

EB 106**6B/6** 1 - 9/63

3

·· · 3"

OPERATING INSTRUCTIONS

No. EB 1066B/6

for

F.M. SIGNAL GENERATOR

TYPE TF 1066B/6

GENERAL INFORMATION

INTRODUCTION

1

1.1

The TF 1066B/6 and TF 1066B/6R Signal Generators give o.w., f.m. and a.m. outputs and are intended for making standard measurements and tests on apparatus operating in the v.h.f. and u.h.f. bands. Apart from the normal applications for f.m. receivers, they are particularly suitable for testing multi-channel telemetry equipment requiring a signal source which provides high modulating frequencies and wide deviations with low distortion.

A frequency coverage of 10 Mc/s to 470 Mc/s is provided in five ranges. The clear hand-calibrated tuning scale permits precise frequency setting but, for greater accuracy, a crystal calibrator is incorporated with marker pips available at 1 Mc/s intervals.

Calibrated incremental frequency shifts may be made; either in preset steps or by using the continuously variable control. In each case the amount of shift is indicated by a meter.

F.M. deviations up to 400 kc/s (depending on the carrier range) can be obtained. Two internal modulation frequencies may be selected and the wide frequency response of the modulator permits the use of high frequency external modulating sources. Either internal or external amplitude modulation can be produced to a depth of at least 40%. Accurate monitoring facilities are provided for each type of modulation.

The r.f. output level of the Signal Generator is controlled by a constant impedance piston-attenuator. The attenuator dial is direct reading in terms of source e.m.f. or voltage developed across a 50 Ω load.

There are two versions of this Signal Generator; TF 1066B/6, intended for bench mounting and TF 1066B/6R, suitable for mounting in a 19 inch rack.

EB 1066B/6 1*- 9/63

DATA SUMMARY

1.2

FREQUENCY

Range:

10 to 470 Mc/s in five bands:-

10 to 22 Mc/s, 22 to 50 Mc/s, 50 to 115 Mc/s, 115 to 270 Mc/s, 270 to 470 Mc/s.

markers every 10 Mc/s.

±1%.

2

Calibration Accuracy:

Crystal Calibrator:

Fine Tuning:

Frequency Stability:

Attenuator Reaction:

Incremental Frequency Control:

Incremental Accuracy:

Spurious Signals:

Uncalibrated control provides cover of approximately 25 kc/s to ever 100 kc/s total depending on carrier frequency.

Drift is not greater than 0.015% in a 10 minute period after 1 hour warm-up.

Provides check points every 1 Mc/s with

Accuracy ±0.02% at each check point.

Negligible below 50 mV; not greater than 0.1% above.

Carrier shift is variable from -100 kc/s to +100 kc/s by continuous and stepped control. The stepped control has three negative and three positive positions, each with independent preset adjustments, and one zero-shift position. Shift is monitored by meter with two ranges, -20 to +20 kc/s and -100 to +100 kc/s.

±15% of full scale at all carrier frequencies. Above 115 Mc/s, the 15% accuracy applies after use of the correction chart supplied. Direct accuracy without chart above 115 Mc/s is ±20% of full scale.

There are no sub-harmonics of the carrier frequency.

EB 1066B/6 1* - 9/63

1.2 (continued)

R.F.OUTPUT:

Level:

The source e.m.f. is continuously variable from $0.2\mu V$ to 200mV. The attenuator dial shows the source e.m.f. both directly and in decibels relative to $1\mu V$. The dial cursor can be positioned to indicate voltage across a 50 Ω load instead of source e.m.f.

50 Ω ; v.s.w.r. not greater than 1.25 using the 20dB pad TM 4919, or 1.6 using the 6dB

Output Accuracy:

Source Impedance:

- 3 -

Overall, ±2dB.

pad TM 4919/1.

Stray Radiation:

FREQUENCY MODULATION

Internal:

External:

Deviation Accuracy:

Negligible; permits full use of lowest output. Modulation frequencies: 1 and 5 kc/s. Deviation variable to 100 kc/s maximum on

Deviation variable to 100 kc/s maximum on ranges A and B, 400 kc/s on ranges C and D, and 300 kc/s on range E. Deviation indicated on meter with three ranges: 0 to 20 kc/s, 0 to 100 kc/s and 0 to 400 kc/s.

Modulation frequency range: 30 c/s to 100 kc/s. Deviation as for INTERNAL. Input requirements: 25V across $5k\Omega$ or more for maximum deviation.

Deviation ranges 0 - 20kc/s and 0 - 100 kc/s: $\pm 10\%$ of full scale at all carrier frequencies. Above 115 Mc/s the 10% accuracy applies after use of the correction chart supplied. Direct accuracy without chart above 115 Mc/s is $\pm 20\%$ at full scale.

Deviation range 0 - 400kc/s:

 $\pm 15\%$ of full scale at all carrier frequencies. Above 115 Mc/s the 15% accuracy applies after use of the correction chart supplied. Direct accuracy without chart above 115 Mc/s is $\pm 20\%$ of full scale.

Accuracy over external modulation frequency range is within 12% of accuracy at 1kc/s.

(continued)

Modulation Distortion:

A.M. on F.M.

Residual F.M.:

AMPLITUDE MODULATION

Internal:

External:

Modulation Depth Accuracy:

F.M. on Λ .M.

Residual A.M.

POWER SUPPLY:

DIMENSIONS & WEIGHT: (in case for bench use) Distortion introduced by the modulator is not greater than 10% at the maximum deviation quoted above. Between 215 and 265 Mc/s distortion is not greater than 5% at maximum deviationfor modulation frequencies 1 kc/s and above. Typically, less than 5% modulation depth at maximum deviation.

The f.m. due to hum and noise is less than 100 c/s deviation.

Modulation frequencies: 1 and 5 kc/s. Modulation depth variable up to least 40%and indicated on a meter scaled 0 to 50%.

Modulation frequency range: 30 c/s to 15 kc/s. Mcdulation depth as for INTERNAL Input requirements: 12V across 270 kΩ for 50%.

±5% modulation.

For 30% a.m. varies typically from 15 kc/s at 10 Mc/s to 60 kc/s at 100 Mc/s.

The a.m. due to hum and noise is better than 50 dB below 30% modulation.

200 to 250 and 100 to 130 V, 40 to 60 c/s, 90 W. Fuses in mains, h.t., and l.t. circuits.

Height	Width	Depth	Weight
$15\frac{1}{2}$ in	21 in	$10\frac{1}{2}$ in	54 Ìb
(39.5 cm)	(53.5 cm)	(27 cm)	(24.5 5

1.2

ACCESSORIES

1.3

ACCESSORIES SUPPLIED

(1) 50 Ω coaxial, Type N, plug for R.F. OUT socket.

5 -

- (2) Jack plug, Igranic Type P.40, for PHONES socket.
- (3) Correction chart for the MODULATION and INCREMENTAL FREQUENCY MONITOR.

ACCESSORIES AVAILABLE

- (1) OUTPUT LEAD Type TM 4824
 50 Ω. Type N plug Type N plug, 3 ft leng.
- (2) 20 dB PAD Type TM 4919
 50 Ω, Type N plug Type N socket.
- (3) 6 dB PAD Type TM 4919/1
 50 Ω, Type N plug Type N socket.
- (4) MATCHING PAD Type TM 4918
 50 Ω to 75 Ω, Type N socket Belling Lee L734/P plug
- (5) MATCHING PAD Type TM 4916
 50 Ω to 300 Ω balanced, Type N socket solder tags.
- (6) D.C. ISOLATING UNIT Type TM 4917 Type N socket - crocodile clips.
- (7) COAXIAL FUSE Type TM 5753. To prevent damage to the Signal Generator in the event of accidental application of r.f. or h.t. power to the circuit under test.

Overload pretection: Insertion loss: V.S.W.R.

Connector:

Fuse:

Burns out at 0.4 W. Nominally 0.5 dB. 1.35 or less when terminated with a matched 50 Ω load. 1.6 or less when terminated with TF1066B/6 attenuator via 20 dB pad TM 4919. Type N. 1/16 Λ Littelfuse Cat.No.361.062. 10 spares are supplied.

6 -

B 1066B/6 1 - 9/63

OPERATION

2

2.1

PREPARATION FOR USE

Take off the transparent plastic cover, if one is supplied with the instrument. If the cover is not cmpletely removed when the instrument is operated, overheating may occur.

BENCH OR RACK MOUNTING

The TF 1066B/6 is supplied in a case and is intended for bench mounting. The TF 1066B/6R is fitted with a dust cover and is suitable for mounting in a 19 inch rack.

<u>CAUTION</u> When fitting the instrument to a rack, or upon removal or refitting of the dust cover, ensure that the attenuator is turned to the maximum output position (fully retracted).

Either version should be so positioned that the ventilating holes, at the rear and underneath, are not obstructed.

When mounting the Signal Generator the usual precautions against microphonic modulation should be taken. Although every effort has been made, in the design, to minimize this type of effect, it is not possible, under adverse environmental conditions, to eliminate it entirely. Thus for applications where a particularly low level of spurious modulation is required, it is an advantage to stand the Signal Generator on a spongerubber or felt mat and to reduce the a.f. output of any receiver to a minimum.

SUPPLY VOLTAGE

Before connecting the instrument to the mains supply make sure that the mains adjustment tapping panel is set correctly for the local supply voltage. Access to the panel is obtained by opening the left-hand hinged door at the rear of the case of the TF 1066B/6 or by removing the dust cover of the TF 1066B/6R. The panel consists of four two-pin plugs which make contact with the mains transformer connections through a reversible masking plate.

The instrument is normally despatched with its mains input adjusted for 240V operation. To change the mains tappings from one within the 200 - 250V range to one within the 100 - 130V range, or vice versa, it is necessary to reverse the masking plate. The arrangements of the two-pin plugs corresponding to all the possible mains input voltages are shown in the diagram SUPPLY VOLTAGE PLUG SETTINGS which follow this page.

METER ZEROING

Adjust the set zero screws at the top of the CARRIER LEVEL and the MODULATION AND INCREMENTAL FREQUENCY monitors to bring each pointer to the left-hand zero mark.

SUPPLY VOLTAGE PANEL

Masking plate and links must be positioned according to supply voltage, as shown:----

C.P. Ik. 2/65

 \bigcirc

M.I. LTD.

EB 1066B/6 1 - 9/63

CONTROLS

2.2

- (1) MAIN TUNING DIAL 1A CURSOR 1B CURSOR LOCKING SCREW
- (2) COARSE TUNING CONTROL
- (3) FINE TUNING CONTROL For making small uncalibrated frequency adjustments.

7

- (4) RANGE CONTROL To change from one band to another rotate the control through one-and-a-fifth turns per band until it locates positively, with the knob pointing to the required frequency band.
- (5) SET CARRIER CONTROL For bringing the carrier to a predetermined level, indicated by (6).
- (6) CARRIER LEVEL MONITOR
- (7) INCREMENTLL FREQUENCY STEPS CONTROL Shifts the carrier frequency in six preset steps to a maximum of 100 kc/s in either direction.
- (8) INCREMENTAL FREQUENCY VARIABLE CONTROL Provides continuously variable shift of carrier frequency up to a maximum of 100 kc/s in either direction.
- (9) MODULATION SELECTOR
- (10) F.M. RANGE SUITCH Sets the deviation range.
- (11) MODULATING FREQUENCY SWITCH Operates on a.m. and f.m.
- (12) SET MODULATION CONTROL Adjusts f.m. deviation or a.m. depth.
- (13) MODULATION AND INCREMENTAL FREQUENCY MONITOR Indicates f.m. deviation, a.m. depth, and stepped or variable incremental frequency shift.
- (14) MONITOR SELECTOR SWITCH Selects the function required for monitor (13).

(15) EXTERNAL MODULATION TERMINALS Input terminals for external modulating sources or for external incremental frequency shift voltages. They act also as output terminals for the internal a.f. oscillator.

2.2 (continued)

- (16) ATTENUATOR DIAL Direct reading for source e.m.f. or p.d. across a 50 Ω load, in terms of voltage and dB referred to 1 μ V.
- (17) ATTENUATOR CONTROL
- (18) CRYSTAL CALIBRATOR RANGE SWITCH Selects 1 Mc/s or 10 Mc/s markers.
- (19) CRYSTAL CALIBRATOR GAIN CONTROL
- (20) PHONES JACK For monitoring the calibrator check points.
- (21) PILOT LAMP
- (22) SUPPLY SWITCH
- (23) R.F. OUTPUT SOCKET Accepts Type N plug.

2.3 QUICK OPERATIONAL CHECK

The following sequence of operations will enable you to get the feel of the controls and to check that the r.f. oscillator, modulation circuits, monitor and crystal calibrator are working.

(1) Tuning

Switch to SUPPLY ON.

Set the INC. FREQ. switch to its central 'zero' position, and the FINE TUNING control to mid travel.

Turn the frequency RANGE switch to band B (22 to 50 Mc/s).

Adjust the COLRSE TUNING control for an indication of 30 Mc/s against the cursor on the tuning dial and set the modulation selector to C.W.

Bring the pointer of the CARRIER LEVEL meter to the SET CARRIER mark by adjusting the SET CARRIER control, and note that the control is within, say, the middle third of its travel. 9 -

EB 1066B/6 1 - 9/63

(continued)

2.3

(ii) Crystal Calibrator

Turn the crystal CALibrator RANGE switch to 10 Mc/s, plug in pair of high resistance head phones into the PHONES socket and slightly adjust the COARSE TUNING control until a beat note is heard.

Returne to 32 Mc/s, using the COARSE TUNING control and turn the CALibrator RANGE switch to 1 Mc/s. Again make slight adjustments to the COARSE TUNING control until a beat note is heard.

(iii) Incremental Frequency

Set the monitor selector switch to INC. FREQ. 20 kc/s and the INCREMENTAL FREQUENCY STEPS control to VAR.

Advance the continuously variable incremental frequency control and observe that the beat note changes pitch and disappears. There should now be a deflection on the MODULATION AND INCREMENTAL FREQUENCY monitor, indicating the frequency shift produced.

(iv) Frequency Modulation

Return the INCREMENTAL FREQUENCY STEPS control to its centre zero position and turn the crystal calibrator off using the CAL RANGE switch. Set the modulation selector switch to INT. F.M., the monitor selector switch to F.M. kc/s and the F.M. RANGE switch to 100 kc/s. Advance the SET MODULATION control and observe that full scale deflection of the MODULATION AND INCREMENTAL FREQUENCY monitor can be obtained.

(v) Amplitude Modulation

Set the modulation selector switch to INT. A.M. and the monitor selector switch to A.M.%. Adjust the SET MODULATION control for an indication of 40% modulation depth on the MODULATION and INCREMENTAL FREQUENCY monitor.

2.4 C.W.OPERATION

(i) Tuning

Switch to SUPPLY ON and allow time to warm up.

10

Select the required frequency band by means of the RANGE control. For best frequency stability allow a stabilizing period of 10 minutes after range changing.

Turn the INC. FREQ. STEPS control to the zero position.

Adjust the COARSE TUNING control until the approximate frequency required appears against the cursor on the tuning dial.

Final adjustment, to bring the frequency precisely to a particular point on the characteristic of a tuned system under test, can be made with the FINE TUNING control.

(ii) Calibration

For maximum accuracy switch on the crystal calibrator and select the frequency interval at which markers are required (10 Mc/s cr 1 Mc/s). Plug headphones into the PHONES jack. Readjust the COARSE TUNING control for zero beat at the nearest crystal marker point.

Set the CURSOR coincidence with the selected marker frequency by slackening the locking knob and rotating the whole frequency dial cover and cursor. Re-tighten the locking knob. At certain frequencies additional markers of much lower amplitude may be heard. These correspond to 0.5 Mc/s intervals and, if required, they may be used as extra calibration points.

(iii) Output Level

Turn the modulation selector to C.W. and adjust the CARRIER control so that the pointer of the CARRIER LEVEL meter coincides with the SET CARRIER mark.

Adjust the ATTENUATOR control for the required output.

2.5 INCREMENTAL TUNING

(i) Continuously variable

Turn the INC. FREQ. STEPS control to VAR and check that the monitor selector switch is set to the appropriate sensitivity INC. FREQ. position. Adjust the continuously variable incremental frequency control until the required frequency shift is indicated on the corresponding scale of the MODULATION AND INCREMENTAL FREQUENCY monitor.

- .11

For maximum accuracy above 115 Mc/s carrier frequency, apply the correction given by the curves on the CORRECTION CHART for DEVIATION AND INCREMENTAL FREQUENCY MONITOR.

(ii) Stepped

The incremental frequency steps are set, in the factory, to give zero shift. To set up your own choice of steps, see Section 4.3.

When the steps have been set up the INC. FREQ. STEPS control may be used to give positive or negative preset shifts of carrier

Stepped increments are indicated by the MODULATION AND INCREMENTAL FREQUENCY monitor with the same accuracy as for continuously variable control. For greater accuracy the steps can be setup against a standard frequency r.f. source.

NOTE: If an external circuit, connected between the EXT. MOD. F.M. and earth terminals, offers a d.c. path, the potential divider circuit controlling the frequency shift will be shunted and the accuracy of the incremental steps will be affected.

(iii) External

Incremental frequency shifts can be produced by the application of an external voltage between the EXT MOD F.M. and earth terminals. This may be useful for the production of stepped frequency shifts additional to those already set up in the Signal Generator.

Set the INC. FREQ. switch to VAR, the continuously variable control to mid-travel and connect a suitable voltage source between the EXT MOD F.M. and earth terminals.

The voltage required for a frequency shift of 100 kc/s is approximately 60V. If frequency shifts both above and below the centre frequency are desired, provision must be made for both positive and negative-polarity voltages.

2.5 (continued)

The frequency shift produced is indicated on the appropriate scale of the MODULATION AND INCREMENTAL FREQUENCY monitor.

- 12 -

To preserve the accuracy of the internal incremental frequency steps, remove the external d.c. shift circuit from the EXT. MOD. F.M. terminals when it is not in use.

(iv) Modulator Hysteresis

When making incremental frequency shifts by any of the methods described above, you may find some inconsistency of results due to the inherent hysteresis of the ferrite modulator.

The effects of this hysteresis are only of significance when the direction of shift is reversed. If the shift is increased to a particular value from the true (neutralized) zero and then further increased, the problem does not arise.

Errors due to hysteresis will generally be small - of the order of 5% of the shift - and can be eliminated by 'wiping' or neutralizing the magnetic circuit of the modulator before making a reversal of frequency shift. As a point of good practice, neutralization should also be carried out before commencing any measurements involving use of the incremental frequency controls.

To neutralize the modulator, first set the incremental shift to zero and apply f.m. to the carrier; then, having set the deviation initially to maximum, reduce it slowly to zero. With the modulator now neutralized it may be advisable to check that the Signal Generator is still correctly tuned to the centre frequency of the equipment under test.

The following example shows the points, in a typical sequence of incremental shifts, at which it is desirable to neutralize the modulator.

Example:

In a receiver response investigation, it is required to shift the carrier +50, +75, +100 kc/s; then to drop back in frequency and re-check results at +50 kc/s. Do this by:

(i) neutralizing at zero shift; (ii) setting to +50 kc/s; (iii) setting to +75 kc/s;

- (iv) setting to +100 kc/s;
- (v) returning to zero and neutralizing again;
- (vi) setting to +50 kc/s.

EB 1066B/6

2.6 F. M. OPERATION

The accuracy of the deviation indication and the waveform of the demodulated signal may tend to deteriorate slightly when carrier shift is applied by means of the incremental frequency controls. It is generally advisable, therefore, to keep the INC. FREQ. STEPS control in its zero position when using frequency modulation.

(i) INTERNAL

Switch on, tune, and set output as for C.W.

Turn the modulation selector switch to INT. F.M. and the monitor selector switch to F.M.

Select the modulating frequency required.

Turn the F. M. RANGE switch to the deviation range required and adjust the SET MODULATION control until the MODULATION AND INCREMENTAL FREQUENCY monitor indicates the required deviation.

NOTE: The maximum deviation range to 400 kc/s is only available on the frequency ranges C and D; see DATA SUMMARY Section 1.2.

To achieve maximum accuracy of deviation settings, at carrier frequencies above 115 Mc/s, a correction to the monitor reading should be made. Curves showing the corrections are included on the CORRECTION CHART FOR DEVIATION AND INCREMENTAL FREQUENCY MONITOR, which is normally stowed in the left-hand handle recess.

A.F. Output

When the modulation selector is set to INT. F.M. the internal modulating signal is available at the EXT. MOD. F.M. and earth terminals. This output may be used as a convenient synchronizing signal when the Signal Generator is used in conjunction with a cathode-ray oscilloscope. At a deviation of 100 kc/s the output level is of the order of 20V r.m.s. Do not leave a d.c. path between the terminals; see final paragraph of Section 2.5 (ii).

(ii) EXTERNAL

Switch on, tune and set output as for C.W.

Turn the modulation selector switch to EXT.F.M. and the monitor selector switch to F.M.

Set the F.M. RINGE switch to the deviation range required.

(continued)

2.6

For external modulation, this does not affect the sensitivity of the modulation circuits, but selects the appropriate monitor sensitivity range.

14 -

Connect the external a.f. signal source to the EXT. MOD. F.M. and earth terminals, and adjust the input level to give the required deviation as indicated on the MODULATION AND INCREMENTAL FREQUENCY monitor. The input level required for full deviation is approximately 25V, the input impedance being $5k\Omega$. Do not leave a d.c. path between the terminals; see final paragraph of Section 2.5 (ii). At carrier frequencies above 115 Mc/s a correction to the monitor reading should be made, in the same manner as for internal modulations.

2.7 A. M. OPERATION

(i) INTERNAL

Set the modulation selector switch to INT. A.M. and turn the SET MODULATION control to minimum (fully counter-clockwise).

Switch on, tune and adjust the output as for C.W.

Turn the monitor selector switch to Λ .M. Select the modulation frequency required.

Adjust the SET MODULATION control until the MODULATION AND INCREMENTAL FREQUENCY monitor indicates the required percentage modulation. The movement of the SET MODULATION control may cause a change in the deflection of the CARRIER LEVEL monitor; <u>do not</u> re-adjust the SET CARRIER control to bring the pointer back to the SET CARRIER mark.

A.F. Output

When the modulation selector is set to INT. A.;., the internal modulating signal is made available at the EXT. MOD. A.M. and earth terminals. This output may be used as a synchronizing signal when the Signal Generator is used in conjunction with a cathode-ray oscilloscope. At 40% modulation depth, the output level is of the order of 10V r.m.s.

(ii) EXTERNAL

Set the modulation selector switch to EXT. A.M.

Switch on, tune and adjust the output as for C.W.

(centinued)

2.7

Turn the monitor selector switch to Λ .M.

.15

Connect the external a.f. source to the EXT. MOD. A.M. and earth terminals and adjust the input level until the required modulation depth is indicated on the MODULATION AND INCREMENTAL FREQUENCY monitor. If this action causes a change in the deflection of the CARRIER LEVEL monitor, <u>do not</u> re-adjust the SET CARRIER control to bring the pointer back to the SET CARRIER mark.

2.8 R.F. OUTPUT ARRANGEMENTS

The r.f. output circuit of the Signal Generator should be regarded as a zero impedance voltage source in series with a resistance of 50 Ω . This is shown in fig. 2.2 where:

E is the indicated source e.m.f.

R is the source resistance.

 $Z_{T_{i}}$ is the external load impedance.

 V_{I} , the voltage developed across the load is given by

$$V_{L} = \mathbb{E} \frac{Z_{L}}{R_{o} + Z_{L}}$$

or, for purely resistive loads

 $V_{L} = E \frac{R_{L}}{R_{O} + R_{L}}$

Table 2.1 shows the conversion factors for obtaining the load voltage from the indicated e.m.f. at different load impedances.

When using a correctly matched, i.e. 50 Ω output lead its output end can be regarded as an extension to the output socket on the Generator and wide variations of lead impedance do not seriously affect the calculated load voltage obtained from Table 2.1. Standing waves produced by the mismatched load can, for most purposes, be ignored.

For greatest accuracy - if the additional attenuation can be tolerated - use the 20 dB Attenuator Pad Type TM4919 between seriously mitmatched loads and the output lead. This ensures that the lead is correctly terminated, and also attenuates any extraneous noise induced in the lead.

The attenuator dial gives a direct reading of the output level, provided that the carrier level has been correctly set. It has two scales; one calibrated in units of voltage and the other is dB referred to 1 μ V.

2.8 (continued)

The cursor carries two hairlines; one vertical and one inclined at an angle corresponding to a 6 dB movement of the dial.

On one side of the cursor the inclined hairline is marked E.M.F. FROM 50 Ω SOURCE and indicates the output level in terms of source e.m.f. The vertical hairline is marked -6dB and gives the effective source e.m.f. when the output is taken via the 6 dB attenuator (Type TM4919/1).

On the other side of the cursor the vertical hairline is marked E.M.F. INTO 50 Ω LOAD and thus reads the potential developed across a 50 Ω load. The inclined hairline is marked -6dB and gives the correspond load voltage when the 6dB Attenuator is used.

To reverse the cursor; extract the centre screw and remove the dial window, spun metal cover and spring at the centre of the dial. The cursor may now be reversed and the window components re-assembled.

MATCHING TO HIGH IMPEDANCE LOADS

To present a load that is greater than 50 Ω with a signal derived from a matched source, a resistor R is added in series with the Generator output. The value of R is given by the difference between the load and the Generator impedances, that is

$$R_s = R_L - R_o$$

The voltage across the load, V_1 , is given by

 $V_{L} = \frac{E}{2}$

For the special case of a 75 Ω load a Matching Pad, Type TM4918, is available as an accessory and consists basically of a 25 Ω resistor with coaxial connectors for insertion in series with the output lead.

MATCHING TO LOW IMPEDANCE LOADS

To present a load that is less than 50 Ω with a signal derived from a matched source, a resistor R is added in parallel with the Generator output. The value of R is given by

$$Rp = \frac{R_{o}R_{L}}{R_{o}-R_{L}}$$

The effective source e.m.f., is now different and is given by

$$\mathbf{B}_{1} = \mathbf{E} \frac{\mathbf{R}_{p}}{\mathbf{R}_{o} + \mathbf{R}_{p}}$$

and the voltage across the load, V_{T} , is given by

$$I_{\rm L} = \frac{E_1}{2}$$

M. I. Ltd.

EB 1066B/6 1 - 9/63

- 17 -

EB 1066B/6 1 = 9/63

TABLE 2.1

LOAD ohms	To find loa Multiply E. M. F. by	Subtract
10	0.167	15.5
20	0.286	10.9
30	0.375	8.5
40	0.445	7.0
50	0.50	6.0
60	0.55	5.2
70	0.58	4.7
75	0.60	4.4
80	0.62	4.2
90	0.64	3.8
100	0.67	3.5
120	0.71	3.0
150	0.75	2.5
200	0.80	1.9
300	0.86	1.3
500	0.91	0.8
600	0.92	0.7
800	0.94	0.5
1000	0.95	0.4
2000	0 .98	0.2
4000	0.99	0.1

l...ē

2.8 (continued)

MATCHING TO BALANCED LOADS

Equipment whose input circuit is in the form of a balanced winding can be fod from the Generator by using two series resistors as shown in fig. 2.5. This method makes use of the auto-transformer effect of the centre-tapped winding and is not suitable for resistive balanced loads.

The values of R (for use in the centre conductor) and R_2 (for the earth lead) are given by

$$R_{1} = \frac{R_{L}}{2} - 50$$

$$R_{2} = \frac{R_{L}}{2}$$

18 -

USE OF ATTENUATOR PADS

The matching methods described above cause the output end of the r.f. lead to be mismatched. To avoid the errors in apparent e.m.f. or output impedance which might thus arise at higher frequencies, due to the presence of standing waves, the 20 dB Attenuator (Type TM4919) should be inserted at the output end of the r.f. lead. With the Attenuator in circuit, variations of load impedance between zero and infinity cause the effective value to depart from the correct value by as little as 1 Ω .

For all applications of the Signal Generator it is recemmended provided that the reduced output e.m.f. can be tolerated - that the 20 dB Attenuator be permanently connected to the output end of the r.f. lead. Apart from the henefits of load isolation described above, the effect of noise picked up in the lead is much reduced. This is of particular advantage when making signal-to-noise ratio tests on receivers at low input levels.

If, for a particular application, a 20 dB loss is not acceptable, the 6 dB Attenuator will give satisfactory results in most instances.

The Attenuator Pad reduces the effective source e.m.f. by a factor of 10, or 2, depending on whether the 20 dB or the 6 dB Attenuator is used. The figures for load voltage obtained from table 2.1 must, therefore, be reduced by the appropriate factor.

EB 1066B/6 1 - 9/63

2.8 (continued)

The offoctive e.m.f. is given by

 $E' = \frac{E}{10} \text{ for the 20 dB Attenuator}$ or $E' = \frac{E}{2} \text{ for the 6 dB Attenuator}$

hence the load voltage, V_{T_i} , becomes

$$V_{L} = \frac{E}{10} \cdot \frac{R_{L}}{R_{L} + R_{0}}$$
 for the 20 dB Attenuator

or

 $V_{L} = \frac{E}{2} \cdot \frac{R_{L}}{R_{L} + R_{o}}$ for the 6 dB Attenuator

When matching to loads other than 50 Ω , the matching resistor must be inserted on the output side of the Attenuator; the expressions given on page 16 then become

(a) 20 dB Attenuator

For series matching, $V_{L} = \frac{\overline{R}}{20}$ For parallel matching $V_{L} = \frac{\overline{E}_{1}}{20} = \frac{\overline{E}}{20} - \frac{\overline{R}_{p}}{\overline{R}_{p} + \overline{R}_{p}}$

(b) 6 dB Attenuator

For series matching, $V_{L} = \frac{E}{4}$

For parallel matching,
$$V_{L} = \frac{E_{1}}{4} = \frac{E}{4} - \frac{R_{p}}{R_{p} - R_{o}}$$

TITLE DRG.No. ISS FUNCTIONAL DIAGRAM OF TF 1066B/6 TLA 41274 I MARCONI INSTRUMENTS LIMITED SHEET OF SHEETS

EB 1066B/6 1 - 9/63

CIRCUIT SUMMARY

3

This section is intended to be read in conjunction with the Functional Diagram (Fig. 3.1) and the Circuit Diagram (XD37340).

3.1 R. F. OSCILLITOR

A disk-seal triode, V9 (TD03-10E), connected in a form of shuntfed Colpitts circuit generates the sutput frequency. The elements of the tuned circuit are mounted on a turret; there being, for each band, a separate inductor and tuning-capacitor stator-assembly which rotate about the common tuning-capacitor rotor-plates. The appropriate tuned circuit, for the selected band, is connected to the oscillator valve by a pair of coupling capacitors (C51, C52), which are formed by extensions of the tuning-capacitor stator-plates meshing with other plates attached to the frame of the r.f. unit.

The output from the oscillator is fed to a mutual inductance type of piston attenuator. A resistance-capacitance network fitted to the pick-up element of the attenuator maintains a sensibly constant output impedance, irrespective of frequency.

All leads into the r.f. units are filtered to minimize stray radiation; the component values of the filter in the feed to the f.m. modulator value (V8) being carefully chosen to maintain good a.f. response whilst giving adequate r.f. rejection.

The output level is adjusted by the SET CARRIER control RV2 which varies the oscillator anode voltage.

3.2 MODULATORS

V1 (604) functions as a Hartley oscillator to provide the internal modulating signal. Connected across the oscillator output, the SET. MOD. CONTROL RV1 adjusts the signal level passed to either the a.m. amplifier or the f.m. amplifier.

The a.m. amplifier, (V2 (6L6) operates as an anode modulator; the output being applied to the anode of the r.f. oscillator valve.

Frequency modulation is achieved by means of a ferrite reactor, T3. In this type of modulator the inductance of a small r.f. coil is varied by permeability changes in its ferrite core. This core completes the magnetic circuit of an l.f. inductor whose winding carries the a.f. modulating current. The core is biased to a suitable point on its B/H

3.2 (continued)

characteristic by the standing anode current of the driver valve, V8 (6AQ5). The ferrite reactor is coupled to the r.f. tuned circuit in use; and thus variations of current through the l.f. winding produce corresponding variations of frequency.

- 21 -

To maintain constant deviation despite changes of frequency, the modulating signal is applied to the f.m. amplifier, V7 (64K6) via a series of fixed and preset resistors, selected by sections, d and e of switch SE (which form part of the range control) and via potentiometer, RV13 (which is ganged to the main tuning control). From the output of the f.m. amplifier, which provides voltage gain, the modulating signal is fed to the driver valve, V8 (6AQ5).

-3.3 FINE TUNING AND INCREMENTAL FREQUENCY CIRCUITS

The FINE TUNING control, RV16, is connected in series with the anode and screen supply to the driver valve. Changes to the value of this control affect the standing anode current and consequently by the action of the ferrite reactor cause small changes to the carrier frequency.

Known values of frequency shift are produced by applying d.c. potentials to the driver valve via the f.m. tracking controls. These potentials are derived from the +280V and -108V supplies by preset potential dividers, RV17 - RV22, and potentiometer RV23; giving stepped or continuously variable frequency increments respectively.

3.4 MONITORS

The r.f. output is detected by rectifier MR18 and the resulting d.c. component is indicated by the CARRIER LEVEL meter, M1. When the carrier is amplitude modulated there is also an a.f. component which is fed via V10 (12AX7), the individual sections of which function as an R-C coupled amplifier and a cathode follower respectively, to the voltage-doubler rectifier consisting of the diodes MR16, MR17. Thus the MODULATION AND INCREMENTAL FREQUENCY meter M1 indicates the modulation level; the scale being calibrated directly in terms of percentage modulation.

When the instrument is switched to give frequency modulation, the modulating signal is applied direct to the input of the cathode follower section of V10 and hence the meter, M1, indicates the amplitude of the a.f. signal. Because the f.m. tracking network is so adjusted to give deviation proportional to the level of the modulating signal, the meter is scaled directly in terms of frequency deviation.

For monitoring incremental frequency shifts the meter, M1, operates as a simple "oltmeter; the deflection being produced by the shift voltage. M. I. Ltd.

3.5 CRYSTAL CALIBRATOR

The calibrator consists of a 10 Mc/s crystal oscillator, VT11 (2N1748A) to which is locked a 1 Mc/s multivibrator, VT12 and VT14 (2S102). The multivibrator, in:turn, modulates the 10 Mc/s oscillator at 1 Mc/s intervals.

A coupling coil, L22, within the r.f. box picks up the Signal Generator carrier frequency which is mixed with the calibrator r.f. output by VT10 (221742). Transistors VT13, VT15 and VT16 (ACY20) amplify the resulting audio beat frequency which is passed to the PHONES socket, JK1.

3.6 POWER SUPPLIES

The windings of the mains transformer primary may be interconnected in such ways as to accept input voltages from 100 to 130V and 200 to 250V.

The main h.t. supply is derived from two series-connected bridge rectifier circuits via V3 (6CD6G) acting as a series stabilizer controlled by V5 (6AK5) and the reference tube V4 (5651).

A separate bridge rectifier provides the negative h.t. line, stabilized by V6 (OB2).

Besides the normal 1.t. supplies, a separate stabilized, d.c. supply is provided for the heaters of the frequency modulator and r.f. oscillator valves. In this case, VT2 (2N1553) acts as a series stabilizer and the reference potential is obtained from a Zener diode, MR15 (Z2M47).

SERVICING NOTES

h

4.1

4.2

ACCESS TO COMPONENTS

The case of the TF 1066B/6 may be removed by taking out four screws at the rear. The dust cover of the TF 1066B/6R may be similarly removed after the three rear fixing screws have been extracted.

- 23 -

To obtain access to the inside of the r.f. box, besides the bottom and rear cover plates, the top cover carrying the calibrator unit must be removed. Each plate may be freed by slackening the screws around the edges and sliding off the retaining strips.

Care must be taken, when refitting the calibrator unit, to ensure that the wire probe plug into the r.f. box locates in its corresponding socket.

CIRCUIT VOLTAGES

The following voltages were taken, using an Avometer Model 8, on a typical TF 1066B/6.

Transformer windings - a.c. (r.m.s.) readings with nominal mains input.

HT1	175	v
HT2	175	. V
HT3	240	v
LT1	6.3	v
LT2	6.3	v ,
LT3	14-0-14	v

Valve electrodes - d.c. readings taken with respect to earth.

Valvo	Electrode	Pin No.	Voltage	Conditions
V1 (604)	anode control grid cathode	1,5 6 7	240 -37 7•9	operating as 1 kc/s oscillator
V2 (6L6)	anode screen grid cathode	() 3 4 8	236 -234 22•5	modulation selector set to INT. Λ .M.
V3 (6cd6g)	anode screen grid control grid cathode	top cap 8 5 3	460 450 252 280	nominal mains input

- 24 -

EB 1066B/6 1 - 9/63

ų .,

4.2

14

ř**a**

ĥ

(continued)

Valve	Electrode	Pin No.	Voltage	Conditions
V4 (5651)	anode cathode	1,5 2,4,7	85 0	nominal mains input
v5 (6ak5)	anode screen grid control grid cathøde	5 6 1 2,7	252 122 84 85	nominal mains input
V6 (0B2)	anode cathode	1,5 2,4,7	0 -104	nominal mains input
V7 (6AK6)	anode screen grid cathode	5 6 7	126 162 10•5	modulation selector set to INT. F.M.
V8 (6AQ5)	anode screen grid cathode	5 6 2	260 260 24	FINE TUNING control at mid travel
V9 (TD03-10E)	an:de) cathode	-	50 to 130 depending an frequency 0	CARRIER LEVEL monitor at SET CARRIER mark
V10 (12AX7)	anode cathode anode cathode	1 3 6 8	110 6 280 70	

EB 1066B/6 1 - 9/63

4.2 (continu Transis Transistor	tor terminals - d.c. Collector Voltage	Emitter Voltage	with respect to earth. Conditions
	(V)	(V)	
VT1 VT2 VT3 VT10 VT11	-6.7 -6.7 -0.4 +1.2 -23.5	-0.3 0 +1.2 0 -4.6	10 Mc/s oscillator operating crystal removed
VI12	-2.0	-3.5	switched to 1 Mc/s
VT13 VT14 VT15 VT16	-5.6 -0.2 -14.6 -13.4	-5.5 -3.2 -1.8 -2.3	switched to 1 Mc/s
	alibrator pin 9 pin 11 R104/R113	-24 V -23.9 V -22.8 V -5.5 V	

4.3 INCREMENTAL FREQUENCY STEPS

The stepped incremental frequency shifts are set up by six preset potentiometers mounted on a panel at the rear of the instrument. Access to these controls is obtained by opening the right hand hinged door at the rear of the case of the TF1066B/6 or by removing the dust cover of the TF1066B/6R.

To set up any particular step turn the INC. FREQ. STEPS switch to the required position and the monitor selector switch to whichever of the INC, FREQ. positions gives the more suitable sensitivity for the desired shift. Adjust the INC. FREQ. STEP pre-set control corresponding to the selected step until the MODULATION AND INCREMENTAL FREQUENCY monitor indicates the required shift.

If the steps are to be used at carrier frequencies in the two . highest ranges, due allowance should be made, when setting up, for the corrections given by the curves on the CORRECTION CHART FOR DEVIATION AND INCREMENTAL FREQUENCY MONITOR.

Remember that before using the frequency shifts which have been thus set up, it will be necessary to neutralize modulator hysteresis using the procedure outlined in Section 2.5 (iv).

4.4 ADJUSTMENT OF PRESET CONTROLS

The following simplified adjustment procedures are intended to permit the instrument to be set up following component replacement. If information on adjustments not covered by this instruction book is required, please write to or telephone our Service Department or nearest Area Office. Always mention the type and serial numbers of your instrument. (For addres es, see rear cover.)

- 26 -

(1) SET H.T.

Turn the INC. FREQ. STEPS control to the zero position and the monitor selector switch to INC. FREQ. 20 kc/s. Adjust RV14 until the pointer of the MODULATION AND INCREMENTAL FREQUENCY monitor coincides with the centre zero mark of the incremental frequency scales.

(ii) SET L.T.

Connect a suitable d.c. voltmeter across the stabilized l.t. line. Adjust RV15 until the meter indicates 6.3V.

(iii) SET F.M.

(a) This adjustment should be checked if V7, V10, MR16 or MR17 have been replaced.

Set up the Signal Generator for a carrier frequency of about 22 Mc/s (Range A), modulating frequency of 1 kc/s and f.m. deviation range of 100 kc/s. Turn the monitor selector switch to F.M. kc/s. Connect a carrier deviation meter, such as Marconi Instruments Type TF791D, to the R.F. OUT SOCKET. Advance the SET MODULATION control until the external deviation meter indicates a deviation of 100 kc/s. Deviation on each side of the carrier should be checked and, if necessary, a compromise adopted. Then adjust RV24 for an indication of 100 kc/s on the MODULATION AND INCREMENTAL FREQUENCY monitor.

(b) If a replacement for V8 or T3 has been fitted, the following procedure should be adopted. Turn the Signal Generator to about 22 Mc/s (Range A) and switch to the 100 kc/s f.m. deviation range, with a modulating frequency of 1 kc/s. Put the monitor selector switch in the F.M. kc/s position. Turn the SET MODULATION control until a deviation of 100 kc/s is indicated on the MODULATION AND INCREMENTAL FREQUENCY MONITOR. Connect a carrier deviation meter, such as Marconi Intruments Type TF791D, to the R.F. OUT socket and adjust RV12 until the external meter shows a deviation of 100 kc/s. Now retune to about 10 Mc/s and adjust RV7 for an indication of 100 kc/s deviation on the external meter.

M. I. Lta.

4.4 (continued)

Repeat the adjustments to RV12 and RV7, in turn, at the high and low frequency ends of the range respectively, until the best compromise over the whole frequency range is obtained.

The tracking of the other ranges should be corrected in a similar manner. The controls to be adjusted are given in the following table.

Range	Adjust at	
	high frequency end	low frequency end
Λ	RV12	RV7
B	RV11	RV6
С	R V1 0	RV5
D	RV9	RV4
E	RV8	RV3

The preset controls ($\mathbb{RV3} - \mathbb{RV12}$) associated with these adjustments are grouped together on a panel which is mounted beneath the r.f. box.

(iv) SET A.M.

This adjustment should be checked if V10, MR16, or MR17 have been replaced.

Turn the Signal Generator to about 10 Mc/s (Range A) and with the SET CARRIER control bring the pointer of the CARRIER LEVEL monitor to the SET CARRIER mark. Turn the modulation selector switch to INT. A.M. and the monitor selector switch to A.M.%. Connect an oscilloscope, such as Marconi Instruments Type TF1330, to the R.F OUT socket and advance the SET MODULATION control until the modulation depth, as measured on the oscilloscope, is 40%. Percentage modulation is given by the formula:-

 $M(\%) = \underline{D \max} - \underline{D \min} \times 100$ $\underline{D \max} + \underline{D \min}$

where D max is the peak-to-peak and D min the trough-to-trough amplitude of the oscilloscope display.

Finally adjust RV26 until the modulation depth indicated on the MODULATION AND INCREMENTAL FREQUENCY monitor is 40%.

(v) CRYSTAL CALIBRATOR

To set up the crystal calibrator a standard 10 Mc/s frequency source is required, such as the Marconi Instruments Precision Crystal Calibrator Type TF1374.

4.4 (continued)

Switch on the Signal Generator and allow to warm up for at least one hour. Tune to 10 Mc/s and connect the R.F. OUT socket to the crystal calibrator. Adjust the Signal Generator frequency with the COARSE and FINE TUNING controls for zero beat with the 10 Mc/s standard. Disconnect the TF1374 and turn range switch of the Signal Generator calibrator to 10 Mc/s. Connect a pair of high resistance headphones to the PHONES socket and adjust C103 until the internal crystal oscillator gives a zero beat with the Signal Generator.

28 -

Note the dial reading and tune the Signal Generator until the next 10 Mc/s marker is heard. Turn the crystal calibrator range switch to 1 Mc/s and slowly retune the Signal Generator to its original position counting the number of intermediate marker pips between the 10 Mc/s and 20 Mc/s positions. If additional 0.5 Mo/s markers are heard, they should be disregar.³ed. These subharmonic beats may readily be identified by their much lower amplitude.

When correctly set up there are nine intermediate markers corresponding to ten 1 Mc/s intervals. If fewer than nine intermediate markers are heard adjust C111 to increase its capacity. If there are more than nine markers, the capacity of C111 must be reduced.

The preset capacitors C103 and C111 are accessible through holes at the rear of the calibrator unit. These holes are normally covered by press studs.

4.5 FUSES

Six fuses are fitted to protect the power supply circuits. They are all mounted on a panel to which access may be obtained by opening the left hand hinged door at the rear of the case of the TF1066B/6 or by removing the dust cover of the TF1066B/6R.

The fuse ratings are given in the following table

FS1	2A
FS2	2A
FS3	2A
FS4	21
FS5	250mA
FS6	100mA

NOTES

- WIRES INDICATED THUS ARE NOT TO BE IN CABLEFORM. LEADS FROM 'SE' TO ROB, 89, 90, 91, & 92 TO BE IN A COMMON SLEEVE, ITEM 179, AND SEPARATE FROM ALL OTHER LEADS.

F.M. SIGNAL GENERATOR TF 10668/6 & /GR

XD 37340

MARCONI INSTRUMENTS LTD.

SHEET I OF & SHEETS

													ISS	UE NC).	- 1º
	CIR. REF.	DESCI	RIPTION	GRID	STOC	:K L	IST RE	F.	CIR. REF.	DE	SCRI	TION	+	STOC		.1ST (
		RESIST	ORS						R27	330KO	± 10	₩/55°	FF SH1	35 ·	M	714
	RJ	2·2KQ ±10	\$ <u></u> }₩/55°C	D3 Sнт1	24	TM	7146		R28	15Kû ±	5%	10W	G1 5н.1	9 TM	17	140
	R2	47KΩ ±10%		D2 Бн.1	25 ·	TM (7146		R29	18KQ 1	w/55	•c s.l.c		8 n	1 7	141
	Р3	2-262 +10	% ₩/55°C)। इस.1	24	TM	7146		R30	33KQ 1	w/55	°C S.I.C	00	2 71	17	141
	P4	220KG ±10	\$ <u>₹</u> ₩/55°C	D2 Бн.1	26	TM	7146		R31	18κΩ 1	w/55	°C S.I.C		8 -	1 7	141
	R5	24KΩ ± 7%	теа₩/55°с	52 54.1	92 ·	TF	1 0 668	6	R32	56KΩ 1	w/55	°C S.I.C		10 1	M	714
-	r6	120KQ ± 7	8TE3W/550	DU 🕈 1	9 3 (TF 1)66B/	6	R33	S.I.C.			F3 5н.1	11 9	M	714
	r7	100K2 3W/	55°C S.I.C	K4 5H.1	94 ⁻	TF 1	966B/	6	R34	1009 ±	10%	₩/55°C	F5 5н.1	30 1	M	714
	r8	100 ± 10%	1w/55°C	E4 5H.1	27 '	TM	7146		R35	690KU	± 10%	₩/55°C	G5 5н.1	36 1	M	714
	F9	560K& ± 1	0% <u></u> ₩/55°C	Е2 5н.1	52 .	TM	7146		R36	47KΩ ±	10%	2W/55 C	G5 5н.1	25 1	M	714
	R10	270KQ ± 1	0% 1w/55°C	E2 5H.1	28 ·	TM	7146		R37	1.5KΩ	± 5%	61壹₩/7000	1.47	37 1	ГМ	714
	R11	1KQ ± 10%	1W/55°C	F3 5н.1	29 -	TM	7146	·	£38	4-7 ΚΩ	± 10	8 ±w/550	G5 5н.1	38 1	FM	714
	Ŗ12	$100\Omega \pm 10$	\$ ±₩/55°C	F2 5H.1	30	TM	7146		R39	10KQ ±	10%	₂₩/55°C	G2 5н.1	11 1	M	714
	R13	2.2KQ ± 3	老 1章W/70℃	F1 5H.1	31	TM7	146		R40	4 · 7 KΩ	± 10%	₹₩/55°C	G2 FH.1	10.1	ſM	714
Ī	R14	1Ω ± 10%	1 2 w/70°c	F4 SH.1	4 17	17	142		R41	10KΩ ±	10%	±₩/55°C	G2 SH . 1	11 7	ТМ	714
	R15	220 ± 10%		_F6 SH•1	32 .	ТМ	7146		R42	22KΩ ±	10%	±₩/55°C	15H • 1		M	714
	R16	220 ± 10%		F5 Sн.1		TM	7146		r 4 3	22KQ ±	10%	²₩/55°C		12 1	ÎM.	714
	R17	1KΩ ± 10%	12w/70°c	F5 SH.1	33 -	M	7146		R44	18KQ ±	10%	<u>≟</u> ₩/55°C		7 TM	17	142
	f18	10KΩ ± 10	\$ 1w/70°c		95 ·	TF 10)66B/	6	R45	100KQ	± 10;	6 1W/550		39 1	M	714
. [p 19	S.I.C.		F1 SH.1	5 TI	A 7	140		r 45	22KQ ±	10%	1w/55°C	0	40 1	ľM.	714
	R 2)	S.I.C.		F1 SH.1	6 т	A 7	140		P 47	68 a ±	10%	1 2W/55°C	H4 SH.1	18 1	M	714
	P21	10KΩ 1W/5	5°C S.!.C.	0.1.	7 1	a 7	140	ŀ	R 48	10082	± 10;	6 hw/550	0.110	41 7	M :	714
	R 22	19KQ 1W/5	5°C S.I.C.	F1 SH+1	7 1	17	140		R49	3 3 KΩ ±	10%	1w/55°C	Н6 SH • 1	42 1	M	714
	R23	5.1.C.		FT SH.1	8 TI	A 7	140		R 5 0	22KG ±	10%	1w/55°C	31.	40 1	M	714
	R24	1KG ± -10%	±₩/55°C	F4 SH.1	5 TI	A 7	142		R51	ims2 ±	10%	W/55°c	H2 SH-1	92 1	TM-	624
	P.25	1.50 + 10;	£ 1≟₩/70°c	•	6 п	17	142		F52	8209.4	7%T	E 3W/550	Н4 SH 1	43 1	۲ M	714
	P 26	4·7Kû ± 5	% 4 <u>2%/70</u> ° ¢	F6 Sh • 1	34 .	TM	7146		R53	10052 ±	7%-1	FE W/550	Н4 <u>5н.</u> 1	44 .	TM	71
	DRAWN	A.CATO	СНКД			USI	ED ON	٦	rf 1066	бв/б	÷	MPONE			Г	
	DATE	6.9.62.	APPD.			SH	т. 1	0	F 10	SHTS.	X	<u>D 37</u>	24	⊻	ه معش	-

And Take

and the second

- - Particulari

the second state of the se

Contraction of the local division of the loc

11111111111111

											ISS	JE NO.	3
CIR. REF.	DESC	RIPTION	GRID	STOC		st ref.	CIR. REF.	DI	SCRIP	TION	GRID	STOCK	LIST RE
R54	1MQ + 103	} ₩/55° c	H1 SH.1	92	TM 6	5241/5		1MΩ ±	10%	w/55°C	L5 Sн.1	14 TI	7143
P 55	47×Ω + 7%	TE ∄\\/55℃	42		TM 7	1 46	r82	4•7KΩ	± 10%	±₩/55°C	L5 SH .1	38 1 1	A 7146
R56	1MS2 ± 10%	1w/55°C	H2 SH.1		TM 7	146	R83			±₩/55°C	15		7143
r57	270K2 ±7%	TE ⅔W/55°0	1 42	47	TM 7	146	R84	33KQ ±	10%	1w/55°C		6 тм	7143
R 5 8	1KSi ± 7%T	E ∄₩/55°C	H2 SH.1		TM 7	146	R85	47 <u>9</u> ±	5% łw	1	M1 Sh J	19 TI	4819 <u>/</u>
r59	18K0 ± 10	% 2W	н1 SH.1	4 9	TM 7	146	F86	1000 1	10%	₩/55°c		93 TI	6241/
F60	68KG ± 10		ј1 Sн.1	50	TM 7	146	R87	180κΩ	± 10%	±₩/55°C		51 TA	7146
R61	2-43KΩ ± IN PARALL					668/6	R88	1KQ 1	v/55° c	S.I.C.	M4 SH.1	5 TM	7141
R62	27K12 ± 10%	1w/55°C				6 6 8/6	r89	8202	w/55°	c s.I.c.		12 TA	7141
R63	27KQ ± 107		јб SH.1	97	TF 10	668 / 6	R90	1-8KΩ	<u></u> ≩w/55	PC S.I.C		6 тм	7141
R64	47K ± 10%	1W/55°c SIC	ј1 Sн.1	96	TM 6	241/5	R91	2·7KΩ	1 2W/55	°C S.I.C		7 TM	714:
R65	1KQ ± 10%			91	TM 6	241/5	R92	1-8KQ	±₩/55	°C S.I.C		6 TM	7141
r66	10KQ ±5%	1w/55°c	J5 Sн.1	98 ⁻	TF 10	66 8/6	R93	47 <u>a t</u>	56] W		M2 SH J	19 TN	4819/
r67	10κΩ ± 7%	te ∄w/55℃		99 ⁻	TF10	66в/б	R94	4·7KΩ	± 10%	₩/55°C		7 TM	7143
R68	56KΩ ± 7%	TE ੇ₩/55°C		53 ⁻	TM 7	146	R95	1MΩ ±	10% 불	w/55°C	M) SH.	4 TM	7143
r69	1KΩ ± 10%	1W/55°c	K2 SH.1	95 ⁻	TM 6	241/5	r96	2-260	±10%			9 TM	7142
R70	1500 ± 109		К3 SH . 1		TM 6	241/5	R97	1•2Kû	± 10%	¹ / ₂ ₩/55°C		8 TM	7143
R71	390KQ = W/S	55°C S.I.C	К5 \$н.1	100	TFi	066в/6	R98	580Q <u>+</u>	10%	₩/55°C	L) SH.1	108TF	10668/
R72	120K2 ± 2	6] w	К4 SH.1	101	TFI	066B/6	R99	39Ω ±	5% I±1	N 70°C	.K1	9 TM	7144
R73	100KQ 100K	55°C S.I.C		102	TF1	066B/6	R 100	100KQ	± 10%	• 1W	Е3 SH-2	15 TN	7115
R74	47KΩ ± 7%	TE∰W/55℃	К5 SH.1	103	TF1	0668 <u>/</u> 6	R 10 1	15KΩ ±	10%	• 1W	E4 SH.2	16 TN	7115
R75	15KQ = W/55	ምር S.I.C.	К5 SH.1	104	TF1	0668/6	R102	5.6KQ	± 10%	- 1w	EO SH 2	17 TN	7115
r76	330 <u>2</u> ± 10%		К3 SH.1	90 -	тм 6	241/5	r 103	4∙7 KΩ	± 10%	- 1W	E6 SH • 2	18 t n	7115
R77	5·6MΩ ± 29		К4 SH.1	105	TF 1(066B/6	R104	100KQ	± 10%	- 1w	E1 SH-2	15 TM	7115
r78	480KQ ± 24	5 ¥₩/70°c	К4 SH.1	106	TF1(066 8/6	R105	100KQ	± 10%	• 1w	F1 SH •2	15 TM	7115
R79	10KQ ± 10%	3 ₩/55 °c	L3 SH.1	89	TM (5241/5	R106	33Kû ±	10%	-1W SIC.	F3 SH•	19 TM	7115
R80	70MQ ± 20	₩] ₩	L4 SH.1	107	TF1()66B/6	R107	1KQ ±	10%	1w	E4 SH	21 TM	7115
DRAWN	A.CATO	СНКД			USE	D ON T	F1066B/	/6		MPONE		LIST	
DATE	6.9.62.	APPD.			SHT	. 2 (of 10	SHTS.	X .	<u>D 37</u>	24	<u>-U</u> _	• ••• .
TRACE	D PKY		M	AR	CC	DNI	INS	STRI	IME	NTS	Ľ	ΓD.	

J

-

-

١Ż

è

• •

	I	r i		CIR.	<u> </u>	······································	1	ue no.	3
CIR. REF.	DESCRIPTION	1.1	K LIST REF	REF.	DE	SCRIPTION	GRID	STOCK L	IST REF
R108	1KΩ ± 10% -1W	124.4	TM 7115	╢			_	ļ	
R109	33KQ ± 10% ·1W	51.4	TM 7115		-	· ·		•	
R110	10KΩ ± 10% •1₩	154.4	TM 7115			-			
Ŕ111	3·3KQ ± 10% ·1W	134.4	TM 7115						
R112	3·3KΩ ± 10% ·1₩	54.2	TM 7115		-				
R113	1KΩ ± 10% •1W	54.4	TM 7115						
R114	220KQ ± 10% -1W	54.4	TM 7115		RES	STORS VARIAB	-		
R115	22KU ± 10% ·1W	54.4	TM 7115	RV1	10KQ 1	10 % 1W	E2 SHT	113TF1	066B/6
r116	10KQ ± 10% ·1W	SH.2	TM 7115	RV2	22KQ ±	10% 7±W	F2 Sht1	114TF1	∪66B/6
R17	TKQ ± 10% -1W	SH.2	TM 7115	RV3	10KQ ±	20% ±W/70°C	G1 Sht1	13 TM	7140
R118	22KQ ± 10% -1W	SH • 2	TM 7115	RV4	22KQ ±	20% ±W/70°C	G1 SHT1	15 TM	7140
R119	4-7KQ ± 10% -1W	SH . 2	TM 7115	RV5	47KΩ ±	20 % ± W/70°C	G1 SHT1	16 TM	7140
R120	3·3KQ ± 10% ·1W	SH _• 2	TM 7115	RV6	10KΩ ±	20% ±w/70°C	G1 Sht1	13 TM	7140
R121	3·3K2 ± 10% ·1W	SH 2	TM 7115	R V 7	15KΩ ±	20% ±W/70°C	G2 SHT1		7140
R122	68κΩ ± 10% ·1W	SH-2	TM 7115	rv8	10KQ ±	20% ±w/70°C	G2 Sнт1		7140
	8.2K2 + 10% ·1W	SH.2	TM 7115	RV9	 	20 % ± W/70°C	GZ SHT	13 TM	
	10K2 ± 10% ·1W	SH.2	TM 7115	RV10		20 % ± %/70°C		L	7140
R125	2.2KQ ± 10% ·1W	SH.Z	TM 7115	RV11	10KΩ ±	20\$ ±*/70°C	02 SHT	13 1	7140
R126	4.7KQ ± 105 -1W	54.2	TM 7115	RV12	10KQ ±	20% ±W/70°C	G3 SH1 H2	13 TM	7140
R127	100KQ ± 10% -1W	SH . C	TM 7115	RV13	5Kû ±	10 % 3₩	SHT	77 im	
R128	15KQ + 10% + 10% + 15% C	SH.2	TM 7177	RV14	50KQ ±	10 % 1W	Н5 SHT		7146
R129	22KQ ± 10% ± 10% ± 10% ± 10%		TM .7177	RV15	2509 ±	10% 1W	Н4 Sht'		7146
R130	6800 ± 10% ·1W	311+6	TM 7115	RV16	5K2 ±	10 % 2w	Н1 Sң т		0668/6
R131	47KΩ ± 10% S.I.C.	D6 SH • 2 30	TN 7115	RV17	2 5K 9 ±	20 % 1W	Н5 Sнт		066B/6
				RV18	25KQ ±	20 % 1W	HO ShT		0668/0
				RV19	25KQ ±	20 % 1W	Н5 Sht		0668/
				RV20	25KQ ±	20 % 1W	Н5 Sht	116TF	0668/0
DRAWN	A.CATO CHKD		USED ON	TF 106	6 B/ 6	COMPONE			
DATE 6	5.9.62 APPD.		SHT 3	OF 10	SHTS.	<u>xD37</u>	24	<u>-0</u>	.
TRACE	MFW.		CONI	INIC	TDI	IMENTS	1	TD	*****

ĸ

ð

4

•

đ

			· · · · · · · · · · · · · · · · · · ·				······································	ISS	UE NO.	2
	CIR. REF.	DESCRIPTION	GRID STO	OCK LIST REF.	CIR. REF.	D	SCRIPTION	GRID	STOCK	LIST NER
		RESISTORS VARIABL	E CONT D	2	C12	1000	+50% 25V	F4 SHT1	75 TM	7146
	RV21	25KQ ± 20% 1W	J5 1 5нт1 1	16TF10668/6	C 13	8µF +	50% 500V	F5 Sht1	76 TM	7146
	RV22	25KΩ ± 20% 1W	J5 Sht1 11	6TF 1066B/6	C14	8μF ±	50% 450V	F6 Sнт1	77 TM	7146
3	RV23	50KΩ ± 10% 1W	ie i	7TF 10668/6		8μF + -	50% 450V	F2 Sht1	77 TM	7146
	RV24	15KΩ ± 10% 1W	К5 SHT1 64	TM 7146	c16	0•1µF	± 20\$ 150V	F4 Sht1	14 TM	7142
a -	RV25	1KQ ± 10% = W		1 TM6241/5	C17	3quf	20% 500V	F5 SHT1	78 TM	7146
	RV 26	10KQ ± 10% 1W	JHTI	2 TM 7146	c18	8μF <mark>+</mark>	50% 450V	F6 Sht1	77 TM	7146
	RV27	5KΩ ± 10% 1W		3 TM 7146	c 19	500µF	+ 100% 25V	F4 SHT1	79 TM	7146
	RV 28	2KΩ ± 20% ±₩	L3 Sht2 11	18TF 10668/6	ငဆ	0.25µF	± 20% 350V	G5 Sнт1	80 114	7146
					C21	0.1µF	± 20% 150V	H2 SHT1	71 TM	7146
					C2 2	8µF +	50% 450V	H5 Sht1	77 Thi	7146
					C23	25µF	100% 25v	Н3 SHT1	74 TM	7146
		· · · · · · · · · · · · · · · · · · ·			C24	.02µF	± 20% 200V	H2 SHT1	81 TM	7146
٦					C25	25µF	100% 50V	нт Sнт1	82 m	
A					c 26	1μF. ±	20 % 250V	ј <u>ј</u> 3 Sht1	83 TM	7146
		CAPACITORS.			C27	0 .1 µF	± 20\$ 350V	J2 SHT1	.72 TH	7146
	C 1	-0154F 400V S.I.C	• 5411	TM 1296F	c28	200 PF	LEAD THREE	JI SHT1	5 TM	1683 0
	C2	500 PF 300V A.C.SI	JULI	TM 1296F	C29	200 PF	LEAD THRU.	ј1 <u>Sht</u> 1	6 TM -	48830
	c 3	•01µF ± 20 % 400∀		TH 7146	C30	200 PF	LEAD THRU.	ј1 <u>Sht1</u>	6 TM	48830
	C4	.0054F ± 20% 250V	[SHT I]	TM 7146	C31	4700 PF	LEAD THRU.	ј 1 Sht1	6 TM (
	C5	.005µF ± 20\$ 250V	I SH T I	TM 7146	C 32	4700 PF	LEAD THRU.	ј1 5нт1	6 TM -	
	c6	0.14F ± 2015 150V	57	TM 7146	c 33		LEAD THRU.	ј1 Sht1	5 TM	
· · · · ·	C7	0.1µF ± 20\$ 350V		2 TM 7146	C34		LEAD THRU.	ј2 Sht1	6 TM (
a	c 8	1µF ± 20% 150V	15HT 1 -	5 TM 7146	C35		LEAD THRU.	J2 SHT1 J2	6 TM -	
	C9 _.	25µF + 100% 25V		TM 7146	C36		LEAD THRU.	SHT1 K3	5 TM	
q	C 10	1000µF + 50% 25V	SHT1	5 TM 7146	C37		± 20% 250V	SHT1	104 Th	5241/5
	C11	1000µF + 50\$ 25V	SHT1 75	5 TM 7146	c38	POOPF		SHT 1		10668/
	DRAWN	A.CATO. CHKD	· · · · · · · · · · · · · · · · · · ·	USED ON	TF 1066		COMPONE XD37			
	DATE	6.9.62. APPD.				SHTS.				-
	TRACE	D MFW	MAF	RCONI	INS	STRL	IMENTS	1	rd.	

A Same in

				-				155	SUE NO. 2		
	CIR. REF.	DESCRIPTIO	N GRID	STOCK LIST REF	CIR. REF.	DE	SCRIPTION	GRID	STOCK	LIST REI	
-		CAPACITORS (CO	NTD		c 65	·					
C	C39	4700PF LEAD T	HRU K3	5 TM 4883E	c 66						
c	40	4700PF LEAD T	HRU. SHT	6 TM 4883E	c 67						
٦ (c	41	4700PF LEAD T	HRU. K3	6 TM 4883E	c68		1		·		
С	42	1PF ± .5PF 50	142	100006041/5	c69						
• C	:43	0.5PF - 3PF TR	IMMER L3	103TM6241/5	c70						
c	44	8µF + 50% 450V	L5 Sнт1	77 714 74 46	Ç71		·				
с	45	6µF ± 20% 150V	L5 Sнт1	84 TM 7146	c72		<u> </u>				
С	46	.054F ± 20% 25	DV L5 SHT1	12 TM 7143	c 73						
С	:47	.054F ± 20% 25	John	85 TM 7146	C74						
с	:48	1pF ± 5pF 750V		25 TM 6242/2	c75						
С	49	50PF VAR.SPEC.		7.8TM6242/2	c76	· .	·····				
c	50	2.2pF ± 5pF 7	3n i i	23 TM 6242/2	c77		·				
ے د	51	27pF Spec.	L2 SHT1	23 TM 6241/5	c78						
с	52	27PF SPEC.	L2 Sht1	23 TM 6241/5	c79						
• c	53	500PF LEAD TH	5	5 TM 4883F	6 30						
с	54	500PF LEAD THR	pari	6 TM 4883F	c81						
С	55	500PF LEAD TH		8 TM 4883F	c82						
С	56	.00 2 uG ± 20% 3		15 TM 7142	c83						
С	57	.0050F ± 20% 2			c84		-				
C	58	47pf ± 10% 500	0111	20 TM 4819/3	c85						
C	59	200 PF SPEC.	M2 Sht1	PART OF TM 6312/1	660						
C	60	0.25µF ± 20\$ 3	. 1911 1		c87						
a C	61	33PF ± 5% 750V	E5 SHT 2	12D T M7115	865			<u> </u>	ļ		
C	62				c89		· .	<u> </u>			
a C	63				C90			<u> </u>			
C	64				C91	ļ				•	
D	RAWN	А.САТО. СНК)	USED ON	TF 1068	бв/6	COMPON				
	DATE	6.9.62. APPE).	SHT. 5	OF 10	SHTS.	<u>XD 37</u>	.24	<u> </u>	-	
Т	RACE	D MFW	Μ	ARCONI	IN:	STRL	IMENTS	Ľ	TD.		

en de services de la constant de la La constant de la const

i

1

							_				ISS	UE NO.	6
	CIR. REF.	DESCRIPTION	GRID	STOC	K L	IST REF.	Π	CIR. REF.	DE	SCRIPTION	GRID	STOCK	
		CAPACITORS (CONT	<u>()</u>				╢	c 118	100µF	- 20% 6V	G3 Sht2	42 TN	7115
	C92							c119	•01µF	- 20% 500V	Н5 Sнт2	70 TM	7115
	c 93							c120	•1µF ±	10%150V	Н5 Sнт2	45 TM	7115
3	C94				نگر <u>م</u> نسب			c121	5µF -	20% 100% 50V	H2 SHT2	46 TM	7115
	C95							c122		- 20% + 100% 5V	H3 SHT2	42 TM	7115
4	c %		-					0123	100.15	- 20% 25V + 100% 25V	G1 Sht2	44 TN	7115
	C97						Ţ,	c124	4700 pf	LEAD THRO	J1 SHT2	25 TM	7177
	c 98							c125	4700 pF	LEAD THRO	К1 SHT2	25 TN	7177
	C 99							:126	4700pf	LEAD THRO	J2 SHT2	25 TM	7177
	c 100	.001µF - 20% 500V	D2 Sнт2	36	TM	7115		c127	4700 P F	LEAD THRO	K2 SHT2	05 714	7177
	C101	.0014F - 20% 500V	D2 SHT2	76	TM	7115	T	:128	4700 p f	LEAD THRO	J3 Sht2	25 TM	7177
·.	C1 02	220 PF ± 5% 125V	Е5 SHT2	77	TM	7115		;129	4700 pf	LEAD THRO	К3 5нт2	25 TM	7177
	C1 03	10-45PF TRIMMER.	E5 SHT2	78	TM	7115		:130	4700 p f	LEAD THRO!	J3 Shт2	25 TM	7177
ۍ ا	C 10 4	.01 µF - 20% 500V	E3 SHT2	20	TM	7115		:131	4700pf	LEAD THRO	К3 SHT2	25 TM	7177
	c 105	.01µF - 20% 500V	Е3 Sht2	39	TM	7115		:132	4700pf	LEAD THRO	J4 5нт2	25 TM	7177
*	c 106	•001µF - 20% 500V	Е3 Sнт2	36	TM	7115		:133		LEAD THRO!	К4 5нт2	25 TM	7177
	C 107	100 PF ±2% 750V 51.0	12415	40	TM	7115		:134	•01µF	- 20% 500V + 80% 500V	ј1 5нт2	26 TM	7177
	C108	8μF - 20% 25V	E2 SHT2	35	TM	7115							
	c 109	10μF+ 100% 6V	F2 SHT2	41	TM	7115		-					
	C110	100µF - 20% 6V	F3 SHT2	42	TM	7115							
	C111	10-45PF TRIMMER.	F5 Sht2	38	TM	7115							
·	C112	220 PF 1 5% 350V	F5 SHT2	47	TM	7115	\prod						
•	C113	•01#F - 20\$ 500V	F5 SHT2	39	TM	7115							
an a	C114	10µF+ 20% 6V	G2 SHT2	41	TM	7115	\prod						
	c 115	100 HF - 20% 25V	G1 Sht2	44	TM	7115							
्व	¢ 116	100µF - 20% 25V	Е3 Sht2	44	TM	7115	\prod						
	c 117	8µF - 20% 25V	G2 Sht2	75	TM	7115							
	DRAWN	A.CATO. CHKD			US	ED ON	TF	1066	ib/6	COMPONI			
	DATE	6.9.62 APPD.			SH	т. 6	OF	- 10	SHTS.	<u>XD37</u>	24	<u> </u>	
	TRACE	D MFW	M	AR	C	ONI		INS	STRI	JMENTS	Ľ	TD.	

Sector 100

	* *			· · · · · · · · · · · · · · · · · · ·				155	ue no. 4
	CIR. . REF.	DESCRIPTION	GRID	STOCK LIST REF.	CIR. REF.	DE	SCRIPTION	GRID	STOCK LIST REF
		INDUCTORS.			L27	10.4µн		E2 Sht2	10 TM 7115
	L1	CHOKE 250MH	Е1 Sнт1	4 TM 7146	L 28	4.1µH		E4 Sht2	11 TM 7115
	L2	CHOKE 27H	F1 Sht1	3 TM 7146	L 29	COIL		E5 SHT2	12 TM 7115
` •	L3	Сноке 95	Ј1 Ѕнт1	1 TM 4883D	L 30	Coit.		J1 Sнт2	15 TM 7177
•	L4	Сноке 95	J1 Sht1	1 TM 4883D	L 31	COIL.	<u> </u>	J2 Sht2	15 TM 7177
đ ali L	L5	Сноке 95рн	Ј1 Ѕнт1	1 TM 4883	L 32	COIL.	~	J3 Sht2	15 TM 7177
	L6	Сноке 95µН	Ј1 Sht1	1 TN 4883	L 33	COIL.		J3 Sht2	15 TM 7177
	L7	Сноке 95µН	Ј2 Ѕнт1	1 TM 4883 L	L 34	COIL.		J4 Sн т2	15 TM 7177
	L8	Сноке 95µН	J2 Sнт1	1 TM 4883 L					
	L9	Сноке брин	К3 SHT1	1 TM 4883 E					
	L 10	Сноке бин	К3 Sht1	1 TN 4883E					
	L 11	CHOKE H.F.	K1 Sht1	107 TN6241/5					
	L12	BIFILAR CHOKE.	К2 Sht1	108 TM6241/5	•	VALVES	<u>,</u>		
ي ي	L13	OSC. COIL RANGE D	L1 Sнт1	43 TM 6242/2	V1	6c4	N I	D2 Sht1	150 TM 7146
	L14	OSC. COIL RANGE C	L2 Sht1	6 TM 6242/2	V2	6_6	I	F2 Sht1	151 TM 7146
-	L15	OSC. COIL RANGE E	<u></u> <u>L</u> 1 Shт1	5 TM 6242/2	v 3	6cd6g	<u>)</u> ,	G5 Sнт1	152 TN 7146
	L 16	OSC. COIL RANGE B	L2 Sht1	. ,	V4	5651		G6 Sнт1	153 TM 7146
	L 17	OSC. COIL RANGE A	L2 Sht1		v 5	6ak5		G5 Sнт1	154 TM 7146
	L 18	ATTEN. COIL.	м2 Sht1		v 6	0B2		G6 Sht1	155 TM 7146
	L 19	MONITOR COIL.	M2 Sht1	70 74 (041/5	V7 🧹	6дк6		Н2 Sht1	156 TM 7146
	L 20	Сноке 9544	M3 Sht1	4 114 400	v 8	6AQ5		K2 Sht1	163 TH6241/5
	L 21	Сноке 95µН	M3 Sht1		V9	TD03-1	OE	K2 SHT1	110 TM6241/5
	L 22	PART OF ASSY.	М1 Sht1	26 TM 6241/5	V10	12 AX7		М5 Sht1	157 TM 7146
Ĵ	L 23	COIL	Н1	153 TN6241/5					
•	Ļ24								
Q	1.25	COIL.	D3 Sht2	8 TM 7115			•		
	126						· · · · · · · · · · · · · · · · · · ·		
	DRAWN	A.CATO. CHKD		USED ON T	f 1066	8/6	COMPONE		
	DATE	6.9.62. APPD.		SHT. 7 с)F 10	SHTS.	<u>XD37</u>	24	Q`
	TRACE	D MFH	M	ARCONI	INS	STRL	IMENTS	Ľ	rd.

a. 1. ar 1883 ann an Ionlaite ann 1883 an 2014

and the second second

-F

Ű,

	-	·····			······				155	UE NO.	١
	CIR. REF.	DESC	RIPTION	GRID	STOCK LIST REF	CIR. REF.	DE	SCRIPTION		STOCK L	IST REF
		TRANSIST	ORS.			SC A	1		D1 5нт1		
	VT1	2N2063		G4 Sнт1	130TF10668/6	SCB			F1 SHTI		
	VT2	2N1553	· · ·	G4 5нт1	131TF 1066E/6	SCc	3 SEC	6 Pos.	E2 SHT1	93 TM .	7146
	VT3	ACY 20		64 SHT1	21 TA 7142	SCO		,	J2 Sht1		
-	VT4	· · ·			· · · · ·	SCF	1		L4 Sht1		
Ŧ	VT5					SDA	2 SEC.	3 Pos.	E2 4411	134TF1	066B/6
	VT6					SDc	Ν		L5 Sht1		
	V17					SDD	1		К4 §нт1		
₽	8דע					SEB		· · · · ·	M4 SHT1		· · · -
•	VT9		-			SEC	\mathbb{I}		F2 Sht1		
	VT10	2N1742	· · ·	E2 SHT2	55 ₩ 7115	SED	3 SEC	5 Pos.	G2 Sнт1	.72 TM	6241/5
	VT11	2NI748A	(PHILCO)	Е4 Sht2	56 11 7115	SEe			G1 SHT1		
	VT12	25102	(TEXAS)	Е5 Sнт1	57 10 7115	SEF)		F1 Sht1		
,	VT13	ACY 20		F2 SHT2	58 TH 7115	SFA	1	· · · · · · · · · · · · · · · · · · ·	ј6 Sht1		
	VT14	25102	(TEXAS)	G5 Sнт2	57 TM 7115	SFc	3 SEC.	8 Pos.	J5 Sнт1	135TF1	066B/6
• •	VT15	ACY 20		Ğ2 Sht2	58 TM 7115	SFE)		 Sнт1	· · · · · ·	
·	VT16	ACY 20		H2 SHT2	58 TM 7115	SGA	2 SEC	4 Pos.	К5 SHT1	1 <u>3</u> 6TF1	066B/6
					· · · · · · · · · · · · · · · · · · ·	SHB	1 SEC.	3 Pos.	L2 Sнт2	137TF1	066B/6
						1					
·			• .					· · ·			
										-	
		-			· · · · · · · · · · · · · · · · · · ·		TRANSF	ORMERS.			
		SWITCHES.	•		······································	T1	Mod.		Е1 Sh t 1	2 Tin 7	146
	SA	D.P.C.O.		D5 Sнт1	132TF 1066B/6	T2 .	MAINS.	•	Е5 Sн т1	1_TM 7	146
	58ав	1 SEC 2 P	os.	Е1 Sh t 1	133TF10668/6	T3	REACTO	R.	К1 SHT1	161 TM6	241/5
t-	SBAA			D2 Sht1							
· .	÷										
	DRAWN	A.CATO.	СНКО		USED ON	TF1066	б В/ 6	COMPON			<u>.</u>
	DATE	6.9.62.	APPD.		SHT. 8	OF 10	SHTS.	XD3	134	.0	-
·	TRACE	D MFW	•	M	ARCONI	INS	STRI	IMENTS	17	D.	

.

		•				*					ISSU	JE NO.	1 .
CIR. REF.	DESCR	IPTION	GRID	STOC	K LIS	T REF.	CIR. REF		DES	CRIPTION	GRID	STOCK	LIST RE
	METERS.								RECTIF	IERS.			
M1	500a 100m	A F.S.D	К6 5нт1	4 Tf	106	6 8/6	MR1		1G8		Е3 Sнт1	15 TM	49430
M2	50052 1001	HA F.S.D	М5 Sнт1	3 TI	106	6B/6	MR2		1G8		Е4 Sh т 1	6 TM	4943CV
							MR3		IN540		Е5 Sнт1	7 TM	4943CV
							MR4		IN 540		F5 Sнт1	8 TM	4943CV
							MR5		IN540		Е5 Sнт1	10 T⊮	49430
	PILOT LAM	2					MR6		IN540		F5 Sнт1	9 TM	49'43CV
PLP 1	6.3V 0.1	5A.	E4 Sht1	178	rf 10	66B/6	MR7		IN540		Е5 Sht1	11 Th	49430
							MR8		IN540		F5 Sнт1	18 Ti	i 49430
	FUSES.						MR9		IN540		Е6 Sht1	16 TM	49430
FS1	2A /		D4 Sht1	94]	M 7	146	MR1(5	IN540		F6 Sht1	17. TA	49430
FS2	2A		D4 Sht1	94 1	rm .7	146	MR1	1	IN540		Е6 SHT1	15 TA	49430
F5 3	2A	• .	Е3 Sht1	94 1	IM 7	146	MR1	2	IN 540		F6 Sн т1	14 Ti	4943
FS4	2A		E4 SHT1	94 1	m 7	146	MR1	3	IN 540	N	Е6 Sht1	12 T	4943
FS5	250ma		Е5 Sht1	95 1	M 7	146	MR1	4	IN540		F6 Sht	13 T	vi 4943
FS6	100mA		еб Sht1	96 1	M 7	146	MR1	5	4.7V ±	10 %	G4 Sн т1	22 T	M 7142
							MR 1	5	CGIE (CV 425)	L5 Sht1	1 <u>5</u> T	1 7143
		•					MR1	7	CGIE (CV 425)	<u>L6</u> Sнт	15 Ti	w 7143
	PLUGS.						MR1	8	CS2A		M2 Sht	1061	k 6241
PLA	3 PIN 5AM	Ρ.	DE Sht	1 1 1	M 2	560 AU							
PLB	PART OF A	SSY.	_	, 33	TM 7	177			•				
PLC	7 WAY .		К1-4 SHT2	36	TM 7	177			•				
· · · · ·			1										
	SOCKETS.									:			
SKTA	50Ω Co-∧×	IAL.	M2 SHT	15	TM 4	1819/3	3		,				
SKTB	PART OF A	SSY.	M1 Sht	~	TM 6	5241						·	
SKTC	7 WAY.		К1-4 SHT		TM 7	146							
	N A.CATO.	СНКО			USE	D ON	TF 106	56B	/6	COMPO			
DATE	6.9.62.	APPD.	-		SHT	. 9	OF 1()	SHTS.	XD 3	134	0	
	EDNFW.			۸D	<u> </u>	JNI	IN	JC	TRI	MENT	5 1	TD	

- interest

and and a second se

9

4

÷

т,

Ð

J,

T	T	<u> </u>	f f				UE NO.		
CIR. REF.	DESCRIPTION	GRID	STOCK LIST REF.	CIR. REF.	DESCRIPTION	GRID	STOCK LIST RE		
	THERMI STORS.								
TH 1	BRIMISTOR CZ3	F4 Sн т 1	23 TM 7142						
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·								
	JACKS.								
JK1	PANEL JACK.	L2 5ht2	132TF10668/6		· · · · · · · · · · · · · · · · · · ·				
-									
	CRYSTALS.								
XI	10Mc/s Q0 1760B 50/A/30	D5 Sнт2	54 TM 7115		<u>, </u>				
					· · · · · · · · · · · · · · · · · · ·				
	·								
<u> </u>									
	<u> </u>								
	· · · · · · · · · · · · · · · · · · ·								
					· · ·				
					······		<u>+</u> <u>+</u>		
					· · · · · · · · · · · · · · · · · · ·				
							·····		
		-							
	· · · · · · · · · · · · · · · · · · ·	-			• •				
					<u></u>				
	· · · · · · · · · · · · · · · · · · ·						······································		
DRAWN	A.CATO. CHKD	_1	USED ON TH	1066B/	6 COMPO	DNENT	NENT LIST		
DATE	6.9.62. APPD.		SHT. 10 OI			XD 37340			

F.M. SIGNAL GENERATOR TF 10668/6 & /GR

