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Summary

The measurement of close-in phase noise using
time domain techniques will be discussed. A reVlew
of the theoretical basis for the measurements and
some extensions will be presented. A system for
making the measurements using a high resolution
reciprocal counter and a desk top calculator will be
described. The capabilities of the system will be
reviewed.

Derivation of Time Domain Relationships
to Phase Spectra Characteristics

Definitions and Notation

Let us begin with a brief review of random
variables, linear systems, notations and definitions.

Let x(t) be a real random variable. The auto
correlation function of x(t) is defined as:

Introduction Rx (t,T) = <x(t) . x(t + T» (1 )

If x(t) is ergodic, then the statistical average
can be replaced by time average.

If x(t) is stationary in the wide sense, then the
auto correlation does not depend on t and we can write:

The measurement of phase noise can be made by a
variety of methods which are described in the current
literature. However, if one desires to measure the
spectral characteristics close into the carrier, the
task becomes difficult and time consuming. Measure­
ments down to the 10 to 100 Hz range can be accom­
plished with spectrum or wave analyzers depending on
the noise level. Measurements much below these
offset frequencies are virtually impossible with
these techniques.

where <>means statistical or ensemble average.

R (T) =<x(t) . x(t + T»x
(2)

It can be shown that:

The spectral density of x(t) is defined as the
Fourier transform of its auto correlation function:

(6)

(5 )

(4)

(3)

Figure

-G- mCt)x(t)

co , .

R (T) = -.!. JS (w) e+JwTdw
X 2TT x

-co

The inversion formula gives:

Equation 6 will be used to determine S (w) in the
next section. For more details see referencgs 1,2 and 3.

We will assume without any loss of generality
that the mean value of x(t) is zero. In this case we
have:

Let a linear time invariant system with transfer
function H(w) be driven by the random variable x(t).
The output of the system represented by m(t) will be
al so a random variable as in Fig. 1.

The techniques to make measurements closer to
the carrier usually resort to time domain analysis
which is also described in the current literature.
The primary impediment to the utilization of these
techniques has been the lack of equipment to make it
easy to use. Recent equipment advances such as
programmable instruments and versatile calculators,
for example, have provided the means to implement
these techniques.

Before describing the measurement system, a
review of the theoretical basis for the measurement
will be presented. Most of this review will follow
the standard literature with some exceptions that
will tend to put more emphasis on the calculator
util ization.

A general transfer function will be derived for
the counter-calculator system which should cover a
standard frequency measurement or comparison of the
phase between two oscillators or the phase of an
oscillator compared to itself through a delay line.

For a constant gate time (or constant'delay),
the transfer function can be written as the product
of two functions, one controlled by the counter (or
delay line) and the other by the calculator.

We prove that a linear combination of frequency
measurements is equivalent to a filter·which can be
adjusted by proper choice of the linear combination
coefficients. A particular choice of coefficients
is assumed for which we derive closed formulas for
the continuous and the delta function (bright line)
spectral densities. The minimum spectral level due
to counter quantization is derived.

This is a preprint of a paper presented at the Thirtieth Annual Frequency Control Symposium, June 2-4, 1976.
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Measuring Spectral Density We have:

Normally a narrow band filter represented by H(w)
is used to determine the spectra of the random variable
x(t) as explained below. Two special cases are
considered.

(11 )

which gives:

2
'TI IH( wo) I ( "2 -wl )

(8)

where 0
2 can be determined with an average power meter

or usin~ samples of Kmeasurements of m as: 1 ,4,5

(14 )

(12 )

V(t) = V . cos (2rry t + 8 + 8(t)) (13)
000

Frequency Counter as a Linear System

Consider the signal

The signal phase is defined as:

where Vo and yare the nominal amplitude and fre­
quency and 8(t~ represents a random phase variation.
8

0
is chosen such that <8(t» = o.

Any amplitude variation is assumed to be
eliminated by limiters or some other method and for
this reason is disregarded.

Note that t xp
2 is the average power of x(t).

It should be pointed out that during all the
deri va t ions we will use the "two-s ided" spectral"
density, that is the integrations will be from _00 to
+00. This will keep our Fourier transform pairs in
the standard notation used by most EE's. Fourier
frequency will be in radians per seconds.

(7)

~ l K 1 K 2)K=T .L. (m i - K .L m.)
1=1 J=l J

A. Continuous Spectra - The spectral density
can be considered approximately constant over the
filter bandwidth and we ca~ write:

wI'
2 'V l' 2

o = R (0) = S (w) -'TI S IH(w) I dwm m x 0
uJl

where Wo is the fi lter center frequency and wl, W2
define the filter band. (We have used the fact
that IH(w) I and Sx(w) are even functions of w.)

Solving for the spectral density we get:

Counter Model

and are assumed to be positive for all t, which is
equivalent to ¢(t) be a monotonic increasing function
of time, that is, 2'T1vo - 8(t) > O.

An ideal counter can be modeled as a system
that measures phase variation over an interval of
time T, called gate time, and divides the result by
2'TTT .

= {~l G.t mi
2).- k(.Z m

J
.)2Jl'\ (9)

~ L1=1 J=l V
If we use only one sample of K measurements of m(t),
we get an estimation of 0 2 which is satisfactory for
most cases. m

B. The S ectra Contains Delta Functions. This
is the case when x t contains periodic terms, then
the result of the integration is no longer dependent
on the filter bandwidth.

For example let x(t) be given by:

1 . t . t
x(t) = xp . cos III t = - x [eJ~ + e- Jwo ]o 2 p

(10)

The signal frequency v(t) and the angular
frequency ~(t) are related by:

2'T1v(t) = ~(t) = d¢dt

Let v(t) represent the result of a counter
measurement, then have:

(15 )

Taking the Fourier transform from both sides and
using the shifting theorem, we have:

1v(t) = 2'TTT . [¢ ( t) - ¢(t -T )]

r(w) = -21 [Q(w) - Q(w) e- jwT ]'TIT

Here the upper case letters are used to represent
the Fourier transform.

(16 )

(17)

2
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Which can be reduced to:

r w sin w T/2
(w) = 271 ' w T/2

We may conclude that the counter is a linear
system with transfer function (or gain) given by:

(18 )

The last problem in a real counter is the sampl ing,
that is the counter output is not a continuous vari­
able but a sequence of numbers obtained at the end of
each gate time. A special case solution is presented
in reference 5, Appendix 1.

Modifying the Counter Transfer Function

H (w) =~ sin WT/2 . e-jWT/2
¢ 271 WT/2

where the index ~ in transfer function means
that it applies for the phase as input.

M
m(t) I: a. v. (21 )i=O

, ,
where v. v(t i ),

A weighted combination of a sequence of measure­
ments taken at different times will give:

In order to measure spectral density, we want
the counter to look like a very narrow band filter,
ideally we want a delta function.

(19 )

sin wT/2
W T/2

1
2rrj

The transfer function when the angular fre­
quency n(t) is considered as input is given by:

Practical Counters

Below are some problems that we might incur due
to practical considerations.

In reality a counter detects and counts zero
crossings of the signal being measured. If the
phase of the input signal is a monotonic increasing
function of time, as it was assumed, then the model
is quite satisfactory.

On the other hand if the phase of the input
signal can decrease, which is equivalent to a
negative frequency, then we may get extra counts,
for example in the vector diagram representation of
the signal, Fig. 2. Every time that the resultant
vector crosses the Y axis from right to left, we
get a count; if the vector goes back we will get an
extra count.

Let Fig. 3 represent the phase as a function of
time, Ti the gate time and ti the time at the end of
the i reading. The last reading is taken at the time
which is considered to be the current time, that is
t = t.o

Figure 3

Replacing Y(t) as function of ~(t) and defining
Ti to t i we have:

_____..L.. X Taking the Fourier transform we get the transfer
function:

Figure 2

In Fig. 2, V represents a sine wave and V2a interference thAt causes phase modulation.

Practical counters also have quantization
problems, that is the number of counts is an integer
and any fraction of 271 in the phase variation is
disregarded. This problem is reduced by reciprocal
counters with a high frequency clock. In a recip­
rocal counter, the actual gate time is a multiple
of the signal period and if the phase fluctuation
is not too large (e(t)«271v ), then the gate time
can be assumed constant as °far as the counter
transfer function is concerned.

The counter-calculator system equivalent transfer
function can be adjusted to approximate the desired
filter transfer function by proper choice of a., T.
and Ti. The weights ai can be complex and the~r '
phase is equivalent to a change in the time the meas­
urements are made, which can be used to simulate a
variable time between measurements.

3
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If we make the gate time Ti a constant T and the
time between consecutive measurements, defined as
dead time, a constant Td we have:

For most practical cases, the phase noise is a
fast decreasing function of wand only the first pass
band of Hm has to be considered, as in references 6
and 7, which have plots of IHn(w) I which is equal to
IH~(w)/wl. Error will occur depending on how fast
the phase noise decreases as a function of w such as
w- 3 , w- 2 , wO = constant, and we may have to consider
more than one pass band. D,7

Cqlcu]ation of Spectra Density

Let N = (M+l)/2 be the"number of pairs of
measurements represented by the terms in parenthesis,
then we can reduce H~ to:

[
-j2w(T+Td) -j(N-l)2W(T+Td)]

H~ (w) 1+e + ... e

(Z9)

(Z8)

+al

lT~ = 2~ 11 Hn(W)\Z j Stj>(W) dw
-al

1T /;.)
Nw sin r --

IH~ (w) I
Z Wo sin 1T/Z w

1T W Wo1T r --
Z Wo

A normalized expression in w for IH~I is given

If we use Hn(w) instead of H~(w), we have:

as:

A. Continuous Spectra - The spectra can be
considered as constan~ over the filter bandwidth.
Using the fact that am = Rm(O) and eq. 5, we have:

As in the linear system we have two cases.

Figure 4

n(t) ---1'---_J_.~-JI •(t)

So far we have proven that the linear combination
of the frequency measurements m(t) can be considered
as the output of a filter whose input is ~(t) and
transfer function H~ or input n(t) and transfer
function Hn(w). ThlS is represented in the block
diagram, Fig. 4.

(24)

(Z6)

- y )
M
(25)

[~ . sin wT/2
2lT /,jT /2

(T+T i\ w sin wT/2
2Si\w-z-j ·Z1T wT/2

A particular but very useful choice 7 is
ai = (-l)i which reduces m(t) to:

m(t) = (Yo - Yl) + (Y2 - Y3) + ... + (YM-l

The first bracket, which is mainly determined
by the calculator via the as, can be interpreted as
a truncated complex Fourier series and its terms can
be adjusted as a series representation of the desired
filter function D,7. The second bracket can be
considered as a fixed filter and for large Mthe
first bracket completely determines H~.

Other types of measurement such as comparing
the phase of two oscillators of same frequency or
comparing the phase of an oscillator to itself
using a delay line, will have the same type of
transfer function due to the fact that time differ­
ences are equivalent to phase differences.

In the case of a fixed delay line, we use the
calculator controlled part of the transfer function
to achieve the desired filter characteristic.

The bracket can be recognized as a geometric
series which gives:

!'

W

IT
sin wT/2 ~ T+Td~. sin w-2- .wT/2

w±w
N sin1T __0

Wo
(30)

sin Nw(T+Td)

sin w{T+Td) (Z7)

where rand Wo are:

(31 )

A very important point to be kept in mind is
that in general this corresponds to a filter with
many pass bands. See Fig. 6. (3Z)

4
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We have used the fact that sin (x) only changes
the sign when we add or subtract rr to x to obtain the
term (w±wo)/wo. For large Nand Iw±w I«w we can

0, 0
approximate IH~I as:

(36)

Nwo sin rrr/2 sin
w±woNrr--

'\, Wo
IH~I w±worr rrr/2 Nrr-- (33)

Wo

Note that IH~I is equal to a constant times
Isin (x)/xl centered at +w and -w. Solving the
integral (28), we have: 0 0

The phase spectral density due to the pass band
centered at Wo can be determined by equation (36)
where cr2 can be determined by numerical methods.

m

B. Power S ectra Contains Delta Function
(Bri hi Line. Let us consider the special case of
a phase modulated signal such as

(37)

(34)

The phase spectra for the modulation is:

where wo/N can be interpreted as the equivalent
bandwidth in radians per second (see Fig. 5) and
fo = w/2rr. (7<B2

1 )2 [o(f-f ) + o(f+f )J
P 0 0

(38)

The signal can be expanded in the usual form
using Bessel functtons and for small Bp we have:

1If we select Td = 2 T then the multiple responses
of H~(w) do not begln until 5wo is reached. See
figure 6.

(39)

(40)

f
(....Q)

N

39), we conclude
noise S~ are

'\, 1
Jl (B p) 2 Bp

£(f) ';' (-21 e )2 o(f-f )
p 0

where at (f) is defi ned as the energy at rio + Wo per
Hz divided by the total energy.4

From equations 34 and 40, we conclude thaT we
can determine the phase spectrum as for the continuous
case and multiply the result by f /N, to obtain
(1 e )2 0
Z P .

The presence of delta functions (bright lines)
can easily be detected due to the fact that cr~ is not
dependent on the bandwidth fo/N, as is indicated by
equation 40.

From the previous equations (38,
that cJ:. (f) and the "two-sided" phase
approximately equal for small ep'

The relation between cr~ and e is obtained by
solving the integral (28) giving: p

So far we have relations to determine the phase
spectral density S~(w) and the bright lines intensity
(18 )2. In the next section, we will derive the
s§s~em resolution using a statistical approach to the
quantization problem.

(35)

2
'\, 1 rr/3 2 cr m
= - (--) -

8 sinrr/3 Nf3o

s.:
<lJ
+-'

4-

'"<lJ
"0

+-'
c
<lJ

'">
::::l
0-
<lJ

2 <lJ
.s::::.

~ +-':x: LO
Vl

<lJ +-'
~ C
::::l <lJ
0', Vl

<lJ
u... ~

0-
<lJ
s:..

LO

Q)

u...
c
.~

'"<lJ
~

'"
"0
<lJ
"0
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<lJ
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Estimation of the System Resolution

The system resolution is determined by the
minimum time variation that the reciprocal counter
can resolve, which is the clock period.

Let T be the clock period, T the gate time and
v. the frequency of the input signal.,

We will assume that the noise of the input
signal will cause a maximum time variation of n T

Cduring the gate time. Let QV represent the
resultant frequency variation then we have:

The counter by itself does not have sufficient
control or data output capacity, so a measurement stor­
age plug-in unit is included. It extends several cap­
abilities of the counter. The front panel gate times
are (as in most counters) in decade steps. This does
not allow enough flexibility for spectra character­
ization so a gate generator is incorporated in the
plug-in which generates a measurement time (T) signal
in the range of 1 to 999 X 106 ~sec. The dead time
between measurements (TO) is also controllable via
the plug-in. The plug-ln also stores the measurement
data in a buffer memory for output over the interface
bus to the calculator.

This implies in a resolution given by:

The Measurement System
Signal Conditioning. There are a variety of

ways of preconditioning the input signal before
applying them to the input of the counter. The major
objective of these techniques is to increase the
resolution of the measurement. The one shown in
Figure 8 is a simple heterodyning technique where
the test oscillator is compared with a reference
oscillator which is offset in frequency from the test
oscillator by vi. The output of the two oscillators
is mi xed together to produce an audi 0 range beat note.
The output of the mixer is passed thru appropriate
filtering to eliminate the undesired mixer products.
The signal is then amplified by a high gain, low noise,
limiting amplifier. The main purpose of the amplifier
is to provide reliable detection of the zero crossings
of the beat note. The output of the amplifier is
essentially a square wave which is used to drive the
input of the counter. This approach is necessitated
by the wide bandwidth (500 MHz) of the counter input
and the resulting input noise which makes it impossible
to detect a low frequency zero crossing with a 2 nsec
resolution. As such the amplifier is provided with
bandwidth control so that the input noise bandwidth
can be adjusted to be compatible with the signal being
measured.

The measurement cycle of the counter is also
controlled by the plug-in bypassing such things as
the display cycle to minimize the dead time between
measurements. Dead time as low as 15 ~s can be
achieved.

System Operation

For the following discussion,refer to figures
7 and 8.

The mixer/amplifier unit provides a means
to further increase the system's resolution by
heterodyning the test signal down to a low frequency
signal by mixing it with an offset reference oscil­
lator. It includes the necessary filtering, bandwidth
control amd amplifiers to properly condition the input
signals for application to the counter.

The control of all the previously described
instruments is provided by the calculator via the
interface bus. Measurement data is also sent to
the calculator by the same means. The calculator is
programmed from its keyboard to perform the various
measurement operations and to process the data
received from the counter and plug-in. All the
aspects of system behavior are under program control
of the calculator. The operator specifies measurement
parameters at the keyboard. The printer device is
used to output the processed results either in numeric
or plotted form.

(41)

(43)

(42)

QV = ~ V.
T ,

The counter provides the system with the ability
to make high resolution (2 nsec) period or time
interval measurement or frequency (by the reciprocal
technique). This determines the system's sensitivity
floor limit as will be shown later. In addition, the
counter has the ability to be gated from an external
sample time signal. This is necessary in order to
utilize various sampling functions and thus determine
the offset frequency at which a spectra measurement
is made.

where 2N is the number of frequency measurements and
the term in brackets is the variance of Qv.

System Description

The system consists of five major components: a
high resolution reciprocal counter (HP 5345A) with
external gating capabilities, a measurement storage
plug-on unit (HP 5358A), a mixer/amplifier unit
(HP 10830A), a desk top calculator (HP 9825A) and
printer/plotter output device (HP 9871A) as shown in
figure 7. Communication and control between the
various instruments is provided by a digital inter­
face system (HP-Interface Bus). In addition, a test
tone generator (HP 10831A) and time of day clock are
included to enhance the system's capabilities. A
functional block diagram is shown in figure 8.

Using the central limit theorem, we concluded
that for large N the random variable m(t) is
approximately Gaussian with variance equal to the
sum of the variances for each frequency measurement
resulting in:

If we assume that n is uniformly di stri buted
from -1 to +1 and that the resultant QV in each
frequency measurement is independent of all previous
ones, than m(t) is the sum of independent uniformly
distributed random variables.

6
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The technique of comparing two oscillators, while
it has some disadvantages, is still the best overall
method of performing this measurement. It is not
possible to measure the carrier directly, especially
at microwave frequencies, with sufficient resolution,
thus some down conversion technique is required. The
problem is the noise contributed by the local (refer­
~nce) oscillator. In order for it to be negligible
1tS spectra must be 10 to 20 dB below the test
oscillator in which case the error is small (.4 to .2
dB respectively). When it is not possible to obtain
a reference oscillator which is better than the test
oscillator, then two oscillators of assumed identical
spectral characteristics can be used and the measure­
ment result taken as the average of the two. This
approach will always measure the worst of the two with
a maximum error of less than 3 dB. The uncertainty
of which oscillator is the poorest of the pair
can be resolved by taking 3 or more and comparing them
in.all combinations (A vs B, A vs C, B vs C, etc.).
Th1S approach will identify both the best and the
worst of the group.

The remaining problem with the heterodyning
technique is the requirement that the reference os­
cillator be offset from the test oscillator. In
certain cases (cesium, rubidium or crystal oscillators
for example), it is difficult or impractical to offset
them, and .as suc~' a different signal conditioning
approach 1S requ1red. These have been discussed in
the literatures. The main requirement in termsof the
current approach is to present the counter with a
signal which is representative of the phase of the
test osci~lator a~d.whose period is measurable by the
counter w1th suff1c1ent resolution to be meaningful.

Counter Operation. The counter counts the number
of cycles of the input signal that occurs within the
gate time and the number of cycles of the 500 MHz
time base that occurred from the first zero crossing
after the opening of the counter's main gate to the
last zero crossing after the.closing of the gate.
Thus, the measurement consists of two numbers: 1) the
n~mbe~ of cycles of the input and, 2) the elapsed
t1me 1n 2 nsec steps that it took the n cycles to
occur.

The operation of the counter and plug-in unit
are directed by commands received over the interface
bus from the calculator. These are determined by the
stored program in the calculator. Each series of
measurement is made by programming the counter to
the desired function (period, frequency, time inter­
val), setting up the desired gating function (measure­
ment and dead time) and the number of measurements
to be made. The resulting data is stored in the plug­
in in order to reduce the dead time between measure­
m~nts an~ subsequently transferred to the calculator
V1a the 1nterface bus for processing.

Sampling Functions.

The frequency selective characteristics of the
counter is determined by the way the measurement data
is acq~ired by the counter (i.e. the measurement and
dead t1me) and the processing algorithm used in the
calculator (i:e. the choice.of a's) as given by
eq. 24. A var1ety of result1ng transfer functions
have be~n discussed in the literature6 ,7. The most
attr~ct1ve of these from the point of view of an
on ~lne process is the so called modified Hadamard
var1ance or 50% dead time sampling function proposed
by Baugh (see Reference 7, p 225, Figure 6). The
reason for this choice is the sampling function
has two a coefficients which are zero and the counter

7

~an be allowed to reset and transfer data during these
1ntervals. Hence the counter is essentially free
from ~ead time constraints when using this sampling
funct10n. Secondly, the sampling function is a short
sequence suitable to on line processing &allows
measurements to be made out to a reasonable distance
away from the carrier.

Software.

The software (the stored program in the calcu­
lator) determines a significant portion of the
system's behavior and performance characteristics.
The set-up of the operating modes of the instrument
and the method of data reaction is determined by
the program written for the cal cul ator. As such the
sys~em has a ~reat deal of flexibility in executing
var10US sampl1ng and processing methods as a function
of writing the appropriate program.

System Performance

Sensitivity: The system's sensitivity using the
simple heterodyning method and the 50% dead time
sampling function is given by eq. 43. Evaluating
this gives a family of curves as shown in figure 9.
Eq. 43 assumes no other sources of noise in the
system. This is valid as long as the mixer and
amplifier noise are designed to be below this limit.
As can be seen, the sensitivity increases with a
decrease in the beat frequency (v.) and as the offset
frequency is increased. 1

In the primary region of interest (10 Hz and
below), the sensitivity is quite good compared to
most oscillators available today. In the region
above 10 Hz, which is primarily for comparison with
other techniques, the sensitivity can be inadequate.
In these cases other resolution enhancement techniques,
such as multiplying the input signals to microwave
frequencies, can be used.

Maximum Offset Frequency: The maximum offset
frequency is limited by the counter's dead time and
number of measurements required per cycle of the
sampling function. In the case of the 50% dead time
sampling, the upper offset frequency is given by:

f - 1
max - ~

Since the counter is only able to measure an integral
number of cycles of the input, one of these is
equal to the dead time, this can also be related
to the beat note frequency, thus

v.
f 1

max 6"

Filter Bandwidth: The approximate equivalent
filter bandwidth as given in figure 5 is

It is important to note two characteristics: 1) As
the filter fundamental response fo is moved closer
to the carrier, the bandwidth of the filter becomes
propo~tionally smaller, and 2) By increasing N, the
bandw1dth can be made arbitrarily small. Both of
these facts are what allows this method to measure
phase noise arbitrarily (in theory) close to the
carrier, whereas traditional analog methods are

www.HPARCHIVE.com



limited by the skirts of analog filters.

Digital Filter Harmonic Responses

As shown in figure 6, the harmonics of the dig­
ital filter have the same response as the fundamental
response. The usual assumption is that the spectra
in the region of interest is declining at a rate of
f-2 or greater, and that the number of harmonic
responses is limited to a finite number by the select­
able IF filter and thus the error is negligible.
However, this assumption must be verified each time
a different class of oscillator is measured as white
phase noise can contribute significantly. Further,
so called bright 1ines occurring at any of the harmonic
responses will produce erroneous results. The problem
of white phase noise is discussed by Lesage and
Audoin 6 . The problem of bright lines (usually 60 and
120 Hz and harmonics thereof) can be coped with by
judicious choice of the offset frequencies and/or
bandwidths.

Performance Verification

Several methods were used to verify the results
obtained by this measurement technique.

FM Modulation: By applying a FM modulated signal
of a known index of modulation and using the relation­
ship given by eq. 40, the measured value of the side­
bands can be compared with those values predicted by
the modulation index.

The index of modulation is given by

l\f e
6 = f

m
= p

where f m is the modulati~n frequency. If the modula­
tion index is small, 6«2' then the value of the side­
band at fc +fm = 6/2.

Sensitivity Floor Verification: The system's
resolution limit as given by eq. 43 was verified
experimentally. A test tone was generated by divid­
ing a good crystal oscillator's output frequency down
to a variety of frequencies suitable as a beat note
input to the system. The frequency dividers were
digital circuits (74LS161 's) operated in a manner so
as to introduce a minimum of phase noise. The result­
ant signals could be calculated to be much below the
sensitivity limit of the system. If the square wave
outputs of the dividers were applied to the amplifier,
the results were much better than the model predicted.
This is explained by the fact that the square wave
eliminated trigger errors and both the counter's
time base and the test tone were derived from very
stable crystal oscillators and a degree of synchro­
nization occurred. If the outputs of the dividers
were filtered to create sine waves, a + one count
error due to trigger noise could be observed and
good correlation to the resolution floor model occurred.

Correlation with Other Techniques: In the region
of offset frequencies where other techniques can be
used, measurements were made on various oscillators
and the results compared. Results correlated within
3 to 6 dB. One difficulty with correlating these
results is estimating the mean value of the spectra
using spectrum or wave analyzers. This tends to be
subject to operator judgment.

Sample Results

A typical printout of the system is shown in
figure 10. A series of measurements are made at the
specified frequencies and digital filter bandwidths.
The measurements are repeated at each frequency for
specified numbers of "sweeps" to provide some statis­
tical information about the measurements since the
measured value represents an estimation of the mean
value of the spectra. The results can also be
presented in graphical form as shown in figure 11.
Here the "X" represents the average of the values
measured and the "-" the one sigma value of the
variations.

Conclusions

The use of time domain techniques for close-in
phase noise measurements can now be performed in a
practical manner. Use of a high resolution reciprocal
counter gives good sensitivity for offset frequencies
below 100 Hz. By combining a programmable calculator
with the programmable instrumentation, results can be
obtained in the time it takes to collect the data.
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FIGURE 7
HP 5390A FREQUENCY STABILITY ANAL HER SYSTEM CONFIGURATION

PhASE .~OlSI::. 1'ROGRAfoJ (9825) rev 05-26-76-2310

HEwLEn PACKARD-INTERFACE BUS NE.ASLJRE.MENT DESCFd'lIO!'4:

10544A-H36 VS 10544A-H36
uA1'E. OS/26/76 TIME 23,23,00

MEASLJ R£.t.lf:.N'l' PARAMETERS:

K= 10
IF FRE.\;~ENCY 1000 HZ

SSB/CARRIER PHASE. NOISE (DB/HZI
FREQ+ 10.4 2.5 1.0 0.5 0.2 HZ
B. 0.52 0.12 0.05 0.03 0.01 HZ
FLUOR -123.2 -117.0 -113.0 -110.0 -106.0 OB
S.EEP

1 -125.1 -116.1 -103.5 -91. 8 -79.9
2 -126.0 -114. 4 -104.6 -95.2 -80.8
3 -125.8 -112.7 -103.7 -93.6 -79.7
4 -124.0 -117.7 -104.7 -91. 5 -77.7
5 -122.3 -118.9 -103.0. -92.3 -77.2

A\lE= -124.4 -115.4 -103.9 -92.7 -78.8
SIC= 1.5 2.5 0.6 1.5 1.6
MIN= -126.0 -118.9 -104. 7 -95.2 -80.8
MAX= -122.3 -112.7 -103.0 -91. 5 -77.2

END 1'IME,01,52,03

FIGURE 8
PHASE NOISE MEASURING SYSTEM FUNCTIONAL BLOCK DIAGRAM

FIGURE 11
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