Current status of HP calibration and traceability at mm-wave frequencies

By: Brent Palmer, Standards Lab Manager Mike Cuevas, Product Manager Stanford Park Division Hewlett-Packard

Philosophy is intellectual speculation turned into belief. Quantitative agreement of theory with experimental fact distinguishes science from philosophy.

B.M. Oliver, HP

1. Why Traceability & Callb	ration are important
Integrity in specifications, and th is necessary for commerciality.	erefor e measurements,
In R&D	
 Data can be verified by different entities. 	ent engineers and by
 Experiments can be repeated 	with consistent results.
In production	
 Accurate measurements are new Setting specifications and guase Determination of yields (pricing 	rdbands.
In the market place	
 Fair competition based on veri Discrepancies between buyer a Acceptance of defective products 	nd vendor.

,

The performance of these parameters (and therefore their measurement and traceability), is essential to the performance of systems. For example, impedance matching determines transfer of power. Attenuation is used to accurately control power levels. In many cases, power output needs to be known to comply with government regulations. Plus, system output and input power levels determine loss budgets.

Because of the increasingly smaller waveguide dimensions at mm-wave frequencies, minute misalignments will have much greater effect in performance than at lower frequencies.

4. Effect of flange quality on performance of mm-wave components

Example of how waveguide and flange misalignment affect performance at Q-band

a = 0.224 in, waveguide horizontal dimension

b = 0.112 in, waveguide vertical dimension

- $\Delta_a = \pm 0.0015$ in, specified max waveguide misalignment in vert. direction
- $\Delta_b = \pm 0.0015$ in, specified max waveguide misalignment in horiz. direction
- $\Delta'_{a} = \pm 0.0035$ in, specified max flange misalignment in vert. direction
- $\Delta \dot{b} = \pm 0.0035$ in, specified max flange misalignment in horiz. direction

This means that a Q-band coupler that was at the limit of its dimensional specifications when connected to a perfect load would be limited to a directivity of 31.4 dB.

When a statement of accuracy is made, such as Γ error = 0.006 +0.009 Γ_D , the 0.006 term includes the Γ of the sliding load plus some other system errors.

6. NBS mm-wave calibration capabilities

. •

Impedanc	• No		Future (early '86)			
	Measurement Method	nt Uncertainty		Mea s urement Method	Uncer- tainty	
K _a -band * WR-28 26.5-40 GHz	Tuned W–G Reflectometer 30 MHz IF	0.001	+0.003 Г _D	W–G Dual 6–port	Being evalu— ated	
Q-band WR-22 33-50 GHz			_	W–G Dual 6–port	Being evalu— ated	
U-band WR-19 40-60 GHz	_		-	Covered by Q & V-band	-	
V-band WR-15	Tuned W-G Reflectometer	0.001	+0.003 []			
50–75 GHz	W-G Single 6-port	0.001	+0.003 Г <mark>р</mark>			
W-band WR-10 75-110 GHz	W-G Single 6-port	0.001	+0.003 Гр	_	_	
+HP R-band						

6. NBS mm-wave calibration capabilities Attenuation

Autonuali	No	w	Future				
	Measurement Method	Uncertainty	Measurement Method	Uncer— tainty			
K _a —band WR—28 26.5—40 GHz	Tuned W–G Reflectometer 30 MHz IF	0.5%	_	_			
Q—band WR—22 33—50 GHz	_			-			
U-band WR-19 40-60 GHz	_	_	_	-			
V—band WR—15 Limited to 55—65 Ghz	Tuned WG Reflectometer 30 MHz IF	0.5%	_	_			
W—band WR—10 75—110 GHz		_	. –	-			

6. NBS mm-wave calibration capabilities Power

Power	No	ow.	Future		
	Measurement Method	Uncertainty	Measurement Method	Uncer— tainty	
K _a -band	Microcal	1%	W-G	Being	
WR-28 26.5-40 GHz	Tuned W–G Reflectometer	1%	Dual 6-port	eval— uated	
Q-band WR-22 33-50 GHz	_		W-G Dual 6-port	Being eval- uated	
U-band WR-19 40-60 GHz	_	-	Covered by Q & V-bands	-	
V-band WR-15	Microcal	2%			
Limited to 55–65 Ghz	Tuned W-G Reflectometer	2%			
W-band	Microcal	3%			
75–110 GHz	W–G Dual 6–port	3%			

6. NBS mm-wave calibration capabilities

ENK	No	W	Future (early '88)		
	Measurement Method	Uncertainty	Measurement Method	Uncer- tainty	
K _a -band WR-28 26.5-40 GHz	_	_	_	-	
Q-band WR-22 33-50 GHz	_	_	Noise sources 40–50 GHz	Being eval— uated	
U-band WR-19 40-60 GHz	_	_	Covered by Q & V-bands	_	
V—band WR—15 Limited to 55—65 Ghz	Total Power Radiometer	+0.15 dB	_	_	
W—band WR—10 Limited to 94—95	Automated Radiometer	+0.13 dB	Noise sources	Being eval— uated	

7. HP activities in mm-waves

HP now has a fairly complete line of instruments and components to make measurements up to U-band, 60 GHz in...

- · Power (up to 50 GHz)
- Spectrum Analysis
- Network Analysis
 Vector
 Scalar
- Signal Sources
- Frequency (up to 40 GHz)
- Measurement Accessories

8. HP traceability at mm-wave frequencies

A. Impedance

 Indirect traceability to NBS thru dimensions of Sliding load and offset shorts

B. Attenuation

- Indirect traceability to NBS thru parallel IF (30 MHz) substitution
 - 30 MHz piston attenuator is calibrated by NBS

8. HP traceability at mm-wave frequencies

C. Power

• Direct traceability to NBS CAL—factor of HP standard power sensor is calibrated at several frequencies by NBS.

 Indirect traceability CAL-factor of HP standard power sensor is calibrated internally, at every GHz, with a calorimeter.

D. ENR

None at this time.

E. Frequency

• Indirect traceability by linear down conversion

8. HP Traceability at mm-wave frequencies impedance

		Standard	s lab		Productio	n
	Msmt method	Standard reference	Uncertainty	Msmt meth	Standard reference	Uncer tainty
K _a —band 26.5—40 GHz	Manually tuned Reflecto— meter	Dimen— sions of sliding load calibrated with laser interfer— ometer	0.006 +0.014 D	ANA	Sliding load calibrated at stand— ards lab	0.006 + 0.014⊡
Q—band 33—50 GHz	Manually tuned Reflecto— meter (ANA) future		0.007 +0.017 ₽			0.007 + 0.017 []
U-band 40-60 GHz	ANA future		0.009 +0.02 G		V	0.009 + 0.02 Гр

8. HP Traceability at mm-wave frequencies Attenuation

. •

		Standards lab							Pro	ductio	n
	Msm met		Stan refer		Uncertainty		Ms me	mt eth		dard ence	Uncer- tainty
K _a —band 26.5—40 GHz	Para IF subs tion	illel stitu—	Pisto Atten calibr by Ni	uator ated	0.03 +0.02/10	dB	AN	A	IF atter of Al	nuator NA	0.03 + 0.02/ 10 dB
Q—band 33—50 GHz					0.04 +0.03/10	dB					0.04 + 0.03/ 10 dB
U-band 40-60 GHz				/	0.05 +0.03/10	dB		/		/	0.05 + 0.03/ 10 dB

8. HP Traceability at mm-wave frequencies Power

		Standards lab					Production			
	Msn met	nt :hod	Standard reference	Estimated worst case uncertainty	Ms me	mt eth		dard rence	Estimated Uncertainty tainty	
K _a –band WR–28 28–40 GHz	tune	ecto-	Thermistor sensor calibrated by NBS	CAL factor ≈2%	AN	IA	at s		-	
Q—band WR—22 33—50 GHz		/	R-band ther- mistor sensor Q-band thermocouple sensor Q-band calorimeter	CAL—factor ≈2.3% 40 GHz ≈5.5% 50 GHz				/	40 GHz ≈ 3.9%, R.S.S. ≈ 6.8% W.C. 50 GHz ≈ 5.5% R.S.S. ≈ 9.3% W.C.	
U—band WR—19 40—60 GHz	_	-	-	_	-		-	-	_	

- 1. HP Q422A must operate in square law range.
- 2. HP 415E must be calibrated.

- 1. Mixer must be operated in its linear range.
- 2. Source and load match affect accuracy.

12. HP mm-wave calibration services

- A. At this time, HP only provides re-calibration services for HP products up to 60 GHz, unless otherwise listed. Re-calibration is done in production only.
- B. The re-calibration services are for the following parameters:
 - CAL-factor of power sensors (up to 50 GHz)
 - Reflection coefficient
 - Attenuation
 - Directivity

12. HP mm-wave calibration services

- C. A report will be issued giving the calibrated parameters as a function of frequency at least at every GHz, including uncertainties.
- D. At this time HP does not comply with MIL-STD-45662.

12. HP mm-wave calibration services for Q-band 33 to 50 GHz

	Estimated accuracy	Number of points	Price	Comments
CAL—factor of power sensors	3.9% RSS 40 GHz 6.8% w/case 40 GHz 5.5% RSS 50 GHz 9.3% w/case 50 GHz	18	\$150	Includes reflection coefficient
Reflection coefficient	0.007 +0.017 D	51	\$100	
Attenuation	0.04 +0.03/10 dB	51	\$150 per atten setting	Includes reflection coefficient
Directivity of single couplers	Limited by measur- ing system effective directivity of 43 dB	51	\$300	
			USA prices	

12. HP mm-wave calibration services for U-band 40 to 60 GHz

æ.

ć. •

	Estimated accuracy	Number of points	Price	Comments
CAL—factor of power sensors	_	_	_	Not available at this time
Reflection coefficient	0.009 +0.02 D	51	\$115	_
Attenuation	0.05 +0.03/10 dB	51	\$175 per atten setting	Includes reflection coefficient
Directivity of single couplers	Limited by measur— ing systern effective directivity of 41 dB	51	\$350	

12. HP mm-wave calibration services

Procedures to get products re-calibrated:

Send them to your nearest HP service office.

LIST OF REFERENCES

- 1. G.R. Reeve and C.K.S. Miller, Current NBS Capabilities and Limitations at Millimeter Wave Frequencies, Measurement Science Conference, January 1985.
- 2. NBS Technical Note 642.
- 3. Hewlett-Packard Product Note Number 8510-1.
- 4. Edward L. Ginzton, Microwave Measurements, McGraw Hill, 1957.
- 5. IEC-standard publication 154-2, 2nd edition 1980.