APPLICATION NOTE 162-1

TIME INTERVAL AVERAGING

I

HEWLETT hp; PACKARD




Page 2

FOREWORD

Time interval averaging provides a powerful but unusual measurement capability.
Averaging has a statistical basis, unlike other universal counter measurements.
Nevertheless, time interval averaging can be used as easily as all other counter func-
tions. Typical applications include logic timing measurements, pulse generator
calibration and IC testing where very short time intervals must be measured.

This application note gives a summary of the major factors in making and evaluating
time interval averaging measurements. Naturally many of these factors apply equally
to conventional single shot time interval measurements. In addition, this application
note provides the basic theoretical foundation of time interval averaging, showing how
averaging obtains such significant improvement in accuracy and resolution. A section
on the evaluation of T.I.LA. measurements shows the origin of the basic accuracy
specification, as well as the cases where accuracy can be even better than the general
specification. For those who wish to study the statistics of averaging, the appendices
contain derivations of the major results.
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SECTION 1: A SYNOPSIS OF TIME
INTERVAL AVERAGING

This section gives an overview of time interval aver-
aging for the person who wants a working knowledge
in summary form. The synopsis not only tells when
time interval averaging can be useful, but also iden-
tifies the factors that affect the accuracy of a time
interval measurement. For those who want to study
T.I.A. in more detail, the remaining sections develop
the basis of averaging and show when the accuracy
and resolution of an averaging measurement can be
even better than the general specification.

What is Time Interval Averaging?

Time interval averaging, found in the Hewlett-Packard
5326/5327 series of universal counters, provides a
powerful yet economical method of greatly increas-
ing the accuracy and resolution of time interval meas-
urements on repetitive signals. With the HP 5326/
5327 counters, time interval averaging (T.I.A.) makes
possible the measurement of intervals as short as
150 ps with resolution to 100 ps — a thousandfold
improvement over conventional one shot time in-
terval measurements with little or no cost increase
over counters that make only the conventional
measurements.

The basis of time interval averaging is the statistical
reduction of the £l count error inherent in digital
measurements. As more and more intervals are aver-
aged, the measurement will tend toward the true
value of the unknown time interval. This application
note describes some of the major considerations of
time interval averaging measurements.

Figure 1 shows the elements of a typical time inter-
val measurement set up. Table 1 gives some examples.
Note that the driving source can also be the device
under test; the sensors can simply be wire leads.

Table 1-1. Elements of a Measurement Set Up

Example 1 Example 2
Driving Source Oscillator Pulse Generator
Device Under Amplifier Pulse Generator
Test
Sensors Wire Leads Coax Cable
Value to be Propagation  Pulse Width
Measured Delay
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Figure 1. Elements of a Time Interval Measurement Setup.

When is Time Interval Averaging Useful?

Time interval averaging is useful when

e *] count error from a single time interval meas-
urement significantly degrades the accuracy or
resolution of a time interval measurement; and

e the time interval is repetitive.

Example:

The width of a repetitive pulse is approximately 1 us.
The *1 count error in a pulse width measurement
using conventional one-shot techniques is 100 ns (the
period of the counter’s clock). The *1 count error
for the one-shot measurement represents 10% of the
time interval; however, averaging 10* time intervals
can produce 1 ns resolution.

EVALUATING A TIME INTERVAL
AVERAGING MEASUREMENT

Time interval averaging is a statistical process. After
a T.I.LA. measurement is made, we want to determine
not only the best estimate for the true value of the
measured time interval, but also a level of confidence
in the measurement. The best estimate of the meas-
ured time interval is, of course, the value of the
counter reading.

In general for a T.I.A. measurement with N intervals
averaged, the following expression gives the accuracy
at a very high level of confidence.

Accuracy of T.I.A. Measurements:

& (t1 count error + internal trigger error)

1
+vN
+ time base error

+ systematic error



The accuracy expression considers four basic types of
errors as follows:

1. #] count: This is the intrinsic ambiguity of digital
measurements. For time interval measurements
the 1 count error equals the period of the clock.
In general, averaging reduces this error by a fac-
tor of 1/+/N. Often the improvement in resolution
and accuracy can be even greater.

2. Internal Trigger Error: Internal noise in a coun-
ter’s amplifier-trigger circuits can cause the coun-
ter to randomly start or stop a time interval
measurement slightly early or late. Internal trig-
ger error is generally much less than 1 count
error and so can be virtually ignored for most
measurement situations.

3. Time Base Error: The accuracy of the counter’s
reference time base, or clock, can limit the accu-
racy of a measurement for long time intervals.
In averaging situations, time base error is rarely
a significant factor.

4. Systematic Error: Systematic error includes
differences in the propagation times of the start
and stop sensors, differential delays in the start
and stop channel amplifiers of the counter, and
errors in trigger level settings of the start and
stop channels of the counter. For a given meas-
urement set up, with constant waveforms, the sys-
tematic error is fixed. Therefore, systematic error
affects accuracy but has no effect on resolution.
Most systematic errors can be virtually eliminated
by calibrating the measurement set up.

Verifying a Time Interval Averaging
Measurement

To test the validity of a T.I.A. measurement, check the
following points.

1. Does the counter have synchronized gating?
Check the counter’s data sheet to find out. Syn-
chronized gating (found on the HP 5326/5327
family) is necessary for unbiased measurements.

2. Is the repetition rate of the time interval asyn-
chronous with the counter clock? If the repetition
rate is synchronous with the clock, the average
may not converge to the true value of the time
interval.

If the repetition rate of the driving source can be
varied, then make the T.I.A. measurement at two
slightly different frequencies. Do the results
agree within the computed limits for time interval
averaging? This test can exclude the possibility
of a synchronous relationship between the repeti-
tion rate of the driving source and the counter’s
clock.

3. Is the measurement reasonable? The counter
reading should agree with other evidence such
as scope displays or calibrated dial settings. Gross
differences indicate a problem with systematic
errors. Averaging reduces only the +1 count and
internal trigger errors.

CHECKING FOR SYNCHRONOUS
REPETITION RATES

Time interval averaging produces valid and useful
results in the vast majority of cases. However, if
the repetition rate of the time interval is synchronous
with the clock, then averaging may not improve reso-
lution as much as expected. For the repetition rate
to be synchronous, the driving source must not only
be set at a synchronous frequency, but must also be
exceptionally stable in period during the measurement.

Symptoms of a Synchronous Repetition Rate
Either of the following may indicate that the repeti-
tion rate is synchronous with the clock.

1. The counter reading seems to “hang up” on some
value, particularly a reading that is an integral
multiple of the clock period.

2. Averaging more intervals does not increase the
resolution of the measurement.

Avoiding a Synchronous Repetition Rate

Any of the following methods effectively break a
synchronous relationship between the repetition rate
and the clock.

1. Change the repetition rate if possible. This meth-
od offers the easiest solution. Figure 2 shows the

10psec

100psec

I.Omsec

10msec

100msec

MEASUREMENT TIME

5
]

I

N

Isec

10sec

3

100 sec
IKHz 10kHz 100kHz IMHz 10MHz

INPUT REPETITION RATE

MINIMUM OFFSET IN Hz TO MEET ASYNCHRONOUS
REQUIREMENT FOR TIME INTERVAL AVERAGE

Figure 2. Frequency Offset to Ensure Repetition Rate is
Asynchronous with the Counter’s Clock.

offset required from the synchronous frequencie:
as a function of the number of intervals averaged.

2. Check the stability of the repetition rate. Average

enough intervals that the relative instability of
the repetition rate and the clock will effectively
break the synchronous relationship.

3. Introduce phase jitter on the repetition rate. Suf-

ficient phase jitter essentially breaks a phase
locked relationship between the repetition rate
and the counter clock.
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SECTION 2: BASIC TIME INTERVAL
MEASUREMENT

A brief review of the basic digital time interval meas-
urement technique will help to identify the factors in-
volved in determining the accuracy of a time interval
measurement. After describing the sources of error,
we can concentrate our attention more clearly on the
benefits of time interval averaging for increasing the
accuracy and resolution of a time interval measurement.

Figure 3 shows the basic circuit arrangement of a typi-
cal universal counter when making a time interval
measurement. The time base generates a pulse train
with a very accurate and stable period. To measure

START SIGNAL L
st COUNTING
STOP S!E;NI’\L CIRCUITS DECADES

TIME CLOCK SIGNAL
BASE

Figure 3. Block Diagram of Counter Circuit for Time Inter-
val Measurement.

the unknown time interval, the gate must open when
the start signal is received and close when the stop
signal is received. While the gate is open, the time
base (clock) signal passes through the gate and is
counted. The total count provides the measure of the
time interval.

The £1 Count Error
The fundamental error for all digital measurements

is the *1 count error. Figure 4 illustrates the source
of +1 count error. In Figure 4a, a time interval equal

4a i |
i e v e 1 S T
T T
| I
| START | STOP
GATE } . ll
! |
. |
COUNTED SIGNAL : I | ! I l, COUNT = 4
T T
| |
4b | |
S o 1 | e (5% e S
] 1
|
| START | STOP
GATE ]:—‘_T_' A‘I
| |
| |
COUNTED SIGNAL I l I | I | ! COUNT = §
1 L

Figure 4. The +1 Count Ambiguity of Time Interval

Measurements.
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to 4.5 clock periods opens the gate to allow 4 counts.
In Figure 4b, the same time interval allows 5 counts
through the gate. The only difference in the two
situations is the phase of the clock relative to the
start of the time interval. In this example, the *1
count error is a significant percent of the measurement.

In discussing time interval measurements, this appli-
cation note expresses both the measured time interval,
T, and the resultant counter reading, R, in units of
the counter’s clock period. Thus the clock period
equals one count. A time interval equal to 4.5 clock
periods (4.5 counts) will produce a counter reading
of 4 counts or 5 counts.

Example: The HP 5326B Counter uses a clock with a
100 ns period. Thus a time interval of 450 ns is

T = 4.5 counts

The counter reading for a single time interval meas-
urement will be

R = 4 counts
or
R = 5 counts

depending on the phase relationship between the
clock and the start of the time interval.

As indicated in Figure 5, T can be broken into an
integral and fractional part.
T=Q+F Q=0,1,2, ..
(1)
0<F<1

START 5 STOP

| 2R

I-F F

Figure 5. Measurement Zones.

After making a time interval measurement, the coun-
ter will display either

R=Q
or
R=Q+1

depending on just when the START signal occurs. In
either case, however, the counter will register at least
Q counts on every measurement.

/ ™



Fortunately, the expectedl counter reading will be
equal to the measured time interval. Looking at Fig-
ure 5, we can see that

Precb(R=Q)=1-F (2a)

Prob(R=Q+1)=F (2b)
If R is the expected counter reading then

R-Q+F=T 3

This result is essential for unbiased time interval
averaging.

Other Sources of Measurement Error

In general, three additional types of errors can affect
the accuracy of digital time interval measurements.

Internal Trigger Error: Internal noise in a counter’s
amplifier and trigger circuits can cause the start and
stop channels to trigger at random slightly above or
below the actual trigger level setting. Figure 6 shows
the effect of frigger error in a pulse width measure-
ment. For most measurements, this random trigger
error is much smaller than the 1 count error. How-
ever, if internal trigger error should be significant,
time interval averaging reduces the error just as it
reduces t1 count error.

AGTURL TRIGGER . = = T T T e T TRIGGER LEVEL SETTING

LEVEL

Figure 6. Trigger Error in Time Interval Measurement.

Time Base Error: Although time base error may be a
factor in the measurement of relatively long time
intervals, it is at most a minor factor for time interval
averaging situations.

The error results from the difference between the
actual time base oscillator frequency and its nominal
frequency. For most high quality universal counters
the time base is accurate at least to parts in 106, with
far more accurate time bases available.

A simple example shows why time base error is usually
far less than the f1 count error when measuring
short time intervals. Suppose we use a counter with
a 10 MHz clock to measure a repetitive time interval
of approximately 1 us. The 1 count error of 0.1 us
represents +1 part in 10. Time interval averaging can
reduce this error to 1 part in 104, a thousandfold
improvement. However, the time base error of parts
in 108 is still negligible.

Systematic Error: Any slight mismatch between the
start channel and the stop channel amplifier risetimes
and propagation delays results in internal systematic
errors. Mismatched probe leads or cable lengths
introduce external systematic errors. Trigger levels
set at the wrong point introduce another source of
systematic error. Figure 6 shows how improperly set
trigger levels will cause measurement error.

Thus precise measurement set up is essential for
accurate results. The HP 5326B and 5327B provide a
built-in DVM so that trigger levels can be measured
and set with digital accuracy by reading the levels
directly on the display. The builtin DVM of the
5326B and 5327B provides a far more convenient and
accurate method of setting trigger levels than other
available techniques.

Fortunately, for a given measurement set up with
constant waveforms, the systematic error is fixed and
will be repeated in every measurement. Thus syste-
matic errors can reduce the accuracy of a measure-
ment but will have no effect on the resolution. In
fact, if the measurement set up is properly calibrated,
systematic errors can be virtually eliminated (see
HP Application Note 129, Logic Timing Measurements,
for more details).

1Assuming the START of the time interval is equal-
ly likely to occur at all phases of the clock.
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SECTION 3: COUNTER GATING

Time interval averaging requires special techniques
for control of the counter’s main gate. Traditional
direct control methods of gating can introduce signif-
icant bias into T.I.A. measurements. However, syn-
chronized gating, developed by Hewlett-Packard for
the 5326/5327 series of counters, produces reliable
and accurate measurements.

Direct Gating

Direct gating can cause an unacceptable bias in time
interval measurement by truncating clock pulses.
Figure 7 shows what can happen using direct gating.

Synchronized Gating

Synchronized gating solves the problem of bias in
time interval measurements. In fact, synchronized
gating is a key feature of the exceptional time interval
measurement capability of the HP 5326/5327 family.

Figure 8 shows a representative synchronized gating
circuit and resultant gate timing. In practice several
variations of the circuit may be used. The gate is
“synchronized” to the clock. The start and stop sig-
nals properly arm the gate to either open or close; an
edge of a clock pulse actually switches the gate con-
trol flip-flop. Thus only integral clock pulses can pass
the gate. No clock pulses are truncated.

= i P

CLOCK _I L—l =
START — =5 QO COUNTED
n SIGNAL

GATE

sTOp ————{R

GATE
CONTROL
FLIP-FLOP

COUNTED
SIGNAL

GATE

ARMING EONTROL
FLIP-FLOP FLIP-FLOP GATE
INT
START s o a CoCNAL
5TOP ———=={R CLK
+ EDGE
TRIGGERED
CLOCK v
START STOP

ARMING | |
FLIP-FLOP | I
|

GATE —_—I l

CONTROL |

]
I
|
COUNTED 1
|
|

SIGNAL |
1

Figure 7. Direct Gating.

The clock signal is actually a pulse train. When the
gate opens it may truncate some fraction of a clock
pulse. When closing, the gate may again truncate a
clock pulse. The counter does not know which of the
truncated pulses should be counted. In Figure 7, if the
minimum countable pulse width of the counter is less
than 0.2 then the counter will display

R=3

which produces an error of greater than I count. Such
errors can produce a significant bias in the expected
counter reading.

In summary, direct gating has the following disad-
vantages for time interval averaging measurements.

1. Truncation of clock pulses can produce more than
1 count error.

Time interval measurements will be biased.

The time interval can be too short. The counter
will never count intervals shorter than the mini-
mum countable pulse width.

Appendix I gives more detail about the expected bias
produced by direct gating.
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Figure 8. Synchronized Gating.

Since synchronized gating operates only on an edge of
a clock pulse, the clock becomes effectively a train of
zero width pulses, as shown in Figure 9. Thus syn-
chronized gating provides the following advantages
for time interval measurements:

1. The expected measurement is unbiased.

9. The synchronized gate can be designed to meas-
ure time intervals even shorter than the minimum
countable pulse width of the counter.

These advantages make synchronized gating essential
for time interval averaging.

EDGE REPRESENTATION
OF CLOCK

[}
CLOCK

!"—remoo—-""l

ACTUAL
CLOCK SIGNAL

Figure 9. Edge Representation of Clock Signal.

2See the HP Journal, April 1970, p. 6-7.



SECTION 4: TIME INTERVAL
AVERAGING

To average N time interval measurements, a counter
accumulates the counts for the individual measure-
ments until N intervals have passed. Since N is
usually selectable in decade steps (N = 1, 10, 100, ...)
the displayed reading is the total count with a posi-
tioned decimal point.

Example:

Using an HP 5326B Counter, we are measuring a pulse
width of 225 ns. The 5326B has a clock period of
100 ns. Therefore each time interval measurement
will yield either 2 or 3 counts, that is, a reading of
200 ns or 300 ns. But if we average 100 measure-
ments, we may obtain the following results:

Counts Number
During of Total
Interval Intervals Counts
2 5 150
3 25 75
Total: 100 225

The total count is 225 for 100 intervals, an average
of 2.25 counts per measurement. Thus the counter
will display 225 ns.

The Expected Value of an Averaging
Measurement

In the example above, averaging produces the “right”
answer. But averaging is a statistical process, so the
answer is not entirely guaranteed. Two questions
come to mind. First, is the expected value of an
averaging measurement really equal to the time inter-
val being measured? Second, what confidence limits
can be placed on the result?

Appendix II develops the statistical basis of time

interval averaging when the repetition rate is asyn-

chronous with the clock. The major results are:

1. The expected counter reading equals the time
interval being measured. That is

R=T 4)

This result is obviously critical for valid time in-
terval averaging.

2. The standard deviation of the counter reading 1s
proportional to 1/+/N.

Recall that the time interval, T, can be expressed as
an integral part, Q, plus a fractional part, F

T=Q+F Q=0,1,2, ..

0<sF<1

After averaging N time intervals, the counter reading
will have a binomial probability distribution between
Q and Q + 1 (the two possible results of the individual
measurements). The actual probability distribution
depends on the number of intervals averaged and the
fractional part of the time interval being measured.
The standard deviation of the averaging measure-
ment will be

oy =——VFT-F) ()
vN

Thus the effective resolution of the measurement
depends on both 1/+/N and F. Figure 10 shows the

VNug

Figure 10. Standard Deviation of the Counter Reading as a
Function of the Fractional Part of the Time
Interval.
standard deviation of the measurement as a function
of F. Note that in the worst case
- 1
(o (F=1/2) =——
2vN

This result is well within the 1/+/N specification for
T.I.A. measurements. For other values of F, the con-
fidence limits on the counter reading will be even
higher.
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SECTION 5: EVALUATING A T.L.A.
MEASUREMENT

The previous section discussed the expected counter
reading for a time interval averaging measurement
assuming that the time interval is known. In practice,
the problem is just the reverse. Given a counter
reading what do we know about the true value of the
measured time interval?

In the synopsis of time interval averaging in Section 1,
the general accuracy specification shows the +1 count
error is reduced by a factor of 1/4/N. Such a general
specification requires using limits that are valid in all
circumstances where the repetition rate is not syn-
chronous with the clock. Yet in many cases, resolu-
tion can be far better than the 1/+/N factor may indi-
cate. Appendix III develops the statistics required to
evaluate a T.ILA. measurement. However, the major
results are very similar to the results of the last
section,

Estimating the Measured Time Interval

After making a T.I.A. measurement, the best estimate
of the time interval is

s

T=R (6)
which is just what is expected. However, the time
interval may actually be slightly different from R.
The exact probability distribution depends on the
number of time intervals averaged (N) as well as the
counter reading R.
Just as T can be separated into an integral and frac-
tional part, R can also be separated into integral and
fractional parts as follows:

R:R1+RF RI:0,1,2,...

0<Rp<1 )

(Recall that T and R are expressed in counts rather
than units of time.) The probability distribution of T
will depend on the value of Rr as shown in Figure
11. This figure is drawn for the average of 10 time

RE IS THE FRACTIONAL
PART OF COUNTER READING
6 — 6
N=10
= —5
RFE=0.1 RF=09
41 4
RF=0.2
3 RF=0.5 — 3 PITIRE]
2 2
1 1
o | > 1 o
0 01 02 03 04 05 06 07 08 09 10
! - )
T=R T=R|+1

intervals. Naturally, if more intervals are averaged,
the probability curves will be much more sharply
peaked. Those who recognize the curves as belonging
to a beta probability function may wish to review
Appendix III.

Setting Confidence Limits on a T.l.A.
Measurement

The standard deviation of the probability distribution
for T is an effective estimate of the resolution of a
T.I.A. measurement. Not too surprisingly, the value
of op takes a familiar form. When 100 or more
intervals are averaged, an excellent approximation of
o is
1
o.=—+Rg (1 -Rp)

R.#0 8)
T VN F

which is virtually identical to Equation 5 in the pre-
vious section. Figure 12 plots the value of o7 as
a function of Ry for several values of N. The curves
in Figure 12 are based on the exact equation for ot
as found in Appendix III. An example shows how to
evaluate a T.I.A. measurement.

Example: An HP 5327A (100 ns clock period) is used
to average 10? time intervals. The counter displays an
answer of 225 ns. The best estimate of the measured
time interval is

Tmeasured = 225 ns

To find the standard deviation for T, first convert the
counter reading from nanoseconds into counts
225 ns = 2.25 counts
Take the fractional part of the counter reading
Rr = 0.25 counts

Now use the curves in Figure 12 or the Equation 8
to find o¢ as an estimate of measurement resolution.

o7 = — /.25 (1 - .25)
+ 104

op = .0043 counts

op =0.43 ns

Thus averaging provides a striking improvement over
the +100 ns resolution of single-shot measurements.

T

R #0

e
e S A

32 S

=
=

o D

RF

Figure 11. Probability of F for Several Values of R p,
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Figure 12. opas a Function of the Fractional Part of the
Counter Reading.



SECTION 6: THE CASE OF
SYNCHRONOUS REPETITION RATES

So far all the results for averaging are based on a
repetition rate that is asynchronous with the counter
clock. However, in some cases a synchronous repeti-
tion rate can actually improve the resolution of a
T.I.LA. measurement; in other cases the synchronous
repetition rate limits the resolution of the
measurement.

The synopsis of time interval averaging lists some
rules of thumb for recognizing a synchronous repeti-
tion rate and proposes solutions for any difficulties
that may be encountered. This section examines
more closely just what a “synchronous” repetition
rate is and what effect it has on an averaging
measurement.

A repetition rate is synchronous with the clock if the
start of each time interval always occurs at one par-
ticular phase of the clock, or at some limited number
of points during the phase of the clock. However,
T.I.A. is based on the start of N time intervals tend-
ing to occur uniformly throughout the clock period.
Figure 13 compares an asynchronous repetition rate
with a synchronous repetition rate. There are an

INCIDENCE OF
START SIGNALS

0

{a} ASYNCHRONOUS REFETITION RATE

fe———————————— CLOCK PERIOD ——————=

INCIDENCE OF

START SIGNALS

o]

N

O

(b) SYNCHRONOUS REPETITION RATE

Figure 13. Comparison of Synchronous and Asynchronous
Repetition Rates.

infinite number of repetition rates that produce per-
fectly valid averaging; there are only a finite number
of cases where synchronous repetition rates can cause
difficulties.

Example:

A counter has a 100 ns clock. A repetitive sequence
of time intervals starts every 250 ns. If the first start
signal occurs simultaneously with a clock pulse, then
the second start signal will occur exactly between two
clock pulses. Each successive start will occur either
at a clock pulse or midway between clock pulses, but
at no other time. Thus the repetition rate is syn-
chronous with the clock.

The Class Number “M”

In the example above, the repetition rate has class
number M = 2. That is, the repetitive start signals
occur only at two points in the clock period. In gen-
eral, if the repetitive start signals occur only at M
points during the clock period, then the repetition
rate has class M.

The theoretical significance of M is a key issue. No
matter how many time intervals are averaged, the
resolution of the time interval measurement can
never by increased by more than a factor of 1/M.
In theory, if M = 1 then averaging provides no benefit
at all.

In practice, averaging can still improve a measure-
ment considerably. Neither the counter clock nor the
repetition rate are ever perfectly stable. Unless the
driving source and the counter clock are actually
phase locked together, short term fluctuations and
phase jitter from both can break the synchronous
relationship. If enough periods are averaged, insta-
bilities in the repetition rate will usually produce
valid averaging.

The Benefit of a Synchronous
Repetition Rate

Better yet, if we can control the class number M, we
can obtain averaging that improves more nearly as
1/N than as 1/+/N. By setting the repetition rate so
that M = N, the resolution of a T.I.A. measurement
can approach 1/N. Thus a synchronous repetition
rate can actually improve averaging.

Finding the Class Number

When using an HP 5326/5327 Universal Counter for
T.I.A. measurements, a simple procedure can deter-
mine the class number M.
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1. Switch the function selector from time interval
average to period average3 to measure the repeti-
tion rate.

2. Divide the period of the repetition rate by the
clock period. Look only at the fractional part, Py
of the result.

3. If Py can be expressed as

LLM=123,..
L<M 9)

where L. and M are integers and are co-prime, then
the repetition rate has class M.

Example:

Step 1 — Using period averaging with the HP 5326B,
the repetition rate of a time interval measures 166.7 ns.

Step 2 — The period of the counter clock is 100 ns.
Therefore

166.7

= 1.667 Pp =.667

Therefore the repetition rate has a class of M = 3.

3Period averaging is not a statistical process. Thus
period averaging provides a certain improvement in
resolution proportional to 1/N.
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Step 3 —
Pom 6672
PG 3

=

A few classes are shown in Table 6-1 below;

Table 6-1. Some Synchronous Classes

Py M
0.0 1
0.5 2
0.333, 0.667 3
0.25, 0.75 4

Summary

Only in rare cases does a synchronous repetition rate
become a problem in T.I.A. measurements. Unless
the repetition rate is exceptionally stable (e.g., a
synthesizer) and fixed at a critical synchronous fre-
quency, T.I.LA. can produce extremely useful results.
The steps outlined in Section 1, “Verifying a Time
Interval Averaging Measurement” will easily lead to
reliable and accurate measurements. '

N



APPENDIX |

MEASUREMENT BIAS CAUSED BY DIRECT GATING

Section 3 of this application note discusses how direct
gating introduces a bias into time interval measure-
ments. This bias depends on both the duty cycle, d,
of the clock and the minimum countable pulse width,
m, for the counter. For any counter,

m<d

or the counter would not count at all. If we define
the minimum countable fraction of the clock pulse to
be “l'.'”, then

r="— Osr<1

d
Direct gating will introduce a bias in the time interval
measurements which is just

Bias (in counts) = d(1-2r)

as shown in Figure A-1. Only with the parameter
r = 1/2 can direct gating produce unbiased measure-
ments. However the value of “r” is virtually impos-
sible to control in constructing a counter.

Synchronized gating effectively reduces the clock
pulse width to zero by actually counting only on a
clock edge. Thus synchronized gating yields unbiased
measurements regardless of the value of “r”.

BIAS [IN COUNTS)

Figure A-1. Bias from Direct Gating.

APPENDIX I

THE PROBABILITY DISTRIBUTION FOR TIME INTERVAL
AVERAGING MEASUREMENTS

The expected value and the standard deviation of a
T.I.A. measurement depend on the probability distri-
bution of the counter reading about the true value
of the measured time interval, T.

In Section 2 we found that for a time interval with
T=Q+F Q=0,1,2,..
0<F<1
the counter will measure either
R=Q or R=Q+1

For simplicity, in each measurement i of the N meas-
urements to be averaged
Ri=Q+kj ki=0,1

i=1,2,..,N (A-2.1)

Now the average of N individual measurements is

Just N
R=~ E Rj
"N
i=1
N
1
R=Q+g E kj ki=0,1 (A-2.2)
If we let =
N
K= z :ki K=01,2 .. N (A-2.3)
=1
Then
R=Q+K/N K=0:1,2 ..N (A-2.4)

Thus the counter reading depends on K, or the num-
ber of times that the count for a single measurement
was (Q+1) rather than just Q.
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The variable K turns out to have a simple binomial
distribution* because it is the sum of N variables kj,
each with

Prob (kj=0)=1-F (A-2.52)

Prob (kj=1)=F (A-2.5b)
Therefore

Prob (KIF) = () F* 0-F)"™ (A-26)

The above equation provides the mathematical basis
of time interval averaging. The mean and standard
deviation for K are

K=NF (A-2.7a)

ox =vNFI-F) (A-2.7b)

Thus we find that

E=Q+N—;:Q+F=T (A-2.82)
o= I%T VNF({-F) = Jﬁ VFI-F) (A-2.8b)

The results obtained in Equations A-2.8a,b contain
the major aspects of time interval averaging as dis-
cussed in Section 4.

*This assumes that the start of each time interval
occurs with equal probability over all phases of the
clock. For the vast majority of cases this assump-
tion is perfectly valid.

APPENDIX Il
ESTIMATING THE MEASURED TIME INTERVAL

Appendix II derives the probability distribution for
the counter reading if the time interval is known.
In practice, the problem is just the reverse. Once
a counter reading is obtained, the problem is to deter-
mine as much as possible about the measured time
interval.

Bayes theorem can be used to transform the basic
binomial distribution of R given T into the related
beta distribution of T given R. Recall that
T=Q+F Q=01,2,..
0<F<1

and that from Appendix II the counter reading after
averaging N intervals will be

R=Q+K/N (A-3.1)
with K binomially distributed with
Prob (K|F) = (ﬁ) G 5 ) R (A-3.2)

Assuming no prior knowledge about T or F, Bayes
theorem yields

p (FIK).= (N+1) @)F“ a-H"* K=1,2, .., N-1

0<F<1 (A-3.3)

which is a beta distribution for F. To use this dis-
tribution it is necessary to find K from the counter
reading. In Section 5, R was separated into integral
and fractional parts as follows
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R=R; +Rp R;=0,1,2, ..

O0<Rp<1 (A-3.4)

Since Ry corresponds to the term K/N in Equation
A-3.1,

K=N-Rp (A-3.5)
K will always be an integer.

Figure 11 in Section 5 plots a few examples of Equa-
tion A-3.3. Two key finds come from the distribution
for F.

1. The best estimate of the measured time interval
is simply the counter reading

T-R (A-3.6)

2. The standard deviation of T is**

gz o [ELDN-KD  g-j 2 N-1 (A37)
* (N+2)2 (N+3)

However, for large values of N, a very good approxi-
mation of o is

or= 5y YRR Ry)

Equation A-3.8 clearly shows the 1/+/N factor used for
evaluating T.I.A. measurements. In the worst case

0<Rp<l1 (A-3.8)

*+The case of K = 0 will be mentioned shortly.



1
op Rp=1/2)= VN
As plotted in Figure 12, for other values of Ry,

the standard deviation is less.

A Special Circumstance

Sometimes we may obtain a counter reading that is
an integral multiple of the ‘clock period.t That is

RF:O

Now Ry can become zero in either of two equally
likely ways:

Case I

R=R+p withK =0; Q= R;
Case 11
R=R;-1)+K/N withK=N;Q=R;-1

Analysis shows that when Ry = 0, the statistics are
as follows:

The best estimate for the measured time interval
is still simply the counter reading

Py

T=R

The standard deviation of T is

s 2
op Bp=0= \/ N2 9)

which is well within the factor of 1/+/N. For large
N the standard deviation is approximately +/2/N
and is much smaller than 1/+/N.

(A-3.9)

tThe case of Ry = 0 can certainly occur as the re-
sult of a perfectly valid T.LLA. measurement. How-
ever, it can also be a symptom of a synchronous
repetition rate. Check for a synchronous repetition
rate by following the steps listed in Section 1.
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