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CHAPTER 1
INTRODUCTION

THE BASIC PULSE SPECTRUM

The spectrum analyzer was originally designed to look at the output of radar
transmitters. A pulse radar signal is a train of RF pulses with a constant repetition
rate, constant pulse width and shape, and constant amplitude. By looking at the
characteristic spectra, all important properties of the pulsed signal such as pulse
width, occupied bandwidth, duty cycle, peak and average power, etec., can be mea-
sured easily and with high accuracy. Perhaps an even more important application of
the spectrum analyzer is the detection.of transmitter misfiring and frequency pulling
effects. This application note is intended as an aid for the operation of the spectrum
analyzer and the interpretation of the displayed pulse spectra.

The formation of a square wave from a fundamental sine wave and its odd har-
monics is a good way to start an explanation of the spectral display for nonsinusoidal
waveforms. You will recall perhaps at one time plotting a sine wave and its odd
harmonics on a sheet of graph paper, then adding up all the instantaneous values. If
there were enough harmonics plotted at their correct amplitudes and phases, the
resultant waveform began to approach a square wave. The fundamental frequency
determined the square wave rate, and the amplitudes of the harmonics varied in-
versely to their number.

A rectangular pulse is merely an extension of this principle, and by changing
the relative amplitudes and phases of harmonics, both odd and even, we can plot
an infinite number of waveshapes. The spectrum analyzer effectively “unplots”
waveforms and presents the fundamental and each harmonic contained in the wave-
form.

Consider a perfect rectangular pulse train as shown in Figure la, perfect in the
respect that rise time is zero and there is no overshoot or other aberrations. This
pulse is shown in the time domain and we wish to examine its spectrum so it must
be broken down into its individual frequency components. Figure 1b superimposes
the fundamental and its second harmonic plus a constant voltage to show how the
pulse begins to take shape as more harmonics are plotted. If an infinite number of
harmonics were plotted, the resulting pulse would be perfectly rectangular. A spectral
plot of this would be as shown in Figure 2.
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Figure 1a. Periodic rectangular pulse Figure 1b. Addition of a fundamental
train. cosine wave and its harmonics to form

rectangular pulses.



The envelope of this plot follows a function of the basic form: y = sin x
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Figure 2. Spectrum of a perfectly rectangular pulse. Amplitudes and phases of an infinite
number of harmonics are plotted, resulting in smooth envelope as shown.

There is one major point that must be made clear before going into the analyzer
display further. We have been talking about a square wave and a pulse without any
relation to a carrier or modulation. With this background we now apply the pulse
waveform as amplitude modulation to an RF carrier. This produces sums and dif-
ferences of the carrier and all of the harmonic components contained in the modu-
lating pulse.

We know from single tone AM how the sidebands are produced above and below
the carrier frequency. The idea is the same for a pulse, except that the pulse is made
up of many tones, thereby producing multiple sidebands which are commonly re-
ferred to as spectral lines on the analyzer display. In fact, there will be twice as many
sidebands or spectral lines as there are harmonics contained in the modulating pulse.

Figure 3 shows the spectral plot resulting from rectangular amplitude pulse
modulation of a carrier. The individual lines represent the modulation product of the
carrier and the modulating pulse repetition frequency with its harmonics. Thus, the
lines will be spaced in frequency by whatever the pulse repetition frequency might
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Figure 3. Resultant spectrum of a carrier amplitude modulated with a rectangular pulse.
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happen to be. The spectral line frequencies may be expressed as:
F,.=F.*= n-PRF

where F.= carrier frequency

PRF = pulse repetition frequency

n=101,2,3; .. ..

The “mainlobe” in the center and the “sidelobes” are shown as groups of spectral
lines extending above and below the baseline. For perfectly rectangular pulses and
other functions whose derivatives are discontinuous at some point, the number of
sidelobes is infinite.

The mainlobe contains the carrier frequency represented by the longest spectral
line in the center. Amplitude of the spectral lines forming the lobes varies as a func-

3 T
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tion of frequency according to the expression for a perfectly rectangular pulse.

T
“2
Thus, for a given carrier frequency the points where these lines go through zero
amplitude are determined by the modulating pulse width only. As pulse width be-
comes shorter, minima of the envelope become further removed in frequency from the
carrier, and the lobes become wider. The sidelobe widths in frequency are related to
the modulating pulse width by the expression f= 1/r. Since the mainlobe contains
the origin of the spectrum (the carrier frequency), the upper and lower sidebands
extending from this point form a main lobe 2/7 wide. Remember, however, that the
total number of sidelobes remains constant so long as the pulse quality, or shape, is un-

changed and only its repetition rate is varied. Figure 4 compares the spectral plots
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Figure 4b. Wider pulse than 4a causes
narrower lobes, but line density remains
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Figure 4a. Narrow pulse width causes
wide spectrum lobes, high PRF results

in low spectral line density.
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Figure 4c. PRF lower than 4a results in
higher spectral density. Lobe width is
same as 4a since pulse widths are identi-
cal.

constant since PRF is unchanged.
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Figure 4d. Spectral density and PRF
unchanged from 4c, but lobe widths are
reduced by wider pulse.




for two pulse lengths, each at two repetition rates with carrier frequency held con-
stant.

Notice in the drawings how the spectral lines extend below the baseline as well
as above. This corresponds to the harmonics in the modulating pulse, having a phase
relationship of 180° with respect to the fundamental of the modulating waveform.
Since the spectrum analyzer can only detect amplitudes and not phase, it will invert
the negative-going lines and display all amplitudes above the baseline.

Because a pulsed RF signal has unique properties we have to be careful to
interpret the display on a spectrum analyzer correctly. The response that a spectrum
analyzer (or any swept receiver) can have to a periodically pulsed RF signal can be
of two kinds, resulting in displays which are similar but of completely different
significance. One response is called a “line spectrum” and the other is called a “pulse
spectrum.” We must keep in mind that these are both responses to the same periodi-
cally pulsed RF input signal, and the “line” and “pulse’ spectrum refer solely to the
response or display on the spectrum analyzer.

We will discuss both types of response to a signal with the basic appearance as
shown in Figure 5 with the aid of pictures, and then summarize all formulas and rules
for proper operation of the analyzer.
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Tatf = Width of Rectangular Pulse of same height and area as pulse applied to

Figure 5. Basic RF Pulse.



CHAPTER 2
“LINE” SPECTRUM

GENERAL RULES AND EXPLANATION

A “line” spectrum occurs when the spectrum analyzer’s 3 dB bandwidth B is
narrow compared to the frequency spacing of the input signal components. Since the
individual spectral components are spaced at the pulse repetition frequency (PRF)
of the periodically pulsed RF, we can say:

B < PRF (1)

In this case all individual frequency components can be resolved. Only one is
within the bandwidth at a time as shown in Figure 6.

The display is a frequency domain display of the actual Fourier components
of the input signal. Each component behaves as a CW signal. The display has the
normal true frequency domain characteristics:

1. The spacing between lines on the display will NOT change when the analyzer
scan time (“sec/Div”) is changed.

2. The amplitude of each line will not change when the bandwidth B is changed
as long as B remains considerably below the PRF.

We will now look at CRT pictures on page 7TA of a pulsed RF signal to see how
different scan times, scan widths, and IF bandwidths of the spectrum analyzer in-
fluence the appearance of the signal on the display.

A carrier signal with a CW amplitude of —30 dBm (Figure 7) is modulated by a
pulse train with a PRF of 1 kHz and an effective pulse width 7., of 0.1 ms (Figure 8).
In Figure 9 we see the resulting pulse spectrum in a linear display. The analyzer
bandwidth is 100 Hz, one-tenth of the PRF.

The logarithmic display (Figure 10) allows a much better evaluation of the signal
spectrum, because the lower amplitudes of the higher order sidelobes can now be
easily measured.

Each Fourier component is resolved and the line spacing is measured as 1 kHz,
which is the PRF. We can also see that the spacing of the sidelobe minima is 10 kHz,

according to the relation = = L = 10 kHz.
Tor 0.1 ms

s<% or B< PRF

LT

Figure 6. IF bandwidths smaller than PRF.



We thus can count ten spectral lines in each sidelobe or twenty lines plus the
carrier line in the mainlobe, according to the duty cycle of the pulsed signal.

I;:"-r or 7o7 - PRE= 0.1

(The fact that the amplitude of the spectral lines on the lobe minima reach zero for
each integer ratio of 1'_;‘,3 can be used to adjust the duty cycle very accurately.)

The display in Figure 10 does not change for different scan times, unless we
select a scan time too short for the given scan width and bandwidth.

The new HP Spectrum Analyzer systems have a built-in logic with a warning
light that enables us to avoid any wrong combination of these control settings.

For spectrum analyzers without this feature we have to satisfy an additional
equation to avoid display errors:

Scan Width [Hz/Div]

Scan Time [sec/Div] (B[Hz])? @)

(See Appendix B)

In Figure 11 the bandwidth of the analyzer has been changed to 300 Hz. Although
the resolution of the spectral lines is reduced (minima) we still have a true Fourier
line spectrum display. From this experience we can derive a rule of thumb for the
analyzer’s bandwidth to obtain a line spectrum:

B < 0.3 PRF (preferably B < 0.1 PRF) (3)

This rule is valid for the shape factors (1:10 to 1:30) of the IF filters used in HP
Spectrum Analyzers.

In Figure 12 we have changed the spectrum width from 100 kHz (10 kHz/Div)
to 50 kHz (5 kHz/Div). We see that the spectrum envelope and the line spacing have
changed, but the number of lines in each lobe remains constant.

In Figure 13 the pulse width has been altered from 7.,= 0.1 ms to 7.,= 0.05 ms.
Comparing with Figure 10 (same control settings on the analyzer), we find three
differences:

1. The sidelobe minima are spaced by 20 kHz.

2. The number of lines in each sidelobe is 20. (The line spacing is still 1 kHz
since we did not change the PRF.)

3. The amplitude of the spectrum envelope is 6 dB lower.

The last point reveals a very important fact which has not been mentioned yet,
but can easily be seen in the pictures of the calibrated logarithmic displays on page TA:
The amplitude of the carrier component (highest amplitude in the spectrum envelope)
of a pulse modulated signal is considerably lower than the CW amplitude of the un-
modulated carrier. This effect is commonly called pulse desensitization.

PULSE DESENSITIZATION «

The expression “pulse desensitization” is quite misleading since the sensitivity of
the spectrum analyzer is not reduced by a pulse modulated signal. The apparent re-
duction in peak amplitude can be explained in the following manner: Pulsing a CW
carrier results in its power being distributed over a number of spectral components



(carrier and sidebands). Each of these spectral components then contains only a frac-
tion of the total power.

In Figure 10, where we have a duty cycle %’”ofﬂ.l, we measure a display ampli-

tude which has a difference of —20 dB compared to the CW amplitude of the carrier.
In Figure 13, with a duty cycle of 0.05, we measure —26 dB. This leads to the equation
for the line spectrum pulse desensitization factor a;:

o, [dB] = 20 logy, 727

=920 log, 7y - PRF (4)

This relation is only valid for a true Fourier line spectrum (B < 0.3 PRF). We can see
that a; is only dependent on the duty cycle %ﬁ of the pulsed signal.

The average power P, of the signal is also dependent on the duty cycle:

Pave = Preak * T?” of Povg = Ppeax * Teyy - PRF

Written as a ratio in dB:

~§°—‘!~ [dB] = 10 log,o 7oy - PRF (4a)

peak

Figure 14 represents equations (4) and (4a) in a diagram.
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Figure 14. Pulse desensitization «; (line spectrum).
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LINE SPECTRA OF A PULSED MODULATED 50 MHz CARRIER

Figure 7. CW signal 50 MHz, —30 dBm,
scan width 10 kHz/Div, bandwidth 100 Hz
Log Ref. =20 dBm, 10 dB/Div.

Figure 9. Line spectrum of the pulsed
50 MHz signal. Linear display 100 pV/
Div, scan 10 kHz/Div.

Figure 11. Same spectrum with 300 Hz
analyzer bandwidth. Scan width 10 kHz/
Div, Log Ref. —20 dBm, 10 dB/Div.

Figure 8. Time domain display of the 50
MHz signal pulse modulated with 7¢f =
0.1 ms and PRF = 1 kHz (0.5 ms/Div).

Figure 10. Same spectrum in logarith-
mic display scan width 10 kHz/Div, band-
width 100 Hz, Log Ref. —20 dBm, 10
dB/Div.

Figure 12. Same signal but scan width
changed to 5 kHz/Div. Bandwidth 100
Hz, Log Ref. —20 dBm, 10 dB/Div.

Figure 13. Carrier now modulated with a
pulse width of 7oy = 0.05 ms (PRF = 1
kHz) scan width 10 kHz/Div, bandwidth
100 Hz, Log Ref. =20 dBm, 10 dB/Div.



We read from the diagram that for a duty cycle of 0.1 we will get a display de-
sensitization of —20 dB, and for a ratio of 0.05 we get —26 dB as shown in Figure 10
and Figure 13. The diagram also shows that the desensitization factor o, becomes very
large for low duty cycles. In this case, the sensitivity of the analyzer and the maximum
signal level at the broadband front end mixer become important factors. We shall
describe the necessary considerations for these analyzer properties in the next chapter
about the more important “Pulse” spectrum display.

TRANSITION TO THE “PULSE” RESPONSE

If we increase the IF bandwidth in our example further to 1 kHz, we get the dis-
play shown in Figure 15. We notice that the analyzer has lost the ability to resolve the
spectral lines since B = PRF. The lines now displayed are generated in the time
domain by the single pulses of the signal. We also see that the displayed amplitude of
the spectrum envelope has increased. This is due to the fact that the IF filter is now
sampling a broader part of the spectrum at a time, thus collecting the power of several
spectral lines.

A pulse repetition rate equal to the resolution bandwidth is the demarcation line
between a true Fourier-series spectrum, where each line is a response representing
the energy contained in that harmonic, and a “pulse” or Fourier-transform response.

Figure 15. Bandwidth 1 kHz = PRF.



CHAPTER 3
“PULSE” SPECTRUM

GENERAL RULES AND EXPLANATION

A “pulse” spectrum occurs when the bandwidth B of the spectrum analyzer is
equal to/or greater than the PRF. The spectrum analyzer in this case cannot resolve the
actual individual Fourier frequency domain components, since several lines are
within its bandwidth. However, if the bandwidth is narrow compared to the spectrum
envelope, then the envelope can be resolved (Figure 16). The resultant display is
not a true frequency domain display, but a combination of time and frequency display.
It is a time domain display of the pulse lines, since each line is displayed when a
pulse occurs, regardless of the frequency within the pulse spectrum to which the
analyzer is tuned at that moment. It is a frequency domain display of the spectrum
envelope. The display has three distinguishing characteristics:

s

[&4]

The spacing between the pulse lines and their number will change when the
scan time of the analyzer is changed. The lines are spaced in real time by
1/PRF. The shape of the spectrum envelope will not change with the scan
time.

. The spacing between the lines will not change when the scan width (“MHz/

Div” or “kHz/Div”) is changed. The spectrum envelope will change hori-
zontally as we would expect.

. The amplitude of the display envelope will increase linearly as the band-

width B is increased. This means an amplitude increase of 6 dB for doubling B.

e 0.2 . 1
This is true as long as B does not exceed —. When the bandwidth equals —

Tefr Teir
(or Y2 of the mainlobe width), the display amplitude is practically the peak
amplitude of the signal. At this point the IF filter covers nearly all significant
spectral components. But then we have lost the ability to resolve the spectrum
envelope.

We show these characteristics in the following pictures:
In Figure 17 we modulate the —30 dBm CW carrier by a pulse train with a PRF of

100 Hz and 7.,=

dusth= . s, 's IF bandwidth is 1 kHz: i _01
T0kH="— 100 ws. The analyzer’s IF bandwidth is 1 kHz; i.e., B =

s>% or B> PRF

HHH“““L s,

Figure 16. If bandwidth greater than PRF.
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We can see the spectrum envelope with the mainlobe and sidelobes and the minima
in between. The lines which form the envelope are not spectral lines but pulse lines
in the time domain.

We can verify this by changing the scan time (Figure 18). If we reduce the scan
time further, we lose the information about the shape of the spectrum envelope; i.e.,
the frequency domain information. But we now can easily measure the PRF in the
time domain (Figure 19 and Figure 20).

In Figure 21 we changed the scan/width to 5 kHz/Div. The scan time is the same
as in Figure 18. We can see that the spectrum envelope changed (frequency domain),
but the line spacing remains constant (time domain),

In Figure 22 we use an IF bandwidth of 300 Hz. We can measure an amplitude
decrease of approximately 10 dB compared to Figure 17, which shows the linear
relationship between IF bandwidth and display amplitude. We also can see that the
minima are better resolved than in Figure 17. In Figure 23 the bandwidth is increased
to 3 kHz. The display amplitude increase compared to Figure 22 is not 20 dB but
only 18 dB. We lost the linear relationship between bandwidth and display amplitude

because B is greater than O—i in this case. Also the resolution of the sidelobes is lost
to a great extent. 3

If we increase B to 10 kHz (which is equal to %ﬂ), we get a display with an ampli-
tude practically equal to the peak amplitude of the pulsed signal (Figure 24).

Some additional rules of thumb are of importance:

1. For a sufficient resolution of the spectrum envelope the bandwidth should be
less than 5% of the mainlobe width or:

B<Ol )

Tefr

For higher resolution into the lobe minima (20 to 30 dB) we should use:

AL (6)
Tefr
2. The system must respond to each pulse independently. The effects of one
pulse must decay out before the next pulse occurs. The IF amplifier decay time
constant is approximately 0.3/B. A decay of the pulse effect down to 1%
(—40 dB) requires five time constants. This leads to the rule:

B > 1.7 PRF )

However, we get less than 1 dB error if B = PRF, where the baseline is only
20 to 25 dB below the spectrum envelope (see Figure 15).

The range between B < 0.3 PRF (line spectrum) and B > PRF (pulse spec-
trum) shows properties of both response types and should be avoided.

3. The number of pulse lines which form the spectrum envelope display is
determined by the PRF and the scan time. For a display with useful resolution,
i.e., a sufficient number of lines, the scan time should be selected to:

scan time [s/Div] = ﬁ?ﬂz] (8)

We then have more than 100 lines forming the spectrum envelope, thus assuring
that the mainlobe peak is displayed on each scan (see Figure 18 and Figure 22).

11



PULSED RF SIGNAL IN “PULSED"” SPECTRUM DISPLAY
(All pictures show the same Log Ref of —20 dBm).

Figure 17. Signal (peak amplitude —30 Figure 18. Same signal, but scan time
dBm) pulsed with PRF = 100 Hz, 7oy = changed to 0.1 s/Div.

1/10 kHz = 100 ps. Scan width 10 kHz/

Div, B =1 kHz scan time 0.5 s/Div.

Figure 19. Same signal with a scan time Figure 20. Same signal, but B = 300
of 20 ms/Div. kHz and scan time 2 ms/Div. The PRF
can be measured to 1/10 ms = 100 Hz.

Figure 21. Same signal with scan width Figure 22. Same signal with B =300 Hz
5 kHz|/Div, B =1 kHz, scan time 0.1 s/Div. scan width 10 kHz/Div, scan time 0.2 s/
Div.

Figure 23. Same signal with B = 3 kHz. Figure 24. Same signal with B = 10 kHz.



The signal in the center of the displays (baseline lift) is the residual carrier which
is still present during the “off” periods of the pulsed signal. Because it is essentially
a CW signal, the on-off ratio of the pulse modulator can only be measured directly if

Bi= rl as shown in Figure 24. We measure an on-off ratio of 38 dB.
eff

l i
In the other displays where B < ., Ve again have to consider a “pulse desen-
L4

sitization” factor since we compare a CW signal with a pulsed signal. This factor will
be extensively discussed later.

WHY USE A “PULSE” SPECTRUM DISPLAY?

In many instances, it is neither possible nor desirable to make a fine grain line-
by-line analysis of a spectrum. A good example of such a case is a train of short RF
pulses at a low repetition frequency as normally used in radar transmitters. Not only
must the IF bandwidth become inconveniently narrow, but often the frequency modu-
lation on the pulsed carrier is so excessive that the resulting display is confusing.

In the “pulse” spectrum mode we can get all information we need: the spectrum
envelope and amplitude in the frequency domain and the PRF in the time domain.
We also have two advantages over the “line” spectrum display:

1. We can use shorter scan times because of the greater bandwidth.

2. We can increase the display amplitude of the pulsed signal by choosing a
broader bandwidth. We know that the display amplitude increases linearly
with the bandwidth B. The noise level of the analyzer increases only propor-
tional to V/B. So we can increase the signal-to-noise ratio proportional to V/B.

This is opposite to the CW and “line” case where we have to use narrower
bandwidths to decrease the noise level, thus increasing the signal-to-noise
ratio. Figure 25 and Figure 26 show these effects clearly.

From the preceding discussion about the “pulse” spectrum response we can find

another important fact: The spectrum analyzer must provide independent controls
for bandwidth, scan width, and scan time to optimize the display according to the
rules of thumb given for this type of response. Also the variable persistence CRT
offers a great advantage if we want to have a flicker-free display of pulsed signals with
low PRF.

Figure 25. A carrier with —50 dBm am- Figure 26. The same signal displayed
plitude is modulated by a pulse train with with 30 kHz bandwidth. The noise level
PRF = 400 Hz, 7eff = 3 ps. The band- increased by 10 dB, but the signal level
width B = 3 kHz, scan width = 0.5 MHz/ by 20 dB. The lobes and minima can be
Div, scan time = 0.1 s/Div. Only the low measured easily. Log Ref. —40 dBm.

order sidelobes can be seen but not
measured accurately. Log Ref. —40 dBm.
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PEAK PULSE RESPONSE—-PULSE DESENSITIZATION «,
In the “pulse” spectrum just described, the response of the spectrum analyzer to
each RF input pulse is in essence the pulse response of the analyzer’s IF amplifier.

The peak pulse response of the HP Spectrum Analyzers has been established and
is relatively independent of pulse shape and pulse repetition frequency (for B > PRF).
The expression relating the peak pulse response to a CW signal response is the pulse
desensitization factor a;,

This factor a,, for the “pulse” response depends on different physical conditions
compared to «; in the “line” spectrum:

a, = 20 logyy * Teyy * Bimp [dB]

In this equation we find a new expression: the Effective Impulse Bandwidth,
Bimp- This can be visualized as the bandwidth of an ideal, rectangularly shaped filter
with a pulse response equivalent to the actual filter with the 3 dB bandwidth B
(Figure 27). Since the impulse bandwidth By, of the IF amplifier is not the same as
its 3 dB bandwidth B, a correction factor K has been introduced. This factor K repre-
sents an empirical approach defining By, relative to B:

— Bimp
K=—2 ©)

K can be determined with a pulsed signal with known properties (AN 122, “EMI
Measurement Procedure,” p. 125).

For synchronuously tuned filters as used in the HP IF sections, the value of K has
been measured as approximately 1.5.° The error introduced by different shape factors
of the IF filter and different pulse shapes is normally less than 1 dB.

We can now write:

a, [dB] =20 log,, * 7oy - K - B; K=15 (10)

°If the 300 kHz filter is used in the 8552A/B IF sections, a measurement of its impulse bandwidth is recom-
mended, since a number of these plug-ins have a B, smaller than 450 kHz (1.5 x 300 kHz). This results in
an additional desensitization of 1 to 2 dB. A quick and simple check can be made by measuring the 6 dB
bandwidth, which is approximately equal to Bjg,.

"_Blmp"“'-'

B3gg

| b

Figure 27. Equivalent B, of Gaussian filter.



There are several conditions which must be satisfied if Eq. (10) is to be valid:
1. The IF bandwidth-pulse width product must be less than two-tenths:

B 1y <02 orB<-2:-%

eff
2. The normalized scan rate (NSR) of the analyzer must be less than one:

Scan Width [Hz/Div]
Scan Time [s/Div] - (B[Hz])?

3. The IF bandwidth must be greater than the PRF: B > PRF

NSR = = ]

The conditions in 1 to 3 are automatically accomplished if the equations (5), (8), and
(7) are satisfied.

4. The peak pulse amplitude at the broadband input mixer of the analyzer must
stay below the saturation point (1 dB compression). The typical saturation
point for HP spectrum analyzers is between —10 dBm and —5 dBm:

Ppeax = —10 dBm 11)

Figure 28 is a diagram showing the pulse desensitization «, in relation to IF
bandwidth B and pulse width 7., We see that the PRF does not appear, since it is of
no significance for the display amplitude as long as B > PRF. The shaded area be-

0. and B = ot represents the optimum bandwidth range for an
Tesr Tefr
analysis of a pulsed signal. There are also three dotted lines which show different
noise levels of an analyzer for a fast determination of the dynamic range.

tween the B =

N (dB] 1 11 1 4 e 811 i
= f—1—¢5119,.9Bm T Noise Level N of Analyzer (B = 1 kHz)
N
B> 1.7 PRF |
it
i
0.03
mEE B = =224
Tetf ]
-20 B= ?r_1 E
N 3 = = ot Luj
-10
(]
0.1 1ns 10 100 us 10 100 1ms
Teff
10 GHz 1GHz 10MHz  10MHz 1 MHz 100 kHz 10 kHz

MAIN LOBE WIDTH

Figure 28. Pulse desensitization ap (pulse spectrum).

15



We will now take a few examples to show how the diagram is used:

1. We assume a pulsed signal with the following characteristics: Ppeax = —30
dBm, 7.,= 1 ps, PRF = 1 kHz. The noise level of the analyzer is N = —100
dBm for 1 kHz bandwidth. We find on the diagram for 7., = 1 us an optimum
bandwidth of 100 kHz (—=B>PRF). We then can read a pulse desensitization
of e, = —16 dB. The displayed amplitude of the spectrum envelope will be
=~ —46 dBm. We also read from the crossing point of the line for N=—100 dBm
and the line for B = 100 kHz a resultant noise level of —80 dBm. We thus get a
usable display range (S/N ratio) of only 34 dB. Although this range is sufficient
in most cases for evaluation of the pulse spectrum, this example shows how
important a spectrum analyzer with a low noise level is.

2. PULSE POWER MEASUREMENTS: We see on the spectrum analyzer dis-
play the spectrum envelope of a pulsed signal with the following charac-
teristics: the display amplitude is —50 dBm, the mainlobe width is 10 MHz.
The analyzer’s bandwidth is 300 kHz. What are the peak and the average
powers of the signal?

The effective pulse duration 7, is calculated from the lobe width or read
from the diagram:

e ol e ¢
Tert = 10 MHz — 0.2 us or 200 ns

In the diagram, we find a pulse desensitization of —21 dB for 7.,= 200 ns and
B = 300 kHz. The peak power is 21 dB greater than the displayed amplitude,
and we can calculate the peak power to Ppeq = —29 dBm.

To find the average power, we first have to measure the PRF. This is done
by reducing the scan time until we can easily measure the pulse line spacing
in time domain. Assume we measured the line spacing to 1 ms which equals a
PRF of 1 kHz, we then can calculate the average power Payg = Ppeax * Terr - PRE.

7o+ PRF=2.10""s - 10° Hz = 2.10~*

P
Using the diagram for «;, Figure 14 on page 7, we find a factor =" of
peak

—37 dB. Thus, with the peak power P of —29 dBm and the factor of —37
dB, we can calculate the average power P,,, = —66 dBm.

3. We want to calculate the peak power of a signal displayed with an amplitude
of —30 dBm and a mainlobe width of 100 MHz. The analyzer bandwidth is 300

2 = 20 ns. We find a de-

kHz. The signal has a pulse duration 7., = 100 MHz

sensitization factor of —41 dB.

This would yield a signal peak power of +11 dBm, far beyond the satura-
tion level of —10 dBm. Thus, the calculation is not valid. We have to insert at
least 20 dB attenuation before the input mixer.

To check that the input signal level at the front end mixer is below the
saturation point, we have to observe that for a 10 dB step of the input attenuator
the display amplitude must also change by exactly 10 dB.
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VERY SHORT RF PULSES

We know from the diagram for a, (Figure 28) that the desensitization of the an-
alyzer display becomes very high for very short RF pulses, even with the widest
bandwidth. If we assume that we can provide the maximum usable input signal level
of —10 dBm (which is normally possible when we measure in the proximity of the
radar transmitter to be investigated), we are then limited only by the sensitivity of
the analyzer. For a sufficient evaluation of a pulsed RF signal we should have a dis-
play range of at least 30 dB above the noise level. Figure 29 is a diagram which shows
the maximum usable display range as a function of pulse width and analyzer sensi-
tivity for a maximum input level of —10 dBm and a bandwidth of 300 kHz.°

We can easily see that for a pulse width of, for example, 1 ns, an analyzer must
have a sensitivity of —110 dBm (specified for B = 1 kHz) or better to yield a usable
display. It is not possible to improve the signal-to-noise ratio with a low noise pre-
amplifier, since we are already limited by the saturation level of the input mixer. The
new generation of HP spectrum analyzers offers exceptionally high sensitivities which
allow measurements of such extremely short RF pulses.

®See note on page 14.
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Ppeak = —10 dBm

B=300kHz

10 100

Figure 29. Display range vs. sensitivity.
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CHAPTER 4

SUMMARY OF PULSE SPECTRA CHARACTERISTICS

1—-—-—}“—“ = Tett

B |

!

A,

M\WV

T
t=o0
Type of Response Line‘ Spect‘rum
(Fourier Series)
Requirements for each
Type of Spectrum:
Bandwidth FB<0.3 PRF
Scan Time T > B_:

Peak Input Power

Desensitization Factor

Amplitude of Spectrum
Display at @ = w,

Type of Display Used
for Duty Cycle 1,‘,“,“ of

Number of Lines/
Division

E;, = response on CRT due to CW signal

E, cos w,t
T, = scan time in sec/Div

F, = scan width in Hz/Div

Ppeax = —10 dBm

o = 20 logm 2 %f

T
A=E,,-«,:;’—"
=EL'T‘-ﬂ' PRF

Fourier or spectral
lines

> 0.05

Changes with scan width

not scan time

t

plt) cos wqt

“Pulse” Spectrum
(Fourier Transform)

B>1.7 PRF

B< 0.1
Tefr

T,>10/PRF
Poeax = —10 dBm

a,=20log,, " 7oy K- B

A=E, 74 KB

Pulse repetition rate
lines

< 0.05

Changes with scan time
not scan width

B = IF bandwidth (3 dB)

K = constant of IF amplifier (K = 1.5)

7er = width of rectangular pulse of same

PRF = %= Pulse repetition frequency in Hz

COMMON PULSE SPECTRA

height and area as pulse applied to
analyzer = f plt) dt
E,

Figure 30 shows some examples of typical spectrum displays for pulse signals

with different pulse shapes and with the presence of AM and FM. An extensive
mathematical treatment of different pulse forms and their spectra can be found in
Appendix A.

The ideal rectangular RF pulse free of FM will produce a symmetrical pulse

18

spectrum as shown in (a). When the pulse is changed to a triangular shape, the spec-
trum remains symmetrical with decreased amplitude of the sidelobes (b). The pulse



spectrum will remain symmetrical even if the pulse shape is distorted or unsym-
metrical.

PULSE SPECTRUM IN THE PRESENCE OF FM: A symmetrical pulse with
linear coherent FM will produce a symmetrical spectrum with increased sidelobe
amplitude and minima not reaching zero, (c), (d).

If incidental FM (FM due to amplitude modulation) or coherent FM is introduced
together with an unsymmetrical pulse, an unsymmetrical pulse spectrum with the
minima not reaching zero will be produced, (e), (f). This is also true for a symmetrical
pulse with nonlinear coherent FM.

Pictures of the pulse spectra produced by actual radar transmitters can be found
on pages 20 to 23.
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g - 08
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3

= -0.4

™=

e 0.2
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ey

(a) (b)
Spectrum of rectangular pulse without Triangular pulse spectrum without FM
AM or FM occurring during pulse. Shape during pulse. Effective pulse width is
Sin nE shorter than (a) causing minimas to occur
is that of 2 function. at wider intervals of frequency.
e}
AF = 2Mc/Sec ( U Sl
I | L —=—+, I I S
8 Gnidee e 1T
AF=2
| |
(c) (d)
Spectrum of rectangular pulse with linear Same pulse spectrum as (c) with more
FM resulting in increased sidelobe ampli- severe FM.

tude and minimas not reaching zero.

(e) (f)
Effect of linear AM and FM during pulse. More severe case of FM and AM occurring
Note loss in symmetry due to pulse ampli- during pulse.

tude slope.

Figure 30. Common pulse spectra.
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30 MHz/Div 10 MHz/Div

b

3 MHz/Div 1 MHz/Div

The above is a typical spectrum signature of the fundamental frequencies of an
“L” band radar with an approximate 1.0 usec pulse width. The above pictures were
made with a 10 kHz bandwidth. Note transients from magnetron along with extreme

FM.

This is the third harmonic output of a radar operating at a pulse width of 4.5 psec
and f. of 1300 MHz. An interdigital filter (2-4 GHz) was used to trap out the funda-
mental. The sweep width is 3 MHz/Div.



10 MHz/Div 3 MHz/Div

"

1 MHz|/Div

Here is a radar where the magnetron is moding rather badly. Note the transients
occurring on the high side of the carrier frequency. Only a high speed photographic
record would show this.

ot

k-z*-*-—-—--:- bttt bbbt

L Band Radar 300 pps/4.5 usec. 3 MHz/ Same conditions as at left except 1 MHz/
Div spectrum width log display Div spectrum width

Here is a spectrum display of one of the cleanest radars noted. Note the absence of
moding. The FM present seems to be normal for conventional magnetron.



50

il diidl ok L bbbk

Channel A; 1 MHz/Div Channel B; 1 MHz/Div

Magnetron output; 100 MHz/Div Duplexer output; 100 MHz/Div

This is another radar which employed two channels. Channel “A” operated nor-
mally, but Channel “B” had marginal FM. The magnetron output had considerable
noise and spikes showing up which did not show up on the duplexer output. Note the
one picture when the base-line dimmer was not used. When base-line dimmer is
used, true base level remains at zero.

&

4.5 usec

These are spectra of a radar when the pulse width is changed from 4.5 usec to
1.0 psec. Note the change in spectrum. An IF bandwidth of 10 kHz and sweep width
of 10 MHz/Div was used. Note the increased transient effects on narrow pulse oper-
ations.

Lo
5]



This is a display of a 1 megawatt radar at mid-L band showing spurious radiation
over 300 MHz below the main carrier and interfering in TACAN channels. Horizontal
100 MHz/Div, vertical 10 dB/Div. Some emitted broadband output is only 20 dB
down from carrier (10 kW).



APPENDIX A
TABLE OF IMPORTANT TRANSFORMS

EXPLANATION OF THE TABLE
The time functions and corresponding frequency functions in this table are
related by the following expressions:

Flo) = f ft) et dt (Divect transtor)

fit)= ﬁ fF(m) e“ dw (Inverse transform)

The 1/27 multiplier in the inverse transform arises merely because the integration is
written with respect to w, rather than cyclic frequency. Otherwise the expressions are
identical except for the difference of sign in the exponent. As a result, functions and
their transforms can be interchanged with only slight modification. Thus, if F(w) is the
direct transform of f{(t), it is also true that 27f(—w) is the direct transform of F(t). For
sin x

example, the spectrum of a pulse is rectangular (pair 6) while the spectrum of a

sin x
x
well-known fact that the spectrum of a constant (d-c) is a spike at zero frequency.

rectangular pulse is of the form (pair 7). Likewise pair 18 is the counterpart of the

The frequency functions in the table are in many cases listed both as functions
of @ and also of p. This is done merely for convenience. F(p) in all cases is found by
substituting p for iw in F(w). (Not simply p for @ as the notation would ordinarily

indicate. That is, in the usual mathematical convention one would write F(w)= F(ID

= G(p) where the change in letter indicates the resulting change in functional form.
The notation used above has grown through usage and causes no confusion, once
understood.) Thus, in the p-notation

F(p)= fﬂr) edt flt)= 2'1_11-{ F(p) e" dp

—-—= -joo

The latter integral is conveniently evaluated as a contour integral in the p-plane,
letting p assume complex values.

The frequency functions have been plotted on linear amplitude and frequency
scales, and where convenient, also on logarithmic scales. The latter scales often bring
out characteristics not evident in the linear plot. Thus, many of the spectra are asymp-
totic to first or second degree hyperbolas on a linear plot. On a log plot these asymp-
totes become straight lines of slope —1 or —2 (i.e., —6 or —12 dB/octave).

The time functions in the table have all been normalized to convenient peak
amplitudes, areas or slopes. For any other amplitude, multiply both sides by the
appropriate factor. Thus, the spectrum of a rectangular pulse 10 volts in amplitude
sin @ I

w

and 2 seconds long is (from pair 7) 20 volt-seconds.

Again, upon multiplication by a constant having appropriate dimensions, the fre-
quency functions become filter transmissions. Thus, if pair 1 is multiplied by «, the
COPYRIGHT, 1954, HEWLETT-PACKARD CO.



frequency function represents a simple RC cutoff. A one coulomb impulse (pair 15)
applied to this filter would produce an output (impulse response) with the spectrum

a
pt+a
dimensions of amperes). Or a 1 volt step function (pair 2S) would produce the output

X 1 coulomb, representing the time function ae™* coulombs (which has the

spectrum X 1—1) volts, which represents the time function (1—e~*) volts (pair 4S).

o
pt+a
The entries 1S through 6S in the table are singular functions for which the trans-
forms as defined above exist only as a limit. For example, 1S may be thought of as the

limit of pair 7 (multiplied by %) asT—> 0.

PROPERTIES OF TRANSFORMS

There are a number of important relations which describe what happens to the
transforms of functions when the functions themselves are added, multiplied, con-
volved, etc. These relations state mathematically many of the operations encountered
in communications systems: operations such as linear amplification, mixing, modu-
lation, filtering, sampling, etc. These relations are all readily deducible from the
defining equations above; but for ready reference some of the more important ones are
listed in the Properties of Transforms on the last page of this appendix.

Again, because of the similarity of the direct and inverse transforms, a symmetry
exists in these properties. Thus, delaying a function multiplies its spectrum by a
complex exponential; while multiplying the function by a complex exponential
delays its spectrum. Multiplying any two functions is equivalent to convolving their
spectra; multiplying their spectra is equivalent to convolving the functions; etc.

Many of the pairs listed in the Table of Transforms can be obtained from others
by using one or more of the rules of manipulation listed in the Properties of Trans-

forms. For example, the time function in pair 8 is ?l_times the convolution of that in

pair 7 with itself. The spectrum should therefore be % times the product of that in pair

7 with itself, as it indeed is. Further, by using these properties, many pairs not in the

table can be obtained from those given. For example, the spectrum of f(t) = (1 — ar)
1 O ==

pta (p+a? (p+af

e~ is (by the addition property) F(p) =

(]
ut



TABLE OF IMPORTANT TRANSFORMS

TIME FUNCTIONS NO. FREQUENCY FUNCTIONS
(LINEAR SCALES) (LOG AMPL. - LOG FREQ.)
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TABLE OF IMPORTANT TRANSFORMS

TIME FUNCTIONS NO. FREQUENCY FUNCTIONS
(LINEAR  SCALES) (LOG AMPL. - LOG FREQ.)
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TABLE OF IMPORTANT TRANSFORMS

TIME FUNCTIONS NO. FREQUENCY FUNCTIONS
(LINEAR SCALES) (LOG AMPL. - LOG FREQ.)
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PROPERTIES OF TRANSFORMS

TIME OPERATION

[rREQ. OPERATION

SIGNIFICANCE

MdeﬁnpﬂthMﬂhMMﬂmdohurwn

regorded as o sum of component parts and the specirum is the sum of the compo-

2 [fh} + ﬂ—ﬂ']

Y [F(ul £ F(-—w}]

ond an odd part —I:ﬂﬂ--ﬁ—ll]. The transform of the even part is

%[ﬂm}-l—ﬂ—ul] which is purely real and involves only even powers of w.

aflt) + bglt) af(w) + bG(w) of functions is the same linear sum of their sp (if sp are vsual  nent spectra.
rvles of addition of complex quantities npp!y] Further, any function may be
SCALE CHANGE |INVERSE SCALE CHANGE Time—Bandwidth invari Compressing a time functi ponds its sp in  as for k=1, multiply both functions by \/| k |. The case where k=—1 raverses
flkt) 1 & frequency and reduces it in amplitude by the same factor. The amplitude reduces  the function in time. This merely interchanges positive and negative frequencies; so
= F 3 because less energy Is spread over a greater bandwidth, For same energy pulse  for real fime functions, reverses the phase.
1
EVEN AND ODD EVEN AND ODD Any real function f{t) may be separated into an even part —I: fin + ﬁ—']:l The transform of the odd part is — [Hul F(—m]] whick is purely Imaginary
PARTITION PARTITION 2

ond involves only odd powers of w. Note: for f{t) real, {—w) = Flw).

Flr_ J;F[s]G[m —s)ds

df
DELAY LINEAR ADDED PHASE Delaying a function by a fime fo multiplies its spectrum by e™"°, thus adding @  produces a delay of — — = fto.
flr—t.) ._H" Flw) linear phase § = —wio to the original phase. C ly a linear phase filter dw
1
|[COMPLEX MODULATION| SHIFT OF SPECTRUM Multiplying @ time function by ¢'“®! “delays” its spectrum, i.e., shiffs it to center say—prod the time functi -2— (o't + e—iwol)g(s) with the spectrum
Tawol i = P s
e " fn) Flo — wo) about we rother than zero O y real by cos wot 1
7 [ Fo = o) + o el ]
CONVYOLUTION MULTIPLICATION The spectrum of the lution of two fime functions is the product of their sp ning is equi to filtering the signal with a filter whose transmission is the trans-
- (FILTERING) In convolution one of the two functions to be Ived is d left-to-right and  form of the sconning function (reversed in time). Conversely, the effect of on
H ] [‘ }d Flw)Gl(w) displaced. The integral of the product is then evaluated and is o new function of  electricol filter is equivalent to a convolution of the input with a time function which
TN e the displ t. Convelution occurs wh a signal is obtoined which is pro-  is the transform of filter choracleristic, This function, the so-called “memory curve”
he portional to the integral of the product of two functions as they slide past each of the filter, is identical with the filler impulse response, aside from dimensions.
other—in other words, in any scanning operation such as in optical or magnetic  (Note: the convolution of a time function with a unit impulse gives the same function
recording or picture scanning in television. Transform theory stotes that such scan-  times the dimensions of the impulse.)
MULTIPLICATION CONVOLUTION The spectrum of the product of two time functions is the lution of their sp. about each component of the (line) spectrum of the train of impulses (see pair 45).
ﬂngm = This is the more g | stat of the medulation property. For ple, sam-  For no P, highest fr in signal to be sampled must be less than half
pling a signal is equivalent to multiplying it by a regular train of unit area impul. pling freq y- If this is true original signal spectrum (hence signol) can be

The spectrum of the sampl ‘liqnnl ists of the original signal spectry peated

c d by low pass filter (Sampling theorem).
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PROPERTIES OF TRANSFORMS

TIME OPERATION [FREQ. OPERATION SIGNIFICANCE
DIFFERENTIATION MULTIPLICATION The spectrum of the nth derivative of a function is (iw)” times the spectrum of the @ transmission K i where K is di ionless or hos the di ions of imped
" BY function. A “differenticting network™ has (over the appropriate fre
d flt) pnf{;] sk g FERE SHwRCy 1ange) or admittance. Thus the oulput wave is proportionol to the derivative of the input.
dr"
INTEGRATION MULTIPLICATION The spectrum of the nth integral of o function is (iw)™" times the spectrum of the ronge) a transmission K 2, where K is dimensionless or hos the dimensions of im-
t t o | function. Thus, the response of any filter to a step function is the integral of its * z g :
“ 3 -~ Barden vey . An “integrating network” has (over the appropriate freq y P or admittance. Thus, the output is proporlional o the integral of the past
——— | f{r)(d7) ; . of the input.
n P




APPENDIX B

IF AMPLIFIER RESPONSE

Mention was made in the test of the phenomenon of decreased sensitivity and
resolution that results when a CW signal is swept by the IF amplifier at a high rate
compared to the bandwidth squared. Assuming a Gaussian response for the amplifier,
the resulting transient can be determined as follows:

Fs Sweep width
SLOPE = T, = Sweep time

Figure B-1.

A sweep frequency signal as illustrated in Figure B-1 can be represented by

s(t) = e mFaTOl (B-1)
using pair 10 of Appendix A
S(w) = 7V2m g 1/20wr (B-2)

where 7= V(jT,)]27F,.

If we assume a Gaussian response,

H(w) = e~ V2@io® (B-3)
the product of S(w) H(w) gives
Y(w) = S(w) H(w) = 7V2r exp[——é ('r" + é) w”] (B-4)

The output transient is the inverse transform of this function, again using pair 10

- )
Tz‘l—'é; 1‘+§

Substituting back for 7 and simplifying
I

1=3
e 1 v 27F, 8%t*
y(t)= [1 B gﬂF’]U‘Z exp = (T,52 )z ol (B-6)
T8* 27F,
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The envelope of y(t) is then

&t
T,5* 27F,
Note that for low sweep rates
2:}, 5 51'
u(t)=exp [~3 (%) e (B-8)

This, as was stated earlier, is a plot of the frequency response of the IF amplifier.

DISTORTION
If the condition on (B-8) is not satisfied, the resulting transient will be altered in
both width (time duration) and amplitude. The reduction in amplitude will be

1

a=

Noting that 8 = (7/ VIn®) Bf where Bf is the 3 dB bandwidth,
1

T

A plot of this function in dB versus —F,/(T,B?) is included as Figure B-2.

o=

100

Ll

NORMALIZED EFFECTIVE BANDWIDTH

LOSS IN AMPLITUDE AND SENSITIVITY a (dB)
]

20 - =110
26 - =
30 Bott -
35 B 7
| 1 1
0.1 1.0 10 100 1000
F
NORMALIZED SWEEP RATE :
T, B2

Figure B-2. Sensitivity loss and normalized effective bandwidth vs. normalized sweep rate.
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