

Configuring the HP 4396B for O/E Testing

Application Note 1288-2

Introduction

The recent trend in cable television (CATV) is the need for more selections, or channels, and the possibility of having interactive TV services such as On-Line-Banking and Movies-on-Demand. These requirements are pushing the limits of the copper cabling already laid out for today's CATV systems and these systems are not able to provide the "500 channels" of TV for the future. The industry is now changing from copper cable to fiber optic cable to carry the signals to the consumer.

	The fiber optic cable carries the channel information as light signals, but all major TV equipment works upon electrical signals. Hence, tomorrow's CATV systems needs both electrical-to-optical converters (E/O) and optical-to-electrical (O/E) converters. An O/E converter changes light signals to electrical signals, and an E/O converter does the reverse.
	These converters need to be tested for conversion flatness and efficiency. A converter with too much ripple can cause distortions in the TV channels audio or video signals, which will show on the TV screen. A converter with low efficiency, or gain, can lead to low signal-to-noise ratio, which would cause "snow" on the TV. A converter without flat group delay will affect the quality of the audio and color of the channel.
	There is a myriad of tests performed on these converters; this paper will concentrate solely on the test system setup for O/E converter test, using the HP 4396B 1.8 GHz Combination Analyzer.
The HP 4396B	The HP 4396B combines a network analyzer (NA), spectrum analyzer (SA), and impedance analyzer (ZA) into a single instrument. This combination allows for some major advantages:
2 3	 Reduced capital equipment cost — The HP 4396B costs less than a comparable network analyzer and spectrum analyzer if they were purchased separately. Simplicity — The HP 4396B is simpler to use. The front panel interface is always the same for every mode of the combination analyzer. Knowing how to operate the HP 4396B means you can operate 3 analyzers without constantly connecting and reconnecting the cables. Accuracy — The HP 4396B uses the latest digital signal processing (DSP) techniques to enhance its performance. The HP 4396B has digital bandwidth filters and a stepped FFT technique for speed and accuracy. Power — The HP 4396B has several powerful functions to enhance your testing capabilities, such as List Sweep, a built-in floppy disk drive (FDD), and a controller capability with HP IBASIC to automate testing or test systems.
	HP IBASIC allows for convenient control of the HP 4396B and automates testing. In this note, HP IBASIC is used to determine the offset factors for the E/O converter. In order to test an O/E converter, an optical system or an E/O converter must be characterized. These characteristics are placed into the HP 4396B memory array and subtracted from the actual E/O-O/E measurement to obtain the O/E parameters.
	The HP 83400 series of Lightwave Sources are excellent E/O converters, with modulation bandwidths from 300 kHz to 3 GHz. They come provided with a disk of calibrated conversion parameters specific to each individual unit.
	With an IBASIC program, the HP 4396B can read the E/O instrument disk and interpolate the conversion parameters for any bandwidth of interest. The HP IBASIC program will then put into the HP 4396B memory array the E/O conversion parameters. This HP IBASIC program is available from your local HP field sales representative upon request. (See Appendix for program listing.)
	Conversely, the HP 83410 series of Optical Receivers can be used to characterize an E/O system. Instead of using a calibrated E/O for the test system, a calibrated O/E can be used to find the characteristics of the E/O

Figure 1. Conversion Flatness for the HP 83400B

One of the first tests of an O/E converter is magnitude and group delay flatness, also called conversion flatness. Conversion flatness indicates whether the device converts signals from light to electricity in a manner that is relatively flat over a given bandwidth. For TV signals, a channel bandwidth is 6 MHz.

The system layout is given in Figure 2. The output from the network analyzer source is split; half the signal is returned to the analyzer's reference port, while the other half goes to the E/O converter. The optical output from the E/O is connected via fiber optic cable to the O/E converter (DUT). The electrical output of the O/E is the sent on to the Analyzer's transmission port. An S-parameter test set can also be used to make full 2-port S parameter measurements, although E/O converter will remain the same in every measurement.

Figure 2. Network Analysis System Setup.

The HP 4396B for testing O/E Conversion Flatness

After completing a THRU calibration by bypassing the E/O and O/E converters, the system is ready to make measurements. The calibrated data measured by the analyzer is the total conversion of both the E/O and the O/E converters. To get just the O/E converter conversion data, the analyzer will then subtract the conversion parameters of the E/O converter. The resultant trace, DATA - MEMORY, is the conversion flatness of the DUT. A sample Conversion Flatness result is given in Figure 3.

The HP 4396B has a full vector network analyzer, which means it processes phase information in its measurements. The phase information combined with the frequency information results in group delay information.

Figure 3. Corrected O/E Converter Amplitude Flatness.

The HP 4396B has a powerful spectrum analyzer inside. It has a dedicated Spectrum Input Port, and can also monitor the spectrum from the R, A, or B ports. A spectrum analyzer allows spectral testing of a component for Carrier-to-Noise (C/N), Harmonics, Hum, and Composite Triple Beat (CTB). A system schematic for CTB testing is shown in Figure 4. Separate signal generators are necessary to drive the E/O converter.

Figure 4. Spectrum Analysis IMD Test Setup

The HP 4396B Spectrum Analyzer

In Figure 4, only one E/O converter is used with the two signal generators combined at the input to the E/O. Depending on the specifications of the E/O, two E/O converters can be used: one attached to the output of each signal generator, with an optical combiner to combine them before the input to the O/E under test. A screen from a CTB test is shown in figure 5.

Figure 5. Spectrum Analyzer CTB Test Results

C/N measures the amount of signal present compared to the amount of noise on the signal. Too little C/N means "snow" on the TV screen. CTB measures the amount of distortion from in-channel signals that "leaks" to other channels. This is called crossmodulation or crossmod, and typically is represented by jittery diagonal lines on the TV. Hum measures the AM modulation of the signal carrier due to the electrical power system. The TV picture will show overlaid horizontal if too much hum is present.

The HP 4396B fits in perfectly for testing CATV components, electrically and optically. The use of the calibrated Optical Transmitters and Receivers allows for manufacturing test of O/E converters. The HP 4396B has a third analyzer in it, an impedance analyzer for measuring passive components. This triple functionality of the HP 4396B also makes it a very useful tool for R&D engineers making CATV components.

Conclusion

Appendix	10410 IF Points<>Pnts OR Sta<>Strt OR Sto<>Stp	
	THEN 10420 GOSUB Correction	
Program Listing	10430 END IF	
10000 !Program to be run by HP4396B internal IBASIC	10440 END LOOP 10450 STOP	
10010 ! This program uses the correction factors for	10460 ! 10470 Correction:!	
10020 ! an HP83411C lightwave receiver as found on	10480 BEEP	
10030 ! the floppy disc shiped with the HP83411C for	10490 ! 10500 !Save new Points, Sta and Sto values	
10040 ! use with an HP8702.	10510 !	
10050 ! The name of the file to be used must be 10060 ! entered below.	10520 Pnts=Points 10530 Strt=Sta	
10070 ! At startup and whenever the start frequency,	10540 Stp=Sto	
10080 ! the stop frequency or the number of points is 10090 ! changed this program will re-calculate the	10550 ! 10560 OUTPUT @Hp4396;";MEAS S21" ! Meas	
10100 ! correction data for the HP83411C and store	S21 10570 OUTPUT @Hp4396;";HOLD" ! Stop	
10110 ! this data in the so called memory array of 10120 ! the HP4396B after which DATA+MEMORY	sweep	
is	10580 OUTPUT @Hp4396;";DISA ALLB" ! Claim display	
10130 ! selected for display. This way all displayed 10140 ! data is corrected for the HP83411C.	10590 !	
10150 REM	10600 PRINT 10610 PRINT	
10151 COM /Ampl_phase/ Ampl(1:101,1:2),Phase(1:101,1:2),Delay	10620 !	
10160 INTEGER One_point,Err,Error 10170 REAL Points.Pnts	10630 GOSUB Err 10640 !	
10180 REAL Strt, Stp, Sta, Sto	10650 IF Error=0 THEN	
10190 REAL Dat(1:801,1:2) 10200 DIM Err\$[256],Error\$[256],Filename\$[256]	10660 ! 10670 ! Get correction values from disc.	
10210 !	10680 ! 10690 Read_floppy(Filename\$,Error,Error\$)	
10220	10700 END IF	
======	10710 ! 10720 IF Error=0 THEN	
10230 Filename\$="" ! Enter filename here 10240	10730 PRINT	
!======================================	10740 PRINT 10750 PRINT	
======= 10250 !	10760 PRINT "RE-CALCULATING HP83411C	
10251 Delay=0 10252 !	CORRECTION CURVE" 10770 PRINT	
10260 RAD	10780 PRINT USING "K,10D";"Start frequency :";Sta	
10270 ! 10280 ASSIGN @Hp4396 TO 800	10790 PRINT USING "K,10D";"Stop frequency	
10290 ASSIGN @Bin TO 8;FORMAT OFF	:";Sto 10800 PRINT "Number of points :";Points	
10300 ! 10310 ON KEY 1 LABEL "RETRY CAL" GOSUB	10810 ! 10820 ! Calculate new correction by interpolation	
Calkey 10320 ! 10320 LOOP	10830 ! 10840 Mkd(Strt,Stp,Pnts,Dat(*))	
10330 LOOP 10340 OUTPUT @Hp4396;";POIN?" ! # of	10850 ! 10860 ! Send data header information	
datapoints 10350 ENTER @Hp4396;Points	10870 !	
10360 OUTPUT @Hp4396;"STAR?" ! Start frequency	10880 OUTPUT @Hp4396 USING "#,K";";FORM3;INPUDATA "	
10370 ENTÉR @Hp4396;Sta	10890 OUTPUT @Hp4396 USING "#,K,6Z";"#6",Points*16	
10380 OUTPUT @Hp4396;"STOP?" ! Stop frequency	10900 !	
10390 ENTER @Hp4396;Sto	10910 ! Send data and manipulate. 10920 !	
10400 !	10930 GOSUB Send ! To DATA arrays	

10940	OUTPUT @Hp4396;";DATMEM" ! To
10950	MEMORY arrays OUTPUT @Hp4396;";SAVC" !
10960	Re-calculate CAL OUTPUT @Hp4396;";MATH DPLM" ! Disp
10970 10980	DataPLusMem END IF !
10990 11000	IF Error THEN Error=0
11010	OUTPUT @Hp4396;";DISA HIHB"! Claim 50% display
11020 11030	PRINT Error\$
11040	PRINT PRINT "Correction failed. Check :"
11050 11060	PRINT
11070	PRINT "- START frequency"
11080	PRINT "- STOP frequency"
11090 11100	PRINT "- NUMBER of POINTS" PRINT
11110	PRINT "and change to correct values."
11120	PRINT "OR press RETRY CAL to retry with
	current values."
11130	
11140	OUTPUT @Hp4396;";KEY 47" ! System menu
11150	OUTPUT @Hp4396;";KEY 0" ! IBASIC OUTPUT @Hp4396;";KEY 6" ! ON KEY
11160	OUTPUT @Hp4396;";KEY 6" !ON KEY LABELS
11170	ELSE
11180	OUTPUT @Hp4396;";DISA ALLI" ! Release
	display
11190	END IF
11200 11210	! OUTPUT @Hp4396;";CONT"
	RETURN
11230	
11240	
11250	FOR One_point=1 TO Points-1
11260	OUTPUT
11270	<pre>@Bin;Dat(One_point,1),Dat(One_point,2) NEXT One_point</pre>
11280	OUTPUT
	<pre>@Bin;Dat(One_point,1),Dat(One_point,2)</pre>
	END
	RETURN
11310	! Calkey: !
11520	Caircy. :

For more information about Hewlett-Packard Test and Measurement products, applications, services, and for a current sales office listing, visit our web site, http://www.hp.com/go/tmdir. You can also contact one of the following centers and ask for a test and measurement sales representative.

United States:

Hewlett-Packard Company Test and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026 1 800 452 4844

Canada:

Hewlett-Packard Canada Ltd. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (905) 206 4725

Europe:

Hewlett-Packard European Marketing Centre P.O. Box 999 1180 AZ Amstelveen The Netherlands (31 20) 547 9900

Japan:

Hewlett-Packard Japan Ltd. Measurement Assistance Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192, Japan Tel: (81-426) 56-7832 Fax: (81-426) 56-7840

Latin America:

Hewlett-Packard Latin American Region Headquarters 5200 Blue Lagoon Drive 9th Floor Miami, Florida 33126 U.S.A. (305) 267 4245/4220

Australia/New Zealand:

Hewlett-Packard Australia Ltd. 31-41 Joseph Street Blackburn, Victoria 3130 Australia 1 800 629 485

Asia Pacific:

Hewlett-Packard Asia Pacific Ltd 17-21/F Shell Tower, Times Square, 1 Matheson Street, Causeway Bay, Hong Kong Tel: (852) 2599 7777 Fax: (852) 2506 9285

© Copyright 1994 Hewlett-Packard Company Data subject to change Printed in U.S.A. 4/97 5965-7657E