                      | 63-0164            |
| U12                   | 74LS173                      | 63-0173            |
| U13                   | 74LS174                      | 63-0174            |
| U14                   | 74LS164                      | 63-0164            |
| U15                   | 74LS173                      | 63-0173            |
| U16A (160 MHz)        | 74184                        | 60-0184            |
|                       | 741 0170                     | 00.0170            |
| U16B (200 MHz)<br>U17 | 74LS173                      | 63-0173            |
| U18                   | 74LS173                      | 63-0173            |
| U19                   | 74LS173<br>74LS164           | 63-0173            |
| U20                   | 74LS164<br>74LS173           | 63-0164<br>63-0173 |
| U21                   | 74LS173                      | 63-0173            |
| U22                   | 74LS173                      | 63-0164            |
| U23                   | 74LS173                      | 63-0173            |
| U24                   | 74LS173                      | 63-0173            |
| 024                   | 1423113                      | 03-0173            |
|                       | Rev. 2: Additions or changes |                    |
| RESISTORS             |                              |                    |
| R52-54                | 2.2K, 5%, ¼W                 | 10-0222            |
| R55                   | 680, 5%, ¼W                  | 10-0681            |
| INTEGRATED CIRCUITS   |                              |                    |
| U4                    | 74LS273                      | 63-0273            |
| 04                    | 140210                       | 03-02/3            |



-28-





