OPERATION MANUAL

FM/AM SIGNAL GENERATOR

KSG4500

Fourth Edition

KIKUSUI ELECTRONICS CORPORATION

(KIKUSUI PART NO. Z1-477-920)

For the power supply source, it is requested that the related sections in the operation manual be replaced with the following items: (Please apply those items indicated with checks)

Power Supply Voltage: to _____ V AC

Line Fuse:

to _____ A

Powre Cable:

to 3-core cable (See Fig.1 for the colors.)

Fig. 1

Please be advised that the above changes may result in some discrepancies with the explanations or circuit diagrams in the operation manual.

*AC Plug: In the case of a line voltage of 125V AC or more, in principal, the AC plug is delivered removed from the cable for safety reasons. (AC plugs used on 3-core cables are removed regardless of the input voltage.)

Before using the instrument, it is requested that a plug be attached that is suitable for the voltage used.

CONTENTS

	Page
1. INTRODUCTION	1
1.1 General Description	1
1.2 Features	2
2. SPECIFICATIONS	4
3. PREPARATION FOR USE	10
3.1 Unpacking and Inspection	
	12
G	10
and Installation Place	12
4. OPERATION	13
4.1 Front Panel Features	13
4.2 Rear Panel Features	15
4.3 Turning on the Power Supply	16
4.4 Setting Frequency	16
4.4.1 Setting frequency by numeric keys	16
4.4.2 Rotary knob	19
4.4.3 Setting frequency step for 22 and 23 keys	19
4.4.4 Frequency difference 🕮 TREO and 🗰 keys	21
4.4.5 Reference signal input/output terminals	
(1) Reference signal output (REFERENCE OUTPUT)	23
(2) Reference signal input (REFERENCE INPUT)	23
(3) High stability standard crystal oscillator output	
(H STABILITY OUTPUT) - option	24
4.5 Setting Output Level	25
4.5.1 Setting unit key	25
4.5.2 Setting output level by numeric keys	25
4.5.3 Rotary knob	27
4.5.4 Setting output level step for 2000 and 2000 keys	28
4.5.5 Setting offset value	29
4.5.6 Output level difference 《為調測》 key	29
4.5.7 ************************************	30
4.5.8 Reverse power protector	30
4.5.9 Unit of output level	31

CONTENTS (Cont'd)

		Page
4.6 Set	ting the Modulation	32
4.6.1	『 ¥ 整	32
4.6.2	Setting modulation mode and source	32
4.6.3	Setting modulation by numeric keys	33
4.6.4	Flashing in [MODULATION] section	34
4.6.5	Rotary knob	35
4.6.6	Setting modulation step for and keys	36
4.6.7	External modulation signal connection and setting	37
(1)	Connection and setting method	37
(2)	Setting range	38
4.6.8	DC · FM modulation mode	39
4.6.9	VIDEO modulation mode	39
4.7 Mem	ory	40
4.7.1	Memory recall method	40
4.7.2	Memory store method	41
4.7.3	Storing data into a part of memory column	
	(Setting 🗱 key)	43
4.7.4	How to release REEN key	43
4.7.5	Recalling more than ten columns continuously	
,	(Setting MEXIII key)	44
4.7.6	How to release MEXI key	45
4.7.7	Copying memory data to another KSG4500	45
5. REMOTE	CONTROL	46
5.1 Gen	eral Discription	46
5.1.1	Outline	46
5.2 Ope:	ration Procedure	46
5.2.1	Explanation of Remote Control Connector	46
5.2.2	Input data timing	48
5.2.3	Panel key code table	49
5.2.4	Setting frequency by remote control (example)	51
5.2.5	Remote Control circuit diagram example and operation	52
5.2.6	Memory Display output circuit example	53

CONTENTS

(Cont'd)

	Page
6. OUTPUT IMPEDANCE AND DUMMY ANTENNA SWITCHING SIGNAL	54
6.1 "RANGE OUTPUT" RCA Pin Connector	54
7. BACKUP BATTERY AND INITIALIZING CPU	54
7.1 Backup Battery	54
7.2 Initializing CPU	55
7.2.1 Hardware reset	55
7.2.2 Software reset	55
8. GP-IB	56
8.1 Introduction	56
8.1.1 General description	56
8.1.2 Features	56
8.2 Performance	56
8.2.1 Electrical specifications related to interface system	56
8.3 Operation procedure	56
8.3.1 Preparation for use	56
8.3.2 Address setting method	57
8.3.3 Available control command and bus line commands	59
8.3.4 Program code table	59
8.3.5 Basic data setting method	63
8.3.6 Connector pin allocation diagram	64
8.3.7 Reference (Program example)	65
9. ACCESSORIES (Optional)	66
9.1 SA100 Test Loop	66
9.2 SA150 Band Splitting Filter	67
9.3 SA151 and SA152 Dummy Antennas for Car Radios	70
9.3.1 SA151 dummy antenna for car radio (loaded type)	70
9.3.2 SA152 dummy antenna for car radio (open-circuit type)	72
9.4 SA153 Output Switch and SA154 Output Impedance Switch	73

1. INTRODUCTION

1.1 General Description

The KSG4500 is an FM/AM signal generator that covers the frequency of 100kHz to 1040MHz (RF output 1060MHz). Since it generates highly stable signals with the resolution of 100Hz by the use of Phase Lock Loop (PLL), it is suitable for measuring the characteristics of MCAs, personal radios, car telephones, UHF/VHF TV, TV video, TV sounds, and various receivers of FM and AM bands. It can be operated easily as it adopts recall and numeric data entry methods.

The output level at open circuit ranges from -20.0 dBµ to 126.0 dBµ (0.1µV to 2V rms), and the resolution of output signal is 0.1 dB. As to the unit of output signal level, dBµ at loaded, EMF dBµ at open circuit, or dBm can be selected by a unit key. Further, the loss caused by an additional item, such as a dummy antenna or a transmission line, can be offset.

Three modulation modes, namely, FM, AM, and FM-AM modes, are available. The modulation can be done by external DC · FM and VIDEO. The FM peak frequency deviation is 500kHz (guaranteed range 400kHz max.), and the maximum AM depth is 99.9% (guaranteed range 80% max.). Both internal and external modulation is possible.

Since the KSG4500 gives a very low FM distortion rate of 0.02% or less (for 1kHz modulation frequency, 75kHz deviation and 75 to 110MHz RF), it is suitable for the adjustment of FM tuners and it can be used for the development and production of MCAs, personal radios, car telephones, and audio/video circuits of UHF/VHF TV sets.

Also, the frequency modulation by external DC coupling is possible.

The AM external modulation range is from 50Hz to 10kHz with very little incidental FM; so the AM suppression ratio of an FM tuner can be measured accurately.

The VIDEO modulation is a wide-band amplitude modulation with double side band, and the signals equivalent to TV broadcast radio waves can be obtained by the input of video signal to VIDEO input terminal and that of audio IF signal to SIF input terminal.

-1-

The obtained signals can be used for the adjustment and inspection of TV sets and VTRs.

A recall method (100 memory points) is used for operation, and numeric data entry, increment key, rotary knob, and \triangle key increase operationality.

Simple pressing of numeric data entry keys can store any frequencies, output levels, and modulation rates in memory, the rotary knob makes the operator feel no difference from the same type of dial on conventional signal generator, and the \triangle display for frequency and output level is very useful for difference measurement.

A remote control function is also provided for control of all operations possible from the panel. Since the standard model of KSG4500 supports the GP-IB control, it reduces labor on production lines.

1.2 Features

- 1) The carrier frequency can be specified with a 8-digit number, and the value of a desired digit (designated by cursor) can be changed continuously by a rotary knob. Also, the KSG4500 has the AFRED (frequency difference) display function and the function to check selectivity.
- 2) The output level can be selected from a wide range of -20dBµ to 126dBµ (open circuit), and it can be specified with a 4-digit number in units of 0.1dB. Also, an output level ON/OFF function is provided.
- 3) The carrier frequency, output level, and modulation rate can be incremented/decremented by the unit of a specified value.

-2-

- 4) Modulation preset keys are provided for AM 30%, FM 3.5kHz, 22.5kHz, and 75kHz to facilitate operation. ON/OFF of modulation can be specified for AM and FM independently of each other. In the video modulation mode, a wide-band amplitude modulation with double side bands can be done, and high frequency signals equivalent to TV broadcast radio waves can be obtained simply by the input of video signal and audio IF signal. Also, in the external DC · FM mode, the DC-coupled frequency modulation can be done.
- 5) The KSG4500 gives small modulation distortion, high S/N ratio, and good stereo characteristic.
- 6) All the information displayed on panel can be memorized; The memory can be used in units of 10-point blocks or as a continuous space of 100 points.
- 7) The KSG4500 can be operated easily because all the operations are controlledby a microprocessor and specified values are displayed in digital mode.
- 8) Input data can be corrected immediately by the use of back space ()) key.
- 10) The panel operation can be done in remote control mode.
- 11) The KSG4500 has a GP-IB interface.
- 12) Since the KSG4500s can be connected to one another in chain mode by the reference frequency input and output connectors (10MHz) provided on them, the relative error of the measured frequency can be reduced to zero.

-3-

• Frequency (RF)

Range	:	100kHz to 1040MHz (Setable 0 to 1060MHz)
Resolution	:	100Hz
Accuracy	:	Same as reference oscillator
Display	:	8-digit readout, Δ FREQ display, and \pm frequency inversion function

• Reference oscillator

Frequency : 50MHz

Stability :	Temperature	± 5×10 ⁻⁶
		±2×10 ⁻⁶ /Week High stability crystal oscilloator page 12)

Reference signal output Output frequency : 10MHz Output level : ≥0.15

: 10MHz: $\ge 0.15Vrms$ 50Ω termination

External reference signal (requires)Input frequency: 10MHz \pm 200Hz (0.002%)Input level: \geq 0.15Vrms 50 Ω

• RF Output

Range

:Maximum output

Unit	For CW. FM	For CW. AM	
EMF dBµ	126dBµ	120dBµ	
dBµ	120dBµ	114dBµ	
dBm	13dBm	7dBm	

:Minimum output

Unit	100kHz to 130MHz	130 to 1040 MHz		
EMF dBµ	— 20dBµ	— 10dBµ		
dBµ	— 26dBµ	— 16dBµ		
dBm	— 133dBm	— 123dBm		

Unit : Three types of units, namely, EMF dBµ for opencircuit at $OdB = 1\mu V$, $dB\mu$ for loaded-terminal voltage and dBm for 50Ω output impedance. Resolution : 0.1dB Display : 4-digit readout that can be read directly in each one of the three unit types \triangle dB display and any desired offset value display The unit of EMF dBµ, abbreviated as dB, is applied to all the following description: Standard level : At the output level of 120dB (7dBm) accuracy 1) ± 1 dB RF ≥ 130 MHz 2) ± 2 dB RF < 130MHz Attenuator accuracy : 1) ± 1 dB Output \geq 20dB (-93dBm) 2) ± 1.5 dB Output \geq OdB (-113dBm) Output < 0 dB (-113 dBm)3) $\pm 2 dB$ RF.ON/OFF : Output level can be turned ON/OFF by REMORE key. Output impedance : 50Ω N type connector VSWR : \leq 1.5 Output level \leq 100dB (-13dBm) Reverse power protection: Maximum 25W, 25V DC Spurious signals (Fundamental wave = 0 dBc) Harmonics : ≤ -25 dBc Output ≤ 120 dB (7dBm) Except Modulation mode 2 (VIDEO modulation) Non-harmonics : At Modulation OFF, offset carrier $\pm 5 \text{kHz}$: $\leq -60 \, \text{dBc}$ Except 516.6, 525, 533.3 ± 5 MHz, 597 ± 15 MHz, 750 ± 2 MHz, frequency 1/2 and 1/4 : ≤ -55 dBc

550, $850 \pm 2MHz$

-5-

SSB phase noise : $\leq -110 dBc/Hz$

At CW mode, offset carrier 20kHz

Residual modulation (S/N)

:

FM component

	Demodulation band width			
Frequency	0.3 to 3kHz	50Hz to 15kHz 0.3 to 15kHz		
			Deemphasis=50µs	
	3.5kHz deviation	Ratio to 75k	Hz deviation	
10.7,75 to 110MHz		\leq 7.5Hz (80dB)	≦3.8Hz (86dB)	
127.5 to 260MHz	\leq 3Hz (61dB)	\leq 4Hz (85dB)		
260 to 520MHz	≦ 6Hz (55dB)	\leq 8Hz (79dB)		
0.1 to 1040MHz	≤ 12 Hz (50dB)	\leq 16Hz (73dB)		

AM component

: \leq -76dBc CW mode Demodulation band width = 50Hz to 15kHz; $(\geq 60$ dB relative to 30% depth)

• Modulation

- Modulation mode 1 : Selection can be made from the following signal sources for FM, AM and FM-AM simultaneously:
 - 1) External 2) Internal 400Hz 3) Internal lkHz 4) External DC · FM Note: For the simultaneous modulation, only one external modulation source is allowed to be used.

Internal modulation : 400Hz and 1kHz; $\pm 3\%$ frequency (Tow frequencies are available)

External modulation

1) Input impedance : $10k\Omega$ approx. (unbalanced)

-6-

2) Input voltage : 3Vp-p approx. requirement Note: For the above input voltage, an error of for external $\pm 2\%$ is allowed by HI-LO monitor. modulation Modulation mode 2 : VIDEO modulation 1) VIDEO and SIF modulation input impedance : 75Ω approx. (unbalanced) 2) Input voltage : 1Vp-p approx. requirement for VIDEO modulation 3) Input voltage : 0.5Vp-p approx. requirement for SIF modulation 4) VIDEO modulation : ± 3 dB 10Hz to 15MHz characteristics (double side-band AM modulation) 5) SIF modulation : Frequency modulation signal signal requirement (4.5 to 6.5MHz frequency bandwidth) 6) Output level : ± 3 dB (at VIDEO modulation) accuracy

[FM]

Resolution

Maximum frequency deviation range and resolution

100Hz

		(Guarante	ed ranges ≥ 4	UUKHZ)
Frequency	5 to 12	7.5MHz	127.5	to 260MHz
Freq. deviation	0 to 99.9kHz	100 to 500kHz	0 to 25.0kHz	26 to 125kHz
Resolution	100Hz	1kHz	100Hz	1kHz
Frequency	260	to 510MHz	520	to 1040MHz
Freq. deviation	0 to 50.0kHz	51 to 250kHz	0 to 99.9kHz	100to 500kHz

< 1001 TT)

1kHz

100Hz

Note: When the value of RF is smaller than or equal to 5MHz, the maximum frequency deviation is 10% of the RF value.

1kHz

Display	:	3-digit readout
Accuracy	:	\pm 5% of maximum frequency deviation
External modulation frequency characteristics	:	\pm 1dB 20Hz to 100kHz, 1kHz reference
Distortion of internal modulation	•	For Demodulation band width = 300Hz to 15kHz, Deemphasis = 50 μ s, Modulation frequency=1kHz, and Deviation = 75kHz \leq 0.02% (RF 10.7 \pm 1MHz, 75 to 110MHz) \leq 0.1% (Other RF values)
Distortion of external modulation	•	For Demodulation band width = 50Hz to 15kHz, and Deviation = 75kHz \leq 0.05% (RF 10.7 \pm 1MHz, 75 to 110MHz) \leq 0.1% (Other RF values)
Incidental AM	•	For Demodulation band width = 300Hz to 15kHz, Modulation frequency = 1kHz, Deviation = 75kHz and RF $>$ 5MHz \leq 0.5%
DC · FM mode		
Frequency accuracy	:	\pm (Reference frequency + 2kHz)
Stability	:	\leq 2kHz/10 minutes 2 hours after power on
External modulation frequency characteristics	:	±1dB DC to 100kHz, 1kHz reference
[AM]		
Settable	:	0 to 99.9%
Depth	:	0 to 80% Output ≦ 120dB (7dBm)
Resolution	:	0.1%
Display	:	3-digit readout

-8-

Accuracy	: (D	isplayed value ± 5 >% Depth \leq 80%	
External m frequency characteri		ldB 50Hz to 10kHz, 1kHz reference	
Distortion of interna external m	l and and odulation ≦	r Demodulation band width = 50Hz to 15kHz, d Depth = 30% 0.5% (RF = 400kHz to 1.7MHz) 1.5% (Other RF values)	
Incidental	Mod Out	r Demodulation band width = 0.3Hz to 3kHz dulation frequency = 1kHz, Depth = 30% tput \leq 120dB 200Hz peak	
◇ Setting Fu	nctions : 1) 2) 3)	cursor designation) for specifying carri frequency, output level, modulation leve and memory. Step keys for specifying carrier frequence output level, and modulation level.	er 1, y,
∘ Memory Fun	ction : 1) 2)	level, modulation level, modulation modetc.	e, 10
∘ DUMP Funct	tra	e contents of the 100-point memory can ansferred to the memory of the same mod gnal generator by DUMP key.	

-9-

 Remote Control
 The carrier frequency, output level, and modulation level can be stored/recalled, the carrier frequency and output level can be incremented/decremented by steps or continuously by rotary knob, modulation can be turned ON/OFF, etc.

• GP-IB Interface : SHO, AH1, TO, L1, SRO, RL1, PPO, DC1, DTO, CO

• Range Out (dummy antenna switching output):

"1" (5V MAX 50mA) for RF \geq 35MHz "0" (0V) for RF < 35MHz

Leakage Field : The measurement of OdB (1μV) is not affected.
 Strength Or 1μV or less at 50Ω termination voltage when the leakage field strength is measured by a two-turn loop antenna of 25mm diameter placed 25mm apart from the front panel.

• Backup Battery is provided.

Power Source : AC 100, 115, 215, 230V \pm 10% (selected by a switch on rear panel)

Frequency : 50Hz/60Hz

Power dissipation : Approx. 70VA

• Size and Weight

Dimensions : 430(W) × 99(H) × 400(D) mm (16.93(W) × 3.90(H) × 15.75(D) in.) 445(W) × 119(H) × 455(D) mm (Full envelope)

 $(17.52(W) \times 4.69(H) \times 17.91(D) \text{ in.})$

Weight : Approx. 13kg (29 1bs)

-10-

• Environmental Conditions (temperature and humidity)

Range to satisfy : 5 to 35°C (41 to 95°F); 85% or less specifications

Allowable range : 0 to 40° C (32 to 104° F); 90% or less for operation

• Accessories	: Ouptut cable (SA556)	1	N type 5D-2W
	: Power supply cord	1	
	: Fuse (3.0A)	1	
	: Fuse (1.5A)	1	
	: Operation manual	1	

• Options

High stability reference crystal oscillator (Factory-installed option)
 Frequency : 10MHz
 Temperature : ±1×10⁻⁷
 Aging rate : ±5×10⁻⁸ ∕day 24 hours after power on

- 2) External reference frequency modification (Factory-installed option) The standard model of KSG4500T supports the reference signal input frequency of 10MHz, but it can be changed to the following 5MHz or 1MHz
 - a) $5MHz \pm 100Hz$ (±0.002%)

b) $1MHz \pm 20Hz$ ($\pm 0.002\%$)

3. PREPARATION FOR USE

3.1 Unpacking and Inspection

Before being shipped from the factory, the KSG4500 goes through thorough mechanical and electrical examinations and inspections, and its correct operation is confirmed and guaranteed.

On receiving the instrument, inspect it for any damage that may have been caused during transportation. Should a damage be found, notify the Sales Office immediately.

3.2 Line Voltage and Fuse Selection

Select a voltage range from the table below by the voltage selection pulg on the rear panel of KSG4500, and the instrument can be used in the selected voltage range.

Before connecting the power supply cord to the instrument, verify that the voltage selection is matched to the power source. When the voltage range is changed, change the fuse also according to the table below.

Application of a voltage beyond the selected range will cause in complete operation or failure.

Setting Position	Center Voltage	Line Voltage Range	Fuse
A	100V	90 - 110V	3.0A
В	115V	104 - 126V	-
С	215V	194 - 236V	1.5A
D	230V	207 - 253V	

3.3 Surrounding Temperature/Humidity, Warm-up Time, and Installation Place

The KSG4500 operates correctly in temperatures from 0 to 40°C (32 to 104°F). If the instrument is used or placed under high temperature and humidity for a long time, failures will occur and the life of the instrument will be shortened.

The instrument requires the warm-up time of 30 minutes. Do not use the instrument near a strong magnetic field or electromagnetic waves.

-12-

4. OPERATION

Switches between $+ \Delta FREQ$ and $- \Delta FREQ$ frequency increment/decrement frequency difference and the unit of specified value and per-: Increments/decrements frequency by displays frequency. Turns on the WE STEPPERSU: Allows the setting of the HOCH LOCK цB Ц đ 出 \bigcirc Displays carrier frequency and step by numeric keys. Dů AR lamp in upper section. D forms repeat operation. D° 0 frequency difference. ۵Ĵ in selectivity test. FREQUENC D MPLITUDE Indicates AFT20 -HEIG X $[\c d]$ \triangleright ••• ••• AFREQ FREQ ≬ ŋ'n ©, © ∆ ⊽ ۵ů : Clears the currently displayed row and column and stores HEMDRAM : Displays row and columns of memory address matrix by "00" to "99" WER WEADER NEXTRE : Stores data in the column of the memory address next to : Stores and WIN command in the column of the displayed : Clears the currently displayed row and column and recalls the WER WORD : Turns on the WARD lamp. When data is input by numeric key, ©, DATA ENTR' THE T B T THE row and column specified by the 2-digit number entered by WERN WORKEN: Transfers data from "00 - 99" to another KSG4500 through ŋ° the [SIM] lamp is turned off and a row is stored. the 2-digit value entered by numeric keys. ۵ů D Recalls the row specified by a numeric key. Ą SINGLE STEP IN : Recalls the preceding column. the currently displayed one. 붶 **()** \triangleright WEMOIES connector on rear panel SINCEE STEP MAN: Recalls the next column. D Π Turner and the first state 0 ž MOLTALION ŋ MEMORY ٥ĵ memory address. E SU SU *X8273 ET 488 1 X HIX numeric keys. ¥٩ 10 ŋ° TURINE COM TINE TO THE ۵ů e) Ze EE STO RTH NEWEN TEI STOI E ß DET-LOBING-FN ••• ٢ ŧģ RCI RCL 여공 POWER : AC power ON/OFF switch

4.1 Front Panel Features

-13-

AMPLITUDE	<pre>MHRUNTUDE : Displays RF output level by four digits. digits. MARENTUDE : Displays difference of output level. MARENT: Moves cursor. MARENT: Turns ON/OFF output level. MARENT: Foreases the instrument from remote control by CP-IB. Rotary knob : Modifies the value at cursor position. MARENT: Increments/decrements amplitude by the unit of specified value and performs repeat operation. DUTRUTN : N type connector for RF output. -20.0dBu to 126.0dBu at open circuit. The signal source impedance is 50.Ω. MARENTED NART : Displays the offset for dumy antenna, etc. MEDNRESS : Displays the offset for dumy antenna, etc.</pre>
DATA ENTRY	 BMATALENTEX: Keys to input numeric values directly and move cursor and rotary knob to modify displayed value. EKERQI : Allows the setting of frequency by numeric keys. MMFII :: Allows the setting of output level by numeric keys. MMFII :: Allows the setting of fM deviation by numeric keys. MMM :: Allows the setting of fM depth by numeric keys. MMM :: Allows the setting of fM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys. MMM :: Allows the setting of AM depth by numeric keys.
MODULATION	<pre>SPGUN : Sets additional function mode. The lamp goes on, and the NODULATION display enters the SPCL display mode. MODULANION : Displays FW/AM modulation rate by three digits MODULANION : Displays FW and M single signal. FFM EXT MODULATION display FM mode AM Single signal. FFM EXT MODULANIC : Display FM mode AM FXT MODULANIC : Display FM mode (AM FXT MODULANIC : Display FM mode (FM CONTR : Switches between external and internal modulation for FM and AM. (FFM CONTR : Indicates FM deviation by the unit of specified value and performs repeat operation. (FM CONTR : Turns ON/OFF FM modulation. (FM ONT : Turns ON/OFF FM ONT : TURNS TERES AM ONT : TURNS TERE</pre>

-14-

-15-

4.3 Turning on the power supply

Connect the power supply cord to the power source of the selected voltage and press the **EQWER** switch. All the LEDs on front panel come on and then the status found before the power was turned off is displayed.

4.4 Setting Frequency

4.4.1 Setting frequency by numeric keys

Press the **REEQ** key and enter a desired value by numeric keys $(0 \sim 9, \cdot)$. Press keys in the order of (1), (2), and (3) in the above chart. If a key outside of the frame is pressed, the value found before the **REEQ** key was pressed is displayed.

Press the MHZ or kHZ key on completion of the numeric key entry, and the specified value is displayed in the [FREQUENCY] section correctly. The maximum number of digits for the input value is 8; a value of more than eight digits is not accepted. The range of the frequency that can be specified is 0 to 1060MHz. Since the frequency resolution of the instrument is 100Hz, a value less than 100Hz is ignored when the unit key is pressed.

When pressing a numeric key by mistake, press the **EREQ** key again and enter the desired value by numeric keys or correct the value of the particular digit by the **EXE** (back space) key.

If the ANR, or ANN key has not been pressed after the unit key (MNZ or KHZ) is pressed, a different frequency can be set only by the numeric keys and unit key without the necessity of pressing the TREO key.

-16-

(a) Example: 123.4567MHz is input.

	imes Undefined
	ى Turned off
Key operation	FREQUENCY display
PREQ	$\times \times \times$ Previous value
	1000 000 0
2	1200 000 0
	1230 000 0
	123.00000
4	123.4000
	ى ب ا ل 1 2 3 • 4 5 س
6	123.456
	ل 123.4567 L
Milz	1 2 3 . 4 5 6 . 7

(b) Example: 455kHz is input.

Key operation	FREQUENCY display
PREQ	123.456.7
4	4000 000 0
	4500 000 0
5	4550 000 0
	م مال

(c) Example: 11MHz was to be input, but 12MHz was input by mistake.

Key	operat	ion			FREQUENCY display
	FREQ				455.0
					1000 000 0
	2	"2"	was	pressed	1200 000 0
		for	"1"	by mist	ake
					1000 000 0
					1100 000 0
	MHz				1 ، 0 ، 0 ، 0 ، 0 س

If a numeric key is pressed by mistake as in the above example, the character of the pressed key can be deleted by the pressing of key. If the is pressed continuously, all the displayed characters are deleted and the previous value is displayed. (d) Example: 85.7MHz was to be input, but an error was made during the input.

Key operation FREQUENCY display FREQ 8 8000 000 0 6 "6" was pressed 8600 000 0 for "5" by mistake 86. - -----86.7 000 0 7 Press twice 8600 000 0 Press twice 11.000.0

If the **KHZ** key is pressed before the key (**KHZ** or **KHZ**), the previous frequency is displayed.

8	8000 000 0
B	8500 000 0
	85.0000
2	85.7
	85.700.0

(e) Example: 11MHz was input for 1MHz by mistake.

Key operation	FREQUENCY display
FREQ	85.700.0
	$1 \cup \cup \cup \cup \cup \cup$
	1100 000 0
miz	11.000.0
	1000 000 0
	1.000.0

If an error is found after the unit key is pressed as in the above example, the correct frequency can be input without pressing the **EREC** key again.

4.4.2 Rotary knob

The rotary knob increases or decreases the value of the digits at and above the cursor position in the [FREQUENCY] display section. If the cursor is not found in the [FREQUENCY] display section, bring it into the section by the section, or keys key; to move the cursor within the section, use the section or keys key. There is no need to set the section or keys when making setting with the Rotary knob.

(a) Example: To change frequency from 100MHz to 100.02MHz

The mark "_" denotes the cursor position Key operation FREQUENCY display ... 100.000.0 Press once ... 100.000.0 Turn the rotary knob ... 100.020.0 clockwise by two steps

(b) Example: To change frequency from 100.02MHz to 98.02MHz

Key operation

tion	FREQUENCY display				
	100.0 <u>2</u> 0.0 ت				
Press twice	1 0 <u>0</u> . 0 2 0 . 0 ـ				
Turn the rotary knob	9 <u>8</u> .020.0 وىت				
counterclockwise by					
two stone					

4.4.3 Setting frequency step for and keys

Set a desired step value (minimum 100Hz) for the [FREQUENCY] And keys, and the frequency can be incremented or decremented by the unit of that value.

In setting the value, the cursor position in the [FREQUENCY] display section may be ignored.

Input the step value in the order of (1), (2), (3), and (4) shown in the above chart.

The **XEE** key in the explanation below means the yellow key of number ①. This key functions as a shift key; the function of a yellow key on the panel pressed after the **XEE** key is different from that of the same key pressed without **XEE** key.

(a) Example: To set 9kHz for and keys when carrier frequency is 1MHz.

Key opera	tion	FREQUENCY display
YE		1.000.0
STEP FRE	Q	JUL 1.000.0
9		9000 000 0
kHz		1.000.0
	Press once	

Keep pressing the pressing the

4.4.4 Frequency difference ATREE and keys

The ARREO function, to check the value of change in frequency, is useful for measuring the band width of a receiver. When the ARREO key is pressed, the ARE indicator in the [FREQUENCY] display section is turned on and the frequency difference (Δ FREQ) is displayed.

(a) Example: 100MHz is set currently.

Key operation	FREQUENCY display
YE	$\times \times \times \times \times \times \times \times \times$
STEP FREQ	$\times \times \times \times \times \times \times \times$
	$1 \cup \cup \cup \cup \cup \cup$
	1000 000 0
0	1000 000 0
KHZ	$\times \times \times \times \times \times \times \times \times$
FREQ	$\times \times \times \times \times \times \times \times \times$
	$1 \cup \cup \cup \cup \cup \cup$
	1000 000 0
	1000 000 0
	-100.000.0
AFRED	لامن 100.0 ΔF indicator
	comes on
[FREQUENCY]	100.0 Carrier frequency
	99.9MHz
4	0.0

If the operator keeps pressing the pressing and the frequency keeps increasing or decreasing by the unit of 100kHz.

If the key is pressed in the above example, the carrier frequency returns to the initial value (center value).

(b) Example: 100MHz is set currently.

Key operat	ion	FREQUENCY	display		
		.100.	0 0 <u>0</u> . 0		
ΔFREQ			<u>ں 0</u> .0	AF inc	licator
				comes on.	
	Press three	<u>.</u>	0.0 ت		
	times				
	Turn the rotary	<u>5</u> .	0.00.0	Carrier f	frequecy
	knob counter-			95MHz	
	clockwise by				
	five steps				
Afreq		95.	0.00.0		

To release the \triangle FREQ function, press the **AFREQ** key again. In the above example, the carrier frequency effective after the release is 95MHz.

(c)	Example: Using		key	after	modificat	tion o)f	100MHz	by
	Δ FREQ Key operation	n	FRE	QUENCY	display				
	• -			•	0.00.0				
	AFREQ				0.0 س	ΔŦ		indicat	or
						come	s (on.	
	2		2.						
			2 () 					
			2 (ت 0 0	·				
	kHz				200.0	Carri	er	freque	ncy
						100.2	MH:	Z	
	₩ XH		— 、		200.0	Carri	er	freque	ncy
						99.8M	ſHz		
	∆FREQ o	r		. و و ـ	800.0	ΔF	i i	ndicato	r
	FREQ					in tu	irne	ed off.	

-22-

4.4.5 Reference signal input/output terminals

(1) Referece signal output (REFERENCE OUTPUT)

The REFERENCE OUTPUT terminal outputs a reference signal (Frequency = 10MHz; Voltage = 0.15Vrms or higher).

When this signal is applied to the reference signal input terminals of other instruments, the relative difference in reference signal frequency among the instruments can be redused.

The half-fixed resistor on the right side of the output connector is to be used for fine adjustment of the output frequency.

The fine adjustment, however, cannot be done while the LED indicator is on after a signal is input to the reference signal input terminal (REFERENCE INPUT). The half-fixed resistor is set to the standard value before the instrument is shipped from the factory. Do not change value.

(2) Reference signal input (REFERENCE INPUT)

The reference signal of 10MHz and 0.15Vrms or higher voltage can be applied to this terminal from an external instrument or from the optional high stability standard crystal oscillator.

When this reference signal is applied, the LED indicator on the right side of the input connector is turned on and the frequency of the internal reference signal is locked to the frequency of the external reference signal or optional high stability crystal oscillator signal. Thus, the relative difference between these signals is reduced.

By applying an external highly stable reference signal to the REFERENCE INPUT terminal and connecting the REFERENCE OUTPUT terminal to external instruments, high accuracy can be obtained and the relative difference in frequency among the connected instruments can be reduced. The reference input frequency can be changed to 5MHz or 1MHz by option.

-23-

(3) High stability standard crystal oscillator output (H STABILITY OUTPUT) - option

If the optional high stability crystal oscillator is installed, the signal whose frequency is 10MHz and whose voltage is 0.15Vrms or higher is output from the H STABILITY OUTPUT terminal.

If the H STABILITY OUTPUT terminal is connected to the REFERENCE INPUT terminal by the BNC cable provided with the instrument, the accuracy of the frequency used in the instrument can be made the same as the accuracy of the frequency output from the high stability standard crystal oscillator.

See the section explaining the optional items for details.

4.5 Setting Output Level

4.5.1 Setting unit key

Display		Key	Displa	ay	Key	Displ	ay	Key	
$\left \right\rangle$	EMF dB	ŶĔ	IUNIT	dB	ŶE	UNIT	dBm	YE	IUNIAI –

Each time the **EXE** and **EXE** keye are pressed, the unit of output level changes cyclically as above. In the RF · OFF state, however, the unit and other modes cannot be set.

- (a) EMF dBµ: Open circuit voltage -20.0dBµ to 126.0dBµ The EMF dBµ indicator in the [AMPLITUDE] section is turned on.
- (b) dBµ: Loaded voltage 26dBµ to 120dBµ
 The dBµ indicator in the [AMPLITUDE] section is turned on.
- (c) dBm: Power indication 133dBm to 13dBmThe dBm indicator in the [AMPLITUDE] section is turned on.

4.5.2 Setting output level by numeric keys

Press the **MAP** key and enter a desired value by numeric keys $(0 \sim 9, \cdot, -)$. Press keys in the order of (1), (2), and (3) in the above chart. If a key outside of the frame is pressed, the value displayed before the **MAP** key was pressed is displayed again. After entering a value by numeric keys, press the **MAP** (**MAP**) key. Then, the value is displayed in the [AMPLITUDE] section correctly.

Key operation	AMPLITUDE display
AMP	$\times \times \times \times \times \times$ Previous value
	1000
	1000
	10.0 ي

(b) Example: To set -5dB

Key operation	AMPLITUDE display
AMP N	10.0
	-500
	5 . 0

The key need not be pressed if an output level is to be set immediately after another output level.

(c) Example: 120dB was to be set, but an error was made during the setting (Unit = EMF dB μ)

Key oper	atio	n		AMPLITUDE	display
AMP				5.0 - 2	
				1000	
	"3"	was	pressed	ت ت 13	
	for	"2"	by mistake		
				1000	
2			,	1200	
0				ت 120	
dB				120.0	

If an error is made during the setting by numeric keys, correct the error by the key. If an error is found after the key is pressed, enter the correct value by numeric keys again. If an output level higher or lower than the maximum or minimum value allowed for the specified unit is set, the [AMPLITUDE] section displays the previous value. See Article 4.5.1 for the range allowed to each unit.

4.5.3 Rotary knob

The rotary knob increases or decreases the value of the digits at and above the cursor position in the [AMPLITUDE] section. Use the weight or weight key for moving the cursor. Turn the rotary knob clockwise, and the output level will increase; turn it counterclockwise, and the output level will decrease.

(a) Example: To change output level from 46dB to 66dB (Unit = EMF dBµ)

(b) Example: To change output level from 66dB to 60dB

Key operation

AMPLITUDE display

6	$\Big)$

 $-\frac{6}{6.0}$ Press once $-\frac{6}{6.0}$ Turn the rotary $-\frac{6}{0.0}$ knob counterclockwise by six steps

There is no need to press the **RADE** (**RADE**) key when making setting with the Rotary knob.

4.5.4 Setting output level step for and keys

Set a desired step value (minimum 0.1dB) for the [AMPLITUDE] and keys, and the output level can be incremented or decremented by the unit of that value.

Press keys in the order of (1), (2), (3), and (4) in the above chart.

(a) Example: To set 2dB for and keys when the output level is 60dB

Key operation	AMPLITUDE display
YE STEP AMP	60.0
2	2000
dB	60.0 ت
Press once	6 2 . 0

-28-

The offset function is used for compensating the gain in amplifier and loss in dummy antenna and cable. To set an offset value for the output level, press the AMPA key, numeric keys (0.999), and YE OFFSET. When YE OFFSET is pressed, the offset output level is displayed. The offset value can be adjusted within the range of ±50dB.

(a) Example: To give -6dB offset to 100 EMF dBµ

Key operation	AMPLITUDE display				
and the second	100.0				
	-6				
YE OFFSET	100.0				
YE OFFSET	indicator is ي 94.0 ي				
	turned on				
To release offset					
YE OFFSET	100.0 DESEMINATION INDICATOR IS				
	turned off				

4.5.6 Output level difference key

The Δ dB function, to check the value of change in output level, is useful for measuring the band width of a receiver and attenuation characteristic of a filter.

Note that the Add indicator in the [AMPLITUDE] section is turned on when the Add key is pressed.

When to release the \triangle dB function, press \triangle dB key again.

The output level can be changed only within the range from its minimum value to its maximum value.

(a) Example: The current output level is 54 EMF dBµ.

Key operation AMPLITUDE display ↓ 54.0 ↓ 0.0 ABB indicator is turned on Turn the rotary -16.0 knob counterclockwise by 16 steps ↓ 38.0 To release the △ dB function

4.5.7 REOFE key

When the **REFORM** key is pressed, the RF output signal is turned off and "OFF" is displayed in the [AMPLITUDE] section.

In the RF.OFF state, the output level and unit cannot be set.

4.5.8 Reverse power protector

When a high frequency power is applied to the OUTPUT terminal from an external unit, an internal protector operates and stops signal output. Then, the REV indicator in the [AMPLITUDE] section is turned on.

To reset the protector function, press the REALER key twice.

The units of output level used for the KSG4500 are as follows:

(a) EMF dBµ (open circuit voltage)

The voltage e_0 in the above chart is normalized by "OdB μ = 1 μ Vrms".

(b) dBµ (loaded voltage)

The voltage e_1 in the above chart is normalized by "OdB μ = 1 μ Vrms".

(c) dBm (power indication)

The power consumed by R2 in the above chart is normalized by

"0dBm = $\sqrt{1 \text{mW} \times 50 \Omega}$ = 0.2236Vrms".

-31-
4.6 Setting the Modulation

- 4.6.1 ¥E key
 - a) Press XE 385kHz, and the FM deviation is set to 3.5kHz.
 - b) Press YE 22 5kHz, and the FM deviation is set to 22.5kHz.
 - c) Press XE Z5kHz, and the FM deviation is set to 75kHz.
 - d) Press XXX 20%, and the AM depth is set to 30%.

4.6.2 Setting modulation mode and source

When a modulation mode switching key is pressed, the modulation mode of the displayed symbol (%=AM and kHz=FM) is selected and the corresponding indicator is turned on.

For switching the source, use the **EXT**, **HOURD**, or **HERE** key. Keys (1) and (2) turn ON/OFF FM and AM respectively. Each time (1) or (2) is pressed, the relevant modulation is turned on and off alternately. The key has the function to select the mode also. When VIDEO modulation is selected, the indicators in [MODULATION] section are turned off.

-32-

(a) Example: 75kHz deviation is to be set for 400Hz internal FM source

Key operation	MODULATION display
	imes ime
400H2	EM 400H2 indicator is on
	7
35	. 75 🖵
kH2	75.0

- (b) Example: The modulation is to be turned off The modulation is terminated when key ① is pressed and the FM ON indicator is turned off.
- 4.6.3 Setting modulation by numeric keys

Press keys in the order of (1), (2), and (3) in the above chart.

First, press the minimum or maximum key in [DATA ENTRY] section, and the previously set modulation factor is displayed with unit in the [MODULATION] section.

Enter a desired value with numeric keys ((0), 9, ...).

After entering the value, press **KH2** for FM and **KH2** (**KH2**) for AM. Then, the value is displayed in the [MODULATION] section with the specified unit. Any value may be input by the numeric keys, but the following relationship between carrier frequency and FM deviation range and resolution must be observed:

Carrier frequency		frequency	Maximum deviation	Resolution		
100kHz	to	127.5MHz	500kHz	0.1kHz or 1kHz		
127.5MHz	to	255MHz	125kHz	0.1kHz or 1kHz		
255MHz	to	510MHz	250kHz	0.1kHz or 1kHz		
510MHz	to	1040MHz	500kHz	0.1kHz or 1kHz		

The maximum AM depth is 99.9% and minimum depth is 0.1%.

(a) Example: To set FM 25kHz

Key	operation	MODULATION display				
		imes ime				
		kiiz is displayed as unit				
	2	200				
	5	25 🖵				
	kH2	25.0				

3	300
0	ت 30
X	30.0

4.6.4 Flashing in [MODULATION] section

If the FM deviation specified by the user is not within the range determined by carrier frequency, an error is reported in one of the three ways described below and the modulation cannot be executed. When this happens, set the deviation again within the allowable range.

(1) The value displayed in the [MODULATION] section flashes when it is not within the allowable range because the carrier frequency has been changed.

-34-

 (2) The kHz unit indicator flashes when the AM indicator in the [MODULATION] section is on for (1).
 The overlapping ranges of frequency are as follows: The border values of the overlapping ranges are rough values.

For example, when the carrier frequency is 300MHz and FM deviation is 250kHz, the value "250" is displayed in the [MODULATION] section.

If the carrier frequency is reduced to range 127.5 - 255MHz, the value "250" flashes in the [MODULATION] section and the output signal is not modulated.

4.6.5 Rotary knob

The rotary knob can modify the FM deviation and AM depth by increasing or decreasing the value of the digit at the cursor position in [MODULATION] section. When the cursor is not found in the [MODULATION] section, bring it into the section by the section by the key; when it is found in the section, move it by the key.

After changing the modulation factor by the rotary knob, the unit key (***************************) need not be pressed.

(a) Example: To change FM deviation from 25kHz to 35kHz (when carrier frequency is 350kHz or higher) The mark " " denotes cursor position Key operation MODULATION display FM 25.0 25.0 Press once Turn the rotary knob clockwise 35.0 by one step (b) Example: To change AM depth from 30% to 25%

Key operation		display	
	<u>3</u> 0.0		
Press once	3 <u>0</u> .0		
Turn the rotary			
knob counter-	2 <u>5</u> .0		
clockwise by			
five step			
	Press once Turn the rotary knob counter- clockwise by	30.0 Press once 30.0 Turn the rotary knob counter- clockwise by	

4.6.6 Setting Modulation Step for and Keys

Set a desired step value (minimum 0.1kHz or 0.1%) for the [MODULATION] and keys, and the modulation can be incremented or decremented by the unit of that value.

Press keys in the order of (1), (2), (3) and (4) in the above chart.

(a) Example: To set 2.5kHz as FM step

MODULATION display Key operation YE STEP PM 75.0 kHz 2 200 2.00 5 2.5 75.0 kHz Δ Press once 77.5

To increment or decrement the FM deviation continuously by the unit of the specified value, keep pressing the [MODULATION] [][[A][]]] or [[[A][]]] key. When the key remains pressed, a repeat function is applied.

The AM depth can be incremented/decremented in the sameway as FM deviation.

4.6.7 External modulation signal connection and setting

(1) Connection and setting method

Connect the external modulation signal source to **MOD INPUT** (EXT AF) on the front panel. The input impedance is approximately $10k\Omega$, and appropriate input level is about 3Vp-p.

When the level of external modulation signal source is too low, is turned on; when it is too high, is turned on.

The external modulation signal source level need not be adjusted each time the modulation is modified.

The above chart shows the relationship between modulation and input level.

When the input level is adjusted to the range of **HI** and **I** is set within the error range of ±2%. The modulaion is converted into a digital value internally on the basis of this input level.

Whether the input signal is a composite wave signal or single wave signal, the instrument checks if the peak of the signal is within the range of and and and the modulation is proportioned to the input level as shown in the above chart.

For example, after setting the input level within the range of **HIM** and **BAD** and the FM peak frequency deviation to 500kHz, attenuate the input level by -6dB.

Then, 500kHz (=100%) remains displayed but the actual peak freauency deviation is reduced to 250kHz (=50%). At this time, the limit lamp is turned on, but modulation is done correctly at the peak freauency deviation of 250kHz.

When the input level is set within the range of **HI** and **HO**, the **HI** and **HO** lamps are turned off, but when the **MAIN**, **HERT**, **RIGHT**, and **SUB** switches of the stereo signal generator are manipulated, the **HI** and **HO** lamps may be

Since the range of **HILL** and **ILD** is very narrow, the **HILL** and **ILD** lamps may be turned on alternately but that does not mean a serious error.

-38-

turned on alternately.

4.6.8 DC · FM modulation mode

When the **DOWENN** key is selected, external modulation is done by DC coupling and the frequency of FM VCO enters a free run state. In this state, the frequency can be shifted by the DC signal. The displayed modulation is accomplished by 1.5V DC.

Note: After the modulation mode is changed from the DC·FM source to EXT, 400Hz, or 1kHz, it takes approximately 5 seconds for the signal to become stable.

4.6.9 VIDEO modulation mode

The VIDEO modulation is a wide-band amplitude modulation with both side bands, and the high frequency output level accuracy for the VIDEO modulation is ±3dB.

Pressing of the **WIDEO** key sets the instrument in the VIDEO modulation mode, turns on the VIDEO indicator, and turns off the FM/AM mode, MODULATION, and unit indicators.

The modulation mode may be input from external units only.

The **EXT** III ion lamps operate accroding to the combination of VIDEO level and SIF level. These lamps, when turned off, indicates the optimum input level.

The EXT AF/SIF terminal is used as sound IF input terminal, and the input impedance is switched to 75Ω . Normally, an SIF signal of approximately 0.5Vp-p is applied (the center frequency is 4.5MHz and FM deviation frequency is 25kHz by M Method).

A video signal is applied to the VIDEO input terminal (normally 1Vp-p).

4.7 Memory

4.7.1 Memory recall method

Memory addresses are allocated in a matrix of 10 raws and 10 columns (100 points in total).

The following is the memory address allocation diagram:

	ME	MOR	Y ad	ldress		2-di	git 7	-segmen	t dis	pla	7		
00	01		02	03	ı	04	05	06	07	1	80		09
10													•
20													•
30													•
40													•
50													•
60													•
70													•
80													•
90	•••	• •	•••	•••		-	• • •		• •	• •	•	•	99

Basically, the recall operation means to call the row number by the RCL key and numeric key (0 9) and to call the column number by the [MEMORY] key.

Also, a memory row and column can be called directly by the entry of a 2-digit number by numeric keys (0 9 9) after clearing the [MEMORY] display by the RCI and kyes.

When repeating the recall operation continuously, it is only necessary to press the **RELE** key the first time.

In the following examples, it is assumed that the carrier frequency, output level, modulation mode, etc. are set as explained in Section 4.4 to 4.6 and that they are stored in memory by the operation explained in Section 4.7.2:

(a) Example: Method of recalling memory by rotary knob
When the cursor is not found in the [MEMORY] display, move it by the key; when it is found in the [MEMORY] display, move it by the key.
By turning the rotary knob, the data of addresses 00 to 99 can be recalled continuously.

-40-

(b)	Example: To recall memory address "10"
	MEMORY display
	RCL key, key "10"
(c)	Example: To recall memory address "43" RQUM key, MAM key
	Press [MEMORY] 23 key three times "43"
(d)	Example: To recall memory address "85" RCL key, 8 key
	Press [MEMORY] A key five times "85"
(e)	Example: To recall memory address "56" directly
	Press the RCL and keys, and the [MEMORY] display is
	cleared. Press the numeric keys 🗱 and 🌆 , and "56" is
	displayed.
	When the address "78" is to be called subsequently, omit
	pressing the RCL key and simply press the RCL key. When
	the [MEMORY]
	display is cleared by the 🗱 key, press the numeric keys
	🗱 and 🗱 . Then, "78" is displayed.

4.7.2 Memory store method

Most of the functions specified on front panel can be stored in the memory addresses allocated in the form of a matrix as described in Section 4.7.1, but the step values of carrier frequency, output level, and modulation factor, Δ FREQ function, Δ dB, and RF ON/OFF function cannot be stored.

The basic store operation is to set data such as carrier frequency, output level, modulation level, and modulation type and press [[12]], [STO]], numeric key, and [MEMORY] [[22]] in this order. Also, the data can be stored directly into a row and column by entering a 2digit number by numeric keys after clearing the [MEMORY] display by [[12]] and [[22]].

(a) Example: To store 1MHz carrier frequency, 76 EMF dBµ output level, 1kHz internal modulation source, and 30% AM depth into memory address "10"

-41-

1	PREQ	×××.×××.×
		$1 \cup \cup \cup \cup \cup$
	MHZ	uu1.000.0

Besides the above method, the carrier frequency may be set by the rotary knob or [FREQUENCY]

0	AMP	$\times \times \times \times$
		7000
	6	76
	dB	76.0 ي

Besides the above method, the output level may be set by the rotary knob or [AMPLITUDE]

3	AN,	lkiiz	$\times \times . \times$	
	YE,	30%	30.0	%

Besides the above method, the modulation level and mode may be set by numeric keys () and modulation mode key. Aftere setting the above data, press) 22 , (STO green indicator is turned on and) . Then, the data is stored into memory address "10".

(b) Example: To store different data into memory address "13" MEMORY display

- ① RCL II (Press ⊥ twice) "12" is displayed
- ② Set carrier frequency, output level, modulation mode, etc.

③ Press ¥E \$10 24

The data set by step Q is stored into memory address "13".

- (c) Example: To store data into memory address "45"
 - ① Set carrier frequency, output level, modulation mode, etc.

 - Press numeric keys 4 and 5, and the data set by step
 (1) is stored.

-42-

- Note 1: When data is to be stored continuously, the MAR, STO, and key must not be omitted.
- Note 2: The *Rep* key explained in Section 4.7.3 cannot be used in the direct store method.
- 4.7.3 Storing data into a part of memory column (Setting REN key)
 - (a) Example: To shift memory addresses as "10" \rightarrow "11" \rightarrow "12" \rightarrow "13" \rightarrow "10" \rightarrow "11"

 Key operation
 MEMORY display

 RCL
 ZS
 Press
 "13"

 three times
 "14" RTN command is stored

[How to use the function]

RCL	"10" (First memory ad	dress)
	"11" (Second memory a	ddress)
	"12" (Third memory ad	dress)
	"13" (Fourth memory a	ddress)
	"10" (Returns to firs	t memory
	address)	

4.7.4 How to release RTN key

The following two methods are available:

(1) Display "19" by RCL "19" RCL 9 Press YE STO "19" By the above operation, all the ten columns become available as they were before the RTN key was pressed. (2) Display "13" by RCL, "13" [RCL] [1], and [2] keys (Press three times) Press [YE] [STO] [2] [14" RTN command is stored at .. "14" .. [YE] [STO] [2] [2] [19" five times)

Each time the 22 key is pressed, the RTN command is sent to the next column, and finally, all the ten columns become available as they were before the 22 key was pressed.

4.7.5 Recalling more than ten columns continuously (Setting NEXE key)

Normally, up to ten memory columns (00 - 09, 10 - 19, ..., 90 - 99) can be recalled at a time, but more than ten columns can be recalled continuously by the following operation: Display column number "9" in [MEMORY] section and press [YE], [STO]], and [NEXI]] keys; then, another ten columns can be recalled without specifying the next row number.

(a) Example: To recall memory addresses 30 - 49 continuously

Key operation	MEMORY di	isp1a	ay		
X	"39"	Prev	vious	s value	8
YR	"39"				
STO	"39"	STO	LED	comes	on
NEXT	"40"	STO	LED	comes	off

The memory addresses are recalled as follows:

 \rightarrow "30" \rightarrow "31" \rightarrow \cdot \cdot \rightarrow "39" \rightarrow "40" \rightarrow "41" \rightarrow \cdot \cdot \rightarrow "49" –

-44-

4.7.6 How to release WEXT key

Display the memory address ("09", "19", ..., or "89") at which the function is to be released, and press the **XE**, **SEO**, and **REE** keys in this order.

(a) Example: To reset the continous recall of memory addresses
 30 - 49 (to recall 30 - 39 and 40 - 49 separately)

Key operation	MEMORY d	lispla	y		
×	"39"	Prev	ious	s value	9
¥E.	"39"				
STO	"39"	STO	LED	comes	on
RIN	"39"	STO	LED	comes	off

4.7.7 Copying memory data to another KSG4500

- 1) The 100-point memory data can be copied to another unit of KSG4500.
- 2) Memory data copying method

① Turn on the power for the local and remote signal generators.

- ② Connect the remote control terminals on rear panel of the local signal generator to those of remote signal generator, using DUMP cable.
- (3) Press \mathbb{X} , \mathbb{Z} , (∇) , and the copying is started.
- Note: The DUMP cable uses an amphenol-type 14-pin connector. Among the 14 pins, numbers 8 - 10 are unconnected, but all other are connected.

Optional DUMP cable Model SA510

-45-

- 5.1 General Discription
 - 5.1.1 Outline

The KSG4500 has a 14-pin connector for remote control.

5.2 Operation Procedure

5.2.1 Explanation of Remote Control Connector

Figure 5-1 shows the connector pin allocation on the rear panel.

Figure 5-1

[Explanation of terminals]

In the following explanation, "1" and "0" correspond to the high and low levels of TTL respectively.

1) DATA terminals 🗱 - 🗱 (Pins 1 - 6, 13, and 14)

The DATA terminals are used for connecting a bus to the rear panel of the KSG4500. Since the bus is bidirectional, it can be used for both input and output.

Note: Since the DATA terminals are bidirectional bus, the signal generator does not function if data "O" or "/" is applied to the lines of DATA M. - M. directly.

- 2) CONTROL terminals and and (Pins 11 and 12)
 - DATA STROBE output terminals (Pin 12) Normally, "1" is output from this terminal. When data is read, "0" is output from it.
 - REQUEST TO READ input terminals (Pin 11) Normally, "1" is input to this terminals. When data read is requested, "0" is input to it.

3) CONTROL terminals and and (Pins 9 and 10)

and Display control output terminals When "1" is output from either of these terminals (c) or (c), data is being processed.

That is, the logical sum of the signals output from and and is the BUSY signal to external instrument.

4) +5V (Pin 8)

Power source for remote control (max. 100mA; equivalent to the power for turning on 2-digit LEDs)

5) GND (Pin 7)

Figure 5-2

When the BUSY signal is "O", set the key code data (DATA1-6), and after the last data of DATA1-6 is established, wait for 10µs or longer. Then, set CONTROL []]] to "O" for 1ms or longer as shown in Figure 5-2.

Approximately 160µs after CONTROL **1** falls, CONTROL **1** is set to "O" for approximately 100µs.

During this period of approximately $100\mu s$, the key code data that have been set are read processed.

After CONTROL **B** falls and before CONTROL **falls** (that is, during the period of approximately 160µs), the BUSY signal rises to "1" to indicate that the key code data are being processed. Enter the next key code data after the BUSY signal is set to "0".

-48-

5.2.3 Panel key code table

All the panel keys are expressed in codes. So, setting one of the key codes listed below (table 5-1) and sending it with CONTROL is equivalent to pressing the panel key corresponding to the code.

		DATA	input	pin n	umber	
	6	5	4	3	2	1
Key name	MSB	÷	— Key	Code -	→	LSB
memory rcl / sto	0	0	0	1	0	0
MEMORY / RTN (DUMP)	0	0	0	1	1	1
MEMORY 22 / NEXT	0	0	0	1	1	0
離記 (Yellow key)	0	1	1	0	1	1
	0	0	1	0	0	1
#400N2	0	0	1	0	1	1
	0	0	1	1	0	0
DC	0	1	1	1	0	0
VIDEO	0	1	1	1	0	1
MODULATION	1	0	1	0	1	0
MODULATION	0	1	1	1	1	1
FN ON	0	0	1	1	1	0
an on	0	0	1	1	1	1
DATA ENTRY FREQ / STEP FREQ	0	1	0	0	1	0
DATA ENTRY AMP / STEP AMP	0	1	0	0	1	1
DATA ENTRY FM / STEP FM	0	1	0	1	0	0
DATA ENTRY AM / STEP AM	0	1	0	1	0	1
DATA ENTRY 0	1	1	0	0	0	0
DATA ENTRY 11	1	1	0	0	0	1
DATA ENTRY 22	1	1	0	0	1	0
DATA BITRY	1	1	0	0	1	1

T	я	h	1	е	5	_	1
1	a	v	T.	С.		-	

(Cont'd)

Table 5-1

Key name	MSB	÷	- Key	Code -	>	LSB
DATA ENTRY	1	1	0	1	0	0
DATA ENTRY	1	1	0	1	0	1
DATA ENTRY	1	1	0	1	1	0
DATA ENTRY	1	1	0	1	1	1
DATA ENTRY	1	1	1	0	0	0
DATA ENTRY 9	1	1	1	0	0	1
DATA ENTRY	1	0	1	1	1	0
DATA ENTRY	1	0	1	1	0	1
DATA ENTRY	0	0	1	0	0	0
DATA ENTRY MH2	0	1	0	1	1	0
DATA ENTRY KHZ , % , KB	1	0	0	1	0	1
DATA ENTRY	0	1	0	1	1	1
DATA ENTRY	1	1	1	1	0	0
DATA ENTRY	1	1	1	1	1	0
DATA ENTRY	0	1	1	0	0	0
DATA ENTRY Rotary knob UP	0	0	0	0	0	0
詳書記A ENTRY Rotary knob DOWN	0	0	0	0	0	1
FREQUENCY	1	1	1	1	0	1
	1	0	1	0	0	1
BREQUENCY 22	0	1	1	0	0	1
FREQUENCY	0	1	1	0	1	0
AMPLITUDE 23.28	1	0	0	0	0	1
AMPLITUDE	1	0	0	0	1	0
AMPLITUDE	1	0	0	0	1	1
AMPLITUDE RESOFE	1	0	0	1	0	0
AMPLITUDE 22	1	0	0	1	1	0
AMPLITUDE NY	1	0	0	1	1	1
AMPLITUDE Rotary knob UP	0	0	0	0	1	0
AMPLITUDE Rotary knob DOWN	0	0	0	0	1	1
LOCAL	1	0	1	1	1	1

χ.

The frequency of 82.5MHz is to be set.

- Set the FREQ code "010010" according to the panel key code table (Table 5-1).
- Send CONTROL which is set to "0" for 1ms or longer as shown in Figure 5-2 (input data timing).

- 4) In the same way, set "110101" as the data of "5" and send CONTROL
- 5) Finally, send "010110" for "MHz" with CONTROL . signal, and the data transmission is completed.
- 6) When the signal generator receives the last data, namely, "010110" for "MHz" and CONTROL [10], it starts processing the specified frequency.

5.2.5 Remote Control circuit diagram example and operation.

Since the data lines of the remote control connector are bidirectional bus lines, it is recommended to use the circuit shown in Figure 5-4 when controlling the signal generator from a remote unit.

Figure 5-4 shows the remote control circuit that increments the memory address by one each time the switch is pressed.

Set the data of MEMORY RCL \triangle on Key Code Data Input Switch 1 according to the key code table (Table 5-1) and set CONTROL "0" (Press Switch 2). Then, approximately 160µs later, CONTROL is set to "0" and Enable A and B (pins 1 and 19) of 74HC244 are set to "0". The data is sent to the KSG4500 during the period of approximately 100µs when CONTROL is "0"

-52-

If other key code data of the key code table is set on Switch 1, the function of the corresponding key on the front panel can be controlled inremote mode.

When using a computer for the external remote control on the basis of function shown in Figure 5-4, be sure to confirm that the BUSY signal is set to "0" before setting CONTROL [16] to "0" for more than lms.

Note: Since the control terminals (DATA terminals) are assigned to eight bits, the fixed data "1" is sent for the 7th and 8th bits (pins 14 and 13) through 74HC244.

5.2.6 Memory Display output circuit example

Figure 5-5 shows an example circuit.

Figure 5-5

Since the remote control terminal has a bidirectional bus structure, it can output the same data displayed in the [MEMORY] section of the signal generator through the circuit shown in Figure 5-5. In addition to being displayed on a remote device, the data in the [MEMORY] section can be used for a process if the CMOS 4511 is replaced by a latch circuit.

If the circuit in Figure 5-4 is connected to that in Figure 5-5 by the connector section in parallel, the user can not only control the signal generator from a remote unit but also display the data in [MEMORY] section on a remote unit or check the data on the signal generator by a remote unit.

6. OUTPUT IMPEDANCE AND DUMMY ANTENNA SWITCHING SIGNAL

6.1 "RANGE OUTPUT" RCA Pin Connector

When the carrier frequency is within the range from 35.0000MHz to 1040MHz, the output signal is set to "1" (5V, 50mA); when it is within the range from 100kHz to 34.9999MHz, the output signal is set to "0".

The output signal can be used as the control signal of an output impedance switch, dummy antenna for car radio, etc.

The current of 50mA is used for driving two reed relays.

7. BACKUP BATTERY AND INITIALIZING CPU

7.1 Backup Battery

The KSG4500 uses a memory backup battery, and the battery may discharge allits electricity when the signal generator is not used for a long time.

Turn on the power for the signal generator having a charging circuit, and fully charge the battery.

-54-

The memory backup battery is greatly affected by the surrounding temperature, humidity, and storage conditions. After about five years, the discharge capability of the battery is reduced to approximatly 90% of the initial capability. The battery is fully usable in this state, but when it becomes unusable, replace it with GB 50H-3X of Japan Storage Battery Co., Ltd.

[Battery position and replacement method]

Remove the top panel of the instrument, and the aluminum sash cases attached to the left side of the instrument contains the CPU printed curcuit board, and the battery is mounted on this board. Remove two screws from the left side, take out the aluminum sash case, pull out the PC board, and replace the battery with a new one. After replacing the battery, insert the PC board into the aluminum sash case and fasten the two screws.

7.2 Initializing CPU

Then, turn on the power switch with pressing **XE** key, the CPU is initialized.

(Note) The stored setting data of memory will be lost.

7.2.1 Hardware reset

Turn on the power, and initialize the CPU by pushing the initial setting button switch S1 by an isolation screwdriver or something inserted from the hole on the side of the aluminum sash case containing the CPU board. At this time, all the data in memory, values for steps, and GP-IB address are set to their initial values.

7.2.2 Software reset

Turn on the power switch while pressing the we key on the panel; then, the CPU is reset. At this time, the values stored in the memory and the values for steps are not cleared. The GP-IB address is set in the initial state.

-55-

8. GP-IB

(General Purpose Interface Bus)

- 8.1 Introduction
 - 8.1.1 General description The KSG4500 has a GP-IB interface, and it can be controlled by the IEEE 488 standard interface bus.
 - 8.1.2 Features
 - 1) The functions of the signal generator can be controlled by the IEEE 488 standard interface bus.
 - 2) The remote mode can be verified by the [REMOTE] indicator.
 - 3) The signal generator can be set in local mode at any time by the pressing of **EQUAL** key. In the local mode, manual operation on the front panel is allowed. (In local lockout mode, however, the manual operation is not allowed.)
 - 4) The device address assigned to the signal generator can be displayed in the [AMPLITUDE] section.

8.2 Performance

8.2.1 Electrical specifications related to interface system Compiles to IEEE Std 488-1975.

8.3 Operation Procedure

- 8.3.1 Preparation for use
 - Turn on the power and check the device address of the signal generator on GP-IB.
 - 1) Press the **DOCAL** key after the **XE** key, and device address is displayed in the [AMPLITUDE] section.
 - To change the device address, turn off the power and set a new address according to the address setting method explained in Section 8.3.2.
 - After the hardware/software reset of CPU, the specified value "07" is displayed.
 - 4) Connect the GP-IB cable when the power is off.

8.3.2 Address setting method

The address of the KSG4500 is set at "07" when the instrument is delivered from the factory. The address switch is mounted on the CPU board in the signal generator. To set a new address, remove the top panel and shield board and manipulate the address switch S2 on the PC board 90-SIG-90104 found in the left aluminum sash case viewed from the front panel.

The address "07" can be changed to a desired address.

Remove the two screws on the right side the aluminume sash case. The aluminum sash case can be taken out. Lift the case, and pull out the case.

After setting the address, put the board back to its original position. Then, execute the software or hardware reset of CPU (see Section 7.2).

- a) Table 8-1 lists the values of S2 and corresponding addresses.
- b) When a switch of S2 is set to ON, the corresponding bit is set to the level of "O".
- c) Figure 8-1 shows how S2 is set for address "07".

S2

Device address setting value

 $2^{\circ}+2^{\circ}+2^{\circ}=7$ (1) (2) (3)

Figure 8-1

Table 8-1

Listener address	Ad	dr	es	s i	SW:	itch]
Device number	1	2	3	4	5	6	
00	0	0	0	0	0	0	
01	1	0	0	0	0	0	
02	0	1	0	0	0	0	
03	1	1	0	0	0	0	
04	0	0	1	0	0	0	
05	1	0	1	0	0	0	
06	0	1	1	0	0	0	
07			1	0	0	0	The DIP-SW is set to
08	0	0	0	1	0	0	"07" at the factory
09	1	0	0	1	0	0	
10	0	1	0	1	0	0	
11	1	1	0	1	0	0	
12	0	0	1	1	0	0	
13	1	0	1	1	0	0	
14	0	1	1	1	0	0	
15	1	1	1	1	0	0	
16	0	0	0	0	1	0	
17	1	0	0	0	1	0	
18	0	1	0	0	1	0	
19	1	1	0	0	1	0	
20	0	0	1	0	1	0	
21	1	0	1	0	1	0	
22	0	1	1	0	1	0	
23	1	1	1	0	1	0	
24	0	0	0	1	1	0	
25	1	0	0	1	1	0	
26	0	1	0	1	1	0	
27	1	1	0	1	1	0	
28	0	0	1	1	1	0	
29	1	0	1	1	1	0	
30	0	1	1	1	1	0	
Listen only	*	*	*	*	*	1	
		3	DII	P 9	SW		

 $1 = OFF \quad 0 = ON$

8.3.3 Available control command and bus line commands

Control command	
and	Explanation
bus line command	
(for hp BASIC)	
OUTPUT	Specifies the listener address and sends program
	data.
REMOTE	Turns on the REMOTE indicator (red) and prepares
	for receiving data when the listener adrress is
	specified. If the DOCAL key on the front panel
	is pressed in this state, the REMOTE indicator is
	turned off and the signal generator is set in
· ·	local mode to enable manual operation on the
	front panel.
LOCAL	Disables manual operation on all the devices on
LOCKOUT	GP-IB.
	The LOCAL LOCKOUT command is an universal
	command.
LOCAL	Turns off the REMOTE indicator and sets the
	signal generator in local mode to allow manual
	operation on the front panel.
CLEAR	Sets the signal generator in the same state as
	the initial power-on state.

T	a	b	1	e	- 8	-2
---	---	---	---	---	-----	----

Note: Since the bus line commands vary with the computer to be used, refer to the instruction manual of the specific computer to be used.

8.3.4 Program code table

Set the measuring conditions for KSG4500 with the codes listed in Table 8-3 GP-IB Function Setting Method. Table 8-4 gives the program codes in alphabetical order, and Table 8-5 list the codes are classifed by function. See these tables also. When creating a control program, arrange the program codes in the

same order as the corresponding functions that would be specified on the panel.

Table 8-3 GP-IB Function Setting Method

Item	Program code	Data	Unit
Carrier frequency			
Carrier frequency	FR	00.0	HZ, KZ,
			MZ
Output level unit			
EMF dBµ	EM		
dBµ	DU		
dBm	DM		
Output level	AP	00.0	DB
Output level OFF	RO		
Output level ON	R1		
Modulation			
AM depth	AM	00.0	PC
AM depth	AM	00.0	%
Amplitude modulation OFF	AMS5		
Amplitude modulation OFF	AMOF		
FM peak frequency deviation	FM	00.0	KZ
Frequency modulation OFF	FMS5	seen sink time	
Frequency modulation OFF	FMOF		
External modulation ON	SIAM, SIFM		
Modulation signal source 400Hz	S2AM, S2FM		
Modulation signal source 1kHz	S3AM, S3FM		
Modulation signal source DC \cdot FM	S6FM		
Modulation signal source VIDEO	S7AM		
	ŕ		
Memory control			
Memory recall	RC	00	
Memory store	ST	00	

Note 1: The mark "---" means an optional item.

- 2: The mark "OO" means than the data may be specified with one digit up to the maximum number of digits.
- 3: Data must be expressed in integers or real numbers; it must not be expressed in E format.
- 4: Alphabetic characters may be expressed in small letters.

Table 8-4 GP-IB Program Codes

Alphabetical order

r		Alphabetical order
Program code	Explanation	Remarks
AM	Amplitude modulation	Function mode
AMOF	Modulation OFF	Modulation signal source
		switching
AP	Output level	Function mode
DB	Unit dB	Unit
DU	Output dBµ	Function mode
DM	Output dBm	Function mode
EM	Output EMF dBµ	Function mode
FM	Frequency modulation	Function mode
FMOF	Modulation OFF	Modulation signal source
		switching
FR	Carrier frequency	Function mode
HZ	Hz	Unit
KZ	kHz	Unit
MZ	MHz	Unit
PC	Modulation in percent	Unit
RC	Memory recall	Function mode
RO	Output level OFF	Function mode
R1	Output level ON	Function mode
S1	External modulation ON	Modulation signal source
		switching
S2	Internal modulation 400Hz	Modulation signal source
		switching
S3	Internal modulation lkHz	Modulation signal source
		switching
S5	Modulation OFF	Modulation signal source
		switching
S6	Modulation DC · FM	Modulation signal source
		switching
S7	Modulation VIDEO (AM)	Modulation signal source
		switching
ST	Memory store	Function mode
0 - 9	Numeric value	Data
	Minus sign	Data
	Decimal point	Data
%	Modulation in percent	Unit
/0	HARAFTAN TH PETCENE	

-61-

Table 8-5 GP-IB Program Code

Classified by function

Classi	fied by function
Function	Program code
Carrier frequency	FR
Output level	AP
EMF dBµ	EM
dBµ	DU
dBm	DM
Output level OFF	RO
Output level ON	R1
Modulation	
Amplitude modulation	AM
Frequency modulation	FM
External modulation ON	S1
Int. modulation 400Hz	S2
Int. modulation lkHz	S 3
Modulation OFF	S 5
	AMOF
	FMOF
Modulation DC · FM	S 6
Modulation VIDEO (AM)	S7
Data	
Numeric value	0 - 9
Minus sign	
Decimal point	
Unit	
MHz	MZ
kHz	KZ
Hz	HZ
dB	DB
%	PC or %
Memory	
Memory recall	RC
Memory store	ST
HUMOLY COOLS	

8.3.5 Basic data setting method

100MHz carrier frequency, EMF 120dBµ output level, 1kHz internal modulation frequency, and 75kHz FM peak frequency deviation are to be set. In the following examples, HP9816 is used: Example 1: OUTPUT 707; "FR100MZ, EMAP120DB, S3FM75KZ" Output Frequency Output FM deviation command data level data data Normally, CRLF or EOI is sent. Example 2: To send the above data items one by one OUTPUT 707; "FR100MZ" OUTPUT 707; "EMAP120DB" OUTPUT 707; "S3FM75KZ" Example 3: To set the carrier frequency at 88.2MHz a) "FR88.2MZ" Example 4: To set the output level at 120 EMF dBµ a) "EM, AP120DB" b) "EM", "AP120DB" Example 5: To set the output level at 100dBµ a) "DU, AP100DB" b) "DU", "AP100DB" Example 6: To set the output level at -3.5 dBm a) "DM, AP-3.5DB" b) "DM", "AP-3.5DB" Example 7: To set the internal modulation frequency at 400Hz and AM depth at 30% a) "S2AM30%" b) "S2AM30PC" Example 8: To set external FM deviation 75kHz a) "SIFM75KZ" b) "S1FM", "FM75KZ" Note : S1 only is invalid.

-63-

8.3.6 Connector pin allocation diagram

Figure 8-2

-64-

8.3.7 Reference (Program example)

An example of a program for HP 9816 is given below. This program is to set the data of frequency, output level, and modulation factor, to store the data into the signal generator (memory "00"-"09"), and to recall the data from it. This program is just for reference, and it may not be the best one. Since the program description method varies with the system to control the signal generator, code the program in the most suitable way for the system.

10 Dev=707 Interface select code * 100 + Device address 20 10000000Hz Frequency=100*1.E+6 30 Freqstep=10*1.E+6 1000000Hz 40 Leve1=120 120dB 50 -10dB Levelstep=-10 Fm = 7560 75kHz 70 Fmstep=-5 -5kHz80 CLEAR Dev Clear selected device 90 WAIT 2 OUTPUT Dev:"R1" 100 Output ON 110 FOR N=O TO 9 120 Freq=Frequency+Freqstep*N 130 Lev=Level+Levelstep*N 140 Fmlev=Fm+Fmstep*N 150 OUTPUT Dev; "FR"; Freq/1.E+6; "MZ" Set frequency 160 OUTPUT Dev; "EMAP"; Lev; "dB" Set output level 170 OUTPUT Dev;"AMS5" Turn off AM modulation 180 OUTPUT Dev; "S2FM"; Fmlev; "kZ" Set 400Hz internal modulation frequency and FM deviation 190 OUTPUT Dev;"ST";N Store data into memory 200 NEXT N 210 FOR N=O TO 9 Recall data from memory OUTPUT Dev; "RC"; N 220 230 WAIT 2 240 NEXT N 250 END

9. ACCESSORIES (Optional)

9.1 SA100 Test Loop

1) Performance

Frequency range Migration length Input coaxial cable Test Loop

100kHz to 30MHz Vertical Approx. 250mm, Horizontal 360° 50 Ω Diameter 250mm, 0.8 ϕ 1 Turn

Figure 9-1. Outline drawing

-66-

- 9.2 SA150 Band Splitting Filter
 - 1) Performance

Input frequency range	DC to 130MHz
Input/output impedance	50 Ω (BNC-J type connector)
VSWR input/output	1.2 or less
Output frequency range	AM: DC to 30MHz
	FM: 75MHz to 130MHz
Insertion loss	0.5dB or less

Figure 9-2

Figure 9-3

2) SA150 application example

The SA150 outputs separate signals by the combination of HPF and LPF.

The RANGE OUTPUT control signal output from the rear panel of KGS4500 need not be used.

Figure 9-4 shows an example application of the SA150.

The SA150 can be used with little error when the input signal frequency is less than 30MHz or between 75MHz and 110MHz; the error increases in other ranges. (See Figure 9-2 for the external appearance and Figure 9-3 for typical characteristics.)

Figure 9-4

9.3 SA151 and SA152 Dummy Antennas for Car Radios

The SA151 and SA152 dummy antennas comply with JIS C6102-1988, and they are used for testing car radios.

Switching between AM and FM dummy antennas is done automatically by the RANGE OUTPUT control signal from the rear panel of KSG4500.

SA151: AM output impedance = 80Ω FM output impedance = 75Ω (Loaded type) SA152: AM output impedance = 80Ω FM output impedance = 75Ω (Open-circuit type)

Figure 9-5. Connection Example

9.3.1 SA151 dummy antenna for car radio (loaded type)

1) Performance

Input frequency range	50kHz to 200MHz
Input impedance	50 Ω (BNC-J type connector)
VSWR	1.2 or less
Output impedance	AM: 80Ω
	FM: 75Ω
Control signal	AM: OV
	FM: 5V, 50mA or less
Control terminal	Audio pin connector (RCA type)
Accessory	SA500 (Single-core shielded cable with
	RCA type pin plugs at both ends.
	Length = $0.8m$)

2) Dummy antenna circuit diagram

Figure 9-6

Note: Adjust the load capacitance to 60pF including the antenna cable capacitance for car radio. (Actually, a 30pF capacitor is mounted.)

3) Outline drawing

Figure 9-7

9.3.2 SA152 dummy antenna for car radio (open-circuit type)

Performance	
Input frequency range	50kHz to 200MHz
Input impedance	50 Ω (BNC-J type connector)
VSWR	1.2 or less
Output impedance	AM: 80Ω
	FM: 75Ω
Control signal	AM: OV
	FM: 5V, 50mA or less
Control terminal	Audio pin connector (RCA type)
Accessory	SA500 (Single-core shielded cable with
	RCA type in plugs at both ends.
	Length = $0.8m$)

2) Dummy antenna circuit diagram

1)

Figure 9-8

- Note: Adjust the load capacitance to 60pF including the antenna cable capacitance for car radio. (Actually, a 30pF capacitor is mounted.)
- 3) Outline drawing

Figure 9-9

-72-

9.4 SA153 Output Switch and SA154 Output Impedance Switch

The SA153 is used for a test loop antenna in AM band and for a 50Ω : 300 Ω dummy antenna in FM band. The SA154 is used for a test loop antenna in AM band and for a 75Ω : 300 Ω dummy antenna in FM band.

Figure 9-10. SA153 connection diagram

Figure 9-11. SA154 connection diagram

1) Performance (SA153 Output Switch and SA154 Output Impedance Switch)

Input frequency range DC	to 200MHz
Input impedance	50Ω (BNC-J type connector)
VSWR	1.2 or less
Output impedance	
SA153	AM: 50Ω (for test loop)
	FM: 50Ω (for 50Ω : 300Ω dummy antenna)
SA154	AM: 50Ω (for test loop)
	FM: 75Ω (for 75Ω : 300Ω dummy antenna)
Control signal	AM: OV
	FM: 5V, 50mA or less
Control terminal	Audio pin connector (RCA type)
Accessory	SA500 (single-core shielded cable with RCA
	type in plugs at both ends. Length = $0.8m$)

2) Output switch and impedance switch circuit diagrams

SA153

SA154

Figure 9-13

3) Outline drawing

Figure 9-14. Outline drawing

Note: When using the SA150, SA153, or SA154, do not connect the 50Q : 75Q dummy antenna for AM band and 50Q : 300Q balanced dummy antenna for FM band to an AM/FM radio as shown in Figure 9-15 because the balance of the dummy antenna for FM band is lost at point "a".

Figure 9-15