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Application Note 154

S-Parameter Design

Introduction

The need for new high frequency solid state circuit design techniques has been
recognized both by microwave engineers and circuit designers. These engineers are
being asked to design solid state circuits that will operate at higher and higher
frequencies. .

The development of microwave transistors and Hewlett-Packard’s network
analysis instrumentation systems that permit complete network characterization
in the microwave frequency range have greatly assisted these engineers in their
work.

The Hewlett-Packard Microwave Division’s lab staff have developed a high
frequency circuit design seminar to assist their counterparts in R&D labs through-
out the world. This seminar has been presented in a number of locations in the
United States and Europe.

From the experience gained in presenting this original seminar, we have devel-
oped a four-part video tape “‘S-Parameter Design Seminar.” While the technology
of high frequency circuit design is ever changing, the concepts upon which this
technology has been built are relatively invariant.

The content of this “S-Parameter Design Seminar” is as follows:

A. S-Parameter Design Techniques—Part I
(Part No. 90030A586, VHS; 90030D586, % ")

1. "Basic Microwave Review—Part 1"
This portion of the seminar contains a review of:
a) Transmission line theory
b) S-parameters
c) The Smith Chart
d) The frequency response of RL - RC - RLC circuits

2. "Basic Microwave Review—Part II"
This portion extends the basic concepts to:
a) Scattering-Transfer or T-parameters
b) Signal flow graphs
c) Voltage and power gain relationships
d) Stability considerations

B. S-Parameter Design Techniques—Part II
(Part No. 90030A600, VHS; 90030D600, %")

1. "S-Parameter Measurements”
In this portion, the characteristics of microwave transistors and the network
analyzer instrumentation system used to measure these characteristics are
explained.

2. “High Frequency Amplifier Design”
The theory of Constant Gain and Constant Noise Figure Circles is developed
in this portion of the seminar. This theory is then applied in the design of
three actual amplifier circuits.

The style of this Application Note is somewhat informal since it is a verbatim
transcript of these video tape programs.

Much of the material contained in this seminar, and in this Application Note,
has been developed in greater detail in standard electrical engineering textbooks,
or in other Hewlett-Packard application notes.

The value of this Application Note rests in its bringing together the high fre-
quency circuit design concepts used today in R&D labs throughout the world.

We are confident that Application Note 154 and the video taped "'S-Parameter
Design Seminar” will assist you as you continue to develop new high frequency
circuit designs.

~




Chapter I

Basic Microwave Review --1

Introduction

This first portion of Hewlett-Packard’'s S-Parameter
Design Seminar introduces some fundamental concepts
we will use in the analysis and design of high frequency
networks.

These concepts are most useful at those frequencies
where distributed rather than lumped parameters must
be considered. We'll discuss: (1) Scattering or
S-parameters, (2) Voltage and power gain relationships
as well as (3) Stability criteria for two-port networks
in terms of these S-parameters, and (4) Review the
Smith Chart.

Network Characterization
S-parameters are basically a means for characterizing
n-port networks. By reviewing some traditional net-
work analysis methods we’ll understand why an addi-
tional method of network characterization is necessary
at higher frequencies.
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A two-port device (Fig. 1) can be described by a num-
ber of parameter sets. We're all familiar with the H, Y,
and Z-parameter sets (Fig. 2). All of these network
parameters relate total voltages and total currents at
each of the two ports. These are the network variables.
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Figure 2

The only difference in the parameter sets is the choice
of independent and dependent variables. The param-
eters are the constants used to relate these variables.

To see how parameter sets of this type can be de-
termined through measurement, let's focus on the
H-parameters. Hy; is determined by setting V. equal to
zero—applying a short circuit to the output port of the
network. Hj; is then the ratio of V; to I;—the input
impedance of the resulting network. Hy» is determined
by measuring the ratio of V; to Vo—the reverse voltage
gain—with the input port open circuited (Fig. 3). The
important thing to note here is that both open and short
circuits are essential for making these measurements.
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Moving to higher and higher frequencies, some prob-
lems arise:

1. Equipment is not readily available to measure to-
tal voltage and total current at the ports of the
network.

2. Short and open circuits are difficult to achieve
over a broad band of frequencies.

3. Active devices, such as transistors and tunnel di-
odes, very often will not be short or open circuit
stable.

Some method of characterization is necessary to over-
come these problems. The logical variables to use at
these frequencies are traveling waves rather than total
voltages and currents.

Transmission Lines

Let's now investigate the properties of traveling
waves. High frequency systems have a source of power.
A portion of this power is delivered to a load by means
of transmission lines (Fig. 4).
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Voltage, current, and power can be considered to be
in the form of waves traveling in both directions along
this transmission line. A portion of the waves incident
on the load will be reflected. It then becomes incident
on the source, and in turn re-reflects from the source
(if Zs # Z,), resulting in a standing wave on the line.

If this transmission line is uniform in cross section,
it can be thought of as having an equivalent series im-
pedance and equivalent shunt admittance per unit
length (Fig. 5).
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A lossless line would simply have a series inductance
and a shunt capacitance. The characteristic impedance
of the lossless line, Z,, is defined as Z, = V%IC. At
microwave frequencies, most transmission lines have
a 50-ohm characteristic impedance. Other lines of 75,
90, and 300-ohm impedance are often used.

Although the general techniques developed in this
seminar may be applied for any characteristic imped-
ance, we will be using lossless 50-ohm transmission
lines.

We've seen that the incident and reflected voltages
on a transmission line result in a standing voltage wave
on the line.

The value of this total voltage at a given point along
the length of the transmission line is the sum of the
incident and reflected waves at that point (Fig. 6a).
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Figure 6

The total current on the line is the difference between
the incident and reflected voltage waves divided by the
characteristic impedance of the line (Fig. 6b).

Another very useful relationship is the reflection co-
efficient, T. This is a measure of the quality of the im-
pedance match between the load and the characteristic
impedance of the line. The reflection coefficient is a
complex quantity having a magnitude, rho, and an
angle, theta (Fig. 7a). The better the match between the
load and the characteristic impedance of the line, the
smaller the reflected voltage wave and the smaller the
reflection coefficient.
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Figure 7

This can be seen more clearly if we express the
reflection coefficient in terms of load impedance or load
admittance. The reflection coefficient can be made equal
to zero by selecting a load, Z;, equal to the characteris-
tic impedance of the line (Fig. 7b).

To facilitate computations, we will often want to
normalize impedances to the characteristic impedance
of the transmission line. Expressed in terms of the re-
flection coefficient, the normalized impedance has this
form (Fig. 8).

S-Parameters

Having briefly reviewed the properties of transmis-
sion lines, let's insert a two-port network into the line
(Fig. 9). We now have additional traveling waves that
are interrelated. Looking at E.», we see that it is made
up of that portion of Ei» reflected from the output port
of the network as well as that portion of E;; that is
transmitted through the network. Each of the other
waves are similarly made up of a combination of two
waves.
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It should be possible to relate these four traveling
waves by some parameter set. While the derivation of
this parameter set will be made for two-port networks,
it is applicable for n-ports as well. Let's start with the
H-parameter set (Fig. 10).
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By substituting the expressions for total voltage and
total current (Fig. 11) on a transmission line into this
parameter set, we can rearrange these equations such
that the incident traveling voltage waves are the inde-
pendent variables; and the reflected traveling voltage
waves are the dependent variables (Fig. 12).

E,= fn (h) E;;, + f|2 (h) Ei2
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Figure 12

The functions fi;, fo; and fis, fos represent a new
set of network parameters relating traveling voltage
waves rather than total voltages and total currents. In
this case these functions are expressed in terms of
H-parameters. They could have been derived from any
other parameter set.

It is appropriate that we call this new parameter set
“scattering parameters,” since they relate those waves
scattered or reflected from the network to those waves
incident upon the network. These scattering parameters
will commonly be referred to as S-parameters.



Let's go one step further. If we divide both sides of
these equations by \/Z,, the characteristic impedance
of the transmission line, the relationship will not
change. It will, however, give us a change in variables
(Fig. 138). Let's now define the new variables:
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Notice that the square of the magnitude of these new
variables has the dimension of power. |a;|* can then be
thought of as the incident power on port one. |bs[* as
power reflected from port one. These new waves can
be called traveling power waves rather than traveling
voltage waves. Throughout this seminar, we will simply
refer to these waves as traveling waves.

Looking at the new set of equations in a little more
detail, we see that the S-parameters relate these four
waves in this fashion (Fig. 14).
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S-Parameier Measurement

We saw how the H-parameters are measured. Let’s
now see how we go about measuring the S-parameters.
For Si;, we terminate the output port of the network
and measure the ratio b; to a; (Fig. 15). Terminating the
output port in an impedance equal to the characteristic
impedance of the transmission line is equivalent to
setting a» = 0, since a traveling wave incident on this
load will be totally absorbed. S;; is the input reflection
coefficient of the network. Under the same conditions,
we can measure Se;, the forward transmission through
the network. This is the ratio of b, to a; (Fig. 16). This
could either be the gain of an amplifier or the attenua-
tion of a passive network.
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By terminating the input side of the network, we set
a; = 0. Sa», the output reflection coefficient, and S;3, the
reverse transmission coefficient, can then be measured
(Fig. 17).
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A question often arises about the terminations used
when measuring the S-parameters. Since the transmis-
sion line is terminated in the characteristic impedance
of the line, does the network port have to be matched
to that impedance as well? The answer is no!

To see why, let's. look once again at the network
enmeshed in the transmission line (Fig. 18). If the load
impedance is equal to the characteristic impedance of
the line, any wave traveling toward the load would be
totally absorbed by the load. It would not reflect back
to the network. This sets a; = 0. This condition is
completely independent from the network’s output
impedance.
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Multiple-Port Networks

So far we have just discussed two-port networks.
These concepts can be expanded to multiple-port net-
works. To characterize a three-port network, for exam-
ple, nine parameters would be required (Fig. 19). Su,
the input reflection coefficient at port one, is measured
by terminating the second and third ports with an im-
pedance equal to the characteristic impedance of the
line at these ports. This again ensures that a» = a3z = 0.
We could go through the remaining S-parameters and
measure them in a similar way, once the other two ports
are properly terminated.
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What is true for two- and three-port networks is
similarly true for n-port networks (Fig. 20). The number
of measurements required for characterizing these more
complex networks goes up as the square of the number
of ports. The concept and method of parameter meas-
urement, however, is the same.
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Let's quickly review what we've done up to this
point. We started off with a familiar network parameter
set relating total voltages and total currents at the ports
of the network. We then reviewed some transmission
line concepts. Applying these concepts, we derived a
new set of parameters for a two-port network relating
the incident and reflected traveling waves at the net-
work ports.

The Use of S-Parameters

To gain further insight into the use of S-parameters,
let’s see how some typical networks can be represented
in terms of S-parameters,

A reciprocal network is defined as having identical
transmission characteristics from port one to port two
or from port two to port one (Fig. 21). This implies that
the S-parameter matrix is equal to its transpose. In the
case of a two-port network, S;a = Sg1.

a; —e Reciprocal — b,
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Figure 21

A lossless network does not dissipate any power. The
power incident on the network must be equal to the
power reflected or = |a,|? = = |b,|? (Fig. 22). In the case
of a two-port, |a; [> + |az]* = |by[? + |bz|*. This implies
that the S-matrix is unitary as defined here. Where: I is
the identity matrix and S* is the complex conjugate of
the transpose of S. This is generally referred to as the
hermetian conjugate of S. Typically, we will be using
lossless networks when we want to place matching net-
works between amplifier stages.
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Figure 22

For a lossy network, the net power reflected is less
than the net incident power (Fig. 23). The difference is
the power dissipated in the network. This implies that
the statement I — S * S is positive definite, or the eigen-

values for this matrix are in the left half plane so that
the impulse response of the network is made up of de-
caying exponentials.
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Change in Reference Plane

Another useful relationship is the equation for chang-
ing reference planes. We often need this in the measure-
ment of transistors and other active devices where, due
to device size, it is impractical to attach RF connectors
to the actual device terminals.

Imbedding the device in the transmission line struc-
ture, we can then measure the S-parameters at these
two planes (Fig. 24). We've added a length of line, ¢4,
to port one of the device and another length, ¢, to port
two.
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The S-parameter matrix, S/, measured at these two
planes is related to the S-parameter matrix of the de-
vice, S, by this expression. We've simply pre-multiplied
and post-multiplied the device’s S-parameter matrix by
the diagonal matrix, & .

To see what's happening here, let’s carry through the
multiplication of the S;; term. It will be multiplied by
e —j¢1 twice, since a; travels through this length of line,
¢4, and gets reflected and then travels through it again
(Fig. 25). The transmission term, S%;, would have this
form, since the input wave, a;y, travels through ¢; and
the transmitted wave, bs, through ¢-. From the meas-
ured S-parameters, S/, we can then determine the
S-parameters of the device, S, with this relationship
(Fig. 26).
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Analysis of Networks Using S-Parameters
Let's now look at a simple example which will
demonstrate how S-parameters can be determined
analytically.
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Using a shunt admittance, we see the incident and
reflected waves at the two ports (Fig. 27). We first
normalize the admittance and terminate the network in
the normalized characteristic admittance of the system
(Fig. 28a). This sets a» = 0. Sy, the input reflection
coefficient of the terminated network, is then: (Fig. 28b).

To calculate Ssy, let’s recall that the total voltage at
the input of a shunt element, a; + by, is equal to the
total voltage at the output, as + bs (Fig. 28c). Since the
network is symmetrical and reciprocal, Ss; = S;; and
S12 = Su;. We have then determined the four S-param-
eters for a shunt element.
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The Smith Chart

Another basic tool used extensively in amplifier de-
sign will now be reviewed. Back in the thirties, Phillip
Smith, a Bell Lab engineer, devised a graphical method
for solving the oft-repeated equations appearing in
microwave theory. Equations like the one for reflection
coefficient, T = (Z — 1) / (Z + 1). Since all the values in
this equation are complex numbers, the tedious task of
solving this expression could be reduced by using
Smith's graphical technique. The Smith Chart was a
natural name for this technique.

This chart is essentially a mapping between two
planes—the 7 or impedance plane and the T' or reflec-
tion coefficient plane. We're all familiar with the im-
pedance plane—a rectangular coordinate plane having
a real and an imaginary axis. Any impedance can be
plotted in this plane. For this discussion, we’ll normal-
ize the impedance plane to the characteristic impedance
(Fig. 29a).
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Let's pick out a few values in this normalized plane
and see how they map into the I' plane. Let z = 1. In
a 50-chm system, this means Z = 50 ohms. For this
value, |T'| = 0, the center of the T plane.

We now let z be purely imaginary; i.e., z = jx where
x is allowed to vary from minus infinity to plus infinity.
Since ' = (jx — 1)/ (jx + 1), |T| = 1 and its phase
angle varies from 0 to 360°. This traces out a circle in
the T plane (Fig. 29b). For positive reactance, jx posi-
tive, the impedance maps into the upper half circle. For
negative reactance, the impedance maps into the lower
half circle. The upper region is inductive and the lower
region is capacitive.

Now let's look at some other impedance values. A
constant resistance line, going through the point z = 1
on the real axis, maps into a circle in the I" plane. The
upper semicircle represents an impedance of 1 + jx,
which is inductive; the lower semicircle, an impedance
of 1 — jx or capacitive (Fig. 30).
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The constant reactance line, r + j1, also maps into the
" plane as a circle. As we approach the imaginary axis
in the impedance plane, T approaches the unit radius
circle. As we cross the imaginary axis, the constant
reactance circle in the T plane goes outside the unit
radius circle.

If we now go back and look at z real, we see at
z = —1, T = o. When z is real and less than one, we
move out toward the unit radius circle in the T plane.
When the real part of z goes negative, I' continues
along this circle of infinite radius. The entire region
putside the unit radius circle represents impedances
with negative real parts. We will use this fact later
when working with transistors and other active devices
which often have negative real impedances.

In the impedance plane, constant resistance and con-
stant reactance lines intersect. They also cross in the T
plane. There is a one-to-one correspondence between
points in the impedance plane and points in the " plane.

The Smith Chart can be completed by continuing to
draw other constant resistance and reactance circles
(Fig. 31).

Figure 31

Applications of the Smith Chart

Let's now try a few examples with the Smith Chart
to illustrate its usefulness.

1. Conversion of impedance to admittance: Convert-
ing a normalized impedance of 1 + j1 to an admittance
can be accomplished quite easily. Let’s first plot the
point representing the value of z on the Smith Chart
(Fig. 32). From these relationships, we see that while
the magnitude of admittance is the reciprocal of the
magnitude of impedance, the magnitude of T is the
same—but its phase angle is changed by 180°. On the
Smith Chart, the 1" vector would rotate through 180°.
This point could then be read off as an admittance.
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Figure 32

We can approach this impedance to admittance con-
version in another way. Rather than rotate the T' vector
by 180°, we could rotate the Smith Chart by 180° (Fig.
33). We can call the rotated chart an admittance chart
and the original an impedance chart. Now we can
convert any impedance to admittance, or vice versa,
directly.

Admittance o Impedance Chart

Figure 33



2. Impedances with negative real parts: Let’s now
take a look at impedances with negative real parts.
Here again is a conventional Smith Chart defined by
the boundary of the unit radius circle. If we have an
impedance that is inductive with a negative real part,
it would map into the T" plane outside the chart (Fig. 34).
One way to bring this point back onto the chart would
be to plot the reciprocal of T, rather than T itself. This
would be inconvenient since the phase angle would not
be preserved. What was a map of an inductive imped-
ance appears to be capacitive.

Figure 34

If we plot the reciprocal of the complex conjugate of
I', however, the phase angle is preserved. This value
lies along the same line as the original T'. Typically in
the Hewlett-Packard transistor data sheets, impedances
of this type are plotted this way.

There are also compressed Smith Charts available
that include the unit radius chart plus a great deal of
the negative impedance region. This chart has a radius
which corresponds to a reflection coefficient whose
magnitude is 3.16 (Fig. 35).

Figure 35

In the rest of this seminar, we will see how easily we
can convert measured reflection coefficient data to im-
pedance information by slipping a Smith Chart overlay
over the Hewlett-Packard network analyzer polar
display.

3. Frequency response of networks: One final point
needs to be covered in this brief review of the Smith
Chart and that is the frequency response for a given
network. Let's look at a network having an impedance,
z = 0.4 + jx (Fig. 36). As we increase the frequency of
the input signal, the impedance plot for the network
moves clockwise along a constant resistance circle
whose value is 0.4. This generally clockwise movement
with increasing frequency is typical of impedance plots
on the Smith Chart for passive networks. This is essen-
tially Foster’s Reactance Theorem.

If we now look at another circuit having a real part
of 0.2 and an imaginary part that is capacitive, the im-
pedance plot again moves in a clockwise direction with
an increase in frequency.

Another circuit that is often encountered is the tank
circuit. Here again, the Smith Chart is useful for plot-
ting the frequency response (Fig. 37). For this circuit
at zero frequency, the inductor is a short circuit. We
start our plot at the point, z = 0. As the frequency
increases, the inductive reactance predominates. We
move in a clockwise direction. At resonance, the im-
pedance is purely real, having the value of the resistor.
If the resistor had a higher value, the cross-over point
at resonance would be farther to the right on the Smith
Chart. As the frequency continues to increase, the re-
sponse moves clockwise into the capacitive region of
the Smith Chart until we reach infinite frequency,
where the impedance is again zero.
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In theory, this complete response for a tank circuit
would be a circle. In practice, since we do not generally
have elements that are pure capacitors or pure inductors
over the entire frequency range, we would see other
little loops in here that indicate other resonances. These
could be due to parasitic inductance in the capacitor
or parasitic capacitance in the inductor. The diameter
of these circles is somewhat indicative of the Q of the
circuit. If we had an ideal tank circuit, the response
would be the outer circle on the Smith Chart. This
would indicate an infinite Q.

Hewlett-Packard Application Note 117-1 describes
other possible techniques for measuring the Q of cavi-
ties and YIG spheres using the Smith Chart. One of
these techniques uses the fact that with a tank circuit,
the real part of the circuit equals the reactive part at
the half-power points. Let's draw two arcs connecting
these points on the Smith Chart (Fig. 38). The centers
for these arcs are at =j1. The radius of the arcs is V2.

Figure 38

We then increase the frequency and record its value
where the response lies on the upper arc. Continuing to
increase the frequency, we record the resonant fre-
quency and the frequency where the response lies on
the lower arc. The formula for the Q of the circuit is
simply fo, the resonant frequency, divided by the differ-
ence in frequency between the upper and lower half-
power points. Q = fo/Af.

Summary

Let’s quickly review what we've seen with the Smith
Chart. It is a mapping of the impedance plane and the
reflection coefficient or I' plane. We discovered that
impedances with positive real parts map inside the unit
radius circle on the Smith Chart. Impedances with nega-
tive real parts map outside this unit radius circle. Im-
pedances having positive real parts and inductive
reactance map into the upper half of the Smith Chart.
Those with capacitive reactance map into the lower
half.

In the next part of this S-Parameter Design Seminar,
we will continue our discussion of network analysis
using S-parameters and flow graph techniques.



Chapter 11

Basic Microwave Review -- 11

This second portion of Hewlett-Packard’s Basic Mi-
crowave Review will introduce some additional con-
cepts that are used in high frequency amplifier design.

Scattering Transfer Parameters

Let's now proceed to a set of network parameters
used when cascading networks. We recall that we de-
veloped the S-parameters by defining the reflected
waves as dependent variables, and incident waves as
independent variables (Fig. 39a). We now want to re-
arrange these equations such that the input waves a;
and b; are the dependent variables and the output
waves az and bs the independent variables. We'll call
this new parameter set scattering transfer parameters
or T-parameters (Fig. 39b).
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The T-parameters can be developed by manipulating
the S-parameter equations into the appropriate form.
Notice that the denominator of each of these terms is
Sa; (Fig. 40).
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We can also find the S-parameters as a function of
the T-parameters.

While we defined the T-parameters in a particular
way, we could have defined them such that the output
waves are the dependent variables and the input waves
are the independent variables. This alternate definition
can result in some problems when designing with active
unilateral devices (Fig. 41).
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Using the alternate definition for the transfer param-
eters, the denominator in each of these terms is Sig
rather than S»; as we saw earlier.

Working with amplifiers, we often assume the device
to be unilateral, or S;2 = 0. This would cause this alter-
nate T-parameter set to go to infinity.

Both of these definitions for T-parameters can be
encountered in practice. In general, we prefer to define
the T-parameters with the output waves as the depend-
ent variables, and the input waves as the independent
variables.

We use this new set of transfer parameters when we
want to cascade networks—two stages of an amplifier,
or an amplifier with a matching network for example
(Fig. 42a). From measured S-parameter data, we can
define the T-parameters for the two networks. Since the
output waves of the first network are identical to the
input waves of the second network, we can now simply
multiply the two T-parameter matrices and arrive at a
set of equations for the overall network (Fig. 42b).

a) O L -0 )

a, — bg — —- a; — b-_l

T ; T X
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b) b, = |:T|| T12] |:3z:l |:b;] _ [T:1 T;-J] I:a;]
[al] Tsy Tez] [ba and aj T, Ti.| b
a,| _ [b}
bt [bz] _ [a;]

b, i T Tnz] [Tlil Tl"z] [aé]
Therslors [31] " I:T‘.’l Too | [Ty Tas b;
Figure 42

Since matrix multiplication is, in general, not com-
mutative, these T-parameter matrices must be multi-
plied in the proper order. When cascading networks,
we'll have to multiply the matrices in the same order
as the networks are connected. Using the alternate
definition for T-parameters, previously described, this
matrix multiplication must be done in reverse order.

This transfer parameter set becomes very useful
when using computer-aided design techniques where
matrix multiplication is an easy task.



Signal Flow Graphs

If we design manually, however, we can use still
another technique—signal flow graphs—to follow inci-
dent and reflected waves through the networks. This is
a comparatively new technique for microwave network
analysis.

A. Rules

We’'ll follow certain rules when we build up a net-
work flow graph.

1. Each variable, a;, as, by, and by will be designated

as a node.
2. Each of the S-parameters will be a branch.
3. Branches enter dependent variable nodes,
and emanate from the independent variable nodes.

4. In our S-parameter equations, the reflected waves
b, and bs are the dependent variables and the
incident waves a; and as are the independent
variables.

5. Each node is equal to the sum of the branches

entering it.

Let's now apply these rules to the two S-parameter
equations (Fig. 43a). The first equation has three nodes
—by, a;, and as. By is a dependent node and is con-
nected to a; through the branch S;; and to node as
through the branch S,.. The second eguation is con-
structed similarly. We can now overlay these to have
a complete flow graph for a two-port network (Fig. 43b).

a) ay
SII
b,
b =8 a; + Sis a Si2 a,
b, =8, a; + S, a,
a, b,
Sy
Sus
ay
b) Complete Flow Graph for 2-Port
dy S-“ bz
e -
Sy S..
- Ot
S, a,
Figure 43

The relationship between the traveling waves is now
easily seen. We have a; incident on the network. Part
of it transmits through the network to become part of
bs. Part of it is reflected to become part of b;. Mean-
while, the a» wave entering port two is transmitted
through the network to become part of b; as well as
being reflected from port two as part of by. By merely
following the arrows, we can tell what's going on in
the network.

This technique will be all the more useful as we
cascade networks or add feedback paths.

B. Application of Flow Graphs

Let's now look at several typical networks we will
encounter in amplifier designs. A generator with some
internal voltage source and an internal impedance will
have a wave emanating from it. The flow graph for the
generator introduces a new term, by (Fig. 44). It's de-
fined by the impedance of the generator. The units in
this equation look peculiar, but we have to remember
that we originally normalized the traveling waves to
\/Z,. The magnitude of b, squared then has the dimen-
sion of power.

Zs b 1 b
O =
v, ke L,
1

a
b — VH vz—ﬂ
S s+ Z,

Figure 44

For a load, the flow graph is simply T, the complex
reflection coefficient of the load (Fig. 45).

L a
a- — >
3z I,
b -——
Cp———a b
Figure 45

When the load is connected to the generator, we see
a wave emanating from the generator incident on the
load and a wave reflected back to the generator from
the load (Fig. 486).

Z, b 1 b a’

Figure 46

To demonstrate the utility of flow graphs, let's embed
a two-port network between a source and a load. Com-
bining the examples we have seen, we can now draw
a flow graph for the system (Fig. 47).

bs ]- a] 82] bz

Figure 47
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We can now apply the rule known as Mason's rule—
or as it is often called, the non-touching loop rule—to
solve for the value of any node in this network. Before
applying the rule, however, we must first define several
additional terms.

A first order loop is defined as the product of the
branches encountered in a journey starting from a node
and moving in the direction of the arrows back to that
original node. To illustrate this, let's start at node a;.
One first order loop is S;iI's. Another first order loop
is So1T1.S12. If we now start at node a», we find a
third first order loop—S..T't.. Any of the other loops
we encounter is one of these three first order loops.

A second order loop is defined as the product of any
two non-touching first order loops. Of the three first
order loops just found, only S;T: and SuT: do not
touch in any way. The product of these two loops
establishes the second order loop for this network.
More complicated networks involving feedback paths,
for example, might have several second order loops.

A third order loop is the product of any three non-
touching first order loops. This example does not have
any third order loops but again more complicated net-
works would have third order loops and even higher
order loops.

Let’s now suppose that we are interested in the
value of b;. In this example, b, is the only independent
variable since its value will determine the value of
each of the other variables in the network. B, there-
fore, will be a function of b.. To determine b;, we first
have to identify the paths leading from b, to b;. Fol-
lowing the arrows, we see two paths—(1) Sy; and (2)
Su1T'L.S10.

The next step is to find the non-touching loops with
respect to the paths just found. Here, the path S;, and
the first order loop, S»2T1, have no nodes or branches
in common. With this condition met, we can call Ss.l'y,
a non-touching loop with respect to the path Sy;.

The other path, S2:T'.S12, touches all of the network’s
first order loops, hence there are no non-touching loops
with respect to this path. Again, in more complex net-
works, there would be higher order non-touching loops.

Let's now look at the non-touching loop rule itself
(Fig. 48). This equation appears to be rather ominous
at first glance, but once we go through it term by term,
it will be less awesome. This rule determines the ratio
of two variables, a dependent to an independent vari-
able. (In our example, we are interested in the ratio b,
to bs.)

P,[1—-3L(Q)" + ELE2)" —
1—ZL(1) + ZL(2)

Jri=srae, .,
SLE)+ . . .

T=
=b
iy

Figure 48

P,, P,, etc., are the various paths connecting these
variables.

This term, 2L(1)*, is the sum of all first order loops
that do not touch the first path between the variables.

This term, ZL(2)"", is the sum of all second order
loops that do not touch that path, and so on down the
line.
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Now, this term, 2L(1)**, is the sum of all first order
loops that do not touch the second path.

The denominator in this expression is a function of
the network geometry. It is simply one minus the sum
of all first order loops, plus the sum of all second order
loops, minus the third order loops, and so on.

Let's now apply this non-touching loop rule to our
network (Fig. 49). The ratio of b;, the dependent vari-
able, to b,, the independent variable, is equal to the
first path, S,;, multiplied by one minus the non-touch-
ing first order loop with respect to this path, T' Sy

E = Sll(]: = FLSM) aE Szll—‘LSm(l}
by~ 1 — (S5 + Suoly, + SoilSiel) + SilsSaly,

Figure 49

The second path, S8, is simply multiplied by
one since there are no non-touching loops with respect
to this path.

The denominator is one minus the sum of first order
loops plus the second order loop.

This concludes our example. With a little experience
drawing flow graphs of complex networks, you can see
how this technique will facilitate your network analy-
sis. In fact, using the flow graph technique, we can
now derive several expressions for power and gain
that are of interest to the circuit designer.

First of all, we need to know the power delivered to
a load. We remember that the square of the magnitudes
of the incident and reflected waves has the dimension
of power. The power delivered to a load is then the
difference between the incident power and the re-
flected power, Py, = lal* — |b %

The power available from a source is that power
delivered to a conjugately matched load. This implies
that the reflection coefficient of the load is the conjugate
of the source reflection coefficient—I'.* = T,

b 1 b 1
L. Ig*

4 1

Figure 50

Looking at the flow graph describing these condi-
tions (Fig. 50), we see that the power available from the
source is:

Pa\'s:|b|2_1a|2
Using the flow graph techniques previously described,
we see that:
b, b.E

b= T—TT+ T and a= T—T.r~



The power available from the source reduces to
(Fig. 51):

P, =10l

avs = |Fs|2

Figure 51

We can also develop voltage and power gain equa-
tions that will be useful in our amplifier designs using
these flow graph techniques. For a two-port network,
the voltage gain is equal to the total voltage at the
output divided by the total voltage at the input,

A as + ba
ds + b]
If we divide the numerator and denominator by bs,
we can relate each of the dependent variables of the
system to the one independent variable (Fig. 52a). Now
we have four expressions or four ratios that we can
determine from the non-touching loop rule.

a) a b
A =bs b, — Suly + S,
A T} . by 1(1 —Splh) + Siy(1 — Sul) + 8, [0Se
b, b,
b) b, 1 a, Sy b,
RS = s

I‘s Su. Szz l-|L

b, Si2 ap

Figure 52

We can simplify this derivation by remembering that
the denominator in the expression for the non-touching
loop rule is a function of the network geometry. It will
be the same for each of these ratios, and will cancel
out in the end. So we only need to be concerned with
the numerators of these ratios.

Let's trace through a couple of these expressions to
firm up our understanding of the process (Fig. 52b). A»
is connected to b. through the path S»;T;. All first
order loops touch this path, so this path is simply multi-
plied by one. B. is connected to b, through the path S.;.
All first order loops also touch this path. A; is con-
nected to b, directly, and there is one non-touching
loop, S22I'r.. We have already determined the ratio of
b; to b,, so we can simply write down the numerator of
that expression. We have now derived the voltage gain
of the two-port network.

The last expression we wish to develop is that for
transducer power gain. This will be very important in
the amplifier design examples contained in the final
section of this seminar. Transducer power gain is de-
fined as the power delivered to a load divided by the
power available from a source.

Paer
Pavs
We have already derived these two expressions.
|ba2(1—|T )
G = -
b/ @ —[T: )
What remains is to solve the ratio b. to b, (Fig. 53a).
The only path connecting bs and bs is Sz;. There are
no non-touching loops with respect to this path. The
denominator is the same as in the previous example:
one minus the first order loops plus the second order
loop. Taking the magnitude of this ratio, squaring and
substituting the result yields the expression for trans-
ducer power gain of a two-port network (Fig. 53b).

Gi=
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Figure 53

Needless to say, this is not a simple relationship since
the terms are generally complex gquantities. Calculator
or computer routines will greatly facilitate the circuit
designer’s task.

Later, when designing amplifiers, we will see that we
can simplify this expression by assuming that the am-
plifier is a unilateral device or S;2 = 0. In general, how-
ever, this assumption cannot be made and we will be
forced to deal with this expression.

One of the things you might want to do is to optimize
or maximize the transducer gain of the network. Since
the S-parameters at one frequency are constants de-
pending on the device selected and the bias conditions,
we have to turn our attention to the source and load
reflection coefficients.

Stability Considerations

To maximize the transducer gain, we must conju-
gately match the input and the output. Before we do
this, we will have to look at what might happen to the
network in terms of stability—will the amplifier oscil-
late with certain values of impedance used in the
matching process?

There are two traditional expressions used when
speaking of stability: conditional and unconditional
stability.

A network is conditionally stable if the real part of
Z.n and Z,,, is greater than zero for some positive real
source and load impedances at a specific frequency.

A network is unconditionally stable if the real part of
Z.n and Z,, is greater than zero for all positive real
source and load impedances at a specific frequency.

It is important to note that these two conditions apply
only at one specific frequency. The conditions we will
now discuss will have to be investigated at many fre-
quencies to ensure broadband stability. Going back to
our Smith Chart discussion, we recall that positive real
source and load impedances implies:

|7, |and |T),| =1
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Let's look first at the condition where we want to
conjugately match the network to the load and source
to achieve maximum transducer gain (Fig. 54). Under
these conditions, we can say that the network will be
stable if this factor, K, is greater than one (Fig. 55).
Conjugately matched conditions mean that the reflec-
tion coefficient of the source, T, is equal to the con-
jugate of the input reflection coefficient, T'i.

T‘s = ]—‘1:1*
I, is equal to the conjugate of the output reflection
coefficient, ',y

PT. = 1—‘mn.*

_ L |S||822 = S1zs2l|2 - |Sll|2 - |Szzl2 S |

zlsi‘.’l ]SZI|

K

Figure 55

A precaution must be mentioned here. The K factor
must not be considered alone. If we were operating
under matched conditions in order to achieve maxi-
mum gain, we have to ask ourselves: (1) What effect
would temperature changes or drifting S-parameters of
the transistor have on the stability of the amplifier?
(2) We would also have to be concerned with the effect
on stability as we substitute transistors into the cir-
cuit. (3) Would these changing conditions affect the
conjugate match or the stability of the amplifier? There-
fore, we really need to consider these other conditions
in addition to the K factor.

Looking at the input and output reflection coefficient
equations, we see a similarity of form (Fig. 56). The
only difference is that Si1; replaces Sg» and T, replaces
i

_El_ i SsiSilL

Fin iR a, == Sll e = Sggl“]__

_bs_ SaiS1ls

Fout =i a, = S‘).:! + 1 S“Fs
Figure 56

If we set this equation, | T"i,|, equal to one, a bound-
ary would be established. On one side of the boundary,
we would expect

E Tln | <1
On the other side, we would expect
| .I"‘in | >1

13

Let’s first find the boundary by solving this expres-
sion (Fig. 57). We insert the real and imaginary values
for the S-parameters and solve for T'r.

SuiSel'y | _

= Szer L

ITinl = [S1s +
Figure 57

The solutions for Ty, will lie on a circle. The radius
of the circle will be given by this expression as a func-
tion of S-parameters (Fig. 58a).

a
) radius =1, = F;S!‘:—’TSZW
TEeE * sk
b) center = C,, = (]SS_zIT&FT%

where: A = 5,,8., — 5.5,

Figure 58

The center of the circle will have this form (Fig. 58b).
Having measured the S-parameters of a two-port device
at one frequency, we can calculate these quantities.

If we now plot these values on a Smith Chart, we
can determine the 10cu|s of all values of T, that make
I‘ill. =1
This circle then represents the boundary (Fig. 59). The
area either inside or outside the circle will represent

a stable operating condition.

I, on stability circle yields
|Fin| =il i

+180°

Figure 59

To determine which area represents this stable oper-
ating condition, let'’s make Z; = 50 ohms, or I'n = 0.
This represents the point at the center of the Smith
Chart. Under these conditions,

|]—‘ini :]Sll|



Let’s now assume that S;; has been measured and
its magnitude is less than one. T';,’s magnitude is also
less than one. This means that this point, I', = 0, repre-
sents a stable operating condition. This region (Fig. 60)
then represents the stable operating condition for the
entire network.

I'. on stability circle yields
]rln| =1 o

-50”

Figure 60

If we select another value of I';, that falls inside the
stability circle, we would have an input reflection co-
efficient that would be greater than one and the network
would be potentially unstable.

If we only deal with passive loads, that is, loads
having a reflection coefficient less than or equal to one,
then we only have to stay away from those Ty's that
are in this region (Fig. 61) to ensure stable operation for
the amplifier we are designing. Chances are, we should
also stay away from impedances in the border region,
since the other factors like changing temperature, the
aging of the transistors, or the replacement of transis-
tors might cause the center or radius of the stability
circle to shift. The impedance of the load could then
fall in the expanded unstable region, and we would
again be in trouble.

Figure 61

If, on the other hand, | S;; | >1, with Z;, = 50 Q, then
this area would be the stable region and this region the
unstable area (Fig. 62).

Figure 62

To ensure that we have an unconditionally stable
rondition at a given frequency in our amplifier design,
we must be able to place any passive load on the net-
work and drive it with any source impedance without
moving into an unstable condition.

From a graphical point of view, we want to be sure
that the stability circle falls completely outside the
Smith Chart, and we want to make sure that the inside
of the stability circle represents the unstable region
(Fig. 63). The area outside the stability circle, includ-
ing the Smith Chart, would then represent the stable
operating regiomn.

Figure 63
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To satisfy this requirement, we must ensure that the
magnitude of the vector, C,, the distance from the
center of the Smith Chart to the center of the stability
circle, minus the radius of the stability circle, ry, is
greater than one. This means that the closest point on
the stability circle would be outside the unit radius
circle or Smith Chart.

To ensure that the region inside the Smith Chart
represents the stable operating condition, the input or
output impedance of the network must have a real part
greater than zero when the network is terminated in
50 ohms. For completeness, we must also add the out-
put stability circle to gain a better understanding of
this concept. This means that the magnitude of S;; and
Sss must be less than one.

One word of caution about stability.

S-parameters are typically measured at some par-
ticular frequency. The stability circles are drawn for
that frequency. We can be sure that the amplifier will
be stable at that frequency, but will it oscillate at some
other frequency either inside or outside the frequency
range of the amplifier?

Typically, we want to investigate stability over a
broad range of frequencies and construct stability cir-
cles wherever we might suspect a problem. Shown here
are the stability circles drawn for three different fre-
quencies (Fig. 64). To ensure stability between f, and
fs, we stay away from impedances in this (shaded) area.
While this process may sound tedious, we do have some
notion based on experience where something may get
us into trouble.

Figure 64

Stability is strongly dependent on the |S;s| |S2|
product (Fig. 65). | Sa1| is a generally decreasing func-
tion of frequency from fﬁ on.
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Figure 65

| S12 | is an increasing function.

Looking at the | Sy2| | S21| product, we see that it in-
creases below fp, flattens out, then decreases at higher
frequencies.

It is in this flat region that we must worry about
instability.

On the other hand, if we synthesize elements such
as inductors by using high impedance transmission
lines, we might have capacitance rather than inductance
at higher frequencies, as seen here on the Impedance
Phase plot (Fig. 66). If we suspect that this might cause
oscillation, we would investigate stability in the region
where the inductor is capacitive. Using tunnel diodes
having negative impedance all the way down to dc, we
would have to investigate stability right on down in
frequency to make sure that oscillations did not occur
outside the band in which we are working.

90°

Frequency

Phase

—90° -

Figure 66



Chapter 111

S-Parameter Measurements

The material presented in this program is a continua-
tion of Hewlett-Packard's video tape S-Parameter De-
sign Seminar.

S-Parameters

A. Their Importance

Microwave transistor technology is continually push-
ing maximum operating frequencies ever upward. As
a result, manufacturers of transistors are specifying
their transistors in terms of S-parameters. This affects
two groups of design engineers—the transistor circuit
designer must now switch his thinking from the well-
known H, Y, and Z-parameters in his circuit design to
the S or scattering parameters.

The microwave engineer, since transistor technology
is moving into his frequency domain, must now become
conversant with transistor terminclogy and begin to
think of applying transistors to the circuits he works
with.

In this tape we will:

1. Review the S-parameter concept.

2. Show the results of typical S-parameter measure-

ments of a 12 GHz transistor.

3. Demonstrate the network analyzer system used in

these measurements.

B. Review of S-Parameters

The function of network analysis is to completely
characterize or describe a network so we’ll know how
it will behave when stimulated by some signal. For a
two-port device, such as transistors, we can completely
describe or characterize it by establishing a set of equa-
tions that relate the voltages and currents at the two
ports (Fig. 67).

I, L,
+V 2-Port v i
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Figure 67
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In low frequency transistor work, one such set of
equations relates total voltages across the ports and
total current into or out of these ports in terms of H-
parameters. For example,

Vi

hu L [V.=0

These parameters are obtained under either open or
short circuit conditions.

At higher frequencies, especially in the microwave
domain, these operating conditions present a problem
since a short circuit looks like an inductor and an open
circuit has some leakage capacitance. Often, if the net-
work is an active device such as a transistor, it will
oscillate when terminated with a reactive load.

It is imperative that some new method for character-
izing these devices at high frequencies has to be used.

Z,

P
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Figure 68

If we embed our two-port device into a transmission
line, and terminate the transmission line in its char-
acteristic impedance, we can think of the stimulus
signal as a traveling wave incident on the device, and
the response signal as a wave reflecting from the device
or being transmitted through the device (Fig. 68). We
can then establish this new set of equations relating
these incident and ‘“scattered” waves (Fig. 69a): E;.
and Es, are the voltages reflected from the 1st and 2nd
ports, E;; and Es; are the voltages incident upon the
1st and 2nd ports. By dividing through by \/Z,, where
7. is the characteristic impedance of the transmission
line, we can alter these equations to a more recogniz-
able form (Fig. 69b). Where, for example, | b; |* = Power
reflected from the 1st port and | a; |* = Power incident
on the 1st port.

Ei. =5,E; + Sp.Ey
Eor = S Ey + Su.Ey

b, = Sy;a; + Spa,
b, = S,,a, + Sy,

Ex Eyi
where by=—2L and ay=-—"%2
Zy \/z_‘,

Figure 69




S:: is then equal to by/a; with a» = 0 or no incident
wave on port 2. This is accomplished by terminating
the output of the two-port in an impedance equal to Z,.

C. Summary
S1; = input reflection coefficient with the output
matched.

Ss; = forward transmission coefficient with the out-
put matched.
This is the gain or attenuation of the network.

S22 = output reflection coefficient with the input

matched.

S;2 = reverse transmission coefficient with the input

matched.

To the question “Why are S-parameters important?”

you can now give several answers:

1. S-parameters are determined with resistive termi-
nations. This obviates the difficulties involved in
obtaining the broadband open and short circuit
conditions required for the H, Y, and Z-parameters.

2. Parasitic oscillations in active devices are mini-
mized when these devices are terminated in re-
sistive loads.

3. Equipment is available for determining S-param-
eters since only incident and reflected voltages
need to be measured.

Characterization of Microwave Transistors

Now that we've briefly reviewed S-parameter theory,
let's look at some typical transistor parameters. There
are three terms often used by transistor circuit de-
signers (Fig. 70):

1. f, or the frequency at which the short circuit cur-

rent gain is equal to one;

2. f, or the frequency where | Sz1| = 1 or the power

gain of the device, | Ss |%, expressed in dB is zero;

3. fmax or the frequency where the maximum avail-

able power gain, Gum.x of the device is equal to
one. Fua. is also referred to as the maximum fre-
quency of oscillation.

Gain dB

L=D I - e <]

feo & Tmax
1 2 3 4 5678910

Frequency

Figure 70
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To determine f. of a transistor connected in a com-
mon emitter configuration, we drive the base with a 50-
ohm voltage source and terminate the collector in the
50-ohm characteristic impedance. This results in a gain
versus frequency plot that decays at about 6 dB per
octave at higher frequencies.

Due to the problems involved in obtaining true short
circuits at high frequencies, the short circuit current
gain | hy.| cannot be measured directly, but can be de-
rived from measured S-parameter data. The shape of
this gain versus frequency curve is similar to that of
| S21 [? and, for this example, f. is slightly less than f..

Fmax is determined after conjugately matching the
voltage source to the transistor input, and the transistor
output to the characteristic impedance of the line. The
resulting gain is the maximum available power gain as
a function of frequency. It is higher than | Ss; |* because
of impedance matching at the input and output. With
proper impedance matching techniques, the transistor
is usable above f; in actual circuit design.

S-Parameters of Transistors
A. Introduction

Let's now shift our attention to the actual S-param-
eters of a transistor. We’ll look at transistors in chip
form and after the chips have been packaged. The ad-
vantage of characterizing the chip is that you will get a
better qualitative understanding of the transistor. How-
ever, fixtures to hold these chips are not readily avail-
able. Most engineers will be using packaged transistors
in their R&D work. There are fixtures available for char-
acterizing packaged transistors, and we will demon-
strate these later on (Fig. 71). The bias conditions used
when obtaining these transistors’ parameters connected
as common emitter; Vo, = 15 V and I, = 15 mA.

B. S;; of Common Emitter

The input reflection characteristic, Si1, of the chip
transistor seems to be following a constant resistance
circle on the Smith Chart (Fig. 72). At lower frequen-
cies, the capacitive reactance is clearly visible and, as
the frequency increases, this reactance decreases and
the resistance becomes more evident. A small induc-
tance is also evident which, for this example, resonates
with the capacitance at 10 GHz.



Figure 72

An equivalent circuit can be drawn that exhibits such
characteristics (Fig. 73). The resistance comes from the
bulk resistivities in the transistor’s base region plus
any contact resistance resulting from making connec-
tions to the device. The capacitance is due mainly to
the base-emitter junction. The inductance results from
the emitter resistance being referred back to the input
by a complex 8 at these high frequencies.

Sy —= C’

Input Equivalent Circuit (Chip)

Figure 73

If you characterize the same chip transistor after
packaging, the input reflection characteristic again
starts in the capacitive reactance region at lower fre-
quencies and then moves into the inductive reactance
region at higher frequencies (Fig. 72). Another equiva-
lent circuit explaining this characteristic can be drawn
(Fig. 74). Package inductance and capacitance contrib-
ute to the radial shift inward as well as to the exten-
sion of the Si; characteristic into the upper portion of
the Smith Chart.

S C

Input Equivalent Circuit (Package)

Figure 74

C. S.» of Common Emitter

The output reflection coefficient, Sa, is again in the
capacitive reactance portion of the Smith Chart (Fig.
75). If you overlay an admittance Smith Chart, you can
see that this characteristic roughly follows a constant
conductance circle. This type of characteristic repre-
sents a shunt RC type of equivalent circuit where the
angle spanned would be controlled by capacitive ele-
ments, and the radial distance from the center of the
Smith Chart would be a function of the real parts
(Fig. 76).
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The output reflection coefficient of the packaged
transistor is again shifted radially inward and the angle
spanned is extended. From an equivalent circuit stand-
point (Fig. 77), you can see that we have added the
package inductance and changed the capacitance. This
added inductance causes this parameter to shift away
from a constant conductance circle.
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D. S.; of Common Emitter

The forward transmission coefficient, Ss;, that we
have seen before when discussing f., exhibits a voltage
gain value slightly greater than 4 or 12 dB at 1 GHz
and crosses the unity gain circle between 4 and 5 GHz
(Fig. 78). The packaged transistor exhibits slightly less
gain and a unity gain crossover at around 4 GHz.

Figure 78

In an equivalent circuit, we could add a current
source as the element giving gain to the transistor (Fig.
79).
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E. S;: of Common Emitter

Since a transistor is not a unilateral device, the re-
verse transmission characteristic, S;2, will have some
finite value in chip form. On a polar plot, the S;2 char-
acteristic approximates a circular path (Fig. 80).

90°

Packaged

Figure 80
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If you were to plot |S;2| on a Bode Diagram, you
would see a gradual buildup at about 6 dB/octave at
low frequencies, a leveling off and then ultimately a
decay at the higher frequencies. Let's now superimpose
a Bode Plot of | S2; |. It is constant at frequencies below
fg and then decays at about 6 dB/octave. Therefore,
the product of these two characteristics would increase
up to fg, around 100 to 200 MHz, and remain relatively
flat until a break point at around the f; of the transistor
(Fig. 81).
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Figure 81

This |S12| |S 21| product is significant since it both
represents a figure of merit of the feedback or stability
term of the device and it also appears in the complete
equations for input and output reflection coefficients.
F. Combined Equivalent Circuit

If you were to now combine the equivalent circuits
drawn up to this point, you could arrive at a qualitative
model that describes the transistor’s operation (Fig. 82).

R b’

Figure 82

Measurement Demonstration

Now that you've seen some typical transistor char-
acteristics, let’s actually make several measurements to see
how simply and accurately you can make the measure-
ments that will provide you with the necessary data for
designing your circuits.

The S-parameter characteristics we have seen are
those of a Model 35821E Transistor. In these measure-
ments we will measure the transistor in a K-disc com-
mon emitter package.



The standard bias conditions are: V., = 15 volts
I. =15 mA

On the polar display with the Smith Chart overlay
inserted, the input impedance can be read off directly.
To ensure that we are in the linear region of the transis-
tor, we can measure S;; at two input power levels to
the transistor. If these readings do not change, we know
that we are driving the transistor at an optimum power
level and the S-parameters are truly the small signal
characteristics. If we now vary the collector current
bias level, we note very little difference (Fig. 90).

1. ¥y =167, =55,
2. Vn:b . 15 V; Ic = 5ma.
3‘\Vcb =5V; Il, = 15ma.

a0
Frequency Range: 1 to 10 GHz

Figure 90

Returning the current level to the original value, we
now decrease V., and note a shift of the original char-
acteristic. Decreasing V., causes the epitaxial layer to
be less depleted so you would expect less capacitive
reactance in the input equivalent circuit.

1. V,,=15V; I, = 15,,.
2. Vpu=15V: I, =5,
3. Vcb = 5V, Ic . 15ma.
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Figure 91

Now you can measure the output reflection coefficient
(Fig. 91). Let’s now reduce the collector current and note
the effect on this characteristic. The radial shift outward
indicates an increase in the real part of the output
impedance. This shift is due to the real part being inversely
proportional to the g, of the transistor, while the collec-
tor current is directly proportional to g, (Fig. 92).
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Let's now return I. to 15 mA and decrease V., You
note a radial shift inward. This shift is again related to
the depletion of the epitaxial layer.

Let’s now turn our attention to the gain of the transistor
and depress S,, with the bias conditions back at their origi-
nal values. The forward gain of the device, S,,, is now visi-
ble. This characteristic is also affected by varying the bias
conditions (Fig. 93).

Increasing
Frequencies
(step = 1GHz)

1. V=15 V; L. = 154,
2. Vo, =6V; I, = 15,
3. Vcl:t =15 V, Ic = 5ma

FLl)

Frequency Range: 1 to 10 GHz

Figure 93

Let's look now at the reverse transmission character-
istic, S1s. This value is much smaller than the forward
gain, so we will have to introduce more test channel
gain into the system to enable us to have a reasonable
display. This characteristic is relatively invariant to
bias changes.

One characteristic that often appears on transistor
data sheets is the relation of power gain | Sa; |2 versus
collector current at one frequency. This characteristic
curve was determined at 1 GHz (Fig. 94).
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Gain

1GHz

Figure 94

At low current levels, there is a gradual increase, then
the power gain characteristic flattens out and decreases
at higher current levels. The base-collector transit time
determines the flat plateau. The high current roll-off is
due to two effects: (1) thermal effects on the transistor;
(2) if we try to pump more current into the device than
it can handle, the base of the transistor stretches elec-
trically. Since the electrons move across the base-
collector junction at a finite rate, the current density
increases as we try to pump more current in, until, at
the limit, the base has stretched to the width of the
epitaxial layer and this will account for the gain going
toward zero.
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Summary

This tape has presented an overview of S-parameter
theory and has related this theory to actual transistor
characterization.

The remaining tapes in this S-Parameter Design Semi-
nar are devoted to high frequency circuit design tech-
niques using S-parameters. Constant gain and noise
figure circles will be discussed and then used in design-
ing unilateral narrow and broadband amplifiers.

This amplifier (Fig. 95), for example, was designed
with S-parameter data, and operates from 100 MHz to
2 GHz with a typical gain of 40 dB and flat to within
3 dB across the band. A similar amplifier will be de-
signed in the next tape.
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Figure 95

The use of these design techniques and measurement
equipment will also prove valuable to you in your de-
vice development.



Chapter 1V
High Frequency Amplifier Design

Introduction

In this tape, the practical application of S-parameters
will be discussed. They will specifically be applied to
unilateral amplifier design. This tape is a continuation
of the Hewlett-Packard Microwave Division's S-Param-
eter Design Seminar., We will discuss: Transducer
Power Gain, Constant Gain and Constant Noise Figure
Circles, and then use these concepts with S-parameter
data in the design of amplifiers for the case where the
transistor can be assumed to be unilateral, or S;» = 0.

S-Parameter Review

Before introducing these concepts, let’s briefly re-
view S-parameters.

Z;

2-Port
Network
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If: Zl, — Z", a, = 0
Figure 96

Gen.

As opposed to the more conventional parameter sets
which relate total voltages and total currents at the net-
work ports, S-parameters relate traveling waves (Fig.
96). The incident waves, a; and as, are the independent
variables and the reflected waves, b; and bs, are the
dependent variables. The network is assumed to be
embedded in a transmission line system of known char-
acteristic impedance which shall be designated Z,. The
S-parameters are then measured with Z, terminations
on each of the ports of the network. Under these con-
ditions, Sy; and Sas, the input and output reflection co-
efficients, and S»; and S;», the forward and reverse
transmission coefficients, can be measured (Fig. 97).
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Transducer Power Gain

In the design of amplifiers, we are most interested
in the transducer power gain. An expression can be
derived for transducer power gain if we first redraw
the two-port network using flow graph techniques (Fig.
98).

The transducer power gain is defined as the power
delivered to the load divided by the power available
from the source. The ratio of bs to bs can be found by
applying the non-touching loop rule for flow graphs
resulting in this expression for transducer power gain
(Fig. 99).
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If we now assume the network to be unilateral, that
is, S12 is equal to zero, this term (S2:S:2T'LTs) drops
out and the resulting expression can be separated into
three distinct parts. This expression will be referred
to as the unilateral transducer power gain (Fig. 100).

(=  a-np
|1 = Snlﬂs‘.l2 |1 = Szer|2

Gr = |S21|2

Figure 100

The first term is related to the tranmsistor or other
active device being used. Once the device and its bias
conditions are established, Ss; is determined and re-
mains invariant throughout the design.

The other two térms, however, are not only related to
the remaining S-parameters of the two-port device, S
and Sgs, but also to the source and load reflection co-
efficients. It is these latter two quantities which we
will be able to control in the design of the amplifier.
We will employ lossless impedance transforming net-
works at the input and output ports of the network.
We can then think of the unilateral transducer power
gain as being made up of three distinct and independent
gain terms and the amplifier as three distinct gain
blocks (Fig. 101).
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The G, term affects the degree of mismatch between
the characteristic impedance of the source and the in-
put reflection coefficient of the two-port device. Even
though the G block is made up of passive components,
it can have a gain contribution greater than unity. This
is true because an intrinsic mismatch loss exists be-
tween Z, and Sy; and the impedance transforming ele-
ments can be employed to improve this match, thus de-
creasing the mismatch loss, and can, therefore, be
thought of as providing gain.

The G, term is, as we said before, related to the de-
vice and its bias conditions and is simply equal to
Sa1 2

The third term in the expression, Gy, serves the same
function as the G, term, but affects the matching at
the output rather than the input.

Maximum unilateral transducer gain can be accom-
plished by choosing impedance matching networks such
that T, = S;;* and T';, = Sa2* (Fig. 102).
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Figure 102

Constant Gain Circles

Let’s look at the G term now in a little more detail.
We have just seen that for I's = 55,%, G. is equal to a
maximum. It is also clear that for |T.| = 1, G has a
value of zero. For any arbitrary value of G. between
these extremes of zero and G, max, solutions for T,
lie on a circle (Fig. 103).
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Figure 103

It is convenient to plot these circles on a Smith Chart.
The circles have their centers located on the vector
drawn from the center of the Smith Chart to the point
Sn* [Flg 104]

These circles are interpreted as follows:

Any T. along a 2 dB circle would result in a
G, = 2dB.

Any T, along the 0 dB circle would result in a
G; = 0dB, and so on.

For points in this region (within the 0 dB circle), the
impedance transforming network is such as to improve
the input impedance match and for points in this region
(area outside the 0 dB circle), the device is further mis-
matched. These circles are called constant gain circles.

Since the expression for the output gain term, G,
has the same form as that of G, a similar set of con-
stant gain circles can be drawn for this term. These
circles can be located precisely on the Smith Chart by
applying these formulas (Fig. 105):
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1. d; being the distance from the center of the Smith
Chart to the center of the constant gain circle
along the vector S;;*

2. R; is the radius of the circle and

3. g; is the normalized gain value for the gain circle
G;.

Constant Noise-Figure Circuits
Another important aspect of amplifier design is noise
figure, which is defined as the ratio of the S/N ratio at
S/Nin
S/N out

In general, the noise figure for a linear two-port has
this form (Fig. 106a), where r, is the equivalent input
noise resistance of the two-port. G; and b represent
the real and imaginary parts of the source admittance,
and g, and b, represent the real and imaginary parts of
that source admittance which results in the minimum
noise figure, Fpin.

If we now express Y. and Y, in terms of reflection
coefficients and substitute these equations in the noise
figure expression, we see once again that the resulting
equation has the form of a circle (Fig. 106B). For a
given noise figure, F, the solutions for Iy will lie on a
circle. The equations for these circles can be found
given the parameters ', Fiin, and r,. Unless accurately
specified on the data sheet for the device being used,
these quantities must be found experimentally.

Generally, the source reflection coefficient would be
varied by means of a slide screw tuner or stub tuners
to obtain a minimum noise figure as read on a noise
figure meter, Fp,;, can then be read off the meter and the

the input to the S/N ratio at the output. NF =




source reflection coefficient can be determined on a net-
work analyzer,

a) 7,
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The equivalent noise resistance, r,, can be found
by making one additional noise figure reading with a
known source reflection coefficient. If a 50-chm source
were used, for example, I's = 0 and this expression
could be used to calculate r, (Fig. 107).

For I, =0
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To determine a family of noise figure circles, let's
first define a noise figure parameter, N;:

Fi L Fmin

4r, Lot
Here, F; is the value of the desired noise figure circle
and Ty, Fuin, and r, are as previously defined. With a
value for N; determined, the center and radius of the
circle can be found by these expressions (Fig. 108).
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From these equations, we see that N; = 0 where F;

= Fuin, and the center of the Fui. circle with zero
radius is located at I, on the Smith Chart. The centers
of the other noise figure circles lie along the T, vector.

This plot then gives the noise figure for a particular
device for any arbitrary source impedance at a par-
ticular frequency (Fig. 109). For example, given a source
impedance of 40 + j 50 ohms, the noise figure would be
5 dB. Likewise, a source of 50 ochms would result in
a noise figure of approximately 3.5 dB.
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Figure 109

Constant gain circles can now be overlaid on these
noise figure circles (Fig. 110). The resulting plot clearly
indicates the tradeoffs between gain and noise figure
that have to be made in the design of low noise stages.
In general, maximum gain and minimum noise figure
cannot be obtained simultaneously. In this example, de-
signing for maximum gain results in a noise figure of
about 6 dB, while designing for minimum noise figure
results in approximately 2 dB less than maximum gain.

Circles of
Constant Gain

Figure 110

The relative importance of the two design objectives,
gain and noise figure, will dictate the compromise that
must be made in the design.

It is also important to remember that the contribu-
tions of the second stage to the overall amplifier noise
figure can be significant, especially if the first stage gain
is low (Fig. 111). It is, therefore, not always wise to
minimize first stage noise figure if the cost in gain is
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O Stage Stage
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too great. Very often there is a better compromise be-
tween first stage gain and noise figure which results in
a lower overall amplifier noise figure.

Design Examples

With the concepts of constant gain and constant
noise figure circles well in hand, let's now embark on
some actual design examples.

Shown here is a typical single stage amplifier with
the device enmeshed between the input and output
matching networks (Fig. 112). The device we will be
using for the design examples is a HP-21, 12 GHz
transistor.
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To illustrate the various considerations in the design
of unilateral amplifier stages, let's select three design
examples (Fig. 115). In the first example, we want to
design an amplifier stage at 1 GHz having a gain equal
t0 Gumax, which in this case is 18.3 dB. No consideration
will be given in this design to noise figure. In the sec-
ond example, we will aim for minimum noise figure
with a gain of 16 dB. The third example will be the
design of an amplifier covering the frequency band from
1 to 2 GHz with a minimum gain of 10 dB and a noise

The forward gain characteristic, Ss1, of this particular
transistor was measured in the previous video tape of
this seminar, and we noted that | Se; |* is a decreasing
function with frequency having a slope of approxi-
mately 6 dB per octave. Gumax, which is the maximum
unilateral transducer gain, is essentially parallel to the
forward gain curve (Fig. 113). This is not necessarily true
in general, but in this case, as we can see on this Smith
Chart plot, the magnitudes of S;; and Ss» for this device
are essentially constant over the frequency band in
question (Fig. 114). Thus, the maximum values of the
input and output matching terms are also relatively
constant over this frequency range.

figure less than 4.5 dB.

21
[y
™S~
18 7
q \‘ 1 Gy max
15 )

21
™~
= \
15
N
m 19 \ Gu max
1
1; \ |Sz1|3 \
= g \ \
&) T
e
6 \
3 ~
0.5 GHz 1GHz 1.5 GHz 2 GHz 3 GHz
Frequency
Figure 113

/M 12 &
lg=1
= = e
5 9 r”’ \ ‘\3 \
1>} T
~
6 \
3 I~
0.5 GHz 1 GHz 1.5 GHz 2 GHz 3 GHz
Frequency
Figure 115

In these examples, we will assume a source imped-
ance and a load impedance of 50 ohms. In general, how-
ever, the source impedance could be complex such as
the output impedance of the previous stage. Likewise,
the output load is quite often the input impedance of
a following stage.

A. Design for G, .x

Now in this first example since we will be designing
for Gumax at 1 GHz, the input matching network will be
designed to conjugate match the input impedance of
the transistor. This will provide a net gain contribution
of 3 dB (Fig. 116).
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Figure 116

The output matching network will be used to con-
jugately match the 50-ohm load impedance to the output
impedance of the transistor. From the measured data
for Sa» at 1 GHz, we find that this matching network
will provide a gain contribution of 1.3 dB at the output.

Since the gain of the transistor at 1 GHz with 50-ohm
source and load termination is 14 dB, the overall gain
of this single stage amplifier will be 18.3 dB. The match-
ing elements used can be any routine element—this
includes inductors, capacitors, and transmission lines.

In general, to transform one impedance to any other
impedance at one frequency requires two variable ele-
ments. A transmission line does, by itself, comprise two
variables in that both its impedance and its length can
be varied. In our example, however, we will use only
inductors and capacitors for the matching elements.

The next step in the design process is to plot, on a
Smith Chart, the input and output constant gain circles.
If noise figure was a design consideration, it would be
necessary to plot the noise figure circles as well. In
most cases, it is not necessary to plot an entire family
of constant gain circles. For this example, only the two
circles representing maximum gain are needed. These
circles have zero radius and are located at S;;* and Sg.*
(Fig. 117).

Figure 117
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To facilitate the design of the matching networks,
let's first overlay another Smith Chart on the one we
now have. This added Smith Chart is oriented at 180°
angle with respect to the original chart. The original
chart can then be used to read impedances and the
overlaid chart to read admittances.

To determine the matching network for the output,
we start from our load impedance of 50 ohms at the
center of the chart and proceed along a constant resist-
ance circle until we arrive at the constant conductance
circle which intersects the point representing Sg..* This
represents a negative reactance of 75 ohms. Hence, the
first element is a series capacitor.

We now add an inductive susceptance along the con-
stant conductance circle so that the impedance looking
into the matching network will be equal to Saz.*

The same procedure can now be applied at the input,
resulting in a shunt capacitor and a series inductor
(Fig. 118).
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There are, of course, other networks which would
accomplish the purpose of maiching the device to the
50-ohm load and source. We could, for example, have
added an inductive reactance and then a shunt capaci-
tor for the output matching.

The choice of which matching network to use is gen-
erally a practical one. Notice, in this example, the first
choice we made provides us with a convenient means
of biasing the transistor without adding additional para-
sitics to the network other than the bypass capacitor.
Another consideration might be the realizability of the
elements. One configuration might give element values
that are more realizable than the other.

Along these same lines, if the element values ob-
tained in this process are too large, smaller values can
generally be obtained by adding more circuit elements.
But, as you can see, at the cost of added complexity.

In any case, our design example is essentially com-
plete with the final circuit looking like this.

So far we have not considered noise figure in this
design example. By plotting the noise figure circles for
the device being used, we can readily determine the
noise figure of the final circuit, which in this case is
approximately 6 dB (Fig. 119).



Figure 119

B. Design for Minimum Noise Figure

Let’s now proceed with the second design example
in which low noise figure is the design objective. This
single stage amplifier will be designed to have minimum
noise figure and 16 dB gain at 1 GHz (Fig. 120).
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matching for minimum noise figure is accomplished

|
I

Ve I I 7=
| |
L= I I
5042 | |
L L

G, I e | e
[0 o Bl ol L ] Lo i g ol e ]
Figure 120

To accomplish the design, we first determine the in-
put matching necessary to achieve minimum noise fig-
ure. Then using the constant gain circles, G;, the gain
contribution at the input can be determined. Knowing
the gain of the device at 1 GHz, the desired value of G,
the gain contribution of the output matching network,
can then be found. The appropriate output matching
network can be determined by using the constant gain
circles for the output.

In this example a shunt capacitor and series inductor
can be used to achieve the desired impedance for mini-
mum noise figure. Referring once again to the Smith
Chart and the mapping techniques used previously, we
follow the constant conductance circle from the center
of the Smith Chart and then proceed along a constant
resistance circle (Fig. 121). Sometimes this requires sev-
eral trials until the exact constant resistance circle that
intersects the minimum noise figure point is found.
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Figure 121

Since we now know that the minimum noise figure
circle on the Smith Chart represents a specific source
reflection coefficient, we can insert this value of T, into
the formula for G; to determine the value of the input
constant gain circle passing through this point. In this
case, it is the 1.22 dB gain circle. This is 1.8 dB less than
the maximum gain attainable by matching the input.

We can now calculate the output gain circle as fol-
lows. The desired gain is 16 dB. The gain due to the
input matching networks is 1.22 dB and the forward
gain of the device with 50-ohm source and load termi-
nations is 14 dB. The gain desired from the matching
network at the output is, therefore, 0.78 dB.

The output matching can again be accomplished by
using a series capacitor with a shunt inductor. Notice
that for the output matching there are an infinite num-
ber of points which would result in a gain of 0.78 dB.
Essentially, any point on the 0.78 dB circle would give
us the desired amount of gain.

There is, however, a unique feature about the com-
bination of matching elements just selected. The value
of capacitance was chosen such that this point fell on
the constant conductance circle which passes through
the maximum gain circle represented by S20* (Fig. 122).
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This combination of elements would assure an output
gain-frequency response that would be symmetric with
frequency.

If, for example, the frequency were increased slightly,
the capacitive reactance and the inductive susceptance
would both decrease and the resulting impedance would
be at this point.

Similarly, decreasing the frequency would result in
this impedance. Both of these points fall on a constant
gain circle of larger radius and, hence, lower gain (Fig.
123).
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Figure 123

The gain response for the output matching, therefore,
is more or less symmetric around the center frequency
(Fig. 124).
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If we look at the input side, however, we have a far
different situation. With an increase in frequency, both
the capacitive susceptance and inductive reactance in-
crease, resulting in an increase in gain. When the fre-
quency is reduced, these quantities decrease, resulting
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in a lower value of gain. The gain contribution at
the input is, therefore, unsymmetric with respect to
frequency.

Since the overall gain as a function of frequency is
the combination of the G;, G,, and Gs terms, the result-
ing gain would be reasonably symmetric about the cen-
ter frequency. (If another point on the 0.78 dB gain
circle at the output were chosen, the final overall gain
characteristic would be asymmetric with frequency.)

The important point is that the selection of the match-
ing elements for the output, in this case, is not as arbi-
trary as it first appears. The final selection must be
based not only on the gain at a specific frequency but
also on the desired frequency response. The element
values can now be calculated resulting in the circuit
shown (Fig. 125).
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From a practical standpoint, one would not achieve
the noise figure design objective for a number of rea-
sons. For one thing, the circuit elements used for
matching purposes would have a certain loss associated
with them. This resistive loss would add directly to the
noise figure. To keep this loss to a minimum, it is
desirable to use high-Q circuit elements and to use the
minimum number of elements necessary to obtain the
desired source impedance. Second, there will be some
contribution to the overall noise figure from the second
stage. Third, additional degradation in noise figure
would occur because of device and element variations
from unit to unit.

In practice, typically %2 to 1 dB would be added from
these sources to the predicted theoretical noise figure
for a narrow band design. As much as 2 dB could be
added in the case of an octave band design such as in
our next example.

C. Broadband Design for Specific Gain and Noise Figure

Here, the design objective will be 10 dB unilateral
transducer gain from 1 to 2 GHz with a noise figure less
than 4.5 dB (Fig. 126).

In this example, the input and output matching net-
works will be designed to have a gain of 10 dB at the
band edges only. The gain at 1.5 GHz will then be cal-
culated. The response will be found to look similar to
this curve. If a greater degree of flatness were neces-
sary, additional matching elements would have to be
added. We could then design for 10 dB gain at three
different frequencies, or more if necessary. Three fre-
quencies would generally be the practical limit to
the graphical design approach we have been using.
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Figure 126

When matching is required at more than three fre-
quencies, computer-aided design techniques are gen-
erally employed.

The schematic again looks similar to that which we
had in the previous two examples (Fig. 127).

Figure 127

The design approach is to:

1. Match the input for the best compromise between
low and high frequency noise figure. In this case,
it is important to keep the number of matching
elements to a minimum for the reasons cited
earlier. It might be possible to get an additional
0.2 dB improvement in noise figure with one addi-
tional element, but the extra element might, in
turn, add an additional insertion loss at 0.2 dB or
more.

2. The next step is to determine the gain contribution
at the input as a result of the noise figure match-
ing. This then allows us to calculate the desired
gain at the output from the design objective.

3. The output matching elements are then selected,
completing the design.

Let’s first plot S41* for 1 and 2 GHz and then plot the

points resulting in minimum noise figure for these fre-
quencies (Fig. 128).

' For the particular transistor measured. We want to empha-
size that the methodology followed in these design exam-
ples is more important than the specific numbers.
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Figure 128

To match the input for minimum noise figure we must
first choose a combination of elements which gives the
best compromise at the two design frequencies. On the
plot we see that a shunt capacitor followed by a series
inductor will provide a source impedance such that the
noise figure will be less than 3.5 dB at 1 GHz and less
than 4.5 dB at 2 GHz! (Fig. 129). At both frequencies we
are about as close as is practical to the theoretical mini-
mum noise figure for the device.

180° |-

1.5 dB (2 GHz)
3.5 dB (2 GHz)

Figure 129

The constant gain circles, which intersect the points
established by the input matching network, are calcu-
lated and found to have the values 0.3 dB at 1 GHz and
1.5 dB at 2 GHz.

The desired gain due to output matching can now be
calculated and found to be —4.3 dB at 1 GHz and +0.5
dB at 2 GHz (Fig. 130).



AT 1 GHz
Gnu=G,+G,+G,=10dB
3+14+G,=10dB
G,=-43dB

AT 2 GH,
Gn=G,+G,+G,=10dB
1.5+8+ G,=10dB
G,=+5dB

Figure 130

The constant gain circles having these gain values
are then plotted as shown (Fig. 131). A trial-and-error
process is followed to find the proper matching ele-
ments to provide the required output match at the two
frequencies. Let's start from the 50-ohm point on the
Smith Chart and add an arbitrary negative series react-
ance and the appropriate negative shunt susceptance to
land on the 0.5 dB gain circle at 2 GHz. We then deter-
mine where these matching elements will bring us at
1 GHz and, in this case, we fall short of reaching the
proper gain circle (Fig. 132). By increasing the capaci-
tive reactance we find a combination that lands on both
circles and the design is complete (Fig. 133).
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Figure 133

So far, by our design procedure we have forced the
gain to be 10 dB at 1 and 2 GHz. The question naturally
arises, what happens between these two frequencies?
From the matching element values already determined,
we can calculate the matching network impedances at
1.5 GHz and then determine the constant gain circles
which intersect those points.

For this case, we find that the output gain circle has
a value of —0.25 dB and the input gain circle, a value
of +1 dB. The gain of the device at 1.5 GHz is 10.5 dB.
Hence the overall gain of the amplifier at 1.5 GHz is
11.25 dB.

In summary form, the contribution of the three ampli-
fier gain blocks at the three frequencies can be seen
(Fig. 134). If the resulting gain characteristic was not
sufficiently flat, we would add an additional matching
element at the output and select values for this added
element such that we landed on the original gain circles
for 1 and 2 GHg, but on the —1.5 dB rather than —0.25
dB circle at 1.5 GHz. This would give us a gain for the
amplifier of 10 dB at 1, 1.5, and 2 GHz with some ripple
in between.

AT 1.0 GHz
G+G+G.,=.3+14—-43=10dB
AT 1.5 GHz
G, +G,+G,=1.0+105—.25=11.25dB
AT 2.0 GHz

G +G,+G,=15+80+.5=10dB
Figure 134
If, however, we were satisfied with the first gain-

frequency characteristic, our final schematic would look
like this (Fig. 135).
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Figure 135

D. Multistage Design

While the examples we have just completed are
single stage amplifiers, the techniques presented are
equally applicable to multistage amplifier design. The
difference in a multistage design is that the source and
load impedances for a given stage of the amplifier are,
in general, not 50 ohms but are rather an arbitrary
complex impedance. In certain cases, this impedance
might even have a negative real part.

Multistage design can be handled by simply shifting
the reference impedance to the appropriate point on
the Smith Chart. This is illustrated in the following
example.

Let's now concentrate on the matching network de-
sign between two identical stages (Fig. 136). For the
first stage, as we have seen, there is a gain of 1.3 dB
attainable by matching the output to 50 ohms. Similarly,
there is a gain of 3 dB attainable by matching 50 chms
to the input of the second stage. We can then think of
a gain of 4.3 dB being attainable by matching the output
impedance of the first stage to the input impedance of
the second stage.

O o O ()
1st 2nd
Stage Stage
O O (e Q
Gll G"l GQI G'|2 Gn:! G22
30dB 14dB 13dB 30dB 14dB 13dB
e e—
30dB 14dB 4.3 dB 14dB 1.3dB
Figure 136

The constant gain circles for the first stage output
would then be plotted on the Smith Chart (Fig. 137).
The maximum gain is now 4.3 dB. The gain circle that
intersects the point represented by the second stage's
S;1 has a value of 0 dB.
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Figure 137

To design for a specific interstage gain, we could, as
before, add a series capacitor followed by a shunt in-
ductor—except in this case we start from the input
impedance of the second stage, Sii, rather than the
50-ohm point.

The resulting interstage matching network looks like
this. As you can see, the design of multistage amplifiers
is as easily handled as single stage designs (Fig. 138).
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Figure 138

Summary

The measurement and design techniques demon-
strated in this video-tape seminar are presently being
used by engineers in advanced R&D labs throughout the
world. When coupled with design and optimization
computer programs, engineers will have at their dis-
posal the most powerful and rapid design tools
available.



HP RF and Microwave Network Analyzers

Hewlett-Packard offers a broad range of network analyzers
for characterizing devices and components in the RF and
microwave frequency range. The table below summarizes
the features and capabilities for each of the network
analyzers in the product line. For more information on any
of the products listed, contact your local HP sales

representative.

Network Analyzer Product Line Summary

8752A
Network Analyzer

300 kHz-1.3/3.0 GHz

Integrated synthesized source,
test set and receiver

Transfer functions—magnitude/phase, insertion loss/gain,
attenuation, gain compression, s-parameters, electrical length,
group delay, deviation from linear phase. Impedance-
magnitude/phase, retumn loss, r-+jx accuracy enhancement time
domain capability HP-IB programmable

8753B Network
Analyzer

300 kHz-3 GHz/6 GHz

Integrated Synthesized Source

Transfer functions—magnitude/phase insertion loss/gain, attenuation,
gain compression, s-parameters, electrical length, group delay,
deviation from linear phase.

Impedance—magnitude/phase—Return Loss, r+jx

Full Accuracy Enhancement

Time Domain Capability

Harmonic Measurement Capability

HP-IB programmable

8719A/8720B Network
Analyzers

130 MHz-13.5 GHz
(8719A)

130 MHz-20 GHz
(87208)

Integrated Synthesized Source
(1 Hz Resolution Optional)

Transfer functions—magnitude/phase insertion loss/gain, attenuation,
s-parameters, electrical length, group delay, deviation from linear
phase.

Impedance—magnitude/phase—Return Loss, r-+jx

Full Accuracy Enhancement

Time Domain Capability

HP-IB programmable

8510 Series Network
Analyzer

45 MHz to 110 GHz

HP 8350 Series
Sweep Oscillators
HP 8340B, 8341B

Synthesized Sweepers
HP 8360
Synthesized Sweepers

Transmission/Reflection Characteristics
S-parameters

Active device characterization

Full Accuracy Enhancement

Time Domain Capability

HP-IB programmable

HP 8510°

Vector Network Analyzer

HP 8753C
RF Vector Network Analyzer
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HP 8720B
Economy MW Vector Network Analyzer

HP 8752A
RF Economy Vector Network Analyzer
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