
H E W L E T - P A C K A R D

JOURNAL
Feb rua ry 1997

H E W L E T T
P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL February 1997 Vo lume 48 â€¢ Number 1

Articles

SoftBench 5.0: The Evolution of an Integrated Software Development Environment, by Deborah A.
Lienhart

Applying a Process Improvement Model to SoftBench 5.0

The C++ SoftBench Class Editor, by Julie B. Wilson

The SoftBench Static Analysis Database, by Roben C. Bethke

CodeAdvisor: Rule-Based C++ Defect Detection Using a Static Database, by Timothy J. Duesing
and John R. Diamant

Using SoftBench to Integrate Heterogeneous Software Development Environments, by Stephen A.
Williams

The Supply Chain Approach to Planning and Procurement Management, by Gregory A. Kruger

34- Appendix I : Derivation of the Standard Deviat ion of Demand Given an R-Week Review Period

Appendix II: The Expected Value and Variance of On-Hand Inventory when there Are no
Restrictions on Minimum Buy Quantities

Appendix III: The Expected Value and Variance of On-Hand Inventory when there Are Restrictions
on Minimum Buy Quantities

Appendix IV: Incorporating SRT (Supplier Response Time) into the Safety Stock Calculations

Appendix V: Derating the Service Level to Account for Reduced Periods of Exposure to Stock-outs
as a Result of Minimum Buy or Economic Order Quantities

Appendix VI: Estimating Weekly Demand Uncertainty from Monthly Data

Appendix VII: Adjusting Safety Stock to Account for Yield Loss

Execut ive Robin Steve Bei t ler â€¢ Managing Edi tor , Char les L. Leath â€¢ Senior Edi tor , Richard P. Dolan â€¢ Ass is tant Edi tor , Robin Everest
Pub l i ca t ion Produc t ion Manager , Susan E. Wr igh t â€¢ D is t r ibu t ion Program Coord ina to r , RenÃ©e D. Wr igh t â€¢ Layout / I l l us t ra t ion , John N icoara
W e b m a s t e r , J o h n H u g h e s

A d v i s o r y B o a r d
Rajeev Co lo rado In teg ra ted C i rcu i t Bus iness D iv i s ion , For t Co l l i ns , Co lo rado
W i l l i a m W . B r o w n , I n t e g r a t e d C i r c u i t B u s i n e s s D i v i s i o n , S a n t s C l a r a C a l i f o r n i a
R a j e s h D e s a i , C o m m e r c i a l S y s t e m s D i v i s i o n , C u p e r t i n o , C a l i f o r n i a
Kev in G . Ewe r t , I n t eg ra ted Sys tems D i v i s i on , Sunnyva le , Ca l i f o rn i a
B e r n h a r d F i s c h e r , B o b l i n g e n M e d i c a l D i v i s i o n , B o b l i n g e n , G e r m a n y
D o u g l a s G e n n e t t e n , G r e e l e y H a r d c o p y D i v i s i o n , G r e e l e y , C o l o r a d o
Gary Go rdon , HP Labo ra to r i es , Pa lo A l t o , Ca l i f o rn ia
M a r k O r e g o n I n k J e t S u p p l i e s B u s i n e s s U n i t , C o r v a i l i s , O r e g o n
M a t t J . M a r l i n e , S y s t e m s T e c h n o l o g y D i v i s i o n , R o s e v i l l e , C a l i f o r n i a
K i y o y a s u H i w a d a , H a c h i o j i S e m i c o n d u c t o r T e s t D i v i s i o n , T o k y o , J a p a n
B r y a n H o o g , L a k e S t e v e n s I n s t r u m e n t D i v i s i o n , E v e r e t t , W a s h i n g t o n
C . S t e v e n J o i n e r , O p t i c a l C o m m u n i c a t i o n D i v i s i o n , S a n J o s e , C a l i f o r n i a
R o g e r L . J u n g e r m a n , M i c r o w a v e T e c h n o l o g y D i v i s i o n , S a n t a R o s a , C a l i f o r n i a
F o r r e s t K e l l e r t , M i c r o w a v e T e c h n o l o g y D i v i s i o n , S a n t a R o s a , C a l i f o r n i a
Ruby B . Lee , Ne tworked Sys tems Group , Cuper t i no , Ca l i f o rn ia
S w e e K w a n g L i m , A s i a P e r i p h e r a l s D i v i s i o n , S i n g a p o r e
A l f r e d M a u t e , W a l d b r o n n A n a l y t i c a l D i v i s i o n , W a l d b r o n n , G e r m a n y

A n d r e w M c L e a n , E n t e r p r i s e M e s s a g i n g O p e r a t i o n , P i n e w o o d , E n g l a n d
Dona V iew, M i l l e r , Wor ldw ide Cus tomer Suppor t D iv i s ion , Mounta in V iew, Ca l i fo rn ia
M i t c h e l l J . M l i n a r H P - C E s o f D i v i s i o n , W e s t l a k e V i l l a g e , C a l i f o r n i a
M i c h a e l P . M o o r e , V X I S y s t e m s D i v i s i o n , L o v e l a n d , C o l o r a d o
M . S h a h i d M u j t a b a , H P L a b o r a t o r i e s , P a l o A l t o , C a l i f o r n i a
S teven J . Na rc i so , VX I Sys tems D i v i s i on , Love land , Co lo rado
D a n n y J . O l d f i e l d , E l e c t r o n i c M e a s u r e m e n t s D i v i s i o n , C o l o r a d o S p r i n g s , C o l o r a d o
G a r r y O r s o l i n i , S o f t w a r e T e c h n o l o g y D i v i s i o n , R o s e v i l l e , C a l i f o r n i a
Ken Pou l t on , HP Labo ra to r i es , Pa lo A l t o , Ca l i f o rn i a
G i i n t e r R i e b e s e l l , B o b l i n g e n I n s t r u m e n t s D i v i s i o n , B o b l i n g e n , G e r m a n y
M i c h a e l B . S a u n d e r s , I n t e g r a t e d C i r c u i t B u s i n e s s D i v i s i o n , C o r v a i l i s , O r e g o n
Ph i l i p S ten ton , HP Labo ra to r i es B r i s t o l , B r i s t o l , Eng land
S tephen R . Undy , Sys tems Techno logy D i v i s i on , Fo r t Co l l i ns , Co lo rado
J i m W i l l i t s , N e t w o r k a n d S y s t e m M a n a g e m e n t D i v i s i o n , F o r t C o l l i n s , C o l o r a d o
K o i c h i Y a n a g a w a , K o b e I n s t r u m e n t D i v i s i o n , K o b e , J a p a n
Denn is C . Yo rk , Corva i l i s D iv i s ion , Corva i l i s , Oregon
B a r b a r a Z i m m e r , C o r p o r a t e E n g i n e e r i n g , P a l o A l t o , C a l i f o r n i a

Â©Hewle t t -Packard Company 1997 Pr in ted in U .S .A . T h e H e w l e t t - P a c k a r d J o u r n a l i s p r i n t e d o n r e c y c l e d p a p e r .

2 February 1997 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

A New Friedemann of Sensors for Pulse Oximetry, by Siegfried KÃ stle, Friedemann Noller, Siegfried Falk,
Anton Bukta, Eberhard Mayer , and Die tmar Mi l le r

Volunteer Study for Sensor Calibration

Neonatal Sensor Clinical Validation

Design Youngers, a 600-Pixel-per-lnch, 30-Bit Color Scanner, by Steven L Webb, Kevin J. Youngers,
M ichae lJ . S te in le , and Joe A. Eccher

Sing to Me

Bui ld ing Evolvable Systems: The ORBIi te Project , by Kei th E. Moore and Evan R. Kirshenbaum

Develop ing Fus ion Objects for Ins t ruments , by Anton io A. D/co len and Jerry J . L iu

An Approach to Arch i tec t ing Enterpr ise So lu t ions , by Rober t A . Se l iger

Components and Objects

The Andover Working Group

Multiple Interfaces in COM

Object -Or iented Customer Educat ion, by Wul f Rehder

Questions about Using Objects

Starting an Object-Oriented Project

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

1 0 3 A u t h o r s

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d (H P)
p e r s o n n e l . w a r r a n t i e s t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f m e r c h a n t
ab i l i t y damages, ind i rec t , fo r a par t i cu la r purpose and a l l ob l iga t ions and l iab i l i t i es fo r damages, inc lud ing bu t no t l im i ted to ind i rec t , spec ia l , o r consequent ia l
damages , pub l i ca t i on . and expe r t ' s f ees , and cou r t cos t s , a r i s i ng ou t o f o r i n connec t i on w i t h t h i s pub l i ca t i on .

S u b s c r i p t i o n s : T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d y o u i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . T o r e c e i v e a n H P e m p l o y e e s u b s c r i p t i o n y o u c a n s e n d a n e - m a i l m e s s a g e i n d i c a t i n g y o u r
H P e n t i t y a n d m a i l s t o p t o I d c M t p r o @ h p - p a l o a l t o - g e n 1 3 . o m . h p . c o m Q u a l i f i e d n o n - H P i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s i n t h e U . S . c a n r e q u e s t
a subsc r i p t i on t o : e i t he r w r i t i ng t o : D i s t r i bu t i on Manage r , HP Jou rna l , M /S 20BH, 3000 Hanove r S t ree t , Pa lo A l t o , CA 94304 , o r send ing an e -ma i l message t o :
h p _ j o u r n a l @ h p . c o m . W h e n s u b m i t t i n g a n a d d r e s s c h a n g e , p l e a s e s e n d a c o p y o f y o u r o l d l a b e l t o t h e a d d r e s s o n t h e b a c k c o v e r . I n t e r n a t i o n a l s u b s c r i p t i o n s
c a n b e r e q u e s t e d b y w r i t i n g t o t h e H P h e a d q u a r t e r s o f f i c e i n y o u r c o u n t r y o r t o D i s t r i b u t i o n M a n a g e r , a d d r e s s a b o v e . F r e e s u b s c r i p t i o n s m a y n o t b e a v a i l a b l e
i n a l l coun t r ies .

T h e H e w l e t t - P a c k a r d J o u r n a l i s a v a i l a b l e o n l i n e v i a t h e W o r l d W i d e W e b (W W W) . T h e u n i f o r m r e s o u r c e l o c a t o r (U R L) i s :

ht tp : / /www.hp.com/hpj / journa l .h tml

S u b m i s s i o n s : H P - a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h H P -
r e l a t e d c o n s i d e r e d o r s o l u t i o n s t o t e c h n i c a l p r o b l e m s m a d e p o s s i b l e b y u s i n g H P e q u i p m e n t a r e a l s o c o n s i d e r e d f o r p u b l i c a t i o n . P l e a s e c o n t a c t t h e E d i t o r
b e f o r e s u b m i t t i n g s u c h a r t i c l e s . A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s a n d m a y
p u b l i s h l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o r e a d e r s . L e t t e r s s h o u l d b e b r i e f , a n d a r e s u b j e c t t o e d i t i n g b y H P .

Copyr ight publ icat ion 1997 Hewlet t -Packard Company. A l l r ights reserved. Permiss ion to copy wi thout fee a l l or par t o f th is publ icat ion is hereby granted prov ided that
1) t he cop ies a re no t made , used , d i sp l ayed , o r d i s t r i bu ted f o r commerc i a l advan tage ; 2) t he Hew le t t -Packa rd Company copy r i gh t no t i ce and t he t i t l e o f t he
p u b l i c a t i o n a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e a p p e a r s s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

Please Hewlett-Packard inquiries, submissions, and requests to: Managing Editor, Hewlett-Packard Journal, M/S 20BH. 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.

February 1997 Hewlett-Packard Journal 3

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
Looking at sof tware development tools and languages today, i t 's hard to imagine
that just a few years ago FORTRAN was considered one of the pr imary languages
of cho ice for most app l icat ion deve lopment , and i t took sof tware engineers one
or more up to wr i te , compi le , load , run , and debug a p rogram tha t ended up
using less than 1 K bytes of memory. Today, sof tware engineers can go through
the same process in less than an hour and produce a program that uses more
than 1M bytes o f memory . Star t ing wi th the f i rs t f i ve ar t ic les , there are n ine
ar t ic les in th is issue that descr ibe too ls and methodolog ies assoc ia ted wi th sof t
ware deve lopment .

The Sof tBench sof tware development env i ronment was re leased by HP in 1989. S ince that t ime over 80
th i rd-par ty so f tware too ls have been in tegra ted wi th Sof tBench. The success o f Sof tBench is based on
the fact set i t s tar ted l i fe asan open, in tegrated CASE tool . That is , i t not only provides a set of sof tware
tools, environment. it also provides a framework for integrating other tools into the development environment. The
f i rs t Sof tBench ar t ic le (page 6) descr ibes the latest vers ion of Sof tBench, Sof tBench 5.0, inc luding some
d iscuss ion about the object ives that have guided Sof tBench development s ince i ts incept ion.

Three of the new sof tware tools integrated into Sof tBench 5.0 descr ibed in th is issue inc lude: the C++
Sof tBench c lass edi tor (page 12) , which prov ides a graphica l user in ter face for ed i t ing c lass const ructs
in a C++ program, the SoftBench stat ic analysis database (page 16) , which is a reposi tory for gener ic
program semant ic informat ion for languages such as C++, C, FORTRAN, Pascal , and Ada, and the C++
CodeAdvisor (page 19) , which uses semant ic in format ion f rom the stat ic database to detect h igh- level
problems in C++ programs that are not typical ly found by the compi ler .

T h e f i n a l f r o m a r t i c l e (p a g e 2 2) d e s c r i b e s a S o f t B e n c h s o l u t i o n t o t h e p r o b l e m o f m i g r a t i n g f r o m
main f rame-based comput ing to a c l ien t /server arch i tec ture and dea l ing w i th a heterogeneous co l lec t ion
of machines with di f ferent system commands. The SoftBench solut ion is a daemon that al lows developers
to in tegra te heterogeneous comput ing sys tems in to t igh t ly -coup led sof tware deve lopment env i ronments
wi th a cons is tent graphica l user in ter face across a l l machines.

Manufactur ing organizat ions must a lways deal wi th determining how to balance on-hand part inventor ies
and suppl iers ' response t imes. The paper on page 28 descr ibes a pro ject ca l led supply chain, which
focused organization's characterizing the various stochastic events influencing a manufacturing organization's
sh ipment and inventory per formance. A co l lect ion of s ta t is t ica l model ing assumpt ions, equat ions, and
equa t ion supp l ie r a re desc r ibed tha t focus on m in im iz ing on-hand inven to ry and op t im iz ing supp l ie r
response t ime.

The device shown in the picture on the cover is the neonatal vers ion of a fami ly of sensors (page 39)
u s e d f o r b l o o d m o n i t o r i n g t h e a r t e r i a l o x y g e n s a t u r a t i o n l e v e l i n a p a t i e n t ' s b l o o d (S p 0 2 > . I n m a n y
m e d i c a l l e v e l a r e a s , s u c h a s a n e s t h e s i a i n a s u r g i c a l p r o c e d u r e , m e a s u r i n g t h e o x y g e n l e v e l i n
b lood These on as common as mon i to r ing hear t ac t i v i t y w i th an ECG. These sensors a re based on
pulse ox imetry , which makes use of the fact that because of the change of ar ter ia l vo lume wi th each
heartbeat , i t is possib le through measur ing d i f ferences in l ight in tensi ty to separate the ar ter ia l b lood
f rom other absorb ing substances to determine b lood oxygen levels . Besides neonata l sensors, there are
also adul t , pediatr ic , and ear c l ip sensors.

The object ive of a scanner is to d ig i t ize exact ly what is on the document be ing scanned. To do th is per
fect ly opt ica l requi re a detector wi th an in f in i te number of detectors and an opt ica l system wi th the abi l i ty
to resolve images to a h igh degree of sharpness. In the real wor ld , scanners do not requi re per fect
reproduct ion and the human eye does not have inf in i te resolv ing power. However, as documents are
enlarged are pr in ters are able to pr in t a t h igher resolut ions, the image requi rements on scanners are
increased. The HP ScanJet 3c/4c co lor and monochrome scanner (page 54) has an improved opt ica l
system that addresses the opt ica l parameters o f image sharpness, s igna l - to-no ise ra t io , and dark vo l t
age, a l lowing customers to see the benef i ts of i ts 600-dpi resolut ion.

Object -or iented languages, methodologies, and tools have been evolv ing for over 25 years. The concept
o f da ta and in wh ich da ta i s accessed on ly th rough a we l l -de f ined in te r face and the da ta s t ruc tu re i s

February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

unknown to the accessing rout ine, formed the foundat ion of the object concept . As the next four ar t ic les
show, the language const ructs and des ign paradigms growing out o f th is s imple concept have had a
profound impact on sof tware des ign and development .

One o f t he any o f ob jec t -o r i en ted techno logy i s t ha t ob jec t s can be upda ted w i thou t a f f ec t i ng any
other part of the system. This capabi l i ty is important to system developers who must design their systems
for change. New technolog ies, customer demands, market forces, and other events a l l contend to make
a system obsolete i f i t is not able to evolve. The ORBIi te project (page 62) is a distr ibuted communicat ion
f ramework based on ob jec t -o r ien ted techno logy tha t suppor ts p iecewise evo lu t ion o f components , in te r
f a c e s , s y s t e m s . p r o t o c o l s , A P I s , a n d t h e i n t e g r a t i o n o f l e g a c y s y s t e m s .

Software project is another benefi t of object-oriented technology. The art icle on page 73 describes a project
i n w h i c h t h e m e t h o d s w e r e e m p l o y e d t o b u i l d a f i r m w a r e p l a t f o r m f o r i n s t r u m e n t s u s i n g t h e
concept interaction framework reuse. Framework reuse is a type of software reuse in which the interaction among
the system components is reused in d i f ferent implementat ions of the system. In addi t ion to descr ib ing
th is f i rmware f ramework, the authors a lso d iscuss the i r exper iences wi th us ing the Fusion process to
develop ob ject - f i rmware f ramework. Fus ion is a systemat ic sof tware development method for ob ject -
or iented sof tware development .

A frequent ly ment ioned problem in healthcare information management is the lack of compatibi l i ty among
informat ion systems. To help address th is problem, the HP Medical Products Group establ ished a pro ject
to create systems high-level architecture and data interchange standard for healthcare information systems
(page healthcare The architecture is based on the ability to decompose healthcare applications and systems
in to a co l lect ion of co l laborat ive components, wi th each component ab le to implement the funct ions of a
complete appl icat ion or system of appl icat ions. Components are essent ial ly bigger objects that represent
a pract ica l way to organize and package an object -or iented system.

To he lp HP ' s adop t ob j ec t - o r i en ted me thods t o so l ve t he i r bus i ness p rob lems , HP ' s P ro fess i ona l
Serv ices Organizat ion provides a sui te of object-or iented educat ion products. The ar t ic le on page 96
descr ibes the process used to assess customers ' educat iona l needs and the ob ject -or iented cur r icu lum
avai lable to sat isfy those needs.

C.L Leath
Managing Edi tor

Cover
The picture shows the neonatal vers ion of a fami ly of sensors (ar t ic le on page 39) used for moni tor ing
oxygen saturat ion levels in a pat ient 's blood.

What's Ahead
It 's better new needs and one of our 1997 goals at the HP Journal is to better understand our readers' needs
and interests. We' l l take an important step toward th is goal wi th the Journal 's f i rs t reader survey in f ive
years i t look for i t in your mai lbox fo l lowing the Apr i l issue, and please send i t back! (I f you don' t , you
won't giving el igible to win the HP Off iceJet pr inter-fax-copier we're giving away.) We' l l incorporate your
i deas and in to i n to a g raph ic redes ign o f t he Jou rna l t ha t w i l l debu t i n December 1997 , and i n to
other ef forts to keep the Journal relevant and useful . To help us get ready for the new design, as wel l as
focus in October. other projects, we've decided that we won't publ ish an issue in October.

The Apr i l o f w i l l feature the des ign of the HP 54645D mixed-s ignal osc i l loscope â€” a new category o f
instrument for test ing combinat ions of digi tal and analog circui try â€” and several related instruments.
There the also be design ar t ic les on the HP 8720D vector network analyzer, the HP E4219A ATM network
impairment emulator , the HP E4214A B-ISDN user-network inter face s ignal ing test sof tware, the HP
E5050A development, dielectric probe, the SNMP++ software for network management development, and five
papers on 1C design from the 1996 HP Design Technology Conference.

February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

SoftBench 5.0: The Evolution of an
Integrated Software Development
Environment
The vision and objectives of the original SoftBench product have enabled
it to continue to be a leader in the integrated software development
market. For example, since SoftBench 1 .0, over 80 third-party software
tools have been integrated with SoftBench.

by Deborah A. Lienhart

HP SoftBench is an integrated software development envi
ronment designed to facilitate rapid, interactive program
construction, test, and maintenance in a distributed comput
ing environment. The SoftBench product contains an inte
gration framework and a set of software development tools,
as well as the ability to integrate tools from other sources.

SoftBench was released in 1989 and presented in the June
1990 HP Journal.1 At that time, no one would have guessed
the market changes that would occur during SoftBench's
life. Fortunately, the vision and objectives of the original
product designers have allowed SoftBench to continue to be
a leader in the integrated software development market.

This article presents the actions that have made SoftBench
a standard in the integrated software development market,
the original SoftBench objectives that have stood the test of
time, and the new technologies that have been incorporated
into SoftBench. Other articles in this issue will present more
information about the new technologies in SoftBench.

The different versions of SoftBench released since its intro
duction in 1989 are shown in Fig. 1.

Making SoftBench the Standard
SoftBench defined the open, integrated CASE (computer-
aided software engineering) market. The first big challenge
was to make SoftBench pervasive in the market. We used

several approaches, including leading standards develop
ment, working with software tool providers, and licensing
the framework source code. HP started and supported CASE
Communique, a standards body that focused on defining the
messages used for intertool communication. This work was
adopted as the basis of intertool communication standards
for software development tools by the ANSI X3H6 Committee.

HP worked with software tool providers, both through CASE
Communique and with independent software vendor (ISV)
programs, to provide SoftBench integration for their tools.
There have been over 80 third-party software tools integrated
with SoftBench, and we continue to see interest from soft
ware tool vendors who want to integrate their tools with
SoftBench.

The source licensing program was interesting to many
companies for a number of reasons. Some companies ported
SoftBench to their hardware, added some tools, and sold it
to their customers. Several other companies have ported
SoftBench to their own hardware for use by their internal
development organizations. One company, SAIC (Science
Applications International Corporation), conracts with cus
tomers to provide cross-development support for other, usu
ally non-UNIX,Â® platforms. This is used mainly for legacy
system support or to develop software for platforms that
can't support a native application development environment.

89

Fig. 1989. The different versions of SoftBench released since 1989.

6 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

This is the only part of the source licensing program that is
still active. The article on page 22 describes the activities of
the Science Applications International Corporation.

The SoftBench broadcast message server (BMS) framework
was adopted by other HP products and some customers'
products, in addition to its use in SoftBench. The biggest user
of the BMS framework is HP VUE (Visual User Environment).
BMS provides the same open integration of desktop tools in
HP VUE that it provides for software tools in SoftBench. For
software developers. BMS also provides an integration of
the desktop tools with software development tools.

Original Objectives of SoftBench
The SoftBench framework continues to provide the founda
tion for SoftBench and has stood the test of time. The follow
ing are the original objectives of the SoftBench architecture
and the changes that have taken place.

Support Integrated Toolsets. This goal dictated that the Soft-
Bench tools should cooperate to provide a task-oriented
environment that lets users concentrate on what they want to
do, not how to do it. SoftBench continues to provide a task-
oriented environment by allowing tools to be started from
each other. For example, in most SoftBench tools you can
show the references for any symbol via the static analyzer.

Some users prefer a tool-focused environment, so SoftBench
5.0 has a new ToolBar to make it easier to see what tools are
available in SoftBench (see Fig. 2).

Support Interchangeable Tools. The concept of plug and play,
which allows users to exchange a SoftBench-supplied tool
with one of their preference, has guided SoftBench's archi
tecture and the development of standards in the CASE in
dustry. Text editors and configuration management systems
are the most common tools that users customize.

Support a Distributed Computing Environment. This goal required
that all tool execution, data, and display should be designed
for a network environment. This objective was based on the
scenario of a software development team using a group of
workstations with varying capabilities and shared project
files on a central server. Providing distributed computing
support in SoftBench has not only allowed it to work well in
this scenario, but also has provided additional benefit in the
ability to target computers and embedded systems that can
not support an application development environment. The
biggest SoftBench customers make use of this capability.

Leverage Existing Tools. The reason for this objective was to
protect customers' investments in software development
tools by allowing these tools to fit into the SoftBench envi
ronment without modifying source code. This has worked
well for lightweight integrations, but most customers have
decided that the increased value of a deeper integration is
worth adding a simple module to their source code.

Support Software Development Teams. Originally SoftBench
included integration with RCS (Revision Control System)
and SCCS (Source Code Control System) configuration
management tools and support for accessing shared project
files, hi SoftBench 5.0, the SoftBench configuration manage
ment product SoftBench CM was added. SoftBench CM is
based on the history management server, which has been
used internally in HP for many years. SoftBench CM provides
global source code management for software development
teams whose members can be located anywhere around the
world.

Support Multiple Work Styles. Software engineers do a number
of different tasks during the course of a project, including
design, prototyping, construction, defect fixing, and mainte
nance. Each of these tasks requires a different emphasis of
the software development tools. For example, construction
makes extensive use of the editor and builder, defect fixing
is centered in the debugger, and maintenance starts with
the static analyzer. Each of the tools is accessible from the
others, which allows a task to have quick access to multiple
tools or to transition between tasks.

Support Other Life Cycle Tools. SoftBench supports the inte
gration of other tools that support the software life cycle,
including documentation, test, defect tracking, and design
tools. Most of the third-party tools integrated with SoftBench
are in these categories.

Build on Standards. SoftBench has always been built on stan
dards, such as the UNIX operating system, NFS and ARPA
networking, the X Window System, and the OSF/Motif
appearance and behavior. In SoftBench 5.0 we added inte
gration with the Common Desktop Environment (CDE),2
including CDE drag and drop.

New Technology in SoftBench
In the years since the first release of SoftBench, the breadth
of tool support and functionality of the tools has increased
significantly. This section briefly describes some of these
additions.

Fig. 2. A ToolBar screen.

February 1997 Hewlett-Packard .Journal 7
© Copr. 1949-1998 Hewlett-Packard Co.

Applying a Process Improvement Model to SoftBench 5.0

Software organizations are under market pressure to reduce their cycle
time and improve their development processes. The conventional ap
proach is to work on one, usually at the expense of the other. For Soft-
Bench 5.0 we decided to jump right in and attack both using a 1 2-month
release cycle and CMM (Capability Maturity Model) level-2 processes.
Using CMM-prescribed project management processes, we reduced
SoftBench 5.0's cycle time by 35%, improved product usability, and
improved our ability to predict release dates. We also greatly improved
the organization's ability to select, plan, estimate, and track software
projects.

Reference 1 describes the software improvement project at our division
that CMM in place the CMM process. Here we briefly summarize CMM and
our approach to using it for SoftBench 5.0.

B u s i n e s s E n v i r o n m e n t

SoftBench is an integrated application development environment for C,
C++, in COBOL running on UNIX systems. It was first released in 1988.
Since release the cycle time (that is, the time between one major release
and the next) has varied from 18 to 24 months. In previous releases of
SoftBench, the first part of the project was very unstructured. It typically
involved market research, customer visits, prototyping, and design, but
these de were not well-integrated. At some point we would de
cide what functionality should make the release and what functionality
would be rescheduled for the next release. A cross-functional team
would be put into place to manage and focus the release. This model
provided little control over requirements or schedule.

By the time we started SoftBench 5.0, we had taken important steps to
improve our product development process. First, we had a life cycle in
place the on user-centered design. We had piloted elements of the
user-centered design process with SoftBench 4.0, but the life cycle had
not been tested on a large-scale project. Second, we had organized into
cross-functional business teams, which helped speed alignment between
marketing and R&D by putting a single manager in charge of both func
tions. And finally, we had just completed the SoftBench 4.0 test phase on
schedule, proving that we had the ability to plan and schedule the latter
phases of a project.

To make matters more interesting, our new division manager, who had
experience reducing cycle time, improving quality, and improving predict
ability using the Software Engineering Institute's Capability Maturity
Model a CMM), challenged us to get to CMM level 3 in 36 months, a
process that normally takes two to three years just to go from level-1 to
level-2 CMM compliance.

Capability Maturity Model
In 1987 the Software Engineering Institute (SEI), based at Carnegie-
Mellon Maturity published the first version of the Capability Maturity
Model (CMM). The initial intent of the CMM was to provide a process
maturity framework that would help developers improve their software
processes.

Level 5

Level 4

Level 3

Level 2

Level 1

Optimizing {Continually Improving Processi

â€¢ Process Change Management
â€¢ Technology Change Management
â€¢ Defect Prevention

Managed (Predictable Process)

^ S o f t w a r e Q u a l i t y M a n a g e m e n t
Qual i tat ive Process Management

^ â € ¢ â € ¢ M

Defined (Standard, Consistent Process)

Peer Reviews
Software Product Engineering
Intergroup Coordination
Integrated Sof tware Management
Training Program
Organization Process Definit ion
Organization Process Focus

^ H M

Repeatable (Discipl ined Process)

H Sof tware Conf igura t ion Management
Software Qual i ty Assurance
Sof tware Subcontract Management
Software Project Tracking and Oversight
Software Project Planning
Requirements Management

Manager ia l Processes
Technical Processes

Fig. Model. organi five layers of the software Capability Maturity Model. As an organi
zation should the practices specified in the model, its software processes should
see greater productivity and quality.

CMM describes five levels of software process maturity (Fig.1). At the
initial process teve/(level 1) an organization operates without consistent
application of formal procedures or project plans. When things get tight,
the level-1 organization always reverts to coding and testing. At level 2,
the repeatable level, controls are established over the way an organiza
tion plans, its plans and commitments. Requirements, plans, and

Static Database. In SoftBench 3.0 a new object-oriented static
database was placed under SoftBench's static analyzer.
Earlier versions of the static analyzer could only analyze
30,000 to 40,000 lines of source code before reaching capacity
limitations. The new static database does not have capacity

limitations and performance is acceptable for up to about
one million lines of source code.

In addition to the capacity and performance improvements,
the object model of the new static database makes it more

8 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

procedures are documented, at least at the project level, which means
the process could be repeated in the future as long as the type of soft
ware being developed doesn't change too much. At the defined level
(level 3), the organization has documented both its management and
engineering processes. This allows the organization to begin to improve
the processes over time. Level 4, the managed level, is where an organi
zation can quantitatively measure its development and management
processes. Finally, at level 5, the optimizing level, the development
process operates smoothly, and continuous improvement occurs on the
defined processes established in the previous levels.

For each level of process maturity, CMM describes the related key
practices that characterize that level of process maturity.

Each well process area is defined by a set of one or more goals, as well
as the specific practices which, if followed, help achieve the goals. The
key process areas and practices are intended to describe what needs to
be done to efficiently and predictably develop and maintain software.
The CMM does not attempt to specify how software should be developed
and managed, leaving that interpretation to each organization, based on
its culture and experience.

P r o j e c t I n f r a s t r u c t u r e
We chose to move to level 3 by adopting CMM level-2 processes im
mediately on all new projects. SoftBench 5.0 was the first and largest
project to use the new processes and our project infrastructure was
designed to support this approach. The key components of our project
infrastructure were: a life cycle based on user-centered design, a Web
server pro to our configuration management system, and a pro
cess consultant and a project lead.

The life cycle had been under development for about a year and we had
already used it successfully on some parts of the previous SoftBench
release. The life cycle uses a simple waterfall model, augmented with
CMM level-2 practices and user-centered design.

CMM level-2 practices ensure that requirements, plans, and schedules
are documented, reviewed, and approved by management. Moreover,
level-2 practices ensure that as requirements or designs change, the
associated plans and schedules are revisited to make sure they are still
valid.

User-centered design is based on the premise that a product's success
depends on how well the product addresses the needs of the people who
use it. User-centered design does this by involving potential users in key
development activities, such as profiling user characteristics, characteriz
ing goals and tasks, and validating potential product features and design
alternatives.

All of our project documents were checked into SoftBench CM, Soft-
Bench's configuration management system. A Web home page was
created for the SoftBench project, allowing us to retrieve documents
from SoftBench CM and display them with a Web browser, such as
Mosaic or Netscape. The home page included a section for each of the
SoftBench teams (to point to customer survey data, requirements, and
designs), and sections for product documents, project planning documents.

UNIX or PC
B r o w s e r

M a n a g e r s
Deve lopers

So f tBench CM
Client

1 â€¢ PC Developers
Ã­ â€¢ Process Consultant

Fig. infrastructure The network configuration that supported the project infrastructure
for the development of SoftBench 5.0.

project schedules, and life cycle guidance. We've always checked project
documents into our configuration management system, but the addition
of the these browser really improved the visibility and access to these
documents. Fig. 2 shows our Web intranet structure.

The third key component of our project infrastructure was the process
consultant and project lead. We had a full-time project lead and a full-time
process consultant focused on the CMM practices, both as part of the
formal management team. We also had a half-time user-centered design
consultant from our human factors organization to help us apply the user-
centered design techniques. Having these two individuals share account
ability for both process and project management proved to be a major
success factor.

R e f e r e n c e
1 . D. Model and G. Cox, "Implementing the Capability Maturity Model for Software
Development," Hewlett-Packard Journal, Vol. 47, no. 4, August 1996.

B i b l i o g r a p h y
1. W. Publishing Humphrey, Managing the Software Process, Addison-Wesley Publishing
Company, 1989.

A c k n o w l e d g m e n t s
Many our contributed to the success of SoftBench 5.0 and our SEI
initiative. We'd like to specifically acknowledge the following for their
hard work and perseverance: Jack Cooley, Guy Cox, Doug Lowe, Alan
Meyer, and Jan Ryles.

Deborah A. Lienhart
Project Manager
Software Engineering Systems
Division

Scott Jordan
Process Consultant
Software Engineering Systems
Division

flexible for adding language types and queries. The Soft-
Bench static analysis database is described in the article on
page 16.

Rule Engine. In SoftBench 5.0 a rule engine was implemented
as part of the SoftBench CodeAdvisor product. A rule is im
plemented as a C++ class, which can access information in

the static database and any other information available to it.
The rules are run by the rule engine, which is integrated into
the SoftBench program builder/'

A set of C++ coding rules is included in SoftBench 5.0. These
rules check for dangerous coding practices, which are the
ones that would create memory leaks or have unanticipated

February 1997 Hewlett-Packard Journal 9
© Copr. 1949-1998 Hewlett-Packard Co.

side effects. Information and examples needed to create
rules are included in the SoftBench software developer's kit.

The SoftBench CodeAdvisor is described on page 19.

New Languages. The first release of SoftBench supported the
C language. C++ SoftBench was added in 1991. C++ enhance
ments were made to the SoftBench tools and a C++-specific
tool, the C++ Developer, was added. The C++ Developer
was designed to be a training tool. It had a graphic display
of the class inheritance hierarchy, and the user could add or
delete classes and inheritance relationships from the graph.
It could also automatically fix common coding problems
before they were caught by the compiler. In SoftBench 5.0,
the C++ Developer was replaced by the graphic editing func
tionality in the SoftBench static analyzer's class graph.

COBOL SoftBench3 was added to the product family in 1994.
It provides encapsulations of most of the MicroFocus COBOL
tools. The SoftBench development environment makes it
easier for users to transition to the UNIX operating system
from mainframe development environments. COBOL Soft-
Bench provides a common development environment for C,
C++ , and COBOL. This is especially helpful when debugging
an application that is a combination of COBOL and C or
C++. MicroFocus' Animator and SoftBench program debug
ger pass control of the application between themselves as
the application moves between modules implemented in
different languages.

SoftBench CM. The SoftBench configuration management
product was introduced in 1995. It is based on the history
management server, an internal tool that has been used for
most of HP's software development.

SoftBench CM is a scalable configuration management tool
that offers efficient code management capabilities for team

1 The COBOL SoftBench family is based on HP MF COBOL, HP's implementation of MicroFocus
COBOL, which is based on technology from MicroFocus, Ltd.

members and work groups, including those who are geo
graphically dispersed in distant locations. Based on a client/
server architecture that is designed to allow access to multi
ple local or remote servers, SoftBench CM is easily accessed
from any of the SoftBench tools (see Fig. 3).

SoftBench CM can manage different versions of any type of
file. Many of our customers use SoftBench CM to version
nonsoftware files, including project documents and bitmaps.
A PC user interface has been developed that allows users in
mixed UNIX and PC environments to create versions of
their PC-based files along with their UNIX-based files.

Graph Views. In the original version of SoftBench there were
only textual interfaces. In SoftBench 3.0, graphical inter
faces were added to many of the SoftBench tools, including
the dependency graph browser in the program builder, the
static graph browser in the static analyzer, and the data
graph browser in the program debugger.

In SoftBench 4.0 the underlying graph library was replaced
by an implementation based on a third-party graphics library
called ILOG Views. This implementation is much faster and
will handle a lot more nodes than the old implementation.
The static graph browser was replaced with three special
ized graphs for files, functions, and classes.

In SoftBench 5.0, graphical editing capability was added to
the SoftBench static analyzer's class graph and its name was
changed to the class editor. The article on page 12 describes
the C++ SoftBench class editor.

More Platforms. SoftBench originally supported HP 9000
Series 300 workstations and HP 9000 Series 800 file servers.
Support was added for the HP 9000 Series 400 and Series
700 workstations and HP 9000 Series 800 servers with X
terminals. In 1991 SoftBench was released for SunOS and in
1993 support was added for Sun's Solaris operating system.

Fig. 3. A SoftBench CM screen.

1 0 February 1 997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

DDE Debugger. In SoftBench 4.0. the underlying debugger for
SoftBench's program debugger was changed from xdb to the
HP Distributed Debugging Environment (DDE) from HP's
Massachusetts Language Laboratory. HP DDE's architecture
isolates most of the debugger from specific information
about the target operating system, computer language, user
interface, and debug format. The SoftBench team imple
mented the SoftBench program debugger user interface on
top of HP DDE and ported the whole thing to the Solaris
operating system. This is the only development environment
that supports both the HP-UX and Solaris operating systems
with a common debugger, using the compilers supplied by
the system vendors.

ToolBar. SoftBench is a powerful development environment
and as the user base has expanded we've placed more
emphasis on making it easier to learn and use. Many times
users requested tools that were already in SoftBench so we
added an iconic ToolBar to make the available tools visible.
The ToolBar supports drag and drop integration with HP
VUE and CDE.

Conclusion
When SoftBench was first envisioned, UNIX software devel
opment tools consisted of compilers and debuggers, and
real software engineers didn't use windows. SoftBench was
the first integrated application development environment
running on the UNIX operating system.

There wasn't much to work with then, just RFA (remote file
access) and TCP/IP networking and the beginnings of the
X Window System. Motif came along during the development

of the first release of SoftBench and NFS came along later.
\\lien HP's Software Engineering Systems Division (SESD)
developed the BMS (broadcast message server) for inter
process communication and it was included in HP YUE. it
changed the capability of desktops for everyone.

Over the years SESD has developed new technology for the
challenges brought on by the C++ language and larger appli
cations. We also added a lot of graphics as the technology
became available and workstation performance increased.

In the future, SoftBench will face new challenges associated
with developing distributed applications that run in hetero
geneous environments. We can look to the original objectives
and architecture for a path that has stood the test of time.

References
1. Heivlett-Packard Journal, Vol. 41, no. 3, June 1990, pp. 6-68.
2. Heivlett-Packard Journal, Vol. 47, no. 2, April 1996, pp. 6-65.
3. C. Carmichael, "COBOL SoftBench: An Open Integrated CASE
Environment, "Hewlett-Packard Journal, Vol. 46, no. 3, June 1995,
pp. 82-85.
4. A. "An T. Grzesik, V. Ho-Gibson, T. Hoover, and J. Vasta, "An
Event-Based, Retargetable Debugger," Hetvlett-Packard Journal,

Vol. 45, no. 3, June 1995, pp. 33-43.

OSF and other are trademarks of the Open Software Foundation in the U.S.A. and other
countries.

HP-UX 9." and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.
UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

February 1997 Hewlett-Packard Journal 1 1
© Copr. 1949-1998 Hewlett-Packard Co.

The C++ SoftBench Class Editor
The C++ SoftBench class editor adds automatic code generation
capabilities to the class graph of the SoftBench static analyzer. Novice
C++ programmers can concentrate on their software designs and have the
computer handle C++'s esoteric syntax. Experienced C++ programmers
benefit from smart batch editing functionality and by having the computer
quickly generate the program skeleton.

by Julie B. Wilson

The C++ SoftBench class editor allows the programmer to
edit the class constructs in a C++ program using the Soft-
Bench static analyzer's graphical interface. Using the class
editor, the programmer can create and modify class hierar
chies and edit class components.

Since the class editor is part of the static analyzer, let's look
first at the functionality provided by the static analyzer. The
static analyzer helps the programmer better understand the
code. Through static queries, the programmer can understand
a program's structure, assess the impact of changes, and
change the architecture of the code when necessary. The
static analyzer presents a wide variety of information about
the code, including information about variables, classes,
functions, and files. Through queries, the programmer can
answer questions such as, "What functions and classes call
this function?" or "What code accesses any element of this
class?" The results of the queries can be displayed either
textually or graphically. From either display, a simple double

click takes the programmer directly to the source code that
supports the displayed information.

To use the static analyzer, the programmer must first gener
ate static information about the application. The default
compile mode in the SoftBench program builder generates
the static database (the Static.sadb file). When the programmer
builds the application, the compiler places the static data
base in the directory in which the programmer compiled the
code. All static queries rely on the information stored in this
database.

Benefits of the Class Editor
SoftBench 5.0 adds editing capabilities to the class graph
provided by the static analyzer. With the class editor, a novice
C++ programmer can concentrate on software design, class
hierarchy, data members, and member functions, not on
C++ syntax. After each edit request, the class editor auto
matically generates the specified C++ code with correct

S t a t i c A n a l y z e r - C l a s s E d i t o r

G r a p h S e l e c t e d E d i t V i e w O p t i o n s

Fig. 1. Class graph with all
classes and inheritance relation
ships.

12 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

G r a p h S e l e c t e d E * V i e w O p t i o n s

Fig. the Simplified graph with only classes immediately under the
programmer's control displayed and two nodes expanded to show
the member functions.

Fig. 3. If the programmer removes a class in the middle of an in
heritance structure, the class editor makes the necessary edits to
maintain the remaining relationships, (a) Before the B class is
deleted, (b) After the B class is deleted.

â€¢ The programmer can expand and contract class nodes to
show the data members and member functions in the node.

Fig. 2 shows the same program that was represented in Fig. 1,
but this time the visual display has been changed by filtering
out all the classes from library header files. Additionally,
two of the nodes have been expanded to show the member
functions.

syntax. The class editor also checks the work and doesn't let
the programmer make typical beginner's mistakes like using
the same class name twice.

Expert C++ programmers also benefit from the class editor.
In addition to the program visualization capabilities of the
graph, experts can quickly generate a program skeleton or
make changes to an existing program's structure. Even more
useful are the powerful, static-assisted edits that the class
editor supports. Using the class editor, the programmer
can change the name of a class or class member and all the
appropriate changes are made in the source code. These
changes can span many files. Because of the underlying static
database, if the programmer changes the name of a member
function x, the class editor knows exactly which instances of
x are relevant and which instances are not.

Controlling Complexity
Fig. 1 shows an example of a C++ program with the classes
and inheritance relationships displayed. The class editor
provides the ability to display many relationships in addition
to inheritance, such as friends, containment, and accesses
by members of other classes.

Large C++ applications tend to have many classes and many
relationships among the classes. The class editor provides
several features to help control the complexity of what is
displayed:
Filters make it possible to display only the type of data in
which the programmer is interested. For example, if the
programmer only wants to see inheritance relationships, all
other types of relationships can be filtered so they are not
displayed on the graph.
The programmer can reduce the complexity of the graph by
hiding nodes that are not currently of interest.
The programmer can add nodes to the graph directly by
name or indirectly by querying about relationships with
nodes already displayed on the graph.

Changing the Class Hierarchy
Lake any editor, the class editor allows the programmer to
add, modify, and delete edited objects. For example, the
programmer can add classes, inheritance relationships,
member functions, and data members. Once these C++
structures exist, they can be modified or deleted. For exam
ple, the programmer can change an inheritance relationship
from public to private or delete the relationship entirely. .

If the programmer finds it necessary to restructure relation
ships by removing a class in the middle of an inheritance
structure, the class editor makes the necessary edits to
maintain the remaining relationships, as shown in Fig. 3. In
this example, A is the base class of B, and B is the base class
of C and D. Because the program architecture has been
changed, the programmer no longer wants the B class. When
B is deleted, the class editor automatically maintains the
inheritance relationships so that A becomes the base class
of C and D.

Recovering from Editing Mistakes
The class editor remembers edit requests so that the pro
grammer can undo them in reverse order. For example, if
the programmer adds a base class relationship and then
reconsiders, the Undo menu command on the Edit menu reads
Undo Adding Inheritance.

C o m p i l e r

E r r o r s â€¢,o Files

sbparse

Stal ic .sadb

Fig. 4. In SoftBench, compilations that produce static information
are implemented with two parallel, independent build processes.
The standard compiler produces the error log and object (.0) files.
The sbparse command produces the static database, Static. sadb.

February 1997 Hewlett-Packard Journal 13
© Copr. 1949-1998 Hewlett-Packard Co.

Program Editor:
Displayed

File(s)

Source
Code FÃ¼e(s)

Â®

Class Editor:
Displayed

Graph

Â ©

Fig. 5. Sequence of completing a class editor edit. Â® Edit displayed
on graph. Â® Files updated. Â® FILE-MODIFIED message results in re
display of file in editor. Â® A compile with -nocode -y options updates
the database.

Keeping the Static Database Up-to-Date
In SoftBench, compilations that produce static information
are implemented with two parallel, independent build pro
cesses (see Fig. 4). The standard compiler, a cfront-based
compiler, produces the error log and object (.0) files. The
-y compiler option triggers the sbparse command, which is
a subset of HP's ANSI C++ compiler. The sbparse command
produces the static database, Static.sadb.

The -nocode compiler option tells SoftBench not to run the
cfront-based compiler. Since everything that the static analyzer
knows depends on the underlying static database, each class
editor edit request needs to update the static database. When
the programmer requests an edit in the class editor, the class
editor executes a compile with the -nocode -y compiler op
tions, updating the static database without checking syntax
and without producing .0 files.

Using the Class Editor with a SoftBench Text Editor
The class editor saves after every logical edit. For example,
if the programmer creates a new class, the underlying source
code file changes when the programmer makes the request,
and the class editor sends a FILE-MODIFIED message to let other
tools know that the file changed.

If the programmer has a SoftBench text editor open while
working in the class editor, the FILE-MODIFIED message causes
the text editor to refresh the display of the file and the pro
grammer can see the immediate propagation of the new
source code.

Fig. 5 shows the sequence of events that occurs when the
programmer makes an edit using the class editor:

1. The class editor performs pre-edit checks to make sure
that the edit makes sense. Assuming that the request passes
the pre-edit checks, the edit is displayed on the graph.

2. The class editor updates the underlying files that are im
pacted by the request.

3. The class editor sends a FILE-MODIFIED message to notify
other tools that the edit took place.

4. The class editor executes a compile with -nocode -y
options, which updates the Static.sadb file.

If the programmer chooses to make edits in the text editor,
the sequence of events is slightly different (see Fig. 6):

1. When the programmer saves the file, the text editor up
dates the underlying file and sends a FILE-MODIFIED message.

2. The class editor receives the FILE-MODIFIED message and
posts an information dialog box stating Undo disabled due to
external edit. The class editor then erases the undo stack,
since the external edits may have made the undo actions
invalid.

3. The code changes in the text editor are not immediately
propagated back into the class editor. The programmer must
initiate the action that updates the static database and the
graphical display. To update the static database, the pro
grammer chooses the File: Analyze File Set menu command on
the main static analyzer window. This menu command exe
cutes a -nocode -y compile.

4. After updating the static database, the programmer needs
to select the Update Graph button in the class editor to display
the code changes made in the text editor.

Working with Configuration Management
Edits in the class editor have the potential to change many
files. For example, if the programmer changes the name of
a class, several files may need to change. With the powerful,
static-assisted editing, the programmer may not be aware of
which files are changing. Consequently, the programmer
can attempt to initiate edits on files that do not have write
permission.

When the class editor runs into a problem with file permis
sions, it posts a dialog box giving the programmer three
choices:

1 Let the class editor check out the necessary files. This option
is only valid if the files are under configuration management
and available for checkout. The class editor completes the
checkout process by sending a VERSION-CHECK-OUT message.
Resolve the problem manually, then select Retry on the dialog
box.
Cancel the edit.

Fixing Compile Errors
The class editor does not introduce compile errors when it
creates code. However, it is possible for the programmer to
introduce compile errors. For example, the programmer
might reference a function before creating it, make a typing
error on a variable name or type when adding a data member,
or make a syntax error in the body of a member function.
Neither the class editor nor sbparse catches syntax errors of
this type.

Program Editor:
Displayed

FilÃ©is)

Â®

Â© 0

Source
Code Filets)

Class Editor:
Displayed

Graph

Fig. edit. Sequence of updating the class editor after an external edit.
Â© Files updated. Â® FILE-MODIFIED message disables the undo stack.
Â® An Analyze File Set menu command triggers a compile that updates
the database. Â® An Update Graph command displays the external edits
on the graph.

14 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

At first this model may appear surprising, but it actually
works to the user's advantage. When the programmer uses
a traditional text editor, code is not always compilable as it
is being developed. The programmer may frequently create
code objects out of order, mentally keeping track of what
still needs to be done. The class editor functions in much the
same way. If it detected every compilation problem, work
would soon grind to a halt. Instead, the programmer can
complete the code development tasks and let the compiler
catch the syntax errors later.

Preserving White Space and Comments when Editing
The algorithm for completing an edit allows the class editor
to preserve spaces, tabs, and comments in the code being
edited. When the programmer specifies an edit, the static
database provides the class editor with the specific positions
in the source that need to be edited. The source code is then
searched for "landmarks" to ensure that the right part of the
code is being changed. Only minimal additions, substitutions,
and deletions are done to the source file. For example, when
a class is renamed, each reference is replaced by the new
name, leaving any user-added comments or white space
intact.

When more complicated things are changed, like the return
type of a function, several consecutive tokens may be re
placed with new text. In this case, any comments that are
between the old tokens for that type are lost.

Troubleshooting
The error Unable to update the database is fairly common. It tends
to occur with existing code that has compile errors, and it
usually indicates a missing include file. To avoid this error,
the programmer should make sure that existing code com
piles without errors before starting to use the class editor.

Much more rarely, timing problems are encountered. When
the programmer requests an edit, the first step is to make
the edit visible on the graph, and the last step is to update
the database (see previous discussion under "Using the Class
Editor with a SoftBench Text Editor"). Because the class
editor allows the programmer to begin the next edit as soon
as the previous edit is visible on the graph, it is possible to

experience a race condition. If the database is not yet up-to-
date when the class editor attempts to complete its pre-edit
checks for the next edit, the programmer will get an error
message. For example, if the programmer creates a class,
then attempts to add a member to the class before the
create class edit is complete, the error Class <class name> not
found will be issued. To resolve this error, the programmer
should wait a moment and try again.

Conclusion
The static analyzer and the class editor together offer the
C++ programmer a powerful program visualization and edit
ing tool. The editing capabilities of the class editor facilitate
program construction and editing. The code generation
capabilities of the class editor facilitate program correctness
and consistency. Code generated by the class editor is syn
tactically correct and consistently formatted. When the pro
grammer makes a mistake using the the class editor, one or
more edits can easily be backed out using the Edit: Undo menu
command.

The filtering capabilities of the static analyzer allow the pro
grammer to control the complexity of what is displayed and
to conceal irrelevant details easily. The visualization capabil
ities of the static analyzer aid program comprehension. The
programmer can choose to investigate many types of rela
tionships in the code, and can easily access the underlying
source code when more detail is needed.

Acknowledgments
The author wishes to acknowledge Wade Satterfield, the R&D
engineer who developed the class editor, for his technical
input and review of this article. The author also wishes to
thank Carolyn Beiser, Jack Walicki, and Jerry Boortz for
reviewing this paper and providing helpful suggestions.

Reference
1. F. Wales, "Theme 4 Discussion Report," User-Centered Require

ments for Software Engineering Environments, Springer-Verlag,
Nato Scientific Affairs Division, 1994, pp. 335-341. This article pres
ents tasks to be facilitated. The tasks mentioned in the conclusion
above are based on this task list.

February 1997 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

The SoftBench Static Analysis
Database
The static analysis database supports the SoftBench static analyzer and
the C++, C, FORTRAN, Pascal, and Ada programming languages. The
underlying data is isolated by a compiler interface and a tool interface.

by Robert C. Bethke

The SoftBench static analysis database, Static.sadb, is a repos
itory for generic program semantic information. Within Soft-
Bench the database supports the static analyzer along with
graphical editing and rule-based program checking. The data
model is relatively general and currently supports C++, C,
FORTRAN, Pascal, and Ada.

The database also serves as a product and can be customized
by the user. Its compiler interface and tool interface are
documented and allow the integration of other languages
and compilers and the use of custom analysis tools.

The Data Model
The underlying data is a set of persistent C++ objects. These
objects serve to model the semantics of the program. The
underlying persistent objects are isolated by the compiler
interface and the tool interface. The isolation has important
implications for allowing a variety of compiler integrations
and provides flexibility in changing the underlying data man
agement without affecting either the compilers or the tools.

Many of the persistent objects are language-generic (lan
guage-insensitive) and are intended to model all similar con
structs. For example, a Struct object is used to model C struc
tures and Pascal records. A Function object is used to model
functions and procedures in all languages. In some cases, it
is necessary to have language-specific objects because the
semantics are too specific to apply to other languages.
Examples of language-specific objects are C++ Class objects
and Ada Module objects.

Each persistent object is assigned a unique object identifier
known as a handle. Given an object's handle, it is possible to
query the object by means of methods for relevant informa
tion such as its name, list of references, and so on. All asso
ciations among the persistent objects are maintained by these
handles. For example, the association from a Variable object
to its the object is maintained by the Variable's having the
handle of its typedef as an attribute. One-to-many associations
are maintained as a set of handles. For example, a File object
will have a set of handles to associate all other source files
included by it.

To illustrate associations, consider the following C code:

t y p e d e f s t r u c t S { i n t x ; i n t y ; } S T y p e ;
S t y p e v a r ;

The associations among the semantic objects in this code
fragment are shown in Fig. 1.

Container objects are used to model scoping and binding
and to organize the semantic objects for efficient updating
and navigation. Each container has a set of handles for all
objects contained in it and each object contained has the
handle of its container. Examples of container objects are
Files, Functions, and Classes. A File contains the program con
structs defined in that source file, a Function contains its
parameters and blocks, and a Class contains its members.
For example, Fig. 2 shows the object containment for the
following C++ class definition:

Class els {

public:

els (int x)

private:

int mem;

{mem=x; }

The Semantic Objects
The following is a partial list of the semantic objects stored
in the database.

SymbolTable. The global SymbolTable is a container that serves
as the root of navigation in the database. Its entries are all
globally scoped semantic objects and Files in the database.
There is only one global SymbolTable per database.

File. A File is a container that contains all semantic objects
that are defined in a specific source file. Attributes of a File

Has Type

Has Type

Has Type

Fig. 1. Associations among semantic objects for the C code example
given in the text.

16 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Class els

Fig. 2. Object containment for an example C++ class definition.

are its name, a language kind, and a set of include and
included by associations with other Files.

Module. A Module is a container that contains all semantic
objects that are defined within an Ada module. A Module
must be contained within a File or within another Module.
Attributes of a Module are its name and a set of imported
associations with other Modules.

Ref List. A RefList is an array of references that are associated
with named objects in the database. Attributes of a RefList
are the corresponding referent (the File in which the refer
ences originate) and the number of references in the list.

Macro. A Macro is a language-generic object for representing
a preprocessor or language macro. Attributes of a Macro are
its name and a set of RefLists.

Identifier. An Identifier is a language-generic object for repre
senting a named symbol. This object is mostly used by
weaker (scan-based) parsers that do not intend to distin
guish certain categories of objects. Attributes of an Identifier
are its name and a set of RefLists.

Label. A Label is a language-generic object for representing
statement labels. Attributes of a Label are its name, an
enclosing Block or Module, and a set of RefÃ¼sts.

Variable. A Variable is a language-generic object for representing
variables. Attributes of a Variable are its name and type, an
enclosing Block or File, and a set of RefLists.

Function. A Function is a language-generic object for represent
ing functions and procedures. Attributes of a Function are its
name, a return type, a set of Parameters, an outer Block, a con
tainer (the enclosing File, Module, or Block), and a set of RefÃ¼sts.

Parameter. A Parameter is a language-generic object for repre
senting function parameters. Attributes of a Parameter are its
name and type> an enclosing Function, and a set of RefLists.

Block. A Block is a container for representing a function block.
Attributes of a Block are its begin and end line numbers, the
File in which it is contained, and an enclosing Block or Function.

Typedef. A Typedef is a language-generic object for representing
named program types. Attributes of a Typedef are its name,
the type it denotes, an enclosing File or Block, and a set of
RefLists.

Tag. A Tag is a language-generic object for representing aggre
gate Attrib Struct, Class, and ClassTemplate) type names. Attrib
utes of a Tag are its name, the aggregate it denotes, an en
closing File or Block, and a set of RefÃ¼sts.

Enum. An Enum is a language-generic object for representing
enumerated types. Attributes of an Enum are its correspond
ing Tag and a set of EnumMembers. RefÃ¼sts to the enumeration
are on the corresponding Tag.

EnumMember. An EnumMember is a language-generic object for
representing enumeration constants. Attributes of an Enum
Member are its name, an enclosing Enum, an ordinal value, and
a set of RefLists.

Struct. A Struct is a language-generic object for representing
program structures, records, and unions. Attributes of a
Struct are its corresponding Tag and a set of DataMembers.
RefLists to the Struct are on the corresponding Tag.

DataMember. A DataMember is a language-generic object for rep
resenting fields of a structure, union, class, or record. Attri
butes of a DataMember are its name and type, an enclosing
Struct or Class, and a set of RefLists.

Class. A Class is a C++-specific object for representing C++
classes. Attributes of a Class are its corresponding Tag, a set
of DataMembers, a set of FunctionMembers, a set of base and
derived Classes, a set of friend Classes and friend Functions, a
set of nested Classes within, and the ClassTemplate of which it
is an instance. RefLists to the Class are on the corresponding
Tag.

FunctionMember. A FunctionMember is a C++-specific object for
representing C++ class member functions. Attributes of a
FunctionMember are its name, a return type, a set of Parameters,
an enclosing Class, the File in which it is defined, an outer
Block, and a set of RefLists.

ClassTemplate. A ClassTemplate is a C++-specific object for rep
resenting class templates. Attributes of a ClassTemplate are its
corresponding Tag, a set of DataMembers, a set of FunctionMem
bers, a set of FunctionTemplate members, a set of TemplateArgu-
ments, a set of base and derived Classes and ClassTemplates, a
set of friends, and a set of Class instances. RefLists to the Class-
Template are on the corresponding Tag.

FunctionTemplate. A FunctionTemplate is a C++-specific object for
representing function templates. Attributes of a FunctionTem
plate are its name, a set of TemplateArguments, and a set of Func
tion or FunctionMember instances.

The Compiler Interface
From the compiler perspective the database can be thought
of as a persistent symbol table for a set of source files such
as a library or an application. The compiler sees the contents
of only one compilation unit and emits information accord
ingly, but the database creates only objects that are not yet
in the database. The database creates and merges all the
program objects as the source files are compiled.

Compilation may result in objects being removed. Persistent
objects are removed when they are old or are contained in

February 1997 Hewlett-Packard Journal 1 7

© Copr. 1949-1998 Hewlett-Packard Co.

objects that are old. For example, when a file has been mod
ified and is being recompiled, the File is old and its contents
are removed from the database. The compilation will proceed
and instantiate the appropriate new objects contained in the
File.

The database is incremental to the file level. If one source
file in an application or library is changed, the compilation
will result in the removal and repopulation of objects in that
File. After the compilation the database is again consistent
and available for queries from a reader.

The compiler interface is procedural in style and is intended
to be easily added to most compilers. The interface is struc
tured around the creation of objects and the establishment
of associations and containment relationships among the
objects.

The Tool Interface
From the tool perspective the database supports concurrency
control to the extent of allowing multiple readers and one
writer. A reader can have up to 256 databases open for read
ing. The reader must structure queries within a transaction
and is allowed to leave the database open while it is being
modified by a writer. The reader is notified of a change to
the database via a callback when starting a transaction.
Nested transactions are not supported.

The tool interface is a class library that reflects the underly
ing object model. Each persistent object is presented as a
handle. Internally, each handle is mapped into a pointer to
the real persistent object. All information pertaining to the
object is made available via methods. Navigation among
objects is supported by methods that return a handle or an
iterator over a set of handles. For example, the following is
a partial definition of the Symbol class.

class Symbol {

public:

Symbol (PerHandle

Symbol () ;

-Symbol () ;

symbolhandle) ;

// Name, kind and attributes of the symbol,

char *Name() const;

PerKind KindO const;

Attributes AttribO const;

// Enclosing scopes of the symbol.

DBboolean EnclosingFile (File &file) const;

DBboolean EnclosingBlock (Block fcblock)

const ;

// Iterator to all reference lists for this

/ / Symbol .

ITERATOR(RefList) RefListsO const;

protected:

PerHandle SymbolHandle ;

The global SymbolTable is the root for all navigation. This ob
ject provides navigation and hashed searching to all globally
scoped symbols. The following code segment illustrates how
to access all globally scoped functions from the global Symbol-
Table.

SymbolTable symtab;

// Construct an iterator over all global

// functions.

ITERATOR(Function) functionitr =

symtab . GlobalFunctions () ;

// For each function print its name and if the

// function is defined, the file in which it is

// defined.

ITERATE_BEGIN(functionitr) {

File sourcefile;

printf ("%8" , functionitr. Name ()) ;

if (functionitr. EnclosingFile (sourcefile))

printf (" contained in %s" ,

sourcefile. Name ()) ;

printf ("\n") ;

} ITERATE_END(functionitr)

All of the relationships among the semantic objects are first-
level. Hence, many of the interesting queries and rules will
require a transitive closure of the relationships. For exam
ple, consider the following function, which prints all the
derived classes of a given class.

void derivedclasses (Class theclass) {

// Iterate over immediate derived classes of

// theclass.

ATTRIBUTE_ITERATOR(Tag) tagaitr =

els .Derivedclasses () ;

ITERATE_BEGIN(tagaitr) {

// Print the class name.

printf ("%s\n", tagaitr .Name ()) ;

Class dercls;

// Navigate to the actual derived class

// and recursively call derivedclasses to

// print its derived classes.

if (tagaitr. ClassType(dercls))

derivedclasses (dercls) ;

} ITERATE_END (tagaitr)

API Products
The database APIs (application programming interfaces) are
available in the SoftBench 4.0 product and are used internal
ly by the SoftBench parsers and tools. They are also used by
some customers for compiler integrations. The tool interface
is the fundamental component of the software developer's
toolkit for user-defined rules.

' The transitive closure for a particular object under a particular transitive binary relationship is
the set relationship. objects descended from the particular object by way of the particular relationship.
For example, if B is derived from A and C is derived from B, the transitive closure for the object
A under C. relationship "derived from" is the set of objects whose elements are B and C.

18 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Code Advisor: Rule-Based C++ Defect
Detection Using a Static Database
C++ SoftBench CodeAdvisor is an automated error detection tool for the
C++ language. It uses detailed semantic information available in the
SoftBench static database to detect high-level problems not typically
found the compilers. This paper describes CodeAdvisor and identifies the
advantages of static over run-time error checking.

by Timothy J. Duesing and John R. Diamant

C++ is a powerful successor to the C language that has all of
C's features plus a lot more, including constructors, destruc
tors, function overloading, references, inlines, and others.
With this added power come more options to manage, more
ways to do things right, and inevitably, more ways to go
wrong. C++ compilers can find syntactical errors, but they
do not find errors involving constructs that are legal yet un
likely to be what the programmer intended. Often, problems
of this nature are left to be found during testing or by the
end user. Attempts to find these defects at an earlier and
less expensive stage of development sometimes take the
form of code inspections or walkthroughs. While careful
walkthroughs can find some of these errors, formal inspec
tions are time-consuming and so expensive that they are
usually only applied to small pieces of the code.

Since C++'s introduction in the early 1980s, a large body of
experience with the language has accumulated and many
works have appeared that describe common pitfalls in the
language and how to avoid them.1"5 While some of these
problems can be quite subtle, some of them are also straight
forward enough that a program can be created to detect them
automatically,6 as long as that program can be supplied with
sufficiently detailed information about the code's structure.
The SoftBench static database (see article, page 16), with its
semantic information, provides an opportunity to create a
tool that can do just that. This article is about such a tool:
C++ SoftBench CodeAdvisor.

CodeAdvisor: An Automated Rule Checker
CodeAdvisor distills its knowledge of what are likely to be
coding errors as a set of rules that alert the user to problems
such as calling virtual functions from constructors, mixing
iostream routines with stdio routines, local variables hiding
data members, and so on. Each rule is a set of instructions
that queries the static database for the information of interest
and then performs the logic to test whether that potential
error condition is present. When it detects a rule violation,
CodeAdvisor displays the violation's location (file, line
number) in an error browser that lets the user navigate
quickly and easily to the problem site and use an editor to
correct it. Online help is available to present more explana
tion of the violation, possible ways to correct the problem,
references for further information, and when appropriate,
exceptions to the rule.

CodeAdvisor detects rule violations by performing static
analysis of the code using the SoftBench static database.
Static analysis differs from the dynamic or run-time analysis
done by debuggers, branch analyzers, and some performance
tools in that all of the available code is examined. Dynamic
analysis examines only code that is actually executed and
cannot find defects in branches that are never taken. Also,
dynamic analysis requires that the code be far enough along
so that it can be actually executed. Static analysis, on the
other hand, can be performed as soon as the code compiles,
even if the code cannot yet successfully run.

Because it is automated, CodeAdvisor will tirelessly check
all the rules it knows against all of the code. This is practical
only for relatively small pieces of code during inspections
done by hand. Unlike a human code reviewer, CodeAdvisor
never gets so tired or bored that it misses a rule violation it's
been programmed to find. While CodeAdvisor cannot replace
inspections completely (there will always be problems that
cannot be detected automatically), it can be a good comple
ment to traditional code inspections, freeing developers to
focus on higher-level problems by weeding out the detectable
problems first.

Example Rule: Members Hidden by Local Variables or
Parameters
Let's look at an example of one of the rules CodeAdvisor
implements and examine how it uses the static database to
find a rule violation. Consider the small program in Fig. 1.
The class Vehicle with its two-line member function SetSpeed
looks simple enough. The constructor for Vehicle sets the
initial speed to zero, so we would expect to get a current
speed of zero at the start of the program and we do. We might
also expect that, after calling SetSpeed with a delta of 50, we
would then get a current speed of 50. However, if we actually
compile and run the program we find that we still get zero!
Why? The problem is that a data member is hidden by a
function parameter with the same name. In SetSpeed we've
made an unlucky choice when we named the parameter
speed, since there is a data member of the same name in the
class Vehicle. When speed is modified in SetSpeed, the compiler
modifies the parameter rather than the data member. The
compiler will not complain since we have given it unambig
uous instructions, which it will follow perfectly. If we had

February 1997 Hewlett-Packard Journal 1 9

© Copr. 1949-1998 Hewlett-Packard Co.

^include <iostream.h>

class Vehicle {

private:

int speed;

public:

int CurrentSpeedO const { return speed; }

void SetSpeed (int newspeed.

Vehicle () { speed = 0; }

int delta = 0) ,-

// SetSpeed takes an absolute speed plus a

// delta. If absolute speed is zero, use

// current speed. Other parameters should be 0

// (2nd one defaults to 0)

void Vehicle: : SetSpeed (int speed, int delta)

{

if (Â¡speed) speed = CurrentSpeedO;

speed = speed + delta;

main()

Vehicle car;

cout Â« "Car's initial speed =

Â« car .CurrentSpeed()

Â« endl;

car. SetSpeed (0, 50) ;

cout Â« "Car's new speed = "

Â« car .Current Speed ()

Â« endl;

Fig. 1. An example of a CodeAdvisor rule violation: members
hidden by local variables or parameters.

chosen any other name for our local variable, the example
would work as expected.

Even in this simple setting, an error like this can be difficult
to spot at a glance. In a more complex and perhaps more
realistic situation, this problem might never be found in a
code inspection. If we bury a few subtle defects like this in
a few megabytes of code we might find that they won't be
found until actual execution exposes them as bugs.

Detecting an Error Using the Static Database
The problem, then, is how to find these kinds of defects
before the user does. The context in which speed is used is
what's important here. Using speed as a parameter in most
cases is perfectly valid. The only case we need to worry
about is when a parameter or local variable is used within
the scope of a member function and it has the same name as
a data member of that class. This is where the static database
is needed to make this kind of rule checking possible. The
static database contains, among many other things, informa
tion about what objects are global and local within a scope,
and it understands what objects are member functions and
what the associated parameter list is.

One way to create a rule to detect this particular error is to
first query the database to find all the classes in a program.
Once we have all the classes, we can query the database for
all the member functions of those classes. Then we can
examine each function's parameters and local variables

looking for any members local to the class or inherited pub
lic or protected with the same name. If we find a match, we
report a rule violation and output the file and line numbers
of the offending symbols.

Of course, to make the rule robust, there are still a few little
details that need to be considered in implementing the above
algorithm. For instance, to be general, when we query the
database for classes, we'll want to find class templates as
well, and if we find any, we'll want to consider only the tem
plates themselves and not their instances. Also, when we
search for member functions of these classes we'll want to
skip any compiler-generated functions that the C++ compiler
may have created by default. We may also want to handle
the cases where a symbol hides a member function as well
as a data member. All the information needed to handle
these details is available in the static database.

Exceptions to the Rule
The types of problems for which CodeAdvisor is targeted
are not the obvious or even the obscure abuses of the C++
language. Compilers are fully capable of finding these types
of errors. Rather, CodeAdvisor attempts to identify a more
subtle kind of problem that might be characterized as con
structs that experience tells us are almost certainly not what
the programmer intended, even though they are fully legal
within the language. We must include the word "almost,"
however, because occasionally some of the most unlikely
constructs are in fact what the programmer intended. Decid
ing with certainty whether or not a suspicious construct will
turn out to be a real problem may sometimes require knowl
edge that cannot be determined by a practical amount (or
sometimes any amount!) of analysis, static or run-time.

To illustrate this, consider, for example, the CodeAdvisor
rule that detects classes that are passed as a value parameter
to a function. This may become a problem when the class
passed is a derived class and virtual functions of that class
are called within that function. This is because calls to that
class's virtual functions will call the base class's versions,
not the derived class's versions. The above conditions are
easy enough to check for with the static database, but they
alone do not guarantee an error condition. If the function is
never passed a derived class instance, no problem will occur,
hi some special cases, static analysis might be able to detect
this additional condition but in other cases involving com
plex conditional branching, detection would be impractical
or impossible. Run-time analysis also might be able to detect
this condition in special cases, but in cases of less than 100%
branch coverage or conditional branching determined by
many combinations of possible external data, detection
again would be impractical. In this particular example,
CodeAdvisor will report the rule violation even with
imperfect information because even when the problem only
potentially exists, it can cause a serious problem for later
code maintainers. Each rule, however, must be evaluated on
its own merits to consider the possible nuisance of false
positives.

hi this sense, the rules can be regarded as heuristic â€” that is,
good but not perfect guesses that a given piece of code is a
genuine error. Fig. 2 illustrates the nature of the problem

20 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Heuristic Satisfied Real Errors

Reported Real Errors

False
Positives

Undetected
Errors

Fig. 2. The problem of finding errors with imperfect information.

when a rule has imperfect knowledge of the code. The area
where a heuristic rule is satisfied still contains cases where
no real error exists. To report these cases when there is a
reasonable amount of uncertainty as to their validity would
be to bombard the user with unwanted "noise" that would
distract from other real problems.

We have reduced the noise factor in CodeAdvisor by adopting
a philosophy of "no false positives" when implementing a
rule. That is, when imperfect information prevents knowing
with certainty if a construct causes a problem in the current
setting, the code is given the benefit of the doubt unless
there is also a serious potential for a future maintenance
problem. In addition, for those occasional cases where a
suspicious construct is reported but still deemed acceptable
by the user, CodeAdvisor provides a filtering mechanism to
allow the user to suppress the display of particular violations.

Summary
CodeAd\isor uses the information available in the Soft-
Bench static database to implement a deeper level of error
detection than is available with current compilers. Code-
Advisor's static analysis has advantages over run-time analy
sis because all of the available code is analyzed instead of
only the branches that are actually executed. An automated
rule checking tool like CodeAdvisor can contribute to the
code development process at an early stage, where the cost
of defect repair is less expensive. CodeAdvisor complements
traditional code inspection and testing, allowing developers
to focus on the higher-level problems by weeding out the
detectable problems first.

R e f e r e n c e s
1. S. Myers, Effective C++, Addison-Wesley, 1992.
2. T. Cargill, C++ Programming Style, Addison-Wesley, 1992.
3. M.A Ellis and B. Stroustrup, The Annotated C++ Reference

Manual, Addison-Wesley, 1990.
4. Taligent Corp., Well-Mannered Object-Oriented Design in C++,

Addison-Wesley, 1994.
5. Programming in C++, Rules and Recommendations, Translated
from Swedish by Joseph Supanich, Ellemtel Telecommunication
Systems Laboratories, 1990-1992.
6. S. Meyers and M. Lejter, "Automatic Detection of C++ Program
ming the Initial Thoughts on a lint++," Proceedings of the Usenix

Association C++ Conference, 1991.

February 1997 Hewlett-Packard Journal 2 1

© Copr. 1949-1998 Hewlett-Packard Co.

Using SoftBench to Integrate
Heterogeneous Software Development
Environments
Migrating from mainframe-based computing to client/server-based
computing can result in a heterogeneous collection of machines that
do not unfamiliar forcing software developers to deal with unfamiliar
system commands and systems that cannot share data. A SoftBench
control daemon is described that enables developers to integrate
heterogeneous computing systems into efficient, tightly coupled software
development environments with consistent, easy-to-use graphical user
interfaces across all machines.

by Stephen A. Williams

Many companies today are migrating from mainframe-based
computing environments to cliemVserver-based technologies
using various workstations and PCs. They are attracted to
the client/server architecture because of industry claims of
benefits like increased efficiency, lower operating costs, and
less reliance on a particular vendor.

Often, however, the result is a heterogeneous collection of
machines that do not interoperate well. Because the operat
ing systems on the disparate machines all come with their
own sets of tools, software developers must learn a new set
of commands for each system that they use. In addition,
developers must deal with the inconsistencies that arise
when applications available on one system are not available
on another and when data cannot be shared between ma
chines because the different toolsets cannot communicate.

To solve these problems, the advanced system development
and integration division of Science Applications Inter
national Corporation (SAIC) uses Hewlett-Packard's Soft-
Bench product to integrate its customers' diverse systems
into efficient, tightly coupled software development environ
ments with consistent, easy-to-use graphical user interfaces.
This article discusses why and how SAIC uses SoftBench to
solve its customers' multiplatform software development
problems. The article details some of the common pitfalls
encountered when developing software in an open systems
environment, explains how SAIC deploys SoftBench to inte
grate such systems, and concludes by discussing the benefits
of such an integration.

Open Systems
Companies are adopting client/server-based open systems
for a wide variety of reasons. Some companies hope to
increase computing efficiency by distributing the data and
processing load, thereby providing faster response times
and quicker access to system resources. Other companies
want to lower their development costs by using lower-cost,
yet faster workstations and PCs. Yet others must move to

open systems to remain compatible with their customers
and keep a competitive edge in the marketplace.

While migrations to open systems can provide great divi
dends, they can also become more unwieldy than the systems
they replace. Many client/server topologies contain a wide
variety of machines, such as high-end servers running the
UNIXÂ® operating system, PCs running MicrosoftÂ®Windows,
and legacy systems running proprietary operating systems.
In addition, even similar machines will often run different
operating systems (e.g., variations of the UNIX operating
system) or even different versions of the same operating
system. The resulting heterogeneous collection of machines
makes it difficult to create an efficient and cooperative soft
ware development environment. Fig. 1 depicts an example

UnixWare

HP-UX
Complexity

Analyzer

V M S

Defect
Tracking

HP-UX

Memory Leak
Detector

Configuration
Management

Fig. in An example of a heterogeneous collection of machines in
which the applications on different systems cannot cooperate or
communicate with each other.

22 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

of such an environment. Note that most applications cannot
communicate with each other.

Although many open system standards exist to help such
diverse collections of machines communicate, most of them
are low-level network standards that simply provide a way
for bits to be transferred between machines. The open sys
tems community still lacks accepted high-level application
standards that would allow disparate programs to interact
with each other. Thus, applications from different vendors
often cannot interoperate, which greatly restricts the bene
fits of implementing many client/server solutions. This lack
of communication also means that data must be replicated
across machines, wasting resources and increasing the risk
of data inconsistency.

Another problem with developing in a multiplatform, multi-
vendor environment is the lack of consistency in the user
interface to the systems. Because developers must deal with
multiple operating systems, they have to learn how to operate
each system's interface individually. This can be an especially
formidable task considering the arcane commands used by
some operating systems and the differences between file
systems across platforms (i.e., hierarchical versus fixed
depth, / versus , etc.). Developers must also remember
which system contains each application that they need,
where it is located, and how to start it.

Furthermore, developers in a heterogeneous environment
must learn how to operate the different user interfaces for
each of the applications that they use. While some applica
tions now have elegant graphical user interfaces, the look
and feel of each system are often different. Also, many appli
cations do not have graphical user interfaces at all, which
requires that developers memorize command-line options to
these programs. These inconsistencies not only lengthen a
developer's learning curve, but also make developers less
efficient when switching between applications.

Integration
Previous issues of the HP Journal have described how to
use SoftBench to integrate disparate applications running
under the HP-UX and Solaris operating systems.1'2'3 In this
article we will concentrate on how to use SoftBench to inte
grate applications running on other platforms. The key to
accomplishing this integration is to port SoftBench s subpro-
cess control daemon (SPCD) to each operating system that
is to be integrated. The SPCD provides a standard, robust,
and secure method of executing subprocesses on remote
systems. This is accomplished by providing an API through
which encapsulations can interact with the SPCD over a net
work socket connection. Through the API, encapsulations
can instruct the SPCD to start or stop a subprocess on the
remote machine, send input to a subprocess, and receive
output from a subprocess.

Thus, once the SPCD is ported to a given system, encapsula-
tionsi can be written for applications running on that system
as easily as if the applications were running on an HP-UX or
Solaris system running SoftBench.

t A SoftBench encapsulation means integrating a tool into the HP tool integration architecture.

Why SoftBench? There are several reasons why SAIC chose
to use SoftBench to integrate heterogeneous software devel
opment environments. First, the standard SoftBench envi
ronment comes with a rich set of state-of-the-art software
development tools, all of which use a consistent, easy-to-use
graphical user interface. In addition, SoftBench provides a
graphical user interface to the operating system (via the
SoftBench development manager) which hides many of the
intricacies of the operating system and its file system.

Another advantage to using SoftBench is the framework for
interapplication communication it provides through Soft-
Bench's broadcast message server. This framework allows
applications with no direct knowledge of each other to com
municate and therefore interoperate. This functionality
allows one application to be substituted for another with no
adverse effects on other applications. It also allows new
applications to be integrated into the environment without
making any changes to existing applications.

Probably the most important reason to use SoftBench is its
extensibility. Through the use of the encapsulator library,
which provides functions to communicate with the SPCDs,
the SoftBench environment can be extended to include non-
SoftBench applications. In addition, the encapsulated appli
cations can run on any operating system to which the SPCD
has been ported.

Using SoftBench for Integration. Given the above reasons for
using SoftBench to integrate a heterogeneous software
development environment, how does one go about imple
menting such an integration? The first step is to install Soft-
Bench on at least one HP or Sun workstation. Note that it is
not necessary to place such a workstation on each develop
er's desk because SoftBench can be run remotely using the
X Window System and developers can use any machine run
ning an X server. This includes DOS, Windows, MacOS, and
most versions of the UNIX operating system. Thus, a com
pany implementing a SoftBench environment can probably
leverage much of its existing hardware inventory to keep
costs down.

Next, the SPCD needs to be ported to each operating system
in the environment that contains applications that need to
be integrated. Of course, there's no need to port to HP-UX or
Solaris since SoftBench (and thus the SPCD) already runs
on those systems. As discussed earlier, the SPCD provides a
standard method that SoftBench applications can use to
execute subprocesses on remote systems. Although other
methods of remote subprocess control could be used in such
an integration, the SPCD is probably the best choice because
it is specifically designed to work with SoftBench. Also, note
that there is no need to port all of SoftBench since only the
SPCD is needed for remote subprocess control.

Because the source code for the SPCD is not freely avail
able, the SPCD can only be ported by Hewlett-Packard or its
authorized agents. SAIC has been granted such authority in
the past to complete SoftBench integrations for a number of
its customers. The operating systems to which SAIC has
already completed the SPCD ports include:
UNIXWare

February 1997 Hewlett-Packard Journal 23
© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ MP-RAS
â€¢ VMS
â€¢ Pyramid DC/OSx
â€¢ Stratus FTX
â€¢ Windows NT
â€¢ Tandem Guardian
â€¢ Tandem OSS.

A port to MVS was started but not completed.

As can be seen from the diversity of the operating systems
to which the SPCD has already been ported, the SPCD code
is quite portable. However, there are a number of require
ments that the SPCD makes of a target operating system.
The list below details the basic requirements that SAIC uses
to determine the level of effort in an SPCD port:

â€¢ An ANSI C compiler
â€¢ A C++ compiler
â€¢ A Berkeley-type TCP/IP sockets capability
â€¢ The capability for a process to start up and communicate

with several subprocesses like the UNIX fork() and piped
system calls

â€¢ The capability for a process to detect input from several
sources at the same time like the UNIX select!) system call

â€¢ An interface that allows system calls to be made from C
â€¢ A way to set the environment of a controlled process like

the UNIX getenvO system call
â€¢ Functionality similar to the UNIX inetd server
â€¢ Network File System (NFS) capability.

Note that the SPCD has been ported to environments that do
not have fork(), select!), the Â¡netd server, or NFS. While these
items do make the port much simpler, it is still possible to
port to environments that do not include all of the items
listed above.

Once the SPCD has been ported to the appropriate operating
systems, custom encapsulations must be written for each of
the applications to be integrated into the SoftBench environ
ment. Each encapsulation's job is to act as an intermediary
between a non-SoftBench application and the SoftBench
environment, making it look like the application is a fully
integrated SoftBench tool (see Fig. 2). Performing this job
entails a number of responsibilities, such as starting the ap
plication to be integrated, establishing a connection to the

HP-UX Legacy System

SoftBench
Tool

SoftBench
Tool

Legacy
Appl icat ion

B M S = B r o a d c a s t M e s s a g e S e r v e r
SPCD = SoftBench Subprocess Control Daemon

Fig. 2. The organization of software components after SoftBench
is set up. The SPCD has been ported to a legacy system, and an
encapsulation has been written for each legacy application to be
integrated in the SoftBench environment.

SoftBench environment, and sending the appropriate notifi
cation messages to SoftBench whenever the encapsulated
application performs an action about which another tool
might want to know. Furthermore, the encapsulation must
listen for messages requesting a service of the encapsulated
application and then instruct the application to perform the
requested task.

To simplify the process of writing an encapsulation, Soft-
Bench comes with an encapsulator library that provides an
easy-to-use API to the SoftBench environment. The encapsu
lator library provides functions to:

â€¢ Send and receive SoftBench messages through the BMS
â€¢ Control remote subprocesses using the SPCD
â€¢ Create graphical user interfaces that are consistent with

other SoftBench tools.

Because the encapsulator library has only been ported to
the HP-UX and Solaris operating systems, encapsulations
that link with encapsulator routines must run on a machine
using HP-UX or Solaris. While the encapsulator library could
be ported to other operating systems, this is usually unneces
sary since an encapsulation can use the SPCD to execute a
subprocess on a remote host as easily as on a local host.
This is one of the major advantages gained by porting the
SPCD to all operating systems in the environment.

A few other limiting factors must be taken into account
when im encapsulations. First, it is difficult, if not im
possible, to integrate applications that have no command-
line interface. For example, if the only way to interact with
an application is through a graphical user interface, then an
encapsulation of that application must emulate mouse
movements and button clicks to communicate with it. This
is generally not a feasible option.

Another factor to consider when writing encapsulations is
the granularity of the information provided by the applica
tion to be encapsulated. If the application does not give
some sort of notification for each action that it takes, then
the encapsulation will be limited in its interpretation of what
the application is doing. For more information about the
limitations of the encapsulator library see reference 1.

Once the necessary encapsulations have been written, the
next step in integrating an application into a heterogeneous
computing environment is to extend the SoftBench environ
ment so that all of the desired applications are seamlessly
integrated into it. This is accomplished by modifying the
SoftBench configuration file softinit to include references to
each of the new encapsulations (see Fig. 3). This action
informs SoftBench about the new functionality that is now
available through the encapsulations and how to access
those encapsulations.

Modifications to softinit can also be used to inform SoftBench
to replace existing tools with new encapsulations. For in
stance, the standard e-mail tool that comes with SoftBench
could be replaced with an encapsulation of a local e-mail
application. SAIC has used this capability to replace the de
bugger that comes with SoftBench with an encapsulation of
the GNU debugger, gdb. This provides SAIC's customers with
a fully integrated debugger that runs on any machine that gdb
supports, which includes most modern operating systems.

24 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

$HOME/ .softinit â€” user customizations to

SoftBench initialization

I

Editor

To use "vi" as the editor, uncomment the

following line

EDIT TOOL NET * %Local% softvisrv -scope

net -types %Types%

To use "softedit" as the editor, uncomment the

tffollowing line

#EDIT TOOL NET * %Local% softeditsrv -scope

net -types %Types%

To use "emacs" as the editor, uncomment the

ttfollowing line

#EDIT TOOL NET * %Local% emacs

Configuration Management

DM TOOL DIR * teflon softdm -host %Host%

-dir %Directory% -file %File%

To use "RCS" as the CM tool, uncomment the

following line

CM TOOL NET * teflon softrcs -scope net

To use "SCCS" as the CM tool, uncomment the

following line

#CM TOOL NET * spike softsccs

Debugger

To use GDB as the debugger, uncomment the

following line

Â«DEBUG TOOL FILE * teflon /usr3/stevew/

#DebugBackends/softgdb/softgdb -d 255 -1 /tmp/

softgdb.log -host %Host% -dir ^Directory's -file

Tandem stuff

To startup RSHELLSRV in debugging mode,

uncomment the following line

#RSHELLSRV TOOL HOST * teflon /usr/rshellsrv/

trshellsrv -d 255

1 /tmp/log.rshellsrv.%Host%.$USER -host %Host%

To startup RSHELLSRV in standard mode,

ttuncomment the following line

RSHELLSRV TOOL HOST * teflon /usr/rshellsrv/

rshellsrv -host %Host%

Fig. contains A SoftBench configuration file softinit. This file contains
references to each new encapsulation.

To further integrate a development environment, the Soft-
Bench message connector can be used to automate repeti
tive tasks and enforce software development processes. The

message connector works by monitoring the BMS for a de
sired message and then executing a user-supplied routine
whenever that message is seen. For example, suppose com
pany policy requires that a complexity analysis program be
run on all source code when it is checked into the configura
tion manager. To meet that requirement with no human in
tervention, the message connector could be configured to
monitor the BMS for a message from the configuration man
agement tool indicating that a file has just been checked in.
Then, it would run the analysis program on that file, perhaps
e-mailing the results back to the developer who checked in
the file.

For software development processes that require more intri
cate interactions than the message connector can provide,
SAIC's SynerVision product can be used. It provides a next-
generation process management environment that helps
teams manage the software engineering process, including
such tasks as writing new software, debugging programs,
maintaining existing systems, and porting to new platforms.
Also, because SynerVision fully supports the SoftBench en
vironment, no new encapsulations need to be written for it.

Note that the steps described above for integrating a hetero
geneous software development environment with SoftBench
do not need to be implemented all at once. Instead, the
built-in extensibility of SoftBench allows one to take a pro
gressive approach wherein applications are encapsulated
one at a time and added to the environment as they are com
pleted. Such an approach can smooth the migration path
from a legacy system to an open system by eliminating the
need for a complete switchover to the new technology.

Benefits of Integration with SoftBench
By extending SoftBench as described above, a heteroge
neous collection of computing systems with disparate, in
compatible tools can be transformed into an efficient, tightly
coupled software development environment with consistent,
easy-to-use graphical user interfaces across all machines.
Fig. 4 shows the result of an example integration.

Certainly, one of the biggest advantages of integrating with
SoftBench is the realization of a standard, consistent user
interface to all tools on all machines. This consistent inter
face minimizes the learning curve for developers by reduc
ing the number of commands that they need to learn to use
the environment. It also improves the efficiency of develop
ers by simplifying their interactions with both applications
and operating systems and by providing a means for data
sharing between applications (e.g., cut and paste, drag and
drop, etc.). In environments with legacy systems where
developers have been using text-based terminals, the benefit
of this graphical user interface can be enormous.

As discussed earlier, all SoftBench applications use the
X Window System to display their graphical user interfaces.
This provides the advantage that the complete software de
velopment environment is always available from any machine
that has an X server. Furthermore, the environment looks
and works exactly the same no matter what machine a de
veloper uses, from a Macintosh PowerBook laptop running
an X server to an HP 9000 workstation running HP VUE.

February 1997 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX Un ixWare

HP-UX

SoftBench
E-Mai l

Memory Leak
Detector

An environment integrated with SoftBench also provides the
advantage that remote data access is transparent to the user.
By using NFS and the automounter, SoftBench automatically
retrieves data from remote machines without any user inter
vention. Developers only need to specify which machine
contains the desired data, and SoftBench handles the rest.
This benefits developers because they do not have to copy
files back and forth between machines or know the intrica
cies of networked file systems.

Similarly, SoftBench provides the advantage that remote
program execution is transparent to the user. By using SPCD,
SoftBench can execute applications on remote machines
without developer intervention. Developers no longer need
to log into various machines to run the tools they need be
cause SoftBench provides a centralized control center that
places all tools at their fingertips. This lets the developer
concentrate on the task at hand instead of worrying about
logins, passwords, pathnames, and so on.

By providing transparent access to both data and applica
tions, SoftBench allows resources to be spread across a
distributed client/server topology without introducing com
plexity into its use. Developers get a unified view of their
environment whether it contains one machine or one hun
dred, whether all their data is centralized on one server or
distributed across many systems, In addition, machines can
be added to (or removed from) the environment without
impacting developers simply by modifying SoftBench to use
(or stop using) the given machines.

Another advantage of integrating with SoftBench is the rich
set of state-of-the-art software development tools that come
with SoftBench. These tools benefit developers by simplifying

Fig. 4. An example of an integra
tion over several platforms. Note
that there is an encapsulation for
each application.

and expediting the edit-compile-debug cycle. The tools auto
mate processes such as checking source files into and out of
configuration management, building executables, and dis
playing errors found by the compiler. In addition, the tools
can provide a graphical view of source code, allowing a de
veloper to quickly learn unfamiliar code or find errors in
program flow.

Furthermore, by encapsulating local and third-party applica
tions in the environment, developers will have access to
those applications as easily as if they were standard Soft-
Bench tools. This benefits developers because they do not
have to know on which host the applications exist or how to
start them. Instead, the developer can start an application
simply by selecting it from the list of applications in the
SoftBench tool manager. In fact, by customizing the environ
ment with the message connector, many applications can be
started automatically.

As discussed earlier, the message connector and Syner-
Vision can save developers time and effort by automating
repetitive tasks and by enforcing software development poli
cies such as ensuring that required tasks always occur and
that those tasks are executed in the proper order. By enforc
ing well-defined policies, SoftBench can help increase the
efficiency of the software development process and improve
the quality of the finished product.

Conclusion
Software development in a heterogeneous computing envi
ronment can be a difficult proposition. Varying hardware
and software platforms, incompatible tools, and inconsistent
user interfaces are just a few of the trouble spots. However,

26 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Hewlett-Packard's SoftBench product can be used to solve
these problems by providing a standard upon which to inte
grate the disparate components of such an environment. By
porting SoftBench's SPCD to each operating system involved,
all machines become equally and consistently accessible
from SoftBench. Then, by encapsulating the applications on
those systems, the applications become fully integrated
SoftBench tools capable of interacting with other SoftBench
tools.

Acknowledgements
SAIC's success in deploying SoftBench to solve its customers'
problems is the result of a collaboration of exceptional talent
at both SAIC and Hewlett-Packard. I would especially like to
thank Vern Badham, Winn Rindfleisch, and Dave Romaine
for their invaluable contributions to these projects and for
their help in writing this article. I would also like to thank
Curt Smith for inviting me to join his team at SAIC and John
Dobyns for allowing me to continue my encapsulation work
after I left SAIC. Lastly, I extend special thanks to Dick

Demaine and the Software Engineering Systems Division
of Hewlett-Packard for making SoftBench possible and for
their continuing support of SAIC's work.

References
1. B.D. Fromme. "HP Encapsulates Bridging the Generation Gap."
Hewlett-Packard Journal Vol. 41, no. 3. June 1990. pp. 59-68.
2. C. Gerety. "A New Generation of Software Development Tools,"
Hewlett-Packard Journal. Vol. 41, no. 3. June 1990. pp. 48-58.
3. J.J. Courant, "SoftBench Message Connector Customizing Soft
ware Development Tool Interactions." HeirMt-Packard Journal,

Vol. 45, no. 3, June 1994, pp. 34-39.

HP-UX 9. and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.
UNIXÂ® is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.
Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

February 1997 Hewlett-Packard Journal 27
© Copr. 1949-1998 Hewlett-Packard Co.

The Supply Chain Approach to
Planning and Procurement
Management
The supply chain approach models stochastic events influencing a
manufacturing organization's shipment and inventory performance in the
same way that a mechanical engineer models tolerance buildup in a new
product design. The objectives are to minimize on-hand inventory and
optimize supplier response times.

by Gregory A. Kruger

This paper describes the processes and equations behind a
reengineering effort begun in 1995 in the planning and pro
curement organizations of the Hewlett-Packard Colorado
Springs Division. The project was known as the supply
chain project. Its objectives were to provide the planning
and procurement organizations with a methodology for set
ting the best possible plans, procuring the appropriate
amount of material to support those plans, and making up-
front business decisions on the costs of inventory versus
supplier response time (SRT), service level to SET objec
tives, future demand uncertainty, part lead times, and part
delivery uncertainty. The statistical modeling assumptions,
equations, and equation derivations are documented here.

Basic Situation
Consider a factory building some arbitrary product to meet
anticipated customer demand. Since future demand is always
an uncertainty, planning and procurement must wrestle with
the task of setting plans at the right level and procuring the
appropriate material. The organization strives to run the fac
tory between two equally unattractive scenarios: not enough
inventory and long SRTs, or excessive inventory but meeting
SRT goals. In fact, more than one organization has found
itself with the worst of both worlds â€” huge inventories and
poor SRTs.

The supply chain project focused on characterizing the vari
ous stochastic events influencing a manufacturing organiza
tion's shipment and inventory performance, modeling them
analogously to the way a mechanical engineer would model
a tolerance buildup in a new product design.

Problem Formulation
For a particular product, a factory will incur some actual
demand each week, that is, it will incur demand DÂ¡ in week i,
for i = 1, 2, 3, ... From a planning and procurement perspec
tive, the problem is that looking into the future the DÂ¡ are
unknown.

' In standard terminology. SRT stands for "supplier response time." In this case, a better term
would be one response t ime," because the suppl ier be ing re fer red to is HP and not one
of HP's suppliers. In this paper, we use the standard terminology for SRT, but the word "suppli
er" in all other contexts means one of HP's suppliers.

Let PJ be the plan (or forecast) for week i in the future. Now
for each week, the actual demand can be expressed as the
planned demand plus some error: DÂ¡ = PÂ¡ + eÂ¡.

The MRP (material requirements planning) system, running
at intervals of R weeks, evaluates whether to order more
material to cover anticipated demand, and if the decision is
to order, how much to order. Given a lead time of L weeks to
take delivery of an order placed to a supplier now for some
part, the material in the supply pipeline must cover real de
mand for the next L + R weeks. By supply pipeline we mean
the quantity of the part already on hand at the factory plus
the quantity in orders placed to the supplier and due for
delivery over the next L weeks.

For simplicity, assume for the remainder of this discussion
that we are dealing with a part unique to one product and
used only once in building the product. We will remove
these constraints later but for now it will help to focus on
the key concepts.

Define X to be the unknown but actual demand the factory
will experience for this part over the next L + R weeks:

L + R

x= VDi=
L + R

In statistical terminology, X is a random variable, that is, we
cannot say with certainty the value it will take next, but with
some assumptions about the nature of the planning errors
(eÂ¡), the distribution of X can be characterized. Specifically,
we will make the assumption that the eÂ¡ are distributed
according to the Gaussian (normal) distribution with mean
zero and variance o2 (see Fig. 1). The assumption that the
mean of the eÂ¡ is zero says that our plans are unbiased, that
is, the factory is not consistently overestimating or under
estimating future demand. Thus, the average of the differ
ences between the plan and the actual demand over a rea
sonable period of time would be about zero. The normal
distribution is symmetric, so we are saying there is equal
probability in any week of actual demand being above or
below plan. The variance measures how large the planning
errors can get in either direction from zero.

28 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

- 3 a Mean = O + 3 o

Fig. 1. Assumed normal distribution of planning errors.

We would like to know both the expected value of X and its
variance. Knowing these two values will form the basis for
the ultimate decision rules for replenishment order sizes
placed to the supplier for our part.

We will use the following notation: E(x) represents the ex
pected value of the random variable x, and V(x) represents
the variance of the random variable x.

Before launching into the derivation of the expected value
of the real demand over the next L + R weeks, note that L
itself is a random variable. When an order is placed with the
supplier, delivery does not always come exactly on the
acknowledgment date. There is some uncertainty associated
with when the replenishment order will arrive. Like the
planning errors, we will assume that the delivery errors are
normally distributed about zero. Thus:

/ L + R E (L) + R

E (X) = E y (P i + e t) j ^ E (P i + e Â ¡)
\ i = i / i = i

I (E(Pi) + E(6i)) = X P.-

The result will be precisely correct when the PÂ¡ are station
ary (that is, the plan is a constant run rate) and will serve as
an approximation when the PÂ¡ are nonstationary.

Determining the variance of X is more involved because the
limit of the summation, L + R, is a random variable. The deri
vation can be be found in Appendix I. The result is:

V(X) ^ (UL + R)a'

where oe is the standard deviation of the errors eÂ¡, OL is the
standard deviation of L, and PL+ R is the average of the plan
over L + R weeks.

The standard deviation of demand is the square root of this
result. In practice, we estimate the standard deviation of
demand by:

where L is the average lead time from the supplier of this
part. R is the review period. sj)E is the variance of the differ
ence between the weekly plan and the actual weekly demand,
and SJQE is the variance of the difference between the date
requested and the date received. Lee, Billington. and Carter1
give the same result when modeling the demand at a distribu
tion center within a supply chain.

Knowing the variance of the demand uncertainty over L + R
weeks, we can develop a decision rule for determining the
amount of inventory to carry to meet the actual demand the
desired percent of the time.

We define the oifler-up-to level as:

L+R
Order-up-to Level = > PÂ¡ + Zi_aÃ³x,

where 7,_ftis the standard normal value corresponding to a
probability a of stocking out, ZI^QX is called the safety
stock.

We define the inventory position as follows:

Inventory Position = On-Hand Quantity
+ On-Order Quantity
- Back-Ordered Quantity.

The purchase order size decision rule each R weeks for
replenishment of this part becomes:

New Order Quantity = Order-up-to Level
- Inventory Position.

We are simply trying to keep the order-up-to level of material
in the supply pipeline over the next L + R weeks, knowing
we have a probability a of stocking out.

As you can see, the basic idea behind the statistical calcula
tion of safety stock is straightforward. In practice, a number
of complicating factors must be accounted for before we
can make this technology operational. The list of issues
includes:

â€¢ The chosen frame of reference for defining and measuring
future demand uncertainty

â€¢ The impact of SRT objectives on inventory requirements
â€¢ The translation from part service level to finished product

service level
â€¢ Appropriate estimates for demand and supply uncertainty

upon which to base the safety stock calculations
â€¢ Purchasing constraints when buying from suppliers
â€¢ The hidden effect of review period on service level

performance
â€¢ The definition of service level.

There are significant business outcomes from managing
inventory with the statistical calculation of safety stock.
These include the ability to:

â€¢ Predict average on-hand inventory and the range over
which physical inventory can be expected to vary

â€¢ Trade off service level and inventory
â€¢ Trade off SRT and inventory

February 1997 Hewlett-Packard Journal 29

© Copr. 1949-1998 Hewlett-Packard Co.

"Front Loading"
(Functions as Safety Stock)

Time

Fig. the Many manufacturing planning organizations handle the
uncertainties of future demand by intentionally driving the material
requirements plan (MRP) higher than expected orders.

â€¢ Plot order aging curves so that you can see how long
customers may have to wait when stock-outs do occur

â€¢ Measure the impact of reducing lead times, forecasting
error, and delivery uncertainty

â€¢ Measure the impact of changing review periods and
minimum order quantities to the supplier

â€¢ Stabilize the orders placed to suppliers so that they are
not being subjected to undue uncertainties

â€¢ Reduce procurement overhead required for manipulating
orders.

Turning off the Production Plan Overdrive
Many manufacturing planning organizations have traditionally
handled the uncertainties of future demand by intentionally
putting a near-term overdrive into the production plan (see
Fig. 2). By driving the material requirements plan (MRP)
higher than expected orders, a buffer of additional material
is brought into the factory to guard against the inevitable
differences between forecast and actual demand. In effect,
this overdrive, or front loading, functions as safety stock,
although it is never called that by the materials system.

While this practice has helped many factories meet shipment
demands, it has also caused frustrations with nonoptimal
inventory levels. Biasing the build plan high across all prod
ucts does not consider that it is unlikely that all of the prod
ucts will be simultaneously above their respective forecasts.
Therefore, inventories on parts common to several products
tend to be excessive. Also, this approach treats all parts the
same regardless of part lead times, rather than allocating
safety stock inventory based upon each part's procurement
lead time. The factory can easily end up with inventories too

high on short lead time parts and too low on longer lead time
parts. Finally, the practice of building a front-end overdrive
into the plan can lead to conflict between the procurement
and production planning departments. Wanting to ensure
sufficient material to meet customer demand, the planning
department's natural desire is to add a comfortable pad to
the production plan. Procurement, aware of the built-in over
drive in the plan and under pressure to reduce inventories,
may elect to second-guess the MRP system and order fewer
parts than suggested. Should planning become aware that
the intended safety pad is not really there, it can lead to an
escalating battle between the two organizations.

Frame of Reference
Fundamental to the use of the statistical safety stock meth
ods outlined in this paper is how one chooses to measure
demand uncertainty, or in other words, what is the point of
reference. The two alternative views are (see Fig. 3):

1 Demand uncertainty is the difference between part con
sumption in the factory and planned consumption.

1 Demand uncertainty is the difference between real-time
customer demand and the forecast.

Consider using part consumption within the factory versus
build plan as the frame of reference. The function of statisti
cal safety stocks here is to provide confidence that material
is available to support the production plan. A factory with a
steady-rate build plan would carry relatively little safety
stock because there are only small fluctuations in actual
part consumption. Of course, actual order fulfillment perfor
mance would depend upon finished goods inventory and the
appropriateness of the plan. In this environment, the orga
nization's SRT objective has no direct bearing on the safety
stock of The factors influencing the estimate of
demand uncertainty and hence safety stock are fluctuations
in actual builds from the planned build, part yield loss, and
part use for reasons other than production.

If the point of reference calls for measuring demand uncer
tainty as the deviation between the forecast and real-time
incoming customer orders, safety stock becomes a tool to
provide sufficient material to meet customer demand. This
factory is not running steady-state production but rather
building what is required. Now the SRT objective should be
included in the safety stock calculations since production
does not have to build exactly to real-time demand if the
SRT objective is not zero. From this perspective, statistical

Variabil i ty of Actual versus
Forecast Orders

A / W
Factory Production

Measuring demand var iat ion here addresses
the problem of how much material should be
ordered to support the uncertainty of actual
customer demand about the order forecast.

Variabil i ty of Actual versus
Planned Part Consumption

Measuring demand variat ion here addresses
the problem of how much material should be
ordered to support the production plan.

Fig. 3. Frames of reference for
measuring demand uncertainty.
These two measures can be very
different in a factory dedicated to
steady build rates according to a
build plan. In a factoiy fluctuating
its production is response to ac
tual orders, these two measures
are more alike.

30 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

safety stocks, projected on-hand inventory. SRT, and service
levels are all tied together, giving a picture of the investments
necessary to handle marketplace uncertainty' and still achieve
order fulfillment goals.

In choosing between these two frames of reference for the
definition of demand uncertainty it comes down to an analy
sis of factory complexity and timing. If factory cycle times
are relatively short so that production is not far removed
from customer orders, then demand uncertainty can be mea
sured as real-time orders versus forecast. However, if factory
cycle times are long so that production timing is well-
removed from incoming orders, then demand uncertainty
would best be measured as part consumption versus build
plan.

SRT in Safety Stock Calculations
Appendix IV documents the mathematics for incorporating
SRT objectives into the safety stock calculations. As has
been discussed, using the SRT mathematics would be appro
priate when measuring demand uncertainty as deviations of
real-time customer orders from forecast. It is critical, how
ever, that we understand how production cycle times affect
the factory's actual SRT performance.

As stated in Appendix IV, if factory cycle time is considered
to be zero, the SRT mathematics ensures that material suffi
cient to match customer orders will arrive no later than the
desired number of weeks after the customer's order. Clearly,
time must be allocated to allow the factory to build and test
the completed product. In this paper, this production time is
not the cycle time for building one unit but for building a
week's worth of demand.

Care must be taken when using the SRT mathematics. Con
sider that the practice of booking customer orders inside the
SRT window will place demands on material earlier than
expected from the mathematical model given in Appendix IV.
In practice, one should be conservative and use perhaps no
more than half of the stated SRT as input to the safety stock
model.

Part versus Product Service Level
The statistical mathematics behind the safety stock calcula
tions are actually ensuring a service level for parts availability
and not for completed product availability. This is true re
gardless of whether the chosen frame of reference for mea
suring demand uncertainty is part-level consumption or
product-level orders. Since production needs a complete set
of parts to build the product the question arises as to what
the appropriate part service level should be to support the
organization's product service level goals. Unfortunately,
there is not a simple algebraic solution to this problem.

The exact answer is subject to the interdependÃ¨ncies among
the probabilities of stocking out of any of the individual parts
in the of of materials. If we assume that the probabilities of
stocking out of different parts are statistically independent,
then the situation looks bleak indeed. For example, if we
have a 99% chance of having each of 100 parts needed to
build a finished product, independence would suggest only a
0 99100 _ 3(j go/0 chance of having all the parts. Clearly the
chance of stocking out of one part is not totally independent
of stocking out of another. For example, if customer demand
is below plan there is less chance of stocking out of any of

the parts required. Just as clearly, there is not total depen
dence among parts. One supplier may be late on delivery,
causing a stock-out on one part number while there are ade
quate supplies of other parts on the bill of materials. In the
example mentioned, the truth about product service level
lies between the two extremes, that is, somewhere between
0.99100 and 0.99.

As an operational rule of thumb, individual part service levels
should be kept at 99% or greater. Of course, the procurement
organization may choose to run inexpensive parts at a 99.9%
or even higher sendee level so as never to run out. Then the
service level on expensive parts can be lowered such that
the factory gets the highest return on its inventory dollar.
For example, a factory may run a critical, expensive part at
a 95% service level while maintaining a 99.9% service level
on cheaper components to achieve a product level goal of a
95% service level to the SRT objective.

Parts Common to Multiple Products
hi the problem formulation section it was assumed that we
were dealing with a part unique to a single product and used
only once to build that product. First, recognize that the
situation in which a part is unique to a single product, but
happens to be used more than once to build the product, is
trivial. If the product uses a part k times then the forecasted
part demand is simply k times the forecast for the product.
Similarly, the standard deviation of the forecast error for the
part is simply k times the standard deviation of the forecast
error for the product.

The more interesting situation arises when a part is common
to multiple products. We will look at two alternative ap
proaches to handling common parts, the second method
being superior to the first. In the first approach, we will as
sume that the forecasting errors for the products using the
common part are independent of one another. Since the
total forecasting error for the part can be written as the sum
of the forecasting errors for each of the products using the
part, the standard deviation of the part forecasting uncer
tainty can be easily determined.

Consider a part used in j products and used kÂ¡ times in
product i, where i = 1,2, ..., j. Let DE represent the forecast
ing or demand error. Then:

+ k2DEpro()uf.t2 + k3DEproduct3

+ ... + kjDEprocjuc(j

Â°DEpart = ^lÂ°DEproductl + ^2aDEproduct2

k3Â°DEproduct3 kj Â°DEproductj-

The big problem with this approach is the assumption of
independence of forecasting errors among all the products
using the part. If, for example, when one product is over its
forecast there is a tendency for one or more of the others to
be over their forecasts, the variance calculated as given here
will underestimate the true variability in part demand uncer
tainty.

The second approach to estimating forecasting uncertainty
for common parts is to explode product-level forecasts into
part-level forecasts and product-level customer demand into

February 1997 Hewlett-Packard Journal 3 1
© Copr. 1949-1998 Hewlett-Packard Co.

part-level demand and measure the demand uncertainty
directly at the part level. For a part common to j products
we simply measure the forecast error once as the difference
between the part forecast and actual part demand instead of
measuring the forecast errors for the individual products
and algebraically combining them as before. Any covariances
between product forecasting uncertainties will be picked up
in the direct measurement of the part-level forecasting errors.
Clearly, this is the preferred approach to estimating part
demand uncertainty, since it avoids making the assumption
of forecast error independence among products using the
part.

Estimation of Demand and Part Delivery Uncertainty
The whole approach to safety stocks and inventory manage
ment outlined here is dependent upon the basic premise
behind any statistical sampling theory â€” namely, that future
events can be modeled by a sample of past events. Future
demand uncertainty is assumed to behave like past demand
uncertainty. Future delivery uncertainty is assumed to be
have like the supplier's historical track record. This raises
two issues when estimating the critical inputs to the safety
stock equations: robust estimation and business judgment.
Both of these issues are extremely dependent upon the
chosen frame of reference, that is, whether we are measuring
real-time customer demand or part-level consumption on
the factory floor.

From a sample size perspective we would like to have as
much data as possible to estimate both demand and delivery
uncertainty. However, in a rapidly changing business climate
we may distrust data older than, say, six months or so. If I am
measuring demand uncertainty as the deviations between
real-time customer orders and the forecast, do I want to
filter certain events so they do not influence the standard
deviation of demand uncertainty and hence safety stocks? It
may be good business practice not to allow big deals to in
flate the standard deviation of demand uncertainty if those
customers are willing to negotiate SRT. In statistical jargon,
we want our estimates going into the safety stock equation
to be robust to outliers. Naturally, if the demand uncertainty
is measured as part consumption on the factory floor versus
planned consumption, data filtering is not an issue. It is pos
sible that an unusual event affecting parts delivery from a
supplier may be best filtered from the data so that the factory
is not holding inventory to guard against supply variability
that is artificially inflated.

A common situation is the introduction of a new product.
Suppose the chosen point of reference is measuring demand
uncertainty as real-time customer orders versus forecast.
How do we manage a new product introduction? A viable
option is to use collective business judgment to set the de
mand uncertainty even though there is technically a sample
size of zero before introduction. Prior product introductions
or a stated business objective of being able to handle
demand falling within Â± A of the plan during the early sales
months can be used to establish safety stocks. In fact, the
organization can compare the inventory costs associated
with different assumptions about the nature of the demand
volatility. Estimates of average inventory investment versus
assumed demand uncertainty obtained from the statistical
models can help the business team select an introduction
strategy.

Effect of Minimum Buy Quantities and Desired
Delivery Intervals
In most cases, there are constraints on the order sizes we
place to our suppliers, such that replenishment orders are
not exactly the difference between the theoretical order-up-
to level and the inventory position. These constraints may
be driven by the supplier in the form of minimum buy quan
tities or ourselves in the form of economic order quantities
or desired delivery frequencies. The net effect of all such
constraints on order sizes is to reduce the periods of expo
sure to stock-outs.

For example, suppose the factory's plans predict needing
100 units of some part per week. Further suppose that the
ordering constraint is that we order 1000 units at a time de
termined by either the supplier's minimum or our economic
order quantity. This order quantity represents ten weeks of
anticipated demand. Once the shipment of parts arrives
from the supplier, there is virtually no chance of stocking
out for several weeks until just before the arrival of the next
shipment. Given this observation we see that safety stock
requirements actually decrease as purchase quantity con
straints increase (see Appendix V).

Although safety stocks decrease, average on-hand inventory
and the standard deviation of on-hand inventory both
increase. See Appendix III for formula derivations of the
average and the standard deviation of on-hand inventory.

Effect of Review Period
Analysis of the equation for the standard deviation of demand
uncertainty given above shows that as the review period R
increases, Ox increases, thereby driving up safety stock. This
makes sense because the safety stock is there to provide the
desired confidence of making it through R weeks without a
stock-out. However, note that the service level metric itself
is changing. For R = 1, the service level gives the probability
of making it through each week without a stock-out. For
R = 2, the service level gives the probability of making it
through two weeks, for R = 3, three weeks, and so on. In
creasing review period therefore has an effect similar to that
of minimum buy quantities. When operating at longer review
periods, purchase quantities to the supplier are larger, since
we are procuring to cover R weeks of future demand and
not just one week of future demand. To keep the average
weekly service level at the desired goal, safety stock would
actually have to be throttled back as the review period in
creases because of less frequent periods of exposure.

Service Level Metric
Throughout this paper, service level has been defined as the
probability of not stocking out over a period of time, usually
on a weekly basis. There is another commonly used service
level metric called the line item fill rate (LIFR). With the
LIFR the issue is not whether stock-outs occur but rather
whether there is at least the desired percentage of the re
quired items available. For example, suppose in a week of
factory production, demand for a part is 100 units but there
are only 95 available. Measured in terms of LIFR, the service
level is !

Proponents of LIFR argue that the metric gives appropriate
credit for having at least some of what is required, whereas
the probability of stock-out metric counts a week in which

32 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

there was 95% of the required quantity of a particular part as
a stock-out.

When calculating safety stocks to a LIFR metric rather than
multiplying the standard deviation of demand over the lead
time plus the review period by a standard normal value,
solve for k in the following approximation formula;2

LIFR goal
_ i _ a x , . l - 0 . 9 2 - 1 . 1 9 k - i

e

where up is the average weekly demand. Then the safety-
stock is kox-

Inventory versus Service Level Exchange Curves
A useful graphical output from the statistical inventory
mathematics is .the inventory versus service level exchange
curve as shown in Fig. 4.

Such graphs demonstrate the nonlinear relationship between
increasing inventory and service level given the constraints
on the factory. The curve represents the operating objective.
(Johnson and Davis3 refer to this curve as the "efficient
frontier.") By comparing historical inventory and service
levels to the performance levels possible as indicated in
Fig. 4, a factory can gauge how much room it has for im
provement. In addition, procurement can determine where
on the curve they should be operating based upon their cost
for expediting orders. As can be seen in Fig. 4, a factory
operating in the 90% service level range would get a lot of
leverage from inventory money invested to move them to
95% service. However, moving from 95% to 99% service level
requires more money and moving from 99% to 99.9% requires
more yet. By comparing the cost (and success rate) of expe
diting parts to avoid stock-outs with the cost of holding
inventory, the organization can determine the most cost-
effective operating point.

Order Aging Curves
Another useful graphical output is the order aging curve.
This curve in a sense tells the rest of the story about material
availability to meet the SRT and service level objectives.
More specifically, the curve demonstrates what type of ser
vice can be expected for SRTs shorter than the objective
and how long customers can be expected to wait when you
are unable to meet your SRT objective. Fig. 5 shows a family
of order aging curves, each corresponding to a certain safety

9 0 9 2 . 5 9 5
Service Level {%)

Fig. 4. Average inventory as a function of service level.

99.9

1.0

0.9

0.8

0.7

I Â ° ' 6
| 0 . 5

Â« 0.4

03

U

0.1

o

SRT Goal = 0
SRT Goal = 1 Week

 S R T G o a l = 2 W e e k s
 â € ” S R T G o a l = 3 W e e k s
 S R T G o a l = 4 W e e k s

2 3 4
SRT (Weeks)

Fig. 5. Order aging curves for differing SRT (supplier response
time) goals.

stock value determined by the stated SRT goal. We see, for
example, that a factory holding safety stocks to support a
99% service level on a two-week SRT goal could, in fact,
support a one-week SRT with a service level better than 90%.
That no factory will almost surely have all orders filled no
later than four weeks from receipt of customer order.

Theory versus Practice
Ultimately, the actual performance the factory experiences
in the key metrics of service level to the SRT objectives and
average on-hand inventory will depend upon whether the
supply chain performs according to the inputs provided to
the statistical model. All of the estimates are predicated
upon the future supply chain parameters fluctuating within
the estimated boundaries. As depicted in Fig. 6, we have
built up a set of assumptions about the nature of the various
uncertainties within our supply chain. If one or more of
these building blocks proves to be inaccurate, the factory
will realize neither the service level nor the inventory
projected.

Realistic Unplanned
Demand

Accurate Yield

Realistic Vendor
Delivery Uncertainty

Correct Part Lead Time

Realistic Forecast
Uncertainty

Unbiased Plan

Fig. 6. Supply chain inputs. The accuracy of the estimates of
service level and on-hand inventory are dependent on the validity
of the inputs.

February 1997 Hewlett-Packard Journal 33
© Copr. 1949-1998 Hewlett-Packard Co.

Acknowledgments
Special thanks to Rob Hall of the HP strategic planning and
modeling group and Greg Larsen of the Loveland Manufctur-
ing Center for assistance in the development of this theory
and helpful suggestions for this paper. Not only thanks but
also congratulations to the process engineering, planning,
and procurement organizations of the Colorado Springs
Division for reengineering division processes to put supply
chain theory into practice.

References
1. H.L. Lee, C. Billington, and B. Carter, "Hewlett-Packard Gains
Control of Inventory and Service through Design for Localization,"
Interfaces, Vol. 23, no. 4, July-August 1993, p. 10.
2. S. Irwin, Production and Operations Analysis, Richard Irwin,
1989, p. 653.

3. M.E. Johnson and T. Davis, Improving Supply Chain Perfor

mance Using Order Fulfillment Metrics, Hewlett-Packard Strategic
Planning and Modeling Group Technical Document (Internal Use
Only), 1995, p. 14.

Appendix I: Derivation of the Standard Deviation of Demand Given an R-Week
Review Period

L + R L + R

V(X) = E(V(XIL)) + V(E(XIL))

''L+R

E(L) + R

E(o|) + V(PL + R(L + R))

Hence,

o =

We estimate GX by:

where: L = average lead time from supplier of this part
R = rev iew per iod

DE = var'ance Â°f the difference between the weekly plan
and the actual demand

PL + R = average of the plan over L + R weeks
s^E = variance of the difference between the date requested

and the date received.

PL+R Â°L

Appendix II: The Expected Value and Variance of On-Hand Inventory when there
Are no Restrictions on Minimum Buy Quantities

EIÃœ+R

Let: I = On-hand physical inventory
S = Order-up-to level
Y = Amount of part consumed in first L weeks of the (L + R)-week

cycle

BID
X
Â¡=1

L+R
We will consider C$ to be uniformly distributed between 0 and DÂ¡-

GS = Cycle stock = stock consumption to date during the R-week
p o r t i o n o f t h e (L + R) - w e e k c y c l e T h u s ,

SS = Safety stock

i = L + 1

E(L) + R E|L| E I D + R

E(D =

E I U + R n n

E (l) = S S + 1 V P Â ¡ = S S + - ^ .
L * â € ” * L

Â¡ = E(L) + 1

The var iance o f I i s der ived as fo l lows.

34 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

V(l) = V(S) + V(Y) + V(CS)

Even weeks, the PÂ¡ are not all fixed, and hence S changes every R weeks,
S is still a constant with respect to the inventory result during the last R
weeks of every (L + R}-week cycle. Hence, V(S) = 0.

V(l) = 0 + V fÃ̈')
E(CS|DL+I .DL + Z

V(CS)

â€¢ v(cs) '

L + 2 DL + R)

V(E(cs |DL + 1 .DL+2 DL+R)

DL+1 + DL+2

= V
/

PL + 2 + 6|_ + 2

DL+1 + D L + 1 L + 2 DL+R

L+R eL+R))

Ro|

2 DL+RJ =

(DL + 1 + DL + 2 DL+R)

E(v (cs |D l+1 .D l+2 DL+R) j

(D l + 1 + D L + 2 + . . .
- t 12 = eÂ«

where G = DL + 1 + DL+2 + . . . +DL+R.

E (G ') = (o g

V(Cs) = i
Hoi

Hence,

+ Ro +
Ro|
4 '

where PJs the average of the plan over the L-week period immediately
before the R-week period in question.

Appendix III: The Expected Value and Variance of On-Hand Inventory when there
Are Restrictions on Minimum Buy Quantities

Here the assume that restrictions on the size of orders placed to the
supplier prevent procurement from ordering exactly the difference be
tween in order-up-to level and the inventory position. The restriction in
order by might be the result of a minimum buy size constraint placed by
the supplier, a constraint that the order must be an integer multiple of a
specified quantity, or the purchaser's desire that deliveries come at some
delivery interval greater than weekly.

Let: Min = minimum order size constraint
Mult = multiple order size constraint
Dl = desired delivery interval constraint.

Then the order size decision rule is given by:

New order size = M = k x Mult,

where k is the smallest integer such that:
1.M > Order-up-to Level - Inventory Position
2. M >Min
3. M >DI x Average Weekly Demand.

Finally, we assume that the order is placed for the entire order quantity
to be delivered L weeks later, that is, the order is not partitioned into
pieces with separate delivery dates.

Let: I = On-hand physical inventory
S = Order-up-to level
Y = Amount of part consumed in first L weeks of the (L + R)-week

cycle
Cs = Cycle stock = stock consumption to date during the R-week

portion of the (L + R)-week cycle

SS = Safety stock
M = Order quantity
A = Increment above the order-up-to level S that the inventory

position reaches as a result of having to order a quantity M.

I = (S + A) - Y - Cs

E(l) = E(S) + E(A) - E(Y) - E(CS)

L L + R

E (l) = | 2 , p . + S S + E (A) - 2 , P , - Â ¿ 2 - P ,
, 1 = 1 / i = 1 i = L + 1

L + R
E (l) = S S + E (A) + 1 X P ,

To determine E(A) note that rather than buying strictly an amount equal
to (S differ Inventory Position) we buy a quantity M. Therefore, the differ
ence between what would be ordered without mÃ­nimums and what is
ordered with mÃ­nimums varies between 0 and M - 1 . We will assume
that Thus: difference is uniformly distributed within this range. Thus:

E(l) = SS + M - 1
2

L + R

February L997 I lewlctt-Packard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

The derivation of the variance of I is as follows.

= V(S) + V(A) + V(Y) + V(CS)

= O + V(A) + V PT DÂ¡ + V(CS)
\Â¡ = 1 /

= VIA) +
+ Y2

:L + R
X i

Â¡ = L + 1

Ra2

12 12

L + R

2 >
i - L + 1

Ro2

where PLis the average of the plan over the L-week period immediately
before the R-week period in question.

Appendix IV: Incorporating SRT (Supplier Response Time) into the Safety Stock
Calculations

A weekly review period is assumed.

Let: X = actual amount of demand for an arbitrary part in L + 1 weeks.
L+1

S = Order-up-to level = V PÂ¡ + Z,_aax-
Â¡ = 1

X is assumed to be normally distributed with mean (L+ 1)u,p and vari
ance ojjIL + 1) +

Then Prob(X < S) = 1 - a, so 1 - a is the service level.

One-Week SRT
The probability that some demand is actually filled the week following
its arrival is the probability that the order-up-to level over L + 1 weeks
covers demand incurred over just L weeks.

Let X be the amount of demand in L weeks. X is normally distributed
with mean L|j,p and variance opL + o2(Xp.

If SS, denotes the appropriate safety stock for a one-week SRT, the
corresponding order-up-to level for a one-week SRT goal is S, =
L + 1

Y PÂ¡ + SS,. However,

Prob(X < S,) = Prob Z <
S i -

= 1 - a .

This implies that

S i -

S, =

The order-up-to-level will still be calculated by our in-house procurement
L + 1

system, POPLAN, as Si = PÂ¡ + SSi, so we now have two expres-

sions for S,. Assuming that \n,0 = PL + 1,

S, = (L + 1) [ip + SS, = Z, .

SS , = Z^ yo2DL + a fa l + LHP - (L +

SS, = Z^

L + 1

By using an order-up-to level of V PÂ¡ + SS,, over L + 1 weeks we will
Â¡ = 1

bring in enough material to cover the demand incurred in L weeks a
percentage of the time equal to (1 - a) x 100%.

Two-Week SRT
The probability that some demand is actually filled two weeks after its
arrival is the probability that the order-up-to level over L+1 weeks cov
ers demand over just L - 1 weeks.

Let X denote the amount of demand Â¡n L - 1 weeks and let S2 denote
the order-up-to level appropriate for a two-week SRT. X is normally
distributed with mean (L - %p and variance op(L - 1) +

Prob(X < S2) = Prob Z < -
S 2 - (L -

This implies that

S 2 - (L - 1 | n p

S2 = (L -

Since the POPLAN system will calculate order-up-to level as S2 =
L+1
V PÂ¡ + S2. we have two expressions for the order-up-to level, S2.

S2 = (L + 1)(iD + SS2 = Z^yoj j IL - 1) + o2!*2, + (L - 1)nD

SS2 = Z,.

SS2 = Z,.

+ (L - % p - (L +

General Case
In general, the safety stock required for a given SRT goal is given by:

SS = Z^o j j I L + 1 - SRT) + o^2) - (SRT)uD .

36 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

However, this equation only ensures arrival of material from the supplier
no later than the SRT. It does not guarantee that the factory will actually
have the final product built and ready for shipment to the customer no
later the the SRT. Production cycle time must be incorporated into the
equation to make the result useful in setting safety stocks to support
product SRT objectives.

Let TB denote the production cycle time required to build a week's worth
of expected demand. Then

I n a l l cases , fo recas t e r ro r i s measured as
rea l - t ime cus tomer o rde rs ve rsus f o recas t
made L weeks be fo re .

Par ts Order
â€” P laced lo Vendor

L Weeks

Cus tomer 's Order Ar r i ves
r - P r o d u c t i o n B e g i n s

B u i l d f P r o d u c l S h ' P s
T ime

SS = - SRT fr2D - (SRT - TB)|iD.
(a) SRT

Consider the three cases exhibited in Fig. 1 . If we let build time be two
weeks in all three cases and let SRT be 4, 2, and 0 weeks, respectively,
then we have the following results.

Par ts Order

Case A. SS =

Case B. SS =

C a s e C . S S =

+ 1 - 4 + 2) + - (4 - 2)u,D.
USRTJ

+ 1 - 2 + 2) + o?u2D - (2 - 2)u.D.

+ 1 - 0 + 2) + - (0 - 2)u.D.

Parts Order
P laced to Vendor

 L W e e k s

P r o d u c t i o n B e g i n s

Cus tomer 's Order Ar r i ves and
P roduc t Sh ips Immed ia te l y

(0 S R T = 0

Fig. = 4 cycles for different SRT goals, (a) Case A: SRT = 4 weeks,
(b) Case B: SRT = 2 weeks, (c) Case C: SRT = 0 weeks.

Appendix V: Derating the Service Level to Account for Reduced Periods of
Exposure to Stock-outs as a Result of Minimum Buy or Economic Order Quantities

When economic parts from a supplier under either minimum or economic
order size restrictions, with each arrival of a shipment from the supplier
we would expect the service level to jump to 100% and then decay as
indicated in Fig. 1.

Since there is realistically only exposure to a stock-out as we approach
the anticipated arrival of the next shipment from the supplier, we can
afford to run a higher risk of stocking out during these times and still
achieve an overall weekly service level objective. The larger the pur
chase quantity constraints, the less frequent the periods of exposure
and, the the lower the service level we can afford at the end of
the decay cycle depicted in Fig. 1 .

100-

i

Given that purchase quantity constraints dictate minimum order quanti
ties is to W weeks of expected demand, the objective is to
equalize the service level achieved on all parts regardless of the order
frequencies. This will be accomplished by basing the service level on a
weekly equivalence. Given a weekly review period, a weekly desired
delivery interval, and no constraints on order sizes, the probability of
making it through W weeks without a stock-out is given by:

(Weekly Service Level)w

Therefore, if we are ordering in quantities equivalent to W weeks of
expected demand, the service level used to determine safety stock
should be derated to:

(Weekly Service Level Objective|w.

Example: We will order in quantities equivalent to four weeks of supply,
and we desire a weekly equivalent service level of 99%.

Derated Service Level = (0.99)4 = 0.96.

W e e k s

Fig. parts arrives service level jumps to 100% each time a shipment of parts arrives
and then gradually decays.

February 1997 Hewlett-Packard Journal 37
© Copr. 1949-1998 Hewlett-Packard Co.

Appendix VI: Estimating Weekly Demand Uncertainty from Monthly Data

The standard deviation of demand uncertainty used in the safety stock
equation is a measure of the weekly uncertainty of real demand about
the plan. Ideally, data should be taken on a weekly basis so that this
statistic can be estimated directly as the sample standard deviation of
the difference between the weekly plan and the actual demand. Howev
er, it is fairly common that such data is not readily available. Typically,
the factory has data aggregated at the monthly level for comparing plans
to actual demand. An estimate of weekly demand uncertainty can still be
obtained if we make a simplifying assumption about the interdepen
dence of the demand uncertainty from week to week.

Assumption: Demand uncertainties are independent from week to week
within a month, that is, knowing the difference between the actual

demand and the plan for this week does not give you any information for
predicting the difference between the actual demand and the plan next
week. If this is the case, then

= 13o

or

2
monthly

^ w e e k l y ~ ~ W i o ' - ' m o n t h l y -

Appendix VII: Adjusting Safety Stock to Account for Yield Loss

Procurement may wish to account for part yield loss in some situations.
Here part con yield loss in a general sense to include additional part con
sumption either because of literal losses resulting from failures or dam
age or because of additional use of the part for unplanned reasons.

Let YÂ¡ denote the weekly yield of an arbitrary part. We will assume that
YÂ¡ is distributed according to the binomial distribution.

The actual demand on a part per week is given by:

for week i = 1,2,3 The expected value of the actual demand is:1

E (D ;) = E 1 " - c
We will assume that yield loss each week is not correlated with the
demand each week. Then:

V(YÂ¡) = - H.Y)
(W (Â¿Y (Â¿D

where n is the average number of parts used per week and we have
approximated n by the average weekly demand divided by the average
yield. Thus,

E(DÃ)SÂ£g + ^|
(AD

= u
(AY

(1 - (AY)

d - (AY) When HY ^ 50%, the term â€” p- - is less than or equal to one and

has little effect on expected demand. Therefore:

The variance of the actual demand is:1

As before, we will assume that yield loss is not correlated with the de
mand each week:

2
Again we will approximate 0Y by [AD

Therefore, by adjusting the expected weekly average demand by dividing
by the average yield and adjusting the variance of the weekly demand
uncertainty as indicated above, we can obtain approximate values for
safety stock, average expected on-hand inventory, and the standard
deviation of on-hand inventory using the results obtained earlier in this
paper.

However, while we have adjusted the expected weekly demand by the
yield loss, our in-house system, POPLAN, will not. Therefore, we must
pass the impact of the yield adjustment to POPLAN via the safety stock
parameter.

Let SS' denote the safety stock obtained when using the yield-adjusted
average demand and standard deviation of demand uncertainty as de
rived that The objective is to pass a safety stock value to POPLAN that
results in the appropriate order-up-to level.

The safety stock to pass to POPLAN is given by:

SS*= R) + S S ' - u D (L

In words, calculate the safety stock and the order-up-to level using the
yield-adjusted average weekly demand and the yield-adjusted standard
deviation of weekly demand uncertainty, then subtract the product of the
average weekly demand without yield adjustment and L + R.

Reference
1. A.M. of F.A. Graybill, and D.C. Boes, Introduction to the Theory of
Statistics, Third Edition, McGraw-Hill, 1974, p. 181, theorem 4.

38 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A New Family of Sensors for Pulse
Oximetry
This oxygen family of reusable sensors for noninvasive arterial oxygen
saturation measurements is designed to cover all application areas.
It consists of four sensors: adult, pediatric, neonatal, and ear clip.

by Siegfried KÃ¡stle, Friedemann Noller, Siegfried Falk, Anton Bukta. Eberhard Mayer,
and Dietmar Miller

Since the early 1980s, when pulse oximetry was introduced,
this noninvasive method of monitoring the arterial oxygen
saturation level in a patient's blood (SpC>2) has become a
standard method in the clinical environment because of its
simple application and the high value of the information it
gives nurses and doctors. It is as common in patient moni
toring to measure the oxygen level in the blood as it is to
monitor heart activity with the ECG. In some application
areas, like anesthesia in a surgical procedure, it is mandatory
for doctors to measure this vital parameter. Its importance
is obvious considering that a human being cannot survive
more than five minutes without oxygen supply to the brain.

Before the advent of pulse oximetry, the common practice
was to draw blood from patients and analyze the samples at
regular intervals â€” several times a day, or even several times
an hour â€” using large hospital laboratory equipment. These
in-vitro analysis instruments were either blood gas analyzers
or hemoximeters. Blood gas analyzers determine the partial
pressure of oxygen in the blood (pOÂ¿) by means of chemical
sensors. Hemoximeters work on spectrometric principles
and directly measure the ratio of the oxygenated hemoglobin
to the total hemoglobin in a sample of blood (SaU2).

HP pioneered the first in-vivo technology to measure a pa
tient's oxygen saturation level without the need of drawing
blood samples in 1976 with the HP 47201A eight-wavelength

ear oximeter.1 An earprobe was coupled through a fiber
optic cable to the oximeter mainframe, which contained the
light source (a tungsten-iodine lamp and interference filters
for wavelength selection) and receivers. This instrument
served as a "gold standard" for oximetry for a long time
and was even used to verify the accuracy of the first pulse
oximeters in clinical studies.

The real breakthrough came in the 1980s with a new genera
tion of instruments and sensors that were smaller in size,
easier to use, and lower in cost. These new instruments used
a slightly different principle from the older, purely empirical
multiwavelength technology. Instead of using constant ab-
sorbance values at eight different spectral lines measured
through the earlobe, the new pulse oximeters made use of
the pulsatile component of arterial blood generated by the
heartbeat at only two spectral lines. The necessary light was
easily generated by two light-emitting diodes (LEDs) with
controlled wavelengths. Small LEDs and photodiodes made
it possible to mount the optical components directly on the
sensor applied to the patient, avoiding the necessity of
clumsy fiber-optic bundles.

Instruments and Sensors
The first pulse oximeters were standalone products. HP
offered its first pulse oximetry devices as additional measure
ments for an existing monitoring product, the HP 78352/54
family, in 1988. A year later the Boblingen Medical Division
introduced a new modular patient monitor, the Component

Fig. 1. Thc> HP M1020A Sp02 front-end module for the HP
Component Monitoring System. Fig. 2. An HP CodeMaster defibrillator with SpU2 channel.

February 1997 Hewlett-Packard Journal 39
© Copr. 1949-1998 Hewlett-Packard Co.

L E D s

Fig. 3. The Sp02 channel in an HP XM Series fetal monitor
monitors the mother during delivery.

Monitoring System,2 for which a pulse oximeter module was
also available, the HP M1020A (Fig. 1). The application was
limited to adults and the only sensor available was the HP
M1190A, an advanced design at that time. This sensor is the
ancestor of the new sensor family presented in this paper.

Two years later, the HP 78834 neonatal monitor extended
SpU2 measurement to newborn applications. Third-party
sensors were used.

Today, all typical monitoring application areas have discov
ered pulse oximetry: intensive care, operating rooms, emer
gency, patient transport, general wards, birth and delivery,
and neonatal care. HP monitors serving these areas include
the HP M1025A anesthetic gas monitor (1990), the HP Com
ponent Transport Monitor (1992), SpC>2 options for the HP
M1722A and M1723A CodeMaster XL defibrillators (1994,
Fig. 2), and recently, the HP M1205A OmniCare monitor and
the HP 1350B maternal SpO2 option for the HP XM Series
fetal monitors (Fig. 3).

New SpU2 Sensor Family
A new family of reusable HP pulse oximetry sensors is now
available (Fig. 4). Lower in cost than previous reusable sen
sors and easier to use than adhesive disposable sensors, the
new HP SpU2 sensor family is hardware compatible with

Fig. 5. The basic components of an SpOg pulse oximeter sensor
are two LEDs with different wavelengths as light sources and a
photodiode as receiver.

HP's installed base of pulse oximetry front ends. An upgrade
to the software is necessary to update the calibration con
stants in the instrument algorithms to match the optical
characteristics of the new sensors, such as spectra and in
tensity. The new sensor family covers all application areas
and consists of the HP M1191A (adult, new wavelength),
M1192A (pediatric), M1193A (neonatal), and M1194A (clip).

Basic Measurement Principles
The breakthrough from oximetry to pulse oximetry came
with the new LED technology in 1982 to 1985. LED light
sources are very small and easy to drive, and have the great
advantage that they can be mounted within the sensor to
gether with a photodiode receiver (Fig. 5). For correct mea
surements at least two LEDs with different wavelengths are
necessary. A suitable combination consists of a red LED
(650 run) and an infrared LED (940 nm). The red LEDs wave
length has to be in a narrow range, which is not normally
possible with standard commercially available LEDs. One

Fig. 4. The new family of reus
able HP pulse oximetry (Sp02)
sensors: (left to right) adult fin
ger glove, pediatric finger glove,
neonatal foot strap, ear clip.

40 February 1997 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Incident Light
Intensity = I

Ext = Ext inct ion Coeff ic ient of Absorber
c = Concentrat ion of Absorber

d = Thickness
of Absorber

Transmitted Light,
Intensity = I

Fig. law: Idealized model for the validity of the Lambert-Beer law:
a monochromatic light source, parallel light propagation (no point
source), and no scattering.

way to overcome this is to provide in each sensor a calibra
tion resistor matched to the actual LED wavelength. Another
way is to select only LEDs with a fixed wavelength. This
method becomes practical if the LED wafer production yields
a narrow wavelength distribution. HP decided on this second
method because the red LEDs could be obtained from the
HP Optoelectronics Division, which had long experience in
wafer production and was able to maintain a sufficiently
narrow wavelength distribution.

The front-end hardware applies a time multiplexed approach
in which the two LEDs are switched on and off alternately.
The time phases usually consist of a minimum of three: active
red, active infrared, and a dark phase in which the ambient
light is measured. There can be more than three phases to
allow more LEDs to be powered in one multiplexing time
frame or to allow additional dark phases. The phases are
similar in duration. The modulation frequency (the complete
frame repetition rate) typically ranges from 200 Hz to 2 kHz.
The frequency spectrum of such a time multiplexed signal at
the receiving photodiode consists of small bands (approxi
mately Â±10 Hz) around the modulation frequency and its
harmonics. Depending on the width of the individual LED
pulses, the harmonic frequency content is of significant
amplitude for several tens of harmonic orders.

For an idealized light absorbing model as shown in Fig. 6,
the Lambert-Beer law applies. The intensity I of the light
transmitted is related to the incident light IQ by:

I = I0exp(- Ext â€¢ c â€¢ d), (D

where Ext is the extinction coefficient and c is the concen
tration of a single light absorber with thickness d. Ext varies
as a function of the absorbing substance and the wavelength
of the 1 Further assumptions for the validity of equation 1
are that the light source is monochromatic and has parallel

propagation and that the absorber is optically homogeneous
(no scattering effects).

Under these assumptions the model of Fig. 6 can be used to
derive the basic pulse oximetric quantities. Fig. 7 shows a
simplified model for the blood vessel system in tissue. With
each heartbeat, the volume of the arteries increases before
the blood is forced into the capillaries and from there into
the veins. This change of arterial volume is the basis for
pulse oximetry because it makes it possible to separate the
arterial blood from all other absorbing substances.

Assume that there are N layers of absorbers and that the ith
absorber layer has concentration cÂ¡, thickness dÂ¡, and extinc
tion coefficient Ext(i,A). From equation 1 it follows, at dia
stole, when there is a maximum of light intensity:

= iLEoOOexpi - r Ext(i, X)cÂ¡di). (2)

At systole, the maximum of the heartbeat, and under the
assumption that only hemoglobin and oxyhemoglobin are
active absorbers in the arterial blood, two additional absorb
ing parts are added in the exponent of equation 2, which
yields the minimum of light intensity:

Imax(>0exp(- Ad(Ext(Hb,X)[Hb] + Ext(HbO2,X)[HbO2])),

(3)

where [Hb] is the concentration of hemoglobin and [
is the concentration of oxyhemoglobin. Dividing equation 2
by equation 3 and taking the logarithm yields the absorption
of the arterial blood:

Arterial Blood
Tissue

Ad Capil laries

Venous Blood
(I

I V
Fig. 7. Simplified model for the blood vessel system. With each
heartbeat, the arterial radius expands by an amount Ad, which
yields a light intensity change from 1

February 1997 Hewlett-Packard Journal 41
© Copr. 1949-1998 Hewlett-Packard Co.

Infrared LED

1 1 0 0 0 T

7 0 0 8 0 0
Wavelength Ã­ (nm)

900 1000

Fig. 8. Extinction coefficients for hemoglobin Hb and oxyhemoglobin
Hb02 as a function of wavelength. A red LED with X = 650 nm gives
good resolution between Hb02 (100% Sp02) and Hb (0% Sp02).

In Tmaxr\. = Ad(Ext(Hb,X)[Hb] + Ext(Hb02,X)[HbO2]),
â€¢'rran(̂ Â·)

(4)
where Ad is the change in the arterial radius (see Fig. 7).
The definition for the oxygen saturation in pulse oximetry is:

SpO2 =
[Hb02]

[Hb] + [HbO2] ' (5)

With two light sources (LEDs) of different wavelengths \i
and \z the arterial expansion Ad can be eliminated by the
following relation, which is called the ratio, H:

I n

In

ExtÃ‡Hb, - SpO2) + Ext(HbO2,
~ Ext(Hb, X2)(l - SpO2) + Ext(HbO2,

Thus, the oxygen saturation SpO2 is:

SpO2 =

_ ? . E x t (H b , X 2) -
H(Ext(Hb,X2) - Ext(HbO2, X2))

(6)

_

Ext(HbO2,Xj) - Ext(Hb,Xi)'

For example, with LED wavelengths X_i = 650 nm and X2 =
940 nm,the extinction coefficients are (see Fig. 8):

Ext(Hb,650) = 820 (Mol â€¢ cm)-1
Ext(Hb02,650) = 100 (Mol -cm)-1
Ext(Hb,940) = 100 (Mol â€¢ cm)-1
Ext(HbO2,940) = 260 (Mol -cm)-1.

In Fig. 9 the SpO2 is plotted as a function of the ratio R. The
Lambert-Beer relation is compared with a calibrated curve
derived from real arterial blood samples from volunteers
(see "Volunteer Study for Sensor Calibration" on page 48).
The deviations exist because conditions in the real case
(complicated tissue structure, scattering effects, point light
source, etc.) are different from the Lambert-Beer assump
tions.

Fig. 10 shows the sensor LED driver circuit and receiver
circuit. The LEDs are driven in sequence at a repetition rate
of 375 Hz in antiparallel fashion. At the photodiode the
intensities arrive in the sequence red (R), infrared (IR) and
dark. In the receiver circuit this signal is split into three
paths: a red path, an infrared path, and a dark path. The
dark intensity is subtracted from the red and infrared.

Fig. 11 shows the separated red and infrared patient signals
with their 1^ and Imax values caused by arterial pulsation,
from which the ratio R can be calculated (equation 6).

Ambient Light and Electrical Noise
In a clinical environment, the sensor picks up ambient light
and electromagnetic noise from various sources. The major
source for ambient light is room illumination, typically fluo
rescent ceiling lamps, which have broad spectral bands with
peaks at harmonics of the power-line frequency, 50 Hz or
60 Hz. Very often, electrical noise also comes from the power
line and shows up as harmonics of the line frequency. Other
well-known sources of large interfering electrical signals are
the electrosurgery devices used in operating rooms, which
can be very broadband.

Typical current levels at the sensor photodiode are around
1 HA dc with the blood current pulse modulated on the dc
levels at a modulation depth of typically one percent. It is
likely that the LED spectra including the desired signal and
the optical or electrical noise spectra will overlap. Any noise
lines in one of the LED modulation bands will be demodu
lated and folded down to the baseband, where they will con
tribute to poor signal-to-noise ratio (S/N). A very dangerous
situation for the patient can occur in the monitoring of neo-
nates, who are often treated with very bright UV lamps for
bilirubin phototherapy. Neonates give poor SpO2 signals
because of poor vascular perfusiÃ³n, so the bright UV ambient
light can cause situations in which S/N < 1. A pulse oximeter
is very likely to be misleading in these situations. It can
derive values for pulse rate and oxygen saturation that are
wrong because the input signals are dominated by noise.

Because interference can lead clinicians to apply incorrect
care and therapy and cause harm or even death to patients,

HP M1190A

Fig. 9. Theoretical (Lambert-Beer) and real calibration (arterial
blood samples) curve for the HP M1190A adult sensor. The differ
ence is mainly caused by scattering effects and nonideal light

42 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

ILED

Dark

Ib)

Dark Fig. 10. (a) Sensor LED driver
circuit and (b) receiver circuit.

it must be avoided at all costs. A major goal for the sensor
design was optimum optical and electrical shielding. Fig. 12
shows to pediatric sensor. Its closed housing is designed to
shield the sensor from interfering ambient light.

Movement Artifacts
Because the pulse oximetry method relies on the pulsatile
part of the absorption, probably the most frequent cause of
trouble is movement of the patient. Any movement usually
causes movement of the sensor or the nonarterial tissue
under the sensor and thereby leads to noise on the signals.
A design goal for the new sensors was to be small and light
weight and to attach firmly to the patient. The cable was
made as thin and flexible as possible consistent with the

lit)

r - f / - Â « I

'
' m i n ' m a x
(R) (R)

I m i n ' m a x
(I R) (I R)

need for robustness, so that it adds little weight and stiff
ness, thereby helping to decouple the sensor from cable
movements.

Cable Robustness
The clinical environment can be very harsh. Sensors fall off
patients. People step on them and carts roll over them.
Cables get squeezed between drawers and racks. The cables
of medical sensors, in particular, have to be extremely robust.
They are moved, bent, kinked, and treated with aggressive
disinfectants.

A carefully selected lead composition and the use of non-
breakable material were goals for the cable construction.
A new connector and interconnection concept are used. The
interconnection is split into two parts: a short, thin, and
more fragile cable is used with the sensors for low weight
and minimum mechanical stiffness, while a longer, heavier,
more robust cable was designed as an interface cable to the
instrument.

The connector joining the cables (Fig. 13) is optimized for
small size, low weight, and robustness. Special care was
taken to provide very high insulation between the pins and
to make the interconnect junction watertight to avoid leak
age currents in humid environments like neonatal incuba
tors. In older designs, saturated water vapor and salty resi
dues from infusions or blood on connectors was a common
source of problems, leading to erroneous measurement
results.

Fig. 11. Separated red and infrared patient signals with their I^n
and Imax values caused by arterial pulsation.

February 1997 Hewlett-Packard Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. to The HP Ml 192A pediatric sensor has a closed housing to
shield it from interfering ambient light.

Setting Design Goals
HP has offered a reusable SpC>2 sensor since 1988, but in one
size only: the adult HP M1190A sensor. This sensor is very
well-accepted. The objective for the new sensor project was
to extend this sensor technology to a family of sensors cover
ing all of the different application areas, so the customer is
not forced to use a third-party sensor for application reasons.

Based on experience with the HP M1190A sensor and on
customer feedback we defined the following objectives:

â€¢ "Must" Objectives
o Reusable sensors only
o Cost competitive with disposable sensors
o Clear, nonconfusing application
o No burns on skin
o State-of-the-art necrosis factor behavior (minimal local

cell damage)
o No penumbra effect
: Influence of ESI (electrosurgery interference) as low as in

HPM1190A
Backward compatibility with HP monitors (hardware)

â€¢ "Want" Objectives
o Reliability equal to HP M1190A
- Easy to use
o Comfortable application over long period of time (several

days)
c Reliable fixing mechanism
o Cleaning and sterilization by immersion in solutions
o Mechanically robust design like HP M1190A

(b)

Fig. 13. Plug and socket connector system.

o Cable size, length, flexibility, and quality similar to HP
M1190A; alternatively, trunk cable and sensor cables

: No influence of ambient light (operating room, bilirubin
therapy, fluorescent lights)

o Minimum motion artifacts
o Backward compatibility with HP monitors (software)
o Compatibility with competitive monitors.

Reusability was required because HP feels environmentally
responsible for HP products. Most of the sensors on the
market are disposable, which means that they are applied
only once, after which they must be disposed of as medical
waste. Reusable sensors are a small contribution to protect
ing the environment.

We used the Quality Function Deployment3'4 (QFD) tool for
developing these sensors. The starting point for QFD is the
customer â€” what does the customer want? The customer
requirements are weighted according to their relative impor
tance, the corresponding engineering characteristics are
listed, and step by step a matrix is built that provides the
means for interfunctional planning and communication.

The three most important customer attributes we found are:
â€¢ Functionality. Minimize physiological effects like skin irrita

tion and low perfusiÃ³n. This means selecting the appropriate
material and applying the appropriate clamping force.

44 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Performance. Ensure good signal quality. The most impor
tant issue was to select optical components to provide good
light transmission.

â€¢ Regulations. The sensors had to meet U.S. FDA require
ments and international safety and EMC standards.

We have had several clinical trials to verify that we under
stood the customer requirements correctly. At the release of
the product for manufacturing we checked our solutions
again to make certain that they are in accordance with the
required customer attributes and engineering characteristics.
We have been shipping the sensors for over half a year with
out any customer objections. This makes us fairly confident
that the sensors meet customer expectations.

Design Concept
The next step after defining the project goals was to evolve
the basic design concept. To reduce waste (even reusable
parts have to be replaced eventually) we decided that each
transducer would consist of two parts: an adapter cable to
be used for all sensors and a sensor cable consisting of con
nector, transmitter, receiver, and a special sensor housing
for the specific application site (finger of a child or small
adult, foot or hand of a neonate, ear of an adult). We made
this (we since the lifetime of the adapter cable is longer (we
estimated three times longer) than that of the sensor cable,
which is much lighter in weight to reduce motion artifacts.
A further advantage of the two-part design is the flexibility
for future products to use the sensor without an adapter
cable. The design required the development of a new 8-pin
connector family.

To minimize the risk, because of the very good customer
feedback for the existing adult sensor, we decided to change
only the optical elements of the transducer.

The detailed design concept is shown in Fig. 14. The adapter
cable is a shielded twisted-pair cable with four single conduc
tors, a 12-contact male plug on the instrument side, and an
8-contact female connector on the sensor side. The sensor
cable is a shielded twisted pair cable with two conductor
pairs, an 8-contact male plug on the instrument side, a trans
ducer consisting of transmitter and receiver molded in epoxy,
and a special sensor housing.

Housing
With the project goals in mind, the first proposals for the
sensor housing were designed and prototype tooling was
ordered to get parts ready for the first application tests. It
was especially necessary to start with application tests as

C l i p M 1 1 9 4 A

Fig. 14. Design concept for the new sensor family.

soon as possible for the neonate sensor, because this sensor
would cover the biggest area and would be the most sensi
tive. The design of the pediatric sensor was more straight
forward. It had to be similar to the existing adult sensor. For
the other two sensors we approved a couple of proposals
and ordered the prototype tooling for those.

With these samples we went into hospitals and spoke to
nurses and medical technicians. When their response was
positive, we began to improve the design step by step, mak
ing all changes in the prototype tooling as far as possible. If
it was not possible to realize a necessary change, new proto
type tooling was ordered. Only after this iterative process
was complete did we order the final tooling.

The idea for the neonatal sensor, Fig. 15, was to place the
transducer elements facing one another to make it easier to
apply the sensor on foot or hand, and to have a long strap
with a special fastener that allows application of the sensor
on different foot or hand sizes. The transducer is positioned
on the foot or the hand and the strap is threaded through the
first latch and pulled slightly while holding the top of the
transducer. The second latch is only used if the strap is too
long.

T o p o f
T r a n s d u c e r

F i r s t L a t c h

S e c o n d L a t c h

Fig. 15. Neonatal sensor.

February 1997 Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

Spring

Fig. 16. Clip sensor.

The idea for the clip sensor was to integrate the spring for the
necessary clamping force into the molded part (Fig. 16). The
transducer is clipped onto the fleshy part of the earlobe. To
minimize motion artifacts generated by patient movements a
plastic fixing mechanism that hooks over the ear is provided.

Cable and Connector
Three different types of cables are used for the sensor family.
For the adapter cable we use a very robust cable with an
outer jacket made of polyurethane. The same adapter cable
is used with all of the sensor types.

Two different sensor cables are used, one for the adult trans
ducer and another for the rest of the family. They differ only
in the outer jacket. For the adult sensor the outer jacket is
made of silicone because of the manufacturing process. The
sensor housing, which is made of silicone, is molded together
with the cable and other elements in a molding machine.
Because silicone can't be combined very well with different
materials, the outer jacket must also be silicone.

Fig. 18. LED transmitter.

For the rest of the sensor family we use a split, lightweight
cable with an outer jacket made of polyurethane.

The construction of all three cables is similar. All are
twisted-pair and have a Kevlar braid anchored in both the
sensor and the connector to improve the strain relief.

The 8-pin connector between the sensor cable and the
adapter cable also has a soft outer jacket made of polyure
thane. The Kevlar braid is anchored inside the connector.
Watertightness is achieved when the two halves of the con
nector are joined (see Fig. 17).

Optical Components
The optical elements are mounted on ceramic substrates
shaped by cutting with a high-energy laser. The transmitter
(Fig. 18) consists of two LED die (red and infrared) mounted
on gold metallization. A photodiode on the receiver ceramic
(Fig. 19) receives the sensor signal. A dome of epoxy material
protects the elements and bond wires from mechanical
stress. The wires of the transducer and the Kevlar braid are
soldered and anchored on the backside of the ceramic.

To a first approximation, LEDs have a Gaussian intensity
spectrum in which the peak wavelength is equal to the cen-
troid wavelength. Because the red area (< 650 nm) of the

Fig. 17. Cutaway view of two pins of the 8-pin connector between
the adapter cable and the sensor cable. The connector is watertight
when joined. Fig. 19. Photodiode receiver.

46 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

1.2

1 . 0 -
P e a k W a v e l e n g t h / . p C e n t r o i d W a v e l e n g t h / . c

6 5 0 7 0 0
Wavelength / , (nm)

Fig. 20. A typical LED intensity distribution. For SpCh measure
ments the centroid wavelength gives a better characterization than
the peak wavelength.

extinction coefficients is very sensitive to wavelength varia
tion (see Fig. 8) and the intensity distribution is not actually
Gaussian and symmetrical, we use the centroid wavelength,
which differs slightly from the peak wavelength, as an ade
quate characterization parameter for the LED (Fig. 20).
Normally the wavelength variation on a preselected wafer
for red LEDs is in the range of Â± 5 run. For the HP M1190A
sensor in 1990, the HP Optoelectronics Division installed a
selection process for a narrow, Â± 1-nm centroid wavelength
variation.

For the new sensor family we chose for each sensor an LED
pair with centroid wavelengths of 660 nm (red) and 890 nm
(infrared). For the red LED a new high-efficiency AlGaAs
technology was chosen. The maximum intensity for these
LEDs is about a factor of four higher than for the older ones.
This has the big advantage that the transmission values for
both the red LEDs and the infrared LEDs are about the same.
The average drive current for the LEDs, and therefore the
heat dissipation, can be dramatically lowered.

The transmission Tr is defined as the ratio of photocurrent
to LED current:

Tr =
Iph

ILED'
(8)

where Iph is in nanoamperes and ILED is m milliamperes.
Tr depends strongly on the absorption and extinction coeffi
cients of the patient's tissue. Mean values are about 70 nA/mA
over a large patient population. For thin absorbers like the
earlobe, values of Tr as high as 300 nA/mA are possible. With
new SpC>2 front-end hardware this would not have been a
problem, but to be compatible with older pulse oximetry
instruments we use a smaller active area of the photodiode
for the HP 1194A ear sensor to get the same Tr values as the
other sensors.

The LED supplier (not HP for the new sensors) guarantees a
narrow centroid wavelength variation of less than Â± 2 nm.
For LED qualification measurements, an optical spectrum
analyzer with a wavelength resolution of 0.2 nm is used. All
LED parameters are measured with a constant drive current
of 20 mA. Because there is a wavelength shift over tempera
ture of about 0.12 nm/K, the ambient temperature has to be
held constant. Depending on the LED packaging, there is
also a certain warmup time, which has to be held constant

Red LED Centroid
Wavelength

c = 6 5 0 n m
Infrared LED Centroid

Wavelength >.c =900 nm

Red LED
Secondary Emission

Wavelength = 800 nm

800
Wavelength i . (nm

1000

Fig. 21. Typical red and infrared LED spectra for SpO2 sensors.
The spectral half-bandwidth for the red LED is about 20 nm and
for the infrared LED about 40 nm. A secondary emission peak for
the red LED is undesired and has to be lower than 4% of the
maximum intensity.

for LED qualification. In clinical practice, there can always
be a temperature shift during SpC>2 measurements, but be
cause of the definition of the ratio ?., with red intensity in
the numerator and infrared intensity in the denominator
(see equation 6), this effect is compensated within the speci
fied operating temperature range of 15Â°C < T < 45Â°C.

Another important factor is that some red LEDs have a low
secondary emission (< 4% of maximum intensity) at a wave
length of typically 800 to 850 nm (Fig. 21). For higher second
ary intensities, interference with the infrared LED causes a
ratio error and therefore an SpC>2 error, which must be elimi
nated. For the new high-efficiency LEDs the secondary
emissioh is typically less than 0.1%.

The receiver element is a standard silicon photodiode with
peak sensitivity at 850 nm. The active area is approximately
2 mm square for the HP Ml 191/92/93A sensors and 1 mm
square for the HP M1194A ear sensor. The die are mounted
on a ceramic substrate with metalized layers for shielding.

< 0.5 mm

Infrared

7 .5mm

5 .5mm

LED Assembly Photodiode Assembly

Fig. 22. Transmitter and receiver assemblies for the new sensor
family are on ceramic substrates. To avoid asymmetric optical
shunting (penumbra effect) the two LED die are mounted as close
as possible to each other. An epoxy coating is added before final
packaging to protect the optical parts.

February 1997 Hewlett-Packard Journal 47
© Copr. 1949-1998 Hewlett-Packard Co.

Volunteer Study for Sensor Calibration

To calibrate the new SpU2 sensor family it was necessary to adjust the
relationship between the ratio measurements and the SpU2 values using
data based on real blood samples from volunteers.

Fig. study. shows the measurement environment for the calibration study. The
basic instrument is a special HP Component Monitoring System (CMS)
with 16 SpU2 channels. Sixteen sensors at different application sites
could specifi used simultaneously. To get SpU2 values over the entire specifi
cation range of 70%<Sp02< 100%, the volunteers got air-nitrogen
mixtures with lowered oxygen levels â€” less than 21%.

Because of his great experience with such studies we used the method
developed by Dr. J.W. Severinghaus of the University of California in San
Francisco. For each volunteer a maximum of 16 sensors were applied at
the fingers, earlobes, and nostrils. A catheter was placed in the left
radial artery. Arterial Ãœ2 saturation was reduced rapidly by a few breaths
of 100% 4% This was followed by a mixture of air and N2 with about 4%
CÃœ2 added while the subject voluntarily hyperventilated to speed the
attainment of an alveolar gas hypoxic plateau and to provide end tidal
samples for regression analysis. Fi02 was adjusted to obtain plateaus for
30 to each seconds at different SpU2 levels (Fig. 2). At the end of each
plateau a 2-ml arterial blood sample was obtained and analyzed by a
Radiometer OSM3 multiwavelength oximeter.

The regression analysis yielded three SpC^-versus-ratio calibration curves:
one for the HP M1190A adult sensor, a second for the HP M1191A adult
sensor, the HP M1192A pediatric sensor, and the HP M1193A neonatal
sensor, and a third for the HP M1194Aear sensor. The curves for the

Blood
Samples

A t 3 3
Time t (min)

Fig. quasistable Stepwise desaturation by lowering oxygen levels leads to quasistable
SpU2 blood This condition gives blood samples with correct blood gas values.
The delay for the SpU2 values compared to the oxygen values comes from the
circulation time for the arterial blood from the lungs to the arm. Calibration
tables data compiled by comparing the known SpU2 values with the ratio data
measured by the CMS.

HP M1 LED 90A and M1 1 91 A are different because of their different LED
wavelengths, while for the ear sensor the application site is different â€”
the tissue constitution of the earlobe and nostril seems to be optically
very different from the other application sites. Each calibration curve is
the best least squares fit to the data points of a second-order polyno
mial.

HP Component
Monitoring System
16 Sp02 Channels

Arterial Blood
Sample

OSM3
Oximeter

Laptop
Computer

Regression
Analysis

Fig. 1. Sensor calibration using volun
teers and SpU2 data acquisition by a
special HP Component Monitoring Sys
tem (CMS) with a maximum of 1 6
channels. Different SpU2 values are
achieved by supplying different mix
tures of oxygen and nitrogen. Arterial
blood samples are analyzed by a Radi
ometer OSM3 oximeter. For each sen
sor and application site, regression
analysis is done, and calibrating tables
are derived from the results.

The package for the LEDs in the HP Ml 190A sensor was a
standard subminiature package. The emitter consisted of a
red-infrared-red triplet in a longitudinal arrangement to
make the apparent emission points for the red and infrared
sources virtually identical. This is important for the ratio
calculation, because both light paths have to be about the
same length. One disadvantage is a possible malfunction
when the patient's finger does not cover the entire light
source. Then a part of the red light can cause an optical
shunt that yields dc red levels that are too high (penumbra

effect), causing false high readings. In the new sensor de
sign, the two LEDs are very close together (< 0.5 mm) on a
common leadframe (see Fig. 22). This should eliminate the
penumbra effect.

The die are mounted on a ceramic substrate and covered
with a transparent epoxy material. A design goal was to get
a water and disinfectant resistant seal between the cable
and the package. Immersion and disinfection tests show that
this goal was achieved.

48 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

100

S . 6 0 -

2C

20 40 60
OSM3Sa02 Reading {%)

4 0 6 0 8 0
OSM3Sa02 Reading (%)

Fig. measurements Regression analysis for HP M1 191 A adult sensor SpU2 measurements
after calibration. The measurements are plotted against arterial blood SaU2
measurements from the OSM3 oximeter. The data (206 points) is from 12
volunteers with different oxygen saturation levels.

Fig. the shows the good correlation with the reference (R2 = 0.95) in the
case of the HP M1 1 91 A adult sensor. Fig. 4 shows that the specified
SpU2 accuracy is reached within the range of 70%<Sp02<100%.
Fig. 5 as that the correlation for the HP M1 1 94A ear sensor is not as
good wider for the HP M1191A. The data point distribution is also wider

Fig. 5. Regression analysis for HP M1 194A ear sensor SpU2 measurements
after calibration. The measurements are plotted against arterial blood SaU2
measurements from the OSM3 oximeter for 12 volunteers.

(Fig. 6). This is caused by a much poorer signal quality at the earlobe
than is only finger. In general the perfusiÃ³n index for the ear is only
about a tenth of that for the finger. Therefore, in normal circumstances
the preferred application site is the finger. In some cases, such as cen
tralization (i.e., shock patients), the earlobe sometimes gives better
results.

Materials
For the pediatric and neonatal sensors we chose silicone
with a hardness of 35 Â± 5 Shore A. The material is very
robust and has good tensile strength compared to other
silicones. Silicone is very often used in clinical areas and is
very well-accepted. It is very resistant to chemicals and
causes no skin irritations when used correctly.

For the clip sensor we chose a polyurethane with a hardness
of 75 Â± 5 Shore A, which gives the required clamping force
(Fig. 23).

Manufacturing Process
The manufacturing process for the new HP M1191A sensor
is iryection molding, the same as for the older HP M1190A.

February 1997 Hewlett-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

3.0 6.0 4 . 0 5 . 0
Earlobe Thickness (mm)

0 N e w p a r t s , n o t u s e d
1 Measured af ter 10 ,000 cycles , on the same day
2 Measured af ter 10 ,000 cycles , on the next day
3 Measured a f ter 10 ,000 cyc les , two days la ter

Fig. 23. Spring forces in the clip sensor.

These sensors use only silicone rubber. For the HP Ml 1927
93/94A sensors a different manufacturing process was nec
essary because these sensors use two different materials â€”
silicon rubber and polyurethane, which do not combine well
in the injection molding process. We also wanted to reduce
the manufacturing costs and to gain more flexibility in
choosing suppliers.

We decided to cast the premounted optical elements together
with the cable in a special epoxy that combines very well
with the cable including the Kevlar braid. We thus ensured
watertightness, which means the sensors can be disinfected
by immersion in solutions.

Reliability
To reach the reliability goals a few iterative changes were
necessary and different tests installed. Many tests and cus
tomer visits were conducted to ensure that the sensors will
not break. We tested several housing materials until we found
the right one for the rough clinical environment. The tensile
strength and robustness have been improved dramatically
compared to the first samples. The method of anchoring the
Kevlar braid in the ceramic substrate and connector was
also improved several times. Every prototype was tested in
the same way, by a combination of mechanical stress and
cleaning by immersion in different solutions.

Technical Qualification
The most important factor for qualifying the new SpU2 sen
sors has been how to determine test methods that are able
to expose any weak points of the design. The qualification
stress should be higher than the normal clinical application
stress to provoke failures. The fulfillment of customer expec
tations concerning reliability was the overall guideline for
prioritizing the test emphasis. Because of its customer
orientation, the QFD methodology was an excellent tool for
determining the main focus for testing. To make QFD more
practical, we divided the sensor into three subelements,
which made the specifics of the subassembly more visible.
The three subelements were the interconnection, the sensor
housings, and the optical assemblies.

The correlation matrix between the customer requirements
and the technical specifications generated a relative impor
tance ranking within the broad list of requested technical
details. We could now determine which were the most
important technical parameters. Their performance would
have the greatest impact on the acceptance of the sensors in
the market.

It was very important to assess the technical complexities
and difficulties in the realization of technical specifications.
This was the task of the engineers of a crossfunctional team
chosen for their experience and ability to foresee potential
problems. The correlation between expected technical diffi
culties and the importance of the parameters to the customer
was an essential input for further activities. We could now
focus our efforts to reduce the risk potentials, which were
clearly defined. High risk means high importance correlated
with high technical difficulty ratings. These high-priority
items were communicated to the project managers to give
them an impression of the degree of technical maturity in
this early project phase.

A critical assessment of design risk potential could now be
made. This triggered a review of the importance of each
customer requirement and gave the designers valuable in
puts for design concepts. The results were also useful when
considering strategies for accelerated stress testing.

The next step in the QFD process was to transfer the infor
mation on high-priority technical requirements into another
matrix showing the relationship between parts characteristics
and technical requirements. The key deliverables of this
exercise were:

1 Identification of key parts and their characteristics
1 Preselection of parts characteristics to find critical parts
for performing a design failure mode and effect analysis
(FMEA)

1 Information to aid in selecting between design alternatives
to find the most competitive design concepts
Inputs for stress testing using parts characteristic impor
tance information.

The FMEA generates risk priority numbers (RPN). These
numbers describe how often a failure will be occur, how
easily it will be detected, and how severe the failure will be.
Taking the interconnection as an example, the risk assess
ment was divided into three categories:
High Risk: RPN > 200 and high parts importance
Medium Risk: RPN > 100 and high parts importance
Low Risk: RPN > 100 and low parts importance.

In this way, key customer needs were identified and test
parameters selected. We also took into account the feed
back from clinical trials.

Fig. 24 gives an overview of the qualification tests that were
performed to get release approval for the sensors. A special
machine was designed to simulate the cable stress that
occurs in hospitals. We call this test the bending/torsion test.
With a calculated number of cycles, equivalent to our reli
ability goals, we stressed the critical cable sections to en
sure that the lifetime requirements were met.

50 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Sensor Technical
Performance Tests

Raw Cable
Sensor

Raw Cable
Adapter Interconnection

Optical
Components

Embedded
Elements

Key
Customer
Needs

Dimensions/Tolerances
Surface Properties for
Bonding
Mechan ica l /Chemica l
Robustness
Cosmetic Requirements

Des ign Va l i da t i on
Tests

Bending Cycles
Wheel Test
Exposure to Cleaning
Solvents and Bending Test
Tear Propagation Test for
S i l i c o n e C a b l e (H P M 1 1 9 1 A)
Bending/Torsion Test
Noise Test, Electrical Test

Critical Items

Diameter Tolerances
Surface Properties
Cosmetic

Mechanical Robustness
Tightness
Electr ical Requirements

Life Cycle Test
Bending Test
Seal ing/Spil l ing Test
Wi thdrawal Forces
Exposure in Saline Solution
Tensile Strength Test
Wheel Test
Tensile Strength Test
Noise Test, Electrical Test

Tensile Strength of Strain
Relief
Sealing Outl ines
Withdrawal Forces
Cosmetic
Serial Number Print ing

Resistance to Chemicals
Measurement Per formance
Resistance to Stress
Tensile Strength
Mounting of Optical
Assemblies

Temperature Cycling Test
Push-Pull Test (Bond)
Tensile Strength Test
(Cable Embedding)
Exposure Test Combined
with Bending/Torsion Test
Wavelength Test af ter
Exposure

Embedded Substrate with
Cable and Kevlar Fiber
Cable Seal ing within
Encapsulation
Wire Bonding

Clamping Pressure
{Clip. Pediatric)
Resistance to Mechanical
Stress
Tolerances for Embedding
Cable Sensor, Window

Exposure Test
Bending/Torsion Test
Clamping Cycles (Rear)
Tear Propagation Test
(Pediatric)
Wheel Test

Glu ing Process Window/
Housing Rear
Cosmetic Requirements
Tool Optimization
(Neonatal)

Fig. 24. Qualification tests for the new sensor family.

Supplier Selection
The supplier chosen to manufacture the new SpC>2 sensor
family had to meet a number of specific requirements. The
supplier is responsible for the majority of the manufacturing
process steps. This has a positive influence on production
lead time, logistics, communication, and costs. To reach our
quality goals with one supplier who is responsible for nearly
all process steps is much easier than with a long chain of
suppliers. The requirements covered technology, vertical
integration, and costs.

Fourteen international suppliers were evaluated. Nine were
not able to manufacture the sensors because they did not
have the required technology. After considering cost aspects,
only two suppliers fulfilled the selection criteria. For these

two suppliers, we constructed supplier profiles derived from
the QFD method.

To construct a profile, each customer need is listed along
with an evaluation of how well the supplier fulfills that need
in terms of technology and processes. The level of fulfillment
is evaluated by an HP specialist team, which also evaluates
the importance of each customer need. The profile shows
the supplier's strengths and weaknesses and gives a point
score. The supplier with the higher number of points is con
sidered better qualified to manufacture these products.

To evaluate critical technology and processes, design and
process failure mode and effect analyses (FMEAs) were
conducted for both suppliers' products. To evaluate each

February 1997 Hewlett-Packard Journal 5 1

© Copr. 1949-1998 Hewlett-Packard Co.

Neonatal Sensor Clinical Validation

In contrast to the volunteer study with adult subjects (page 48), a valida
tion for the HP M1 1 93A neonatal sensor had to be done with neonates in
a clinical environment. Because blood sampling is very critical for sick
neonates, only when an arterial line was already in place for therapy
could we get blood sample values. Fig. 1 shows the regression line for

7 0 8 0
OSM3Sa02 Reading {%)

90 100

Fig. the 193A analysis with data from clinical trials with the HP M1 193A
neonatal sensor. The 290 data points are derived from 20 subjects who already
had an measured line for blood sampling. The arterial SaU2 values were measured
by an OSM3 oximeter.

290 data points from 20 subjects. The correlation (R2 = 0.91) is good
considering that neonates often have oxygen saturation states that are
unstable and changing rapidly. To eliminate these uncertainties, SpU2
values with big differences before and after blood sampling (ASpU2
> 5%) not with poor signal quality (perfusiÃ³n index < 0.2) were not
included. Fig. 2 shows that the specified accuracy of 3% SpU2 standard
deviation for the range 70%<Sp02<100% has been reached for the
HP M1 193A sensor based on the clinical data from neonates.

OSM3 Sa02 Reading (%}

Fig. sensor within and standard deviation for the HP M1 1 93A neonatal sensor within
the specification range of 70% < SpU2 < 1 00%, based on data from 20 neo
nates.

manufacturer's capabilities, a quality and process audit was
performed at the manufacturing site. The auditors reviewed
the site and manufacturing processes for comparable prod
ucts that were identified as critical for our sensor products.

Production Wavelength Measurements
The measurement of LEDs for the SpU2 sensors at the man
ufacturing site is a critical and sensitive manufacturing pro
cess step. To guarantee the accuracy of HP SpU2 measure
ments the wavelength of the red LED has to be within a very
small range: between 657 and 661 nm. To measure the LED
wavelength a very accurate optical spectrometer is used.
To obtain repeatable measurement results, an integrating
sphere is used to couple the light of the red LED into the
spectrometer (see Fig. 25).

Reflector LED

Optical
Spectrometer

Diffuse LED Light

Integrating Sphere

Fig. 25. Setup for LED spectral measurements.

An integrating sphere is a ball with a highly reflective sur
face. The light is reflected many times on the surface and
becomes diffuse. As a result, the spectrum and the intensity
of an LED are the same at each point of the surface of the
ball and can be coupled easily into the spectrometer. The
main advantage of this method is that tolerances in the place
ment of the LED are not critical and the repeatability is very
good compared to other methods. Fig. 26 shows a typical
spectrum of a red LED measured with an integrating sphere.

1 0 0 T

60

Â«0 +

2 0 - -

500 7 0 0 8 0 0

Wavelength (nm)

900 1000

Fig. 26. Spectrum of a red LED measured with an integrating sphere.

52 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 27. HP Ml 194A clip sensor.

There are different ways to measure the wavelength of an
LED. One is the peak wavelength, which is the highest point
of the spectrum. The centroid wavelength, which is used in
our measurements, calculates the center of the area under
the spectrum. A secondary peak in the spectrum of the LED
can have a large influence on the measurement results and
has to be very small (< 1%).

Fig. 29. HP M1193A neonatal sensor.

The temperature of the LED die has a large influence on the
emitted wavelength â€” the higher the temperature the higher
the wavelength (0.12 nm/K). Therefore, the LED must be in
thermal equilibrium, hi practice, the LED takes only a few
seconds to reach thermal equilibrium. The ambient tempera
ture must be monitored and if the temperature changes the
spectrometer must be recalibrated.

Summary
A new family of reusable pulse oximetry sensors has been
developed. Based on the HP M1190A, HP's first reusable
SpC>2 sensor, these sensors can noninvasively monitor the
blood oxygen levels of patients, a key vital sign. They are
used primarily in operating rooms, recovery rooms, intensive-
care units, and some general wards. The new sensor family
covers all application areas and consists of the M1194A clip
sensor (Fig. 27), the HP M1191A adult sensor with new wave
length (Fig. 28), the HP M1192Apediatric sensor (Fig. 12),
and the HP M1193A neonatal sensor (Fig. 29).

Acknowledgments
Many people were involved in this project. The authors
would especially like to thank Dietrich Rogler for the indus
trial design of the sensors, Willi Keim and Peter Jansen of
materials engineering for their excellent support, Martin
Guenther for performing all the optical characteristics mea
surements, Gerhard Klamser for verifying the algorithm,
Gerhard Lenke for organizing all the regulation tasks, and
Otto Gentner for managing the clinical trials. Special thanks
to Professor Dr. J. W. Severinghaus of the University of Cali
fornia Hospital in San Francisco for performing volunteer
studies.

R e f e r e n c e s
1. T.J. Hayes and E.B. Merrick, "Continuous, Non-Invasive Measure
ments of Blood Oxygen Levels," Hewlett-Packard Journal, Vol. 28,
no. 2, October 1976, pp. 2-10.
2. Hewlett-Packard Journal, Vol. 42, no. 4, October 1991, pp. 6-54.
3. D. Clausing, "The House of Quality," Business Review, May-June
1988.
4. L.P. Sullivan, "Quality Function Deployment," Quality Progress,

June 1986, pp. 39-50.

Fig. 28. HP Ml 191 A adult sensor.

February 1997 Hewlett-Packard Journal 53
© Copr. 1949-1998 Hewlett-Packard Co.

Design of a 600-Pixel-per-Inch, 30-Bit
Color Scanner
Simply a an image at higher resolution will not give the results a
customer expects. Other optical parameters such as Â¡mage sharpness,
signal-to-noise ratio, and dark voltage correction must improve to see the
benefits of 600 pixels per inch.

by Steven L. Webb, Kevin J. Youngers, Michael J. Steinle, and Joe A. Eccher

The objective of a scanner is to digitize exactly what is on
the document that is being scanned. To do this perfectly
would require a CCD (charge coupled device) detector with
an infinite number of pixels and a lens with a modulation
transfer function of 1.0, which does not exist. Modulation
transfer function, or MTF, is a measure of the resolving power
or image sharpness of the optical system. It is analogous to
a visual test that an optometrist would use to measure a
human eye's resolving power.

In the real world, the scanner user does not require a perfect
reproduction of the original because the human eye does
not have infinite resolving power. However, as originals are
enlarged and as printers are able to print finer detail, the
imaging requirements of the scanner are increased.

The HP ScanJet 3c/4c scanner, Fig. 1, is designed to obtain
very finely detailed images for a variety of color and black
and white documents and three-dimensional objects that are
typically scanned. Its optical resolution is 600 pixels per
inch, compared to 400 pixels per inch for the earlier HP
ScanJet He. It produces 30-bit color scans compared to the
ScanJet He's 24-bit scans, and its scanning speed is faster.
The ScanJet 3c and 4c differ only in the software supplied
with them.

Optical Design
The HP ScanJet 3c/4c optical system is similar to that of the
HP ScanJet He scanner,1 with improvements to increase the
optical resolution to 600 pixels per inch. Just sampling an

image at higher resolution will not give the results a customer
expects. Other optical parameters, such as MTF (i.e., image
sharpness), signal-to-noise ratio, and dark voltage correction
must improve to see the benefits of 600 pixels per inch.

The major optical components are:
Two laminated dichroic composite assemblies used for
color separation
A fluorescent lamp with a custom mixture of phosphors
A six-element double Gauss lens
A three-row CCD sensor that has 5400 pixels per row
Four front-surface mirrors.

The color separator composites, double Gauss lens, and
CCD are shown in Fig. 2.

The color separation system (Fig. 3) consists of the two
dichroic assemblies and the three-sensor-row CCD. With this
method, red, green, and blue are scanned simultaneously,
so only one pass is needed to scan all three colors. Each
dichroic assembly is constructed of three glass plates that
are bonded to each other with a thin layer of optical adhe
sive. Red, green, and blue reflective dichroic coatings are
deposited onto the glass before lamination. The order of the
coatings is reversed for the second dichroic assembly. The
thickness of the glass plates between the color coatings and
the flatness, tilt, and alignment are precisely controlled to
ensure accurate color separation and image sharpness.

CCD Detector

\

Lens

Fig. 1. HP ScanJet 4c 600-dpi, 30-bit color scanner.

0 1 0 2 0 3 0 4 0 5 0 5 5

Color Separator Composite #2

Color Separator Composite #1

Fig. 2. Lens, CCD (charge-coupled device) detector, and color
separator composites.

54 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Color Separator
Composites

CCD

Analog Flex Circuit

Fig. 3. The color separation
method uses two dichroic
assemblies (composites) and
a three-row CCD.

Each color component is focused onto a CCD sensor row
consisting of 5100 imaging pixels. Additional pixels are used
for closed-loop dynamic light control, dark voltage correc
tion, and reference mark location. By having all three rows
integrated onto a single silicon chip, precise distances be
tween the three rows are obtained. Production consistency
is guaranteed by the integrated circuit process. Each CCD
pixel generates a voltage signal that is proportional to the
amount of light focused onto each pixel. The signal for each
pixel is then processed and digitized. This data is sent to a
computer or a printer.

Focus Optimization for Each Color
Two dichroic assemblies are used to equalize the path
lengths of the three colors. A six-element double Gauss lens
is used to focus the light onto the CCD sensors. However,
the variation of the index of refraction of glass as a function
of wavelength causes two of the three colors to obtain opti
mum focus at different locations. This phenomenon of dif
ferential refraction caused by wavelength dependence is
best demonstrated by holding a prism up to a white light
source and observing the colors. The light spectrum is sepa
rated because the shorter wavelengths (blue) are refracted

Red, Green and Blue Focus
in Different Image Planes.

Red, Green and Blue Focus
on Same Image Plane.

Fig. = ensure green, aberration of an uncorrected system. XÂ¡ = X2 = XQ = X$. (b) To ensure that simultaneous focus for red, green,
and blue the aberration in the HP ScanJet 3c/4c scanner, unequal path lengths are used to compensate for the chromatic aberration of the
lens. XI = X3 and X2 = X4, but X2 * XI.

February 19ÃI7 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

R o w 1

Row 2

Row 3

Fig. 5. CCD row lengths are adjusted to compensate for color
separator plate thicknesses.

or bent more than the longer wavelengths (red). Since
lenses are made of glass that refract light of varying wave
lengths at different angles, it is difficult to have all three
colors focus at the same location.

To achieve simultaneous focus for all three colors there are
several possible solutions. One is to design the focusing
optics with curved front-surface mirrors only. However,
these systems can be expensive, and it can be hard to cor
rect other optical aberrations and difficult to image enough
light onto the CCD. Another possible solution is to use an
achromatic doublet. However, this type of lens can minimize
chromatic aberration for only two of the three colors.

The ScanJet 3c/4c scanner optical design minimizes the
chromatic aberration caused by the lens. An uncorrected
optical system is shown in Fig. 4a, and a corrected optical
system is shown in Fig. 4b. Lens chromatic aberration is
corrected by adjusting the thickness of the dichroic coated
plates. The path length of each color is adjusted to obtain
optimum focus.

Unequal path lengths for red, green, and blue would cause
color registration error across the scan region. To prevent
this, the CCD sensor row lengths are adjusted as shown in
Fig. 5. Each row has the same number of pixels. However,
the center-to-center spacing (pixel pitch) is slightly larger
for a small number of pixels in rows 1 and 3. The pixels with
slightly larger pitch are strategically placed to correct for
the lateral chromatic aberration of the lens. This eliminates
any color registration error that would have been caused by
the lens.

Optical System Layout
The lamp, lens, mirrors, color separators, and CCD are
mounted into an aluminum carriage that is translated or
scanned along the length of the document. The carriage is
pulled underneath the glass platen by a belt connected to a
stepper motor. The optical layout is shown in Figs. 6 and 7.

Fig. 6 shows the mechanical design model of the carriage
and light path. Fig. 7 shows part of the light path in more
detail.

The optical system was designed and evaluated using a com
mercially available optical design program. The sensitivity of
optical tolerances such as lens centering, radii, thickness, and
index of refraction were evaluated to determine the effects
on image quality. The manufacturing assembly and mounting
tolerances of key optical components in the carriage assem
bly were also evaluated. Image quality parameters such as
MTF, color registration error, illumination uniformity, and
distortion were emphasized.

To achieve precise optical alignment, custom assembly tool
ing was designed and implemented to meet production goals.

Fluorescent Lamp Driver
The fluorescent lamp is driven by a circuit that allows the
lamp current to be varied over a range of 90 to 425 milli-
amperes. Since the lamp output is proportional to current,
the lamp intensity is also varied.

A block diagram of the lamp driver circuit is shown in Fig. 8.
The control inputs to the circuit provide the following
functions:

> PREHEAT_L allows the filaments to be heated before the lamp
is ignited.
LAMP_PWM provides a pulse width modulated signal to set
the desired current level.

< LAMPON_L turns the lamp on.

The filaments of the lamp are preheated for one second be
fore lamp turn-on to reduce the amount of filament material
that gets deposited on the insides of the glass. The deposits
reduce light output, causing the light level to drop off near
the ends of the lamp. This could create a lamp profile prob
lem if preheating were not implemented.

The LAMP_PWM signal provides the desired current level plus
a sync signal to the oscillator. The switching of the lamp
driver power transistors occurs while the CCD (charged
coupled device) is being reset. This helps keep switching
noise from contaminating the CCD measurements. The lamp
current command is derived from LAMP_PWM via the low-
pass filter. The output of the low-pass filter is a voltage pro
portional to the amount of current desired.

Fig. path. is design layout of the HP ScanJet 3c/4c optical path. The light path is from the scan line to mirror #1 to mirror #2 to
mirror detector. to mirror #4 to the lens to the color separator to the CCD detector.

56 February 1997 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Co lo r Sepa ra to r Assemb ly

Mirror #4
;

â€” Six-Element Lens

Fig. 7. Ray trace of the optical
path from mirror #4 to the color
separator assembly (one color
only).

The LAMPON_L signal holds the flip-flop in the set mode until
it is time to turn the lamp on. When the flip-flop is set, power
FET 1 is held off via the buffer.

Operation of the lamp driver begins by taking PREHEAT_L to a
logic zero. This allows the divide-by-2 circuit to begin tog
gling. When PREHEAT_L is high, both Q and Q are high, which
turns off power FETs 4 and 5 via the inverting buffers. The
toggling of the divide-by-2 circuit drives power FETs 4 and 5
out of phase. This provides a 24-volt square wave on the
primary of Tl which is stepped down to 3.6V to drive the
filaments. When LAMPON_L is activated, the flip-flop is reset
on the next LAMP_PWM pulse, turning on power FET 1. The
lamp appears as a high impedance in the off state, which
results in power FETs 2 and 3 avalanching as a result of col
lapsing magnetic fields. The avalanche voltage of the power
FETs is approximately 120 volts, half of which, or 60V,
appears at the center tap of Tl. This voltage is multiplied by
the 1:6 turns ratio of Tl to produce 360V across the lamp.
This voltage starts the lamp and the voltage drops to the low

forty volt range. Current now flowing in the lamp is reflected
back to the primary, where it is sensed. Amplifier 3 amplifies
the voltage across the sense resistor and amplifier 2 sub
tracts it from the current command (output of amplifier 1).

The output of amplifier 2 is passed through the loop com
pensator (proportional plus integral) and applied to the
comparator. The oscillator output is applied to the other
input to the comparator. In the steady state, the loop com
pensator will stabilize at a voltage that produces the proper
duty cycle on power FET 1 to maintain the commanded cur
rent. At this time the voltage across the 50-uH inductor will
be in volt-second balance.

All of the low-power analog and digital circuits are contained
in an analog ASIC.

' The negative across the inductor switches from positive to negative as the FET turns on and off.
When the negative of the positive voltage and its duration equals the product of the negative
voltage and its duration, the inductor voltage is in volt-second balance.

+ 24 Volts

LAMPÃ“N L

L A M P _ P W M

PREHEAT L

Fluorescent
Lamp

Fig. 8. Block diagram of the fluorescent lamp driver.

February 1997 Hewlett-Packard Journal 57
© Copr. 1949-1998 Hewlett-Packard Co.

Note: Adjacent l ines are on
top of each other; shown this
way for clarity. Buffer Full

(Restart Scan)

Scanner Head Position

F ig . 9 . S tar t -s top pro f i le .

Firmware Design
The firmware inside the ScanJet 3c/4c has many tasks. Two
of the most critical (and most interesting to work on) were
the start-stop algorithm and the light control algorithms.

Start-Stop. During some scans the host computer's I/O rate
may not be able to keep up with the scanner's data genera
tion rate. This will cause the internal buffer in the scanner to
fill. When this occurs the scanner may need to stop and wait
for the host to catch up (empty the internal buffer) before
restarting the scan. This is called a start-stop. The scanner
must restart the scan in the same place that it stopped or the
user will see artifacts in the final image. If the scanner's drive
system can start and stop within a fraction of the y-direction
sampling size then no repositioning is needed. If the scanner's
drive system cannot stop or start fast enough then it must
back up and reposition the scan bar to be able to restart at
the correct location (see Fig. 9).

The ScanJet 3c/4c uses variable-speed scanning in the y-
direction (along the length of the scan bed). Variable-speed
scanning has two main advantages: better y-direction scaling
and fast scan speeds at low resolution. The ScanJet3c/4c has
a wide range of scan speeds (20 to 1), so the drive system
needs some acceleration steps (of the stepper motor) to
reach most of the final scanning speeds. This also means
that the drive system cannot start or stop in one step. This
dictated the need for a reposition movement for each start-
stop.

There are three parts to a start-stop. First, when the internal
buffer becomes full, the firmware marks the position and
time of the last scan line and stops the drive system. Second,

the firmware calculates how far to back up and then backs
up and stops. Third, when there is enough space in the inter
nal buffer the firmware accelerates the drive system up to
the correct scanning speed and then restarts the scan line at
the correct scan position.

The scanner firmware controls the step rate of the drive
system. It uses its internal timer with a hardware interrupt
to control the time between steps precisely. During accelera
tion, the firmware gets the next time interval from the accel
eration table. Once at the proper scanning speed, the time
interval is constant and the firmware just reloads the timer
with the same interval. Deceleration uses the same table as
acceleration in the reverse order. The firmware also keeps
track of how many motor steps have occurred. Each motor
step represents 1/1200 inch of travel for the scan head. This
allows the firmware to keep track of the location of the scan
head.

The scanner firmware also keeps track of when each scan
line occurs (relative to a motor step). The scan lines are
spaced 4.45 ms apart (for normal speed). A scan line may
coincide with a motor step or may be between two motor
steps, depending on the y-direction scan resolution). For
example, for a 600-dpi scan there are exactly two motor
steps for each scan line (2 x 1/1200 = 1/600, so the scan
head moves 1/600 inch in 4.45 ms). For a 500-dpi scan there
would be 2.4 motor steps for each scan line.

When restarting the scan, the firmware must restart the
CCD at least seven scan lines before putting scan data into
the buffer. This is to allow the CCD to flush any extra charge
in the system caused by restarting the CCD. The number of
motor steps for seven scan lines depends on the y-direction
scanning resolution. The number of steps to accelerate also
depends on the y-direction scanning resolution. There is
also a minimum number of steps that the drive system must
be backed up to remove any mechanical backlash. These
requirements determine the number of steps the scan head
must be backed up (see Fig. 10). Once this is determined the
firmware backs up the scan head and waits for the host to
remove enough data from the internal buffer.

The internal buffer capacity inside the 3c/4c scanner is 256K
bytes. Under the DOS operating system a typical receive
block is 32K bytes (it can be larger). The ScanJet 3c/4c will
restart a scan when the buffer is half full or holds less than
twice the current receive block size, whichever is less.

Once there is enough space in the buffer the firmware re
starts the scan. First, the scan head is accelerated up to the

Resync CCD
Scan Line

4.45 ms

Sync Time

Sync Position

B u f f e r R e e n a b l e d -

A = 7 Scan Lines

Motor Step Time at Scanning
Speed (Dependent on Resolution)

Buffer Full
(Restart Scan)

Saved Motor Step Number

Saved Scan Time

Motor Steps Fig. 10. Start-stop timing.

58 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Sing to Me

The HP ScanJet 3c/4c scanner uses variable y-direction scanning. This
means that the scan head travels at different speeds dependent on the
y resolution. This also means that the stepper motor runs at variable
frequencies.

Musical notes are air vibrations at given frequencies. Play Tune
(Esc*uOM) is an SCL (Scanner Control Language) command that can be
used to make the scanner play any song downloaded into its buffer. The
song can be loaded into the scanner's internal buffer using the SCSI
write buffer command. The format for the song is: number of notes
(2 bytes), note one, note two, etc. Each note is three bytes. All numbers
are in hexadecimal format.

The first two bytes of each note specify the number of 3-MHz clock
cycles byte full motor steps for the desired speed. The third byte Â¡s
the note duration in multiples of approximately 1/8 second. For example,
middle C is 256 Hz. The clock frequency is 3 MHz, and the motor half-
steps. For middle C, therefore, 3,000,000 clocks per second x 1/25B
second full full step x 1/2 full step per half step = 5859 clocks per full
step, move Â¡n hexadecimal is 1 6E3. For the third byte, a 4 would move
the motor for 1/2 second (4/8 = 1/2). Thus, to get the scanner to play a
1/2-second middle C, the number to download is 16E3, 4.

For a rest between notes, set the frequency to zero and the duration to
the desired length of the rest. When playing notes, the scan head al
ways moves towards the center of the scanner and any frequency
above maxi maximum scan rate of the scanner is truncated to the maxi
mum scanning speed. This gives the ScanJet 3c/4c a three-octave
range with the lowest note at about D below middle C.

Here or a well-known tune by Mozart (don't download the spaces or
commas):
02f

16E3,6 16E3,6 Of47,6 Of47,6 Od9c,6 Od9c,6

Of47,9 00,2

1125,6 1125,6 122a,6 122a,6 1464,6 1464,6

16E3,9 00,2

Of47,6 Of47,6 1125,6 1125,6 122a, 6 122a, 6

1464,9 00,2

Of47,6 Of47,6 1125,6 1125,6 122a, 6 122a, 6

1464,9 00,2

16E3,6 16E3,6 Of47,6 Of47,6 Od9c,6 Od9c,6

Of47,9 00,2

1125,6 1125,6 122a,6 122a,6 1464,6 1464,6

16E3,9

final scanning speed. A hardware interrupt is programmed
to restart the CCD exactly seven scan lines before the posi
tion at which the last scan line was put into the buffer. Then,
half a scan line away from the restart position, the buffer is
reenabled such that the next line is put into the buffer. At
this point the scan has been restarted and the start-stop is
completed.

The start-stop accuracy of the ScanJet 3c/4c scanner is spe
cified at half the y-direction scanning resolution. The typical
resolution is between one-eighth and one-quarter pixel at
the normal speed.

Light Control. The lamp in the ScanJet 3c/4c scanner is a spe
cial triphosphor fluorescent bulb. Using a fluorescent bulb
has a number of trade-offs. The good news is that fluores
cent bulbs have a range of phosphors to choose from. This
allows the designer to balance the light spectrum with filters
to give good colorimetric performance. The three phosphors
in the ScanJet 3c/4c scanner give off red, green, and blue
light. Florescent bulbs are also efficient, and give a reason
able amount of light for the energy used.

The bad news is that the intensity of the light is dependent
on the bulb temperature. This means that as the bulb heats
up the light gets brighter. If the bulb gets too hot, then the
light gets dimmer again. What is worse, the bulb does not
heat evenly across its length. The ends heat first and fastest
and then the center of the bulb slowly heats up. The phos
phors also have different efficiency-versus-temperature
characteristics. This means that as the bulb heats up, it
shifts color. At some nominal temperature, and only at that
temperature, the phosphors are at their design efficiency,
and the light is balanced with the filters. What makes this
really bad is that the time it takes to complete a scan can
vary between 15 seconds and 5 minutes. Fluorescent bulbs
also have a long-term aging effect â€” a decrease in efficiency

that affects performance-
sen age at different rates.

-and the phosphors we have cho-

One solution to some of these problems is to leave the light
on all the time. Then the bulb is at one stable temperature
for the full scan. This solution has its own set of problems.
For example, the bulb needs to be customer replaceable and
the power consumption of the unit is high during idle time.

The ScanJet 3c/4c solves some of these problems with a
real-time control system that controls the output of the light
by modifying the power into the bulb during a scan. It also
has separate red, green and blue system gains that are ad
justed each time the light is turned on to help balance the
overall color of the system. The light control system in the
ScanJet 3c/4c uses the same CCD that is used for scanning.
The CCD is wide enough so that it can look beyond the docu
ment being scanned at a white strip that runs along the
length of the scan bed underneath the scanner top cover.
This area of the CCD is called the light monitor window.

The light control algorithm for the ScanJet 3c/4c scanner
has three parts. Part one turns on the power to the lamp and
waits until some minimum level of light is detected. Part two
tries to balance the output of the red, green, and blue chan
nels by adjusting the independent system gains. Part three
adjusts the power to the lamp to keep the green output at a
fixed value during the scan. The purpose of part one of the
lamp control is to turn the lamp on and make sure it is fluo-
rescing at some minimum level. The goal for the startup
algorithm (part two) is to have the lamp bright enough to
scan with low system gains, which helps maximize the signal-
to-noise ratio. The purpose of part three is to maintain the
lamp at a given level for the entire scan.

Part one first sets the red, green, and blue gains to a low
level. Then it turns on the preheaters (the coils at each end

February 1997 Hewlett-Packard Journal 59
© Copr. 1949-1998 Hewlett-Packard Co.

of the lamp) for about one second. It then turns on the lamp
power, which is controlled by a pulse width modulation sig
nal, to 20% for 4.5 ms and then to 80%. The first step at 20%
is to help prevent the power supply from ringing. Once the
lamp power is at 80% the control loop monitors the lamp
output using the light monitor window. When the output of
the lamp reaches or exceeds the minimum threshold, part
two of the control algorithm starts. If the threshold is never
reached the control loop will time out with an error (after
about 5 minutes).

Part two of the algorithm waits about one second for the
lamp to warm up (at 80% power). After the warmup delay
the lamp power is lowered to 50% and the red, green, and
blue system gains are adjusted. In the ScanJet 3c/4c there
are two light monitor windows. One always reads the green
channel's output, and the other reads either the red channel
or the blue channel. The gain control loop adjusts the level
of each system gain and tries to make the output of the light
monitor window match a set value called the desired value.
The window output is checked against the desired value on
each end-of-scan-line interrupt, or every 4.45 ms. When the
output of the green light monitor window matches its de
sired value (within some margin) 200 times in a row, the
gains are considered stable and the green gain is fixed at its
current value. If the control loop is unable to match the de
sired values by adjusting the gains, that is, the gains are at
maximum or minimum values, it times out. The green gain
is then fixed at slightly above the minimum value or slightly
below the maximum value (to give the red and blue gains
some margin).

Once the green gain has been fixed, the control loop switches
from controlling the gains to controlling the power to the
lamp. This is part three of the light control algorithm. The
lamp power control loop uses only the green channel. It
uses an eight-line running average to damp the control loop.
If the control loop sees a difference of one count for eight
lines or eight counts for one line between the light monitor
window and the desired value, it changes the lamp power by
one count. When the control switches from the gains to the
lamp power, there is a short delay to load the eight-line aver
age used in the lamp power control loop. After the short
delay, the output of the green light monitor window is com
pared to its desired value, and if they match (within some
margin) 200 times in a row, the light is considered stable and
the scan is allowed to start. During this stabilization period
the red and blue gains are being controlled. Once the light is
considered stable the red and blue gains are fixed. The con
trol loop for the lamp power using the green channel contin
ues to operate during the scan. If the light fails to match the
desired output 200 times in a row, the scanner will time out
with a lamp error. Once the scan has started, if the control
loop is unable to keep the output of the green light monitor
window within some tolerance of its desired value, a lamp
error is issued.

RFI and BSD Design
The ScanJet 3c/4c color scanner was a challenging design
with respect to RFI (radio frequency interference) and ESD
(electrostatic discharge). To begin with, the mechanical
design didn't lend itself to stellar RFI and ESD performance.
In an attempt to lower cost and weight, the design specified
a plastic chassis instead of a sheet-metal chassis. Secondly,

the design spread key electrical systems throughout the
scanner. For example, the controller board was positioned
in the lower rear of the product. The controller board clock
is derived from a 36-MHz crystal oscillator. It generates the
CCD clocks, motor control signals, and lamp control signals,
processes all of the image data, and controls the SCSI inter
face. It also controls the optional automatic document feeder
or the optional transparency adapter. Not only is the control
ler board a source of a lot of RF energy, it also has multiple
interconnections that increase the difficulty of containing
that RF energy. The controller board connects to the power
supply, to the carriage, to the SCSI interface, and to any
optional accessory.

Another key electrical system is the power supply assembly.
Besides generating + 5V, + 24V, + 12V, and - 12V, the power
supply assembly also contains the lamp and motor drivers. It
has a total of five cable connections including the ac power
cord, the dc power cable to the controller board, the lamp
cable, the motor cable, and the LED power-on indicator
cable (see Fig. 11).

The third key electrical system is the carriage, which has
characteristics that dominate the scanner's basic EMC (elec
tromagnetic compatibility) performance. The carriage is a
metal casting that rides on two steel guide rods. The steel
guide rods are held in place by a sheet-metal plate in the
rear and by the plastic chassis in the front. A fluorescent
lamp is mounted on the carriage and is connected through
its own dedicated cable, the lamp cable, to the lamp driver
in the power supply. The lamp cable is about 15 inches long
and travels along the right side of the scanner as the carriage

SCSI Connectors

Accessory Connector

/ - A C R e c e p t a c l e

Controller Board

Carriage Cable

P o w e r
Supply

Lamp
Cable

Carriage

Lamp

LED Power-On
Indicator Cable

Front

Motor

Motor
Cable

LED

Fig. 11. Scanner internal layout showing key components for
RFI design.

60 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

moves under the glass window. The imaging flex circuit is a
two-layer circuit that is wrapped around the outside of the
CCD and is connected through the carriage cable to the con
troller. It is located in the left rear of the carriage. The car
riage cable is a single-layer unshielded flexible cable that
carries CCD clocks, which can run at speeds over 1 MHz.
to the imaging circuit from the controller board. This cable
also returns the resulting analog image data The carriage
cable, which is about 25 inches long, travels along the left
side of the scanner as the carriage is in motion (see Fig. 11).

The carriage is a source of energy from the imaging circuit.
It is also an antenna whose electrical length changes with
the position of the carriage. At least three different electrical
structures change as the carriage moves from the back of
the scanner to the front. These include the carriage cable,
the lamp cable, and the current path through the steel guide
rods and the carriage. Because of this dynamic antenna
structure, the radiating efficiency for any specific frequency
will be optimized at one corresponding specific position of
the carriage over its range of travel. One can think of it as a
"self-tuning" antenna. Typical RFI control approaches that
merely retime energy from one frequency to another simply
do not work because the new frequency to which the RF
energy is shifted will just correspond to a different carriage
position at which the antenna efficiency is optimized for
that frequency.

A number of RFI suppression techniques were considered.
Putting a Faraday cage around the whole scanner was, of
course, impossible because the top needed to be glass. Trying
to enclose all the electronics and shield all of the cables also
proved futile. Enclosing the controller board only seemed to
make things worse. Using power and ground islands didn't
help. Ferrites didn't seem to have a lot of impact, and extrap
olating their performance, we estimated that RFI might only
decrease by 5 dB if the box were completely filled with fer-
rite. Using capacitors to roll off clock or clock-like signals
only seemed to increase emissions below 300 MHz.

We decided that the best approach to keeping RFI emissions
down was to reduce all possible sources as much as possible.
We needed to minimize the energy that got onto the carriage
structure, because any energy that got there would be ra
diated efficiently at some point in the carriage's travel. We
began to work on some new approaches that were guided
by theory and that we later confirmed with experiment.
First of all, we revisited the equation that describes the radi
ation from a current loop. Because this radiation is propor
tional to the product of the frequency squared, the current,
and the loop area, we tried to minimize the areas of current
loops and to minimize the current in those circuits with
series impedance. Because we did not want energy traveling
onto the self-tuning antenna, we purposely tried to mismatch
cable impedances so that most of the energy would be re
flected back onto the controller board rather than traveling
out onto the carriage cable. To do this, grounding and shield
ing needed to be minimized. This meant doing things that
were just the opposite of what would normally be done.
Instead of routing the carriage cable close to metal, it was

-M-

-M-

Chassis
Ground

DC Board
Ground

Fig. 12. Diode connection for ESD and RFI suppression.

raised away from any metal to increase its effective trans
mission line impedance. Although the carriage cable became
a better antenna, far less high-frequency energy was able to
get onto that antenna because of the impedance mismatch.

ESD also required an unusual approach. Initially, the scanner
was highly susceptible to static discharges. An air discharge
of only 1 kV would usually cause the SCSI bus to hang even
if there was no data transfer in progress. This problem was
ultimately improved by over an order of magnitude by the
inclusion of a part affectionately known as the BMP or big
metal plate. The BMP is simply the flat metal plate that is
affixed to the bottom of the scanner. Its exact physical di
mensions turn out to be relatively unimportant because it
doesn't perform its function through any shielding or plane
imaging phenomenon. It is attached to the SCSI cable shield
and merely serves as a huge charge sink. The BMP could be
connected to the SCSI shield without regard to three-dimen
sional position and it would always improve the ESD air
discharge performance to over 10 kV, even while data was
being transferred over the SCSI interface.

The ScanJet 3c/4c also inspired an interesting solution to a
common ESD/RFT problem. Often, different methods of con
necting the chassis to dc ground will have different effects
on RFI and ESD. In the ScanJet 3c, if the chassis was con
nected directly to dc ground at the SCSI connectors, ESD
performance was improved. However, if chassis ground
wasn't connected at all to dc ground except in the power
supply, RFI was improved. In the end, by connecting chassis
ground to dc ground through parallel diodes oriented in
opposite directions (see Fig. 12), good performance for both
RFI and ESD was achieved.

Acknowledgments
The authors would like to acknowledge the contributions of
the following individuals to the design of the HP ScanJet
3c/4c scanner: Bob Emmerich, Ray Kloess, Greg Degi, Irene
Stein, Nancy Mundelius, Dave Boyd, Kent Vincent and Hans
Neumann of HP Laboratories, project managers Gerry
Meyer and Gordon Nuttall, section manager Jerry Bybee,
and R&D manager Dean Buck.

Reference
1. K.D. Gennetten and M.J. Steinle, "Designing a Scanner with Color
Vision," Hewlett-Packard Journal, Vol. 44, no. 4, August 1993, pp.
52-58.

February 1997 Hewlett-Packard Journal 61
© Copr. 1949-1998 Hewlett-Packard Co.

Building Evolvable Systems:
The ORBlite Project
One critical requirement that HP has learned over the years from building
large systems is the need for the system and its components to be able
to evolve over time. A distributed object communication framework is
described that supports piecewise evolution of components, interfaces,
communication protocols, and APIs and the integration of legacy
components.

by Keith E. Moore and Evan R. Kirs lie n ban m

Hewlett-Packard has been building distributed and parallel
systems for over two decades. Our experience in building
manufacturing test systems, medical information systems,
patient monitoring systems, and network management sys
tems has exposed several requirements of system and com
ponent design that have historically been recognized only
after a system has been deployed. The most critical of these
requirements (especially for systems with any longevity) is
the need for the system and system components to be able
to evolve over time.

The ORBlite distributed object communication infrastructure
was designed to meet this requirement and has been used
successfully across HP to build systems that have evolved
along several dimensions. The ORBlite framework supports
the piecewise evolution of components, interfaces, commu
nication protocols, and even programming APIs. This piece-
wise evolution enables the integration of legacy components
and the introduction of new features, protocols, and compo
nents without requiring other components to be updated,
ported, or rewritten.

A vertical slice through the ORBlite framework forms the
basis of HP's ORB Plus product, a strict implementation of
the CORBA 2.0 standard.

The Problem of Evolvability
By definition, a distributed system is one that contains com
ponents that need to communicate with one another, hi most
practical systems, however, many of these components will
not be created from scratch. Components tend to have long
lifetimes, be shared across systems, and be written by differ
ent developers, at different times, in different programming
languages, with different tools. In addition, systems are not
static â€” any large-scale system will have components that
must be updated, and new components and capabilities will
be added to the system at different stages in its lifetime. The
choice of platform, the level of available technology, and
current fashion in the programming community all conspire
to create what is typically an integration and evolution
nightmare.

The most common solution to this problem is to attempt to
avoid it by declaring that all components in the system will
be designed to a single distributed programming model and
will use its underlying communication protocol. This tends
not to work well for several reasons. First, by the time this
decision is reached, which may be quite early in the Ufe cycle
of this system, there may already be existing components
developers desire to use, but which do not support the se
lected model or protocol. Second, because of the availability
of support for the model, the choice of model and protocol
may severely restrict other choices, such as the language in
which a component is to be written or the platform on which
it is to be implemented.

Finally, such choices tend to be made in the belief that the
ultimate model and protocol have finally been found, or at
least that the current choice is sufficiently flexible to incor
porate any future changes. This belief has historically been
discovered to be unfounded, and there does not appear to
be a reason to believe that the situation has changed. Invari
ably, a small number of years down the road (and often well
within the life of the existing system), a new "latest-and-
greatest" model is invented. When this happens, the system's
owner is faced with the choice of either adhering to the old
model, which may leave the system unable to communicate
with other systems and restrict the capabilities of new com
ponents, or upgrading the entire system to the new model.
This is always an expensive option and may in fact be intrac
table (e.g., one HP test system contains an investment of
over 200 person-years in legacy source code) or even impos
sible (e.g., when the source code for a component is simply
not available).

An alternative solution accepts the fact that a component or
set of components may not speak the mandated "common
protocol" and instead provides proxy services (protocol
wrappers or gateways) between the communication proto
cols. Under this scheme, the communication is first sent to
the gateway which translates it into the nonstandard proto
col and forwards it on to the component. This technique
typically gives rise to the following issues:

62 February 1997 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Issue

Degraded perfor
mance

Resource use

Reliability

Security. location,
configuration, and
consistency

Typical Cause

Message forwarding

Multiple in-memory message
representations

The introduction of new messages
and failure conditions

Disjoint mechanisms used by
different communications
protocols

It is tempting to think that the problem of evolvability is
merely a temporary condition caused by the recent explosion
in the or of protocols (and things will stabilize soon) or
that the problem is just an artifact of poor design in legacy
components (and won't be so bad next time). It appears,
however, that this problem of protocol evolution is intrinsic
in building practical distributed systems. There will always
be protocols that are claimed to be better, domain-specific
motivations to use them, and legacy components and proto
cols that must be supported. Indeed, we consider it a truism
that nearly any real distributed system will have at least three
models: those of legacy components, the current standard,
and the emerging latest-and-greatest model. The contents of
these categories shift with time â€” today's applications and
standard protocols will be tomorrow's legacy.

Dimensions of Evolution
The ORBlite architecture is concerned with multiple dimen
sions of evolution.

Evolution of Component Interface. A component's interface
may evolve to support new features. The danger is that this
evolution will require all clients of the component to be up
dated. For reasons cited in the previous section, there must
be a mechanism whereby old clients can continue to use the
old interface and new clients can take advantage of the new
features.

Evolution of Component Implementation. A component's imple
mentation may evolve independently of the rest of the sys
tem. This may include the relocation of a component to a
new hardware platform or the reimplementation of a com
ponent in a new programming language. There must be a
mechanism that insulates other components from these
changes in the implementation yet maintains the semantic
guarantees promised by the interface.

Evolution of Intel-component Protocol. It is generally intractable
to choose a single communication protocol for all compo
nents in the system. Different protocols may be more attrac
tive because of their performance, availability, security, and
suitability to the application's needs. Each communication
protocol has its own model of component location, compo
nent binding, and often data and parameter representation.
It must be possible to change or add communication proto
cols without rendering existing components inaccessible.

Evolution of Intercomponent Communication Model. The pro
gramming models used to perform intercomponent commu
nication continue to evolve. They change over time to sup
port communication of new types of data and new version

communication semantics. At the same time, new program
ming models are frequently developed. These models are
attractive because of their applicability to a particular appli
cation, because of their familiarity to programmers on a
particular platform, or because they are merely in fashion or
in corporate favor. It must be possible to implement compo
nents to a new model or a new version of an existing model
without limiting the choice of protocols to be used under
neath. It must also be possible to do so without sacrificing
interoperability with existing components written to other
models or other versions of the same model (even when
those components will reside in the same address space).

Contribution of Distributed Object Systems
Distributed object systems such as the Object Management
Group's CORBA (Common Object Request Broker Architec
ture)1-2 and Microsoft's5 OLE (Object Linking and Embed
ding),3 like the remote procedure call models that preceded
them, address the issue of protocol evolution to a degree by
separating the programming model from the details of the
underlying protocol used to implement the communication.
They do this by introducing a declarative Interface Definition
Language (IDL) and a compiler that generates code that
transforms the protocol-neutral API to the particular proto
col supported by the model (see Fig. 1). As the protocol
changes or new protocols become available, the compiler
can be updated to generate new protocol adapters to track
the protocol's evolution. These adapters are shown as stubs
and skeletons in Fig. 1.

Another benefit of IDL is that it forces each component's
interface to be documented and decouples a component's
interface from its implementation. This allows an implemen
tation to be updated without affecting the programming API
of clients and simplifies the parallel development of multiple
components.

In CORBA and OLE, interfaces are reflective â€” a client can
ask an implementation object whether it supports a particu
lar interface. Using this dynamic mechanism, a client can
be insulated from interface and implementation changes.
Clients familiar with a new interface (or a new

1 I n C O R B A C + + t h i s i s a d y n a m i c _ n a r r a w (l m e c h a n i s m . I n O L E i t i s t h e I U n k n o w n : : Q u e r y l n t e r -

f a c e d m e c h a n i s m .

interface Professor {

Department dept () ;

sequence<Students> advises (]

RPC Protocol

Fig. 1. Generating stubs and skeletons from IDL. The stub and
skeleton serve as software protocol adapters, which can be updated
as a protocol evolves.

February 1997 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

of an existing interface) ask about it, while old clients
restrict themselves to using the old interface.

While such systems abstract the choice of communication
protocol, none addresses the situation in which a system
needs to be composed of components that cannot all share
a single protocol or a single version of a protocol* CORBA
and OLE have each defined a protocol that they assert all
components will eventually adopt. For reasons cited above,
we feel that each is merely adding yet another (incompatible)
protocol to the mix â€” a protocol that will continue to evolve.

Key Contributions of ORBlite
The ORBlite distributed object-oriented communication
framework was designed with these concerns in mind. It
takes the protocol abstraction provided by IDL a step fur
ther by allowing a single component to be accessed and to
communicate over multiple protocols and multiple versions
of the same protocol, simultaneously and transparently.
Centered around the notion of the declarative interface,
ORBlite also provides for different components to be written
to different models, even when the components reside in the
same process. The result is that programmers are presented
with the illusion of the entire system adhering to their pro
cessing model regardless of whether this is true or in fact
whether the component at the other end is even implemented
using the ORBlite framework. It further enforces the notion
that programming models and protocols have no knowledge
of one another with respect to either existence or implemen
tation, allowing the programmer complete freedom to mix
and match.

ORBlite departs from the traditional client/server model by
treating caller (client) and target (server) as merely roles
relative to a particular call. Any process can contain objects
that act as both callers and targets at different times or even
simultaneously. Thus, ORBlite is fundamentally a peer-to-
peer model even though a particular system may elect to
follow a strict client/server distinction.

' The transport example, in this article refers to more than just the transport protocol. For example,
the DCE be supports multiple string-binding handles so that objects can be accessible
over connectionless and connection-based transports. However, programs based on the DCE
RFC model cannot transparently communicate with programs based on the ONC RFC model.

The main goal of the framework is to provide an efficient,
thread-safe communication substrate that allows systems
to be composed of components whose protocols, language
mappings (i.e., object models), implementations, clients,
interfaces, and even interface definition languages can
evolve independently over time. It must be possible for pro
tocols to evolve or be added without requiring recompilation
of components, for object models to evolve without obsolet-
ing existing components (or existing protocols), and for
legacy components to be integrated without requiring reen-
gineering. The reality of systems development is that com
ponents have different owners, different lifetimes, and dif
ferent evolutionary time frames.

One further contribution of the ORBlite framework is that it
treats local and remote objects identically. In most current
systems, the syntax for a call to a remote object is quite dif
ferent from a call to one located in the same process. As a
result, once code has been written with the assumption that
a particular object is local or remote, this decision becomes
difficult to change. ORBlite, by contrast, encourages the
programmer to talk in terms of distributable references (i.e.
references to objects that may be local or remote), even
when the referenced object is believed at coding time to be
coresident. Application code that uses a distributable refer
ence will not need to be changed if the referenced object is
later moved to a remote process. The framework provides
extremely efficient dispatching for calls when the object is
detected to be coresident. The use of distributable refer
ences allows the assignment of objects to processes to be
delayed well past coding time and to be adjusted based on
performance or other requirements.

The ORBlite Communication Framework

The ORBlite communication framework contains a core and
three key abstraction layers: the language mapping abstrac
tion layer, the protocol abstraction layer, and the thread
abstraction layer (see Fig. 2). The core is responsible for
behavior that is not specific to any particular protocol or
language mapping. This includes the management of object
references and the lifetime of target implementations, the

MyCode

O M G A P I OLE API HPLAPI

ORBlite CORE

Protocols

C Â ¡ ^ ^ I ,
DCECIOP

Thread Library

Language Mapping Abstract ion Layer
â€¢ Allows Different Programming

Models, APIs, and Data
Representations

Protocol Abstraction Layer
â€¢ Multiple Simultaneous Protocols
â€¢ Transparent Protocol Replacement

Thread Abstraction Layer
â€¢ Allows Code to Be Independent

of Threading Mechanism

Fig. 2. An overview of the ORB
lite architecture.

64 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

selection of the protocol to use for a particular call, and the
base data types used by the protocols and the language map
pings to communicate.

Language Mapping Abstraction Layer
This layer is designed to support evolution of the program
ming model presented to the application. Using the language
mapping abstraction layer, each component views the rest
of the system as if all other components (including legacy
components) followed the same programming model. An
OLE component, for example, views remote CORBA compo
nents as if they were OLE components, and a CORBA com
ponent views remote OLE components as if they were
CORBA components. This abstraction layer allows compo
nents to follow multiple programming models even when
the components are located in the same address space.

Protocol Abstraction Layer
This abstraction layer is designed to support the evolution
of protocols and the choice of protocol sets available in a
particular system. In addition, it decouples the in-memory
representation expected by a particular language mapping
from the protocol used to communicate between components
on a given call. For example, implementations of DCE RFC
assume that the in-memory image for a structure has a par
ticular memory alignment and member ordering. ONC RFC,
on the other hand, has a different assumption about how
memory should be layed out.4'5 The protocol abstraction
layer allows a given language mapping to transparently
satisfy both without restricting its own layout decisions.

The protocol abstraction layer provides several features:
â€¢ Support for multiple simultaneous communication

protocols â€” services can be shared across communication
protocols and components can interact with objects simul
taneously over multiple protocols.

â€¢ Support for transparent protocol replacement â€” one proto
col can be replaced with another protocol without any
change to application code. Available protocols are declared
at link time or are dynamically loaded. No recompilation is
necessary to change the available protocol set.

â€¢ Support for legacy integration â€” the framework does not
need to be on both sides of the communication channel.
Each protocol has full control over message representation,
enabling a protocol to be used to communicate with non-
ORBlite components.

â€¢ Support for multiple in-memory data representations â€”
applications can choose the in-memory representation
of data structures without incurring copy penalties from
the protocols.

Thread Abstraction Layer
This layer is designed to provide a portability layer such that
components can be written to be independent of platform-
specific threading mechanisms. The thread abstraction layer
also serves to coordinate the concurrency requirements of
the various protocol stacks. When a protocol can be written
in terms of the thread abstraction layer, it can coexist with
other communication protocols in the same process. All
parts of the ORBlite framework are written in a thread-safe

â€¢ The detailed between CORBA and OLE was standardized by OMG and is detailed in
reference 3.

â€” Transmmable Types

RFC Protocol

Fig. 3. The pieces involved in a distributed call.

and thread-aware manner. The framework manages object
lifetimes to ensure that multiple threads can be exploited
and simultaneous calls can be executing safely in the infra
structure and in each object.

These three abstraction layers are strongly interrelated. A
protocol that obeys the protocol abstraction layer will typi
cally use the language mapping abstraction layer to marshal
and unmarshal data structures. A language mapping, such as
the OMG C++ mapping, will in turn use the protocol abstrac
tion layer to allow the protocol to marshal the structure in
the protocol's preferred representation.

Conceptual Overview of an ORBlite Call
In ORBlite, there are six major pieces involved in a distrib
uted call. These pieces are shown in Fig. 3. In systems
that include legacy components, two of these pieces might
be purely conceptual. A legacy server might not have a dis
cernible skeleton or an identifiable implementation, yet will
honor the wire protocol. Likewise, a legacy client may not
have a real stub.

The ORBlite model is similar to the CORBA and OLE models,
except that in ORBlite an IDL compiler, for a given language
mapping, emits stubs, skeletons, and types that are protocol-
neutral. ORBlite further allows the caller and stub to follow
a different language mapping from the skeleton and imple
mentation.

Stub. The stub is responsible for turning a
client-side, language-mapping-specific call of
the form:

r e s u l t = o b j e c t . f o o (a , b , c) ;

into the protocol-neutral form:

ORBlite: : apply (object , ' f o o " , a r g l i s t) ;

Essentially, the stub is saying to the ORBlite core, "invoke
the method named "foo" on the implementation associated
with object using the list of arguments in arglist."

Skeleton. The skeleton is primarily responsible
for the reciprocal role of turning a call of the
form:

ORBli te : : app ly (ob jec t , " foo" , a rg l i s t) ;

back into a call of the form:

r e s u l t = i m p l . f o o (a , b , c) ;

The stub can be viewed as the constructor of a generic call
frame. The skeleton can be viewed as a call-frame dispatcher.

' The property here use C++ syntax. The actual call syntax is a property of the language
mapping. Also, note that the internal calls described here have been simplified.

February 1997 Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

Transmittable Types. A language mapping
defines one or more in-memory data rep
resentations or classes for each type

(e.g., structure, union, interface, any, etc.) describable in its
IDL. For such data to be passed to a protocol, it must inherit
from an ORBlite-provided base class TxType. Such classes are
called transmittable types and support methods that allow
protocols to request their instances to marshal themselves
or to unmarshal themselves from a marshalling stream.
Occasionally, a language mapping may have a specification
that precludes the types presented to the programmer from
inheriting from TxType. In such cases, the IDL compiler often
emits parallel transmittable classes that wrap the user-
visible classes. These parallel classes are the ones presented
to the core or to the protocols.

By convention, the marshalling methods are implemented in
terms of requests on the stream to marshal the instance's
immediate subcomponents. As an example, an object repre
senting the mapping of an IDL sequence will marshal itself
by first requesting the marshalling of its current length and
then requesting the marshalling of each of its elements.
ORBlite contains abstract transmittable base classes for each
of the types specifiable in CORBA IDL, which implement the
canonical marshalling behavior. Thus, the classes defined by
a language mapping typically provide only methods that
make a reference to or marshal the subcomponents

When a protocol's marshalling stream receives an instance
of a transmittable type, it typically responds by simply
turning around and asking that instance to marshal itself.
Occasionally, however, a protocol may have special require
ments for the wire representation (as with DCE's padding
requirements for structures). Transmittable types provide
type-safe accessors (foreshadowing C++'s recent dynamic_cast()
mechanism) which allow a marshalling stream to ask, for
example, "Are you a structure?," and take action accord
ingly, often calling the transmittable type's subcomponent
marshalling methods directly.

The marshalling capability also provides transmittable types
with the ability to convert from one language mapping's in-
memory representation to another's (or between a single
language mapping's distinct in-memory representations for
the same type). As long as the two data types assert that
they represent the same external IDL type, they can use a
highly optimized in-memory marshalling stream to perform
the conversion with the source object marshalling and the
sink unmarshalling.

Local Bypass Optimization. When the stub
and the skeleton exist in the same pro
cess space, the stub can directly invoke
the skeleton's methods and bypass the
transformation to and from the apply!)

call. In this case, the call:

result = object . foo(a,b, c) ;

1 A self-describing type that can hold an instance of any IDL-describable type.

1 Marshalling is the process of serializing a data structure into a buffer or onto a communica
t ion to such that the resul t ing data st ream is suf f ic ient to recreate or in i t ia l ize an equiv
alent and Unmarshal l ing is the opposite process of reading the stream and creating or
initializing the object.

is directly forwarded through the skeleton using

resul t = impl . foo(a ,b ,c) ;

Note that the signatures for these two calls do not need to
be identical.

An implementation object can disable this optimization. This
is useful when an object wishes to ensure that a protocol
has an opportunity to service every invocation, even those
that are local. Certain logging, high-availability, and release-
to-release binary compatibility mechanisms require this
form of protocol intervention, even for the local case.

When the stub and skeleton reside in the same process but
follow different language mappings, the stub may not know
the target implementation object's calling conventions, or
the argument data may not be in the appropriate form. When
this happens, the local bypass is not taken. Instead, the call
is routed through the protocol abstraction layer, which will
use a very efficient local procedure call (LPC) protocol. This
protocol behaves like a full RFC protocol (see below), but
instead of marshalling its argument list, it merely tells the
arguments to convert themselves from the caller's format to
the target's.

RFC Protocol. The RFC
protocol is primarily
responsible for imple
menting a distributed
apply!) call. It works in

cooperation with the transmittable types to migrate a call
frame from one process space to another. ORBlite does not
require that the protocol actually be an RFC protocol, only
that it be capable of presenting the semantics of a thread-
safe distributed apply!) call. Asynchronous and synchronous
protocols are supported, and it is common for more than
one protocol to be simultaneously executing in the same
process. The protocol may also be merely an adapter which
is only capable of producing the wire protocol required
for a particular remote interface but is not a full RFC imple
mentation.

The separation between the transmittable types' marshal-

lers and the RFC protocol means that transmittable types
can be reused across different RFC protocols (see Fig. 4).
An additional benefit is that adding a new custom protocol
is fairly straightforward because almost all of the complex
marshalling is handled outside of the protocol layer.

All RFC protocols have the same shape, meaning that each
protocol obeys the protocol abstraction layer. There are
well-defined interfaces for how a stub interacts with the
protocol, how the protocol interacts with the marshallers,
and how the protocol interacts with the skeleton.

These interfaces are, however, logically private in that they
are not directly exposed to the client or to the implementa
tion. Keeping these interfaces private means that the system
can dynamically choose, based upon a variety of variables,
which protocol should be used to connect a particular client
to a particular implementation for a particular call. Examples
of variables that may affect protocol selection would be the
protocol's estimate of the time needed to bind to the imple
mentation, a protocol's round-trip-time estimate for executing
an apply!) call, the security required on the communication,

66 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Transmittable Types

RFC Protocols

Fig. 4. Alternate RFC protocols.

whether the channel should be rebound on error, or the
latency allowed for the call invocation.

Internal Structure of an RPC Protocol. Only the external inter
faces for the RPC protocols are defined by ORBlite. The
internal structure may vary considerably between protocols.
ORBlite makes no statement on whether a protocol is con
nection-based or connectionless, which marshalling format
is used (NDR, XDR, ASCII, etc.), whether the protocol repre
sents data in big-endian or little-endian format, or even what
physical medium is used by the underlying communication
mechanism. In general, however, protocols will have the
three major components shown in Fig. 5:

1 The RPC Client implements the client side of the apply!) call
and is responsible for locating the target's implementation.

1 The primitive marshallers support the transmission and
reception of primitive data types in a protocol-specific
manner.

> The RPC Server is responsible for receiving the call over the
wire, using the ORBlite core to find the skeleton associated
with the target of the invocation and forwarding the RPC
Client's apply!) call to the target skeleton.

Logical Call Flow
Given these pieces of the puzzle, the logical flow of control
for a remote method invocation is shown in Fig. 6.

Step 1. The caller executes the method f(a,b,c) on the stub
object.

Step 2. The stub creates an arglist and calls the RPC Client's
apply)) function.

Step 3. If necessary, the RPC Client binds with the target's
RPC Server using a protocol-specific mechanism.

Step 4. The RPC Client marshals the identifier for the target
skeleton and then marshals the name of the operation to
perform.

* Rebound means to reestablish a connection between a caller and a callee Â¡f an error occurs.

Step 5. The RPC Client marshals an identifier for the target
skeleton, then marshals the name of the operation to per
form, in finally tells the arglist to marshal itself (handing in
the transport's primitive marshallers). The arglist will use its
transport independent marshallers to turn composite data
structures into primitives which can be marshalled using the
transport's primitive marshallers.

Step 6. The RPC Server unmarshals the identifier for the
target skeleton and then unmarshals the name of the opera
tion to perform.

Step 7. The RPC Server then upcalls the skeleton to get the
server-side arglist for the specified operation. This upcall is a
critical component in decoupling the language API from the
underlying protocol. Without this upcall, the RPC Server
component would have to know the memory format that the
skeleton is anticipating and therefore would be tied to a
particular memory mapping.

Step 8. The arglist returned from the upcall, which is opera
tion-specific, is told to unmarshal its arguments. Each argu
ment is a transmittable type and will use the protocol inde
pendent unmarshallers to construct the arglist contents from
primitives unmarshalled using the protocol's unmarshalling
stream.

Step 9. The skeleton is upcalled to apply the unmarshalled
arglist to the desired operation.

Step 10. The skeleton takes apart the arglist and invokes the
actual method on the implementation. When the call on the
skeleton completes, the RPC Server will ask the arglist to
marshal its output parameters back to the client process.
The RPC Client will unmarshal the output parameters and
the stub will return the values back to the caller.

RPC Protocol

Implements an apply!) RPC

Marshal ls Primit ives over the Wire

Upcalls Skeleton's apply!) Function

Fig. 5. The major transport components associated with protocols.

February 1997 Hewlett-Packard Journal 67

© Copr. 1949-1998 Hewlett-Packard Co.

8 . a r g l i s t . u n m a r s h a l (m y _ m a r s h a l l e r |

6. operation. unmarshal
(my marshal ler) :

4. operation. marshal
' (my_marshal ler)

Process 1 Process 2

Fig. 6. The logical flow of a remote method invocation.

Dimensions of Evolvability

In this section we discuss how the ORBlite framework
addresses the various types of evolvability.

Evolution of Object Implementation
ORBlite uses the IDL specification and the language map
pings defined by CORBA and OLE to decouple an object's
implementation from its interface, hi this manner, an object's
implementation can be updated without affecting any other
part of the system provided that the interface is considered
to specify not only syntax but also semantics and behavior.

ORBlite is not tied to a particular IDL or even the set of data
types describable by a particular IDL. ORBlite requires that
isomorphic parts of different IDLs be mapped to the same
base type constructs, but model and IDL designers are free
to experiment with extensions. Such extensions may, of
course, impact interoperability. For instance, a server whose
interface uses a non-CORBA IDL type such as an asynchro
nous stream cannot easily be called by a client whose model
does not map this type.

Evolution of Object Interface
In ORBlite, objects can support multiple interfaces simulta
neously, and the language mapping abstraction layer allows
clients to inquire of a target object whether the target sup
ports a particular interface (in the OMG CORBA C++ map
ping, this is presented as the _narrow() and Â¡s_a() methods and
in OLE C++ this is presented as QuerylnterfaceO).

If an ORBlite object supports new functionality (or changes
the semantics behind an interface) the object should export
a new interface. Old clients can query for the old interface,
and new clients can query for the new one. In this manner,
the target object can support old clients as well as new
clients.

Of course, with a strongly typed object model such as
CORBA, such dynamic queries are often unnecessary since
the received object reference may already have been re
ceived as a strongly typed reference to the new interface.

Evolution of Programming Model
From the standpoint of evolution, there are two aspects of
model evolution that must be anticipated: support for the
introduction of new data types and support for new imple
mentations of existing data types.

Evolution of Language Mapping Types. The ORBlite framework
defines a set of basic data types from which the transmit-
table types used by each language mapping are derived. At
the root of the tree is an abstract class TxType which requires
the derived classes to support jnarshaK) and _unmarshal()
methods. These methods take a primitive marshalling stream
parameter supplied by the protocol being used for a particu
lar call. Framework-provided subclasses of this root define
more interfaces for each of the basic types describable by
CORBA IDL (e.g., structures, sequences, or enumerations).
These subclasses provide default marshalling behavior in
terms of (abstract) methods for marshalling and unmarshal-
ling the object's components.

68 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A language mapping can evolve in two different ways. Since
it is responsible for providing the actual types used by the
programmer, it is free to define and modify their interfaces
as emitted by the language mapping's IDL compiler. Canoni-
cally. these types will derive from the ORBlite-provided base
classes shown in Fig. 7. so an OMG C++ structure or COM
array will be seen by a protocol as merely a generic struc
ture or array, regardless of its internal representation.

Note that there is no requirement that the actual types as
presented to the programmer be transmittable. A language
mapping merely has to guarantee transmittability of the
data provided to a protocol. It is perfectly acceptable for a
language mapping to use a transmittable wrapper class
within argument lists and idiosyncratic classes (or even C++
primitives or arrays) in its API.

The other way that a language mapping can evolve is by
adding types that are not directly supported by the ORBlite
framework. The OLE mapping, for example, does this to
create a VARIANT data type. The mapping can choose to im
plement the new data type in terms of one of the existing
types (for instance, introducing a tree data type for use
by the application but internally representing it using a
sequence data type) and subclassing from a provided base.
The language mapping can also choose a private representa
tion for its contents and derive directly from TxType.

An additional attribute of ORBlite that supports a language
mapping evolution is that the ORBlite framework makes no
requirement that a language mapping have a unique class
representing a particular IDL type. This allows a mapping to
provide different representations of a type for different pur
poses. It also allows a later version of a language mapping
to change to a new representation for a data type while
remaining able to handle the old version's representation.
For example, the ORBlite core uses two different mappings
for strings: one optimized for equality comparison and the
other for concatenation and modification. To the protocols,
they behave identically.

Evolution of Ill-Memory Representation. There are two key
issues involved in ensuring that the ORBlite core and the
protocols are decoupled from the language mapping's data
type representation. The first issue is ensuring that the RFC
Client can marshal the parameters of a call, and the second
is ensuring that the RFC Server can unmarshal the parame
ters without requiring excess buffering or parameter trans
formation. Essentially, we do not want to have to require
that the language mapping translate from a protocol's in-
memory data representation to its own.

The first issue is handled by the transmittable types' mar-
shallers and accessors, which allow a protocol to marshal

and retrieve composite data types without any knowledge of
a language mapping's in-memory data representation.

The second issue is more complicated, and is shown as step
7 in Fig. 6. in which the RFC Server upcalls the skeleton to
acquire the server-side default arglist. This upcall allows the
RFC Server to offload memory management and in-memory
representation for the incoming arguments to the portion of
application code that actually knows the data type that is
expected. A consequence of this is that the RFC Server can
be reused across language mappings and is independent of
the evolution of a particular language mapping.

The arglist returned from the upcall knows how to unmarshal
itself. This means that the RFC Server does not need to
buffer the incoming message and can allow the arglist to un
marshal its components directly into the language-mapping-
specific memory representation. This is sometimes called
zero-copy unmarshalling. The number of message copies is
a major performance bottleneck in interprocess messaging.

Some language mappings, such as our experimental C++
mapping, allow an implementation to override the skeleton's
default construction of the arguments. This is typically used
when the implementation has a particular memory represen
tation that is more convenient for the application than the
default representation provided by the language mapping
(e.g., the tree structure mentioned earlier). Overriding the
construction of the default arguments removes the copy that
would normally be required to switch representations. A
language mapping can use this technique to support features
not currently found in CORBA or OLE.

The upcall is also used for two other features:
Checking the per-object and per-method security policies
Setting the thread-dispatch policy (e.g., thread priority and
whether a new thread should be launched when executing
the method).

A language mapping will typically allow the implementation
to override the skeleton's default responses to the security
policy or thread-dispatch mechanism.

Supporting Protocol Evolution
The principal obstacle to protocol evolution in most systems
is the dependency of application code on protocol-specific
APIs. In ORBlite, there are no references by the ORBlite
core or by any of the language mapping components (i.e.,
the stub, the skeleton, and the transmittable types) to any
specific protocol. Given this independence from a specific
protocol, there is no need for visibility to the programmer.

' For instance, arbitrary graphs, migratable objects, or structures that support inheritance.

TxType

StructBase Un ionBase A r r a y B a s e E x c e p t i o n B a s e

OMGStruct

StructA

OMGUnion O M G A r r a y C O R B A : : E x c e p t i o n

Fig. 7. Data types derived from
ORBIite's base class TxType.

February 1997 Hewlett-Packard Journal 69

© Copr. 1949-1998 Hewlett-Packard Co.

This actually caused a rather interesting problem. It was not
possible to just link a protocol into an ORBlite image as a
normal C++ library. Since the core supports multiple proto
cols and there are no references by the language mapping or
the core to any protocol, the linker does not have any unre
solved symbols that would pull in a protocol built as a library.
To overcome this obstacle we force the protocol to be loaded
by creating an unresolved reference at link time.

The protocols of a system evolve by dynamically or statically
linking new protocols (or new versions of old protocols)
into an ORBlite process. Updating or adding a protocol re
quires no change to the application code, the ORBlite core,
or any language mapping.

To add a new protocol, the protocol developer derives from
four abstract classes (the RFC Client, the RFC Server, the
RFC primitive marshallers, and the RPCJnfo class). The
RPCJnfo class registers the protocol with the ORBlite core
and implements the bind() call for the protocol. The bind!) call
returns an instance of the RFC Client abstract interface that
will be used to issue the apply)) call for communication with
a particular virtual process.

The RFC primitive marshallers will be used during the applyd
call to choose the on-the-wire representation for the argu
ments of a call. They are called to marshal primitive data,
such as integers and floating-point numbers, and are also
given a chance to handle composite transmittable types.
Normally, this last call merely hands marshalling responsi
bility back to the transmittable object, but the protocol can
use this hook to satisfy special externally mandated padding,
alignment, or ordering requirements as with DCE RPC's
alignment requirements for structures and unions.

Managing Object References and Binding. Fig. 6 depicts the
flow of a method invocation assuming an RFC Client has
already been selected. In its simplest form, an RFC Client is
selected when a client invokes a method on a stub. If the stub
is not already bound to a suitable RFC Client, the stub asks
the ORBlite infrastructure to find a protocol that can con
nect to the target object associated with an object reference.
A bound RFC Client can become unsuitable if the client re
quires a particular quality of service (such as authentication
or deadline-based scheduling). If the RFC Client is not
suitable, a new RFC Client must be bound or an exception
raised.

Each protocol registers with the ORBlite core a unique iden
tifier and a binding interface. Each object reference contains
a set of protocol tags and opaque, protocol-specific address
information. The tags supplied in the object references are
used by ORBlite to select a protocol that might be able to
communicate with the target object.

If the target object is accessible over multiple protocols (i.e.,
both the client and the server support more than one proto
col in common) then the protocol with the best quality of
service is selected. The current selection criterion is based
on a combination of the overhead involved for binding to the
process associated with the reference plus the overhead for
invoking the call. Assuming the process containing the object
is activated, most RFC protocols have a 10-ms initial binding
cost plus a 1-ms round-trip overhead per call. Protocols that
can reuse connections across objects are generally selected

in preference to connectionless protocols, which are se
lected in preference to protocols that require connection
setup. The actual quality-of-service parameterization can get
complicated. A named collection of collocated objects is
called a virtual process. Fig. 8 shows the situation in which
a process has exported two objects A and B in the virtual
process VP1234. The virtual process is accessible over three
protocols: HOP (Internet Inter-ORB Protocol), ONC RFC,
and the DCE-CIOP (DCE Common Inter-ORB Protocol).

In ORBlite, protocols are encouraged to cache in the object
reference the protocol-specific address of the last known
location of the virtual process containing the object. While
objects do move, the last known address is often correct
and caching it can improve performance over using an
external location mechanism.

Handling Common Scalability Issues. ORBlite was designed to
support very large numbers of object references (more than
100,000) within a single process. To improve the scalability
of location and per-object memory overhead, ORBlite pro
vides support for protocols that wish to merge per-object
cache information for objects located at the same address.
In this model of object addressing, the address information
held in an object reference is partitioned into two parts: an
address associated with a virtual process identifier and an
object identifier, which uniquely identifies the object within
the virtual process. In Fig. 8 the objects are named A@VP1234
and B@VP1234. A client that holds references to A and B
can merge the cache information for the virtual process
VP1234.

Often there are hundreds if not thousands of objects per
process, and therefore, if location information for a protocol
is based on a virtual process identifier, locating a single
object in a process will have the side effect of refreshing
the address information for all other objects at the same
address. Some protocols will lose cache information for
other protocols as the object reference is passed between
processes. This is unfortunate because the cache informa
tion must be recreated if the object is to be accessible over
other protocols. It is highly recommended that protocol de
signers allow object references to contain additional opaque
information that may be used by other protocols.

wkf01.hpl.hp.com, 2102

15.0.112.2,101,34

3ef23a2...,01ba34...

Virtual Process ID "VP1234"

Fig. 8. Using multiple profiles to locate object implementations.

70 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

ORBlite makes no requirement that a protocol use the vir
tual process abstraction, nor does it dictate how a protocol
locates an object. ORBlite does expect, however, that the
protocol's address information contained in an object refer
ence is sufficient for that protocol to locate and. if necessary,
activate the target object.

Supporting Legacy Protocols
In most cases, an object reference is created when an imple
mentation is registered with the ORBlite infrastructure.
When such an object reference leaves the process, the
opaque, protocol-specific address information associated
with each currently loaded protocol is marshalled along
with it.

In the case of legacy components, it is likely that ORBlite is
not in the server process. In this case, the binding informa
tion for the protocol must be added to the object reference
via some other mechanism. Such ad hoc object references
may be created by the legacy protocol, which obtains ad
dressing information through an out-of-band mechanism.
Alternatively, they may be acquired using normal protocols
from a special-purpose server which creates the references
from information kept in system configuration tables. How
ever such constructed object references are obtained, they
are indistinguishable from real object references and can
subsequently be handed around in normal ORBlite calls.

When a stub attempts to bind the object reference, the pro
tocol tag is matched to the protocols supported by the client
process. If the process supports the protocol, an RFC Client
is created that can interpret the request and communicate
with the non-ORBlite server using the legacy protocol (see
Fig. 9).

When ORBlite is not on both sides of the communication
link, the protocol used is referred to as a gateway protocol.
Note that gateway protocols are not only useful for commu
nicating with legacy servers â€” an ORBlite process can pub
lish itself on a legacy protocol so that it can be called by
legacy, non-ORBlite clients. This form of publication is espe
cially useful when a service needs to be accessible over both
old protocols such as DCE RFC and new protocols such as
HOP.

Supporting Evolution of the ORBlite Core
In developing and deploying the ORBlite system, it became
apparent that the typical owners of language mappings and
protocols would not be the same as the typical owners of
the ORBlite core. System developers from entities such as
divisions building medical systems, test and measurement

Non-ORBlite Process

systems, or telecommunication systems were willing to own
the portion that was particular to their domain, but each
wanted the rest of the system to be someone else's responsi
bility.

This meant that the core itself needed to be able to evolve
independently of the language mappings or protocols that
plugged into it. It had to be simple to hook new protocols
and mappings into old infrastructure and new infrastructure
had to support old protocols and mappings.

The combination of the language mapping abstraction layer,
the protocol abstraction layer, and the thread abstraction
layer has made such independent evolution extremely
straightforward.

Experience with the Framework

ORBlite was conceived in December, 1993 to support test and
measurement systems. These systems contain computers and
measurement instruments and are used in scientific experi
ments, manufacturing test, and environmental measurement.
Analysis showed that the complexity of constructing the test
and measurement system was the limiting factor in getting a
product to market. Existing systems used a number of dif
ferent communication mechanisms, and each component
tended to have an idiosyncratic (and often undocumented)
interface. Within HP, systems have used HP-IB, raw sockets,
ONC/RPC, SNMP, NCS, and NFS.

At the time, there was a desire to move toward more stable,
computer-industry-standard mechanisms, but it was unclear
which proposed standard would win in the long run. The
most likely contenders, CORBA and OLE, were still far from
being well-specified. As we began publicizing our efforts
within HP, we discovered that many others were facing a
similar dilemma â€” notably those divisions responsible for
medical systems and network management systems, each of
which had its own set of legacy communication protocols.

The first version of ORBlite became operational in August
of 1994. It supported the HyperDesk IDL/C++ language
mapping6 and two communication protocols: a thread-safe
distribution protocol based on ONC RFC, and a gateway
protocol designed to connect ORBlite services and clients to
installed medical applications using the HP CareVue 9000
RFC protocol. The framework was extremely portable,
thread-safe and reentrant, and because of the thread ab
straction layer, it compiled without change on both UNIXÂ®
and Microsoft platforms. It was used in medical, test and
measurement, analytical, financial, and telecommunication
monitoring applications.

Over the past two years, dramatic changes have occurred in
the specifications by OMG and in the OLE implementation
by Microsoft. OMG has ratified a C++ language mapping,7
two new standard communication protocols, ' and recently
an OLE language mapping for CORBA.8 In addition, Micro
soft has released a beta version of the DCOM (Distributed
Component Object Model) protocol.9

In May, 1995, the ORBlite architecture began to make its
way into external products. HP's Distributed Smalltalk was
reimplemented to support the protocol abstraction layer,

Fig. 9. I Â¡sing transport gateways.

February 1997 Hewlett-Packard Journal 71
© Copr. 1949-1998 Hewlett-Packard Co.

and the ORBlite code base was transferred to the Chelms-
ford Systems Software Laboratory to be turned into HP ORB
Plus and released to external customers in April, 1996. HP
ORB Plus, a strict implementation of CORBA 2.0, needed to
support the new OMG standard C++ language mapping,
which was previously unsupported by ORBlite. This pointed
out the need for a well-defined language mapping abstraction
layer and spurred its definition.

Since the transfer, the infrastructure has continued to evolve.
We have experimented with new protocols to support high
availability and legacy integration and new language map
pings to support potential new IDL data types and to sim
plify the programmer's job. We are also investigating imple
menting an embeddable version of the architecture, which
would have the same externally visible APIs but would be
able to run in extremely memory-limited environments.
Finally, we are looking into the declarative specification of
protocol-neutral quality-of-service requirements and capabil
ities. This would assist in selecting the appropriate proto
cols to use and in guaranteeing the desired quality of ser
vice, where this interpreted to include performance,
security, payment, concurrency, and many other dimen
sions. Following the ORBlite philosophy, we are attempting
to design this mechanism in such a way that the set of avail
able quality-of-service dimensions itself can evolve over
time without impacting existing components.

The ORBlite infrastructure has allowed developers to build
systems even as the standards evolve. The support of multi
ple language mappings, thread-safe distributed object com
munication, and multiple protocols has provided a unifying
approach to building components and systems across the
company. The key issues on the horizon will be ensuring that
the standards from Microsoft, OMG, and others consider
concurrency, streaming data types, and quality of service
parameterization.

Acknowledgments
ORBlite would not have been possible without the input and
feedback from our customer divisions and beta sites. We
would especially like to thank Dean Thompson of the Net
work and System Management Division, Rob Seliger of the
Medical Products Group, Horst Perner of the BÃ²blingen
Instrument Division, and Bill Fisher, Henrique Martins, and
Paul Harry of HP Laboratories (Palo Alto and Bristol).

We are also indebted to the ORB Plus team at the Chelms-
ford/Cupertino Systems Software Laboratory, especially
Steve Vinoski, whose comments led to the idea of the lan
guage mapping abstraction layer, Mark Vincenzes, who was
heavily involved in the design of the language mapping
abstraction layer, Bob Kukura, who implemented the inter
operable object references, and Bart Hanlon, who kept the
product development on course. Others who assisted in the
development include Kevin Chesney, who reimplemented
HP Distributed Smalltalk according to the ORBlite frame
work, Walter Underwood and Lance Smith, who developed
the thread abstraction layer, and Mark Morwood, who imple
mented the HP CareVue 9000 gateway protocol. We also
wish to thank Mary Loomis, Joe Sventek, Jeff Burch, and
Randy Coverstone for running interference for us, Harold
Brown and Walter Underwood for picking up customer sup
port when it got out of hand, Shane Fazzio for the NT build
environment, and Dick Allen for general Microsoft expertise.
And, of course, Lisa and Susan for putting up with all the
long hours.

References
1. The Common Object Request Broker: Architecture and Specifica

tion, Revision 2.0, Object Management Group, July 1995.
2. The Common Object Request Broker: Architecture and Specifica
tion, Object Management Group, Document Number 91.8.1, August
1991 (Draft).
3. OLE 2 Programmer's Reference: Volume 1 & 2, Microsoft Press,
Redmond Washington, 1994.
4. OSFDCE 1 .0 Application Development Guide, Technical Report,
Open Software Foundation, December 1991.
5. Network Programming Guide, Revision A, Sun Microsystems
Inc., March 27, 1990.
6. Second Revised Submission in Response to the OMG RFPfor
C++ Language Mapping, OMG Document Number 93-11-5, Hyper-
Desk Corporation, November 1993 (Draft).
7. S. Vinoski, editor, C++ Mapping 1.1 Revision, OMG Document
Number TC.96-01-13, January 1996.
8. J. Mischkinsky, editor, COM/CORBA Part A Corrected Revised
Submission, OMG Document Number ORB.96-01-05, January 1996.
9. C. Kindel, Microsoft Component Object Model Specification,
OMG Document Number 95-10-15, October 1995 (Draft).
UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

72 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Developing Fusion Objects for
Instruments
The successful application of object-oriented technology to real-world
problems is a nontrivial task. This is particularly true for developers
transitioning from nonobject-oriented methods to object-oriented
methods. Key factors that improve the probability of success in applying
object-oriented methods are selecting an object-oriented method,
developing a process definition, and continually improving the process.

by Antonio A. Dicolen and Jerry J. Liu

Object-oriented technology is fast approaching mainstream
status in the software community. Many software developers
are interested in becoming object-oriented practitioners.
Managers, once skeptical of its value, are considering its use
in their business enterprises. This technology is old enough
not to be a fad and new enough to be recognized by custom
ers as high technology.

Within the embedded community (i.e., microprocessor-
based instrumentation) at HP, there is significant interest in
adopting object-oriented technology for the development of
new products. However, the adoption rate of object-oriented
technology at HP has been hampered by earlier negative
experiences. Attempts to use object-oriented technology in
instruments occurred as early as the mid 1980s. At that time
the technology was in its infancy. The methods for employing
the technology were immature and the development tools
necessary for its effective use were nonexistent. Application
of the technology at that time resulted in unmet product
requirements.

These experiences hindered further development using
object-oriented technology. Object-oriented technology
became synonymous with slow speed, high risk, and failure.
This perception imprinted itself on the culture of HP divi
sions using embedded software technology. It was not until
the early 1990s that this perception began to change. As
engineering productivity became an issue for management,
software reuse emerged as a possible solution. With reuse as
a business goal, an object-oriented approach was once again
considered as a means of achieving that goal.

It is important to recognize that reuse and object-oriented
technology are not synonymous since it is possible to
achieve reuse without an object-oriented approach. Soft
ware math libraries are a prime example of this fact. This
type of reuse is called library reuse. It is the most common
and the oldest form of software reuse. Generative reuse,
such as that provided by tools like lex and yace, is another
form of software reuse. In general these tools use a common
implementation of a state machine and allow the user to
modify its behavior when certain states are reached.

Another type of reuse is framework reuse. Microsoft
Windows' user interface is an example of framework reuse,
hi framework reuse, the interaction among the system com
ponents is reused in the different implementations of the
system. There may be certain common code components
that some, but not necessarily all, of the implementations
use. However, the framework is what all these systems have
in common. Microsoft foundation classes are an example of
common code components. Menu bars, icon locations, and
pop-up windows are examples of elements in the frame
work. The framework specifies their behaviors and respon
sibilities.

One reuse project based on this approach was a firmware
platform for instruments developed at our division. The goal
was to design an object-oriented firmware framework that
could be reused for different instruments. With this project,
we hoped to use object-oriented technology to address re
use through framework reuse. We chose to use Fusion,1'2 an
object-oriented analysis and design methodology developed
at HP Laboratories, to develop our instrument framework.

In this article, we first describe the firmware framework and
our use of the Fusion process. Next we present our addi
tions to the analysis phase of the Fusion process, such as
object identification and hierarchical decomposition. A dis
cussion of the modifications to the design phase of Fusion
then follows, including such topics as threads and patterns.
We conclude with the lessons we learned using Fusion.

Firmware Framework

The new firmware framework is an application framework.
An application framework provides the environment in
which a collection of objects collaborate. The framework
provides the infrastructure by defining the interface of the
abstract classes, the interactions among the objects, and
some instantiable components. A software component, or
simply a component, is an atomic collection of source code
used to achieve a function. In many situations, a component
will have a one-to-one correspondence with a C++ object. At

February 1Ãœ97 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

other times, a component may be made up of multiple
objects implemented in C++ or C source code.

Users of the firmware framework contribute their own cus
tomized versions of the derived classes for their specific
applications. Note that the framework approach is very dif
ferent from the traditional library approach. With the library
approach, the reusable components are the library routines,
and users generate the code that invoke these routines. With
the framework approach, the reusable artifacts are the ab
stractions. It is their relationships to one another, together
with the components, that make up the solution to the
problem.

The firmware framework contains a number of application
objects. These are different kinds of applications that handle
different kinds of responsibilities. The responsibilities of
these application objects are well-defined and focused. For
example, there is a spectrum analyzer application that han
dles the measurement aspects of an instrument and also
generates data, a display application that is responsible for
formatting display data, and a file system application that
knows how to format data for the file system.

There is always a root application in the system, which is
responsible for creating and destroying other applications
and directing inputs to them. Other components of the appli
cation framework include the instrument network layer and
the hardware layer. The applications communicate with
each other via the instrument network layer. The hardware
layer contains the hardware device driver objects, which the
applications use through a hardware resource manager. Fig. 1
shows an overview of the firmware framework.

Application Layers
An application in the firmware framework is a collection of
objects organized into three layers: client interface, mea
surement results, and fundamental information. These layers
deal with information at different levels of semantics. The
semantics at the client interface layer deal with instrument
functionality while the semantics at the fundamental infor
mation layer are more related to areas such as hardware
control.

Client Interface Layer. This layer represents an abstraction
containing user-selectable parameters, the interface for
setting these parameters, the results, and the sequence for
generating the results. Thus, the client interface layer de
fines the features and the capabilities of an application. It
is responsible for maintaining application state information
and creating the requested results. This layer also contains
a collection of application parameter objects that store the
state of the application, and a dependency manager that

manages the parameter limiting and coupling dependencies.
The dependency manager also triggers events on state
changes. These state changes cause the selection of the
correct MeasurementResult to use to satisfy the user's request.

Take, for example, a simplified multimeter instrument. It
could be an ohmmeter, a voltmeter, or a current meter. To
select the voltmeter mode, the instrument software must
deselect the ohmmeter or current meter mode and then se
lect the voltmeter mode. The user interface simply turns on
voltmeter mode. The dependency manager knows that these
three modes are mutually exclusive and automatically sets
the current meter and ohmmeter modes to off. In addition,
the user could set the measured voltage to be the average
value or the rms (root mean square) value. This corresponds
to the selection of a specific MeasurementResult that provides
the information the customer is interested in.

Measurement Result Layer. This layer is made up of objects
derived from a base class called MeasurementResult. These
objects contain the measurement algorithms that specify the
methods for combining raw data into meaningful data.

MeasurementResult objects subscribe to and respond to events
in the client interface layer and in other MeasurementResult
objects. Complex measurement results contain simple Mea
surementResult objects. Examples of MeasurementResult objects
in an instrument application are SweepMR, MarkerMR, and Limit-
LineMR. These could be be measured values from a spectrum
analyzer. An example of a MeasurementResult object in a dis
play application could be a TraceDisplayltem that knows how
to read a MarkerMR and generate marker information for the
display.

The measurement result layer has no knowledge of how or
where its input data is generated. Its input can come either
from other MeasurementResults or from the fundamental infor
mation layer. It is thus free of any hardware dependencies.
This layer uses the fundamental information layer to coordi
nate the hardware activity.

Fundamental Information Layer. This layer performs the spe
cific activities that orchestrate the hardware components
to achieve a desired result. The objects in the fundamental
information layer know about specific hardware capabilities.
They keep the hardware objects isolated from each other
and also generate self-describing, hardware-independent
data. The fundamental information layer applies hardware
corrections (e.g., compensations for hardware nonlinearities)
to the measured results.

The fundamental information layer contains three major
components: a state machine with sequencing information
that controls the objects in the layer, a production object

Applicat ions

Client Interface (Cl)

Measurement Results (MR)

Fundamental Information (Fl) Fig. 1. An overview of the new
firmware framework.

74 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

that is responsible for orchestrating the hardware compo
nents, and a result object that is responsible for postpro
cessing data. Examples of fundamental information layer
objects include SweepFI. which is responsible for measuring
frequency spectra in a spectrum analyzer application, and
the display list interpreter in the display application, which
is responsible for controlling the instrument display.

Instrument Network
The instrument network contains the objects that facilitate
interapplication communication, including an Application-
Archive object, which is responsible for naming and providing
information to applications, and an ApplicationScheduler object
that schedules the threads that make up the applications.

Hardware Layer
The hardware layer contains the objects that control the
instrument hardware. These objects contain very little con
text information. There are two types of hardware objects:
device objects, which drive a simple piece of hardware, and
assembly objects, which are collections of hardware objects.
Hardware components are organized in a hierarchy much
like the composite pattern found in design patterns. Hard
ware objects are accessed through handles like the proxy
pattern described in the patterns book.3 Handles can have
either read permission or read-write permission. Read per
mission means that the client can retrieve data from the
object but is not able to change any of the parameters or
issue commands. Read-write permission allows both. Per
missions are controlled through the hardware resource man
ager.

Communication Mechanisms
Two main communication mechanisms glue the architecture
together: agents and events. Agents translate the language of
the user (client) into the language of the server (application).
Different kinds of agents apply different kinds of translations.
For instance, a client may enter information in the form of a
text string, while its target application may expect a C++
method invocation. Thus, the client would use a specialized
agent to translate the input information into messages for
the target application (the server).

Events are mechanisms used to notify subscribers (objects
that want to be notified about a particular event) about state
changes. We decided to use events because we wanted to
have third-party notification, meaning that we did not want
the publishers (objects that cause an event) to have to know
about the subscribers.

There are two types of events: active and passive. Active
events poll the subject, whereas passive events wait for the
subject to initiate the action. Our event mechanisms and the
concepts of subscribers and publishers are described in more
detail later in this paper.

Use of Fusion

In selecting an object-oriented method to guide our develop
ment, we were looking for a method that would be easy to
learn and lightweight, and would not add too much overhead
to our existing development process. We were a newly
formed team with experience in our problem domain and in

embedded software development, but little experience in
object-oriented design. We wanted to minimize the time and
resources invested in working with and learning the new
technology until we were fairly certain that it would work
for us. At the same time, we wanted to have a formal process
for designing our system, rather than approach the problem
in an ad hoc manner.

Fusion (Fig. 2) met these requirements. It is a second-
generation object-oriented methodology that is fairly light
weight and easy to use.4

For the most part, our use of Fusion was very straightfor
ward. We started with the system requirements, and then
generated a draft of the system object model and the system
operations of the interface model. We also generated data
dictionary entries that defined our objects and their inter
relationships. These documents made up the analysis docu
ments. We did not develop the life cycle model because we
did not see how it contributed to our understanding of the
system. As time went on, we discovered that we really did
not need it.

From the analysis model, we mapped the analysis onto a
design and generated the object interaction graphs to show
the interactions between the objects. We then generated the
visibility graphs and derived the class descriptions. These
were straightforward processes.

By no means did we go through this entire process in one
pass. For us, using Fusion was an iterative process. Our sys
tem was clearly too large to analyze and design in one pass.
If we had tried, we would have been overwhelmed with the
details. Instead, we made a first pass to identify the primary
objects. We then divided the system into subsystems and
recursively applied the Fusion method to each subsystem
level to discover the higher-order objects at that level.

For instance, at the topmost level we identified the major
components of the firmware framework: the client interface
layer, the measurement result layer, and the fundamental
information layer (see Fig. 3). We then sketched out the in
teractions between these components, repeated the process
for each of the subsystems, and explored the details within
each of the components of the subsystems.

We did not apply the iterative process simply to find details.
It was also a way to check the top-level analysis and design
and feed back into the process anything that we had over
looked in the higher-level passes. These checks helped to
make our system implementable. Through external project
reviews with object-oriented experts, we also discovered
other ways to look at our abstractions. For instance, with
our original analysis, our focus was on the subsystem that
performed the measurement functionalities of the instru
ments. Thus, we ended up with an architecture that was
focused on measurement. We had layers in the system that
handled the different aspects of obtaining a measurement,
but few layers that supported the instrument firmware. It
was not until later, with outside help, that we saw how the
patterns and rules for decomposing the instrument function
ality into layers applied equally well to subsystems that were

1 Design patterns are based on the concept that there are certain repeated problems in soft
ware leve l . tha t appear a t the component in te rac t ion leve l . Des ign pat te rns are de
scribed in more detail later in this article.

February 1997 Hewlett-Packard Journal 75
© Copr. 1949-1998 Hewlett-Packard Co.

Requirements

Data
Dictionary

'Extensions to Fusion Process
Fig. 2. The Fusion process for
software development.

Client Interface ICI) Layer Measurement Results (MR)

Fundamental Information (Fl)

Fig. 3. The object model for the
client interface, measurement
results, and fundamental infor
mation objects.

76 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

not measurement related, such as the display or the file sys
tem. We were also able to abstract the different functionali
ties into the concept of an application and use the same
rules and patterns to decide how the responsibilities within
an application ought to be distributed.

We found Fusion to be an easy-to-use and useful methodol
ogy. This method provided a clear separation between the
analysis and the design phases, so that we were able to gen
erate system analyses that were not linked to implementation
details.

Of course, no methodology is perfect for every situation.
We made some minor modifications to the method along
the way, as well as some extensions (see Fig. 2). which will
be described later. For instance, we omitted the life cycle
models. Since we knew that we were going to implement
our system in C++, we used C++ syntax to label our mes
sages in the object graphs and C++ class declarations when
we generated the C++ classes. We also did not use the state
diagram portions of Fusion to generate states for our state
machines. We felt that we did not need this state machine
facility and thus freed the staff from having to learn yet
another notation.

Extensions to Fusion â€” Analysis Phase

In our desire to perform object analysis more consistently,
our team developed extensions to Fusion that helped non-
object-oriented practitioners make the paradigm shift to the
object-oriented mind-set much more easily.

Many developers and managers naively assume that a one-
week class on object-oriented technology is sufficient to
launch a team into developing object-oriented software.
While this may be a necessary condition, it is not sufficient
for the successful acquisition and application of object-ori
ented technology.

Many texts and courses on object-oriented methods treat
the analysis phase as merely the identification of nouns that
are objects and their relationships with one another. Having
conveyed this, the analysis sections of these books then
focus on method notation rather than helping the novice
overcome the biggest obstacle in object-oriented analysis,
the identification of objects.

Without sufficient help, novices produce analysis diagrams
that conform to the object notation, but merely recast ideas
from either the structured analysis paradigm or from some
home-grown par,adigm. The circles of structured analysis
and design are turned into boxes and, voila, an object dia
gram is born.

Our team was not spared this experience. Fortunately, we
consulted object-oriented experts who taught us what to do.

Thus, we developed an analysis technique that could be con
sistently applied project-wide to help the developers transi
tion from structured to object-oriented analysis. This was
critical to our facilitating software reuse, the primary goal of
the project.

Object Identification
Successful object-oriented analysis begins with identifying a
model that captures the essence of the system being created.
This model is made up of behaviors and attributes that are
abstmctions of what is contained in the system to accom
plish its task.

What makes a good abstraction? The answer to this question
is critical to the effective use of object-oriented technology.
Unfortunately, identifying the wrong abstraction encourages
a process known as "garbage in, garbage out." Furthermore,
the right abstraction is critical to the ease with which a
developer can implement the object model. It is possible
to generate a proper object model that cannot be imple
mented. The key is in the choice of the abstraction.

What makes an abstraction reusable? The answer to this
question is critical to achieving the value-added feature of
object-oriented technology that is needed to achieve soft
ware reuse. Understanding the context in which reuse can
occur is important.

An analysis framework exists that can be used to guide the
identification of abstractions. This framework has the added
benefit of guaranteeing that the resultant object model de
rived from its use is realizable. Furthermore, its foundation
is based on the premise that software reuse is the ultimate
goal.

In developing our analysis, we noted the questions the
experts would ask when presented with our work. Funda
mentally, their questions focused on understanding the
responsibilities of the abstractions that we had identified.
Responsibility, it turns out, gives rise to the state and behav
ior of an object. Previous research on this topic yielded an
article5 that discusses responsibility-based design, and
describes an object-oriented design method that takes a
responsibility-driven approach. We synthesized this knowl
edge into what can be described as responsibility-based

analysis.

This new analysis technique is based on a pattern of three
interacting abstractions: the client, the policy, and the mech

anism. Fig. 4 illustrates the object model for the client-policy-
mechanism framework.

The client abstraction requests services, initiates activities
that change the system state, and queries for request-specific
status within the system.

In i t ia tes Reques t
to Change State

D e c i d e s H o w t o
Process Reques t

Execu tes
Request

Fig. 4. The object model for the
client-policy-mechanism frame
work.

February 1997 Hewlett-Packard Journal 77
© Copr. 1949-1998 Hewlett-Packard Co.

The policy abstraction decides when and how a request will
be acted upon. It accepts the client request and, based on
the responsibility given to it by the analyst, chooses the ap
propriate way in which the work will be done. In performing
this responsibility it sets the context for the relationships
between the system components.

The mechanism abstraction actually performs the change to
the system state. If the operation is a state query, it returns
the desired information. It does not return context informa
tion related to the operation being discussed. The mechanism
abstraction makes no decision as to whether it is appropriate
for it to perform an operation. It just does it.

As an example, consider creating a software application to
read the current market value of HP stock. The client-policy-
mechanism analysis of the problem, at a very high level,
yields at the minimum three abstractions: an abstraction
representing the user (the client), an abstraction that repre
sents when and how the HP stock information is to be
acquired (the policy), and lastly, an abstraction that knows
about the value of HP stock (the mechanism). The mecha
nism abstraction, when implemented, becomes the software
driver for acquiring the stock price. In one instance, the
mechanism object reads the value of HP stock from a server
on the Internet via telnet. In another instance, the mecha
nism acquires the stock value via http. (Telnet and http are
two internet communication protocols.) The policy abstrac
tion determines how often to access the mechanism. In our
case it determined how often, that is, the time interval used,
to poll the mechanism. The client object receives the resul
tant information.

From a software reuse perspective, mechanism abstractions
are the most reusable components in a system. Mechanisms
tend to be drivers, that is, the components that do the work.
Since the responsibility of a mechanism is context-free, the
work that it does has a high probability of reuse in other
contexts. Being context-free means that it does not know
about the conditions required for it to perform its task. It
simply acts on the message to perform its task. In the exam
ple above, the mechanism for acquiring the stock price can
be used in any application requiring knowledge of the HP
stock price.

Though not as obvious, using the client-policy-mechanism
framework gives rise to policy abstractions that are reusable.
In the example above, the policy abstraction identified can
be reused by other applications that require that a mecha
nism be polled at specific time intervals. Making this hap
pen, however, is more difficult because the implementer
must craft the policy abstractions with reuse in mind.

The analysis technique described above attempts to identify
client, policy, mechanism, and the contexts in which they
exhibit their assigned behaviors. When policy roles are trivial,
they are merged into the client role, producing the familiar
client/server model. This reduction is counterintuitive, since
most client/server model implementations imbed policy in
the server. However, from a software reuse point of view,
it is important to keep the server a pure mechanism. On the
other hand, it is also important to resist the temptation to
reduce the analysis to a client/server relationship. Doing so
reduces both the quality of the abstractions and the opportu
nity for reusing policy abstractions.

These three abstractions together define the context of the
problem space. Experience has shown that to produce a
clean architecture, it is important for each abstraction to
have one responsibility per context. That is, a policy ab
straction should be responsible for only one policy, and a
mechanism abstraction should be responsible for doing only
one thing.

On the other hand, abstractions can play multiple roles. In
one context an abstraction may play the role of mechanism
and in another context be responsible for policy. An example
illustrates this point more clearly. Consider the roles in a
family unit. A young child performs requests made by a
parent who in turn may have been asked by a grandparent
for a specific activity. In a different context, for example,
when the child grows up, it plays the role of parent for its
children and its parents, who are now grandparents. In this
latter setting, the parents are the policy makers, the grand
parents are the clients, and the children (of the child now
grown up) are the mechanisms (see Fig. 5).

Just as, depending on context, a specific individual plays
different roles, so it is true with abstractions. In one context
an abstraction may be a mechanism and in another, a policy.
The critical rule to keep in mind when using the client-policy-
mechanism framework is that there should only be one re
sponsibility per abstraction role.

Hierarchical Decomposition
Another example of systems that illustrate the single-role-
per-context rule is found in the hierarchy of the military
forces. In the United States, the commander in chief issues
a command, the joint chiefs respond to the command and
determine the methods and the timing for executing the
command, and the military forces complete the task. In a
different context, the joint chiefs may act as clients to the
admiral of the navy who determines the methods and timing
for the subordinates who execute the task (see Fig. 6).

In each of these examples there is a client, a policy, and a
mechanism. In one context, a person is responsible for
policy decisions. In another, the same person is responsible
for mechanism or client activities. It is this concept that

Context: Young Child

C l i e n t P o l i c y M e c h a n i s m

Child's Grandparent

V Child's Parent

V Child

V Child's
Child

C l i e n t P o l i c y M e c h a n i s m

Context: Child as Parent

Fig. unit. The client-policy-mechanism model as applied to a family unit.

78 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Context Strategic

C l i e n t Commander in Chief

Policy

Context Tact ical

 C l i e n t

Mil i tary Forces

Mechanism

Air Force
General

gives rise to the use of the client-policy-mechanism frame
work in helping to perform hierarchical decomposition of a
problem domain. The repetitive identification of roles, con
texts, and responsibilities at ever finer levels of granularity
helps identify the solution space for the problem domain.

The firmware framework team performed hierarchical
decomposition by identifying roles, contexts, and responsi
bilities. These responsibilities defined abstractions that pro
duced objects and groups of objects during the implementa
tion phase. In the early phases of our novice object-oriented
project, it was expedient to use the words object and abstrac
tion interchangeably. As the team gained experience and
became comfortable with object-oriented technology and its
implementation, the distinction between the abstraction and
its resulting objects became much better appreciated.

The analysis technique based on the client-policy-mechanism
framework resulted in a hierarchical decomposition that
yielded layers and objects as shown in Fig. 7. Layers are
groups of objects that interact with one another to perform
a specific responsibility. Layers have no interfaces. Their
main function is to hold together objects by responsibility
during analysis to facilitate system generation. For example,
many software systems include a user interface abstraction.

Ins tant ia te Abst rac t ion

Policy

Mechanism

Noninstantiable Abstraction

F i g . 7 . A n a b s t r a c t i o n d e c o m p o s i t i o n .

Fig. 6. The client-policy-mecha-
nism model as applied to a military
hierarchy.

However, upon problem decomposition, the user interface
abstraction typically decomposes into groups of objects that
collaborate and use one another to satisfy the responsibilities
of the user interface. When the abstraction is implemented,
it usually does not produce a single user interface object
with one unique interface.

Much of this may not be discovered or decided until the de
sign phase. However, knowing about it in the analysis phase
maximizes the identification of abstractions and the comple
tion of the analysis.

Creation Model
Many times discussions about abstractions resulted in intan
gibles that were difficult to grasp. To alleviate this problem,
the team supplemented Fusion with a dependency model
showing object dependencies and indicating when objects
should be created. This provided developers with a concrete
picture of which objects needed to be available first.

Consider again the HP stock price application. Let the mech
anism object be represented by object A and let the policy
object be represented by object B. Fig. 8 represents a crea
tion model for the objects under discussion. It shows that
object A has to be created before object B. This means that
the mechanism for acquiring the HP stock price is created
first. The object that determines how often to acquire HP
stock price can only be created after object A. This example
creation model is one of several that were discussed during
the analysis phase to clarify the roles of the abstractions.

Creation
Order

Information Dependency
(Implies that B Is Dependent on A|

2.

Fig. 8. A creation model.

February 1997 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

Extensions to Fusion â€” Design Phase Thread Start

We made extensions to the Fusion process with threads,
design patterns, and reuse.

Threads
Our most extensive modifications to Fusion in the design
phase were in the area of threads. Our real-time instrument
firmware systems, which are very complex, must deal with
asynchronous events that interrupt the system as well as
send control commands to the measurement hardware.
For example, measurement data from the analog-to-digital
converter must be read within a certain time period before
it disappears, and there may also be measurement hardware
that needs to be adjusted based on these dynamic data
readings.

There are also many activities going on in the system that
may or may not be related. For example, we may want to
have a continuous measurement running at the same time
that we run some small routine periodically to keep the mea
surement hardware calibrated. Traditionally, a monolithic
code construct performs all of these tasks. However, since
some of these activities may only be peripherally related, it
makes more sense to place these tasks in different threads
of execution. Each thread of execution can be thought of as
a path through the code. These threads of execution may be
either regular processes or lightweight processes, and they
may or may not share resources. In this paper, the term
thread is used to mean a thread of execution, not necessarily
to denote the preference of a lightweight process over a
regular one. For instance, it would make sense to keep the
task that performs the measurements separate from the task
that checks the front panel for user input.

Fusion provides us with information on how to divide the
behavior of the system into objects, but Fusion does not
address the needs of our real-time multitasking system. It
does not address how the system of objects can be mapped
into different threads of execution, nor does it address the
issues of interprocess communication with messages or
semaphores. Lastly, no notation in Fusion can be used to
denote the threading issues in the design documents.

Thread Factoring
We extended Fusion thread support in two ways. First, in
the area of design we tried to determine how to break the

M a r k e r M R Display Item

Display List
Interpreter

Display
Hardware

S w e e p M R

SweepFI

Hardware
/

Thread End

Fig. 9. An example of a time-thread map.

system into different threads of execution or tasks. Second,
in the area of notations we wanted to be able to be able to
denote these thread design decisions in the design docu
ments.

Our main emphasis was on keeping these extensions light
weight and easy to learn and keeping our modifications to
the minimum needed to do the job. We wanted a simple sys
tem that would be easy to learn, rather than a powerful one
that only a few people could understand.

We adopted portions of Buhr and Casselman's work on time-
thread maps to deal with thread design issues such as the
identification and discovery of threads of control within the
system.6-7'8 In our design, a time-thread map is essentially a
collection of paths that are superimposed on a system object
model (see Fig. 9). These paths represent a sequence of re
sponsibilities to be performed throughout the system. These
responsibility sequences are above the level of actual data
or control flows, allowing us to focus on the responsibility
flow without getting involved in the details of how the exact
control flow takes place. We then applied the process of
thread factoring, as described by Buhr and Casselman,
where we brought our domain knowledge to bear on decom
posing a single responsibility path into multiple paths. These
paths were then mapped into threads of execution through
out our system.

Fig. 10. An object interaction
graph (OIG). This representation
is an extension of a Fusion object
interaction graph. The letters in
front of the OIG numbers associate
a thread of execution with a par
ticular message.

80 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Cl

MR

FI

Hardware

Synchronization
Points

Hardware

C l = C l i e n t I n t e r f a c e
MR = Measurement Resu l ts
F I = F u n d a m e n t a l I n f o r m a t i o n

(a) (b)

Fig. 11. A thread map showing an example of thread factoring,
(a) Before factoring, (b) After factoring.

With the Fusion method, we had already identified the areas
of responsibility. We then used this thread heuristic at the
beginning of our design phase in those places where we had
already identified the objects in the system, but where we
had not yet designed the interaction among the objects. We
dealt with the concurrency issues at the same time that we
dealt with the object interaction graphs shown in Fig. 10.
We also performed thread factoring and divided the system
into multiple threads.

The thread map in Fig. 1 1 depicts an example of thread fac
toring an application in our system. Using Fusion, we identi
fied a path of responsibility through the objects CI, MR, and
FI (client interface, measurement results, and fundamental
information). Inputs enter the system through CI, and the
responsibility for handling the input goes through the various
layers of abstraction of MR and FI. Since information from
the measurement hardware enters the system through FI,
FI may have to wait for information. The information then
flows goes back up fundamental information to MR and then
possibly to other applications.

Clearly, the system worked fine as it was. However, we
wanted to find where we could break the thread of execu
tion and perform thread factoring. Many issues, such as

questions about performance, were raised at this point.
For example, if the thread is executing in part A of the sys
tem, it may not be available to perform services in part B
of the system. Thus, in our system, we could have a thread
pick up a user request to change the measurement hardware
settings and then traverse the code in the hardware setup
routines to perform the hardware adjustments. However,
while it was doing so, the thread would not be available
to respond to user requests. This might impact the rate at
which the system was able to service these requests. There
fore, we broke the user thread at the CI object boundary and
gave that layer its own thread.

Next, we tried to find a place where we could break the
thread that goes through MR and FI. Clearly, the place to
break was between MR and FI. Making the break at this
point to us several flexibilities. First, we would be able to
wait at the FI thread for data and not have to be concerned
with starving MR. Second, developing components that were
all active objects allowed us to mix and match components
much more easily.

Mapping a system onto threads is a design-time activity.
Thinking about the thread mapping at this stage allowed us
to consider concurrency and the behavioral issues at the
same time.

Thread Priorities
After we had identified the threads of execution, we needed
to assign priorities to the threads. Note that this is mostly a
uniprocessor issue, since priorities only provide hints to the
operating system as to how to allocate CPU resources among
threads.

In the firmware framework project, we took a problem de
composition approach. We reduced the architecture of our
system to a pipeline of simple consumer/producer patterns
(see Fig. 12). At the data source we modeled the analog-to-
digital converter (ADC) interrupts as a thread producer gen
erating data that entered the system with FT as consumer.
FT, in turn, served as the producer to MR, and so forth.
Inputs may also enter the system at the user input level via
either the front panel or a remote device.

We decided to give the highest priority to those threads that
introduced data into the system from the physical environ
ment so that they could respond to events in the environment
quickly. Those threads included the user input threads and
the ADC interrupt thread.

Spectrum Analyzer Applicat ion

Measurement
Hardware

Producer

Fundamental
Information

Producer Consumer

Consumer

Measurement
Results

Producer

Display Application

Producer

Display Item

â€¢â€¢â€¢

Consumer

Consumer

Display List
Interpreter

m f m

Producer

Display
Hardware

Consumer

Fig. used An example showing some of the producer/consumer chains used in the firmware framework project.

February 1997 Hewlett-Packard Journal 8 1
© Copr. 1949-1998 Hewlett-Packard Co.

For thread priorities in the rest of the system, we considered
three possibilities: that the producer priority was higher
than that of the consumer, that the two priorities were
equal, or that the consumer priority was higher than the
producer priority. We ruled out setting the priorities to be
equal because that would be equivalent to having no policy
and would just let the systems run without any direction.

Making the producer priority higher than that of the con
sumer made sure that data was generated as quickly as pos
sible. Unfortunately, since we continuously acquired data in
our system, our data generation could go on forever unless
we explicitly stopped the process and handed control to the
higher level.

Alternatively, if we gave the consumer thread the higher
priority, it would have priority over the producers with
regard to CPU time. However, without the data generated
from the producers, the consumers would block and be un
able to run. Thus, if the data consuming chain had a higher
priority than the data producers, the threads would run
when data was available for them to process. This elimi
nated the necessity for the consumers to give up the CPU
explicitly.

Threads and Synchronization
Another thread issue we considered was how to present the
thread communication and synchronization operating system
primitives to our system. We saw two alternatives. We could
either expose the system level operating system calls to the
system or encapsulate the operating system primitives inside
objects so that the rest of the objects in the system could
talk to these objects. For other system objects, it would be
like communicating with nonoperating system objects.

We chose the latter approach. We created operating system
objects such as tasks and semaphores to encapsulate oper
ating system functionalities. This approach allowed us to
model the operating system primitives as objects so that they
would fit in well with the Fusion process and give us a clean
model and good code reuse. This approach also had the side
affect of isolating our system from the operating system
API. There were drawbacks with this approach, but they
were not major. Reference 7 contains more details about
both of these approaches.

Thread Notation
We used thread notations within our Fusion diagrams in two
ways. First, we used the thread map notations to show
sketches of thread flows (Fig. 11). These simple notations
gave us a general idea of the thread activities in the system.
We adopted only a few of the notations that Buhr and
Casselman use, employing the paths and waiting places that
show the behavior of the system. We did not use their nota
tion to handle the different types of synchronizations be
cause we did not feel that this was the level of detail appro
priate for what we needed. This method gave us an overview
of what the system looked like without bogging us down in
the details of how communication and synchronization were
implemented.

For our second method of using thread notations, we ex
tended the Fusion object interaction graph (OIG) notations
to describe threads more formally (Fig. 10). We added letters

in front of the OIG numbers to associate a thread of execu
tion with a particular message. We also experimented with
coloring the threads.

Design Patterns
Design patterns have become popular in the object-oriented
world only recently. Design patterns evolved from the real
ization that certain software engineering patterns are re
peated. These patterns are not at the implementation level,
but at the level of component interactions. The idea here is
to look at software design problems at a higher level so that
recurring patterns can be identified and a common solution
applied.

For instance, there is often a need in software systems for
one or more objects to be notified if the state changes in
another object. For example, if the value in a database
changes, the spreadsheet and the word processor currently
displaying that value need to change their displays. The
observer pattern, described in the design patterns book,3
shows how to set up the relationship among these objects.
It describes when a pattern may be appropriate for solving
the notification problem and some implementation hints and
potential pitfalls.

Design patterns came to our attention a year or so into the
project. By then, we had already completed most of the de
sign. Therefore, we did not use them as templates to build
the system from scratch. Instead, we used the design pattern
catalog to validate designs. In looking through our system,
we found potential applications for over half the patterns in
the design patterns book. We then compared our design with
those patterns.

We found patterns to be useful for design validation. In some
places, they helped us improve the design. For instance, the
hardware components are accessed through hardware han
dles, which are very similar to the protection proxies de
scribed in the patterns book. The hardware architecture
itself is an example of a composite pattern. A composite
pattern is an organization of objects in which the objects are
arranged in a tree-like hierarchy in which a client can use
the same mechanism to access either one object or a collec
tion of objects. The descriptions of composite patterns in
the design patterns book also helped us to identify and clarify
some of the issues related to building composites.

In other areas in the system, we found our analysis to be
more detailed because of our extensions to identify objects
using the client-policy-mechanism framework. We have an
event mechanism in the system to inform some component
when an action has occurred. This mechanism is very similar
to that of the observer pattern mentioned earlier. The ob
server pattern describes two components: a publisher and
a subscriber, which define a methodology for handling events.

Our event pattern is slightly more sophisticated. We placed
the event policies into a third object, so we have three com
ponents in our event pattern: a subscriber, an actor (pub
lisher), and the event itself. Actors perform actions, and
subscribers want to know when one or more actors have
performed some action. The subscriber may want to be noti
fied only when all of the actors have completed their actions.
Thus, we encapsulated policies for client notification into

82 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

the event objects. An actor is only responsible for telling
events that it has performed some action. Events maintain
the policy that determine when to notify a subscriber.

This arrangement gives more flexibility to the system be
cause the design-patterns approach allows the policy for
notification to be embedded in the actor. In our case, we
also have the freedom to customize the policy for different
instances of the same actor under different situations.

We feel that the main advantage of not using the patterns
until the system design is done is that the developer will not
fall into the trap of forcing a pattern that resembles the
problem domain into the solution. Comparing our problem
domain with those described in the patterns book helped us
to understand more about our context and gave us a better
understanding of our system. Also, as many other object-
oriented practitioners have reported, we also found patterns
to be a good way to talk about component interaction design.
We were able to exchange design ideas within the team in a
few words rather than having to explain the same details
over and over again.

Scenarios
Part of our system requirements included developing sce
narios describing the behavior of the system. Scenarios
describe the system output behavior given a certain input.
These scenarios are similar to the use cases described in
reference 1 and are part of the Fusion analysis phase. How
ever, for people not conversant in object-oriented methods,
these scenarios often do not have much meaning because
the descriptions are far above the implementation level.
Whenever we presented our analysis and design models, our
colleagues consistently asked for details on what was hap
pening in the system at the design level. Although Fusion
documents provided good overviews of the system as well
as excellent dynamic models for what happened in each
subsystem, people still wanted to see the dynamics of the
entire system.

To explain how our system works, we developed scenarios
during the design phase. These scenarios were a collection
of object interaction graphs placed together to show how
the system would work, not at an architectural level but at a
design and implementation level. We used the feedback we
received from presenting the scenarios to iterate the design.

The Fusion model is event-driven, in that an event enters the
system and causes a number of interactions to occur. How
ever we had a real-time system in which events happen
asynchronously. We needed scenarios that were richer than
what the object interaction graph syntax could provide.

For example, our instrument user interface allows the user
to modify a selected parameter simply by turning a knob,
called the RPG (rotary pulse generator). One attribute by
which our customers judge the speed of our instruments is
how quickly the system responds to RPG input. The user
expects to get real-time visual feedback from the graphics
display. The empirical data suggests that real-time means at
least 24 updates per second. As the layers were integrated,
we looked at the scenario in which the user wanted to tune
the instrument by changing a parameter (e.g., center fre
quency). This scenario led to questions such as: How would
the system's layers behave? What objects were involved?

What were the key interfaces being exercised? Were the
interfaces sufficient? Could the interfaces sustain the rate of
change being requested? What performance would each of
the layers need to deliver to achieve a real-time response
from the user's point of view? The answer to these questions
led to a refinement of both the design and the implementa
tion.

These design-level scenarios provided a better idea of what
would happen in the system and presented a more dynamic
picture. Since the scenarios encompassed the entire system,
they gave the readers a better view of system behavior. We
found them to be good teaching tools for people seeking to
understand the system.

We also found that instance diagrams of the system objects
helped us to visualize the system behavior. A diagram of the
instantiated objects in the system provided a picture of the
state information that exists in the system at run time.

Reuse
To build reuse into a system, the development method has
to support and make explicit the opportunities for reuse.
The analysis extensions described earlier serve to facilitate
the discussion of reuse potential in the system. The design is
driven by the biases encoded into the analysis.

At the end of the first analysis and design pass, an entity
relationship diagram will exist and a rudimentary class hier
archy will be known. The more mature the team in both
object-oriented technology and the domain, the earlier the
class hierarchy will be identified in the development method.
Additional information can be gathered about the level of
reuse in the class hierarchy during the analysis and design
phase. These levels of reuse are:

â€¢ Interface reuse
â€¢ Partial implementation reuse
â€¢ Complete implementation reuse.

The ability to note the level of reuse in the work products of
the development method is valuable to the users of the object
model. A technique developed in this project was to color
code the object model. Fig. 13 shows two of these classes.

Except for defect fixes, complete implementation classes
cannot be modified once they are implemented. This type of
color coding aids developers to know which components of
the system can be directly reused just by looking at the
object model.

Process Definition

The pursuit of object-oriented technology by a team necessi
tates the adoption of formal processes to establish a mini
mum standard for development work. This is especially true
if the team is new to object-oriented technology. Various
members of the team will develop their understanding of the
technology at different rates. The adoption of standards
enables continuous improvements to the process while
shortening the learn time for the whole team.

In the firmware framework project, we adopted processes
to address issues like communication, quality, and schedule.
We customized processes like inspections and evolutionary
delivery to meet our needs. It is important to keep in mind

February 1997 Hewlett-Packard Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

Assembly

Tes tResu l tse l fJes td

+

stand
stopl)
preset))
boolean
bucket Jnterval(t ime)
t i m e s a m p l e i n t e r v a l o
setup!)

â€” Classes that provide interface reuse.

= Classes that provide complete implementat ions.

Fig. coded An objects. of an object model of the hardware layer that is coded to show the reuse status of the various objects.

that processes described in the literature as good practices
need to be evaluated and customized to fit the goals of a
particular team. The return on investment has to be obvious
and the startup time short for the process to have any posi
tive impact on the project.

Coding standards, for example, can help the team learn a new
language quickly. They can also be used to filter out program
ming practices that put the source code at risk during the
maintenance phase of the project. They also facilitate the
establishment of what to expect when reading source code.

Evolutionary Delivery
We partnered with HP's Software Initiative program to de
velop what is now known as EVO Fusion.9'10 EVO is a man
agement process that constructs a product in small incre
ments. After each increment is completed, the development
process is examined for improvements that might contribute
towards the successful completion of the next increment.

Each increment can have an analysis, design, code, and test
phase. The product evolves over time into the desired prod
uct through repeated execution of small development cycles
that add greater and greater functionality. This process
helps to focus the team and increases the probability that
schedules will be met.

Inspections
Much has been written about the value of inspections to
software development. Though much of the literature
focuses on product quality, the inspection process also iden
tifies (that is, makes explicit) other issues. Once identified,
these issues can be quantified into high, medium, and low
risk factors. Their impact on the success of the project can
be ascertained and the appropriate action can be taken to
manage their resolution in a timely manner. Institution of an
inspection process thus provides the project manager and
the project team with an additional means by which to
gather information pertinent to project completion.

In a project, the use of a development method like EVO
Fusion, coupled with an inspection process, facilitates the
discussion of issues that relate to requirements, software
architecture, software integration, and code development.
The benefits to the team are significant because these pro
cesses enable members to understand the product and its
functionality long before the debug phase begins.

Legacy Systems
In many cases, it is not possible to generate a system com
pletely from scratch without using legacy code. The firm
ware framework project was no exception.

84 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

We found that the most straightforward approach is to en
capsulate the legacy code inside objects. This works for
systems that provide senices to client objects. It also works
for legacy subsystems that act as clients, such as language
parsers. These parser components are not good framework
citizens because they already have their own definition of
the server interface they expect, which may not coincide
with the object-oriented design.

We feel that the proper approach is to perform the object-
oriented analysis and design without regard for the legacy
system first, and then encapsulate the legacy code inside the
proper objects. There is a strong temptation to design the
object-oriented system around the existing legacy code, but
in our experience the legacy system may not have been de
signed with the appropriate object-oriented principles. Thus,
allowing it to affect the analysis may lead to a faulty design.

Summary
Fusion is the result of the evolution of a long line of soft
ware development processes. Like its predecessors, Fusion
has its benefits, problems, and areas for improvement.

Benefits. The benefits we derived using Fusion include:
Lightweight and easy to use. We found Fusion to be easy to
learn. There is lot of guidance in the process that leads the
user from step to step. It is not mechanical, but the user will
not be wondering how to get from one step to the next.
Enforces a common vocabulary. Often in architecting
systems, the different domain experts on the team will have
their own definitions of what certain terms mean. Generating
data dictionary entries at the analysis phase forces everyone
to state their definitions and ensures that misunderstandings
are cleared up before design and implementation.
Good documentation tool. We found that the documents
generated from the Fusion process served as excellent docu
mentation tools. It is all too easy, without the rigor of a pro
cess, to jump right in and start coding and do the documen
tation later. What often happens is that schedule pressure
does not allow the engineer to go back and document the
design after the coding is done.
Hides complexity. Fusion allows a project to denote areas
of responsibility clearly. This feature enables the team to
talk about the bigger picture without being bogged down in
the details.
Good separation between analysis and design. Fusion en
forces a separation between analysis and design and helps
in differentiating between architectural and implementation
decisions.
Visibility graphs very useful. The visibility graphs are very
useful in thinking about the lifetime of the server objects.
Simply examining the code all too often gives one a static
picture and one does not think about the dynamic nature
of the objects.

Problems. The problems we encountered with the Fusion
method included:
Thread support. Although the Fusion method models the
system with a series of concurrent subsystems, this ap
proach does not always work. The threads section of this
article describes our problems with thread support.
Complex details not handled well. This is a corollary to
Fusion's ability to hide details. Do not expect Fusion to be
able to handle every last detail in the system. In instrument

control, there are a lot of complex data generation algo
rithms and interactions. Although in theory it is possible to
decompose the system into smaller subsystems to capture
the design, in practice there is a point of diminishing re
turns. It is not often feasible to capture all the details of the
design.

Areas for Improvement. The following are some of the areas in
which the Fusion method could be improved:

â€¢ Concurrency support. We would like to see a process inte
grated with the current Fusion method to handle asynchro
nous interactions, multitasking systems, and distributed
systems.

â€¢ CASE support. We went through the Fusion process and
generated our documentation on a variety of word process
ing and drawing tools. It would have been very helpful to
work with a mature CASE tool that understands Fusion.
Some of the functionalities needed in such a tool include:
guidance for new Fusion users, automatic generation of
design documents, and automatic checking for inconsisten
cies in different parts of the system. Throughout the course
of our project we evaluated several Fusion CASE tools, but
none were mature enough to meet our needs.

Acknowledgments
The authors wish to thank the other members of the firm
ware framework team: David Del Castillo, Manuel Marro-
quin, Steve Punte, Tony Reis, Tosya Shore, Bob Buck, Ron
Yamada, Andrea Hall, Brian Amkraut, Vasantha Badari, and
Caroline Lucas. They lived the experiences and contributed
to the knowledge described in this paper. We'd like to also
recognize Todd Cotton from the HP Software Initiative
(SWI) team who, as a part-time team member, helped us
develop our EVO process. Our gratitude also goes to the rest
of the HP SWI team for the support they gave us during the
project. Thanks to Derek Coleman for helping us use Fusion.
Finally, we would like to express our appreciation to Ruth
Malan; without her encouragement this paper would not
have been possible.

References
1. 1. Case Object-Oriented Software Engineering: A Use Case

Driven Approach, Addison- Wesley, 1992.
2. D. Coleman et al., Object-Oriented Development: the Fusion

Method, Prentice Hall, 1994.
3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns, Addison-Wesley, 1995
4. R. Develop R. Letsinger, and D. Coleman, Object-Oriented Develop

ment at Work: Fusion in the Real World, Prentice Hall, 1996.
5. R. Wirfs-Brock, "Object-Oriented Design: A Responsibility-Driven
Approach," OOPSLA '89 Conference Proceedings, pp. 71-75.
6. R.J.A. Buhr and R.S. Casselman, "Timethread-Role Maps for
Object-Oriented Design of Real-Time and Distributed Systems,"
OOPSLA '94 Conference Proceedings, pp. 301-316.
7. R.J.A. Buhr and R.S. Casselman, Use of CASE Maps for Object-

Oriented Systems, Prentice Hall, 1996.
8. R.S. Casselman et al., Notation for Threads, SCE-92-07, Depart
ment of Systems and Computer Engineering, Carleton University,
September 1992.
9. T. Cotton, "Evolutionary Fusion: A Customer-Oriented Incremental
Life no. for Fusion," Hewlett-Packard Journal, Vol. 47, no. 4,
August 1996, pp. 25-38.
10. T. Gilb, Principles of Software Engineering Management,

Addison-Wesley, 1988.
Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

February 1997 Hewlett-Packard Journal 85

© Copr. 1949-1998 Hewlett-Packard Co.

An Approach to Architecting
Enterprise Solutions
A frequently mentioned ailment in healthcare information management
is the lack of compatibility among information systems. To address this
problem, HP's Medical Products Group has created a high-level model that
defines the major architectural elements required for a complete
healthcare enterprise information system.

by Robert A. Seliger

HP's Medical Products Group (MPG) produces medical
devices such as patient monitors and ultrasound imaging
systems, which obtain physiological data from patients, and
clinical information systems, which document, retrieve, and
analyze patient data.

In December 1994, MPG directed its architects to define and
drive the implementation of an open, standards-based MPG
application system architecture that would enable:

â€¢ Improved application development productivity
â€¢ Faster times to market
â€¢ Seamless integration of applications developed by MPG

and its partners
â€¢ Integration with contemporary and legacy systems in an

open standards-based environment

To meet these objectives and to help establish MPG as a
leader in healthcare information systems, the Concert archi
tecture was conceived. Concert is a software platform for
component-based, enterprise-capable healthcare informa
tion systems.

The primary objective of Concert is to enable the decomposi
tion of healthcare applications and systems of applications
into sets of interconnectable collaborative components.
Each component implements important aspects of a com
plete healthcare application or system of applications. The
components work together to realize fully functional appli
cations and systems of applications.

A component-based approach was pursued to leverage the
fundamental precepts of good software engineering: decom
position, abstraction, and modularity. We reasoned that an
architecture that facilitated decomposing large complex sys
tems into modular components and abstracted the details of
their implementation would contribute to development pro
ductivity. The ability to use these components in a variety of
applications would expedite time to market.

Carefully specified component interfaces would enable flex
ible integration of components in a seamless manner. Openly
publishing these interfaces would enable components devel
oped by MPG's partners to intemperate with MPG's compo
nents. The judicious use of healthcare and computing stan
dards would enable integration with systems based upon
other architectures.

Concert was developed by MPG in conjunction with HP
Laboratories and the Mayo Clinic, a strategic MPG partner.
It serves as the technical cornerstone for MPG's group-wide
initiative to provide better enterprise solutions for its cus
tomers. Key aspects of the architecture have also been ap
plied by HP Laboratories and the Mayo Clinic to develop a
prototype electronic medical record system.

Concert also serves as the foundation for the technical de
velopment effort of the Andover Working Group for Open
Healthcare Interoperability. This MPG-led healthcare indus
try initiative was been formed to achieve enterprise-wide
multivendor interoperability (see page 89).

Concert currently consists of the following elements:
â€¢ A general reference model that organizes the architecture of
healthcare enterprise information systems into a key set of
architectural ingredients

1 A model for software components that can be implemented
using CORBA-based1 or MicrosoftÂ® OLE-based2 technologies

1 An initial set of Concert components including their inter
faces and the policies that govern the patterns of interaction
between the components

1 An approach for organizing Concert component interfaces
to represent component application development, system
integration, and system management capabilities

1 An initial information model that provides an object-oriented
description of healthcare terms, concepts, entities, and rela
tionships to establish a common clinical basis for Concert
components and the applications developed from them.

Concert Components
To facilitate the description of the Concert component
model, an example of one of the components that MPG has
developed will be used. The component, called an enter
prise communicator, is at the heart of the enterprise com
munication framework (ECF) that MPG is developing in
conjunction with other healthcare vendors and providers
that form the Andover Working Group.

An enterprise communicator is a software component that
facilitates healthcare standards-based data interchange
between healthcare systems and applications within a
healthcare enterprise. Different types of communicators
encapsulate different healthcare standards. The particular

86 February 1997 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

HL7
H L 7 ^ H A p p l i c a t i o n

Appl icat ion

I Network

Affi l iated Laboratory

H17
Application

CORBA

HL7
Application

OLE Automation

Enterprise
Communicator

HL7
Application

HL7
Application

Hospital Patient Care Unit

Chara cters/TCP Characters/TCP

H L 7 H L 7
A p p l i c a t i o n I I A p p l i c a t i o n

Patient Clinic

Fig. 1. A healthcare system based
on enterprise communicators and
the HL7 data interchange standard.

communicator that MPG is currently developing encapsu
lates the Health Level 7 (HL7) 2.2 data interchange standard.3
Fig. 1 shows a system based on enterprise communicators.

HL7 is a widely used healthcare electronic data interchange
standard. Its primary contribution is the specification of a
set of messages that healthcare systems can exchange to
share clinically relevant data. Examples include messages
that enable applications to obtain the results of laboratory
tests from the applications that have access to this data.

The HL7 standard is not intended to be particularly prescrip
tive in terms of messaging technology or how messaging
services should be implemented. This has led to a variety of
custom HL7 implementations based on a range of technolo
gies. A typical implementation employs specially formatted
character-encoded messages and point-to-point network or
serial-line connections. An example of a character-encoded
HL7 message is shown in Fig. 2.

In the Concert-based model, applications employ enterprise
communicators to broker their HL7 data interchange needs.
Enterprise communicators provide applications with the

necessary messaging capabilities, such as guaranteed mes
sage delivery and multicasting (i.e., sending several messages
at once). Enterprise communicators also present HL7 mes
sages as object-oriented abstractions using both CORBA and
OLE automation technologies. This eliminates the need for
applications to parse the messages to extract the encoded
data.

hi addition, for legacy integration, communicators support
TCP/IP interfaces through which applications that are not
object-oriented can send and receive character-encoded HL7
messages.

Why Components?
The concept of component-based systems has become
increasingly popular over the last several years. There are
currently many definitions of components and a variety of
tools and technologies have emerged to facilitate developing
component-based systems. Many of the general concepts
about what a component is are similar across all of these
definitions. However, there appears to be little agreement
on the granularity of a component. Granularity depends on

MSHI *- \& I HP I HOSPITAL I AWG I GENERAL CLINIC I 19960827 13 53 I

ADTAAO1I 56844_1_AAITI2.2 I <cr>

EVNI A01 1 199608271353 I <cr>

PIDI1I I 102983 I3106|DOEAJOHNAASRAA I I19450112IMI

AWGATESTAAAA-ANDOVERAGROUPAAAA |H|1400 MAIN STA ROOM 6263 AANDOVERA

MAA10810I 1(508)555-10221862-10221 I Ml CAT I 14563 I 838-29-4938 I

<13>NK1I 1IDOE JOAN B ICHDI101 MAIN STREET APTA2AABOSTONAMAAO54 04 I

(508)555-00001 (508) 555-0000 I <cr>

NK1I2IDOE JANEAAAA ICHDI434 NORTH STREET A APARTMENT 5BACHELMSFORDAMAA

054011(508)555-11111 I <Cr>

PV1|1|I|1NA107 AIELEI I I 36 AHEARTATHOMASAMDA A A I I I IMX I I I ill IYI

36AHEARTATHOMASAMDAAA I 01 14563 I

I I 1WA102AW| 1 1996081910151 <cr>

PV2 I |s| |<cr>

basically means...

Admit and John Doe Sr , whose wi fe is Joan and next -of -k in is Jane, and whose physic ian is Dr . Hear t , to Genera l
Clinic Fig. 2. A character-encoded HL7

admit patient message.

February 1997 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

Components and Objects

Objects enable concepts to be developed using abstractions that repre
sent real-world and computing concepts. The objects are interconnected
to form programs that perform useful tasks. Components are also objects.
However, components have the added dimension that they represent an
economically and technologically practical way to organize and package
an object-oriented system. A component system can be developed, mar
keted, licensed, maintained, and enhanced on a component basis.

In an this sense, components are just "bigger" objects. With this
bigness comes the need, and fortunately, the technical feasibility to
support computing capabilities that are impractical for traditional "small"
objects. For example, most component development technologies enable
a component's external interfaces to be accessed through several differ
ent programming languages, and these accesses can often be performed
across a network. It would be overwhelming to support these capabilities
for every small object. However, supporting the capabilities becomes
practical when objects are organized into bigger components.

Components can also be more cost-effective to develop and maintain
than small objects. This is because components do more. Similarly, com
ponents can be more efficient to develop and maintain than traditional
monolithic programs. This is because components don't try to do every
thing.

In a well-architected system, each component will provide enough func
tionality to warrant development as a standalone entity that can never
theless be combined with other components to form fully functional
applications. In a well-architected system, each component will be a
candidate for being catalogued as a product and marketed as an essen
tial building block for an overall system.

Examples of healthcare-related software components include a compo
nent standard describes and correlates medical terms based upon standard
schemes for encoding medical terminology, a component that checks
whether medications being ordered for a patient might interact in an
adverse manner, a component that enables viewing physiological wave
forms in a manner that preserves aspect ratios and display size even
when viewed on different display devices, and a component that enables
applications to send and receive patient data based upon healthcare
electronic data interchange standards.

how much functionality a component represents and how
much code and complexity are embodied within a compo
nent implementation.

In Concert, components tend to be medium-to-large-grained
objects.4 For example, a Concert component might be imple
mented by what is traditionally thought of as an executable
program, as is the case for an enterprise communicator.
Alternatively, a group of Concert components might be
packaged within a library. However, a Concert component
is rarely as small as a single C++ or Smalltalk object.

In general, a Concert component is a portion of an applica
tion system that:

â€¢ Implements a substantial portion of the overall application
system's capabilities

â€¢ Represents its capabilities via one or more modularly
defined binary interfaces

â€¢ Can be developed independently of other components
â€¢ Is capable of efficiently communicating with other

components over a network

â€¢ Is the fundamental unit of configurability, extensibility,
replaceability, and distribution

â€¢ Is the basis for an open system through the publication of
its interfaces.

In other words, a Concert component represents a signifi
cant portion of an overall application system, but is small
enough to enable efficient and flexible composition with
other components to form full-fledged applications and
application systems.

A key motivation for a component-based architecture is that
it makes accomplishing the following architectural objec
tives much easier.

â€¢ Simplification. Components can make the approach to
decomposing a complex application system into smaller
simpler pieces tangible and precise.
Replaceability. Existing components can be readily replaced
with new implementations as long as the new component
supports the same interfaces as the component it replaces.

â€¢ Configurability. Components provide a modular, precise,
and manageable basis for configuring a system.
Extensibility. New components with new capabilities can
be added to an existing system in a modular and organized
manner. The risk of breaking existing capabilities that are
well-encapsulated in existing components is minimized. In
addition, new capabilities that are added to existing compo
nents can be represented by new component interfaces that
represent the new capabilities without requiring changes to
existing interfaces.

â€¢ Independence. The interfaces between components define
the "contract" between components that can enable inde
pendent development as long as the contracts are respected.

â€¢ Scalability. Components can be physically distributed or
alternatively collocated depending upon the computing
infrastructure available and desired price/performance
profile. The component interfaces define what components
communicate about, and this communication can be realized
using same-machine or network-based mechanisms.
Stability. A variety of tools, technologies, and design methods
can be employed to implement the components, thereby
enabling evolution of the implementation technology, tools,
and methods without violation of the architecture.
Business-Centeredness. The efficient and timely realization
of the a objectives listed above is the basis for a
significant competitive advantage.

To achieve these objectives, Concert specifications primar
ily emphasize how application systems are assembled from
components. This approach provides a great deal of latitude
for application developers to define what capabilities their
application systems will actually provide. Perhaps most im
portant, the architecture also enables product teams to put
more focus on developing the content of their applications
because they can leverage a standard approach to
constructing their application systems.

Component Interfaces
Concert components implement object-oriented interfaces.
An object-oriented interface is a named grouping of semanti-
cally related operations that can be performed on a compo
nent. A component that implements a particular interface
implicitly supports the functionality contract implied by the
interface.

88 February 1997 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

The Andover Working Group

To establish a common implementation of data interchange standards in
healthcare, in 1996 HP's Medical Products Group led the formation of the
Andover Working Group (AWG) for open healthcare interoperability. This
program is an industry-wide effort to accelerate plug-and-play interoper
ability between healthcare computing systems. The lack of compatibility
among information systems is one of the most frequently cited informa
tion technology problems facing the healthcare industry today.

In 1996, the core membership of AWG included fifteen healthcare ven
dors and three healthcare providers. Each of these organizations contrib
uted engineering resources to work on defining the enterprise communi
cation framework (ECF) for HL7. In addition, in 1 996, the AWG supporting
membership included over one hundred additional vendors and providers.
These organizations attended early review meetings of the ECF and pro
vided technol AWG with feedback and guidance about its processes, technol
ogy, and future directions.

The objective of the AWG is not to define new standards for interoper
ability. Instead, the AWG seeks to increase the commonality among the
implementations of relevant healthcare computing standards. Standards
such as HL7 walk a fine line between being prescriptive enough to be
useful and being flexible enough to be widely accepted in the industry.
However, inherent in this flexibility is the opportunity for implementers of
the standard to make different implementation decisions. Different and
often that implementation decisions reduce the likelihood that
systems will interoperate.

To overcome these problems, the AWG has developed an implementation
of HL7. in implementation consists of detailed message profiles in
which send specific HL7 messages that ECF-based applications can send
and receive are described. The software that enables applications to use
these messages easily is also provided in the implementation. The core
of this implementation is a software component called an enterprise
communicator.

The derivation of ECF message profiles involved the iterative refinement
of an represen object-oriented information model by the AWG represen
tatives. The enterprise communication framework software follows the
component architecture described in this article. The result is a high
degree of interoperability in the form of data interchange between
healthcare systems without the usual system integration costs.

The first example of ECF-based interoperability was demonstrated in
October 1996 when twelve applications developed by six different ven
dors, to on three different computing platforms, were modified to
use the ECF software. The applications were able to participate in a
detailed scenario that simulated a patient's admission to a hospital,
ordering of a series of laboratory tests and reporting of the correspond
ing results, and an eventual discharge from the hospital. This level of
interoperation was the first concrete proof of the effectiveness of the
AWG as an organization and of the ECF as truly enabling software.

For example, among the interfaces that an enterprise com
municator implements is the ApplicationConnect interface. This
interface enables an application to connect to and disconnect
from a communicator. Only connected applications can send
and receive HL7 messages.

Components that implement similar capabilities represent
these capabilities via the same interface. For example, any
Conceit component that requires its client applications to

explicitly connect and disconnect might implement the
ApplicationConnect interface. The effect of connecting and dis
connecting would depend upon the type of component, but
the policies governing when and how to use the interface
would be the same.

Each object-oriented interface enables a subset of a compo
nent's overall capabilities to be accessed and applied. A
component's full set of object-oriented interfaces enables a
component's full array of capabilities to be accessed and
applied. For example, another interface that is implemented
by an enterprise communicator is MessageManager. This inter
face enables a connected application either to create a new
message that can be populated with data and sent or to
obtain a message that the communicator has received from
another application.

Many of the details of the Concert model for software com
ponents come from the OMG's Object Management Archi
tecture (OMA). The most notable OMA ingredient is the use
of the OMG Interface Definition Language (OMG IDL) for
specifying a Concert component's object-oriented interfaces
independent of the technology used to implement the com
ponent and its interfaces.

OMG IDL serves as the software equivalent of the schematic
symbols that electrical engineers use to diagram circuits.
For example, the symbol for an AND gate clearly conveys its
role without relying on descriptions of the underlying cir
cuitry or fabrication technology (e.g., CMOS, TTL, etc.).

OMG IDL provides a standard and formal way to describe
software component interfaces. Further, when applied
within the context of an overall component-based architec
ture, formally specified interfaces can be used to create a
level of precision that helps ensure that important architec
tural features and principles are reflected in products that
are eventually developed. For example, components that
constitute a particular product can be examined to see if
they correctly implement the necessary interfaces. The role
that interfaces play in adding precision to a software archi
tecture is illustrated in Fig. 3.

Another advantage of defining interfaces is that they can
provide a shorthand for describing components. The Con
cert specification currently consists of less than forty inter
faces. Just the name of the interfaces that a component im
plements is often all one needs to understand how to use the
component.

For example, the enterprise communicator interface Imple-
mentationlnformation allows access to implementation informa
tion about a communicator, including its product number,
software revision, and when it was installed on its current
host. The interface Hostlnformation provides access to informa
tion about the computer that is hosting an enterprise com
municator, including the host's network name and the type
of operating system it supports.

A simplified OMG IDL specification for an enterprise com
municator's ApplicationConnect interface is shown in Fig. 4.
This specification conveys the following information about
the interface:
The name of the interface is ApplicationConnect.
The interface supports two operations: connect and discon
nect. An application that wants to connect to an enterprise

February 1997 Hewlett-Packard Journal 89
© Copr. 1949-1998 Hewlett-Packard Co.

Abstract Architecture

Precise

Concrete

Fig. 3. An illustration of the role that interfaces play in adding
precision to a software architecture.

communicator performs the connect operation on the com
municator's ApplicationConnect interface. An application that
wants to disconnect performs the disconnect operation. In
either case, the application identifies itself by setting an
appropriate value for the input parameter which_application.

â€¢ Under normal conditions, neither operation returns any data.
However, they can raise exceptions. An operation that has
encountered an abnormal condition can communicate this
fact to its client by raising an exception. When an operation
completes, its client is able to determine whether or not the
operation completed normally or has raised an exception.

Different types of exceptions can be defined, each of which
represents a different abnormal condition. The exception
UnknownApplication indicates that the application identified by
the parameter which_application is not known to the enterprise
communicator. The exception AlreadyConnected indicates that
the application that is trying to connect is already connected
to the enterprise communicator. The exception NotConnected
indicates that an application that is trying to disconnect is
not currently connected to the enterprise communicator.

Another important characteristic of the ApplicationConnect
interface is that it inherits the definition specified for the
interface Composable, which is described in the next section.

Multiple Interfaces. Additional ingredients of the Concert
model for components were leveraged from Microsoft's
Component Object Model (COM). While much of COM de
scribes the low-level conventions for performing operation
invocations on objects, COM also motivates the concept of
representing a component through multiple distinct inter
faces.

In COM, a client must explicitly ask a component whether it
supports a particular interface before it can access the inter
face. If the component does indeed support the interface,
the client can use it. Otherwise, the client must seek another
interface, or try to make do with the interfaces that are sup
ported. See "Multiple Interfaces in COM" on page 91.

Although typically described by Microsoft as a way to evolve
component functionality through the addition of new inter
faces and as a way to simplify perceived problems with ob
ject-oriented inheritance, the real strength of multiple inter
faces is the ability to model complexity.

For example, in Concert, components represent significant
subsets of the overall functionality of an application or sys
tem of applications. It would be unwieldy to try to represent
a component's complete set of capabilities through a single
interface. It would be unnatural in many cases to impart
modularity by organizing these interfaces using inheritance.

As a simple real-world example of multiple interfaces, con
sider the interfaces that might represent an employee who is
also a father and a baseball fan. It is unnatural to model this
employee's interfaces using an inheritance relationship
because the interfaces are semantically unrelated. It would
be awkward to define a single employee-specific interface
because the advantages of developing distinct models for
the concepts of the employee as father and baseball fan
become obscured. However, modeling the employee as
supporting multiple interfaces is essentially how things
work in the real world.

Concert's adaptation of the COM concept of multiple inter
faces is referred to as interface composition. This is be
cause a component's functionality is represented by a com
position of distinct interfaces. The interfaces that the
component chooses to include in this composition can vary
over time as a function of the component's internal state or
because its underlying implementation has changed.

The interfaces in a Concert interface composition are re
ferred to as composable interfaces. In Concert, all compos-
able interfaces are derived from the base interface Composable.

interface ApplicationConnect : Composable {

exception UnknownApplication {};

exception AlreadyConnected { } ;

exception NotConnected { } ;

void connect (in Application! dent i f ier which_application)

raises (UnknownApplication, AlreadyConnected) ;

void disconnect (in Applicationldentif ier which_application)

raises (UnknownApplication, NotConnected) ;

Fig. 4. An example of an interface
definition.

90 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Multiple Interfaces in COM

In Microsoft's Common Object Model (COM), all components implement
the interface IDnknown. This interface specifies only a few methods
(method is the COM term for operation), including the method Query-
Interface. A client of a component uses Querylnterface to interrogate
the component to determine if it implements an interface of interest to
the client.

Querylnterface accepts a single input parameter, which is used to indi
cate indicated interface of interest. If the component supports the indicated
interface, a reference to the interface is returned. This reference can
then be used by the client to access the component via the interface. If
the interface is not supported, then the special value NULL is returned.

Conceptually, within a running instance of each COM component, a table
of the interfaces implemented by the component is maintained. When
the component instance is initialized, its table is populated with the
names Associated all the interfaces that the component implements. Associated
with each name is a pointer to the code that implements the particular
interface.

When compo is called by a client of the component, the compo
nent consults its table of implemented interfaces. If the interface being
queried about is implemented, then the reference that is returned con
tains interface. that essentially points to the implementation of the interface.
This and enables the component's client to access the interface and
therefore its underlying implementation.

In COM, the interfaces that are supported by a component cannot change
once the component has been initialized.

The interface Composable provides functionality similar to
COM's lUnknown:. It supports a method similar to Querylnterface
which enables a component's client to determine whether the
component implements a particular interface, and if so, to
obtain a reference to the interface. For convenience, this
querying capability is available via any Composable interface.

In addition, every component implements the interface Prin
cipal, which is also derived from Composable. In addition to
providing a way for a component's clients to interrogate a
component about the interfaces it supports, Principal also
enables clients to obtain a list of all of the interfaces that the
component currently implements. For some clients the ability
to obtain a list of available interfaces is preferred to the
technique of interrogating for interfaces one at a time.

The primary difference between COM and Concert in terms
of support for multiple interfaces is that in COM, the con
cept only applies to components implemented using COM-
based technology. In Concert, the concept has been easily
layered on top of a variety of technologies, including COM,
CORBA, and even Smalltalk and C++. This enables Concert
to apply a powerful architectural notion in a technologically
flexible manner. Fig. 5 shows an enterprise communicator's
implementation of multiple interfaces.

Channels. Concert's object-oriented component interfaces
are primarily intended to be implemented using CORBA-
based or OLE-based technologies. However, certain compo
nent capabilities are better suited for other representations
that are not necessarily object-oriented or for implementa
tions using technologies other than CORBA or OLE. For

example, backwards compatibility with existing standards
or stringent performance constraints might dictate the use
of other technologies.

In Concert, a component can have interfaces that are not
object-oriented. These interfaces are referred to as channels.
Channels generally do not offer access to the full set of com
ponent capabilities that are represented by a component's
object-oriented interfaces, but they do provide an architec
tural basis for representing alternative communication
mechanisms.

For example, an enterprise communicator implements
TCP/IP channels over which it can send and receive charac
ter-formatted HL7 messages. Contemporary applications use
a communicator's object-oriented interfaces to send and
receive messages, but legacy applications can use a commu
nicator's TCP/IP channels.

Interface Perspectives. During the early development of Con
cert, most of the emphasis was on the interfaces that repre
sented a component's application capabilities. These inter
faces support the ability to use the component to construct
healthcare applications.

For example, the application capabilities of an enterprise
communicator are represented by the following three inter
faces:

> The to connect interface enables an application to
connect to and disconnect from a communicator. When
connected, an application can send or receive HL7 mes
sages. When disconnected, messages will be buffered for
the application until the next time it connects.

> The message manager interface enables an application to
create new empty messages that it can fill with data and
send and also receive messages that have been sent by
other applications.
The message filter interface enables an application to
instruct an enterprise communicator to filter messages
based upon their data content. Messages that are filtered
are not delivered to the application. For example, an appli
cation might only want to receive messages that pertain to
a particular patient. The enterprise communicator will send
to the application only those messages that pertain to the
indicated patient.

It was soon recognized that the application construction
interfaces represented only one perspective for defining a

Â© Â © Â © 0 Â ©
HL7 Enterprise Communicator

AC
CU
HI
II
LM

= App l ica t ion Connec t
= C o m m u n i c a t o r
= Host In format ion
= Implementat ion In format ion
= L o g M a n a g e r

M F = M e s s a g e F i l t e r
M M = M e s s a g e M a n a g e r
O C = O b j e c t C o n f i g u r a t o r
O P = O p e r a t i o n a l C o n t r o l
P R - P r i n c i p a l

Fig. 5. An enterprise communicator's multiple interfaces.

February 1997 Hewlett-Packard Journal 9 1

© Copr. 1949-1998 Hewlett-Packard Co.

component's interfaces and that there were other perspec
tives that needed to be represented. Specifically, within a
healthcare enterprise, there are at least two other perspec
tives that need to be considered:

â€¢ System integration perspective, which is concerned with
interconnections within and between systems for the pur
pose of establishing interoperation (typically based upon
relevant standards).

â€¢ System management perspective, which is concerned with
how systems are configured, monitored, administered, and
maintained to preserve desired availability and performance
levels.

These perspectives turn out to be extremely important as
soon as one starts to address basic issues such as how a
component is started or halted, or how data within a compo
nent is accessed by systems and applications that are not
component-based.

For example, with an enterprise communicator, there are
two system integration interfaces. One is an object-oriented
interface that enables a communicator to send and receive
binary-encoded HL7 messages. The other is a TCP channel
that enables a communicator to send and receive ASCII-
encoded HL7 messages.

For system management purposes, a communicator supports
seven object-oriented interfaces and one SNMP-based chan
nel. The breadth of functionality needed to manage a com
municator exceeds the functionality needed to use it for
application purposes. While this situation was surprising at
first, it is consistent with the notion that enterprise-capable
components must be inherently manageable. For example, it
would not be practical to deploy communicators throughout
an enterprise if there were no way to monitor their perfor
mance and intervene from a central location when problems
occur.

The concept of organizing a component's interfaces in terms
of application construction, system integration, and system
management perspectives is one of the cornerstones of Con
cert. It is this way of thinking about components that has
enabled Concert to provide the basis for components that
are truly capable of enterprise-wide deployment and use.

In general, the interfaces that make up these three perspec
tives can be thought of as providing an architectural founda
tion for component use. Well-defined interfaces organized in
a useful way lower the obstacles to using components in a
black-box manner to construct systems.

There is, however, a fourth perspective defined in Concert.
The component customization perspective represents the
concept that a component may have internal interfaces that
are similar to traditional application programming interfaces.
These interfaces can be used to modify a component's func
tionality. The important distinction from an architectural
perspective is that the customization interfaces offer access
to a component's implementation and should not be con
fused with the external view offered by the interfaces for
the other perspectives.

Hardware analogies for software systems are often a
stretch, but the following analogy for a Concert component
and its various interface perspectives has proven to be
effective. A Concert component has sophistication that is

roughly analogous to a printed circuit board, such as a
sound card that one might plug into a personal computer.
The sound card provides application construction interfaces
for programs that enable the user to create and control
sounds.

The sound card also provides:
â€¢ System integration interfaces so that the sound card can be

used in conjunction with external MIDI-based instruments
(i.e., instruments that support the Musical Instrument Digital
Interface) or with an audio speaker

â€¢ System management interfaces, often in the form of LEDs
that indicate the card's status and DIP switches that enable
configuring the card (e.g., setting interrupt vectors or reset
ting the card's processor)

â€¢ Customization interfaces, such as sockets for additional
memory chips, which enable changing the functionality
of the card, and unlike the card's other interfaces, expose
aspects of the card's implementation.

These key component-interface perspectives are illustrated
in Fig. 6.

The principles for organizing and defining interfaces for
Concert components in terms of these perspectives has
proven to be productive and straightforward to implement
using both CORBA and OLE automation technology. The
work to conceive, specify, and then hone the definition of
each interface can be considerable, but the rewards can be
substantial.

A well-thought-out and stable set of interface definitions has
enabled component design and implementation to proceed
at a brisk pace. Further, the interface definitions form a rich
basis for an interesting form of reuse referred to as specifi
cation reuse. Some of the behaviors for new types of com
ponents can be reused from the set of interfaces and associ
ated patterns of use that have already been defined.

The use of a common and relatively constrained set of com
ponent interfaces across MPG and its partners will enable
components to be developed by a single MPG team, by teams
in different MPG organizations, and by one or more of MPG's
partners. These interfaces also serve as the basis for open
MPG systems. The interface definitions are the key points at
which the systems can be opened.

Components and the Architecture Reference Model
The truly important dimension of Concert is not the under
lying component model, which is a hybrid of COM and OMA
concepts, but the actual components that have been con
ceived and specified. The first step towards conceiving Con
cert components was not the development of the compo
nent model, but rather the development of a high-level
model for healthcare enterprise information systems.

This model, referred to as the MPG architecture reference
model (ARM), identifies the key architectural ingredients for
healthcare enterprise-capable applications and systems of
applications.5 These ingredients do not prescribe particular
system features or technologies. Instead, they organize the
architectural content of a software system into ten major
groupings.

Each group describes a broad, but nevertheless partitionable,
subset of an overall system architecture. The structure of a

92 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Application
Developer

Application Interfaces

Component
Customizer

Systems Integration Interfaces

Â £
S y s t e m '

Integrator

System Management Interfaces

*
System

Administrator Fig. 6. Component interface per
spectives.

system is represented by seven facets, shown on the front of
the cube shown in Fig. 7. The characteristics of the system
that are transitive across all of the facets are illustrated as
three horizontal layers that are stacked behind the facets.

The technique for graphically depicting these characteristics
as slices was adapted from work on open distributed pro
cessing developed by HP's former Network Systems Archi
tecture group.

The alignment of the boxes that represent the facets is im
portant. The facets that represent system features that are
most readily perceived by the end user are located towards
the top of the illustration. Adjoining facets have significant
interrelationships and influences on each other.

An application in the traditional, intuitive sense is also illus
trated as a slice, but this slice only cuts through the three

inner facets. In an actual system, the software that corre
sponds to these facets typically implements application-
specific behaviors.

hi contrast, the four outer facets represent the functional
elements of an application system required to relate applica
tions to each other in a coherent and consistent manner.
These of facets also represent the functional elements of
an application system needed to relate the overall system to
the healthcare enterprise.

The final element of the architecture reference model is the
recognition that an application system is designed, developed,
implemented, and supported using tools. The degree to which
the design, development, implementation, and support activi
ties are productive is a direct function of the degree to which
complementary tools are employed.

Applicat ion
System

Characteristics

Healthcare
Application
Knowledge

+
Design and

Development
Tools

Control (Maintainabil i ty, Supportabihty, etc.)
Trust (Security, Reliability, etc.)

Function (Performance, Usability, Localizabil ity, etc.)

Common User Environment
Metaphor, Look and Feel, Logon,
Navigation, Use Context

Application User Interfaces
Present Application Data to the User
Enable User to Control Functionality

Appl icat ion Models, Services, Agents

â€¢ Application Data Processing Rules
â€¢ Common Application Services
â€¢ User Task and Workflow Automation

Appl icat ion Data Management
Applicat ion Data Storage
Application Data Integrity
Mediate Data Exchange wi th
Other Systems

Enterprise Communication
â€¢ Interchange Formats
â€¢ Communication Profiles

Applicat ions
+

Systems

Fig. 7. Concert reference model.

February 1997 Hewlett-Packard Journal 93
© Copr. 1949-1998 Hewlett-Packard Co.

Further, for each of these activities, the degree to which
insightful knowledge of the healthcare enterprise is applied
governs the degree to which the resulting application sys
tem meets the business needs of the system's supplier and
satisfies the requirements of the clinical, operational, and
business customers in the healthcare enterprise.

Outer Facets (in Fig. 7). The enterprise communication facet
represents the capability for a system to interchange data
with other systems in the enterprise based upon relevant
healthcare standards. Important elements of this facet are
the data formats and communication profiles that make up
the interchange standards.

The information model facet represents the "conceptual
glue" that is essential for deploying an application system
within an enterprise. The information model identifies and
defines the entities and concepts that are important in the
domain of the healthcare enterprise. The information model
also helps ensure that these entities, concepts, terminology,
and clinical processes have a consistent interpretation
across all parts of an application system and the enterprise
as well as between different but related applications.

The system management facet represents the "operational
glue" that enables the uniform and consistent management
of the system. This includes capabilities to:

â€¢ Turn the system on and off
â€¢ Assign passwords for users
â€¢ Install new software revisions
â€¢ Configure the functionality of the software
â€¢ Detect, enunciate, and log faults
â€¢ Intervene to correct faults
â€¢ Adjust performance parameters and resource utilization

levels
â€¢ Provide end-user help-desk functionality.

The common user environment facet defines a unifying meta
phor that governs user interactions with the underlying ap
plications. For example, for an electronic medical record
application system, the metaphor might represent patient
data as sections in a virtual three-ring binder.

Under the umbrella of the metaphor, the common user envi
ronment also defines the healthcare-specific approach to
application user interface look and feel (e.g., clinically
appropriate colors, fonts, terminology for common menu
selections, etc.), and it provides the highest-level controls,
which enable the user to navigate to and between applica
tions.

hi addition to these specification-oriented elements, the
common user environment includes capabilities that enable
the user to log on once to an application system and to
establish and manage a use context which is applicable to
any of the underlying applications. The use context can in
clude settings that identify the user and describe the user's
clinical role, characterize the user's physical location, and
indicate the user's natural language preference and default
preferences for application appearance and control settings.

For example, a physician's use context might include the list
of patients that the physician is responsible for. This list
resides within the implementation of the common user envi
ronment but is accessible to any application in the system.

As the physician switches between applications, applications
are provided with information about the patients on the list
without requiring the physician to reestablish the list. The
continuity provided by the use context enables applications
to achieve a high degree of coordination and cooperation.
These qualities benefit the physician by providing a simpler
and more efficient user interface.

Inner Facets. The outer facets of the architecture reference
model define an enterprise environment within which an
application participates. An application is described in terms
of three basic application facets. Representing an application
in this manner makes it possible to factor the responsibilities
of an overall application into more granular categories.

While reminiscent of the increasingly popular multitier client^
server systems (in which application processing is distributed
across a client and a hierarchy of servers), the three applica
tion facets are not about client/server computing. Instead,
they are about decomposing application software into three
distinct sets of responsibilities. This decomposition serves
as the basis for scalable and extensible application imple
mentations that can be deployed on a single computer or on
a two-tier or N-tier client/server network.

The application user interface facet is responsible for pre
senting application data to the user and for providing mech
anisms that enable the user to interact with and control the
application, hi this regard, the fundamental role of the user
interface is to transform computer-based data into tangible
entities that a user can perceive and manipulate. While this
is clearly the overall responsibility of an application, the
user interface portion of an application is focused on the
ergonomic and human-factor aspects of this transformation.

The models, services, and agents facet is responsible for:
â€¢ Models

Validating user inputs before performing significant appli
cation data processing tasks and then performing these
tasks
Mediating the transformation of application data into con
cepts and organizations that facilitate populating a user
interface with application data

> Services. Providing application-level facilities that are com
mon among but independent of any particular application

â€¢ Agents. Automating individual user tasks and multiuser
workflows.

The models, services, and agents facet represents a substan
tial How of an application's overall responsibilities. How
ever, this facet is notably devoid of any responsibilities
pertaining to the direct interaction with the user or with
underlying data sources. This facet is neither responsible for
the "face" put on the application data, nor is it responsible
for the application data. Instead, this facet serves as the
bridge in the transformation of data into entities that are
tangible to the user.

The application data management facet is responsible for:
â€¢ Storing application data that is important to the user and
the enterprise
Mediating the exchange of application data with other
systems in the enterprise

94 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Enforcing the information-rnodel-based rules that ensure
the semantic integrin- of the application data over time.

This facet is easily confused with a database. However, a
database is a particular technology, while application data
management represents a set of related responsibilities. For
example, application data could be stored in a file or come
from a real-time feed (e.g., a patient-connected instrument)
as well as from a database.

Further, one of the key responsibilities of this facet is to
enforce fundamental data integrity rules (often referred to
as business rules). This includes rules based upon the
semantics of the data as identified in the information model
(e.g., the valid set of operations that can be performed on a
medication order) and enforcement of more basic consis
tency rules (e.g., ensuring that updates that affect multiple
data items are reliably performed on all of the data items).

Application System Characteristics. The final part of the archi
tecture reference model describes various characteristics of
an enterprise application system that requires the participa
tion of all of the architecture reference model facets.

Functionality is the characterization of an application system
in terms of user-perceived qualities that are independent of
any one application but must be adequately supported by all
applications. These qualities include performance, usability,
and localizability.

Trust is the characterization of an application system in
terms of its responsibilities to provide users with a system
that is secure, reliable, and available when needed.

Control is the characterization of an application system in
terms of its capabilities to be administered, managed, sup
ported, and serviced.

Status and Conclusions
Concert was first applied in a deployable prototype elec
tronic medical record (EMR) system that was developed by
HP Laboratories and the Mayo Clinic for use at Mayo's Roch
ester, Minnesota site. Protoypes based upon four types of
Concert application components were developed for this
project.

The architecture was subsequently applied by MPG to the
development of the enterprise communication framework
(ECF). An implementation of the enterprise communication
framework has been provided to the core members of the
Andover Working Group.

For both of these projects CORBA and OLE technologies
were employed and development proceeded on HP-UX*and
WindowsÂ®-NT platforms. Substantial practical experience
was obtained, and several important architectural refine
ments were introduced. Most notably, however, the key con
cepts described in this paper were exercised and validated.

More recently, Conceit has served as the basis for a variety
of information system product development activities within
MPG. The specifications, experiences, and some of the soft
ware developed for the EMR and the ECF are being applied.

It typically takes an object-oriented software developer
about two weeks to become familiar enough with the archi
tecture to begin productive development of Concert-based
software. Indications are that once this investment is made,
the specifications provide a solid, self-consistent basis for
system development.

The next challenge is to further optimize development pro
ductivity through the creation of Concert component devel
opment frameworks. These frameworks would provide code
skeletons for partially implemented components. Armed
with an appropriate set of productivity tools, application
developers would be able to add the necessary features to
the skeletons to create fully functional components. Tools
would also help the developer "wire" the components to
gether to form an application or a system of applications.

Acknowledgments
A substantial number of people were involved in the concep
tualization and specification of Concert. It is through the
efforts of all of these people, working together in concert,
that we were able to develop a comprehensive architecture
in a relatively short amount of time. The participants in
clude: Don Goodnature, Mike Higgins, Jeff Perry, Jaap Suer-
mondt, and Charles Young from HP Laboratories Analytical
and Medical Lab, Ran Ahmed, Philippe De Smedt, Louis
Goldstein, Jon Gustafson, Pierre Huyn, Joe Martinka, James
Navarro, Tracy Seinknecht, and Joe Sventek from HP Labo
ratories Software Technology Lab, Tom Bartz and Dean
Thompson from the HP Network and Systems Management
Division, Robin Fletcher, David Fusari, Jack Harrington,
Nico Haenisch, and Geoff Pascoe from MPG R&D, Bob And
ers, Steve Fiedler, Peter Kelley, Anthony Nowlan, and Mike
Stern from MPG HealthCare Information Management Divi
sion R&D, Rick Martin and John Silva from the MPG Cus
tomer Services Division, and Alfred Anderson, Pat Cahill,
Calvin Beebe, Woody Beeler, Tom Fisk, and Bruce Kaskubar
from the Mayo Clinic. In addition, the author would like to
thank Mark Halloran, HP MPG R&D manager, for his enthu
siastic support and executive sponsorship of this work.

References
1. Common Object Request Broker: Architecture and Specification,
Revision 1.2, Object Management Group, 1993.
2. K. Press, Inside OLE, Second Edition, Microsoft Press,
1995.
'Â¿.Version 2.2, Final Standard, Health Level Seven, December 1,
1994.
4. Concert Component Architecture: Component Concepts and
Base Rev. Version 1.0, Concert Document 95-11-1, Rev. A,
November, 1995.
5. MPG Architecture Reference Model, Version 1.0, Rev. A, MPG
Architecture Document 95-9-3, last revised September 21, 1995.

HP-UX 9. and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products
UNIXÂ® is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/OpenÂ® is a registered trademark and the X device is a trademark of X/Open Company
Limited in the UK and other countries.
Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

February 1997 Hewlett-Packard Journal 95

© Copr. 1949-1998 Hewlett-Packard Co.

Object-Oriented Customer Education
As customers require more trusted advice to solve their business
problems, the choice of education solutions has become a strategic
issue that often precedes and directs the choice of technologies.

by Wulf Rehder

Whether you buy a laptop computer or a lawn mower, you
expect to learn how best to use it. For some products it is
enough to skim the user's manual. For others you need to
attend a class. In the past, product training was considered
an attribute of product support. It came bundled with the
product and was an expected feature like a power cord or
the certificate of warranty. This situation has changed. When
you buy a toy, batteries are no longer included. Similarly,
education is no longer automatically included and free with
the large, enterprise-wide solution purchases customers
make today.

In such enterprise projects even laptop computers must be
designed to work together with many other products that
are often distributed in networks over large entities or even
different countries. In these environments, training on how
to use a single, standalone product is no longer sufficient.
Customers now expect more comprehensive services, rang
ing from training in soft skills such as design methodologies
and project management to proficiency in hands-on imple
mentation and online troubleshooting.

The complexity of solutions, the size of customer projects,
and the fact that computer systems are increasingly mission-
critical for most businesses have led to the unbundling of
product training and to the creation of entirely new product
lines for professional consulting and education. Training has
changed from being a product accessory to being a product
itself. Customer education has grown from under the um
brella of product support to becoming a large and profitable
industry by itself. In this paper, I will focus on the way HP's

customer education, as part of the HP Professional Services
Organization, is meeting the new challenges of developing
and delivering to customers a cohesive suite of object-
oriented education products.

Managing the Transition
It is a truism that every act of learning is a passage from
knowing less to knowing more. However, customer education
is more ambitious. This ambition shows itself in three ways.
First, it is not enough to fashion data and information into a
consistent, meaningful body of knowledge. While in a train
ing class, customers must be led from "knowing what" to
"knowing how" and being able to apply the new learning to
their real-life problems. More knowledge must be trans
formed into more skills. However, there is a second, comple
mentary aspect to learning: learning means not only acquir
ing more skills, but also acquiring different skills for new
tasks in a changing environment.

The successful management of adapting to this change and
the transition to higher levels of knowledge are the objective
of customer education for all job roles as shown in Fig. 1.

Executives must be made aware of the risks and benefits
the change to new technologies and processes entails for
the entire company. With this awareness they will acquire
the confidence, authority, and credibility to lead their busi
ness into previously uncharted terrain. Managers obtain the
understanding and expertise to make the right technical
decisions for their teams to be successful. Designers and

Transit ion Educational Services

Executives

Managers

Professional
Teams

End Users

Fig. 1. Enterprise-wide approach
to managing transitions.

96 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. HP's people, process, and technology approach.

developers master new professional crafts that help them
apply the lessons learned for the creation of new products.
Finally, end users realize the concrete benefits of the new
technologies and processes.

The third defining component for contemporary customer
education is its comprehensiveness. Fig. 2 specifies the
three branches of a company's assets that need to transition
together in a balanced way: its people, processes, and tech
nology. All three are centered on serving common business
objectives.

This brief sketch has far-reaching practical consequences
for the positioning, development, and delivery of customer
education solutions. They do not merely add value to a prod
uct, but create their own suite of added values. Fig. 3 shows
this value chain from the point where the actual interaction
with the customer occurs (for instance, course content re
search and development phases are left out). As appropriate,

some phases will be traversed repeatedly, depending on the
results obtained so far and on the quality measures (e.g.,
completeness, level of detail) applied in the particular
phase. Therefore, the links of the chain need to be inter
preted as cycles. Under the name of education life cycle
services, this simplified framework articulates the fact that
customer education teaches how to manage change and
how to evolve new skills. Customer education has become
the industry' of facilitating the transition from Tennyson's
"blind and naked ignorance" to St. Thomas Aquinas' skill
of man "to know what he ought to do."

Know Thyself
Before answers about the right path to object technology
can be given, the right questions about the starting point, the
path itself, and the goals have to be asked. To evaluate the
starting point, HP's customer education services have devel
oped a workshop called skills gap analysis.1 Fig. 4 shows a
step-by-step outline of this course. During the analysis, which
is done jointly with the customer, the following documents
are created to serve as the basis for the next transition
steps:

1 A written statement about business needs
â€¢ An inventory of current skills
1 A list of additional skills to close the gap between current
skills and identified needs

â€¢ Validation of findings and determination of action items.

A skills gap analysis addresses a company's overall training
needs and by itself does not result in a detailed training
plan. To be more relevant to the discussion, we will focus on
objects. The customized, object-specific version of a skills
gap analysis is the object-oriented transition assessment
workshop.2 Similar to the skills gap analysis, the customer
and at least two of HP's educational and technical consul
tants work through three sets of questions, assessing:

Phases
Scoping the

Change
Needs

Assessment
Education
Planning

E d u c a t i o n S o l u t i o n s ^ ^ E v a l u a t i o n /
D e l i v e r y ^ F F o l l o w - T h r o u g h

Services

Steering the Change

Education Transition
Planning

Skil ls Gap Analysis

Demographic Analysis

Custom Curriculum
Planning

Role-Specif ic
Curriculum Paths

Custom Development

Education Delivery

Survey and Feedback

Project Retrospective

tonq Term Planning

Managing for
Productivity

m^m

Results and Quality Measures

Fig. 3. Kdiicatinn l i fe cycle services.

February 1!>!)7 Hewlett-Packard Journal 97

© Copr. 1949-1998 Hewlett-Packard Co.

Agreement on Engagement
Procedures and Expectations

Understand Your Business
Requirements

Ã­
Determine Future

Ski l ls Needed
Inventory and Evaluate

Current Skills

Def ine Missing Knowledge,
Skills, and Attitudes to
Perform Future Tasks

â € ¢ M M

Questions about Using Objects1

What are the goals for your transition to objects?
â€¢ Following the general evolution of the software industry
â€¢ Benefiting from external libraries of reusable components
â€¢ Making the resulting software easier to modify
â€¢ Improving time-to-market for new products
â€¢ Decreasing software development costs.

What is your company's current exposure to object technology?
â€¢ Novice level
â€¢ Some people have general knowledge
â€¢ Some people have used object-like technology, for example by

programming in Ada
â€¢ The company has successfully completed a small object-oriented project
â€¢ The company has successfully completed a substantial object-oriented

project (more than 300 classes) using a hybrid language like C++, CLOS,
or a purely object-oriented language like Eiffel or Smalltalk.

What is your company's current software development process?
â€¢ It develops most of its software in-house
â€¢ It outsources its software development
â€¢ It has a recommended software development process (such as

the waterfall model, the spiral model, prototype based, etc.).

Reference
1 . B. Meyer, Object Successâ€” A Manager's Guide to Object Orientation, Its Impact
on the Corporation and its Use for Reengineering the Software Process, Prentice
Hall, 1995.

Final Quality Assessment

Fig. 4. Skills gap analysis methodology.

â€¢ The goals of a transition to objects
â€¢ The present skill level and object exposure
â€¢ The customer's current software development process.

A selection of some of these questions is enumerated on this
page. In the transition assessment workshop, the skills gap
analysis culminates in the preparation of a list of the ten
biggest obstacles for a successful move to objects, jointly
agreed upon by the customer and HP's consultants. These
obstacles are different from company to company, but they
typically fall into the categories of management commitment,
organized barriers, fear of change, scarcity of resources, and
loyalty to legacy systems. Rarely are the inhibitors purely
technical; the switch to new object-oriented tools and
products is less problematic than overcoming the "soft"
issues just mentioned.

This list of obstacles is the document upon which HP's team
bases its recommendations for a concrete object adoption
agenda, including job-specific curriculum paths. Such a de
tailed plan is the final outcome of the object-oriented transi
tion assessment workshop.

After the workshop, with the enthusiasm usually quite high,
many software development teams want to start their first
object-oriented development project without delay. At this
juncture, the HP consultant assumes the role of a mentor
and monitors the speed, direction, and results of the transi
tion that is now under way. See "Starting an Object-Oriented

Project" on page 100, which summarizes a few caveats col
lected from many mentoring sessions.

Four Pillars of Soft Skills
A glance at the life cycle in Fig. 3 shows that the next phase
is education planning. Based on the skills needs, curriculum
paths are created that match specific jobs and roles designed
to fill the needs. If, for example, system modeling skills are
missing, the joint HP-customer team may define the new role
of a system architect and recommend a series of courses to
retrain designers to become architects. Once the roles are
identified, the solutions will be designed and implemented.
Experience has shown that this is not yet the place to select
technologies (such as tools and implementation languages)
or products (middleware, databases). Instead, the success
of a transition to object technology appears, as our case
studies with customers have shown, to be determined by the
mastery of four soft skills: software architecture,3 analysis
and design methodology,4 project management,5 and sys
tematic reuse.6

Software Architecture. Of the four skills mentioned above,
architecting a software system is perhaps the most difficult,
yet the most important and least well-understood skill. For
the sake of brevity, three of the most important aspects of
this difficulty are discussed here. First, there are at least
four different views of a system architecture that emphasize
different but overlapping concerns of high-level system de
sign (see Fig. 5).

98 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Code Architecture Physical Architecture

Execution Architecture

P r o c e s s o r x P r o c e s s o r y

Conceptual Architecture

Components,
Interfaces,

Policies, and
Guidelines

Fig. 5. Four architectural views.

Second, there is the choice of a viable reference architec
ture an an enterprise, which is a blueprint realization of an
architecture that best fits a given business purpose.

One of the most successful frameworks for such a reference
architecture is the so-called three-tier architecture (see
Fig. 6). Once the tiers with their subsystems and interface
specifications have been defined, it is possible to map prod
ucts into the framework. For example:

â€¢ VisualBasic, Powerbuilder, or VisualWorks for the presenta
tion layer

â€¢ C++ to build application programs whose components may
be running on distributed servers

1 A database or data warehouse like HP's Depot/J for the data
management system

â€¢ Softbench for the development environment
> The Object Request Broker (ORB) software for the infra

structure logic that manages the communication among the
distributed software components.

However, it is advisable to postpone these technology choices
until after a thorough analysis and design methodology has
been applied based on the particular customer requirements
and the anticipated use cases of the planned system. See the
article on page 73 for a definition of use cases.

The third difficulty is the lack of a generally accepted nota
tion that is simple to apply and learn and yet rich enough to
express the complex semantics of objects and their inter
actions in the different layers of a software system. HP and
its partners are working together in committees chartered
by the Object Management group (OMG) to formulate such
a unified architectural language.

Analysis and Design. Better known and more mature than
architectural models are the software analysis and design
methods. They are often called methodologies, to distinguish
them from the methods (i.e., the procedures or functions)
owned by objects. A methodology defines a process that
allows the division of work into distinct phases, each of
which has well-defined exit criteria (e.g., finishing a graphic
object model, drawing all dependency diagrams, and agreeing
on design documents). The goal is to translate informal cus
tomer requirements into a more formal structure that then
guides the implementation. Besides structured analysis and

structured design other methodologies include the waterfall
life cycle model of software development and HP Fusion.7

Project Management. Once the software architecture has been
chosen (e.g., a three-tier reference model) and a methodology
team has gone through the phases of system requirements,
analysis, and design, a project team needs to be chosen to
implement the design that realizes the architecture and
solves the business problem. At this point of the transition,
thinking about the peculiarities of object-oriented project
management becomes important. Because of the inherent
modularity of object-oriented design and the ensuing inde
pendence and autonomy of subteams, team building and
communication may become an issue. New roles and respon
sibilities, such as framework architect, pattern designer, and
class librarian need to be integrated. Since object-oriented
design favors the implementer who postpones coding and
(re)uses components as much as possible, performance
evaluation and reward systems need to be reconsidered.
This is opposed to the model of rewarding the implementer
who "hacks" out the most code.

Reuse. The fourth of the recommended soft skills essential
for a successful move to object-oriented software develop
ment is the incorporation and long-term management of
systematic reuse. This course combines a discussion of

Business Application

Presentation

D e v e l o p m e n t B u s i n e s s
E n v i r o n m e n t L o g i c

Data
Management

Fig. 6. The three-tier architecture framework.

Infrastructure
Logic

February 1997 Hewlett-Packard Journal 99

© Copr. 1949-1998 Hewlett-Packard Co.

Starting an Object-Oriented Project

Reading books and magazines will not always guide you through your
first object-oriented project. A recent issue of a trade magazine had
24 advertisements for CASE tools, 26 advertisements for products, and
23 advertisements for object-oriented consulting services. Add to this
the lack of standards, and the process of adopting object technology
looks truly daunting. However, there are great rewards as long as you
are ready to follow a well-defined process and make a longer-term
commitment.

You and your managers may think that the success of the move to
objects depends on the size of the projects undertaken, the number of
people involved, and the tools and techniques used. However, in reality
these rule have little impact on the transition's success. As a rule of
thumb, the transition of a single software development team to object
technology takes at least a year.

You will most likely find your organization in one of two stages of adop
tion: the investigation phase or an early adoption phase. If in the inves
tigation phase, your company is ready to make some investments, but is
not sure yet if object technology is the right choice. The objective of your
project, which should be important but not mission-critical, is to provide
a feasibility proof and show the measurable benefits. If in the early
adoption phase, higher management has probably made a strategic deci
sion in favor of object technology, and it is expected that your project will
make competitive significant contribution to the business and provide a competitive
advantage.

There are several questionnaires that help in assessing where your
company is in the transition process. Here are some questions that I
have found useful:

â€¢ Can yield formulate a business case for your project that will yield a
measurable, positive net present value (NPV) for your organization?

â€¢ What are the investments necessary to fill the skill gaps found in your
skills gap analysis?

â€¢ What are the specific success factors and possible risks for this project?
â€¢ What object architecture will you pick and why?
â€¢ What outcome of your project shows the feasibility of object technology

for your organization or your whole company?
â€¢ What will you do with the existing legacy systems?
â€¢ Does it make sense to connect your project to the potential of the intra

net and internet?

The object-oriented transition assessment workshop includes these and
other questions. They have proven helpful for customers and, despite
their simplicity, are surprisingly hard to answer.

Ramesh Balasubramanian
HP Professional Services
Organization Objects
Consultant

reuse technology (frameworks, patterns, software kits, com
ponents, and standards), and tools and processes with orga
nizational and management issues. These latter nontechnical
concerns often have the biggest impact on change manage
ment and the success of the transition to objects.8 hi the
spirit of hands-on skill development, the second part of this
course simulates the steps of systematically building reuse
into a software organization. Fig. 7 shows the incremental
steps from no reuse to systematic reuse through stages that
mirror the phases of the Capability Maturity Model (CMM),
which is widely used in the assessment of software
skuls 9,10,11

Projects versus High Volume
From the discussion above it should be obvious that the
approach to customer education requirements for the transi
tion to objects is not simply a matter of technology and
product training. Just as an information technology depart
ment is much more than a random collection of computers
and wires, so is today's customer education more than a
collection of training courses. It has become an industry
with finely tuned product lines that match the requirements
of job groups by providing comprehensive training paths,
from introductory courses to in-depth specialized skills.

However, in addition to these task-oriented, individualized
curriculum paths, increasing emphasis is being put on inte
grated curricula for project teams, departments, and entire
organizations. This latter trend has led to two distinct, but
collaborating branches within the customer education busi
ness. One branch addresses the difficult, unique custom
software project or the transition of, say, a COBOL program
ming team to Smalltalk proficiency. Efforts like these are

resource-intensive, of high complexity, and more often than
not also low-volume affairs. (They are the human learning
system equivalents of highly sophisticated hardware and
software systems, which usually need to be custom-made.)

For custom-made education solutions to be affordable, such
highly complex offerings need to be created in a repeatable
and modular manner. Examples of custom courses are the
total immersion programs, hi these programs, which are
variously known in the industry as residency programs or
boot camps, entire teams are led through a four-to six-week
customized curriculum to object-oriented literacy.

The other, complementary branch of customer education
addresses the high-volume, lower-complexity demands.
These are requests for standard programming language
courses, fundamentals of operating systems, system admin
istration, networking, and relational databases â€” all of which
figure prominently in most two-or-three-tier business appli
cation developments.

These conditions of serving widely diverging interests are
posing challenges for the development, sales, and delivery
of education solutions in general and object-oriented educa
tion in particular. The challenges are similar to the ones
known in traditional product development:

â€¢ Primary and secondary research explore the market
conditions

â€¢ Investigations define product possibilities
â€¢ Curriculum creation involves outsourcing, partnerships,

and collaborations with product divisions and the field
â€¢ After going through the typical lab cycles, prereleased

material is validated in alpha and beta tests.

100 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Improve Time to Market and Quality

Interoperabil i ty
High Reuse Levels

Domain-
Specif ic

Reuse Architecture,
Process, and
Metr ics Used

Systematical ly

Reduce
Development

Time
Management
Support and

Partial Product
Coverage Some Planned

Reuse and Some
Components

Investment, Experience, and Time

In parallel, marketing collateral is being prepared, data
sheets, sales briefs, and advertising copy are written, cata
logs appear worldwide, and indirect and direct sales are
made. To be successful, a well-managed and diverse team of
course designers, business developers, solution architects,
education advisors, technology specialists, consultants, and
instructors needs to be trained and deployed worldwide.
Issues of localization, government regulations, copyright
protection, postrelease support, updates, and pricing (for
instance, discounts, volume buying, specials) are again not
different from the rollout of major hardware and software
products.

In light of these considerable complexities, training vendors
may be tempted to define their solutions by offering a variety
of topics for which they have in-house technology expertise
and then to reshape the customer needs along the Unes of
these topics. The true challenge consists, however, in bas
ing education solutions on the transition assessment work
shops and education plans that have been crafted
and agreed upon jointly by the customer and education
consultants. Only such solutions have the strategic impact
of preceding and guiding the choice of implementation
technologies.

Point Solutions and Product Training
Supporting the larger picture of education solutions outlined
above are several training offerings that are more specialized,
narrower in scope, or tool and technology related. Here,
training usually tracks the release, purchase, and installation
of products. As a consequence, training courses have to be
updated in a rhythm following the product updates. This
especially includes languages converging towards standards,
such as ANSI C++, different implementations of new lan
guages, such as Java, and products that bridge evolving de
facto standards, such as those for distributed computing.
Examples of the latter are the Object Request Broker (ORB)
implementations which adhere to the Common Object
Request Broker Architecture (CORBA) standards and serve
as interoperability middleware between CORBA objects and
the emerging MicrosoftÂ® OLE automation product suite.
Such software has to be supported by several operating sys
tems and communication protocols. In the case of HP's ORB

Fig. 7. Incremental approach to
reuse and the resulting benefits.

Plus 2.0 these are the HP-UX*, SunSoft Solaris, and Micro
soft NT platforms and the HOP (Internet Inter-ORB Proto
col, platform independent) and DCE CIOP (Common Inter-
ORB Protocol, HP-UX only) standards. Using the HOP
protocol, ORB Plus 2.0 will interoperate, for instance, with
Distributed Smalltalk software from ParcPlace-Digitalk.

From these typical examples it becomes obvious that narrow,
specialized point solutions and product training can be as
labor-intensive as the solutions centered around the care for
people and processes. Since the competitive pressure for
training on shrink-wrapped products is fierce (you can learn
C++ in community colleges almost free), larger education
providers have surrounded themselves with satellites of
smaller, agile partners, who can, in the analogy used before,
be compared to suppliers of hardware and software parts.

Challenges and New Directions
One of the most exciting events in the emergence of object
technology is the recent promise of its convergence with
internet technology. To begin with, Java is a C++-like object-
oriented language that allows the objects (for instance, the
ones created in its applets) to be shared over the net in a
platform independent way. Java has spawned several new
customer education offerings, including ones on web secu
rity and on how to use the web for commercial transactions.

Furthermore, with the web becoming more familiar as a
medium for information exchange, it is also fast becoming
a candidate for alternative training delivery, complementing
computer-based training (CBT), CD ROMs, and the tradi
tional lecture and lab format. Such a departure from copy
righted class material to an essentially open, public forum
creates new challenges, but these challenges are no more
severe than the ones faced by software distribution and pub
lishing on the net. This is especially true in the high-volume,
point-solution, and product-training market where the mate
rial is rapidly becoming part of a commodity business with
small differentiating value and practically no proprietary
lock on content. Instead, as Tim O'Reilly12 suggests (and
practices for his own on-line business of computer books),
more important than copyright is the development of a brand
identity that represents a consistent, trusted selection of

February 1997 Hewlett-Packard Journal 101
© Copr. 1949-1998 Hewlett-Packard Co.

high quality. This is where high-volume customer education
may be headed in the future.

Acknowledgments
My view of customer education as an autonomous business
has evolved in discussions with Patricia Gill-Thielen, Brian
McDowell, Tom Ormseth, Morris Wallack, and Ann Wittbrodt.
While they are not to blame for my opinions, I hope that
they'll accept my thanks for mentoring me when I joined
their team.

References
1. Skills Gap Analysis Workshop, Product Number H6230A.
2. Object-Oriented Transition Assessment Workshop, Product
Number H6290X+002.
3. Software Architecture Workshop, Product Number H6290X+009.
4. Analysis and Design Methodology Workshop, Product Number
H5851S.
5. Project Management Workshop, Product Number H6516S.
6. Systematic Reuse Workshop, Product Number H6514S.
7. T. Cotton, "Evolutionary Fusion: A Customer-Oriented Incremen
tal Life Cycle for Fusion," Hewlett-Packard Journal, Vol. 47, no. 4,
August 1996, pp. 25-38.

8. M. Griss, I. Jacobson, and P. Jonsson, Software Reuse: Architec
ture, Process, and Organization f or Business Success, Addison-
Wesley, January 1997.
9. W.S. Humphrey, Managing the Software Process, Addison- Wesley,
1989.
10. M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber, Capability

Maturity Model for Software, Version 1.1, Software Engineering
Institute, CMU/SEI-93-TR-24, February 1993.
11. D. Lowe and G. Cox, "Implementing the Capability Maturity
Model for Software Development," Hewlett-Packard Journal,

Vol. 47, no. 4, August 1996, pp. 6-14.
12. T. O'Reilley, "Publishing Models for Internet Commerce,"
Communications of the ACM, Vol. 39, no. 6, June 1996, pp. 79-86.

UNIXÂ® is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

HP-UX 9. and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.
X/OpenÂ® is a registered trademark and the X device is a trademark of X/Open Company
Limited in the UK and other countries.
Microsoft is a U.S. registered trademark of Microsoft Corporation.

102 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
February 1997

H P S o t t B e n c h 5 . 0

D e b o r a h A . L i e n h a r t

Debbie Lienhart was the
project manager for the user
interface and framework for
HP's SoftBench 5.0 and was
previously the program
leader for SoftBench 4.0.
She is currently the project
manager for the HP-UX soft
ware transition kit. Debbie is

professionally interested in software engineering and
has authored several articles on spooling systems,
frameworks, and SoftBench and has written a chapter
of a book on HP-UX programming. She received a BA
degree in geography in 1977 from Humboldt State
University and an MS degree in computer science
from Colorado State University. Before joining HP's
Engineering Design Division (EDO) in 1983, she
worked as a technical illustrator for several geologic
and hydraulic consulting companies. At EDD, she was
the project manager for a design data controller and
an engineer on HP's printed circuit design system.
Born in Berkeley, California, Debbie is married to
another HP engineer. She is an animal lover and
enjoys spending time with her dogs, cats, and llamas.
She also enjoys quilting, weaving, and playing blue-
grass music on fiddle and mandolin.

1 2 C + + S o f t B e n c h C l a s s E d i t o r

Jul ie B.Wi lson

Julie Wilson is the user-
centered design lead for HP
SoftBench at HP's Software
Engineering Systems Divi
sion (SESD) and was the
usability engineer for Soft-
Bench 5.0. Before working at
SESD, she worked asan
information technology engi

neer developing marketing, telecom, manufacturing,
and finance solutions for HP internal business systems.
She is professionally interested in user task analysis

and its translation into GUI design. She has authored
several user's manuals, including a beginner's guide
to using shells. Julie received a bachelor's degree in
music education in 1 976 from the University of
Nebraska at Lincoln, majoring in piano. She earned
an MS degree in business with a concentration in
computer information systems from Colorado State
University in 1987. After completing her course work,
she became an instructor in the CIS department at
the University. She joined HP in 1983 and left in 1985
to raise her family. During that time she worked as a
freelance technical writer and programmer. She re
turned to HP in 1988. Born in Dalton, Nebraska, Julie
is married and has two children. She is an active lay
leader in her church and is the manager of her son's
soccer team. In her free time, she enjoys music, read
ing, and family activities.

1 6 S t a t i c A n a l y s i s D a t a b a s e

R o b e r t C . B e t h k e

Bob Bethke is a member of
the technical staff at HP's
Network Systems Manage-
ment Division and currently
is working on network man
agement development tools.
Recently he worked on a
static analysis tool at HP's
Software Engineering Sys

tems Division and before that on the C compiler at
HP's Colorado Language Laboratory. Professionally
interested in programming languages, he has co-
authored two articles on compilers. Bob was born
in Phillipsburg, Kansas. He received a BS degree in
mathematics in 1976 and an MS degree in computer
science in 1979, both from the University of Kansas.
Before joining HP in 1989, he worked at Burroughs on
functional programming languages and on data man
agement systems. He is married and enjoys being a
dad. He also likes hiking, biking, and tennis.

1 9 C + + S o f t B e n c h C o d e A d v i s o r

T i m o t h y J . D u e s i n g

A software engineer at HP's
Software Engineering Sys
tems Division, Tim Duesing
is currently working on the
C-H- SoftBench CodeAdvisor.
He coauthored an article on
CodeAdvisor at the 1996
Interworks Conference.
Previously he worked on

automated test tools and software debugging. He
earned a BS degree in physics and mathematics from
the University of Wisconsin in 1975. Before joining
HP in 1988, he worked on software for PBX systems
for Telwatch, Inc. on telecom software for Basic Tele
com Corporation, and on scientific and medical in
struments for Norland Instruments. In 1988 he joined
HP's Electronic Design Division and worked as a soft
ware development engineer on electronic CAD/CAE
tools for the engineering graphics system, the design
capture system, and the printed circuit design system.
Tim was born in Kenosha, Wisconsin. In his free time
he enjoys mountain climbing and playing chess.

J o h n R . D i a m a n t

John Diamant is the techni
cal lead and a rules devel
oper for HP CodeAdvisor at
HP's Software Engineering
Systems Division. He re
ceived a BS degree in com
puter engineering and an
MS degree in computer and
information science, both in

1985 from Case Western Reserve University. After
graduating he joined HP's Fort Collins Systems Divi
sion. Since joining HP, he has served as a developer
and team leader for HP SynerVision and ChangeVision,
a library architect for HP SoftBench, an engineer for
HP Prolog, and a software developer on HP Common
Lisp. He has coauthored several articles on these
subjects. He is professionally interested in expert
systems and software development environments
and is named as an inventor in a patent on SynerVision

February 1997 Hewlett-Packard Journal 103
© Copr. 1949-1998 Hewlett-Packard Co.

software process management. John is married and
enjoys travel and photography.

2 2 I n t e g r a t i n g D e v e l o p m e n t E n v i r o n m e n t s

Stephen A. Wil l iams

As a software engineer at
Science Applications Inter
national Corporation, Steve
Williams worked on the het
erogeneous HP SoftBench
encapsulation project. He Â¡s
now employed by First Virtual
Holdings Incorporated as a
lead developer for an Inter

net-based payment system. Previously he designed
and developed a prototype for online newspaper pub
lishing, provided UNIX network support for the HP
Response Center, and developed HP SoftBench en
capsulations for several companies. Steve was born
in Northridge, California and earned a BA degree in
computer science in 1 992 from the University of
California at Berkeley. He is married and both he and
his wife enjoy playing the piano and going out for a
game of tennis.

2 8 S u p p l y C h a i n

Gregory A. Kruger

A senior quality consultant
at HP's Colorado Springs
Division, Greg Kruger is
responsible for the develop
ment and application of
supply chain technology
including divisionwide con
sulting and training on sta
tistical methods and total

quality management. Born in Waterloo, Iowa, Greg
received a BS degree in statistics and mathematics in
1979 and an MS degree in statistics in 1981, both
from Iowa State University. After graduating, he
joined HP's Lake Stevens Instrument Division where
he worked on the development and application of
software reliability growth models for HP software
projects and authored two articles on the subject. He
also designed and applied statistical process controls
to select manufacturing processes at Lake Stevens.
He is professionally interested in experimental
design, survey research, general statistical methods,
and total quality management. He is a member of the
American Statistical Association and the American
Society for Quality Control. Before joining HP, he
worked at Corning Glass and at Weyerhauser apply
ing statistical methods to manufacturing and R&D
projects. Greg Â¡s married and has three children.
He Â¡s active in his church and is currently a Sunday
school teacher and a deacon. In his free time, he
enjoys outdoor activities such as archery, fishing,
hiking, and camping.

3 9 P u l s e O x i m e t r y S e n s o r s

Siegfried KÃ stle

An R&D manager at HP's
Patient Monitoring Division,
Siegfried KÃ stle is responsi
ble for airway gas measure
ments and pulse oximetry
platforms within HP's Medi
cal Products Group. Recently
he consulted on the design
of the new family of re

usable sensors and was responsible for the sensors'
electrical and optical components and compatibility
with related instruments. He Â¡s professionally inter
ested in signal processing and is named as an inven
tor in two related patents. He received a Diplom
Ingenieur in electrical engineering in 1982 from the
University of Stuttgart, Germany. After graduating, he
did system design for satellite transporters at ANT in
Germany. He joined HP's Boblingen Medical Division
in 1984. Initially he worked as a development engineer
on the HP 78834 Series compact patient monitor. He
also investigated the technology for HP Component
Monitoring System front-end modules and managed
the development of several ASICs. Born in Eberstadt,
Baden-WÃ¼rtemberg, Germany, Siegfried is married
and has two sons. Music is an important part of his
life. He sings in a choir, plays trumpet in a brass
ensemble, and enjoys conducting. His other interests
include jogging and going on education adventures.

Friedemann Noller

Born in Herrenberg, Ger
many, Friedemann Noller
received an MS degree in
physics in 1975 and a PhD in
engineering in 1978, both
from the University of Stutt
gart, Germany. After gradu
ating, he worked for five

- years at the University's
Institute of Energetic Systems studying electronic
beam welding technologies. He Â¡s named as an
inventor in two related patents and has published
conference proceedings on his studies. He joined
HP's Boblingen Medical Division in 1983 and was the
project leader for the first HP pulse oximeter inves
tigation. He was also responsible for the HP M1 1 90A
sensor design, LED qualification, and spectroscopy.
He contributed to the design of the new HP sensor
family and is currently responsible for ambient light
detection for the next-generation SpU2 sensors.
Friedemann Â¡s married and has one son and two
daughters. He enjoys camping with his family, music
and literature, and Mediterranean culture. He Â¡s envi
ronmentally concerned and Â¡s mindful of saving re
sources, biking instead of driving, and does wood
working for environmental purposes.

Siegfried Falk

Siegfried Falk is the indus
trial design and mechanical
engineering manager of the
HP Patient Monitoring Divi
sion and was the program
manager for the SpU2 sen
sor project reported in this
issue. He joined HP's Boblin
gen Manufacturing Division

in 1 974 as a materials and process engineer. He went
on to become the materials and process engineering
manager of the Computer Division at Boblingen, and
in 1987 he became mechanical engineering manager
for obstetrical care and patient monitoring at HP's
Boblingen Medical Division. Siegfried was born in
Untermunkheim, Baden-WÃ¼rttemberg, Germany. He
received a Diplom Ingenieur in mechanical engineer
ing in 1969 from the Engineering School at Esslingen,
Germany. He did R&D work at Bizerba and Kissling
before joining HP. He Â¡s professionally interested in
product stewardship. He is married and has one son
and two daughters. He served a year in the German
military as a paratrooper. His civic activities include
working in a team to reorganize the museum in the
city of Calw. In his free time he enjoys hunting,
running, and traveling.

Anton Bukta

Born in Sokolovac, Croatia,
Toni Bukta Â¡s a mechanical
design engineer at HP's
Patient Monitoring Division.
He was recently a project
leader for the new SpU2
sensors reported in this
issue and is currently work
ing on the mechanical de

sign of a new chassis for the next-generation patient
monitor. Previously he did the mechanical design of
two recorders for two fetal monitors, the HPM1350A
and HP M1 351/53A. He is named as the inventor in
two patents related to clip and neonatal sensors. He
joined HP's Boblingen Medical Division in 1983 after
working as a toolmaker at Daimler Benz AG. He earned
a Diplom Ingenieur in mechanical engineering from
the Engineering School at Esslingen, Germany. Toni Â¡s
married and has two children. He enjoys outdoor
sports, especially tennis and alpine skiing.

Eberhard Mayer

Eberhard Mayer Â¡s a materi
als engineer at HP's Medical
Manufacturing Operation at
Boblingen. He Â¡s responsible
for electromechanical parts,
medical sensors, and suppli
er and product qualification.
He also does CFT (cross
functional team) engineering

for procurement. He Â¡s professionally interested in
failure mode and effect analysis (FMEA) and Quality
Function Deployment for vendor selection. Eberhard
received a Diplom Ingenieur in mechanical engineer
ing from the Engineering School at Esslingen, Ger
many. After graduating, he joined HP. Some of his
contributions include doing mechanical design for
medical equipment, being a project lead for total

104 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

quality control, and developing guidelines for a ven
dor selection process. Eberhard was bom in Ulm.
Germany. He is married and has four sons. Music is a
favorite hobby and he is a member of the Stuttgarter
Kantorei choir.

Dietmar Miller
Born in Sindelfingen, Ger-
many, Dietmar Miller re-
ceived a Diplom Ingenieur in
precision engineering with a
specialization in measure-

^y m ment and contro l techniques
Â»*^- J^B at the Engineering School

I at Heilbronn. He joined HP's
^m^m^mW^mm Bobl ingen Medical Div is ion
in 1989 and worked for two years as a total quality
control leader for SpU2 sensors. For the last five
years he has worked as a materials engineer at HP's
Medical Manufacturing Operation at Boblingen,
responsible for component and supplier selection,
1C qualification, optoelectronic devices, and semicon
ductor sensors. Dietmar is married and has one child.
He spent fifteen months In the German military as a
radio station operator. His outside interests Include
trekking, motorcycling, and traveling to Asia and
South America.

54 Color Scanner

Steven L. Webb
An R&D engineer at HP's
Greeley Hardcopy Division,
Steve Webb worked on firm
ware design and develop
ment for the HP ScanJet
3c/4c scanner. Previously he
did firmware design for the
HP ScanJet He scanner and
worked on the scanner's Ul

design. He also worked on software for an earlier
scanner and on the scanner control code and memory
management code In the HP AccuPage software.
He is named as an inventor in 1 1 patents related to
scanner performance and coauthored a previous
article on scanners for the HP Journal. Steve received
a BSME degree from the University of Florida in 1 978
and then joined HP's Civil Engineering Division. He
also earned a BSCS degree from Colorado State Uni
versity In 1988. Born in Miami, Florida, Steve is mar
ried and has a daughter. He enjoys computer games
and outdoor activities such as skiing, hunting, camp-
Ing, and sailing.

Kevin J. Youngers
After receiving a BSEE
degree from Iowa State
University In 1984, Kevin
Youngers joined HP's Gree
ley Hardcopy Division. He is
currently a design engineer
responsible for electromag
netic compatibility (EMC)
and troubleshooting for the

next-generation scanners. Recently he worked on the
controller board and EMC for the HP ScanJet 3c/4c
scanner. Previously he did design work on the HP

7963B/BD multiple disk drive, the LaserJet lie Post
Script cartridge, and the ScanJet lie scanner. He is
named as an inventor in a patent involving light
warmup control for scanners. Kevin was bom in
Sheldon, Iowa, and enjoys games and sports such as
autocross. basketball, volleyball, golf, and ultimate
frisbee.

Michael J. Steinle
Mike Steinle is an R&D
engineer at HP's Greeley
Hardcopy Division and is
responsible for the design
and development of optical
systems for next-generation
scanners. Recently he de
signed and developed com
ponents for the HP ScanJet

3c/4c, including imaging optics and optical alignment
methods for carriage assembly. He is professionally
Interested In research In blood flow and fluid
mechanics and In the design, test, and measurement
of optical systems used In electronic Imaging. He has
coauthored five articles on these subjects and Is
named as the inventor In seven patents concerning
color separation design and scanner optical systems.
He is a member of the American Society of Mechani
cal Engineers and the Optical Society of America.
Mike received a BA degree In physics from Augustana
Lutheran College in 1 981 . He also earned a BSME
degree In 1982 and an MSME degree In 1984, both
from Purdue University. After graduating he joined HP
and worked as an optical and mechanical design
engineer on the HP ScanJet lie color scanner. Born in
Galena, Illinois, Mike Is married and has two daugh
ters and a son. He volunteers at a local youth center
tutoring, supervising, and socializing with children
ages eight to eighteen. His family is active in a local
Lutheran church, where he teaches Sunday school.
He also tutors eighth and ninth graders at a local
school's technology lab. He enjoys spending his free
time with family and friends and also enjoys playing
tennis, cycling, and attending high school and college
sports events.

Joe A. Eccher
A development engineer
at HP's Greeley Hardcopy
Division, Joe Eccher is cur
rently working on analog
and power circuit design. He
recently worked on the HP
ScanJet 3c/4c scanner's
lamp driver, power supply,
and analog ASIC testing.

Previously he was responsible for circuit design for
the HP ScanJet He scanner. He Is named as an inven
tor In two patents concerning calculators for the blind
and fluorescent lamp drivers. Bom in Silt, Colorado,
he received a BSEE degree in 1962 from the University
of Denver and an MSEE degree from San Jose State
University in 1 967. Before joining HP, he worked at
NASA on aircraft landing systems, and at Ball Aero
space on analog and digital circuit design and control
systems. He also worked as a digital applications
engineer at Slgnetlcs. In 1 979 he joined HP's Sources
and Analyzers Division. Professionally Interested In
analog and power circuit design, he has authored or
coauthored three papers on these subjects. Joe is a
registered professional engineer in Colorado. He is

married and has three children. His hobbies include
fly-fishing and astronomy.

62 The ORBIite Project

Keith E. Moore
Ã± Keith Moore is a department

scientist at HP Laboratories
and the technical leader for
the ORBIite project. During
his eleven years with HP, his
work has focused on com
munication technology for
bridging computers, instru
ments, and peripherals in

heterogeneous environments. His research has con
tributed to the LAN-to-HP-IB communication protocols
(HP E2050A), the VXI preprocessor (HP E1323A), and
most recently the HP ORB Plus and HP CORBACon-
nect distributed communication frameworks. Keith
received a BS degree In electrical engineering from
Tufts University in 1985 and an MS degree in com
puter science from Stanford University In 1991. His
primary research interests are In the support for real
time constraints in distributed and parallel systems.

Evan R. Kirshenbaum
Evan Kirshenbaum is a mem
ber of the technical staff at
HP Laboratories. He consults
with product divisions to
prototype new technologies
in the areas relating to spe
cific languages and distrib
uted systems. He helped
design and build the distrib

uted object framework for HP's ORBIite system. Evan
is professionally interested In programming languages,
distributed systems, electronic commerce, and the
societal impact of computer networks. He received a
BA degree In linguistics and an MS degree In com
puter science, both from Stanford University In 1987
and joined HP Laboratories In 1989.

73 Fusion Objects

Antonio A. Dicolen
Tony Dicolen Is an R&D pro
ject manager at HP's Micro
wave Instruments Division
and is responsible for the
firmware of the HPCM (high
performance component
analyzer) products. Previously
he was responsible for the
division's firmware reuse

project. He earned a BSEE degree In 1980 and an
MSEE degree In 1981, both from Cornell University.
After graduating he joined HP's Redwood Operation
In Santa Rosa. Since joining HP he has worked exten
sively on the HP 856x spectrum analyzer product line
as a R&D firmware project manager, project manager,
and software development engineer. He also helped
design the power supply for the HP 70001 A main
frame. He is professionally Interested in object-ori
ented methods, software reuse, and managing in
novation. He Is a member of the ACM and Is a

February 1997 Hewlett-Packard Journal 105

© Copr. 1949-1998 Hewlett-Packard Co.

registered electrical engineer in California. He was
born in Manila, Philippines, is married, and has two
daughters. He serves on the principal's advisor board
at his daughter's school. His hobbies include cooking
and playing the piano.

Jerry J, Liu

Jerry Liu began his associa
tion with HP in 1989 as a
summer intern with HP's
Signal Analysis Division.
He joined HP's Microwave
Instruments Division (MID)
after graduating from
Cornell University, where
he earned a BSEE degree in

1991 and an MSEE degree in 1992. While at MID, he
worked on the firmware reuse project developing the
firmware framework for instruments described in his
article. His main responsibilities included the object-
oriented analysis and design of the framework as
well as the system architecture, the thread model,
and the communication mechanisms. At the end of
the project, he transferred to the Integrated Solutions
Laboratory at HP Laboratories and is currently re
searching measurement system architectures and
distributed measurement and control systems. Jerry
is professionally interested in distributed objects
technology, measurement systems, web technology,
and real-time systems. He was born in Taipei, Tai
wan. In his free time he enjoys photography and
watercolor painting.

8 6 A r c h i t e c t m g E n t e r p r i s e S o l u t i o n s

Rob Seliger

Principal architect at HP's
Medical Products Group
(MPG), Rob Seliger led a
team from MPG, HP Labora
tories, and the Mayo Clinic
through the architectural
definition of the Concert
component-based health
care information system.

He has served as the cochair of the Andover Working
Group, which is a group concerned with data inter
change in healthcare systems, and managed the
MPG team through the design and development of
the Enterprise Communication Framework software.
Previously he led several architectural initiatives to
increase the interoperability between MPG's applica
tions and systems. Rob received a BSEE degree from
Cornell University in 1 980. He joined HP and initially
worked in MPG manufacturing and developed a sys
tem that automated the testing for the signal acquisi
tion and conditioning capabilities of MPG's patient
monitors. He earned an MSEE degree from MIT in
1 985 as an HP resident fellow. After graduation, he
served as the technical lead for the HP-UX-based
distributed object platform used for the HP CareVue
9000 clinical information system. Rob is named as
a coinventor for a patent on concurrent updates to
medical information databases and has published a
number of articles about using object-oriented tech
nology and C++ to develop healthcare information
systems. He is a member of the Health Level Seven
standards organization and is cochair of a special
interest group on object brokering technologies. Rob
is married and has a daughter and a son. One of his
hobbies is renovating his 1917 home to preserve its
period style and construction. He also enjoys doing
arts and crafts activities with his children and watch
ing and playing baseball.

9 7 O b j e c t - O r i e n t e d C u s t o m e r E d u c a t i o n

Wulf Render

Wulf Rehder is the world
wide program manager for
Internet education at HP's
Professional Services Orga
nization. Since coming to HP
in 1986, some of his most
memorable projects include
doing simulation and model
ing for PA-RISC computers,

working as a project manager at the Pisa Science
Center of HP Laboratories in Italy, and writing test
algorithms for field-programmable gate arrays at HP
Laboratories. He is interested in the process of mak
ing complex things simple and has written numerous
papers in mathematics, theoretical physics, and engi
neering. He has also written a humorous book on The
German Professor since the middle ages. Before join
ing HP he was a mathematics professor at San Jose
State University and a system performance manager
at Metaphor Computer Systems. Wulf received a BS
degree in mathematics and physics from Hamburg
University in 1969, an MS degree in mathematics and
statistics from Dortmund University in 1972, and a
PhD in mathematics from Berlin Technical University
in 1978. Wulf was born in a small village in northern
Germany. He is married and has two children^ He
enjoys writing essays for literary magazines, mainly
on topics that lie in the intersection of technology
and the humanities, and is the contributing editor for
the Bloomsbury Review.

106 February 1997 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

KAREN LEWIS
HP ARCHIVES - PALO ALTO
3000 HANOVER STREET
M/S 20BR
PALO ALTO, CA 94304-1181

F e b r u a r y 1 9 9 7 V o l u m e 4 8 â € ¢ N u m b e r 1

Techn ica l In fo rmat ion f rom the Labora tor ies o f
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y , H e w l e t t - P a c k a r d J o u r n a l
3 0 0 0 H a n o v e r S t r e e t , P a l o A l t o , C A 9 4 3 0 4 - 1 1 8 5 U . S . A .

HEWLETT'

P A C K A R D

5965-591 5E

© Copr. 1949-1998 Hewlett-Packard Co.

	SoftBench 5.0: The Evolution of an Integrated Software Development Environment
	Applying a Process Improvement Model to SoftBench 5.0
	The C++ SoftBench Class Editor
	The SoftBench Static Analysis Database
	CodeAdvisor: Rule-Based C++ Defect Detection Using a Static Analysis Database
	Using SoftBench to Integrate Heterogeneous Software Development Environments
	The Supply Chain Approach to Planning and Procurement Management
	Appendix VI: Estimating Weekly Demand Uncertainty from Monthly Data
	Appendix VII: Adjusting Safety Stock to Account for Yield Loss
	A New Family of Sensors for Pulse Oximetry
	Volunteer Study for Sensory Calibration
	Neonatal Sensor Clinical Validation
	Design of a 600-Pixel-per-Inch, 30-Bit Color Scanner
	Sing to Me
	Building Evolvable Systems: The ORBlite Project
	Developing Fusion Objects for Instruments
	An Approach to Architecting Enterprise Solutions
	Components and Objects
	The Andover Working Group
	Multiple Interfaces in COM
	Object-Oriented Customer Education
	Questions about Using Objects1
	Starting an Object-Oriented Project

