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Square waves or pulses are often employed in the
testing of a wide variety of non-linear systems. In
fact many such systems will operate properly with
only certain specific input waveforms. As an ex-
ample, the receiver for a pulse-position modulation
telemetering system can be expected to operate
properly only when supplied with pulse pairs having
certain widths, amplitudes, repetition rates, and
separations between the 1st and 2nd pulse. To test
such a receiver with sine wave inputs would in all
likelihood be meaningless. In this type of application
the square wave or pulse generator serves merely
as a simulator of the actual input signal for which
the system was designed. While this is an extremely
important field of application, the variety of cases is
unlimited and any attempt on my part to make general
remarks on the subject would only result in 99. 44%
pure platitudes. Rather we shall confine our atten-
tion to linear systems, where square waves or pulses
may be used as test signals to give the same infor-
mation about the system as could be obtained with
sine wave inputs, and to do so mo re quickly.

Square wave or pulse testing has the following ad-
vantages:

1. Extreme rapidity. The entire system character-
istic transient may be displayed many times per
second. I the desired transient is known, the
actual transient may be adjusted to the desired
one by altering the circuit while watching the
response. Square wave and pulse tests are
dynamic measureme nts.

2. Often it is the square wave or pulse response
which is of primary interest, In such cases
sine wave testing is not only more tedious and
time consuming, it is less direct.

Linear Systems

Before going any further let us try to define more
precisely what we mean by a "linear system'. The
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following definition is concise and adequate. K ina
given system, an excitation f(t) produces a response
h(t) and an excitation g(t) produces a response k(t),
then the system is linear if and only if the response
to

a f(t) + b g(t) is a h(t) + b k(t), (1

where a and b are arbitrary real numbers.
Now let's see what this says.

Since a and b are arbitrary, let's set b=0. Equa-
tion (1) then says the response to a f(t) is a h(t).
This is a statement of the proportionality property.
Twice the input produces twice the output. = times
as much input produces 7 times as much output.
We note that the output need not be proportional to
the input on an instantaneous basis: it is not nec-
essary that h(t) be equal, say, to some constant
times f(t - t;). Such a requirement, while admit-
ting delay, rules out linear filters and defines a
system which is not only linear but distortionless.

Now let us seta and b = 1. Equation (1) then says
that the response to f(t) + g(t) + h(t) + k(t). This
is a statement of the superposition property. Each
input produces its own output regardless of what
other signals may be present. There is no inter-
action - no intermodulation. If f(t) is the piccolo
and g(t) the drum, the response to the piccolo, h(t),
is unaffected by the response to the drum k(t). Super-
position is the property which enables one speaker
cone to reproduce the whole orchestra, and your
eardrum to distinguish the separate instruments,

Finally Equation (1) says that proportionality and
superposition are simultaneously satisfied,

Actually we shall require one further property of
our linear system: invariance with time. This
may be stated as follows: If the response to f(t) is h(t),
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the response to f(t - tg) is h{t - ty). Delaying the
input simply delays the output the same amount.
This says there is nothing in the system which causes
the response to change with time.

The Response of Linear Systems to Sine Waves

An arbitrary input wave f(t) applied to a linear system
may produce an output h(t) which is different from £(t)
in almost every respect. h(t) may be bigger, smaller,
longer, shorter, more wiggly, smoother or what
have you. (Of course, h(t) can't begin before £(t).
Systems which might otherwise behave this way are
unstable. Also there can be no frequencies in h(t)
which are not in £(t), but this is getting ahead of the
story.) There is, however, one class of functions
which any linear system can alter in only two very
simple ways. These are the sine waves:

The response of any linear system to a sine wave
is another sine wave differing at most in amplitude
and phase. An electric power distribution system
is enormously complex, yet if the load is constant
(system invariance) sine waves of the generated
frequency appear at every outlet.

It is this cardinal fact which gives sine waves their
unique position in communication theory and which
gives physical significance to Fourier analysis and
to the whole concept of frequency spectra. For if any
input can be represented as the sum of a number of
sinusoids, then the output will consist of these same
sinusoid s modified only in amplitude and phase, each
in the same way as if it alone were present (super-
position), and the simple sum of the output sinusoids
will be the out put wave.

The way in which the system modifies sine waves of
all frequencies - the amplitude and phase characteris-
tic - thus consititutes a complete description of the
system in that it enables us to compute the output
in response to any input. The procedure may be
represented graphically as shown in Figure 1.

The spectrum of the input wave, if not already known,
is found by evaluating the Fourier transform. The
system modifies the input spectrum by its trans-
mission (amplitude and phase) characteristic to give
the spectrum of the output. The inverse Fourier
transiorm of the output spectrum is the output time
function. Now this seems like a long way around
to get from f(t) to h(t). Why not take a short cut
such as indicated by the dotted line? The answer
is that like most short cuts this direct path is often
more difficult and treacherous. It involves the
evaluation of an integral known as a convolution
integral. Thus:

h(t) = ff('r) o(t - 7) dr. (2)
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¢ (7) is the inpulse response of the system so
¢ (t - 7) is this same function reversed left to
right and displaced by an amount t. What (2) says
is that to find the output we have to integrate the
product of the input and this reversed, displaced
inpulse response. The result will be a function of
the displacement, t. In other words, we have to
SCAN the input wave with the reversed impulse
response.

Equation (2) is very easy to derive if one considers
the successive ordinates of f(t) to be a succession of
impulses and applies superposition. It is some-
times called the superposition (or deHamel's) integral.

While (2) is often easy to evaluate, it is in general
rather difficult. By contrast, rather complete
tables of transforms exist so that getting from A to
B and from C to D often involves merely using a
table. The intermediate step from B to C is simple
multiplication by the steady state transmission.
The situation is rather analogous to the use of log-
arithms when raising a number to some strange
power. One looks up the logarithm (A to B), mul-
tiplies by the power (B to C), looks up the antalog
and arrives at D. How else would you compute 7 7 ?
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Even more dramatic is the case where one knows
f(t) and h(t) and desires the impulse response. The
direct solution involves solving (2) as an integral

equation, By transforms we have simply
g = B
F (w)

#(t) is then the inverse transform of & (w).

Another reason steady state (sine wave) measurements
are important is that often the particular input, f(t),
is not known. All that may be known is that all inputs
will have spectra containing freguencies over a cer-
tain band (e. g. speech or music)and the problem may
be to transmit this whole class of inputs without dis-
tortion. This requires that

h(t) = K £(t - to)

where K is a constant and t; a permissible delay. In
the frequency domain this requires that*

-iwt
H(w) = KF(w) e 9 w < w< wy
and hence
-iwt
d(w)=K e o w< w < wy

Thus the steady state transmission must simply
be flat in amplitude and have linear phase over the
band of interest. The steady state requirements
in other cases are also simply expressed,

The Response of Linear Systems to Inpulses

While steady state measurements are very useful
for the reasons pointed out in the last section, they
are quite time consuming and for many purposes
observing the transient response of the system to
certain particular types of input waves may provide
all the information necessary. In fact if the input
wave is properly chosen such a transient measure-
ment provides exactly the same information as the
steady state measurement, but in a different form.,

Consider, for example, the case where the input,
f(t), is an impulse of negligible duration and, say,
unit area. The spectrum of such an impulse contains
all frequencies at equal amplitude, and in phase in
the sense that they all add at t = 0. In other words
the spectrum is a constant F{w)= 1. Now by super-
position, it obviously makes no difference whether
all frequencies are introduced one after the other as
in steady state testing, or simultaneously by apply-
ing an impulse. The frequencies will all be modi-
fied in the same way by the linear system. You
might say that an impulse test is equivalent toan
instantaneous steady state test. They bothgive
the same information. The problem is merely one
of interpreting the results in either case.
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When the input spectrum is F(w)= 1, the output spec-
trum H(w) = &w). That is the output spectrumhas
same amplitude and phase at all frequencies as
would be found by steady state measurement. What
you see as the output is the time function which
has this spectrum, The response of a linear net-
work to an impulse iS a pulse whose spectrum is
the amplitude and phase characteristics of the net-
work.

In the Table of Transformers which follows, a num-
ber of time functions and their spectra are illus-
trated. Assuming, as we have, that the impulse is
applied at t = 0, a physically realizable network
can give no output for t <o.

Thus, those functions illustrated for which a response
exists for t <o (pairs 3,6,7, 8,9,10,12) can only
be realized as network impulse responses by having
enough delay in the network (enough additional linear
phase in the phase characteristic) to shift the entire
function to the right of t = 0.

Suppose you applied an impulse of current to a net-
work and the time function of pair 2S appeared as a
voltage output. What is the network? Well, its
frequency characteristic is of the form constant
x 1. If you put in the dimensions you will find the
P
constant must have the dimensions of (capacity) -] .
Thus your network can be represented as an im-
pedance of the form 1. A shunt condenser for
pc

example, It integrated the current impulse input
to give the step function voltage out.

If instead of the response 2S you found the response
1, you would say that the condenser was being dis-
charged by a parallel resistance. Such a combin-
ation would have an impedance

Z =1 1
C P+RLC_

Sure enough the frequency function is of this form
witha =1 .

RC

Similarly pair 4 could be obtained by applying a
unit voltage impulse to a series L, shunt C half
section. Pair 5 would result if a current impulse
were applied to a parallel RLC combination and
the voltage observed, or if a voltage impulse were
applied to a series RLC circuit and the current ob-
served.

Obviously the interpretation of impulse test involves
largely a familiarity with the spectra associated with
a wide variety of time functions and vice versa.
Fortunately, for qualitative work it suffices to know

*See "Table of Important Transforms'", Table of Properties Section,
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a few key cases. Most responses can then be repre-
sented as the sum of one or more of these key cases.
By superposition the frequency characteristic is then
the sum of the component spectra. For example a
response of the form (1 + a t) e = 2t is the sum of
uses 1 and 2 in the table and has the spectrum

1 + a = 2
p+a (p + a)? (p + a) 2

Inpulse testing, while satisfactory or even preferable
in certain instances, has two severe drawbacks.

1. The impulse must be short comparedwith the
duration of the finest detail of the output transient
which is to be reproduced accurately. Alterna-
tively one may say that the spectrum of the input
must be flat over the entire frequency band of the
device under test. To get appreciable response
then, often requires the impulse to be so large
in amplitude that the device under test isdriven
out of its range of linear operation.

2. In testing wide band devices, the low end effects
are hard to observe, This is because with a flat
input spectrum the low end cutoff deletes an
insignificant amount of the spectrum. For
example pair 11 shows the impulse response of a
resistance-coupled amp lifier with simple 6 db/oc-
tave cutoff at the low end and high end. The low
end cutoff produces the negative tail on the output
pulse. The peak amplitude of this tail is less

a - pwhere g is the low end 3 db point, a thehigh

end 3 db point. Obviously if a > 100 g asis
typically the case, the tail is hard to see without
blowing up the pattern to the point where the
system overload can occur during the initial
spike. It is principally for these two reasons
that impulses are rarely used.

The Response of Linear Systems to Step Functions

The drawbacks of impulse tests are avoided by using
step functions. The rise time of the step may be
made as short as desired without requiring an in-
crease in amplitude. The spectrum of a unit step is
1. Because of the concentration of amplitude at the
P

low end of the spectrum, low end and high end cutoff
effects are placed on a more nearly equal footing.

A unit step is the integral of a unit impulse. Thus
we might obtain the step function response of a sys-
tem in any of the three ways indicated in Figure 2,
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In (a) we have a straightforward test using a step
function generator. In (b) the step generatoris
replaced by a combination of impulse generator
and integrator. In (c) the integrator and the system
under test have been interchanged. Since both are
linear systems the output is unaffected. Case (c)
illustrates the fact that: The step function response
of a linear system is the integral of the impulse

response. Its spectrum is i times the steady state
P

amplitude and phase characteristic of the system.

Conversely, of course, the impulse response is
the derivative of the step response.

Consider pairs 1 and 48 in the table. If 1 repre-
sents the impulse response 4S5 is the step response.
Similarly if 5 is the impulse response of a system
4 will be the step function response.

Just as steady state measurements are especially
convenient when the signals to be handled by the
system are defined only in terms of their spectra-
their frequency band - so unit step testing is espec-
ially convenient in testing systems which are to
handle signals characterized by having step-like
transitions (such as TV signals). In both cases you
might say each method is the natural one to use.
And as a matter of fact, historically, sine wave
testing came into prominence in the testing of audio
and carrier telephone syste ms, step function testing
came in along with the advent of TV and other pulse
modulation systems.

Since step function testing has become so common
we will devote the next section to a study of the effects
on the unit step response produced by various typical
frequency characteristics.
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TABLE OF IMPORTANT TRANSFORMS

(See inside poges)

EXPLANATION OF THE TABLE

The time functions and corresponding frequency functions
in this table are related by the following expressions:

@

Flo) = ffm e dt

(Direct transform)

(Inverse transform)

The 1/2w multiplier in the inverse transform arises merely
because the integration is written with respect to , rather
than cyclic frequency. Otherwise the expressions are identi-
cal except for the difference of sign in the exponent. As a
result, functions and their transforms can be interchanged
with only slight modification. Thus, if F(w) is the direct trans-
form of f(t), it is also true that 2xf(—w) is the direct tfransform
sin x
X

of F(t). For example, the spectrum of a pulse is rect-

angular (pair 6) while the spectrum of a rectangular pulse
is of the form —5“;—’( (pair 7). Likewise pair 15 is the counter-
part of the well-known fact that the spectrum of a constant
(d—c) is a spike at zero frequency.

The frequency functions in the table are in many cases
listed both as functions of » and also of p. This is done
merely for convenience. F(p) in all cases is found by substi-
tuting p for iw in F(w). (Not simply p for  as the notation
would ordinarily indicate. That is, in the usual mathematical
convention one would write F(u) = F(_ﬁ) = G(p) where
the change in letter indicates the resuliin'g change in funec-
tional form. The notation used above has grown through
usage and causes no confusion, once understood.) Thus, in

the p-notation
w io
Flp) = f e ™dt ) =5 f Fip) " dp
. L)
The latter integral is conveniently evaluated as a contour
integral in the: p-plane, letting p assume complex values.
The frequency functions have been plotted on linear
amplitude and frequéncy scales, and where convenient, also
on logarithmic scales. The latter scales often bring out char-
acteristics not evident in the linear plot. Thus, many of the
spectra are asymptotic to first or second degree hyperbolas

on a linear plot. On a log plot these asymptotes become
straight lines of slope —1 or -2 (i.e., -6 or —12 db/octave).

The time functions in the table have all been normalized
to convenient peak amplitudes, areas or slopes. For any other
amplitude, multiply both sides by the appropriate facior.
Thus, the spectrum of a rectangular pulse 10 volts in ampli-
tude and 2 seconds long is (from pair 7) 20 S"‘T"’ volt-
seconds.

Again, upon multiplication by a constant having appro-
priate dimensions, the frequency functions become filter
transmissions. Thus, if pair 1 is multiplied by «, the frequency
function represents a simple RC cutoff. A one coulomb im-
pulse (pair 15) applied to this filter would produce an output

- ¥ o
(impulse response) with the spectrum e » 1 coulomb,

representing the time function ae —*t coulombs (which has the

dimensions of amperes). Or a 1 volt step function (pair 2S)

¥

; A1
would produce the output spectrum =zl ¢ volts,

P
which represents the time function (1—e™') volts (pair 4S).

The entries 15 through 6S in the table are singular func-
tions for which the transforms as defined above exist only
as a limit. For example, 15 may be thought of as the limit

of pair 7 (multiplied by —1-) as 7—> 0.

PROPERTIES OF TRANSFORMS

There are a number of important relations which describe
what happens to the transforms of functions when the func-
tions themselves are added, multiplied, convolved, etc. These
relations state mathematically many of the operations en-
countered in communications systems: operations such as
linear amplification, mixing, modulation, filtering, sampling,
etc. These relations are all readily deducible from the defin-
ing equations above; but for ready reference some of the
more important ones are listed in the Table of Properties
(back page).

Again, because of the similarity of the direct and inverse
transforms, a symmetry exists in these properties. Thus, de-
laying a function multiplies its spectrum by a complex expo-
nential; while multiplying the function by a complex expo-

nential delays its spectrum. Multiplying any two functions is
[Continued on back page)
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Application Note 17

Typical Step Function Responses

The table which follows shows some typical step
function responses together with the amplitude or
frequency characteristics of the systems which have
these responses. A few explanatory remarks about
each case shown in the table are in order.

Case 1. This is the typical simple low-frequency
cutoff such as might be produced by a series con-
denser-shunt resistor combination., The step re-
sponse shows an abrupt rise to unity followed by
an exponential decay. Usually encountered in am-
plifier interstages and so-called "differentiating
networks'". In interstages f, is typically a few
cycles, in differentiating networks f; may be as high
as several megacycles in which case the step re-
sponse is very nearly an impulse.

Case 2. Rising simple step in the frequency char-
acteristic, Step response rises initially to amplitude
determined by high frequency transmission, falls ex-
ponentially to level determined by low frequency
(or dc) transmission, This is commonly encountered
in improperly compensated resistance-capacity
dividers, such as scope probes, dc amplifier inter-
stages.

Case 3. The counterpart of case 2. Here it is the
high frequency transmission which is deficient.

Case 4. Typical simple high-frequency cutoff such
as is produced by a parallel RC combination. The
step response rises exponentially to the final value
determined by the low frequency (or dc) transmis-
sion. Commonly encountered in simple (not ""peaked'")
interstages, and wherever shunt capacity (as from
connection cables) loads down a resistive source.

Case 5. Two simple RC high frequency cutoffs in
tandem. Typical rise characteristic of two-stage
resistance coupled amplifier without "peaking'.
Prinicpal differences compared with case 4:

1. Greater rise time for same wq.
2. Zero slope att=o0.

For each additional high frequency cutoff one more
derivative of step response vanishes at t= 0. Thus
if high frequency transmission falls (ultimately) at
6 n db/octave, all derivatives of step response up to
the nth are zeroat t =0,

Case 6. Phase-compensated low end cutoff, Step
function response falls to zero eventually, but in-
itial slope is zero. As a result square wave response
shows little or no tilt. May be produced in a single
network, or by two networks (cases 1 and 3) in tan-
dem. Often found in video amplifiers.

Page 9

Case 7, Two simple low frequency cutoffs (case 1)
in tandem. Typical low frequency transient re-
sponse of single stage resistance coupled amplifier
with input blocking condenser or two stage am-
plifier with no input blockin g condenser. Principal
differences compared with case I:

1. Faster initial rate of fall for same wqg.

2. Response goes negative crossing axisatt= 1
@

With each additional low-end cutoff one additional
axis crossing is produced. Thus if the low end
response falls off (ultimately) at 6 n db/octave,
there will be n - 1 axis crossings. They do not
occur at regular intervals - each successive half
cycle takes longer. All step function responses
produced by n similar simple low frequency cut-
off are members of the family of LaGuerre functions.

Case 8. Simple high and low frequency cutoff. The
step response rises exponentially at a rate de-
termined by high frequency cutoff, then falls ex-
ponentially at a rate determined by low frequency

cutoff. Typical complete resistance coupled inter-
stage response. K
2 >>,
w1

then on a slow time scale response looks like case 1,
on a fast time scale response looks like case 4, If
Wo = W] = &, we have the case of a critical damped
RLC circuit, the response then becomes

‘I'.L?o t

wote

Case 9. Typical damped oscillation. Exact re-
sponse shown is current in series RLC circuit in
response to series voltage step, or voltage across
parallel RLC circuit in response to applied current
step. The dotted lines in the frequency character-
istic are the asymptotes which the actual charac-
teristic approaches for ¥ << land® >>1,
wo wo
The peak of the resonance curve is Q times as high as
the intersection of these asymptotes. For reason-
able Q's, such that 8= wg, the Q of circuit may be
readily found from the fact that the envelope of the

Thus Q=mn
where n is the number of cycles to the _pomt

oscillation decays to l—m ?cycles

Case 10. Small resonance in an otherwise flat char-
acteristic. Response consists of unit step due to

flat transmission plus damped oscillation due to
resonance - simple superposition. Initial amplitude
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of oscillation is related to amplitude of hump in
frequency characteristic as indicated in figure.
For the same amplitude of hump, increasing the Q
decreases amplitude of oscillation but oscillation
persists longer. If hump is near top of band, time
scale will be such that initial rise of response will
not appear so abrupt, but will blend with oscillation
to give response like that of over-peaked interstage.
Mid-band resonances such as shown in case 10 often
occur as a result of stray feedback paths such as
heater leads, or from attempting to bypass elec-
trolytics with small mica condensers. (Electrolytics
become inductive at high frequencies, )

Case 1l. Similar to case 10 but here we have a
resonant dip. Note that the effect of a complete
null (a = 1) is no worse than that of a 6 db hump.
The pilot separation filters used in the coaxialtele-
vision system produce this type of dip - a complete
null. Because then Q is so high (several thousand),
the disturbance they produce, while it persists for
a long time, is of such low amplitude as to be in-
visible in the picture,

Case 12. Positive echo. Associated frequency
characteristic has nearly sinusoidal ripple inam-
plitude and phase, Frequency interval between
successive maxima or minima is reciprocal of
echo delay. The longer the delay, the closer the
ripples. Commonly encountered in systems having
faulty or misterminated delay lines. Also in mea-
sureme nts where multipath transmissions can exist -
such as acoustic measurements. The reason most
speaker characteristics look so ragged (fine structure)
is that multipath reflections with long delay were
present,

Case 13. Negative echo. Same frequency ripplesas
in case 1l but reversed 180°. Dc transmission is
nowl - ¢ ratherthanl + ¢.

Case 14. Rectangular pulse response. Can be con-
sidered to be a 100% negative echo. Minima of fre-
quency ripples have now become nulls. Shape of
amplitude characteristic is that of rectified sine

wave. Phase characteristic is sawtooth decreasing
fromg_linearly to -%_and jumping back to_g ateach

null. Such a characteristic can be obtained by using
a delay line as an interstage with the near end ter-
minated and the far end shorted.

Case 15, '"Differentiated Echo''. This is the sort of
disturbance produced when a delay line is terminated
in such a way that the reflection coefficient increases
with frequency. Typical causes are:

1. Series inductance or shunt capacitance in the
termination of a smooth line.
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2. Termination of a constant-k filter in simple
resistances.

With both ends matched at low frequencies the trans-
mitted echo involves two reflections both of which
increase with frequency and so tends to be "'double
differentiated" and smaller.

Case 16, Rise characteristic (qualitative only) of a
low pass filter without phase correction. The in-
itial part of the rise (t = 0 +¢) is a high power of
time, the exponent depending on the number of sec-
tions. Following the rise there is a ripple whose
period is not constant but approaches 2 v =1, That
f
is, the apparent frequency approaches thra0 cutoff
frequency after several cycles. With an increasing
number of sections this ripple increases in amplitude
and duration. The "ringing sound" so often at-
tributed to sharp cutoff filters is not due to exag-
geration of frequencies near cutoff (there is no)
nor to the sharp cutoff per se, but rather to the de-
lay distortion which exists near cutoff causing those
upper frequencies which are passed to arrive too
late and thus be separately audible. The effect is
noticeable only in extreme cases as for example
long telephone circuits with many channel filters
in tandem. With proper delay equalization the effect
disappears.

Case 17, The "ideal" low pass filter passes all
frequencies below f; with the same amplitude and
delay while attenuating completely those above f.
Its step response is the sine integral, i.e. the
t

f sin x dx. This function differs from zero (ex-
0 x

cept at regular points) for allt > -« Hence the
ideal filter cannot be realized without infinite delay.
A practical approximation will have a finite delay
and its step response therefore will execute only
a finite number of wiggles before the main rise.
The approximation can be quite good, however. Here
again, the ripples in the step response do not in-
dicate high frequency enhanceme nt, but are the
"Gibb's effect” encountered in Fourier series, and
are properly called band elimination ripples. The
rise time from the last zero crossing to the first

crossing of the final amplitude level is1 : one half
2f
o)
cycle of the cutoff frequency.
Case 18. The ideal high pass filter. By super-

position the response of this filter is obtained Dy
subtracting the response of the ideal low pass filter
from an equally delayed unit step..
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Table of Step Function Responses

Step Response System Frequency Characteristic

S

(log) a wg @o

1
-t
1-(1+ wpt) e “

|
~w,t
(1+ wet) e “o

G-5-62
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Table cf Step Function Responses (Cont'd)
No. Step Response System Frequency Characteristic
Tog
12 db/oct
lo
. (log)
L4
(log)
I] 6dbjoet . _ oo v i s s %
7 N
7 A
8 “"g’/z?\
/ P+ wp) (p+ wg)
i |
w1 (log) w2
9

A

10 ——
or hi Q, 6 = *
Wo
3 :
KX ForhiQ, 6 = —2 ¥
Q §
Wo
lvel . l+e W\/
I = l1-¢ : I
12 T | Lo
; Q I"'Af:r*l
t = 0 (linear)
6-5-63
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Table of Step Function Responses (Cont'd)
No. Step Response System Frequency Characteristic
» s I ol N G WP o "
R -
I Py
{ £
t - g (linear)
2
]' —_—
=
14 g
s
0 t 0 1/t 2/t 3/t

IS5
Y
t (linear)
Low pass
filter
16
¥
fo=1/21t
1
Nearly ideal
Low pass
|7 filter (Phase
equalized)
fo=1/21t
1
Nearly ideal
0 . High pass
18 Filter (Phase
Equalized)
-1/2
.1 fo = 1/2 t
G-S-64
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LOW END DISTORTION OF SQUARE WAVE
A. Low Frequency Phase Leading B. Low Frequency Phase Lagging
C. Low Frequency Amplitude Up D. Low Frequency Amplitude Down
E. Low End Simple RC Cutoff (A & D) F. Result of Phase Compensating E

Figure 3
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Square Wave and Pulse Testing

If anyone is still listening, we will now discuss what
we started out to discuss. Actually, we have already
done so, though we didn't say so at the time. Be-
cause, for high end effects square wave testing is
equivalent to testing with unit steps, while pulse
testing is either equivalent to impulse testing (if
the pulse is much shorter than the rise time of
the response) or to unit step testing (if the pulses are
rectangular and of longer duration than the rise time).
Obviously, if the entire transient is over before the
next step occurs, either pulse or square waves can
be considered as merely successions of unit steps
alternating in direction. So far as high end effects
in wide band circuits are concerned, this will be
true for reasonably short period square waves and
reasonably short pulses.

With regard to mid-band effects the same remarks
apply to both pulses and square waves, while for low
end effects short duty cycle pulses are of little use.
So let's just talk about square waves from here on in. *

Whereas the spectrum of a unit step contains all
frequencies, the spectrum of a square wave contains
only certain discrete frequencies: the fundamental
and all odd harmonics. The law of fall-off with
frequency is the same, but the energy is concentrated
into spectral lines leaving completely empty gaps
below the fundamental and between harmonics. Asa
result, if only one frequency of square wave is used,
the entire steady state transmission of the system is
not measured; only the transmission at a discrete
set of frequencies. A sharp mid-band irregularity
such as depicted in cases 10 and 11 above could lie
entirely between two harmonics and thus escape
notice. To avoid this the frequency of the square
wave must be varied, thus causing the harmonics
to sweep through all parts of the spectrum, or else
s0 low a frequency must be used that the spectrum
is covered with sufficient density.

At the low end, there is no component (save perhaps
dc) below the fundamental. So it must be possible to
reduce the fundamental frequency far enough to place
it below or at least in the region of the low end cut-
off. Many ac amplifiers have cutoffs so low that it is
impractical or undesirable to drop the square wave
frequency to the point where each low end transient
has died out before the next transient occurs. Failure
of persistence of vision, for example, slows the
observation, In such cases, tests are commonly
made with a fundamental frequency such that con-
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siderable transient overlap occurs. Actually the
necessary information can usually be gained from
such a test particularly if the system under test
is not required to handle frequencies below the
fundamental square wave frequency used.

Typically what is desired is that the system under
test exhibit flat amplitude and linear phase character-
istics down to some frequency. In cases where
the system phase is of concern, the usual reason
is, in fact, that the system will in use be required
to handle square waves or pulses. Thus if we choose
this lowest frequency for the square wave, we will
be ma king in effect an actual system performance
check, All we need to know to wrap this whole
thing up is what low end phase shift and amplitude
departure do to the square wave. The following
pictures tell the story. These pictures are easily
constructed by simply shifting the phase of the
fundamental of the square wave (and to a lesser
extent the first few harmonics) or altering its am-
plitude.

In Conclusion

Square wave testing offers a quick and informative
method of testing the transmission of linear systems.
To do this job adequately the square wave generator
must:

1. Have a rise time less than half that of the sys-
tem to be tested.

2. Have a fundamental frequency, variable from
a few cycles to a frequency whose period is
not more than 100 times the rise time (so as
to get good brightness when viewing the rise
on fast sweeps).

3. Have negligible (under 1%) departure from flat
tops either through overshoot or droop.

4, Have outputs to match cable and line impedances
50 as to be able to deliver to the system input
an undegraded wave.

5. Have adequate output to drive an oscilloscope in
spite of considerable loss in the device under
test.

* There are of course cases where pulses of 10% duty cycle or less must be used to avoid operating

point shifts in tubes, etc.
00484-2
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