Technical Training — page 11

SERVICE INFORMATION FROM HEWLETT-PACKARD

NOVEMBER 1978-APRIL 1979

Switching Power Supplies

Editor's note: The material for this article was edited from HP's DC Power Supply Handbook (AN 90B), originally written by Richard Tomasetti of the Marketing Communications group at HP's power supply division in Rockaway, New Jersey.

Electronic power supplies are defined as units that convert power from an ac or dc source into ac or dc power at voltages suitable for supplying an electronic device.

Within this definition, electronic power supplies can be divided into four broad classifications:

- (1) ac in, ac out line regulators and frequency changers
- (2) dc in, dc out converters and dc regulators
- (3) dc in, ac out inverters
- (4) ac in, dc out "common" power supply

This last category is by far the most common of the four and is generally the one referred to when speaking of a "power supply."

Four basic outputs or modes of operation can be provided by dc output power supplies:

- *Constant Voltage:* The output voltage is maintained constant in spite of changes in load, line, or temperature.
- Constant Current: The output current is maintained constant in spite of changes in load, line, or temperature.
- Voltage Limit: Same as Constant Voltage except for less precise regulation characteristics.
- Current Limit: Similar to Constant Current except for less precise regulation.

Within each type of power supply, different forms of regulation are used to maintain a constant output. Switching is one of the forms used in a constant voltage power supply.

IN THIS ISSUE

PARTS MAIL ORDER FORM

> TRAINING CALENDAR

TRANSISTOR DIODE CROSS REFERENCE

SERVICE NOTES

Therefore, a switching power supply is defined as an ac in, dc out, constant voltage power supply that uses a "switching technique" for regulation.

Basic Switching Supply

In a switching supply, the regulating elements consist of seriesconnected transistors that act as rapidly opened and closed switches (Figure 1). The input ac is first converted to unregulated dc, then "chopped" by the switching element operating at a rapid rate (typically 20kHz). The resultant 20kHz pulse train is transformer-coupled to an output network which provides final rectification and smoothing of the dc output. Regulation is accomplished through control circuits that vary the on-off periods (duty cycle) of the switching elements.

Operating Advantages. Because switching regulators are basically on/off devices, they avoid the higher power dissipation associated with the rheostat-like action of a series regulator. The switching transistors dissipate very little power when either saturated (on) or nonconducting (off); most of the power losses occur elsewhere in the supply. Efficiencies ranging from 65% to 85% are typical for switching supplies, as compared to 30% to 45% efficiencies for linear types. With less wasted power, switching supplies run at cooler temperatures, cost less to operate, and have smaller regulator heat sinks.

The size and weight reductions for switching supplies are achieved because of their high switching rate. The power transformer, inductors, and filter capacitors for 20kHz operation are much smaller and lighter than those required for operation at power line frequencies. Typically, a switching supply is less than one-third size and weight of a comparable series regulated supply.

Another aspect of performance is the switcher's ability to operate under low ac input voltage (brownout) conditions and substain a relatively long carryover (or holdup) of its output if input power is lost momentarily. The switching supply is superior to the linear supply in this regard because more energy is stored in its input filter capacitance. In a switching supply, the input ac is rectified directly and the filter capacitor charges to the voltage peaks on the ac line. This is opposed to the linear supplies' ac input being stepped down through a power transformer, then rectified, which results in a lower voltage across its filter capacitor.

Since the energy stored in a capacitor is proportional to CV^2 , and V is higher in switching supplies, their storage capability (and thus their holdup time) is better.

Operating Disadvantages. Although its advantages are impressive, a switching supply does have some inherent operating characteristics that could limit its effectiveness in certain applications. One of these is that its transient recovery time (dynamic load regulation) is slower than that of a series regulated supply. In a linear supply, recovery time is limited only by the speeds of the semiconductors used in the series regulator and control circuitry. However, in a switching supply, recovery is limited mainly by the inductance in the output filter. This may or may not be of significance to the user, depending upon the specific application.

Also, electro-magnetic interference (EMI) is a natural by-product of the on-off switching. This interference can be conducted to the load (resulting in higher output ripple and noise), it can be conducted back into the ac line, and it can be radiated into the surrounding atmosphere.

For this reason, all Hewlett-Packard switching supplies have built-in shields and filter networks that substantially reduce EMI and control output ripple and noise.

Typical Switching Regulated Power Supply

Figure 2 shows a schematic of one of HP's higher power, yet less complex, switching supplies. Regulation is accomplished by a pair of pushpull switching transistors operating under control of a feedback network consisting of a pulse-width modulator and a voltage comparison amplifier. The feedback elements control the ON periods of the switching transistors to adjust the duty cycle of the bipolar waveform (E) delivered to the output rectifier/ filter. Here the waveform is rectified and averaged to provide a dc output level that is proportional to the duty cycle of the waveform. Hence, increasing the ON times of the switches increases the output voltage and vice-versa.

The waveforms of Figure 2 provide a more detailed picture of circuit operation. The voltage comparison amplifier continuously compares a fraction of the output voltage with a stable reference (EREF) to produce the VCONTROL level for the turn-on comparator. This device compares the VCONTROL input with a triangular ramp waveform (A) occurring at a fixed 40kHz rate. When the ramp voltage is more positive than the control level, a turn-on signal (B) is generated. Notice that an increase or decrease in the VCONTROL voltage varies the width of the output pulses at B and thus the ON time of the switches.

Steering logic within the modulator chip causes switching transistors Q1 and Q2 to turn on alternately, so that each switch operates at onehalf the ramp frequency or 20kHz.

Included, but not shown, in the modulator chip are additional circuits that establish a minimum "dead-time" (off time) for the switching transistors. This ensures that both switching transistors cannot conduct simultaneously during maximum duty cycle conditions. SWITCHING POWER SUPPLIES

Ac Input Surge Current Protection. Because the input filter capacitors are connected directly across the rectified line, some form of surge protection must be provided to limit line surge currents at turn-on. If not controlled, large surges could trip circuit breakers. weld switch contacts, or affect the operation of other equipment connected to the same ac line. Protection is provided by a pair of thermistors (Rt⁰) in the input rectifier circuit. With their high negative temperature coefficient of resistance, the thermistors present a relatively high resistance when cold (during the turn-on period) and a very low resistance after they heat up.

A shorting strap (J1) permits the configuration of the input rectifierfilter to be altered for different ac inputs. For a 174-250Vac input, the strap is removed and the circuit functions as a conventional fullwave bridge. For 87-127Vac inputs, the strap is installed and the input circuit becomes a voltage doubler.

Switching Frequencies. Presently, 20kHz is a popular repetition rate for switching regulators because it is an effective compromise with respect to size, cost, dissipation, and other factors. Decreasing the switching frequency would bring about the return of the acoustical noise problems that plagued earlier switching supplies. and would increase the size and cost of the output inductors and filter capacitors.

Increasing the switching frequency, however, would result in certain benefits, including further size reductions in the output magnetics and capacitors. Furthermore, transient recovery time could be decreased because a higher operating frequency would allow a proportional decrease in the output inductance, which is the main constraint in recovery performance.

Unfortunately, higher frequency operation has certain drawbacks. One is that filter capacitors have an Equivalent Series Resistance (ESR) that limits their effectiveness at high frequencies. Another disadvantage is that power losses in the switching transistors, inductors, and rectifier diodes increase with frequency. To counteract these effects, critical components such as filter capacitors with low ESRs, fast recovery diodes, and high-speed switching transistors are required. Some of these components are already available, others are not. Switching transistors are improving, but remain one of the major problems at high frequencies. However, further improvements in high-speed switching devices, such as the new power Field Effect Transistors (FETs) would make high frequency operation and its associated benefits a certainty for future switching supplies.

WWW.HPARCHIVE.COM

Preregulated Switching Supply

Figure 3 shows a schematic of another switching supply similar to Figure 2 except for the addition of a triac preregulator and associated control circuit. The triac is a bidirectional device and is usually connected in series with one side of the input primary. Whenever a gating pulse is received, the triac conducts current in a direction that is dependent on the polarity of the voltage across it. The goal is to control the triac so that the bridge rectifier output (dc input to the switches) is held relatively constant. This is accomplished by a control circuit that issues a phaseadjusted firing pulse to the triac once during each half-cycle of the input ac. The control circuit compares a ramp function to a rectified ac sinewave to compute the proper firing time for the triac.

Although the addition of the preregulator circuitry increases complexity, it provides three important benefits.

- By keeping the dc input to the switches constant, it permits the use of more readily available lower voltage switching transistors.
- (2) The coarse preregulation it provides allows the main regulator to achieve a finer regulation.
- (3) Through the use of slow-start circuits, the initial conduction of the triac is controlled, providing an effective means of limiting input surge current.

Note that the preregulator triac is essentially a switching device and, like the main regulator switches, does not absorb a large amount of power. Hence, the addition of the preregulator does not significantly reduce the overall efficiency of this supply.

Single Transistor Switching Regulator

At lower output power levels, a onetransistor switch becomes practical. The single transistor regulator of Figure 4 is referred to as a forward, or feed-through, converter. It can receive a dc input from either one of two sources without a change in its basic configuration. For ac-to-dc requirements, the regulator is connected to a line rectifier and SCR preregulator. For dc-to-dc converter applications it is connected directly to an external dc source.

Like the previous switching supplies, the output voltage is controlled by varying the ON time of the regulator switch. The switch is turned on by the leading edge of each 20kHz clock pulse and turned off by the pulse-width modulator at a time determined by output load conditions.

While the regulating transistor is conducting, the half-wave rectifier diode is forward biased and power is transferred to the output filter and the load. When the regulator is turned off, the "flywheel" diode conducts, sustaining current flow to the load during the off period. A flywheel diode (sometimes called a freewheeling or catch diode) was not required in the two transistor regulators of Figures 2 and 3 because of their full-wave rectifier configuration.

Another item not found in the previous regulators is "flyback" diode CRF. This diode is connected to a third transformer winding which is bifilar wound with the primary. During the off periods of the switch, CRF is forward biased, allowing the return of surplus magnetizing current to the input filter, and thus preventing saturation of the transformer core. This is an important function because core saturation often leads to the destruction of switching transistors. In the previously described two transistor push-pull circuits, core saturation is easier to avoid because magnetizing current is applied to the core in both directions (i.e., before saturation, the current is reversed). Nevertheless, matched switching transistors and balancing capacitors must still be used in these configurations to ensure that core saturation does not occur.

WWW.HPARCHIVE.COM

Summary of Basic Switching Regulator Configurations

Figure 5 shows three basic switching regulator configurations that are often used in today's power supplies. Configuration A is of the push-pull class, and this version was used in the switching supplies shown in Figures 2 and 3. Other variations of this circuit are used also, including two-transistor balanced push-pull and four transistor bridge circuits.

As a group, push-pull configurations are the most effective for lowvoltage, high-power and high performance applications. Push-pull circuits have the advantage of a ripple frequency that is double that of the other two basic configurations and, of course, output ripple is inherently lower.

Configuration B is a useful alternative to push-pull operation for lower power requirements. It is called a forward or feed-through converter because energy is transferred to the power transformer secondary immediately following turn-on of the switch. Although the ripple frequency is inherently lower, output ripple amplitude can be effectively controlled by the choke in the output filter. Two-transistor configurations of forward converters also exist wherein both transistors are switched simultaneously. They provide the same output power as the single transistor versions, but the transistors need handle only half the peak voltage.

Configuration C is known as a flyback, or ringing choke, converter because energy is transferred from primary to secondary when the switches are off (during flyback). In the example, two transistors are used and both are switched simultaneously. While the switches are on, the output rectifier is reverse biased and current in the primary inductance rises in a linear manner. When the switches are turned off, the collapsing magnetic field reverses the voltage across the primary, and the previously stored energy is transferred to the output filter and load. The two diodes in the primary protect the transistors from inductive surges that occur at turnoff.

Flyback techniques have long been used as a means of generating high voltages (e.g., the high voltage power supply in television receivers). As you might expect, this configuration is capable of providing higher output voltages than the other two methods. Also, the flyback regulator provides a greater variation of output voltage with respect to changes in duty cycle. Hence, the flyback configuration is the most obvious choice for high, and variable output voltages while the push-pull and forward configurations are more suitable for providing low, and fixed output voltages.

Protection Circuits for Switching Supplies

Figure 6 shows typical protection circuits that are used in HP switching regulated power supplies. The following is a brief description of those protection circuits shown.

A. EMI Filter. Helps prevent high frequency spikes (RFI) from being conducted to the load or back into the ac line. HP switching supplies also contain built-in shields for additional control of conducted and radiated interference.

B. Thermistor. Limits ac input surge current by its negative temperature coefficient of resistance.

Has a high resistance when cold (during turn-on) and low resistance after it heats up.

C. Regulator Overcurrent Limit. This circuit is much faster than the current limit comparator and protects the regulator switches from overcurrent conditions of a transient nature. It monitors current flow through the switches and prevents it from exceeding a harmful level.

D. Output Rectifier Diodes. Besides final rectification, these diodes also protect internal components against reverse currents that could be injected into supply by an active load or series connected supply.

E. AC Undervoltage. This circuit performs a dual function. It protects the supply from damage that could result from a prolonged condition of low ac input voltage, and it limits output overshoot during turn-on. During undervoltage or turn-on conditions, the low ac input level reduces the $V_{\rm BIAS}$ voltage and activates the undervoltage detector. When activated, the modulator

pulses are inhibited and the regulator switches turned off.

F. Overvoltage Detector. Monitors output voltage and turns off regulator switches if output attempts to rise above a preset value. Similar to a crowbar circuit except that output voltage is removed by turning off regulator rather than by shorting the output.

G. Temperature Switch. Opens in case of high ambient temperature that could be caused, for example, by a misapplication or cooling fan failure. The switch opens and removes VBIAS which activates the ac undervoltage detector. The switch closes again after temperature cools to a safe level.

Additional Protection. Although not shown on Figure 6, all HP switching supplies contain some form of overcurrent protection, usually a current foldback circuit. Also included are remote sensing protection resistors and input protection components for the comparison amplifier.

Switching Power Supply Terminology

The following is a brief glossary of terms encountered in dealing with switching supplies.

Brown Out Rated

The ability of a power supply to maintain regulated output voltages in the event that the input line voltage should drop to a low or zero level.

Current Foldback

An overload protection method where output voltage and current decrease simultaneously as the load resistance decreases below a preset crossover point and begins to approach a short circuit. Also known as output short circuit protection, this mechanism monitors the output current and, if it exceeds a preset crossover value, turns down the regulator output.

EMI (RFI)

Electromagnetic interference (radio frequency interference) — unwanted high frequency energy caused primarily by the switching components in the power supply. EMI can be conducted through the input or output lines or radiated through the unit's case. Conducted EMI (RFI) can be reduced using proper filtering, and radiated EMI (RFI) can be reduced by judicious board layout and enclosing the supply in a metal enclosure. The terms "noise" EMI and RFI are sometimes used in the same context.

ESR (Equivalent Series Resistance)

The amount of resistance in series with an ideal (lossless) capacitor which exactly duplicates the performance of a real capacitor. In general, the lower the ESR, the better the quality of the capacitor and the more effective it is as a filtering device. ESR is a prime determinant of ripple in switching supplies.

Flyback

Precisely, it's the shorter of the two time intervals comprising a sawtooth wave. In a switching power supply, the shorter interval is produced when the transistors are switched off. This causes a rapidly collapsing magnetic field in the transformer which reverses the voltage across the primary, transferring a high energy to the output.

Ground Loop

A feedback problem caused by two or more circuits sharing a common electrical line, usually a common ground line. Voltages gradients in this line caused by the first circuit may be resistively, inductively, or capacitively coupled into the other circuit via the common line. With power supplies, this problem can be reduced using single point grounding near the supply.

Hold-up Time

The total time any output will remain within its regulation band after line input voltage has suddenly dropped to zero or below rating. Hold-up is measured at full load and nominal line conditions.

Input Surge Current

The peak line current which flows during turn-on. Surge current is

caused by charging of the input capacitor, and limited primarily by an input thermistor or preregulator.

Input Voltage Range

The range of line voltages for which the power supply meets its specifications. The lowest line voltage is important in defining the relative degree of brown-out protection.

Isolation Voltage

The maximum voltage by which any part of the circuit can be operated away from chassis ground. Also the maximum voltage between any output and input terminal.

Line Regulation

See Source Effect.

Line Frequency Regulation

The variation of an output voltage due to a change in line input frequency with all other factors held constant. This effect is negligible in switching and most linear supplies, but is very critical in ferroresonant supplies.

Load Effect Transient Recovery Time

Sometimes referred to as transient recovery time or transient response time, it is, loosely speaking, the time required for the output voltage of a power supply to return to within a level approximating the normal dc output following a sudden change in load current. More exactly, Load Transient Recovery Time for a CV supply is the time "X" required for the output voltage to recover to, and stay within "Y" millivolts of the nominal output voltage following a "Z" amp step change in load current — where:

(1) "Y" is specified separately for each model, but is generally of the same order as the load regulation specification.

- (2) The nominal output voltage is defined as the dc level halfway between the steady state output voltage before and after the imposed load change.
- (3) "Z" is the specified load current change, typically equal to the full load current rating of the supply.

Overcurrent Limiting

A protection mechanism which limits the output current of a supply without materially affecting the output voltage.

Overshoot

The amount by which an output exceeds its final value in a transient response to a rapid change in load or input voltage. In power supply design this parameter is particularly important at turn-on.

Overvoltage Protection

A protection mechanism for the load which reduces the output voltage to a very low value in the event that the output exceeds a certain threshold voltage. In a switching supply, the regulator is turned off if the threshold is exceeded, reducing the output voltage and current to zero. In linear supplies, an SCR "crowbar" is used to rapidly place a short circuit across the output terminals whenever the threshold voltage is exceeded.

PARD (Ripple and Noise)

The term PARD is an acronym for "periodic and random deviation" and replaces the former term ripple and noise. PARD is the residual ac component that is superimposed on the dc output voltage or current of a power supply. It is measured over a specified bandwidth with all influence and control quantities maintained constant. PARD is specified in rms and/or peak-to-peak values over a bandwidth of 20Hz to 20MHz. Fluctuations below 20Hz are treated as drift. Attempting to measure PARD with an instrument that has insufficient bandwidth may conceal high frequency spikes that could be detrimental to a load.

Peak Charging

A rise in voltage across a capacitor caused by the charging of the capacitor to the peak rather than RMS value of the input voltage. This generally occurs when a capacitor has a high discharge resistance across it and large ripple or spikes on its input line. In a switcher this effect determines minimum load (discharge resistance) conditions on each output to maintain regulation.

Post Regulator

A linear (dissipative) regulator used on the output of a switching supply to further improve over-all regulation performance of the supply. Post regulators can be either the 3 terminal I.C. type or a custom discrete design. Since the differential voltage across the post regulator can be kept to a minimum, dissipative losses are generally small.

Rise Time and Fall Time

When applied to the switching transistor, that time in which non-zero currents and voltages result in high peak power dissipation. Careful attention must be paid to reducing these times, particularly when switching inductive loads.

Ripple and Noise See PARD.

Short Circuit Protection See Current Foldback.

Source Effect (Line Regulation)

Formerly known as line regulation, source effect is the change in the steady-state value of the dc output voltage (of a CV supply) or current (of a CC supply) due to a specified change in the source (ac line) voltage, with all other influence quantities maintained constant. Source effect is usually measured after a "complete" change in the ac line voltage from low line to high line or vice-versa.

Switcher

A common industry-wide name for a switching power supply.

Temperature, Coefficient

The average percent change in output voltage per degree change in temperature with load and input voltage held constant. The coefficient is usually derived from output voltage measurements taken at room temperature (25°C) and at the two specified operating temperature extremes.

Marking A New Frequency Dial

608 Signal Generator

Margaret Nagao HP Service Center Mtn. View

When the 608 Signal Generator is repaired in such a way as to alter its frequency setting (e.g., new RF oscillator tube), a new blank dial should be calibrated to match the generator's output. The blank can be purchased from HP (HP P/N 608A-40A) using the short order form shown in this issue of Bench Briefs.

Set the new dial in place on the drum. The drive pin hole may be located on the opposite end of the new dial as compared to the old one. If so, just wrap the new dial around the drum in the opposite direction, making certain that the wide space at the edge of the dial is at the top, and the top line is lined up with the "A" range indicator.

Use a sharp #2 or firmer lead pencil and make the frequency marks on each appropriate line. Make certain each mark extends approximately 1/16 inch below the line as shown in the drawing. This is important for precision alignment of the engraving tool. Place the marked dial between two sturdy pieces of cardboard to prevent bending during shipment and send to the following address for engraving:

Hewlett-Packard Company Customer Service Center 333 Logue Avenue Mountain View, CA 94043

Marking a new 608 frequency dial. Note that the narrow space is at the bottom of the dial.

USA Customers Only

Need A Part?

In general, when our customers need parts, the order usually amounts to over \$20, which is the minimum for orders that require billing and invoicing. And for those customers that are restricted to the billing/ invoice procedure, we ask that you combine your requirements on one purchase order to meet the \$20 minimum.

However, there are instances when all you need is a \$6.95 part to get your instrument working again.

That's where the Direct Mail Order Form can be used.

The Advantages

• Shipments are from the HP parts center (over 60,000 items in stock)

in California — usually within 24 hours of receipt.

- No minimum or maximum.
- Prepaid transportation (\$1.50 handling charge per order).
- No invoices.

If an item cannot be shipped immediately, an acknowledgement will be mailed separately or included with a partial shipment of the remaining items of your order.

How To Order

First of all, you must be in the U.S. Due to customs regulations, we cannot ship parts outside the United States.

You must contact your local HP representative and obtain the parts price and check digit. If desired, you can call the HP parts center in California at (415) 968-9200 and ask for the "Parts Pricing Department." Hours are Monday-Friday, 7:30 a.m. to 4:30 p.m. (Pacific time).

Send your completed Mail Order form with your check or money order directly to:

HEWLETT-PACKARD COMPANY Mail Order Department PO Drawer #20 Mountain View, CA 94043

That's all there is to it. Your parts should be on their way to you within 24 hours of receipt of your order.

CUSTOMER SERVICE CENTER Direct Mail Parts and Supplies Order Form

SHIP TO:			
COMPANY	and the second second	and the second	
NAME		CUSTOMER REFERENCE #	
STREET		TAXABLE*	
CITY	STATE	ZIP CODE	

Please call the nearest HP Sales Office listed on the back of this form if you need assistance in placing your order.

Item No.	Check Digit	Part No.	Qty.	Description	scription List Price Each			Exter To	
									194
					Aurel		1		
	63.5								
		Electronic Constant					194		
	N. S.		a second						
Speci	al Instru	ctions			Sub	total		sin x	
				isiness in your state, and we are local taxes to them monthly on		r State & s Taxes*	Local		
all sh the c	nipments onsume	we make into your state. The	nerefore, accordin	we must pass these costs on to g to your ZIP CODE. If no sales	Handling Charge		rge	1	50
If no	ot, your o	order may have to be returned			тот	AL			
Check	or Mon	ev Order, made payable to I	Hewlett-P	ackard Company, must accom-					L

Check or Money Order, made payable to Hewlett-Packard Company, must accompany order.

When completed, please mail this form with payment to:

ear

HEWLETT-PACKARD COMPANY Mail Order Department Pho P.O. Drawer #20 Mountain View, CA 94043

Phone: (415) 968-9200

Most orders are shipped within 24 hours of receipt. Shipments are made via UPS or Air Parcel Post. APO's, FPO's, PO Boxes, or destinations outside the continental 48 States will be shipped Air Parcel Post. Shipments over 25 pounds will be made via truck. No Direct Mail Order can be shipped outside the U.S.

WWW.HPARCHIVE.COM

HEWLETT-PACKARD SALES & SERVICE OFFICES

If you need assistance in placing an order, please contact your nearest HP Sales Office. Inquiries regarding status of a Direct Mail Order should be sent to Mountain View, California.

ALABAMA 8290 Whitesburg Dr., S.E. P.O. Box 4207 Huntsville 35802 Tel: (205) 881-4591

ARIZONA 2336 E. Magnolia St. Phoenix 85034 Tel: (602) 244-1361 2424 East Aragon Rd. Tucson 85706 Tel: (602) 294-3148

CALIFORNIA 1430 East Orangethorpe Ave. Fullerton 92631 Tel: (714) 870-1000 3939 Lankershim Boulevard North Hollywood 91604

Tel: (213) 877-1282 TWX: 910-499-2671 5400 West Rosecrans Blvd. P.O. Box 92105 World Way Postal Center Los Angeles 90009

Tel: (213) 970-7500 Los Angeles Tel: (213) 776-7500 3003 Scott Boulevard Santa Clara 95050 Tel: (408) 249-7000 TWX: 910-338-0518

 Ridgecrest

 Tel: (714) 446-6165

 646 W. North Market Blvd.

 Sacramento 95834

 Tel: (916) 929-7222

 9606 Aero Drive

 P.O. Box 23333

 San Diego 92123

 Tel: (714) 279-3200

COLORADO 5600 South Ulster Parkway Englewood 80110 Tel: (303) 771-3455

CONNECTICUT 12 Lunar Drive New Haven 06525 Tel: (203) 389-6551 TWX: 710-465-2029

FLORIDA P.O. Box 24210 2806 W. Oakland Park Blvd. Ft. Lauderdale 33311 Tel: (305) 731-2020

Jacksonville Medical Service only Tel: (904) 398-0663

P.O. Box 13910 6177 Lake Ellenor Dr. Orlando 32809 Tel: (305) 859-2900 P.O. Box 12826 Pensacola 32575 Tel: (904) 476-8422

GEORGIA P.O. Box 105005 Atlanta 30348 Tel: (404) 955-1500 TWX: 810-766-4890 Medical Service Only Augusta 30903 Tel: (404) 736-0592 P.O. Box 2103 Warner Robins 31098 Tel: (912) 922-0449

HAWAII 2875 So. King Street Honolulu 96814 Tel: (808) 955-4455 Telex: 723-705

ILLINOIS 5201 Tollview Dr. Rolling meadows 60008 Tel: (312) 255-9800 TWX: 910-687-2260

INDIANA 7301 North Shadeland Ave. Indianapolis 46250 Tel: (317) 842-1000 TWX: 810-260-1797

IOWA 2415 Heinz Road Iowa City 52240 Tel: (319) 338-9466

KENTUCKY Medical Only Atkinson Square 3901 Atkinson Dr., Suite 407 Atkinson Square Louisville 40218 Tel: (502) 456-1573

LOUISIANA P.O. Box 840 3229-39 Williams Boulevard Kenner 70063 Tel: (504) 443-6201

MARYLAND 6707 Whitestone Road Baltimore 21207 Tel: (301) 944-5400 TWX: 710-862-9157 2 Choke Cherry Road Rockville 20850 Tel: (301) 948-6370 TWX: 710-828-9684

MASSACHUSETTS 32 Hartwell Ave. Lexington 02173 Tel: (617) 861-8960 TWX: 710-326-6904

MICHIGAN 23855 Research Drive Farmington Hills 48024 Tel: (313) 476-6400 724 West Centre Ave. Kalamazoo 49002 Tel: (606) 323-8362

MINNESOTA 2400 N. Prior Ave. St. Paul 55113 Tel: (612) 636-0700 MISSOURI 11131 Colorado Ave. Kansas City 64137 Tel: (816) 763-8000 TWX: 910-771-2087 1024 Executive Parkway St. Louis 63141 Tel: (314) 878-0200

NEBRASKA Medical only 7171 Mercy Road Suite 110 Omaha 68106 Tel: (402) 392-0948

NEW JERSEY W. 120 Century Rd. Paramus 07652 Tel: (201) 265-5000 TWX: 710-990-4951 Crystal Brook Professional Building Eatontown 07724

Tel: (201) 542-1384

P.O. Box 11634 Station E 11300 Lomas Blvd., N.E. Albuquerque 87123 Tel: (505) 292-1330 TWX: 910-989-1185

156 Wyatt Drive Las Cruces 88001 Tel: (505) 526-2484 TWX: 910-9983-0550

NEW YORK 6 Automation Lane **Computer Park** Albany 12205 Tel: (518) 458-1550 201 South Avenue Poughkeepsie 12601 Tel: (914) 454-7330 TWX: 510-253-5981 650 Perinton Hill Office Park Fairport 14450 Tel: (716) 223-9950 5858 East Molloy Road Svracuse 13211 Tel: (315) 454-2486 TWX: 710-541-0482 1 Crossways Park West Woodbury 11797 Tel: (516) 921-0300 TWX: 710-990-4951

NORTH CAROLINA P.O. Box 5188 1923 North Main Street High Point 27262 Tel: (919) 885-8101

OHIO 16500 Sprague Road Cleveland 44130 Tel: (216) 243-7300 TWX: 810-423-9430 330 Progress Rd. Dayton 45449 Tel: (513) 850.8202

Tel: (513) 859-8202 1041 Kingsmill Parkway Columbus 43229 Tel: (614) 436-1041 OKLAHOMA P.O. Box 32008 Oklahoma City 73132 Tel: (405) 721-0200

OREGON 17890 SW Lower Boones Ferry Road Tualatin 97062 Tel: (503) 620-3350

PENNSYLVANIA 111 Zeta Drive

Pittsburgh 15238 Tel: (412) 782-0400 1021 8th Avenue King of Prussia Industrial Park

King of Prussia 19406 Tel: (215) 265-7000 TWX: 510-660-2670

SOUTH CAROLINA 6941-0 N. Trenholm Road Columbia 29260 Tel: (803) 782-6493

TENNESSEE 3027 Vanguard Dr. Director's Plaza Memphis 38131 Tel: (901) 346-8370

Nashville Medical Service only Tel: (615) 244-5448

 TEXAS

 P.O. Box 1270

 201 E. Arapaho Rd.

 Richardson 75080

 Tel: (214) 231-6101

 10535 Harwin Dr.

 Houston 77036

 Tel: (713) 776-6400

 205 Billy Mitchell Road

 San Antonio 78226

 Tel: (512) 434-8241

UTAH 2160 South 3270 West St. Salt Lake City 84119 Tel: (801) 972-4711

VIRGINIA P.O. Box 12778 No. 7 Koger Exec. Center Suite 212 Norfolk 23502 Tel: (804) 461-4025/6 P.O. Box 9669 2914 Hungary Springs Road Richmond 23228

Tel: (804) 285-3431 WASHINGTON Bellefield Office Park 1203-114th Ave. S.E. Bellevue 98004 Tel: (206) 454-3971

TWX: 910-443-2446

• 1 • 11 • ...• • 1 • 11 • ...•

Instrument Group Service Training For Customers

WWW.HPARCHIVE.COM

CONTENT

Oscilloscope Maintenance

Oscilloscope Maintenance

Models 1740A/1741A/

Logic State Analyzer Maintenance

Models 1600A/1607A Logic State Analyzer

Maintenance Model 1610A

Serial Network Analyzer Maintenance Model 1640A

Maintenance Model 1611A

Logic State Analyzer

Logic State Analyzer Maintenance Model 1615A

Small Screen Displays

Maintenance Models

1332A/1333A/1335A

Large Screen Displays

1310A/1311A/1317A/1321A

Translator Maintenance

Models 1338A/1350A

8660 Synthesizers 435/6 Power Meter or

Tri-Color Display & Graphics

8640AM/FM Signal Generator

8672A Microwave Synthesizer

8505A RF Network Analyzer

Digital Troubleshooting

Troubleshooting Techniques

Techniques (using HP logic lab)

Microprocessor

(using 5036A's)

Maintenance Models

1742A/1744A

Models 1715A/1725A

Fourier Analyzer

User's Guide

Calendar

LOCATION Santa Clara Div.

Colorado Springs Div. P.O. Box 2197 Colorado Springs, CO 80901 (303) 598-1900

Colorado Springs Div.

Stanford Park Div. 1501 Page Mill Road Palo Alto, CA 94303 (415) 856-2980

1400 Fountain Grove Parkway Santa Rosa, CA 95404 (707) 525-1400

TUITION

\$500/Student

\$250/Student

Dick Browne

Andre Rude

Santa Clara

Dick Browne

Colorado Springs

Colorado Springs

COORDINATOR

Dick Browne Colorado Springs

Dick Browne **Colorado Springs**

Dick Browne Colorado Springs

Dick Browne Colorado Springs

Steve Thomas Palo Alto

Jim Simpson Santa Rosa

Mountain View (415)968-9200 ext. 372

Tom O'Connor Mountain View

Santa Rosa Division

Customer site

HP field office

Customer site

HP field office

\$300/Student

\$250/Student

\$250/Student

\$200/Student

\$250/Student

\$250/Student

\$200/Student

\$200/Student

\$200/Student

Tom O'Connor

Colorado Springs Div.

Colorado Springs Div.

Colorado Springs Div.

Colorado Springs Div.

\$350/Student

\$350/Student

\$4,200 flat rate

\$300/Student

\$4,200 flat rate

\$300/Student

August 13 thru 17, 1979 October 1 thru 3, 1979

October 8 thru 11, 1979

DATE

June 11 thru 15, 1979

September 10 thru 12, 1979

September 17 thru 19, 1979

September 20 thru 21, 1979

September 24 thru 26, 1979

October 15 thru 17, 1979

October 22 thru 23, 1979

October 25 thru 26, 1979

October 4 thru 5, 1979

September 10 thru 14, 1979

September 17 thru 21, 1979

On demand* (class size:

On demand* (class size: Minimum=15 Maximum=30) On demand* (class size:

Minimum=1 Maximum=30)

Minimum=1 Maximum=20)

On demand* (class size: Minimum=10 Maximum=20)

...Videotapes/Trainers...

HP videotapes provide both service and applications training at your convenience, in your facility. This means you can tailor your training program to suit the growing needs of your organization.

Videotapes

Hewlett-Packard offers professionally produced videotapes and books that communicate important electronics information quickly and effectively.

Tutorial series tapes are instructional modules that can be integrated together to form customized curricula to meet individual or group objectives. Most of the available tapes tend to be concerned with technical concepts rather than specific instrumention. Some of the subjects covered are:

- Practical Transistors, a 15-tape series that examines the practical aspects of transistors in order to make troubleshooting easier.
- Digital Troubleshooting, a 14tape series that makes the transition from transistors to digital electronics.
- Counters, a separate series of videotapes that train technicians in the basic techniques of frequency measurement using an electronic counter.
- Oscilloscopes, a 3-tape series showing technicians the basic

techniques of waveform measurement using an oscilloscope.

 Troubleshooting FET Circuits, a 16-minute tape dealing with FET theory and troubleshooting at the component level.

Instrument series tapes, including DSA (Fourier Theory), medical, and computer systems, provide both service and applications training on specific instrumentation. Some of the instrumentation described is:

- Spectrum analyzer operation. How to reduce the usual "fumble time" common to equipment unfamiliarity.
- Microwave test equipment maintenance.
- Oscilloscopes and voltmeters, use and service.
- Fourier analysis description.
- Pulmonary physiology (medical), learn what goes on in your lungs.
- Line printer service training.
 2640/2644/2645 computer termi-
- nal service.

ORDERING INFORMATION

Contact your local HP office to order videotapes and trainers. For a complete listing of available videotapes, ask for catalog no. 5952-0074. **Multilingual** videotapes are available in both the tutorial and instrumentation series. French, German, Portuguese, and Spanish are just a few of the languages offered.

13

Trainers

Hewlett-Packard offers two products for self-study courses — the 5035T Logic Lab and 5036A Microprocessor Lab.

Digital logic training begins with simple circuits and builds up to complete numerical readout clocks. Each experiment begins with textbook theory that is then proven using the 5035T lab and experiment workbook.

Microprocessor troubleshooting is the main thrust of the 5036A Lab and study material. The right blend of entry level programming, hardware, and troubleshooting information are all combined to provide the digital technician the basic knowledge required to learn how microcomputers work, and more importantly, how to fix them when they don't.

The 5036A Microprocessor Lab is a complete, practical, hands-on training system covering microprocessor basics. It provides a general course on hardware, software, and troubleshooting designed for self-study or classroom.

Training

Microprocessors.

FIRST DAY:

- Analog vs. digital.
- Signal transmission techniques. 1) One wire, one signal.
 - b) Digital.
 - c) Open collector drivers.
 - d) Three-state drivers.
- Workshop four hours of hands-on familiarization using an Intel 8085 based microprocessor trainer.

SECOND DAY:

- Introduction to programming.
 - a) Flow charts.
 - b) High level language.
 - c) Machine language.
 - d) 8085 Command set.
- Algorithmic State Machine Concepts
- Workshop four hours of hands-on experiments using logic analyzers and oscilloscopes to view correct microprocessor operation.

Microprocessor and Digital Troubleshooting sen procedures as shown in the accompanying course format to present theory problems.

Afternoon workshop sessions provide students with hands-on familiarization using the 5035T or 5036A Trainer and HP test equipment.

THIRD DAY:

- The Intel 8085 Microprocessor.
 - a) Block diagram.b) Timing diagrams.
 - c) Analysis of pin functions.
 - d) Assessing improper operation.
- Workshop four hours of troubleshooting experiments on the microprocessor trainer using pulsers, probes, current tracers and the signature analyzer.

FOURTH DAY:

- The micro-computer.
 - a) Micro-computer memories.
 - b) Input/output ports.
 - c) Keyboards.
 - d) Displays.
- Analyzing self-test features.
- Workshop four hours of troubleshooting experiments on the microprocessor trainer using pulsers, probes, current tracers and the signature analyzer.

. Digital Troubleshooting

inars address fundamental troubleshooting outlines. The first half of each day utilizes lecture

FIRST DAY:

- Analog vs. digital.
- IC Technology: DCTL, RTL, DTL, CTL, TTL, ECL, EECL, HTL, MOS, 1²L.
- Specialized tools and techniques to troubleshoot these technologies.
- Workshop four hours of hands-on experiments with gates and troubleshooting tools.

SECOND DAY:

- Logic Symbology.
- Positive/Negative logic notation.
- Understanding the implication of logic schematics.
 Implementation of logic gates: AND, OR, NOR, NAND, XOR, Wired-OR.
- Decoders and their uses.
- Comparators and their uses.
- Flip-flops: R-S, D, J-K (standard and master-slave).
- Workshop four hours of hands-on experiments
- with decoders, comparators and flip-flops.

Students will also have an opportunity to use modern tools to troubleshoot faults in a printed circuit assembly.

THIRD DAY:

- Often encountered circuits containing flip-flops: Counters (BCD and binary, synchronous and ripple), dividers, shift registers, ring counters.
- Numbering systems including binary, BCD, octal and hexidecimal.
- Introduction to binary math including half and full adders.
- Workshop four hours of hands-on time building and debugging counter circuits.

FOURTH DAY:

- ROM'S/PROM (masked, E and UV).
- RAM'S: bipolar and MOS (static and dynamic).
- Typical failures and the troubleshooting difficulties encountered with ROM'S, PROM'S and RAM'S.
- Typical memory addressing techniques.
- Modern display technologies, their application and common failure modes.
- Introduction to the ROM controlled device with emphasis on methods used to fault isolate.
- Workshop four hours of experiments leading to the building of a functioning strobed display device.

Individual applications or problems are addressed during workshop sessions.

Training

... Signal Generators ...

*September 10-14, 1979

This one-week customer seminar on Signal Generators takes place at the HP manufacturing facility in Palo Alto, California, which is approximately 30 miles south of San Francisco, or 20 miles north of San Jose, both having a major airport and car rental facilities.

Attendance is limited to 20 participants so file your applications early (registration cut-off date is August 10) to avoid disappointment. The application form is at the end of BENCH BRIEFS.

The course objective is to teach front panel control operations, circuit theory, interpretation of signal waveforms and voltage levels at test points, how to efficiently perform critical adjustments during calibration, and how to isolate troubles to individual circuits.

COURSE CONTENT

LECTURE

I. Introduction

- II. Features and Model Options
- **III.** Front Panel Features
 - A. Video Tape
 - B. Demonstration
- IV. Theory
 - A. Block Diagram
 - **B.** Assembly Locations
 - C. Schematic
- LAB
- I. Adjustments
- II. **Performance Tests**
- III. Troubleshooting

*Notice that these courses can be taken concurrently.

- PREREQUISITES Basic knowledge of digital logic circuits and general knowledge of electronics including operational amplifiers and phase lock circuits.
- PRESTUDY Review digital logic and block diagram information in 8640, 8660, and 435/436 or 8672A manuals.

Read pages 1-48 in "Signal Generator Seminar" testbook.

View videotape 90030-566 (Optional).

NOTE: Please specify if you prefer training on the 8672A or 435/436.

RF Network Analyzers

*September 17-21, 1979

This one-week customer seminar on the 8505A RF Network Analyzer takes place at the HP manufacturing facility in Santa Rosa, California, which is approximately 60 miles north of San Francisco. Attendance is limited to 20 participants so file your applications early (registration cut-off date is August 10) to avoid disappointment. The application form is at the end of BENCH BRIEFS.

The course objective is to teach front panel control operations, circuit theory, interpretation of signal waveforms and voltage levels at test points, how to efficiently perform critical adjustments during calibration, and how to isolate troubles to individual circuits.

COURSE CONTENT

LECTURE

- I. Introduction
- II. Specifications, Features, and Options
- Simplified Block Diagram III.
- IV. Front Panel Operation
- V. **Detailed Block Diagram**
- VI. A1 Source/Converter A. Circuit Description
 - **B.** Circuit Alignment
 - C. Troubleshooting
- VII. A2 Frequency Control
 - A. Circuit Description
 - B. Circuit Alignment
 - C. Troubleshooting
 - WWW.HPARCHIVE.COM

- VIII. A3 Signal Processor
 - A. Circuit Description
 - B. Circuit Alignment
 - C. Troubleshooting Using Signature Analysis
- IX. Option 001, HP-Interface Bus A. Circuit Description
 - B. Troubleshooting Using Signature Analysis
- LAB The lecture is given in a lab environment. Attendees make measurements during circuit alignment and troubleshooting sessions.
- PREREQUISITES Basic understanding of network analysis. Good understanding of digital logic circuits.
- PRESTUDY Application Note 219, "8505A Network Analyzer Basic Measurements."

.Oscilloscopes.

Hewlett-Packard, Colorado Springs Division, offers the following Service Training Seminars to customers. All training will be conducted at Colorado Springs, Colorado, on the dates indicated.

These seminars directed to calibration and repair technicians teach operation, circuit-theory, calibration and troubleshooting to component level repair. Attendees should have some prior knowledge of standard oscilloscope circuits, such as differential amplifiers, integrators, comparators and basic logic devices.

In case of insufficient enrollment, classes may be cancelled.

Service training for other instruments is also available at factory, local HP facility or at customer facility. Consult your local HP Sales/Service office for further information. **1715A/1725A Oscilloscopes** October 1-3, 1979 **1740A/1741A/1742A/1744A Oscilloscopes** October 8-11, 1979

The Oscilloscope seminars are taught to component-level of troubleshooting and repair. Popular options such as state-display and digital-multimeter and ΔT options are included.

1332A/1333A/1335A Small Screen Displays October 22-23, 1979 These small-screen displays are offered in a 2-day class consisting of 1 day of theory (including variable persistence and storage) and 1 day of calibration, troubleshooting and repair.

17

1310A/1311A/1317A/1321A Large Screen Displays October 25-26, 1979

Large-screen displays comprise a 2-day seminar; 1 day of theory and 1 day of calibration, troubleshooting and repair.

... Fourier Analysis.

June 11-15, 1979 August 13-17, 1979

The Fourier Analyzer 5-Day User Training Course is geared primarily for 5451C users, although 5451B users will also find it relevant.

The course emphasizes measurements, applications, and system operation. Pre-study material will be mailed prior to the course to bring all attendees up to a basic theoretical understanding. Each day includes lab exercise with time for discussion and review of key points.

COURSE OBJECTIVES LECTURE

- I. Enable the attendee to:
 - A. Utilize documentation to:
 - 1. Cold start the system.
 - 2. Find appropriate data and instruction formats.

- B. Perform and understand all "standard" calibrated time and frequency measurements.
- C. Utilize Mass Store, Zoom and Graphics Software.
- D. Generate and modify keyboard programs.

- E. Make use of variable parameters and other "Gold Key" functions.
- F. To sort, analyze and manipulate data.
- II. Provide the attendee with:
 - A. Basic measurement principles.
 - B. A basic understanding of keyboard programming principles.
 - C. A basic appreciation of the system architecture and the various programming levels.
- PREREQUISITES Basic understanding of Fourier Analysis and time and frequency domain measurements.
- PRESTUDY Application Note 140-0 (part no. 02-5952-0651), Fourier Analysis Training Manual.

WWW.HPARCHIVE.COM

TRAINING

Training (at an HP factory)Logic Analyzers.....

Hewlett-Packard, Colorado Springs Division, is offering Service Training Seminars to customers on most all models of Logic Analyzers. All training will be conducted at Colorado Springs, Colorado, on the dates indicated on both the registration form and training calendar.

The courses are directed to calibration and repair technicians and will teach application, circuit-theory, calibration, and troubleshooting to component-level repair. Attendees should have some prior knowledge of logic and oscilloscope circuits.

The course objective is to teach front panel control operations, circuit theory, and learn the fundamental components used throughout the unit. Other areas covered are the power supply, trigger recognition, data acquisition and storage, and the display circuitry.

The student is guided through the three fundamental areas of logic analyzers:

- Recognizing a trigger
- Storing the data
- Displaying the data

Toward the end of the course, the instructor summarizes by discussing overall troubleshooting from symptom to repair. The student is shown how to "milk" the front panel to learn how failures affect the instrument's behavior. From the behavior patterns, the student learns how to isolate the fault to a particular function within the instrument and finally to the faulty component.

....Tri-Color Graphics..

October 4-5, 1979

This two-day customer seminar on the 1338A/1350A Tri-color Graphics Display System takes place at the HP manufacturing facility in Colorado Springs, Colorado.

The seminar is directed to calibration and repair technicians and will teach operation, circuit theory, calibration and troubleshooting to the block and component level. Attendees should have some prior knowledge of standard oscilloscope circuits and the graphics concept.

The course objective is to teach students how the 1338A Tri-color Display interfaces with the 1350A Graphics Translator so that blockdiagram troubleshooting can be utilized to get the student to the defective area within the instrument and finally the component.

Toward this end, the student is shown:

- How circuits within the 1338A differ from those of B/W displays, including the CRT and Tri-color operation.
- How the color switching network operates.
- Fundamentals of the color logic board.
- Exactly how the 1338A is driven by the 1350A.

- How the I/O board in the 1350A operates.
- How to communicate to the 1350A via the RS232 or HP-IB interface.
- The command set and how to use the existing test tape.

This seminar does not confine students to "bit-chasing", but shows them how to isolate problems to an area within the total logic box.

Transistors and Diodes

Replacement Part Cross Reference

When selecting replacement parts for your HP products, you may notice that many manuals list only an HP part number for the part, even though it appears that this part is manufactured by one of the large semiconductor manufacturers. Service personnel often ask why only HP part numbers are listed.

It is recommended that HP replacement parts be used to ensure that original performance of the product will be retained. While some parts used in HP instruments are identical to those that can be purchased at

IEDEA NA

a local electronics distributor, many times parts will be selected for certain characteristics, such as gain, bandwidth, capacitance, etc. There may also be slight mechanical differences, such as the shaping or length of leads. In some cases special quality checks are used to ensure that high reliability parts are used at the factory and at HP field offices.

Therefore, we suggest obtaining replacement parts from HP to maintain the quality that you have paid for in your instrument. There may be situations however where HP replacement parts are not in stock and substituting parts will allow you to return the product to service immediately. In these cases it may be worthwhile to see if a substitute part will work in the circuit. Perhaps an HP part could be ordered and installed at some later date.

To help you in these situations, here's a cross-reference of HP part numbers to JEDEC numbers for transistors and diodes.

	0122-0005 1N4810	1853-0059 2N3791	1052 4264 202200	1054 0052 202010	1954 - 202 - 421/2405
	0122-0017 1N4804	1853-0062 #2N3645	1853-0360 2N3799A	1854-0053 2N2218	1854-0302 #2N3405
-	0122-0025 1N4811A		1853-0370 2N5782	1854-0057 2N3855A	1854-0304 2N2483
	0122 - 0.062 = 104811A	1853-0066 #2N4250	1853-0371 2N6107	1854-0060 2N3565	1854-0308 2N3553
	0122 - 0.032 = 1N5456A	1853-0069 *2N4122	1853-0372 *2N5195	1854-0062 2N1701	1854-0311 2N4240
		1853-0071 2N3494	1853-0373 2N5022	1854-0063 2N3055	1854-0313 2N3771
	0122-0245 1N5139 0122-0247 1N5140	1853-0072 2N4034	1853-0378 2N5987	1854-0064 2N3710	1854-0315 2N3633
		1853-0076 #2N4062	1853-0381 2N6331	1854-0066 2N2925	1854-0323 2N2857
	0122-0248 1N5140A	1853-0077 #2N4249	1853-0383 2N6296	1854-0067 2N2102	1854-0324 2N3739
	0122-0249 1N5141	1853-0080 *2N4888	1853-0391 2N6051	1854-0072 2N3054	1854-0325 2N3478
	0122-0251 1N5142	1853-0081 *2N4258	1853-0392 2N3741	1854-0076 2N1973	1854-0327 *2N3416
	0122-0253 1N5143	1853-0084 2N4918	1853-0396 *2N4899	1854-0079 2N3439	1854-0345 2N5179
	0122-0255 1N5144	1853-0086 *2N5087	1853-0399 2N3467	1854-0087 *2N3417	1854-0347 2N4923
	0122 - 0256 - 1N5144A	1853-0089 2N4917	1853-0405 2N4209	1854-0092 *2N3563	1854-0349 2N2913
	0122-0257 1N5145	1853-0098 *2N5086	1853-0406 2N6476	1854-0093 2N3415	1854-0352 2N2405
	0122-0259 1N5146	1853-0100 *2N4355	1853-0407 2N5880	1854-0094 *2N3646	1854-0361 2N4239
	0122-0261 1N5147	1853-0204 2N4920	1853-0411 2N6050	1854-0099 *2N3393	1854-0363 2N5262
	0122-0262 1N5147A	1853-0205 2N2907	1853-0413 2N6049	1854-0201 *2N3391A	1854-0365 *2N4410
	0122-0263 1N5148	1853-0206 2N4028	1853-0414 2N6423	1854-0202 *2N3390	1854-0368 2N5191
	0122-0264 1N5148A	1853-0212 2N5194	1853-0418 2N6317	1854-0203 *2N3694	1854-0370 2N5294
	1850-0035 2N174	1853-0213 2N4236	1853-0419 *2N4403	1854-0209 2N910	1854-n371 *2N3391
	1850-0051 2N1500	1853-0221 2N5416	1853-0421 *2N4398	1854-0210 2N2222	1854-0378 2N5109
	1850-0099 2N964	1853-0222 2N4919	1853-0422 2N4033	1854-0211 2N2501	1854-0379 2N4298
	1850-0118 2N2360	1853-0223 2N4902	1853-0425 2N5883	1854-0213 2N2538	1854-0382 2N4348
	1850-0121 2N2402	1853-0236 2N5193	1853-0426 2N4904	1854-0214 2N1482	1854-0384 2N5184
	1850-0126 2N2869	1853-0258 2N4035	1853-0428 2N5684	1854-0215 *2N3904	1854-0386 2N5070
	1850-0150 2N1358	1853-0264 *2N5401	1853-0429 2N3762	1854-0216 2N3441	1854-0389 2N4922
	1850-0154 2N508A	1853-0268 2N4905	1853-0430 2N4959	1854-0217 2N3442	1854-0392 *2N5088
1	1850-0194 2N1523	1853-0269 2N3809	1853-0437 2N6520	1854-0218 2N3393	1854-0397 2N4996
	1850-0406 2N1760	1853-0271 2N4403	1853-0439 2N6248	1854-0219 2N3663	1854-0398 2N5301
	1851-0017 2N1304	1853-0277 2N5954	1853-0442 2N3867	1854-0220 2N3959	1854-0399 2N4912
	1853-0005 2N941	1853-0280 2N5195	1853-0451 2N3799	1854-0226 2N4384	1854-0409 2N5210
	1853-0006 2N3134	1853-0281 2N2907A	1853-0452 2N6594	1854-0231 *2N3688	1854-0411 2N2972
	1853-0007 2N3251 1853-0008 2N3250	1853-0287 2N2905	1853-0457 #2N5400	1854-0233 2N3866	1854-0416 2N3426
		1853-0283 2N3502	1853-0461 2N6318	1854-0234 2N3440	1854-0431 2N5179
	1853-0012 2N2904A 1853-0013 2N2904	1853-0285 *2N3638	1853-0462 2N3635	1854-0235 2N1484	1854-0432 2N3646
	1853-0014 = 2N2004 1853-0014 = 2N3304	1853-0287 2N3250	1853-0465 2N4260	1854-0238 2N3933	1854-0453 2N5192
		1853-0292 *2N3905	1853-0469 2N6109	1854-0242 2N3262	1854-0459 2N2270
	1853-0015 *2N3640	1853-0293 2N5583	1853-0470 2N2907A	1854-0246 *2N3643	1854-0461 2N4238
	1853-0016 *2N3638 1853-0019 2N1131	1853-0303 2N5956 1853-0305 2N5875	1854-0004 2N743	1854-0248 2N4044	1854-0466 2N3569
	1853-0019 = 201131 1853-0022 = 20941		1854-0005 2N708	1854-0252 2N3713	1854-0467 2N4401
	1853-0023 *2N3703	1853-0310 2N4398	1854-0009 *2N709	1854-0255 *2N3642	1854-0468 2N4924
	1853-0024 2N4234	1853-0311 2N3792 1853-0314 2N2905A	1854-0010 2N834	1854-0259 2N3766	1854-0474 *2N5551
	1853 = 0024 = 2N4234 1853 = 0028 = 2N3634		1854-0011 2N835	1854-0260 2N3227	1854-0476 2N3879
	1853 - 0029 - *2N5447	1853-0320 2N4032 1853-0322 2N2946A	1854-0013 2N2218A	1854-0263 2N3019 1854-0264 2N3715	1854-0477 2N2222A 1854-0478 2N4046
	1853-0031 2N3789	1853 - 0323 - 2N2748A 1853 - 0323 - 2N4900	1854-0021 2N918	1854 - 0267 - 2N3013	1854 - 0480 = 205068
	1953-0036 *2N3906		1854-0027 *2N2714		
	1853-0036 *2N3638A	1853-0327 2N2944A 1853-0328 2N6211	1854-0029 2N2712	1854-0270 -= *2N4265 1854-0278 -= 2N3302	1854-0481 2N4237 1854-0497 2N930
	1853-0045 = *2N4036	1853 - 0323 = 200211 1853 - 0340 = 205884	1854-0032 2N2221		
	1853 = 0.045 = - 204036 1853 = 0.051 = - 204037	1853 - 0340 = 20584 1853 - 0342 = *205956	1854-0033 2N3391	1854-0281 2N2194 1854-0282 2N3583	1854-0518 2N5877
	1853 = 0.051 = - 2040.37 1853 = 0.052 = - 203740	1853 - 0342 = 205955 1853 - 0344 = 205875	1854-0036 2N2958	1854 = 0.282 = - 2N3583 1854 = 0.286 = - 2N5217	1854-0519 2N3772 1854-0534 2N5838
	1853-0057 3N91	1853 - 0344 = 205075 1853 - 0349 = 205333	1854-0039 2N30535 1854-0048 2N2857	1854-0287 2N915	1854-0547 2N3725
	1853-0058 #2N3644	1853-0351 2N6053	1854-0050 2N916	1854-0301 2N3261	1854-0548 2N5963

HP P/N JEDEC NO.	1855-0240 *2N4119 1855-0244 2N4857	1900-0010 1N218MR 1900-0011 1N4168M	1901-1098 1N4150 1901-1101 1N4148-1	1902-1246 1N759 1902-1255 1N751A
	1855-0245 2N4119	1900-0012 1N23B	1902-0003 1N754A	1902-1259 1N5357B
1854-0556 2N4237	1855-0247 *2N3958 1855-0250 3N214	1900-0015 1N415C	1902-0018 1N941	1902-1260 1N5525C
1854-0557 2N2432A	1855-0257 2N5247	1900-0016 1N4603 1900-0017 1N21B	1902-0021 1N2992RB 1902-0028 1N2999A	1902-1275 1N821 1902-1278 1N5348R
1854-0570 2N5189 1854-0576 2N6258	1855-0258 2N5949	1900-0018 1N23C	1902-0033 1N823	1902-1286 1N5342B
1854-0577 2N6259	1855-0264 #2N4342	1900-0019 1N831	1902-0035 1N3008B	1902-1288 1N53588
1854-0586 2N5429	1855-0276 2N4416A 1855-0277 2N5268	1900-0020 1N76A 1901-0002 1N1200A	1902-0039 1N1597A 1902-0088 1N3003B	1902-1290 1N5384A 1902-1291 1N5338B
1854-0590 2N3054 1854-0596 2N5427	1855-0278 2N5116	1901-0032 1N3209	1902-0089 1N3004B	1902-1292 1N53728
1854-0597 2N5943	1855-0279 3N180	1901-0048 1N3210	1902-0094 1N705A	1902-1294 1N5388A
1854-0599 2N6078	1855-0283 2N5396 1855-0285 2N5246	1901-0058 1N628 1901-0060 1N1116	1902-0095 1N746 1902-0156 1N2986B	1902-1297 1N4561A 1902-1298 1N2820A
1854-0600 2N4233A 1854-0611 2N6055	1855-0286 2N3966	1901-0071 1N625	1902-0157 1N2620	1902-1300 1N4732
1854-0613 2N1701	1855-0288 2N5556	1901-0129 1N647	1902-0178 1N3004RA	1902-1304 1N965B
1854-0623 2N6306	1855-0292 2N5432 1855-0293 2N6658	1901-0132 1N660 1901-0151 1N2242	1902-0183 1N2995B 1902-0191 1N2971RB	1902-1305 1N5237R 1902-1306 1N5270B
1854-0624 2N6308 1854-0637 2N2219A	1855-0301 2N519B	1901-0164 1N4721	1902-0245 1N4099	1902-1307 1N5276B
1854-0643 2N3585	1855-0305 2N4117A	1901-0305 1N2158	1902-0246 1N4105	1902-1308 1N4734A
1854-0648 2N6300	1855-0306 3N128	1901-0306 1N2158R 1901-0307 1N3289	1902-0509 1N823 1902-0522 1N5340B	1902-1312 1N989B 1902-1313 1N2988A
1854-0651 *2N3904 1854-0654 *2N5192	1855-n307 3N153 1855-0309 2N4352	1901-0308 1N3289R	1902-0526 1N5305	1902-1320 1N4566
1854-0667 2N3053	1855-0314 2N6027	1901-0309 1N1347A	1902-0528 1N5524D	1902-1323 1N5857B
1854-0669 2N6057	1855-0322 2N5105	1901-0310 1N250C 1901-0311 1N3260R	1902-0549 1N5365A 1902-0569 1N941	1902-1330 *1N750 1902-1332 1N58518
1854-0671 2N6282 1854-0679 2N5885	1855-0327 2N4416 1855-0332 3N138	1901-0312 1N3262	1902-0581 1N944	1902-1334 1N55338
1854-0687 2N3725A	1855-0341 2N4338	1901-0318 IN1184AR	1902-0625 1N829	1902-1336 1N6001R
1854-0695 2N5067	1855-0346 2N6028	1901-0319 1N1186AR	1902-0627 1N5312 1902-0630 1N5236B	1910-0002 1N38B
1854-0697 2N5886	1855-0357 3N142 1855-0363 2N5462	1901-0320 1N1187A 1901-0321 1N1187AR	1902-0630 1N5236B 1902-0631 1N5351B	1910-0003 1N55A 1910-0014 1N277
1854-0698 2N6294 1854-0699 *2N4921	1855-0371 2N4092	1901-0343 1N3491R	1902-0632 1N5354B	1910-0023 1N270
1854-0703 *2N3053	1855-0379 2N5474	1901-0346 1N3209R	1902-0649 1N4567	1910-0024 1N191
1854-0708 2N5578	1855-0380 2N4351 1855-0386 2N4392	1901-0370 1N4530	1902-0680 1N827	1910-0025 1N995 1912-0009 1N3712
1854-0709 2N5575 1854-0714 2N5962	1855-0387 2N3993	1901-0383 1N2565 1901-0398 1N2148	1902-0686 1N825 1902-0697 *1N750A	1912-0014 1N3720
1854-0715 2N6354	1855-0390 2N3382	1901-0405 1N5182	1902-0698 1N941A	1912-0015 1N3717
1854-0727 2N6474	1855-0393 2N3330	1901-0406 1N3491	1902-0700 1N4738A	1912-0016 1N3713 1912-0017 1N3719
1854-0731 2N5089 1854-0732 *2N5886	1855-0398 2N5519 1855-0400 2N5905	1901-0409 1N4719 1901-0410 1N4720	1902-0759 1N2983B 1902-0761 1N821	1912-0017 1N3719 1912-0019 1N3721
1854-0733 2N3773	1855-0402 2N5115	1901-0412 1N4722	1902-0763 1N2163A	
1854-0737 *2N6477	1855-0414 2N4393	1901-0414 1N4723	1902-0772 1N935	JEDEC NO. HP P/N
1854-0738 2N6261 1854-0741 2N6338	1855-0420 2N4391 1855-0421 2N5114	1901-0421 1N3208 1901-0423 1N3212	1902-0777 1N825 1902-0785 1N936	1000 0001
1854-0742 2N5886	1884-0004 2N15955	1901-0424 1N3492	1902-0786 1N937	1N21B 1900-0001 1N21B 1900-0017
1854-0743 2N5878	1884-0010 2N4170	1901-0426 1N3494	1902-0787 1N938	1N21BMR 1900-0010
1854-0745 *2N2218 1854-0746 2N6339	1884-0012 2N3528 1884-0015 2N685	1901-0431 1N3662 1901-0463 1N4156	1902-0788 1N3154 1902-0791 1N942	1N23B 1900-0012
1854-0748 2N2896	1884-0016 2N688	1901-0478 1N3958	1902-0792 1N943	1N23C 1900-0018 1N26 1900-0007
1854-0750 2N720A	1884-0018 2N4186	1901-0492 1N5002	1902-0793 1N944	1N34A 1910-0031
1854-0751 2N5840 1854-0752 *2N2369A	1884-0019 2N3669 1884-0021 3N83	1901-0493 1N4725 1901-0494 1N5003	1902-0902 1N2974A 1902-0909 1N2972A	1N38B 1910-0002
1854-0755 2N6254	1884-0022 2N4172	1901-0511 1N3889R	1902-0910 1N2984RB	1N53 1900-0008 1N55A 1910-0003
1854-0756 2N6315	1884-0026 2N2322S	1901-0512 1N3889R	1902-0915 *1N751A	1N55A 1910-0039
1854-0758 2N5427 1854-0761 2N2060	1884-0028 2N1771A 1884-0028 2N1774	1901-0655 *1N3290R 1901-0678 1N3899R	1902-0920 1N5345B 1902-0923 1N5337A	1N76 1900-0004
1854-0766 2N5428	1884-0051 2N1846	1901-0684 1N3890R	1902-0924 1N5927	1N76A 1900-0020 1N91 1911-0001
1854-0767 2N6306	1884-0065 2N3670	1901-0693 1N4934	1902-0927 1N5349	1N191 1910-0024
1854-0774 2N6056	1884-0066 2N4443 1884-0070 3N81	1901-0704 1N4n02 1901-0708 1N5828	1902-0933 1N5370B 1902-0934 1N5380B	1N250C 1901-0310
1854-0784 2N3866A 1854-0785 2N6305	1884-0071 2N4188	1901-0710 1N914	1902-0939 *1N5908	1N270 1910-0023 1N277 1910-0014
1854-0786 2N2540	1884-0n74 2N5060	1901-0717 1N3891	1902-0940 1N5339B	1N279 1910-0033
1854-0787 2N6545	1884-0082 2N4441 1884-0091 2N4990	1901-0726 1N5823 1901-0731 *1N4004	1902-0972 *1N979 1902-0973 1N825	1N415B 1900-0009
1854-0792 2N2920 1854-0793 2N5671	1884-0201 *2N5061	1901-0732 *1N4007	1902-0974 1N4960	1N415C 1900-0015 1N416B 1900-0006
1854-0809 2N2369A	1884-0202 2N5573	1901-0734 1N5818	1902-0977 1N5352	1N416BM 1900-0011
1854-0813 2N35015	1884-0211 2N5171	1901-0735 *1N3889R 1901-0742 1N3563	1902-0978 1N5346 1902-0983 1N4621	1N625 1901-0071
1854-0814 2N3054A 1854-0829 2N2222A	1884-0236 2N6156 1884-0237 *2N6162	1901-0743 1N4004	1902-0987 1N2991	1N628 1901-0058 1N647 1901-0129
1854-0831 2N6429A	1884-0238 2N6071B	1901-0750 1N5553	1902-1169 1N4100	1N660 1901-0132
1854-0832 *2N4401	1884-0245 2N4444	1901-0751 1N5554 1901-0752 1N3644	1902-1170 1N4101 1902-1172 1N4103	1N705A 1902-0094
1854-0834 2N6033 1855-0001 2N1671A	1884-0247 2N2323 1884-0249 2N6398	1901-0752 1N3644 1901-0756 1N3881	1902-1173 1N4104	1N746 1902-0095 *1N750 1902-1330
1855-0005 2N3436	1884-0251 2N6168	1901-0758 1N5283	1902-1174 1N4106	*1N750A 1902-0697
1855-0010 2N2646	1884-0254 *2N3658	1901-0759 1N5406	1902-1178 1N4110 1902-1183 1N4115	1N751A 1902-1255
1855-0021 2N1671B 1855-0027 2N2647	1884-0255 2N5444	1901-0791 1N3889 1901-0830 1N914	1902-1194 1N2976B	*1N751A 1902-0915 1N752A 1902-1245
1855-0027 2N2647 1855-0038 2N3922	1884-0265 2N6236 1884-0266 2N6400	1901-0830 1N914 1901-0831 1N4937	1902-1195 1N1362	1N754A 1902-0003
1855-0040 2N3819	1884-0267 2N684	1901-0833 1N6096	1902-1198 1N2973B 1902-1199 1N1604A	1N759 1902-1246
1855-0056 *2N4342 1855-0065 2N4891	1884-0268 2N6508	1901-0838 1N5393 1901-0843 1N5002R	1902-1199 1N1604A 1902-1221 1N825	1N821 1902-0761 1N821 1902-1275
1855-0065 2N4891 1855-0077 2N1671C	1884-0270 2N5569 1884-0273 2N4101	1901-0843 1N5002R 1901-0846 1N5284	1902-1221 IN025 1902-1223 IN2982RB	1N823 1902-0033
1855-0099 2N4853	1884-0281 2N6505	1901-0849 1N4007	1902-1225 1N2971RA	1N823 1902-0509
1855-0204 2N4852	1884-0282 2N6073	1901-0862 1N5616	1902-1226 1N3996A	1N825 1902-0686 1N825 1902-0777
1855-0207 2N3955 1855-0208 2N4117	1884-0501 2N3670 1900-0001 1N21B	1901-0868 1N5817 1901-0869 1N5297	1902-1228 1N2988RB 1902-1229 1N2979	1N825 1902-0973
1855-0213 *2N5912	1900-0004 1N76	1901-1015 1N4531	1902-1232 1N3997AR	1N825 1902-1221
1855-0224 2N3824	1900-0006 1N416B	1901-1029 1N914	1902-1234 1N4000A	1N827 1902-0680 1N829 1902-0625
1855-0226 2N5460 1855-0229 2N4119	1900-0007 1N26 1900-0008 1N53	1901-1052 1N4154 1901-1065 1N4936	1902-1241 1N936 1902-1244 1N3034B	1N829 1902-0625 1N831 1900-0019
1855-0232 2N5565	1900-0009 1N415B	1901-1080 *1N5817	1902-1245 1N752A	1N914 1901-0710

TRANSISTOR/DIODE CROSS REFERENCE

• I • 20 • --•

TRANSISTOR/DIODE CROSS REFERENCE

16. U												
	JEDEC NO.	HP P/N	1N3563	 1901-0742	1N5284	 1901-0846	2N2218A	 1854-0013	*2N3638		1853-0016	
1	SEDEC NO.		1N3644	1901-0752	1N5297	1901-0369	2N2219A	1854-0637	*2N3638		1853-0285	
			1N3662	1901-0431	1N5305	1902-0526	2N2221	1854-0032	#2N3638A		1853-0039	
	1N914	 1901-0830	1N3712	 1912-0009	1N5312	 1902-0627	SN5555	 1854-0210	#2N3640		1853-0015	
	1N914	 1901-1029	1N3713	1912-0016	1N5337A	1902-0923	2N2222A	1854-0477	#2N3642		1854-0255	
	1N935	1902-0772	1N3714	1912-0007	1N5338B	1902-1291	2N2222A	1854-0829	#2N3643		1854-0246	
	1N936	1902-0785	1N3716 1N3717	1912-0002 1912-0015	1N5339B 1N5340B	1902-0940	2N2270 2N2322S	1854-0459 1884-0026	*2N3644 *2N3645		1853-0058	
	1N936	1902-1241	1N3718	1912-0006	1N5342B	1902-1286	2N2323	1884-0247	2N3646		1854-0432	
	1N937 1N938	1902-0787	1N3719	1912-0017	1N5345B	1902-0920	2N2360	1850-0118	*2N3646		1854-0094	
	1N938A	1902-1216	1N3720	1912-0014	1N5346	 1902-0978	2N2369A	 1854-0809	*2N3658		1884-0254	
	1N941	1902-0018	1N3721	1912-0019	1N5348B	1902-1278	*2N2369A	1854-0752	2N3670		1884-0065	
	1N941	1902-0569	1N3881	1901-0756	1N5349	1902-0927	2N2402	1850-0121	2N3670		1884-0501	
	1N941A	1902-0698	1N3889 1N3889R	1901-0791 1901-0511	1N5351B 1N5352	1902-0531	2N2405	1854-0352	#2N3688 #2N3694		1854-0231 1854-0203	
	1N942	1902-0791	1N3889R	1901-0512	1N5354B	1902-0632	2N2432A 2N2483	1854-0304	*2N3703		1853-0023	
	1N943 1N944	1902-0792	*1N3889R	1901-0735	1N5357B	1902-1259	2N2501	1854-0211	2N3710		1854-0064	
	1N944	1902-0793	1N3890R	 1901-0684	1N5358B	1902-1288	2N2538	1854-0213	2N3713		1854-0252	
	1N9658	 1902-1304	1N3891	1901-0717	1N5363B	1902-0544	2N2540	1854-0786	2N3715		1854-0264	
	*1N970	1902-0972	1N3891R	1901-0774	1N5365A	1902-0549	2N2646	1855-0010	2N3725 2N3725A		1854-0547 1854-0687	
	1N9898	1902-1312	1N3899R 1N3958	1901-0678 1901-0478	1N5370B 1N5372B	1902-0933	2N2647 2N2712	1855-0027	2N3739		1854-0324	
	1N995 1N1116	1910-0025	1N3996A	1902-1226	1N5380B	1902-0934	*2N2714	1854-0027	2N3740		1853-0052	
	1N1183A	1901-0315		1902-1232	1N5384A	1902-1290	2N2857	1854-0048	2N3741		1853-0392	
		1901-0316	1N3998A	 1902-1201	1N538AA	1902-1294	2N2857	 1854-0323	2N3762		1853-0429	
		1901-0317	1N4000A	1902-1234	1N5393	1901-0838	2N2869	1850-0126	2N3766		1854-0259	
		1901-0318	1N4002	1901-0704	185406	1901-0759	2N2896	1854-0748	2N3771 2N3772		1854-0313 1854-0519	
		1901-0319	1N4004 #1N4004	1901-0743 1901-0731	1N5456A 1N5468A	0122-0070	2N2904 2N2904A	1853-0013 1853-0012	2N3773		1854-0733	
		1901-0320 1901-0321	1N4007	1901-0849	1N5554D	1902-0528	2N2905	1853-0282	2N3789		1853-0031	
	1N1200A	1901-0002	●1N4007	1901-0732	1N5525C	1902-1260	2N2905A	1853-0314	2N3791	-	1853-0059	
	1N1206A	1901-0314	1N4099	 1902-0245	1N5533B	 1902-1334	2N2907	 1853-0205	2N3792		1853-0311	
	1N1347A	1901-0309	1N4100	1902-1169	1N5553	1901-0750	2N2907A	1853-0281	2N3799		1853-0451	
	1N1362	1902-1195	1N4101	1902-1170	1N5554	1901-0751	2N2907A	1853-0470	2N3799A 2N3809		1853-0360 1853-0269	
	1N1597A	1902-0039	1N4103	1902-1172 1902-1173	1N5616 1N5812	1901-0862 1901-0765	2N2913 2N2920	1854-0349	2N3819		1855-0040	
	1N]604A 1N2148	1902-1199 1901-0398	1N4104 1N4105	1902-0246	1N5817	1901-0868	2N2925	1854-0066	2N3824		1855-0224	
	1N2158	1901-0305	1N4106	1902-1174	#1N5817	1901-1080	2N2944A	1853-0327	2N3855A		1854-0057	
	1N2158R	1901-0306	1N4110	1902-1178	1N5818	 1901-0734	2N2946A	 1853-0322	2N3866		1854-0233	
	1N2163A	1902-0763	1N4115	1902-1183	1N5821	1901-0782	2N2958	1854-0036	2N3866A 2N3867		1854-0784	
	1N2242	1901-0151	1N4148-1 1N4150	1901-1101 1901-1098	1N5823 1N5828	1901-0726	2N2972 2N3013	1854-0411 1854-0267	2N3879		1854-0476	
Ζ.	1N2326 1N2565	1910-0041 1901-0383	1N4154	1901-1052	1N5847A	1902-0640	2N3019	1854-0263	2N3899		1884-0219	
	1N2620	1902-0157	1N4156	1901-0463	1N5851B	1902-1332	2N3053	 1854-0667	*2N3904		1854-0215	
	1N2820A	1902-1298	1N4530	1901-0370	1N5856A	1902-0641	*2N3053	1854-0703	*2N3904 *2N3905		1854-0651 1853-0292	
		1902-1225	1N4531	1901-1015 1902-1297	1N5857B #1N5908	1902-1323	2N30535	1854-0039	#2N3906		1853-0036	
	1N2971RB	1902-0191 1902-0909	1N4561A 1N4566	1902-1320	1N5927	1902-0939	2N3054 2N3054	1854-0072	2N3922		1855-0038	
	1N2973B	1902-1198	1N4567	1902-0649	1N6001B	1902-1336	2N3054A	1854-0814	2N3933		1854-0238	
	1N2974A	 1902-0902	1N4603	1900-0016	1N6074	 1901-0786	2N3055	1854-0063	2N3955		1855-0207	
		1902-1203	1N4621	1902-0983	1N6096	1901-0833	2N3134	1853-0006	*2N3958 2N3959		1855-0247 1854-0220	
	1N2976B	1902-1194	1N4719 1N4720	1901-0409 1901-0410	2N174 2N508A	1850-0035 1850-0154	2N3250 2N3251	1853-0287	2N3966		1855-0286	
	1N2979 1N2979B	1902-0643	1N4721	1901-0164	2N684	1884-0267	2N3261	1854-0301	2N3993		1855-0387	
		1902-1205	1N4722	1901-0412	2N685	1884-0015	2N3262	 1854-0242	2N4028		1853-0206	
	1N2980B	1902-1200	1N4723	1901-0414	2N688	1884-0016	2N3302	1854-0278	2N4032 2N4033		1853-0320	
		1902-1219	1N4725 1N4732	1901-0493 1902-1300	2N708 *2N709	1854-0005	2N3304 2N3330	1853-0014 1855-0393	2N4034		1853-0072	
		1902-1223	1N4734A	1902-1308	2N720A	1854-0750	2N33A2	1855-0390	2N4035		1853-0258	
	1N2984B	1902-1204	1N4738A	1902-0700	2N743	 1854-0004	#2N3390	1854-0202	*2N4036		1853-0045	
		1902-0910	1N4804	0122-0017	2N834	1854-0010	2N3391	1854-0033	2N4037		1853-0051	
	1N2986B	1902-0156	1N4810	0122-0005	2N835	1854-0011	*2N3391	1854-0371	2N4044		1854-0248	
	1N2988A	1902-1313	1N4811A 1N4934	0122-0025	2N910 2N915	1854-0209	#2N3391A	1854-0201 1854-0218	2N4117A 2N4119		1855-0305	
	1N2991	1902-1228	1N4936	1901-1065	2N916	1854-0050	2N3393 *2N3393	1854-0099	2N4119		1855-0245	
	1N2992	1902-1218	1N4937	1901-0831	2N918	1854-0021	#2N3405	1854-0302	#2N4119		1855-0240	
		1902-0021	1N4960	1902-0974	2N930	1854-0497	2N3415	1854-0093	*2N4122		1853-0069	
	1N2995B	1902-0183	1N5000	1901-0775	2N941	1853-0005	#2N3416	1854-0327	2N4170		1884-0010	
	1N2997RB 1N2999A	1902-0645	1N5002 1N5002R	1901-0492	2N941 2N964	1853-0022	*2N3417 2N3426	1854-0087 1854-0416	2N4172 2N4186		1884-0022	
	1N3003B	1902-0028	1N5003	1901-0494	2N1131	1853-0019	2N3436	1855-0005	2N4188		1884-0071	
	1N3004B	1902-0089	1N5139	0122-0245	2N1304	1851-0017	2N3439	1854-0079	2N4209		1853-0405	
		1902-0178	1N5140	0122-0247	2N1358	1850-0150	2N3440	1854-0234	2N4233A		1854-0600	
	1N3008B	1902-0035	1N5140A	0122-0248	2N1482	1854-0214	2N3441	1854-0216	2N4234		1853-0024 1853-0213	
	1N30348 1N3154	1902-1244	1N5141 1N5142	0122-0249	2N1484 2N1500	1854-0235	2N3442 2N3467	1854-0217 1853-0399	2N4236 2N4237		1854-0481	
	1N3208	1901-0421	1N5143	0122-0253	2N1523	1850-0194	2N3478	1854-0325	2N4237		1854-0556	
	1N3209	1901-0032	1N5144	0122-0255	2N1595S	1884-0004	2N3494	 1853-0071	2N4238		1854-0461	
	1N3209R	1901-0346	1N5144A	0122-0256	2N1671A	1855-0001	2N3501S	1854-0813	2N4239		1854-0361	
	1N3210	1901-0048	1N5145 1N5146	0122-0257	2N1671B 2N1671C	1855-0021	2N3502	1853-0283	2N4240		1854-0311 1853-0077	
	1N3212 1N3260R	1901-0423 1901-0311	1N5147	0122-0259	2N16/10 2N1701	1855-0077	2N3528 2N3553	1884-0012 1854-0308	*2N4249 *2N4250		1853-0066	
	1N3260	1901-0312	1N5147A	0122-0262	2N1701	1854-0613	*2N3563	1854-0092	*2N4258		1853-0081	
1	1N3262R	1901-0313	1N5148	 0122-0263	2N1760	 1850-0406	2N3565	 1854-0060	2N4260		1853-0465	
	1N3289	 1901-0307	1N5148A	0122-0264	2N1771A	1884-0027	2N3569	1854-0466	*2N4265		1854-0270	
	1N3289R	1901-0308	1N5182	1901-0405	2N1774	1884-0028	2N3583	1854-0282	2N4298		1854-0379	
	*1N3290R 1N3491	1901-0655	1N5236B 1N5237B	1902-0630 1902-1305	2N1846 2N1973	1884-0051 1854-0076	2N3585 2N3631	1854-0543	2N4338 *2N4342		1855-0341 1855-0056	
	1N3491R	1901-0343	1N5270B	1902-1306	2N2060	1854-0761	2N3633	1854-0315	*2N4342		1855-0264	
	1N3492	 1901-0424	1N5276B	 1902-1307	2N2102	 1854-0067	2N3634	 1853-0028	2N4348		1854-0382	
	1N3494	 1901-0426	1N5283	 1901-0758	2N2194	 1854-0281	2N3635	 1853-0462	2N4351		1855-0380	

*

JEDEC NO.	HP P/N	2N4923	 1854-0347	2N5198	 1855-0301	2N5875	 1853-0305	2N6254	 1854-0755
		2N4924	 1854-0468	2N5210	 1854-0409	2N5876	 1853-0344	2N6258	 1854-0576
		2N4959	 1853-0430	2N5217	 1854-0286	2N5877	 1854-0518	2N6259	 1854-0577
		2N4900	 1884-0091	2N5301	 1854-0398	2N5878	 1854-0743	2N6261	 1854-0738
2N4352	 1855-0309	2N4996	 1854-0397	2N5333	 1853-0349	2N5880	 1853-0407	2N6282	 1854-0671
#2N4355	 1853-0100	2N5022	 1853-0373	2N5396	 1855-0283	2N5883	 1853-0425	2N6292	 1854-0765
2N4384	 1854-0226	2N5039	 1854-0762	#2N5400	1853-0457	2N5884	 1853-0340	2N6294	 1854-0698
2N4391	 1855-0420	2N5060	 1884-0074	#2N5401	 1853-0264	2N5885	 1854-0679	2N6296	 1853-0383
2N4392	 1855-0386	#2N5061	 1884-0201	2N5416	1853-0221	2N5886	 1854-0697	2N6300	 1854-0648
2N4393	 1855-0414	2N5062	 1884-0232	2N5427	 1854-0596	2N5886	 1854-0742	2N6305	 1854-0785
2N4398	 1953-0310	2N5067	 1854-0695	2N5427	 1854-0758	#2N5886	 1854-0732	2N6306	 1854-0623
#2N4398	 1853-0421	2N5068	 1854-0480	2N5428	 1854-0766	2N5905	 1855-0400	2N6306	 1854-0767
2N4401	 1854-0467	2N5070	 1854-0386	2N5429	 1854-0586	#2N5912	 1855-0213	2N6308	 1854-0624
*2N4401	 1854-0832	#2N5086	 1953-0098	2N5432	 1855-0292	2N5943	 1854-0597	2N6315	 1854-0756
2N4403	 1853-0271	#2N5087	 1853-0086	2N5444	 1884-0255	2N5949	 1855-0258	2N6317	 1853-0418
#2N4403	 1853-0419	#2N508A	 1854-0392	#2N5447	 1853-0029	2N5954	 1853-0277	2N6318	 1853-0461
*2N4410	 1854-0365	2N5089	 1854-0731	2N5460	 1855-0226	2N5956	 1853-0303	2N6331	 1853-0381
2N4416	 1855-0327	2N5105	 1855-0322	2N5462	 1855-0363	2N6050	 1853-0411	2N6338	 1854-0741
2N4416A	 1855-0276	2N5109	 1854-0378	2N5474	 1855-0379	2N6051	 1853-0391	2N6339	 1854-0746
2N4441	 1884-0082	2N5114	 1855-0421	2N5476	 1855-0290	2N6053	 1853-0351	2N6354	 1854-0715
2N4443	 1884-0066	2N5115	 1855-0402	2N5519	 1855-0398	2N6055	 1854-0611	2N6398	 1884-0249
2N4444	 1884-0245	2N5116	 1855-0278	*2N5551	 1854-0474	2N6056	 1854-0774	2N6400	 1884-0266
2N4852	 1855-0204	2N5171	 1884-0211	2N5556	 1855-0288	2N6057	 1854-0669	2N6423	 1853-0414
2N4900	 1853-0323	2N5179	 1854-0345	2N5565	1855-0232	2N6071B	 1884-0238	2N6429A	 1854-0831
2N4902	 1853-0223	2N5179	 1854-0431	2N5569	 1884-0270	2N6073	 1884-0282	2N6474	 1854-0727
2N4904	 1853-0426	2N5184	 1854-0384	2N5573	1884-0202	2N6078	 1854-0599	2N6476	 1853-0406
2N4905	 1853-0268	2N5189	 1854-0570	2N5575	 1854-0709	2N6107	 1853-0371	*2N6477	 1854-0737
2N4912	 1854-0399	2N5191	 1854-0368	2N5578	1854-0708	2N6109	 1853-0469	2N6505	 1884-0281
2N4917	 1853-0089	2N5192	 1854-0453	2N5583	1853-0293	2N6156	 1884-0236	3N128	 1855-0306
2N4918	1853-0084	#2N5192	 1854-0654	2N5671	1854-0793	*2N6162	1884-0237	3N138	 1855-0332
2N4919	1853-0222	2N5193	 1853-0236	2N5684	1853-0428	2N6168	1884-0251	3N145	 1855-0357
2N4920	1853-0204	2N5194	1853-0212	2N5782	1853-0370	2N6211	1853-0328	3N153	 1855-0307
*2N4921	1854-0599	2N5195	1853-0280	2N5838	1854-0534	2N6236	1884-0265	3N18n	 1855-0279
2N4922	1854-0389	#2N5195	1853-0372	2N5840	1854-0751	2N6248	1853-0439	3N214	 1855-0250

Replacement FET's

Attention 5363A Owners

Original equipment 5363A Probe FET's (HP part no. 1858-0042) are becoming increasingly hard to purchase and now have an indefinite delivery time.

In the event your instrument requires a replacement FET, please order HP part no. 1858-0068.

CAUTION

This new FET is subject to the same static hazards as the old FET.

Some minor changes in equipment specifications occur due to this part change.

Trigger Level Accuracy (A&B)

 $\pm 8~mV~\pm~0.4~mV/^{\circ}C~\pm.25\%$ of trigger point. (Old: $\pm 8~mV~\pm~0.4~mV/^{\circ}C~\pm.15\%$ of trigger point.)

Differential Trigger Level Accuracy (A&B)

With both thumbwheels set to same value, actual trigger points will be within $\pm 3 \text{ mV} \pm 0.5\%$ of trigger point setting (old: $\pm 3 \text{ mV} \pm .3\%$).

Dynamic Range

Trigger levels can be set from -9.00 V to +9.99 V in 10 mV steps (old: -9.99 V to +9.99 V).

As a permanent update for your 5363A manual, please order service note 5363A-3. It contains all the new specifications.

WWW.HPARCHIVE.COM

Safety-Related Service Notes

Service Notes from HP relating to personal safety and possible equipment damage are of vital importance. To make you more aware of these important notes, HP has recently modified the Safety Service Note format. The note is now printed on paper with a red border, and a "-S" suffix has been added to the note's number. In order to make you immediately aware of any potential safety problems, we are highlighting safety-related Service Notes here with a brief description of each problem. Also, in order to draw your attention to safety-related Service Notes on the Service Note order form at the rear of Bench Briefs, each appropriate number is highlighted by being printed in color.

1610A/1611A/1615A/1640A Logic State Analyzers

A shock hazard may exist at the power socket (with cord removed) of the following logic Analyzers.

1610A serials 1812A00645 and below 1611A serials 1723A00927 and below 1615A serials 1825A00626 and below 1640A serials 1827A00315 and below

If the LINE switch is turned OFF and the power cord removed from the 1611A, line filter capacitors retain a change at the power socket that can shock an operator.

To eliminate the possibility of this hazard, it is necessary to install a 4.7 megohm 1/2 watt resistor across the line terminals of the power socket. Safety service notes 1610A-4-S, 1611A-7-S, 1615A-1-S, and 1640-1-S describes the procedure. You may order this safety service note from Hewlett-Packard with the form provided at the back of Bench Briefs.

8640B, Option 323 (AN/USM-323) and 8640M Signal Generator

A possible safety hazard exists in these instruments (refer to the service note list for specific serial numbers), where a terminal board, used as a junction for the power cord and line filter wiring, is secured to an aluminum side panel with no intervening insulation. A direct short of the power line to the panel is possible only when one of several unlikely conditions should occur. The problem is corrected with the installation of an insulator (HP part no. 0841-00064) following the procedure outlined in the safety service note. Order the note from HP with the form provided at the back of Bench Briefs.

8750A Storage-Normalizer

8750A Storage-Normalizers with serial numbers 1808A00510 and below may have a potential shock hazard on the front panel due to the neutral primary power lead being reversed with a ground lead at the front panel. To check and repair your instrument, perform the following steps:

- 1.) Disconnect the power cord and remove bottom cover.
- 2.) Make certain that the white/ yellow/gray wire #948 is connected from the rear panel to a ground lug adjacent to the front panel ON/OFF switch and *not* to a terminal on the ON/OFF switch.
- 3.) Make certain that the white/ gray wire #98 (the neutral primary power lead) is connected to a terminal of the ON/OFF switch and *not* an adjacent ground lug.

Order Safety Service Note 8750A-3-S with the order form at the rear of Bench Briefs.

63312F DC Power Supply

on 63312F Power Supplies with serial numbers 1809A00487 and below, if wires coming from RFI choke AIL2 should rub against the thermal switch bracket, and the safety earth ground is not connected to the power supply.

A potential shock hazard may exist

Safety service note 63312F-1-S lists a new bracket, insulation for the choke wire, and the procedure for modification.

WWW.HPARCHIVE.COM

SERVICE NOTES

NEED ANY SERVICE NOTES?

Here's the latest listing of Service Notes available for Hewlett-Packard products. To obtain information for instruments you own, remove the order form and mail it to the HP distribution center nearest you.

GENERAL

5083-4. Recommended use of black tape on C.R.T. bases to prevent cracking.

403B/BB PORTABLE AC VOLTMETER

403B/BB-9A. Serials 0986A20520 and below. Recommended new battery replacement.

410C ELECTRONIC VOLTMETER

410C-17. Serials 0982A19038 and below. Recommended replacement transistor for A3Q1 & Q2.

435A POWER METER

435A-U-4. Serials 1823U and below. Recommended power supply crowbar modification.

465A AMPLIFIER

465A-5. Serials 0970A05055 and below. Recommended replacement for R28.

467A POWER AMPLIFIER SUPPLY

467A-3. Serials 0994A03870 and below. Recommended replacement for R1.

740A/740B DC

STANDARD/DIFFERENTIAL VOLTMETER 740A-6B-S. Elimination of a potential safety hazard.

740B-8B-S. Elimination of a potential safety hazard.

741A/B AC-DC DIFFERENTIAL **VOLTMETER/DC STANDARD**

741A-9C-S/741B-10C-S. All serials. Elimination of a potential safety hazard.

1220A OSCILLOSCOPES

1220A-26. All serials. Instructions for high voltage board (A3) or focus and intensity potentiometers modifications.

1300A X-Y DISPLAY

1300A-13B. All serials. High-voltage oscillator replacement modification.

1308A X-Y DISPLAY

1308A-13B. All serials. IF high-voltage oscillator replacement modification.

1309A X-Y DISPLAY

1309A-13B. All serials. High-voltage oscillator replacement modification.

1332A X-Y DISPLAY 1332A-8. All serials. CRT replacement kits.

1610A LOGIC STATE ANALYZER

1610A-1. Recommended modification to extender board with connector reversed. 1610A-2. Serials below 00350. Modification to prevent

A903 failure (preferred replacement for A9U4). 1610A-3A. Serials 1733A and below. Preferred replacement for A10 power supply board.

1611A LOGIC STATE ANALYZER

1611A-7-S. Serials 1723A00927 and below. Modification to prevent power socket shock hazard.

10258B-1. 1611A Option A80. Recommended modification to "trace-then-wait/hold" test mode for 1611A, option A80.

1707B OSCILLOSCOPE 1707B-6B. Recommended handle replacement kit.

1740A OSCILLOSCOPE

1740A-3B. All serials. Modification instructions for converting standard 1740A to an option 101.

1742A OSCILLOSCOPE 1740A-3B. All serials. Modification instructions for con-

verting standard 1742A to an option 101. **1743A OSCILLOSCOPE** 1740A-3B. All serials. Modification instructions for con-

verting standard 1743A to an option 101.

3335A SYNTHESIZER/LEVEL GENERATOR

3335A-1. Serials below 1640A00261 (options 002, 003, 004) and all serials (standard models and all other options). Modification to prevent auto sweep mode ROM error.

3420A/B DC DIFFERENTIAL VOLTMETER/RATIOMETER

3420A/B-5B-S. Elimination of a potential safety hazard.

3455A DIGITAL VOLTMETER

3455A-3A. Serials 1622A01055 and below. Modification to improve stability of zero detect amplifier.

- 3455A-9A. All serials. Modification in instrument performance test.
- 3455A-10. All serials. Modification to improve performance of front panel pushbuttons.
- 3455A-11. Serials 1622A03305 and below. Modification to improve true RMS response to low level high frequency voltages.
- 3455A-12. Serials 1622A02566 to 1622A03135. Improvement in ohms converter response time.

3466A MULTIMETERS

3466A-3. All serials. Clarification of instruction specifications on AC range with input shorted.

3466A-4. All serials. Recommended replacement of in-

tegrator op amp U400. 3466A-5. All serials. Improved test for A4 logic board.

3551A TRANSMISSION TEST SET

3551A-10. All serials. Modification to prevent intermittent time base problems.

3552A TRANSMISSION TEST SET

3552A-U-6. Serials 1733U-00745. Recommended power supply fuse change. 3552A-U-7. All serials. Modification to prevent intermit-

tent time base problems.

3556A PSOPHOMETER

3556A-U-1003A. Serials 1547U and below. Recommended battery modification to accept new style batteries.

3702B IF/BB RECEIVER

3702B-39. Serials below 1737U-02166. Modification to resistor in I.F. amplifier (A22R34).

3710A-20. All serials. New performance checks and troubleshooting procedures for 3702B with 3703B or 3705A plug-ins

3703B GROUP DELAY DETECTOR

3703B-3. All serials. (Option 14 only). Recommended replacement of resistors A1R141, A1R142, and A1R143.

WWW.HPARCHIVE.COM

3703B-4. All serials. Recommended replacement for J-K flip-flops, A1MC1 and A1MC2.

3703B-5. Serials below 1326U-01309. Recommended modification to A1R195, A1R197, and A1R199 resistors

3710A-20. All serials. New performance checks and troubleshooting procedures for 3702B with 3703B or 3705A plug-ins.

3703Z GROUP DELAY DETECTOR

3703Z-1. All serials. Recommended replacement for A1R141, A1R142, and A1R143 resistors.

3703Z-2. All serials. Recommended modifications to J-K flip-flops, A1MC1 and A1MC2 (1820-0595).

3705A GROUP DELAY DETECTOR

3710A-20. All serials. New performance checks and troubleshooting procedures for 3702B with 3703B or 3705A plug-ins.

3710A IF/BB TRANSMITTER

3710A-19. Serials below 1637U-02271. Recommended replacement resistors in I.F. amplifier assembly A6R28, A6R29, and A6R33.

3710A-20. All serials. New performance checks and troubleshooting procedures for 3710A with 3715A or 3716A plug-ins.

3715A BB TRANSMITTER

3710A-20. All serials. New performance checks and troubleshooting procedures for 3710A with 3715A and 3716A plug-ins.

3716A BB TRANSMITTER

3710A-20. All serials. New performance checks and troubleshooting procedures for 3710A with 3715A and 3716A plug-ins.

3721A CORRELATOR

3721A-10A. Serials 1123U-00371 and above (world wide) and serials 1112A-00135 and above (USA only). Recommended procedure for installation of delay offset, option 01 series.

3745B SELECTIVE LEVEL MEASURING SET

- 3745A/B-16. Serials between 1607U and 1726U (inclusive). Clarification of low output level from 3745B balanced audio output and preferred replacement of A300T1.
- 3745A/B-17. Serials 1726U and below. Modification to prevent illegal state of input attenuator logic.
- 3745A/B-18A. Serials 1812U and below. Recommended retrofit kit for 50 Hz special option HO7.

3745A/B-20A. Serials 1812U and below. Recommended retrofit kits for special options H15 and H16 that operate in conjunction with H07.

3762A DATA GENERATOR

3762A-2. Serials below 1812U-00156. Recommended modification to reduce susceptability of the 3762A to conducted line interference.

3770A AMPLITUDE/DELAY DISTORTION ANALYZER

3770A-2C. Serials below U-00483. Recommendations

to increase receiver frequency display stability.

3770A-35. All serials. Recommended replacement part numbers of A15IC10, IC11, IC14 and IC15.

3770B TELEPHONE LINE ANALYZER

- 3770B-12A. Serials below U-00246. Recommended procedure to increase receiver frequency display stabiltiv
- 3770B-15. All serials. Recommended replacement part numbers of A15IC10, IC11, IC14 and IC15. 3780A PATTERN GENERATOR/

ERROR DETECTOR

3780A-4A. Serials below 1804U-00531. Modification to

3780A-10A. Serials below 1804U-00531. Recom-

3780A to conducted mains supply interference.

mended modification to reduce susceptibility of the

reduce noise on the AC line supply.

SERVICE NOTES

3964A INSTRUMENTATION TAPE RECORDER

- 3964A-15. All serials. Procedure for elimination of noise in combined flutter compensation and tape servo mode.
- 3964A-16. Serials 1715A through 1814A. Recommended modification of A24 F1 and F2 to 5 amps.

3968A INSTRUMENTATION TAPE RECORDERS

- 3968A-15/8868A-13. All serials. Recommended procedure for elimination of noise in combined flutter compensation and tape servo mode.
- 3968A-16/8868A-14. Serials 1715A through 1814A. Recommended modification of A24 F1 and F2 to 5 amps.

4910G OPEN-SPLIT LOCATOR

4910G-3. All serials. Recommended installation of battery support plate.

4930A CONDUCTOR FAULT LOCATOR

4930A-5. All serials. Recommended installation of battery support plate.

4961A/B PAIR IDENTIFIER FIELD UNIT

4961A-1. All Serials. Recommended installation of battery support plate.

4961B-1. All serials. Recommended installation of battery support plate.

5004A SIGNATURE ANALYZER

- 5004A-1B. Serials 1736 and above. Recommended procedures for adjustment and compensation of data probe threshold voltage.
- 5004A-3. Serials 1808 and below. Recommended resistor modifications to meet narrow negative pulse specification.

5150A THERMAL PRINTER

5150A-4. Recommended HP-IB verification program for option 001.

5308A 75 MHz TIMER/COUNTER

5308A-3A. Serials 1720A2951 and above. Recommended in-cabinet performance update.

5328A UNIVERSAL COUNTER

- 5328A-U-15. Serials 1818U-00761 and above. Recommended replacement for A2 power supply assembly.
- 5328A-17. All serials. Option 011. Recommended HP-IB verification using the 9825A.
- 5328A-19A. All serials. Recommended modification to improve performance.
- 5328A-20. All serials. Recommended procedures for performance test for 5328A.
- 5328A-21. All serials. Recommended procedures for adjustments for the 5328A.

5345A ELECTRONIC COUNTER

5345A-9. Recommended HP-IB verification program, option 011.

- 5345A-12. Recommended HP-IB verification program, option 012.
- 5345A-13. All serials. Clarification of special extender board compatibility with 5345A counters.

5353A CHANNEL C PLUG-IN

5353A-1. Recommended HP-IB verification program.

5354A FREQUENCY CONVERTER

- 5354A-6. Recommended HP-IB verification program, option 011.
- 5354A-7. All serials. Recommended new adjustment procedures.

5363A TIME INTERVAL PROBES

5363A-1. Serials 1748A and below. Recommended circuit modifications to prevent trigger output oscillations.

5363A-2. Recommended HP-IB verification program.

8165A PROGRAMMABLE SIGNAL SOURCE

8165A-1. All serials. Procedure to prevent incorrect duty cycle being printed.

8444A TRACKING GENERATOR

8444A-3. All serials. Recommended replacement power line module.

8551A/B SPECTRUM ANALYZER, RF SECTION

8551A/B-9A. All serials. Recommended RF input attenuator replacements.

8552B SPECTRUM ANALYZER 8552B-10A. All serials. Spectrum analyzer assembly instructions.

8554B SPECTRUM ANALYZER, RF SECTION

8554B-5. All serials. Recommended modification to install option 003, internal RF input limiter.

8555A SPECTRUM ANALYZER, RF SECTION

8555A-8. All serials. Recommended tools for servicing the interconnecting connectors A1J6 and P6 (8555A A1 front panel assembly to RF section body).

8557A SPECTRUM ANALYZER

8557A-1B. Serials 1652A and below. Recommended modification kit for use with 8750A storagenormalizer.

8558B SPECTRUM ANALYZER

8558B-11B. Serials 1652A and below. Recommended modification kit for use with 8750A storagenormalizer.

8558B-15. All serials. Recommended new attenuator mounting bracket.

8568A SPECTRUM ANALYZER

8568A-1. All serials. Recommended new RF and IFdisplay interconnect cables.

8614A SIGNAL GENERATOR

8614A-19. Serials 1748A and below. Recommended replacement for germanium transistors on A500.

8616A SIGNAL GENERATOR

8616A-17. Serials 1739A and below. Recommended replacement for germanium transistors on A500.

8640B SIGNAL GENERATOR

8640B-32-S. All serials, option 323. Elimination of terminal board short hazard.

8640B-33. Serials 1827A and below, option 004. Recommended modification to improve AM phase shift.

8640M SIGNAL GENERATOR

8640M-1-S. Serials 1820A and below. Elimination of barrier block short hazard.

8699B RF UNIT

8699B-4A. Serials 1406A02325 and below. Recommended replacement for E4 power amplifier.

8750A STORAGE-NORMALIZER

8750A-3-S. Serials 1808A00510 and below. Elimination of a potential safety hazard.

8868A INSTRUMENTATION TAPE RECORDERS

3968A-15/8868A-13. All serials. Recommended procedure for elimination of noise in combined flutter compensation and tape servo mode.

3968A-16/8868A-14. Serials 1715A through 1814A. Recommended modification of A24 F1 and F2 to 5 amps.

10258B LOGIC STATE ANALYZER

10258B-1. Recommended modification to "trace then wait/hold" test mode for 1611A, option A80.

59405A HP-IB CALCULATOR INTERFACE 59405A-3. Serials 1444A01915 and below. Recom-

mended procedure for data reliability improvement.

63312F DC POWER SUPPLY

63312F-1-S. Serials 1809A00487 and below. Elimination of potential safety hazard.

86350A OSCILLATOR MODULE

86350A-5A. All serials. YTO replacement kit, HP P/N 86350-60021 and YTO replacement kit, HP P/N 86350-60022.

3710/3702 Users

Telecommunications Test Equipment

A service note, 3710A-20, has been issued that provides detailed information on troubleshooting the 3710/3702 MLA.

The 35-page service note replaces the Back-to-Back Performance Checks and Troubleshooting Section III of the service manual. There are waveform pictures, troubleshooting notes, and blank test records.

Owners of the 3710/3702 combination can order the service note with the order form located on the last page of Bench Briefs.

READERS CORNER

Here's your chance to share your ideas and views with other *Bench Briefs* recipients. In Reader's Corner, we will print letters to the Editor, troubleshooting tips, modification information, and new tools and products that have made your job easier. In short, Reader's Corner will feature anything from readers that is of general interest to electronic service personnel.

If there is something you have to share with other *Bench Briefs* readers, let us hear from you.

The last issue of Bench Briefs listed a series of questions submitted by the "Calibrators of Red Stone Arsenal." I thought they were straightforward and humorous and would not provoke anyone as had the sheep puzzle and petals round a rose problem. Little did I suspect!

Editor, Bench Briefs:

I enjoy, by and large, the Readers Corner and its puzzles. However, the recent issue (Vol. 18, No.2) contains some very childish (no pun intended — it is literally so!) ones.

Specifically, of the problems submitted by the "Calibrators of Red Stone Arsenal", problems #1, 2, 3, 4, 7, 8, 10 are well-known to my 11 year old girl ("Oh, dad, this is DUMBBBB!!!).

Problem #5 is more challenging (and not quite so simple) if stated as follows: "From my point of departure, I travelled 1 mile south, 1 mile west, and 1 mile north — and found myself at the point of departure. Where was I?" (answer: a *locus* of points on a circle of latitude, located at approximately $1 1/2\pi$ miles north of the south pole. The north pole is another — trivial — solution.)

Problem #9 is wrong — with today's 24hr. alarm clocks, I can get 13 hrs. of sleep.

Finally, here is a dandy one, similar to the famous + $\stackrel{S \ E \ N \ D}{M \ O \ R \ E}$

MONEY

problem. This one requires some thought:

${}^{\rm A}_{ imes}$	В	С	D	E 4	
E	D	С	В	A	

Here, of course, every letter stands for a digit. Find them! (answer will be supplied upon request.)

Sincerely,

S. Karni, Professor Albuquerque, NM

Editor, Bench Briefs:

In the May-October 1978 issue of 'Bench Briefs' I read with some interest the Readers Corner, on p.12. Unfortunately, all of your so-called "logical answers" to logical questions are wrong.

Below I will supply the correct answers to these same questions.

- 1. Q. How many birth days does the average woman have?
 - A. One, on the day she is born; a second, 29 years before her 30th birthday; a third one, 30 years before her 31st birthday; and so on until she is too old to care.
- 2. Q. Divide thirty by one-half and add ten. A. When you divide thirty teeth by one-
- A. When you divide thirty teeth by onehalf you need a dentist; after you add ten you are tendentious.
- 3. Q. Do they have a 4th of July in England?
- A. No, but they have a fifth of May wine.
- 4. Q. A man has two coins that are worth 30¢, one of which is not a quarter. What are the two coins?
 - A. A quarter and a silver dollar; the silver dollar is not the quarter.
- 5. Q. A man built a house rectangular in shape and each side has a southern exposure. A bear came wandering by. What color is the bear?
 - A. Any man who builds a house such that each side has a southern exposure has to be a bug on suntans. Therefore, the animal that "wanders by" is a bugbear.
- 6. Q. Is it legal for a man to marry his widow's sister?
 - A. It may not be legal, but it sounds like a lot of fun.
- 7. Q. Why can't a man living in North Carolina be buried west of the Mississippi river?
 - A. You can't find an undertaker in North Carolina who knows how to spell Mississippi.
- 8. Q. How many outs are there in an inning of baseball?

- A. As many inns as are visited in an outing after a ball.
- 9. Q. If you set the alarm clock for nine o'clock in the morning at eight p.m., how many hours of sleep will you get?
 - A. None. If I had an electric clock I would worry that I had forgotten to plug it into the outlet, if it were non-electric I'd have a nagging feeling that I had neglected to wind it.
- 10. Q. How far can a dog run into the woods?A. A dog who runs into the woods will knock himself unconscious. Does that answer the question?
- 11. Q. A man gave a beggar 50¢. The beggar is not the man's brother, but the man is the beggar's brother. Why?
 - A. Most men don't give any money to a beggar, so a beggar given 50¢ by a man will consider the man to be his brother; the man should be thankful that the beggar doesn't try to adopt him.

Sincerely yours,

Bernard Rasof, Professor Chicago, IL

Editor, Bench Briefs:

I'm taken aback that HP, of all companies, would run an answer to a Readers Corner quiz such as the one to Question 9 in your May-October Bench Briefs. The question was:

> "If you set the alarm clock for nine o'clock in the morning at eight PM, how many hours of sleep will you get?"

The answer offered ("one hour before the alarm goes off") was true in the era BDC (sorry, Before Digital Clocks), when mechanical or electric clocks couldn't be expected to figure out whether you'd set them to ring at 9 p.m. or 9 a.m. The same isn't true of electronic digital clocks, though, God knows, they have their own traumas (such as not tolerating even the briefest power outage). So with an electronic clock, the correct answer is just what an illogical, muddleheaded reader would think: 13.

Shame on you and on the Calibrators of Red Stone Arsenal, but for God's sake don't cut off my BB subscription.

Sincerely yours,

Avery Comarow Washington, DC

And Dr. R. N. Caffin from Australia writes:

Dear Sir,

May-October 1978 Bench Briefs Readers Corner, question 9: If I set my "alarm clock for nine o'clock in the morning at 8 p.m.", I get 13 hours sleep. Not one. Reason? Because my "alarm clock" is a digital clock and on it 9 a.m. is 9 a.m. and 8 p.m. is 8 p.m. That is, it functions as a 24 hour clock. And if you have a modern, electronic, digital clock, so will you get 13 hours!

Question 7: No reason why you can't bury a living man — other than legal ones!

Dr. R. N. Caffin Australia

U.S. SEMINAR REGISTRATION FORM

	COURSE	DATES	TUITION	COORDINATOR	
	Fourier Analyzer User's Guide	June 11 thru 15, 1979 August 13 thru 17, 1979	\$500/Student		
	Logic State Analyzers 1600A/1607A 1610A 1640A 1611A 1615A	September 10 thru 12, 1979 September 17 thru 19, 1979 September 20 thru 21. 1979 September 24 thru 26, 1979 October 15 thru 17, 1979	250/Student 250/Student 200/Student 250/Student 250/Student		
	Oscilloscope Maintenance 1715A/1725A 1740A/1741A/1742A/1744A	October 1 thru 3, 1979 October 8 thru 11, 1979	250/Student 300/Student	Dick Browne P.O. Box 2197 Colorado Springs, CO 80901	
	Tri-Color Display & Graphics Translator Maintenance 1338A/1350A	October 4 thru 5, 1979	200/Student	(303)598-1900	
	Small Screen Display Maintenance 1332A/1333A/1335A	October 22 thru 23, 1979	200/Student		
	Large Screen Display Maintenance 1310A/1311A/1317A/1321A	October 25 thru 26, 1979	200/Student)	
* 🗆	Signal Generator Maintenance 8640/8660 and 435/436 Power Meters <i>or</i> 8672A Microwave Synthesizer	September 10 thru 14, 1979	350/Student	Steve Thomas 1501 Page Mill Rd. Palo Alto, CA 94303 (415)856-2980	
* 🗌	8505A RF Network Analyzer	September 17 thru 21, 1979	350/Student	Jim Simpson 1400 Fountain Grove Parkway	
*Notice	that these courses can be taken conc	currently.		Santa Rosa, CA 95404 (707)525-1400	
	COURSE	LOCATION		TUITION COORDINATO	R
n demand* (d linimum=1 N	elass size: faximum=30) Digital Troubleshoot Techniques	Customer site		\$4,200 flat rate Tom O'Connor Mountain View	

On demand* (class size: Minimum=15 Maximum=30)

On demand* (class size:

Minimum=1 Maximum=20) On demand* (class size:

Minimum=10 Maximum=20)

Techniques (using HP logic lab)

Microprocessor Troubleshooting Techniques (using 5036A's)

HP field office

Customer site

HP field office

\$300/Student

Tom O'Connor Mountain View (415)968-9200 ext. 372

Tom O'Connor Mountain View

*30-day leadtime for scheduling required.

REGISTRATION INSTRUCTIONS

To enroll in any of the seminars, fill out the registration form and mail it with your check to the address shown for the coordinator. Please use separate registration forms for each student.

Make your check payable to Hewlett-Packard Company in U.S. Currency.

Upon receipt of your registration and check, we will confirm your en-

rollment by returning all necessary prestudy material along with a list of nearby motel accommodations. Attendees are responsible for their own transportation, accommodations, and meals.

Name		-	april Weath Court
Company Name			- 11, 21, 24, 24, 25, 26, 27, 26, 27, 26, 27, 26, 27, 26, 27, 26, 27, 26, 27, 26, 27, 26, 27, 26, 27, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27
Address			
City	State	Zip	

WWW.HPARCHIVE.COM

\$4,200 flat rate

\$300/Student

□ 3455A-12

□ 3466A-3

□ 3466A-4

□ 3466A-5

□ 3551A-10

□ 3552A-U-6

□ 3552A-U-7

□ 3702B-39

□ 3703B-3

□ 3703B-4

□ 3703B-5

□ 3703Z-1

□ 3703Z-2

□ 3710A-19

□ 3710A-20

□ 3721A-10A

□ 3745A/B-16

□ 3745A/B-17

3745A/B-18A

3745A/B-20A

□ 3762A-2

□ 3770A-2C

□ 3770A-35 □ 3770B-12A

□ 3556A-U-1003A

If you want service notes, please check the appropriate boxes below and return this form separately to one of the following addresses.

> Hewlett-Packard 1820 Embarcadero Road Palo Alto, California 94303

_	403B/BB-9A
-	410C-17
-	435A-U-4
_	465A-5
Ц	467A-3
	740A-6B-S
	740B-8B-S
	741A-9C-S/741B-10C-S
	1220A-26
	1300A-13B
_	
-	1308A-13B
-	1309A-13B
_	1332A-8 1610A-1
_	1610A-1
Ц	1010A-2
	1610A-3A
	1611A-7-S
	1707B-6B
	1740A-3B
	3335A-1
_	24004/D 5D 0
	3420A/B-5B-S
_	3455A-3A
_	3455A-9A
_	3455A-10 3455A-11
	3435A-11

Hewlett-Packard Central Mailing Dept. P. O. Box 529 Van Hueven Goedhartlaan 121 AMSTELVEEN-1134 Netherlands

For European customers (ONLY)

NAME	
COMPANY NAME_	
ADDRESS	
CITY	
STATE	ZIP

	3770B-15	
	3780A-4A	
	3780A-10A	
	3964A-15	
	3964A-16	
	3968A-15/8868A-13	
	3968A-16/8868A-14	
	4910G-3	
	4930A-5	
	4961A-1	
	4961B-1	
	5004A-1B	
	5004A-3	
	5083-4	
	5150A-4	
	5308A-3A	
	5328A-U-15	
	5328A-17	
	5328A-19A	
	5328A-20	
	5328A-21	
	5345A-9	
_	5345A-12	
	5345A-13	
	5353A-1	

0200035210&&& PLOS&GG00

MR GEORGE G PLOSSER PIPEHORN UTILITY TOOL CO

COMMERCE BLVD

AL

35210

D 5363A-1 □ 5363A-2 □ 8165A-1 D 8444A-3 B 8551A/B-9A □ 8552B-10A □ 8554B-5 □ 8555A-8 B 8557A-1B □ 8558B-11B □ 8558B-15 □ 8568A-1 □ 8614A-19 B 8616A-17 □ 8640B-32-S □ 8640B-33 □ 8640M-1-S □ 8699B-4A B750A-3-S □ 10258B-1 □ 59405A-3 □ 63312F-1-S □ 86350A-5A

□ 5354A-6

D 5354A-7

HEWLETT-PACKARD COMPANY 1820 Embarcadero Road Palo Alto, California 94303

BENCH BRIEFS NOV 1978-APR 1979 Volume 18 Number 1 19

Service information from **Hewlett-Packard Company**

To obtain a qualification form for a free subscription, send your request to the above address.

Reader comments or technical article contributions are welcomed. Please send them to the above address, attention Bench Briefs.

Editor: Jim Bechtold, HP Mt. View California

Address Correction Requested

Printed in U.S.A.

All rights are reserved. No part of Bench Briefs may be reproduced without the express consent of the Editor. The editor may be telephoned at (415) 968-9200, Extension 376

2900

BIRMINGHAM