APPLICATION NOTE 314-1

Receiver Testing with the HP 8770S
Arbitrary Waveform Synthesizer System

[bﬂ HEWLETT

PACKARD

Receiver Testing with the HP 8770S Arbitrary
Waveform Synthesizer System

INTRODUCTION

This application note describes the use of the HP 87708 to test receiver video and IF
sections. It includes some examples of complex receiver test waveform creation and
modification. General familiarity with the HP 87708 is assumed. If you have not
already been introduced to the system, reading the data sheet and product note will be
helpful (available at no charge from your local HP sales and service office; ask for HP
literature numbers 5954-6355 and 5954-6360).

Ideal vs. “Real-life” Signals

Figure 1 shows a simplified block diagram of a typical receiver. A received signal is
processed through the different stages of a receiver, each introducing various amounts
of distortion and noise to the information signal. To characterize the performance of
the video post-detection and processing circuits, the receiver must be exercised with
complex test signals simulating the actual operating, or “real-life”, environment.
Testing receivers under “real-life” conditions provides a high degree of confidence
that the receiver will operate as expected in actual use.

Figure 1. A complex test signal source,
such as a high-bandwidth arbitrary
waveform generator, can provide “real-
life” signals to test the video section of
typical receivers. These signals can also
drive signal generator modulators to test
the RF and IF sections.

IN RF

IF Video
== Band :®-+D—. Band - :Dv -
) I':}hg:“ } 7'y e s Detector [} Processing

il =
BWpp IF BWip Video
RF Amplifier i Amplifier

Filter

Direct

RF Signal IF Signal Simulation
Generator Generator
[A
Complex | l—
Modulation
Signals Complex Test

Signal Source

Currently, racks of equipment containing RF sources, modulators, modulation
sources, and noise sources may be required to accomplish this “real-life” signal
generation task. The investment of time and money in these types of systems is high.

An arbitrary wavefrom generator is a source of complex receiver test signals,
eliminating the need for racks of equipment in specialized generation systems. Up
until now, however, arbitrary wavefrom generators have been limited by digital-to-
analog converter (DAC) technology; they simply didn’t have the frequency range to
match receiver testing needs. In addition, small memory and limited front panel
functions have been major drawbacks.

THE HP 8770S ARBITRARY
WAVEFORM SYNTHE-
SIZER SYSTEM

The HP 87708 provides the capability needed to test receivers with “real-life” signals.
The HP 87708 consists of the HP 8770A Arbitrary Waveform Synthesizer, the HP
11775A Wavefrom Generation Software, and an HP Series 200 Model 216A or
236A technical computer, The system software features the Waveform Generation
Language (WGL), enabling the user to create and modify waveforms as easily as
using a calculator to work with numbers. Complex test signals can be constructed
with simple operations, and then data representing these signals downloaded to the
HP 8770A for generation.

With state-of-the-art gallium arsenide technology, the HP 8770S outputs waveform
samples ata 125 MHz rate, giving signal generation bandwidths up to 50 MHz. It has
a 12 bit, 128K word waveform sample memory for accurate simulation of receiver
test signals. It also has a separate sequencer memory. “Packets” of waveform data can
be computed with WGL and stored in arbitrary order in the waveform memory. The
sequencer memory is then used to determine the order in which the corresponding
waveforms will be generated, including the number of times each waveform is
repeated.

A Powerful Source of “Real-
Life” Signals for Receiver Testing

With its dc - 50 MHz coverage and 12 bit resolution, the HP 87708 can accurately
generate test signals for all stages of a modern receiver. The IF and video sections can
be directly tested. To test the RF sections, the system can generate complex modula-
tion signals that drive RF and IF signal generators. In some cases, the complex signals
might be directly upconverted to the test band.

As the HP 8770S simulates precise error conditions and distortion, it verifies the
operation and susceptibility of the receiver detection circuitry.

GENERATING RECEIVER
TEST SIGNALS WITH
THE HP 87708

In the following sections, waveform creation and generation examples show how
WGL commands entered into the computer produce standard and complex receiver
test waveforms with the HP 8770A. WGL has over 180 commands available for
waveform development. Only 37 commands are required to develop all the wave-
forms in this note, giving an indication of the power of the language. A glossary of the
WGL commands used in the examples is provided for convenient reference (see
Appendix). Figure 2 shows the WGL computer display and references some of the
common WGL terms.

Figure 2. The typical HP 8770S waveform-
creation computer display.

Maximum peak amplitude of Relative position of the present

waveform in window

oK

1880 CTx K
258 75@ WI oW
RAMF PLr 3% SIN?

Command log

©a HEMLETT-PACKARD 1 1779R

window to entire waveform
/ Full context of the working wave

oK

1
2507 WINDOW 750

| _— The working wave
ME uz 6. 209

7 Present window limits
P ey
=:'“C DOMAIN

RADL A
RS IS ON] Absolute horizontal waveform axis

scaling in microseconds (time domain)
or Hertz (frequency domain)

WGL stack contents (7 shown) with
the working wave as the first item

Generation of pulse waveforms, mainly for video section testing, are covered first.
Complex signals for IF section testing, such as multitone, AM, FM, and “hopped”
signals, are covered next. The note closes with a discussion on creating customized
complex signal WGL routines for specific applications.

Pulse Waveform Generation

To characterize the post-detection circuitry of a pulsed-wave system, a pulse wave-
form with independently variable parameters must be simulated. Using WGL, pulse
waveforms with arbitrary parameters can be developed quickly. The receiver can
then be exercised under non-ideal conditions by adding quantifiable amounts of
noise, glitches, and other distortion to the test signal.

In the following examples, WGL is used to construct typical pulse test signals with
variable pulse width, rise/fall time, PRI, and variable signal-to-noise ratio.

A Pulse Train

Rise time

Pulsewidth

Falltime

Pulse trains with variable parameters can be designed using WGL. For example, an
application may require a pulse waveform with the following pulse parameters:

Risetime (0-100% level): 40 ns
Pulse width (100% level): 200 ns
Falltime (0-100% level): 60 ns
PRI: 2 us (PRF= 500 kHz).

The HP 8770A’s internal waveform sample rate (125 MHz) results in 8 ns timing
resolution, i.e., each waveform sample point generated comes at an 8 ns time interval.
Since the period of the desired pulse train is 2 us, one cycle of the waveform can be
defined with 250 waveform elements, or “points”. The pulse waveform in Figure 3 is
constructed by using the number of points required to construct each section of the
pulse. The following WGL commands are entered in the computer to create the pulse
train,

250 CTX Set the number of points required for 1 cycle
of the pulse.
0 5 WINDOW? 5 points are required for the 40 ns risetime. The

question mark after the command updates the
WGL graphical display screen.

RAMP? Generate a linear ramp to simulate the risetime.
1+? Add one to place the ramp between 0 and 2.
NORM? Normalize the maximum amplitude to 1.
5 30 WINDOW? Set the window to the next 25 points

(200 ns).
1 LOAD? Load a constant amplitude of 1.

Since the desired falltime is 60 ns and the timing resolution is 8 ns/point, 7 points are
used resulting in a 56 ns falltime. For precise timing resolution requirements, an
external sampling clock can drive the HP 8770A to adjust the resolution. For
example, a 100 MHz external clock will provide 10 ns resolution.

30 37 WINDOW? Select 7 points for a 56 ns falltime.
RAMP REFL? Reflect a ramp to generate the falltime.
1+ NORM? Offset the ramp and normalize the amplitude

to 1.

Interpulse period

37 249 WINDOW? Set the window to the remaining portion of
the waveform.

0 LOAD? Load a constant level at 0.

FULL? A look at the whole waveform.

STORE A? Save the waveform in a temporary register
for later use.

The internal memory architecture of the HP 8770A requires the total length of
individual waveform packets stored in the memory to be a multiple of 8. Most
complex waveforms are constructed by piecing together different waveforms of
various lengths. Each waveform part can have any arbitrary length; only the total
waveform must have a length which is a multiple of 8. The pulse train waveform in
the example is constructed with 250 points. Since 250 is not a multiple of 8, the
solution is to construct 4 cycles of the waveform, which corresponds to 1000 points (a
multiple of 8), according to the following WGL commands.

1000 CTX? Set the number of points for four cycles of
the pulse waveform.

250 CLONE? Copy the first 250 points to obtain four
cycles of the pulse.

DOWNLOAD Download the waveform data to the HP
8770A memory. The computer will prompt
for a file name under which to store the
waveform, and for an amplitude scale factor.

GO Generate the pulse waveform.

Figure 3. A 500 kHz pulse train with 40
ns risetime, 200 ns pulsewidth, and 56 ns
falltime, created and generated with the
HP 8770S.

37.5300 psec 39.5200 psec 41.5200 psec

Ch.1 = 500.0 mvolts/div Offset = 0.000 volts
Timebase = 400 nsec/div Delay = 39.5200 psec

Common waveforms, such as the pulse waveform in Figure 3, can be easily created
using the FCNGEN program which is located on an application program disc
included with the HP 11775A Waveform Generation Software. The FCNGEN
program allows the user to generate sine, pulse, AM, FM, and other commonly used
receiver test signals. This program is written in WGL, and its functions are explained

in the “CREATING APPLICATION PROGRAMS” section of this note. This
program generates common signals by prompting the user for waveform parameters
(frequency, modulation rate/depth, etc.), and then creating the data that produces the
specified signal.

A Noisy Pulse Signal

Receivers seldom encounter clean pulse signals such as the ones created in the last
example. Therefore, it is important to exercise the post-detection circuitry under more
marginal conditions by adding precise amounts of noise to the test signal. Creating
noisy signals with WGL is simple and fast. The command NOISE generates a random
noise waveform over a given time span. This waveform can be scaled and modified to
simulate a desired effect, and then be added to other waveforms. In the next example,
the pulse train waveform of Figure 3 is used as a base on which to construct a noisy
pulse signal.

The period of this pulse train is 2 s (250 points). To simulate this pulse signal
contaminated with random noise, the period of the noise must be longer than the
period of the pulse train. In the following example, the repetition rate of the noise
signal is designed to be 1/8 the repetition rate of the pulse signal (noise period=16 us
corresponding to 250x8=2000 points). This simulates pseudorandom noise added to
8 cycles of the pulse train. The following WGL commands are entered to achieve the
desired signal.

0 249 WINDOW A? Recall the pulse waveform from register A.

2000 CTX? Set up the noise context.

250 CLONE? Create 8 cycles of the pulse waveform.

STORE A Save the new pulse waveform.

NOISE? Generate noise over 2000 points.

8/? Scale the noise waveform (12.5% of full scale
in this example).

A+? Add the noise waveform to the pulse train.

DOWNLOAD Download the waveform data to the HP

8770A memory.
GO Generate the signal.

Figure 4 is an oscilloscope display and Figure 5 is a spectrum analyzer display of the
noisy pulse signal. The period of the noise can be varied if a more random signal is
required. For the pulse signal shown in Figure 6, the period of noise is increased to 32
s, doubling the number of noise spectral components.

Figure 4. The pulse train of Figure 3 is 37.5200 psec 39.5200 psec 41.5200 psec
contaminated by adding an arbitrary
random noise waveform with WGL.

O L O 7 v

_ Ch.l = 500.0 mvolts/div Offset = 0.000 volts
Timebase = 400 nsec/div Delay = 39.5200 psec

Figure 5. A spectrum analyzer display of ~ REF20.0dBm ATTEN30dB
the noisy pulse signal of Figure 4. The
spacing of the noise spectral components
is determined by the 16 us noise wave-
form period.

10 dB/
—
—_—

I 1,

I
l

IUW

—

—

p=
-]
-
=
=]
| —]
=
et

1 ' f 'R
START 4.97 MHz STOP 6.52 MHz
RES BW 10 kHz VBW 30 kHz SWP 46.5 msec

Figure 6. The pulse train signal of Fig- REF20.0dBm ATTEN 30dB
ure 3 is added to a 32 s period noise
waveform. The noise spectral compo-
nents are doubled in number due to the
decrease in repetition rate of the noise

waveform.
=
= | I
RN el
| M}ﬁﬂ I
| | |
L || [Ll LA L L '
START 4.97 MHz STOP 6.52 MHz

RES BW 10 kHz VBW 30 kHz SWP 46.5 msec

Pulse Stagger

Simulation of pulse trains with varying PRF is a difficult task using traditional signal
generators. The HP 8770S creates such signals easily.

The signal in Figure 7 is an arbitrary pulse train composed of three pulses with
varying shapes. This signal is designed in three steps as shown in Figure 8.

Figure 7. A staggered pulse waveform.
The variable interpulse period is con-
trolled by the sequencer program created
with WGL and stored in the HP 8770A.

-10.000 usec 0.00000 sec 10.000 usec

|
|

iy

\\
I __\r 1Y

188.0 mvolts
0.00000 sec

Ch.1 = 200.0 mvolts/div Offset
Timebase = 2.00 psec/div Delay

nu

Figure 8. Individual waveforms are
stored in the HP 8770A memory with
assigned names. The synthesizer gener-
ates the signal according to the program
in the sequencer.

i_PULSEI | PULSE2 | PULSE3 } LEVELO : S/ =g

HP 8770A Storage Memory

[25] O ES M)
! | -
1 x 5% 1 x 8 x 1 x 10 x
l PULSEI }LEVELOIPULSEZI LEVELO,PULSE3, LEVELO, Y,
T T T 1 T 7

HP 8770A Sequencer Memory 2000

First, the three pulses (not including the interpulse period) are stored in the memory
with assigned waveform names PULSE1, PULSE2, and PULSE3.

The first pulse is created by entering the following WGL commands.

400 CTX

0 60 WINDOW?

RAMP 1+ NORM?

60 300 WINDOW?

1 LOAD?

300 399 WINDOW?
RAMP 1+ REFL NORM?
FULL STORE A?

“PULSEL;” SDOWNLOAD

Set the pulse context.

Set a .48 us risetime window.

Create the risetime.

Set the pulsewidth (1.92 pus).

Load a constant level.

Set a .8 us falltime window.

Create the falltime.

Store the pulse waveform.

Store PULSEL1 in the HP 8770A memory. The
$DOWNLOAD command takes the items in

quotes just before it as the waveform file name
and the amplitude scale factor.

The second pulse is constructed by adding an arbitrary noise waveform and a

glitch to PULSEL.
400 CTX

NOISE 8/?

A+?

408 CTX?

Set the noise context.

Compute and scale the noise
waveform.

Add the noise to PULSEL.

Increase the context to add an arbi-
trary glitch.

The glitch is constructed by using the STOREIN command to add arbitrary ampli-

tude levels point-by-point.

-2 400 STOREIN
-5 401 STOREIN
-4 402 STOREIN
-.1 403 STOREIN
.3 404 STOREIN
.2 405 STOREIN
0 406 STOREIN
0 407 STOREIN

FULL?

“PULSE2;” $SDOWNLOAD

View the complete PULSE2 waveform.

Store PULSE2 in the HP 8770A memory.

10

Applications such as coincidence circuit testing in radar receivers and simulating
special codes in communication receivers require pulse signals with multiple levels.
The windowing capabilities of WGL simplify construction of such waveforms.

PULSES3 is constructed by adding a .6 us pulse to PULSEL

400 CTX A? Recall PULSEL.

115 189 WINDOW? Set up a .6 us window on an arbi-
trary portion of PULSEL.

2 LOAD? Set a constant level twice the level
of PULSEL.

FULL? View the 2-level pulse.

The sharp transition between levels may cause ringing on the generated signal
because of the HP 8770A synthesizer’s 50 MHz upper frequency limit. To lessen
this effect, the transitions can be “softened” by windowing in and adding ramps
to simulate linear rise and fall times.

113 115 WINDOW? Set up a window for the risetime.

RAMP .5* 1.5+? Compute a ramp transition between
level 1 and 2.

STORE B Store the risetime for the next step.

189 191 WINDOW? Set up a window for the falltime.

B REFL? Reflect the rising ramp to simulate
the falltime.

FULL? View the complete PULSE3
waveform.

“PULSE3;” SDOWNLOAD Store PULSE3 in the HP 8770A
memory.

Next, a waveform which represents a small section of the interpulse period,
called LEVELDJ, is stored in the memory.

079 WINDOW Set a window for 80 points.*
0 LOAD? Load the 0 level.

“LEVELO;” $SDOWNLOAD Store LEVELOQ in the HP 8770A
memory.

* The minimum waveform length that can be stored in the waveform memory is 64
points. 80 points is arbitrarily chosen here.

11

The final step in creating this pulse stagger signal is downloading a sequencer program
which, when executed, will generate the desired pulse, repeat the waveform LEVELO
enough times to make up the interpulse period, then go on to the next desired pulse.
By using the sequencer, only a small portion of memory is required to generate a pulse
train with a long period. Sequencer programs are constructed by specifying the
waveform name, the number of repetitions, and the packet advance information in
the following format:

NEWSEQ Initiates the sequencer program.
“Waveform name; # of repetitions; packet advance” SPACKET

This command defines a packet that is stored in the sequencer memory as an
instruction determining how the HP 8770A waveform memory will be accessed.
According to these stored instructions, a waveform will be accessed and generated for
the specified number of repetitions before an advance to the next waveform packet.
“Packet advance” is triggering information that the sequencer uses for switching
between packets. When this is set to AUTO, the sequencer switches to the next packet
after completing the required number of repetitions.

The staggered pulse train in Figure 7 is generated using the following sequencer
program.

NEWSEQ Initiate sequencer program.
“PULSEL;1;AUTO” $PACKET Generate PULSEL.

“LEVEL0;5;AUTO” $PACKET Set the interpulse period= 3.2 us (5 x 80
points x 8 ns/point).

“PULSE2;1;,AUTO” $PACKET Generate PULSE2.
“LEVEL0;8;AUTO” $PACKET Set the interpulse period= 5.1 us.
“PULSE3;1;AUTO” $PACKET Generate PULSE3.
“LEVEL0;10;AUTO” $PACKET Set the interpulse period= 6.4 us.
GO Execute the sequencer program.

Other complex pulse modulations, such as PRI FM, and jitter, can be simulated with
the HP 8770S using the sequencer techniques demonstrated in this example.

Pulse Jitter Simulation

The sequencing capability of the HP 8770S can be used to create complex signals
with variable timing jitter. In the following example, a Gaussian pulse train wave-
form, consisting of 4 pulses, is designed and stored as GAUSS1. The third pulse in the
train is then shifted in time by an arbitrary amount to the right of its original position.
This second waveform is stored as GAUSS2. GAUSS3 is stored with the third pulse
shifted symmetrically in the opposite direction. Finally, a sequencer program is
designed to generate each waveform for a number of times before going on to the next
waveform. Since the third pulse is shifted in each waveform, it jitters between three
positions.

12

The Gaussian pulse is generated using the general equation:
f(x)=e"A%’,
where A is a constant scale factor.

These WGL commands are used to generate the pulse waveforms.

1000 CTX Set an 8 us period for the pulse signal.

0 LOAD? Clear the context of waveform data.

0 99 WINDOW? The duration of the Gaussian pulse is arbitrar-
ily set to .8 us.

RAMP SQ? Create the square term.

4* NEG? An arbitrary scale factor is used (A=4).

EXP? Create the Gaussian pulse.

FULL? Set the window to the full context.

250 CLONE? Create 4 Gaussian pulses.

STORE A Store GAUSSI in register A for later use.

“GAUSS1;” SDOWNLOAD Store GAUSSI in the HP 8770A memory.

424 674 WINDOW? Set a window on the third pulse.

20 RIGHT? Shift the pulse 20 elements (160 ns) to the
right.

FULL? View the full GAUSS2 waveform.

“GAUSS2;” $SDOWNLOAD Store GAUSS?2 in the HP 8770A memory.

A 424 674 WINDOW? Recall GAUSSI from A. Set a window on
the third pulse.

20 LEFT? Shift the pulse 20 elements to the left.

FULL?

“GAUSS3;” SDOWNLOAD Store GAUSS3 in the HP 8770A memory.

The following sequencer program instructs the synthesizer to generate each waveform
4000 times. Thus, each pulse has a generated period of 3.2 ms (4000 x .8 us).

NEWSEQ

“GAUSS1;4000;AUTO” SPACKET
“GAUSS2;4000,AUTO” SPACKET
“GAUSS3;4000,AUTO” $PACKET
GO

The resultant signal is a Gaussian pulse train from the HP 8770A output with each
third pulse jittering.

13

Complex Signal Simulation
in the Frequency Domain

WGL is an effective tool for analysis and creation of waveforms in the frequency
domain. Complex analog signals can be described by specifying their frequency
spectrum. The spectrum can be modified to reflect channel impairments, band
limitation, and other distortion and non-ideal effects. Then, by using the inverse FFT
or DFT, the time domain waveform data is calculated and can be downloaded to the
HP 8770A for generation.

Multi-tone signals with variable amplitude and phase relationships can be constructed
and modified with a few WGL commands. Using conventional methods to obtain
multi-tone signals often results in a complex system with multiplexed sources. As test
requirements change, simulation of new environments becomes more expensive. The
HP 87708 provides a flexible solution with WGL available to create new environ-
ments without new hardware having to be bought or built. Hundreds of independent
tones can be developed with software and generated by the HP 8770A.

The following example shows how a multi-tone signal with frequency components at
8, 20, 34, 42, and 50 MHz is generated.

Working in the Frequency
Domain

WGL commands work in both the time and frequency domains. Since the WGL FFT
and DFT routines require amplitude and phase information, both an amplitude and a
phase waveform are defined in the frequency domain. Arbitrary amplitude and phase
waveforms are computed using two separate waveform axes. Once these waveforms
are computed, the data can be transformed to the time domain.

When working in the frequency domain, the frequency resolution depends on the
selected context size.

Frequency resolution = 62.5 MHz / (Context-1)

To generate the multi-tone signal in the following example, a context size of 513 is
selected.

FDOMAIN Set up the frequency domain axis.

513 CTX? Set context to 513 elements (spectral
components).

OLOAD? Clear the context of waveform data.

DISP2? Display the two waveform axes.

This context corresponds to a minimum frequency resolution of 122 kHz (62.5
MHz/512). When the frequency information is transformed to the time domain, the
time waveform is described by 1024 points.

The STOREIN command is used to specify each tone; the amplitude of each is
arbitrarily set to a relative level.

14

Amplitude waveform

Phase waveform

1 8E6 HZ .5+ INT STOREIN Store level 1 at 8 MHz.

.8 20E6 HZ .5+ INT STOREIN Store level .8 at 20 MHz.
.2 34E6 HZ .5+ INT STOREIN Store level .2 at 34 MHz.
4 42E6 HZ .5+ INT STOREIN Store level .4 at 42 MHz.
.6 50E6 HZ .5+ INT STOREIN Store level .6 at 50 MHZ.

FULL STORE A? Save the spectral lines.

The command HZ returns the frequency axis element that corresponds to the
specified frequency. If the minimum frequency resolution prevents the exact spectral
element from being defined, HZ will return a real number. For example, 8 MHz
corresponds to the 65.536th sample point. To define the nearest whole spectral
component, 65.536 must be rounded off. Since the command INT returns only the
integer portion of a real number, .5 is first added. Adding .5 to 65.536 and taking the
integer portion resultsin 66. So, point 66 is the closest spectral position to 8 MHz with
the given resolution. The actual frequency is 8.05664 MHz, due to the 122 kHz
resolution set by the 513-point context.

The phase information can be specified using the same commands that specified the
amplitude information, For this example, however, the NOISE command is used to
assign random phase to each spectral component.

Xy? Use the auxilary waveform axis to specify the
phase information.

NOISE? Generate random amplitude levels between 1
and -1.

A*? Multiply the amplitude waveform by the

random waveform.

PI*? Transform random amplitude levels to ran-
dom phase information.

Xy? Bring the amplitude information back to the
main axis.

Multiplying the noise waveform by the amplitude waveform results in 5 random
levels corresponding to the 5 tones. Multiplying this waveform by PI results in 5
random phase coefficients. Before transforming the data to the time domain, the
amplitude information must reside in the main waveform axis. This is the reason
for the last command (XY). Figure 9a is the HP 8770S computer display of the
frequency domain axes.

Figure 9a. The HP 8770S computer dis- T
play of the frequency domain amplitude N
and phase axes. 5 independent tones are
created with arbitrary amplitude (upper
axis) and phase information.

L] EIEL]

M P RTOENCY abir 6.0, o

Computing the time waveform TOTIME? Take the inverse FFT*,
DISP1? Display the main axis.
NORM? Normalize the time waveform.
DOWNLOAD Download the waveform to the HP 8770A.
GO Generate the multitone signal (Figures 9b
and 10).

When the frequency information is transformed to the time waveform, the auxilary
axis is cleared. DISP1 changes the dual display back to the single axis display. Figure
9b illustrates how precisely the WGL signal simulation compares with the actual
signal generated by the HP 8770A.

*When using the Fast Fourier Transform, the number of points describing the
waveform must be an integral power of 2 in the time domain, or an integral power of
2 plus 1 in the frequency domain. If this condition is not met, WGL will automatically
use a Discrete Fourier Transform (DFT) routine to compute the transform. The speed
of the FFT for transforming 1024 points is 2 seconds. The Discrete Fourier Transform
takes considerably longer.

Figure 9b. A spectrum analyzer display REF 20.0dBm ATTEN 30dB
of the 5-tone signal created and gener-
ated by the HP 8770S. This is a loga-
rithmic display. The WGL display of the
multitone signal (Figure 9a) is a linear
display.

10 dB/

START 0 Hz STOP 62.5 MHz
RES BW 100 kHz VBW 300 kHz SWP 20.0 msec

16

Figure 10. An oscilloscope display of the ~250.000 nsec 0.00000 sec 250.000 nsec
S-tone signal generated by the HP 8770S.

“\
AL
{IRARRFL ALY

v

Ch.1 = 200.0 mvolts/div Offset = 0.000 volts
Timebase = 50.0 nsec/div Delay = 0.00000 sec
Sine Wave Modulation Amplitude and frequency modulated waveforms can be constructed by simple

waveform operations. As the HP 8770S is designed for arbitrary signal generation,
traditional function generator signals can be modified into more complex signals. The
following examples illustrate how WGL constructs AM and FM signals.

AM signal To generate an AM signal, the carrier and modulation signal must each be computed.
In this example, a 20 MHz carrier signal will be modulated with a 1 MHz sinusoidal
signal with a modulation index of .5.
f=20 MHz implies 6.25 points/cycle for 8 ns/point resolution.
f,=1 MHz implies 125 points/cycle for 8 ns/point resolution.

There are 20 cycles of the carrier signal per cycle of the modulation signal (125/6.25).
The WGL commands entered to create this signal follow.

125 CTX? Set up the modulation period.

RAMP PI* SIN? Compute the modulation signal.
STORE A? Store the modulation signal.

RAMP PI* 20* SIN? Compute the carrier signal.

STORE B? Store the carrier signal.

A 5% Set 50% modulation depth.

B*? Modulate the carrier.

B+? Add the modulation term to the carrier.

Before downloading this signal for generation, the context must be increased to a
number that is a multiple of 8.

1000 CTX? Increase the context to 1000 points.

125 CLONE? Copy the first 125 points across the full
context.

DOWNLOAD GO Generate the AM signal (Figure 11).

Figure 12 is a spectrum analyzer display of the AM signal.

Figure 11. An AM signal with 20 MHz ~1.43200 wsec -432.000 nsec 568.000 nsec
carrier frequency, 1 MHz modulation
rate, and 50% modulation depth created
and generated by the HP 8770S.
il l i b
| I T Fl
H ! H
L
Ch.1 = 200.0 M volts/div Offset = 0.000 volts
Timebase = 200 nsec/div Delay = -432.000 nsec
Figure 12. A spectrum analyzer display REF20.0dBm ATTEN 30dB

of the AM signal of Figure 11.

fi

10 dB/

I
I !
I I
/| |
[/
AN

i 8 LB L B L

CENTER 20.0 MHz SPAN 40.0 MHz
RES BW 100 kHz VBW 300 kHz SWP 20.0 msec
FM signal A wide range of frequency modulated signals can be developed with the HP 8770S.

Since arbitrary phase waveforms can be easily created, generation of signals with
various frequency characteristics (e.g., linear, square, exponetial, etc.) is possible. In
this example, an FM signal will be generated with the following parameters:

f.=20 MHz implies 6.25 points/cycle for 8 ns/point resolution.

fn=n2 MHz implies 62.5 points/cycle for 8 ns/point resolution.

Af=8 MHz.

The phase of the FM signal is defined by

BUy=w t+(AF/E)SIN(W,t),

18

where w, is the carrier frequency (2 x pi x f),
W, is the modulation frequency (2 x pi x f,),
and Af is the maximum frequency deviation.

A context of 125 points will be used to define the phase for 2 cycles of the modulation
(2 x 62.5 = 125) and 20 cycles (125/6.25) of the carrier signal.

125 CTX

RAMP PI* 20* STORE A? Compute and save the carrier phase (wt).

RAMP PI* 2* SIN? Create the modulation signal (SIN(w,t)).
4%? Multiply by Af/f,.

A+ SIN? Create the FM signal.

1000 CTX 125 CLONE? Achieve a multiple of 8 context.
DOWNLOAD GO Generate the FM signal (Figure 13).

The frequency spectrum of the FM signal is shown in Figure 14,

Figure 13. An FM signal with 20 MHz
carrier frequency, 2 MHz modulation
rate, and 8 MHz frequency deviation
created and generated by the HP 8770S.

-942.000 nsec -442.000 nsec 58.000 nsec

—

V Vi V[V
B
|
Ch.l = 500.0 mvolts/div Offset = 0.000 volis
Timebase = 100 nsec/div Delay = -442.000 nsec

Figure 14. A spectrum analyzer display
of the FM signal of Figure 13.

REF 20.0dBm ATTEN 30dB

10 dB/

!
VUL

RITIIR

CENTER 20.00 MHz SPAN 4.00 MHz
RES BW 30 kHz VBW 100 kHz SWP 20.0 msec

19

Frequency Hopping

The sequencing power of the HP 8770A greatly simplifies the simulation of “hop-
ping” signals. Signal frequency, phase, and/or amplitude can be changed in less than
8 ns over the dc-50 MHz bandwidth. To create a hopping signal, the constituent
waveforms are first computed and stored in the memory. Then, a sequencer program
is used to define the hop from one waveform to the next.

The FREQ command can be used to generate the desired sine frequency. Two pieces
of information are required to compute sinusoidal signals using the HP 87708S: (1) the
number of cycles, and (2) the number of points to describe the waveform. The FREQ
command simplifies computation of these parameters. When given the maximum
number of points to be used and the frequency of a signal, FREQ computes the
number of cycles and the optimum number of points required to create the desired
sine frequency. For example, the command

1000 20E6 FREQ

instructs the software to create a 20 MHz (20E6) sine wave as closely as possibe using
no more than 1000 points. The command then returns the context length and the
number of cycles needed to create the desired sine wave. The frequency error in Hertz
is also returned. The context information is the first item on the stack, the number of
sine wave cycles is second, and the frequency error is third. The following commands
create 4 sine waves with arbitrary frequencies at 4, 20, 34, and 48 MHz.

1000 4E6 FREQ Get the context and number of cycles for a 4
MHz sine wave.

CTX RAMP? Set the context to the value returned
with FREQ.

PL? Compute the phase information based on the

second number on the stack.
SIN? Create the 20 MHz sine wave.
“SINE1;” SDOWNLOAD Store the first sine wave in the memory.

Similar commands are repeated three times to store the remaining sine waves (SINE2
@ 20 MHz, SINE3 @ 34 MHz, and SINE4 @ 48 MHz).

The final step is to create a sequencer program to access each sine wave, generate the
selected wave for the desired number of times to make up the dwell time, and then go
on to the next sine wave.

The following example generates a hopping signal that switches between the 4
different sinusoidal signals:

NEWSEQ
“SINE1;30000;AUTO” $PACKET
“SINE2;20000;AUTO” $PACKET
“SINE3;15000;AUTO” S$PACKET
“SINE4;24000;AUTO” $PACKET
GO

20

Each packet has a different number of repetitions, and depending on the size of the
stored waveform, the dwell time of each signal will be different. The size of each
waveform is computed by the FREQ command, and the dwell time can be set using
that information.

Each packet must have a minimum dwell time of 2.752 us (344 points X 8 ns/point)
before the sequencer can go on to the next waveform packet. Therefore, either the sine
wave must be composed of at least 344 points, or it must be repeated enough times to
equal at least 2.752 ps if the number of points in the packet is smaller than 344.

Once a signal is generated for 2.752 ps, the sequencer can hop in 8 ns to the next
packet. However, if an 8 ns switching speed is required within the 2.752 us period, the
signals can be concatenated using the software and stored together as one packet.
Thus, the transition between signals does not involve a packet change.

Creating Application
Programs

The same commands are often executed repeatedly when creating or modifying
waveforms. To further increase efficiency and speed testing, personalized application
commands can be defined which are strings of the Waveform Generation Language
commands or other previously defined commands. New commands and programs
can be developed and edited with the Waveform Generation Language to tailor the
HP 87708 for specific applications.

The previous AM example will be used to construct an example application program.
To create personalized application programs, a name has to be assigned to the
required series of commands.

DEFINE AM Assign AM as the name of the program.

125 CTX
RAMP PI* SIN
STORE A

RAMP PI* 20* SIN
STORE B — The AM example.
A 5%

B*

B+

1000 CTX
125 CLONE?
“AM;” SDOWNLOAD GO _|
END End the definition of AM.

This AM program is now ready to generate the signal of Figure 11 when the
command “AM” is entered into the computer. The program can be designed to
accept variable inputs as parameters for computing various signals. This method was
used to create the FCNGEN program.

21

FCNGEN

To simplify the creation of common signals using WGL, the FCNGEN program is
provided on an HP 11775A application programs disc. This program is written in
WGL similar to the last example. Table 1 is a list of the waveforms that can be
generated using FCNGEN. When FCNGEN is entered, the user is prompted by a
menu from which various options can be selected. Prompts are given to enter desired
values for signal parameters.

Table 1. The list of the waveforms that
can be generated by the FCNGEN pro-
gram. This program is written in WGL
for generation of commonly used re-
ceiver test signals. The FCNGEN pro-
gram is included on an HP 11775A
application programs disc.

RECEIVER VARIABLE INPUT PARAMETERS

PULSE TRAIN:

a) SIMPLE PULSE PRF, pulsewidth, and rise/falltime (equal).

b) SYMMETRICAL PULSE PRF and rise/falltime. The pulsewidth is equal

to the interpulse period.

c) ARBITRARY PULSE PRF, pulsewidth, risetime, and falltime.
TRIANGULAR WAVE Frequency.
SINE WAVE Frequency.
HAVERSINE Frequency.
AM Carrier frequency, modulation frequency, and

modulation index.

FM Carrier frequency, modulation frequency, and
maximum frequency deviation.

CHIRP Carrier frequency, modulation frequency, max-
imum frequency deviation, and pulsewidth.

Loading Instruction:

As an example, this is how the FCNGEN program can be used to generate a
triangular signal at 10 MHz:

Place the application programs disc containing FCNGEN in the computer drive.
Type “FCNGEN” $GET, and press <enter>.

Press the EDIT key (for the HP 9816A/S, type EDIT and press ENTER).
Press the EXIT key to compile the FCNGEN program.

Using the FCNGEN
Program

1) Enter FCNGEN
2) Enter option number (2) for triangular waveforms.
3) Enter 10 MHz when prompted for frequency.

WGL can manipulate a maximum of 16k waveform points which is 1/8 of the full
memory of the HP 8770A. Generation of exact frequencies may require over 16k
points. In such cases, the FCNGEN program will download the waveform piece-by-
piece constructing the complete waveform automatically.

22

SUMMARY

This application note presents some examples of waveform creation and generation
for receiver testing with the HP 8770S Arbitrary Waveform Synthesizer System. The
system is a powerful waveform synthesizer that allows creation of complex signals by
manipulating waveforms. Various test conditions and “real-life” operating environ-
ments can be simulated with simple waveform operations, eliminating the need for
complicated test stations.

Appendix: Glossary of WGL
Commands Used in this Note

CLONE

CTX

DEFINE

DOWNLOAD

END
EXP

FDOMAIN

FULL
GET
GO

HZ

INT
LEFT

LOAD

NEG

Duplicates the specified number of waveform elements in the working wave as
many times as necessary to fill the present window.

Sets the total number of waveform elements to make up a waveform. Also known
as “context”.

Used to create a new WGL command definition.

Stores the computed waveform data in the HP 8770A memory. The computer
prompts for the name or address under which the waveform will be stored, and
for the scale factor. The scale factor determines how much DAC dynamic range
will be used to generate the waveform (a blank space, or the number 0, defaults
the setting to full range).

Used to signify the end of a WGL command definition.

Natural antilogarithm e* (e to the power x).

Sets waveform creation in the frequency domain.

Determines the parameters to create a sine wave specified by the user. FREQ
requires 2 parameters from the WGL stack and returns 3. Required are the maxi-
mum number of elements to be used and the sine wave frequency. Returned to the

stack is the frequency error, if any, the number of elements to use, and the number
of cycles contained by these elements.

Selects all the elements of the present waveform to be manipulated.
Loads in predefined commands from an external file.
Initiates generation of waveforms.

Converts a specified frequency into a discrete element position. This conversion is
dependent on the clock rate and context size.

Computes integer portion of value(s).
Rotates a waveform to the left for a specified number of elements.

Fills all elements of the working wave in the present window with a specified
value.

Changes sign of a waveform or one element.

23

Appendix: Glossary of WGL
Commands Used in this Note

NEWSEQ Initiates a sequencer program definition.

NOISE Fills all elements of the working wave in the present window with random values
ranging from -1 to 1.

NORM or The elements of the working wave are scaled such that their values fall

NORMALIZE between £1.

PACKET Defines a packet with waveform name, number of repetitions, and triggering
information in a sequencer program.

PI The constant 3.14159265359.

RAMP Fills all elements of the present window with linearly increasing values starting
with —1. The incremental increase is 2/(number of elements contained within the
present window). For example, a RAMP generated in a window of 200 elements
would have the following values: —1.00, -.99, -.98, ..., .97, .98, .99.

REFL Reflects a waveform in a window about the center of the horizontal axis.

RIGHT Rotates a waveform to the right for a specified number of elements.

SIN Takes the sin of each value in the working wave.

SQ Squares a waveform or an element value.

STORE Allows temporary storage of up to 5 waveforms and 150 real numbers.

STOREIN Stores a single value into a specified element of a waveform.

TOFREQ Converts a time domain signal to the frequency domain.

TOTIME Converts a frequency domain signal to the time domain.

WINDOW Selects portions of the entire waveform for manipulation.

XY Exchanges the arrays in the working wave and auxiliary wave locations.

+ Adds the first two items on the stack.

- Subtracts the first item on the stack from the second item.

/ Divides the second item on the stack by the first item.

Multiplies the first and second items on the stack.

Updates the WGL graphical display screen.

5954-6358 January 1986 Printed in US.A.

