
H E W L E T T - P A C K A R rna
l ion f rom the Hewlet t -Packard Company

<5

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D Journal
MAY 1998 High l ights

T H E C O V E R

E x a m p l e s o f 3 D g r a p h
i c s i m a g e s t h a t c a n b e
r e n d e r e d w i t h H P w o r k
s t a t i o n s u s i n g t h e V I S U
A L I Z E f x g r a p h i c s h a r d
w a r e . R e n d e r i n g s a r e
c o u r t e s y o f D a s s a u l t
S y s t e m e s o f S u r e s n e s ,
F r a n c e , D i v i s i o n o f B r i s
t o l , E n g l a n d , a n d P a r a
m e t r i c T e c h n o l o g y C o r
p o r a t i o n o f W a l t h a m ,
M a s s a c h u s e t t s .

Volume 49 â€¢ Number 2

Technical computing today is increasingly dominated by design and analysis
tasks that require high-performance workstat ion and software products. Some
of the emerging described in this issue address the needs of this emerging
market.

On the software side, we have the DirectModel 3D model ing toolki t and the
HP implementation of the OpenGLÂ® graphics standard. The toolkit provides
appl icat ion developers with the capabi l i ty to develop appl icat ions that can
construct 3D models containing mi l l ions or bi l l ions of polygons. DirectModel
is built on top of the HP OpenGL product. OpenGL is a vendor-neutral, mult i-
p lat form, industry-standard appl icat ion programming interface (API) for
developing 20 and 3D visual applications.

For running these appl icat ions, we have the HP Kayak PC-based workstat ion
running the WindowsÂ® NT operating system. HP Kayak provides world-leading
3D graphics performance typically found in high-end UNIXÂ® workstations.
Much of the hardware archi tecture for HP Kayak is based on the VISUALIZE
fx4 graphics accelerator, which is designed to provide nat ive accelerat ion for
the OpenGL API.

A common theme underly ing the development of al l these products is the
desire employed shorten the time to market. Concurrent engineering was employed
in the were p ro jec t to ach ieve th i s goa l . P rocesses done in se r ia l were

T h e H e w l e t t - P a c k a r d J o u r n a l Â ¡ s p u b l i s h e d q u a r t e r l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s
m a d e b y H e w l e t t - P a c k a r d p e r s o n n e l .

T h e H e w l e t t - P a c k a r d J o u r n a l S t a f f

S t e v e B e i t l e r , E x e c u t i v e E d i t o r

S t e v e n A . S i a n o , S e n i o r E d i t o r

C h a r l e s L . L e a t h , M a n a g i n g E d i t o r

S u s a n E . W r i g h t , P r o d u c t i o n / D i s t r i b u t i o n M a n a g e r

R e n Ã © e D . W r i g h t , M a r c o m / W e b s i t e P r o g r a m s

J o h n N i c o a r a , L a y o u t / I l l u s t r a t i o n

P r i n t e d o n r e c y c l e d p a p e r .

Â © H e w l e t t - P a c k a r d C o m p a n y 1 9 9 8 P r i n t e d i n U . S . A .

Advisory Board
Ra jeev Badya l , I n teg ra ted C i r cu i t Bus iness D i v i s i on , Fo r t Co l l i ns ,
Co lo rado

W i l l i a m W . B r o w n , I n t e g r a t e d C i r c u i t B u s i n e s s D i v i s i o n , S a n t a
C lara , Ca l i fo rn ia

R a j e s h D e s a i , C o m m e r c i a l S y s t e m s D i v i s i o n , C u p e r t i n o ,
Ca l i fo rn ia

K e v i n G . E w e r t , I n t e g r a t e d S y s t e m s D i v i s i o n , S u n n y v a l e ,
Ca l i fo rn ia

B e r n h a r d F i s c h e r , B o b l i n g e n M e d i c a l D i v i s i o n , B o b l i n g e n ,
G e r m a n y

D o u g l a s G e n n e t t e n , G r e e l e y H a r d c o p y D i v i s i o n , G r e e l e y ,
Co lo rado

Gary Gordon , HP Labo ra to r i es , Pa lo A i t o , Ca l i f o rn ia

M a r k O r e g o n I n k J e t S u p p l i e s B u s i n e s s U n i t , C o n / a l u s , O r e g o n

M a t t J . M a r l i n e , S y s t e m s T e c h n o l o g y D i v i s i o n , R o s e v i l l e ,
Ca l i fo rn ia

K i y o y a s u H i w a d a , H a c h i o j i S e m i c o n d u c t o r T e s t D i v i s i o n , T o k y o ,
J a p a n

B ryan Hoog , Lake S tevens I ns t r umen t D i v i s i on , Eve re t t ,
W a s h i n g t o n

C . S teven Jo i ne r , Op t i ca l Commun i ca t i on D i v i s i on , San Jose ,
Ca l i fo rn ia
R o g e r L J u n g e r m a n , M i c r o w a v e T e c h n o l o g y D i v i s i o n , S a n t a
Rosa, Ca l i fo rn ia

F o r r e s t K e l l e r t , M i c r o w a v e T e c h n o l o g y D i v i s i o n , S a n t a R o s a ,
Ca l i fo rn ia

Ruby B . Lee , Ne tworked Sys tems Group , Cuper t ino , Ca l i fo rn ia

S w e e K w a n g L i m , A s i a P e r i p h e r a l s D i v i s i o n , S i n g a p o r e

A l f r e d M a u t e , W a ! d b r o n n A n a l y t i c a l D i v i s i o n , W a l d b r o n n ,
G e r m a n y

A n d r e w M c L e a n , E n t e r p r i s e M e s s a g i n g O p e r a t i o n , P i n e w o o d ,
England

D o n a L . M i l l e r , W o r l d w i d e C u s t o m e r S u p p o r t D i v i s i o n , M o u n t a i n
V iew, Ca l i f o rn ia

M i t c h e l l J . M l i n a r , H P - E E s o f D i v i s i o n , W e s t l a k e V i l l a g e ,
Ca l i fo rn ia

M a y 1 9 9 8 â € ¢ T h e H e w l e t t - P a c k a r d J o u r n a l

© Copr. 1949-1998 Hewlett-Packard Co.

modif ied to be done in paral lel , shortening the product development
cycle. Quali ty engineers at the HP Kobe Instrument Division reengi-
neered their qual i ty assurance process to deal wi th the t ime-to-market
issue and st i l l maintain high-qual i ty released software.

We have two art ic les about HP-UX workstat ions. One descr ibes a fea
ture that al lows mult iple monitors to be conf igured as one cont iguous
viewing space, and the other discusses the chal lenges of adding the
Peripheral Component Interconnect, or PCI, to HP B-class and C-class
workstat ions.

Information is the fuel that drives today's enterprises. Thus, we have
three art icles that discuss the use of information to do such tasks as
l inking business manufactur ing software to the factory f loor, providing
a knowledge database for support personnel , and forecast ing compo
nent demand in material planning.

The art icle about HP VEE (Visual Engineering Environment) is an exam
ple of our new publ ishing paradigm of using the web to extend or com
plement what appears in the pr inted version of the Hewlet t -Packard
Journal.

C. L Leath
Managing Edi tor

W H A T ' S A H E A D

In August we will have articles about a
150-MHz-bandwidth membrane hydro
phone, units measurement for optical
instruments, and efforts to improve the
reliability of ceramic pin grid array pack
aging and surface-mount LEDs. We will
also have articles from the HP Design
Technology Conference, the HP Com
pression Conference, and the HP Elec
tronic and Assembly Conference.

M. ShahÃ­d Mu j taba , HP Labora to r ies , Pa lo A l to , Ca l i fo rn ia

S teven J . Na rc i so , VX I Sys tems D i v i s i on , Love tand , Co lo rado

D a n n y J . O l d f i e l d , E l e c t r o n i c M e a s u r e m e n t s D i v i s i o n , C o l o r a d o
Sp r ings , Co lo rado

Ga r r y O rso lm i , So f twa re Techno logy D i v i s i on , Rosev i l i e , Ca l i f o rn i a

Ken Pou l t on , HP Labo ra to r i es , Pa lo A l t o , Ca l i f o rn ia

GÃ¼nter R iebese l l , Bob l ingen Ins t rument D iv i s ion , Bob l ingen ,
G e r m a n y

M i c h a e l B . S a u n d e r s , I n t e g r a t e d C i r c u i t B u s i n e s s D i v i s i o n ,
Corva l l i s , Oregon

Ph i l i p S ten ton , HP Labo ra to r i es B r i s t o l , B r i s t o l , Eng land

S tephen R . Undy , Sys tems Techno logy D iv i s ion , Fo r t Co l l i ns ,
Co lo rado

J i m W i l l i t s , N e t w o r k a n d S y s t e m M a n a g e m e n t D i v i s i o n , F o r t
Co l l i ns , Co lo rado

K o i c h i Y a n a g a w a , K o b e I n s t r u m e n t D i v i s i o n , K o b e , J a p a n

Ba rba ra Z immer , Co rpo ra te Eng inee r i ng , Pa lo A l t o , Ca l i f o rn i a

The Hewlett -Packard Journal Onl ine

The Hewlett-Packard Journal is available online at:

http://www.hp.com/hpj/journal.html

A quick tour of our site:

Current Issue â€” see it before it reaches your mailbox.

Past other â€” review back to February 1994, complete with links to other HP sites.

Index â€” for back to our first issue in 1949, complete with an Order button for
issues or articles you'd like for your library.

Subscription Information â€” guidelines for U.S. and international subscriptions and
a form you can fill out to receive an e-mail message about upcoming issues and
changes to our Website.

Previews â€” contains an early look at future articles.

M a y 1 9 9 8 Â « T h e H e w l e t t - P a c k a r d J o u r n a l

© Copr. 1949-1998 Hewlett-Packard Co.

Articles

A n A P I f o r I n t e r f a c i n g I n t e r a c t i v e
3 D A p p l i c a t i o n s t o H i g h - S p e e d
G r a p h i c s H a r d w a r e

K e v i n T . L e f e b v r e a n d J o h n M . B r o w n

An introduction to the articles in this
issue that describe the HP hardware and
software products that implement or
support the OpenGLÂ® specification.

ClT) The Fast-Break Program

A n O v e r v i e w o f t h e H P O p e n G L
S o f t w a r e A r c h i t e c t u r e

K e v i n T . L e f e b v r e , R o b e r t J . C a s e y , M i c h a e l
J . Phe lps , Cour tney D . Goe l t zen leuchter ,
a n d D o n l e y B . H o f f m a n

The features in the software component
of the HP OpenGL product that differ
entiate it from other OpenGL implemen
tations include performance, quality, and
reliability.

^ Â £) T h e D i r e c t M o d e l T o o l k i t :
M e e t i n g t h e 3 D G r a p h i c s N e e d s
o f T e c h n i c a l A p p l i c a t i o n s

Br ian E . Cr ipe and Thomas A. Gask ins

Today's highly complex mechanical design
automation systems require a modelling
toolkit for developing interactive applica
tions capable of handling 3D models con
taining millions or billions of polygons.

f i l

f ^ p A n O v e r v i e w o f t h e V I S U A L I Z E f x
G r a p h i c s A c c e l e r a t o r H a r d w a r e

Noe l D . Scot t , Dan ie l M . O lsen , and Ethan W.
G a n n e t t

Five custom integrated circuits make up
the high-speed VISUALIZE fx family of
graphics subsystems.

(^ 3 0 ^) O c c l u s i o n C u l l i n g

(~32*) Fas t V i r tua l Tex tu r ing

^ p H P K a y a k : A P C W o r k s t a t i o n w i t h
A d v a n c e d G r a p h i c s P e r f o r m a n c e

Ross A. Cunni f f

Graphics performance typically found
in high-speed UNIXÂ® workstations has
been incorporated into a PC workstation
running the WindowsÂ® NT environment.

Concur ren t Eng ineer ing in
O p e n G L ' s P r o d u c t D e v e l o p m e n t

Rober t J . Casey and L . Leonard L indstone

The authors describe how the concepts
of concurrent engineering helped the HP
OpenGL project to achieve a shorter time
to market and a reduction in rework.

A d v a n c e d D i s p l a y T e c h n o l o g i e s
o n H P - U X W o r k s t a t i o n s

T o d d M . S p e n c e r , P a u l M . A n d e r s o n , a n d
D a v i d S w e e t s e r

Recent versions of the HP-UX operating
system contain features that allow users
to create more viewing space by configur
ing multiple monitors into a single logical

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Del iver ing PCI in HP B-Class and
C-Class Worksta t ions: A Case
S tudy in the Cha l l enges o f
I n t e r f a c i n g w i t h I n d u s t r y
S t a n d a r d s

Ric L. Lewis, Er in A. Handgen, Nicholas J .
Ingegner i , and G len T . Rob inson

The authors discuss some of the challenge!
involved in incorporating an industry-stan
dard I/O subsystem into HP workstations.

6 2 L i n k i n g E n t e r p r i s e B u s i n e s s
Systems to the Factory F loor

Kenn S. Jennyc

HP Enterprise Link is a middleware soft
ware product that allows business manage
ment applications to exchange informa
tion with applications running on the
factory floor.

K n o w l e d g e H a r v e s t i n g ,
A r t i c u l a t i o n , a n d D e l i v e r y

K e m a l A . D e l i c a n d D o m i n i q u e L a h a i x

A knowledge-based software tool is used
to help HP support personnel provide
customer support.

CTS) G lossa ry

A T h e o r e t i c a l D e r i v a t i o n o f
R e l a t i o n s h i p s b e t w e e n F o r e c a s t
Errors

J e r r y Z . S h a n

A study of the errors associated with pre
dicting component replacement require
ments in the materials planning process.

8 9 S t r e n g t h e n i n g S o f t w a r e Q u a l i t y
A s s u r a n c e

M u t s u h i k o A s a d a a n d P o n g M a n g Y a n

Reengineering a software quality assur
ance program to deal with shorter time-
to-market goals.

% J Â £ P A C o m p i l e r f o r H P V E E

S t e v e n G r e e n b a u m a n d S t a n l e y J e f f e r s o n

The authors describe a compiler technol
ogy that is designed to improve the exe
cution speed of HP VEE (Visual Engineer
ing Environment) programs.

The Hewlett-Packard Journal Online

http://www.hp.coni/hpj/journal.html

What's new?

â€¢ The Previews section contains the
following new articles:

T e c h n i q u e s f o r H i g h e r - P e r f o r m a n c e
B o o l e a n E q u i v a l e n c e V e r i f i c a t i o n

T h e o r y a n d D e s i g n o f C M O S H S T L I / O
Pads

O n - C h i p C r o s s T a l k N o i s e M o d e l f o r
D e e p - S u b m i c r o m e t e r U L S I I n t e r c o n n e c t

T e s t i n g w i t h t h e H P 9 1 9 0 M i x e d - S i g n a l
LSI Tester

A L o w - C o s t R F M u l t i c h i p M o d u l e
Packag ing Fami ly

C o m p a r i s o n o f F i n i t e - D i f f e r e n c e a n d
SP ICE Too ls fo r Therma l Mode l ing o f the
Ef fects of H igh-Power CPUs

E-Mail Registration

â€¢ Use E-Mail Notification to register
your e-mail address so that you can
be notified when new articles are
published.

May 1998 â€¢ The Hewletl-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

An API for Interfacing Interact ive 3D
Appl icat ions to High-Speed Graphics
Hardware

Kevin T. Lefebvre

John M. Brown

The OpenGLÂ® specification defines a software interface that can be

implemented on a wide range of graphics devices ranging from simple

frame buffers to fully hardware-accelerated geometry processors.

^ ^ ^ k
K e v i n T . L e f e b v r e

I A senior engineer in the
J graphics products labora-

HH___J^B toiy at the HP Workstat ion

Systems Division, Kevin Lefebvre is responsi
ble for the OpenGL architecture and its imple
mentation and delivery. He came to HP in 1986
from the Apollo Systems Division. He has a BS
degree in mathematics (1976) from Carnegie-
Mellon University. He was bom in Pittsfield,
Massachusetts, is married and has two chil
dren. His hobbies include running, biking, and
skiing.

J o h n M . B r o w n
John Brown is a senior
engineer in the graphics

products laboratory of the
HP Workstation Systems Division. He is respon
sible for graphics application performance.
John came to HP in 1988. He holds a BSEE
degree (1980) from the University of Kentucky.

Q penGL is a specification for a software-to-hardware application

programming interface, or API, that defines operations needed to produce

interactive 3D applications. It is designed to be used on a wide range of

graphics devices, including simple frame buffers and hardware-accelerated

geometry processor systems. With design goals of efficiency and multiple

platform support, certain functions, such as windowing and input support,

have not been defined in OpenGL. These unsupported functions are included

in support libraries outside the core OpenGL definition.

OpenGL is targeted for use on a range of new graphics devices for both UNIXÂ® â€¢

based and WindowsÂ® NT-based operating system platforms. These systems

differ in both capabilities and performance.

Early in the OpenGL program at HP, industry partnerships were established

between the OpenGL R&D labs and key independent software vendors (ISVs)

to ensure a high-quality, high-performance product that met the needs of

these moving These partnerships were also used to assist the ISVs in moving to

the HP OpenGL product (see "The Fast Break Program" on page 8).

The various OpenGL articles in this issue describe the design philosophy and

the implementation of the HP version of OpenGL and other graphics products

associated with OpenGL.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

H i s t o r y o f O p e n G L

OpenGL is a successor to Iris GL, a graphics library devel
oped by Silicon Graphics s International (SGI). Major
changes have been made to the Iris GL specification in
defining OpenGL. These changes have been aimed at
making OpenGL a cleaner, more extensible architecture.

With the goal of creating a single open graphics standard,
the OpenGL Architecture Review Board (ARE) was formed
to define the specification and promote OpenGL in terms
of ISV use and availability of vendor implementations.
The original ARB members were SGI, Intel, MicrosoftÂ®,
Digital Equipment Corporation, and IBM. Evans & Suther
land, Intergraph, Sun, and HP were added more recently.
For more information on current ARB members, OpenGL
licensees, frequently-asked questions, and other
ARB related information, visit the OpenGL web site at
http ://www. opengl.org.

The initial effort of the ARB was the 1.0 specification of
OpenGL, which became available in 1992. Along with
this specification was a series of conformance tests that
licensees needed to pass before an implementation could
be called OpenGL. Since then the ARB has added new
features and released a 1.1 specification in 1995 (the HP
implementation is based on 1.1). Work is currently being
done to define a 1.2 revision of the specification.

H P I n v o l v e m e n t i n O p e n G L

HP became an OpenGL licensee in 1995. We had the goal
of delivering a native implementation of OpenGL that
would run on hardware and software that would provide
OpenGL performance leadership.

Shortly after licensing OpenGL, we established a relation
ship with a third party to provide an OpenGL implementa
tion on our existing set of graphics hardware while we
worked on a new generation of hardware that was better
suited for OpenGL semantics. The OpenGL provided by
the third party used the underlying graphics hardware
acceleration where possible. However, it could not be
considered an accelerated implementation of OpenGL
because of features lacking in the hardware.

In August of 1996, we demonstrated our first native imple
mentation of OpenGL at Siggraph 96. This implementation
was fully functional and represented the software that

would be shipped with the future OpenGL-based hard
ware. The implementation supported various device driv
ers including a software-based Tenderer. The OpenGL de
velopment effort culminated in the announcement and
delivery of OpenGL-based systems in the fall of 1997.

S o f t w a r e I m p l e m e n t a t i o n

In our implementation, we focused on the hardware's abil
ity to accelerate major portions of the rendering pipeline.
For the software, we focused on its ability to ensure that
the hardware could run at full performance. A fast graphics
accelerator is not needed if the driving software cannot
keep the hardware busy. The resulting software architec
ture and implementation was designed from a system
viewpoint. Decisions were based on system requirements
to avoid overoptimizing each individual component and
still not achieve the desired results. An overview of the
HP OpenGL software architecture is provided in the ar
ticle on page 9. Another software-related issue is provided
in the article on page 35, which discusses issues associ
ated with porting a UNIX-based OpenGL implementation
to Windows NT.

H a r d w a r e S y s t e m s

The new graphics systems are able to support OpenGL,
Starbase, PHIGS, and PEX rendering semantics in hard
ware. Being able to support the OpenGL API means that
there is hardware support for accelerating the full feature
set of OpenGL instead of just having a simple frame buffer
in which all or most of the OpenGL features are imple
mented in software. These systems are the VISUALIZE fx2,
VISUALIZE fx4, and VISUALIZE fx6 graphics accelerator
products. These systems differ in the amount of graphics
acceleration they provide, the number of image planes,
and the optional OpenGL features they provide. In addi
tion to the base graphics boards, a texture mapping op
tion is available for the fx4 and fx6 accelerators. The
article on page 28 provides an overview of the new
graphics hardware developed to support OpenGL.

E n g i n e e r i n g P r o c e s s

To meet the required delivery dates of OpenGL with a
high level of confidence and quality, we used a new pro
cess to compress the time between first silicon and manu
facturing release. The article on page 41 describes the

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The Fast-Break Program

In basketball, a rapid offensive transition is called a fast-
break. i"he fast-break program is about the transition game
for OpenGL on HP systems. A key part of the HP transition to
OpenGL is applications, because applications enable volume
shipments ol systems. Having the right applications is neces
sary for a successful OpenGL product, but it is also important
that the applications run with outstanding performance and
reliability. FÃ st-break is about both aspects â€” getting the appli
cations on HP systems and ensuring that they have outstanding
performance and reliability.

Fast-break began by working with application developers in
the early stages of the OpenGL program to understand their
requirements for the HP OpenGL product. These requirements
helped to drive the initial OpenGL product definition.

As the program progressed, the Fast-break team developed a
suite of tools that enabled detailed analysis of OpenGL appli
cations. Analysis of key applications was used to further refine
our OpenGL product performance and functionality. Analysis
also yielded a set of synthetic API benchmarks that repre
sented the behavior of key applications. These synthetic
benchmarks enabled HP to perform early hands-on evaluation
of the OpenGL product long before the actual applications
were ported to HP.

Pre-porting laid the groundwork for the actual porting of appli
cations to HP's implementation of OpenGL. The first phase of

the porting took place during the OpenGL beta program. In this
program, the HP fast-break team worked closely with selected
application developers to initiate the porting effort. A software-
only implementation of the OpenGL product was used, which
enabled the beta program to take place even before hardware
was available.

As hardware became available, the beta program was super
seded by the early access program. This program included the
original beta participants and additional selected developers.
In both the beta and early access programs, HP found that the
homework done earlier by the fast-break team paid big divi
dends. Most applications were ported to HP in just a few days
and, in some cases, just a few hours!

Although not completely defect-free, these early versions of
OpenGL were uniformly high-performance and high-quality
products. By accelerating the application porting effort, HP
was able to identify and resolve the few remaining issues
before the product was officially released.

The ongoing involvement of the fast-break team with the
OpenGL product development teams helped HP do it right the
first imple by delivering a high-quality, high-performance imple
mentation of OpenGL and enabling rapid porting of key appli
cations to the HP product.

engineering process we used to accelerate the time to
market for OpenGL.

Graphics Middleware
A fast graphics API is not always enough. Leading edge
CAD modelling problems far exceed the interactive ca
pacity of graphical super workstations. For example, try
spinning a complete CAD model of a Boeing 777 at 30
frames per second on any system.

Wh^ t is needed is a new approach to solving the render
ing problem of very large models. The goal is to trade
off between frame rate, image quality, and system cost.

HP has introduced a toolkit for use by CAD ISVs to
assist them in solving this problem. The toolkit is called
DirectModel and is described on page 19.

HP-UX Release 10.20 and later and HP-UX 11.00 and later (in both 32- and 64-bit configura
tions/ on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of The Open Group.

X/Open Limited a registered trademark and the X device is a trademark ofX/Open Company Limited
in the UK and other countries.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

An Overview of the HP OpenGLÂ® Software
Arch i tec tu re

Kevin T. Lefebvre

Robert J.Casey

Michael J. Phelps

Cour tney D. Goel tzenleuchter

Donley B. Hoffman

OpenGL is a hardware-independent specification of a 3D graphics programming

interface. This specification has been implemented on many different vendors'

platforms with different CPU types and graphics hardware, ranging from

PC-based board solutions to high-performance workstations.

T -Lhe .he OpenGL API defines an interface (to graphics hardware) that deals

entirely with rendering 3D primitives (for example, unes and polygons). The

HP implementation of the OpenGL standard does not provide a one-to-one

mapping between API functions and hardware capabilities. Thus, the software

component of the HP OpenGL product fills the gaps by mapping API functions

to OpenGL-capable systems.

Since OpenGL is an industry-standard graphics API, much of the differentiating

value HP delivers is in performance, quality, reliability, and time to market.

The central goal of the HP implementation is to ship more performance and

quality much sooner.

W h a t i s O p e n G L ?

OpenGL PEX from other graphics APIs, such as Starbase, PHIGS, and PEX

(PHIGS primitive- in X), in that it is vertex-based as opposed to primitive-

based. This means that OpenGL provides an interface for supplying a single

vertex, surface normal, color, or texture coordinate parameter in each call.

Several of the calls between an OpenGL gIBegin and glEnd pair define

a primitive that is then rendered. Figure 1 shows a comparison of the

different API call formats used to render a rectangle. In PHIGS a single call

could associated a primitive by referencing multiple vertices and their associated

data difference as normals and color) as parameters to the call. This difference in

procedure calls per primitive (one versus eight for a shaded triangle) posed

a performance challenge for our implementation.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 1

Graphics API call comparison.

Starbase

polygon3d(. . .

OpenGL

glBegin(GL_QUADS) ,
g l N o r m a l (. . .) ;
g l V e r t e x (. . .) ;
g l N o r m a l (. . .) ;
glVertex (. . .) ;
g l N o r m a l (. . .) ;
glVertex (. . .) ;
g l N o r m a l (. . .) ;
glVertex (. . .) ;
g lEndO ;

PEXlib

PEXFillAreaSetWithData(.

An OpenGL implementation consists of the following
elements:

â€¢ A rendering library (GL) that implements the OpenGL
specification (the rendering pipeline)

â€¢ A utility library (GLU) that implements useful utility
functions that are layered on top of OpenGL (for
example, surfaces, quadratics, and tessellation functions)

â€¢ An interface to the system's windowing package, includ
ing GLX for X Window Systems on the UNIX operating
system and WGL for Microsoft WindowsÂ®.

I m p l e m e n t a t i o n G o a l s

The goals we defined for the OpenGL program that helped
to shape our implementation were to:

â€¢ Achieve and sustain long term price/performance leader
ship for OpenGL applications running on HP platforms

â€¢ Develop a scalable architecture that supports OpenGL
on a wide range of HP platforms and graphics devices.

The rest of this article will provide more details about
our OpenGL implementation and show how these goals
affected our system design.

OpenGL API
In general, OpenGL defines a traditional 3D pipeline for
rendering 3D primitives. This pipeline takes 3D coordi
nates as input, transforms them based on orientation or
viewpoint, lights the resulting coordinates, and then ren
ders them to the frame buffer (Figure 2).

To implement and control this pipeline, the OpenGL API
provides two classes of entry points. The first class is
used to create 3D geometry as a combination of simple
primitives such as lines, triangles, and quadrilaterals.
The entry points that make up this class are referred to
as the vertex API, or VAPI, functions. The second class,
called the state class, manipulates the OpenGL state used
in the different rendering pipeline stages to define how to
operate (transform, clip, and so on) on the primitive data.

V A P I C l a s s

OpenGL contains a series of entry points that when used
together provide a powerful way to build primitives. This
flexible interface allows an application to provide primi
tive data directly from its private data structures rather
than requiring it to define structures in terms of what the
API requires, which may not be the format the application
requires.

Primitives are created from a sequence of vertices. These
vertices can have associated data such as color, surface
normal, and texture coordinates. These vertices can be
grouped together and assigned a type, which defines how
the vertices are connected and how to render the resulting
primitive.

The VAPI functions available to define a primitive include
glVertex (specify its coordinate), glNormal (define a surface
normal at the coordinate), glColor (assign a color to the
coordinate), and several others. Each function has several
forms that indicate the data type of the parameter (for
example, Â¡nt, short, and float), whether the data is passed
as a parameter or as a pointer to the data, and whether
the data is one-, two-, three-, or four-dimensional. Alto
gether there are over 100 VAPI entry points that allow for
maximum application flexibility in defining primitives.

The VAPI functions g I Begin and g I End are used to create
groups of these vertices (and associated data). gIBegin
takes a type parameter that defines the primitive type and
a count of vertices. The type can be point, line, triangle,

Figure 2
Graphics pipeline.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

triangle strip, quadrilateral, or polygon. Based on the type
and count, the vertices are assembled together as primi
tives and sent down the rendering pipeline.

For added efficiency and to reduce the number of proce
dure calls required to render a primitive, vertex arrays
were added to revision 1.1 of the OpenGL specification.
Vertex arrays allow an application to define a set of ver
tices and associated data before their use. After the vertex
data is defined, one or more rendering calls can be issued
that reference this data without the additional calls of
gIBegin, glEnd, or any of the other VAPI calls.

Finally, OpenGL provides several rendering routines that
do not deal with 3D primitives, but rather with rectangular
areas of pixels. From OpenGL, an application can read,
copy, or draw pixels to or from any of the OpenGL
image, depth, or texture buffers.

State Class
The state class of API functions manipulates the OpenGL
state machine. The state machine defines how vertices
are operated on as they pass through the rendering pipe
line. There are over 100 functions in this class, each con
trolling a different aspect of the pipeline. In OpenGL most
state information is orthogonal to the type of primitive
being operated on. For example, there is a single primitive
color rather than a specific line color, polygon color, or
point color. These state manipulation routines can be
grouped as:

â€¢ Coordinate transformation

â€¢ Coloring and lighting

â€¢ Clipping

â€¢ Rasterization

â€¢ Texture mapping

â€¢ Fog

â€¢ Modes and execution.

Pipeline
Coordinate data (such as vertex, color, and surface nor
mal) can come directly from the application, indirectly
from the application through the use of evaluators, or
from a stored display list that the application had pre
viously created. The coordinates flow into the pipeline as

1 Evaluators are functions that derive coordinate information based on parametric curves
or surfaces and basic functions.

discrete points and are operated on (transformed) individ
ually. At a certain point in the pipeline the vertices are
assembled into primitives, and they are operated on at the
primitive level (for example, clipping). Next, the primi
tives are rasterized into fragments in which operations
like depth testing occur on each fragment. The final result
is pixels that are written into the frame buffer. This more
complex OpenGL pipeline is shown in Figure 3.

Conceptually, the transform stage takes application-
specified object-space coordinates and transforms them
to eye-space coordinates (the space that positions the
object with respect to the viewer) with a model-view
matrix. Next, the eye coordinates are projected with a

F i g u r e s
OpenGL pipeline.

Vert ices
g I V e r f e x g I N o r m a l g l C o l o r g I T e x t C o o r d

Transform

Lighting

Primitives

Fragments

Rasterize

Per-Fragment
Operation

Pixels

May 1998 â€¢ The Hewlet t -Packard Journa l

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 4

Transformat ion f rom ob jec t -space to w indow coord inates .

Object
Coordinates

Lighting and Model
Clipping Applied

View Volume
Clipping Applied

Projection
Mat r ix

Clip
Coordinates Perspective

Divide

Normal ized
Device

Coordinates
[-1,1] V iewpor t

Transform

W i n d o w
Coordinates

XW
YW
ZW

W W

projection matrix, divided by the perspective, and then
transformed by the viewport matrix to get them to screen
space (relative to a window). This process is summarized
in Figure 4.

In the lighting stage, a color is computed for each vertex
based on the lighting state. The lighting state consists of
a number of lights, the type of each light (such as posi
tional or spotlight), various parameters of each light (for
example, position, pointing direction, or color), and the
material properties of the object being lit. The calculation
takes into consideration, among other things, the light
state and the distance of the coordinate to each light, re
sulting in a single color for the vertex.

In rasterization, pixels are written based on the primitive
type, and the pixel value to be written is based on various
rasterization states (such as texture mapping enabled, or
polygon stipple enabled). OpenGL refers to the resulting
pixel value as a fragment because in addition to the pixel
value, there is also coverage, depth, and other state infor
mation associated with the fragment. The depth value is
used to determine the visibility of the pixel as it interacts
with existing objects in the frame buffer. While the cover
age, or alpha, value blends the pixel value with the exist
ing value in the frame buffer.

Software Architecture
One of the main design goals for the HP OpenGL software
architecture was to maximize performance where it
would be most effective. For example, we decided to
focus on reducing overhead to hardware-accelerated
paths and to base design decisions on application use,
minimizing the effort and cost required to support future
system hardware. The resulting architecture is composed
of two major components: a device-independent module

and a device-specific module. A simple block diagram is
shown in Figure 5.

The dispatch component is responsible for handling
OpenGL API calls and sending them to the appropriate
receiver. OpenGL can be in one of the following modes:

â€¢ Protocol mode in which API calls are packaged up and
forwarded to a remote system for execution

â€¢ Display list creation mode in which API calls are stored
in a display list for later execution

â€¢ Direct rendering mode in which API calls are intended
for immediate rendering on the local screen.

Figure 5

OpenGL archi tecture.

Dispatch Module

Device- Independent
Module

Streamlines

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The primary application path of any importance is the
immediate rendering path. While in direct rendering mode
the performance of all functions is important, but the per
formance of the VAPI calls is even more critical because
of the increased frequency of rendering calls over other
types of calls, like state setting. Any overhead in transfer
ring application rendering commands to the hardware
reduces overall performance significantly. See the "System
Design Results" section in this article on page 14 for a
discussion on some of these issues.

The device-independent module is the target for all the
OpenGL state manipulation calls, and in some situations,
for VAPI calls such as display list or protocol generation.
This module contains state management, all system con
trol logic, and a complete software implementation of
the OpenGL rendering pipeline up to the rasterization
stage, which is used in situations where the hardware
does not support an OpenGL feature. The device in
dependent module is made up of several submodules,
including:

â€¢ GLX (OpenGL GLX support module) for handling win
dow system dependent components, including context
management, X Window System interactions, and proto
col generation

â€¢ SUM (system utilities module) for handling system
dependent components, including system interactions,
global state management, and memory management

â€¢ OCM (OpenGL control module) for handling OpenGL
state management, parameter checking, state inquiry
support, and notification of state changes to the appro
priate module

â€¢ PCM (pipeline control module) for handling graphics
pipeline control, state validation, and the software
rendering pipeline

â€¢ DLM (display list module) for handling display list
creation and execution.

The device-specific module is basically an abstracted
hardware interface that resides in a separate shared li
brary. Based on what hardware is available, the device-in
dependent code dynamically loads the appropriate de
vice-specific module. In general the device-specific
module is called only by the device-independent module,
never by the API, and converts the requests to hardware-
specific operations (register loads, operation execute). In

addition to a device-specific module for the VISUALIZE
fx series of graphics hardware, there is a virtual memory
driver device-specific module for handling OpenGL op
erations on GLX pixmaps (virtual-memory-based image
buffers) or for rendering to hardware that does not sup
port OpenGL semantics.

The final key component of the architecture is stream
lines. Streamlines are part of the device-specific module
but are unique in that they are associated directly with the
API. On geometry-accelerated devices like the VISUALIZE
fx series, the hardware can support the full set of VAPI
calls. To minimize overhead and maximize performance,
the calls are targeted to optimized routines that communi
cate directly with the hardware. In many cases these rou
tines are coded in PA RISC 1.1 or PA RISC 2.0 assembly
language or C. At initialization time the appropriate rou
tines are loaded in the dispatch table based on the system
type and are dynamically selected at run time.

An important thing to understand about streamlines is
that they can only be called when the current state is
"clean" and the hardware supports the current rendering
mode. An example of "not clean" is when the viewing
matrix has been changed, and the hardware needs to be
updated with the current transformation matrix. Because
the application can make several different calls to manip
ulate the matrix, computing the state based on the view
ing matrix and loading the hardware is deferred until it is
actually needed. For example, when a primitive is to be
rendered (initiated via a g I Begin call), the state is made
clean (validated) by the device-independent code and sub
sequent VAPI calls can be dispatched directly to the
streamlines. Another situation in which streamlines can
not be called is when the hardware does not support a
feature, such as texture mapping in the VISUALIZE fx2
display hardware. In this situation the VAPI entry points
do not target the streamlines but rather the device-inde
pendent code that implements what is called a general
path, or in other terms, a software rendering pipeline.

T h r e e - P r o c e s s M o d e l

Under the X Window System on the UNIX operating sys
tem, the OpenGL architecture uses a three-process model
to support the direct and indirect semantics of OpenGL.
In our implementation, we have leveraged our existing
direct hardware access (DHA) technology to provide in
dustry-leading local rendering performance. This has been

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 6

Three-process render ing model .

Process 1
Application

Appl icat ion

OpenGL API

D e v i c e - V i r t u a l
S p e c i f i c M e m o r y
M o d u l e M o d u l e

X Protocol

Process 2
X Server

Dispatch Module

Device- Independent X

Device- Independent X

GLX Protocol

Process 3
OpenGL Daemon

OpenGL Daemon

DHA Rendering

DMA

Device-Speci f ic
Module

Virtual Rendering Indirect Rendering

VGL Protocol

coupled with two distinct remote rendering modes, making
our OpenGL implementation one of the most flexible im
plementations in the industry. These rendering modes are
based upon the three-process rendering model shown in
Figure 6. This model supports three rendering modes:
direct, indirect, and virtual.

Direct Rendering. Direct rendering through DHA provides
the highest level of OpenGL performance and is used
whenever an OpenGL application is connected to a local
X server running on a workstation with VISUALIZE fx
graphics hardware. For all but a few operations, the appli
cation process communicates directly with the graphics
hardware, bypassing the interprocess communication
overhead between the application and the X server.

Indirect Rendering (Protocol). Indirect rendering is used
primarily for remote operation when the target X server is
running on a different workstation than the user applica
tion. In this mode, the OpenGL API library emits GLX
protocol which is interpreted by a receiving X server that
supports the GLX extension. The receiving server can be
HP, Sun Microsystems, Silicon GraphicsÂ® International,
or any other X server that supports the GLX server exten
sion. In the HP OpenGL implementation, the receiving
X server passes nearly all GLX protocol directly on to an
OpenGL daemon process that uses DHA for maximum
performance. Note that immediate mode rendering per
formance through protocol can be severely limited by the
time it takes to send geometric data over the network.
However, when display lists are used, geometric data is

cached in the OpenGL daemon and remote OpenGL ren
dering can be as fast or sometimes even faster than local
DHA rendering.

Virtual Rendering. As a value-added feature, HP OpenGL
also provides a virtual GL rendering mode not available in
other OpenGL implementations. Virtual rendering allows
an OpenGL application to be displayed on any X server or
X terminal even if the GLX extension is not supported on
that server. This is accomplished by rendering through the
virtual memory driver to local memory and then issuing
the standard XPutlmage protocol to display images on the
target screen. Although flexible, virtual GL is typically the
slowest of the OpenGL rendering modes. However, virtual
GL rendering performance can be increased significantly
by limiting the size of the output window

System Design Results
To deliver industry-leading OpenGL performance, we
combined graphics hardware, libraries, and drivers. The
hardware is the core enabler of performance. Although
the excellence of each part is important, the overall system
design is even more so. How well the operating system,
compilers, libraries, drivers, and hardware fit together
in the system design determines the overall result. We
worked closely with teams in four HP R&D labs to opti
mize the system design, apply our design values to parti
tioning the system, balance performance bottlenecks, and
simplify the overall architecture and interfaces. The fol
lowing section describes some examples of applying our

May 1998 Â«The Hewlett-Packard Journal O
© Copr. 1949-1998 Hewlett-Packard Co.

system design principles to the most important aspects
of 3D graphics applications.

I m p r o v i n g O p e n G L A p p l i c a t i o n P e r f o r m a n c e

OpenGL required a radical change from the existing
(legacy) HP graphics APIs. In analyzing the model for
our legacy graphics APIs, we realized that the same model
would have considerable overhead for OpenGL, which re
quires many more procedure calls. Figure 1 compares the
calls required to generate the same shaded quadrilateral.

To have a competitive OpenGL, we needed to reduce or
eliminate function calls and locking overhead. We did this
with two system design initiatives called fast procedure

calls and implicit device locking.

Fast Procedure Calls. Two of our laboratories (the Graph
ics Systems Laboratory and the Cupertino Language Labo
ratory) worked together to create a specification for a
new, faster calling convention for making calls to shared
library components. This reduced the cost to one-fourth
the cost of the previous mechanism.

OpenGL is a state machine. When the application calls an
OpenGL function, different things happen depending on
the current state. We also wanted to support different de
vices with varying degrees of support in the same OpenGL
library. We needed a dynamic method of dispatching API
function calls to the correct code to enable the appropriate
functionality without compromising performance. Given
this requirement, a naive implementation of OpenGL
might define each of its API functions like the following:

void glvertex3Â£v (const GLfloat *v)

{

switch (context .whichFunction)

{

case HW_STREAMLINE :

HW_STREAMLINE_glVertex3fv(v) ;

break;

case GENERAL_PATH :

GENERAL_PATH__glVertex3fv(v) ;

break;

case GLX_PROTOCOL :

GLX_PROTOCOL_glVertex3fv(v) ;

break;

case diSPLAY_LIST:

diSPLAY_LIST_glVertex3fv(v) ;

break;

However, this is a very impractical implementation in
terms of both performance and software maintainability7.
We decided that the most efficient method of achieving
this kind of dynamic dispatching was to retarget the API
function calls at their source â€” the application code. Any
call into a shared library is really a call through a pointer.
The procedure name that the application calls is associ
ated with a particular pointer. Conceptually, what we
needed was a mechanism to manage the contents of
those pointers. To accomplish this, we needed more assis
tance from the engineers in the compiler and linker
groups.

In simplified terms, the OpenGL library maintains a proce
dure link table. Each entry in the procedure link table is
associated with a particular function name and is com
posed of two pointers. One points to the code that is to
be called, and the other, the link table pointer, points to
the table used by shared library code (known as PIC, or
position-independent code) to locate global data. When
the compiler generates a call to an OpenGL function, it
loads the appropriate registers with the two fields in the
associated procedure link table entry and then branches
to the function. Since OpenGL controls the contents of
the procedure link table, it can change the contents of
these fields during execution. This allows OpenGL to
choose the appropriate code based on the OpenGL state
dynamically.

For example, assume that we have a graphics device
that, except for texture mapping, supports the OpenGL
pipeline in hardware. In this case the scheduling code
will find texture mapping enabled (meaning that the
device cannot handle texture mapping) and choose the
GENERAL_PATHLglVertex3fv code path, which performs soft
ware texture mapping. The HW_STREAMLINE_glVertex3fv
code paths are taken if texture mapping is not enabled.

Implicit Device Locking. Graphics devices are a shared
system resource. As such, there must be some control
when an application has access to the graphics device so
that two applications are not attempting to use the device
at the same time. Normally the operating system manages
such shared resources via standard operating system in
terfaces (open, close, read, write, and ioctl).

However, to get the maximum performance possible
for graphics applications, a user process will access the
graphics device directly through our 3D API libraries,
rather than use the standard operating system interfaces.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

This means that before OpenGL, the HP graphics libraries
had to assume the task of managing shared access to the
graphics device.

Before OpenGL, we used a relatively lightweight fast lock
at the entry and exit of those library routines that actually
accessed the device. With the high frequency of function
calls in OpenGL, performing this lock and unlock step
for each function call would exact a severe performance
penalty, similar to the procedure call problem discussed
earlier.

To solve this problem, HP engineers invented a technique
called implicit device locking. When a process tries to
access the graphics hardware and does not own the
device, a virtual memory protection fault exception will
be generated. The kernel must detect that this protection
fault was an attempted graphics device access instead of
a fault from trying to access something like an invalid
address, a swapped out page, or from doing a copy on a
write page.

The graphics fault alerts the system that there is another
process trying to access the graphics device. The kernel
then makes sure that the graphics device context is saved,
and the graphics context for the next process is restored.
After the graphics context switch is complete, the new
process is allowed to continue with access to the device,

and permission is taken away from all other processes.
This allows the current process that owns the device to
have zero overhead access.

This method removes the requirement that the 3D graphics
API library must explicitly lock the graphics device while
accessing it. This means that the overhead associated
with device locking, which was an order of magnitude
more than with Starbase, is completely eliminated (see
Figure 7).

This dramatic improvement in performance is made pos
sible by improvements in the HP-UX kernel and careful
design of the graphics hardware. The basic idea is that
when multiple graphics applications are running, the
HP-UX kernel will ensure that each application gets its
fair share of exclusive time to access the graphics device.

OpenGL was not the only API to benefit from implicit
locking. The generality of the design allowed us to use
the same mechanism to eliminate the locking code from
Starbase as well. Keeping the whole system in mind
while developing this technology allowed us to expand
the benefit beyond the original problem â€” excessive over
head from locking for OpenGL.

Figure 7

State count compar ison.

State
Count

Starbase

Starting Point

OpenGL

Fast Procedure Calls

Function Calls
Implicit Locking

Function Calls

May 1998 â€¢ The Hewlett-Packard Journal O
© Copr. 1949-1998 Hewlett-Packard Co.

H a r d w a r e a n d S o f t w a r e T r a d e - o f f s

Keeping the whole picture in mind allowed us to make
software and hardware trade-offs to simplify the system
design. The criteria were based on performance critical-
ity, frequency of use, system complexity, and factory cost.

For example, the hardware was designed to understand
both OpenGL and Starbase windows. OpenGL requires
the window origin to be in the lower left corner, whereas
Starbase requires it to be in the upper left. Putting the
intelligence in the hardware reduced the overall system
complexity.

Nearly all OpenGL features are hardware accelerated. Of
course, all vertex API formats and dimensions are stream
lined and accelerated in hardware for maximum primitive
performance. Similarly, all fragment pipeline operations
had to be supported in hardware because fragment opera
tions touch every pixel and software performance would
not be sufficient. To maximize primitive performance, we
also hardware-accelerated nearly every geometry pipeline
feature. For example, all lighting modes, fog modes, and
arbitrary clip planes are hardware-accelerated. Very few
OpenGL features are not hardware-accelerated.

Based on infrequent use and the ability to reasonably ac
celerate in software, we implemented the following func
tions in software: RasterPos, Selection, Feedback, Indexed
Lighting, and Indexed Fog. Infrequent use and factory cost
also encouraged us to implement accumulation buffer
support in software. (Accumulation is an operation that
blends data between the frame buffer and the accumula
tion buffer, allowing effects like motion blur.)

S t a t e C h a n g e

Through systems design we achieved dramatic results in
application performance by focusing on the design for
OpenGL state change operations.

Application graphics performance is a function of both
primitive and state change (attributes) performance. We
have designed our OpenGL implementation to maximize
primitive performance and minimize the costs of state
changes.

State changes include all the function calls that modify the
OpenGL modal state, including coordinate transformations,
lighting state, clipping state, rasterization state, and texture
state. State change does not include primitive calls, pixel

operations, display list calls, or current state calls. Cur
rent state encompasses all the OpenGL calls that can
occur either inside or outside glBegin() and glEndO pairs
(for example, glColorO, glNormaK), glVertexQ).

There are two classes of state changes: fragment pipeline
and geometry pipeline. Fragment pipeline state changes
control the back end, or rasterization stage, of the graphics
pipeline. This state includes the depth test enable (z-buffer
hidden surface removal) and the line stipple definition
(patterned lines such as dash or dot). Geometry pipeline
state changes control the front end of the graphics pipe
line. This state includes transformation matrices, lighting
parameters, and front and back culling parameters. Frag
ment pipeline state changes are generally less costly than
geometry pipeline state changes.

Our systems design focussed on several areas that resulted
in large application performance gains. We realized that
the performance of our state change implementation could
significantly affect application performance. We decided
that this was important enough to require a redesign of
the state change modules and not just tuning. Applying
these considerations led us to implement immediate and
deferred validation schemes and provide redundancy
checks at the beginning of each state change entry point.

Validation. We implemented different immediate and de
ferred validation schemes for different classes of state
changes. Geometry pipeline state changes are handled by
deferred validation because they tend to be more com
plex, requiring massaging of the state. They are also more
interlocked because changing one piece of state requires
modifying another piece of state (for example, matrix
changes cause changes to the light state). For us, deferred
validation resulted in a simple design and increased per
formance, reliability, and maintainability. For fragment
pipeline state changes, we chose immediate validation
because this state is relatively simple and noninterlocked.

Redundancy Checks. Redundancy checks are done for all
OpenGL API calls. Because our analysis showed that ap
plications often call state changing routines with a redun
dant state (for example, new value==current value), we

' Validation is the mechanism that verifies that the current specified state is legal, com
putes derived information from the current state necessary for rendering (for example an
inverse hardware for lighting based on the current model matrix), and loads the hardware
with the new state.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

wanted a design in which this case performs well. There
fore, our design includes redundancy checks at the begin
ning of each state change entry point, which allows a quick
return without exercising the unnecessary validation code.

Results. For state-change intensive applications, these
design decisions put us in a leadership position for
OpenGL application performance, and we achieved
greater than a 2x performance gain over our previous
graphics libraries. Smaller application performance gains
were achieved throughout our OpenGL implementation
with the state-change design.

Conclusion

ISVs and customers indicate that we have met our appli
cation leadership price and performance goals that we set
at the start of the program. We have also exceeded the
performance metrics we committed to at the beginning of
the project. For more information regarding our perfor
mance results, visit the web site:

http://www.spec.org/gpc/opc

For long-term sustainability of our price and performance
leadership, we have continued working closely with our
ISVs to tune our implementation in areas that improve
application performance. In addition, new CPUs are

planned that will allow our implementation to run faster
without any effort on our part, and cost reductions are
continuing in graphics hardware.

The goal to develop an implementation that can support a
wide range of CPU or graphics devices has already been
demonstrated. We support three graphics devices that
have different performance levels (all based on the same
hardware architecture) and a pure software implementa
tion that supports simple frame buffer devices on UNIX
and Windows NT systems.

Bibliography

1. M. Woo, J. Neider, and T. Davis, OpenGL Programming

Guide, second edition, Addison Wesley, 1997.

2. OpenGL Reference Manual, second edition, OpenGL Architec
ture Review Board, 1997.

HP-UX Release 10.20 and later and HP-UX 11.00 and later (m both 32- and 64-bit configura
tions) on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open Limited a registered trademark and the X device is a trademark ofX/Open Company Limited
in the UK and other countries.

Microsoft is 3 U. S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

K e v i n T . L e f e b v r e
This author's biography appears on page 6.

Rober t J .Casey
This author's biography appears on page 41.

â€¢B Michael J.Phelps
Â « T

Ã­ A graduate of the Univer-
w â € ¢

â€¢ sity of Connecticut in
1983 with a BSEE degree,

Michael Phelps is now involved in current
product engineering for the VISUALIZE fx
family of graphics subsystems. He came to HP
in 1994. He was born in Glen Cove, New York.
He is married and enjoys hunting, fishing, and
competitive shooting sports.

Cour tney D .
G o e l t z e n l e u c h t e r
Courtney Goeltzen
leuchter is a software
engineer at the HP Per

formance Desktop Computer Operation. With
HP since 1995, he currently is responsible for
design and development of graphics drivers
and hardware and software interfaces for the
HP 3D graphics accelerators. He graduated
from the University of California at Berkeley
in 1987 with a BA degree in computer science.
Born in Tucson, Arizona, Courtney is
married and has one child. He enjoys hiking,
reading science fiction, and playing with his

computer.

D o n l e y B . H o f f m a n
Donley Hoffman is a soft
ware engineer at the
Workstation Systems

Division and is responsible for maintenance
and support for current and future OpenGL
products. He graduated from New Mexico
State University in 1974 with a BS degree in
computer science. He came to HP in 1985.
Born in Alamogardo, New Mexico, Don is
married and has three children. His outside
interests include skiing, tennis, playing the
oboe and piano, running, reading, hiking,
and snorkling.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The DirectModel Toolk i t : Meet ing the 3D
Graphics Needs of Technical Appl icat ions
Brian E.Cripe

Thomas A. Gaskins

The increasing use of 3D modeling for highly complex mechanical designs has

led to a 3D for systems that can provide smooth interactivity with 3D

models containing millions or even billions of polygons.

Br ian E .Cr ipe
With HP since 1982, Brian
Gripe is a project manager
at the HP Corvallis Imaging

Operation. He is responsible for DirectModel

relationships with developers, MicrosoftÂ®, and
Silicon GraphicsÂ®. He has worked on the HP
ThinkJet and DeskJet printers and the Common
Desktop Environment. He received a BSEE

in 1982 from Rice University. Brian was born
in Anapolis, Brazil, is married and has two
daughters.

Thomas A . Gask ins
Thomas Gaskins was the
project leader for the

â€¢ DirectModel project at the
HP Corvallis Imaging Operation. With HP since
1995, he received a BS degree in mechanical
engineering (1993) from the University of
California at Santa Barbara. He specialized in
numerical methods. His professional interests
include 3D graphics and software architecture.

D irectModel is a toolkit for creating technical 3D graphics applications.

Its primary objective is to provide the performance necessary for interactive

rendering of large 3D geometry models containing millions of polygons.

DirectModel is implemented on top of traditional 3D graphics applications

programming interfaces (APIs), such as Starbase or OpenGLÂ®. It provides the

application developer with high-level 3D model management and advanced

geometry culling and simplification techniques. Figure 1 shows DirectModel's

position within the architecture of a 3D graphics application.

This article discusses the role of 3D modeling in design engineering today, the

challenges of implementing 3D modeling in mechanical design automation

(MDA) toolkit. and the 3D modeling capabilities of the DirectModel toolkit.

Visualization in Technical Applications

T h e R o l e o f 3 D D a t a

3D graphics is a diverse field that is enjoying rapid progress on many fronts.

Significant advances have been made recently in photorealistic rendering,

animation quality, low-cost game platforms, and state-of-the-art immersive

' DirectModel was jointly developed by Hewlett-Packard and Engineering Animation Incorporated of Ames, Iowa.

Figure 1

Appl ica t ion arch i tec ture .

Application

Core
Graphics

API
(OpenGL)

System
Hardware

and
Sof tware

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 2

A low-resolut ion image of a 3D model o f an engine
consist ing of 150,000 polygons.

virtual reality applications. The Internet is populated
with 3D virtual worlds and software catalogs are full of
applications for creating them. An example of a 3D model
is shown in Figure 2.

What do these developments mean for the users of tech
nical applications (the scientists and engineers who pio
neered the use of 3D graphics as a tool for solving com
plex problems)? In many ways this technical community
is following the same trends as the developers and users
of nontechnical applications such as 3D games and inter
active virtual worlds. They are interested in finding less
expensive systems for doing their work, their image
quality standards are rising, and their patience with poor
interactive performance is wearing thin.

However, there are other areas where the unique aspects
of 3D data for technical applications create special require
ments. In many applications the images created from the
3D data that are displayed to the user are the goal. For
example, the player of a game or the pilot in a flight simu
lator cares a lot about the quality and interactivity of

1 Immers ive v i r tua l rea l i ty is a techno logy that " immerses" the v iewer in to a v i r tua l rea l i ty
scene wi th head-mounted d isp lays that change what is v iewed as the user 's head ro ta tes
and with feedback. that sense where the user's hand is posit ioned and apply force feedback.

the images, but cares very little about the data used by the
system to create those images. In contrast, many techni
cal users of 3D graphics consider their data to be the most
important component. The goal is to create, analyze, or
improve the data, and 3D rendering is a useful means to
that end.

This key distinction between data that is the goal itself
and data that is a means to an end leads to major differ
ences in the architectures and techniques for working with
those data sets.

3 D M o d e l C o m p l e x i t y

Understanding the very central role that data holds for
the technical 3D graphics user immediately leads to the
questions of what is that data and what are the significant
trends over time? The short answer is that the size of the
data is big and the amount and complexity of that data is
increasing rapidly. For example, a mechanical engineer
doing stress analysis may now be tackling problems
modeled with millions of polygons instead of the thou
sands that sufficed a few years ago.

The trends in the mechanical design automation (MDA)
industry are good examples of the factors causing this
growth. In the not-too-distant past mechanical design was
accomplished using paper and pencil to create part draw
ings, which were passed on to the model shop to create
prototype parts, and then they were assembled into proto
type products for testing. The first step in computerizing
this process was the advent of 2D mechanical drafting
applications that allowed the mechanical engineers to
replace their drafting boards with computers. However,
the task was still to produce a paper drawing to send to
the model shop. The next step was to replace these 2D
drafting applications with 3D solid modelers that could
model the complete 3D geometry of a part and support
tasks such as static and dynamic design analysis to find
such things as the stress points when the parts move. This
move to 3D solid modeling has had a big impact at many
companies as a new technique for designing parts. How
ever, in many cases it has not resulted in a fundamental
change to the process for designing and manufacturing
whole products.

Advances. In the last few years advances in the mechan
ical design automation industry have increasingly
addressed virtual prototyping and other whole-product

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fahrenheit

Hewlet t -Packard, Microsof t , and Si l icon Graphics are co l labo
rat ing on a pro ject , code-named "Fahrenhei t , " that wi l l def ine
the future of graphics technologies. Based on the creat ion of a
suite of APIs for DirectX on the WindowsÂ® and UNIXÂ® operat
ing systems, the Fahrenhei t pro ject wi l l lead to a common,
ex tens ib le arch i tec ture fo r cap i ta l i z ing on the rap id ly expand
ing marketplace for graphics.

Fahrenhe i t w i l l incorpora te the Microsof t D i rec t3D and Di rec t
Draw APIs w i th comp lementa ry techno log ies f rom HP and
S i l i con Graph ics . HP is con t r ibu t ing D i rec tMode l to th is e f fo r t
and i s work ing w i th M ic roso f t and S i l i con Graph ics to de f ine
the best in tegrat ion of the ind iv idual technologies.

design issues. This desire to create new tools and
processes that allow a design team to design, assemble,
operate, and analyze an entire product in the computer is
particularly strong at companies that manufacture large
and complex products such as airplanes, automobiles,
and large industrial plants. The leading-edge companies
pioneering these changes are finding that computer-based
virtual prototypes are much cheaper to create and easier
to modify than traditional physical prototypes. In addition
they support an unprecedented level of interaction among
multiple design teams, component suppliers, and end users
that are located at widely dispersed sites.

This move to computerized whole-product design is in
turn leading to many new uses of the data. If the design
engineers can interact online with their entire product,
then each department involved in product development
will want to be involved. For example, the marketing
department wants to look at the evolving design while
planning their marketing campaign, the manufacturing
department wants to use the data to ensure the product's
manufacturability, and the sales force wants to start
showing it to customers to get their feedback.

These tasks all drive an increased demand for realistic
models that are complete, detailed, and accurate. For
example, mechanical engineers are demanding new levels
of realism and interactivity to support tasks such as posi
tioning the fasteners that hold piping and detecting inter
ferences created when a redesigned part bumps into one
of the fasteners. This is a standard of realism that is very
different from the photorealistic rendering requirements
of other applications and to the technical user, a higher
priority.

Larger Models. These trends of more people using better
tools to create more complete and complex data sets
combine to produce very large 3D models. To under
stand this complexity, imagine a complete 3D model of
everything you see under the hood of your car. A single
part could require at least a thousand polygons for a de
tailed representation, and a product such as an automo
bile is assembled from thousands of parts. Even a small
product such as an HP DeskJet printer that sits on the
corner of a desk requires in excess of 300,000 triangles1
for a detailed model. A car door with its smooth curves,
collection of controls, electric motors, and wiring har
ness can require one million polygons for a detailed
model â€” the car's power train can consist of 30 million
polygons.2

These numbers are large, but they pale in comparison to
the size of nonconsumer items. A Boeing 777 airplane
contains approximately 132,500 unique parts and over
3,000,000 fasteners,3 yielding a 3D model containing more
than 500,000,000 polygons.4 A study that examined the
complexity of naval platforms determined that a sub
marine is approximately ten times more complex than
an airplane, and an aircraft carrier is approximately ten
times more complex than a submarine.5 3D models con
taining hundreds of millions or billions of polygons are
real today.

As big as these numbers are, the problem does not stop
there. Designers, manufacturers, and users of these com
plex products not only want to model and visualize the
entire product, but they also want to do it in the context
of the manufacturing process and in the context in which
it is used. If the ship and the dry dock can be realistically

O May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

modeled and combined, it will be far less expensive to
find and correct problems before they are built.

Current System Limitat ions
If the task faced by technical users is to interact with very
large 3D models, how are the currently available systems
doing? In a word, badly. Clearly the graphics pipeline
alone is not going to solve the problem even with hard
ware acceleration. Assuming that rendering performance
for reasonable interactivity must be at least 10 frames per
second, a pipeline capable of rendering 1,000,000 poly
gons per second has no hope of interactively rendering
any model larger than 100,000 polygons per frame. Even
the HP VISUALIZE fx6, the world's fastest desktop graph
ics system, which is capable of rendering 4.6 million
triangles per second, can barely provide 10 frames per
second interactivity for a complete HP DeskJet printer
model.

This is a sobering reality faced by many mechanical
designers and other technical users today. Their systems
work well for dealing with individual components but
come up short when facing the complete problem.

Approaches to Solving the Problem
There are several approaches to solve the problem of ren
dering very complex 3D models with interactive perfor
mance. One approach is to increase the performance
of the graphics hardware. Hewlett-Packard and other
graphics hardware vendors are investing a lot of effort
in this approach. However, increasing hardware perfor
mance alone is not sufficient because the complexity
of many customers' problems is increasing faster than
gains in hardware performance. A second approach
that must also be explored involves using software algo
rithms to reduce the complexity of the 3D models that
are rendered.

Complex Data Sets
To understand the general data complexity problem, we
must examine it from the perspective of the application
developer. If a developer is creating a game, then it is
perfectly valid to search for ways to create the imagery
while minimizing the amount of data behind it. This ap
proach is served well by techniques such as extensive

use of texture maps on a relatively small amount of ge
ometry. However, for an application responsible for pro
ducing or analyzing technical data, it is rarely effective to
improve the rendering performance by manually altering
and reducing the data set. If the data set is huge, the ap
plication must be able to make the best of it during 3D
rendering. Unfortunately, the problem of exponential
growth in data complexity cannot be solved through
incremental improvements to the performance of the
current 3D graphics architectures â€” new approaches are
required.

Pixels per Polygon
Although the problem of interactively rendering large 3D
models on a typical engineering workstation is challenging,
it is not intractable. If the workstation's graphics pipeline
is capable of rendering a sustained 200,000 polygons per
second (a conservative estimate), then each frame must
be limited to 20,000 polygons to maintain 10 frames per
second. A typical workstation with a 1280 by 1024 moni
tor provides 1,310,720 pixels. To cover this screen com
pletely with 20,000 polygons, each polygon must have an
average area of 66 pixels. A more realistic estimate is that
the rendered image covers some subset of the screen, say
75 percent, and that several polygons, for example four,
overlap on each pixel, which implies each polygon must
cover an area of approximately 200 pixels.

On a typical workstation monitor with a screen resolution
of approximately 100 pixels per inch, these polygons are a
bit more than 0. 1-inch on a side. Polygons of this size will
create a high enough quality image for most engineering
tasks. This image quality is even more compelling when
you consider that it is the resolution produced during
interactive navigation. A much higher-quality image can
be rendered within a few seconds when the user stops
interacting with the model. Thus, today's 3D graphics
workstations have enough rendering power to produce
the fast, high-quality images required by the technical
user.

Software Algor i thms
The challenge of interactive large model rendering is sort
ing through the millions of polygons in the model and
choosing (or creating) the best subset of those polygons

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

F i g u r e S

Geometry cul l ing.

Geometry Outside
the View Frustum

Occluded
Geometry

Visible
Geometry

that can be rendered in the time allowed for the frame.
Algorithms that perform this geometry reduction fall into
two broad categories: culling, which eliminates unneces
sary geometry, and simplification, which replaces some
set of geometry with a simpler version.

Figure 3 illustrates two types of culling: view frustum

culling (eliminating geometry that is outside of the user's
field of view) and occlusion culling (eliminating geometry
that is hidden behind some other geometry). The article
on page 9 describes the implementation of occlusion cul
ling in the VISUALIZE fx graphics accelerator.

Figures 4 and 5 show two types of simplification. Figure
4 shows a form of geometry simplification called tessella

tion, which takes a mathematical specification of a smooth
surface and creates a polygonal representation at the spe
cified level of resolution.

The decimation simplification technique is shown in
Figure 5. This technique reduces the number of polygons
in a model by combining adjacent faces and edges.

The simplified geometry created by these algorithms is
used by the level of detail selection algorithms, which
choose the appropriate representation to render for each
frame based on criteria such as the distance to the object.

Most 3D graphics pipelines render a model by rendering
each primitive such as a polygon, une, or point individu
ally. If the model contains a million polygons, then the
polygon-rendering algorithm is executed a million times.
In contrast, these geometry reduction algorithms must
operate on the entire 3D model at once, or a significant
portion of it, to achieve adequate gains. View frustum
culling is a good example â€” the conventional 3D graphics
pipeline will perform this operation on each individual
polygon as it is rendered. However, to provide any signifi
cant benefit to the large model rendering problem, the
culling algorithm must be applied globally to a large chunk
of the model so that a significant amount of geometry can
be eliminated with a single operation. Similarly, the geo
metry simplification algorithms can provide greatest gains
when they are applied to a large portion of the model.

D e s i r e d S o l u t i o n

The performance gap (often several orders of magnitude)
between the needs of the technical user and the capabili
ties of a typical system puts developers of technical appli
cations into an unfortunate bind. Developers are often
experts in some technical domain that is the focus of their
applications, perhaps stress analysis or piping layout.
However, the 3D data sets that the applications manage
are exceeding the graphics performance of the systems

Figure 4

Geometry tessel lat ion.

Smooth
Curve

Figure 5

Geometry decimat ion.

Full Detail Geometry Decimated Geometry

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 6

Extended graphics p ipel ine.

Application

Model -Based Operat ions

Simplif ication

Primit ive-Based Operations

Transformation Lighting and
Shading Rasterization

they run on. Developers are faced with the choice of ob
taining the 3D graphics expertise to create a sophisticated
rendering architecture for their applications, or seeing
their applications lag far behind their customers' needs
for large 3D modeling capacity and interactivity.

To develop applications with the performance demanded
by their customers, developers need access to graphics
systems that provide dramatic performance gains for their
tasks and data. As shown in Figure 6, the graphics pipe
line available to the applications must be extended to
include model-based optimizations, such as culling and
simplification, so that it can support interactive rendering
of very large 3D models. When the graphics system pro
vides this level of performance, application developers
are free to focus on improving the functionality of their
applications without concern about graphics perfor
mance. The article on page 9 describes the primitive-
based operations of the pipeline shown in Figure 6.

DirectModel Capabilities
DirectModel is a toolkit for creating technical 3D graphics
applications. The engineer or scientist who must create,
visualize, and analyze massive amounts of 3D data does
not interact directly with DirectModel. DirectModel pro
vides high-level 3D model management of large 3D geo
metry models containing millions of polygons. It uses
advanced geometry simplification and culling algorithms
to support interactive rendering. Figure 1 shows that
DirectModel is implemented on top of traditional 3D
graphics APIs such as Starbase or OpenGL. It extends,
but does not replace, the current software and hardware
3D rendering pipeline.

Key aspects of the DirectModel toolkit include:

â€¢ A Focus on the needs of technical applications that deal
with large volumes of 3D geometry data

â€¢ Capability for cross-platform support of a wide variety
of technical systems

â€¢ Extensive support of MDA applications (for example,
translators for common MDA data types).

Technical Data
As discussed above, the underlying data is often the most
important item to the user of a technical application. For
example, when designers select parts on the screen and
ask for dimensions, they want to know the precise engi
neering dimension, not some inexact dimension that re
sults when the data is passed through the graphics system
for rendering. DirectModel provides the interfaces that
allow the application to specify and query data with this
level of technical precision.

Technical data often contains far more than graphical in
formation. In fact, the metadata such as who created the
model, what it is related to, and the results of analyzing it
is often much larger than the graphical data that is ren
dered. Consequently DirectModel provides the interfaces
that allow an application to create the links between the
graphical data and the vast amount of related metadata.

Components of large models are often created, owned,
and managed by people or organizations that are loosely
connected. For example, one design group might be
responsible for the fuselage of an airplane while a sepa
rate group is responsible for the design of the engines.
DirectModel supports this multiteam collaboration
by allowing a 3D model to be assembled from several
smaller 3D models that have been independently defined
and optimized.

Mult iple Representat ions of the Model
The 3D model is the central concept of DirectModel â€” the
application defines the model and DirectModel is respon
sible for high-performance optimization and rendering of

May 1998 â€¢ The Hewlett-Packard Journal O
© Copr. 1949-1998 Hewlett-Packard Co.

Figure 7

Logical and spat ial organizat ion.

Logical Relationships Spatial Relationships

it. The 3D model is defined hierarchically by the model
graph, which consists of a set of nodes linked together
into a directed, acyclic graph. However, a common prob
lem that occurs when creating a model graph is the con
flict between the needs of the application needs and the
graphics system. The application typically needs to orga
nize the model based on the logical relationships be
tween the components, whereas the graphics system
needs to organize the model based on the spatial rela
tionships so that it can be efficiently simplified, culled,
and rendered. Figure 7 shows two model graphs for a car,
one organized logically and one spatially.

Graphics toolkits that use a single model graph for both
the application's interaction with the model and for ren
dering the model force the application developer to opti
mize for one use while making the other use difficult. In
contrast, DirectModel maintains multiple organizations of
the model so that it can simultaneously be optimized for
several different uses. The application is free to organize
its model graph based on its functional requirements
without consideration of DirectModel's rendering needs.
DirectModel will create and maintain an additional spatial
organization that is optimized for rendering. These multiple
organizations do not significantly increase the memory or

disk usage of DirectModel because the actual geometry,
by far the largest component, is multiply referenced, not
duplicated.

The Problem of Mot ion
Object motion, both predefined and interactive, is critical
to many technical applications. In mechanical design, for
example, users want to see suspension systems moving,
engines rocking, and pistons and valves in motion. To use
a virtual prototype for manufacturing planning, motion is
mandatory. Assembly sequences can be verified only by
observing the motion of each component as it moves into
place along its prescribed path. Users also want to grab
an object or subassembly and move it through space,
while bumping and jostling the object as it interferes with
other objects in its path. In short, motion is an essential
component for creating the level of realism necessary for
full use of digital prototypes.

DirectModel supports this demand for adding motion to
3D models in several ways. Because DirectModel does not
force an application to create a model graph that is opti
mized for fast rendering, it can instead create one that is
optimized for managing motion. Parts that are physically
connected in real life can be connected in the model graph,

day 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

allowing movement to cascade easily through all of the
affected parts. In addition, the data structures and algo
rithms used by DirectModel to optimize the model graph
for rendering are designed for easy incremental update
when some portion of the application's model graph
changes.

Models as Databases
3D models containing millions of polygons with a rich set
of rendering attributes and metadata can easily require
several gigabytes of data. Models of this size are fre
quently too big to be completely held in main memory,
which makes it particularly challenging to support
smooth interactivity.

DirectModel solves this problem by treating the model as a
database that is held on disk and incrementally brought in
and out of main memory as necessary. Elements of the
model, including individual level-of-detail representations,
must come from disk as they are needed and removed
from main memory when they are not needed. In this way
memory can be reserved for the geometric representa
tions currently of interest. DirectModel's large model
capability has as much to do with rapid and intelligent
database interaction as with rendering optimization.

Interactive versus Batch-Mode Data Preparat ion
Applications that deal with large 3D models have a wide
range of capabilities. One application may be simply an
interactive viewer of large models that are assembled from
existing data. Another application may be a 3D editor (for
example, a solid modeler) that supports designing me
chanical parts within the context of their full assembly.
Consequently, an application may acquire and optimize a
large amount of 3D geometry all at once, or the parts of
the model may be created little by little.

DirectModel supports both of these scenarios by allowing
model creation and optimization to occur either interac
tively or in batch mode. If an application has a great deal
of raw geometry that must be rendered, it will typically
choose to provide a batch-mode preprocessor that builds
the model graph, invokes the sorting and simplification
algorithms, and then saves the results. An interactive appli
cation can then load the optimized data and immediately
allow the user to navigate through the data. However, if
the application is creating or modifying the elements of
the model at a slow rate, then it is reasonable to sort and
optimize the data in real time. Hybrid scenarios are also

possible where an interactive application performs incre
mental optimization of the model with any spare CPU
cycles that are available.

The important thing to note in these scenarios is that
DirectModel does not make a strong distinction between
batch and interactive operations. All operations can be
considered interactive and the application developer is
free to employ them in a batch manner when appropriate.

Extensibility
Large 3D models used by technical applications have
different characteristics. Some models are highly regular
with geometry laid out on a fixed grid (for example,
rectangular buildings with rectangular rooms) whereas
others are highly irregular (for example, an automobile
engine with curved parts located at many different
orientations). Some models have a high degree of occlu
sion where entire parts or assemblies are hidden from
many viewing perspectives. Other models have more
holes through them allowing glimpses of otherwise hid
den parts. Some models are spatially dense with many
components packed into a tight space, whereas others
are sparse with sizable gaps between the parts.

These vast differences impact the choice of effective opti
mization and rendering algorithms. For example, highly
regular models such as buildings are amenable to prepro
cessing to determine regions of visibility (for example,
rooms A through E are not visible from any point in room
Z). However, this type of preprocessing is not very effec
tive when applied to irregular models such as an engine.
In addition, large model visualization is a vibrant field of
research with innovative new algorithms appearing regu
larly. The algorithms that seem optimal today may appear
very limiting tomorrow.

DirectModel's flexible architecture allows application
developers to choose the right combination of techniques,
including creating new algorithms to extend the system's
capabilities. All of the DirectModel functions, such as its
culling algorithms, representation generators, tessella-
tors, and picking operators, are extensible in this way.
Extensions fit seamlessly into the algorithms they ex
tend, indistinguishable from the default capabilities in
herent to the toolkit.

In addition, DirectModel supports mixed-mode rendering
in which an application uses DirectModel for some of its
rendering needs and calls the underlying core graphics

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

API directly for other rendering operations. Although Di-
rectModel can fulfill the complete graphics needs of many
applications, it does not require that it be used exclusively.

M u l t i p l a t f o r m S u p p o r t

A variety of systems are commonly used for today's tech
nical 3D graphics applications, ranging from high-end
personal computers through various UNIX-based work
stations and supercomputers. In addition, several 3D
graphics APIs and architectures are either established or
emerging as appropriate foundations for technical applica
tions. Most developers of technical applications support a
variety of existing systems and must be able to migrate
their applications onto new hardware architectures as the
market evolves.

DirectModel has been carefully designed and implemented
for optimum rendering performance on multiple platforms
and operating systems. It presumes no particular graphics
API and is designed to select at run time the graphics API
best suited to the platform or specified by the application.
In addition, its core rendering algorithms dynamically
adapt themselves to the performance requirements of the
underlying graphics pipeline.

C o n c l u s i o n

The increasing use of 3D graphics as a powerful tool for
solving technical problems has led to an explosion in the
complexity of problems being addressed, resulting in 3D
models containing millions or even billions of polygons.

Unfortunately, many of the applications and 3D graphics
systems in use today are built on architectures designed
to handle only a few thousands polygons efficiently.
These architectures are incapable of providing inter
activity with today's large technical data sets.

This problem has created a strong demand for new graph
ics architectures and products that are designed for inter
active rendering of large models on affordable systems.
Hewlett-Packard is meeting this demand with Direct-
Model, a cross-platform toolkit that enables interaction
with large, complex, 3D models.

R e f e r e n c e s

1. Data obtained from design engineers at the Hewlett-Packard
Vancouver Division.

2. Estimates provided by automotive design engineers.

3. S.H. Shokralla, "The 21st Century Jet: The Boeing 777 Multi
media Case Study,"

http://pawn.berkely.edu/~shad/b777/main.html

4. E. Brechner, "Interactive Walkthrough of Large Geometric
Databases," SIGGRAPH tutorial, 1995.

5. J.S. Lombardo, E. Mihalak, and S.R. Osborne, "Collaborative
Virtual Prototype, John Hopkins APL Technical Digest, Vol. 17,
no. 3, 1996.

UNIX is 3 registered trademark of The Open Group.

Microsoft, MS-DOS, Windows, and Windows NT are U.S. registered trademarks of Microsoft
Corporation.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

An Overview of the VISUALIZE fx Graphics
Accelerator Hardware

Noel D. Scott

Danie l M.OIsen

Ethan W.Gannet t

Three graphics accelerator products with different levels of performance are

based on varying combinations of five custom integrated circuits. In addition,

these native are the first ones from Hewlett-Packard to provide native

acceleration for the OpenGLÂ® API.

T J _ h e -he VISUALIZE fx family of graphics subsystems consists of three

products, fx6, fx4, and fx2, and an optional hardware texture mapping module.

These same are built around a common architecture using the same

custom integrated circuits. The primary difference between these controllers

is the number of custom chips used in each product (see Table I).

A chip-level block diagram of the VISUALIZE fx6 product is shown in Figure 1.

This the highest most complex configuration and also the one with the highest

performance in the product line. The VISUALIZE fx4 and the VISUALIZE fx2

products use subsets of the chips used in the fx6. The fx6 and fx4 subsystems

have module, for the optional hardware-accelerated texture map module,

which contains a local texture cache for storage of texture map images. If the

texture accelerator is not present, the bus between the interface chip and the

first raster chip is directly connected.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 1

A chip- level diagram of the VISUALIZE fx6 product.

Geometry Accelerator

â€¢ Up to 8

2 0 0 M H z /
33 Bits

Texture Accelerator

Geometry Chip
â€¢ 3D Geometry and Lighting Acceleration

Texture Chip
â€¢ Texture Rasterization
â€¢ Texture Map Cache Controller
â€¢ Texture Memory Control
â€¢ Texture Interpolation

Interface Chip
â€¢ I/O Buffering
â€¢ 3D Geometry Workload Distribution

and Concentration
â€¢ 2D and 3D Data Path Arbitration
â€¢ 2D Acceleration
â€¢ YUV to RGB Conversion Support
â€¢ Pixel Level Pan and Zoom
â€¢ Pixel Level Image Rotations

Raster Chip
â€¢ Fragment Processing
â€¢ Frame Buffer Control Functions

Video Chip
â€¢ Color Lookup Tables
â€¢ Video Timing
â€¢ Digital-to-Analog Conversion
â€¢ Video-Out Data

Interface Chip
The interface chip provides a PCI 2. 1 (also referred to as
PCI 2X) compliant interface. It operates at up to 66 MHz
in 64-bit mode. Special efforts have been made in the

* PCI = Peripheral Component Interconnect.

design of the buffering and the interface to the PCI. As a
result, the driver is able to sustain writes of 3D geometry
commands to the PCI at almost the theoretical maximum
rates that could be computed for the PCI. The article on
page 51 discusses PCI capability.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Occlusion Culling

The HP fast-break program (page 8) enabled us to understand
customer requirements by analyzing what is important in
OpenGL graphics today. As a result, we developed a technol
ogy called occlusion culling as an extension to OpenGL and
implemented it in the VISUALIZE fx graphics hardware.

We found that the data sets many graphics workstation cus
tomers are trying to visualize are very complex. These data
sets have large numbers of small, complex components that
are not always visible in the final images. For instance, when
rendering an airplane, all of the MCAD parts are present in the
data set represented by potentially millions of polygons that
must be processed. However, when this airplane is viewed
from the outside only the outer surfaces are visible, not the fan
blades of the engine or the seats or bulkheads in the interior.

In a traditional 3D z-buffered graphics system, all polygons in
a scene must be processed by the graphics pipeline because it
is not known a priori which polygons will be visible and which
ones will be occluded (not visible). The notion of occlusion
culling, or removal of occluded objects, has been talked about
in the research community for several years. However, imple
mentations tend to be in software where the performance is
not at a satisfactory level.

In the VISUALIZE fx series of graphics devices, HP developed
a very efficient algorithm that tests objects for visibility.
An application program can very quickly use the occlusion
culling visibility test to determine if a simple bounding box

representation of a more complex part is visible. Since a
bounding box, or more generally a bounding volume, com
pletely encloses the more complex part, it is possible to know
a priori that if the bounding volume is not visible then the
complex part it encloses is not visible. Thus, the part that is
not visible does not need to be processed through the graphics
pipeline. The real benefit of occlusion culling comes when a
very complex part consisting of many vertices can be rejected,
avoiding the expenditure of valuable time to process it.

For very complex data sets, such as the airplane mentioned
above or an automobile, a tremendous performance increase
can be realized by using the HP occlusion culling technology.
To date, several ISVs have begun using occlusion culling in
their applications and are seeing a 25 to 1 00 percent increase
in graphics performance. This magnitude of performance bene
fit typically costs a customer several thousand dollars for the
extra computational horsepower. HP includes this technology
as standard in all VISUALIZE fx series graphics accelerators,
giving even better price and performance results to our
customers.

The future of 3D graphics will continue toward visualizing ever
more complex objects and environments. Occlusion culling
together with HP's DirectModel technology (page 1 9) are
well positioned to be industry leaders in providing the technol
ogy for 3D modeling applications.

The primary responsibility of the interface chip is to sepa
rate the streams of data that arrive from the host SPU into
three paths and arbitrate access among those paths.

3D Path. Typically data from the host CPU looks very
much like the OpenGL API functions themselves. Data
following this first path is routed to the geometry chips.
The geometry chips process the data and return the re
sults to the interface chip. These results are then sent on
to the texture chips or directly to the raster chips if the
texture mapping subsystem is not installed. In either case
the data is transmitted to and through all the texture and
raster chips in the system.

Unbuffered Path. This path passes data directly through
the interface chip to the texture and raster chips. This
provides a bypass method that allows traffic to get around

other pending operations. An example would be a texture
cache download that is required to complete a primitive
that is currently being rasterized, a situation that would
lead to deadlock without the unbuffered path.

2D Path. This path runs directly through the interface chip
to the texture and raster chips. The 2D path differs from
the unbuffered path in the way its priority is handled. The
interface chip manages priority among the three paths as
they all converge on the same set of wires between the
interface chip and the first texture chip. The unbuffered
path goes directly through the interface chip to those
wires and has priority over the other two paths. Data
targeting the 2D path is held off until all preceding 3D
work in the geometry chip has been flushed through to
the first texture chip.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

There is also special circuitry in the interface chip that is
used to accelerate many operations commonly done by
XI lor other 2D APIs.

Buses

The three primary buses in the system are each run at
200 MHz, allowing sustainable transfer rates of more
than 800 Mbytes per second. To control the loading on
the interconnections for these buses, they are built as
point-to-point connections from one chip to the next.

Each chip receives the signals and then retransmits them
to the next chip in the sequence. This requires more pins
on each part, but limits the number of loads on each wire
to a single receiver as well as limiting the wiring length
that signals must traverse. This allows for reliable com
munications despite the high frequency of the buses.

The first of these three buses distributes work to the
geometry chips. This bus starts at the interface chip
and runs through all the geometry chips in the system.
Each geometry chip monitors the data stream as it flows
through the bus and picks off work to operate upon based
on an algorithm that selects the least busy geometry chip.

The second of these buses starts at the last geometry chip
and passes through the others back to the interface chip.
The results of the work done by the geometry chips is
placed on this bus in the same sequence as it was moved
along the first bus. This strict ordering control prevents
certain artifacts from showing up in the final image.

The third bus ties the interface chip to the texture and
frame buffer subsystems. It is wired in a loop that goes
back to the interface chip from the last chip in the chain.
3D operations typically flow from the interface chip to
the chips along this bus, and when they eventually get
back to the end of the loop, they are thrown away.

For 2D operations, such as moving blocks of pixels
around the frame buffer, the operation of the third bus is
somewhat different. The movement of pixel data operates
as a sequence of reads followed by a sequence of writes.
The reads cause data to be dumped from the frame buffer
locations onto the bus and the results travel back to the
interface chip. This data is then associated with new
addresses and sent as writes back down the bus, ending
up back at the frame buffer but in different locations.

Besides the three primary buses mentioned above,
there are three secondary buses in the system. The first

bus connects the interface chip to the video chip. This
provides video control, download of color maps, and
cursor control. The second bus is a connection from each
raster chip to the video chip. This path is used to provide
video refresh data to display frame buffer contents. The
final secondary bus is a connection from each texture
chip to two of the raster chips. This path allows the flow
of filtered texture data into the raster chips for combina
tion with nontexture fragment data.

Geometry Chip
The geometry and lighting chips are responsible for taking
in geometric primitives (points, lines, triangles, and quad
rilaterals) and executing all the operations associated
with the transform stage of the graphics pipeline (see the
article on page 9 for more about the graphics pipeline).
These operations include:

â€¢ Transformation of the coordinates from model space to
eye space

â€¢ Computing a vertex color based on the lighting state,
which consists of up to eight directional or positional
light sources

â€¢ Texture map calculations that include:

D Environment map calculations for texture mapping

D Texture coordinate transformation

D Linear texture coordinate generation

D Texture projection

â€¢ View volume clipping and clipping against six arbitrary
application-specified planes to determine whether a
primitive is completely visible, rejected because it is
completely outside the view area, or needs to be
reduced into its visible components

â€¢ Perspective projection transformation to cause
primitives to look smaller the further away from
the eye they are

â€¢ Setup calculations for rasterization in the raster chip.

There were some interesting problems to solve in the
design of the distribution and coalescing of work up and
down the geometry chip daisy chain. For example, load
balancing, maintaining strict order in the output stream,
and ensuring that operations, such as binding of colors
and normals to vertices, perform as required by OpenGL.

May 1998 â€¢ The Hewlett Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fast Virtual Texturing

Texture mapping, which is wrapping a picture over a three
dimensional object, has been used over the years as a key
feature to enhance photorealism, reduce data set sizes, per
form visual analysis, and aid in simulations (see Figure 1).
Since texturing calculations are computationally expensive
and memory access for large textures can be prohibitively
slow, various workstation graphics vendors have provided
hardware-accelerated texture mapping as a key differentiator
for their product.

A primary drawback of these attempts at hardware accelera
tion is that dedicated local hardware texture memory is limited

Figure 1

A 3D textured skul l . The VISUALIZE fx4 and fx6 subsystems
suppor t a tex ture map acce lerat ion opt ion. P ic tured here
is the use of 3D texture mapping OpenGL extensions wi th
th is opt ion. This feature al lows visual isat ion of 3D data
sets such as MRI images.

in size and is expensive. To take advantage of the perfor
mance boost, graphics applications were constrained to tex
tures that fit in the local hardware texture memory. In other
words, the application was responsible for managing this
hardware resource.

Noticing this obvious artificial application limitation in texturing
functionality, performance, and portability, Hewlett-Packard
introduced, in the VISUALIZE-48, a new concept in hardware
texture mapping called virtual texture mapping. Virtual texture
mapping uses the dedicated local hardware texture memory
as a true texture cache, swapping in and out of the cache the
portions of textures that are needed for rendering a 3D image.
Thus, elimi texturing applications, these limitations were elimi
nated. The application could define and use a texture map of
any size (up to a theoretical limit of 32K texels x 32K texels*)
that would be hardware accelerated, eliminating the need for
the application to be responsible for managing local texture
memory.

Using the local hardware texture memory as a cache also
means that this memory uses only the portions of the texture
maps needed to render the Â¡mage. This efficiency translates
to more and larger texture maps being hardware accelerated
at the same time. Applications that previously could not run
because of texture size limits can now run because of the
unlimited virtual texture size. Also, with only the used por
tions of the texture map being downloaded to the cache, far
less graphics bus traffic occurs.

The system design of virtual texture mapping involved changes
in the HP-UX operating system to support graphics interrupts,
onboard firmware support for these interrupts, the introduction
of an asynchronous texture interrupt managing daemon pro
cess, and the associated texturing hardware described in this

*A texel is one element of a texture.

The output of the geometry chip's daisy chain is passed
back through the interface chip. Generally, for triangle
based primitives, the output takes the form of plane equa
tions. As these floating-point plane equations are returned
from the geometry chip to the interface chip and passed
on to the texture chips, certain addressed locations in the
interface chip will result in the floating-point values being

converted to fixed-point values as they pass through.
These fixed-point values are in a form the raster chips
need to rasterize the primitive.

The daisy-chain design allows up to eight of the geometry
chips to be used although only three are applied in the
case of the VISUALIZE fx6 product at this time.

May 1998 â€¢ The Hewlett-PackardJournal

© Copr. 1949-1998 Hewlett-Packard Co.

article. Having a centralized daemon process manage the
cache allows for cache efficiency, parallel handling of texture
downloads while 3D graphics rendering is occurring, and shar
ing textures among graphics contexts.

The VISUALIZE fx4 and VISUALIZE fx6 texture mapping
options incorporate the second generation advances in virtual
texture mapping. Full OpenGL 1 .1 texture map hardware sup
port has brought about dramatic improvements in texture
map download performance and switching between texture
maps and new extended features such as 3D texture mapping,
shadows (Figure 2), and proper specular lighting on textures

Figure 2

A shadow texture image.

(Figure 3). These features have made these products very
appealing systems for texturing applications on workstation
graphics.

The texture mapping performance on these systems is very
competitive. The VISUALIZE fx6 texture fill rate is about twice
that of the VISUALIZE fx4 texture option. However, fill rates
alone do not describe how these systems perform in a true
application environment. Aggressive texture mapping applica
tion performance comparisons show two to three times per
formance superiority over similarly priced graphics workstation
products.

FigureS

A specular l i t tex ture image. Correct specular l ight ing o f
tex tured images can be ach ieved wi th VISUALIZE fx^and
fx6 texture mapping opt ions.

Texture Chip
The texture chip is responsible for accelerating texture
mapping operations. Towards this end, it performs three
basic functions:

â€¢ Maintains a cache of texture map data, requesting cache
updates for texture values required by current rendering
operations as needed (see "Fast Virtual Texturing" on
page 32)

Generates perspective corrected texture coordinates
from plane equations representing triangles, points, or
lines

Fetches and filters the texture data as specified by the
application based on whether the texture needs to be
magnified or minimized to fit the geometry it is being
mapped to and passes the result on to the raster chips.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Raster Chip
The raster chip rasterizes the geometry into the frame
buffer. This means it determines which pixels are to be
potentially modified and, if so, whether they should be
modified based on various current state values (including
the contents of the z buffer). The raster chip also controls
access to the various buffers that make up the frame
buffer. This includes the image buffer for storing the image
displayed on the screen (potentially two buffers if double
buffering is in effect), an overlay buffer that contains im
ages that overlay the image buffer, the depth or z buffer
for hidden surface removal, the stencil buffer, and an
alpha buffer on the VISUALIZE fx6. To accomplish its
work the raster chip performs four basic functions:

â€¢ Rasterize primitives described as points, lines, or
triangles

â€¢ Apply fragment operations as defined by OpenGL (such
as blending and raster operations)

â€¢ Control of and access to buffer memory, including all
the buffers described earlier

â€¢ Refresh the data stream for the video chip, including
handling windows and overlays.

Video Chip
The video chip provides video functions for controlling
the data flow from the frame buffer to the display and

1 A s tenc i l buf fer is per p ixe l data that can be updated when p ixe l data is wr i t ten and used
to rest r ic t the modi f icat ion of the p ixe l .

' An a lpha buf fer conta ins per p ixe l data that descr ibes coverage in format ion about the
p ixe l and can be used when b lending new p ixe l va lues wi th the current p ixe l va lue.

mapping data from values to color. The features of the
video chip include:

â€¢ Data mapping to colors:

D Two independent 4096-by-24-bit lookup tables

a Four independent 256-by-3-by-8-bit lookup tables
for image planes

a A bypass path for 24-bit true color data

a Two independent 256-by-8-bit lookup tables for
overlay planes

â€¢ Digital-to-analog conversion

â€¢ Video timing

â€¢ Video output.

C o n c l u s i o n

The VISUALIZE fx family of products currently has a sub
stantial lead in not only price/performance measurements,
but it also leads in performance independent of cost.

For information regarding how these systems compare
against the competition, visit the SPEC (an industry stan
dard body of benchmarks) web page at:

http://www.spec.org/gpc

A c k n o w l e d g m e n t s

We would like to thank Paul Martz for the shadow texture
image (Figure 2 on page 33).

Noel D. Scott
Noel Scott is a senior
engineer at the HP Work
station Systems Division.

He is responsible for product definition,
performance projections, and modeling. He
designed the I/O bus for the geometry chip
described in the article. He came to HP in
1981 after receiving a BS degree in computer
engineering from the University of Kansas.

Daniel M.OIsen
A software engineer in
the graphics products
laboratory at the HP

Workstation Systems Division, Daniel Olsen
is responsible for the development of new 3D
products for HP workstations. He has been
with HP since 1994. He has a BSEE degree
(1991) from North Dakota State University
and an MS degree in computer engineering
(1997) from Iowa State University. Daniel
was born in Des Moines, Iowa, is married and
has two daughters. His leisure tune activities
include skiing, home projects, scuba diving,

and aviation.

E t h a n W . G a n n e t t
Ethan Gannett is a lead
engineer for graphics
software development

at the HP Workstation Systems Division. He
came to HP in 1988 after receiving an MS
degree in computer science from Iowa State
University. He also holds a BS degree in
physics (1983) and a BS degree in astronomy
(1983) from the University of Iowa. Born in
Davenport, Iowa, he is married and has one
daughter. He enjoys kayaking, backcountry
camping, telemarking, and hiking.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP Kayak: A PC Works ta t ion w i th Advanced
Graph ics Per fo rmance

Ross A. Cunniff World-leading 3D graphics performance, normally only found in a UNIXÂ®

workstation, is provided in a PC workstation platform running the Windows

NTÂ® operating system. This system was put together with a time to market of

less than one year from project initiation to shipment.

Ross A. Cunniff
A senior software engineer
at the HP Performance
Desktop Computing Opera

tion, Ross Cunniff has been with HP since 1985.
He was the lead software engineer for the 3D
device driver used in the HP Kayak workstation.
He continues to be the lead 3D device driver
engineer for high-end graphics products. He

received a BS degree in mathematics and a BS
degree in computer science in 1985 from the
University of New Mexico. His professional
interests include computer graphics, particu
larly :!l) hardware acceleration.

C omputer graphics workstations are powerful desktop computers used

by a variety of technical professionals to perform their day-to-day work.

Traditionally, such computers have run with a version of the UNIX operating

system. In the past year, however, workstations featuring Intel processors such

as the Pentiumâ„¢ Pro and Pentium II and running the MicrosoftÂ® Windows NT

operating system have begun to gain ground in both capability and market

share. Hewlett-Packard has historically been a leader in the UNIX workstation

business. In February, 1997, Hewlett-Packard began a project to put its high-

performance workstation graphics into a PC workstation platform.

Technical Challenges

Fitting HP workstation graphics into a Windows NT platform was not an easy

task. The task was made more exciting with the addition of schedule pressure.

The schedule gave us only four months to reach functional completion and

only two months after that to finish the quality assurance process. This schedule

was made even more challenging because the hardware was not yet complete.

It was difficult at times to distinguish software defects from hardware defects.

This article describes how we overcame some of the challenges we encountered

while implementing this project.

The Hardware

The hardware for the HP Kayak workstation (Figure 1) is based on the

VISUALIZE fx4 graphics subsystem for real-time 3D modeling (see the article

on page 28). However, a couple of changes were necessary. First, to achieve

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 1

An HP Kayak XW workstat ion.

the performance available in the graphics hardware, the
bus interface had to be changed from the standard Periph
eral Component Interconnect (PCI) to the accelerated
graphics port (AGP), t since no commodity PC chipset
supported PCI 2X. With normal industry-standard PCI, we
would have been limited to 132 Mbytes/s for I/O, which
would have hurt our performance on several important
benchmarks. With the accelerated graphics port, the avail
able I/O bandwidth increased to 262 Mbytes/s.

The second change necessary to the hardware was the
addition of industry-standard VGA graphics. During the

t AGP is a bus that transfers data to and from a graphics accelerator.

boot process of Windows NT, and at occasional intervals
after that, the computer will access VGA graphics registers
directly. To achieve this, a VGA daughtercard was created
that displays its graphics through the video feature connec
tor created for the UNIX video solution. The main graphics
board was modified slightly, making it possible to dynami
cally switch between VGA graphics and VISUALIZE fx4
graphics. Figure 2 shows a hardware block diagram for
an HP Kayak workstation.

Windows NT Driver Archi tecture
The fact that the hardware for the HP Kayak workstation
is similar to the VISUALIZE fx4 hardware, which runs the
UNIX operating system, made the software effort much
easier. However, many significant hurdles had to be over
come to get the software running under Windows NT.

The first challenge was the Windows NT device driver
architecture (Figure 3). On HP-UX*, graphics device
drivers have a large amount of kernel support, allowing
them to access the graphics hardware directly from user-
level code without having to execute any special locking
routines. This direct hardware access (DHA) method is
not present on Windows NT. Instead, all accesses to the
hardware must be performed from the kernel (ring 0 in
Figure 3).

Figure 2

A hardware b lock d iagram for an HP Kayak works ta t ion .

Pentium II
Processor

VISUALIZE fx4
Graphics

Accelerator

AGP Bus

r

Intel 440LX
AGP Controller

PCI Bus

Integrated Peripheral
Controller (USB,

CD-ROM, Keyboard,
ISA Slots, etc.)

Memory Bus 128M Bytes to
51 2M Bytes
of Memory

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fortunately, the VTST'AT.TZE fx4 architecture specifies a
buffered form of communication in which graphical com
mands are placed into command data packets in a large
buffer in the hardware. It was a simple task to modify the
HP-UX drivers to access a software allocated command
data packet buffer instead. When one of these software
buffers gets full, it is passed to the ring 0 driver that for
wards the buffer to the hardware.

The lighter-shaded modules in Figure 3 represent the
libraries that were delivered by HP to support the VISU
ALIZE fx4 hardware. The libraries in ring 3 (Hpicd.dll and
Hpvisxdx.dll) were fairly straightforward ports of the
corresponding UNIX libraries libGL.sl and libddvisxgl.sl.
The libraries in ring 0 (Hpvisxmp.sys, Hpvisxnt.dll, and
Hpvisxkx.dll) had to be created from scratch to support the

Figure 3

The Windows NT dev ice dr iver arch i tec ture.

Device- Independent
Module

(Hpicd.dll)

Dev ice-Speci f ic Module
{Hpvisxdx.dll)

Graphical Device Interface (Gdi32.dll)

Display Driver
IHpvisxntdl l)

OpenGL
Escapes

(Hpvisxkx.dll)

crt
"w

Visual ize fx" Hardware

Windows NT driver model. These modules make up about
30 percent of the size of the ring 3 modules.

I n t e g r a t i o n w i t h 2 D W i n d o w s N T G r a p h i c s

The second challenge was to integrate the 3D OpenGL
graphics support with the standard Windows NT graphical
device interface. Microsoft specifies two methods that can
be used to do this. The first, called a miniclient driver, is
a rasterization-level OpenGL driver that uses the Micro
soft OpenGL software pipeline for lighting and trans
formation. This driver would have been easy to create,
but it would not have allowed us to take advantage of
the hardware transformation and lighting provided by
VISUALIZE fx4.

The second method, called an installable client driver, is
a geometry-level OpenGL driver that leaves implementa
tion of the lighting and transformation pipeline up to the
driver writer. The driver allows us full access to all
OpenGL API routines. This is the route we chose be
cause we already had a full implementation of OpenGL,
which we had created to run on the HP-UX operating
system. This implementation was ported to the installable
client driver model over a span of several weeks, while
we added support for Windows NT multithreading. The
bulk of the VISUALIZE fx4 graphical device interface
driver was written by a separate team of experts without
much consideration for 3D graphics acceleration. This
enabled them to get the Windows NT display driver run
ning in a short amount of time and allowed them to con
tinue enhancing 2D performance without severely im
pacting the 3D device driver team. Some of the results of
these efforts are shown in Figure 4.

I n t e g r a t i n g t h e W i n d o w s N T D r i v e r w i t h R i n g 0

A third challenge was to integrate the Windows NT driver
with the ring 0 portion of the OpenGL driver while main
taining separate code bases for the different teams. We
decided to make our ring 0 driver a separately loadable
library. This decision kept the source code separate. It
enabled much faster edit-compile-debug cycles, since it
allowed us to replace a portion of the ring 0 driver with
out having to reboot the computer. However, the separa
tion added extra complexity because we had two very
different drivers accessing the same piece of hardware.
To solve this problem, we created a variable called a
hardware access token. Each driver has a special token

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 4

(a) A a image in a 20 env i ronment , (b) Severa l 3D programs in a 20 env i ronment

i j G L V S e w - G L V i e w 3 0 ^ | g S h o r t c u t t o k g a d b a t t f V o l u m e 0 i Â £ 1 2 . 2 4 P M

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

that it places in the hardware access token to indicate
that it was the last driver to access the hardware. When a
driver detects that the token is not its own, it executes
procedures known as content save and context restore.

The context save reads all applicable hardware state in
formation from the device into software buffers. The con
text restore places the previously saved state back into
the hardware. This same mechanism is used to mediate
hardware accesses between different processes running
OpenGL.

Integration of VISUALIZE f x4 Architecture
A fourth challenge for the team was the integration of the
VISUALIZE fx4 stacked planes architecture (Figure 5a)

Figure 5

(a) VISUALIZE fx4 stacked frame buffer model, (b) Windows
NT of fscreen f rame buf fer model .

2 Buffer

Buffer 1

Buffer 0

Display Buffer

Offscreen Memory

W i n d o w A
Back Buffer

W i n d o w B
Z Buffer

W i n d o w A
Z Buffer

W i n d o w B
Back Buffer

(b)

into the Windows NT environment. Workstations tradi
tionally have very deep pixels, each pixel having up to
90 bits of information. This information includes support
for such things as transparent overlays, double buffering,
hidden surface removal, and clipping. Windows NT expects
a slightly different model, in which the extra per pixel
information is allocated in offscreen storage when a 3D
rendering context is created (Figure 5b). What this means
is that when the window state is changed (for example,
when a window is moved on the desktop), Windows NT
does not make any special calls to the device driver. This
presented a problem, since our stacked planes architec
ture needs to keep all of the extra information directly
associated with the correct visible screen pixels.

To fix this problem, we used a Windows mechanism
called a window object (Figure 6). The window object
tracks a window state and executes callbacks into our
driver when a window state is modified. This added an
unfortunate amount of complexity into our driver, since
the window state is asynchronous to all other hardware
accesses and not all of the window state information we
need was directly available to us. In addition, applications
expect to be able to mix Windows NT graphical device
interface rendering and 3D OpenGL rendering in the same
window. These two problems required us to add a double

Figure 6

The components of a window object .

Window S la te
Changes

(Move, Resize, Hide,

OpenGL Context
Information

(State Pointers,
Context Save Area,

etc.)

W N D O B J
Window Sta te

Object

WNDOBJ Ca l lbacks
â€¢ Move Buffers
â€¢ Paint Attributes
â€¢ Establish Clipping

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

J
buffering mechanism that actually copies the physical
back buffer bits into the displayed front buffer. This is
significantly slower than the native per pixel double buff
ering of VISUALIZE fx4. However, it fits better into the
Windows NT model and enables all applications to run.
We still enable the native method for applications and
benchmarks that work correctly with it, since it is signifi
cantly faster.

Performance
A fifth challenge for the team was performance. In the
graphics workstation market, performance is usually the
main differentiator. The most popular single measure of
performance in the PC graphics market is the OPC View-
perf benchmark known as CDRS-03.1 By July, 1997, we
had achieved a CDRS-03 rating of 74 â€” a performance
level that exceeded all known competitors. This met our
goals set at the beginning of the project. However, we
were aware that the hardware was capable of supporting
much higher performance. With a goal in mind of a SIG-
GRAPH 97 announcement in August, we redesigned the
device driver. The redesign optimized certain paths
through the driver, enabling much higher performance
for this benchmark and for important applications such as
Unigraphics and Structural Dynamics Research Corpora
tion (SDRC). As a result, we were able to announce a
CDRS-03 rating of over 100 at SIGGRAPH 97.

In addition to benchmark performance, the team focused
on application performance because it is typically this
measure that determines whether a customer will buy the
product. We obtained a variety of in-house applications

and built up expertise in running the applications. We
also obtained data sets that represented typical customer
workloads and adjusted various performance parameters
(such as display list size) to maximize performance for
the benchmark. Using this technique, the performance
with some data sets was up to 100 times faster.

C o n c l u s i o n

With VISUALIZE fx4, Hewlett-Packard has the fastest
Windows NT graphics on the market.1'2'3 Integrated into
the HP Kayak XW platform, the graphics device and its
successors will help Hewlett-Packard maintain its market
leadership.

References

1. CDRS (CDRS-03) Results, OpenGL Performance Characteriza
tion Project:

http://www.specbench.org/gpc/opc/opc.cdrs.html

2. Advanced Visualizer (AWadvs-01) Results, OpenGL Perfor
mance Characterization Project:

http://www.specbench.org/gpc/opc/opc.AWadvs.html

3. Data Explorer (DX-03) Results, OpenGL Performance
Characterization Project:

http://www.specbench.org/gpc/opc/opc.dx.html

HP-UX Release 10.20 and later and HP-UX 1100 and later (in both 32- and 64-bit configura
tions) on all HP 9000 computers are Open Group UNIX 95 branded products.

UNIX is a registered trademark of The Open Group.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

X/Open Limited a registered trademark and the X device is a trademark ofX/Open Company Limited
in the UK and other countries.

Microsoft, MS-DOS, Windows, and Windows NT are U.S. registered trademarks of Microsoft
Corporation.

Pentium is a U.S. trademark of Intel Corporation.

May 1998 â€¢ The Hewlett-Packard Journal o
© Copr. 1949-1998 Hewlett-Packard Co.

Concurrent Engineering in OpenGLÂ® Product
Deve lopment
Robert J.Casey

L. Leonard Lindstone

Time serialized market was reduced when tasks that had been traditionally serialized

were completed in parallel.

f R o b e r t J . C a s e y
A senior engineer in the
graphics products labora
tory at the HP Workstation

Systems Division, Robert Casey was the chief
software architect for the OpenGL product.
Currently, he leads the efforts on Direct 3DÂ®
technology in the graphics products laboratory.
He came to HP in 1987 after receiving a BS de
gree in computer engineering from Ohio State
University. He was born in Columbus, Ohio,
is married and has two children. His outside
interests include skiing, soccer, and wood
working.

L . L e o n a r d L i n d s t o n e
Leonard Lindstone is a
project manager at the IIP
Workstation Systems Divi

sion. He is responsible for software drivers for
new graphics hardware. He joined HP in 1976
at the Calculator Products Division after earn
ing a BSEE degree from the University of Colo
rado. He also has an MS degree in computer
science from Colorado State University. Leon
ard is married and has three children. He en

joys music of all kinds and historical fiction.

C oncurrent engineering is the convergence, in time and purpose, of

interdependent engineering tasks. The benefits of concurrent engineering

versus traditional serial dependency are shown in Figure 1. Careful planning

and management of the concurrent engineering process result in:

â€¢ Faster time to market

â€¢ Lower engineering expenses

â€¢ Improved schedule predictability.

This OpenGL discusses the use of concurrent engineering for OpenGL product

development at the HP Workstation Systems Division.

OpenGL Concurrent Engineering

We applied concurrent engineering concepts in the development of our

OpenGL product in a number of ways, including:

â€¢ Closely coupled system design with partner laboratories

â€¢ Software architecture and design verification

â€¢ Real-use hardware verification

â€¢ Hardware simulation

â€¢ Milestones and communication

â€¢ Joint hardware and software design reviews

â€¢ Test programs written in parallel.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Cultural Enablers
In addition to these technical tactics, the OpenGL team
enjoyed the benefits of several cultural enablers that have
been nurtured over many years to encourage concurrent
engineering. These include early concurrent staffing, an
environment that invites, expects, and supports bottoms-up
ideas to improve time to market, and the use of a focused
program team to use expertise and gain acceptance from
all functional areas and partners.

System Design with Partner Labs
We worked closely with the compiler and operating sys
tem laboratories to design new features to greatly im
prove our performance (see the "System Design Results"
section in the article on page 9). Our early system design
revealed that OpenGL inherently requires approximately
ten times more procedure calls and graphics device ac
cesses than our previous graphics libraries. This large
increase in system use meant we had to minimize these
costs we previously had been able to amortize over a
complete primitive.

We worked closely with our partner laboratories to ensure
success. Our management secured partner acceptance,
funding, and staffing, and the engineers worked on the
joint system design. Changes of this magnitude in the
kernel and the compiler take time, and we could not af
ford to wait until we had graphics hardware and software
running for problems to occur. Rather, we used careful
system performance models and competitive performance
projections to create processor state count budgets for
procedure calls and device access. These performance
goals guided our design, hi fact, our first design to improve
procedure call overhead missed by a few states per call,
so we had to get more creative with our design to arrive
at an industry-leading solution. We managed these de
pendencies throughout the project with frequent commu
nication and interim milestones.

Software Architecture and Design Veri f icat ion
We designed and followed a risk-driven life cycle. To sup
port the concurrent engineering model, we needed a life
cycle that avoided the big bang approach of integrating all

Figure 1

The benef i ts of concurrent engineer ing.

Tradi t ional Ser ia l Dependencies

Concurrent Engineering

Driver and API
Design

Reduce Time from First Si l icon to Manufacturing Release

System
Qualif ication

Driver and API
Design

Compiler
Design

Operating System
Design

Simulated System
Quali f icat ion

System
Qualif ication

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 2

OpenGL concurrent engineer ing techniques.

OpenGLTurn
V e r t i c a l S l i c e O n (G r a p h i c s

(G r a p h i c s S o f t w a r e a n d
S o f t w a r e) H a r d w a r e)

S i m p l e S i m p l e
D e m o n s t r a t i o n I D e m o n s t r a t i o n

System Turn On
(Graphics Sof t
w a r e a n d H a r d
ware, Compiler,

Kernel)

Old Device
Driver

Old
Hardware

VISUALIZE fx
Driver

VISUALIZE fx
Hardware
Simulator

VISUALIZE fx
Driver

VISUALIZE fx
Hardware

Fast
Device
Access

the pieces at the end. This would result in a longer and
less predictable time to market. Instead, we created a
prototyping environment. This environment was initially
created to test the software architecture and early design
decisions. The life cycle included a number of check
points focused on interface specification, design, and
prototyping.

One key prototyping checkpoint in this environment is
what we called our "vertical slice," which represented a
thin, tall slice through the early OpenGL architecture (see
Figure 2). Thin because it supports a small subset of the
full OpenGL functionality, and tall because it exercises all
portions of the software architecture, from the API to the
device driver-level interface. With this milestone, we had
a simple OpenGL demonstration running on our software
prototype.

The objectives of this vertical slice were to verify the
OpenGL software architecture and design, create a proto
typing design environment, and rally the team around this
key deliverable.

Hardware Veri f icat ion
Before we had completed verification of the software ar
chitecture, it became evident that this same environment
needed to be quickly adapted and evolved to handle the
demands of hardware verification. OpenGL features and
performance represented the biggest challenge for the
new VISUALIZE fx hardware. Although this hardware
would also support our legacy APIs (Starbase, PHIGS,
PEX), most of the newness and therefore risk was con
tained in our support of OpenGL. By evolving our proto
typing environment for use as the hardware verification
vehicle, we were able to exercise the hardware model in
real-use scenarios (albeit considerably slower than full
performance).

Evolving this environment for hardware verification re
quired us to take the prototyping further than we would
have for software verification alone. We had to add more
functionality to more fully test the OpenGL features in
hardware. We also had to do so quickly to avoid delaying
the hardware tape release.

This led to our second key prototyping checkpoint, which
we called "OpenGL turn on." This milestone included the
same OpenGL demonstration running on the VISUALIZE
fx hardware simulator. We also added functionality
breadth to the vertical slice (see Figure 2). Doing all this
for a new OpenGL API represented a new level of concur
rent engineering, in that we were running OpenGL pro
grams on a prototype OpenGL library and driver and dis
playing pictures on simulated VISUALIZE fx hardware, all
more than a year before shipments.

The key objective of this milestone was to verify system
design across the API, driver, operating system, and hard
ware. The system generated pictures and, more impor
tantly, spool files (command and data streams that cross
the hardware and software interface). These spool files
are then run against the hardware models to verify hard
ware design under real OpenGL use scenarios.

This prototyping environment has the following
advantages:

â€¢ Reduces risk for system design and component design

D Resolve integration issues early

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

a Identify holes and design or architecture flaws

n Enable prototyping to evaluate design alternatives

â€¢ Enables key deliverables (hardware verification spool
files)

â€¢ Creates exciting focal points for developers

â€¢ Fosters teamwork

â€¢ Enables joint development

â€¢ Provides a means to monitor progress

â€¢ Provides a jump start to our code development phase.

This environment also has potential downsides. We felt
there was a risk that developers would feel that the need
or desire to prototype (for system turn on and hardware
verification) could overshadow the importance of product
design. We did not want to leave engineers with the model:
write some code, give it a try, and ship it if it works.

Thus, to keep the benefits of this environment and miti
gate these potential downsides, we made a conscious de
cision to switch gears from system turn on and prototype
mode to product code development mode. This point
came after we had delivered the spool files required for
hardware verification and before we had reached our
design complete checkpoint. From that point on, we
prototyped only for design purposes, not for enabling
more system functionality. We also created explicit check
points for replacing previously prototyped code with
designed product code. This was an important shift to
avoid shipping prototype code. All product code had to
be designed and reviewed.

H a r d w a r e S i m u l a t i o n

One key factor in our concurrent engineering process is
hardware simulation. A detailed discussion of the hard
ware simulation techniques used in our project are be
yond the scope of this article. Briefly, we use three levels
of hardware simulation:

â€¢ A behavioral model (written in C)

â€¢ A register transfer level model (RTL)

â€¢ A gate model, which models the gate design and imple
mentation.

The advantages of the behavioral model are that it can be
done well before the RTL and gate model so we can use it
with other components and prototypes. The behavioral

model is also significantly faster than the other models
(though still about 100 times slower than the real product),
allowing us to run many simple real programs on it. The
RTL model runs in Verilog and runs about one million
times slower than the real product. This limits the number
and size of test cases that can be run. The gate model is
even slower. Even so, we kept over 30 workstations busy
around the clock for months running these models. Often
a simulation run will use C models for all but one of the
new chips, with the one chip being simulated at the gate
level.

M i l e s t o n e s a n d C o m m u n i c a t i o n

We set up a number of R&D milestones to guide and track
our progress. The vertical slice and OpenGL turn on were
two such key milestones. OpenGL developer meetings
were held monthly to make sure that everyone had a clear
understanding of where we were headed and how each of
the developers' contributions helped us get there.

S o f t w a r e a n d H a r d w a r e D e s i g n R e v i e w s

The hardware and software engineers also held joint de
sign reviews. The value of design reviews is to minimize
defects by enabling all the engineers to have the same
model of the system and to catch design flaws early and
correct them while defect finding and fixing is still inex
pensive in terms of schedule and dollars.

On the software side, the review process focused heavily
on up-front design reviews (where changes are cheaper)
to get the design right. We maintained the importance of
doing inspections but reduced the inspection coverage
from 100 percent to a smaller representative subset of
code, as determined by the review team. We also in
creased the number of reviewers at the design reviews and
reduced the participation as we moved to code reviews.
We maintained a consistent core set of reviewers who
followed the component from design to code review.

T e s t s W r i t t e n i n P a r a l l e l

To bring more parallelism to the development process,
we had an outside organization develop our OpenGL test
programs. By doing so, we were able to begin nightly
regression testing simultaneous with the code completion
checkpoint because the test programs were immediately
available. Historically, the developers have written the
tests following design and coding. This translates into

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

a lull between the code completion checkpoint and the
beginning of the testing phase.

Parallel development of the tests with the design and
implementation of the system was a key success factor
in our ability to ship a high-quality, software-only beta
version of our OpenGL product. No severe defects were
found in this beta product â€” our first OpenGL customer
deliverable.

One thing we learned from using an outside organization
to help with test writing was that writing test plans is
more a part of design than of testing. The developers,
with intimate knowledge of the API and the design, were
able to write much more comprehensive test plans than
the outside organization.

C o n c l u s i o n

We achieved several positive results through the use of
concurrent engineering on our OpenGL product. Ulti
mately, we reduced time to market by several months.
Along the way. we made performance and reliability im
provements in our software and hardware architectures
and implementations, and we likely prevented a chip turn
or two, which would have cost significant time to market.

Silicon Graphics and OpenGL are registered trademarks of Silicon Graphics Inc. in the United
States and other countries.

Direct 3D is a U.S. registered trademark of Microsoft Corporation.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Advanced Display Technologies on HP-UX
Workstat ions

Todd M. Spencer

Pau l M.Anderson

David J.Sweetser

Multiple monitors can be configured as a contiguous viewing space to

provide more screen space so that users can see most, if not all, of their

applications without any special window manipulations.

I . n today's computing environment, screen space is at a premium. The

entire applications can be easily consumed when primary work-specific applications

are used together with browsers, schedulers, mailers, and editors. This forces

the user to continuously shuffle windows, which is both distracting and

unproductive.

The advanced display technologies described here allow users to increase

productivity by reducing the time spent manipulating windows. Three

technologies are discussed:

â€¢ Multiscreen

â€¢ Single logical screen (SLS)

â€¢ SLSclone.

Implementation details and procedures for configuring HP-UX workstations to

use the SLS technology are described in references 1 and 2.

M u l t i s c r e e n

When considering the problem of limited screen space, one solution that

comes to mind is to use a bigger monitor with a higher resolution.

Unfortunately, it is often impractical to add a monitor with a resolution high

enough has accommodate all the data a user wants to view. Although demand has

increased for monitors of higher resolution, such as 2K by 2K pixels, they are

still too expensive for companies to place on every desktop. In addition, these

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

large monitors are cumbersome and heavy. There are also
safety considerations: the monitor must be stable and
properly supported.

A more practical, cost-effective solution is to use addi
tional standalone monitors to increase the amount of
visible screen space. The X Window System (XI 1) stan
dard incorporates a feature known as multiscreen, which
provides this type of environment. In multiscreen configu
rations, a single X server is used to control more than one
graphics device and monitor simultaneously. These types
of configurations are only possible on systems containing
multiple graphics devices.

In these multiscreen scenarios, a single mouse and key
board are shared between screens. This allows the pointer
but not the windows to move between screens. Each ap
plication must be directed to a specific screen to display
its windows. This is done by either using the -display com
mand line argument or by setting the DISPLAY environ
ment variable.

Figure 1 shows a two-monitor multiscreen configuration.
Both monitors are connected to the same workstation and
are controlled by the same X server. This type of configu
ration effectively doubles the visible workspace. For exam
ple, users could have their alternate applications, such as
web browsers, mailers, and schedulers on the left-hand
monitor and their primary applications on the right-hand
monitor. Since the X server controls both screens, the
pointer can move between screens and be used with any
application.

Multiscreen offers the advantage that it will work with
any graphics device. There are no constraints that the
graphics devices be identical or have the same properties.

Figure 1

A mul t iscreen conf igura t ion.
SPU wi th Two

Graphics Cards

display:0.0 display:0.1

Figure 2

Cursor wraparound in a mul t iscreen conf igurat ion.

Screen 1 Screen 2 Screen 3

(a)

(b)

Screen 2 Screen 3

For example, on an HP 9000 Model 715 workstation con
taining an HCRX24 display (a 24-plane device) and an
internal color graphics display (an 8-plane device), the user
can still create a multiscreen configuration. Of course,
those applications directed to the HCRX24 will have ac
cess to 24 planes while those contained on the other are
limited to 8 planes. Currently, the HP-UX X server allows
a maximum of four graphics devices to be used in a multi
screen configuration.

The HP-UX X server also provides several enhancements
to simplify the use of a multiscreen configuration. If a user
has a l-by-3 configuration (Figure 2a), there may be a
need to move the pointer from screen 3 to screen 1. This
requires moving the pointer from screen 3 to screen 2 to
screen 1. By specifying an X server configuration option,
the user can move the pointer off the right edge of screen
3, and the pointer will wrap to screen 1 (Figure 2b). The
same screen wrapping functionality can be provided if the
user has configured the screens in a column. Finally, a
2-by-2 configuration can contain both horizontal and verti
cal screen wrapping.

Although multiscreen is convenient, it has shortcomings.
Namely, the monitors function as separate entities, rather
than as a contiguous space. The different screens within a
multiscreen configuration cannot communicate with one
another with respect to window placement. This means
that windows cannot be moved between monitors. Once
a window is created, it is bound to the monitor where it is
created. Although some third-party solutions are available
to help alleviate this problem, they are costly, inconve
nient (sometimes requiring the application to make code
changes), and lack performance.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The lack of communication between screens with respect
to window placement forces users to direct their applica
tions towards a specific screen at application start time.
After a screen has been selected all additional subwin-
dows will be confined to that screen. With today's larger
applications, it is possible to find that certain screens still
get overcrowded, resulting in the original predicament of
having to iconify and raise windows.

S i n g l e L o g i c a l S c r e e n

To remedy the shortfall of the multiscreen configuration,
HP developed a technology called single logical screen

(SLS).3 SLS has been incorporated into the HP standard
X server product and allows multiple monitors to act as a
single, larger, contiguous screen. As a result, windows can
move across physical screen boundaries, and they can
span more than one physical monitor. In addition, SLS
functionality has been implemented in an application-
transparent manner. This means that any application cur
rently running on HP-UX workstations will run, without
modification, under SLS. Therefore, SLS is not an API that
application writers need to program to or that an applica
tion needs to be aware of. The application simply sees a
large screen. This ease-of-use lets end users take advan
tage of a large workspace without requiring applications
to be rewritten or recompiled.

Many of electronic design automation (EDA) and computer-
aided design applications can benefit from SLS. Some of
these applications, by themselves, can easily occupy an
entire screen while only showing a fraction of the desired
information. For example, with more screen real estate,
an EDA application can simultaneously display wave
forms, schematics, editors, and other data without having
any of this information obscured. To do this on a work
station with only a single monitor would require display
ing the waveforms, schematics, and other items in such
small areas as to be unreadable.

On HP-UX Workstations, a single logical screen actually
represents a collection of homogeneous graphics devices
whose output has been combined into a single screen.
Figure 3, shows an example of a l-by-2 SLS configura
tion. Most HP-UX workstations are not limited to only
two graphics devices. Some models support up to four
devices. When using these graphics devices to create an
SLS environment, any rectangular configuration is allowed.

Figure 3

A l -by-2 SLS conf igurat ion.

display:0.0

S L S c l o n e

SLSclone is similar to the SLS configuration. The differ
ence is that the contents from a selected monitor are
replicated on all other monitors in the configuration (see
Figure 4). A user can dynamically switch between SLS
and SLSclone using an applet being shipped with the
HP-UX 10.20 patch PHSS_12462 or later.

This functionality is useful in an educational or instruc
tional environment. Instead of crowding many users
around a single monitor to view its contents, SLSclone
can be used to pipe these contents to neighboring moni
tors. As with SLS, SLSclone currently supports up to four
physical monitors, depending on the workstation model.

SLSclone functionality easily lends itself to a collaborative
work environment. If additional people enter a user's
office to debug some software source code, for example,
the user can quickly switch the SLS configuration into an
SLSclone configuration, and the debugging screen will be
displayed on all monitors. Also, the additional monitor
can easily be adjusted to the correct height and tilt with
out affecting the original user's view of the display.

Figure 4

An example of a l -by-2 SLSclone conf igurat ion.

displayiO.O

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 5

A hybr id conf igura t ion cons is t ing o f a l -by-2 SLS wi th mul t i
screen.

d i s p l a y e d d i s p l a y : 0 . 1

M o n i t o r i Monitor 2 Mon i to rs

S L S a n d M u l t i s c r e e n

Even with the benefits of SLS, there may be cases in
which a user will want to use SLS and multiscreen at the
same time. For example, a user could have a l-by-2 SLS
configuration acting as one screen, and a third monitor
acting as a second screen. A depiction of this is shown in
Figure 5.

In this type of configuration, a user can move windows
between physical monitors 1 and 2 but not drag a window
from monitor 2 to monitor 3. The pointer, however, can
move between all monitors. This type of hybrid configura
tion can be useful in a software development environment.
All of the necessary editors, compilers, and debuggers can
be used on monitors 1 and 2, and the application can be
run and tested on monitor 3.

If a workstation supports four graphics devices, another
possible hybrid configuration is to use two screens,
each of which consists of a two-screen SLS configuration
(Figure 6).

In this configuration, windows can be moved between
monitors 1 and 2 or between monitors 3 and 4. However, a
window cannot be moved between monitors 2 and 3. As

with all multiscreen configurations, the pointer can move
across all four monitors. These two screens could also
be placed vertically, resulting in a 2-by-2 monitor arrange
ment and a 2-by-l multiscreen configuration.

C o n c l u s i o n

Advanced display configurations can be used to increase
productivity. The increase in screen space facilitates col
laboration and communication of information. We have
also found that these configurations are very useful for
independent software vendors (ISVs) who demonstrate
their applications on HP-UX workstations. They appreci
ate the additional screen space because they are able to
display more information and rapidly describe their prod
ucts without losing their customers' attention.

Finally, the configuration of an advanced display is ac
complished in an easy and straightforward manner through
the HP-UX System Administration Manager (SAM). Addi
tional information on advanced display configurations
and other exciting X server features are available at:
http://www.hp.com/go/xwindow

HP-UX and 10.20 and later and HP-UX 11.00 and later tin both 32- and 64-bit configura
tions) on all HP 9000 computers are Open Group UNIX 95 branded products.
UNIX is a registered trademark of The Open Group.

R e f e r e n c e s

1. T. Spencer and P. Anderson, "Implementation of Advanced
Display Technologies on HP-UX Workstations," Heivlett-Packard

Journal, Vol. 49, no. 2, May 1998 (available online only).
http://www.hp.com/hpj/98may/ma98a7a.htm

2. R. MacDonald, "Hewlett-Packard's Approach to Dynamic
Loading within the X Server," Hewlett-Packard Journal, Vol. 49,
no. 2, May 1998 (available online only).

http://www.hp.com/hpj/98may/ma98a7b.htm

3. M. Allison, P. Anderson, and J. Walls, "Single Logical Screen,"
InterWorks '97 Proceedings, April 1997, pp. 366 - 376.

Figure 6

Two l -by-2 SLS conf igurat ions combined v ia mul t iscreen.

d i s p l a y e d display:!). 1

O May 1998 Â«The Hewlelt-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

n T o d d M . S p e n c e r
â€¢ A software engineer at

â€¢ the HP Workstation Sys-
- ^ * ^ ^ - i t e n i s D i v i s i o n , T o d d

Spencer was responsible for development of
the the SAM component that allows users to
set up multiscreen and single logical screen
configurations. He came to HP in 1989 after
receiving an MS degree in computer science
from the University of Utah. Todd was born
in Utah, is married and has four children. His

outside interests include tropical fish, camp
ing, woodworking, piano (playing classical
music), and jogging.

Â¿L

P a u l M . A n d e r s o n
Paul Anderson is a soft
ware engineer at the HP
Workstation Systems Di

vision. He joined HP in 1996 after receiving a
BS degree in computer science from the Uni
versity of Minnesota. He is currently working
on device drivers for new peripheral technol
ogies. His professional interests include I/O

drivers, operating systems, and networking.
Paul was born in Edina, Minnesota. His out

side interests include hiking, music, and
mountain biking.

David J . Sweetser
With HP since 1977,
David Sweetser is a

I project manager at the
HP Workstation Systems Division. He is re
sponsible for the X server and some of the
client-side X libraries. He received a BSEE
degree and an MSEE degree from Harvey
Mudd College in 1975. He was born in Wood
land, California, is married and has two chil
dren. His outside interests include mountain

biking, hiking, snowshoeing, cross-country
skiing, and white-water rafting.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Delivering PCI in HP B-Class and C-Class
Workstat ions: A Case Study in the Challenges
of Inter fac ing wi th Industry Standards

Ric L. Lewis

Erin A. Handgen

Nicholas J. Ingegneri

Glen T. Robinson

In the highly competitive workstation market, customers demand a wide range

of cost-effective, high-performance I/O solutions. An industry-standard I/O

subsystem allows HP workstations to support the latest I/O technology.

*- ndustry-standard I/O buses like the Peripheral Component Interconnect

(PCI) I/O systems to provide a wide variety of cost-effective I/O functionality.

The desire to include more industry-standard interfaces in computer systems

continues to increase. This article points out some of the specific methodolo

gies used to implement and verify the PCI interface in HP workstations and

describes some of the challenges associated with interfacing with industry-

standard I/O buses.

PCI for Workstat ions

One of the greatest challenges in designing a workstation system is determining

the best way to differentiate the design from competing products. This decision

determines where the design team will focus their efforts and have the greatest

opportunity to innovate. In the computer workstation industry, the focus is

typically on processor performance coupled with high-bandwidth, low-latency

memory of to feed powerful graphics devices. The performance of

nongraphics I/O devices in workstations is increasing in importance, but the

availability of cost-effective solutions is still the chief concern in designing an

I/O subsystem. Rather than providing a select few exotic high-performance I/O

solutions, it is better to make sure that there is a wide range of cost-effective

solutions to provide the I/O functionality that each customer requires. Since

I/O performance is not a primary means of differentiation and since maximum

flexibility with appropriate price and performance is desired, using an

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

industry-standard I/O bus that operates with high-volume
cards from multiple vendors is a good choice.

The PCI bus is a recently established standard that has
achieved wide acceptance in the PC industry. Most new
general-purpose I/O cards intended for use in PCs and
workstations are now being designed for PCI. The PCI
bus was developed by the PCI Special Interest Group
(PCI SIG), which was founded by Intel and now consists
of many computer vendors. PCI is designed to meet today's
I/O performance needs and is scalable to meet future
needs. Having PCI in workstation systems allows the use
of competitively priced cards already available for use in
the high-volume PC business. It also allows workstations
to keep pace with new I/O functionality as it becomes
available, since new devices are typically designed for the
industry-standard bus first and only later (if at all) ported
to other standards. For these reasons, the PCI bus has
been implemented in the HP B-class and C-class work
stations.

PCI Integrat ion Effort
Integrating PCI into our workstation products required
a great deal of work by both the hardware and software
teams. The hardware effort included designing a bus
interface ASIC (application-specific integrated circuit)
to connect to the PCI bus and then performing functional
and electrical testing to make sure that the implementa
tion would work properly. The software effort included
writing firmware to initialize and control the bus interface
ASIC and PCI cards and writing device drivers to allow
the HP-UX operating system to make use of the PCI
cards.

The goals of the effort to bring PCI to HP workstation
products were to:

â€¢ Provide our systems with fully compatible PCI to
allow the support of a wide variety of I/O cards and
functionality

â€¢ Achieve an acceptable performance in a cost-effective
manner for cards plugged into the PCI bus

â€¢ Create a solution that does not cause performance
degradation in the CPU-memory-graphics path or in any
of the other I/O devices on other buses in the system

â€¢ Ship the first PCI-enabled workstations: the Hewlett-
Packard B132, B160, C160, and C180 systems.

Challenges
Implementing an industry-standard I/O bus might seem
to be a straightforward endeavor. The PCI interface has
a thorough specification, developed and influenced by
many experts in the field of I/O bus architectures. There
is momentum in the industry to make sure the standard
succeeds. This momentum includes card vendors work
ing to design I/O cards, system vendors working through
the design issues of the specification, and test and mea
surement firms developing technologies to test the design
once it exists. Many of these elements did not yet exist
and were challenges for earlier Hewlett-Packard propri
etary I/O interface projects.

Although there were many elements in the team's favor
that did not exist in the past, there were still some signifi
cant tasks in integrating this industry-standard bus. These
tasks included:

â€¢ Designing the architecture for the bus interface ASIC,
which provides a high-performance interface between
the internal proprietary workstation buses and PCI

â€¢ Verifying that the bus interface ASIC does what it is
intended to do, both in compliance with PCI and in
performance goals defined by the team

â€¢ Providing the necessary system support, primarily in
the form of firmware and system software to allow
cards plugged into the slots on the bus interface ASIC
to work with the HP-UX operating system.

With these design tasks identified, there still remained
some formidable challenges for the bus interface ASIC
design and verification and the software development
teams. These challenges included ambiguities in the PCI
specification, difficulties in determining migration plans,
differences in the way PCI cards can operate within the
PCI specification, and the unavailability of PCI cards
with the necessary HP-UX drivers.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Architecture

T h e B u s I n t e r f a c e A S I C

The role of the bus interface ASIC is to bridge the HP
proprietary I/O bus, called the general system connect
(GSC) bus, to the PCI bus in the HP B-class and C-class
workstations. Figures 1 and 2 show the B-class and
C-class workstation system block diagrams with the bus
interface ASIC bridging the GSC bus to the PCI bus. The
Runway bus shown in Figure 2 is a high-speed processor-
to-memory bus.1

The bus interface ASIC maps portions of the GSC bus
address space onto the PCI bus address space and vice
versa. System firmware allocates addresses to map be
tween the GSC and PCI buses and programs this informa
tion into configuration registers in the bus interface ASIC.
Once programmed, the bus interface ASIC performs the
following tasks:

â€¢ Forward writes transactions from the GSC bus to the
PCI bus. Since the write originates in the processor, this
task is called a processor I/O write.

â€¢ Forward reads requests from the GSC bus to the PCI
bus, waits for a PCI device to respond, and returns the

Figure 1

HP B-c lass workstat ion b lock d iagram.

To Main Memory

GSC Bus

PCI Bus n
PCI Slots GSC Slots

GSC = General System Connect
PCI = Per iphera l Component In terconnect

read data from the PCI bus back to the GSC bus. Since
the read originates in the processor, this task is called
a processor I/O read.

â€¢ Forward writes transactions from the PCI bus to the
GSC bus. Since the destination of the write transaction
is main memory, this task is called a direct memory
access (DMA) write.

â€¢ Forward reads requests from the PCI bus to the GSC
bus, waits for the GSC host to respond, and returns the
read data from the GSC bus to the PCI bus. Since the
source of the read data is main memory, this task is
called a DMA read.

Figure 3 shows a block diagram of the internal architec
ture of the bus interface ASIC. The bus interface ASIC
uses five asynchronous FIFOs to send address, data, and
transaction information between the GSC and PCI buses.

Figure 2

HP C-c lass workstat ion b lock d iagram.

R u n w a y .
B M e m o r y C o n t r o l l e r

PCI Bus

P C I S l o t s G S C S l o t s

GSC = General System Connect
PCI = Per iphera l Component In terconnect

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 3

A block d iagram of the arch i tecture for the bus in ter face ASIC.

CPU PCI Slots

A FIFO is a memory device that has a port for writing data
into the FIFO and a separate port for reading data out of
the FIFO. Data is read from the FIFO in the same order
that it was written into the FIFO. The GSC bus clock is
asynchronous to the PCI bus clock. For this reason, the
FIFOs need to be asynchronous. An asynchronous FIFO
allows the data to be written into the FIFO with a clock
that is asynchronous to the clock used to read data from
the FIFO.

Data flows through the bus interface ASIC are as follows:

â€¢ Processor I/O write:

n The GSC interface receives both the address and the
data for the processor I/O write from the GSC bus and
loads them into the processor I/O FIFO.

D The PCI interface arbitrates for the PCI bus.

D The PCI interface unloads the address and data from
the processor I/O FIFO and masters the write on the
PCI bus.

Processor I/O read:

D The GSC interface receives the address for the pro
cessor I/O read from the GSC bus and loads it into the
processor I/O FIFO.

D The PCI interface arbitrates for the PCI bus.

D The PCI interface unloads the address from the pro
cessor I/O FIFO and masters a read on the PCI bus.

D The PCI interface waits for the read data to return and
loads the data into the processor I/O read return FIFO.

n The GSC interface unloads the processor I/O read
return FIFO and places the read data on the GSC bus.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

DMA Write:

The PCI interface receives both the address and the
data for the DMA write from the PCI bus and loads
them into the DMA FIFO.

D The PCI interface loads control information for the
write into the DMA transaction FIFO.

= The GSC interface arbitrates for the GSC bus.

D The GSC interface unloads the write command from
the DMA transaction FIFO, unloads the address and
data from the DMA FIFO, and masters the write on
the GSC bus.

â€¢ DMA Read:

D The PCI interface receives the address for the DMA
read from the PCI bus and loads it into the DMA FIFO.

D The GSC interface arbitrates for the GSC bus.

D The GSC interface unloads the address from the DMA
FIFO and masters a read on the GSC bus

D The GSC interface then waits for the read data to
return and loads the data into the DMA read return
FIFO.

n The PCI interface unloads the DMA read return FIFO
and places the read data on the PCI bus.

Architectural Challenges
One of the difficulties of joining two dissimilar I/O buses is
achieving peak I/O bus performance despite the fact that
the transaction structures are different for both I/O buses.
For example, transactions on the GSC bus are fixed length
with not more than eight words per transaction while
transactions on the PCI bus are of arbitrary length. It is
critical to create long PCI transactions to reach peak
bandwidth on the PCI bus. For better performance and
whenever possible, the bus interface ASIC coalesces mul
tiple processor I/O write transactions from the GSC bus
into a single processor I/O write transaction on the PCI
bus. For DMA writes, the bus interface ASIC needs to de
termine the optimal method of breaking variable-size PCI
transactions into one-, two-, four-, or eight-word GSC
transactions. The PCI interface breaks DMA writes into
packets and communicates the transaction size to
the GSC interface through the DMA transaction FIFO.

Another difficulty of joining two dissimilar I/O buses is
avoiding deadlock conditions. Deadlock conditions can
occur when a transaction begins on both the GSC and PCI
buses simultaneously. For example, if a processor I/O read
begins on the GSC bus at the same time a DMA read be
gins on the PCI bus, then the processor I/O read will wait
for the DMA read to be completed before it can master its
read on the PCI bus. Meanwhile, the DMA read will wait
for the processor I/O read to be completed before it can
master its read on the GSC bus. Since both reads are wait
ing for the other to be completed, we have a deadlock
case. One solution to this problem is to detect the dead
lock case and retry or split one of the transactions to
break the deadlock. In general, the bus interface ASIC
uses the GSC split protocol to divide a GSC transaction
and allow a PCI transaction to make forward progress
whenever it detects a potential deadlock condition.

Unfortunately, the bus interface ASIC adds more latency
to the round trip of DMA reads. This extra latency can
have a negative affect on DMA read performance. The
C-class workstation has a greater latency on DMA reads
than the B-class workstation. This is due primarily to the
extra layer of bus bridges that the DMA read must traverse
to get to memory and back (refer to Figures 1 and 2).
The performance of DMA reads is important to outbound
DMA devices such as network cards and disk controllers.
The extra read latency is hidden by prefetching consecu
tive data words from main memory with the expectation
that the I/O device needs a block of data and not just a
word or two.

Open Standard Challenges
The PCI bus specification, like most specifications, is not
perfect. There are areas where the specification is vague
and open to interpretation. Ideally, when we find a vague
area of a specification, we investigate how other design
ers have interpreted the specification and follow the
trend. With a proprietary bus this often means simply con
tacting our partners within HP and resolving the issue.
With an industry-standard bus, our partners are not within
the company, so resolving the issue is more difficult. The
PCI mail reflector, which is run by the PCI SIG at
www.pcsig.com, is sometimes helpful for resolving such
issues. Monitoring the PCI mail reflector also gives the

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

benefit of seeing what parts of the PCI specification ap
pear vague to others. Simply put, engineers designing to
a standard need a forum for communicating with others
using that standard. When designing to an industry stan
dard, that forum must by necessity include wide represen
tation from the industry.

The PCI specification has guidelines and migration plans
that PCI card vendors are encouraged to follow. In prac
tice, PCI card vendors are slow to move from legacy
standards to follow guidelines or migration plans. For
example, the PCI bus supports a legacy I/O address
space that is small and fragmented. The PCI bus also has
a memory address space that is large and has higher write
bandwidth than the I/O address space. For obvious rea
sons, the PCI specification recommends that all PCI cards
map their registers to the PCI I/O address space and the
PCI memory address space so systems will have the most
flexibility in allocating base addresses to I/O cards. In prac
tice, most PCI cards still only support the PCI address I/O
space. Since we believed that the PCI I/O address space
would almost never be used, trade-offs were made in the
design of the bus interface ASIC that compromised the
performance of transactions to the PCI I/O address space.

Another example in which the PCI card vendors follow
legacy standards rather than PCI specification guidelines
is in the area of PCI migration from 5 volts to 3.3 volts.
The PCI specification defines two types of PCI slots: one
for a 5-volt signaling environment and one for a 3.3-volt
signaling environment. The specification also defines
three possible types of I/O cards: 5-volt only, 3.3-volt only,
or universal. As their names imply, 5-volt-only and 3.3-volt-
only cards only work in 5-volt and 3.3-volt slots respec
tively. Universal cards can work in either a 5-volt or
3.3-volt slot. The PCI specification recommends that PCI
card vendors only develop universal cards. Even though
it costs no more to manufacture a universal card than a
5-volt card, PCI card vendors are slow to migrate to uni
versal cards until volume platforms (that is, Intel-based
PC platforms) begin to have 3.3-volt slots.

Verification

Veri f icat ion Methodology and Goals
The purpose of verification is to ensure that the bus inter
face ASIC correctly meets the requirements described in

' Legacy refers to the Inte l I /O port space.

the design specification. In our VLSI development process
this verification effort is broken into two distinct parts
called phase-1 and phase-2. Both parts have the intent of
proving that the design is correct, but each uses different
tools and methods to do so. Phase-1 verification is carried
out on a software-based simulator using a model of the
bus interface ASIC. Phase-2 verification is carried out on
real chips in real systems.

Phase-1. The primary goals of phase-1 verification can be
summarized as correctness, performance, and compliance.
Proving correctness entails showing that the Verilog model
of the design properly produces the behavior detailed in
the specification. This is done by studying the design
specification, enumerating a function list of operations
and behaviors that the design is required to exhibit, and
generating a suite of tests that verify all items on that
function list. Creating sets of randomly generated trans
action combinations enhances the test coverage by expos
ing the design to numerous corner cases.

Performance verification is then carried out to prove that
the design meets or exceeds all important performance
criteria. This is verified by first identifying the important
performance cases, such as key bandwidths and latencies,
and then generating tests that produce simulated loads
for performance measurement.

Finally, compliance testing is used to prove that the bus
protocols implemented in the design will work correctly
with other devices using the same protocol. For a de
sign such as the bus interface ASIC that implements an
industry-standard protocol, special consideration was
given to ensure that the design would be compatible with
a spectrum of outside designs.

Phase-2. This verification phase begins with the receipt
of the fabricated parts. The effort during this phase is pri
marily focused on testing the physical components, with
simulation techniques restricted to the supporting role of
duplicating and better understanding phenomenon seen
on the bench. The goals of phase-2 verification can be
summarized as compliance, performance, and compati
bility. Therefore, part of phase-2 is spent proving that the
physical device behaves on the bench the same as it did
in simulation. The heart of phase-2, however, is that the
design is finally tested for compatibility with the actual
devices that it will be connected to in a production system.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Verif ication Challenges
From the point of view of a verification engineer, there
are benefits and difficulties in verifying the implementa
tion of an industry-standard bus as compared to a pro
prietary bus. One benefit is that since PCI is an industry
standard, there are plenty of off-the-shelf simulation and
verification tools available. The use of these tools greatly
reduces the engineering effort required for verification,
but at the cost of a loss of control over the debugging and
feature set of the tools.

The major verification challenge (particularly in phase-1)
was proving compliance with the PCI standard. When
verifying compliance with a proprietary standard there
are typically only a few chips that have to be compatible
with one another. The design teams involved can resolve
any ambiguity in the bus specification. This activity tends
to involve only a small and well-defined set of individuals.
In contrast, when verifying compliance with an open stan
dard there is usually no canonical source that can provide
the correct interpretation of the specification. Therefore,
it is impossible to know ahead of time where devices will
differ in their implementation of the specification. This
made it somewhat difficult for us to determine the specific
tests required to ensure compliance with the PCI standard.
In the end, it matters not only how faithfully the specifica
tion is followed, but also whether or not the design is com
patible with whatever interpretation becomes dominant.

The most significant challenge in phase-2 testing came in
getting the strategy to become a reality. The strategy de
pended heavily on real cards with real drivers to demon
strate PCI compliance. However, the HP systems with
PCI slots were shipped before any PCI cards with drivers
were supported on HP workstations. Creative solutions
were found to develop a core set of drivers to complete
the testing. However, this approach contributed to having
to debug problems closer to shipment than would have
been optimal. Similarly, 3.3-volt slots were to be sup
ported at first shipment. The general unavailability of
3.3-volt or universal (supporting 5 volts and 3.3 volts)
cards hampered this testing. These are examples of the
potential dangers of "preenabling" systems with new
hardware capability before software and cards to use
the capability are ready.

An interesting compliance issue was uncovered late in
phase-2. One characteristic of the PA 8000 C-class system
is that when the system is heavily loaded, the bus interface

ASIC can respond to PCI requests with either long read
latencies (over 1 us before acknowledging the transaction)
or many (over 50) sequential PCI retry cycles. Both behav
iors are legal with regard to the PCI 2.0 bus specification,
and both of them are appropriate given the circumstances.
However, neither of these behaviors is exhibited by Intel's
PCI chipsets, which are the dominant implementation of
the PCI bus in the PC industry. Several PCI cards worked
fine in a PC, but failed in a busy C-class system. The PCI
card vendors had no intention of designing cards that
were not PCI compliant, but since they only tested their
cards in Intel-based systems, they never found the prob
lem. Fortunately, the card vendors agreed to fix this issue
on each of their PCI cards. If there is a dominant imple
mentation of an industry standard, then deviating from
that implementation adds risk.

Firmware
Firmware is the low-level software that acts as the inter
face between the operating system and the hardware.
Firmware is typically executed from nonvolatile memory
at startup by the workstation. We added the following
extensions to the system firmware to support PCI:

â€¢ A bus walk to identify and map all devices on the PCI
bus

â€¢ A reverse bus walk to configure PCI devices

â€¢ Routines to provide boot capability through specified
PCI cards.

The firmware bus walk identifies all PCI devices con
nected to the PCI bus and records memory requirements
in a resource request map. When necessary, the firmware
bus walk will traverse PCI-to-PCI bridges. If a PCI device
has Built-in Self Test (BIST), the BIST is run, and if it fails,
the PCI device is disabled and taken out of the resource
request map. As the bus walk unwinds, it initializes bridges
and allocates resources for all of the downstream PCI
devices.

Firmware also supports booting the HP-UX operating sys
tem from two built-in PCI devices. Specifically, firmware
can load the HP-UX operating system from either a disk
attached to a built-in PCI SCSI chip or from a file server
attached to a built-in PCI 100BT LAN chip.

A PCI-to-PCI bridge connects two PCI buses, forwarding transactions from one to the
other.

May 1998 â€¢ The Hewlett Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

F i r m w a r e C h a l l e n g e s

The first challenge in firmware was the result of another
ambiguity in the PCI specification. The specification does
not define how soon devices on the PCI bus must be ready
to receive their first transaction after the PCI bus exits
from reset. Several PCI cards failed when they were
accessed shortly after PCI reset went away. These cards
need to download code from an attached nonvolatile
memory before they will work correctly. The cards begin
the download after PCI reset goes away, and it can take
hundreds of milliseconds to complete the download. Intel
platforms delay one second after reset before using the
PCI bus. This informal compliance requirement meant
that firmware needed to add a routine to delay the first
access after the PCI bus exits reset.

Interfacing with other ASICs implementing varying levels
of the PCI specification creates additional challenges.
Compliance with PCI 2.0 (PCI-to-PCI) bridges resulted in
two issues for firmware. First, the bridges added latency to
processor I/O reads. This extra latency stressed a busy
system and caused some processor I/O reads to timeout
in the processor and bring down the system. The firm
ware was changed so that it would reprogram the proces
sor timeout value to allow for this extra delay. The second
issue occurs when PCI 2.0 bridges are stacked two or
more layers deep. It is possible to configure the bridges
such that the right combination of processor I/O reads
and DMA reads will cause the bridges to retry each others
transactions and cause a deadlock or starve one of the
two reads. Our system firmware fixes this problem by
supporting no more than two layers of PCI-to-PCI bridges
and configuring the upstream bridge with different retry
parameters than the downstream bridge.

Operating System Support
The HP-UX operating system contains routines provided
for PCI-based kernel drivers called PCI services. The first
HP-UX release that provides PCI support is the 10.20 re
lease. An infrastructure exists in the HP-UX operating
system for kernel-level drivers, but the PCI bus introduced
several new requirements. The four main areas of direct
impact include context dependent I/O, driver attachment,
interrupt service routines (ISR), and endian issues. Each
area requires special routines in the kernel's PCI services.

C o n t e x t D e p e n d e n t I / O

In the HP-UX operating system, a centralized I/O services
context dependent I/O (CDIO) module supplies support
for drivers that conform to its model and consume its
services. Workstations such as the C-class and B-class
machines use the workstation I/O services CDIO (WSIO
CDIO) for this abstraction layer. The WSIO CDIO provides
general I/O services to bus-specific CDIOs such as EISA
and PCI. Drivers that are written for the WSIO environ
ment are referred to as WSIO drivers. The services pro
vided by WSIO CDIO include system mapping, cache
coherency management, and interrupt service linkage. In
cases where WSIO CDIO does need to interface to the I/O
bus, WSIO CDIO translates the call to the appropriate bus
CDIO. For the PCI bus, WSIO CDIO relies on services in
PCI CDIO to carry out bus-specific code.

Ideally, all PCI CDIO services should be accessed only
through WSIO CDIO services. However, there are a
number of PCI-specific calls that cannot be hidden with
a generic WSIO CDIO interface. These functions include
PCI register operations and PCI bus tuning operations.

D r i v e r A t t a c h m e n t

The PCI CDIO is also responsible for attaching drivers to
PCI devices. The PCI CDIO completes a PCI bus walk,
identifying attached cards that had been set up by firm
ware. The PCI CDIO initializes data structures, such as
the interface select code (ISC) structure, and maps the
card memory base register. Next, the PCI CDIO calls the
list of PCI drivers that have linked themselves to the PCI
attach chain.

The PCI driver is called with two parameters: a pointer
to an ISC structure (which contains mapping information
and is used in most subsequent PCI services calls) and an
integer containing the PCI device's vendor and device IDs.
If the vendor and device IDs match the driver's interface,
the driver attach routine can do one more check to verify
its ownership of the device by reading the PCI subsystem
vendor ID and subsystem ID registers in the configuration
space. If the driver does own this PCI device, it typically
initializes data structures, optionally links in an interrupt
service routine, initializes and claims the interface, and
then calls the next driver in the PCI attach chain.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

I n t e r r u p t S e r v i c e R o u t i n e s

The PCI bus uses level-sensitive, shared interrupts. PCI
drivers that use interrupts use a WSIO routine to register
their interrupt service routine with the PCI CDIO. When a
PCI interface card asserts an interrupt, the operating sys
tem calls the PCI CDIO to do the initial handling. The PCI
CDIO determines which PCI interrupt line is asserted and
then calls each driver associated with that interrupt Une.

The PCI CDIO loops, calling drivers for an interrupt line
until the interrupt line is deasserted. When all interrupt
lines are deasserted, the PCI CDIO reenables interrupts
and returns control to the operating system. To prevent
deadlock, the PCI CDIO has a finite (although large) num
ber of times it can loop through an interrupt level before
it will give up and leave the interrupt line disabled. Once
disabled, the only way to reenable the interrupt is to re
boot the system.

P C I E n d i a n I s s u e s

PCI drivers need to be cognizant of endian issues. The
PCI bus is inherently little endian while the rest of the
workstation hardware is big endian. This is only an issue
with card register access when the register is accessed in
quantities other than a byte. Typically there are no endian
issues associated with data payload since data payload is
usually byte-oriented. For example, network data tends
to be a stream of byte data. The PCI CDIO provides one
method for handling register endian issues. Another
method lies in the capability of some PCI interface chips
to configure their registers to be big or little endian.

O p e r a t i n g S y s t e m S u p p o r t C h a l l e n g e s

We ran into a problem when third-party card developers
were porting their drivers to the HP-UX operating system.
Their drivers only looked at device and vendor identifiers
and claimed the built-in LAN inappropriately. Many PCI
interface cards use an industry-standard bus interface
chip as a front end and therefore share the same device
and vendor IDs. For example, several vendors use the
Digital 2114X family of PCI-to-10/100 Mbits/s Ethernet
LAN controllers, with each vendor customizing other
parts of the network interface card with perhaps different
physical layer entities. It is possible that a workstation

1 Little endian and big endian are conventions that define how byte addresses are as
signed places data that is two or more bytes long. The little endian convention places bytes
with lower significance at lower byte addresses. (The word is stored "little-end-first.")
The big ad convention places bytes with greater significance at lower byte ad
dresses. (The word is stored "big-end-first.")

could be configured with multiple LAN interfaces having
the same vendor and device ID with different subsystem
IDs controlled by separate drivers. A final driver attach
ment step was added to verify the driver's ownership of
the device. This consisted of reading the PCI subsystem
vendor ID and subsystem ID registers in the configuration
space.

The HP-UX operating system does not have the ability to
allocate contiguous physical pages of memory. Several
PCI cards (for example, SCSI and Fibre Channel) require
contiguous physical pages of memory for bus master task
lists. The C-class implementation, which allows virtual
DMA through TLB (translation lookaside buffer) entries,
is capable of supplying 32K bytes of contiguous memory
space. In the case of the B-class workstation, which does
not support virtual DMA, the team had to develop a work
around that consisted of preallocating contiguous pages
of memory to enable this class of devices.

C o n c l u s i o n

PCI and Interoperability. We set out to integrate PCI into
the HP workstations. The goal was to provide our systems
with access to a wide variety of industry-standard I/O
cards and functionality. The delivery of this capability
required the creation and verification of a bus interface
ASIC and development of the appropriate software sup
port in firmware and in the HP-UX operating system.

Challenges of Interfacing with Industry Standards. There
are many advantages to interfacing with an industry
standard, but it also comes with many challenges. In de
fining and implementing an I/O bus architecture, perfor
mance is a primary concern. Interfacing proprietary and
industry-standard buses and achieving acceptable perfor
mance is difficult. Usually the two buses are designed with
different goals for different systems, and determining the
correct optimizations requires a great deal of testing and
redesign.

Maintaining compliance with an industry standard is an
other major challenge. It is often like shooting at a moving
target. If another vendor ships enough large volumes of a
nonstandard feature, then that feature becomes a de facto
part of the standard. It is also very difficult to prove that
the specification is met. In the end, the best verification
techniques for us involved simply testing the bus interface
ASIC against as many devices as possible to find where the
interface broke down or performed poorly.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Finally, it is difficult to drive development and verification
unless the functionality is critical to the product being
shipped. The issues found late in the development cycle
for the bus interface ASIC could have been found earlier
if the system had required specific PCI I/O functionality
for initial shipments. The strategy of preenabling the
system to be PCI compatible before a large number of
devices became available made it difficult to achieve the
appropriate level of testing before the systems were
shipped.

Successes. The integration of PCI into the HP workstations
through design and verification of the bus interface ASIC
and the development of the necessary software components
has been quite successful. The goals of the PCI integration
effort were to provide fully compatible, high-performance
PCI capability in a cost-effective and timely manner. The
design meets or exceeds all of these goals. The bandwidth
available to PCI cards is within 98 percent of the bandwidth
available to native GSC cards. The solution was ready in
time to be shipped in the first PCI-enabled HP workstations
B132, B160, C160, andClSO.

The bus-bridge ASIC and associated software have since
been enhanced for two new uses in the second generation
of PCI on HP workstations. The first enhancement pro
vides support for the GSC-to-PCI adapter to enable specific

PCI functionality on HP server GSC I/O cards. The sec
ond is a version of the bus interface supporting GSC-2x
(higher bandwidth GSC) and 64-bit PCI for increased
bandwidth to PCI graphics devices on HP C200 and C240
workstations.

Acknowledgments

This article is a summary of some of the challenges expe
rienced by numerous team members involved in the inte
gration of PCI into workstations. We would like to specifi
cally thank several of those team members who helped
contribute to and review this article. George Letey, Frank
Lettang, and Jim Peterson assisted with the architecture
section. Vicky Hansen, Dave Klink, and J.L. Marsh
provided firmware details. Matt Dumm and Chris Hyser
reviewed the operating system information.

References

1. W. Bryg, K. Chan, and N. Fiduccia, "A High-Performance, Low-
Cost Multiprocessor Bus for Workstations and Midrange Servers,"
Hewlett-Packard Journal, Vol. 47, no. 1, February 1996, p. 18.

HP-UX Release 10.20 and later and HP-UX 1100 and later (in both 32- and 64-bit configurations)
on all HP 9000 computers are Open Group UNIX 95 branded products.
UNIX is a registered trademark of the The Open Group.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Ric L. Lewis
A project manager at the
HP Workstation Systems
Division, Ric Lewis was

responsible for managing the development
of the PCI bus interface ASIC. He came to HP
in 1987 after receiving a BSEE degree from

Utah State University. He also has an MSEE
degree (1993) from Stanford University and
an MBA (1992) from Santa Clara University.
Ric was born in Twin Falls, Idaho, and he is
married and has one son. His outside interests
include basketball, mountain biking, and
skiing.

Nicholas J . Ingegner i
A hardware design engi
neer at the HP Fort Col
lins Systems Laboratory,

Nicholas Ingegneri was the lead verification
engineer for the PCI bus interface ASIC. He
has a BSEE degree (1989) from the Univer
sity of Nevada at Reno and an MSEE degree
(1994) from Stanford University. He came

to HP in 1990. His outside interests include
travel and camping.

Er in A . Handgen
Erin Handgen is a techni
cal contributor at the HP
Workstation Systems

Division working on ASICs for HP work
stations. He was the lead engineer for the PCI
bus interface ASIC during the shipment phase.
He has a BS degree in computer and electrical
engineering (1986) and an MSEE degree
(1988) from Purdue University. He joined HP
in 1988. Born in Warsaw, Indiana, he is mar
ried and has three children. His outside inter
ests include astronomy, camping, and hiking.

Glen T . Rob inson
Glen Robinson is a tech
nical contributor at the
HP Workstation Systems

Division. He came to HP in 1979 and was re
sponsible for the subsystem test for the PCI
network and kernel drivers. He has an MBA
degree (1979) from Chapman College. Born
in Santa Monica, California, he is married and
has two grown children. He enjoys biking and
AKC hunting tests with Labrador retrievers.

O May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Linking Enterprise Business Systems to the
Factory Floor

Kenn S. Jennyc Information is the fuel that drives today's business enterprises. The ability

to link and components in the enterprise together in a user-friendly and

transparent manner increases the effectiveness of companies involved in

manufacturing and production.

Kenn S. Jennyc
Kenn Jennyc is a software
engineer at the HP Lake
Stevens Division. He

worked on the software design, development,
and quality assurance for the HP Enterprise
Link. Before that he worked on software design
and development for the RTAP (real-time appli
cation platform) product. He received a BSEE

degree from the University of Calgary in 1983
and came to HP in 1989. Kenn was born in
Calgary, Alberta, Canada, is married, and has
two children. In his spare time he likes to fly
his home-built aircraft and dabble in analog
electronics.

C omputers have had a profound effect on how companies conduct

business. They are used to run enterprise business software and to automate

factory-floor production. While this has been a great benefit, the level of

coordination between computers running unrelated application software is

usually limited. This is because such data transfers are difficult to implement,

often requiring manual intervention or customized software. Until recently,

off-the-shelf data transfer solutions were not available.

HP Enterprise Link is a middleware software product that increases the

effectiveness of companies involved in manufacturing and production. It allows

business management software running at the enterprise level, such as SAP's

R/3 product, to exchange information (via electronic transfer) with software

applications running on the factory floor. It also allows software applications

running on the factory floor to exchange information with each other.

HP Enterprise Link is available for HP 9000 computers running the HP-UX*

operating system and PC platforms running Microsoft's WindowsÂ® NT

operating system.

This business will discuss the evolution of the link between business software

systems and factory automation systems, and the functionality provided in HP

Enterprise Link to enable these two environments to communicate.

B a c k g r o u n d

Initially, only large corporations could afford computers. They ran batch-

oriented enterprise business software to do payroll, scheduling, and inventory.

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

As the cost of computing dropped, smaller companies
began using computers to run business software, and
companies involved in manufacturing began using them
to automate factory-floor production.

Although factory-floor automation led to improved effi
ciency and productivity, it was usually conducted on a
piecemeal basis. Different portions of an assembly line
were often automated at different times and often with
different computer equipment, depending on the capabil
ities of computer equipment available at the time of
purchase. As a result, today's factory-floor computers are
usually isolated hosts, dedicated to automating selected
steps in production. While various factory-floor functions
are automated, they do not necessarily communicate with
one another. They are isolated in "islands of automation."
To make matters worse, the development of program
mable logic controllers (PLCs) and other dedicated "smart"
factory-floor devices has increased the number of isolated
computers, making the goal of integrated factory-floor
computation that much harder to achieve.

While production software was generally used for smaller,
more isolated problems, business software was used to
solve larger company-wide problems. Furthermore, while

production software was more real-time oriented, busi
ness software was more transaction and batch oriented.
These differing needs caused business systems to evolve
with little concern for the kind of computing found on the
factory floor. Similarly, production systems evolved with
little concern for the kind of computing found at the
enterprise level. As a result, many enterprise-level business
systems and factory-floor computers are not able to inter
communicate. Figure 1 shows an example of the com
ponents that make up a typical enterprise and factory-
floor environment.

The net effect is that today companies find it difficult and
expensive to integrate factory-floor systems with each
other and with business software running at the enterprise
level. This is unfortunate because the dynamic nature of
the marketplace and the desire to reduce inventory levels
have made the need for such integration very high.

M a r k e t p l a c e D y n a m i c s

Over the last decade, the marketplace has become in
creasingly dynamic, forcing businesses to adapt ever more
quickly to changing market conditions. Computer systems
now experience a continuous stream of modifications and

Figure 1

Comput ing at the enterpr ise and factory- f loor levels.

Enterprise
Level

Enterprise Business System

Factory-Floor
Level

Component
P ick-and-Place

Station

Wave Solder
Station

Mix ing
M a c h i n e
Station

Electronic
Bottle

Inspector

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

upgrades. Generally, this has forced business systems to
adopt more real-time behaviors and production systems to
become more flexible. It has also increased the frequency
and volume of data transferred between business and
production systems and between the many production
systems.

There has always been a requirement to transfer informa
tion between computers in an organization, both horizon
tally between computers at the same functional level, and
vertically between computers at different functional levels.
In the past, manual data entry was an often-used approach.
Hard-copy printouts generated by business management
systems would be provided to operators who manually
entered the information into one or more production
systems. Although this was an acceptable approach in the
past, such an approach is not sufficiently responsive in
today's dynamic business environment. As a result, the
need for electronic data transfer capability between the
various business management and production level
computers is now very high.

E l e c t r o n i c D a t a T r a n s f e r s

Integrated business software with built-in support for
data transfers between components is sometimes used
at the business management level. While this minimizes
the effort required to exchange data between the various
components of enterprise business systems, it is often
inflexible and restrictive with regard to what can be
exchanged and when exchanges occur.

Organizations that use a variety of business software
packages, rather than a single integrated package, have
typically developed custom software for electronic data
transfers between packages. Unfortunately, marketplace
dynamics require custom software to be constantly re
worked. This ongoing rework forces companies to either
maintain in-house programming expertise or repeatedly
hire software consultants to implement needed changes.
As a result, custom data transfer software is not only ex
pensive to develop but also costly to maintain â€” especially
if changes must be implemented on short notice.

On the factory floor, software programmers have been
employed to develop custom data transfer solutions that
allow the different islands of automation to communicate.
As previously noted, this approach is difficult to implement
and expensive to maintain. In addition, this approach is
often inflexible since the resulting software is usually

developed assuming that the configuration of factory-
floor systems is largely static.

When new equipment and application software are to be
integrated into the overall system, software programmers
don't just prepare additional custom software. They must
also modify the existing custom software for all applica
tions involved. For this reason, custom software is often
avoided, and electronic data transfer capability is fre
quently confined to transfers between equipment and
software supplied by the same manufacturer.

Differences in hardware (and associated operating sys
tems) and differences in the software applications them
selves cause numerous application integration problems.
Here are a few examples:

â€¢ Data from applications running on computers that
have proprietary hardware architectures and operating
systems is often not usable on other systems.

â€¢ Different applications use different data types according
to their specific needs.

â€¢ Incompatible data structures often result because of the
different groupings of data elements by software applica
tions. For example, an element with a common logical
definition in two applications may still be stored with
two different physical representations.

â€¢ Applications written in different languages sometimes
interpret their data values differently. For example
C and COBOL interpret binary numeric data values
differently.

What is needed, therefore, is an off-the-shelf product that
is specifically designed to interconnect applications that
were not originally designed to work together. That
product must automatically, quickly, efficiently, and cost-
effectively integrate applications having incompatible
programming interfaces at the same or different func
tional levels of an organization. HP Enterprise Link is
such a product.

HP Enterprise Link is an interactive point-and-click soft
ware product that is used to connect software applica
tions (such as business planning and execution systems)
to control supervisory systems found on the factory floor.
HP Enterprise Link greatly reduces the cost and effort
required to interconnect such systems while eliminating
the need for custom software.

May 1998 â€¢ The Hewlett-Packard Journal O
© Copr. 1949-1998 Hewlett-Packard Co.

T h e D a t a T r a n s f e r P r o b l e m

The problem of transferring data from one software appli
cation to another is conceptually simple: just fetch the data
from one system and place it in another. In practice the
problem is more complex. The following issues arise when
trying to implement electronic data transfer solutions:

â€¢ There must be a way to obtain data from the software
application serving as the data source. Such access, for
example, might be provided by a library of callable C
functions.

â€¢ There must be a way to forward data to the software
application serving as the data destination. For example,
data might be placed in messages that are sent to the
destination application.

â€¢ There must be a specification of exactly what to fetch
from the source application and exactly where to place
it in the destination application.

â€¢ The data being transferred must be translated from
the format provided by the data source to the format
required by the data destination.

â€¢ There must be a specification of the circumstances
under which data should be transferred and a way to
detect when these circumstances occur.

All of these issues are addressed in HP Enterprise Link.

HP Enterprise Link
HP Enterprise Link product consists of the three compo
nents shown in Figure 2:

â€¢ An interactive configuration tool. This interactive
window-based application allows users to direct the
movement of data between two software applications.

â€¢ A data server. This noninteractive process runs in the
background. It moves data in accordance with the direc
tives that the user specified with the configuration tool.

â€¢ Configuration files. This is the set of mappings and
trigger criteria created by users. The data is stored in
configuration files. These files are created and modified
by the configuration tool and read by the data server.

L i n k i n g C o m p o n e n t s

The HP Enterprise Link components listed above have the
common goal of enabling users to create middleware that

Figure 2

The components of HP Enterpr ise Link.

Configuration
Tool

Sof tware
Application

Sof tware
Application

maps components with different interfaces together for
data transfer.

In HP Enterprise Link, the combination of a single source
address and a single destination address is called a map

ping. A unit of data at the specified source address is said
to be mapped to the specified destination address. In
other words, it can be read from the specified source
address and written to the specified destination address.

Although a mapping deals with the transfer of a single
unit of data, real-world situations usually require the
transfer of many units of data simultaneously. Therefore,
HP Enterprise Link collects mappings into groups called
methods. A method contains one or more mappings.

Mappings describe what to transfer and where to transfer
it, whereas triggers describe exactly when to do the
transfer. Data is actually transferred whenever a specified
trigger condition is satisfied. This condition is called the
trigger criterion. There are many possible trigger criteria
such as:

â€¢ Whenever a unit of data at a specified source address
changes value

â€¢ Whenever a unit of data at a specified source address is
set to a specified value

â€¢ Whenever the source data becomes available â€” such as
arriving in a message

â€¢ At a preset time of the day or a preset day of the week.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP Enterprise Link considers trigger criteria to be part of
the definition of a method. All the mappings for a single
method share the same trigger criteria. Whenever the
trigger criteria are met, HP Enterprise Link transfers â€” in
unison â€” all the data specified by the method's mappings.

Multiple methods can simultaneously exist in HP Enter
prise Link. For example, a user can create one method to
transfer a particular production recipe from a business
enterprise system down to a factory-floor control system.
Conversely, raw-material consumption information for
the recipe currently in production could be transferred
periodically from the factory-floor control system up to
the business enterprise system, using a second method.

T h e C o n f i g u r a t i o n T o o l

The HP Enterprise Link configuration tool provides users
with a view of each software application's name space,
and the tool graphically depicts what data to transfer and
under what circumstances such transfers should occur
(Figure 3).

The HP Enterprise Link configuration tool is composed
of communication objects and a graphical user interface
(GUI). Communication objects are used to obtain name
space data that is unique to each application and to pro
vide application-specific windows. The configuration tool
provides the user with an easy-to-use point-and-click style
GUI.

Figure 3

The HP Enterpr ise Link conf igurat ion tool .

Software
Appl icat ion

Sof tware
Appl icat ion

All dependencies on particular software applications are
encapsulated in communication objects. The configura
tion tool's communication objects provide the following
functionality:

â€¢ They fetch namespace information from communicating
software applications for presentation to the user.

â€¢ They provide routines to create and manage application
dependent control panel widgets, such as those used
to specify triggers unique to a particular software
application.

â€¢ They provide routines to tell the GUI exactly what func
tionality is supported by a communication object. For
example, can the application software serve only as a
data source (supply data values), or can it serve as both
a data source and a data destination (both supply and
use data values)?

There are three important windows in the configuration
tool's GUI: the Edit Method window, the Edit Mapping
window, and the Trigger Configuration window.

Edit Mapping. The Edit Mapping window is used to create
new mappings (Figure 4). The namespaces of both the
source software application and the destination software
application are shown. They are graphically displayed
as tree diagrams. This makes it easy for users to specify
which data to move where. They don't have to remember
the names of data sources or data destinations. Instead
they just choose from the displayed list of possibilities.
The side-by-side display of application namespaces makes
it much easier to integrate the applications.

Tree diagrams are used because they make large name
spaces manageable. A linear namespace display was
rejected early in the design of HP Enterprise Link because
a flat list representation would only be manageable with
software applications having a small namespace. Another
advantage of tree diagrams is that most users are already
familiar with them from file selector windows found in
many software applications.

To create a new mapping the user selects an item from
the Mapping Source tree diagram and an item from the
Mapping Destination tree diagram, and then clicks the Add
Mapping button. A new mapping is added to the mapping
table displayed on the Edit Method window (Figure 5).

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 4

The Edi t Mapping window.

E d i t M a p p i n g
File View

i Mapping Source
^ C o n s t a n t :

~, Read From:

Mapping Destination
^ D i s c a r d

Write To:

.conf igurator

. v iewBut tonHand le r

.p r in tBut tonHandler

. copyBu t tonHand le r

P I C O N S

S E D A T

S E U 2 T

SOURCE !

Add Mapping Modify Mapping Reset Cancel

Multiple static mappings can be created in a single step
using branch assignments. This requires that the last com
ponent of the source and destination addresses be identi
cal (so that appropriate mappings can be automatically
created). Mappings can also be automatically created at
the time methods are triggered. This is called dynamic
mapping and requires the user to specify algorithms that
can select source addresses and transform these addresses
to valid destination addresses.

Edit Method. The Edit Method window (Figure 5) displays
a method's mappings as a two-column table titled Map
pings. Source addresses appear in the left column and
destination addresses appear in the right. The data server
transfers mapped data from source addresses to destina
tion addresses in the same order as the mappings are
listed in this table. The Mappings table makes mappings
both explicit and intuitive to the user.

This window allows the user to specify in which direction
to transfer data. All of a method's mappings specify data
transfers in one direction â€” from one software application
to another. The Edit Method window also allows the user
to specify how to respond to errors that occur during data
transfers. This will be described later in more detail.

Trigger Configuration. The Trigger Configuration window
is used to define trigger criteria (Figure 6). This window
displays all possible triggers to the user, as well as the
currently configured trigger criteria. The Trigger Configura
tion window is designed to make setting up trigger criteria
explicit and intuitive for the user.

The Trigger Configuration window is split into three groups:
time triggers, triggers unique to the source application,
and triggers unique to the destination application. Time
triggers allow the user to specify that, data mapping start

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 5

The Edi t Method window.

at some specified time and repeat at a specified time
interval, but be synchronized to a specified hour/minute/
second of the day/hour/minute.

Triggers unique to the source application, such as the
RTAP (real-time application platform) triggers shown in
Figure 6, allow data to be mapped when something inter
esting happens in the source application. For the RTAP
triggers in Figure 6 interesting events include a database
value change or the occurrence of an RTAP database
alarm. Data can also be mapped when something interest
ing happens in the destination application.

Thus, triggers allow data transfers to be pushed from the
source application, pulled from the destination applica
tion, or scheduled by time.

Summary. Using the windows just described, users can
create methods with the configuration tool. These methods
specify one or more mappings and associated trigger
criteria. This information is saved in one or more configu
ration files. The data server then reads these configuration
files to implement the user's methods.

The Data Server
The HP Enterprise Link data server is composed of com
munication objects, a trigger manager, and a mapping

Figure 6

The Tr igger Conf igurat ion window.

engine (Figure 7). Communication objects deal with the
problems of generating triggers and getting data into and
out of software applications. The trigger manager deals
with dispersing Trigger Configuration data, coordinating
trigger events, and notifying the mapping engine of trigger
events. The mapping engine deals with the problems of
reading configuration files, responding to triggers, mapping
source addresses to destination addresses, and transform
ing the data as it is being mapped.

All software-application dependencies are encapsulated
in communication objects. Communication objects serve
as translators between external software applications and
the data server's mapping engine â€” they translate the
software application's native application program inter
face (API) to the interface used by the mapping engine.

The interface between a communication object and the
mapping engine is standardized, with all communication
objects using the same interface. For data that is being
transferred, the interface consists solely of address-value
pairs, where the address is from the application soft
ware's namespace, and the value is encoded in a neutral
form. Thus a communication object only needs to be

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 7

The components of the HP Enterpr ise Link data server.

Data Server

Sof tware
Appl icat ion

Communication
Object

Trigger
Manager

Mapping
Engine

Communication
Object

Sof tware
Appl icat ion

aware of its own namespace and how to convert between
the software application's proprietary data formats and
the neutral HP Enterprise Link data format. For triggers,
the interface consists of well-documented interactions
between the trigger manager and the communication
objects.

Communication objects are usually distributed. They are
split into two parts that are interconnected by a communi
cation channel such as a TCP/IP socket. One part of the
object is incorporated into the HP Enterprise Link data
server process, while the other runs on the same machine
as the corresponding software application. When a com
munication object is not split into two parts, the object,
the data server, and the software application must run on
the same machine.

Communication objects communicate with their corre
sponding software applications through whatever mecha
nism is available. For example, this could be through a
serial port, shared memory, shared files, TCP/IP sockets,
or an application program interface (API).

When a communication object transfers data, it translates
data between the format used by the source software ap
plication and the neutral format required by the mapping
engine. For example, for numeric values, a communica
tion object may have to translate between binary IEEE-754
floating-point format and the mapping engine's neutral
format.

In practice, not all data transfer attempts will be success
ful. For example, a particular source address might have
been deleted, or a destination address may no longer
exist. The configuration tool is used to specify what the
mapping engine should do in this situation, and the data
server must detect the condition and deal with it appro
priately. When data transfer attempts fail, the user can
have the data server do any one of the following:

â€¢ Continue mapping data (ignoring the error)

â€¢ Abort all subsequent mappings associated with the
current method

â€¢ Abort all subsequent mappings and all subsequent
methods triggered by the current trigger event (if
multiple methods were simultaneously triggered).

The interface between the communication object and
the mapping engine is designed to support transaction-
oriented data transfers, using commit and rollback. This
functionality comes into play when mapping attempts fail.
It allows the data server to undo (roll back) all data trans
fers done in all currently processed mappings associated
with the method's current trigger event.

T h e R u n n i n g D a t a S e r v e r

When the HP Enterprise Link data server starts up, it reads
the configuration files that the user created with the con
figuration tool. It then prepares to deal with the specified

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

trigger criteria, usually by notifying the appropriate
communication object to detect it. Finally, it enters an
event-driven mode, waiting for the trigger criteria of any
configured method to be satisfied.

When either a source or destination communication
object in the data server detects that a method's trigger
criteria have been satisfied, the object informs the data
server trigger manager that a method has been triggered.
This starts the mapping engine. Alternatively, if the data
server trigger manager detects that a method's time-based
trigger criteria have been satisfied, the mapping engine
starts.

When triggered, the mapping engine requests that the
source communication object provide the current data
values at the method's configured source addresses. The
source communication object obtains these values from
the software application, translates the format of all
fetched data values to a neutral format, and passes the
result to the mapping engine as address-value pairs, with
one such pair for each of the method's defined mappings.

The data server mapping engine looks up the destination
address that corresponds to each source address. This
lookup results in a new list of address-value pairs, with
the address now being the destination address, and the
value unchanged (and still expressed in the mapping
engine's neutral format). To minimize the impact on per
formance, this lookup is implemented using a hash table.

The mapping engine sends the new list of address-value
pairs to the destination communication object. The des
tination communication object converts the received
values into the format required by the destination software
application, and writes the converted result to the speci
fied addresses in the destination software application.

Communicat ion Objects and Software Appl icat ions
There are two fundamental ways for software applications
to provide communication objects access to their data:
the request-reply method and the spontaneous-message

method.

In the request-reply method, the communication object
sends a software application the address of a wanted data
unit in a request and receives its current value in a reply.
With this method the communication object controls the
data transfer. It determines which unit of data to read and
when to read it. Structured Query Language (SQL) and

real-time databases are two examples of software applica
tions that employ the request-reply method.

In the spontaneous-message method, communication ob
jects receive data, usually as messages, from the software
application whenever the application chooses to send it.
With this method the software application controls the
data transfer. It determines which data to provide and
when to provide it. SAP's R/3 product is an example of
a software application using the spontaneous-message
method.

The method that a software application employs to provide
external data access determines the trigger criteria that
are possible for that application's communication object.
The request-reply method allows event, value, and time-
based trigger criteria since the communication object
controls the data transfer. The spontaneous message
method is limited to value-based triggering (essentially
filtering) because the software application providing the
data controls the data transfer.

Spooling
The HP Enterprise Link data server's communication
objects must cope with communication failures. This
means that outgoing data must be locally buffered until
a communication object verifies that the application soft
ware, when acting as a destination, has successfully re
ceived it. It also means that incoming data must either be
safely transferred through the mapping engine or locally
buffered when a communication object accepts data from
the source application software.

Spooling is especially important if the source application
is separated from the HP Enterprise Link data server by
a wide area network (WAN). WANs are considerably less
reliable than local area networks, and thus are more likely
to lose data.

In a typical HP Enterprise Link installation the data server
runs on a machine located near or on the factory floor.
Production orders are downloaded from the enterprise
level to HP Enterprise Link as soon as they are available.
The downloaded data is buffered at the factory until it is
needed. Using HP Enterprise Link in this way reduces the
probability that the factory would lack unprocessed pro
duction orders if the WAN is down for a prolonged period
of time.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Buffered data must be preserved even if the HP Enterprise
Link host machine is shut down or crashes. To do this. HP
Enterprise Link stores buffered data in disk-resident spool
files.

The amount of storage used to hold buffered data must be
restricted to protect the host computer from failure caused
by insufficient resources. HP Enterprise Link can limit the
size of spool files by controlling:

â€¢ The maximum size of spool storage

â€¢ The maximum number of messages buffered

â€¢ The age of the oldest message buffered.

The user can set any one or all of these limits, using the
HP Enterprise Link configuration tool.

T r a c i n g

HP Enterprise Link allows the data being transferred
to be monitored by the user. The monitoring is called
tracing. Tracing is useful for creating an audit trail of the
transferred data and for debugging and testing methods.
Tracing does not affect the data being transferred.

The configuration tool is used to enable and disable trac
ing, but it is the data server that generates trace messages
when tracing is enabled.

Data can be traced at a number of different internal loca
tions within the data server (see Figure 8). Some of the
forms in which trace results can be expressed include:

â€¢ Data as received by a data server communication object
from a source software application. This trace data is
expressed using the source software application's native

data format and includes the source address, the value
received or read, and the time of transfer.

â€¢ Data as sent by a data server communication object to
the destination software application. This trace data is
expressed using the destination software application's
native data format and includes the destination address,
the value sent or written, and the time of transfer.

â€¢ Data being mapped by the mapping engine. This trace
data is expressed using the data server mapping engine's
neutral data format and includes the source address, the
destination address, the value transferred, and the time
of transfer.

Error messages reported by the mapping engine or by
communication objects can also be included in the trace
output. This ability ensures that the relative sequencing of
data transfer messages and error messages is preserved,
which greatly aids the user when trying to troubleshoot
mapping problems.

S e r v e r D a t a F l o w

HP Enterprise Link allows the flow of data in the data
server to be interrupted at a number of different internal
points (see Figure 9). This is useful for isolating the
effects of data mappings during debugging and testing.
When an information flow is interrupted, data does
not pass the point of interruption; instead, the data is
discarded.

The flow of information being transferred from a commu
nication object to a software application can be inter
rupted. Interrupting the flow here allows the data server

Figure 8

Tracing data that is t ransferred between appl icat ions.

S E N T D a t a
T r a c e O u t p u t

RECEIVED Data
T r a c e O u t p u t

Software
Application

Communication
Object

Mapping
Engine

Communication
Object

^ H â „ ¢ ^ ^ ^ ^ " ^ ^ ^ " ^ " â „ ¢ â „ ¢ ^ â „ ¢

Software
Application

RECEIVED Data
T r a c e O u t p u t

E r r o r T r a c e
O u t p u t

M A P P E D D a t a
T r a c e O u t p u t

E r r o r T r a c e
O u t p u t

E r r o r T r a c e
O u t p u t

S E N T D a t a
T r a c e O u t p u t

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 9

Interrupt locat ions in the data server.

Receive
Interrupt Flag

Receive
Interrupt Flag

Communication
Object

Mapping
Engine

Sof tware
Appl icat ion

Transmit
Interrupt Flag

Transmit
Interrupt Flag

to read from mapped source addresses, map to new des
tination addresses, and then discard the data just before
it would have been written to the destination software
application.

The flow of information being transferred from a software
application to a communication object can also be inde
pendently interrupted. Interrupting the flow here allows
the data server to ignore all data sent to the communica
tion object by the source software application.

Data Integri ty
The HP Enterprise Link data server is carefully designed
to preserve the integrity of the data being mapped and
to map the data exactly once for each trigger event. The
design was influenced by considering how to react to
communication channel failures and data server process
terminations. The circumstances that could cause the
data server process to terminate are the following:

â€¢ If a person or software process explicitly kills the data
server process

â€¢ If the host machine suffers a hardware or software
failure, loses power, or is manually turned off.

Communication channel failures must be handled care
fully. If the communication channel connecting a commu
nication object to its software application fails, the data

being mapped at the time of failure must not be lost or
duplicated. Also, after normal operation of the communi
cation channel is restored, communication between the
communication object and its application must be auto
matically established again and all interrupted data trans
fers restarted.

The following steps are taken to ensure data integrity
when communication channels fail:

â€¢ For data received from the source software application,
the communication object never acknowledges receipt
of the data until the data has safely been saved to a
disk-resident receive-spool file.

â€¢ Data received by the communication object from the
source software application is not removed from the
receive-spool file until the data has successfully passed
through the mapping engine and been forwarded to the
communication object responsible for sending it to the
destination software application.

â€¢ The communication object that sends data to the des
tination software application only notifies the mapping
engine that it successfully received the data after the
data has been safely saved to a disk-resident transmit-
spool file. Also, it only removes data from the transmit-
spool file when the destination software application has
acknowledged successful receipt of the data.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

C o n c l u s i o n

The HP Enterprise Link product greatly reduces the cost
and effort required to interconnect business management
systems (such as SAP's R/3 product) and measurement and
control systems (such as Hewlett-Packard's RTAP/Plus
product). HP Enterprise Link is an off-the-shelf product
that allows users to connect software applications using
an easy-to-use point and click graphical user interface.

With HP Enterprise Link, companies can minimize the
costs associated with changes made to computer systems
and adapt more quickly to changing market conditions.

A c k n o w l e d g m e n t s

The author wishes to thank Andrew Ginter and Andy Man
for their significant contributions to the design and devel
opment of the HP Enterprise Link product, John Burnell
for his comments during the design of the product, and
Steve Heckbert for his valuable feedback.

O n l i n e I n f o r m a t i o n

For more informat ion about HP Enterpr ise Link, take a look
at the informat ion located at the fo l lowing URLs:

â€¢ http://www.tmo.hp.com/tmo/pia/Vantera/lndex/
English/lndex.html

â€¢ http://www.tmo.hp.com/tmo/pia/Vantera/lndex/
English/Products. html

â€¢ http://www.tmo.hp.com/tmo/pia/Vantera/lndex/
English/ELink.html

HP-UX 9. " and W. O tor HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

O May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Knowledge Harvest ing, Art iculat ion, and
Del ivery

KemalA. Del ic

Domin ique Laha ix

Harnessing expert knowledge and automating this knowledge to help solve

problems have been the goals of researchers and software practitioners since

the early days of artificial intelligence. A tool is described that offers a

semiautomated way for software support personnel to use the vast knowledge

and experience of experts to provide support to customers.

A consequence of the global shift toward networked desktops is visible

in customer technical support centers. Support personnel are overwhelmed

with telephone calls from customers who are experiencing a steady increase in

the number of problems with intricate software products on various platforms.

Support centers are staffed with less knowledgeable (and less experienced)

first-line agents answering the simple questions and solving common problems.

Expert (and more expensive) technicians resolve more complex problems and

execute troubleshooting procedures. The work of both (the first-line agents

and the always is supported by various technical tools, but they always

have to of their brains and experience to handle effectively the stream of

problems they encounter. This knowledge is seen as the key ingredient for the

efficient functioning of support centers.1

* % i f > | K e m a l A . D e l i c
Kemal Delic is a techni
cal consultant at HP's
Software Services Divi

sion in Grenoble, France. He is responsible
for knowledge technologies. He received a
Dipl.El.Ing. degree from the Faculty of Elec
trical Engineering at the University of Sara
jevo in Bosnia. Before joining HP in 1996, he
was a senior scientific consultant with CPR
Consortium in Pisa, Italy. He is married and
has two children. In his free time he enjoys
reading medieval history.

r D o m i n i q u e L a h a i x
Dominique Lahaix is the
knowledge and elec
tronic services manager

at HP's Software Services Division. He came
to HP at the Grenoble Division in 1988. He
received an engineering degree in computer
science in 1985 from the Institut National des
Sciences AppliquÃ©es de Lyon. Born in Bur
gundy, he is married and has three children.
In his spare time he enjoys playing the saxo
phone, reading philosophy, and outdoor acti
vities such as skiing, soccer, and running.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The number of calls and their complexity have both in
creased. At the same time, support solution efficiency has
decreased as the cost for providing those solutions has
increased. As a result, there is a need for a knowledge
sharing solution in which the first-line agents will be able
to solve the majority of problems and escalate to the tech
nicians only the complex problems. To enable such a
solution, we have to:

â€¢ Find efficient knowledge extraction methods

â€¢ Create compact, efficient knowledge representation
models

â€¢ Use extracted knowledge directly in the customer
support operations.

This article describes the HP approach to providing cus
tomer support in the WindowsÂ®-Intel business segment.
This segment includes networked desktop environments
known for their high total cost of ownership. Help-desk
services for this segment are supposed to solve the major
ity of problems with software applications, local area net
works, and interconnections.

The system described here, called WiseWare, is a knowl
edge harvesting and delivery system specifically designed
to provide partially automated help for HP customer sup
port centers in their problem solving chores.

Partial automation of help-desk support is seen as a suit
able, cost-effective solution that will:

â€¢ Shorten the time spent per call

â€¢ Decrease the number of incoming calls (because of
proactive mechanisms)

â€¢ Decrease the number of calls forwarded to the next
support level

â€¢ Decrease the overall labor costs.

The objective is to reduce dramatically the support costs
per seat per year.

Where Is Knowledge?
To find the most efficient knowledge extraction methods,
we must first answer the question, "Where is the knowl
edge?" Books, technical articles, journals, technical notes,
reports, and product documentation are all classical
resources that rely on a human being's ability to extract,

1 WiseWare is an internal tool and not an HP product.

evaluate, and apply knowledge. Mechanized efforts still
can't replace these human attributes.

Current support solutions usually are based on electronic
collections in a free-text format, in which the important
concepts are expressed using natural human language.
The latest release of WiseWare uses technical notes, fre
quently asked questions, help files, call log extracts, and
user submissions as the primary raw material. According
to the knowledge resource, different knowledge represen
tations and extraction methods are used.

Extensive research in the field of artificial intelligence has
created several knowledge representation and extraction
paradigms in which the final use for knowledge determines
the characteristics of the representation scheme. The ear
liest knowledge extraction efforts, known as information

retrieval, initially had small industrial impact. However,
recent interest in the Internet and in electronic book
collections has revived the business interest in information
retrieval. Some of the hottest products on the market today
are search engines. Different search methods (by key
words or by concepts) are being used and other search
methods (by examples and by natural language phrases)
are being investigated. Recent synergy with artificial intel
ligence methods has created a promising subfield known
as intelligent information retrieval.2 The majority of today's
customer support solutions can be classified as enriched
information retrieval systems.

E l e c t r o n i c D o c u m e n t L i b r a r i e s

Developments in the information retrieval field have trans
formed free-text collections into more refined collections
known as electronic document libraries. Electronic docu
ment libraries have an articulated structure (author, sub
ject, abstract, and keywords), enabling efficient searches
and classification. They combine advanced technological
methods (such as hypertext and multimedia) to fit users'
information retrieval needs. Some of the best support
solutions today are in a digital library class and represent
sophisticated document management systems.

C a s e - B a s e d R e t r i e v a l

Early hardware support documentation contained trouble
shooting diagrams that made it possible for service tech
nicians to troubleshoot equipment consistently by follow
ing the diagrams and performing the appropriate tests and
measurements. The recent revival of these diagrams is

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Glossary

Cluster. Natural association of similar concepts, words, and
things.

Concept. Group of words conveying semantic content. It can be
described graphically as relationships between words having
different attributes (and in some cases as numerical measure
ments of strength).

Data Mining. Collective name for the field of research dealing
with statis analysis in large data depositories. It includes statis
tics, machine learning, clustering, classification, visualization,
inductive learning, rule discovery, neural networks, Bayesian
statistics, and Bayesian belief networks.

Information Retrieval. Identification of documents or infor
mation from the collection that is relevant for the particular
information need.

Keyword. Characteristic word that may enable efficient re
trieval of relevant documents. Two criteria used to assess the
value of a keyword are the number of documents retrieved and
the number of useful documents (recall and precision)

Knowledge. Group of interrelated concepts used to describe
a certain domain of interest. Complex structures formed by
emulating human behavior in certain activities (for example,
assessment, problem solving, diagnosing, reasoning, and in
ducing). Different schemes are used to enable knowledge
representation such as rules, conceptual graphs, probability

seen in interactive troubleshooting systems that enable PC
hardware technicians to solve hardware problems. So far,
such systems are implemented as case-based retrieval (or
reasoning) systems. The majority of these systems provide
only retrieval; just a few include the reasoning component.
The case-based retrieval paradigm is based on the human
ability to solve problems by remembering previously
solved problems. The support system plays the role of an
electronic case database in which the knowledge consists
of documented experience (cases). Creation and mainte
nance of the cases is an expensive and nontrivial process.
Currently, these activities are performed by humans and
are used mainly for hardware support. Such systems
cannot deal efficiently with large, complex, and dynamic
problem areas.

networks, and decision trees. Knowledge is found in large text
collections and is biologically resident in human brains.

Knowledge Map. Graphical display of interrelated concepts.
Knowledge Base. Complex entity typically containing a
database, application programs, search and retrieval engines,
multimedia tools, expert system knowledge, question and
answer systems, decision trees, case databases, probability
models, causal models, and other resources.

Metrics. Group of measurement methods and techniques
introduced to enable quantification of processes, tools, and
products
Natural Language Processing. Activity related to concept
extraction from, formalization of, and methods deployment in
a problem area.

Paradigm. A theoretical framework of a discipline within
which theories, generalizations, and supporting experiments
are formulated.

Problem Domain. Area of interest defined by terminology,
concepts, and related knowledge.

Search. Activity guided by a find and match cycle in which a
search space is usually explored with an appropriate choice of
search words (keywords). Advanced search is done by concepts.

R u l e - B a s e d S y s t e m s

Some support centers have tried to use expert systems
based on rules, but they have discovered that the rule-
based systems are difficult to create, maintain, and
keep consistent. Crafting a collection of rules is a com
plex chore. It is not clear if this technology will have a
role in future knowledge representation and extraction
development.

M o d e l - B a s e d S y s t e m s

A model-based paradigm in which various statistical,
causal, probability, and behavioral models are used is
another example of knowledge representation for cus
tomer support. The knowledge here is expressed by the
fault/failure model that contains quantified relationships
between causes, symptoms, and consequences. Basic

May 1998 Â«The Hewlett-Packard Journal O
© Copr. 1949-1998 Hewlett-Packard Co.

decision making is enabled with such models. Although
some Limited experiments with this highly sophisticated
knowledge representation paradigm have been done, no
system is in operational use in support centers.

New Research
The newest research in the field of data mining and know
ledge discovery3 may offer some potentially effective
knowledge representation methods for deployment in
customer support centers. This research aims at the
extraction of previously unknown patterns (insights) from
the existing data repositories. Research in artificial intelli
gence has identified the initial assembly of a low-cost
knowledge base as a potential "engineering bottleneck."
The knowledge authoring environment discussion later
in this article addresses that issue. Because most of the
knowledge for Wise Ware comes from text sources, we
will focus our attention here on the knowledge extraction
process.

WiseWare and Knowledge Refinement
Knowledge is a fluid, hard-to-defme but essential ingre
dient for all human intellectual activities. It is difficult to
extract, articulate, and deploy. The prevailing quantity of
knowledge is encoded in the form of text (90 percent)
expressed in natural language and is articulated as a web
of interrelated concepts. A goal of research in natural lan
guage is to enable automatic and semiautomatic extrac
tion of knowledge. Content analysis must be automated to
efficiently provide suggestions and solutions for users. As
we have already seen, several knowledge representation
paradigms are being invented and investigated (for
example, semantic nets, rules, cases, and decision trees).
Additionally, we can deploy various techniques to extract
concepts (symbolic knowledge) and numerical quantities
(numerical and statistical knowledge).

Refinement Process
Human experts use spreadsheets, outline processors, and
some vendor-specific tools to refine source text, but have
not yet developed systematic, efficient processing methods.
In the future, we would like to automate some phases of
this process, leading toward more efficient and effective
deployment.

Knowledge refinement is seen as a process for converting
raw text into coherent, compact, and effective knowledge
forms suitable for software problem solving and assistance

(for example, decision trees, rules, probability models,
and semantic nets). The basic raw material (the knowledge
in its primary form) remains accessible. This preserves
previous investments in knowledge and enables integra
tion into future, more sophisticated solutions.

We can describe the knowledge refinement process as
efforts made to transform raw text to a compact represen
tation and then to operational knowledge. Associated
costs increase as raw text moves through the refinement
process to become operational knowledge.

Currently WiseWare content is partitioned into three con
ceptual categories: fixes, step notes, and technical notes.
The first two contain shallow, specific knowledge and the
third contains complex technical concepts. A fix is a sim
ple, short document that describes with fewer than 100
words a known and recurring problem with a known
solution, the fix (see Figure la). A fix often helps the
customer out of the immediate problem but does not pro
vide a long-term solution. It is essentially a "quick fix."

A step note usually walks the user through a procedure
that prevents the problem from occurring in the future
(see Figure Ib). The step note requires more of the user's
time to solve the immediate problem than the fix does,
but it saves time in the future.

Both fixes and step notes offer additional references.
Those references contain keywords providing links to
technical notes that explain the most relevant related
subjects in depth. Technical notes require deep technical
knowledge to be properly understood and applied.

The whole collection of fixes, step notes, and technical
notes is tagged to associate the content of each document
with the proper problem classes. Consequently, WiseWare
content is perceived by the user as a repository of advice
and solutions for given problems (quick fixes, step-by-step
procedures, and technical theory).

Some generic activities in the refinement process can be
denoted as:

â€¢ Assessment

â€¢ Extraction

â€¢ Filtering

â€¢ Summarization

â€¢ Clustering

â€¢ Classification.

May 1998 â€¢ The Hewlelt-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 1

Two WiseWare screens: (a) WiseWare f ix screen, (b) WiseWare s tep note screen.

Ãœ S F o r u m F c r i b x k

J of 514 docmeMi matched ,Â«ery (3 Â«holm)

V S - OB5700/S500 - Trackpomt. Reboot "Mouse not Fsuad"

9 F - O B S 7 0 0 / S S m - E n n u i P S / 2 M o i u t M m L o c k U p

<9 F - OBÃ700ISSOO - Upase Â«te RÂ»siâ€”Â»M.v An Like Km.

ID:BPiÃ­U490 - Date: o el: t-ustoweÃ¯viÃˆWÃ­bli - Level: I

OBS79B/5SDO - Trackpom!, Reboot ' Mouse not Found

ISSUE :
suspend

This does

C A U S E :

Pressing tie TrackPoint daring a Windows 95 or Windows for Workgroups reboot or pressing the blue "On/Suspend" button from
mode,

a "Mouse not lound" message displays at else the TrsckPeiÃ­it 1IÃ pointing device dots not function Less frequently, the unit locks

* ha/d reset 15 needed ts get the Tr&ckPoint to work again.
ot always happen the message displays perhaps 20% of the tune. The unit lodes up maybe 10% of the orne.

ne wsy te recreate the problem

i

Â¿all

(a)

(b)

May 1998 Â«The Hewlett-Packard Journal O
© Copr. 1949-1998 Hewlett-Packard Co.

We can describe the evolution of Wise Ware as going from
answering questions to giving advice and finally to problem
solving and troubleshooting. The support costs in this
evolution have escalated as the problems have become
more complex.

K n o w l e d g e A u t h o r i n g E n v i r o n m e n t

Since a critical mass of knowledge can be reached only
if multiple authors contribute to the knowledge base, the
knowledge authoring environment must be able to deal
with multiauthor issues effectively. Additionally, because
the knowledge authoring environment is deployed on a
worldwide basis, the issue of different languages is rele
vant as well. Finally, deployment in different time zones
requires very high reliability and availability of the knowl
edge authoring environment.

The quality of the knowledge is constantly monitored and
refined. Areas for improvement are pinpointed by analyz
ing results reported on the knowledge base logs. As weak
points are identified and strengthened, better system
performance will help to optimize return on investment
figures. Even user satisfaction can be assessed from the
various logs and usage traces that will reflect a combined
measure of system quality and usefulness.

Future worldwide cooperation among support centers
to share knowledge is our objective. Ideally, each center
will deploy and create the necessary knowledge locally.
Centers operate in different time zones, have different
cultural and social contexts, and have the ability to manip
ulate huge amounts of data, information, and knowledge.
Coordinating the knowledge bases for all support centers
pose several challenging problems. The complexity of
these problems is reduced by careful engineering and
incremental deployment. The result is a low-cost, knowl
edge-based support, adding new value to the support
business.

In a very advanced situation, and from a long-term per
spective, extracted knowledge will become the crucial
ingredient for the next development phase. In this phase,
human mediation in problem solving could be removed.
Support could be delivered electronically without human
intervention. For example, imagine intelligent agents trav
eling over the network to the troubled system to fix
a problem.4 Current viruses on the Internet are doing
exactly the opposite task. What if the trend were reversed?

Support knowledge could be adapted so that healing vi
ruses could travel through a system, delivering remote
fixes. To understand how this could become a reality, let's
review the history of Wise Ware.

WiseWare Architecture
In November of 1995, the first challenge was posed to the
WiseWare team when the French call center decided to
outsource low-end software support services. Their sup
port personnel were without computer technology back
ground and demonstrated poor English language skills.
The knowledge department in HP's Software Services
Division in Europe responded to the challenge and deliv
ered the first operational WiseWare solution in April of
1996. Since then, new releases are issued every two
months with steady improvements.

In the WiseWare release 4.1, mirroring intranet servers
(Europe and the United States) cover three super regions.
The number and quality of accessible documents is
constantly improved, while use of the system is closely
monitored from access and search logs. We have estab
lished close links with software vendors who allow us
privileged access to their documents. (The legal frame
work for cooperation and alliances is defined as well.) All
activities and services undergo quality assurance scrutiny
in preparation for ISO-9000 certification.

WiseWare provides approximately 80,000 documents to 13
call centers worldwide. The average problem resolution
assistance rate is over 30 percent. More than 40 products
are covered in the various types of documents offering
quick fixes for agents and in-depth technical knowledge
for advanced WiseWare users.

WiseWare is a distributed system with three major parts:
production, publishing, and monitoring (see Figure 2).
They are implemented on UNIXÂ® and Windows NT plat
forms, with intranet technology providing the necessary
glue for client/server solutions. It is a nonstop, highly
available system. The key advantage of the WiseWare
system lies in the tight loop between the monitoring and
production areas in which the principal objective is to
provide users with highly adaptable documents for every
day problem-solving chores. Data mining and natural
language processing modules dynamically create user,
problem, and document profiles that will then drive the

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 2

Wise Ware system archi tecture.

D M - L i b = D a t a M i n i n g L i b r a r y
NLP-Lib = Natural Language Processing Library

Production

Publishing
Access and Reporting

Search and
Access Mine Monitoring

SQL Server 6.5

Windows NT 4 .0

HP-NetServer LD
Pro 6/180

production side, enabling technical and business insights
to be gleaned from large and extensive access and search
logs.

At this time, customers call the express hubs and explain
their problems to support personnel, using natural lan
guage constructs that sometimes blur the real nature of
the problem. According to their understanding, support
personnel create and launch a search phrase. It is a
Boolean construct containing relevant keywords or free-
text phrases that roughly represent the problem. Different
search, hit, and presentation strategies are currently used,
but formation of the effective search query and reduction
of the number of relevant replies are largely still unre
solved. A mixture of artificial intelligence techniques and
traditional information retrieval and database methods is
being offered as potential solutions.

Table I shows how one, two, and three words in a typical
search phrase can influence the number of relevant docu
ments returned with current version of WiseWare. A well-
formed phrase helps to quickly pinpoint relevant docu
ments while retaining necessary coverage of the problem
area. Notice the quick decrease in the number of relevant
documents returned as the phrase becomes longer.

Support center personnel work under time-pressured,
stressful circumstances. As a result, the whole human-
computer interaction issue must be carefully considered.
Efficiently delivering advice and problem-solving assis
tance can depend on the smallest detail. Besides the
quality of the material in the supporting knowledge base,
questions regarding query formulation and presentation of
the retrieved information will influence final acceptance
from the users. Support activities can be treated as sym
biotic human-machine problem solving in a bidirectional
learning paradigm. The user learns how to manipulate the
system (facilitated by language features such as localiza
tion and query wizards). At the same time, the system
adapts to the user's methods of accessing the knowledge
base. The WiseWare system learns user behavior from
access and language patterns. Interaction with the system
customizes the environment to suit the specific user's
profile. The reasoning activity is still done by humans and
is supported by refined electronic collections. Good syn
ergy and efficient functioning of such human-computer
systems are the current objectives.

Because the support centers are located in different geo
graphical, cultural, and language areas, the natural lan
guage layer is seen as crucial for search and presentation.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Technological advances in visual search and delivery
combined with audio and video techniques may improve
the quality and efficiency of the system. Better architec
ture combined with object-oriented (multimedia) data
bases will add another dimension to the delivery phase.
These improvements will be made over time and will be
accelerated by technological developments in related
fields.

C o n c l u s i o n

Accessible knowledge is the essential ingredient for suc
cessfully dealing with the rising quantity and complexity
of customer support calls. A semiautomated system with
refined knowledge in reusable forms can enable users to
share knowledge among different, geographically dis
persed customer support centers. The overall objective
of HP's WiseWare server is to provide low-cost, effective
customer support. This is a simple objective but one that
is difficult to achieve, especially when significant effort
and investment are required to achieve technological
breakthroughs in the problem-solving field.5

In the short term, incremental deployment of advanced
methods such as data mining and natural language pro
cessing techniques will improve system quality and usage.
In the long run, it is very likely that most of the client-hub
telephone voice communication will be gradually replaced

by computer-computer communication. Several layers of
the present problem- solving architecture will disappear
or will be replaced by some new elements. The problem-
solving knowledge along with search and access log
collections being developed now will serve as the funda
mental basis for future electronic support.

A c k n o w l e d g m e n t s

We would like to thank Markus Baer, Markus Brandes,
and Jean-Claude Foray from HP's support labs for their
role in WiseWare development. Its development would
not have been possible without the understanding and
support of Jim Schrempp and Alain Moreau. Finally,
special thanks to all WiseWare team members.

R e f e r e n c e s

1. http://www.HelpDeskInst.com/

2. http://ciir.cs.umass.edu/

3. http://www.kdriuggets.com/

4. http://retriever.cs.umbc.edu/agents/

5. http://www.gartner.com/

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open Limited a registered trademark and the X device is a trademark ofX/Open Company Limited
in the UK and other countries.

Windows is a U. S. registered trademark of Microsoft Corporation.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A Theoret ical Der ivat ion of Relat ionships
between Forecast Errors

Jerry Z.Shan This paper studies errors in forecasting the demand for a component used by

several products. Because data for the component demand (both actual demand

and forecast demand) at the aggregate product level is easier to obtain than at

the individual product level, the study focuses on the theoretical relationships

between forecast errors at these two levels.

J e r r y Z . S h a n
Jerry Shan is a software
engineer at HP Laborato
ries, responsible for sta

tistical analysis and experimental design for
applications of HP Laboratories' Enterprise
Modeling and Simulation system. He received
his PhD degree in statistics from Stanford
University and joined HP in 1994. Born in

China's Jiangsu province, he taught statistics
at China Textile University before coming to
the Unites States. He is married, has two chil
dren, and enjoys soccer, photography, and
swimming.

W T T i t h r ith errors, sound theoretical foundation for understanding forecast errors, a

much more confident job can be done in forecasting and in related planning

work, even under uncertain business conditions.1

In a typical material planning process, planners are constantly challenged by

forecast inaccuracies or errors. For example, should a component forecast

error its measured for each platform for which it may be needed, or should its

forecast accuracy be measured at the aggregate level, across platforms? What

is the relation between the two accuracy measures?

This First, describes a theoretical study of forecast errors. First, we formally

define relationships errors with different rationales, derive several relationships

among Then and prove a heuristic formula proposed by Mark Sower.1 Then

we study the effects of a systematic bias on the forecast errors. Finally, we

extend demands study to the situations where correlations across product demands

and time effects in demand and forecast are taken into account. Definitions

and theorems are presented first, and proofs of the theorems are given at the

end of the paper.

B a s i c C o n c e p t s

Consider the case of a component that can be used for the manufacture of n

different products, or platforms. For platform i (1 < i < n), denote by FÂ¡ the

forecast demand for the component, and by DÂ¡ the actual demand. In the

treatment of forecast and actual, we propose in this paper the following

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

framework: Regard forecast demand as deterministic, or

predetermined, and actual demand as stochastic. By
stochastic, we mean that given the same operating envi
ronment or experimental conditions, the actual demand
can be different from one operation run to another. Thus,
we can postulate a probability distribution for it.

For a generic case, denote by D the actual demand and by
F the forecast. We call the forecast unbiased if E(D) = F.
where E(D) denotes the expectation, or expected value,
of D with respect to its probability distribution. Practically
speaking, this unbiased requirement means that over many
runs under the same operating conditions, the average of
the realized demand is the same as the forecast. If there is
a deterministic quantity b ^ 0 such that E(D) = F + b, then
we say the forecast is biased, and the bias is b. In prac
tice, this means that there is a systematic departure of the
average realized demand from the forecast.

Throughout the paper, we often make the normality as
sumption on the demand, that is, for unbiased forecasts,
we assume that the demand D has a normal (Gaussian)
distribution with mean F and standard deviation a, that is,
D ~ N(F, a2). Is this a reasonable assumption in reality?
The answer is yes. First of all, this assumption is techni
cally equivalent to assuming that the difference Â£ = D â€” F
between the actual demand D and the forecast F is nor
mally distributed: e ~ N(0, a2). The validity of this latter
assumption is based on the fact that the difference be
tween the actual demand and a good forecast is some ag
gregation of many small random errors, and on the central
limit theorem, which states that the aggregation of many
small random errors has a limiting normal distribution.

U n b i a s e d F o r e c a s t C a s e

In this section, we assume unbiased forecasting at all
platforms.1 Statistically, E(DÂ¡) = FÂ¡, where FÂ¡ is the fore
cast for the common component at platform i, and DÂ¡ is
the actual demand of the component at platform i.

Definition 1: (Same Weight Mean Based) Define En = E(Â£n)

to be the forecast error at the mean (average) platform
level, and Ea = E(ea) to be the forecast error at the aggre
gate platform level, where:

and

- - 4] D ~

(Ib)

The rationale of defining the forecast error at the
mean level and at the aggregate level is as follows. Let
e, = ID; â€” Fjl/Fj. Then EÂ¡ measures, in terms of the relative
difference, the forecast error at a single platform i.
Accordingly, ea measures the forecast error, also in terms
of the relative difference, at the aggregate level from all
platforms, and E^ provides an estimate for the forecast
error at any individual platform since it is the average of
the forecast errors over all individual platforms. Because
all the quantities in equation 1 are stochastic, we take
expectations to get their deterministic means. Now, a
natural question is: What is the relation between the
errors at the two different levels?

Theorem 1: Based on definition 1, and assuming that
Dj ~ N(Fj, o2), i = 1, 2, ..., n, and that the DÂ¡ are uncorre-
lated (strictly speaking, we also need the joint normality
assumption, which in general can be satisfied), we have:

1. E^= vnEaCn, where:

(n /
l y i n i
n z i p n â € ”

1 = 1

(2)

2. It is always true that Cn > 1, and Cn = 1 if and only if the
forecasts across all the platforms are the same.

We note that in the definition for e^, we used the same
weight, 1/n, for all platforms. If instead we use a weight
proportional to the forecast at the platform, then we have
the following:

Definition 2: (Weighted Mean Based) Define En = E(e:i)

and Ea = E(ea), where:

11

I ' .
(3a)

F,
(la)

and

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

(3b)

Theorem 2: Based on definition 2 and with the same
assumptions as in theorem 1, we have:

En = vnEa. (4)

Mark Sower1 proposed this heuristic formula. Theorem 2
says that under suitable conditions, equation 4 holds
exactly.

Other researchers have addressed a similar problem from
the perspective of demand variability. In measuring the
relative errors of the forecast at the individual platforms,
it was assumed that QÃ/HÂ¡ (i = 1, 2, ..., n) are the same,
where GÃ is a measure of demand variability and (xÂ¡ is the
mean demand at platform i. The advantage here is we do
not need to make such a strong assumption. In fact, our
measure of the forecast error at the individual platform
level can be interpreted as the forecast error at an aver
aged individual platform.

The following definition of error is based on this observa
tion in practice. The standard deviation of a random vari
able can be very large if the values this random variable
takes on are very large. A more sensible error measure of
such a random variable would be the relative error rather
than the absolute error. So, given a random variable X,
we can measure its error by the coefficient of variance
cv(X) = o(X)/E(X) rather than by its standard deviation
a(X).

With the unbiased forecast assumption, the forecast error
at platform i can be measured by cv(DÂ¡). The average of
these coefficients over all platforms is a good measure of
the forecast error at the individual platform level. On the

n

other hand, V DÂ¡ is the demand from all platforms, and
i = l

/ n

^T FJ is the corresponding forecast, so cvj ^ DÂ¡ I is a
i = i \ i = i /
good measure of the forecast error at the aggregated plat
form level.

Definition 3: (CV Based) Define:

n / n

EH = X cv(Â°i)/n and Ea = cv X DÂ¡ [

Theorem 3: Based on definition 3, and assuming that the
DÂ¡ are uncorrelated, we have

â€” v'nEaCn, (5)

where Cn is defined in equation 2. For theorem 3, we do
not have to assume normality to get the relevant results.
This is also true for theorem 4.

General Case: The Effect of Bias
We assume here that forecasts are consistently biased.
This is expressed as E(DÂ¡) = FÂ¡ + b, where b denotes the
common forecast bias. This indicates that FÂ¡ overesti
mates demand when b < 0 and underestimates demand
when b > 0.

Can we extend the use of definition 3 for the forecast
errors to this general case? The answer is no. This is be
cause the standard deviation is independent of bias, and
therefore one could erroneously conclude that the fore
cast error is small when the standard deviation is small,
even though the bias b is very significant. Instead, the
forecast error now should be measured by the functional:

e(D,F) = yE([D-F]2)/F, (6)

rather than by the cv, which is yE([D-E(D)]2) /E(D).
Hence, in parallel with definition 3, we have the following
definition.

Definition 4: (e-Functional Based) Define:

EC = e(V DÂ¡, Â¿ Fj] and En = Y 6(0;, FÂ¡)/n,
\ i = l i = l / i = l

where the functional e is defined in equation 6.

If the bias b = 0, then the functional e in equation 6 is
the same as the cv, and hence definitions 3 and 4 are
equivalent.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Theorem 4: Based on definition 4. and assuming that
Dj ~ (Fj + b. o2),* i = 1, 2, ..., n and that the Dj are uncor-
related. we then have:

b2 (7)

where Cn is given in equation 2.

Since definition 1 considers the relative difference be
tween the forecast and the actual, any bias in the forecast
will be retained in the difference, so there is no problem
in using this definition even if there is bias. However, the
relation between the two errors has changed.

Theorem 5: Based on definition 1 and the assumption that
Dj ~ N(FÂ¡ + b, o2), i = 1, 2, ..., n and that the DÃ are uncor-
related, we have:

(8) E, = ,/S
,nb[2<I>Gnb/a) -

where Cn is defined in equation 2, and ^(x) is the cumula
tive distribution function of the standard normal distribu
tion N(0, 1) at x.

If there is no bias in the forecasting, the relationships be
tween the errors at the two levels are exactly the same for

definitions 1 and 3: En = /nEaCn. This formula, with the
introduction of the constant Cn, is slightly different from
the hypothesized equation 4. As noted in theorem 1, it is
always true that Cn > 1. If we use definition 2, then equa
tion 4 holds exactly.

If there is bias in the forecasting, then in each relationship
formula (equation 7 or equation 8), there is another multi
plying factor that reflects the effect of the bias. One can
easily find that both of these multiplying factors are less
than or equal to 1. This implies that, compared to the
error at the component level, the error at the platform-
component level when forecast bias exists is less than
when the forecast bias does not exist.

If bias does exist, as it does in reality, it seems that the
multiplying factor resulting from bias in either equation 7
or equation 8 should be taken into consideration, with
suitable estimation of the parameters involved.

' The deviat ion X~((i , a2) means that X has mean u. and standard deviat ion o but is not
necessar i ly normal ly d istr ibuted.

C o r r e l a t e d D e m a n d s

It is reasonable to assume that demand for a component
for one platform affects demand for this component for
another platform. Also, for a given platform, there is usu
ally a strong correlation between the current demand and
the historical demands. The forecast is usually made
based on the historical demands. In this section, we first
propose a correlated multivariate normal distribution
model for the demand stream when the platform is
indexed, and then propose a time-series model for the
demand and forecast streams when time is indexed. Our
goal is to expand our study of the relationship between
the two layers of forecast errors in the presence of cor
relations. Throughout this section, we assume unbiased
forecasts, and use the weighted average definition (defini
tion 3) for the forecast error.

C o r r e l a t e d N o r m a l D i s t r i b u t i o n M o d e l a t a T i m e P o i n t . I n

this subsection we consider the case where there is cor
relation across platform demands, but we still assume
that time does not affect demand. Suppose that the de
mand stream Dj, i = 1, 2, ..., n can be modeled by a corre
lated normal distribution such that Di~N(FÂ¡, o2) for i = 1,
2, ..., n and that there is a correlation between different DÂ¡
expressed as Cov(DÂ¡, Dj) = o2py for 1 < i TÃ j < n. With this
assumption on the demand stream, we have the following
result.

Theorem 6: Based on definition 2 and the above corre
lated normal distribution modeling for the demand
stream, we have:

:Ea. (9)
+ n

In particular, if py = p for all 1 < i ^ j < n, then we get:

E * - . - - ^ â € ” = E a . (1 0)
y(n - 1)P + 1

When the common correlation coefficient p is 0 or near 0,
we see that equation 4 holds exactly or approximately.

Autoregressive Time Series Model. Now we take into

consideration the time effect in the product demand. For

platform i, i = 1, 2, ..., n at time t, t= 1, 2, ..., denote by D

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

the demand and Fp-'the forecast. Suppose that the de

mand stream over time at each platform can be modeled
by an autoregressive model AR(p). At platform i, the auto-
regressive model assumes that the demand at the current
time t is a linear function of the past demands plus a ran
dom disturbance, that is:

where the ay are constant coefficients. Further, suppose

that the forecast Fp* is optimal given the historical de

mand profile Ã­Fp"1) = oÃ­ Dp), Dp), ..., Dp ~1A. That is,

with D[Â°), D| ~ 1}, . . . , D[~ * ~ 1}) properly initialized, for

.2Dp-2) + â€¢ â€¢ â€¢ + aijpDp-P) + eÂ»,

and

F(t) =

where e^-\ gp), ..., ep\ ... are independently and iden

tically distributed as N(0, a2) and the random disturbance

at time t, that is, ep*, is independent of the demand stream

before time t, that is, (Dp"1), Dp"2), ...Â¡.Also, we

assume independence across platforms. With the above
modeling of the demand and forecast, what can we say
about the relationship between the two layers of forecast
errors?

Theorem 7: Based on definition 1 or 2 and the above time-
series modeling for the demand stream and forecast
stream, and assuming that the variances at all platforms
are the same, then at any time point, if definition 1 is
used:

E W = vnEÂ«Cn, (U)

'it
i y Ã± L F(t)

i=ifi
Cn =

and if definition 2 is used, then:

g(t) = /ngW
i t a

Rewriting Cn in equation 2 as

n
IV_L-
nZ.F(t)

(12)

S if
and taking expectations for the numerator and denomina

tor separately in the expression leads to Cn. Hence, it is

always true that Cn > 1.

Proofs
Theorem 1 is a special case of theorem 5. Theorem 3 is a
special case of theorem 4. The proof for theorem 6 is simi
lar to that for theorem 5, with an application of lemma 1.

Lemma 1: If X~N(b, a2), then:

EIXI = Y|oe-b2/2Â°2 + b[23>(b/a) - 1] = H(b,a). (13)

Proof of Lemma 1: Without loss of generality, we can
assume that o = 1, since otherwise we can make a simple
transformation Y = X/o.

EIXI

where

cc -J. Ã­
J 2 n }

â€” CC

00

= 7zn]

| x | e - (x - b) 2 / 2 d x

|xle-(x-b)2/2dx

cc

- ^ f l y l e - (y +
v'2ir J

b)2/2dy

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

= I(b) + I(- b), where

O C

I(b) = -4= Ã­ xe-<x-b)2/2dx
^ r t j

O

x

f
J

= = (y + b) e - y 2 / 2 d y
l2.-r J

â€” b

= -J=e~b2/2 + bd>(b), and hence
N 2n

EIXÃ = -J=e~b2/2 + b<I>(b) + (- b)<J>(- b)

= /f e'Â»2/2 + b[2$(b) - 1].

Proof of Theorem 1 Parts 2 and 3. First note that func
tion cp(x) = 1/x is convex over (0, =c). Let random variable
X have a uniform distribution on the set {FÂ¡: 1 < i < n), that
is, P(X = F = 1/n. An application of the Jensen inequality2
E<p(X) > (p(EX) leads to the desired inequality. The second
part is based on the condition for the Jensen inequality to
become an equality.

P r o o f o f T h e o r e m 4 :

Hence we have:

= ,n Ã­̂ n-
a2 + nb2

Proof of Theorem 5: Noting that:

n
DÂ¡ - FÃ ~ N(b, o2) and]T(DÂ¡ - FÂ¡) ~ N(nb, no2),

then we have:

Ea
E(ex)
E(ea)

n
I V 1

H(b ' g (by l emma 1)
1 H (n b , , n o)

= >nCn-
â€¢ vnb[24>Gnb/o) - 1]

Proof of Theorem 7: The proofs for equations 11 and 12
are similar. We give a proof for equation 11 only. First

notice that D[f) - F|I) = e[l) ~ N(0, oÂ¡2). At any given

time t, by the definitions for E$Â¿P and E^, we have:

. 1 -

This second step follows from the fact that e[^ is inde

pendent of demands before time t, and hence independent

of the optimal forecast at time t, FJ^. The last step follows

from lemma 1 and the same variance assumption across
platforms.

E<Â» = E
I ' l
Ã = l

Ct)

= E

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

r

The reasoning is the same as for proving EÂ® above.

Conclusion

Forecast errors increase the complexity and difficulty of
the production planning process. This results in excessive
inventory costs and reduces on-time delivery. In this paper
we have studied the forecast errors for the case of several
products using the same component. Because data for the
component demand (both actual demand and forecast
demand) is easier to obtain at the aggregate product level
than at the individual product level, we focused on the
theoretical relationships between forecast errors at these
two levels.

Our first task was to propose formal definitions for mea
suring forecast errors under different rationales and tech
nical assumptions. The second task was to formally derive

relationships between forecast errors at the two levels. As
part of our work we proved the validity of a heuristic for
mula proposed by Mark Sower of the business operations
planning department at the HP Roseville, California site.

In addition to analyzing the two-level problem, we derived
a theoretical basis for relaxing the usual assumptions con
cerning correlations in the data across products and over
time.

Acknowledgments

I offer my first thanks to PaÃ±o Santos for introducing me
to a related material planning problem, and to Mark Sower
for his marvelous intuition. Special thanks go to Farid
Aitsahlia for his careful technical reading and editorial
assistance. Thanks also go to Shahid Mujtaba, Alex Zhang
(University of Southern California), and Dirk Beyer for
their valuable comments and suggestions, and to Bob
Ritter, Shailendra Jain, and Paul Williams for their man
agement support and encouragement. In particular, Paul
Williams helped greatly in writing the conclusion.

References

1. P. Santos, J. Shan, M. Sower, and A. Zhang, Material Planning

in Configure-To-Order Environment with Product Demand

Uncertainty and Component Shortage Conditions, HP Labora
tories Technical Report HPLÂ·97-32, 1997 (HP Internal Only).

2. E.B. Manoukian, Modern Concepts and Theorems of Mathe

matical Statistics, 1986.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Strengthening Software Qual i ty Assurance

Mutsuh iko Asada

Pong Mang Yan

Increasing time-to-market pressures in recent years have resulted in a

deterioration of the quality of software entering the system test phase. At

HP's Kobe Instrument Division, the software quality assurance process was

reengineered to ensure that released software is as defect-free as possible.

M u t s u h i k o A s a d a
Mutsuhiko Asada is a
software quality assur
ance engineer at HP's

Kobe Instrument Division. He received a
Master's degree in nuclear engineering from
Tohoku University in 1986 and joined HP the
same year. Born in Japan's Miyagi prefec
ture, he is married, has two children, and
enjoys mountain climbing and photography.

Pong Mang Yan
Bryan Pong is an R&D
engineer with HP's Kobe
Instrument Division,

working mainly on firmware. He received
Master's degrees in electronics and computer
engineering from Yokohama National Univer

sity in 1996. He was born in Hong Kong and
likes travel and swimming.

T - I h e .he Hewlett-Packard Kobe Instrument Division (KID) develops

measurement instruments. Our main products are LCR meters and network,

spectrum, and impedance analyzers. Most of our software is built into these

instruments as firmware. Our usual development language is C. Figure 1

shows our typical development process.

Given adequate development time, we are able to include sufficient software

quality assurance activities (such as unit test, system test, and so on) to provide

high-quality software to the marketplace. However, several years ago, time-to-

market pressure began to increase and is now very strong. There is no longer

enough we time for our conventional process. In this article, we

describe our perceived problems, analyze the causes, describe countermeasures

that we have adopted, and present the results of our changes.

Figure 1

Hewle t t -Packard Kobe Ins t rument D iv is ion so f tware deve lopment process
before improvement .

Implement
(Coding)

A
Final Audit

R&D R&D R&D, SWQA,
Market ing

R&O
Integration

Test

ERS/ IRS = External / Internal Reference Speci f icat ion
SWQA = Sof tware Qua l i t y Assurance

A = S W Q A C h e c k p o i n t

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Existing Development Process
The software development process that we have had in
place since 1986 includes the following elements:

â€¢ Improvement in the design phase. We use structured
design methods such as modular decomposition, we use
defined coding conventions, and we perform design
reviews for each software module.

â€¢ Product series strategy. The concept of the product
series is shown in Figure 2. First, we develop a plat
form product that consists of newly developed digital
hardware and software. We prudently design the plat
form to facilitate efficient development of the next and
succeeding products. We then develop extension prod
ucts that reuse the digital hardware and software of the
platform product. Increasing the reuse rate of the soft
ware in this way contributes to high software quality.

â€¢ Monitoring the defect curve. The defect curve is a plot
of the cumulative number of defects versus testing time
(Figure 3). We monitor this curve from the beginning
of system test and make the decision to exit from
the system test phase when the curve shows sufficient
convergence.

As a result of the above activities, our products' defect
density (the number of defects within one year after ship
ment per thousand noncomment source statements) had
been decreasing. In one product, less than five defects
were discovered in customer use.

Perceived Problems
Strong time-to-market pressure, mainly from consumers
and competitors, has made our development period and
the interval between projects shorter. As a result, we
have recognized two significant problems in our products

Figure 2

The product ser ies concept increases the sof tware reuse
rate, thereby increas ing sof tware qual i ty .

Product A Product A

N e w

Product A

N e w

Platform Product Extension Product Extension Product

Figure 3

Typical defect curves.

0 100 200 300 400 500 600 700 800 900 1000 1100

Test Hours

and process: a deterioration of software quality and an
increase in maintenance and enhancement costs.

Deterioration of software quality. In recent years (1995
to 1997), software quality has apparently been deteriorat
ing before the system test phase. In our analysis, this phe
nomenon is caused by a decrease in the coverage of unit
and integration testing. In previous years, R&D engineers
independently executed unit and integration testing of the
functions that they implemented before the system test
phase. At present, those tests are not executed sufficient
ly because of the shortness of the implementation phase
under high time-to-market pressure. Because of the
decrease in test coverage, many single-function defects
(defects within the range of a function, as opposed to
combination-function defects) remain in the software at
the start of system test (Figure 4). Also, our system test
periods are no longer as long. We nearly exhaust our test
ing time to detect single-function defects in shallow soft
ware areas, and we often don't reach the combination-
function defects deep within the software. This makes
it less likely that we will get convergence of the defect
curve in the limited system test phase (Figure 5).

Increase of maintenance and enhancement costs.
For our measurement instruments, we need to enhance
the functionality continuously to satisfy customers' re
quirements even after shipment. In recent products,
the enhancement and maintenance cost is increasing
(Figure 6). This cost consists of work for the addition of

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 4

Change in the propor t ion of s ing le- funct ion defects found
in the system test phase.

C o m b i n a t i o n - F u n c t i o n
D e f e c t s a n d O t h e r s

82.2%

P r o d u c t B (1 9 9 0) P r o d u c t D (1 9 9 6)

new functions, the testing of new modified functions, and
so on. In our analysis, this phenomenon occurs for the
following reasons. First, we often begin to implement
functions when the detailed specifications are still vague
and the relationships of functions are still not clear.
Second, specifications can change to satisfy customer
needs even in the implementation phase. Thus, we may
have to implement functions that are only slightly different
from already existing functions, thereby increasing the
number of functions and pushing the cost up. Figure 7
shows that the number of functions increases from one

Figure 5

Defect curves for post- 1995 products.

3 5 0 T

Figure 6

Increase in the cost per funct ion o f enhancement and
maintenance. The f i rs t enhancements for Product B
occurred in 1991.

1 6 0 y

1 4 0 -

120

100 â€¢â€¢

8 0

6 0

4 0 -

2 0

O

6 1 . 3

P r o d u c t B (1 9 9 1)
T o t a l : 2 4 F u n c t i o n s

E n h a n c e d

132

P r o d u c t C (1 9 9 5)
T o t a l : 1 3 F u n c t i o n s

E n h a n c e d

product to another even though the two products are
almost the same.

Often the internal software structure is not suitable for a
particular enhancement. This can result from vague func
tion definition in the design phase, which can make the
software structure inconsistent and not strictly defined.
In the case of our combination network and spectrum
analyzers, we didn't always examine all the relationships
among analyzer modes and the measurement and analyzer
functions (e.g., different display formats for network and
spectrum measurement modes).

Figure 7

Increase in the number o f commands in two s imi lar
analyzers as a resul t of changing customer needs.

395

O May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Naturally, the enhancement process intensely disturbs soft
ware internal structures, which forces us to go through
the same processes repeatedly and detect and fix many
additional side-effect defects.

Counter -measures1 -2

If we had enough development time, our problems would
be solved. However, long development periods are no
longer possible in our competitive marketplace. Therefore,
we have improved the development process upstream to
handle these problems. We have set up two new check
points in the development process schedule to make sure
that improvement is steady (Figure 8). In this section we
describe the improvements.

We plan to apply these improvement activities in actual
projects over a three-year span. The software quality
assurance department (SWQA) will appropriately revise
this plan and improve it based on experience with actual
projects.

D e s i g n P h a s e â € ” I m p r o v e m e n t o f F u n c t i o n D e f i n i t i o n . W e
have improved function definition to ensure sufficient
investigation of functions and sufficient testing to remove
single-function defects early in the development phase.

Figures

Improved sof tware deve lopment process.

Implement
(Coding)

R&D

A
SWQA, R&D

ERS Function
Definition

(IRS)

Automatic
Unit and

R&D, SWQA,
Market ing

SWQA, R&D Wri t ing
Test Script for

Automatic
Test

â€” Flow of Information

= S W Q A C h e c k p o i n t

= Checking Content of Funct ion Def in i t ion

~ Checking Test Scr ipts and Test ing Resul ts

~ F i n a l A u d i t

We concisely describe each function's effects, range of
parameters, minimum argument resolution, related func
tions, and so on in the function definition (Figure 9).
Using this function definition, we can prevent duplicate
or similar functions and design the relationships of the
measurement modes and functions precisely. In addition,
we can clearly define functions corresponding to the
product specifications and clearly check the subordinate
functions, so that we can design a simple and consistent
internal software structure. We can also easily write the
test scripts for the automatic tests, since all of the neces
sary information is in the function definitions.

SWQA, not R&D, has ownership of the template for func
tion definition. SWQA manages and standardizes this
template to prevent quality deterioration and ensure that
improvements that have good effects are carried on to
future projects.

Checkpoint at the End of the Design Phase. The first
new checkpoint in the development process is at the end
of the design phase. SWQA confirms that all necessary
information is contained in the function definitions. SWQA
approves the function definitions before the project goes
on to the implementation phase.

I m p l e m e n t a t i o n P h a s e â € ” A u t o m a t i c T e s t E x e c u t i o n . I n
this phase, SWQA mainly writes test scripts based on the
function definitions for automatic tests to detect single-
function defects. We use equivalence partitioning and
boundary value analysis to design test scripts. As for
combination-function defects, since the number of combi
nations is almost infinite, we write test scripts based only
on the content of the function definitions. When we im
plement the functions, we immediately execute the auto
matic tests by using the scripts corresponding to these
functions. Thus, we confirm the quality of the software as
soon as possible. For functions already tested, we re-
execute the automatic tests periodically and check for
side effects caused by new function implementations. As
a result of these improvements, we obtain software with
no single-function defects before the system test phase,
thereby keeping the software quality high in spite of the
short development period. The test scripts are also used
in regression testing after shipment to confirm the quality
of modified software in the enhancement process. In this
way, we can reduce maintenance and enhancement costs.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Checkpoint at the End of the Implementat ion Phase. At
the second new checkpoint in the development process,
SWQA confirms that the test scripts reflect all the content
of the function definitions, and that there are no signifi
cant problems in the test results. The project cannot go
on to the system test phase without this confirmation.

System Test Phase â€” Redefinition of System Testing.
In an ideal testing process, we can finish system testing
when we have executed all of the test items in the test
cases we have written. However, if many single-function
defects are left in the software at the start of system test,
we will detect single-function and combination-function
defects simultaneously, and the end of testing will become
unclear. Therefore we use statistical methods, such as
convergence of the defect curve, to decide when to end
the system test phase.

In our improved process, we can start the system test
phase with high-quality code that includes only a few
single-function defects. Thus, we can redefine the testing
method to get more efficiency in detecting the remaining
defects. We divide the system test items into two test
groups. The first group uses black box testing. We write
these test cases based on the instrument characteristics
as a system and on common failures that have already
been detected in the preceding series products. The
second group is measurement application testing, which
is known as white box testing. The R&D designers, who
clearly know the measurement sequence, test the mea
surement applications according to each instrument's
specifications. We try to decide the end of system test
based on the completion of test items in the test cases
written by R&D and SWQA. We try not to depend on
statistical methods.

Checkpoint at the End of the System Test Phase. We use
this checkpoint as in the previous process, as an audit
point to exit the system test phase. SWQA confirms the
execution of all test items and results.

A Feasibi l i ty Study of Automatic Test
Before implementing the improved development process
described above, we wanted to understand what kind of
function is most likely to cause defects and which parts
we can't test automatically. Therefore, we analyzed and
summarized the defect reports from a previous product
series (five products). We found that the front-panel keys,
the HP-IB remote control functions, and the Instrument

BASIC language are most likely to cause defects. We also
observed that the front-panel keys and the display are
difficult to test automatically. Based on this study, we
knew which parts of the functions needed to be written
clearly on the function definitions, and we edited the test
items and checklist to make the system test more efficient.

Application of the Improvement Process

Project Y. Product Y is an extension and revision of Prod
uct X, a combination network, spectrum, and impedance
analyzer. The main purpose of Project Y was to change
the CRT display to a TFT (thin-film transistor) display and
the HP-IB printer driver to a parallel printer driver. Most
of the functions of the analyzer were not changed.

Since Product Y is a revision product, we didn't have to
write new function definitions for the HP-IB commands.
Instead, we used the function reference manual, which
has the closest information to a function definition. The
main purpose of the test script was to confirm that each
command worked without fail. We also tested some com
bination cases (e.g., testing each command with different
channels). The test script required seven weeks to write.
The total number of lines is 20,141.

For the automatic tests, we analyzed the defect reports
from five similar products and selected the ones related
to the functions that are also available in Product Y (391
defect reports in the system phase). Then we identified
the ones that could be tested automatically. The result
was 140 reports, which is about 40% of the total. The
whole process took three weeks to finish and the test
script contains 1972 lines. The rest of the defect reports
were checked manually after the end of system test.
It took about seven hours to finish this check.

Both of the above test scripts were written for an in-house
testing tool developed by the HP Santa Clara Division.3
An external controller (workstation) transfers the
command to the instrument in ASCII form, receives the
response, and decides if the test result passes or fails.

Instrument BASIC (IBASIC), the internal instrument con
trol language, has many different functions. It comes with
a suite of 295 test programs, which we executed automati
cally using a workstation. The workstation downloaded
each test program to the instrument, ran the program, and
saved the result. When all the programs finished running,
we checked if the result was pass or fail.

May 1998 â€¢ The Hewlett-Packard Journal O
© Copr. 1949-1998 Hewlett-Packard Co.

For all of the automatic testing, we used the UNIX * make
command to manage the test scripts. The make command
let each test program execute sequentially.

Using the test scripts, we needed only half a day to test all
of the HP-IB commands and one day to test the IBASIC.
Since Product Y is a revision product, we also used the
test scripts to test its predecessor, Product X, to confirm
that Product Y is compatible with Product X. The test
items in the Product X checklist were easily modified to
test Product Y.

Project Z. Product Z belongs to the same product series
as Product Y (a combination network, spectrum, and
impedance analyzer). The reuse rate of source code is
77% of Product Y.

One R&D engineer took one month to finish the first draft
of the function definitions. To test the individual HP-IB
commands, since the necessary function definition infor
mation existed, we easily modified the test script for
Product Y to test Product Z. We employed a third-party
engineer to write the test scripts. This took five weeks.

Since Product Z is in the same series as Product Y, we are
reusing the test scripts for Product Y and adding the new
test scripts corresponding to the new defects that were
detected in Product Y to test Product Z.

The IBASIC is the same as Product Y's, so we use the same
test program for Product Z. The automatic test environ
ment is also the same as for Product Y.

Since Product Z is still under development, we don't have
the final results yet. We use the test scripts to confirm the
individual HP-IB commands periodically. This ensures that
the quality of the instrument's software doesn't degrade
as new functions are added. At this writing, we haven't
started system test, but we plan to reuse the same product
series checklist to test Product Z.

R e s u l t s

Project Y. In this project, we found 22 mistakes in the
manual, 66 defects in Product X while preparing the test
scripts, and 53 defects in Product Y during system test.
The following table lists the total time spent on testing
and the numbers of defects that were detected in Product
X in Project X and Project Y.

Table I
Defects found in Product X

P r o j e c t X P r o j e c t Y

T e s t i n g T i m e (h o u r s) 1 0 4 9 2 0 0

N u m b e r o f D e f e c t s 3 0 9 8 8

According to this data, using the test scripts based on the
function reference manual, we detected 88 defects in
Product X during Project Y, even though we had already
invested more than 1000 test hours in Project X and the
defect curve had already converged (Figure 3). We con
clude that testing the software with a test script increases
the ability to detect defects. Also we see that a function
definition is indispensable for writing a good test script.

Since the automatic test is executed periodically during
the implementation phase, we can assume that no single-
function defects remained in Product Y's firmware before
system test. Since Product Y is a revision product, there
were only a few software modifications, and we could
assume that the test items for the system testing covered
all the modified cases. Therefore, we could make a deci
sion to stop the system test when all the test items were
completed, even though the defect curve had not con
verged (Figure 10). However, for a platform product or
an extension product that has many software modifica
tions and much new code, the test items of the system
test are probably not complete enough to make this deci
sion, and we will still have to use the convergence of the
defect curve to decide the end of the system test. Never
theless, it will always be our goal to make the test items
of the system test complete enough that we can make
decisions in the future as we did in Project Y.

The test script is being used for regression testing during
enhancement of Product Y to prevent the side effects
caused by software modifications.

In Figure 11, we compare the test time and the average
defect detection time for these two projects. Because
Product Y is an extension of Product X, the results are
not exactly comparable, but using the test script appears
to be better because it didn't take as much time to detect
the average defect.

May 1998 â€¢ The Hewlelt-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 10

Defect curve for Project Y.

We needed time to write the test scripts, but the system
test phase became shorter, so the total development time
was shorter for Project Y. The enhancement cost will be
lower because we can reuse the same test script for
regression testing.

Project Z. We expect that the quality of Product Z will be
high before system test because we test Product Z periodi
cally in the implementation phase and confirm the result
before entering system test.

The additional work of the improvement process is to
write formal function definitions and test scripts. Since
this project is the first to require a formal function defini
tion, it took the R&D engineer one month to finish the
first draft. For the next project, we expect that the func
tion definition can be mostly reused, so the time needed
to write it will be shorter.

The test scripts are written during the implementation
phase and do not affect the progress of the project. There
fore, we only need to wait about a month for writing the
function definition before starting the implementation
phase, and since the time needed for system test will be
shorter, the whole development process will be faster.

Since we are reusing the test scripts of Product Y, the
time for writing test scripts for Product Z is two weeks
shorter than for Product Y. Thus, for a series product, we
can reuse the test scripts to make the process faster. Also,
making test scripts is not a complicated job, so a third-
party engineer can do it properly.

Figure 11

CosÃ­ of software test ing for Projects X and Y. (a) Engineer-months spent on software test ing, (b) Engineer-months per defect.

14

12-

10 -

6 - -

2-

0.05

12.43

Defect Correction

System Test

I Test Pattern

Project X Project Y
(b)

Project X Project Y

May 1998 Â«The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Conclusion

We analyzed the software (firmware) development prob
lems of the Hewlett-Packard Kobe Instrument Division
and decided on an improvement process to solve these
problems. This improvement process has been applied to
two projects: Project Y and Project Z. The results show
that we can expect the new process to keep the software
quality high with a short development period. The main
problems â€” deteriorating software quality and increasing
enhancement cost â€” have been reduced.

This improvement process will be standardized and ap
plied to other new projects. It will also make our software
development process conform to the key process areas of
CMM (Capability Maturity Model) level 2 and some part of
level 3.1'2

A c k n o w l e d g m e n t s

We cannot overstate the importance of the work of Mitsuo
Matsumoto on the automatic IBASIC tests. We would like
to thank Akira Nukiyama and several of our colleagues
for reviewing this paper and giving valuable comments.

R e f e r e n c e s

1. M.C. Paulk, etal, Capability Maturity Model for Software,

Version 1.1, Carnegie Mellon University, SEI-93-TR-024.

2. M.C. Paulk, et al, Key Practices of the Capability Maturity

Model, Version 1.1, Carnegie Mellon University, SEI-93-TR-025.

3. B. Haines, UNIX-Based HP-IB Test Tool (Ttool) Operation

Manual, 1991.

UNIX countries, 3 registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open Limited a registered trademark and the X device is a trademark ofX/Open Company Limited
in the UK and other countries.

O May 1998 â€¢ The Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The Hew le t t -Packa rd Jou rna l On l i ne

A Compi ler for HP VEE

Steven Greenbaum

Stanley Jefferson

With from addition of a compiler, HP VEE programs can now benefit from

improved execution speed and still provide the advantages of an interactive

interpreter.

T J L h i i

S t e v e n G r e e n b a u m
A member of the technical
staff at HP Laboratories
since 1989, Steve Green

baum is currently researching "hardware-in-
the-loop" systems and programming for distrib
uted systems. He has a PhD degree in computer
science (1986) from the University of Illinois at
Urbana-Champaign and a BS degree in com
puter science (1980) from Syracuse University.
Steve was born in New York City, is married
and has two children. In his leisure time he en
joys playing guitar and taking field trips with
his family.

Stan ley Je f fe rson
Â£ Stanley Jefferson is a mem-

I ber of the technical staff at
L____i____] HP Laboratories, where he
began his career at HP in 1990. He is currently
doing research in the area of "hardware-in-the-
loop" systems. He has a PhD degree in com
puter science (1988) from the University of
Illinois at Urbana-Champaign. He received BS
(1977) and MA (1979) degrees in mathematics
from the University of California at Davis. Stan
was born in Oakland, California, is married and
has two children. He enjoys playing piano and
day trips to the beach with his family.

.his article presents the major algorithmic aspects of a compiler for the

Hewlett-Packard Visual Engineering Environment (HP VEE). HP VEE is a

powerful visual programming language that simplifies the development of

engineering test-and-measurement software. In the HP VEE development

environment, engineers design programs by linking visual objects (also called

devices) into block diagrams. A simple example is shown in Figure 1.

Features provided in HP VEE include:

â€¢ Support for engineering math and graphics

â€¢ Instrument control

â€¢ Concurrency

â€¢ Data management

â€¢ GUI support

â€¢ Test sequencing

â€¢ Interactive development and debugging environment.

Beginning with release 4.0, HP VEE uses a compiler to improve the execution

speed of programs. The compiler translates an HP VEE program into

byte-code that is executed by an efficient interpreter embedded in HP VEE. By

analyzing the control structures and data type use of an HP VEE program, the

compiler determines the evaluation order of devices, eliminates unnecessary

run-time decisions, and uses appropriate data structures.

The HP VEE 4.0 compiler increases the performance of computation-intensive

programs by about 40 times over previous versions of HP VEE. In applications

May 1998 â€¢ The Hewlett-Packard journal

© Copr. 1949-1998 Hewlett-Packard Co.

Figure 1

A simple HP VEE program to compute the area of a c i rc le.

\ r . ' ; : ' I R e s u l t i
: ha Numer!

where execution speed is constrained by instruments, file
input and output, or display update, performance typically
increases by 150 to 400 percent.

The compiler described in this article is a prototype devel
oped by HP Laboratories to compile HP VEE 3.2 pro
grams. The compiler in HP VEE 4.0 differs in some de-
tails.The HP VEE prototype compiler consists of five
components:

â€¢ Graph Transformation. Transformations are performed
on a graph representation of the HP VEE program. The
transformations facilitate future compilation phases.

â€¢ Device Scheduling. An execution ordering of devices
is obtained. The ordering may have hierarchical ele
ments, such as iterators, that are recursively ordered.
The ordering preserves the data flow and control flow
relationships among devices in the HP VEE program.
Scheduling does not, however, represent the run-time
flow branching behavior of special devices such as
If/Then/Else.

â€¢ Guard Assignment. The structure produced by schedul
ing is extended with constructs that represent run-time
flow branching. Each device is annotated with boolean
guards that represent conditions that must be satisfied
at run time for the device to run. Adjacent devices with
similar guards are grouped together to decrease redun
dancy of run-time guard processing. Guards can result

from explicit HP VEE branching constructs such as
If/Then/Else, or they can result from implicit properties
of other devices, such as guards that indicate whether
an iterator has run at least once.

â€¢ Type Annotation. Devices are annotated with type infor
mation that gives a conservative analysis of what types
of data are input to, and output from, a device. The an
notations can be used to generate type-specific code.

â€¢ Code Generation. The data structures maintained by the
compiler are traversed to generate target code. The
prototype compiler can generate C code and byte-code.
However, code generation is relatively straightforward to
implement for most target languages.

These components combine to implement the semantics
explicitly and implicitly specified in an HP VEE program.

O n l i n e I n f o r m a t i o n

This complete article can be found at:
http://www.hp.com/hpj/98may/ma98al3.htm

More information about HP VEE can be found at:
http://www.hp.com/go/HPVEE

May 1998 â€¢ The HewleU-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The Hewlett -Packard Journal
The Hew le t t -Packa rd Jou rna l i s pub l i shed by t he Hew le t t -Packa rd Company t o r ecogn i ze t echn i ca l con t r i bu t i ons made by Hew le t t -
Packard (HP) pe rsonne l . Wh i le the in fo rmat ion found in th i s pub l i ca t ion i s be l ieved to be a c cu ra te , the Hewle t t -Packard Company d is
c la ims a l l war ran t ies o f merchan tab i l i t y and f i t ness fo r a pa r t i cu la r pu rpose and a l l ob l i ga t i ons and l i ab i l i t i es fo r damages , i nc lud ing bu t
no t l im i ted to ind i rec t , spec ia l , o r consequen t ia l damages , a t to rney 's and exper t ' s fees , and cour t cos ts , a r i s ing ou t o f o r i n connec t ion
w i th th i s pub l i ca t i on .

Subscriptions
The Hewle t t -Packard Journa l i s d is t r ibu ted f ree o f charge to HP research , des ign , and manufac tur ing eng ineer ing personne l , as we l l as
to qual i f ied non-HP ind iv iduals , l ib rar ies, and educat ional ins t i tu t ions.

To rece ive an HP employee subscr ip t ion send an e-mai l message ind ica t ing your HP ent i t y , employee number , and mai ls top to :
Idcj i tpro@hp0000.hp.com

Qual i f ied non-HP ind iv iduals , l ib rar ies, and educat ional ins t i tu t ions in the U.S. can request a subscr ip t ion by go ing to our websi te and
fo l low ing the d i rec t ions to subscr ibe .

To reques t an In te rna t iona l subscr ip t ion loca te your neares t count ry representa t i ve l i s ted on our webs i te and con tac t them d i rec t l y fo r a
subscr ip t ion. Free subscr ip t ions may not be ava i lab le in a l l count r ies .

Back i ssues o f the Hewle t t -Packard Journa l can be o rdered th rough our webs i te .

Our Website
Current and recent issues are available online at http://www.hp.com/hpj/journal.html

Submissions
A l though a r t i c l es i n t he Hew le t t -Packa rd Jou rna l a re p r imar i l y au tho red by HP emp loyees , a r t i c l es f r om non -HP au tho rs dea l i ng w i t h
HP- re la ted resea rch o r so lu t i ons to t echn i ca l p rob lems made poss ib le by us ing HP equ ipmen t a re a l so cons ide red fo r pub l i ca t i on .
Before doing any work on an article, please contact the editor by sending an e-mail message to: hp_journal@hp.com

Copyright
Copyr ightÂ© 1998 Hewlet t -Packard Company. A l l r igh ts reserved. Permiss ion to copy wi thout fee a l l o r par t o f th is pub l ica t ion is hereby
granted prov ided that 1) the cop ies are not made, used, d isp layed, or d is t r ibuted for commerc ia l advantage; 2) the Hewlet t -Packard
Company copyr igh t not ice and the t i t le o f the pub l ica t ion and date appear on the cop ies ; and 3) a not ice appears s ta t ing that the copy ing
is by permiss ion o f the Hewle t t -Packard Company.

Inquiries
Please address inqui r ies, submiss ions, and requests to : Editor

Hew le t t -Packard Journa l
3000 Hanover Street , Mai l Stop 20BH
Palo Alto, CA 94304-1 185 U.S.A.

â € ¢ H E W L E T T - P A C K A R D " <

Journal
MAY 1998 â€¢ Volume 49, Number 2

Techn ica l In fo rmat ion f rom the Hewle t t -Packard Company

FR: HEWLETT-PACKARD LITPRO BLDG
ENT: 0000 M/S: 20BBA
TO: KAREN R LEWIS
CORPORATE OFFICES

SEL; JOURNAL - USA 135992

1 9 0

5966-2130E

© Copr. 1949-1998 Hewlett-Packard Co.

	An API for Interfacing Interactive 3D Applications to High-Speed Graphics Hardware
	The Fast-Break Program
	An Overview of th HP OpenGL Software Architecture
	The DirectModel Toolkit: Meeting the 3D Graphics Needs of Technical Applications
	An Overview of the VISUALIZE fx Graphics Accelerator Hardware
	Occlusion Culling
	Fast Virtual Texturing
	HP Kayak: A PC Workstation with Advanced Graphics Performance
	Concurrent Engineering in OpenGL's Product Development
	Advance Display Technologies on HP-UX Workstations
	Delivering PCI in HP B-Class and C-Class Workstations: A Case Study in the Challenges of Interfacing with Industry Standards
	Linking Enterprise Business Systems to the Factory Floor
	Knowledge Harvesting, Articulation, and Delivery
	Glossary
	A Theoretical Derivation of Relationships Between Forecast Errors
	Strengthening Software Quality Assurance
	A Compiler for HP VEE

