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The most general aproach to evaluating the time domain response
of any electromagnetic system is to solve Maxwell’s equations in the
time domain. Such a procedure would take into account all the
effects of the system geometry and electrical properties, including
transmission line effects. However, this would be rather involved
for even a simple connector and even more complicated for a
structure such as a multilayer high speed backplane. For this
reason, various test and measurement methods have been used to
assist the electrical engineer in analyzing signal integrity.

The most common method for evaluating a transmission line and
its load has traditionally involved applying a sine wave to a system
and measuring waves resulting from discontinuities on the line.
From these measurements, the standing wave ratio (σ) is
calculated and used as a figure of merit for the transmission
system. When the system includes several discontinuities, however,
the standing wave ratio (SWR) measurement fails to isolate them.
In addition, when the broadband quality of a transmission system
is to be determined, SWR measurements must be made at many
frequencies. This method soon becomes very time consuming and
tedious.

Another common instrument for evaluating a transmission line is
the network analyzer. In this case, a signal generator produces a
sinusoid whose frequency is swept to stimulate the device under
test (DUT). The network analyzer measures the reflected and
transmitted signals from the DUT. The reflected waveform can be
displayed in various formats, including SWR and reflection
coefficient. An equivalent TDR format can be displayed only if the
network analyzer is equipped with the proper software to perform
an Inverse Fast Fourier Transform (IFFT). This method works well
if the user is comfortable working with s-parameters in the
frequency domain. However, if the user is not familiar with these
microwave-oriented tools, the learning curve is quite steep.
Furthermore, most digital designers prefer working in the time
domain with logic analyzers and high speed oscilloscopes.

When compared to other measurement techniques, time domain
reflectometry provides a more intuitive and direct look at the DUT’s
characteristics. Using a step generator and an oscilloscope, a fast
edge is launched into the transmission line under investigation.
The incident and reflected voltage waves are monitored by the
oscilloscope at a particular point on the line.

Introduction
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This echo technique (see Figure 1) reveals at a glance the
characteristic impedance of the line, and it shows both the position
and the nature (resistive, inductive, or capacitive) of each
discontinuity along the line. TDR also demonstrates whether losses
in a transmission system are series losses or shunt losses. All of
this information is immediately available from the oscilloscope’s
display. TDR also gives more meaningful information concerning
the broadband response of a transmission system than any other
measuring technique.

Since the basic principles of time domain reflectometry are easily
grasped, even those with limited experience in high frequency
measurements can quickly master this technique. This application
note attempts a concise presentation of the fundamentals of TDR
and then relates these fundamentals to the parameters that can be
measured in actual test situations. Before discussing these
principles further we will briefly review transmission line theory.

Figure 1. Voltage vs time at a particular point on a mismatched
transmission line driven with a step of height Ei
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The classical transmission line is assumed to consist of a
continuous structure of R’s, L’s and C’s, as shown in Figure 2. By
studying this equivalent circuit, several characteristics of the
transmission line can be determined.

If the line is infinitely long and R, L, G, and C are defined per unit
length, then

R + j ωL
Zin = Zo —————

G + jωC

where Zo is the characteristic impedance of the line. A voltage
introduced at the generator will require a finite time to travel down
the line to a point x. The phase of the voltage moving down the line
will lag behind the voltage introduced at the generator by an
amount β per unit length. Furthermore, the voltage will be
attenuated by an amount α per unit length by the series resistance
and shunt conductance of the line. The phase shift and attenuation
are defined by the propagation constant γ, where

γ = α + jβ =√ (R + jωL) (G + jωC)

and α = attenuation in nepers per unit length
β = phase shift in radians per unit length

Figure 2. The classical model for a transmission line.

The velocity at which the voltage travels down the line can be
defined in terms of β:

ω
Where νρ = — Unit Length per Second

β

The velocity of propagation approaches the speed of light, νc, for
transmission lines with air dielectric. For the general case, where
er is the dielectric constant:

νc
νρ = ——

√ er
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The propagation constant γ can be used to define the voltage and the
current at any distance x down an infinitely long line by the relations

Ex = Eine –γ x and Ix = Iine–γ x

Since the voltage and the current are related at any point by the
characteristic impedance of the line

Eine–γ x Ein
Zo = ———— = —— = Zin

Iine–γ x Iin

where Ein = incident voltage
Iin = incident current

When the transmission line is finite in length and is terminated in a load
whose impedance matches the characteristic impedance of the line, the
voltage and current relationships are satisfied by the preceding equations.

If the load is different from Zo, these equations are not satisfied
unless a second wave is considered to originate at the load and to
propagate back up the line toward the source. This reflected wave
is energy that is not delivered to the load. Therefore, the quality of
the transmission system is indicated by the ratio of this reflected
wave to the incident wave originating at the source. This ratio is
called the voltage reflection coefficient, ρ, and is related to the
transmission line impedance by the equation:

Er ZL – Zo
ρ = —— = ————

Ei ZL + Zo

The magnitude of the steady-state sinusoidal voltage along a line
terminated in a load other than Zo varies periodically as a function
of distance between a maximum and minimum value. This variation,
called a standing wave, is caused by the phase relationship between
incident and reflected waves. The ratio of the maximum and
minimum values of this voltage is called the voltage standing wave
ratio, σ, and is related to the reflection coefficient by the equation

1 +  ρ
σ = ————

1 –  ρ 

As has been said, either of the above coefficients can be measured
with presently available test equipment. But the value of the SWR
measurement is limited. Again, if a system consists of a connector,
a short transmission line and a load, the measured standing wave
ratio indicates only the overall quality of the system. It does not tell
which of the system components is causing the reflection. It does
not tell if the reflection from one component is of such a phase as to
cancel the reflection from another. The engineer must make detailed
measurements at many frequencies before he can know what must
be done to improve the broadband transmission quality of the system.
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A time domain reflectometer setup is shown in Figure 3.

The step generator produces a positive-going incident wave that is
applied to the transmission system under test. The step travels
down the transmission line at the velocity of propagation of the
line. If the load impedance is equal to the characteristic impedance
of the line, no wave is reflected and all that will be seen on the
oscilloscope is the incident voltage step recorded as the wave passes
the point on the line monitored by the oscilloscope. Refer to Figure 4.

If a mismatch exists at the load, part of the incident wave is
reflected. The reflected voltage wave will appear on the oscilloscope
display algebraically added to the incident wave. Refer to Figure 5.

Figure 3. Functional block diagram for a time domain reflectometer

Figure 4. Oscilloscope display when Er = 0

Figure 5. Oscilloscope display when Er ≠ 0
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The reflected wave is readily identified since it is separated in time
from the incident wave. This time is also valuable in determining
the length of the transmission system from the monitoring point to
the mismatch. Letting D denote this length:

T νρΤ
D = νρ • — = ——

2 2

where νρ = velocity of propagation

T = transit time from monitoring point to the mismatch and
back again, as measured on the oscilloscope (Figure 5).

The velocity of propagation can be determined from an experiment
on a known length of the same type of cable (e.g., the time required
for the incident wave to travel down and the reflected wave to
travel back from an open circuit termination at the end of a 120 cm
piece of RG-9A/U is 11.4 ns giving νρ = 2.1 x 10 cm/sec. Knowing νρ
and reading T from the oscilloscope determines D. The mismatch is
then located down the line. Most TDR’s calculate this distance
automatically for the user.

The shape of the reflected wave is also valuable since it reveals both
the nature and magnitude of the mismatch. Figure 6 shows four typical
oscilloscope displays and the load impedance responsible for each.
Figures 7a and 7b show actual screen captures from the HP 54750A
Digitizing Oscilloscope. These displays are easily interpreted by recalling:

Er ZL – Zo
ρ = —— = —————

Ei ZL + Zo

Knowledge of Ei and Er, as measured on the oscilloscope, allows ZL
to be determined in terms of Zo, or vice versa. In Figure 6, for
example, we may verify that the reflections are actually from the
terminations specified.

Locating
Mismatches

Analyzing 
Reflections
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Figure 6. TDR displays for typical loads.

Assuming Zo is real (approximately true for high quality commercial
cable), it is seen that resistive mismatches reflect a voltage of the
same shape as the driving voltage, with the magnitude and polarity
of Er determined by the relative values of Zo and RL.

Also of interest are the reflections produced by complex load imped-
ances. Four basic examples of these reflections are shown in Figure 8.
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and then transforming this product back into the time domain to
find an expression for er(t). This procedure is useful, but a simpler
analysis is possible without resorting to Laplace transforms. The
more direct analysis involves evaluating the reflected voltage at t =
0 and at t = ∞ and assuming any transition between these two
values to be exponential. (For simplicity, time is chosen to be zero
when the reflected wave arrives back at the monitoring point.) In
the case of the series R-L combination, for example, at t = 0 the
reflected voltage is +Ei. This is because the inductor will not accept
a sudden change in current; it initially looks like an infinite
impedance, and ρ = +1 at t = 0. Then current in L builds up
exponentially and its impedance drops toward zero. At t = ∞,
therefore er(t) is determined only by the value of R.

R – Zo
( ρ = ———— When τ = ∞ )

R + Zo

The exponential transition of er(t) has a time constant determined
by the effective resistance seen by the inductor. Since the output
impedance of the transmission line is Zo, the inductor sees Zo in
series with R, and

L
γ = ———— 

R + Zo

Figure 7b. Screen capture of short 
circuit termination from HP 54750A

Figure 7a. Screen capture of open 
circuit termination from HP 54750A
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Figure 8. Oscilloscope displays for complex ZL.                         
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A similar analysis is possible for the case of the parallel R-C
termination. At time zero, the load appears as a short circuit since
the capacitor will not accept a sudden change in voltage. Therefore,
ρ = –1 when t = 0. After some time, however, voltage builds up on C
and its impedance rises. At t = ∞, the capacitor is effectively an
open circuit:

R – Zo
ZL = R  and = ————

R + Zo

The resistance seen by the capacitor is Zo in parallel with R, and
therefore the time constant of the exponential transition of er(t) is:

Zo R   
———— C

Zo + R

The two remaining cases can be treated in exactly the same way.
The results of this analysis are summarized in Figure 8.

So far, mention has been made only about the effect of a mismatched
load at the end of a transmission line. Often, however, one is not
only concerned with what is happening at the load, but also at
intermediate positions along the line. Consider the transmission
system in Figure 9.

The junction of the two lines (both of characteristic impedance Zo)
employs a connector of some sort. Let us assume that the connector
adds a small inductor in series with the line. Analyzing this
discontinuity on the line is not much different from analyzing a
mismatched termination. In effect, one treats everything to the
right of M in the figure as an equivalent impedance in series with
the small inductor and then calls this series combination the
effective load impedance for the system at the point M. Since the
input impedance to the right of M is Zo, an equivalent representa-
tion is shown in Figure 10. The pattern on the oscilloscope is merely
a special case of Figure 8A and is shown on Figure 11.

Figure 9.

Discontinuities
on the Line

ZLZo

M

Zo

Assume Z   = ZL o
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Figure 10.

Figure 11.

Time domain reflectometry is also useful for comparing losses in
transmission lines. Cables where series losses predominate reflect a
voltage wave with an exponentially rising characteristic, while
those in which shunt losses predominate reflect a voltage wave
with an exponentially-decaying characteristic. This can be
understood by looking at the input impedance of the lossy line.

Assuming that the lossy line is infinitely long, the input impedance
is given by:

R + jωL
Zin = Zo =          —————     

G + jωC

Treating first the case where series losses predominate, G is so
small compared to ωC that it can be neglected:

R + jωL L R
1/2

Zin =          ————— =          —— ( 1 + —— )  
jωC                     C             jωL

Recalling the approximation (1 + x)a ≈ (I + ax) for x<1, Zin can be
approximated by:

L R
Zin ≈ —— ( 1 + ——— ) When R < ωL

C             j2ωL

Since the leading edge of the incident step is made up almost
entirely of high frequency components, R is certainly less than ωL
for t = 0+. Therefore the above approximation for the lossy line,
which looks like a simple series R-C network, is valid for a short
time after t = 0. It turns out that this model is all that is necessary
to determine the transmission line’s loss.
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In terms of an equivalent circuit valid at t = 0+, the transmission
line with series losses is shown in Figure 12.

Figure 12. A simple model valid at t = 0+ for a line with series losses

The response to a step of height E appears as Figure 13, where Zs
source impedance, and assumed resistive.

Figure 13.

In the case where Zs = R′, τ = 2Zs C’ and the initial slope of ein(t) is
given by:

E E
mi = ———— = —— R

4R′C′ 8L

The series resistance of the lossy line (R) is a function of the skin
depth of the conductor and therefore is not constant with frequency.
As a result, it is difficult to relate the initial slope with an actual
value of R. However, the magnitude of the slope is useful in
comparing conductors of different loss.

A similar analysis is possible for a conductor where shunt losses
predominate. Here the input admittance of the lossy cable is given
by:

1                 G + jωC                   G + jωC
Yin = —— =          ————— =          —————       

Zin R + jωL                      jωL
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Since R is assumed small, re-writing this expression for Yin:

C G
1/2

Yin =          —  ( 1 + ——— ) 
L              jωC

Again approximating the polynominal under the square root sign:

C G
Yin ≈ —  ( 1 + ——— ) When G <ωC

L            j2ωC

Going to an equivalent circuit (Figure 14) valid at t = 0+,

Figure 14. A simple model valid at t = 0+ for a line with shunt losses

ein(t) will look like Figure 15.

Figure 15.

1
Assuming G′ = ——, t = 2G′L′ and the initial slope of ein(t) is given by:
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Again G depends on frequency, but relative loss can be estimated
from the value of mi.
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A qualitative interpretation of why ein(t) behaves as it does is quite
simple in both these cases. For series losses, the line looks more
and more like an open circuit as time goes on because the voltage
wave traveling down the line accumulates more and more series
resistance to force current through. In the case of shunt losses, the
input eventually looks like a short circuit because the current
traveling down the line sees more and more accumulated shunt
conductance to develop voltage across.

One of the advantages of TDR is its ability to handle cases involving
more than one discontinuity. An example of this is Figure 16.

Figure 16.

The oscilloscope’s display for this situation would be similar to the
diagram in Figure 17 (drawn for the case where ZL<Zo< Z′o:

Figure 17.

It is seen that the two mismatches produce reflections that can be
analyzed separately. The mismatch at the junction of the two
transmission lines generates a reflected wave, Er , where

Z′o – Zo
Er = ρ1 Ei = ( ———— ) Ei
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Similarly, the mismatch at the load also creates a reflection due to
its reflection coefficient
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Two things must be considered before the apparent reflection from
ZL, as shown on the oscilloscope, is used to determine ρ2. First, the
voltage step incident on ZL is (1 + ρ1) Ei, not merely Ei. Second, the
reflection from the load is

[ ρ2 (1 + ρ1) Ei ] = ErL

but this is not equal to Er2
since a re-reflection occurs at the

mismatched junction of the two transmission lines. The wave that
returns to the monitoring point is

Er2
= (1 + ρ1′) ErL

= (1 + ρ1′) [ ρ2 (1 + ρ1) Ei ]

Since ρ1′ = –ρ1, Er2
may be re-written as:

Er2
Er2

= [ ρ2
(1 – ρ1

2 ) ] Ei

The part of ErL
reflected from the junction of

ErL
Z′o and Zo (i.e., ρ1′ ErL

)

is again reflected off the load and heads back to the monitoring
point only to be partially reflected at the junction of Zo′ and Zo.
This continues indefinitely, but after some time the magnitude of
the reflections approaches zero.

In conclusion, this application note has described the fundamental
theory behind time domain reflectometry. Also covered were some
more practical aspects of TDR, such as reflection analysis and
oscilloscope displays of basic loads. This content should provide a
strong foundation for the TDR neophyte, as well as a good brush-up
tutorial for the more experienced TDR user.
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