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Chapter 1. Modulation methods
Modulation is the act of translating some low-fre-

quency or baseband signal (voice, music, and data)

to a higher frequency. Why do we modulate signals?

There are at least two reasons: to allow the simulta-

neous transmission of two or more baseband signals

by translating them to different frequencies, and to

take advantage of the greater efficiency and smaller

size of higher-frequency antennae.

In the modulation process, some characteristic of 

a high-frequency sinusoidal carrier is changed in

direct proportion to the instantaneous amplitude 

of the baseband signal. The carrier itself can be

described by the equation:

In the expression above, there are two properties of

the carrier that can be changed, the amplitude (A)

and the angular position (argument of the cosine

function). Thus we have amplitude modulation and

angle modulation. Angle modulation can be further

characterized as either frequency modulation or

phase modulation.

3

e = A cos (ωt + φ)

where:

A = peak amplitude of the carrier,
ω = angular frequency of the carrier in radians per second,
t = time, and
φ = initial phase of the carrier at time t = 0.
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Chapter 2. Amplitude modulation
Modulation degree and sideband 
amplitude

Amplitude modulation of a sine or cosine carrier

results in a variation of the carrier amplitude that 

is proportional to the amplitude of the modulating

signal. In the time domain (amplitude versus time),

the amplitude modulation of one sinusoidal carrier

by another sinusoid resembles figure 1a. The mathe-

matical expression for this complex wave shows

that it is the sum of three sinusoids of different fre-

quencies. One of these sinusoids has the same fre-

quency and amplitude as the unmodulated carrier.

The second sinusoid is at a frequency equal to the

sum of the carrier frequency and the modulation

frequency; this component is the upper sideband.

The third sinusoid is at a frequency equal to the car-

rier frequency minus the modulation frequency; this

component is the lower sideband. The two sideband

components have equal amplitudes, which are pro-

portional to the amplitude of the modulating signal.

Figure 1a shows the carrier and sideband compo-

nents of the amplitude-modulated wave of figure 1b

as they appear in the frequency domain (amplitude

versus frequency).

A measure of the degree of modulation is m, the

modulation index. This is usually expressed as 

a percentage called the percent modulation. In the

time domain, the degree of modulation for sinu-

soidal modulation is calculated as follows, using the

variables shown in figure 2a:

For 100% modulation (m = 1.0), the amplitude of

each sideband will be one-half of the carrier ampli-

tude (voltage). Thus, each sideband will be 6 dB less

than the carrier, or one-fourth the power of the car-

rier. Since the carrier component does not change

with amplitude modulation, the total power in the

100% modulated wave is 50% higher than in the

unmodulated carrier.
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Figure 1. (a) Frequency domain (spectrum analyzer) display of an 
amplitude-modulated carrier. (b)Time domain (oscilloscope) display of
an amplitude-modulated carrier.

Figure 2(a)(b). Calculation of degree of amplitude modulation from time
domain and frequency domain displays

m = 
Emax – Ec

Ec

Emax – Ec =   Ec  – Emin

Emax = Ec + EUSB  + ELSB

Since the modulation is symmetrical,

and

From this, it is easy to show that:

for sinusoidal modulation. When all three compo-

nents of the modulated signal are in phase, they add

together linearly and form the maximum signal

amplitude Emax, shown in figure 2.

Emax + Emin

2
= Ec

 m = 
Emax _ Emin

Emax + Emin

m = 
Emax – Ec

Ec
 = 

EUSB + ELSB

Ec

and, since EUSB = ELSB = ESB, then: 

m = 
2ESB

Ec
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Although it is easy to calculate the modulation per-

centage M from a linear presentation in the frequen-

cy or time domain (M = m • 100%), the logarithmic

display on a spectrum analyzer offers some advan-

tages, especially at low modulation percentages. The

wide dynamic range of a spectrum analyzer (over 

70 dB) allows measurement of modulation percent-

age less than 0.06%,, This can easily be seen in fig-

ure 3, where M = 2%; that is, where the sideband

amplitudes are only 1% of the carrier amplitude. 

Figure 3A shows a time domain display of an ampli-

tude-modulated carrier with M = 2%. It is difficult to

measure M on this display. Figure 3B shows the

signal displayed logarithmically in the frequency

domain. The sideband amplitudes can easily be mea-

sured in dB below the carrier and then converted

into M. (The vertical scale is 10 dB per division.)
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Figure 3. Time (a) and frequency (b) domain views of low level (2%) AM. 

Figure 4. Modulation percentage M vs. sideband level (log display)

(a)

(b)

The relationship between m and the logarithmic 

display can be expressed as: 

or

Figure 4 shows modulation percentage M as a 

function of the difference in dB between a carrier

and either sideband.

(ESB / EC)(dB) + 6 dB = 20 log m.  

(ESB / EC)(dB) =  20 log (     )m
2



Figures 5 and 6 show typical displays of a carrier

modulated by a sine wave at different modulation

levels in the time and frequency domains.

Figure 5a shows an amplitude-modulated carrier in

the time domain. The minimum peak-to-peak value

is one third the maximum peak-to-peak value, so 

m = 0.5 and M = 50%. Figure 5b shows the same

waveform measured in the frequency domain. Since

the carrier and sidebands differ by 12 dB, M= 50%.

You can also measure 2nd and 3rd harmonic distor-

tion on this waveform. Second harmonic sidebands

at fc ± 2fm are 40 dB below the carrier. However, 

distortion is measured relative to the primary side-

bands, so the 28 dB difference between the primary

and 2nd harmonic sidebands represents 4% distortion.

Figure 6a shows an overmodulated (M>100%) signal

in the time domain; fm = 10 kHz. The carrier is cut

off at the modulation minima. Figure 6B is the fre-

quency domain display of the signal. Note that the

first sideband pair is less than 6 dB lower than the

carrier. Also, the occupied bandwidth is much

greater because the modulated signal is severely dis-

torted; that is, the envelope of the modulated signal

no longer represents the modulating signal, a pure

sine wave (150 kHz span, 10 dB/Div, RBW 1 kHz).

Zero span and markers

So far the assumption has been that the spectrum

analyzer has a resolution bandwidth narrow enough

to resolve the spectral components of the modulat-

ed signal. But we may want to view low-frequency

modulation with an analyzer that does not have suffi-

cient resolution. For example, a common modula-

tion test tone is 400 Hz. What can we do if our

analyzer has a minimum resolution bandwidth 

of 1 kHz?

One possibility, if the percent modulating is high

enough, is to use the analyzer as a fixed-tuned

receiver, demodulate the signal using the envelope

detector of the analyzer, view the modulation signal

in the time domain, and make measurements as we

would on an oscilloscope. To do so, we would first

tune the carrier to the center of the spectrum ana-

lyzer display, then set the resolution bandwidth

wide enough to encompass the modulation side-

bands without attenuation, as shown in figure 7,

making sure that the video bandwidth is also wide

enough. (The ripple in the upper trace of figure 7 is

caused by the phasing of the various spectral compo-

nents, but the mean of the trace is certainly flat).

Figure 5.  (a)An amplitude-modulated carrier in the time domain,
(b)Shows the same waveform measured in the frequency domain 

Figure 6. (a)An overmodulated 60 MHz signal in the time domain, 
(b) The frequency domain display of the signal

(a)

(b)

(a)

(b)
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Next we select zero span to fix-tune the analyzer,

adjust the reference level to move the peak of the

signal near the top of the screen, select the linear

display mode, select video triggering and adjust trig-

ger level, and adjust the sweep time to show several

cycles of the demodulated signal. See figure 8. Now

we can determine the degree of modulation using

the expression:  

As we adjust the reference level to move the signal

up and down on the display, the scaling in volts/

division changes. The result is that the peak-to-peak

deviation of the signal in terms of display divisions

is a function of position, but the absolute difference

between Emax and Emin and the ratio between them

remains constant. Since the ratio is a relative mea-

surement, we may be able to find a convenient loca-

tion on the display; that is we may find that we can

put the maxima and minima on graticule lines and

make the arithmetic easy, as in figure 9. Here we have

Emax of six divisions and Emin of four divisions, so:

The frequency of the modulating signal can be deter-

mined from the calibrated sweep time of the analyz-

er. In figure 9 we see that 4 cycles cover exactly 5

divisions of the display. With a total sweep time of

20 msec, the four cycles occur over an interval of 

10 msec. The period of the signal is then 2.5 msec,

and the frequency is 400 Hz.

Figure 7. Resolution bandwidth is set wide enough to encompass the
modulation sidebands without attenuation

Figure 8. Moving the signal up and down on the screen does not change
the absolute difference between Emax and Emin, only the number of dis-
play divisions between them due to the change of display scaling

Figure 9 Placing the maxiima and minima on graticule lines makes the
calculation easier

m = (Emax - Emin) / (Emax + Emin).

m = (6 - 4) / (6 + 4) = 0.2, or 20% AM.
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Many spectrum analyzers with digital displays also

have markers and delta markers. These can make

the measurements much easier. For example, in 

figure 10 we have used the delta markers to find the

ratio Emin/Emax. By modifying the expression for m,

we can use the ratio directly: 

Since we are using linear units, the analyzer dis-

plays the delta value as a decimal fraction (or, as in

this case, a percent), just what we need for our

expression. Figure 10 shows the ratio as 53.32%, 

giving us:

This percent AM would have been awkward to mea-

sure on an analyzer without markers, because there

is no place on the display where the maxima and

minima are both on graticule lines. The technique 

of using markers works well down to quite low

modulation levels. The percent AM (1.0%), computed

from the 98.1% ratio in figure 11a, agrees with the

value determined from the carrier/sideband ratio of

–46.06 dB in figure 11b.

Figure 11. (a) Using markers to measure percent AM works well even at
low modulation levels. Percent AM computed from ratio in A agrees with
values determined from carrier/sideband ratio in (b)

Figure 10. Delta markers can be used to find the ratio Emin/ Emax

(a)

(b)

m = (1 – Emin/Emax)/(1 + Emin/Emax).

m = (1 – 0.5332)/(1 + 0.5332) = 0.304, or 30.4% AM.
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Note that the delta marker readout also shows the

time difference between the markers. This is true of

most analyzers in zero span. By setting the markers

for one or more full periods, (figure 12), we can take

the reciprocal and get the frequency; in this case,

1/2.57 ms or 389 Hz.

Figure 12. Time difference indicated by delta marker readout can be used
to calculate frequency by taking the reciprocal



The fast fourier transform (FFT)

There is an even easier way to make the measure-

ments above if the analyzer has the ability to do an

FFT on the demodulated signal. On the Agilent 8590

and 8560 families of spectrum analyzers, the FFT is

available on a soft key. We demodulate the signal as

above except we adjust the sweep time to display

many rather than a few cycles, as shown in figure

13. Then, calling the FFT routine yields a frequency-

domain display of just the modulating signal as

shown in figure 14. The carrier is displayed at the

left edge of the screen, and a single-sided spectrum

is displayed across the screen. Delta markers can be

used, here showing the modulation sideband offset

by 399 Hz (the modulating frequency) and down by

16.5 dB (representing 30% AM). 

FFT capability is particularly useful for measuring

distortion. Figure 15 shows our demodulated signal

at a 50% AM level. It is impossible to determine the

modulation distortion from this display. The FFT

display in figure 16, on the other hand, indicates

about 0.5% second-harmonic distortion.

10

Figure 13. Sweep time adjusted to display many cycles

Figure 14. Using the FFT yields a frequency-domain display of just the
modulation signal

Figure 16. An FFT display indicates the modulation distortion; in this case,
about 0.5% second-harmonic distortion

Figure 15. The modulation distortion of our signal cannot be read from this
display



11

The maximum modulating frequency for which the

FFT can be used on a spectrum analyzer is a func-

tion of the rate at which the data are sampled (digi-

tized); that is, directly proportional to the number of

data points across the display and inversely pro-

portional to the sweep time. For the standard Agilent

8590 family, the maximum is 10 kHz; for units with

the fast digitizer option, option 101, the maximum

practical limit is about 100 kHz due to the roll-off of

the 3 MHz resolution bandwidth filter. For the Agilent

8560 family, the practical limit is again about 100 kHz.

Note that lower frequencies can be measured: very

low frequencies, in fact figure 17 shows a measure-

ment of powerline hum (60 Hz in this case) on the

8563EC using a 1-second sweep time.

Setting an analyzer to zero span allows us not only

to observe a demodulated signal on the display and

measure it, but to listen to it as well. Most analyzers,

if not all, have a video output that allows us access to

the demodulated signal. This output generally drives

a headset directly. If we want to use a speaker, we

probably need an amplifier as well.

Some analyzers include an AM demodulator and

speaker so that we can listen to signals without

external hardware. In addition, the Agilent analyz-

ers provide a marker pause function so we need not

even be in zero span. In this case, we set the frequen-

cy span to cover the desired range (that is, the AM

broadcast band), set the active marker on the signal

of interest, set the length of the pause (dwell time),

and activate the AM demodulator. The analyzer then

sweeps to the marker and pauses for the set time,

allowing us to listen to the signal for that interval,

before completing the sweep. If the marker is the

active function, we can move it and so listen to any

other signal on the display.

Figure 17. A 60 Hz power-line hum measurement uses a 1-second sweep
time
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Special forms of amplitude modulation

We know that changing the degree of modulation of

a particular carrier does not change the amplitude

of the carrier component itself. It is the amplitude

of the sidebands that changes, thus altering the

amplitude of the composite wave. Since the ampli-

tude of the carrier component remains constant, all

the transmitted information is contained in the

sidebands. This means that the considerable power

transmitted in the carrier is essentially wasted,

although including the carrier does make demodula-

tion much simpler. For improved power efficiency,

the carrier component may be suppressed (usually

by the use of a balanced modulator circuit), so that

the transmitted wave consists only of the upper and

lower sidebands. This type of modulation is double

sideband suppressed carrier, or DSB-SC. The carrier

must be reinserted at the receiver, however, to

recover this modulation. In the time and frequency

domains, DSB-SC modulation appears as shown in

figure 18. The carrier is suppressed well below the

level of the sidebands. (The second set of sidebands

indicate distortion is less than 1%.)

Figure 18. Frequency (a) and time (b) domain presentations of balanced 
modulator output 

(a)

(b)
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Single sideband

In communications, an important type of amplitude

modulation is single sideband with suppressed car-

rier (SSB). Either the upper or lower sideband can

be transmitted, written as SSB-USB or SSB-LSB

(or the SSB prefix may be omitted). Since each

sideband is displaced from the carrier by the same

frequency, and since the two sidebands have equal

amplitudes, it follows that any information contained

in one must also be in the other. Eliminating one of

the sidebands cuts the power requirement in half and,

more importantly, halves the transmission bandwidth

(frequency spectrum width).

SSB is used extensively throughout analog telephone

systems to combine many separate messages into a

composite signal (baseband) by frequency multiplex-

ing. This method allows the combination of up to

several thousand 4-kHz-wide channels containing

voice, routing signals, and pilot carriers. The com-

posite signal can then be either sent directly via

coaxial lines or used to modulate microwave line

transmitters.

The SSB signal is commonly generated at a fixed

frequency by filtering or by phasing techniques. This

necessitates mixing and amplification in order to

get the desired transmitting frequency and output

power. These latter stages, following the SSB genera-

tion, must be extremely linear to avoid signal distor-

tion, which would result in unwanted in-band and

out-of-band intermodulation products. Such distor-

tion products can introduce severe interference in

adjacent channels.

Thus intermodulation measurements are a vital

requirement for designing, manufacturing, and main-

taining multi-channel communication networks. The

most commonly used measurement is a two-tone test.

Two sine-wave signals in the audio frequency range

(300-3100 Hz), each with low harmonic content and a

few hundred Hertz apart, are used to modulate the

SSB generator. The output of the system is then exam-

ined for intermodulation products with the aid of

a selective receiver. The spectrum analyzer displays

all intermodulation products simultaneously, thereby

substantially decreasing measurement and alignment

time.

Figure 19 shows an intermodulation test of an SSB

transmitter.

Figure 19. (a)A SSB generator, modulated with two sine-wave signals of
2000 and 3000 Hz. The 200 MHz carrier (display center) is suppressed 
50 dB; lower sideband signals and intermodulation products are more
than 50 dB down (b)The same signal after passing through an amplifier

(a)

(b)



Chapter 3. Angle modulation

Definitions

In Chapter 1 we described a carrier as:

and, in addition, stated that angle modulation can

be characterized as either frequency or phase modu-

lation. In either case, we think of a constant carrier

plus or minus some incremental change.

Frequency modulation. The instantaneous frequen-

cy deviation of the modulated carrier with respect

to the frequency of the unmodulated carrier is direct-

ly proportional to the instantaneous amplitude of

the modulating signal.

Phase modulation. The instantaneous phase devia-

tion of the modulated carrier with respect to the

phase of the unmodulated carrier is directly propor-

tional to the instantaneous amplitude of the modu-

lating signal.

This expression tells us that the angle modulation

index is really a function of phase deviation, even in

the FM case (∆fp/fm = ∆ φp). Also, note that the defi-

nitions for frequency and phase modulation do not

include the modulating frequency. In each case, the

modulated property of the carrier, frequency or

phase, deviates in proportion to the instantaneous

amplitude of the modulating signal, regardless of the

rate at which the amplitude changes. However, the

frequency of the modulating signal is important in

FM and is included in the expression for the modu-

lating index because it is the ratio of peak frequency

deviation to modulation frequency that equates to

peak phase.

Comparing the basic equation with the two defini-

tions of modulation, we find:

(1) A carrier sine wave modulated with a single 

sine wave of constant frequency and amplitude 

will have the same resultant signal properties 

(that  is, the same spectral display) for frequency

and phase modulation. A distinction in this case

can be made only by direct comparison of the

signal with the modulating wave, as shown in

figure 20.

(2) Phase modulation can generally be converted 

into frequency modulation by choosing the fre-

quency response of the modulator so that its 

output voltage will be proportional to 1/fm (inte-

gration of the modulating signal). The, reverse is

also true if the modulator output voltage is pro-

portional to fm (differentiation of the modulat-

ing signal).

We can see that the amplitude of the modulated sig-

nal always remains constant, regardless of modula-

tion frequency and amplitude. The modulating signal

adds no power to the carrier in angle modulation as

it does with amplitude modulation.

Mathematical treatment shows that, in contrast

to amplitude modulation, angle modulation of a

sine-wave carrier with a single sine wave yields an

infinite number of sidebands spaced by the modula-

tion frequency, fm; in other words, AM is a linear

process whereas FM is a nonlinear process. For dis-

tortion-free detection of the modulating signal, all

sidebands must be transmitted. The spectral compo-

nents (including the carrier component) change

their amplitudes when β is varied. The sum of these

components always yields a composite signal with

an average power that remains constant and equal

to the average power of the unmodulated carrier

wave.14

Figure 20. Phase and frequency modulation of a sine-wave carrier by a
sine-wave signal

e = A cos (ωt + φ)

β=∆fp/fm = ∆φp

where

    β = modulation index,

For angle modulation, there is no specific limit to 

the degree of modulation; there is no equivalent of 

100% in AM. Modulation index is expressed as:

∆φp = peak phase deviation in radians.

   fm = frequency of the modulating signal, and
∆fp = peak frequency deviation,
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The curves of figure 21 show the relation (Bessel func-

tion) between the carrier and sideband amplitudes of

the modulated wave as a function of the modulation

index β. Note that the carrier component Jo and the

various sidebands Jn go to zero amplitude at specific

values of β. From these curves we can determine the

amplitudes of the carrier and the sideband compo-

nents in relation to the unmodulated carrier. For

example, we find for a modulation index of β = 3 the

following amplitudes:

Carrier J0 = –0.26
First order sideband J1 = 0.34 
Second order sideband J2 = 0.49
Third order sideband J3 = 0.31, etc.

The sign of the values we get from the curves is of

no significance since a spectrum analyzer displays

only the absolute amplitudes.

The exact values for the modulation index corre-

sponding to each of the carrier zeros are listed in

table 1.
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Figure 21. Carrier and sideband amplitude for angle-modulated signals

Table 1. Values of modulation index for which carrier amplitude is zero

Order of carrier zero Modulation index

1 2.40
2 5.52
3 8.65
4 11.79
5 14.93
6 18.07
n(n > 6) 18.07 + π(n-6)
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Bandwidth of FM signals
In practice, the spectrum of an FM signal is not

infinite. The sideband amplitudes become negligi-

bly small beyond a certain frequency offset from

the carrier, depending on the magnitude of β. We

can determine the bandwidth required for low dis-

tortion transmission by counting the number of

significant sidebands. For high fidelity, significant

sidebands are those sidebands that have a voltage at

least 1 percent (–40 dB) of the voltage of the unmodu-

lated carrier for any β between 0 and maximum.

We shall now investigate the spectral behavior of an

FM signal for different values of β. In figure 22, we

see the spectra of a signal for β = 0.2, 1, 5, and 10.

The sinusoidal modulating signal has the constant

frequency fm, so β is proportional to its amplitude.

In figure 23, the amplitude of the modulating signal

is held constant and, therefore, β is varied by chang-

ing the modulating frequency. Note: in figure 23a, b,

and c, individual spectral components are shown; in

figure 23d, the components are not resolved, but the

envelope is correct.

Two important facts emerge from the preceding fig-

ures: (1) For very low modulation indices (β less

than 0.2), we get only one significant pair of side-

bands. The required transmission bandwidth in this

case is twice fm, as for AM. (2) For very high modu-

lation indices (β more than 100), the transmission

bandwidth is twice ∆fp.

For values of β between these extremes we have to

count the significant sidebands.

(a)
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Figure 22. Amplitude-frequency spectrum of an FM signal (sinusoidal
modulating signal; f fixed; amplitude varying). In (a), β = 0.2; in (b), 
β = 1; in (c), β = 5; in (d), β= 10

Figure 23. Amplitude-frequency spectrum of an FM signal (amplitude of
delta f fixed; fm decreasing.) In (a), β = 5; in (b), β = 10; in (c), β = 15;
in (d), β −> ∞

Figure 24. A 50 MHz carrier modulated with fm = 10 kHz and  β= 0.2
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Figures 24 and 25 show analyzer displays of two FM

signals, one with β = 0.2, the other with β = 95.

Figure 26 shows the bandwidth requirements for a

low-distortion transmission in relation to β.

For voice communication a higher degree of distor-

tion can be tolerated; that is, we can ignore all side-

bands with less than 10% of the carrier voltage 

(–20 dB). We can calculate the necessary bandwidth

B using the approximation:

So far our discussion of FM sidebands and band-

width has been based on having a single sine wave

as the modulating signal. Extending this to complex

and more realistic modulating signals is difficult. 

We can, however, look at an example of single-tone 

modulation for some useful information.

An FM broadcast station has a maximum frequency

deviation (determined by the maximum amplitude

of the modulating signal) of ∆fpeak = 75 kHz. The

highest modulation frequency fm is 15 kHz. This

combination yields a modulation index of β = 5, and

the resulting signal has eight significant sideband

pairs. Thus the required bandwidth can be calculat-

ed as 2 x 8 x 15 kHz = 240 kHz. For modulation fre-

quencies below 15 kHz (with the same amplitude

assumed), the modulation index increases above 5

and the bandwidth eventually approaches 2 ∆fpeak =

150 kHz for very low modulation frequencies.

We can, therefore, calculate the required transmission

bandwidth using the highest modulation frequency

and the maximum frequency deviation ∆fpeak.

FM measurements with the 
spectrum analyzer

The spectrum analyzer is a very useful tool for 

measuring ∆fpeak and β and for making fast and

accurate adjustments of FM transmitters. It is also

frequently used for calibrating frequency deviation

meters.

A signal generator or transmitter is adjusted to a

precise frequency deviation with the aid of a spec-

trum analyzer using one of the carrier zeros and

selecting the appropriate modulating frequency. 

In figure 27, a modulation frequency of 10 kHz and 

a modulation index of 2.4 (first carrier null) necessi-

tate a carrier peak frequency deviation of exactly 

24 kHz. Since we can accurately set the modulation

frequency using the spectrum analyzer or, if need

be, a frequency counter, and since the modulation 

index is also known accurately, the frequency 

deviation thus generated will be equally accurate.

Figure 25. A 50 MHz carrier modulated with fm = 1.5 kHz and β = 95
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Figure 26. Bandwidth requirements vs. modulation index, β

B = 2 ∆fpeak + 2 fm

or

B = 2 fm (1 + β)
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Commonly used values of FM peak deviation

Order of
carrier    Modulation

zero index 7.5 kHz 10 kHz 15 kHz 25 kHz 30 kHz 50 kHz 75 kHz 100 khz 150 kHz 250 kHz 300 kHz

1 2.40 3.12 4.16 6.25 10.42 12.50 20.83 31.25 41.67 62.50 104.17 125.00
2 5.52 1.36 1.18 2.72 4.53 5.43 9.06 13.59 18.12 27.17 45.29 54.35
3 8.65 .87 1.16 1.73 2.89 3.47 5.78 8.67 11.56 17.34 28.90 34.68
4 11.79 .66 .85.1 1.27 2.12 2.54 4.24 6.36 8.48 12.72 21.20 25.45
5 14.93 .50 .67 1.00 1.67 2,01 3.35 5.02 6.70 10.05 16.74 20.09
6 18.07 .42 .55 .83 1.88 1.66 2.77 4.15 5.53 8.30 13.84 16.60

Table 11. Modulation frequencies for setting up convenient FM deviations

Table 11 gives the modulation frequency for com-

mon values of deviation for the various orders of

carrier zeros.
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The procedure for setting up a known deviation is:

(1) Select the column with the required devia-

tion; for example, 250 kHz.

(2) Select an order of carrier zero that gives a 

frequency in the table commensurate with 

the normal modulation bandwidth of the 

generator to be tested. For example, if 250 kHz

was chosen to test an audio modulation 

circuit, it will be necessary to go to the fifth 

carrier zero to get a modulating frequency 

within the audio pass band of the generator 

(here, 16.74 kHz).

(3) Set the modulating frequency to 16.74 kHz, 

and monitor the output spectrum of the

generator on the spectrum analyzer. Adjust 

the amplitude of the audio modulating signal

until the carrier amplitude has gone through

four zeros and stop when the carrier is at its

fifth zero. With a modulating frequency of 

16.74 kHz and the spectrum at its fifth zero, 

the setup provides a unique 250 kHz devia-

tion. The modulation meter can then be

calibrated. Make a quick check by moving to 

the adjacent carrier zero and resetting the 

modulating frequency and amplitude (in this

case, resetting to13.84 kHz at the sixth carri-

er zero).

Other intermediate deviations and modulation

indexes can be set using different orders of side-

band zeros, but these are influenced by incidental

amplitude modulation. Since we know that ampli-

tude modulation does not cause the carrier to

change but instead puts all the modulation power

into the sidebands, incidental AM will not affect the

carrier zero method above.

If it is not possible or desirable to alter the modula-

tion frequency to get a carrier or sideband null,

there are other ways to obtain usable information

about frequency deviation and modulation index.

One method is to calculate β by using the amplitude

information of five adjacent frequency components

in the FM signal. These five measurements are used

in a recursion formula for Bessel functions to form

three calculated values of a modulation index.

Averaging yields β with practical measurement

errors taken into consideration. Because of the num-

ber of calculations necessary, this method is feasible

only using a computer. A somewhat easier method

consists of the following two measurements.

First, the sideband spacing of the modulated carrier

is measured by using a sufficiently small IF 

bandwidth (BW), to give the modulation frequency fm.

Second, the peak frequency deviation ∆fpeak is

measured by selecting a convenient scan width and

an IF bandwidth wide enough to cover all significant

sidebands. Modulation index β can then be calculated

easily.

Note that figure 28 illustrates the peak-to-peak

deviation. This type of measurement is shown in

figure 29.

Figure 27. This is the spectrum of an FM signal at 50 MHz. The deviation
has been adjusted for the first carrier null. The fm is 10 kHz; therefore, 
∆fpeak = 2.4 x 10 kHz = 24 kHz

Figure 28. Measurement of fm and ∆fpeak

BW < fm
fc

fm

BW > fm

2∆f Peak



The spectrum analyzer can also be used to monitor

FM transmitters (for example, broadcast or commu-

nication stations) for occupied bandwidth. Here the

statistical nature of the modulation must be consid-

ered. The signal must be observed long enough to

make catching peak frequency deviations probable.

The max-hold capability available on spectrum ana-

lyzers with digitized traces is then used to capture

the signal. To better keep track of what is happen-

ing, you can often take advantage of the fact that

most analyzers of this type have two or more trace

memories. That is, select the max-hold mode for one

trace while the other trace is live. See figure 30.

Figure 31 shows an FM broadcast signal modulated

with stereo multiplex. Note that the spectrum enve-

lope resembles an FM signal with low modulation

index. The stereo modulation signal contains addi-

tional information in the frequency range of 23 to 

53 kHz, far beyond the audio frequency limit of 15 kHz.

Since the occupied bandwidth must not exceed the

bandwidth of a transmitter modulated with a mono

signal, the maximum frequency deviation of the car-

rier must be kept substantially lower.

Figure 29. (a)A frequency-modulated carrier. Sideband spacing is 
measured to be 8 kHz  (b)The peak-to-peak frequency deviation of the
same signal is measured to be 20 kHz using max-hold and min-hold on
different traces  (c)Insufficient bandwidth: RBW = 10 kHz

(a)

(b)

Figure 30. Peak-to-peak frequency deviation

Figure 31. FM broadcast transmitter modulated with a stereo signal. 
500 kHz span, 10 dB/div, β = 3 kHz, sweeptime 50 ms/div, approx. 
200 sweeps

20

(c)



21

It is possible to recover the modulating signal,

even with analyzers that do not have a built-in FM

demodulator. The analyzer is used as a manually

tuned receiver (zero span) with a wide IF band-

width. However, in contrast to AM, the signal is not

tuned into the passband center but to one slope of

the filter curve as illustrated in figure 32.

Here the frequency variations of the FM signal are

converted into amplitude variations (FM to AM con-

version). The resultant AM signal is then detected

with the envelope detector. The detector output is

displayed in the time domain and is also available at

the video output for application to headphones or a

speaker. If an analyzer has built-in AM demodula-

tion capability with a companion speaker, we can

use this (slope) detection method to listen to an FM

signal via the AM system.

A disadvantage of this method is that the detector

also responds to amplitude variations of the signal.

The Agilent 8560 family of spectrum analyzers

include an FM demodulator in addition to the AM

demodulator. (The FM demodulator is optional for

the E series of the Agilent ESA family of analyzers.)

So we can again take advantage of the marker pause

function to listen to an FM broadcast while in the

swept-frequency mode. We would set the frequency

span to cover the desired range (that is, the FM

broadcast band), set the active marker on the signal

of interest, set the length of the pause (dwell time),

and activate the FM demodulator. The analyzer then

sweeps to the marker and pauses for the set time,

allowing us to listen to the signal during that inter-

val before it continues the sweep. If the marker is

the active function, we can move it and listen to any

other signal on the display.

AM plus FM (incidental FM)

Although AM and angle modulation are different

methods of modulation, they have one property in

common: they always produce a symmetrical side-

band spectrum.

In figure 33 we see a modulated carrier with asym-

metrical sidebands. The only way this could occur is

if both AM and FM or AM and phase modulation

existed simultaneously at the same modulating fre-

quency. This indicates that the phase relations

between carrier and sidebands are different for the

AM and the angle modulation (see appendix). Since

the sideband components of both modulation types

add together vectorially, the resultant amplitude of

one sideband may be reduced. The amplitude of the

other would be increased accordingly. The spectrum

displays the absolute magnitude of the result.

2∆f peak
FM signal

AM signal

Frequency response
of the IF filter

A

f

Figure 32. Slope detection of an FM signal

Figure 33. Pure AM or FM signals always have equal sidebands, but when
the two are present together, the modulation vectors usually add in one
sideband and subtract in the other. Thus, unequal sidebands indicate
simultaneous AM and FM. This CW signal is amplitude modulated 80% 
at a 10 kHz rate. The harmonic distortion and incidental FM are clearly
visible.
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Provided that the peak deviation of the incidental

FM is small relative to the maximum usable analyz-

er bandwidth, we can use the FFT capability of the

analyzer (see Chapter 2) to remove the FM from

the measurement. In contrast to figure 32, showing

deliberate FM-to-AM conversion, here we tune the

analyzer to center the signal in the IF passband.

Then we choose a resolution bandwidth wide enough

to negate the effect of the incidental FM and pass

the AM components unattenuated. Using FFT then

gives us just AM and AM-distortion data. Note that

the apparent AM distortion in figure 33 is higher

than the true distortion shown in figure 34.

For relatively low incidental FM, the degree of AM

can be calculated with reasonable accuracy by tak-

ing the average amplitude of the first sideband pair.

The degree of incidental FM can be calculated only

if the phase relation between the AM and FM side-

band vectors is known. It is not possible to measure

∆fpeak, of the incidental FM using the slope detec-

tion method because of the simultaneously existing

AM.

Figure 34. True distortion, using FFT to remove FM from the 
measurement
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Appendix
Amplitude modulation

A sine wave carrier can be expressed by the general

equation: 

In AM systems only A is varied. It is assumed that

the modulating signal varies slowly compared to the

carrier. This means that we can talk of an envelope

variation or variation of the locus of the carrier

peaks. The carrier, amplitude-modulated with a

function f(t) (carrier angle φo arbitrarily set to zero),

has the form (1-2):

We get three steady-state components:

We can represent these components by three 

phasors rotating at different angle velocities 

(figure A-1a). Assuming the carrier phasor A to 

be stationary, we obtain the angle velocities of the

sideband phasors in relation to the carrier phasor

(figure A-1b).

Figure A-2 shows the phasor composition of the

envelope of an AM signal.

We can see that the phase of the vector sum of the

sideband phasors is always collinear with the carri-

er component; that is, their quadrature components

always cancel. We can also see from equation 1-3

and figure A-1 that the modulation degree m cannot

exceed the value of unity for linear modulation.

Angle modulation

The usual expression for a sine wave of angular 

frequency ωc, is:

We define the instantaneous radian frequency ωi to

be the derivative of the angle as a function of time:

This instantaneous frequency agrees with the ordi-

nary use of the word frequency if 

If φ(t) in equation 2-1 is made to vary in some man-

ner with a modulating signal f(t), the result is angle

modulation.

Phase and frequency modulation are both special

cases of angle modulation.

fc(t) = cosφ(t) = cos(ωct + φo).              (Eq. 2-1)

e(t) = A * cos(ωct + φo).  (Eq.1-1)

  A * cosωct)                    Carrier

m • A  
   2 

m • A   
   2 

              cos(ωc + ωm)t.    Upper sideband

              cos(ωc – ωm)t.    Lower sideband (Eq. 5)

For f(t) = cos(ωmt)  (single sine wave)  we get

e(t) = A(1 + m • cosωmt) • cosωct

e(t) = A(1 + m • f(t)) • cos(ωct) (m = degree of modulation).

e(t) = A cosωct +            cos (ωc + ωm)t +           

• cos(ωc - ωm)t.

m • A  
   2 

m • A  
   2 

or

(Eq. 1-2)

(Eq. 1-3)

(Eq. 1-4)

Axis

a

A

m·A
2

m·A
2

ωc + ωmωc – ωm

ωc
ωm ωm

m·A
2

m·A
2

A

b

Lower
sideband

Upper 
sideband

Figure A-1

Figure A-2

ωi =    
dφ
dt (Eq. 2-2)

φ(t) = ωct + φo.



Phase modulation

In particular, when 

we vary the phase of the carrier linearly with the

modulation signal. Ki, is a constant of the system.

Frequency modulation

Now we let the instantaneous frequency, as defined 

in Equation (2-2), vary linearly with the modulating

signal.

In the case of phase modulation, the phase of the

carrier varies with the modulation signal, and in the

case of FM the phase of the carrier varies with the

integral of the modulating signal. Thus, there is no

essential difference between phase and frequency

modulation. We shall use the term FM generally to

include both modulation types. For further analysis

we assume a sinusoidal modulation signal at the 

frequency ωm:

β is the modulation index and represents the maxi-

mum phase shift of the carrier in radians; ∆fpeak is

the maximum frequency deviation of the carrier.

Narrowband FM

To simplify the analysis of FM, we first assume that

β << π/2 (usually β < 0.2).

This resembles the AM case in Equation (1-4),

except that in narrowband FM the phase of the

lower sideband is reversed and the resultant side-

band vector sum is always in phase quadrature with

the carrier.

FM thus gives rise to phase variations with very

small amplitude change (β << π/2), while AM gives

amplitude variations with no phase deviation.

ω(t) = ωc + K2 • f(t)

Then

φ(t) =  ∫ ω(t)dt
         

= ωct + φo + K2 • ∫ f(t)dt (Eq. 2-4)

φ(t) = ωct + φo + Κi • φ(t) (Eq. 2-3)

m·A
2

m·A
2

A

AM

m·A
2

m·A
2

Narrowband FM

ø(t)

A

R

Figure A-3

β = –––––––  

We can take φo as zero by referring to an appropriate 

phase reference. The frequency modulated carrier is 

then expressed by:

For
∆ωpeak

ωm (Eq. 2-7)

(Eq. 2-6)e(t) = A • cos (wct + β • sin ωmt). 

f(t) = a • cos ωmt.

 (Eq. 2-5)

The instantaneous radian frequency ωi is

ωi = ωc + ∆ωpeak • cosωmt  ( ∆ωpeak <<ωc).    

∆ωpeak is a constant depending on the amplitude 

a of the modulating signal and on the properties of

the modulating system.

The phase φ(t) is then given

 φ(t) =  ∫ ωidt = ωct +                  sin ωmt + φo.
∆ωpeak

ωm

We have

2

e(t) = A • cos (ωct + β • sin ωmt)

     = A [cos ωct • cos (β • sin ωmt) - sin ωct • sin (β • sin ωmt)]

       for β <<  π     cos (β • sin ωmt) = 1   and 

e(t) = A (cos ωct – β • sin ωmt • sin ωct).

thus

Written in sideband form:

    

 (Eq. 2-8)= β • sin ωmt,       sin (β • sin ωmt) 

(Eq. 2-9)

  m  A
  2

     cos(ωc – ωm)t. 

e(t) = A cosωct +      •     cos(ωc + ωm) t  –     •      m  A
  2 *

24
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Figure A-4 shows the spectra of AM and  narrow-

band FM signals. However, on a spectrum analyzer

the FM sidebands appear as they do in AM because

the analyzer does not retain phase information.

Wideband FM

We thus have a time function consisting of a carri-

er and an infinite number of sidebands whose ampli-

tudes are proportional to Jn(β). We can see (a) that

the vector sums of the odd-order sideband pairs

are always in quadrature with the carrier compo-

nent; (b) the vector sums of the even-order side-

band pairs are always collinear with the carrier

component.
ωc –ωm ωc +ωm

ωc

ω

AM

ωc –ωm

ωc

ωc +ωm

ω

Narrowband FM

Figure A-4

e(t) = A • cos (ωct + β sin ωmt)            β not small

= A [cos ωct • cos (β • sin ωmt) – sin ωct • sin (β • sin ωmt)].

Using the Fourier series expansions,

cos(β • sin ωmt) 

              = Jo(β) + 2J2(β) • cos 2ωmt

              +2J4(β)cos 4ωmt + …                            (Eq. 2-10)

           sin(β · sin ωmt) 

              = 2J1(β)sin ωmt + 2J3(β) • sin 3ωmt +…  

 

when Jn(β) is the nth-order Bessel function of the 

first kind, we get

e(t) = Jo(β) cos ωct 

– J1(β) [cos (ωc – ωm)t – cos (ωc + ωm) t]

+ J2(β) [cos (ωc – 2ωm)t + cos (ωc + 2ωm) t]

– J3(β) [cos (ωc – 3ωm)t – cos (ωc + 3ωm) t]

+ …  (Eq. 2-12)

(Eq. 2-11)

ωc ωc +ωm

ωc –3ωm ωc –ωm

J–2

J–3 J–1

ωc –2ωm

J0

J1

J2

J3

ωc +2ωm ωc +3ωm

Figure A-5. Composition of an FM wave into sidebands
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Figure A-6. Phasor diagrams of an FM signal with a modulation index β
= 1. Different diagrams correspond to different points in the 
cycle of the sinusoidal modulating wave
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