HP 8175A — HP 1630G

Stimulus —Response — System

HEWLETT
ﬁﬁ PACKARD

p— o .

APPLICATION .NOTEM AN 3411

INTRODUCTION

Testing today’s complex digital devices requires

comprehensive test systems capable of

a) generating a great variety of complex test
signals in terms of appropriate data patterns,
timings, logic levels and data rates,

b) emulating circuits from which the Device
Under Test (DUT) is isolated during test,

c) analyzing the response of the DUT with
regards to proper logic operation and expec-
ted timing.

A microprocessing unit (MPU) is one example of

such a complex DUT.

MPU TEST APPROACHES

There are various philosophies for testing MPU’s.

However, most employ one of two basic

approaches.

1. The MPU is used in its " natural
environment " (with memory, [/O device etc.
i.e, real execution conditions).
If the execution of a program (stored in the
program memory) provides the expected
result, the MPU is assumed to operate
correctly,

2. The MPU is isolated from its " natural en-
vironment ",
It is activated and controlled by a test system
that stores data patterns and control signal
sequences and bursts them to the MPU.
Responses of the MPU are monitored, sam-
pled and stored for comparison with expec-
ted data.

The simplicity of the " natural environment "

approach, unfortunately, has considerable

drawbacks:

* The results after the test routine may be
correct even if the MPU is defective (one
failure negates another).

The causes of a failure may be undetectable.
Dynamic and parametric tolerances are not
tested.

The " tester " approach eliminates these draw-
backs, when succesfully implemented.

However implementation is more difficult and it
requires higher investment. Computer power is
necessary for logic modelling and fault simulation
of the MPU, ie. to provide the necessary test
patterns and parameters. Tester hardware is
necessary to physically apply test data to the
MPU. Also, test software is required to link the
tester to the computer, control the test equipment
and supply an easy user interface for test pro-
gram generation and test analysis.

MPU TEST SYSTEMS

There are big LSI/VLSI test systems on the
market which combine the above features thus
providing an almost complete solution. However,
they are expensive in terms of initial investment
and maintenance cost. They get their return from
high throughput e.g in production.

As far as low and medium-volumes are concerned
high investments can hardly be justified, particu-
larly when testing occurs occasionally. Typical
examples of low volume testing are found in
engineering environments, such as prototype
testing and quality assurance, and in incoming
inspection. Although, low-cost alternatives do not
compromize performance, they lack " turn key "
comfort. Consequently, much more user involve-
ment is needed regarding generation of test pat-
terns, measurement software and system set-up.

PURPOSE OF THIS APPLICATION NOTE

This literature gives some suggestions for testing a
MPU (6809E) with a low-cost measurement set-
up.

It focuses on the HP 8175A DIGITAL SIGNAL
GENERATOR (DSG), which applies digital
stimuli to the DUT, and the HP 1630G LOGIC
ANALYZER (LA), which monitors, samples and
analyzes the response of the DUT.
The reader will learn how easily the versatile test
equipment adapts to diverse measurement prob-
lems that are encountered, when testing not only
MPU’s but also many other complex LSI/VLSI
circuits. The following tests are covered:

- functional test of instruction codes

- reaction to control signals

- verification of timing
Measurement and analysis software and test
pattern generation are not considered. Suggestions
are covered in the chapter " Outlook ".

MODE OF OPERATION OF THE 6809E MPU

The hardware:

Data bus: Bidirectional 8 bit bus for data transfer
between memory or peripherals and MPU. The
MPU reads data from the data bus (direction
from memory or peripherals to MPU) or writes
data onto the data bus (direction MPU to memo-
ry or peripherals).

Address bus: Unidirectional 16 bit bus for address
transfer from MPU to memory or peripherals.
Control lines: Different Input lines (eg. interrupt
and reset) to force the MPU to execute a cer-
tain operation or adopt a certain status.

Clock inputs EQ: E and Q are clock signals re-
quired by the MPU for operation.

Normal operation:

Every instruction is defined with a one- or two-
byte opcode (operation code). The opcode is
transfered via the data bus from the memory to
the MPU. The MPU reads the opcode, decodes
and executes the instruction. Some instructions
require one or two operands. These operands are
contained in the memory, the internal registers of
the MPU or in the peripherals.

Read cycle: During a read cycle the MPU reads
data from the memory, The MPU puts an address
onto the address bus, the memory puts the data,
stored in this address onto the data bus. This data
is then loaded into a MPU register for processing.

Write cycle: The write cycle is the inverse of the
read cycle. The MPU puts an address onto the
address bus and data onto the data bus. The
address determines where the data is to be stored
(eg. into memory).

Execution of an instruction: Execution begins
with an instruction fetch (read cycle). After that
the MPU loads, if necessary, the operands (read
cycle) and manipulates data as required (e.g.
logic or arithmetic operations). Then it stores the
result into memory (write cycle) or shows an-
other reaction on the instruction, for example a
conditional branch.

Instruction execution time: The MPU needs a
definite time to execute an instruction. For exam-
ple, there are three byte instructions for which
the MPU needs three cycles and there are three
byte instructions for which the MPU needs five
cycles. The duration for an execution varies from
instruction to instruction.

The RESET function: The reset input is one of
the control lines that forces the MPU into a
defined state.

GENERAL TEST CONSIDERATIONS

The vast amount of test data

- A large set of instructions

Testing a microprocessor requires a large amount
of random data since the tester must be able to
generate all possible instructions of the MPU. In
the case of the 6809E, there are 59 instructions
and 10 addressing modes resulting in 1464 dif-
ferent instructions, and about 8000 clock cycles
for execution. In fact, this would be the data
memory depth required in the tester.

- Sequential processing

However, even this would test isolated instruc-
tions only. Actually, an MPU processes data
sequentially. The result of a command may
depend on a previous operation which appeared
thousands of cycles before. Take an "increment
command" which increments an internal register:
Executing just one increment, for instance, would
not verify proper (internal) Carry Bit function,
because this occurs only after several increments.
Thus testing for instruction order sensitivity
further increases test data. Obviously, all possible
sequences cannot be tested without time consum-
ing re-loading of test data from a controller.
Even focusing on critical issues would surpass the
memory capacity of a tester.

Emulation of the "natural environment"

- Synchronized interaction

Emulation of the "natural environment" requires
true interaction between the test system and the
DUT. One major concern is avoiding data colli-
sions on the bidirectional data bus, since both the
MPU and the test data generator have access to
this bus. Collision would occur if both write data
simultaneously.

Another problem is synchronizing the test system
to the number of MPU execution cycles, which
differ from instruction to instruction. If the data
generator would generate a new instruction while
the MPU is busy with the previous one, the MPU
would miss data.

- Decision making

Emulation of the "natural environment" also
includes real-time response to the MPU’s deci-
sions. Take a "conditional branch" instruction, for
instance. Upon a successful match on a condi-
tion, the MPU calculates an effective branch
address and puts it onto the address bus. The test
system’s data generator, emulating the program
memory, must recognize this and jump to the
appropriate data routine. The same is true for
initialization routines, when legitimate testing can
begin only when a particular output pattern

appears.

HOW DOES THE TEST SYSTEM COPE
WITH THIS ?

The vast amount of data

As would be expected, the major emphasis is on
the re-use of data already in local memory. The
data generator described in this note, the HP
8175A DIGITAL SIGNAL GENERATOR (DSG),
features high economic use of data memory by
storing data transitions only, i.e. consuming
memory space only when data changes state.
Steady-state conditions don’t use up memory
space. Also, different cycle times are easily simu-
lated with a minimum of memory space. The
pattern durations are stored in registers which
complement each test pattern (Variable Pattern
Duration). In our example, this reduces the re-
quired memory by approximately 50% ! Last not
least, memory sequencing also reduces memory
depth by programming patterns once and then
calling up any sequence desired (Virtual Memory
Expansion). Thus a loop can be executed several
times, yet only has to be stored once. This enables
detection of "hidden" failures (like the "Carry Bit"
example mentioned before) without wasting
memory.

Sampling and analyzing the response of the MPU
also requires data reduction. With the HP 1630G
LOGIC ANALYZER (LA) used in this measure-
ment set-up, data of interest can be isolated by
setting a variety of trace conditions. Sampled data
is easily compared against expected data (Com-
pare Image) which was previously stored, and any
discrepancy is displayed (Full Compare Mode).

Emulation of the "natural environment"

Avoiding data collisions is achieved by switching
the data generator’s output lines into high im-
pedance (TRI-STATE) when the MPU accesses
the data bus. However, only the data bus drivers
must be disabled, while the control lines have to
remain active. This is done by connecting the
R/W line of the MPU to the data output pod of
the generator.

The Variable Pattern Duration feature mentioned
above does not only save considerable memory
space. What’s more, it also enables correct syn-
chronization to varying execution times of the
MPU. Since the duration can be set individually
for each test vector, the DSG can hold the last
test vector until the instruction is executed.
Emulation of the program memory in order to
respond correctly to the MPU’s decision-making
capabilities is achieved by a programmable 8-bit
trigger input at the DSG. Connected to the ad-
dress bus of the MPU, the generator recognizes a
branch address, thus jumping to new data sequen-
ces before the next instruction is generated. A
programmable Trigger Word Duration determines
how long trigger words have to be stable, in order
to avoid triggering on uncertain patterns and
glitches due to race conditions,

TEST SYSTEM SET-UP

Figure 1 shows the test system set-up. The DSG
and the LA are connected via pods with the
DUT. Connections between pods and DSG or
pods and LA are not shown.

Clocks: The MPU requires two 90 degree phase

shifted clocks (E and Q clock, figure 4). Clock

generation is performed in two different ways
depending on the type of measurement:

1. For the measurement of the write data hold
time the E,Q clock is generated using two
data lines of the DSG (switch in position c).
This assures high timing accuracy which is
necessary, since the clock is used as a timing
reference. Every clock cycle requires four
memory locations of the DSG . Two lines of
pod 0 are provided for generating the clock.
Another line of pod 0 is connected with the
LA clock input, This line then generates a
strobe signal i.e. the sampling point for the
LA.

2. For all other measurements the E.Q clock is
generated with the external E,Q generator
(switch in position a). The E.Q generator
receives its input clock from the clock output
of the DSG. The clock is divided into E and
Q clock with the required phase shifting.
External clock generation saves memory
space in the DSG. One memory location is
only consumed per clock cycle.

Data bus: Data generator and logic analyzer are
connected with the data bus (pod 1). The logic
analyzer samples data written onto the data bus
either by the DSG or the MPU.

Tristate control: The tristate input of the DSG
data pod 1 is connected to the R/W output of
the MPU. If the MPU executes a read cycle, the
pod is enabled and the DSG puts data onto the
bus. If the MPU executes a write cycle the R/W
output turns to low level (high level at pod 1)
which forces pod | into tristate. This prevents
MPU and DSG from writing data to the bus at
the same time.

Address bus: With its trigger input pod the DSG
watches the lower byte of the address bus in
order to recognize branch conditions. All 16 bits
of the address are sampled with the LA (pods 2
and 3) to check address data.

Control lines: Control lines are connected from
pod 0 of the DSG with the control inputs of the
MPU. The two important ones for this applica-
tion are RESET and NMI, the others named in
figure 1 with " Control " are FIRQ, IRQ and
HALT. Another control line is the RESET E,Q
for the E,Q generator. Pod 4 of the LA allows
monitoring control signals.

Figure 1 TEST SYSTEM SET-UP

POD 1 POD 1 TRIST
L.A. DSG
H ‘
DATA BUS, bisrectionsl | E

T+ =&
AD_ALS

ADORESS BUS
€ & g
W
POD 2 POD 3 ITRIGGER
LA, LA, DSG

LA. = Logic Analyzer HP 1630G
DSG = Digital Signal Generator HP 8175A
* Refer to text

A \,/
< EQ
GEN.
/|
il 8
cl_o'é
E e = g
ke 2
= v
—
=
3 ___...-.- é j
V

FOR LA

TEST OF NORMAL OPERATION

Execution of one instruction: The instruction
TFR X,D (Transfer X-Register to D-Register)
has the Hex-Code IF (lst instruction byte) and
10 (2nd instruction byte). The execution time is
6 clock cycles. The two bytes generated from the
DSG are read and executed by the MPU,

The DSG must wait until the MPU has executed
the operation. This is performed by setting the
pattern duration to the same time the MPU
requires for execution. In this case the first in-
struction byte is generated with a pattern dura-
tion of one cycle, the second with a pattern
duration of 5 cycles (together 6 cycles).
Execution of an entire program allows a com-
pressed test of the MPU without checking the
instructions individually, because the correct
result of the program permits the deduction that
all instructions have been executed correctly
from the MPU.This reduces test time and in-
creases throughput. Another advantage is that the
MPU is checked under real execution conditions
i.e. the various instructions are not isolated from
each other so that critical issues due to the
MPU’s sequential processing nature are also
covered.In the following example the MPU must
calculate the sum of natural numbers starting
with | and incrementing by one. Incrementing is
done in a counter-loop. Calculation should termi-
nate if maximum counter value is achieved (fig-
ure 2).

MPU operations like read cycles, write cycles,
arithmetic calculations, register transfers, condi-
tional and unconditional branchings can be tested
with this program.

Figure 2 FLOW CHART

Example: Sum of natural numbers to 6
(6 = maximum counter value):
Sum = [+2+3+445+6 = 21

The program is stored in Hex-code in the DSG.
The DSG generates the instructions byte by byte
with a pattern duration corresponding with the
number of cycles the MPU needs for execution
(Last two columns of Chart 1). The MPU reads
these instructions from the data bus and executes
the program.

The labels " NEXT "and " LAST " are symbolic
branch addresses. The instruction BEQ LAST is a
conditional branch instruction. Branching
depends on the comparison with the maximum
counter value. The BRA NEXT instruction is an
unconditional branch instruction. Branching is
always performed . The effective branch address
is put by the MPU onto the data bus and recog-
nized by the DSG via the trigger input pod

(lower byte of the address).

Label " NEXT " (chart | and figure 2) has the
effective address (lower byte) 00000100 (binary
value), Label " LAST " has the effective address
00001 100. Figure 3 shows the trigger word assign-
ment of the DSG. The DSG continues generating
the program with program cycle JMP A (cor-
responding with label " NEXT ") or JMP B (cor-
responding with label " LAST ") depending on the
address the MPU puts onto the address bus. The
program cycle JMP A starts again with generat-
ing the instruction CMPB #06 (chart 1), the pro-
gram cycle JMP B continues generating data with
the instruction TFR X,D. With the last program
instruction STB AABB the MPU writes the Sum
onto the data bus.

The result and the branch addresses are checked
with the LA.

Chart I MPU PROGRAM

Accu B = Counter register
X-Register = Register for SUM

Description Label Mnemonics Hex-code Number of
cycles

Clear Accu B CLRB 5F 2
{Counter = 0)

Load X-Register LDX #0000 8E 1
immediate with 0 00 1

(Sum = Q) 00 1
Compare Accu B wilth NEXT: CMPB #06 c1 1
maximum counter value 06 1
Branch on equal to BEQ LAST 27 1

“ LAST “, It not 04 2
Increment B by 1 INC B 5C 2
Add accu B info X-Reg. ABX 3A 3
Branch always to BRA NEXT 20 1

" NEXT * F8 2
Transfer X-Reg. to LAST: TFR X.D 1F 1
D-Register (*) 10 5
Store Register B into STB AABB F7 1
memory location AABB AA 1
(MPU write cycle) BB 3

(*) = Transfer of X-Reg. o Accu B

Figure 3 TRIGGER WORD ASSIGNMENT
Control Page (PAR)
[T Trigger Word Assignment

The Trigger is determined by [l lord

Start

Stop

Continue

JMP A

JMP B
Tristate on
Tristate off
Tristate asun.

TEST OF INTERRUPT TIMING

An interrupt on the control line NMI forces the
MPU, running in normal operation, to execute an
interrupt service routine. When the MPU has
finished this routine it continues executing the
interrupted program. Since the interrupt service
routine changes data of the internal registers of
the MPU, these data have to be saved before the
MPU executes the service routine. Saving occurs
during the 18 cycles after the interrupt signal has
been detected. While the MPU writes the con-
tents of the internal registers onto the data bus
the DSG executes a wait cycle, This is achieved
by programming the DSG to a NOP (no opera-
tion) instruction for the exact duration of 18
cycles. In fact any other instruction would do,
since the DSG pod is disabled during the MPU’s
write cycles.

During the 19th and 20th cycles the MPU enables
the DSG again and reads the new address which
the DSG puts onto the data bus. The new address
specifies the start of the interrupt service routine.
Before an interrupt signal is given from the DSG
to the MPU the DSG loads initial data into the
internal registers of the MPU. The LA monitors
address and data bus and verifies that the MPU
saves exactly these data.

MEASUREMENT OF WRITE DATA HOLD
TIME

Measurement problem:

The write data hold time is specified in the data
sheet of the manufacturer. The time can be mea-
sured during a MPU write cycle, Write data hold
time is the time write data is stable after the
falling edge of the E clock.

Figure 4 shows the E and Q clock as well as the
data written onto the data bus by the MPU
(write data).

Measurement principle:

During the write cycle of the MPU the DSG
generates a strobe signal which determines the
sampling point for the LA. This sampling point is
variable . Therefore, the Pattern Duration setting
is split into 20 ns steps for rough positioning.
High resolution positioning of this edge is possible
with the Fine Timing feature of the DSG. It
allows to delay four channels with respect to the
other channels in a range of 20 ns in 100 ps steps.
One of these channels generates the variable
sampling point. The LA samples at the falling
edge of this strobe signal.

In order to eliminate timing uncertainties of the
E,Q generator, these clocks are generated using
data channels of the DSG (figure 1).

Figure 4 MEASUREMENT OF
WRITE DATA HOLD TIME

Eyie. Jan o e
yere S

1
|
i
CLOCK '\‘I
)

FOR LA.
N S
| STROBE) ' ‘l’
4
| VARIABLE SAMPUNG PONTS
1
WRITE DATA HOLD TIME

Performing the measurement: Before starting the
first measurement the falling edge for the LA
should be positioned to a save value i.e. a write
data hold time which is smaller than the time
specified from the manufacturer. The LA will
then sample the correct write data (solid line of
the variable sampling points, figure 4). Next
measurement should be performed setting a
greater value and so on until wrong data is sam-
pled (rough positioning, dashed lines in figure 4
symbolize such a sampling point). Then rough
positioning is turned back one step into the last
error free setting. Fine Timing allows a high
resolution sampling point placement " on the

fly " i.e, while the instrument is running . This is
a convenient way of finding the critical point
where errors occur. The time difference between
the falling edge of E and the variable sampling
point is the actual write data hold time.

CONCLUSION

A Stimulus - Response System configured with an
HP 8175A DIGITAL SIGNAL GENERATOR
and an HP 1630 LOGIC ANALYZER can be
applied to testing complex digital LSI/VLSI IC’s
such as microprocessors. The versatile feature set
of the test instruments enables easy adaption to
the numerous test signal requirements encoun-
tered in such applications. Thus, the test system
copes with such critical issues as:

- the vast amount of test data via highly
economic use of the generator’s test pattern
memory. Also, sampled data is reduced by the
analyzer’s trace conditions.

- emulation of the "natural environment" of the
MPU. This includes controlling the bidirectional
data bus to avoid data collisions, synchronizing
the test system to the MPU’s varying execution
times, and making real-time decisions, thus testing

the MPU in exactly the same manner as it is used.

This eliminates extra circuit design which is a
potential source of measurement uncertainties
and engineering inefficiency, thus allowing a test
engineer to focus on the real task.

Operating convenience is provided by a user
interface which includes a large, menu-driven
CRT. In addition, fast reconfigurations of com-
plete instrument set-ups are possible from inter-
nal, non-volatile storage locations, and from an
external disc drive which can be accessed without
using a computer. Also, test documentation on an
external printer is achieved by one keystroke.

OUTLOOK

Connecting an HP-IB (IEEE 488) controller to the
test instruments enables automatic test pattern
generation, data analysis of sampled MPU respon-
ses, documentation of results and control of the
test flow.

Test patterns can be supplied from a computer
running a fault simulation program. Results are
then translated into the tester ianguage. However,
this requires software modelling of the DUT
which may be unavailable or may lack sufficient
fault coverage. Also down-link software from the
mainframe computer to the instrument controller
is necessary.

This can be avoided with "stored-response” testing,
where the test system "learns" the response of a
known good reference device placed in the test
socket. In the "learn" phase, a program permits the
test engineer to enter an instruction in the MPU’s
mnemonic language. This program then translates
the mnemonics into functional stimuli sequences,
making use of a previously written "look-up"
table. This relates the input code to the tester
language.

This heuristic technique of test pattern genera-
tion, however, fulfills it’s purpose only if the test
pattern generator truly emulates the MPU’s actu-
al environment, as described in the previous
pages.

LITERATURE

HP 8175A Technical Data Sheet,
Pub.No. 5952-9560

HP 1630A/D/G Technical Data Sheet,
Pub.No, 5953-3939

Microprocessors Data Manual 1982, Data sheet of
the MC6809E, MC68A09E, MC68B09E,
MOTOROLA Inc.

Automatic Testing and Evaluation of Digital
Integrated Circuits, James T. Healy, Reston
Publishing Company Inc., 1981.

U} packano

For more information, call your local HP sales office listed in the telephone directory white pages. Ask for the electronic Instruments Department or write to Hewlett-Packard:
U.S.A.-P.O. Box 10301, Palo Alto, CA 94303-0890. Europe - P.O. Box 999, 1080 AZ Amstelveen, The Netherlands. Canada - 6877 Goreway Drive, Mississauga, L4V 1M8,
Ontario. Japan - Yokogawa-Hewlett-Packard Ltd., 3-29-21, Takaido-Higashi, Suginami-ku, Tokyo 168. Elsewhere in the world, write to Hewlett-Packard Intercontinental, 3495
Deer Creek Road, Palo Alto, CA 94304.

B 100
59529572 Printed in the Federal Republic of Germany.

