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Technical computing today is increasingly dominated by design and analysis 
tasks that require high-performance workstat ion and software products. Some 
of the emerging described in this issue address the needs of this emerging 
market. 

On the software side, we have the DirectModel 3D model ing toolki t  and the 
HP implementation of the OpenGLÂ® graphics standard. The toolkit provides 
appl icat ion developers with the capabi l i ty to develop appl icat ions that can 
construct 3D models containing mi l l ions or bi l l ions of polygons. DirectModel 
is built on top of the HP OpenGL product. OpenGL is a vendor-neutral, mult i- 
p lat form, industry-standard appl icat ion programming interface (API)  for  
developing 20 and 3D visual applications. 

For running these appl icat ions, we have the HP Kayak PC-based workstat ion 
running the WindowsÂ® NT operating system. HP Kayak provides world-leading 
3D graphics performance typically found in high-end UNIXÂ® workstations. 
Much of the hardware archi tecture for HP Kayak is based on the VISUALIZE 
fx4 graphics accelerator,  which is designed to provide nat ive accelerat ion for 
the OpenGL API. 

A common theme underly ing the development of  al l  these products is the 
desire employed shorten the time to market. Concurrent engineering was employed 
in  the  were  p ro jec t  to  ach ieve  th i s  goa l .  P rocesses  done  in  se r ia l  were  
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modif ied to be done in paral lel ,  shortening the product development 
cycle. Quali ty engineers at the HP Kobe Instrument Division reengi- 
neered their  qual i ty assurance process to deal  wi th the t ime-to-market 
issue and st i l l  maintain high-qual i ty released software. 

We have two art ic les about HP-UX workstat ions.  One descr ibes a fea 
ture that al lows mult iple monitors to be conf igured as one cont iguous 
viewing space, and the other discusses the chal lenges of adding the 
Peripheral Component Interconnect, or PCI, to HP B-class and C-class 
workstat ions. 

Information is the fuel that drives today's enterprises. Thus, we have 
three art icles that discuss the use of information to do such tasks as 
l inking business manufactur ing software to the factory f loor,  providing 
a knowledge database for  support  personnel ,  and forecast ing compo 
nent demand in material planning. 

The art icle about HP VEE (Visual Engineering Environment) is an exam 
ple of  our new publ ishing paradigm of  using the web to extend or com 
plement what appears in the pr inted version of  the Hewlet t -Packard 
Journal. 

C. L Leath 
Managing Edi tor  

W H A T ' S  A H E A D  

In August we will have articles about a 
150-MHz-bandwidth membrane hydro 
phone, units measurement for optical 
instruments, and efforts to improve the 
reliability of ceramic pin grid array pack 
aging and surface-mount LEDs. We will 
also have articles from the HP Design 
Technology Conference, the HP Com 
pression Conference, and the HP Elec 
tronic and Assembly Conference. 
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Articles 

A n  A P I  f o r  I n t e r f a c i n g  I n t e r a c t i v e  
3 D  A p p l i c a t i o n s  t o  H i g h - S p e e d  
G r a p h i c s  H a r d w a r e  

K e v i n  T .  L e f e b v r e  a n d  J o h n  M .  B r o w n  

An introduction to the articles in this 
issue that describe the HP hardware and 
software products that implement or 
support the OpenGLÂ® specification. 

ClT)  The Fast-Break Program 

A n  O v e r v i e w  o f  t h e  H P  O p e n G L  
S o f t w a r e  A r c h i t e c t u r e  

K e v i n  T .  L e f e b v r e ,  R o b e r t  J . C a s e y ,  M i c h a e l  
J .  Phe lps ,  Cour tney  D .  Goe l t zen leuchter ,  
a n d  D o n l e y  B .  H o f f m a n  

The features in the software component 
of the HP OpenGL product that differ 
entiate it from other OpenGL implemen 
tations include performance, quality, and 
reliability. 

^ Â £ )  T h e  D i r e c t M o d e l  T o o l k i t :  
M e e t i n g  t h e  3 D  G r a p h i c s  N e e d s  
o f  T e c h n i c a l  A p p l i c a t i o n s  

Br ian  E .  Cr ipe  and Thomas A.  Gask ins  

Today's highly complex mechanical design 
automation systems require a modelling 
toolkit for developing interactive applica 
tions capable of handling 3D models con 
taining millions or billions of polygons. 

f i l  

f ^ p  A n  O v e r v i e w  o f  t h e  V I S U A L I Z E  f x  
G r a p h i c s  A c c e l e r a t o r  H a r d w a r e  

Noe l  D .  Scot t ,  Dan ie l  M .  O lsen ,  and  Ethan  W.  
G a n n e t t  

Five custom integrated circuits make up 
the high-speed VISUALIZE fx family of 
graphics subsystems. 

( ^ 3 0 ^ )  O c c l u s i o n  C u l l i n g  

(~32* )  Fas t  V i r tua l  Tex tu r ing  

^ p  H P  K a y a k :  A  P C  W o r k s t a t i o n  w i t h  
A d v a n c e d  G r a p h i c s  P e r f o r m a n c e  

Ross A.  Cunni f f  

Graphics performance typically found 
in high-speed UNIXÂ® workstations has 
been incorporated into a PC workstation 
running the WindowsÂ® NT environment. 

Concur ren t  Eng ineer ing  in  
O p e n G L ' s  P r o d u c t  D e v e l o p m e n t  

Rober t  J .  Casey  and  L .  Leonard  L indstone  

The authors describe how the concepts 
of concurrent engineering helped the HP 
OpenGL project to achieve a shorter time 
to market and a reduction in rework. 

A d v a n c e d  D i s p l a y  T e c h n o l o g i e s  
o n  H P - U X  W o r k s t a t i o n s  

T o d d  M .  S p e n c e r ,  P a u l  M .  A n d e r s o n ,  a n d  
D a v i d  S w e e t s e r  

Recent versions of the HP-UX operating 
system contain features that allow users 
to create more viewing space by configur 
ing multiple monitors into a single logical 
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Del iver ing  PCI  in  HP B-Class  and 
C-Class  Worksta t ions:  A  Case  
S tudy  in  the  Cha l l enges  o f  
I n t e r f a c i n g  w i t h  I n d u s t r y  
S t a n d a r d s  

Ric  L.  Lewis,  Er in  A.  Handgen,  Nicholas J .  
Ingegner i ,  and  G len  T .  Rob inson  

The authors discuss some of the challenge! 
involved in incorporating an industry-stan 
dard I/O subsystem into HP workstations. 

6 2  L i n k i n g  E n t e r p r i s e  B u s i n e s s  
Systems to  the  Factory  F loor  

Kenn S.  Jennyc 

HP Enterprise Link is a middleware soft 
ware product that allows business manage 
ment applications to exchange informa 
tion with applications running on the 
factory floor. 

K n o w l e d g e  H a r v e s t i n g ,  
A r t i c u l a t i o n ,  a n d  D e l i v e r y  

K e m a l  A .  D e l i c  a n d  D o m i n i q u e  L a h a i x  

A knowledge-based software tool is used 
to help HP support personnel provide 
customer support. 

CTS)  G lossa ry  

A  T h e o r e t i c a l  D e r i v a t i o n  o f  
R e l a t i o n s h i p s  b e t w e e n  F o r e c a s t  
Errors 

J e r r y  Z . S h a n  

A study of the errors associated with pre 
dicting component replacement require 
ments in the materials planning process. 

8 9  S t r e n g t h e n i n g  S o f t w a r e  Q u a l i t y  
A s s u r a n c e  

M u t s u h i k o  A s a d a  a n d  P o n g  M a n g  Y a n  

Reengineering a software quality assur 
ance program to deal with shorter time- 
to-market goals. 

% J Â £ P  A  C o m p i l e r  f o r  H P  V E E  

S t e v e n  G r e e n b a u m  a n d  S t a n l e y  J e f f e r s o n  

The authors describe a compiler technol 
ogy that is designed to improve the exe 
cution speed of HP VEE (Visual Engineer 
ing Environment) programs. 
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What's new? 

â€¢ The Previews section contains the 
following new articles: 

T e c h n i q u e s  f o r  H i g h e r - P e r f o r m a n c e  
B o o l e a n  E q u i v a l e n c e  V e r i f i c a t i o n  

T h e o r y  a n d  D e s i g n  o f  C M O S  H S T L  I / O  
Pads 

O n - C h i p  C r o s s  T a l k  N o i s e  M o d e l  f o r  
D e e p - S u b m i c r o m e t e r  U L S I  I n t e r c o n n e c t  

T e s t i n g  w i t h  t h e  H P  9 1 9 0  M i x e d - S i g n a l  
LSI  Tester  

A  L o w - C o s t  R F  M u l t i c h i p  M o d u l e  
Packag ing  Fami ly  

C o m p a r i s o n  o f  F i n i t e - D i f f e r e n c e  a n d  
SP ICE  Too ls  fo r  Therma l  Mode l ing  o f  the  
Ef fects  of  H igh-Power  CPUs 

E-Mail Registration 

â€¢ Use E-Mail Notification to register 
your e-mail address so that you can 
be notified when new articles are 
published. 
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An API for Interfacing Interact ive 3D 
Appl icat ions to High-Speed Graphics 
Hardware 

Kevin T. Lefebvre 

John M. Brown 

The OpenGLÂ® specification defines a software interface that can be 

implemented on a wide range of graphics devices ranging from simple 

frame buffers to fully hardware-accelerated geometry processors. 

^ ^ ^ k  
K e v i n  T .  L e f e b v r e  

I A senior engineer in the 
J graphics products labora- 

HH___J^B toiy at  the HP Workstat ion 

Systems Division, Kevin Lefebvre is responsi 
ble for the OpenGL architecture and its imple 
mentation and delivery. He came to HP in 1986 
from the Apollo Systems Division. He has a BS 
degree in mathematics (1976) from Carnegie- 
Mellon University. He was bom in Pittsfield, 
Massachusetts, is married and has two chil 
dren. His hobbies include running, biking, and 
skiing. 

J o h n  M .  B r o w n  
John Brown is a senior 
engineer in the graphics 

products laboratory of the 
HP Workstation Systems Division. He is respon 
sible for graphics application performance. 
John came to HP in 1988. He holds a BSEE 
degree (1980) from the University of Kentucky. 

Q penGL is a specification for a software-to-hardware application 

programming interface, or API, that defines operations needed to produce 

interactive 3D applications. It is designed to be used on a wide range of 

graphics devices, including simple frame buffers and hardware-accelerated 

geometry processor systems. With design goals of efficiency and multiple 

platform support, certain functions, such as windowing and input support, 

have not been defined in OpenGL. These unsupported functions are included 

in support libraries outside the core OpenGL definition. 

OpenGL is targeted for use on a range of new graphics devices for both UNIXÂ® â€¢ 

based and WindowsÂ® NT-based operating system platforms. These systems 

differ in both capabilities and performance. 

Early in the OpenGL program at HP, industry partnerships were established 

between the OpenGL R&D labs and key independent software vendors (ISVs) 

to ensure a high-quality, high-performance product that met the needs of 

these moving These partnerships were also used to assist the ISVs in moving to 

the HP OpenGL product (see "The Fast Break Program" on page 8). 

The various OpenGL articles in this issue describe the design philosophy and 

the implementation of the HP version of OpenGL and other graphics products 

associated with OpenGL. 
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H i s t o r y  o f  O p e n G L  

OpenGL is a successor to Iris GL, a graphics library devel 
oped by Silicon Graphics s International (SGI). Major 
changes have been made to the Iris GL specification in 
defining OpenGL. These changes have been aimed at 
making OpenGL a cleaner, more extensible architecture. 

With the goal of creating a single open graphics standard, 
the OpenGL Architecture Review Board (ARE) was formed 
to define the specification and promote OpenGL in terms 
of ISV use and availability of vendor implementations. 
The original ARB members were SGI, Intel, MicrosoftÂ®, 
Digital Equipment Corporation, and IBM. Evans & Suther 
land, Intergraph, Sun, and HP were added more recently. 
For more information on current ARB members, OpenGL 
licensees, frequently-asked questions, and other 
ARB related information, visit the OpenGL web site at 
http ://www. opengl.org. 

The initial effort of the ARB was the 1.0 specification of 
OpenGL, which became available in 1992. Along with 
this specification was a series of conformance tests that 
licensees needed to pass before an implementation could 
be called OpenGL. Since then the ARB has added new 
features and released a 1.1 specification in 1995 (the HP 
implementation is based on 1.1). Work is currently being 
done to define a 1.2 revision of the specification. 

H P  I n v o l v e m e n t  i n  O p e n G L  

HP became an OpenGL licensee in 1995. We had the goal 
of delivering a native implementation of OpenGL that 
would run on hardware and software that would provide 
OpenGL performance leadership. 

Shortly after licensing OpenGL, we established a relation 
ship with a third party to provide an OpenGL implementa 
tion on our existing set of graphics hardware while we 
worked on a new generation of hardware that was better 
suited for OpenGL semantics. The OpenGL provided by 
the third party used the underlying graphics hardware 
acceleration where possible. However, it could not be 
considered an accelerated implementation of OpenGL 
because of features lacking in the hardware. 

In August of 1996, we demonstrated our first native imple 
mentation of OpenGL at Siggraph 96. This implementation 
was fully functional and represented the software that 

would be shipped with the future OpenGL-based hard 
ware. The implementation supported various device driv 
ers including a software-based Tenderer. The OpenGL de 
velopment effort culminated in the announcement and 
delivery of OpenGL-based systems in the fall of 1997. 

S o f t w a r e  I m p l e m e n t a t i o n  

In our implementation, we focused on the hardware's abil 
ity to accelerate major portions of the rendering pipeline. 
For the software, we focused on its ability to ensure that 
the hardware could run at full performance. A fast graphics 
accelerator is not needed if the driving software cannot 
keep the hardware busy. The resulting software architec 
ture and implementation was designed from a system 
viewpoint. Decisions were based on system requirements 
to avoid overoptimizing each individual component and 
still not achieve the desired results. An overview of the 
HP OpenGL software architecture is provided in the ar 
ticle on page 9. Another software-related issue is provided 
in the article on page 35, which discusses issues associ 
ated with porting a UNIX-based OpenGL implementation 
to Windows NT. 

H a r d w a r e  S y s t e m s  

The new graphics systems are able to support OpenGL, 
Starbase, PHIGS, and PEX rendering semantics in hard 
ware. Being able to support the OpenGL API means that 
there is hardware support for accelerating the full feature 
set of OpenGL instead of just having a simple frame buffer 
in which all or most of the OpenGL features are imple 
mented in software. These systems are the VISUALIZE fx2, 
VISUALIZE fx4, and VISUALIZE fx6 graphics accelerator 
products. These systems differ in the amount of graphics 
acceleration they provide, the number of image planes, 
and the optional OpenGL features they provide. In addi 
tion to the base graphics boards, a texture mapping op 
tion is available for the fx4 and fx6 accelerators. The 
article on page 28 provides an overview of the new 
graphics hardware developed to support OpenGL. 

E n g i n e e r i n g  P r o c e s s  

To meet the required delivery dates of OpenGL with a 
high level of confidence and quality, we used a new pro 
cess to compress the time between first silicon and manu 
facturing release. The article on page 41 describes the 
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The Fast-Break Program 

In basketball, a rapid offensive transition is called a fast- 
break. i"he fast-break program is about the transition game 
for OpenGL on HP systems. A key part of the HP transition to 
OpenGL is applications, because applications enable volume 
shipments ol systems. Having the right applications is neces 
sary for a successful OpenGL product, but it is also important 
that the applications run with outstanding performance and 
reliability. FÃ st-break is about both aspects â€” getting the appli 
cations on HP systems and ensuring that they have outstanding 
performance and reliability. 

Fast-break began by working with application developers in 
the early stages of the OpenGL program to understand their 
requirements for the HP OpenGL product. These requirements 
helped to drive the initial OpenGL product definition. 

As the program progressed, the Fast-break team developed a 
suite of tools that enabled detailed analysis of OpenGL appli 
cations. Analysis of key applications was used to further refine 
our OpenGL product performance and functionality. Analysis 
also yielded a set of synthetic API benchmarks that repre 
sented the behavior of key applications. These synthetic 
benchmarks enabled HP to perform early hands-on evaluation 
of the OpenGL product long before the actual applications 
were ported to HP. 

Pre-porting laid the groundwork for the actual porting of appli 
cations to HP's implementation of OpenGL. The first phase of 

the porting took place during the OpenGL beta program. In this 
program, the HP fast-break team worked closely with selected 
application developers to initiate the porting effort. A software- 
only implementation of the OpenGL product was used, which 
enabled the beta program to take place even before hardware 
was available. 

As hardware became available, the beta program was super 
seded by the early access program. This program included the 
original beta participants and additional selected developers. 
In both the beta and early access programs, HP found that the 
homework done earlier by the fast-break team paid big divi 
dends. Most applications were ported to HP in just a few days 
and, in some cases, just a few hours! 

Although not completely defect-free, these early versions of 
OpenGL were uniformly high-performance and high-quality 
products. By accelerating the application porting effort, HP 
was able to identify and resolve the few remaining issues 
before the product was officially released. 

The ongoing involvement of the fast-break team with the 
OpenGL product development teams helped HP do it right the 
first imple by delivering a high-quality, high-performance imple 
mentation of OpenGL and enabling rapid porting of key appli 
cations to the HP product. 

engineering process we used to accelerate the time to 
market for OpenGL. 

Graphics Middleware 
A fast graphics API is not always enough. Leading edge 
CAD modelling problems far exceed the interactive ca 
pacity of graphical super workstations. For example, try 
spinning a complete CAD model of a Boeing 777 at 30 
frames per second on any system. 

Wh^ t is needed is a new approach to solving the render 
ing problem of very large models. The goal is to trade 
off between frame rate, image quality, and system cost. 

HP has introduced a toolkit for use by CAD ISVs to 
assist them in solving this problem. The toolkit is called 
DirectModel and is described on page 19. 

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configura 
tions/ on all HP 9000 computers are Open Group UNIX 95 branded products. 

UNIX is a registered trademark of The Open Group. 

X/Open Limited a registered trademark and the X device is a trademark ofX/Open Company Limited 
in the UK and other countries. 

Microsoft is a U.S. registered trademark of Microsoft Corporation. 

Windows is a U.S. registered trademark of Microsoft Corporation. 

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United 
States and other countries. 
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OpenGL is a hardware-independent specification of a 3D graphics programming 

interface. This specification has been implemented on many different vendors' 

platforms with different CPU types and graphics hardware, ranging from 

PC-based board solutions to high-performance workstations. 

T  -Lhe  .he OpenGL API defines an interface (to graphics hardware) that deals 

entirely with rendering 3D primitives (for example, unes and polygons). The 

HP implementation of the OpenGL standard does not provide a one-to-one 

mapping between API functions and hardware capabilities. Thus, the software 

component of the HP OpenGL product fills the gaps by mapping API functions 

to OpenGL-capable systems. 

Since OpenGL is an industry-standard graphics API, much of the differentiating 

value HP delivers is in performance, quality, reliability, and time to market. 

The central goal of the HP implementation is to ship more performance and 

quality much sooner. 

W h a t  i s  O p e n G L ?  

OpenGL PEX from other graphics APIs, such as Starbase, PHIGS, and PEX 

(PHIGS primitive- in X), in that it is vertex-based as opposed to primitive- 

based. This means that OpenGL provides an interface for supplying a single 

vertex, surface normal, color, or texture coordinate parameter in each call. 

Several of the calls between an OpenGL gIBegin and glEnd pair define 

a primitive that is then rendered. Figure 1 shows a comparison of the 

different API call formats used to render a rectangle. In PHIGS a single call 

could associated a primitive by referencing multiple vertices and their associated 

data difference as normals and color) as parameters to the call. This difference in 

procedure calls per primitive (one versus eight for a shaded triangle) posed 

a performance challenge for our implementation. 
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Figure 1 

Graphics API call comparison. 

Starbase 

polygon3d( .  .  .  

OpenGL 

glBegin(GL_QUADS) , 
g l N o r m a l  ( . . . ) ;  
g l V e r t e x  ( . . . ) ;  
g l N o r m a l  ( . . . ) ;  
glVertex ( .  .  .  ) ;  
g l N o r m a l  ( . . . ) ;  
glVertex ( . .  .  ) ; 
g l N o r m a l  ( . . . ) ;  
glVertex ( . .  .  ) ; 
g lEndO ;  

PEXlib 

PEXFillAreaSetWithData( . 

An OpenGL implementation consists of the following 
elements: 

â€¢ A rendering library (GL) that implements the OpenGL 
specification (the rendering pipeline) 

â€¢ A utility library (GLU) that implements useful utility 
functions that are layered on top of OpenGL (for 
example, surfaces, quadratics, and tessellation functions) 

â€¢ An interface to the system's windowing package, includ 
ing GLX for X Window Systems on the UNIX operating 
system and WGL for Microsoft WindowsÂ®. 

I m p l e m e n t a t i o n  G o a l s  

The goals we defined for the OpenGL program that helped 
to shape our implementation were to: 

â€¢ Achieve and sustain long term price/performance leader 
ship for OpenGL applications running on HP platforms 

â€¢ Develop a scalable architecture that supports OpenGL 
on a wide range of HP platforms and graphics devices. 

The rest of this article will provide more details about 
our OpenGL implementation and show how these goals 
affected our system design. 

OpenGL API 
In general, OpenGL defines a traditional 3D pipeline for 
rendering 3D primitives. This pipeline takes 3D coordi 
nates as input, transforms them based on orientation or 
viewpoint, lights the resulting coordinates, and then ren 
ders them to the frame buffer (Figure 2). 

To implement and control this pipeline, the OpenGL API 
provides two classes of entry points. The first class is 
used to create 3D geometry as a combination of simple 
primitives such as lines, triangles, and quadrilaterals. 
The entry points that make up this class are referred to 
as the vertex API, or VAPI, functions. The second class, 
called the state class, manipulates the OpenGL state used 
in the different rendering pipeline stages to define how to 
operate (transform, clip, and so on) on the primitive data. 

V A P I  C l a s s  

OpenGL contains a series of entry points that when used 
together provide a powerful way to build primitives. This 
flexible interface allows an application to provide primi 
tive data directly from its private data structures rather 
than requiring it to define structures in terms of what the 
API requires, which may not be the format the application 
requires. 

Primitives are created from a sequence of vertices. These 
vertices can have associated data such as color, surface 
normal, and texture coordinates. These vertices can be 
grouped together and assigned a type, which defines how 
the vertices are connected and how to render the resulting 
primitive. 

The VAPI functions available to define a primitive include 
glVertex (specify its coordinate), glNormal (define a surface 
normal at the coordinate), glColor (assign a color to the 
coordinate), and several others. Each function has several 
forms that indicate the data type of the parameter (for 
example, Â¡nt, short, and float), whether the data is passed 
as a parameter or as a pointer to the data, and whether 
the data is one-, two-, three-, or four-dimensional. Alto 
gether there are over 100 VAPI entry points that allow for 
maximum application flexibility in defining primitives. 

The VAPI functions g I Begin and g I End are used to create 
groups of these vertices (and associated data). gIBegin 
takes a type parameter that defines the primitive type and 
a count of vertices. The type can be point, line, triangle, 

Figure 2 
Graphics pipeline. 
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triangle strip, quadrilateral, or polygon. Based on the type 
and count, the vertices are assembled together as primi 
tives and sent down the rendering pipeline. 

For added efficiency and to reduce the number of proce 
dure calls required to render a primitive, vertex arrays 
were added to revision 1.1 of the OpenGL specification. 
Vertex arrays allow an application to define a set of ver 
tices and associated data before their use. After the vertex 
data is defined, one or more rendering calls can be issued 
that reference this data without the additional calls of 
gIBegin, glEnd, or any of the other VAPI calls. 

Finally, OpenGL provides several rendering routines that 
do not deal with 3D primitives, but rather with rectangular 
areas of pixels. From OpenGL, an application can read, 
copy, or draw pixels to or from any of the OpenGL 
image, depth, or texture buffers. 

State Class 
The state class of API functions manipulates the OpenGL 
state machine. The state machine defines how vertices 
are operated on as they pass through the rendering pipe 
line. There are over 100 functions in this class, each con 
trolling a different aspect of the pipeline. In OpenGL most 
state information is orthogonal to the type of primitive 
being operated on. For example, there is a single primitive 
color rather than a specific line color, polygon color, or 
point color. These state manipulation routines can be 
grouped as: 

â€¢ Coordinate transformation 

â€¢ Coloring and lighting 

â€¢ Clipping 

â€¢ Rasterization 

â€¢ Texture mapping 

â€¢ Fog 

â€¢ Modes and execution. 

Pipeline 
Coordinate data (such as vertex, color, and surface nor 
mal) can come directly from the application, indirectly 
from the application through the use of evaluators, or 
from a stored display list that the application had pre 
viously created. The coordinates flow into the pipeline as 

1 Evaluators are functions that derive coordinate information based on parametric curves 
or surfaces and basic functions. 

discrete points and are operated on (transformed) individ 
ually. At a certain point in the pipeline the vertices are 
assembled into primitives, and they are operated on at the 
primitive level (for example, clipping). Next, the primi 
tives are rasterized into fragments in which operations 
like depth testing occur on each fragment. The final result 
is pixels that are written into the frame buffer. This more 
complex OpenGL pipeline is shown in Figure 3. 

Conceptually, the transform stage takes application- 
specified object-space coordinates and transforms them 
to eye-space coordinates (the space that positions the 
object with respect to the viewer) with a model-view 
matrix. Next, the eye coordinates are projected with a 

F i g u r e s  
OpenGL pipeline. 

Vert ices 
g I V e r f e x  g I N o r m a l  g l C o l o r  g I T e x t C o o r d  

Transform 

Lighting 
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Per-Fragment 
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Figure 4 

Transformat ion f rom ob jec t -space to  w indow coord inates .  
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projection matrix, divided by the perspective, and then 
transformed by the viewport matrix to get them to screen 
space (relative to a window). This process is summarized 
in Figure 4. 

In the lighting stage, a color is computed for each vertex 
based on the lighting state. The lighting state consists of 
a number of lights, the type of each light (such as posi 
tional or spotlight), various parameters of each light (for 
example, position, pointing direction, or color), and the 
material properties of the object being lit. The calculation 
takes into consideration, among other things, the light 
state and the distance of the coordinate to each light, re 
sulting in a single color for the vertex. 

In rasterization, pixels are written based on the primitive 
type, and the pixel value to be written is based on various 
rasterization states (such as texture mapping enabled, or 
polygon stipple enabled). OpenGL refers to the resulting 
pixel value as a fragment because in addition to the pixel 
value, there is also coverage, depth, and other state infor 
mation associated with the fragment. The depth value is 
used to determine the visibility of the pixel as it interacts 
with existing objects in the frame buffer. While the cover 
age, or alpha, value blends the pixel value with the exist 
ing value in the frame buffer. 

Software Architecture 
One of the main design goals for the HP OpenGL software 
architecture was to maximize performance where it 
would be most effective. For example, we decided to 
focus on reducing overhead to hardware-accelerated 
paths and to base design decisions on application use, 
minimizing the effort and cost required to support future 
system hardware. The resulting architecture is composed 
of two major components: a device-independent module 

and a device-specific module. A simple block diagram is 
shown in Figure 5. 

The dispatch component is responsible for handling 
OpenGL API calls and sending them to the appropriate 
receiver. OpenGL can be in one of the following modes: 

â€¢ Protocol mode in which API calls are packaged up and 
forwarded to a remote system for execution 

â€¢ Display list creation mode in which API calls are stored 
in a display list for later execution 

â€¢ Direct rendering mode in which API calls are intended 
for immediate rendering on the local screen. 

Figure 5 

OpenGL archi tecture.  

Dispatch Module 

Device- Independent  
Module  
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The primary application path of any importance is the 
immediate rendering path. While in direct rendering mode 
the performance of all functions is important, but the per 
formance of the VAPI calls is even more critical because 
of the increased frequency of rendering calls over other 
types of calls, like state setting. Any overhead in transfer 
ring application rendering commands to the hardware 
reduces overall performance significantly. See the "System 
Design Results" section in this article on page 14 for a 
discussion on some of these issues. 

The device-independent module is the target for all the 
OpenGL state manipulation calls, and in some situations, 
for VAPI calls such as display list or protocol generation. 
This module contains state management, all system con 
trol logic, and a complete software implementation of 
the OpenGL rendering pipeline up to the rasterization 
stage, which is used in situations where the hardware 
does not support an OpenGL feature. The device in 
dependent module is made up of several submodules, 
including: 

â€¢ GLX (OpenGL GLX support module) for handling win 
dow system dependent components, including context 
management, X Window System interactions, and proto 
col generation 

â€¢ SUM (system utilities module) for handling system 
dependent components, including system interactions, 
global state management, and memory management 

â€¢ OCM (OpenGL control module) for handling OpenGL 
state management, parameter checking, state inquiry 
support, and notification of state changes to the appro 
priate module 

â€¢ PCM (pipeline control module) for handling graphics 
pipeline control, state validation, and the software 
rendering pipeline 

â€¢ DLM (display list module) for handling display list 
creation and execution. 

The device-specific module is basically an abstracted 
hardware interface that resides in a separate shared li 
brary. Based on what hardware is available, the device-in 
dependent code dynamically loads the appropriate de 
vice-specific module. In general the device-specific 
module is called only by the device-independent module, 
never by the API, and converts the requests to hardware- 
specific operations (register loads, operation execute). In 

addition to a device-specific module for the VISUALIZE 
fx series of graphics hardware, there is a virtual memory 
driver device-specific module for handling OpenGL op 
erations on GLX pixmaps (virtual-memory-based image 
buffers) or for rendering to hardware that does not sup 
port OpenGL semantics. 

The final key component of the architecture is stream 
lines. Streamlines are part of the device-specific module 
but are unique in that they are associated directly with the 
API. On geometry-accelerated devices like the VISUALIZE 
fx series, the hardware can support the full set of VAPI 
calls. To minimize overhead and maximize performance, 
the calls are targeted to optimized routines that communi 
cate directly with the hardware. In many cases these rou 
tines are coded in PA RISC 1.1 or PA RISC 2.0 assembly 
language or C. At initialization time the appropriate rou 
tines are loaded in the dispatch table based on the system 
type and are dynamically selected at run time. 

An important thing to understand about streamlines is 
that they can only be called when the current state is 
"clean" and the hardware supports the current rendering 
mode. An example of "not clean" is when the viewing 
matrix has been changed, and the hardware needs to be 
updated with the current transformation matrix. Because 
the application can make several different calls to manip 
ulate the matrix, computing the state based on the view 
ing matrix and loading the hardware is deferred until it is 
actually needed. For example, when a primitive is to be 
rendered (initiated via a g I Begin call), the state is made 
clean (validated) by the device-independent code and sub 
sequent VAPI calls can be dispatched directly to the 
streamlines. Another situation in which streamlines can 
not be called is when the hardware does not support a 
feature, such as texture mapping in the VISUALIZE fx2 
display hardware. In this situation the VAPI entry points 
do not target the streamlines but rather the device-inde 
pendent code that implements what is called a general 
path, or in other terms, a software rendering pipeline. 

T h r e e - P r o c e s s  M o d e l  

Under the X Window System on the UNIX operating sys 
tem, the OpenGL architecture uses a three-process model 
to support the direct and indirect semantics of OpenGL. 
In our implementation, we have leveraged our existing 
direct hardware access (DHA) technology to provide in 
dustry-leading local rendering performance. This has been 
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Figure 6 

Three-process render ing model .  

Process 1 
Application 

Appl icat ion 

OpenGL API 

D e v i c e -  V i r t u a l  
S p e c i f i c  M e m o r y  
M o d u l e  M o d u l e  

X Protocol 

Process 2 
X Server 

Dispatch Module 

Device- Independent  X 

Device- Independent  X 

GLX Protocol 

Process 3 
OpenGL Daemon 

OpenGL Daemon 

DHA Rendering 

DMA 

Device-Speci f ic  
Module  

Virtual Rendering Indirect Rendering 

VGL Protocol 

coupled with two distinct remote rendering modes, making 
our OpenGL implementation one of the most flexible im 
plementations in the industry. These rendering modes are 
based upon the three-process rendering model shown in 
Figure 6. This model supports three rendering modes: 
direct, indirect, and virtual. 

Direct Rendering. Direct rendering through DHA provides 
the highest level of OpenGL performance and is used 
whenever an OpenGL application is connected to a local 
X server running on a workstation with VISUALIZE fx 
graphics hardware. For all but a few operations, the appli 
cation process communicates directly with the graphics 
hardware, bypassing the interprocess communication 
overhead between the application and the X server. 

Indirect Rendering (Protocol). Indirect rendering is used 
primarily for remote operation when the target X server is 
running on a different workstation than the user applica 
tion. In this mode, the OpenGL API library emits GLX 
protocol which is interpreted by a receiving X server that 
supports the GLX extension. The receiving server can be 
HP, Sun Microsystems, Silicon GraphicsÂ® International, 
or any other X server that supports the GLX server exten 
sion. In the HP OpenGL implementation, the receiving 
X server passes nearly all GLX protocol directly on to an 
OpenGL daemon process that uses DHA for maximum 
performance. Note that immediate mode rendering per 
formance through protocol can be severely limited by the 
time it takes to send geometric data over the network. 
However, when display lists are used, geometric data is 

cached in the OpenGL daemon and remote OpenGL ren 
dering can be as fast or sometimes even faster than local 
DHA rendering. 

Virtual Rendering. As a value-added feature, HP OpenGL 
also provides a virtual GL rendering mode not available in 
other OpenGL implementations. Virtual rendering allows 
an OpenGL application to be displayed on any X server or 
X terminal even if the GLX extension is not supported on 
that server. This is accomplished by rendering through the 
virtual memory driver to local memory and then issuing 
the standard XPutlmage protocol to display images on the 
target screen. Although flexible, virtual GL is typically the 
slowest of the OpenGL rendering modes. However, virtual 
GL rendering performance can be increased significantly 
by limiting the size of the output window 

System Design Results 
To deliver industry-leading OpenGL performance, we 
combined graphics hardware, libraries, and drivers. The 
hardware is the core enabler of performance. Although 
the excellence of each part is important, the overall system 
design is even more so. How well the operating system, 
compilers, libraries, drivers, and hardware fit together 
in the system design determines the overall result. We 
worked closely with teams in four HP R&D labs to opti 
mize the system design, apply our design values to parti 
tioning the system, balance performance bottlenecks, and 
simplify the overall architecture and interfaces. The fol 
lowing section describes some examples of applying our 
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system design principles to the most important aspects 
of 3D graphics applications. 

I m p r o v i n g  O p e n G L  A p p l i c a t i o n  P e r f o r m a n c e  

OpenGL required a radical change from the existing 
(legacy) HP graphics APIs. In analyzing the model for 
our legacy graphics APIs, we realized that the same model 
would have considerable overhead for OpenGL, which re 
quires many more procedure calls. Figure 1 compares the 
calls required to generate the same shaded quadrilateral. 

To have a competitive OpenGL, we needed to reduce or 
eliminate function calls and locking overhead. We did this 
with two system design initiatives called fast procedure 

calls and implicit device locking. 

Fast Procedure Calls. Two of our laboratories (the Graph 
ics Systems Laboratory and the Cupertino Language Labo 
ratory) worked together to create a specification for a 
new, faster calling convention for making calls to shared 
library components. This reduced the cost to one-fourth 
the cost of the previous mechanism. 

OpenGL is a state machine. When the application calls an 
OpenGL function, different things happen depending on 
the current state. We also wanted to support different de 
vices with varying degrees of support in the same OpenGL 
library. We needed a dynamic method of dispatching API 
function calls to the correct code to enable the appropriate 
functionality without compromising performance. Given 
this requirement, a naive implementation of OpenGL 
might define each of its API functions like the following: 

void glvertex3Â£v (const GLfloat *v) 

{ 

switch (context .whichFunction) 

{ 

case HW_STREAMLINE : 

HW_STREAMLINE_glVertex3fv(v) ; 

break; 

case GENERAL_PATH : 

GENERAL_PATH__glVertex3fv(v) ; 

break; 

case GLX_PROTOCOL : 

GLX_PROTOCOL_glVertex3fv(v) ; 

break; 

case diSPLAY_LIST: 

diSPLAY_LIST_glVertex3fv(v) ; 

break; 

However, this is a very impractical implementation in 
terms of both performance and software maintainability7. 
We decided that the most efficient method of achieving 
this kind of dynamic dispatching was to retarget the API 
function calls at their source â€” the application code. Any 
call into a shared library is really a call through a pointer. 
The procedure name that the application calls is associ 
ated with a particular pointer. Conceptually, what we 
needed was a mechanism to manage the contents of 
those pointers. To accomplish this, we needed more assis 
tance from the engineers in the compiler and linker 
groups. 

In simplified terms, the OpenGL library maintains a proce 
dure link table. Each entry in the procedure link table is 
associated with a particular function name and is com 
posed of two pointers. One points to the code that is to 
be called, and the other, the link table pointer, points to 
the table used by shared library code (known as PIC, or 
position-independent code) to locate global data. When 
the compiler generates a call to an OpenGL function, it 
loads the appropriate registers with the two fields in the 
associated procedure link table entry and then branches 
to the function. Since OpenGL controls the contents of 
the procedure link table, it can change the contents of 
these fields during execution. This allows OpenGL to 
choose the appropriate code based on the OpenGL state 
dynamically. 

For example, assume that we have a graphics device 
that, except for texture mapping, supports the OpenGL 
pipeline in hardware. In this case the scheduling code 
will find texture mapping enabled (meaning that the 
device cannot handle texture mapping) and choose the 
GENERAL_PATHLglVertex3fv code path, which performs soft 
ware texture mapping. The HW_STREAMLINE_glVertex3fv 
code paths are taken if texture mapping is not enabled. 

Implicit Device Locking. Graphics devices are a shared 
system resource. As such, there must be some control 
when an application has access to the graphics device so 
that two applications are not attempting to use the device 
at the same time. Normally the operating system manages 
such shared resources via standard operating system in 
terfaces (open, close, read, write, and ioctl). 

However, to get the maximum performance possible 
for graphics applications, a user process will access the 
graphics device directly through our 3D API libraries, 
rather than use the standard operating system interfaces. 
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This means that before OpenGL, the HP graphics libraries 
had to assume the task of managing shared access to the 
graphics device. 

Before OpenGL, we used a relatively lightweight fast lock 
at the entry and exit of those library routines that actually 
accessed the device. With the high frequency of function 
calls in OpenGL, performing this lock and unlock step 
for each function call would exact a severe performance 
penalty, similar to the procedure call problem discussed 
earlier. 

To solve this problem, HP engineers invented a technique 
called implicit device locking. When a process tries to 
access the graphics hardware and does not own the 
device, a virtual memory protection fault exception will 
be generated. The kernel must detect that this protection 
fault was an attempted graphics device access instead of 
a fault from trying to access something like an invalid 
address, a swapped out page, or from doing a copy on a 
write page. 

The graphics fault alerts the system that there is another 
process trying to access the graphics device. The kernel 
then makes sure that the graphics device context is saved, 
and the graphics context for the next process is restored. 
After the graphics context switch is complete, the new 
process is allowed to continue with access to the device, 

and permission is taken away from all other processes. 
This allows the current process that owns the device to 
have zero overhead access. 

This method removes the requirement that the 3D graphics 
API library must explicitly lock the graphics device while 
accessing it. This means that the overhead associated 
with device locking, which was an order of magnitude 
more than with Starbase, is completely eliminated (see 
Figure 7). 

This dramatic improvement in performance is made pos 
sible by improvements in the HP-UX kernel and careful 
design of the graphics hardware. The basic idea is that 
when multiple graphics applications are running, the 
HP-UX kernel will ensure that each application gets its 
fair share of exclusive time to access the graphics device. 

OpenGL was not the only API to benefit from implicit 
locking. The generality of the design allowed us to use 
the same mechanism to eliminate the locking code from 
Starbase as well. Keeping the whole system in mind 
while developing this technology allowed us to expand 
the benefit beyond the original problem â€” excessive over 
head from locking for OpenGL. 

Figure 7 

State count  compar ison.  
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H a r d w a r e  a n d  S o f t w a r e  T r a d e - o f f s  

Keeping the whole picture in mind allowed us to make 
software and hardware trade-offs to simplify the system 
design. The criteria were based on performance critical- 
ity, frequency of use, system complexity, and factory cost. 

For example, the hardware was designed to understand 
both OpenGL and Starbase windows. OpenGL requires 
the window origin to be in the lower left corner, whereas 
Starbase requires it to be in the upper left. Putting the 
intelligence in the hardware reduced the overall system 
complexity. 

Nearly all OpenGL features are hardware accelerated. Of 
course, all vertex API formats and dimensions are stream 
lined and accelerated in hardware for maximum primitive 
performance. Similarly, all fragment pipeline operations 
had to be supported in hardware because fragment opera 
tions touch every pixel and software performance would 
not be sufficient. To maximize primitive performance, we 
also hardware-accelerated nearly every geometry pipeline 
feature. For example, all lighting modes, fog modes, and 
arbitrary clip planes are hardware-accelerated. Very few 
OpenGL features are not hardware-accelerated. 

Based on infrequent use and the ability to reasonably ac 
celerate in software, we implemented the following func 
tions in software: RasterPos, Selection, Feedback, Indexed 
Lighting, and Indexed Fog. Infrequent use and factory cost 
also encouraged us to implement accumulation buffer 
support in software. (Accumulation is an operation that 
blends data between the frame buffer and the accumula 
tion buffer, allowing effects like motion blur.) 

S t a t e  C h a n g e  

Through systems design we achieved dramatic results in 
application performance by focusing on the design for 
OpenGL state change operations. 

Application graphics performance is a function of both 
primitive and state change (attributes) performance. We 
have designed our OpenGL implementation to maximize 
primitive performance and minimize the costs of state 
changes. 

State changes include all the function calls that modify the 
OpenGL modal state, including coordinate transformations, 
lighting state, clipping state, rasterization state, and texture 
state. State change does not include primitive calls, pixel 

operations, display list calls, or current state calls. Cur 
rent state encompasses all the OpenGL calls that can 
occur either inside or outside glBegin() and glEndO pairs 
(for example, glColorO, glNormaK), glVertexQ). 

There are two classes of state changes: fragment pipeline 
and geometry pipeline. Fragment pipeline state changes 
control the back end, or rasterization stage, of the graphics 
pipeline. This state includes the depth test enable (z-buffer 
hidden surface removal) and the line stipple definition 
(patterned lines such as dash or dot). Geometry pipeline 
state changes control the front end of the graphics pipe 
line. This state includes transformation matrices, lighting 
parameters, and front and back culling parameters. Frag 
ment pipeline state changes are generally less costly than 
geometry pipeline state changes. 

Our systems design focussed on several areas that resulted 
in large application performance gains. We realized that 
the performance of our state change implementation could 
significantly affect application performance. We decided 
that this was important enough to require a redesign of 
the state change modules and not just tuning. Applying 
these considerations led us to implement immediate and 
deferred validation schemes and provide redundancy 
checks at the beginning of each state change entry point. 

Validation. We implemented different immediate and de 
ferred validation schemes for different classes of state 
changes. Geometry pipeline state changes are handled by 
deferred validation because they tend to be more com 
plex, requiring massaging of the state. They are also more 
interlocked because changing one piece of state requires 
modifying another piece of state (for example, matrix 
changes cause changes to the light state). For us, deferred 
validation resulted in a simple design and increased per 
formance, reliability, and maintainability. For fragment 
pipeline state changes, we chose immediate validation 
because this state is relatively simple and noninterlocked. 

Redundancy Checks. Redundancy checks are done for all 
OpenGL API calls. Because our analysis showed that ap 
plications often call state changing routines with a redun 
dant state (for example, new value==current value), we 

' Validation is the mechanism that verifies that the current specified state is legal, com 
putes derived information from the current state necessary for rendering (for example an 
inverse hardware for lighting based on the current model matrix), and loads the hardware 
with the new state. 
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wanted a design in which this case performs well. There 
fore, our design includes redundancy checks at the begin 
ning of each state change entry point, which allows a quick 
return without exercising the unnecessary validation code. 

Results. For state-change intensive applications, these 
design decisions put us in a leadership position for 
OpenGL application performance, and we achieved 
greater than a 2x performance gain over our previous 
graphics libraries. Smaller application performance gains 
were achieved throughout our OpenGL implementation 
with the state-change design. 

Conclusion 

ISVs and customers indicate that we have met our appli 
cation leadership price and performance goals that we set 
at the start of the program. We have also exceeded the 
performance metrics we committed to at the beginning of 
the project. For more information regarding our perfor 
mance results, visit the web site: 

http://www.spec.org/gpc/opc 

For long-term sustainability of our price and performance 
leadership, we have continued working closely with our 
ISVs to tune our implementation in areas that improve 
application performance. In addition, new CPUs are 

planned that will allow our implementation to run faster 
without any effort on our part, and cost reductions are 
continuing in graphics hardware. 

The goal to develop an implementation that can support a 
wide range of CPU or graphics devices has already been 
demonstrated. We support three graphics devices that 
have different performance levels (all based on the same 
hardware architecture) and a pure software implementa 
tion that supports simple frame buffer devices on UNIX 
and Windows NT systems. 
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D irectModel is a toolkit for creating technical 3D graphics applications. 

Its primary objective is to provide the performance necessary for interactive 

rendering of large 3D geometry models containing millions of polygons. 

DirectModel is implemented on top of traditional 3D graphics applications 

programming interfaces (APIs), such as Starbase or OpenGLÂ®. It provides the 

application developer with high-level 3D model management and advanced 

geometry culling and simplification techniques. Figure 1 shows DirectModel's 

position within the architecture of a 3D graphics application. 

This article discusses the role of 3D modeling in design engineering today, the 

challenges of implementing 3D modeling in mechanical design automation 

(MDA) toolkit. and the 3D modeling capabilities of the DirectModel toolkit. 

Visualization in Technical Applications 

T h e  R o l e  o f  3 D  D a t a  

3D graphics is a diverse field that is enjoying rapid progress on many fronts. 

Significant advances have been made recently in photorealistic rendering, 

animation quality, low-cost game platforms, and state-of-the-art immersive 

' DirectModel was jointly developed by Hewlett-Packard and Engineering Animation Incorporated of Ames, Iowa. 
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Figure 2 

A low-resolut ion image of  a  3D model  o f  an engine 
consist ing of 150,000 polygons. 

virtual reality applications. The Internet is populated 
with 3D virtual worlds and software catalogs are full of 
applications for creating them. An example of a 3D model 
is shown in Figure 2. 

What do these developments mean for the users of tech 
nical applications (the scientists and engineers who pio 
neered the use of 3D graphics as a tool for solving com 
plex problems)? In many ways this technical community 
is following the same trends as the developers and users 
of nontechnical applications such as 3D games and inter 
active virtual worlds. They are interested in finding less 
expensive systems for doing their work, their image 
quality standards are rising, and their patience with poor 
interactive performance is wearing thin. 

However, there are other areas where the unique aspects 
of 3D data for technical applications create special require 
ments. In many applications the images created from the 
3D data that are displayed to the user are the goal. For 
example, the player of a game or the pilot in a flight simu 
lator cares a lot about the quality and interactivity of 

1 Immers ive  v i r tua l  rea l i ty  is  a  techno logy that  " immerses"  the  v iewer  in to  a  v i r tua l  rea l i ty  
scene wi th  head-mounted d isp lays  that  change what  is  v iewed as the user 's  head ro ta tes  
and with feedback. that sense where the user's hand is posit ioned and apply force feedback. 

the images, but cares very little about the data used by the 
system to create those images. In contrast, many techni 
cal users of 3D graphics consider their data to be the most 
important component. The goal is to create, analyze, or 
improve the data, and 3D rendering is a useful means to 
that end. 

This key distinction between data that is the goal itself 
and data that is a means to an end leads to major differ 
ences in the architectures and techniques for working with 
those data sets. 

3 D  M o d e l  C o m p l e x i t y  

Understanding the very central role that data holds for 
the technical 3D graphics user immediately leads to the 
questions of what is that data and what are the significant 
trends over time? The short answer is that the size of the 
data is big and the amount and complexity of that data is 
increasing rapidly. For example, a mechanical engineer 
doing stress analysis may now be tackling problems 
modeled with millions of polygons instead of the thou 
sands that sufficed a few years ago. 

The trends in the mechanical design automation (MDA) 
industry are good examples of the factors causing this 
growth. In the not-too-distant past mechanical design was 
accomplished using paper and pencil to create part draw 
ings, which were passed on to the model shop to create 
prototype parts, and then they were assembled into proto 
type products for testing. The first step in computerizing 
this process was the advent of 2D mechanical drafting 
applications that allowed the mechanical engineers to 
replace their drafting boards with computers. However, 
the task was still to produce a paper drawing to send to 
the model shop. The next step was to replace these 2D 
drafting applications with 3D solid modelers that could 
model the complete 3D geometry of a part and support 
tasks such as static and dynamic design analysis to find 
such things as the stress points when the parts move. This 
move to 3D solid modeling has had a big impact at many 
companies as a new technique for designing parts. How 
ever, in many cases it has not resulted in a fundamental 
change to the process for designing and manufacturing 
whole products. 

Advances. In the last few years advances in the mechan 
ical design automation industry have increasingly 
addressed virtual prototyping and other whole-product 
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Fahrenheit 

Hewlet t -Packard,  Microsof t ,  and Si l icon Graphics are co l labo 
rat ing on a pro ject ,  code-named "Fahrenhei t , "  that  wi l l  def ine 
the future of  graphics technologies.  Based on the creat ion of  a 
suite of APIs for DirectX on the WindowsÂ® and UNIXÂ® operat 
ing systems,  the Fahrenhei t  pro ject  wi l l  lead to  a  common,  
ex tens ib le  arch i tec ture  fo r  cap i ta l i z ing  on the  rap id ly  expand 
ing marketplace for graphics.  

Fahrenhe i t  w i l l  incorpora te  the  Microsof t  D i rec t3D and Di rec t  
Draw APIs  w i th  comp lementa ry  techno log ies  f rom HP and  
S i l i con  Graph ics .  HP is  con t r ibu t ing  D i rec tMode l  to  th is  e f fo r t  
and  i s  work ing  w i th  M ic roso f t  and  S i l i con  Graph ics  to  de f ine  
the best  in tegrat ion of  the ind iv idual  technologies.  

design issues. This desire to create new tools and 
processes that allow a design team to design, assemble, 
operate, and analyze an entire product in the computer is 
particularly strong at companies that manufacture large 
and complex products such as airplanes, automobiles, 
and large industrial plants. The leading-edge companies 
pioneering these changes are finding that computer-based 
virtual prototypes are much cheaper to create and easier 
to modify than traditional physical prototypes. In addition 
they support an unprecedented level of interaction among 
multiple design teams, component suppliers, and end users 
that are located at widely dispersed sites. 

This move to computerized whole-product design is in 
turn leading to many new uses of the data. If the design 
engineers can interact online with their entire product, 
then each department involved in product development 
will want to be involved. For example, the marketing 
department wants to look at the evolving design while 
planning their marketing campaign, the manufacturing 
department wants to use the data to ensure the product's 
manufacturability, and the sales force wants to start 
showing it to customers to get their feedback. 

These tasks all drive an increased demand for realistic 
models that are complete, detailed, and accurate. For 
example, mechanical engineers are demanding new levels 
of realism and interactivity to support tasks such as posi 
tioning the fasteners that hold piping and detecting inter 
ferences created when a redesigned part bumps into one 
of the fasteners. This is a standard of realism that is very 
different from the photorealistic rendering requirements 
of other applications and to the technical user, a higher 
priority. 

Larger Models. These trends of more people using better 
tools to create more complete and complex data sets 
combine to produce very large 3D models. To under 
stand this complexity, imagine a complete 3D model of 
everything you see under the hood of your car. A single 
part could require at least a thousand polygons for a de 
tailed representation, and a product such as an automo 
bile is assembled from thousands of parts. Even a small 
product such as an HP DeskJet printer that sits on the 
corner of a desk requires in excess of 300,000 triangles1 
for a detailed model. A car door with its smooth curves, 
collection of controls, electric motors, and wiring har 
ness can require one million polygons for a detailed 
model â€” the car's power train can consist of 30 million 
polygons.2 

These numbers are large, but they pale in comparison to 
the size of nonconsumer items. A Boeing 777 airplane 
contains approximately 132,500 unique parts and over 
3,000,000 fasteners,3 yielding a 3D model containing more 
than 500,000,000 polygons.4 A study that examined the 
complexity of naval platforms determined that a sub 
marine is approximately ten times more complex than 
an airplane, and an aircraft carrier is approximately ten 
times more complex than a submarine.5 3D models con 
taining hundreds of millions or billions of polygons are 
real today. 

As big as these numbers are, the problem does not stop 
there. Designers, manufacturers, and users of these com 
plex products not only want to model and visualize the 
entire product, but they also want to do it in the context 
of the manufacturing process and in the context in which 
it is used. If the ship and the dry dock can be realistically 
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modeled and combined, it will be far less expensive to 
find and correct problems before they are built. 

Current System Limitat ions 
If the task faced by technical users is to interact with very 
large 3D models, how are the currently available systems 
doing? In a word, badly. Clearly the graphics pipeline 
alone is not going to solve the problem even with hard 
ware acceleration. Assuming that rendering performance 
for reasonable interactivity must be at least 10 frames per 
second, a pipeline capable of rendering 1,000,000 poly 
gons per second has no hope of interactively rendering 
any model larger than 100,000 polygons per frame. Even 
the HP VISUALIZE fx6, the world's fastest desktop graph 
ics system, which is capable of rendering 4.6 million 
triangles per second, can barely provide 10 frames per 
second interactivity for a complete HP DeskJet printer 
model. 

This is a sobering reality faced by many mechanical 
designers and other technical users today. Their systems 
work well for dealing with individual components but 
come up short when facing the complete problem. 

Approaches to Solving the Problem 
There are several approaches to solve the problem of ren 
dering very complex 3D models with interactive perfor 
mance. One approach is to increase the performance 
of the graphics hardware. Hewlett-Packard and other 
graphics hardware vendors are investing a lot of effort 
in this approach. However, increasing hardware perfor 
mance alone is not sufficient because the complexity 
of many customers' problems is increasing faster than 
gains in hardware performance. A second approach 
that must also be explored involves using software algo 
rithms to reduce the complexity of the 3D models that 
are rendered. 

Complex Data Sets 
To understand the general data complexity problem, we 
must examine it from the perspective of the application 
developer. If a developer is creating a game, then it is 
perfectly valid to search for ways to create the imagery 
while minimizing the amount of data behind it. This ap 
proach is served well by techniques such as extensive 

use of texture maps on a relatively small amount of ge 
ometry. However, for an application responsible for pro 
ducing or analyzing technical data, it is rarely effective to 
improve the rendering performance by manually altering 
and reducing the data set. If the data set is huge, the ap 
plication must be able to make the best of it during 3D 
rendering. Unfortunately, the problem of exponential 
growth in data complexity cannot be solved through 
incremental improvements to the performance of the 
current 3D graphics architectures â€” new approaches are 
required. 

Pixels per Polygon 
Although the problem of interactively rendering large 3D 
models on a typical engineering workstation is challenging, 
it is not intractable. If the workstation's graphics pipeline 
is capable of rendering a sustained 200,000 polygons per 
second (a conservative estimate), then each frame must 
be limited to 20,000 polygons to maintain 10 frames per 
second. A typical workstation with a 1280 by 1024 moni 
tor provides 1,310,720 pixels. To cover this screen com 
pletely with 20,000 polygons, each polygon must have an 
average area of 66 pixels. A more realistic estimate is that 
the rendered image covers some subset of the screen, say 
75 percent, and that several polygons, for example four, 
overlap on each pixel, which implies each polygon must 
cover an area of approximately 200 pixels. 

On a typical workstation monitor with a screen resolution 
of approximately 100 pixels per inch, these polygons are a 
bit more than 0. 1-inch on a side. Polygons of this size will 
create a high enough quality image for most engineering 
tasks. This image quality is even more compelling when 
you consider that it is the resolution produced during 
interactive navigation. A much higher-quality image can 
be rendered within a few seconds when the user stops 
interacting with the model. Thus, today's 3D graphics 
workstations have enough rendering power to produce 
the fast, high-quality images required by the technical 
user. 

Software Algor i thms 
The challenge of interactive large model rendering is sort 
ing through the millions of polygons in the model and 
choosing (or creating) the best subset of those polygons 
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F i g u r e S  

Geometry cul l ing. 
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Geometry 
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that can be rendered in the time allowed for the frame. 
Algorithms that perform this geometry reduction fall into 
two broad categories: culling, which eliminates unneces 
sary geometry, and simplification, which replaces some 
set of geometry with a simpler version. 

Figure 3 illustrates two types of culling: view frustum 

culling (eliminating geometry that is outside of the user's 
field of view) and occlusion culling (eliminating geometry 
that is hidden behind some other geometry). The article 
on page 9 describes the implementation of occlusion cul 
ling in the VISUALIZE fx graphics accelerator. 

Figures 4 and 5 show two types of simplification. Figure 
4 shows a form of geometry simplification called tessella 

tion, which takes a mathematical specification of a smooth 
surface and creates a polygonal representation at the spe 
cified level of resolution. 

The decimation simplification technique is shown in 
Figure 5. This technique reduces the number of polygons 
in a model by combining adjacent faces and edges. 

The simplified geometry created by these algorithms is 
used by the level of detail selection algorithms, which 
choose the appropriate representation to render for each 
frame based on criteria such as the distance to the object. 

Most 3D graphics pipelines render a model by rendering 
each primitive such as a polygon, une, or point individu 
ally. If the model contains a million polygons, then the 
polygon-rendering algorithm is executed a million times. 
In contrast, these geometry reduction algorithms must 
operate on the entire 3D model at once, or a significant 
portion of it, to achieve adequate gains. View frustum 
culling is a good example â€” the conventional 3D graphics 
pipeline will perform this operation on each individual 
polygon as it is rendered. However, to provide any signifi 
cant benefit to the large model rendering problem, the 
culling algorithm must be applied globally to a large chunk 
of the model so that a significant amount of geometry can 
be eliminated with a single operation. Similarly, the geo 
metry simplification algorithms can provide greatest gains 
when they are applied to a large portion of the model. 

D e s i r e d  S o l u t i o n  

The performance gap (often several orders of magnitude) 
between the needs of the technical user and the capabili 
ties of a typical system puts developers of technical appli 
cations into an unfortunate bind. Developers are often 
experts in some technical domain that is the focus of their 
applications, perhaps stress analysis or piping layout. 
However, the 3D data sets that the applications manage 
are exceeding the graphics performance of the systems 

Figure 4 

Geometry tessel lat ion. 

Smooth 
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Figure 5 

Geometry decimat ion.  
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Figure 6 
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they run on. Developers are faced with the choice of ob 
taining the 3D graphics expertise to create a sophisticated 
rendering architecture for their applications, or seeing 
their applications lag far behind their customers' needs 
for large 3D modeling capacity and interactivity. 

To develop applications with the performance demanded 
by their customers, developers need access to graphics 
systems that provide dramatic performance gains for their 
tasks and data. As shown in Figure 6, the graphics pipe 
line available to the applications must be extended to 
include model-based optimizations, such as culling and 
simplification, so that it can support interactive rendering 
of very large 3D models. When the graphics system pro 
vides this level of performance, application developers 
are free to focus on improving the functionality of their 
applications without concern about graphics perfor 
mance. The article on page 9 describes the primitive- 
based operations of the pipeline shown in Figure 6. 

DirectModel Capabilities 
DirectModel is a toolkit for creating technical 3D graphics 
applications. The engineer or scientist who must create, 
visualize, and analyze massive amounts of 3D data does 
not interact directly with DirectModel. DirectModel pro 
vides high-level 3D model management of large 3D geo 
metry models containing millions of polygons. It uses 
advanced geometry simplification and culling algorithms 
to support interactive rendering. Figure 1 shows that 
DirectModel is implemented on top of traditional 3D 
graphics APIs such as Starbase or OpenGL. It extends, 
but does not replace, the current software and hardware 
3D rendering pipeline. 

Key aspects of the DirectModel toolkit include: 

â€¢ A Focus on the needs of technical applications that deal 
with large volumes of 3D geometry data 

â€¢ Capability for cross-platform support of a wide variety 
of technical systems 

â€¢ Extensive support of MDA applications (for example, 
translators for common MDA data types). 

Technical  Data 
As discussed above, the underlying data is often the most 
important item to the user of a technical application. For 
example, when designers select parts on the screen and 
ask for dimensions, they want to know the precise engi 
neering dimension, not some inexact dimension that re 
sults when the data is passed through the graphics system 
for rendering. DirectModel provides the interfaces that 
allow the application to specify and query data with this 
level of technical precision. 

Technical data often contains far more than graphical in 
formation. In fact, the metadata such as who created the 
model, what it is related to, and the results of analyzing it 
is often much larger than the graphical data that is ren 
dered. Consequently DirectModel provides the interfaces 
that allow an application to create the links between the 
graphical data and the vast amount of related metadata. 

Components of large models are often created, owned, 
and managed by people or organizations that are loosely 
connected. For example, one design group might be 
responsible for the fuselage of an airplane while a sepa 
rate group is responsible for the design of the engines. 
DirectModel supports this multiteam collaboration 
by allowing a 3D model to be assembled from several 
smaller 3D models that have been independently defined 
and optimized. 

Mult iple Representat ions of  the Model  
The 3D model is the central concept of DirectModel â€” the 
application defines the model and DirectModel is respon 
sible for high-performance optimization and rendering of 
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Figure 7 

Logical  and spat ial  organizat ion. 
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it. The 3D model is defined hierarchically by the model 
graph, which consists of a set of nodes linked together 
into a directed, acyclic graph. However, a common prob 
lem that occurs when creating a model graph is the con 
flict between the needs of the application needs and the 
graphics system. The application typically needs to orga 
nize the model based on the logical relationships be 
tween the components, whereas the graphics system 
needs to organize the model based on the spatial rela 
tionships so that it can be efficiently simplified, culled, 
and rendered. Figure 7 shows two model graphs for a car, 
one organized logically and one spatially. 

Graphics toolkits that use a single model graph for both 
the application's interaction with the model and for ren 
dering the model force the application developer to opti 
mize for one use while making the other use difficult. In 
contrast, DirectModel maintains multiple organizations of 
the model so that it can simultaneously be optimized for 
several different uses. The application is free to organize 
its model graph based on its functional requirements 
without consideration of DirectModel's rendering needs. 
DirectModel will create and maintain an additional spatial 
organization that is optimized for rendering. These multiple 
organizations do not significantly increase the memory or 

disk usage of DirectModel because the actual geometry, 
by far the largest component, is multiply referenced, not 
duplicated. 

The Problem of  Mot ion 
Object motion, both predefined and interactive, is critical 
to many technical applications. In mechanical design, for 
example, users want to see suspension systems moving, 
engines rocking, and pistons and valves in motion. To use 
a virtual prototype for manufacturing planning, motion is 
mandatory. Assembly sequences can be verified only by 
observing the motion of each component as it moves into 
place along its prescribed path. Users also want to grab 
an object or subassembly and move it through space, 
while bumping and jostling the object as it interferes with 
other objects in its path. In short, motion is an essential 
component for creating the level of realism necessary for 
full use of digital prototypes. 

DirectModel supports this demand for adding motion to 
3D models in several ways. Because DirectModel does not 
force an application to create a model graph that is opti 
mized for fast rendering, it can instead create one that is 
optimized for managing motion. Parts that are physically 
connected in real life can be connected in the model graph, 
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allowing movement to cascade easily through all of the 
affected parts. In addition, the data structures and algo 
rithms used by DirectModel to optimize the model graph 
for rendering are designed for easy incremental update 
when some portion of the application's model graph 
changes. 

Models as Databases 
3D models containing millions of polygons with a rich set 
of rendering attributes and metadata can easily require 
several gigabytes of data. Models of this size are fre 
quently too big to be completely held in main memory, 
which makes it particularly challenging to support 
smooth interactivity. 

DirectModel solves this problem by treating the model as a 
database that is held on disk and incrementally brought in 
and out of main memory as necessary. Elements of the 
model, including individual level-of-detail representations, 
must come from disk as they are needed and removed 
from main memory when they are not needed. In this way 
memory can be reserved for the geometric representa 
tions currently of interest. DirectModel's large model 
capability has as much to do with rapid and intelligent 
database interaction as with rendering optimization. 

Interactive versus Batch-Mode Data Preparat ion 
Applications that deal with large 3D models have a wide 
range of capabilities. One application may be simply an 
interactive viewer of large models that are assembled from 
existing data. Another application may be a 3D editor (for 
example, a solid modeler) that supports designing me 
chanical parts within the context of their full assembly. 
Consequently, an application may acquire and optimize a 
large amount of 3D geometry all at once, or the parts of 
the model may be created little by little. 

DirectModel supports both of these scenarios by allowing 
model creation and optimization to occur either interac 
tively or in batch mode. If an application has a great deal 
of raw geometry that must be rendered, it will typically 
choose to provide a batch-mode preprocessor that builds 
the model graph, invokes the sorting and simplification 
algorithms, and then saves the results. An interactive appli 
cation can then load the optimized data and immediately 
allow the user to navigate through the data. However, if 
the application is creating or modifying the elements of 
the model at a slow rate, then it is reasonable to sort and 
optimize the data in real time. Hybrid scenarios are also 

possible where an interactive application performs incre 
mental optimization of the model with any spare CPU 
cycles that are available. 

The important thing to note in these scenarios is that 
DirectModel does not make a strong distinction between 
batch and interactive operations. All operations can be 
considered interactive and the application developer is 
free to employ them in a batch manner when appropriate. 

Extensibility 
Large 3D models used by technical applications have 
different characteristics. Some models are highly regular 
with geometry laid out on a fixed grid (for example, 
rectangular buildings with rectangular rooms) whereas 
others are highly irregular (for example, an automobile 
engine with curved parts located at many different 
orientations). Some models have a high degree of occlu 
sion where entire parts or assemblies are hidden from 
many viewing perspectives. Other models have more 
holes through them allowing glimpses of otherwise hid 
den parts. Some models are spatially dense with many 
components packed into a tight space, whereas others 
are sparse with sizable gaps between the parts. 

These vast differences impact the choice of effective opti 
mization and rendering algorithms. For example, highly 
regular models such as buildings are amenable to prepro 
cessing to determine regions of visibility (for example, 
rooms A through E are not visible from any point in room 
Z). However, this type of preprocessing is not very effec 
tive when applied to irregular models such as an engine. 
In addition, large model visualization is a vibrant field of 
research with innovative new algorithms appearing regu 
larly. The algorithms that seem optimal today may appear 
very limiting tomorrow. 

DirectModel's flexible architecture allows application 
developers to choose the right combination of techniques, 
including creating new algorithms to extend the system's 
capabilities. All of the DirectModel functions, such as its 
culling algorithms, representation generators, tessella- 
tors, and picking operators, are extensible in this way. 
Extensions fit seamlessly into the algorithms they ex 
tend, indistinguishable from the default capabilities in 
herent to the toolkit. 

In addition, DirectModel supports mixed-mode rendering 
in which an application uses DirectModel for some of its 
rendering needs and calls the underlying core graphics 
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API directly for other rendering operations. Although Di- 
rectModel can fulfill the complete graphics needs of many 
applications, it does not require that it be used exclusively. 

M u l t i p l a t f o r m  S u p p o r t  

A variety of systems are commonly used for today's tech 
nical 3D graphics applications, ranging from high-end 
personal computers through various UNIX-based work 
stations and supercomputers. In addition, several 3D 
graphics APIs and architectures are either established or 
emerging as appropriate foundations for technical applica 
tions. Most developers of technical applications support a 
variety of existing systems and must be able to migrate 
their applications onto new hardware architectures as the 
market evolves. 

DirectModel has been carefully designed and implemented 
for optimum rendering performance on multiple platforms 
and operating systems. It presumes no particular graphics 
API and is designed to select at run time the graphics API 
best suited to the platform or specified by the application. 
In addition, its core rendering algorithms dynamically 
adapt themselves to the performance requirements of the 
underlying graphics pipeline. 

C o n c l u s i o n  

The increasing use of 3D graphics as a powerful tool for 
solving technical problems has led to an explosion in the 
complexity of problems being addressed, resulting in 3D 
models containing millions or even billions of polygons. 

Unfortunately, many of the applications and 3D graphics 
systems in use today are built on architectures designed 
to handle only a few thousands polygons efficiently. 
These architectures are incapable of providing inter 
activity with today's large technical data sets. 

This problem has created a strong demand for new graph 
ics architectures and products that are designed for inter 
active rendering of large models on affordable systems. 
Hewlett-Packard is meeting this demand with Direct- 
Model, a cross-platform toolkit that enables interaction 
with large, complex, 3D models. 
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An Overview of the VISUALIZE fx Graphics 
Accelerator  Hardware 

Noel D. Scott 

Danie l  M.OIsen 

Ethan W.Gannet t  

Three graphics accelerator products with different levels of performance are 

based on varying combinations of five custom integrated circuits. In addition, 

these native are the first ones from Hewlett-Packard to provide native 

acceleration for the OpenGLÂ® API. 

T  J _ h e  -he VISUALIZE fx family of graphics subsystems consists of three 

products, fx6, fx4, and fx2, and an optional hardware texture mapping module. 

These same are built around a common architecture using the same 

custom integrated circuits. The primary difference between these controllers 

is the number of custom chips used in each product (see Table I). 

A chip-level block diagram of the VISUALIZE fx6 product is shown in Figure 1. 

This the highest most complex configuration and also the one with the highest 

performance in the product line. The VISUALIZE fx4 and the VISUALIZE fx2 

products use subsets of the chips used in the fx6. The fx6 and fx4 subsystems 

have module, for the optional hardware-accelerated texture map module, 

which contains a local texture cache for storage of texture map images. If the 

texture accelerator is not present, the bus between the interface chip and the 

first raster chip is directly connected. 
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Figure 1 

A chip- level  diagram of the VISUALIZE fx6 product.  

Geometry Accelerator 

â€¢ Up to 8 

2 0 0 M H z /  
33 Bits 

Texture Accelerator  

Geometry Chip 
â€¢ 3D Geometry and Lighting Acceleration 

Texture Chip 
â€¢ Texture Rasterization 
â€¢ Texture Map Cache Controller 
â€¢ Texture Memory Control 
â€¢ Texture Interpolation 

Interface Chip 
â€¢ I/O Buffering 
â€¢ 3D Geometry Workload Distribution 

and Concentration 
â€¢ 2D and 3D Data Path Arbitration 
â€¢ 2D Acceleration 
â€¢ YUV to RGB Conversion Support 
â€¢ Pixel Level Pan and Zoom 
â€¢ Pixel Level Image Rotations 

Raster Chip 
â€¢ Fragment Processing 
â€¢ Frame Buffer Control Functions 

Video Chip 
â€¢ Color Lookup Tables 
â€¢ Video Timing 
â€¢ Digital-to-Analog Conversion 
â€¢ Video-Out Data 

Interface Chip 
The interface chip provides a PCI 2. 1 (also referred to as 
PCI 2X) compliant interface. It operates at up to 66 MHz 
in 64-bit mode. Special efforts have been made in the 

* PCI = Peripheral Component Interconnect. 

design of the buffering and the interface to the PCI. As a 
result, the driver is able to sustain writes of 3D geometry 
commands to the PCI at almost the theoretical maximum 
rates that could be computed for the PCI. The article on 
page 51 discusses PCI capability. 
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Occlusion Culling 

The HP fast-break program (page 8) enabled us to understand 
customer requirements by analyzing what is important in 
OpenGL graphics today. As a result, we developed a technol 
ogy called occlusion culling as an extension to OpenGL and 
implemented it in the VISUALIZE fx graphics hardware. 

We found that the data sets many graphics workstation cus 
tomers are trying to visualize are very complex. These data 
sets have large numbers of small, complex components that 
are not always visible in the final images. For instance, when 
rendering an airplane, all of the MCAD parts are present in the 
data set represented by potentially millions of polygons that 
must be processed. However, when this airplane is viewed 
from the outside only the outer surfaces are visible, not the fan 
blades of the engine or the seats or bulkheads in the interior. 

In a traditional 3D z-buffered graphics system, all polygons in 
a scene must be processed by the graphics pipeline because it 
is not known a priori which polygons will be visible and which 
ones will be occluded (not visible). The notion of occlusion 
culling, or removal of occluded objects, has been talked about 
in the research community for several years. However, imple 
mentations tend to be in software where the performance is 
not at a satisfactory level. 

In the VISUALIZE fx series of graphics devices, HP developed 
a very efficient algorithm that tests objects for visibility. 
An application program can very quickly use the occlusion 
culling visibility test to determine if a simple bounding box 

representation of a more complex part is visible. Since a 
bounding box, or more generally a bounding volume, com 
pletely encloses the more complex part, it is possible to know 
a priori that if the bounding volume is not visible then the 
complex part it encloses is not visible. Thus, the part that is 
not visible does not need to be processed through the graphics 
pipeline. The real benefit of occlusion culling comes when a 
very complex part consisting of many vertices can be rejected, 
avoiding the expenditure of valuable time to process it. 

For very complex data sets, such as the airplane mentioned 
above or an automobile, a tremendous performance increase 
can be realized by using the HP occlusion culling technology. 
To date, several ISVs have begun using occlusion culling in 
their applications and are seeing a 25 to 1 00 percent increase 
in graphics performance. This magnitude of performance bene 
fit typically costs a customer several thousand dollars for the 
extra computational horsepower. HP includes this technology 
as standard in all VISUALIZE fx series graphics accelerators, 
giving even better price and performance results to our 
customers. 

The future of 3D graphics will continue toward visualizing ever 
more complex objects and environments. Occlusion culling 
together with HP's DirectModel technology (page 1 9) are 
well positioned to be industry leaders in providing the technol 
ogy for 3D modeling applications. 

The primary responsibility of the interface chip is to sepa 
rate the streams of data that arrive from the host SPU into 
three paths and arbitrate access among those paths. 

3D Path. Typically data from the host CPU looks very 
much like the OpenGL API functions themselves. Data 
following this first path is routed to the geometry chips. 
The geometry chips process the data and return the re 
sults to the interface chip. These results are then sent on 
to the texture chips or directly to the raster chips if the 
texture mapping subsystem is not installed. In either case 
the data is transmitted to and through all the texture and 
raster chips in the system. 

Unbuffered Path. This path passes data directly through 
the interface chip to the texture and raster chips. This 
provides a bypass method that allows traffic to get around 

other pending operations. An example would be a texture 
cache download that is required to complete a primitive 
that is currently being rasterized, a situation that would 
lead to deadlock without the unbuffered path. 

2D Path. This path runs directly through the interface chip 
to the texture and raster chips. The 2D path differs from 
the unbuffered path in the way its priority is handled. The 
interface chip manages priority among the three paths as 
they all converge on the same set of wires between the 
interface chip and the first texture chip. The unbuffered 
path goes directly through the interface chip to those 
wires and has priority over the other two paths. Data 
targeting the 2D path is held off until all preceding 3D 
work in the geometry chip has been flushed through to 
the first texture chip. 
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There is also special circuitry in the interface chip that is 
used to accelerate many operations commonly done by 
XI lor other 2D APIs. 

Buses 

The three primary buses in the system are each run at 
200 MHz, allowing sustainable transfer rates of more 
than 800 Mbytes per second. To control the loading on 
the interconnections for these buses, they are built as 
point-to-point connections from one chip to the next. 

Each chip receives the signals and then retransmits them 
to the next chip in the sequence. This requires more pins 
on each part, but limits the number of loads on each wire 
to a single receiver as well as limiting the wiring length 
that signals must traverse. This allows for reliable com 
munications despite the high frequency of the buses. 

The first of these three buses distributes work to the 
geometry chips. This bus starts at the interface chip 
and runs through all the geometry chips in the system. 
Each geometry chip monitors the data stream as it flows 
through the bus and picks off work to operate upon based 
on an algorithm that selects the least busy geometry chip. 

The second of these buses starts at the last geometry chip 
and passes through the others back to the interface chip. 
The results of the work done by the geometry chips is 
placed on this bus in the same sequence as it was moved 
along the first bus. This strict ordering control prevents 
certain artifacts from showing up in the final image. 

The third bus ties the interface chip to the texture and 
frame buffer subsystems. It is wired in a loop that goes 
back to the interface chip from the last chip in the chain. 
3D operations typically flow from the interface chip to 
the chips along this bus, and when they eventually get 
back to the end of the loop, they are thrown away. 

For 2D operations, such as moving blocks of pixels 
around the frame buffer, the operation of the third bus is 
somewhat different. The movement of pixel data operates 
as a sequence of reads followed by a sequence of writes. 
The reads cause data to be dumped from the frame buffer 
locations onto the bus and the results travel back to the 
interface chip. This data is then associated with new 
addresses and sent as writes back down the bus, ending 
up back at the frame buffer but in different locations. 

Besides the three primary buses mentioned above, 
there are three secondary buses in the system. The first 

bus connects the interface chip to the video chip. This 
provides video control, download of color maps, and 
cursor control. The second bus is a connection from each 
raster chip to the video chip. This path is used to provide 
video refresh data to display frame buffer contents. The 
final secondary bus is a connection from each texture 
chip to two of the raster chips. This path allows the flow 
of filtered texture data into the raster chips for combina 
tion with nontexture fragment data. 

Geometry Chip 
The geometry and lighting chips are responsible for taking 
in geometric primitives (points, lines, triangles, and quad 
rilaterals) and executing all the operations associated 
with the transform stage of the graphics pipeline (see the 
article on page 9 for more about the graphics pipeline). 
These operations include: 

â€¢ Transformation of the coordinates from model space to 
eye space 

â€¢ Computing a vertex color based on the lighting state, 
which consists of up to eight directional or positional 
light sources 

â€¢ Texture map calculations that include: 

D Environment map calculations for texture mapping 

D Texture coordinate transformation 

D Linear texture coordinate generation 

D Texture projection 

â€¢ View volume clipping and clipping against six arbitrary 
application-specified planes to determine whether a 
primitive is completely visible, rejected because it is 
completely outside the view area, or needs to be 
reduced into its visible components 

â€¢ Perspective projection transformation to cause 
primitives to look smaller the further away from 
the eye they are 

â€¢ Setup calculations for rasterization in the raster chip. 

There were some interesting problems to solve in the 
design of the distribution and coalescing of work up and 
down the geometry chip daisy chain. For example, load 
balancing, maintaining strict order in the output stream, 
and ensuring that operations, such as binding of colors 
and normals to vertices, perform as required by OpenGL. 
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Fast Virtual Texturing 

Texture mapping, which is wrapping a picture over a three 
dimensional object, has been used over the years as a key 
feature to enhance photorealism, reduce data set sizes, per 
form visual analysis, and aid in simulations (see Figure 1). 
Since texturing calculations are computationally expensive 
and memory access for large textures can be prohibitively 
slow, various workstation graphics vendors have provided 
hardware-accelerated texture mapping as a key differentiator 
for their product. 

A primary drawback of these attempts at hardware accelera 
tion is that dedicated local hardware texture memory is limited 

Figure 1 

A 3D textured skul l .  The VISUALIZE fx4 and fx6 subsystems 
suppor t  a  tex ture map acce lerat ion opt ion.  P ic tured here 
is  the use of  3D texture mapping OpenGL extensions wi th 
th is opt ion.  This feature al lows visual isat ion of  3D data 
sets such as MRI images.  

in size and is expensive. To take advantage of the perfor 
mance boost, graphics applications were constrained to tex 
tures that fit in the local hardware texture memory. In other 
words, the application was responsible for managing this 
hardware resource. 

Noticing this obvious artificial application limitation in texturing 
functionality, performance, and portability, Hewlett-Packard 
introduced, in the VISUALIZE-48, a new concept in hardware 
texture mapping called virtual texture mapping. Virtual texture 
mapping uses the dedicated local hardware texture memory 
as a true texture cache, swapping in and out of the cache the 
portions of textures that are needed for rendering a 3D image. 
Thus, elimi texturing applications, these limitations were elimi 
nated. The application could define and use a texture map of 
any size (up to a theoretical limit of 32K texels x 32K texels*) 
that would be hardware accelerated, eliminating the need for 
the application to be responsible for managing local texture 
memory. 

Using the local hardware texture memory as a cache also 
means that this memory uses only the portions of the texture 
maps needed to render the Â¡mage. This efficiency translates 
to more and larger texture maps being hardware accelerated 
at the same time. Applications that previously could not run 
because of texture size limits can now run because of the 
unlimited virtual texture size. Also, with only the used por 
tions of the texture map being downloaded to the cache, far 
less graphics bus traffic occurs. 

The system design of virtual texture mapping involved changes 
in the HP-UX operating system to support graphics interrupts, 
onboard firmware support for these interrupts, the introduction 
of an asynchronous texture interrupt managing daemon pro 
cess, and the associated texturing hardware described in this 

*A texel is one element of a texture. 

The output of the geometry chip's daisy chain is passed 
back through the interface chip. Generally, for triangle 
based primitives, the output takes the form of plane equa 
tions. As these floating-point plane equations are returned 
from the geometry chip to the interface chip and passed 
on to the texture chips, certain addressed locations in the 
interface chip will result in the floating-point values being 

converted to fixed-point values as they pass through. 
These fixed-point values are in a form the raster chips 
need to rasterize the primitive. 

The daisy-chain design allows up to eight of the geometry 
chips to be used although only three are applied in the 
case of the VISUALIZE fx6 product at this time. 
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article. Having a centralized daemon process manage the 
cache allows for cache efficiency, parallel handling of texture 
downloads while 3D graphics rendering is occurring, and shar 
ing textures among graphics contexts. 

The VISUALIZE fx4 and VISUALIZE fx6 texture mapping 
options incorporate the second generation advances in virtual 
texture mapping. Full OpenGL 1 .1 texture map hardware sup 
port has brought about dramatic improvements in texture 
map download performance and switching between texture 
maps and new extended features such as 3D texture mapping, 
shadows (Figure 2), and proper specular lighting on textures 

Figure 2 

A shadow texture image.  

(Figure 3). These features have made these products very 
appealing systems for texturing applications on workstation 
graphics. 

The texture mapping performance on these systems is very 
competitive. The VISUALIZE fx6 texture fill rate is about twice 
that of the VISUALIZE fx4 texture option. However, fill rates 
alone do not describe how these systems perform in a true 
application environment. Aggressive texture mapping applica 
tion performance comparisons show two to three times per 
formance superiority over similarly priced graphics workstation 
products. 

FigureS 

A specular  l i t  tex ture image.  Correct  specular  l ight ing o f  
tex tured images can be ach ieved wi th  VISUALIZE fx^and 
fx6 texture mapping opt ions. 

Texture Chip 
The texture chip is responsible for accelerating texture 
mapping operations. Towards this end, it performs three 
basic functions: 

â€¢ Maintains a cache of texture map data, requesting cache 
updates for texture values required by current rendering 
operations as needed (see "Fast Virtual Texturing" on 
page 32) 

Generates perspective corrected texture coordinates 
from plane equations representing triangles, points, or 
lines 

Fetches and filters the texture data as specified by the 
application based on whether the texture needs to be 
magnified or minimized to fit the geometry it is being 
mapped to and passes the result on to the raster chips. 
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Raster Chip 
The raster chip rasterizes the geometry into the frame 
buffer. This means it determines which pixels are to be 
potentially modified and, if so, whether they should be 
modified based on various current state values (including 
the contents of the z buffer). The raster chip also controls 
access to the various buffers that make up the frame 
buffer. This includes the image buffer for storing the image 
displayed on the screen (potentially two buffers if double 
buffering is in effect), an overlay buffer that contains im 
ages that overlay the image buffer, the depth or z buffer 
for hidden surface removal, the stencil buffer, and an 
alpha buffer on the VISUALIZE fx6. To accomplish its 
work the raster chip performs four basic functions: 

â€¢ Rasterize primitives described as points, lines, or 
triangles 

â€¢ Apply fragment operations as defined by OpenGL (such 
as blending and raster operations) 

â€¢ Control of and access to buffer memory, including all 
the buffers described earlier 

â€¢ Refresh the data stream for the video chip, including 
handling windows and overlays. 

Video Chip 
The video chip provides video functions for controlling 
the data flow from the frame buffer to the display and 

1 A s tenc i l  buf fer  is  per  p ixe l  data that  can be updated when p ixe l  data is  wr i t ten and used 
to  rest r ic t  the modi f icat ion of  the p ixe l .  

'  An a lpha buf fer  conta ins  per  p ixe l  data  that  descr ibes coverage in format ion about  the 
p ixe l  and can be used when b lending new p ixe l  va lues wi th  the current  p ixe l  va lue.  

mapping data from values to color. The features of the 
video chip include: 

â€¢ Data mapping to colors: 

D Two independent 4096-by-24-bit lookup tables 

a Four independent 256-by-3-by-8-bit lookup tables 
for image planes 

a A bypass path for 24-bit true color data 

a Two independent 256-by-8-bit lookup tables for 
overlay planes 

â€¢ Digital-to-analog conversion 

â€¢ Video timing 

â€¢ Video output. 

C o n c l u s i o n  

The VISUALIZE fx family of products currently has a sub 
stantial lead in not only price/performance measurements, 
but it also leads in performance independent of cost. 

For information regarding how these systems compare 
against the competition, visit the SPEC (an industry stan 
dard body of benchmarks) web page at: 

http://www.spec.org/gpc 
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HP Kayak:  A PC Works ta t ion  w i th  Advanced 
Graph ics  Per fo rmance 

Ross A. Cunniff  World-leading 3D graphics performance, normally only found in a UNIXÂ® 

workstation, is provided in a PC workstation platform running the Windows 

NTÂ® operating system. This system was put together with a time to market of 

less than one year from project initiation to shipment. 
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device driver used in the HP Kayak workstation. 
He continues to be the lead 3D device driver 
engineer for high-end graphics products. He 

received a BS degree in mathematics and a BS 
degree in computer science in 1985 from the 
University of New Mexico. His professional 
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C omputer graphics workstations are powerful desktop computers used 

by a variety of technical professionals to perform their day-to-day work. 

Traditionally, such computers have run with a version of the UNIX operating 

system. In the past year, however, workstations featuring Intel processors such 

as the Pentiumâ„¢ Pro and Pentium II and running the MicrosoftÂ® Windows NT 

operating system have begun to gain ground in both capability and market 

share. Hewlett-Packard has historically been a leader in the UNIX workstation 

business. In February, 1997, Hewlett-Packard began a project to put its high- 

performance workstation graphics into a PC workstation platform. 

Technical Challenges 

Fitting HP workstation graphics into a Windows NT platform was not an easy 

task. The task was made more exciting with the addition of schedule pressure. 

The schedule gave us only four months to reach functional completion and 

only two months after that to finish the quality assurance process. This schedule 

was made even more challenging because the hardware was not yet complete. 

It was difficult at times to distinguish software defects from hardware defects. 

This article describes how we overcame some of the challenges we encountered 

while implementing this project. 

The Hardware 

The hardware for the HP Kayak workstation (Figure 1) is based on the 

VISUALIZE fx4 graphics subsystem for real-time 3D modeling (see the article 

on page 28). However, a couple of changes were necessary. First, to achieve 
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Figure 1 

An HP Kayak XW workstat ion.  

the performance available in the graphics hardware, the 
bus interface had to be changed from the standard Periph 
eral Component Interconnect (PCI) to the accelerated 
graphics port (AGP), t since no commodity PC chipset 
supported PCI 2X. With normal industry-standard PCI, we 
would have been limited to 132 Mbytes/s for I/O, which 
would have hurt our performance on several important 
benchmarks. With the accelerated graphics port, the avail 
able I/O bandwidth increased to 262 Mbytes/s. 

The second change necessary to the hardware was the 
addition of industry-standard VGA graphics. During the 

t AGP is a bus that transfers data to and from a graphics accelerator. 

boot process of Windows NT, and at occasional intervals 
after that, the computer will access VGA graphics registers 
directly. To achieve this, a VGA daughtercard was created 
that displays its graphics through the video feature connec 
tor created for the UNIX video solution. The main graphics 
board was modified slightly, making it possible to dynami 
cally switch between VGA graphics and VISUALIZE fx4 
graphics. Figure 2 shows a hardware block diagram for 
an HP Kayak workstation. 

Windows NT Driver  Archi tecture 
The fact that the hardware for the HP Kayak workstation 
is similar to the VISUALIZE fx4 hardware, which runs the 
UNIX operating system, made the software effort much 
easier. However, many significant hurdles had to be over 
come to get the software running under Windows NT. 

The first challenge was the Windows NT device driver 
architecture (Figure 3). On HP-UX*, graphics device 
drivers have a large amount of kernel support, allowing 
them to access the graphics hardware directly from user- 
level code without having to execute any special locking 
routines. This direct hardware access (DHA) method is 
not present on Windows NT. Instead, all accesses to the 
hardware must be performed from the kernel (ring 0 in 
Figure 3). 

Figure 2 

A hardware b lock  d iagram for  an HP Kayak works ta t ion .  
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Fortunately, the VTST'AT.TZE fx4 architecture specifies a 
buffered form of communication in which graphical com 
mands are placed into command data packets in a large 
buffer in the hardware. It was a simple task to modify the 
HP-UX drivers to access a software allocated command 
data packet buffer instead. When one of these software 
buffers gets full, it is passed to the ring 0 driver that for 
wards the buffer to the hardware. 

The lighter-shaded modules in Figure 3 represent the 
libraries that were delivered by HP to support the VISU 
ALIZE fx4 hardware. The libraries in ring 3 (Hpicd.dll and 
Hpvisxdx.dll) were fairly straightforward ports of the 
corresponding UNIX libraries libGL.sl and libddvisxgl.sl. 
The libraries in ring 0 (Hpvisxmp.sys, Hpvisxnt.dll, and 
Hpvisxkx.dll) had to be created from scratch to support the 

Figure 3 

The Windows NT dev ice dr iver  arch i tec ture.  
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Windows NT driver model. These modules make up about 
30 percent of the size of the ring 3 modules. 

I n t e g r a t i o n  w i t h  2 D  W i n d o w s  N T  G r a p h i c s  

The second challenge was to integrate the 3D OpenGL 
graphics support with the standard Windows NT graphical 
device interface. Microsoft specifies two methods that can 
be used to do this. The first, called a miniclient driver, is 
a rasterization-level OpenGL driver that uses the Micro 
soft OpenGL software pipeline for lighting and trans 
formation. This driver would have been easy to create, 
but it would not have allowed us to take advantage of 
the hardware transformation and lighting provided by 
VISUALIZE fx4. 

The second method, called an installable client driver, is 
a geometry-level OpenGL driver that leaves implementa 
tion of the lighting and transformation pipeline up to the 
driver writer. The driver allows us full access to all 
OpenGL API routines. This is the route we chose be 
cause we already had a full implementation of OpenGL, 
which we had created to run on the HP-UX operating 
system. This implementation was ported to the installable 
client driver model over a span of several weeks, while 
we added support for Windows NT multithreading. The 
bulk of the VISUALIZE fx4 graphical device interface 
driver was written by a separate team of experts without 
much consideration for 3D graphics acceleration. This 
enabled them to get the Windows NT display driver run 
ning in a short amount of time and allowed them to con 
tinue enhancing 2D performance without severely im 
pacting the 3D device driver team. Some of the results of 
these efforts are shown in Figure 4. 

I n t e g r a t i n g  t h e  W i n d o w s  N T  D r i v e r  w i t h  R i n g  0  

A third challenge was to integrate the Windows NT driver 
with the ring 0 portion of the OpenGL driver while main 
taining separate code bases for the different teams. We 
decided to make our ring 0 driver a separately loadable 
library. This decision kept the source code separate. It 
enabled much faster edit-compile-debug cycles, since it 
allowed us to replace a portion of the ring 0 driver with 
out having to reboot the computer. However, the separa 
tion added extra complexity because we had two very 
different drivers accessing the same piece of hardware. 
To solve this problem, we created a variable called a 
hardware access token. Each driver has a special token 
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Figure 4 

(a)  A a  image in  a  20 env i ronment ,  (b )  Severa l  3D programs in  a  20 env i ronment  
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that it places in the hardware access token to indicate 
that it was the last driver to access the hardware. When a 
driver detects that the token is not its own, it executes 
procedures known as content save and context restore. 

The context save reads all applicable hardware state in 
formation from the device into software buffers. The con 
text restore places the previously saved state back into 
the hardware. This same mechanism is used to mediate 
hardware accesses between different processes running 
OpenGL. 

Integration of VISUALIZE f x4 Architecture 
A fourth challenge for the team was the integration of the 
VISUALIZE fx4 stacked planes architecture (Figure 5a) 

Figure 5 

(a) VISUALIZE fx4 stacked frame buffer model,  (b) Windows 
NT of fscreen f rame buf fer  model .  
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into the Windows NT environment. Workstations tradi 
tionally have very deep pixels, each pixel having up to 
90 bits of information. This information includes support 
for such things as transparent overlays, double buffering, 
hidden surface removal, and clipping. Windows NT expects 
a slightly different model, in which the extra per pixel 
information is allocated in offscreen storage when a 3D 
rendering context is created (Figure 5b). What this means 
is that when the window state is changed (for example, 
when a window is moved on the desktop), Windows NT 
does not make any special calls to the device driver. This 
presented a problem, since our stacked planes architec 
ture needs to keep all of the extra information directly 
associated with the correct visible screen pixels. 

To fix this problem, we used a Windows mechanism 
called a window object (Figure 6). The window object 
tracks a window state and executes callbacks into our 
driver when a window state is modified. This added an 
unfortunate amount of complexity into our driver, since 
the window state is asynchronous to all other hardware 
accesses and not all of the window state information we 
need was directly available to us. In addition, applications 
expect to be able to mix Windows NT graphical device 
interface rendering and 3D OpenGL rendering in the same 
window. These two problems required us to add a double 

Figure 6 

The components of  a  window object .  
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J 
buffering mechanism that actually copies the physical 
back buffer bits into the displayed front buffer. This is 
significantly slower than the native per pixel double buff 
ering of VISUALIZE fx4. However, it fits better into the 
Windows NT model and enables all applications to run. 
We still enable the native method for applications and 
benchmarks that work correctly with it, since it is signifi 
cantly faster. 

Performance 
A fifth challenge for the team was performance. In the 
graphics workstation market, performance is usually the 
main differentiator. The most popular single measure of 
performance in the PC graphics market is the OPC View- 
perf benchmark known as CDRS-03.1 By July, 1997, we 
had achieved a CDRS-03 rating of 74 â€” a performance 
level that exceeded all known competitors. This met our 
goals set at the beginning of the project. However, we 
were aware that the hardware was capable of supporting 
much higher performance. With a goal in mind of a SIG- 
GRAPH 97 announcement in August, we redesigned the 
device driver. The redesign optimized certain paths 
through the driver, enabling much higher performance 
for this benchmark and for important applications such as 
Unigraphics and Structural Dynamics Research Corpora 
tion (SDRC). As a result, we were able to announce a 
CDRS-03 rating of over 100 at SIGGRAPH 97. 

In addition to benchmark performance, the team focused 
on application performance because it is typically this 
measure that determines whether a customer will buy the 
product. We obtained a variety of in-house applications 

and built up expertise in running the applications. We 
also obtained data sets that represented typical customer 
workloads and adjusted various performance parameters 
(such as display list size) to maximize performance for 
the benchmark. Using this technique, the performance 
with some data sets was up to 100 times faster. 

C o n c l u s i o n  

With VISUALIZE fx4, Hewlett-Packard has the fastest 
Windows NT graphics on the market.1'2'3 Integrated into 
the HP Kayak XW platform, the graphics device and its 
successors will help Hewlett-Packard maintain its market 
leadership. 
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Concurrent Engineering in OpenGLÂ® Product 
Deve lopment  
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Time serialized market was reduced when tasks that had been traditionally serialized 

were completed in parallel. 
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C oncurrent engineering is the convergence, in time and purpose, of 

interdependent engineering tasks. The benefits of concurrent engineering 

versus traditional serial dependency are shown in Figure 1. Careful planning 

and management of the concurrent engineering process result in: 

â€¢ Faster time to market 

â€¢ Lower engineering expenses 

â€¢ Improved schedule predictability. 

This OpenGL discusses the use of concurrent engineering for OpenGL product 

development at the HP Workstation Systems Division. 

OpenGL Concurrent Engineering 

We applied concurrent engineering concepts in the development of our 

OpenGL product in a number of ways, including: 

â€¢ Closely coupled system design with partner laboratories 

â€¢ Software architecture and design verification 

â€¢ Real-use hardware verification 

â€¢ Hardware simulation 

â€¢ Milestones and communication 

â€¢ Joint hardware and software design reviews 

â€¢ Test programs written in parallel. 
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Cultural Enablers 
In addition to these technical tactics, the OpenGL team 
enjoyed the benefits of several cultural enablers that have 
been nurtured over many years to encourage concurrent 
engineering. These include early concurrent staffing, an 
environment that invites, expects, and supports bottoms-up 
ideas to improve time to market, and the use of a focused 
program team to use expertise and gain acceptance from 
all functional areas and partners. 

System Design with Partner Labs 
We worked closely with the compiler and operating sys 
tem laboratories to design new features to greatly im 
prove our performance (see the "System Design Results" 
section in the article on page 9). Our early system design 
revealed that OpenGL inherently requires approximately 
ten times more procedure calls and graphics device ac 
cesses than our previous graphics libraries. This large 
increase in system use meant we had to minimize these 
costs we previously had been able to amortize over a 
complete primitive. 

We worked closely with our partner laboratories to ensure 
success. Our management secured partner acceptance, 
funding, and staffing, and the engineers worked on the 
joint system design. Changes of this magnitude in the 
kernel and the compiler take time, and we could not af 
ford to wait until we had graphics hardware and software 
running for problems to occur. Rather, we used careful 
system performance models and competitive performance 
projections to create processor state count budgets for 
procedure calls and device access. These performance 
goals guided our design, hi fact, our first design to improve 
procedure call overhead missed by a few states per call, 
so we had to get more creative with our design to arrive 
at an industry-leading solution. We managed these de 
pendencies throughout the project with frequent commu 
nication and interim milestones. 

Software Architecture and Design Veri f icat ion 
We designed and followed a risk-driven life cycle. To sup 
port the concurrent engineering model, we needed a life 
cycle that avoided the big bang approach of integrating all 

Figure 1 

The benef i ts  of  concurrent  engineer ing.  
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Figure 2 

OpenGL concurrent  engineer ing techniques.  
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the pieces at the end. This would result in a longer and 
less predictable time to market. Instead, we created a 
prototyping environment. This environment was initially 
created to test the software architecture and early design 
decisions. The life cycle included a number of check 
points focused on interface specification, design, and 
prototyping. 

One key prototyping checkpoint in this environment is 
what we called our "vertical slice," which represented a 
thin, tall slice through the early OpenGL architecture (see 
Figure 2). Thin because it supports a small subset of the 
full OpenGL functionality, and tall because it exercises all 
portions of the software architecture, from the API to the 
device driver-level interface. With this milestone, we had 
a simple OpenGL demonstration running on our software 
prototype. 

The objectives of this vertical slice were to verify the 
OpenGL software architecture and design, create a proto 
typing design environment, and rally the team around this 
key deliverable. 

Hardware Veri f icat ion 
Before we had completed verification of the software ar 
chitecture, it became evident that this same environment 
needed to be quickly adapted and evolved to handle the 
demands of hardware verification. OpenGL features and 
performance represented the biggest challenge for the 
new VISUALIZE fx hardware. Although this hardware 
would also support our legacy APIs (Starbase, PHIGS, 
PEX), most of the newness and therefore risk was con 
tained in our support of OpenGL. By evolving our proto 
typing environment for use as the hardware verification 
vehicle, we were able to exercise the hardware model in 
real-use scenarios (albeit considerably slower than full 
performance). 

Evolving this environment for hardware verification re 
quired us to take the prototyping further than we would 
have for software verification alone. We had to add more 
functionality to more fully test the OpenGL features in 
hardware. We also had to do so quickly to avoid delaying 
the hardware tape release. 

This led to our second key prototyping checkpoint, which 
we called "OpenGL turn on." This milestone included the 
same OpenGL demonstration running on the VISUALIZE 
fx hardware simulator. We also added functionality 
breadth to the vertical slice (see Figure 2). Doing all this 
for a new OpenGL API represented a new level of concur 
rent engineering, in that we were running OpenGL pro 
grams on a prototype OpenGL library and driver and dis 
playing pictures on simulated VISUALIZE fx hardware, all 
more than a year before shipments. 

The key objective of this milestone was to verify system 
design across the API, driver, operating system, and hard 
ware. The system generated pictures and, more impor 
tantly, spool files (command and data streams that cross 
the hardware and software interface). These spool files 
are then run against the hardware models to verify hard 
ware design under real OpenGL use scenarios. 

This prototyping environment has the following 
advantages: 

â€¢ Reduces risk for system design and component design 

D Resolve integration issues early 
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a Identify holes and design or architecture flaws 

n Enable prototyping to evaluate design alternatives 

â€¢ Enables key deliverables (hardware verification spool 
files) 

â€¢ Creates exciting focal points for developers 

â€¢ Fosters teamwork 

â€¢ Enables joint development 

â€¢ Provides a means to monitor progress 

â€¢ Provides a jump start to our code development phase. 

This environment also has potential downsides. We felt 
there was a risk that developers would feel that the need 
or desire to prototype (for system turn on and hardware 
verification) could overshadow the importance of product 
design. We did not want to leave engineers with the model: 
write some code, give it a try, and ship it if it works. 

Thus, to keep the benefits of this environment and miti 
gate these potential downsides, we made a conscious de 
cision to switch gears from system turn on and prototype 
mode to product code development mode. This point 
came after we had delivered the spool files required for 
hardware verification and before we had reached our 
design complete checkpoint. From that point on, we 
prototyped only for design purposes, not for enabling 
more system functionality. We also created explicit check 
points for replacing previously prototyped code with 
designed product code. This was an important shift to 
avoid shipping prototype code. All product code had to 
be designed and reviewed. 

H a r d w a r e  S i m u l a t i o n  

One key factor in our concurrent engineering process is 
hardware simulation. A detailed discussion of the hard 
ware simulation techniques used in our project are be 
yond the scope of this article. Briefly, we use three levels 
of hardware simulation: 

â€¢ A behavioral model (written in C) 

â€¢ A register transfer level model (RTL) 

â€¢ A gate model, which models the gate design and imple 
mentation. 

The advantages of the behavioral model are that it can be 
done well before the RTL and gate model so we can use it 
with other components and prototypes. The behavioral 

model is also significantly faster than the other models 
(though still about 100 times slower than the real product), 
allowing us to run many simple real programs on it. The 
RTL model runs in Verilog and runs about one million 
times slower than the real product. This limits the number 
and size of test cases that can be run. The gate model is 
even slower. Even so, we kept over 30 workstations busy 
around the clock for months running these models. Often 
a simulation run will use C models for all but one of the 
new chips, with the one chip being simulated at the gate 
level. 

M i l e s t o n e s  a n d  C o m m u n i c a t i o n  

We set up a number of R&D milestones to guide and track 
our progress. The vertical slice and OpenGL turn on were 
two such key milestones. OpenGL developer meetings 
were held monthly to make sure that everyone had a clear 
understanding of where we were headed and how each of 
the developers' contributions helped us get there. 

S o f t w a r e  a n d  H a r d w a r e  D e s i g n  R e v i e w s  

The hardware and software engineers also held joint de 
sign reviews. The value of design reviews is to minimize 
defects by enabling all the engineers to have the same 
model of the system and to catch design flaws early and 
correct them while defect finding and fixing is still inex 
pensive in terms of schedule and dollars. 

On the software side, the review process focused heavily 
on up-front design reviews (where changes are cheaper) 
to get the design right. We maintained the importance of 
doing inspections but reduced the inspection coverage 
from 100 percent to a smaller representative subset of 
code, as determined by the review team. We also in 
creased the number of reviewers at the design reviews and 
reduced the participation as we moved to code reviews. 
We maintained a consistent core set of reviewers who 
followed the component from design to code review. 

T e s t s  W r i t t e n  i n  P a r a l l e l  

To bring more parallelism to the development process, 
we had an outside organization develop our OpenGL test 
programs. By doing so, we were able to begin nightly 
regression testing simultaneous with the code completion 
checkpoint because the test programs were immediately 
available. Historically, the developers have written the 
tests following design and coding. This translates into 
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a lull between the code completion checkpoint and the 
beginning of the testing phase. 

Parallel development of the tests with the design and 
implementation of the system was a key success factor 
in our ability to ship a high-quality, software-only beta 
version of our OpenGL product. No severe defects were 
found in this beta product â€” our first OpenGL customer 
deliverable. 

One thing we learned from using an outside organization 
to help with test writing was that writing test plans is 
more a part of design than of testing. The developers, 
with intimate knowledge of the API and the design, were 
able to write much more comprehensive test plans than 
the outside organization. 

C o n c l u s i o n  

We achieved several positive results through the use of 
concurrent engineering on our OpenGL product. Ulti 
mately, we reduced time to market by several months. 
Along the way. we made performance and reliability im 
provements in our software and hardware architectures 
and implementations, and we likely prevented a chip turn 
or two, which would have cost significant time to market. 

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United 
States and other countries. 

Direct 3D is a U.S. registered trademark of Microsoft Corporation. 

Microsoft is a U.S. registered trademark of Microsoft Corporation. 
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Advanced Display Technologies on HP-UX 
Workstat ions 

Todd M.  Spencer  

Pau l  M.Anderson 

David J.Sweetser 

Multiple monitors can be configured as a contiguous viewing space to 

provide more screen space so that users can see most, if not all, of their 

applications without any special window manipulations. 

I . n today's computing environment, screen space is at a premium. The 

entire applications can be easily consumed when primary work-specific applications 

are used together with browsers, schedulers, mailers, and editors. This forces 

the user to continuously shuffle windows, which is both distracting and 

unproductive. 

The advanced display technologies described here allow users to increase 

productivity by reducing the time spent manipulating windows. Three 

technologies are discussed: 

â€¢ Multiscreen 

â€¢ Single logical screen (SLS) 

â€¢ SLSclone. 

Implementation details and procedures for configuring HP-UX workstations to 

use the SLS technology are described in references 1 and 2. 

M u l t i s c r e e n  

When considering the problem of limited screen space, one solution that 

comes to mind is to use a bigger monitor with a higher resolution. 

Unfortunately, it is often impractical to add a monitor with a resolution high 

enough has accommodate all the data a user wants to view. Although demand has 

increased for monitors of higher resolution, such as 2K by 2K pixels, they are 

still too expensive for companies to place on every desktop. In addition, these 
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large monitors are cumbersome and heavy. There are also 
safety considerations: the monitor must be stable and 
properly supported. 

A more practical, cost-effective solution is to use addi 
tional standalone monitors to increase the amount of 
visible screen space. The X Window System (XI 1) stan 
dard incorporates a feature known as multiscreen, which 
provides this type of environment. In multiscreen configu 
rations, a single X server is used to control more than one 
graphics device and monitor simultaneously. These types 
of configurations are only possible on systems containing 
multiple graphics devices. 

In these multiscreen scenarios, a single mouse and key 
board are shared between screens. This allows the pointer 
but not the windows to move between screens. Each ap 
plication must be directed to a specific screen to display 
its windows. This is done by either using the -display com 
mand line argument or by setting the DISPLAY environ 
ment variable. 

Figure 1 shows a two-monitor multiscreen configuration. 
Both monitors are connected to the same workstation and 
are controlled by the same X server. This type of configu 
ration effectively doubles the visible workspace. For exam 
ple, users could have their alternate applications, such as 
web browsers, mailers, and schedulers on the left-hand 
monitor and their primary applications on the right-hand 
monitor. Since the X server controls both screens, the 
pointer can move between screens and be used with any 
application. 

Multiscreen offers the advantage that it will work with 
any graphics device. There are no constraints that the 
graphics devices be identical or have the same properties. 

Figure 1 

A mul t iscreen conf igura t ion.  
SPU wi th  Two 

Graphics Cards 

display:0.0 display:0.1 

Figure 2 

Cursor  wraparound in  a mul t iscreen conf igurat ion.  

Screen 1 Screen 2 Screen 3 

(a) 

(b) 

Screen 2 Screen 3 

For example, on an HP 9000 Model 715 workstation con 
taining an HCRX24 display (a 24-plane device) and an 
internal color graphics display (an 8-plane device), the user 
can still create a multiscreen configuration. Of course, 
those applications directed to the HCRX24 will have ac 
cess to 24 planes while those contained on the other are 
limited to 8 planes. Currently, the HP-UX X server allows 
a maximum of four graphics devices to be used in a multi 
screen configuration. 

The HP-UX X server also provides several enhancements 
to simplify the use of a multiscreen configuration. If a user 
has a l-by-3 configuration (Figure 2a), there may be a 
need to move the pointer from screen 3 to screen 1. This 
requires moving the pointer from screen 3 to screen 2 to 
screen 1. By specifying an X server configuration option, 
the user can move the pointer off the right edge of screen 
3, and the pointer will wrap to screen 1 (Figure 2b). The 
same screen wrapping functionality can be provided if the 
user has configured the screens in a column. Finally, a 
2-by-2 configuration can contain both horizontal and verti 
cal screen wrapping. 

Although multiscreen is convenient, it has shortcomings. 
Namely, the monitors function as separate entities, rather 
than as a contiguous space. The different screens within a 
multiscreen configuration cannot communicate with one 
another with respect to window placement. This means 
that windows cannot be moved between monitors. Once 
a window is created, it is bound to the monitor where it is 
created. Although some third-party solutions are available 
to help alleviate this problem, they are costly, inconve 
nient (sometimes requiring the application to make code 
changes), and lack performance. 
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The lack of communication between screens with respect 
to window placement forces users to direct their applica 
tions towards a specific screen at application start time. 
After a screen has been selected all additional subwin- 
dows will be confined to that screen. With today's larger 
applications, it is possible to find that certain screens still 
get overcrowded, resulting in the original predicament of 
having to iconify and raise windows. 

S i n g l e  L o g i c a l  S c r e e n  

To remedy the shortfall of the multiscreen configuration, 
HP developed a technology called single logical screen 

(SLS).3 SLS has been incorporated into the HP standard 
X server product and allows multiple monitors to act as a 
single, larger, contiguous screen. As a result, windows can 
move across physical screen boundaries, and they can 
span more than one physical monitor. In addition, SLS 
functionality has been implemented in an application- 
transparent manner. This means that any application cur 
rently running on HP-UX workstations will run, without 
modification, under SLS. Therefore, SLS is not an API that 
application writers need to program to or that an applica 
tion needs to be aware of. The application simply sees a 
large screen. This ease-of-use lets end users take advan 
tage of a large workspace without requiring applications 
to be rewritten or recompiled. 

Many of electronic design automation (EDA) and computer- 
aided design applications can benefit from SLS. Some of 
these applications, by themselves, can easily occupy an 
entire screen while only showing a fraction of the desired 
information. For example, with more screen real estate, 
an EDA application can simultaneously display wave 
forms, schematics, editors, and other data without having 
any of this information obscured. To do this on a work 
station with only a single monitor would require display 
ing the waveforms, schematics, and other items in such 
small areas as to be unreadable. 

On HP-UX Workstations, a single logical screen actually 
represents a collection of homogeneous graphics devices 
whose output has been combined into a single screen. 
Figure 3, shows an example of a l-by-2 SLS configura 
tion. Most HP-UX workstations are not limited to only 
two graphics devices. Some models support up to four 
devices. When using these graphics devices to create an 
SLS environment, any rectangular configuration is allowed. 

Figure 3 

A l -by-2 SLS conf igurat ion.  

display:0.0 

S L S c l o n e  

SLSclone is similar to the SLS configuration. The differ 
ence is that the contents from a selected monitor are 
replicated on all other monitors in the configuration (see 
Figure 4). A user can dynamically switch between SLS 
and SLSclone using an applet being shipped with the 
HP-UX 10.20 patch PHSS_12462 or later. 

This functionality is useful in an educational or instruc 
tional environment. Instead of crowding many users 
around a single monitor to view its contents, SLSclone 
can be used to pipe these contents to neighboring moni 
tors. As with SLS, SLSclone currently supports up to four 
physical monitors, depending on the workstation model. 

SLSclone functionality easily lends itself to a collaborative 
work environment. If additional people enter a user's 
office to debug some software source code, for example, 
the user can quickly switch the SLS configuration into an 
SLSclone configuration, and the debugging screen will be 
displayed on all monitors. Also, the additional monitor 
can easily be adjusted to the correct height and tilt with 
out affecting the original user's view of the display. 

Figure 4 

An example of  a  l -by-2 SLSclone conf igurat ion.  

displayiO.O 
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Figure 5 

A hybr id  conf igura t ion  cons is t ing  o f  a  l -by-2  SLS wi th  mul t i  
screen. 

d i s p l a y e d  d i s p l a y : 0 . 1  

M o n i t o r i  Monitor 2 Mon i to rs  

S L S  a n d  M u l t i s c r e e n  

Even with the benefits of SLS, there may be cases in 
which a user will want to use SLS and multiscreen at the 
same time. For example, a user could have a l-by-2 SLS 
configuration acting as one screen, and a third monitor 
acting as a second screen. A depiction of this is shown in 
Figure 5. 

In this type of configuration, a user can move windows 
between physical monitors 1 and 2 but not drag a window 
from monitor 2 to monitor 3. The pointer, however, can 
move between all monitors. This type of hybrid configura 
tion can be useful in a software development environment. 
All of the necessary editors, compilers, and debuggers can 
be used on monitors 1 and 2, and the application can be 
run and tested on monitor 3. 

If a workstation supports four graphics devices, another 
possible hybrid configuration is to use two screens, 
each of which consists of a two-screen SLS configuration 
(Figure 6). 

In this configuration, windows can be moved between 
monitors 1 and 2 or between monitors 3 and 4. However, a 
window cannot be moved between monitors 2 and 3. As 

with all multiscreen configurations, the pointer can move 
across all four monitors. These two screens could also 
be placed vertically, resulting in a 2-by-2 monitor arrange 
ment and a 2-by-l multiscreen configuration. 

C o n c l u s i o n  

Advanced display configurations can be used to increase 
productivity. The increase in screen space facilitates col 
laboration and communication of information. We have 
also found that these configurations are very useful for 
independent software vendors (ISVs) who demonstrate 
their applications on HP-UX workstations. They appreci 
ate the additional screen space because they are able to 
display more information and rapidly describe their prod 
ucts without losing their customers' attention. 

Finally, the configuration of an advanced display is ac 
complished in an easy and straightforward manner through 
the HP-UX System Administration Manager (SAM). Addi 
tional information on advanced display configurations 
and other exciting X server features are available at: 
http://www.hp.com/go/xwindow 

HP-UX and 10.20 and later and HP-UX 11.00 and later tin both 32- and 64-bit configura 
tions) on all HP 9000 computers are Open Group UNIX 95 branded products. 
UNIX is a registered trademark of The Open Group. 
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Two l -by-2 SLS conf igurat ions combined v ia  mul t iscreen.  
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Delivering PCI in HP B-Class and C-Class 
Workstat ions: A Case Study in the Challenges 
of  Inter fac ing wi th Industry Standards 

Ric L. Lewis 

Erin A. Handgen 

Nicholas J. Ingegneri 

Glen T.  Robinson 

In the highly competitive workstation market, customers demand a wide range 

of cost-effective, high-performance I/O solutions. An industry-standard I/O 

subsystem allows HP workstations to support the latest I/O technology. 

*- ndustry-standard I/O buses like the Peripheral Component Interconnect 

(PCI) I/O systems to provide a wide variety of cost-effective I/O functionality. 

The desire to include more industry-standard interfaces in computer systems 

continues to increase. This article points out some of the specific methodolo 

gies used to implement and verify the PCI interface in HP workstations and 

describes some of the challenges associated with interfacing with industry- 

standard I/O buses. 

PCI for Workstat ions 

One of the greatest challenges in designing a workstation system is determining 

the best way to differentiate the design from competing products. This decision 

determines where the design team will focus their efforts and have the greatest 

opportunity to innovate. In the computer workstation industry, the focus is 

typically on processor performance coupled with high-bandwidth, low-latency 

memory of to feed powerful graphics devices. The performance of 

nongraphics I/O devices in workstations is increasing in importance, but the 

availability of cost-effective solutions is still the chief concern in designing an 

I/O subsystem. Rather than providing a select few exotic high-performance I/O 

solutions, it is better to make sure that there is a wide range of cost-effective 

solutions to provide the I/O functionality that each customer requires. Since 

I/O performance is not a primary means of differentiation and since maximum 

flexibility with appropriate price and performance is desired, using an 
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industry-standard I/O bus that operates with high-volume 
cards from multiple vendors is a good choice. 

The PCI bus is a recently established standard that has 
achieved wide acceptance in the PC industry. Most new 
general-purpose I/O cards intended for use in PCs and 
workstations are now being designed for PCI. The PCI 
bus was developed by the PCI Special Interest Group 
(PCI SIG), which was founded by Intel and now consists 
of many computer vendors. PCI is designed to meet today's 
I/O performance needs and is scalable to meet future 
needs. Having PCI in workstation systems allows the use 
of competitively priced cards already available for use in 
the high-volume PC business. It also allows workstations 
to keep pace with new I/O functionality as it becomes 
available, since new devices are typically designed for the 
industry-standard bus first and only later (if at all) ported 
to other standards. For these reasons, the PCI bus has 
been implemented in the HP B-class and C-class work 
stations. 

PCI Integrat ion Effort  
Integrating PCI into our workstation products required 
a great deal of work by both the hardware and software 
teams. The hardware effort included designing a bus 
interface ASIC (application-specific integrated circuit) 
to connect to the PCI bus and then performing functional 
and electrical testing to make sure that the implementa 
tion would work properly. The software effort included 
writing firmware to initialize and control the bus interface 
ASIC and PCI cards and writing device drivers to allow 
the HP-UX operating system to make use of the PCI 
cards. 

The goals of the effort to bring PCI to HP workstation 
products were to: 

â€¢ Provide our systems with fully compatible PCI to 
allow the support of a wide variety of I/O cards and 
functionality 

â€¢ Achieve an acceptable performance in a cost-effective 
manner for cards plugged into the PCI bus 

â€¢ Create a solution that does not cause performance 
degradation in the CPU-memory-graphics path or in any 
of the other I/O devices on other buses in the system 

â€¢ Ship the first PCI-enabled workstations: the Hewlett- 
Packard B132, B160, C160, and C180 systems. 

Challenges 
Implementing an industry-standard I/O bus might seem 
to be a straightforward endeavor. The PCI interface has 
a thorough specification, developed and influenced by 
many experts in the field of I/O bus architectures. There 
is momentum in the industry to make sure the standard 
succeeds. This momentum includes card vendors work 
ing to design I/O cards, system vendors working through 
the design issues of the specification, and test and mea 
surement firms developing technologies to test the design 
once it exists. Many of these elements did not yet exist 
and were challenges for earlier Hewlett-Packard propri 
etary I/O interface projects. 

Although there were many elements in the team's favor 
that did not exist in the past, there were still some signifi 
cant tasks in integrating this industry-standard bus. These 
tasks included: 

â€¢ Designing the architecture for the bus interface ASIC, 
which provides a high-performance interface between 
the internal proprietary workstation buses and PCI 

â€¢ Verifying that the bus interface ASIC does what it is 
intended to do, both in compliance with PCI and in 
performance goals defined by the team 

â€¢ Providing the necessary system support, primarily in 
the form of firmware and system software to allow 
cards plugged into the slots on the bus interface ASIC 
to work with the HP-UX operating system. 

With these design tasks identified, there still remained 
some formidable challenges for the bus interface ASIC 
design and verification and the software development 
teams. These challenges included ambiguities in the PCI 
specification, difficulties in determining migration plans, 
differences in the way PCI cards can operate within the 
PCI specification, and the unavailability of PCI cards 
with the necessary HP-UX drivers. 
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Architecture 

T h e  B u s  I n t e r f a c e  A S I C  

The role of the bus interface ASIC is to bridge the HP 
proprietary I/O bus, called the general system connect 
(GSC) bus, to the PCI bus in the HP B-class and C-class 
workstations. Figures 1 and 2 show the B-class and 
C-class workstation system block diagrams with the bus 
interface ASIC bridging the GSC bus to the PCI bus. The 
Runway bus shown in Figure 2 is a high-speed processor- 
to-memory bus.1 

The bus interface ASIC maps portions of the GSC bus 
address space onto the PCI bus address space and vice 
versa. System firmware allocates addresses to map be 
tween the GSC and PCI buses and programs this informa 
tion into configuration registers in the bus interface ASIC. 
Once programmed, the bus interface ASIC performs the 
following tasks: 

â€¢ Forward writes transactions from the GSC bus to the 
PCI bus. Since the write originates in the processor, this 
task is called a processor I/O write. 

â€¢ Forward reads requests from the GSC bus to the PCI 
bus, waits for a PCI device to respond, and returns the 

Figure 1 

HP B-c lass workstat ion b lock d iagram. 

To Main  Memory  

GSC Bus 

PCI Bus n  
PCI Slots GSC Slots 

GSC = General  System Connect  
PCI  =  Per iphera l  Component  In terconnect  

read data from the PCI bus back to the GSC bus. Since 
the read originates in the processor, this task is called 
a processor I/O read. 

â€¢ Forward writes transactions from the PCI bus to the 
GSC bus. Since the destination of the write transaction 
is main memory, this task is called a direct memory 
access (DMA) write. 

â€¢ Forward reads requests from the PCI bus to the GSC 
bus, waits for the GSC host to respond, and returns the 
read data from the GSC bus to the PCI bus. Since the 
source of the read data is main memory, this task is 
called a DMA read. 

Figure 3 shows a block diagram of the internal architec 
ture of the bus interface ASIC. The bus interface ASIC 
uses five asynchronous FIFOs to send address, data, and 
transaction information between the GSC and PCI buses. 

Figure 2 

HP C-c lass workstat ion b lock d iagram. 

R u n w a y  .  
B  M e m o r y  C o n t r o l l e r  

PCI Bus 

P C I  S l o t s  G S C  S l o t s  

GSC = General  System Connect  
PCI  =  Per iphera l  Component  In terconnect  
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Figure 3 

A block d iagram of  the arch i tecture for  the bus in ter face ASIC.  

CPU PCI Slots 

A FIFO is a memory device that has a port for writing data 
into the FIFO and a separate port for reading data out of 
the FIFO. Data is read from the FIFO in the same order 
that it was written into the FIFO. The GSC bus clock is 
asynchronous to the PCI bus clock. For this reason, the 
FIFOs need to be asynchronous. An asynchronous FIFO 
allows the data to be written into the FIFO with a clock 
that is asynchronous to the clock used to read data from 
the FIFO. 

Data flows through the bus interface ASIC are as follows: 

â€¢ Processor I/O write: 

n The GSC interface receives both the address and the 
data for the processor I/O write from the GSC bus and 
loads them into the processor I/O FIFO. 

D The PCI interface arbitrates for the PCI bus. 

D The PCI interface unloads the address and data from 
the processor I/O FIFO and masters the write on the 
PCI bus. 

Processor I/O read: 

D The GSC interface receives the address for the pro 
cessor I/O read from the GSC bus and loads it into the 
processor I/O FIFO. 

D The PCI interface arbitrates for the PCI bus. 

D The PCI interface unloads the address from the pro 
cessor I/O FIFO and masters a read on the PCI bus. 

D The PCI interface waits for the read data to return and 
loads the data into the processor I/O read return FIFO. 

n The GSC interface unloads the processor I/O read 
return FIFO and places the read data on the GSC bus. 
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DMA Write: 

The PCI interface receives both the address and the 
data for the DMA write from the PCI bus and loads 
them into the DMA FIFO. 

D The PCI interface loads control information for the 
write into the DMA transaction FIFO. 

= The GSC interface arbitrates for the GSC bus. 

D The GSC interface unloads the write command from 
the DMA transaction FIFO, unloads the address and 
data from the DMA FIFO, and masters the write on 
the GSC bus. 

â€¢ DMA Read: 

D The PCI interface receives the address for the DMA 
read from the PCI bus and loads it into the DMA FIFO. 

D The GSC interface arbitrates for the GSC bus. 

D The GSC interface unloads the address from the DMA 
FIFO and masters a read on the GSC bus 

D The GSC interface then waits for the read data to 
return and loads the data into the DMA read return 
FIFO. 

n The PCI interface unloads the DMA read return FIFO 
and places the read data on the PCI bus. 

Architectural  Challenges 
One of the difficulties of joining two dissimilar I/O buses is 
achieving peak I/O bus performance despite the fact that 
the transaction structures are different for both I/O buses. 
For example, transactions on the GSC bus are fixed length 
with not more than eight words per transaction while 
transactions on the PCI bus are of arbitrary length. It is 
critical to create long PCI transactions to reach peak 
bandwidth on the PCI bus. For better performance and 
whenever possible, the bus interface ASIC coalesces mul 
tiple processor I/O write transactions from the GSC bus 
into a single processor I/O write transaction on the PCI 
bus. For DMA writes, the bus interface ASIC needs to de 
termine the optimal method of breaking variable-size PCI 
transactions into one-, two-, four-, or eight-word GSC 
transactions. The PCI interface breaks DMA writes into 
packets and communicates the transaction size to 
the GSC interface through the DMA transaction FIFO. 

Another difficulty of joining two dissimilar I/O buses is 
avoiding deadlock conditions. Deadlock conditions can 
occur when a transaction begins on both the GSC and PCI 
buses simultaneously. For example, if a processor I/O read 
begins on the GSC bus at the same time a DMA read be 
gins on the PCI bus, then the processor I/O read will wait 
for the DMA read to be completed before it can master its 
read on the PCI bus. Meanwhile, the DMA read will wait 
for the processor I/O read to be completed before it can 
master its read on the GSC bus. Since both reads are wait 
ing for the other to be completed, we have a deadlock 
case. One solution to this problem is to detect the dead 
lock case and retry or split one of the transactions to 
break the deadlock. In general, the bus interface ASIC 
uses the GSC split protocol to divide a GSC transaction 
and allow a PCI transaction to make forward progress 
whenever it detects a potential deadlock condition. 

Unfortunately, the bus interface ASIC adds more latency 
to the round trip of DMA reads. This extra latency can 
have a negative affect on DMA read performance. The 
C-class workstation has a greater latency on DMA reads 
than the B-class workstation. This is due primarily to the 
extra layer of bus bridges that the DMA read must traverse 
to get to memory and back (refer to Figures 1 and 2). 
The performance of DMA reads is important to outbound 
DMA devices such as network cards and disk controllers. 
The extra read latency is hidden by prefetching consecu 
tive data words from main memory with the expectation 
that the I/O device needs a block of data and not just a 
word or two. 

Open Standard Challenges 
The PCI bus specification, like most specifications, is not 
perfect. There are areas where the specification is vague 
and open to interpretation. Ideally, when we find a vague 
area of a specification, we investigate how other design 
ers have interpreted the specification and follow the 
trend. With a proprietary bus this often means simply con 
tacting our partners within HP and resolving the issue. 
With an industry-standard bus, our partners are not within 
the company, so resolving the issue is more difficult. The 
PCI mail reflector, which is run by the PCI SIG at 
www.pcsig.com, is sometimes helpful for resolving such 
issues. Monitoring the PCI mail reflector also gives the 
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benefit of seeing what parts of the PCI specification ap 
pear vague to others. Simply put, engineers designing to 
a standard need a forum for communicating with others 
using that standard. When designing to an industry stan 
dard, that forum must by necessity include wide represen 
tation from the industry. 

The PCI specification has guidelines and migration plans 
that PCI card vendors are encouraged to follow. In prac 
tice, PCI card vendors are slow to move from legacy 
standards to follow guidelines or migration plans. For 
example, the PCI bus supports a legacy I/O address 
space that is small and fragmented. The PCI bus also has 
a memory address space that is large and has higher write 
bandwidth than the I/O address space. For obvious rea 
sons, the PCI specification recommends that all PCI cards 
map their registers to the PCI I/O address space and the 
PCI memory address space so systems will have the most 
flexibility in allocating base addresses to I/O cards. In prac 
tice, most PCI cards still only support the PCI address I/O 
space. Since we believed that the PCI I/O address space 
would almost never be used, trade-offs were made in the 
design of the bus interface ASIC that compromised the 
performance of transactions to the PCI I/O address space. 

Another example in which the PCI card vendors follow 
legacy standards rather than PCI specification guidelines 
is in the area of PCI migration from 5 volts to 3.3 volts. 
The PCI specification defines two types of PCI slots: one 
for a 5-volt signaling environment and one for a 3.3-volt 
signaling environment. The specification also defines 
three possible types of I/O cards: 5-volt only, 3.3-volt only, 
or universal. As their names imply, 5-volt-only and 3.3-volt- 
only cards only work in 5-volt and 3.3-volt slots respec 
tively. Universal cards can work in either a 5-volt or 
3.3-volt slot. The PCI specification recommends that PCI 
card vendors only develop universal cards. Even though 
it costs no more to manufacture a universal card than a 
5-volt card, PCI card vendors are slow to migrate to uni 
versal cards until volume platforms (that is, Intel-based 
PC platforms) begin to have 3.3-volt slots. 

Verification 

Veri f icat ion Methodology and Goals 
The purpose of verification is to ensure that the bus inter 
face ASIC correctly meets the requirements described in 

'  Legacy refers to the Inte l  I /O port  space.  

the design specification. In our VLSI development process 
this verification effort is broken into two distinct parts 
called phase-1 and phase-2. Both parts have the intent of 
proving that the design is correct, but each uses different 
tools and methods to do so. Phase-1 verification is carried 
out on a software-based simulator using a model of the 
bus interface ASIC. Phase-2 verification is carried out on 
real chips in real systems. 

Phase-1. The primary goals of phase-1 verification can be 
summarized as correctness, performance, and compliance. 
Proving correctness entails showing that the Verilog model 
of the design properly produces the behavior detailed in 
the specification. This is done by studying the design 
specification, enumerating a function list of operations 
and behaviors that the design is required to exhibit, and 
generating a suite of tests that verify all items on that 
function list. Creating sets of randomly generated trans 
action combinations enhances the test coverage by expos 
ing the design to numerous corner cases. 

Performance verification is then carried out to prove that 
the design meets or exceeds all important performance 
criteria. This is verified by first identifying the important 
performance cases, such as key bandwidths and latencies, 
and then generating tests that produce simulated loads 
for performance measurement. 

Finally, compliance testing is used to prove that the bus 
protocols implemented in the design will work correctly 
with other devices using the same protocol. For a de 
sign such as the bus interface ASIC that implements an 
industry-standard protocol, special consideration was 
given to ensure that the design would be compatible with 
a spectrum of outside designs. 

Phase-2. This verification phase begins with the receipt 
of the fabricated parts. The effort during this phase is pri 
marily focused on testing the physical components, with 
simulation techniques restricted to the supporting role of 
duplicating and better understanding phenomenon seen 
on the bench. The goals of phase-2 verification can be 
summarized as compliance, performance, and compati 
bility. Therefore, part of phase-2 is spent proving that the 
physical device behaves on the bench the same as it did 
in simulation. The heart of phase-2, however, is that the 
design is finally tested for compatibility with the actual 
devices that it will be connected to in a production system. 
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Verif ication Challenges 
From the point of view of a verification engineer, there 
are benefits and difficulties in verifying the implementa 
tion of an industry-standard bus as compared to a pro 
prietary bus. One benefit is that since PCI is an industry 
standard, there are plenty of off-the-shelf simulation and 
verification tools available. The use of these tools greatly 
reduces the engineering effort required for verification, 
but at the cost of a loss of control over the debugging and 
feature set of the tools. 

The major verification challenge (particularly in phase-1) 
was proving compliance with the PCI standard. When 
verifying compliance with a proprietary standard there 
are typically only a few chips that have to be compatible 
with one another. The design teams involved can resolve 
any ambiguity in the bus specification. This activity tends 
to involve only a small and well-defined set of individuals. 
In contrast, when verifying compliance with an open stan 
dard there is usually no canonical source that can provide 
the correct interpretation of the specification. Therefore, 
it is impossible to know ahead of time where devices will 
differ in their implementation of the specification. This 
made it somewhat difficult for us to determine the specific 
tests required to ensure compliance with the PCI standard. 
In the end, it matters not only how faithfully the specifica 
tion is followed, but also whether or not the design is com 
patible with whatever interpretation becomes dominant. 

The most significant challenge in phase-2 testing came in 
getting the strategy to become a reality. The strategy de 
pended heavily on real cards with real drivers to demon 
strate PCI compliance. However, the HP systems with 
PCI slots were shipped before any PCI cards with drivers 
were supported on HP workstations. Creative solutions 
were found to develop a core set of drivers to complete 
the testing. However, this approach contributed to having 
to debug problems closer to shipment than would have 
been optimal. Similarly, 3.3-volt slots were to be sup 
ported at first shipment. The general unavailability of 
3.3-volt or universal (supporting 5 volts and 3.3 volts) 
cards hampered this testing. These are examples of the 
potential dangers of "preenabling" systems with new 
hardware capability before software and cards to use 
the capability are ready. 

An interesting compliance issue was uncovered late in 
phase-2. One characteristic of the PA 8000 C-class system 
is that when the system is heavily loaded, the bus interface 

ASIC can respond to PCI requests with either long read 
latencies (over 1 us before acknowledging the transaction) 
or many (over 50) sequential PCI retry cycles. Both behav 
iors are legal with regard to the PCI 2.0 bus specification, 
and both of them are appropriate given the circumstances. 
However, neither of these behaviors is exhibited by Intel's 
PCI chipsets, which are the dominant implementation of 
the PCI bus in the PC industry. Several PCI cards worked 
fine in a PC, but failed in a busy C-class system. The PCI 
card vendors had no intention of designing cards that 
were not PCI compliant, but since they only tested their 
cards in Intel-based systems, they never found the prob 
lem. Fortunately, the card vendors agreed to fix this issue 
on each of their PCI cards. If there is a dominant imple 
mentation of an industry standard, then deviating from 
that implementation adds risk. 

Firmware 
Firmware is the low-level software that acts as the inter 
face between the operating system and the hardware. 
Firmware is typically executed from nonvolatile memory 
at startup by the workstation. We added the following 
extensions to the system firmware to support PCI: 

â€¢ A bus walk to identify and map all devices on the PCI 
bus 

â€¢ A reverse bus walk to configure PCI devices 

â€¢ Routines to provide boot capability through specified 
PCI cards. 

The firmware bus walk identifies all PCI devices con 
nected to the PCI bus and records memory requirements 
in a resource request map. When necessary, the firmware 
bus walk will traverse PCI-to-PCI bridges. If a PCI device 
has Built-in Self Test (BIST), the BIST is run, and if it fails, 
the PCI device is disabled and taken out of the resource 
request map. As the bus walk unwinds, it initializes bridges 
and allocates resources for all of the downstream PCI 
devices. 

Firmware also supports booting the HP-UX operating sys 
tem from two built-in PCI devices. Specifically, firmware 
can load the HP-UX operating system from either a disk 
attached to a built-in PCI SCSI chip or from a file server 
attached to a built-in PCI 100BT LAN chip. 

A PCI-to-PCI bridge connects two PCI buses, forwarding transactions from one to the 
other. 
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F i r m w a r e  C h a l l e n g e s  

The first challenge in firmware was the result of another 
ambiguity in the PCI specification. The specification does 
not define how soon devices on the PCI bus must be ready 
to receive their first transaction after the PCI bus exits 
from reset. Several PCI cards failed when they were 
accessed shortly after PCI reset went away. These cards 
need to download code from an attached nonvolatile 
memory before they will work correctly. The cards begin 
the download after PCI reset goes away, and it can take 
hundreds of milliseconds to complete the download. Intel 
platforms delay one second after reset before using the 
PCI bus. This informal compliance requirement meant 
that firmware needed to add a routine to delay the first 
access after the PCI bus exits reset. 

Interfacing with other ASICs implementing varying levels 
of the PCI specification creates additional challenges. 
Compliance with PCI 2.0 (PCI-to-PCI) bridges resulted in 
two issues for firmware. First, the bridges added latency to 
processor I/O reads. This extra latency stressed a busy 
system and caused some processor I/O reads to timeout 
in the processor and bring down the system. The firm 
ware was changed so that it would reprogram the proces 
sor timeout value to allow for this extra delay. The second 
issue occurs when PCI 2.0 bridges are stacked two or 
more layers deep. It is possible to configure the bridges 
such that the right combination of processor I/O reads 
and DMA reads will cause the bridges to retry each others 
transactions and cause a deadlock or starve one of the 
two reads. Our system firmware fixes this problem by 
supporting no more than two layers of PCI-to-PCI bridges 
and configuring the upstream bridge with different retry 
parameters than the downstream bridge. 

Operating System Support 
The HP-UX operating system contains routines provided 
for PCI-based kernel drivers called PCI services. The first 
HP-UX release that provides PCI support is the 10.20 re 
lease. An infrastructure exists in the HP-UX operating 
system for kernel-level drivers, but the PCI bus introduced 
several new requirements. The four main areas of direct 
impact include context dependent I/O, driver attachment, 
interrupt service routines (ISR), and endian issues. Each 
area requires special routines in the kernel's PCI services. 

C o n t e x t  D e p e n d e n t  I / O  

In the HP-UX operating system, a centralized I/O services 
context dependent I/O (CDIO) module supplies support 
for drivers that conform to its model and consume its 
services. Workstations such as the C-class and B-class 
machines use the workstation I/O services CDIO (WSIO 
CDIO) for this abstraction layer. The WSIO CDIO provides 
general I/O services to bus-specific CDIOs such as EISA 
and PCI. Drivers that are written for the WSIO environ 
ment are referred to as WSIO drivers. The services pro 
vided by WSIO CDIO include system mapping, cache 
coherency management, and interrupt service linkage. In 
cases where WSIO CDIO does need to interface to the I/O 
bus, WSIO CDIO translates the call to the appropriate bus 
CDIO. For the PCI bus, WSIO CDIO relies on services in 
PCI CDIO to carry out bus-specific code. 

Ideally, all PCI CDIO services should be accessed only 
through WSIO CDIO services. However, there are a 
number of PCI-specific calls that cannot be hidden with 
a generic WSIO CDIO interface. These functions include 
PCI register operations and PCI bus tuning operations. 

D r i v e r  A t t a c h m e n t  

The PCI CDIO is also responsible for attaching drivers to 
PCI devices. The PCI CDIO completes a PCI bus walk, 
identifying attached cards that had been set up by firm 
ware. The PCI CDIO initializes data structures, such as 
the interface select code (ISC) structure, and maps the 
card memory base register. Next, the PCI CDIO calls the 
list of PCI drivers that have linked themselves to the PCI 
attach chain. 

The PCI driver is called with two parameters: a pointer 
to an ISC structure (which contains mapping information 
and is used in most subsequent PCI services calls) and an 
integer containing the PCI device's vendor and device IDs. 
If the vendor and device IDs match the driver's interface, 
the driver attach routine can do one more check to verify 
its ownership of the device by reading the PCI subsystem 
vendor ID and subsystem ID registers in the configuration 
space. If the driver does own this PCI device, it typically 
initializes data structures, optionally links in an interrupt 
service routine, initializes and claims the interface, and 
then calls the next driver in the PCI attach chain. 
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I n t e r r u p t  S e r v i c e  R o u t i n e s  

The PCI bus uses level-sensitive, shared interrupts. PCI 
drivers that use interrupts use a WSIO routine to register 
their interrupt service routine with the PCI CDIO. When a 
PCI interface card asserts an interrupt, the operating sys 
tem calls the PCI CDIO to do the initial handling. The PCI 
CDIO determines which PCI interrupt line is asserted and 
then calls each driver associated with that interrupt Une. 

The PCI CDIO loops, calling drivers for an interrupt line 
until the interrupt line is deasserted. When all interrupt 
lines are deasserted, the PCI CDIO reenables interrupts 
and returns control to the operating system. To prevent 
deadlock, the PCI CDIO has a finite (although large) num 
ber of times it can loop through an interrupt level before 
it will give up and leave the interrupt line disabled. Once 
disabled, the only way to reenable the interrupt is to re 
boot the system. 

P C I  E n d i a n  I s s u e s  

PCI drivers need to be cognizant of endian issues. The 
PCI bus is inherently little endian while the rest of the 
workstation hardware is big endian. This is only an issue 
with card register access when the register is accessed in 
quantities other than a byte. Typically there are no endian 
issues associated with data payload since data payload is 
usually byte-oriented. For example, network data tends 
to be a stream of byte data. The PCI CDIO provides one 
method for handling register endian issues. Another 
method lies in the capability of some PCI interface chips 
to configure their registers to be big or little endian. 

O p e r a t i n g  S y s t e m  S u p p o r t  C h a l l e n g e s  

We ran into a problem when third-party card developers 
were porting their drivers to the HP-UX operating system. 
Their drivers only looked at device and vendor identifiers 
and claimed the built-in LAN inappropriately. Many PCI 
interface cards use an industry-standard bus interface 
chip as a front end and therefore share the same device 
and vendor IDs. For example, several vendors use the 
Digital 2114X family of PCI-to-10/100 Mbits/s Ethernet 
LAN controllers, with each vendor customizing other 
parts of the network interface card with perhaps different 
physical layer entities. It is possible that a workstation 

1 Little endian and big endian are conventions that define how byte addresses are as 
signed places data that is two or more bytes long. The little endian convention places bytes 
with lower significance at lower byte addresses. (The word is stored "little-end-first.") 
The big ad convention places bytes with greater significance at lower byte ad 
dresses. (The word is stored "big-end-first.") 

could be configured with multiple LAN interfaces having 
the same vendor and device ID with different subsystem 
IDs controlled by separate drivers. A final driver attach 
ment step was added to verify the driver's ownership of 
the device. This consisted of reading the PCI subsystem 
vendor ID and subsystem ID registers in the configuration 
space. 

The HP-UX operating system does not have the ability to 
allocate contiguous physical pages of memory. Several 
PCI cards (for example, SCSI and Fibre Channel) require 
contiguous physical pages of memory for bus master task 
lists. The C-class implementation, which allows virtual 
DMA through TLB (translation lookaside buffer) entries, 
is capable of supplying 32K bytes of contiguous memory 
space. In the case of the B-class workstation, which does 
not support virtual DMA, the team had to develop a work 
around that consisted of preallocating contiguous pages 
of memory to enable this class of devices. 

C o n c l u s i o n  

PCI and Interoperability. We set out to integrate PCI into 
the HP workstations. The goal was to provide our systems 
with access to a wide variety of industry-standard I/O 
cards and functionality. The delivery of this capability 
required the creation and verification of a bus interface 
ASIC and development of the appropriate software sup 
port in firmware and in the HP-UX operating system. 

Challenges of Interfacing with Industry Standards. There 
are many advantages to interfacing with an industry 
standard, but it also comes with many challenges. In de 
fining and implementing an I/O bus architecture, perfor 
mance is a primary concern. Interfacing proprietary and 
industry-standard buses and achieving acceptable perfor 
mance is difficult. Usually the two buses are designed with 
different goals for different systems, and determining the 
correct optimizations requires a great deal of testing and 
redesign. 

Maintaining compliance with an industry standard is an 
other major challenge. It is often like shooting at a moving 
target. If another vendor ships enough large volumes of a 
nonstandard feature, then that feature becomes a de facto 
part of the standard. It is also very difficult to prove that 
the specification is met. In the end, the best verification 
techniques for us involved simply testing the bus interface 
ASIC against as many devices as possible to find where the 
interface broke down or performed poorly. 
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Finally, it is difficult to drive development and verification 
unless the functionality is critical to the product being 
shipped. The issues found late in the development cycle 
for the bus interface ASIC could have been found earlier 
if the system had required specific PCI I/O functionality 
for initial shipments. The strategy of preenabling the 
system to be PCI compatible before a large number of 
devices became available made it difficult to achieve the 
appropriate level of testing before the systems were 
shipped. 

Successes. The integration of PCI into the HP workstations 
through design and verification of the bus interface ASIC 
and the development of the necessary software components 
has been quite successful. The goals of the PCI integration 
effort were to provide fully compatible, high-performance 
PCI capability in a cost-effective and timely manner. The 
design meets or exceeds all of these goals. The bandwidth 
available to PCI cards is within 98 percent of the bandwidth 
available to native GSC cards. The solution was ready in 
time to be shipped in the first PCI-enabled HP workstations 
B132, B160, C160, andClSO. 

The bus-bridge ASIC and associated software have since 
been enhanced for two new uses in the second generation 
of PCI on HP workstations. The first enhancement pro 
vides support for the GSC-to-PCI adapter to enable specific 

PCI functionality on HP server GSC I/O cards. The sec 
ond is a version of the bus interface supporting GSC-2x 
(higher bandwidth GSC) and 64-bit PCI for increased 
bandwidth to PCI graphics devices on HP C200 and C240 
workstations. 
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C omputers have had a profound effect on how companies conduct 

business. They are used to run enterprise business software and to automate 

factory-floor production. While this has been a great benefit, the level of 

coordination between computers running unrelated application software is 

usually limited. This is because such data transfers are difficult to implement, 

often requiring manual intervention or customized software. Until recently, 

off-the-shelf data transfer solutions were not available. 

HP Enterprise Link is a middleware software product that increases the 

effectiveness of companies involved in manufacturing and production. It allows 

business management software running at the enterprise level, such as SAP's 

R/3 product, to exchange information (via electronic transfer) with software 

applications running on the factory floor. It also allows software applications 

running on the factory floor to exchange information with each other. 

HP Enterprise Link is available for HP 9000 computers running the HP-UX* 

operating system and PC platforms running Microsoft's WindowsÂ® NT 

operating system. 

This business will discuss the evolution of the link between business software 

systems and factory automation systems, and the functionality provided in HP 

Enterprise Link to enable these two environments to communicate. 

B a c k g r o u n d  

Initially, only large corporations could afford computers. They ran batch- 

oriented enterprise business software to do payroll, scheduling, and inventory. 
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As the cost of computing dropped, smaller companies 
began using computers to run business software, and 
companies involved in manufacturing began using them 
to automate factory-floor production. 

Although factory-floor automation led to improved effi 
ciency and productivity, it was usually conducted on a 
piecemeal basis. Different portions of an assembly line 
were often automated at different times and often with 
different computer equipment, depending on the capabil 
ities of computer equipment available at the time of 
purchase. As a result, today's factory-floor computers are 
usually isolated hosts, dedicated to automating selected 
steps in production. While various factory-floor functions 
are automated, they do not necessarily communicate with 
one another. They are isolated in "islands of automation." 
To make matters worse, the development of program 
mable logic controllers (PLCs) and other dedicated "smart" 
factory-floor devices has increased the number of isolated 
computers, making the goal of integrated factory-floor 
computation that much harder to achieve. 

While production software was generally used for smaller, 
more isolated problems, business software was used to 
solve larger company-wide problems. Furthermore, while 

production software was more real-time oriented, busi 
ness software was more transaction and batch oriented. 
These differing needs caused business systems to evolve 
with little concern for the kind of computing found on the 
factory floor. Similarly, production systems evolved with 
little concern for the kind of computing found at the 
enterprise level. As a result, many enterprise-level business 
systems and factory-floor computers are not able to inter 
communicate. Figure 1 shows an example of the com 
ponents that make up a typical enterprise and factory- 
floor environment. 

The net effect is that today companies find it difficult and 
expensive to integrate factory-floor systems with each 
other and with business software running at the enterprise 
level. This is unfortunate because the dynamic nature of 
the marketplace and the desire to reduce inventory levels 
have made the need for such integration very high. 

M a r k e t p l a c e  D y n a m i c s  

Over the last decade, the marketplace has become in 
creasingly dynamic, forcing businesses to adapt ever more 
quickly to changing market conditions. Computer systems 
now experience a continuous stream of modifications and 

Figure 1 
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upgrades. Generally, this has forced business systems to 
adopt more real-time behaviors and production systems to 
become more flexible. It has also increased the frequency 
and volume of data transferred between business and 
production systems and between the many production 
systems. 

There has always been a requirement to transfer informa 
tion between computers in an organization, both horizon 
tally between computers at the same functional level, and 
vertically between computers at different functional levels. 
In the past, manual data entry was an often-used approach. 
Hard-copy printouts generated by business management 
systems would be provided to operators who manually 
entered the information into one or more production 
systems. Although this was an acceptable approach in the 
past, such an approach is not sufficiently responsive in 
today's dynamic business environment. As a result, the 
need for electronic data transfer capability between the 
various business management and production level 
computers is now very high. 

E l e c t r o n i c  D a t a  T r a n s f e r s  

Integrated business software with built-in support for 
data transfers between components is sometimes used 
at the business management level. While this minimizes 
the effort required to exchange data between the various 
components of enterprise business systems, it is often 
inflexible and restrictive with regard to what can be 
exchanged and when exchanges occur. 

Organizations that use a variety of business software 
packages, rather than a single integrated package, have 
typically developed custom software for electronic data 
transfers between packages. Unfortunately, marketplace 
dynamics require custom software to be constantly re 
worked. This ongoing rework forces companies to either 
maintain in-house programming expertise or repeatedly 
hire software consultants to implement needed changes. 
As a result, custom data transfer software is not only ex 
pensive to develop but also costly to maintain â€” especially 
if changes must be implemented on short notice. 

On the factory floor, software programmers have been 
employed to develop custom data transfer solutions that 
allow the different islands of automation to communicate. 
As previously noted, this approach is difficult to implement 
and expensive to maintain. In addition, this approach is 
often inflexible since the resulting software is usually 

developed assuming that the configuration of factory- 
floor systems is largely static. 

When new equipment and application software are to be 
integrated into the overall system, software programmers 
don't just prepare additional custom software. They must 
also modify the existing custom software for all applica 
tions involved. For this reason, custom software is often 
avoided, and electronic data transfer capability is fre 
quently confined to transfers between equipment and 
software supplied by the same manufacturer. 

Differences in hardware (and associated operating sys 
tems) and differences in the software applications them 
selves cause numerous application integration problems. 
Here are a few examples: 

â€¢ Data from applications running on computers that 
have proprietary hardware architectures and operating 
systems is often not usable on other systems. 

â€¢ Different applications use different data types according 
to their specific needs. 

â€¢ Incompatible data structures often result because of the 
different groupings of data elements by software applica 
tions. For example, an element with a common logical 
definition in two applications may still be stored with 
two different physical representations. 

â€¢ Applications written in different languages sometimes 
interpret their data values differently. For example 
C and COBOL interpret binary numeric data values 
differently. 

What is needed, therefore, is an off-the-shelf product that 
is specifically designed to interconnect applications that 
were not originally designed to work together. That 
product must automatically, quickly, efficiently, and cost- 
effectively integrate applications having incompatible 
programming interfaces at the same or different func 
tional levels of an organization. HP Enterprise Link is 
such a product. 

HP Enterprise Link is an interactive point-and-click soft 
ware product that is used to connect software applica 
tions (such as business planning and execution systems) 
to control supervisory systems found on the factory floor. 
HP Enterprise Link greatly reduces the cost and effort 
required to interconnect such systems while eliminating 
the need for custom software. 
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T h e  D a t a  T r a n s f e r  P r o b l e m  

The problem of transferring data from one software appli 
cation to another is conceptually simple: just fetch the data 
from one system and place it in another. In practice the 
problem is more complex. The following issues arise when 
trying to implement electronic data transfer solutions: 

â€¢ There must be a way to obtain data from the software 
application serving as the data source. Such access, for 
example, might be provided by a library of callable C 
functions. 

â€¢ There must be a way to forward data to the software 
application serving as the data destination. For example, 
data might be placed in messages that are sent to the 
destination application. 

â€¢ There must be a specification of exactly what to fetch 
from the source application and exactly where to place 
it in the destination application. 

â€¢ The data being transferred must be translated from 
the format provided by the data source to the format 
required by the data destination. 

â€¢ There must be a specification of the circumstances 
under which data should be transferred and a way to 
detect when these circumstances occur. 

All of these issues are addressed in HP Enterprise Link. 

HP Enterprise Link 
HP Enterprise Link product consists of the three compo 
nents shown in Figure 2: 

â€¢ An interactive configuration tool. This interactive 
window-based application allows users to direct the 
movement of data between two software applications. 

â€¢ A data server. This noninteractive process runs in the 
background. It moves data in accordance with the direc 
tives that the user specified with the configuration tool. 

â€¢ Configuration files. This is the set of mappings and 
trigger criteria created by users. The data is stored in 
configuration files. These files are created and modified 
by the configuration tool and read by the data server. 

L i n k i n g  C o m p o n e n t s  

The HP Enterprise Link components listed above have the 
common goal of enabling users to create middleware that 

Figure 2 

The components of HP Enterpr ise Link. 
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maps components with different interfaces together for 
data transfer. 

In HP Enterprise Link, the combination of a single source 
address and a single destination address is called a map 

ping. A unit of data at the specified source address is said 
to be mapped to the specified destination address. In 
other words, it can be read from the specified source 
address and written to the specified destination address. 

Although a mapping deals with the transfer of a single 
unit of data, real-world situations usually require the 
transfer of many units of data simultaneously. Therefore, 
HP Enterprise Link collects mappings into groups called 
methods. A method contains one or more mappings. 

Mappings describe what to transfer and where to transfer 
it, whereas triggers describe exactly when to do the 
transfer. Data is actually transferred whenever a specified 
trigger condition is satisfied. This condition is called the 
trigger criterion. There are many possible trigger criteria 
such as: 

â€¢ Whenever a unit of data at a specified source address 
changes value 

â€¢ Whenever a unit of data at a specified source address is 
set to a specified value 

â€¢ Whenever the source data becomes available â€” such as 
arriving in a message 

â€¢ At a preset time of the day or a preset day of the week. 
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HP Enterprise Link considers trigger criteria to be part of 
the definition of a method. All the mappings for a single 
method share the same trigger criteria. Whenever the 
trigger criteria are met, HP Enterprise Link transfers â€” in 
unison â€” all the data specified by the method's mappings. 

Multiple methods can simultaneously exist in HP Enter 
prise Link. For example, a user can create one method to 
transfer a particular production recipe from a business 
enterprise system down to a factory-floor control system. 
Conversely, raw-material consumption information for 
the recipe currently in production could be transferred 
periodically from the factory-floor control system up to 
the business enterprise system, using a second method. 

T h e  C o n f i g u r a t i o n  T o o l  

The HP Enterprise Link configuration tool provides users 
with a view of each software application's name space, 
and the tool graphically depicts what data to transfer and 
under what circumstances such transfers should occur 
(Figure 3). 

The HP Enterprise Link configuration tool is composed 
of communication objects and a graphical user interface 
(GUI). Communication objects are used to obtain name 
space data that is unique to each application and to pro 
vide application-specific windows. The configuration tool 
provides the user with an easy-to-use point-and-click style 
GUI. 

Figure 3 

The HP Enterpr ise Link conf igurat ion tool .  

Software 
Appl icat ion 

Sof tware  
Appl icat ion 

All dependencies on particular software applications are 
encapsulated in communication objects. The configura 
tion tool's communication objects provide the following 
functionality: 

â€¢ They fetch namespace information from communicating 
software applications for presentation to the user. 

â€¢ They provide routines to create and manage application 
dependent control panel widgets, such as those used 
to specify triggers unique to a particular software 
application. 

â€¢ They provide routines to tell the GUI exactly what func 
tionality is supported by a communication object. For 
example, can the application software serve only as a 
data source (supply data values), or can it serve as both 
a data source and a data destination (both supply and 
use data values)? 

There are three important windows in the configuration 
tool's GUI: the Edit Method window, the Edit Mapping 
window, and the Trigger Configuration window. 

Edit Mapping. The Edit Mapping window is used to create 
new mappings (Figure 4). The namespaces of both the 
source software application and the destination software 
application are shown. They are graphically displayed 
as tree diagrams. This makes it easy for users to specify 
which data to move where. They don't have to remember 
the names of data sources or data destinations. Instead 
they just choose from the displayed list of possibilities. 
The side-by-side display of application namespaces makes 
it much easier to integrate the applications. 

Tree diagrams are used because they make large name 
spaces manageable. A linear namespace display was 
rejected early in the design of HP Enterprise Link because 
a flat list representation would only be manageable with 
software applications having a small namespace. Another 
advantage of tree diagrams is that most users are already 
familiar with them from file selector windows found in 
many software applications. 

To create a new mapping the user selects an item from 
the Mapping Source tree diagram and an item from the 
Mapping Destination tree diagram, and then clicks the Add 
Mapping button. A new mapping is added to the mapping 
table displayed on the Edit Method window (Figure 5). 
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Figure 4 

The Edi t  Mapping window.  
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Multiple static mappings can be created in a single step 
using branch assignments. This requires that the last com 
ponent of the source and destination addresses be identi 
cal (so that appropriate mappings can be automatically 
created). Mappings can also be automatically created at 
the time methods are triggered. This is called dynamic 
mapping and requires the user to specify algorithms that 
can select source addresses and transform these addresses 
to valid destination addresses. 

Edit Method. The Edit Method window (Figure 5) displays 
a method's mappings as a two-column table titled Map 
pings. Source addresses appear in the left column and 
destination addresses appear in the right. The data server 
transfers mapped data from source addresses to destina 
tion addresses in the same order as the mappings are 
listed in this table. The Mappings table makes mappings 
both explicit and intuitive to the user. 

This window allows the user to specify in which direction 
to transfer data. All of a method's mappings specify data 
transfers in one direction â€” from one software application 
to another. The Edit Method window also allows the user 
to specify how to respond to errors that occur during data 
transfers. This will be described later in more detail. 

Trigger Configuration. The Trigger Configuration window 
is used to define trigger criteria (Figure 6). This window 
displays all possible triggers to the user, as well as the 
currently configured trigger criteria. The Trigger Configura 
tion window is designed to make setting up trigger criteria 
explicit and intuitive for the user. 

The Trigger Configuration window is split into three groups: 
time triggers, triggers unique to the source application, 
and triggers unique to the destination application. Time 
triggers allow the user to specify that, data mapping start 
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Figure 5 

The Edi t  Method window.  

at some specified time and repeat at a specified time 
interval, but be synchronized to a specified hour/minute/ 
second of the day/hour/minute. 

Triggers unique to the source application, such as the 
RTAP (real-time application platform) triggers shown in 
Figure 6, allow data to be mapped when something inter 
esting happens in the source application. For the RTAP 
triggers in Figure 6 interesting events include a database 
value change or the occurrence of an RTAP database 
alarm. Data can also be mapped when something interest 
ing happens in the destination application. 

Thus, triggers allow data transfers to be pushed from the 
source application, pulled from the destination applica 
tion, or scheduled by time. 

Summary. Using the windows just described, users can 
create methods with the configuration tool. These methods 
specify one or more mappings and associated trigger 
criteria. This information is saved in one or more configu 
ration files. The data server then reads these configuration 
files to implement the user's methods. 

The Data Server  
The HP Enterprise Link data server is composed of com 
munication objects, a trigger manager, and a mapping 

Figure 6 

The Tr igger Conf igurat ion window. 

engine (Figure 7). Communication objects deal with the 
problems of generating triggers and getting data into and 
out of software applications. The trigger manager deals 
with dispersing Trigger Configuration data, coordinating 
trigger events, and notifying the mapping engine of trigger 
events. The mapping engine deals with the problems of 
reading configuration files, responding to triggers, mapping 
source addresses to destination addresses, and transform 
ing the data as it is being mapped. 

All software-application dependencies are encapsulated 
in communication objects. Communication objects serve 
as translators between external software applications and 
the data server's mapping engine â€” they translate the 
software application's native application program inter 
face (API) to the interface used by the mapping engine. 

The interface between a communication object and the 
mapping engine is standardized, with all communication 
objects using the same interface. For data that is being 
transferred, the interface consists solely of address-value 
pairs, where the address is from the application soft 
ware's namespace, and the value is encoded in a neutral 
form. Thus a communication object only needs to be 
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Figure 7 

The components of the HP Enterpr ise Link data server.  
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aware of its own namespace and how to convert between 
the software application's proprietary data formats and 
the neutral HP Enterprise Link data format. For triggers, 
the interface consists of well-documented interactions 
between the trigger manager and the communication 
objects. 

Communication objects are usually distributed. They are 
split into two parts that are interconnected by a communi 
cation channel such as a TCP/IP socket. One part of the 
object is incorporated into the HP Enterprise Link data 
server process, while the other runs on the same machine 
as the corresponding software application. When a com 
munication object is not split into two parts, the object, 
the data server, and the software application must run on 
the same machine. 

Communication objects communicate with their corre 
sponding software applications through whatever mecha 
nism is available. For example, this could be through a 
serial port, shared memory, shared files, TCP/IP sockets, 
or an application program interface (API). 

When a communication object transfers data, it translates 
data between the format used by the source software ap 
plication and the neutral format required by the mapping 
engine. For example, for numeric values, a communica 
tion object may have to translate between binary IEEE-754 
floating-point format and the mapping engine's neutral 
format. 

In practice, not all data transfer attempts will be success 
ful. For example, a particular source address might have 
been deleted, or a destination address may no longer 
exist. The configuration tool is used to specify what the 
mapping engine should do in this situation, and the data 
server must detect the condition and deal with it appro 
priately. When data transfer attempts fail, the user can 
have the data server do any one of the following: 

â€¢ Continue mapping data (ignoring the error) 

â€¢ Abort all subsequent mappings associated with the 
current method 

â€¢ Abort all subsequent mappings and all subsequent 
methods triggered by the current trigger event (if 
multiple methods were simultaneously triggered). 

The interface between the communication object and 
the mapping engine is designed to support transaction- 
oriented data transfers, using commit and rollback. This 
functionality comes into play when mapping attempts fail. 
It allows the data server to undo (roll back) all data trans 
fers done in all currently processed mappings associated 
with the method's current trigger event. 

T h e  R u n n i n g  D a t a  S e r v e r  

When the HP Enterprise Link data server starts up, it reads 
the configuration files that the user created with the con 
figuration tool. It then prepares to deal with the specified 
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trigger criteria, usually by notifying the appropriate 
communication object to detect it. Finally, it enters an 
event-driven mode, waiting for the trigger criteria of any 
configured method to be satisfied. 

When either a source or destination communication 
object in the data server detects that a method's trigger 
criteria have been satisfied, the object informs the data 
server trigger manager that a method has been triggered. 
This starts the mapping engine. Alternatively, if the data 
server trigger manager detects that a method's time-based 
trigger criteria have been satisfied, the mapping engine 
starts. 

When triggered, the mapping engine requests that the 
source communication object provide the current data 
values at the method's configured source addresses. The 
source communication object obtains these values from 
the software application, translates the format of all 
fetched data values to a neutral format, and passes the 
result to the mapping engine as address-value pairs, with 
one such pair for each of the method's defined mappings. 

The data server mapping engine looks up the destination 
address that corresponds to each source address. This 
lookup results in a new list of address-value pairs, with 
the address now being the destination address, and the 
value unchanged (and still expressed in the mapping 
engine's neutral format). To minimize the impact on per 
formance, this lookup is implemented using a hash table. 

The mapping engine sends the new list of address-value 
pairs to the destination communication object. The des 
tination communication object converts the received 
values into the format required by the destination software 
application, and writes the converted result to the speci 
fied addresses in the destination software application. 

Communicat ion Objects and Software Appl icat ions 
There are two fundamental ways for software applications 
to provide communication objects access to their data: 
the request-reply method and the spontaneous-message 

method. 

In the request-reply method, the communication object 
sends a software application the address of a wanted data 
unit in a request and receives its current value in a reply. 
With this method the communication object controls the 
data transfer. It determines which unit of data to read and 
when to read it. Structured Query Language (SQL) and 

real-time databases are two examples of software applica 
tions that employ the request-reply method. 

In the spontaneous-message method, communication ob 
jects receive data, usually as messages, from the software 
application whenever the application chooses to send it. 
With this method the software application controls the 
data transfer. It determines which data to provide and 
when to provide it. SAP's R/3 product is an example of 
a software application using the spontaneous-message 
method. 

The method that a software application employs to provide 
external data access determines the trigger criteria that 
are possible for that application's communication object. 
The request-reply method allows event, value, and time- 
based trigger criteria since the communication object 
controls the data transfer. The spontaneous message 
method is limited to value-based triggering (essentially 
filtering) because the software application providing the 
data controls the data transfer. 

Spooling 
The HP Enterprise Link data server's communication 
objects must cope with communication failures. This 
means that outgoing data must be locally buffered until 
a communication object verifies that the application soft 
ware, when acting as a destination, has successfully re 
ceived it. It also means that incoming data must either be 
safely transferred through the mapping engine or locally 
buffered when a communication object accepts data from 
the source application software. 

Spooling is especially important if the source application 
is separated from the HP Enterprise Link data server by 
a wide area network (WAN). WANs are considerably less 
reliable than local area networks, and thus are more likely 
to lose data. 

In a typical HP Enterprise Link installation the data server 
runs on a machine located near or on the factory floor. 
Production orders are downloaded from the enterprise 
level to HP Enterprise Link as soon as they are available. 
The downloaded data is buffered at the factory until it is 
needed. Using HP Enterprise Link in this way reduces the 
probability that the factory would lack unprocessed pro 
duction orders if the WAN is down for a prolonged period 
of time. 
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Buffered data must be preserved even if the HP Enterprise 
Link host machine is shut down or crashes. To do this. HP 
Enterprise Link stores buffered data in disk-resident spool 
files. 

The amount of storage used to hold buffered data must be 
restricted to protect the host computer from failure caused 
by insufficient resources. HP Enterprise Link can limit the 
size of spool files by controlling: 

â€¢ The maximum size of spool storage 

â€¢ The maximum number of messages buffered 

â€¢ The age of the oldest message buffered. 

The user can set any one or all of these limits, using the 
HP Enterprise Link configuration tool. 

T r a c i n g  

HP Enterprise Link allows the data being transferred 
to be monitored by the user. The monitoring is called 
tracing. Tracing is useful for creating an audit trail of the 
transferred data and for debugging and testing methods. 
Tracing does not affect the data being transferred. 

The configuration tool is used to enable and disable trac 
ing, but it is the data server that generates trace messages 
when tracing is enabled. 

Data can be traced at a number of different internal loca 
tions within the data server (see Figure 8). Some of the 
forms in which trace results can be expressed include: 

â€¢ Data as received by a data server communication object 
from a source software application. This trace data is 
expressed using the source software application's native 

data format and includes the source address, the value 
received or read, and the time of transfer. 

â€¢ Data as sent by a data server communication object to 
the destination software application. This trace data is 
expressed using the destination software application's 
native data format and includes the destination address, 
the value sent or written, and the time of transfer. 

â€¢ Data being mapped by the mapping engine. This trace 
data is expressed using the data server mapping engine's 
neutral data format and includes the source address, the 
destination address, the value transferred, and the time 
of transfer. 

Error messages reported by the mapping engine or by 
communication objects can also be included in the trace 
output. This ability ensures that the relative sequencing of 
data transfer messages and error messages is preserved, 
which greatly aids the user when trying to troubleshoot 
mapping problems. 

S e r v e r  D a t a  F l o w  

HP Enterprise Link allows the flow of data in the data 
server to be interrupted at a number of different internal 
points (see Figure 9). This is useful for isolating the 
effects of data mappings during debugging and testing. 
When an information flow is interrupted, data does 
not pass the point of interruption; instead, the data is 
discarded. 

The flow of information being transferred from a commu 
nication object to a software application can be inter 
rupted. Interrupting the flow here allows the data server 

Figure 8 

Tracing data that  is  t ransferred between appl icat ions.  
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Figure 9 

Interrupt  locat ions in the data server.  
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to read from mapped source addresses, map to new des 
tination addresses, and then discard the data just before 
it would have been written to the destination software 
application. 

The flow of information being transferred from a software 
application to a communication object can also be inde 
pendently interrupted. Interrupting the flow here allows 
the data server to ignore all data sent to the communica 
tion object by the source software application. 

Data Integri ty  
The HP Enterprise Link data server is carefully designed 
to preserve the integrity of the data being mapped and 
to map the data exactly once for each trigger event. The 
design was influenced by considering how to react to 
communication channel failures and data server process 
terminations. The circumstances that could cause the 
data server process to terminate are the following: 

â€¢ If a person or software process explicitly kills the data 
server process 

â€¢ If the host machine suffers a hardware or software 
failure, loses power, or is manually turned off. 

Communication channel failures must be handled care 
fully. If the communication channel connecting a commu 
nication object to its software application fails, the data 

being mapped at the time of failure must not be lost or 
duplicated. Also, after normal operation of the communi 
cation channel is restored, communication between the 
communication object and its application must be auto 
matically established again and all interrupted data trans 
fers restarted. 

The following steps are taken to ensure data integrity 
when communication channels fail: 

â€¢ For data received from the source software application, 
the communication object never acknowledges receipt 
of the data until the data has safely been saved to a 
disk-resident receive-spool file. 

â€¢ Data received by the communication object from the 
source software application is not removed from the 
receive-spool file until the data has successfully passed 
through the mapping engine and been forwarded to the 
communication object responsible for sending it to the 
destination software application. 

â€¢ The communication object that sends data to the des 
tination software application only notifies the mapping 
engine that it successfully received the data after the 
data has been safely saved to a disk-resident transmit- 
spool file. Also, it only removes data from the transmit- 
spool file when the destination software application has 
acknowledged successful receipt of the data. 
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C o n c l u s i o n  

The HP Enterprise Link product greatly reduces the cost 
and effort required to interconnect business management 
systems (such as SAP's R/3 product) and measurement and 
control systems (such as Hewlett-Packard's RTAP/Plus 
product). HP Enterprise Link is an off-the-shelf product 
that allows users to connect software applications using 
an easy-to-use point and click graphical user interface. 

With HP Enterprise Link, companies can minimize the 
costs associated with changes made to computer systems 
and adapt more quickly to changing market conditions. 
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O n l i n e  I n f o r m a t i o n  

For more informat ion about HP Enterpr ise Link,  take a look 
at  the informat ion located at  the fo l lowing URLs: 

â€¢ http://www.tmo.hp.com/tmo/pia/Vantera/lndex/ 
English/lndex.html 

â€¢ http://www.tmo.hp.com/tmo/pia/Vantera/lndex/ 
English/Products. html 

â€¢ http://www.tmo.hp.com/tmo/pia/Vantera/lndex/ 
English/ELink.html 

HP-UX 9. " and W. O tor HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93 
branded products. 

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively 
through X/Open Company Limited. 

X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited 
in the UK and other countries. 

Microsoft is a U.S. registered trademark of Microsoft Corporation. 

Windows is a U.S. registered trademark of Microsoft Corporation. 
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Knowledge Harvest ing,  Art iculat ion,  and 
Del ivery 

KemalA.  Del ic  

Domin ique  Laha ix  

Harnessing expert knowledge and automating this knowledge to help solve 

problems have been the goals of researchers and software practitioners since 

the early days of artificial intelligence. A tool is described that offers a 

semiautomated way for software support personnel to use the vast knowledge 

and experience of experts to provide support to customers. 

A consequence of the global shift toward networked desktops is visible 

in customer technical support centers. Support personnel are overwhelmed 

with telephone calls from customers who are experiencing a steady increase in 

the number of problems with intricate software products on various platforms. 

Support centers are staffed with less knowledgeable (and less experienced) 

first-line agents answering the simple questions and solving common problems. 

Expert (and more expensive) technicians resolve more complex problems and 

execute troubleshooting procedures. The work of both (the first-line agents 

and the always is supported by various technical tools, but they always 

have to of their brains and experience to handle effectively the stream of 

problems they encounter. This knowledge is seen as the key ingredient for the 

efficient functioning of support centers.1 
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The number of calls and their complexity have both in 
creased. At the same time, support solution efficiency has 
decreased as the cost for providing those solutions has 
increased. As a result, there is a need for a knowledge 
sharing solution in which the first-line agents will be able 
to solve the majority of problems and escalate to the tech 
nicians only the complex problems. To enable such a 
solution, we have to: 

â€¢ Find efficient knowledge extraction methods 

â€¢ Create compact, efficient knowledge representation 
models 

â€¢ Use extracted knowledge directly in the customer 
support operations. 

This article describes the HP approach to providing cus 
tomer support in the WindowsÂ®-Intel business segment. 
This segment includes networked desktop environments 
known for their high total cost of ownership. Help-desk 
services for this segment are supposed to solve the major 
ity of problems with software applications, local area net 
works, and interconnections. 

The system described here, called WiseWare, is a knowl 
edge harvesting and delivery system specifically designed 
to provide partially automated help for HP customer sup 
port centers in their problem solving chores. 

Partial automation of help-desk support is seen as a suit 
able, cost-effective solution that will: 

â€¢ Shorten the time spent per call 

â€¢ Decrease the number of incoming calls (because of 
proactive mechanisms) 

â€¢ Decrease the number of calls forwarded to the next 
support level 

â€¢ Decrease the overall labor costs. 

The objective is to reduce dramatically the support costs 
per seat per year. 

Where Is Knowledge? 
To find the most efficient knowledge extraction methods, 
we must first answer the question, "Where is the knowl 
edge?" Books, technical articles, journals, technical notes, 
reports, and product documentation are all classical 
resources that rely on a human being's ability to extract, 

1 WiseWare is an internal tool and not an HP product. 

evaluate, and apply knowledge. Mechanized efforts still 
can't replace these human attributes. 

Current support solutions usually are based on electronic 
collections in a free-text format, in which the important 
concepts are expressed using natural human language. 
The latest release of WiseWare uses technical notes, fre 
quently asked questions, help files, call log extracts, and 
user submissions as the primary raw material. According 
to the knowledge resource, different knowledge represen 
tations and extraction methods are used. 

Extensive research in the field of artificial intelligence has 
created several knowledge representation and extraction 
paradigms in which the final use for knowledge determines 
the characteristics of the representation scheme. The ear 
liest knowledge extraction efforts, known as information 

retrieval, initially had small industrial impact. However, 
recent interest in the Internet and in electronic book 
collections has revived the business interest in information 
retrieval. Some of the hottest products on the market today 
are search engines. Different search methods (by key 
words or by concepts) are being used and other search 
methods (by examples and by natural language phrases) 
are being investigated. Recent synergy with artificial intel 
ligence methods has created a promising subfield known 
as intelligent information retrieval.2 The majority of today's 
customer support solutions can be classified as enriched 
information retrieval systems. 

E l e c t r o n i c  D o c u m e n t  L i b r a r i e s  

Developments in the information retrieval field have trans 
formed free-text collections into more refined collections 
known as electronic document libraries. Electronic docu 
ment libraries have an articulated structure (author, sub 
ject, abstract, and keywords), enabling efficient searches 
and classification. They combine advanced technological 
methods (such as hypertext and multimedia) to fit users' 
information retrieval needs. Some of the best support 
solutions today are in a digital library class and represent 
sophisticated document management systems. 

C a s e - B a s e d  R e t r i e v a l  

Early hardware support documentation contained trouble 
shooting diagrams that made it possible for service tech 
nicians to troubleshoot equipment consistently by follow 
ing the diagrams and performing the appropriate tests and 
measurements. The recent revival of these diagrams is 
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Glossary 

Cluster. Natural association of similar concepts, words, and 
things. 

Concept. Group of words conveying semantic content. It can be 
described graphically as relationships between words having 
different attributes (and in some cases as numerical measure 
ments of strength). 

Data Mining. Collective name for the field of research dealing 
with statis analysis in large data depositories. It includes statis 
tics, machine learning, clustering, classification, visualization, 
inductive learning, rule discovery, neural networks, Bayesian 
statistics, and Bayesian belief networks. 

Information Retrieval. Identification of documents or infor 
mation from the collection that is relevant for the particular 
information need. 

Keyword. Characteristic word that may enable efficient re 
trieval of relevant documents. Two criteria used to assess the 
value of a keyword are the number of documents retrieved and 
the number of useful documents (recall and precision) 

Knowledge. Group of interrelated concepts used to describe 
a certain domain of interest. Complex structures formed by 
emulating human behavior in certain activities (for example, 
assessment, problem solving, diagnosing, reasoning, and in 
ducing). Different schemes are used to enable knowledge 
representation such as rules, conceptual graphs, probability 

seen in interactive troubleshooting systems that enable PC 
hardware technicians to solve hardware problems. So far, 
such systems are implemented as case-based retrieval (or 
reasoning) systems. The majority of these systems provide 
only retrieval; just a few include the reasoning component. 
The case-based retrieval paradigm is based on the human 
ability to solve problems by remembering previously 
solved problems. The support system plays the role of an 
electronic case database in which the knowledge consists 
of documented experience (cases). Creation and mainte 
nance of the cases is an expensive and nontrivial process. 
Currently, these activities are performed by humans and 
are used mainly for hardware support. Such systems 
cannot deal efficiently with large, complex, and dynamic 
problem areas. 

networks, and decision trees. Knowledge is found in large text 
collections and is biologically resident in human brains. 

Knowledge Map. Graphical display of interrelated concepts. 
Knowledge Base. Complex entity typically containing a 
database, application programs, search and retrieval engines, 
multimedia tools, expert system knowledge, question and 
answer systems, decision trees, case databases, probability 
models, causal models, and other resources. 

Metrics. Group of measurement methods and techniques 
introduced to enable quantification of processes, tools, and 
products 
Natural Language Processing. Activity related to concept 
extraction from, formalization of, and methods deployment in 
a problem area. 

Paradigm. A theoretical framework of a discipline within 
which theories, generalizations, and supporting experiments 
are formulated. 

Problem Domain. Area of interest defined by terminology, 
concepts, and related knowledge. 

Search. Activity guided by a find and match cycle in which a 
search space is usually explored with an appropriate choice of 
search words (keywords). Advanced search is done by concepts. 

R u l e - B a s e d  S y s t e m s  

Some support centers have tried to use expert systems 
based on rules, but they have discovered that the rule- 
based systems are difficult to create, maintain, and 
keep consistent. Crafting a collection of rules is a com 
plex chore. It is not clear if this technology will have a 
role in future knowledge representation and extraction 
development. 

M o d e l - B a s e d  S y s t e m s  

A model-based paradigm in which various statistical, 
causal, probability, and behavioral models are used is 
another example of knowledge representation for cus 
tomer support. The knowledge here is expressed by the 
fault/failure model that contains quantified relationships 
between causes, symptoms, and consequences. Basic 
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decision making is enabled with such models. Although 
some Limited experiments with this highly sophisticated 
knowledge representation paradigm have been done, no 
system is in operational use in support centers. 

New Research 
The newest research in the field of data mining and know 
ledge discovery3 may offer some potentially effective 
knowledge representation methods for deployment in 
customer support centers. This research aims at the 
extraction of previously unknown patterns (insights) from 
the existing data repositories. Research in artificial intelli 
gence has identified the initial assembly of a low-cost 
knowledge base as a potential "engineering bottleneck." 
The knowledge authoring environment discussion later 
in this article addresses that issue. Because most of the 
knowledge for Wise Ware comes from text sources, we 
will focus our attention here on the knowledge extraction 
process. 

WiseWare and Knowledge Refinement 
Knowledge is a fluid, hard-to-defme but essential ingre 
dient for all human intellectual activities. It is difficult to 
extract, articulate, and deploy. The prevailing quantity of 
knowledge is encoded in the form of text (90 percent) 
expressed in natural language and is articulated as a web 
of interrelated concepts. A goal of research in natural lan 
guage is to enable automatic and semiautomatic extrac 
tion of knowledge. Content analysis must be automated to 
efficiently provide suggestions and solutions for users. As 
we have already seen, several knowledge representation 
paradigms are being invented and investigated (for 
example, semantic nets, rules, cases, and decision trees). 
Additionally, we can deploy various techniques to extract 
concepts (symbolic knowledge) and numerical quantities 
(numerical and statistical knowledge). 

Refinement Process 
Human experts use spreadsheets, outline processors, and 
some vendor-specific tools to refine source text, but have 
not yet developed systematic, efficient processing methods. 
In the future, we would like to automate some phases of 
this process, leading toward more efficient and effective 
deployment. 

Knowledge refinement is seen as a process for converting 
raw text into coherent, compact, and effective knowledge 
forms suitable for software problem solving and assistance 

(for example, decision trees, rules, probability models, 
and semantic nets). The basic raw material (the knowledge 
in its primary form) remains accessible. This preserves 
previous investments in knowledge and enables integra 
tion into future, more sophisticated solutions. 

We can describe the knowledge refinement process as 
efforts made to transform raw text to a compact represen 
tation and then to operational knowledge. Associated 
costs increase as raw text moves through the refinement 
process to become operational knowledge. 

Currently WiseWare content is partitioned into three con 
ceptual categories: fixes, step notes, and technical notes. 
The first two contain shallow, specific knowledge and the 
third contains complex technical concepts. A fix is a sim 
ple, short document that describes with fewer than 100 
words a known and recurring problem with a known 
solution, the fix (see Figure la). A fix often helps the 
customer out of the immediate problem but does not pro 
vide a long-term solution. It is essentially a "quick fix." 

A step note usually walks the user through a procedure 
that prevents the problem from occurring in the future 
(see Figure Ib). The step note requires more of the user's 
time to solve the immediate problem than the fix does, 
but it saves time in the future. 

Both fixes and step notes offer additional references. 
Those references contain keywords providing links to 
technical notes that explain the most relevant related 
subjects in depth. Technical notes require deep technical 
knowledge to be properly understood and applied. 

The whole collection of fixes, step notes, and technical 
notes is tagged to associate the content of each document 
with the proper problem classes. Consequently, WiseWare 
content is perceived by the user as a repository of advice 
and solutions for given problems (quick fixes, step-by-step 
procedures, and technical theory). 

Some generic activities in the refinement process can be 
denoted as: 

â€¢ Assessment 

â€¢ Extraction 

â€¢ Filtering 

â€¢ Summarization 

â€¢ Clustering 

â€¢ Classification. 
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Figure 1 

Two WiseWare screens:  (a)  WiseWare f ix  screen,  (b)  WiseWare s tep note  screen.  
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We can describe the evolution of Wise Ware as going from 
answering questions to giving advice and finally to problem 
solving and troubleshooting. The support costs in this 
evolution have escalated as the problems have become 
more complex. 

K n o w l e d g e  A u t h o r i n g  E n v i r o n m e n t  

Since a critical mass of knowledge can be reached only 
if multiple authors contribute to the knowledge base, the 
knowledge authoring environment must be able to deal 
with multiauthor issues effectively. Additionally, because 
the knowledge authoring environment is deployed on a 
worldwide basis, the issue of different languages is rele 
vant as well. Finally, deployment in different time zones 
requires very high reliability and availability of the knowl 
edge authoring environment. 

The quality of the knowledge is constantly monitored and 
refined. Areas for improvement are pinpointed by analyz 
ing results reported on the knowledge base logs. As weak 
points are identified and strengthened, better system 
performance will help to optimize return on investment 
figures. Even user satisfaction can be assessed from the 
various logs and usage traces that will reflect a combined 
measure of system quality and usefulness. 

Future worldwide cooperation among support centers 
to share knowledge is our objective. Ideally, each center 
will deploy and create the necessary knowledge locally. 
Centers operate in different time zones, have different 
cultural and social contexts, and have the ability to manip 
ulate huge amounts of data, information, and knowledge. 
Coordinating the knowledge bases for all support centers 
pose several challenging problems. The complexity of 
these problems is reduced by careful engineering and 
incremental deployment. The result is a low-cost, knowl 
edge-based support, adding new value to the support 
business. 

In a very advanced situation, and from a long-term per 
spective, extracted knowledge will become the crucial 
ingredient for the next development phase. In this phase, 
human mediation in problem solving could be removed. 
Support could be delivered electronically without human 
intervention. For example, imagine intelligent agents trav 
eling over the network to the troubled system to fix 
a problem.4 Current viruses on the Internet are doing 
exactly the opposite task. What if the trend were reversed? 

Support knowledge could be adapted so that healing vi 
ruses could travel through a system, delivering remote 
fixes. To understand how this could become a reality, let's 
review the history of Wise Ware. 

WiseWare Architecture 
In November of 1995, the first challenge was posed to the 
WiseWare team when the French call center decided to 
outsource low-end software support services. Their sup 
port personnel were without computer technology back 
ground and demonstrated poor English language skills. 
The knowledge department in HP's Software Services 
Division in Europe responded to the challenge and deliv 
ered the first operational WiseWare solution in April of 
1996. Since then, new releases are issued every two 
months with steady improvements. 

In the WiseWare release 4.1, mirroring intranet servers 
(Europe and the United States) cover three super regions. 
The number and quality of accessible documents is 
constantly improved, while use of the system is closely 
monitored from access and search logs. We have estab 
lished close links with software vendors who allow us 
privileged access to their documents. (The legal frame 
work for cooperation and alliances is defined as well.) All 
activities and services undergo quality assurance scrutiny 
in preparation for ISO-9000 certification. 

WiseWare provides approximately 80,000 documents to 13 
call centers worldwide. The average problem resolution 
assistance rate is over 30 percent. More than 40 products 
are covered in the various types of documents offering 
quick fixes for agents and in-depth technical knowledge 
for advanced WiseWare users. 

WiseWare is a distributed system with three major parts: 
production, publishing, and monitoring (see Figure 2). 
They are implemented on UNIXÂ® and Windows NT plat 
forms, with intranet technology providing the necessary 
glue for client/server solutions. It is a nonstop, highly 
available system. The key advantage of the WiseWare 
system lies in the tight loop between the monitoring and 
production areas in which the principal objective is to 
provide users with highly adaptable documents for every 
day problem-solving chores. Data mining and natural 
language processing modules dynamically create user, 
problem, and document profiles that will then drive the 
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Figure 2 

Wise Ware system archi tecture.  
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production side, enabling technical and business insights 
to be gleaned from large and extensive access and search 
logs. 

At this time, customers call the express hubs and explain 
their problems to support personnel, using natural lan 
guage constructs that sometimes blur the real nature of 
the problem. According to their understanding, support 
personnel create and launch a search phrase. It is a 
Boolean construct containing relevant keywords or free- 
text phrases that roughly represent the problem. Different 
search, hit, and presentation strategies are currently used, 
but formation of the effective search query and reduction 
of the number of relevant replies are largely still unre 
solved. A mixture of artificial intelligence techniques and 
traditional information retrieval and database methods is 
being offered as potential solutions. 

Table I shows how one, two, and three words in a typical 
search phrase can influence the number of relevant docu 
ments returned with current version of WiseWare. A well- 
formed phrase helps to quickly pinpoint relevant docu 
ments while retaining necessary coverage of the problem 
area. Notice the quick decrease in the number of relevant 
documents returned as the phrase becomes longer. 

Support center personnel work under time-pressured, 
stressful circumstances. As a result, the whole human- 
computer interaction issue must be carefully considered. 
Efficiently delivering advice and problem-solving assis 
tance can depend on the smallest detail. Besides the 
quality of the material in the supporting knowledge base, 
questions regarding query formulation and presentation of 
the retrieved information will influence final acceptance 
from the users. Support activities can be treated as sym 
biotic human-machine problem solving in a bidirectional 
learning paradigm. The user learns how to manipulate the 
system (facilitated by language features such as localiza 
tion and query wizards). At the same time, the system 
adapts to the user's methods of accessing the knowledge 
base. The WiseWare system learns user behavior from 
access and language patterns. Interaction with the system 
customizes the environment to suit the specific user's 
profile. The reasoning activity is still done by humans and 
is supported by refined electronic collections. Good syn 
ergy and efficient functioning of such human-computer 
systems are the current objectives. 

Because the support centers are located in different geo 
graphical, cultural, and language areas, the natural lan 
guage layer is seen as crucial for search and presentation. 
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Technological advances in visual search and delivery 
combined with audio and video techniques may improve 
the quality and efficiency of the system. Better architec 
ture combined with object-oriented (multimedia) data 
bases will add another dimension to the delivery phase. 
These improvements will be made over time and will be 
accelerated by technological developments in related 
fields. 

C o n c l u s i o n  

Accessible knowledge is the essential ingredient for suc 
cessfully dealing with the rising quantity and complexity 
of customer support calls. A semiautomated system with 
refined knowledge in reusable forms can enable users to 
share knowledge among different, geographically dis 
persed customer support centers. The overall objective 
of HP's WiseWare server is to provide low-cost, effective 
customer support. This is a simple objective but one that 
is difficult to achieve, especially when significant effort 
and investment are required to achieve technological 
breakthroughs in the problem-solving field.5 

In the short term, incremental deployment of advanced 
methods such as data mining and natural language pro 
cessing techniques will improve system quality and usage. 
In the long run, it is very likely that most of the client-hub 
telephone voice communication will be gradually replaced 

by computer-computer communication. Several layers of 
the present problem- solving architecture will disappear 
or will be replaced by some new elements. The problem- 
solving knowledge along with search and access log 
collections being developed now will serve as the funda 
mental basis for future electronic support. 
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A Theoret ical  Der ivat ion of  Relat ionships 
between Forecast Errors 

Jerry Z.Shan This paper studies errors in forecasting the demand for a component used by 

several products. Because data for the component demand (both actual demand 

and forecast demand) at the aggregate product level is easier to obtain than at 

the individual product level, the study focuses on the theoretical relationships 

between forecast errors at these two levels. 
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W T  T i t h  r ith errors, sound theoretical foundation for understanding forecast errors, a 

much more confident job can be done in forecasting and in related planning 

work, even under uncertain business conditions.1 

In a typical material planning process, planners are constantly challenged by 

forecast inaccuracies or errors. For example, should a component forecast 

error its measured for each platform for which it may be needed, or should its 

forecast accuracy be measured at the aggregate level, across platforms? What 

is the relation between the two accuracy measures? 

This First, describes a theoretical study of forecast errors. First, we formally 

define relationships errors with different rationales, derive several relationships 

among Then and prove a heuristic formula proposed by Mark Sower.1 Then 

we study the effects of a systematic bias on the forecast errors. Finally, we 

extend demands study to the situations where correlations across product demands 

and time effects in demand and forecast are taken into account. Definitions 

and theorems are presented first, and proofs of the theorems are given at the 

end of the paper. 

B a s i c  C o n c e p t s  

Consider the case of a component that can be used for the manufacture of n 

different products, or platforms. For platform i (1 < i < n), denote by FÂ¡ the 

forecast demand for the component, and by DÂ¡ the actual demand. In the 

treatment of forecast and actual, we propose in this paper the following 
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framework: Regard forecast demand as deterministic, or 

predetermined, and actual demand as stochastic. By 
stochastic, we mean that given the same operating envi 
ronment or experimental conditions, the actual demand 
can be different from one operation run to another. Thus, 
we can postulate a probability distribution for it. 

For a generic case, denote by D the actual demand and by 
F the forecast. We call the forecast unbiased if E(D) = F. 
where E(D) denotes the expectation, or expected value, 
of D with respect to its probability distribution. Practically 
speaking, this unbiased requirement means that over many 
runs under the same operating conditions, the average of 
the realized demand is the same as the forecast. If there is 
a deterministic quantity b ^ 0 such that E(D) = F + b, then 
we say the forecast is biased, and the bias is b. In prac 
tice, this means that there is a systematic departure of the 
average realized demand from the forecast. 

Throughout the paper, we often make the normality as 
sumption on the demand, that is, for unbiased forecasts, 
we assume that the demand D has a normal (Gaussian) 
distribution with mean F and standard deviation a, that is, 
D ~ N(F, a2). Is this a reasonable assumption in reality? 
The answer is yes. First of all, this assumption is techni 
cally equivalent to assuming that the difference Â£ = D â€” F 
between the actual demand D and the forecast F is nor 
mally distributed: e ~ N(0, a2). The validity of this latter 
assumption is based on the fact that the difference be 
tween the actual demand and a good forecast is some ag 
gregation of many small random errors, and on the central 
limit theorem, which states that the aggregation of many 
small random errors has a limiting normal distribution. 

U n b i a s e d  F o r e c a s t  C a s e  

In this section, we assume unbiased forecasting at all 
platforms.1 Statistically, E(DÂ¡) = FÂ¡, where FÂ¡ is the fore 
cast for the common component at platform i, and DÂ¡ is 
the actual demand of the component at platform i. 

Definition 1: (Same Weight Mean Based) Define En = E(Â£n) 

to be the forecast error at the mean (average) platform 
level, and Ea = E(ea) to be the forecast error at the aggre 
gate platform level, where: 

and 

- - 4 ]  D  ~  

(Ib) 

The rationale of defining the forecast error at the 
mean level and at the aggregate level is as follows. Let 
e, = ID; â€” Fjl/Fj. Then EÂ¡ measures, in terms of the relative 
difference, the forecast error at a single platform i. 
Accordingly, ea measures the forecast error, also in terms 
of the relative difference, at the aggregate level from all 
platforms, and E^ provides an estimate for the forecast 
error at any individual platform since it is the average of 
the forecast errors over all individual platforms. Because 
all the quantities in equation 1 are stochastic, we take 
expectations to get their deterministic means. Now, a 
natural question is: What is the relation between the 
errors at the two different levels? 

Theorem 1: Based on definition 1, and assuming that 
Dj ~ N(Fj, o2), i = 1, 2, ..., n, and that the DÂ¡ are uncorre- 
lated (strictly speaking, we also need the joint normality 
assumption, which in general can be satisfied), we have: 

1. E^= vnEaCn, where: 

( n   /  
l y i n i  
n  z i p  n  â € ”  

1 = 1  

(2) 

2. It is always true that Cn > 1, and Cn = 1 if and only if the 
forecasts across all the platforms are the same. 

We note that in the definition for e^, we used the same 
weight, 1/n, for all platforms. If instead we use a weight 
proportional to the forecast at the platform, then we have 
the following: 

Definition 2: (Weighted Mean Based) Define En = E(e:i) 

and Ea = E(ea), where: 

11 

I ' .  
(3a) 

F, 
(la) 

and 
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(3b) 

Theorem 2: Based on definition 2 and with the same 
assumptions as in theorem 1, we have: 

En = vnEa. (4) 

Mark Sower1 proposed this heuristic formula. Theorem 2 
says that under suitable conditions, equation 4 holds 
exactly. 

Other researchers have addressed a similar problem from 
the perspective of demand variability. In measuring the 
relative errors of the forecast at the individual platforms, 
it was assumed that QÃ/HÂ¡ (i = 1, 2, ..., n) are the same, 
where GÃ is a measure of demand variability and (xÂ¡ is the 
mean demand at platform i. The advantage here is we do 
not need to make such a strong assumption. In fact, our 
measure of the forecast error at the individual platform 
level can be interpreted as the forecast error at an aver 
aged individual platform. 

The following definition of error is based on this observa 
tion in practice. The standard deviation of a random vari 
able can be very large if the values this random variable 
takes on are very large. A more sensible error measure of 
such a random variable would be the relative error rather 
than the absolute error. So, given a random variable X, 
we can measure its error by the coefficient of variance 
cv(X) = o(X)/E(X) rather than by its standard deviation 
a(X). 

With the unbiased forecast assumption, the forecast error 
at platform i can be measured by cv(DÂ¡). The average of 
these coefficients over all platforms is a good measure of 
the forecast error at the individual platform level. On the 

n 

other hand, V DÂ¡ is the demand from all platforms, and 
i = l 

/  n   

^T FJ is the corresponding forecast, so cvj ^ DÂ¡ I is a 
i = i  \ i = i  /  
good measure of the forecast error at the aggregated plat 
form level. 

Definition 3: (CV Based) Define: 

n  /  n   

EH = X cv(Â°i)/n and Ea = cv X DÂ¡ [ 

Theorem 3: Based on definition 3, and assuming that the 
DÂ¡ are uncorrelated, we have 

â€” v'nEaCn, (5) 

where Cn is defined in equation 2. For theorem 3, we do 
not have to assume normality to get the relevant results. 
This is also true for theorem 4. 

General Case: The Effect of Bias 
We assume here that forecasts are consistently biased. 
This is expressed as E(DÂ¡) = FÂ¡ + b, where b denotes the 
common forecast bias. This indicates that FÂ¡ overesti 
mates demand when b < 0 and underestimates demand 
when b > 0. 

Can we extend the use of definition 3 for the forecast 
errors to this general case? The answer is no. This is be 
cause the standard deviation is independent of bias, and 
therefore one could erroneously conclude that the fore 
cast error is small when the standard deviation is small, 
even though the bias b is very significant. Instead, the 
forecast error now should be measured by the functional: 

e(D,F)  = yE([D-F]2)/F,  (6) 

rather than by the cv, which is yE([D-E(D)]2) /E(D). 
Hence, in parallel with definition 3, we have the following 
definition. 

Definition 4: (e-Functional Based) Define: 

EC = e( V DÂ¡, Â¿ Fj ] and En = Y 6(0;, FÂ¡)/n, 
\ i = l  i = l  /  i = l  

where the functional e is defined in equation 6. 

If the bias b = 0, then the functional e in equation 6 is 
the same as the cv, and hence definitions 3 and 4 are 
equivalent. 
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Theorem 4: Based on definition 4. and assuming that 
Dj ~ (Fj + b. o2),* i = 1, 2, ..., n and that the Dj are uncor- 
related. we then have: 

b2 ( 7 )  

where Cn is given in equation 2. 

Since definition 1 considers the relative difference be 
tween the forecast and the actual, any bias in the forecast 
will be retained in the difference, so there is no problem 
in using this definition even if there is bias. However, the 
relation between the two errors has changed. 

Theorem 5: Based on definition 1 and the assumption that 
Dj ~ N(FÂ¡ + b, o2), i = 1, 2, ..., n and that the DÃ are uncor- 
related, we have: 

(8) E, = ,/S 
,nb[2<I>Gnb/a) - 

where Cn is defined in equation 2, and ^(x) is the cumula 
tive distribution function of the standard normal distribu 
tion N(0, 1) at x. 

If there is no bias in the forecasting, the relationships be 
tween the errors at the two levels are exactly the same for 

definitions 1 and 3: En = /nEaCn. This formula, with the 
introduction of the constant Cn, is slightly different from 
the hypothesized equation 4. As noted in theorem 1, it is 
always true that Cn > 1. If we use definition 2, then equa 
tion 4 holds exactly. 

If there is bias in the forecasting, then in each relationship 
formula (equation 7 or equation 8), there is another multi 
plying factor that reflects the effect of the bias. One can 
easily find that both of these multiplying factors are less 
than or equal to 1. This implies that, compared to the 
error at the component level, the error at the platform- 
component level when forecast bias exists is less than 
when the forecast bias does not exist. 

If bias does exist, as it does in reality, it seems that the 
multiplying factor resulting from bias in either equation 7 
or equation 8 should be taken into consideration, with 
suitable estimation of the parameters involved. 

'  The deviat ion X~(( i ,  a2)  means that  X has mean u.  and standard deviat ion o but  is  not  
necessar i ly  normal ly d istr ibuted.  

C o r r e l a t e d  D e m a n d s  

It is reasonable to assume that demand for a component 
for one platform affects demand for this component for 
another platform. Also, for a given platform, there is usu 
ally a strong correlation between the current demand and 
the historical demands. The forecast is usually made 
based on the historical demands. In this section, we first 
propose a correlated multivariate normal distribution 
model for the demand stream when the platform is 
indexed, and then propose a time-series model for the 
demand and forecast streams when time is indexed. Our 
goal is to expand our study of the relationship between 
the two layers of forecast errors in the presence of cor 
relations. Throughout this section, we assume unbiased 
forecasts, and use the weighted average definition (defini 
tion 3) for the forecast error. 

C o r r e l a t e d  N o r m a l  D i s t r i b u t i o n  M o d e l  a t  a  T i m e  P o i n t .  I n  

this subsection we consider the case where there is cor 
relation across platform demands, but we still assume 
that time does not affect demand. Suppose that the de 
mand stream Dj, i = 1, 2, ..., n can be modeled by a corre 
lated normal distribution such that Di~N(FÂ¡, o2) for i = 1, 
2, ..., n and that there is a correlation between different DÂ¡ 
expressed as Cov(DÂ¡, Dj) = o2py for 1 < i TÃ j < n. With this 
assumption on the demand stream, we have the following 
result. 

Theorem 6: Based on definition 2 and the above corre 
lated normal distribution modeling for the demand 
stream, we have: 

:Ea. ( 9 )  
+ n 

In particular, if py = p for all 1 < i ^ j < n, then we get: 

E *  - . -  - ^ â € ”  = E a .  ( 1 0 )  
y(n - 1)P + 1 

When the common correlation coefficient p is 0 or near 0, 
we see that equation 4 holds exactly or approximately. 

Autoregressive Time Series Model. Now we take into 

consideration the time effect in the product demand. For 

platform i, i = 1, 2, ..., n at time t, t= 1, 2, ..., denote by D 
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the demand and Fp-'the forecast. Suppose that the de 

mand stream over time at each platform can be modeled 
by an autoregressive model AR(p). At platform i, the auto- 
regressive model assumes that the demand at the current 
time t is a linear function of the past demands plus a ran 
dom disturbance, that is: 

where the ay are constant coefficients. Further, suppose 

that the forecast Fp* is optimal given the historical de 

mand profile Ã­Fp"1) = oÃ­ Dp), Dp), ..., Dp ~1A. That is, 

with D[Â°), D| ~ 1}, . . . , D[ ~ * ~ 1}) properly initialized, for 

.2Dp-2) + â€¢ â€¢ â€¢ + aijpDp-P) + eÂ», 

and 

F(t) = 

where e^-\ gp), ..., ep\ ... are independently and iden 

tically distributed as N(0, a2) and the random disturbance 

at time t, that is, ep*, is independent of the demand stream 

before time t, that is, (Dp"1), Dp"2), ...Â¡.Also, we 

assume independence across platforms. With the above 
modeling of the demand and forecast, what can we say 
about the relationship between the two layers of forecast 
errors? 

Theorem 7: Based on definition 1 or 2 and the above time- 
series modeling for the demand stream and forecast 
stream, and assuming that the variances at all platforms 
are the same, then at any time point, if definition 1 is 
used: 

E W = vnEÂ«Cn, ( U )  

'it 
i  y  Ã± L F(t) 

i=ifi 
Cn = 

and if definition 2 is used, then: 

g(t) = /ngW 
i t  a  

Rewriting Cn in equation 2 as 

n 
IV_L- 
nZ.F(t )  

(12) 

S if 
and taking expectations for the numerator and denomina 

tor separately in the expression leads to Cn. Hence, it is 

always true that Cn > 1. 

Proofs 
Theorem 1 is a special case of theorem 5. Theorem 3 is a 
special case of theorem 4. The proof for theorem 6 is simi 
lar to that for theorem 5, with an application of lemma 1. 

Lemma 1: If X~N(b, a2), then: 

EIXI = Y|oe-b2/2Â°2 + b[23>(b/a) - 1] = H(b,a). (13) 

Proof of Lemma 1: Without loss of generality, we can 
assume that o = 1, since otherwise we can make a simple 
transformation Y = X/o. 

EIXI 

where 

cc -J. Ã­ 
J 2 n  }  

â€” CC 

00 

= 7zn] 

| x | e - ( x - b ) 2 / 2 d x  

|xle-(x-b)2/2dx 

cc 

- ^  f  l y l e - ( y +  
v'2ir J 

b)2/2dy 
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= I(b) + I(- b), where 

O C  

I(b) = -4= Ã­ xe-<x-b)2/2dx 
^ r t j  

O 

x  

f  
J 

=  =  ( y  +  b ) e - y 2 / 2 d y  
l2.-r J 

â€” b 

= -J=e~b2/2 + bd>(b),  and hence 
N 2n 

EIXÃ = -J=e~b2/2 + b<I>(b) + (- b)<J>(- b) 

= /f e'Â»2/2 + b[2$(b) - 1]. 

Proof of Theorem 1 Parts 2 and 3. First note that func 
tion cp(x) = 1/x is convex over (0, =c ). Let random variable 
X have a uniform distribution on the set {FÂ¡: 1 < i < n), that 
is, P(X = F = 1/n. An application of the Jensen inequality2 
E<p(X) > (p(EX) leads to the desired inequality. The second 
part is based on the condition for the Jensen inequality to 
become an equality. 

P r o o f  o f  T h e o r e m  4 :  

Hence we have: 

=  ,n  Ã­̂ n- 
a2 + nb2 

Proof of Theorem 5: Noting that: 

n 
DÂ¡ - FÃ ~ N(b, o2) and ]T(DÂ¡ - FÂ¡) ~ N(nb, no2), 

then we have: 

Ea 
E(ex) 
E(ea) 

n 
I V  1  

H(b '  g  (by  l emma 1 )  
1  H ( n b ,  , n o )  

= >nCn- 
â€¢ vnb[24>Gnb/o) - 1] 

Proof of Theorem 7: The proofs for equations 11 and 12 
are similar. We give a proof for equation 11 only. First 

notice that D[f) - F|I) = e[l) ~ N(0, oÂ¡2). At any given 

time t, by the definitions for E$Â¿P and E^, we have: 

. 1 -  

This second step follows from the fact that e[^ is inde 

pendent of demands before time t, and hence independent 

of the optimal forecast at time t, FJ^. The last step follows 

from lemma 1 and the same variance assumption across 
platforms. 

E<Â» = E 
I ' l  
Ã = l  

Ct) 

= E 

May 1998 â€¢ The Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



r 

The reasoning is the same as for proving EÂ® above. 

Conclusion 

Forecast errors increase the complexity and difficulty of 
the production planning process. This results in excessive 
inventory costs and reduces on-time delivery. In this paper 
we have studied the forecast errors for the case of several 
products using the same component. Because data for the 
component demand (both actual demand and forecast 
demand) is easier to obtain at the aggregate product level 
than at the individual product level, we focused on the 
theoretical relationships between forecast errors at these 
two levels. 

Our first task was to propose formal definitions for mea 
suring forecast errors under different rationales and tech 
nical assumptions. The second task was to formally derive 

relationships between forecast errors at the two levels. As 
part of our work we proved the validity of a heuristic for 
mula proposed by Mark Sower of the business operations 
planning department at the HP Roseville, California site. 

In addition to analyzing the two-level problem, we derived 
a theoretical basis for relaxing the usual assumptions con 
cerning correlations in the data across products and over 
time. 
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Strengthening Software Qual i ty Assurance 

Mutsuh iko  Asada 

Pong Mang Yan 

Increasing time-to-market pressures in recent years have resulted in a 

deterioration of the quality of software entering the system test phase. At 

HP's Kobe Instrument Division, the software quality assurance process was 

reengineered to ensure that released software is as defect-free as possible. 
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T  - I h e  .he Hewlett-Packard Kobe Instrument Division (KID) develops 

measurement instruments. Our main products are LCR meters and network, 

spectrum, and impedance analyzers. Most of our software is built into these 

instruments as firmware. Our usual development language is C. Figure 1 

shows our typical development process. 

Given adequate development time, we are able to include sufficient software 

quality assurance activities (such as unit test, system test, and so on) to provide 

high-quality software to the marketplace. However, several years ago, time-to- 

market pressure began to increase and is now very strong. There is no longer 

enough we time for our conventional process. In this article, we 

describe our perceived problems, analyze the causes, describe countermeasures 

that we have adopted, and present the results of our changes. 

Figure 1 

Hewle t t -Packard  Kobe Ins t rument  D iv is ion  so f tware  deve lopment  process 
before improvement .  

Implement 
(Coding) 

A 
Final Audit 

R&D R&D R&D, SWQA, 
Market ing 

R&O 
Integration 

Test 

ERS/ IRS = External / Internal  Reference Speci f icat ion 
SWQA =  Sof tware  Qua l i t y  Assurance  

A  =  S W Q A  C h e c k p o i n t  
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Existing Development Process 
The software development process that we have had in 
place since 1986 includes the following elements: 

â€¢ Improvement in the design phase. We use structured 
design methods such as modular decomposition, we use 
defined coding conventions, and we perform design 
reviews for each software module. 

â€¢ Product series strategy. The concept of the product 
series is shown in Figure 2. First, we develop a plat 
form product that consists of newly developed digital 
hardware and software. We prudently design the plat 
form to facilitate efficient development of the next and 
succeeding products. We then develop extension prod 
ucts that reuse the digital hardware and software of the 
platform product. Increasing the reuse rate of the soft 
ware in this way contributes to high software quality. 

â€¢ Monitoring the defect curve. The defect curve is a plot 
of the cumulative number of defects versus testing time 
(Figure 3). We monitor this curve from the beginning 
of system test and make the decision to exit from 
the system test phase when the curve shows sufficient 
convergence. 

As a result of the above activities, our products' defect 
density (the number of defects within one year after ship 
ment per thousand noncomment source statements) had 
been decreasing. In one product, less than five defects 
were discovered in customer use. 

Perceived Problems 
Strong time-to-market pressure, mainly from consumers 
and competitors, has made our development period and 
the interval between projects shorter. As a result, we 
have recognized two significant problems in our products 

Figure 2 

The product  ser ies  concept  increases the sof tware reuse 
rate,  thereby increas ing sof tware qual i ty .  

Product A Product A 

N e w  

Product A 

N e w  

Platform Product Extension Product Extension Product 

Figure 3 

Typical defect curves. 

0 100 200 300 400 500 600 700 800 900 1000 1100 

Test Hours 

and process: a deterioration of software quality and an 
increase in maintenance and enhancement costs. 

Deterioration of software quality. In recent years (1995 
to 1997), software quality has apparently been deteriorat 
ing before the system test phase. In our analysis, this phe 
nomenon is caused by a decrease in the coverage of unit 
and integration testing. In previous years, R&D engineers 
independently executed unit and integration testing of the 
functions that they implemented before the system test 
phase. At present, those tests are not executed sufficient 
ly because of the shortness of the implementation phase 
under high time-to-market pressure. Because of the 
decrease in test coverage, many single-function defects 
(defects within the range of a function, as opposed to 
combination-function defects) remain in the software at 
the start of system test (Figure 4). Also, our system test 
periods are no longer as long. We nearly exhaust our test 
ing time to detect single-function defects in shallow soft 
ware areas, and we often don't reach the combination- 
function defects deep within the software. This makes 
it less likely that we will get convergence of the defect 
curve in the limited system test phase (Figure 5). 

Increase of maintenance and enhancement costs.  
For our measurement instruments, we need to enhance 
the functionality continuously to satisfy customers' re 
quirements even after shipment. In recent products, 
the enhancement and maintenance cost is increasing 
(Figure 6). This cost consists of work for the addition of 
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Figure 4 

Change in  the propor t ion of  s ing le- funct ion defects  found 
in the system test phase. 
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new functions, the testing of new modified functions, and 
so on. In our analysis, this phenomenon occurs for the 
following reasons. First, we often begin to implement 
functions when the detailed specifications are still vague 
and the relationships of functions are still not clear. 
Second, specifications can change to satisfy customer 
needs even in the implementation phase. Thus, we may 
have to implement functions that are only slightly different 
from already existing functions, thereby increasing the 
number of functions and pushing the cost up. Figure 7 
shows that the number of functions increases from one 

Figure 5 

Defect curves for post- 1995 products. 
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Figure 6 

Increase in  the cost  per  funct ion o f  enhancement  and 
maintenance.  The f i rs t  enhancements  for  Product  B 
occurred in 1991. 
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product to another even though the two products are 
almost the same. 

Often the internal software structure is not suitable for a 
particular enhancement. This can result from vague func 
tion definition in the design phase, which can make the 
software structure inconsistent and not strictly defined. 
In the case of our combination network and spectrum 
analyzers, we didn't always examine all the relationships 
among analyzer modes and the measurement and analyzer 
functions (e.g., different display formats for network and 
spectrum measurement modes). 

Figure 7 

Increase in  the number  o f  commands in  two s imi lar  
analyzers as a resul t  of  changing customer needs.  
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Naturally, the enhancement process intensely disturbs soft 
ware internal structures, which forces us to go through 
the same processes repeatedly and detect and fix many 
additional side-effect defects. 

Counter -measures1 -2  

If we had enough development time, our problems would 
be solved. However, long development periods are no 
longer possible in our competitive marketplace. Therefore, 
we have improved the development process upstream to 
handle these problems. We have set up two new check 
points in the development process schedule to make sure 
that improvement is steady (Figure 8). In this section we 
describe the improvements. 

We plan to apply these improvement activities in actual 
projects over a three-year span. The software quality 
assurance department (SWQA) will appropriately revise 
this plan and improve it based on experience with actual 
projects. 

D e s i g n  P h a s e  â € ”  I m p r o v e m e n t  o f  F u n c t i o n  D e f i n i t i o n .  W e  
have improved function definition to ensure sufficient 
investigation of functions and sufficient testing to remove 
single-function defects early in the development phase. 

Figures 

Improved sof tware  deve lopment  process.  
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=  S W Q A  C h e c k p o i n t  

=  Checking Content  of  Funct ion Def in i t ion 
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~  F i n a l  A u d i t  

We concisely describe each function's effects, range of 
parameters, minimum argument resolution, related func 
tions, and so on in the function definition (Figure 9). 
Using this function definition, we can prevent duplicate 
or similar functions and design the relationships of the 
measurement modes and functions precisely. In addition, 
we can clearly define functions corresponding to the 
product specifications and clearly check the subordinate 
functions, so that we can design a simple and consistent 
internal software structure. We can also easily write the 
test scripts for the automatic tests, since all of the neces 
sary information is in the function definitions. 

SWQA, not R&D, has ownership of the template for func 
tion definition. SWQA manages and standardizes this 
template to prevent quality deterioration and ensure that 
improvements that have good effects are carried on to 
future projects. 

Checkpoint at the End of the Design Phase. The first 
new checkpoint in the development process is at the end 
of the design phase. SWQA confirms that all necessary 
information is contained in the function definitions. SWQA 
approves the function definitions before the project goes 
on to the implementation phase. 

I m p l e m e n t a t i o n  P h a s e  â € ”  A u t o m a t i c  T e s t  E x e c u t i o n .  I n  
this phase, SWQA mainly writes test scripts based on the 
function definitions for automatic tests to detect single- 
function defects. We use equivalence partitioning and 
boundary value analysis to design test scripts. As for 
combination-function defects, since the number of combi 
nations is almost infinite, we write test scripts based only 
on the content of the function definitions. When we im 
plement the functions, we immediately execute the auto 
matic tests by using the scripts corresponding to these 
functions. Thus, we confirm the quality of the software as 
soon as possible. For functions already tested, we re- 
execute the automatic tests periodically and check for 
side effects caused by new function implementations. As 
a result of these improvements, we obtain software with 
no single-function defects before the system test phase, 
thereby keeping the software quality high in spite of the 
short development period. The test scripts are also used 
in regression testing after shipment to confirm the quality 
of modified software in the enhancement process. In this 
way, we can reduce maintenance and enhancement costs. 
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Checkpoint  at  the End of  the Implementat ion Phase.  At  
the second new checkpoint in the development process, 
SWQA confirms that the test scripts reflect all the content 
of the function definitions, and that there are no signifi 
cant problems in the test results. The project cannot go 
on to the system test phase without this confirmation. 

System Test Phase â€” Redefinition of System Testing. 
In an ideal testing process, we can finish system testing 
when we have executed all of the test items in the test 
cases we have written. However, if many single-function 
defects are left in the software at the start of system test, 
we will detect single-function and combination-function 
defects simultaneously, and the end of testing will become 
unclear. Therefore we use statistical methods, such as 
convergence of the defect curve, to decide when to end 
the system test phase. 

In our improved process, we can start the system test 
phase with high-quality code that includes only a few 
single-function defects. Thus, we can redefine the testing 
method to get more efficiency in detecting the remaining 
defects. We divide the system test items into two test 
groups. The first group uses black box testing. We write 
these test cases based on the instrument characteristics 
as a system and on common failures that have already 
been detected in the preceding series products. The 
second group is measurement application testing, which 
is known as white box testing. The R&D designers, who 
clearly know the measurement sequence, test the mea 
surement applications according to each instrument's 
specifications. We try to decide the end of system test 
based on the completion of test items in the test cases 
written by R&D and SWQA. We try not to depend on 
statistical methods. 

Checkpoint at  the End of the System Test Phase. We use 
this checkpoint as in the previous process, as an audit 
point to exit the system test phase. SWQA confirms the 
execution of all test items and results. 

A Feasibi l i ty  Study of  Automatic Test  
Before implementing the improved development process 
described above, we wanted to understand what kind of 
function is most likely to cause defects and which parts 
we can't test automatically. Therefore, we analyzed and 
summarized the defect reports from a previous product 
series (five products). We found that the front-panel keys, 
the HP-IB remote control functions, and the Instrument 

BASIC language are most likely to cause defects. We also 
observed that the front-panel keys and the display are 
difficult to test automatically. Based on this study, we 
knew which parts of the functions needed to be written 
clearly on the function definitions, and we edited the test 
items and checklist to make the system test more efficient. 

Application of the Improvement Process 

Project Y. Product Y is an extension and revision of Prod 
uct X, a combination network, spectrum, and impedance 
analyzer. The main purpose of Project Y was to change 
the CRT display to a TFT (thin-film transistor) display and 
the HP-IB printer driver to a parallel printer driver. Most 
of the functions of the analyzer were not changed. 

Since Product Y is a revision product, we didn't have to 
write new function definitions for the HP-IB commands. 
Instead, we used the function reference manual, which 
has the closest information to a function definition. The 
main purpose of the test script was to confirm that each 
command worked without fail. We also tested some com 
bination cases (e.g., testing each command with different 
channels). The test script required seven weeks to write. 
The total number of lines is 20,141. 

For the automatic tests, we analyzed the defect reports 
from five similar products and selected the ones related 
to the functions that are also available in Product Y (391 
defect reports in the system phase). Then we identified 
the ones that could be tested automatically. The result 
was 140 reports, which is about 40% of the total. The 
whole process took three weeks to finish and the test 
script contains 1972 lines. The rest of the defect reports 
were checked manually after the end of system test. 
It took about seven hours to finish this check. 

Both of the above test scripts were written for an in-house 
testing tool developed by the HP Santa Clara Division.3 
An external controller (workstation) transfers the 
command to the instrument in ASCII form, receives the 
response, and decides if the test result passes or fails. 

Instrument BASIC (IBASIC), the internal instrument con 
trol language, has many different functions. It comes with 
a suite of 295 test programs, which we executed automati 
cally using a workstation. The workstation downloaded 
each test program to the instrument, ran the program, and 
saved the result. When all the programs finished running, 
we checked if the result was pass or fail. 
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For all of the automatic testing, we used the UNIX * make 
command to manage the test scripts. The make command 
let each test program execute sequentially. 

Using the test scripts, we needed only half a day to test all 
of the HP-IB commands and one day to test the IBASIC. 
Since Product Y is a revision product, we also used the 
test scripts to test its predecessor, Product X, to confirm 
that Product Y is compatible with Product X. The test 
items in the Product X checklist were easily modified to 
test Product Y. 

Project Z. Product Z belongs to the same product series 
as Product Y (a combination network, spectrum, and 
impedance analyzer). The reuse rate of source code is 
77% of Product Y. 

One R&D engineer took one month to finish the first draft 
of the function definitions. To test the individual HP-IB 
commands, since the necessary function definition infor 
mation existed, we easily modified the test script for 
Product Y to test Product Z. We employed a third-party 
engineer to write the test scripts. This took five weeks. 

Since Product Z is in the same series as Product Y, we are 
reusing the test scripts for Product Y and adding the new 
test scripts corresponding to the new defects that were 
detected in Product Y to test Product Z. 

The IBASIC is the same as Product Y's, so we use the same 
test program for Product Z. The automatic test environ 
ment is also the same as for Product Y. 

Since Product Z is still under development, we don't have 
the final results yet. We use the test scripts to confirm the 
individual HP-IB commands periodically. This ensures that 
the quality of the instrument's software doesn't degrade 
as new functions are added. At this writing, we haven't 
started system test, but we plan to reuse the same product 
series checklist to test Product Z. 

R e s u l t s  

Project Y. In this project, we found 22 mistakes in the 
manual, 66 defects in Product X while preparing the test 
scripts, and 53 defects in Product Y during system test. 
The following table lists the total time spent on testing 
and the numbers of defects that were detected in Product 
X in Project X and Project Y. 

Table I  
Defects found in Product X 

P r o j e c t  X  P r o j e c t  Y  

T e s t i n g  T i m e  ( h o u r s )  1 0 4 9  2 0 0  

N u m b e r  o f  D e f e c t s  3 0 9  8 8  

According to this data, using the test scripts based on the 
function reference manual, we detected 88 defects in 
Product X during Project Y, even though we had already 
invested more than 1000 test hours in Project X and the 
defect curve had already converged (Figure 3). We con 
clude that testing the software with a test script increases 
the ability to detect defects. Also we see that a function 
definition is indispensable for writing a good test script. 

Since the automatic test is executed periodically during 
the implementation phase, we can assume that no single- 
function defects remained in Product Y's firmware before 
system test. Since Product Y is a revision product, there 
were only a few software modifications, and we could 
assume that the test items for the system testing covered 
all the modified cases. Therefore, we could make a deci 
sion to stop the system test when all the test items were 
completed, even though the defect curve had not con 
verged (Figure 10). However, for a platform product or 
an extension product that has many software modifica 
tions and much new code, the test items of the system 
test are probably not complete enough to make this deci 
sion, and we will still have to use the convergence of the 
defect curve to decide the end of the system test. Never 
theless, it will always be our goal to make the test items 
of the system test complete enough that we can make 
decisions in the future as we did in Project Y. 

The test script is being used for regression testing during 
enhancement of Product Y to prevent the side effects 
caused by software modifications. 

In Figure 11, we compare the test time and the average 
defect detection time for these two projects. Because 
Product Y is an extension of Product X, the results are 
not exactly comparable, but using the test script appears 
to be better because it didn't take as much time to detect 
the average defect. 
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Figure 10 

Defect  curve for  Project  Y.  

We needed time to write the test scripts, but the system 
test phase became shorter, so the total development time 
was shorter for Project Y. The enhancement cost will be 
lower because we can reuse the same test script for 
regression testing. 

Project Z. We expect that the quality of Product Z will be 
high before system test because we test Product Z periodi 
cally in the implementation phase and confirm the result 
before entering system test. 

The additional work of the improvement process is to 
write formal function definitions and test scripts. Since 
this project is the first to require a formal function defini 
tion, it took the R&D engineer one month to finish the 
first draft. For the next project, we expect that the func 
tion definition can be mostly reused, so the time needed 
to write it will be shorter. 

The test scripts are written during the implementation 
phase and do not affect the progress of the project. There 
fore, we only need to wait about a month for writing the 
function definition before starting the implementation 
phase, and since the time needed for system test will be 
shorter, the whole development process will be faster. 

Since we are reusing the test scripts of Product Y, the 
time for writing test scripts for Product Z is two weeks 
shorter than for Product Y. Thus, for a series product, we 
can reuse the test scripts to make the process faster. Also, 
making test scripts is not a complicated job, so a third- 
party engineer can do it properly. 

Figure 11 

CosÃ­ of software test ing for Projects X and Y. (a) Engineer-months spent on software test ing, (b) Engineer-months per defect.  
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Conclusion 

We analyzed the software (firmware) development prob 
lems of the Hewlett-Packard Kobe Instrument Division 
and decided on an improvement process to solve these 
problems. This improvement process has been applied to 
two projects: Project Y and Project Z. The results show 
that we can expect the new process to keep the software 
quality high with a short development period. The main 
problems â€” deteriorating software quality and increasing 
enhancement cost â€” have been reduced. 

This improvement process will be standardized and ap 
plied to other new projects. It will also make our software 
development process conform to the key process areas of 
CMM (Capability Maturity Model) level 2 and some part of 
level 3.1'2 
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With from addition of a compiler, HP VEE programs can now benefit from 

improved execution speed and still provide the advantages of an interactive 

interpreter. 
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.his article presents the major algorithmic aspects of a compiler for the 

Hewlett-Packard Visual Engineering Environment (HP VEE). HP VEE is a 

powerful visual programming language that simplifies the development of 

engineering test-and-measurement software. In the HP VEE development 

environment, engineers design programs by linking visual objects (also called 

devices) into block diagrams. A simple example is shown in Figure 1. 

Features provided in HP VEE include: 

â€¢ Support for engineering math and graphics 

â€¢ Instrument control 

â€¢ Concurrency 

â€¢ Data management 

â€¢ GUI support 

â€¢ Test sequencing 

â€¢ Interactive development and debugging environment. 

Beginning with release 4.0, HP VEE uses a compiler to improve the execution 

speed of programs. The compiler translates an HP VEE program into 

byte-code that is executed by an efficient interpreter embedded in HP VEE. By 

analyzing the control structures and data type use of an HP VEE program, the 

compiler determines the evaluation order of devices, eliminates unnecessary 

run-time decisions, and uses appropriate data structures. 

The HP VEE 4.0 compiler increases the performance of computation-intensive 

programs by about 40 times over previous versions of HP VEE. In applications 
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Figure 1 

A simple HP VEE program to compute the area of  a c i rc le.  

\ r .  ' ; :  '  I  R e s u l t  i  
: ha Numer! 

where execution speed is constrained by instruments, file 
input and output, or display update, performance typically 
increases by 150 to 400 percent. 

The compiler described in this article is a prototype devel 
oped by HP Laboratories to compile HP VEE 3.2 pro 
grams. The compiler in HP VEE 4.0 differs in some de- 
tails.The HP VEE prototype compiler consists of five 
components: 

â€¢ Graph Transformation. Transformations are performed 
on a graph representation of the HP VEE program. The 
transformations facilitate future compilation phases. 

â€¢ Device Scheduling. An execution ordering of devices 
is obtained. The ordering may have hierarchical ele 
ments, such as iterators, that are recursively ordered. 
The ordering preserves the data flow and control flow 
relationships among devices in the HP VEE program. 
Scheduling does not, however, represent the run-time 
flow branching behavior of special devices such as 
If/Then/Else. 

â€¢ Guard Assignment. The structure produced by schedul 
ing is extended with constructs that represent run-time 
flow branching. Each device is annotated with boolean 
guards that represent conditions that must be satisfied 
at run time for the device to run. Adjacent devices with 
similar guards are grouped together to decrease redun 
dancy of run-time guard processing. Guards can result 

from explicit HP VEE branching constructs such as 
If/Then/Else, or they can result from implicit properties 
of other devices, such as guards that indicate whether 
an iterator has run at least once. 

â€¢ Type Annotation. Devices are annotated with type infor 
mation that gives a conservative analysis of what types 
of data are input to, and output from, a device. The an 
notations can be used to generate type-specific code. 

â€¢ Code Generation. The data structures maintained by the 
compiler are traversed to generate target code. The 
prototype compiler can generate C code and byte-code. 
However, code generation is relatively straightforward to 
implement for most target languages. 

These components combine to implement the semantics 
explicitly and implicitly specified in an HP VEE program. 

O n l i n e  I n f o r m a t i o n  

This complete article can be found at: 
http://www.hp.com/hpj/98may/ma98al3.htm 

More information about HP VEE can be found at: 
http://www.hp.com/go/HPVEE 
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