
H E W L E T - P A C K A R D

JOURNAL
O c t o b e r 1 9 9 6

H E W L E T T
P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL O c t o b e r 1 9 9 6 V o l u m e 4 7 â € ¢ N u m b e r 5

Articles

6 A Platform for Building Integrated Telecommunication Network Management Applications,
by Prabha G. Chadayammuri

' G l o s s a r y

17 Distributed Processing Environment: A Platform for Distributed Telecommunications
Applications, by Frank Leong, Satya P. Mylavarabhata, Tmng Nguyen, and Frank Quemada

1 Alarm Management in Telecommunications Networks, by Sujai Hajela

HP OpenView Event Correlation Services, by Kenneth R. Sheers

â€¢sZL Correlation Node Types

) Count Node

s / U n l e s s N o d e

j T a b l e N o d e

j Fact Store and Data Store

1 Annotation

43 A Modeling Toolset for the Analysis and Design of OSI Network Management Objects,
by Jacque l ine A. Bray

Executive Robin Steve Beitler â€¢ Managing Editor, Charles L. Leath â€¢ Senior Editor, Richard P. Dolan â€¢ Assistant Editor, Robin Everest
Pub l ica t ion Produc t ion Manager , Susan E. Wr igh t â€¢ D is t r ibu t ion Program Coord ina to r , RenÃ©e D. Wr igh t â€¢ Layout / I l l us t ra t ion , John N icoara

A d v i s o r y B o a r d

Rajeev Co lo rado In tegra ted C i rcu i t Bus iness D iv i s ion , For t Co l l i ns , Co lo rado
W i l l i a m W . B r o w n , I n t e g r a t e d C i r c u i t B u s i n e s s D i v i s i o n , S a n t a C l a r a C a l i f o r n i a
R a j e s h D e s a i , C o m m e r c i a l S y s t e m s D i v i s i o n , C u p e r t i n o , C a l i f o r n i a
Kevin G. Ewert , Integrated Systems Division, Sunnyvale, Cal i fornia
Bernhard Fischer, BÃ²blingen Medical Division, BÃ²blingen, Germany
D o u g l a s G e n n e t t e n , G r e e l e y H a r d c o p y D i v i s i o n , G r e e l e y , C o l o r a d o
Gary Go rdon , HP Labo ra to r i es , Pa lo A l t o , Ca l i f o rn ia
Mark Go rzynsk i , I nkJe t Supp l i es Bus iness Un i t , Co rva l l i s , O regon
Ma t t J . Ma r l i ne , Sys tems Techno logy D i v i s i on , Rosev i l l e , Ca l i f o rn i a
K i y o y a s u H i w a d a , H a c h i o j i S e m i c o n d u c t o r T e s t D i v i s i o n , T o k y o , J a p a n

r - o r res t Ke l l e r t , M i c rowave l ecnno iogy D i v i s i on , ban ta Â«osa , i
Ruby B . Lee , Ne tworked Sys tems Group , Cuper t i no , Ca l i f o rn ia
Swee Kwang Lim, Asia Per iphera ls Div is ion, S ingapore
A l f r e d M a u t e , W a l d b r o n n A n a l y t i c a l D i v i s i o n , W a l d b r o n n , G e r m a n y
A n d r e w M c L e a n , E n t e r p r i s e M e s s a g i n g O p e r a t i o n , P t n e w o o d , E n g l a n d

Dona V iew, M i l le r , Wor ldw ide Cus tomer Suppor t D iv is ion , Mounta in V iew, Ca l i fo rn ia
M i t c h e l l J . M f i n a r , H P - E E s o f D i v i s i o n , W e s t l a k e V i l l a g e , C a l i f o r n i a
Michael P. Moore, VXI Systems Divis ion, Loveland, Colorado
M. Shahid Mujtaba, HP Laborator ies, Palo Alto, Cal i fornia
Steven J . Na rc i so , VX I Sys tems D i v i s i on . Love land , Co lo rado
D a n n y J . O l d f i e l d , E l e c t r o n i c M e a s u r e m e n t s D i v i s i o n , C o l o r a d o S p r i n g s , C o l o r a d o
Ga r r y O rso l i n i , So f twa re Techno logy D i v i s i on , Rosev i l l e , Ca l i f o rn i a
Ken Pou l t on , HP Labo ra to r i es , Pa lo A l t o , Ca l i f o rn ia
GÃ¼nterR iebese l l , BÃ²b l ingen Ins t ruments D iv is ion , BÃ²b l ingen, Germany
M a r c S a b a t e l l a , S o f t w a r e E n g i n e e r i n g S y s t e m s D i v i s i o n , F o r t C o l l i n s , C o l o r a d o
Michael B. Saunders, Integrated Circuit Business Division, Corval l is , Oregon
Ph i l i p S ten ton , HP Labo ra to r i es B r i s t o l , B r i s t o l , Eng land
Stephen R. Undy, Systems Technology Division, Fort Coll ins, Colorado
J i m W i l l i t s , N e t w o r k a n d S y s t e m M a n a g e m e n t D i v i s i o n , F o n C o l l i n s , C o l o r a d o
Koichi Yanagawa, Kobe Instrument Div is ion, Kobe, Japan
Denn is C . York , Corva l l i s D iv i s ion , Corva l l i s , Oregon
B a r b a r a Z i m m e r , C o r p o r a t e E n g i n e e r i n g , P a l o A l t o , C a l i f o r n i a

Hew le t t -Packa rd Company 1996 P r i n ted i n U .S .A . T h e H e w l e t t - P a c k a r d J o u r n a l i s p r i n t e d o n r e c y c l e d p a p e r .

October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

' A T o o l k i t f o r D e v e l o p i n g T M N M a n a g e r / A g e n t A p p l i c a t i o n s , b y L i s a A . S p e a k e r

â € ¢) / A A p p l i c a t i o n T o o l k i t f o r D e v e l o p i n g T e l e c o m m u n i c a t i o n s A p p l i c a t i o n C o m p o n e n t s , b y A l a s d a i r
' D . C o x

70 B u s i n e s s P r o c e s s F l o w M a n a g e m e n t a n d i t s A p p l i c a t i o n i n t h e T e l e c o m m u n i c a t i o n s
M a n a g e m e n t N e t w o r k , b y M i n g - C h i e n S h a n , J a m e s W . D a v i s , W e i m i n D u , a n d Q i m i n g C h e n

H P O p e n V i e w A g e n t T e s t e r T o o l k i t , b y P a u l A . S t o e c k e r

S t o r a g e M a n a g e m e n t S o l u t i o n s f o r D i s t r i b u t e d C o m p u t i n g E n v i r o n m e n t s , b y R e i n e r L o m h ,
K e l l y A . E m o , a n d H o y M . V a n d o o m

L j / j A n I n t r o d u c t i o n t o F i b r e C h a n n e l , b y M e r y e m P r i m m e r

| T a c h y o n : A G i g a b i t F i b r e C h a n n e l P r o t o c o l C h i p , b y J u d i t h A . S m i t h a n d M e r y e m P r i m m e r

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

9 0 A u t h o r s

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d (H P)
p e r s o n n e l . w a r r a n t i e s t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f m e r c h a n t
ab i l i t y damages, ind i rec t , fo r a par t i cu la r purpose and a l l ob l iga t ions and l iab i l i t i es fo r damages, inc lud ing bu t no t l im i ted to ind i rec t , spec ia l , o r consequent ia l
d a m a g e s , p u b l i c a t i o n . a n d e x p e r t ' s f e e s , a n d c o u r t c o s t s , a r i s i n g o u t o f o r i n c o n n e c t i o n w i t h t h i s p u b l i c a t i o n .

S u b s c r i p t i o n s : T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d y o u i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . T o r e c e i v e a n H P e m p l o y e e s u b s c r i p t i o n y o u c a n s e n d a n e - m a i l m e s s a g e i n d i c a t i n g y o u r
HP en t i t y and ma i l s t op t o I dc I i t p roÂ®hp -pa toa l t o -gen13 . om .hp . com Qua l i f i ed non -HP i nd i v i dua l s , l i b ra r i es , and educa t i ona l i n s t i t u t i ons i n t he U .S . can reques t
a subsc r i p t i on t o : e i t he r w r i t i ng t o : D i s t r i bu t i on Manage r , HP Jou rna l , M /S 20BH, 3000 Hanove r S t ree t , Pa lo A l t o , CA 94304 , o r send ing an e -ma i l message t o :
h p j o u r n a l @ h p - p a l o a l t o - g B n 1 3 . o m . h p . c o m . W h e n s u b m i t t i n g a n a d d r e s s c h a n g e , p l e a s e s e n d a c o p y o f y o u r o l d l a b e l t o t h e a d d r e s s o n t h e b a c k c o v e r .
I n t e r n a t i o n a l s u b s c r i p t i o n s c a n b e r e q u e s t e d b y w r i t i n g t o t h e H P h e a d q u a r t e r s o f f i c e i n y o u r c o u n t r y o r t o D i s t r i b u t i o n M a n a g e r , a d d r e s s a b o v e . F r e e s u b s c r i p
t i ons may no t be ava i l ab le i n a l l coun t r i es .

T h e H e w l e t t - P a c k a r d J o u r n a l i s a v a i l a b l e o n l i n e v i a t h e W o r l d W i d e W e b (W W W) . T h e u n i f o r m r e s o u r c e l o c a t o r (U R L) i s :

h t t p : / / w w w . h p . c o m / h p j / j o u r n a l . h t m l

S u b m i s s i o n s : H P - a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h H P -
r e l a t e d c o n s i d e r e d o r s o l u t i o n s t o t e c h n i c a l p r o b l e m s m a d e p o s s i b l e b y u s i n g H P e q u i p m e n t a r e a l s o c o n s i d e r e d f o r p u b l i c a t i o n . P l e a s e c o n t a c t t h e E d i t o r
b e f o r e s u b m i t t i n g s u c h a r t i c l e s . A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s a n d m a y
p u b l i s h l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o r e a d e r s . L e t t e r s s h o u l d b e b r i e f , a n d a r e s u b j e c t t o e d i t i n g b y H P .

C o p y r i g h t p u b l i c a t i o n t h a t C o m p a n y . A l t r i g h t s r e s e r v e d . P e r m i s s i o n t o c o p y w i t h o u t f e e a l l o r p a r t o f t h i s p u b l i c a t i o n i s h e r e b y g r a n t e d p r o v i d e d t h a t
1) t h e c o p i e s a r e n o t m a d e , u s e d , d i s p l a y e d , o r d i s t r i b u t e d f o r c o m m e r c i a l a d v a n t a g e ; 2) t h e H e w l e t t - P a c k a r d C o m p a n y c o p y r i g h t n o t i c e a n d t h e t i t l e o f t h e
p u b l i c a t i o n a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e a p p e a r s s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y ,

P lease Hewlet t -Packard inqui r ies, submiss ions, and requests to : Managing Edi tor , Hewlet t -Packard Journal , M/S 20BH, 3000 Hanover St reet , Palo Al to . CA 94304 U.S.A.

October 1996 Hewlett -Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
The components o f a typ ica l te lecommunicat ions network usua l ly come f rom
di f ferent vendors and the networks are usual ly d is t r ibuted geographica l ly . To
manage these la rge-sca le networks , a s tandards-based te lecommunicat ions
network management system must be in p lace. Standards def ine the in ter faces
that system te lecommunicat ions equipment manufacturers , system in tegrators ,
and serv ice prov iders to deve lop network management app l ica t ions that a l low
the i r ne twork to in te ropera te in a he te rogeneous te lecommunica t ions ne twork
env i ronment . These vendors need a development p la t form anda too lset to take
care management the underlying standards-compliant requirements for management
appl icat ions.

The first telecommunications articles in this issue describe HP products targeted to meet the needs of telecommunications
appl icat ion developers. The art ic le on page 6 introduces the HP OpenView Distr ibuted Management (DM)
P la t fo rm, a sof tware foundat ion that prov ides the serv ices for bu i ld ing s tandards-compl iant te lecommu
nicat ions management network appl icat ions. The ar t ic le descr ibes the Telecommunicat ions Management
Network (TMN) f rom ITU-T (In ternat iona l Te lecommunicat ions Union-Te lecommunicat ions) , the features
of the OSI-based vers ion of HP OpenView DM, and the archi tecture of the new CORBA-based vers ion of
the HP Architecture) Platform. CORBA (Common Object Request Broker Architecture) is a service that en
ables object-oriented to make and receive requests and responses in an object-oriented distributed environment.

Developers creat ing appl icat ions to run in a distr ibuted, heterogeneous telecommunicat ions environment
should They be concerned about what system their applications may be running on. They should be able to
target their appl icat ions to run on a sof tware archi tecture that handles al l te lecommunicat ion management
and control funct ions for distr ibuted appl icat ions. The art ic le on page 17 descr ibes the HP Distr ibuted Pro
cessing Environment, which provides infrastructure services that faci l i tate rapid development, deployment,
and management o f d is t r ibuted appl icat ions in the te lecommunicat ions arena.

Network management re l ies on in format ion, espec ia l ly in format ion f rom network e lements such as
br idges, routers, servers, and gateways. The ar t ic le on page 22 descr ibes the HP Open Element Man
agemen t cove rs (OEMF) , wh i ch i s t he imp lemen ta t i on o f t he ITU-T recommenda t i on t ha t cove rs f au l t
management , per formance management , and other th i rd-par ty appl icat ions. OEMF makes poss ib le the
detect ion, iso la t ion, and correct ion of the abnormal operat ion of a te lecommunicat ions network. OEMF
inc ludes the HP OpenView Faul t Management Plat form (FMP), which is a p lat form and ut i l i ty tool for
managing a larms f rom mul t ivendor dev ices and network e lement managers .

When event fault occurs in a telecommunications system it can cause an event storm of several hundred
events (ECS) second for tens of seconds. HP OpenView Event Correlation Services (ECS) helps operators
determine the under ly ing cause for the thousands of events presented to them. ECS is made up of two
components: the ECS engine, which executes a set o f downloaded ru les that cont ro l the process ing of
event st reams, and the ECS Designer, which enables interact ive development of corre lat ion ru les. ECS is
descr ibed in the art ic le on page 31.

TMN uses OSI object-or iented paradigm, and i ts management pr inc ip les are based on the OSI (Open Sys
tem In terconnect ion) s tandard. Thus, in the TMN model , network and system resources are modeled as
o b j e c t s , t o m a n a g e d o b j e c t s . T e l e c o m m u n i c a t i o n s m a n a g e m e n t a p p l i c a t i o n d e v e l o p e r s n e e d t o
spec i fy and model these managed objects to create management appl icat ions. The ar t ic le on page 43
descr ibes the HP OpenView GDMO (Guidel ines for the Def in i t ion of Managed Objects) Model ing Toolset ,
which is specify integrated set of tools that enable developers to use a graphical user interface to specify
and create a f i le conta in ing managed objects . GDMO is an ITU-T recommendat ion that def ines how
network objects and the i r behavior are to be speci f ied.

Once managed developer has created the GDMO specifications for the managed objects, the next step is to
develop appl ica appl icat ions that mainta in and prov ide access to the objects and the manager appl ica
t ions This manage the network through request and response process ing. Th is is the agent /manager
model (page network management. The HP OpenView Managed Object Toolkit (page 52) uses the contents
o f the GDMO spec i f icat ion f i le to automat ica l ly generate OSI-conformant executab le agent appl icat ions.

October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The toolk i t a lso provides a C++ inter face that encapsulates the complexi t ies of the under ly ing protocols,
prov id ing ass is tance in the development of management appl icat ions.

The managed objects are s tored in a database ca l led the Management In format ion Base (MIB) . The
objects Under the MIB are defined by GDMO, organized hierarchical ly, and related by containment. Under
s tanding th is data and the operat ions required to access i t are essent ia l for developers implement ing
TMN management appl icat ions. The ar t ic le on page 62 descr ibes a prototype that addresses some of
the requ i rements o f TMN appl icat ion deve lopers by a l lowing them to exp lore the ava i lab le management
data and make enough sense of i t to construct and deploy p ieces of management appl icat ions.

Once next manager and agent appl icat ions have been created, the next step is to test both of these appl ica
t ions simultaneously. To help with this task, the new HP OpenView Agent Tester Toolkit (page 77) generates
tests During allow a developer to execute these tests individually or as a set. During agent development, the
Agent transmit Toolki t is used to simulate requests sent from a manager, transmit these requests over the
network to the agent , and then receive and process the responses f rom the agent .

The TMN telecommunications defines five network management layers in which telecommunications applications
can f i t . layer. two top layers are cal led the business management layer and the service management layer.
The bus iness management layer conta ins funct ions that are responsib le for the whole enterpr ise, such
as budget ing and product p lann ing, and the serv ice management layer conta ins f unc t ions tha t a re
responsib le for managing serv ices prov ided to customers, such as serv ice t ransact ions and b i l l ing. The
art ic le HP page 70 descr ibes an appl icat ion cal led HP OpenPM, which f i ts into these two layers. HP
OpenPM is an open, enterpr ise-capable , ob ject -or iented bus iness process f low management system
(BPFM). HP OpenPM is a middleware serv ice that prov ides the enabl ing technologies for def in ing and
manag ing end - i n a reas such as resou rce a l l oca t i on , t ask i n i t i a l i za t i on and da ta exchange , and end -
to -end communicat ion and secur i ty .

Te lecommunicat ions networks and d is t r ibuted comput ing env i ronments re ly on re l iab le and cons is tent
s t o r a g e d i s k s t r a t e g i e s . T o d a y , s t o r a g e m a n a g e m e n t s t r a t e g i e s i n v o l v e m o r e t h a n j u s t m o r e d i s k
drives. off l ine, also include storage management and different types of storage devices for off l ine, nearl ine,
and onl ine data storage. The ar t ic le on page 81 prov ides an overv iew of HP hardware and sof tware
products, serv ices, and par tners that prov ide storage management so lut ions.

Even they p rocessor speeds con t inue to improve d ramat ica l l y , they a re bare ly keep ing up w i th the
increas ing numbers o f concurrent ly running appl icat ions and CPU- in tens ive appl icat ions wi th h igher
throughput requi rements . Addi t iona l ly , as the number o f in terconnects between systems and I /O dev ices
cont inues to increase, I /O channels become bot t lenecks to system per formance. For a l l these reasons,
today 's para l le l bus archi tectures are reaching thei r l imi ts . In the search for a h igher-per formance ser ia l
in ter face, HP chose Fibre Channel because i t overcomes the l imi tat ions ment ioned above by support ing
sustained gigabi t data t ransfer rates. The ar t ic le on page 99 descr ibes Tachyon, which is HP's g igabi t
Fibre description chip. The article on page 94 presents a technical description of Fibre Channel.

C.L Leath
Managing Edi tor

Cover
An ar t is t ic rendi t ion of te lecommunicat ions, showing a sate l l i te antenna in the background and an HP
OEMF foreground. map and alarm viewer for a mobile network in the foreground.

What's Ahead
The December issue wi l l feature the design of the HP 83480 dig i ta l communicat ions analyzer for SONET/
SDH test ing, the HP E5200A broadband serv ice analyzer for ATM test ing, HP SmartClock technology and
products sur using the Global Posi t ioning System as a t ime reference, and the HP HEDS-8000 Ser ies sur
face mount ref lect ive opt ica l shaf t encoders. A pai r of papers wi l l descr ibe a new, radia l ly s taggered 1C
bonding technology, and a specia l sect ion wi l l ce lebrate the th i r t ie th anniversary of HP Laborator ies.

Oc-iobcr l!)9(i Ilcwlcti-I'ackard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A Platform for Building Integrated
Telecommunications Network
Management Applications
Telecommunications companies today are faced with rapid technological
change, large heterogeneous environments, and a greater need to provide
customers with products that ensure reliable, cost-effective network
service. This means that these companies need a platform that has a
visionary strategy that enables them to develop standards-compliant
network management solutions for a continually changing environment.

by Prabha G. Chadayammuri

The telecommunications industry is going through phenome
nal growth and change. This growth has made telecommu
nications networks essential to the daily activities of the
enterprise and individuals. It has also given rise to the need
for better ways to manage and maintain heterogeneous and
multivendor networks.

Network management includes the operations, administra
tion, maintenance, and provisioning (OAM&P) functions
required to monitor, interpret, and control a network and
the services it provides. When networks started to be used
beyond the academic community and before deregulation
and privatization of the telephone industry, there were fewer
vendors, thus fewer multivendor management issues. Also,
the rate of introduction of new network technologies was
much slower. These conditions meant that network manage
ment could be ad hoc and vendor-specific. Today, issues
such as multivendor networks and equipment, the need to
automate certain network management tasks, and the rapid
integration of new technologies have driven the need to
standardize telecommunications network management.

Since the early 1980s, the standardization bodies have been
developing and specifying a collection of standards for
managing telecommunications networks. A portion of these
standards, dealing with open systems, is contained in the
X.7xx series of standards defined by the ITU-T (Interna
tional Telecommunications Union â€” Telecommunications).
Another series of standards, the M.3xxx series from ITU-T,
defines a model known as the Telecommunications Manage
ment Network (TMN).1

TMN is based on the Open Systems Interconnection (OSI)
systems management model, which is set of standards that
define the rules for processing and transferring data over
networks.2 Such systems are called open systems. Although
not intrinsically part of TMN, OSI systems management stan
dards were developed jointly by the ISO and ITU standards
bodies.

All of these standards, no matter how worthy, are simply
collections of well-written guidelines without a platform and
tools to build network management solutions. Choosing a

network management platform is a critical strategic deci
sion that has long-term implications. The development of
large-scale telecommunications management systems
requires a significant investment of resources. Solutions,
once deployed, will be supported for many years.

For equipment manufacturers and systems integrators, the
network management foundation must enable rapid devel
opment of applications that can differentiate and add value
to their products. For telecommunications service providers,
the network management foundation must enable rapid
deployment of new services that improve competitiveness
and new operations that increase efficiency.

HP OpenView products provide the platform and enabling
technologies required for network management solutions
for today's telecommunications environment.

HP OpenView DM
The HP OpenView Distributed Management (DM) platform
is a software platform for designing portable, standards-
based systems for telecommunications management (see
Fig. 1). HP OpenView DM products are focused on meeting
the reliability, performance, distribution, and standards
needs of telecommunications equipment manufacturers,
service providers, and system integrators. The HP OpenView
DM platform offers the following features for developing
TMN applications.

Standards Support. The HP OpenView DM products support
protocol, object, and service specifications defined by ITU,
OSI, X/OpenÂ®, the Internet Engineering Task Force (IETF)
for SNMP (Simple Network Management Protocol), and the
Network Management Forum (NMF).3

There is also full support for network management protocols
CMIP (Common Management Information Protocol), RFC
1006 (TCP/IP), and SNMP.4'5

Open Systems. The HP OpenView DM platform is built on an
open systems architecture, enabling solutions to run on a
variety of hardware platforms. Native support is implemented
for HP 9000 workstations and servers running the HP-UX

6 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP OpenView Windows

GDMO
Development

Toolkit
Opera t iona l Suppor t
Sys tems App l i ca t i ons

ACSE
Connections

C M I P = C o m m o n M a n a g e m e n t I n t e r f a c e P r o t o c o l
GDMO = Guid l ines for the Def in i t ion of Managed Objects
S N M P = S i m p l e N e t w o r k M a n a g e m e n t P r o t o c o l

operating system and Sun SPARC workstations running the
Solaris and SunOS operating systems. Support for HP Open-
View is also provided on other hardware and software plat
forms.

Postmaster. The postmaster serves as the integration point
for management protocol stacks such as CMIP and SNMP,
management APIs, and related facilities (e.g., routing,
events, and association control). The postmaster provides
distributed message routing and access to applications and
services through standard management protocols. Finally,
the postmaster reliably creates and manages associations
(connections), maps objects to network addresses and pro
tocol stacks, and routes requests from manager systems and
responses from managed systems (agents).

Event Services. HP OpenView DM provides a set of services
that management applications can use to control event and
alarm messages from diverse network elements and systems.
It includes a mediation service that collects, stores, filters,
and extracts messages and an alarm management service
that displays and correlates alarm messages and invokes
external applications based on alarm data. Alarm manage
ment and event correlation services are described in the
articles on pages 22 and 31 respectively.

HP Distributed Processing Environment (DPE). The HP DPE
provides an Information Networking Architecture (INA)
compliant platform for telecommunications services and
operations systems. Trader services and an API framework
simplify the development and deployment of distributed
telecommunications applications. HP DPE is described in
the article on page 17.

Graphical User Interface. The HP OpenView windows graphical
iisci inicri'ace (GUI) provides network operators and admin-
isl ral < irs with a consistent view of the managed environment

Fig. 1. The main components of
the HP OpenView Distributed
Management Platform.

and seamless integration of management functions, regard
less of vendor or managed object type. HP OpenView win
dows provides a common interface that simplifies the devel
opment and use of management applications. Finally, the
HP OpenView windows GUI is the key integration point for
HP OpenView applications.

Modeling Toolset. The HP OpenView GDMO (Guidelines for
the Definition of Managed Objects)6 Modeling Toolset is an
integrated suite of software tools for designing and analyzing
objects used in network management applications. GDMO is
an ISO standard that describes a consistent methodology for
specifying managed objects in TMN applications.

The HP OpenView GDMO Modeling Toolset has a forms-
based GUI that enables developers to create GDMO specifi
cations and export them as ASCII files for use by the next
application in the tool chain, the Managed Object Toolkit.
The HP OpenView GDMO Modeling Toolset is described in
the article on page 43.

Managed Object Toolkit. The HP OpenView Managed Object
Toolkit is a C++ code generator that accelerates the devel
opment of GDMO-based manager and agent applications
(described below). The managed object toolkit includes an
infrastructure that provides a collection of reusable objects
that handle CMIS operations such as GET, SET, and ACTION.

Agent application development is improved because the
Managed Object Toolkit takes the GDMO ASCII file and
automatically converts the GDMO specification into an
OSI-conformant, executable agent. The Managed Object
Toolkit is described in the article on page 52.

TMN Applications and HP OpenView
HP OpenView products have been adopted by many promi
nent equipment manufacturers and telecommunications

Ortohrr l ! l !) (i I lc 'wlol t - I 'arkard. Journal
© Copr. 1949-1998 Hewlett-Packard Co.

service providers to implement a variety of TMN solutions.
Some of the areas in which TMN applications can be built
upon the HP OpenView foundation include:

â€¢ Services management for broadband networks including
Synchronous Optical Network (SONET), Synchronous
Digital Hierarchy (SDH), Asynchronous Transfer Mode
(ATM), and residential services such as video-on-demand

â€¢ Provisioning and monitoring applications for broadband
networks

â€¢ Network monitoring for outsourced customer networks
managed by telecommunications service providers

â€¢ Customer gateways into public networks for real-time moni
toring and data management

â€¢ Integration with other management platforms for TMN com
patibility and a single view from a multivendor environment

â€¢ Element management systems for new equipment and new
data communications services.

The HP OpenView DM platform has traditionally supported
the OSI systems management model to provide TMN solu
tions. However, in recent years the Common Object Request
Broker Architecture (CORBA)7 from the Object Management
Group (OMG) has attracted interest as a general model for
distributed application development.

The combination of the CORBA and OSI models is an ex
tremely powerful solution for TMN application development.
Thus, HP OpenView DM platform development is moving in
that direction.

The rest of this article will discuss various aspects of the
TMN architecture and the OSI model and their relationship
to the existing OSI-based HP OpenView DM platform and
the evolving CORBA-based platform.

TMN Architecture
Fig. 2 shows the business, service, network, and element
management layers of the TMN model and the interaction
between applications in these different management layers.
The functionality of applications in each of these layers is
defined in ITU-T Recommendation M.3010.1

Network Element Layer. Functionality at this layer is provided
by the network elements (e.g., switches, multiplexers,
repeaters, hubs, terminals, etc.). These functions include
operations such as performance data collection, alarm
collection, protocol conversion, and so on. Applications at
this level are responsible for managing network elements.

Element Management Layer. Functions at this layer are respon
sible for managing a subset of network elements, performing
as a gateway to network elements in the upper layers, and
keeping statistical and historical information about network
elements.

Network Management Layer. Network management functions
are used to support TMN applications that require a global
view of the network. Data for this global view is collected
from data summarized by the network element management
layer. This layer is also responsible for the technical provi
sion of services requested by the service management layer.

Service Management Layer. This layer is responsible for man
aging the services provided to customers. It provides the
point of contact with customers for all service transactions,

including billing, quality-of-service (QoS) data, service con
tracts, and so on.

Business Management Layer. This layer contains functions
that are responsible for the whole enterprise. These func
tions include goal setting and budgeting, product planning
and definitions, and agreements between jurisdictions.

Operation Systems and the Manager/Agent Model. The opera
tions systems shown in Fig. 2 are integrated telecommunica
tion management applications that implement the network
management functions in the TMN layers. The operations
systems are based on an agent/manager model. This model
resembles the client/server paradigm in which applications
in the manager role are clients and applications acting as
agents would be servers. The agent/manager model is also
called a managed system (agent) and managing system
(manager) architecture in TMN terminology. The agent/man
ager model is based on using objects to model the system
being managed. Each object can have attributes that repre
sent its state or relationship with other objects, its special
ized behaviors (called actions), and notifications it issues to
signal some event. Thus, an object encompasses a device's
behavior as well as its physical characteristics. An agent
resides in an object and reports the object's status to the
manager. The manager, equipped with the capability to
have a global view of the network, manages the agents and
handles the notifications from agents.

Q3 Interfaces. Operations systems within and between TMN
layers are required to use a set of standard interfaces called
Q3 interfaces for the exchange of management informa
tion.8'9 Q3 interfaces are responsible for connecting an op
erations system to a network element, an operations system
to a Q adapter, an operations system to a mediation device,
or two operations systems in the same TMN. Q3 specifica
tions use the Common Management Information Service
Element (CMISE) protocol10 for management and the file
transfer access and management (ftam) protocol for bulk
transfer.

The standard way to convert a non-TMN function into a TMN
function is called a Q adapter. Loosely stated, Q adaption
is a translation between Q3 and the non-Q3 models at run
time. Translation to a level less than Q3 requires a mediation
device to raise the adaption to Q3 levels. The X reference
points in Fig. 2 also perform an interface function. They pro
vide an interface for communications with operations sys
tems belonging to other TMNs or between TMN operations
systems and non-TMN operations systems on other TMNs
that support TMN-like interfaces. Q3 interfaces are generally
regarded as appropriate for the X reference point.

The HP OpenView DM platform supports the APIs and proto
cols necessary for TMN applications. The HP OpenView DM
platform provides the Q3 interfaces via the X/Open manage
ment XOM/XMP APIs and the C++ classes generated by the
Managed Object Toolkit described in the article on page 52.
Faster APIs like the BER (Basic Encoding Rules) Manage
ment Protocol (BMP) and the generic data type dictionary
APIs are available on the platform.11 Application developers
can build OSI applications using the APIs or the Managed
Object Toolkit. The Managed Object Toolkit generates a

8 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Business
Management

Layer

Service
Management

Layer

Element
Management

Layer

N e t w o r k
Management

Layer

Ne twork
Elements

Layer

Fig. and TMN architecture showing the network management layers and

complete application skeleton that can be customized by
adding user-defined behaviors.

The OSI Model
As mentioned earlier, TMN is based on the OSI model and I
HP OpenView DM platform supports the OSI model. In 0
system management, managed object classes are defined
using GDMO (Guidelines for the Definition of Manage
Objects) A managed object class has its state and relation
ships with other objects represented in its attributes, which
can be accessed by GET and SET methods. The managed

Carious TMN elements in each layer.

object class definition can have complex interfaces called
actions and can specify notifications, which are emitt
signal events associated with the object.

Abstract Syntax Notation One (ASN.l),12 a data definition
language, is used to describe the syntax of management data
exchanged between objects. Behavior templates are used to
define the semantics of operations on attributes and obje<
and are commonly expressed in natural languages. As a
result, there is no standard way of parsing the behavior

October 1996 Hewlett-Packard Journal 9

© Copr. 1949-1998 Hewlett-Packard Co.

templates. The agent developer is allowed to implement the
behaviors appropriately.

A managed object can be created or deleted by external
commands if allowed by the object's GDMO specification.
GDMO allows multiple inheritance, in which a given object
can inherit all the operations, notifications, and behaviors of
other objects. References 13, 14, and 15 provide many of the
widely used objects, attributes, and notifications used in
network management.

When defining new objects, these standard definitions are
expected to be reused whenever possible. This is one of
the challenging aspects of OSI object modeling. The GDMO
Modeling Toolset, available on the HP OpenView DM plat
form, makes this task much easier. The article on page 43
describes the GDMO Modeling Toolset.

Management Interactions
Fig. 3 shows the seven-layer OSI reference model.2 Each
layer has a clearly defined role in the transfer of information
over a network. For systems management, the application
layer is of the greatest interest. Applications interoperate
with each other using application service elements (ASEs),
which are defined by the application layer. The Common
Management Information Service Element (CMISE), the
Remote Operations Service Element (ROSE), and the Asso
ciation Control Service Element (ACSE) are the most impor
tant ASEs used for systems management. The protocols
used to implement these service elements are also defined
as part of the ISO standard specifications.

OSI systems management operates like the agent/manager
model described above. An application issuing management
operations and receiving notifications is said to be acting in
the manager role, and an application performing management
operations and emitting notifications on behalf of managed
objects is said to be acting in the agent role. An open system
is made up of managed objects and the various processes
involved in processing and transferring information.

A manager is expected to establish an association with an
agent using the ACSE before attempting any management
interaction. If the association goes down, both parties can
detect it. When the association is set up, the manager and
the agent exchange management information about their
respective capabilities, including authentication schemes,
encoding schemes, maximum data sizes, multiple object
selection capabilities, and so on. These capabilities are
called functional units. The HP OpenView DM platform sup
ports both direct user control over association management
and the automatic connection management mode in which
the user does not have to be directly involved in the associa
tion management.

Once the association is set up between a manager and an
agent, management information can be exchanged. The
manager is allowed to perform CREATE, DELETE, and ACTION
operations on the managed objects and GET and SET opera
tions on their attributes as defined in their GDMO specifica
tion. The agent performs the operations on the managed
objects on behalf of the manager and sends replies back to
the manager.

Application 1 Application 2

User Data

Appl icat ion J + A p p l i c a t i o n H e a d e r

j + P r e s e n t a t i o n H e a d e r

Application

+ Session Header

+ Transport Header

+ N e t w o r k H e a d e r

+ Data l ink Header

+ Physica l Header

N e t w o r k

_ Protocol data added to user data at each layer in going from Appl icat ion 1
to Application 2 and subtracted when going in the other direction.

C M I S E = C o m m o n M a n a g e m e n t I n f o r m a t i o n S e r v i c e E l e m e n t
S M A S E = S y s t e m M a n a g e m e n t A p p l i c a t i o n S e r v i c e E l e m e n t

Fig. 3. OSI stacks showing the
significance of the OSI system
management standards.

10 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The managed objects emit notifications (events) specified in
their GDMO specifications. Notifications usually signify
something of interest happening at the object, like its cre
ation, deletion, or attribute value change. The agents deliver
the notifications either directly to the manager or indirectly
through event forwarding discriminators, which are managed
objects that filter events coming from agents. This filtering
ensures that only events of interest are received by the man
ager. The OSI-based HP Open View DM platform supports
the most generic form of event discrimination available
today.

Another important aspect of OSI system management is that
it is based on an asynchronous message passing model, as
are most other network management protocols in use today.
All operations can be classified into four primitives (or
types): requests, replies, confirms, and indicates. These primitives
are used in the following way:

1. To perform an operation, a manager sends a request
message.

2. When the message shows up at the agent, it is received as
an indicate message.

3. Later, the agent may send a reply message.

4. The reply message is received at the manager as a confirm
message.

The agent sends a reply message if the original request re
quired a confirmation. The CMISE GET, CANCEL-GET, CREATE,
and DELETE operations are always confirmed, whereas the

SET, EVENT-REPORT, and ACTION operations can either be con
firmed or unconfirmed. Request and reply messages are always
directed outward from the application and indicate and confirm
messages are always directed inward.

The Open Protocol Interface Architecture
Fig. 4 shows the HP Open View DM postmaster with the
attached API stacks, protocol stacks,4-5 and intermediate
stacks.16-17 18 The postmaster is at the heart of the OSI-
based HP OpenView DM platform. Applications bind to the
postmaster processes running on different nodes. Postmas
ters on the different nodes coordinate interactions between
applications bound to them.

The HP OpenView DM postmaster is built on an architecture
known as the Open Protocol Interface, which is based on
the OSI messaging model described above.

Messages flow into the postmaster either through the API
stacks or through the protocol stacks. The processed mes
sages that are sent out and need confirmations are kept on a
sent queue awaiting confirmations. When the confirm mes
sages come in they are matched with the corresponding
request messages. This store-and-forward mechanism
allows greater reliability in the message delivery. Flow
control mechanisms are implemented to address congestion
problems.

The X/Open management APIs (XOM/XMP) and the BER
Management Protocol (BMP) are the API stacks. These and
the CMIP, SNMP (RFC 1157), and RFC 1006 protocols are

Applicat ion
Process

Application
Process

Application
Process

Intermediate
Stacks

Protocol
Stacks

Fig. 4. The HP OpenView DM post
master showing the open protocol
Â¡nliTl'.-irr core inn! I hi- attached
API, protocol, and intermediate
si licks.

October 1996 Hewlett-Packard .Journal 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

Glossary

This glossary contains definitions of some of the telecommunication
terminology and acronyms used in many of the telecommunications
articles in this issue.

ACSE this Control Service Element) . In the OSI model th is
is an and protocol that is used to establ ish and terminate
an association between applications on the same system or on different
systems.

Agent/Manager Model. This model defines the basic architecture for
network management of distributed systems. (This model is also called
the managed system/managing system model.) The agent/manager
system manages devices called managed objects, which represent a
conceptual view of network resources that need to be monitored or con
trolled. The manager's role is to maintain a global view of the network
and to manager coordinate, and monitor network activity. The manager
also issues requests for operations to be performed by the agent and
then sent notifications emitted by the managed objects and sent by
the agent. The agent's role is to maintain its portion of the MIB, receive
and execute requests sent from the manager, and send notifications to
the manager when necessary (see Fig. 1).

A S N . 1 (A b s t r a c t S y n t a x N o t a t i o n O n e , o r I T U s t a n d a r d X . 2 0 8) .
This exchanged a description language used to define the data types exchanged
between systems.

BER (Basic Encoding Rules). A method for encoding data in the OSI
environment.

CMIP the Management Interface Protocol). This is half of the
OSI's systems management protocol (the other half is CMIS). CMIP uses
the agent/manager paradigm to communicate management information

between systems. This protocol differs from SNMP in that it is more
rigorous, is designed for open systems, and is an association-oriented
protocol, requiring the two communicating CMIP processes to establish
an association before sending any management messages. This associa
tion more governed by ROSE and ACSE. See the article on page 52 for more
about CMIP.

CMIS part Management Information Service). This is the part
of the OSI systems management protocol that enables management
applications to communicate in the OSI environment. CMIS offers a set
of services that provide for management operation, retrieval of informa
tion, and notification of network events (see also CMIP). See the article
on page 52 for more about CMIS.

Containment. In an object-oriented hierarchy, containment defines the
relationship between a parent object and a child object.

Contracts. In the context of the Distributed Processing Environment (DPE),
contracts are the way in which objects in one building block (a software
package containing several objects) describe their interfaces to objects
in other building blocks. See the article on page 17 for more about con
tracts and DPE.

CORBA (Common Object Request Broker Architecture). This is an
implementation of the Object Management Group's specification of an
object request broker. An object request broker provides the services that
enable objects to make and receive requests and responses in an object-
oriented distributed environment.

Distributed Processing Environment. This is a platform for managing
and controlling distributed computing in a TMN network.

System 1

I
Protocol

Stack
(C M I S / C M I P

or SNMP)

Requests

M a n a g e d
Objects

Managed
Resources

MIB

Protocol
Stack

(C M I S / C M I P
or SNMP)

N e t w o r k

m^m

Notif ications and Responses Fig. 1. The agent/manager model.

all supported by the OSI-based HP OpenView DM platform.
This support, along with the requirements of association
control and routing, provide the full complement of OSI
conformance.

User-defined API stacks and protocol stacks can be added
easily to the HP OpenView DM platform using the Open Pro
tocol Interface architecture. New API and protocol stacks
continue to be added by HP OpenView DM users. This flexi
bility allows easy integration of existing legacy applications
into the management framework.

The intermediate stacks on the OSI-based HP OpenView DM
platform are used to set up associations, determine routes,
perform event forwarding discrimination, and so on. Each
message is passed through its configured set of intermediate
stacks for processing.

The intermediate stacks can also be used for data concentra
tion or other similar purposes. This makes the Open Proto
col Interface architecture ideal for building TMN mediation
devices. For instance, the Event Correlation Service stack

12 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

GDMO (Guidelines for the Definition of Managed Objects). These
guidelines define how network objects and their behavior are specified.
For example, GDMO can be used to specify how a certain system com
mand (software object) should behave when executed. See the article on
page 43 for more about GDMO.

Managed Object This is a conceptual view of a logical or physical
resource that needs to be monitored and controlled to avoid network
failure and performance degradation. A managed object is defined in
terms notifica its attributes, operations that can be performed on it, notifica
tions it may emit, and its relationship with other objects.

MIB (Management Information Base). This is a structured collection
of managed object instances and their attributes. See the article on
page 62 for more about the MIB.

Mediation Device. This element of the TMN architecture is responsible
for protocol conversion, information conversion and storage, data buffer
ing, and filtering. This is probably the most vaguely defined element in
TMN and its functions are sometimes implemented in a Q adapter.

Network Elements (NE). These elements represent the devices that
make is a telecommunications network. It is assumed that an NE is
"intelligent" enough to have the possibility of generating and transmit
ting some kind of information useful for network management (alarms,
status, etc.). All NEs produce for external use some sort of internal
alarms, both urgent and nonurgent. These alarms are representative of
internal faults. Urgent alarms indicate a need for immediate mainte
nance. Network elements play the role of managed objects in the agent/
manager model.The article on page 6 contains more about network
elements.

OAM&P (Operation, Administration, Maintenance, and Provision
ing). These are the functions required to solve the complex problem of
providing telecommunications network management.

OMG (Object Management Group). This is a nonprofit international
corporation made up of a team of dedicated computer industry profession
als from different corporations working on the development of industry
guidelines and object management specifications to provide a common
framework for distributed application development.

Operations Systems (OS). These are the applications where network
management takes place. They can be thought of as supervisory or con
trol systems that receive a large amount of data from the network and
provide for its elaboration and for the generation of data useful for man
agement purposes. The article on page 6 contains more about opera
tions systems.

Q Adapter. This is a TMN element that is used to connect a TMN sys
tem to a non-TMN system.The article on page 6 contains more about 0
adapters.

03 Interfaces. These are a set of interfaces used within and between
layers 03 the TMN architecture to exchange management information. 03
interfaces are responsible for connecting an operations system to a net
work element, an operations system to a Q-adapter, an operations sys
tem to a mediation device, or two operations systems in the same TMN.
The article on page 6 contains more about 03 interfaces.

ROSE OSI Operation Service Element). This is a generic OSI
service that allows applications to invoke request and reply interactions
with applications on remote systems. The article on page 6 contains
more about ROSE.

SNMP (Simple Network Management Protocol). This is TCP/IP
protocol that defines how to manage a network. SNMP uses the agent/
manager model to monitor and administer the network. SNMP is based
on a connectionless protocol, which requires no established connection
between manager and agent before transmission.

Trader in This is a matchmaking service for clients and servers in
a Distributed Processing Environment. A server registers its capabilities
in the client of a contract with an entity called a trader, and when a client
needs service capability in a certain contract type, it uses the trader service
to find on server that has the particular capability. See the article on
page 17 for more.

Telecommunications Management Network (TMN). TMN, which is
defined in ITU-T Recommendation M.3010, is a management commu
nications concept that defines the relationships between basic network
building blocks (network elements, different network protocols, and
operations systems) in terms of standard interfaces. See the article on
page 6 for more about TMN.

XMP (X/Open Management Protocol).This protocol provides the TMN
application developer with a C-language interface to the underlying
CMIS/CMIP and SNMP protocol services. XMP APIs use XOM objects as
parameters. See the article on page 52 for more.

XOM (X/Open OSI Abstract Data Manipulation) A C language inter
face provide for use with application-specific APIs that provide OSI
services, such as X.400 and CMIS. XOM APIs provide functions for
accessing managed objects and shield programmers from the complexi
ties for the ASN.1 data types in the MIB. See the article on page 52 for
more.

on the postmaster performs event correlation for events that
pass through the stack.

Adding intermediate stacks is relatively trivial. This allows
extreme flexibility in customizing the platform for specific
needs. Consider, for instance, how user-defined security
might be added to the platform. The Open Protocol Interface
architecture presently allows security information (authenti
cation token and authorization data) to be specified in each
message. Today such information is regarded as opaque and
is not interpreted by the stacks. If a user-defined intermedi
ate security stack were added to the platform, the security
information in the messages could be intercepted. The user

stack could interpret the information and accept or reject
the message, implementing user-specific behaviors.

The Open Protocol Interface development kit is separately
available as an HP product.

Naming and Containment
To perform the operations and actions described above,
there has to be a way of addressing the object instances. In
OSI system management, each object instance has to have a
unique name, known as the object's distinguished name.
The uniqueness of the name is guaranteed by naming all

October 199C Ilewlelt-Packan] Journal 13

© Copr. 1949-1998 Hewlett-Packard Co.

objects with respect to a containing object or its parent in
stance. The only (virtual) object not contained in another
is called the root. The relationship between the parent
(superior) object and the child (subordinate) object is called
containment.

Since every object instance (except root) is contained in its
parent instance, an acyclic, hierarchical tree of object in
stances can be constructed. This is known as a containment

tree. The idea of collecting objects based on containment is
particularly useful in defining operations that apply to multi
ple objects. Such operations are called scoped operations in
OSI systems management terminology. The CMISE GET, SET,
DELETE, and ACTION operations can be scoped and result in
the operations being applied to all objects that fall within
the specified scope. Multiple object selection and actions
make the OSI system management model far more powerful
(and complex) than simpler models like SNMP.

The object instance name is required in all CMISE trans
actions. When automatic connection management is used,
the HP OpenView DM postmaster uses a service called the
object registration service to identify the target application
for each request from its instance name. The object registra
tion service allows users to configure the object location
externally, enabling one to build highly scalable systems that
provide complete location transparency.

Naming and containment are described in more detail in the
article on page 52.

CORBA-Based Application Development
So far, we have gone over the standards support and other
features of the OSI-based HP OpenView DM Platform. Since
most telecommunication resources today are modeled using
a GDMO specified object, these applications tend to be in
the element management layer of the Telecommunications
Management Network.

As we move up the TMN hierarchy (Fig. 1), the need for
greater distribution, reliability, database access, and user
interface access become obvious. TMN standards do not

constrain the internal structure of applications. As a result,
several nonstandard models are in use that need to be inte
grated into a single model to reduce costs.

The new HP OpenView telecom management platform
addresses these specific issues with the use of the Common
Object Request Broker Architecture (CORBA) from the
Object Management Group (OMG). CORBA provides a
highly scalable distributed object model. The OMG has a
large industry participation and addresses all aspects of
object modeling.

The new HP OpenView telecommunication management
platform uses the HP ORBPlus distribution backplane for
application interactions. HP ORBPlus supports the standard
HOP and DCE CIOP transports as well as a highly optimized
local procedure call mechanism.

The OMG Common Object Service Specifications (COSS)19
define a basic event service. Even though this service is im
plemented on the HP OpenView platform, it is not sufficiently
robust for telecommunications management applications.
HP OpenView, therefore, has developed a CORBA-based
notification service,20 which allows users to register with
a notification manager for events filterable on multiple
attributes.

The CORBA-based HP OpenView telecom platform also
comes with the OMG naming and life cycle services, the
OMG standard transaction service, and a location service,
called the trader service. The collection of CORBA compo
nents and services, known as the HP OpenView distributed
object infrastructure, is shown in Fig. 5.

The notification service for the distributed object infrastruc
ture provides the same value in the CORBA-based platform
as the OSI event-forwarding discriminator does in the OSI-
based platform. The event-forwarding discriminators imple
mented on the HP OpenView DM platform are more suitable
for Q3 notifications.

OMG COSS 1
Life Cycle Service

Noti f icat ion Service
(Derived from OMG

COSS 1 Event Service)

Multiple Transports:
HOP, DCE CIOP, Local

Procedure Call

Distributed Object
Infrastructure

IDOII Multiple Transports:
MOP, DCE CIOP, Local

Procedure Call

OMG C++ Language Binding

OMG COSS 2
(Transaction Service)

Locking Service
(Concurrency Service)

IDL-IO-C++
Compiler

User
Configuration

Service
Simple Object

Adapter

O M G = O b j e c t M a n a g e m e n t G r o u p
CORBA = Common Objec t Request Broker Arch i tec ture
C O S S = C o m m o n O p e r a t i o n a l S u p p o r t S e r v i c e s
I D L = I n t e r f a c e D e f i n i t i o n L a n g u a g e

Fig. showing standard HP OpenView distributed object infrastructure showing the various standard services supported.

14 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The CORBA-based Open View platform also provides a more
scalable version of the relationship service known as the
topology service and a database strategy based on the indus
try standard ODBC (Open Database Connectivity) interfaces.
The topology service enables the developer to define rela
tionships between topological entities, which are the ab
stract objects corresponding to the elements in a network.
The ODBC interface is a transparency layer that the X/Open
Consortium developed to allow access to relational data
bases. This API allows a great degree of independence from
specific databases, with a trivial performance loss.

With the availability of a CORBA-based platform, application
development is made considerably easier. Object modeling

is done in IDL. the OMG's Interface Definition Language. IDL
has the same capabilities as GDMO and ASN.l combined.21
Also, the CORBA-based platform allows operations on
remote objects to be just as easy as operations on local
objects, although local object access would be faster.

In the model shown in Fig. 6, CORBA-based applications
access Q3 and other objects using adapters, or HP Open-
Yiew DM APIs. Q3 adapters can be generic adapters that
provide a CMIP interface in IDL.2- adapters that follow the
mappings from the X/Open Joint Interdomain Management
(JIDM) task force.23 or class-specific adapters that expose
modified JIDM interfaces.24

Bus iness
M a n a g e m e n t

Layer

Self
M a n a g e m e n t

Se rv i ce
M a n a g e m e n t

Layer

To Legacy Se rv i ces

Fig. object models. applications built with CORBA accessing Q3 and other object models.

October 1996 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

The JIDM adapters can be static or dynamic. The static
adapters are built for specific GDMO Management Informa
tion Bases (MIBs) and are expected to offer better perfor
mance. The dynamic adapters use the generic facilities of
the CORBA architecture (DII and DSI), which are more flex
ible than the static interfaces. The JIDM activity produces
mappings for CORBA-Q3 interaction and CORBA-SNMP
interaction. The CORBA-based HP Open View platform will
supply adapters after the standards in this area have stabi
lized. The Open Protocol Interface architecture discussed
before is ideally suited for building Q3 and SNMP adapters
to CORBA.

With the use of adapters, all other object models appear to
be CORBA objects to the application developer. Applications
use CORBA to gain distribution, standard language mappings,
and common object services for portability and the topology
services for data integration. The ODBC layer supports
transparent access to multiple databases. In addition, a suite
of enterprise management tools are available from other HP
organizations that greatly enhance CORBA-based application
development.

Summary
The new HP OpenView telecom platform combines the power
of the CORBA model with the support for OSI management
standards. As SNMP-based management gains acceptance in
the telecom industry, the HP OpenView SNMP-based man
agement platform will be integrated into the above model.

For pure Q3 access, developers today are encouraged to use
the OSI-based HP OpenView DM platform. Q adapters, medi
ation devices, Q3 manager applications, and Q3 agents usu
ally found in the TMN element management and network
element layers fall into this group.

For highly scalable distributed applications requiring trans
action processing, user interfaces, database access, and
greater control over the quality of service usually found in
the TMN network and service layers, developers should use
the CORBA-based HP OpenView telecom platform.

References
1. Principles for a Telecommunications Management Network,

ITU-T Recommendation M.3010 (see also Recommendations M.3200
and M.3400), 1992.
2. Open Systems Interconnection (Basic Reference Model), ITU-T
Recommendation X.200, 1994.

3. Network Management Forum, Forum 04, 1990.
4. Simple Network Management Protocol â€” RFC 1157, May 1990.
5. Common Management Information Protocol Specification,

ITU-T Recommendation X.711, 1991.
6. Guidelines f or the Definition of Managed Objects, ITU-T Recom
mendation X.722, 1992.
7. The Common Object Request Broker â€” Architecture and

Specification, OMG Document 95-03-04, July 1995.
8. Lower-Layer Protocol Profiles for the Q3 Interface, ITU Recom
mendation Q.811, March 1993.
9. Upper-layer Protocol Profiles for the Q3 Interface, ITU Recom
mendation Q.812, March 1994.
10. Common Management Information Service Definition, ITU-T
Recommendation X. 7 10, 1991.
11. BER Management Protocol, HP OpenView 4.1 Users Manual,
1996.
12. Specification of Abstract Syntax Notation One, ITU-T Recom
mendation X.208, 1993.
13. Definition of Management Information , ITU-T Recommenda
tion X.721, 1992.
14. Generic Management Information, ITU-T Recommendation
X.723, 1993.
15. Generic Information Model, ITU-T Recommendation M.3100,
1992.
16. Service Definition for Association Control Service Element,

ITU-T Recommendation X.217, 1992.
17. Event Report Management Function, ITU-T Recommendation
X.734, 1993.
18. K.A. Harrison, A Novel Approach to Event Correlation,

HP Laboratories, Bristol, England.
19. Common Object Services Specification, OMG Document
94-01-02, 1994.
20. Event Notification Service, COSS-1, OMG Document 94-01-02,
1994.
21. Comparison of Object Models, OMG Document 94-03-07, 1994.
22. E. Shen, M. Shan, and M. Robinson, CMIP Interfaceâ€” TC'95

Model, HP Laboratories Research Report, 1995.
23. Joint Interdomain Management Specification Translation,

X/Open Company, 1996.
24. Class-adapter â€” Blanca Architecture Paper, preliminary version,
1996.

HP-UX 9. and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.
UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

16 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Distributed Processing Environment:
A Platform for Distributed
Telecommunications Applications
Vendors developing applications for a heterogeneous, distributed
environment need to be able to build towards a platform that integrates
all the management and control functions of distributed computing into a
unified software architecture that allows their applications to be available
from any point in the network regardless of the system or geographic
location.

by Frank Leong, Satya P. Mylavarabhata, Trong Nguyen, and Frank Quemada

The HP Distributed Processing Environment (DPE) provides
infrastructure services that facilitate the rapid development,
deployment, and management of distributed applications in
the telecommunications arena. DPE is a key component of
the Telecommunications Information Networking Architec
ture (TINA), an architecture for multimedia networks that
emphasizes distribution and interoperability of telecommu
nications applications. TINA is an evolving architecture and
is governed by the TINA Consortium (TINA-C), which is a
project sponsored by 40 leading telecommunications and
computing companies. The project's aim is to find a way to
integrate all telecommunications management and control
functions into a unified logical software architecture sup
ported by a single distributed computing platform.

This paper describes the architecture and components that
make up HP DPE, a product that is compatible with (and
will evolve with) the TINA specifications.

INA, TINA, and DPE
HP DPE and TINA have a common root in the Information
Networking Architecture (INA), which was originally devel
oped at Bellcore. TINAs architecture specifies a distributed
processing environment based on the original INA DPE
specifications. HP DPE provides key infrastructure services
for INA and TINA.

INA defines a methodology and framework for developing,
providing, and maintaining highly distributed systems, char
acteristic of the next generation of communications environ
ments. INA leverages and combines the efforts of multiple
standards bodies, research organizations, development
organizations, and consortia (e.g., TMN, OSCA, OSF/DCE,
OMG CORBA, OSI/NMF, etc.). Fig. 1 shows the relationship
between INA DPE and the TMN (Telecommunications Man
agement Network) model. TMN is described in the article
on page 6 and the DPE services are described later in this
article.

INA applications and services are deployed as software
modules called building blocks. A building block is made up

of several objects and can be installed and modified inde
pendently of other building blocks in the network. Building
blocks interact with one another via interfaces called
contracts. Contracts are the exposed interfaces of an object
in that they are used for communication between building
blocks. They are also backward compatible to ensure inter
operability between software objects contained in multiven-
dor building blocks. Contracts are subject to authentication
and access control checks.

A building block can be a server or a client or both. A server
must offer one or more contracts to allow clients to interface

TMN Layers

Business
Management
Layer

Service
Management
Layer

Ne twork
Management
Layer

Element
Management
Layer

Ne twork
Element
Layer

Application

Appl icat ion

INA
DPE

Services

Native Computing and Communication Environment

M a n a g e d
Object
Agent

M a n a g e d
Object
Agent

Fig. 1. The INA DPE architecture applied to the Telecommunica
tions Management Network (TMN).

October 1996 Hewlett-Packard Journal 1 7

© Copr. 1949-1998 Hewlett-Packard Co.

and make use of its services. In the DPE architecture (de
scribed below), applications are modeled as building blocks.
The DPE itself is made up of server building blocks (e.g.,
contract trader, repository, etc.) which offer contract inter
faces to application client building blocks.

The INA structure enables distributed software building
blocks from multiple suppliers to interoperate. This distrib
uted object computing results in faster software develop
ment since there is greater software reuse and modularity in
design.

In summary, INA is a framework for interoperability, porta
bility, and network resource management. The following
goals have been established for INA:

â€¢ Rapid and flexible introduction of new services
â€¢ Reuse of software modules
â€¢ Use of general-purpose solutions
â€¢ Multivendor hardware and software solutions
â€¢ Independence of applications from the transport implemen

tation technology
â€¢ Separate transport technologies from higher-level control

and OAM&P (operation, administration, maintenance, and
provisioning)

â€¢ Allowance of customer access to OAM&P services
â€¢ Seamless integration of services
â€¢ Network and element management.

DPE Architecture
Fig. 2 shows the components and services that make up the
DPE architecture.

DPE Kernel. The DPE kernel provides the foundation for
building block interaction and execution services. To imple
ment these services, the DPE kernel uses the services pro
vided by the underlying native computing and communica
tions environment, which include:

â€¢ DCE: threads, security, RFC, and IDL compiler
â€¢ CORBA: HP ORB+ with IIO and DCE CIO protocols and

C-IDL compiler

> HP OpenView components: XMP API, pmd (postmaster dae
mon), orsd (object registration service), and ovead daemon
(event sieve agent).

The DPE kernel is resident in every node of a distributed
system. Building blocks and other DPE components at a
node cannot access the DPE kernel at other nodes directly.
Access to the DPE kernel services at a remote node is ac
complished using the interprocess communication facilities
of the native computing environment of the node.

Contract Adapter. A contract adapter is an application pro
gramming interface that provides all the transparencies re
quired by a client or server building block. It also provides
an API ser accessing either application-level services or ser
vices provided by DPE. Contract adapters are kept as library
modules which can be linked with building blocks before or
during execution.

The inclusion of adapters as components of DPE implies
that the components of DPE increase over time as new ap
plications are deployed in a network. When a contract type
is specified and registered for some application-level service,
adapters for these contract types can be automatically gen
erated and made a part of DPE.

DPE Services. Each DPE service is a building block and
access to its functions is only through contracts offered by
the DPE service. A node may have zero or more DPE ser
vices installed. Since access to a function provided by a DPE
service is available only through a contract, a building block
or a DPE service in a node can use the functions provided by
a DPE service in a remote node. Thus, DPE services depend
on the communication and execution services provided by
the DPE kernel. References to contracts of some of the DPE
services, such as the trader, can be passed to a building
block when it is activated.

Although both DPE services and applications are built using
the concepts of building blocks and contracts, there is a fun
damental difference between the two. DPE services do not

Contract Adapters
(DPE APIs)

DPE Kernel

Node
Controller

M a n a g e m e n t
Front End

DPE Services

Fig. 2. Components of the DPE
architecture.

18 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

provide network resource management functions, nor do
they provide telecommunications services to network cus
tomers. These functions are provided only by applications.

Fig. 3 shows the interactions among the DPE services shown
in Fig. 2. An arrow directed from one senice to another
indicates that the source service provides services to the
destination senice.

Contract Trader. This DPE service provides a discovery senice
for client and sen'er building blocks. It is the key senice for
providing location transparency in a distributed network.
When a building block offers a contract, information about
this contract is conveyed to the DPE kernel. This informa
tion includes the name of the corresponding contract type
and the value of the service attributes provided by the
contract. DPE stores this information in the repository.

When a client wishes to invoke an operation defined in a
specified contract type, it queries the DPE trader for one or
more references to contracts that match the specified type
and whose senice attribute values satisfy a constraint
expression supplied by the client. Regardless of where the
server is physically located, the client can discover servers
at run time, based on the latest contract information re
corded in the repository database. The DPE trader provides
two types of contract trading: attribute-based trading and
resource-based trading.

The attribute-based form of contract discovery is based on
the specified contract type and a constraint expression in
volving any number of the service attributes. The constraint
expression used by HP DPE is modeled after the ANSAware
2.0 constraint language. This language supports relational
operators on attributes and maximum, minimum, and logical
operators. This provides a great deal of flexibility in how a
client discovers a server.

An example of a constraint expression might be a request to
find one or more print servers that can print in color, provide
A4 size paper, and use PostScriptâ„¢ fonts. The constraint
language would express this request as: attribute_list = color, A4,
postscript. If we need a certain capacity and speed for the

Building Blocks

printer, we might add a request for faster than six pages per
minute: attributejist > 6.

A resource-based form of contract discovery is an extension
of attribute-based trading and is used by resource manage
ment applications. In resource management applications, it
is typical to provide senice over a domain of resources. This
domain may be dynamic. An example would be a connection
management application that is responsible for providing
connection management senices to all clients whose phone
numbers (domain) begin with area code 408 and have the
exchange number 447. This application may offer contracts
over a domain that may vary7 in size depending on how many
phone numbers are actually assigned (e.g.. all the numbers
following 447). This type of trading requires the client to
supply a contract type name, a constraint expression, and
the name of the resource. With this information the HP DPE
trader can locate a server offering a contract of the appro
priate type that satisfies not only the search constraint ex
pression, but also the specified resources.

Repository Server. This DPE service maintains persistent in
formation for the operation of DPE. It stores specifications
of trading attributes, contracts, building blocks, and configu
ration information. The repository server provides operations
for the creation, retrieval, update, and withdrawal of DPE-
persistent objects. These reference objects are used to initial
ize, activate, deactivate, and withdraw contract and building
block instances using a generic front-end administrative
tool. This server is implemented using the ObjectStore 4.0
OODBMS from Object Design Inc.

The information stored in the repository can be used for
several purposes. The DPE front end can traverse repository
information to help application developers locate potential
reusable attribute types, contract types, and building-block
type specifications. It also provides type information that
allows the DPE controller to check for valid operation
parameter types at run time. The following three kinds of
information are stored in the repository.

1 Specification information. This consists of information con
tained in contract type specification templates and building-
block type specification templates registered with the DPE
repository.

1 Configuration information. This consists of information con
tained in the building-block configuration templates, contract
configuration templates, and node configuration templates
registered with the DPE repository. This means that the re
pository contains information needed for managing building-
block instantiating operations or startup operations.
Trading information. This consists of information that sup
ports trading operations, specifically contract types and
contract instances.

Registrar. This DPE service provides registration and with
drawal services for the various templates used in the oper-
ability services, including specification templates, installation
templates, and configuration templates. Its function is to
parse and verify the correctness of the specification tem
plates before invoking the registration operation of the
repository server.

Fig. DPE Interrelationships between different components in the DPE
services.

Orlober l!l!Mi Hewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4. The DPE graphical user interface.

Node Controller. The node controller at each node provides
activation, deactivation, monitor, and restart functions for
building blocks configured in that node. It receives notifica
tions when a building block is started and deactivated, and
continuously monitors the "liveness" of all building blocks
executing in the node. Since the implementation of these
functions is dependent on the native computing environ
ment's facilities, one instance of the node controller building
block is required in each node.

Management Front End. HP DPE provides a graphical front
end and a command line interface to DPE system adminis
tration, building- block management, repository browser
functionality, and DPE shutdown and restart functions. This
user interface offers a generic and uniform way of managing
the whole DPE domain from any node. DPE objects present
in the to are organized in a hierarchical structure similar to
the renowned Smalltalk browser. This structure is organized
as nodes, building block types and instances, and contract
types and instances (see Fig. 4). The DPE front-end inter
face provides the following functions:

1 Contract building-block type registration
Activation, shutdown, and withdrawal of building-block
instances
Activation, shutdown, and withdrawal of contract instances
Setup and modification of contract trading attributes
Browser for DPE objects.

With the command line interface, routine DPE administra
tive tasks can be automated using shell script languages.

DPE Telecommunications Examples

This section provides two examples of the use of HP DPE in
the design and deployment of telecommunications services
and applications. The steps illustrated in these examples
present a high-level view of the communications that occur.
The actual designs are much more complex. Also, to reduce
the complexity of the figures, three assumptions have been
made:

' All interfaces that are used have already been registered
with the DPE registrar, and binding information for each
interface is available from the DPE repository.

1 All communication with the DPE trading service is done via
an RFC mechanism.

1 Most applications will either trade at initialization time to
obtain binding handles or simply use a well-known address
to maximize throughput. Trading during execution will most
likely be reserved for those occasions that dictate the need
for dynamic binding. For illustrative purposes, however, the
examples show trading occurring for each initial communi
cation between any two modules.

Example 1: Permanent Virtual Circuit Service
The most basic connection service provided by broadband
networks is a permanent virtual circuit (PVC) service. This
service provides the capability of setting up a connection
between two or more points with given bandwidth and
quality-of-service (QoS) parameters. Typically PVCs are
long-term connections used to interconnect LANs or provide
long-term video service between distant points. Fig. 5 illus
trates how a simple PVC service might be designed using
an architecture based on INA. Each of the following steps
corresponds to a number in Fig. 5.

1. The PVC presentation module consults with the DPE trad
ing service for the location of the PVC processing module
applications. This communication is done via an RPC
(remote procedure call) interface.

2. The PVC presentation module provides the PVC processing
module with the user input parameters that define the PVC
being requested. This communication is done via an RPC
interface.

3. The PVC processing module consults with the DPE trader
to locate the connection management application server

Presentation

Appl icat ion

PVC Presentat ion Module

PVC Processing Module

Distributed
Processing

Environment

10

M a n a g e m e n t

Platform

5 and 8 Connec ted Management Modu le

Managed Object Agents
and Network Elements

Connection
Data Building

Block

Fig. 5. The architecture for a per
manent virtual circuit service.

20 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Presentation

Application

SVC Presentat ion Module

2 1 1

SVC Processing Module

Distributed
Processing

Environment

Management

Platform

SVC = Switched Vir tual Circui t

Connec ted Management Modu le

Managed Object Agents
and Network Elements

that controls the switch servicing the originating end of the
PVC. This is done via an RFC interface.

4. The PVC processing module uses the DPE RFC mechanism
to access the connection management application. If the
connection requires more than one switch, the connection
manager will trade for and bind to another connection man
ager to move the connection towards the termination point
(this is not shown in Fig. 5).

5. The connection manager trades for the binding handle of
the managed object agent that services the originating (and
terminating if local) points. For performance reasons, in
most designs this step is done at system initialization time.

6. The connection manager instructs the managed object
agent to connect the originating end using the DPE system
management protocol CMISE (Common Management Infor
mation Service Element).

7. The connection manager instructs the managed object
agent to connect the terminating point using the CMISE
protocol.

8. The connection manager uses RFC to request a binding
handle from the connection data building block.

9. The connection manager requests the connection data
building block to update its data store to reflect the addition
of the new PVC connection. The communication is done via
RPC.

10. The connection manager reports the establishment of a
connection back to the PVC processing module via an RPC.

11. The PVC processing module returns the status of the
connection establishment back to the PVC presentation
module for display to the user.

Connection
Data Building

Block

Fig. 6. The architecture for a
switched virtual circuit service.

Example 2: Switched Virtual Circuit Service
This example shows that the modularity and code reuse
capability of the DPE architecture can be used to add new
features. The switched virtual circuit implementation shown
in Fig. 6 provides users with the capability to establish or
reconfigure existing connection sessions at any time, much
like voice telephony service. As shown in Fig. 6 the connec
tion management, data building block, and managed object
agents are all being reused. Only the top two modules need
to be replaced with new code.

Summary
This paper has presented an overview of the HP DPE imple
mentation. DPE plays a key role within the Telecommunica
tions Information Networking Architecture (TINA). HP DPE
offers a development environment to develop distribution
transparency for both RPC-based and CMIP-based INA-com-
pliant applications. This paper has also detailed the services
provided by HP DPE and described the implementation of
the contract trading servers and contract adapters, the key
components providing distribution transparency.

Acknowledgments
The authors would like to acknowledge other members of
the development and product team: Joel Fleck, Bruce
Greenwood, Hai-Wen Liang, David Wathen, and Chris Liou.

PostScript is a trademark of Adobe Systems Incorporated which may be registered in certain
jurisdictions.

October 1 996 Hewlett-Packard Journal 2 1

© Copr. 1949-1998 Hewlett-Packard Co.

HP OEMF: Alarm Management in
Telecommunications Networks
This article explains the HP OpenView Element Management Framework
concept, which is based on the HP OpenView Fault Management Platform
(FMP) an complements the functionality of the FMP to provide an
integrated network management solution. This article also explains the
FMP, which facilitates efficient management of alarms in a
telecommunications network, and the open APIs provided in the FMP,
which allow seamless integration with other applications.

by Sujai Hajela

There has been an unprecedented growth in the telecommu
nications industry around the globe. The rapid evolution of
new technologies, the offering of a broad spectrum of data
services, and the need to have fast access to information are
some of the factors that have contributed to a tremendous
increase in the number of subscribers to telecom services.
This has imposed great demands on the telecommunications
networks of both public and private operators. To keep up
with the demand, telecom operators are expanding their
existing infrastructure at a hectic pace. Furthermore, deregu
lation of the telecommunications industry has led to the
emergence of a number of private service providers, and this
has created keen competition within the industry. A good
quality of service at an economical price has become a key
factor for service providers to increase their customer
bases.

Telecommunications Management Network
Offering a high quality of telecom services and at the same
time generating high revenues requires efficient management
of telecommunications networks by the service providers.
The Telecommunications Management Network (TMN)
defines activities that aid in managing a telecommunications
network. According to ITU-T Recommendation M.3010, a
TMN is intended to support a wide variety of management
areas including planning, installation, operations, adminis
tration, maintenance, and provisioning of telecommunica
tions networks and services. The following five functional
areas have been identified in TMN (ITU-T Recommendation
M.3400):
Fault management
Configuration management
Performance management
Security management
Accounting management.

Fig. 1 shows the TMN functional blocks and components.
The TMN architecture consists of the functional architecture,
the information architecture, and the physical architecture.
The TMN functional architecture defines the following
blocks:
Operations systems function (OSF)

1 Mediation function (MDF)
1 Network element function (NEF)
Workstation function (WSF)

1 Q adapter function (QAF).

The TMN information architecture defines the information
exchanged between these functional blocks.

Operations
System

(OS)
Workstat ion

(WS)

Data Communicat ions Network
(DCN)

Workstat ion
(WS)

Network
Element

(NE)
NEF

Network
Element

(NE)
NEF

Network
Element

(NE)
NEF

Fig. 1. Telecommunications Management Network (TMN) functional
blocks and components. (F = function, e.g., OSF = operations system
function.)

22 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The TMN physical architecture provides a means to trans
port and process information. The physical architecture is
made up of the following types of physical components:
Operations system (OS). Performs OSF.
Mediation device (MD). Performs MDF.
Q adapter (QA). Performs QAF, that is. connects network
elements and operations systems with noncompatible inter
faces to OSI Qx and Q3 interfaces.
Data communications network (DCN). Performs data com
munications function (DCF), which is used by the TMN
functional blocks to exchange information.
Network element (NE). Performs NEE
Workstation (WS). Performs WSF.

OpenView Element Management Framework
The HP OpenView Element Management Framework (OEMF)
aims to provide a set of management activities defined in
ITU-T Recommendation M.3400 to facilitate efficient man
agement of a telecommunications network. The functional
areas covered within the OEMF are fault management
(including trouble management), performance management,
and other third-party applications to complement the existing
set of applications under the OEMF umbrella â€” for example,
configuration management and asset management.

OEMF is an open system that makes possible the detection,
isolation, and correction of abnormal operation of the tele
communications network. OEMF consists of the HP Open-
View Fault Management Platform (FMP) integrated with the
Trouble Ticketing System provided by Remedy and the Per
formance Management System from MÃ©trica. Other third-
party applications for inventory, asset, and configuration
management have also been integrated. Integration with

test and measurement products like HP AcceSST further
enhances the OEMF functionality.

Fig. 2 illustrates the physical architecture of the OEMF.
OEMF has a distributed architecture in which different man
agement activities can reside on different servers or on the
same server. OEMF offers application availability, that is, if
one of the management activities ceases to function, the
operator can still execute the functionality provided by the
other applications.

In the TMN hierarchy, OEMF resides between the network
management level and the element management level (Fig. 3).
It can manage the network elements directly or can be inter
faced to an existing element manager to manage the network.
Providing this flexibility to OEMF are a rich mediation ser
vice and APIs (application programming interfaces) for inte
grating with customer-specific data collection mechanisms.

Fault Management Platform
The FMP is a fault management platform that provides util
ity tools for managing alarms from multivendor devices and
network element managers. It is based on the HP OpenView
Distributed Management Platform. It has an extremely open
architecture, which facilitates a seamless integration of
third-party applications, as manifested by the OpenView
Element Management Framework described earlier. Fig. 4
illustrates the FMP functional blocks. The main components
of the FMP are the mediation device block, the FMP server
block, and the graphical operator interface.

OEMF Performance
Management Server

OEMF
Configuration

Management Server

Legacy
Network
Elements

Fig. 2. Physical architecture of the
HP OpenView Element Manage
ment Framework (OEMF). FMP is
the HP OpenView Fault Manage
ment Platform.

October 1996 Hewlett-Packard Journal 23

© Copr. 1949-1998 Hewlett-Packard Co.

Vendor- Â¡
Speci f ic â€¢ Vendor-

O M S I S p e c i f i c
EMS

Element Management Level

Network Elements

SDH = Synchronous D ig i t a l H ie ra rchy
E M S = E l e m e n t M a n a g e m e n t S y s t e m
O M S = O p e r a t i o n s M a n a g e m e n t S y s t e m

Fig. 3. In the TMN hierarchy, the HP OEMF resides between the
network management level and the element management level.

The mediation device block provides the mediation and Q
adapter functions and the FMP server provides the opera
tions systems function. The mediation device logs, formats,
filters, maps, and finally correlates all alarms it receives
from network elements into ITU-T X.733 alarm reporting
format and sends these alarms to the FMP server for alarm
management. The mediation device can send the alarms to
the FMP server using the CMISE protocol over the CMIP
stack provided by the HP Open View Distributed Management
Platform, or optionally, using the CMIP-LITE protocol (an
FMP representation of the X.733 alarm report) over TCP/IP.

The FMP server performs the problem condition manage
ment to I t provides graphical operator interfaces to
aid in the management of the alarms being received from
the network elements (which are performing the network

element function). These graphical interfaces provide the
means to interpret TMN information for the management
information user. They perform the workstation function.

The FMP provides the fault management activities in a tele
communications network. However, to manage a telecom
munications network, other management activities such as
trouble management, performance management, and config
uration management are also required. This requirement
contributed to the OEMF concept, which allows a broad
spectrum of best-in-class applications, regardless of manu
facturer, to be integrated with FMP to provide an integrated
network management solution. This integration is made
possible by a range of open APIs provided in the FMP. The
HP OpenView Distributed Management Platform APIs fur
ther enhance the integration capabilities.

Mediation Device Block
The mediation device logs raw alarms, formats and filters
alarms from events, correlates these alarms, and then for
wards them to the FMP server in the X.733 alarm reporting
format. The mediation function is extremely important as
the FMP server receives and manages alarms in a heteroge
neous, multivendor, multinetwork environment in which the
network elements send events in varying formats. Fig. 5
illustrates the functional blocks within the mediation device.

The mediation device provides a set of data collectors,
which collect data over RS-232, TCP/IP, and SNMP. Reports
in X.733 format can be sent directly to the FMP server using
CMIP protocol. For data collection over X.25 and other
types of networks, customer-specific data collectors can be
written using mediation device connection APIs. These data
collectors forward the events to the event logging module,
which logs them into raw log files. The event logging module
forwards the valid events to the event formatting module,
which parses the incoming events and then classifies and
formats them into message classes based on the parsing
rules defined in the configuration. These formatted events
are then logged into message class files corresponding to
the message classes. The event formatting module forwards
the events to the event mapping module, which filters the
alarms from events, converts the alarms into the X.733

Switching
Networks FMP Server

Graphical Operator Interfaces

HP Open View
Distr ibuted Management

N e t w o r k
Elements

Data
Communications

Networks
Media t ion

Devices

Data
Communications

Network

Fig. 4. Functional blocks of the
fault management platform (FMP)
of the OEMF.

24 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

M e d i a t i o n D e v i c e

N e t w o r k
Elements

Event
Formatter

Formatted Messages

Raw Log File

Inval id Messages
Val id Messages

Message
Class-Based

Log Files
FMP Server

Report Log File

Report
Messages Filtering

Rules

Configuration
Files

m^m

Fig. 5. Mediation device functional block diagram.

alarm report format and forwards them to the event filtering
and correlation module. The correlation module correlates
repeated alarms, transient alarms, and related alarms for a
network element. The FMP supports a two-stage correlation
approach in which the correlation functionality is provided
at the mediation device and at the FMP server. The correla
tion module forwards the alarm to the module interfacing to
the FMP server. This module encodes the alarm into CMIP
and sends it over the CMIP stack provided by the HP Open-
View Distributed Management Platform or optionally (de
pending upon the configuration) encodes the alarm into
CMIP-LITE and sends it over TCP/IP to the FMP server.

Correlation in the FMP
The FMP allows two stages of event correlation: one at the
mediation device level and the other at the FMP server level.
The correlation at the FMP server is done across the network
being managed because the server has access to the topology
database. The correlation at the mediation device is restricted
to the network elements to which the mediation device is
connected. The correlation at the mediation device level is
done primarily to prevent not-so-important data from being
forwarded from the mediation device to the FMP server.

The FMP has two types of correlation: repeated/transient
correlation and root-cause/related correlation. Repeated/
transient correlation correlates alarms that are identical
(they may have different severities) and are being emitted
continuously by a network element. Root-cause/related cor
relation correlates alarms that have occurred because of a
root-cause alarm and are not as important to the operator.

Let's take an example of root-cause/related correlation in a
GSM network. Assumptions:

. MSC-1 is connected to BSC-1 which is connected to BTS-1
through BTS-4.

. An alarm A:MSC-1 (that is, an alarm of type A:MSC at MSC-1)
causes an alarm B:BSC-1 (an alarm of type B:BSC at BSC-1).

â€¢ The alarm B:BSC-1 causes an alarm C:BSC-1.
. The and C:BSC-1 causes alarms D:BTS-1, D:BTS-2, D:BTS-3, and

D:BTS-4.
â€¢ Of all these alarms, only A:MSC-1 is significant.

Fig. 6 illustrates the scenario. Based on the above assump
tions, if an alarm A:MSC-1 occurs, the operator will also
receive the alarm B:BSC-1 which will further cause alarms
C:BSC-1 and D:BTS-1 through D:BTS-4. Even though the real
problem is with MSC-1, the operator receives numerous
alarms, many of which are of no significance.

October 1996 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

DiBTS D:BTS

BTS-1 BTS-4

BTS-2 BTS-3

Fig. 6. Scenario of alarm generation in an example GSM network
without correlation. Many extraneous alarms can be generated in
addition to the root-cause alarm.

Let's specify the correlation rules to be as follows (the
format of the event correlation rules specification has been
simplified to explain the concept):

Rule 1: ROOTCAUSE :

Rule 2 : ROOTCAUSE :

Rule 3: ROOTCAUSE :

A:MSC RELATED

B : BSC RELATED

C:BSC RELATED

B:BSC

C : BSC

D:BTS

Correlation window: 20 seconds

With these correlation rules in effect, the operator will re
ceive only the alarm A:MSC-1, which is the significant alarm.
This behavior is illustrated below:

Correlation window (total elapsed time) = 20 seconds

Arrival of A:MSC-1 ->I->A:MSC-1 sent
Arrival of B:BSC-1 ->l

(correlated by rule 1)
Arr iva l of C:BSC-1 > l

(correlated by rule 2)
Arr iva l of D:BTS-1â€” > l

(all BTS correlated by rule 3)
A r r i v a l o f D : B T S - 4 â € ” > l

E n d o f C o r r e l a t i o n W i n d o w

All alarms matching the correlation rules and occurring
within the correlation window are subject to correlation.
The correlation window can be a fixed or a sliding window.
The arrival order of alarms is not important â€” in the above
example, the alarms could have arrived in any order. As lonÂ£
as they arrive within the correlation time window, they get
correlated. If a related alarm arrives before a root-cause
alarm, it is held in the correlation module until the end of
the correlation window. If the root-cause alarm does not
arrive within the time window, the related alarm is sent out
as uncorrelated. If the root-cause alarm arrives before the
related alarms, it is sent out immediately. In the scenario
above, the A:MSC-1 is sent out by the correlation module
immediately and is not held back until the end of the cor
relation window.

Event correlation services are available in HP Open View
Distributed Management Platform 4.21 as an option (see
article on page 31). Event correlation services further

complement the event correlation provided by the FMP and,
when integrated with the FMP, greatly enhance the correla
tion functionality of the FMP.

FMP Server Block
The FMP server provides problem management services. It
logs, correlates, and distributes the alarms to the graphical
operator interfaces. Fig. 7 shows the functional blocks within
the FMP server.

An alarm is received from the mediation device (there may
be one or more mediation devices) either in CMIP or CMIP-
LITE by an interfacing module, which decodes and forwards
it to the alarm logging module. The alarm logging module
logs the alarm in the alarm database. This alarm is then
passed to the alarm correlator module for correlation. This
is the second stage of correlation, the first being at the medi
ation device. Correlation at the FMP server is performed
across the network because the server has access to the
topology information stored in the topology database, which
resides at the server. After correlation, the alarm is distrib
uted to the alarm handling module and the network status
monitor module. The alarm handling module manages prob
lems. Every alarm need not be a new problem â€” many alarms
may be sent for the same problem. The alarm handling mod
ule identifies the alarm as belonging to a problem if it origi
nates from the same network element and has the same
probable cause and specific problem fields as the problem
(these fields are specified by ITU-T X.733). The alarm han
dling module checks whether a problem condition already
exists for the alarm received. If it does, then an update to
the problem is sent to all the connected alarm viewers.
Otherwise, a new problem condition is created and sent to
the alarm viewers depending upon the span of control de
fined for each alarm viewer.

The network status monitor is responsible for status propa
gation according to the configuration rules. Depending upon
the severity of the alarm, the network status monitor calcu
lates and sets the status of the alarming network element on
the network map. The network status monitor calculates the
status of objects based upon the severity of objects both on
the map and not represented on the map (nonmap objects^).

The need to support the concept of nonmap objects arises
because in a telecommunications environment, the number
of objects being managed can be very large. Also, the opera
tor may prefer not to see all of the objects being managed
on the map, but would want the status of the nonmap ob
jects to be considered while calculating the status of the
higher-level objects (in the containment hierarchy) that are
represented on the map.

The status manager server (or simply status manager) facili
tates the submission of outage schedules and maintains in
formation regarding the outage of the network elements.
Operators submit the outage information through the status
manager clients.

Graphical Operator Interfaces
The FMP includes a set of utility tools that provide a graphi
cal interface for the operator to manage the telecommunica
tions network. The tools provided are the alarm viewer, the

26 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

FMP Server Status
M a n a g e r

Client

Trouble
Ticketing

System

Fig. 7. FMP server functional block diagram.

network map application, and the status manager clients for
submitting outage schedules.

Alarm Viewer. The alarm viewer is an XI I/Motif -based appli
cation that allows the operator to view the faults occurring
in the network being managed and provides facilities to take
corrective actions to handle these faults. Fig. 8 shows the
alarm viewer window.

The alarm viewer receives the problem condition from the
alarm handling module. It allows the operator to select and
perform the following actions on the selected problem
condition:
Own
Disown
Discharge
Locate
View Problem Condition History
Create Trouble Ticket
View Details
Print.

By owning a problem condition, the operator acknowledges
the presence of a fault. The operator can then locate the
alarming network element on the network map and create a

trouble ticket for the problem. Once the problem has been
rectified, it can be discharged. On being discharged, the
problem disappears from the alarm viewer. An audit trail is
maintained in the alarm database regarding the actions per
formed on the problem. A list of all the alarms corresponding
to the selected problem condition is displayed by clicking
the Problem Condition History button. The alarm viewer can be
configured to display only the fields in which the operator is
interested. The Details button can be clicked to view the de
tails of the problem condition. A hard copy of the selected
problem condition can be obtained by selecting the print
option.

The alarm viewer provides visual aids for quick identification
of the severity of the problem. The columns in the problem
condition row are color-coded and signify the outage, the
severity, and the ownership status of the problem.

An operator can invoke an alarm viewer and perform actions
on the selected problem conditions. However, operators
need to be registered with the FMP server, and their spans
of control, or management domains, need to be defined.
Their control can be defined on the basis of the network
instance, the network element class, and the network
element instance. The alarm handler ensures that all the

October 1996 Hewlett-Packard Journal 2 7

© Copr. 1949-1998 Hewlett-Packard Co.

alarm viewers are consistent in case there is overlap in the
operators' spans of control (it is common to have multiple
operators responsible for the same network elements). For
example, if a problem condition is owned at one alarm
viewer, this owned status is propagated to other alarm
viewers displaying this problem.

Alarm viewer menu options allow an operator to customize
the alarm viewer. Operators can set their own sorting crite
ria for problem condition display. They can also set their
own view preferences, for example to view problems from a
certain network, view problems of a certain severity, view
problems they own, and so on. These menu options offer
flexibility and convenience to help the operators efficiently
manage the problems occurring in the network.

The alarm viewer allows external and customer-specific
applications to be registered with it. A problem condition
can be selected and any of the registered applications can
be invoked for the selected problem condition. This is an
extremely useful feature which allows integration of the
FMP with best-in-class applications from any vendor to com
plement the FMP functionality.

Network Map. The network map is an OpenView Windows
application that displays the network being managed and
the status of the network elements within it. The network
elements are represented by icons and the colors of the
icons represent their severity. The network map gets status
updates from the network status monitor module. It allows
the operators to navigate through the managed network and
isolate the network elements generating the problem condi
tions. It also allows updating of the topology either interac
tively through the menu options provided or programatically
through the map loader APIs. The network map can be cus
tomized by creating logical views of the network. Thus, an
operator can navigate through the whole network hierarchy
while a manager can choose to look only at the status of the
network at a higher level without going into the details of
the network elements within the network.

The network map has the FMP registered as an application.
The FMP menu option allows the operators to invoke various
applications like the alarm viewer and the status manager
clients.

Fig. 9 shows a network submap for an example GSM net
work.

Fig. 8. Alarm viewer window.

Status Manager Client. The status manager client is an Xll/
Motif application that allows an operator to submit outage
schedules, that is, an operator can submit a proposal to put
a network element out of service or restore a network ele
ment back into service. The operator needs to be configured
for the status management capability to submit the outage
schedules. The operator can specify the start and end times
of the outages and whether the network element will be
restored manually or automatically to in-service status. If an
alarm is generated by a network element that is in the outage
state, it is flagged by a different color in the first column of
the alarm viewer. The FMP server can also be configured
such that alarms from network elements in outage status are
not sent to the alarm viewers at all. Information regarding
the outage status of the network elements is maintained by
the status manager server.

FMP Configuration
The mediation device has to be configured to be able to re
ceive, format, and map events received from multivendor
network elements in the X.733 alarm format. The object
model of the network being managed, the different types of
network elements, event correlation rules, operators' spans
of control, and status propagation rules all have to be con
figured. Information regarding the mediation devices con
nected to the FMP server (the FMP server can be connected
to more than one mediation device) and any customer-
specific data collectors connected to the mediation devices
also needs to be supplied.

FMP provides a screen-based GUI utility â€” the configurator
â€” to aid in configuring the FMP and customizing it to manage
a heterogeneous telecommunications network.

FMP Application Programming Interfaces
Throughout the design of the FMP, an open architecture and
ease of integration were always given maximum importance.
The FMP allows seamless integration with other applications
as a result of its rich set of C and C++ APIs. The various APIs
are described in the following paragraphs.

Data-Collector-to-Mediation-Device Connection APIs. These
APIs can be used to write customer-specific data collectors
to send events received from the network elements to the
mediation device. Apart from data collection, these data
collectors can also use these APIs to inform the mediation

28 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

h i l e h d i t L o c a t e V i e w O p t i o n s M o n i t o r A d m i n i s t e r h M P

^ M A I A
M m Â ¿ r

Fig. 9. Network submap for a re
gion in an example GSM network.

device regarding their operational status and to get informa
tion regarding the operational status of the mediation device.

High-Level Parsing APIs. High-level parsing APIs facilitate the
validation of events received from the network elements.
The data collectors can use these APIs to find the validity of
an incoming event and flag the event as valid or invalid. This
information is used by the event logging module in the medi
ation device to tag the event as valid or invalid in the raw log.

Pseudocode for a sample data collector using the data col
lector and high-level parsing APIs is as follows:

main()

Open the network element port

for (; ;)

If (Data received from network element

port)

{

//High-level parse the input data

//received

FaultBuf = HLPParse (Data Received)

//Send the structure returned by the

//HLPParse to the mediation device

DCSendFaultToMD (FaultBuf)

}

//Inform the mediation device if the

//network element port is not OK

If (Error in network element port)

DCSendPortStatusToMD(Port is not OK)

//If the mediation device is shutting

//down, shut down this data collector

If (((msg = DCReceiveFromMD(control

message from MD)) == MM_SHUTDOWN)

ShutdownThisDC () ;

I

Log APIs. The mediation device logs raw data received from
the network elements. It then classifies these events into
message classes and logs them in the corresponding message
class file. The log APIs can be used to access these files. A
number of applications can use the mediation services of
the FMP and have the data collected at the mediation device
in a format desired by them. These applications can then
access this formatted information using the log APIs. Many
interesting and useful applications can be written using the
mediation and logging services provided by the FMP. An
example is a raw log browser, which allows the operator
to select an X.733 alarm from the alarm viewer and then
extract and browse the raw alarm data corresponding to the
selected alarm.

Application Registration APIs. These APIs allow the registration
of external applications with the alarm viewer and facilitate
passing information about the selected problem conditions
to these applications. Application registration APIs can be
used to integrate customer-specific applications. Once regis
tered, the applications can be invoked from the Applications
menu option of the alarm viewer. Taking the example of the
raw log browser, the browser would first be registered with

October lu'KillcwIc'll-l'ackard.Jounial 29

© Copr. 1949-1998 Hewlett-Packard Co.

the alarm viewer. Then a problem condition can be selected
and the raw log browser application can be invoked. Assum
ing that a raw log index is passed as some field in the X.733
alarm (e.g., rawlogmdex as a part of additional information),
this application can use the APIs to extract this index, which
can be used to access the raw log. The trouble management
system provided under the OEMF also uses these APIs.
When a problem condition is selected and a trouble ticket is
created for it, the trouble ticketing application uses these
APIs to get information regarding the problem condition.

Problem Condition Management APIs. These APIs allow an ap
plication to interface to the problem condition management
services. The alarm viewer uses these APIs. Customized
alarm viewers, an automatic trouble ticketing application,
an automatic problem condition discharge application, and
other applications can be written using these APIs. Take, for
example, an automatic problem condition discharge applica
tion for managing problems for which the switch normally
does not send a clear event. Based on certain criteria like
the age of the problem condition, its severity, and so on, this
application can be designed to discharge the problem condi
tion automatically without any manual intervention from the
operator.

Map Loader APIs. These APIs allow the customer's topology
to be loaded into the FMP without having to add the objects
manually into the FMP topology. This is extremely useful

because the number of objects being managed can range
anywhere from 4000 to more than 40,000. Map loader appli
cations can be written to access the topology database of
the customer and then populate the FMP topology using the
map loader APIs.

Conclusion
The FMP APIs have led to the expansion of the number of
products integrated under the OEMF umbrella. The FMP
integrated with other best-in-class applications provides an
enhanced telecom network management solution for effi
cient management of the multivendor, multi-equipment tele
communications networks of today.

Acknowledgments
I would like to acknowledge the members of the FMP team
who have made it all happen, especially Chew Chye-Guan,
Tok Wu-Chuan, Kuan Siew-Weng, Lin Chee-Kheong, Ho
Yong-Boon, Vasu Sankhavaram, Prem N. Devadason, and not
the least, project manager David Chua. Special thanks to the
TMN, Integration Solutions Center, and Application Integra
tion Center teams whose valuable suggestions have contrib
uted to the growth of this product.

Motif and Open Software Foundation are trademarks of the Open Software Foundation in the
U.S.A. and other countries.

30 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP OpenView Event Correlation
Services
When an fault occurs in a telecommunications system, it can cause an
event storm of several hundred events per second for tens of seconds. HP
OpenView Event Correlation Services (ECS) helps operators interpret such
storms. It consists of an ECS Designer for the interactive development of
correlation rules and an ECS engine for execution of these rules.

by Kenneth R. Sheers

Modern telecommunication technologies such as SDH/SO
NET (Synchronous Digital Hierarchy/Synchronous Optical
Network) and ATM (Asynchronous Transfer Mode) can gen
erate large numbers of events when a fault occurs. Every
logical and physical element involved in delivering a service
that uses the failed or faulty element can generate multiple
events. This can result in an event storm of several hundred
events per second for tens of seconds. The task of telecom
munications operations staff is to determine the underlying
cause from the thousands of events presented to them.

HP OpenView Event Correlation Services (ECS) is designed
to deal with the problems associated with event storms in
the telecommunications environment. The theory from which
HP OpenView ECS technology has evolved was developed
by HP Laboratories in Bristol, England. 1 ECS is delivered as
two distinct components: the ECS engine and the ECS De
signer.

The ECS engine is a run-time correlation engine. It executes
a set of downloaded correlation rules that control the pro
cessing of event streams. At first release, the ECS correla
tion engine is integrated into the HP OpenView Distributed
Management (DM) postmaster.

The ECS Designer is a graphical user interface (GUI) devel
opment environment that allows the correlation rules to be
developed interactively by selecting, connecting, and config
uring logical processing blocks. Once the rules have been
created, their operation can be simulated and visualized using
a log of events input to a correlation engine attached to the
ECS Designer, with the engine's concept of time controlled
by the ECS Designer.

The correlation rules are created using a visual paradigm of
nodes connected together to form a correlation circuit.
Events logically enter nodes via input ports and leave via
output ports. An output port of one node is connected to an
input port of another node in the circuit, so that events flow
through the circuit from one node to the next. The functional
node types provided with ECS are a superset of the basic
types considered necessary and sufficient to perform real
time event correlation.

An event correlation circuit, Fig. 1, constitutes a set of cor
relation rules that can be compiled and downloaded to an

Flow of Events

Correlation Circuit

Connection

Input Port

Control Port

Fig. specified Generic correlation circuit. Correlation rules are specified
by such circuits.

event correlation engine. It consists of a series of intercon
nected and appropriately configured nodes, together with
any associated data and relationship information. Fig. 2
shows the ECS architecture and the relationship of the cor
relation circuit to the ECS Designer and the ECS engine.

Real-lime Engine
A key differentiator of ECS compared with other correlation
systems is that it operates in real time while taking into
account the real-world problem that events will often be
delayed in the management network and delivered to the
correlation system out of order.

If events always arrived in bursts, it would be possible to
buffer them on receipt and perform the correlation between
bursts. However, event storms may be continuous, and the
correlation engine should be capable of receiving the events,
decoding them, and correlating them at the speed at which
they arrive, continuously, without needing a mainframe to
do the work. In ECS, any buffering required for correlation
of time-separated events is dynamic and completely inte
grated into the normal engine operation.

In an ideal environment, a correlation engine is embedded
into each piece of equipment that generates events. Corre
lated events from each piece of equipment are forwarded to
another correlation engine where correlation across multiple
systems is performed. This strategy reduces event volumes

October 1996 Hewlett-Packard Journal 3 1

© Copr. 1949-1998 Hewlett-Packard Co.

Correlation Node Types

Fifteen primitive node types are supplied with HP OpenView Event Cor
relation Services (ECS). Every correlation circuit must have one or more
source nodes and one or more sink nodes.

Source Nodes. This is where events enter a correlation circuit. There
can be more than one source node in a circuit. For a top-level circuit,
source nodes are connected to the engine's input ports, where events
are delivered by the HP OpenView DM postmaster.

Sink a This is where events leave a correlation circuit. For a top-
level circuit, the events are returned to the HP OpenView DM postmaster
for delivery to management entities that have registered to receive them.

It is circuit to be able to suppress unwanted events. In the circuit
paradigm, events are filtered by preventing them from flowing through
different paths in the circuit. This is done by filter nodes and unless
nodes.

Filter Nodes. These suppress events based upon a configured expres
sion which typically uses the incoming event as an argument.

Unless Nodes. These forward an event unless another event was
created within a configured (positive or negative) time period relative to
the creation time of the first event, and the configured (filtering) expres
sion evaluates false.

Events can be delayed in the management network, especially when the
network is stressed. This may result in delayed events and events arriv
ing in Delay different order than the order in which they were created. Delay
nodes being be used when correlation decisions depend upon events being
processed in the strict event creation time order.

Delay Nodes. These hold an event until the creation time is a config
ured effect of seconds before the current time. This has the effect of
guaranteeing that the events are output from this node in creation time
order.

Events may need to be stored for extended periods so that future correla
tion decisions can be made using the event history. Subsequently, it may
be necessary to extract complete copies of events from the storage.

Table Nodes. These hold a logical copy of all events sent to the table,
subject to configured retention parameters and conditions. Other nodes
can examine the event list, stored in creation time order, and make pro
cessing decisions based upon the contents.

Extract Nodes. These search a table node and extract a copy of one or
more events from the stored list, subject to a configured condition. The
search is triggered by an event arriving at the input port of the extract

node, and the extracted events are output as a composite event (see
"Event Types" on page 36).

While most of the useful information will come from the event stream,
data may need to be obtained from outside the correlation engine.

Annotate Nodes. These obtain data external to the engine and add it
to an output composite event. The external data is now available in the
event re subsequent use in the downstream circuit. The annotate re
quest will time for the request to be serviced, after which it will
time period. Other events continue to be processed during this period.

One of the fundamental features of ECS is the ability to collect and con
solidate discrete pieces of data from the event stream and from outside
the engine to produce value-added information. Events need to be ma
nipulated, including combining events into a single data unit, changing
the structure of this unit, changing event data values, and creating new
events.

Combine Nodes. At these nodes, two or more input event streams are
combined into a single output stream, with each output event being a
composite event containing an event from each input stream. Events on
one stream can be held until events on other streams arrive.

Rearrange Nodes. These change the structure of a composite event,
including pulling a single normal event out of a composite.

Modify any These change attribute values of incoming events to any
values publicly The values can be copied or calculated from any publicly
available data. A copy of the original event is made, and the event copy
is modified and output. The original event is not modified.

Create Nodes. These create a new event with a format controlled by a
configured specification and attribute values set according to a config
ured specification. Event creation is triggered by an event arriving at the
input avail The event's attribute values can be set from any publicly avail
able event. throughout the engine, including from the incoming event.

Some nodes. utility functions are provided by the following nodes.

Count Nodes. These count the events passing through the node.

Clock Nodes. These generate an empty event every configured time
interval. This allows circuit logic to be triggered in the absence of any
incoming events, enabling the absence of required events to be detected.

Rate Nodes. These calculate the rate at which events are passing
through the node.

All parameter values are actually expressions that can use
references to values stored in the data store and to relation
ships stored in the fact store (see "Fact Store and Data
Store" on page 39). For example, where a value should be
supplied for a parameter, the name of a variable defined in
the data store can be used. The data store entries can be
changed without changing the configuration of the node.
Dynamic node parameters are evaluated whenever a new
event arrives at the input port of the node. If these parameter
expressions reference data store or fact store entries, updates
to these stores will affect subsequent parameter evaluations.
This allows the behavior of a correlation circuit to be modi
fied dynamically.

Like any primitive node, a compound node can have param
eters that must be set or configured when the node is instan
tiated. The parameters are defined and documented by the
designer of the compound node.

Ports
All nodes have one or more ports, which are visible in the
ECS Designer. Nodes are interconnected via ports appropri
ate to the required functionality. Depending upon type, nodes
can have input ports, output ports, error ports, reset ports,
and other types of ports. Normal operations occur through
the normal input and output ports. For a filter node, the con
figured expression should evaluate true or false, causing the

34 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Correlation Circuit

HP OpenView DM Postmaster

Input Port

Top-Level Compound Node

Source
Node

Port Configuration:
â€¢ Transit Delays
â€¢ Event Types Invisible Connections

Output Port

(a) Top-Level Circuit Port Connections

Parent Correlation Circuit

Compound Node

Source
Node

Input Port

(b) Compound Node Port Connections

Output Port

Fig. 5. Compound node port connections, (a) Top-level,
(b) Lower-level.

Fig. 4. A compound node contains
a correlation circuit that defines a
new node type with user-defined
functionality

incoming event to be routed to the true output or the false
output port as appropriate.

Where run-time errors occur in evaluating the expressions
configured for particular node instances (not everything can
be known before run time), an event will be output through
an error output port.

Except for the combine and compound nodes, primitive
nodes have a fixed number of ports. The combine node can
have up to 50 input ports (combining event streams). The
compound node can have up to 50 input and output ports to
support the encapsulated functionality.

Reset Ports
Delay, unless, combine, and annotate nodes can hold events
in memory associated with an input port pending some con
dition becoming true. Table nodes can hold events in long-
term memory.

When the engine is to be stopped or the correlation circuit is
to be modified, the future conditions can now never be true,
and the applicability of stored events is indeterminate in the
context of the modified circuit. Even if the circuit were to
be stopped and restarted without change, the potential for
pertinent events to have been missed invalidates the state of
the correlation. Critical events that should have been output
may now be discarded.

October 1996 Hewlett-Packard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

Count Node

The count node (Fig. 1) is an example of a simple node. It has a single
parameter, initial count, which sets the initial value of the count attribute.
An event entering the increment input port increments the count attri
bute and is immediately output via the increment output port. An event
entering the decrement input port decrements the count attribute and is
immediately output via the decrement output port. An event entering the
reset and port resets the count attribute to the initial count value and
immediately exits via the reset output port. At least an increment input
port will a decrement input port must be configured or the compiler will
generate an error. All output port connections are optional, and events
routed to unconnected ports are discarded. The default value for initial
count attribute, zero. The count attribute is exported as a read-only attribute,
which can be referenced in node parameters and expressions as <count-
nodenamex count. If both the increment input and decrement input ports
are connected, the count attribute will indicate the difference in the
number of events entering these ports.

Count Node

Environment

Increment
Input

Decrement
Input

Reset Input

Increment Output

Decrement Output

Reset Output

Mandatory Connect ion
(at least one)

Optional Connection
(else discard event)

Fig. 1. Count node.

Data Store, Fact Store,
E n v i r o n m e n t N o d e A t t r i b u t e s

Node Parameter
(Configured)

Node Attribute
(Exported)

It is necessary to be able to output the stored events before
engine reset or reload so that potentially critical events are
not lost. All nodes that store events have reset input and
reset output ports. If an event is forwarded to a node's reset
input port, any stored events will be output or discarded in a
defined manner. The reset event will be output via the
node's reset output port, possibly to a downstream node's
reset input port, allowing a reset circuit to be added to an
operational circuit.

Public Data
The nodes of a correlation circuit typically make decisions
and perform actions based upon the arriving events, the
information within the events, and the current time of the
engine. Other data is also available to the dynamic node
expression parameters to control node processing, including
node attributes, the data and fact stores, and annotation data.

Node Attributes. A node can export one or more data values
for use by expression and condition parameters configured

for other nodes throughout the circuit. The count node ex
ports a count attribute which increments or decrements for
each arriving event. The table node exports two attributes: a
count attribute whose value is the number of events currently
stored and a contents attribute whose value is a list of all
events stored in the table.

Compound nodes can export the attributes of any contained
nodes as attributes of the compound node. If they are not
exported, the attributes of internal nodes are private to the
compound node and will not be visible outside the compound
node.

Data and Fact Store. The data store contains entries of name-
value pairs and the fact store contains entries of name-
relation-name triples (see page 39). These stores operate as
in-memory databases and are accessible globally throughout
the correlation circuit.

The data store entries allow values to be referenced by name,
so that particular values need not be known when the circuit
is designed. Using indirection through the data store also
allows correlation circuits to be reused at multiple sites, with
specialization via appropriate data store values.

The fact store allows the relationships between objects to
be tested by node parameter conditions and expressions.
Typically the entries will be used to reflect network topology
information, and will allow event relationships to be deter
mined dynamically without building the network model
information into the actual correlation circuit.

Annotation. An annotate node (see page 40) can be used to
obtain data from outside the correlation engine for use
within the engine. This data will be used to make correlation
decisions, or to add to created events or modified events.

Event Types
Several event types can logically exist within a circuit. These
include primitive events, composite events, and temporary
events.

Primitive Events. A primitive event is a single event as it
entered the correlation engine, possibly with data values
modified within the circuit, or an event created within the
engine, suitable to be returned to the external environment.
ECS currently supports CMIP (Common Management Infor
mation Protocol, ISO/IEC 9596-1) and SNMPvl (Simple Net
work Management Protocol, version 1) event types. The
engine isolates the external event type from the internal
functionality using specific decode and encode modules for
each event type. This modular design allows additional
event types to be supported in the future. Since the internal
processing is not dependent upon the format of primitive
events, it is possible to correlate events of any supported
type with events of any other supported type.

Composite Events. A composite event is an ECS internal
mechanism that allows multiple events to be collected into
a single addressable structure in which all members are ac
cessible (Fig. 6). The event aggregation capability is funda
mentally important for ECS. Collecting and processing mul
tiple events as a single event allows all important information
to be collected together. Members of a composite event can
be primitive, composite, or temporary events. A composite

36 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Unless Node

The unless node (Fig. 1) is an example of a complex node. The unless
node will transmit an event arriving at the input port (the exciting event)
to the input port, provided that no event arrives at the inhibitor input
port (the inhibiting event) which satisfies the criteria specified by the
window parameter and the condition parameter. These events can arrive
at different times; either order is supported. The transit delays of arriving
events must be within the window parameter limits to be accepted by
the relevant port. If an accepted inhibiting event arrives and there is an
accepted exciting event in memory, the condition parameter is evaluated.
If an accepted inhibiting event arrives and there is no exciting event in
memory, the inhibiting event will be held pending the arrival of an
accepted exciting event, at which time the condition parameter will be
evaluated. The condition parameter is a Boolean expression that can
take both the exciting event and the inhibiting event as arguments.
For example,
condition: input_event ("device")

= inhibitor_event ("device")

will device true if both events were generated by the same device
(assuming this information is contained in the events). Any environment

data used store, fact store, and node attributes) can also be used in the
condition expression. If the condition evaluates false, the exciting event
Â¡s output via the output port. If the condition evaluates true, the exciting
event is inhibited and is output via the inhibited output port if one is
connected, or discarded if not. If the evaluation of the condition causes
an error (e.g., if a referenced event attribute does not exist), the exciting
event error be combined with the inhibiting event and output via the error
output port as a composite event. If the error output port is not connected,
the composite event will be logged. If the transit delay of the exciting
event does not satisfy the window parameter transit delay window, the
event this output via the fail output port. If the inhibiting event fails this
test, except is silently discarded. The inhibiting event is never output except
as a composite event as described above.

An event arriving at the reset input port causes any events held in the
memory fail the input (exciting) port to be output immediately via the fail
output port, and any events held in the inhibitor input port memory to be
silently discarded. The reset event is immediately output via the reset
output port.

Input

Inhibitor
Input

Reset
Input

Environment

Output

Inhibited Output

Error Output

â€¢ Fail Output

Reset Output

Detained Events

Mandatory Connection

Optional Connection (else discard event)

Optional Connection (else log event)

F ig . 1 . Un less node .

F a l s e C o n d i t i o n E v a l u a t e d F a l s e

T r u e C o n d i t i o n E v a l u a t e d T r u e

E r r o r C o n d i t i o n E v a l u a t e d E r r o r

Env i ronment Data S tore , Fac t S tore , Note At t r ibu tes

event is only defined within a correlation engine, and cannot
be output from a top-level circuit back to the environment.
Composite events can be passed into and out of compound
nodes.

Temporary Events. Where an event is required as an internal
container for data, or where a trigger event is required, the
engine will create a temporary event. For example, the clock
node will emit a temporary event at each clock period. There
is no relevant data in this empty temporary event. It can be
used to trigger correlation activity elsewhere in the circuit.
Where results are returned in response to a request by an

annotate node, a temporary event is created to hold the data
and returned to the circuit as a component of a composite
event. A temporary event can enter or leave a compound
node, but it cannot be output from a top-level circuit back
to the environment.

Enhancing Event Information
A fundamental value proposition of ECS is that event infor
mation can be enhanced. What this means in reality is that
all available information â€” for example, all information rele
vant to some network fault condition â€” is consolidated from

October 1996 Hewlett-Packard Journal 37

© Copr. 1949-1998 Hewlett-Packard Co.

Table Node

The table node (Fig. 1) is the only example of a special (and complex)
node. The table node stores events for extended periods. The number of
stored events is exported as the count attribute. All events stored in the
table The are exported as a list of events in the contents attribute. The
events in the contents attribute can be examined by expression and
condition parameters of other nodes in the circuit, and extracted by the
extract node. The table node stores a single list of events (the contents)
in two and areas. The current area is controlled by the save until and
max events parameters, and the retained area is controlled by the retain
condition and delete condition parameters. The two areas have different
mechanisms for storage. The current area is based on physical and event
age limits, while the retained area is based on evaluated conditions,
which typically test data values within the events.

The current area stores each event until the creation time of the event is
more than save until seconds before the current time of the correlation
engine, or until the number of events in the region exceeds max events.
Each event arriving at the input port is tested to see if the creation time
of the event is less than save until seconds before the correlation engine's
current time. If it is, the event is added to the current area (subject to
the max events -limit), and immediately output via the output port if con
nected, or discarded if the port is not connected. If the creation time of
the event is more than save until seconds before the correlation engine's
current time, the event is not added to the table, and is either output via
the error output port if connected, or logged if the port is not connected.

When or event is to be retired from the current area (based on age or
volume), the condition specified in the retain condition parameter is eval
uated. This is a Boolean expression that can take the retiring event as an
argument and can access any environment data from throughout the
circuit. If the expression evaluates true, the retiring event is logically
moved to the retained area. If the condition evaluates false, the event is
discarded. Events are retained in the retained area until they meet the
condition specified in the delete condition parameter. The condition is
tested for all events in the retained area whenever an event

Table Node

Input

Environment

Reset Output

^ ^ - M a n d a t o r y C o n n e c t i o n

r - ^ O p t i o n a l C o n n e c t i o n
(else discard event)

9^2> Optional Connection
(else log event)

Node Parameter
{Configured)

Node Attribute
(Exported)

Env i ronment Da ta S tore , Fac t S to re ,
Node Attributes

F ig . 1 . Tab le node .

arrives, or at each correlation engine clock cycle. Any event for which the
condition evaluates true is silently discarded.

An event entering the reset input port causes all stored events to be
silently discarded and the count attribute to be set to zero. The reset
event is immediately output via the reset output port.

Composite Header

I P r imi t i ve o r Temporary Event

2 2 1 A d d r e s s o f E l e m e n t

F i g . 6 . S t r u c t u r e o f a c o m p o s i t e e v e n t .

multiple time-separated events, the data store and fact store,
and data external to the engine via annotation.

When all pertinent information has been assembled (and
all superfluous data discarded), it must be forwarded to
interested operations systems. This can be done by:
Creating a new primitive event containing the consolidated
information, using the create node to create the event and
copy the data into the event.
Modifying the data values in an existing primitive event,
using the modify node to change the values of the event's
attributes before the event is output.

The input primitive events, which each contain only a frac
tion of the total relevant information, can be suppressed.
Only the new or modified events are forwarded to interested
management entities. The result is that the events actually
delivered to management systems contain enhanced infor
mation content.

To aggregate all pertinent data into the delivered events, it is
necessary to be able to collect the information together and
process it through the engine as a single data unit. This
allows correlation decisions to be applied to the logical block
as a single unit, providing major efficiencies in circuit design

38 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fact Store and Data Store

The data store and fact store permit business, topology, and operating
factors specific to a device or a set of circumstances in a managed net
work to be separated from the general correlation rules defined by the
correlation circuit. The behavior of the correlation circuit can be changed
by updating the data and fact stores as local conditions change without
affecting the integrity of the correlation circuit. This makes it possible to
develop correlation circuits that are data-driven, promoting circuit reus
ability and reliability and design generality.

The data store contains a set of name-value pairs. Any user-defined
names can be used to identify the assigned values. In a circuit, the value
can be a using the configured name. If the reference is by a
static node parameter, the reference will be resolved at circuit load time.
For dynamic parameters, references are resolved every time an event
triggers activity at the node.

The fact store contains triples: thing1-relation-thing2. A relationship can
be any user-defined concept, such as is_contained_in, Â¡s_the_parent_of,
is_equal_to, Â¡s_gzumped_by, and so on. The related things can also be
anything the user requires in the circuit, such as switchl, rackl?, cabi-
netlO, circuitABC, and so on. This means that a fact such as equipmentIO
is_contained_in rack27 can be defined. In a circuit node, a condition
parameter can test whether this relationship is true and take appropriate
action if it is.

The fact and data stores are loaded from files into memory. This model
conforms with the notion that the run-time engine is designed for very
high speed â€” faster than normal file I/O speeds. The stores can be
updated while the correlation engine is running, resulting in dynamic
changes to the correlation rules.

and processing loads. Composite events are used to aggre
gate events into a single unit.

Event Processing
When an event is received by the correlation engine it must
be decoded from the specific format (BER encoded*) suffi
ciently to determine the event creation time and the event
identification. These values are fundamental to the operation
of ECS. The creation time must be known to allow the time
relationships between events to be known. The event identi
fication can be used explicitly to control which branch of
the circuit the event will logically enter.

HP Open View ECS has been designed for high performance.
Event encoding and decoding, and event copying within the
engine, are implemented using a just-in-time encode and
decode mechanism and sophisticated systems of header
structure lists, event lists, pointers, and reference counts.
An event is not fully decoded if not required by the correla
tion rule parameter expressions. References to events pass
from node to node, rather than active events or copies of
events.

When an event is forwarded down multiple paths in a circuit,
reference counts are incremented. Only when one of these
logical copies is modified (say with the modify node), is the

1 BER stands for Basic Encoding Rules (ISO/IEC 8825. ITU-T X.209). The BER define how ASN.1
(Abstract Syntax Notation 1 , ITU-T X. 208) data types are encoded to be transported on the
network. Both of the primitive event types supported by HP OpenView ECS, that is, SNMP
traps and CMIP notifications, are encoded using BER.

event duplicated before modification. When the reference
count is decremented to zero, possibly when the event is
output from the circuit, the event is removed from the event
list. '

Retained Events
The transit delay of an event is defined as the number of
seconds between the creation time of an event and the time
that the correlation engine receives the event, assuming that
both clocks are synchronized.

The example previously used considered the case in which
an event A has arrived and a consequential event B is sup
pressed when it subsequently arrives. The correlation must
consider the permissible transit delay range for event A to
cover the situation in which event A arrives after event B.
This requires that either event A or event B be retained in
the circuit at the point where the condition is being tested.
In a real-time engine, in which memory resources must be
conserved, the event should be retained only while there is a
possibility that it may be required in an active correlation,
and automatically destroyed when no longer required.

A circuit must be configured with a transit delay window,
which acts as an initial filter to eliminate any events with
creation times outside this window relative to the correla
tion engine time. The circuit transit delay window is propa
gated into the circuit to calculate the transit delay limits on
all nodes whose operation depends on event time differ
ences. If a node imposes an additional time window for
event comparisons (e.g., an unless node allows an inhibiting
event to occur at some time offset from the exciting event),
the allowable transit delays for the subsequent circuit are
automatically adjusted to include the additional possible
transit delay.

Events can be retained in port or node memory pending some
condition becoming true. Each such event will be examined
at each engine clock cycle to ensure that the creation time
relative to the engine time is within the computed transit
delay window at that point. Events failing to meet this re
quirement are released from memory automatically.

Data Access and GDMO MIBs
The tests and comparisons performed by the nodes must
allow events to be tested for content. ECS provides high-level
access to any element of an event, and has language data
types that map onto the ASN. 1 data types in an event. In ECS,
each addressable component of an event is referenced as a
named attribute. For example, an event may be significant if
its severity attribute has a value of critical. ECS provides a
sophisticated mechanism that allows the designer to specify
this test (for a filter node) as:

i n p u t _ e v e n t (" s e v e r i t y ") = " c r i t i c a l "

This the expression extracts the severity attribute of the
input event, tests the value of the attribute, and evaluates as
either true or false.

The concept that an event has a series of attributes that have
values that can be examined or modified is fundamental to
ECS. The attributes of an event are all the components or
elements of an event that are specified by the MIB (Manage
ment Information Base) that defines the event. The MIB is
added to the underlying HP OpenView DM platform so that

October 1996 Hewlett-Packard Journal 39

© Copr. 1949-1998 Hewlett-Packard Co.

Annotation

The annotate node (Fig. 1) is special because it is the only node other
than the source and sink nodes that interacts with the external environ
ment. the is necessary to create an external annotate serverlo service the
annotation requests. When an event arrives at an annotate node, it
causes the engine to generate a CMIP event (an EcsAnnotateRequest
notification) which is transmitted to the annotate server via the HP Open-
View DM postmaster (pmd) and the XMP (X/OpenÂ® Management Proto
col) application programming interface. The server must have registered
with data OpenView DM to receive the annotate request event. Any data
from be incoming event, or from elsewhere in the circuit, can be output
with the request. This data is used to parameterize the request. The
annotate server must perform some user-implemented action or inquiry
to obtain the information required by the request. The server will return
the obtained data to the requesting annotate node with another CMIP
event (acting EcsAnnotateResponse notification) issued by the server (acting

EcsAnnolat ionRequesI

Nodename
Requestld
Timeout
Output Data

EcsAnnotat ionResponse

Nodename
Re quest I D
Response Data

as an agent entity). The response must be returned within a configured
time be or the request will time out. Any required data can be returned
(subject to the limits of the protocol). All ECS data types are supported
(string, integer, real, time, duration, Boolean, list, tuple, etc.), including
any combination of these types. The data in both the request and the
response is specified as a list. Since all requests use the same CMIP
event, it is necessary for the designer of the annotate server to specify
some mechanism to differentiate between requests. The response event
will the the requesting node name and request ID provided in the
request event. These are used to route the response to the requesting
annotate node.

The end user must create the annotate server. Examples of the server's
agent and manager functions are provided as source code along with
guidelines.

Configuration:

Timeout
Output Data List

H P OpenView
DM Postmaster

(pmd)

Temporary Event
with Each Returned
Data Item as an
Attribute

Events Fig. 1. The annotate mechanism.

it can be accessed by the correlation engine. MIBs must con
form to the GDMO model (Guidelines for the Definition of
Managed Objects, ISO/IEC 101654, ITU-T X.722) or the HP
OpenView DM platform will not accept them. Once part of
the platform, ECS accesses the components of the events
using the textual names from the MIB registration tree. The
MIB is described in the article on page 52.

Language
Underlying the ECS Designer GUI is a complex and sophisti
cated language called ECDL (Event Correlation Description
Language), which supports the complete specification of the
correlation circuit including all the dynamic node expressions
and conditions. ECDL includes data types, operations, and
functions that allow read access to all component data in
the events as they traverse the circuit, and to all public data
within the circuit. (Event attributes can be altered with the
modify node.) The ECS Designer ensures that the circuit

designer does not need to understand this language in great
detail. The circuit is specified by the visual interconnection
of selected nodes. Node parameters are specified wherever
possible using simple ECDL constructs and supplied library
functions written using ECDL or actually built into ECDL.
Advanced users are able to create specialized reusable func
tions. The ECDL code produced by the ECS Designer is en
crypted in source form and compiled for downloading to the
correlation engine. Direct coding using ECDL is not sup
ported and cannot be compiled.

Building and Testing Correlation Circuits
The ECS Designer (which includes circuit design and simu
late modes) is a GUI that allows the circuit designer to use
a highly productive intuitive paradigm to build a correlation
circuit by interconnecting primitive and compound nodes
(see Fig. 7).

40 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In ECS Designer build mode, nodes are selected from the tool
palette, placed on the canvas, and interconnected to form
the correlation circuit. Subsets of the circuit can be encap
sulated as compound nodes to improve readability, imple
ment top-down design mies, or promote reuse. Each node
must be configured with appropriate values or expressions
for its parameters. The general flow of events is determined
by the circuit layout, subject to the conditions imposed by
individual node parameters.

When the circuit is complete, the ECS Designer can be
switched to simulate mode. In this mode, events can be
input to the circuit to allow visualization of the flow of
events through the circuit.

Various visual techniques are used to provide circuit opera
tion feedback to the circuit designer. Events can be input in
various modes: stepped by event or by time, free-run at
selectable speed until a breakpoint, and others. The status
of each node can be examined at any time. For instance, the
contents of table nodes can be examined, the number of
events through various ports can be checked, and so on.

In the simulate mode, events are input to the circuit from an
input event log. The circuit designer can view both the input
events and the correlated output events by means of associ
ated event browsers.

The simulation is performed using a fully functional correla
tion engine, except that the engine does not free-run. The
engine's notion of time is under the control of the simulator.

Fig. 7. Constructing a correlation
circuit using the ECS Designer
GUI.

When a circuit has been developed and tested, the ECS
Designer is used to compile the circuit so that it can be
down-loaded into correlation engines, possibly in remote
locations.

The event log that is input to the ECS simulator is in a struc
tured ASCII format, allowing the events to be manually
created or edited. It is desirable to use a log of real events,
and to collect them automatically. Support is provided to
collect real events in the required format. It may be neces
sary to make some simple edits to this event log to simulate
the possible worst-case transit delays.

HP OpenView DM Interfacing
The correlation engine is integrated with the HP OpenView
Distributed Management (DM) postmaster, ensuring that
correlation is applied at a common point so that all events
can be subjected to correlation (see Figs. 2 and 8). A cor
relation engine can be installed wherever an HP OpenView
DM platform is installed. The distributed nature of HP Open-
View DM event management services allows a distributed
hierarchy of correlation engines to be readily implemented.

Adding correlation engines to the HP OpenView DM post
masters is transparent to existing agent and manager enti
ties communicating via the postmasters, except that events
can now be correlated. If the loaded correlation circuit were
to pass all events, there would be no observable difference
in the operation of these entities, or in the events being
generated and received.

Orlobrr III!Â»; Ilewlrtt-I'arkard Journal 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

Network Management Appl ica t ions

i S M F = S y s t e m M a n a g e m e n t
E t f e n t s F u n c t i o n s

X M P = X / O p e n M a n a g e m e n t
Protocol (Application
Programming Interface)

O P I = H P O p e n V i e w D M O p e n
Protocol Interface

(A) Unconf i rmed CMIP events are routed to ECS.

(Ã) A l l SNMP t raps a re routed to ECS.

(C_) Correlated events (CMIP and SNMP) routed to logs by pmd.

(Ã¼) Correlated events (CMIP and SNMP) routed to XMP by pmd.

(j_) Logged events routed to XMP by pmd.

(V) Conf i rmed CMIP events do not enter ECS (could be logged) .

Fig. 8. Event routing to and from HP OpenView Event Correlation
Services.

The HP OpenView DM platform is described in the article on
page 6.

Events entering the postmaster are routed to the correlation
engine where they may be accepted into the engine depend
ing upon the configuration of the circuit input ports (see

Fig. 8). Confirmed CMIP events are immediately returned to
the postmaster by the correlation engine. It is normally
expected that a management entity will receive a confirmed
event, and that the confirmation is returned as a consequence
of some action having been taken, frequently by an operator.
Typically, if the confirmation is not returned, the agent entity
that generated the event will issue another (possibly differ
ent) event. The operation of the agent entity may be effected
by the absence of the confirmation. If confirmed events
were accepted into the correlation engine where they were
subsequently suppressed as part of the correlation, the con
firmation would not be returned since the normal receiving
entities would never see the event. Conversely, if the cor
relation engine generates the confirmation, the agent entity
can modify its function based upon the assumption that an
operator has seen the event and taken appropriate action.

The input ports of the correlation engine must be configured
to accept all events received or they will be filtered out and
discarded by the engine. Where significant events are ex
pected for which correlation has not been designed into the
circuit, a branch of the circuit can be arranged as a pass-
through to transmit all events not explicitly handled by the
other circuit branches.

Acknowledgments
I would like to thank Keith Harrison and Michele Campriani
of HP Laboratories, Bristol for developing the theory upon
which this technology is based, and for their encouragement
and assistance in bringing the technology to market.

Reference
1. K.A.Harrison, A Novel Approach to Event Correlation, HPLÂ·94-68,
HP Laboratories, Bristol, England, July 1994.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

42 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A Modeling Toolset for the Analysis
and Design of OSI Network
Management Objects
To deal with the complexity of network management standards and the
increasing demand to deploy network management applications quickly,
analysts and designers need a set of tools to help them quickly and easily
model, define, and develop new network management objects.

by Jacqueline A. Bray

The HP GDMO (Guidelines for the Definition of Managed
Objects) Modeling Toolset (GMT) is the first tool in the HP
OpenView TMN (Telecommunications Management Network)
developer tool chain (Fig. 1). This toolset consists of a set of
integrated tools designed to aid developers in the analysis
and design of OSI network object models. The key compo
nents of the toolset are a graphical modeling tool, import
and export facilities, and a conformance report generator.
The tools operate independently of other HP OpenView prod
ucts so that network specifiers can work independently of
implementers. This article provides an overview of the net
work modeling process, GDMO, and the modeling tools.

The Modeling Process
The first step in developing a network object model is the
analysis of the environment to be managed. The network
and system resources to be managed are identified and their
characteristics and the operations that can be performed

HP OpenView GDMO
Modeling Tooset

T
GDMO

Specif ication Fi le
^ ^ m

HP OpenView
Managed Object

Toolkit (MOT)

HP OpenView
Distr ibuted Management

Developer's Kit

MOT-Based
M a n a g e r

HP OpenView
Distr ibuted Management

Platform

HP OpenView
Distr ibuted Management

Platform

Fig. 1. HP OpenView TMN developer tool chain.

upon them are defined. The managed resources might be
physical (e.g., a router or workstation) or logical (e.g., a
software process). A managed resource might also repre
sent a collection of different resources. Other elements
might be managed that are not actually resources but are
required to support management functions, such as an event
log. These requirements are translated into a GDMO object
model, with the managed resources represented as managed
objects. The managed objects define the interface to a man
aged resource.

GDMO
The Guidelines for the Definition of Managed Objects is an
ISO standard (ISO/IEC 10165-4 (ITU X.722))1 that defines
how network objects and their behavior are to be specified,
including the syntax and semantics. This specification lan
guage allows network object designers and manager/agent
implementers to communicate designs and build upon exist
ing designs. GDMO is an object-oriented environment, using
the concepts of inheritance, containment, and encapsulation.
It is used to define:

> Managed object classes for managed resources
> Attributes and behaviors of a managed object
â€¢ Operations that can be performed on an attribute or object
â€¢ Notifications (events) an object might issue
â€¢ Relationships with other managed objects
> The names of object instances.

GDMO is organized into templates, which are standard for
mats used in the definition of a particular aspect of the ob
ject, with rules for how these templates refer to each other.
A complete object definition is a combination of interrelated
templates. There are nine of these templates.

1 Managed object class templates define a model for managed
object instances that share the same characteristics. The
inheritance relationships with other managed object classes
are specified, along with the packages that define the class
characteristics.

â€¢ Package templates are groups of logically related sets of
behaviors, attributes, attribute groups, actions, notifications,
and parameters. With each attribute is a property list of
valid values, (Get, Replace, Add, and Remove), initial values,
and other value characteristics.

October 1996 Hewlett-Packard Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Behavior templates describe, in textual form, the behavior
of a component,

â€¢ Attribute templates define an actual data element of an
object, including its syntax and behavior.

â€¢ Attribute group templates define a set of attributes to allow
operations to be performed on the group as a whole.

â€¢ Action templates define additional operations for a managed
object that cannot be modeled using the standard operations
defined in the package template.

â€¢ Notification templates define unsolicited events that may
be sent by the agent.

â€¢ Parameter templates define error conditions specific to the
object and extend the definition of information used by
actions and notifications. The context within which this
parameter can be used is specified.

â€¢ Name binding templates define where an object may be lo
cated in the global containment tree, along with the attribute
used to distinguish object instances. These templates also
specify rules for the creation and deletion of the object
instances.

An example of each of these templates can be found in
Appendix A, which shows a portion of a GDMO definition
for a UNIXÂ® password file (i.e., /etc/passwd). The details of
the information to be exchanged between the manager and
agent are defined using ASN.l (Abstract Syntax Notation
One).2 ASN.l is a formal description language used to define
data types to be exchanged between systems. It includes
primitive data types, such as integer and Boolean, and allows
new data types to be constructed from these types. The data
types are grouped into one or more ASN. 1 modules within a
GDMO definition. In the example in Appendix A, there is one
ASN.l module named PasswordFilelnfo. The GDMO templates
reference ASN.l data types by prefixing the data type with
the ASN.l module name (e.g., PasswordFilelnfo.LoginNameSyntax
in the loginName attribute template).

Other ISO standards also relate to the definition of manage
ment object models. For example, The Management Informa
tion Model3 is a companion document that defines modeling
concepts, principles of naming and relationships, and scoping
and filtering. Another example is the standard for the Defini
tion of Management Information.4 This standard defines, in
GDMO and ASN.l, a set of managed object classes to be used
as superclasses. It includes an object class named top, from
which every other managed object class ultimately derives.
The other classes form an inheritance hierarchy, with top as
the root. The object class top includes attributes for object
instance naming, which the other classes inherit. The set of
rules for defining managed objects is referred to as the
Structure of Management Information.

The Toolset
The GDMO modeling toolset stores the GDMO and ASN.l
definitions in an object dictionary, which acts as a central
repository for all the tools (see Fig. 2). The toolset allows
concurrent access to the tools and object dictionary and can
be configured as a client^server architecture. GDMO and
ASN. 1 definitions are organized within documents. An im
port facility allows external standard and user-defined GDMO
document files, such as ITU-T X.721, to be loaded into the
object dictionary. (X.721 and other GDMO standards are
included with the toolset.) New object classes can inherit

G r a p h i c a l M o d e l i n g T o o l

GDMO
E d i t o r / B r o w s e r

GOMO
S e m a n t i c
C h e c k e r

D o c u m e n t
M a n a g e r

Conformance
Repor t

Gene ra to r

Fig. 2. The GDMO modeling toolset.

from any object class in the object dictionary and reference
other templates and data types for consistency and reuse of
specifications. Within the toolset, each document has a short
alias name to simplify references to documents. Object defi
nitions can be added to new or existing documents.

The graphical modeling tool can be used to learn the syntax
of the GDMO language, to explore existing GDMO docu
ments, and to create new ones. A template window exists
for each of the nine GDMO template types. These windows
show the details of an existing template or guide users in
creating new templates. For example, Fig. 3 shows the tem
plate for a managed object class, with the GDMO keywords
along the left (requiring no entry) and the specific entries
for this managed object class entered in the table. Clicking
the name of one of the referenced templates, such as the
Characterized By Package template, and clicking on the Details
button, displays the window for that particular template.
The Package template window displays entries for several
template types, including Attributes. Clicking on Details for an
attribute in that window would display its Attribute template.
In this way, successively more detailed information can be
viewed until the lowest level, the ASN.l definition, is reached.

Browsers for each of the template types can be invoked to
display a list of all available entries of that type. A filter
function is available in the browsers to display subsets of
the complete list. Template entry names can be copied into
another template window without retyping the name by
selecting an entry with the mouse and then clicking the
Insert button in the appropriate template. The Details button
described above also functions in the same way while in the
browser windows. This detailed drill-down capability is
available throughout the tool.

Two useful features for cross-reference checking the object
model are the Viewpoint and Inherited Characteristics options.
Clicking the Viewpoint button, available on all template and
Viewpoint windows, displays the viewpoint for a selected
item. In the Viewpoint of Managed Object Class window in Fig. 4,
the selected object is represented by the vertical bar, the
templates on the left reference the selected object, and the
templates on the right are referenced by the selected object.
The boxes on either side of the vertical bar contain the
appropriate GDMO keywords. Above each template name is
the template type (e.g., MOC (managed object class), PK6

44 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Managed Object L ias s [SE
D e r i v e d F r o m l o g R e c o r d

C h a r a c t e r i z e d B y e v e n t L o g R e c o r d P a c k a g e

Condit ional Packages Package Present If

no t i f ka t i on lden t i f i e rPa . " t he no t i f i ca t i on

corre late d Notifications F "the

a d d i t i o n a l T e x t P a c k a g e " t h e A d d i t i o n a l t e x t

R e g i s t e r e d A s J { s r n i 2 M O b j e c t C l a s s 5 }

Pragma... I

O K A p p l y | C a n c e l |

Views...

Insert

/

Insert

H*n

e v e n t T i m e P a c k a g e " t h e e v e n t

I n s e r t | J

He lp
Fig. 3. The window for a Managed
Object Class template.

| X 7 2 1 : o b j e c t C r e a t i c . DERIVEU FROM

| X 7 2 1 : c . b j e c t D e l g t i o r | 1 D E R I V E D F R C Ã œ T

S e l e c t e d | x 7 2 1 : a l 3 r m R e c o n i

Date changed |o i -apr -1996 13:24:58

Close i

C O N D I T I O N A L P K C

- | C O H D I T I O N f l L P K C] | X 7 2 1 : a d d i t i o n a l T e x |

D e t a i l s . . . V i e w p o i n t . . .

Fig. 4. A GDMO tool for cross-
reference checking: the Viewpoint
of Managed Object Class window.

October 1996 Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

(package), etc.). The Viewpoint window is helpful when mak
ing changes to an object to verify that those changes will not
adversely affect other objects that are dependent upon it.

Clicking Views and then the Inherited Characteristics button,
available only on managed object class template windows,
displays the window shown in Fig. 5. The characteristics
available to a managed object class, whether specialized in
that object class definition or inherited from an ancestor,
can be displayed by selecting the characteristics of interest
(Attributes, Notifications, etc.) from the row of buttons under
Characteristics to Display and then clicking Compute. The scrolled
window lists all of the inherited characteristics available and
where they were referenced. Clicking on a characteristic
and then the Details button displays its template.

The graphs available in the GDMO toolset represent three
distinct and independent tree structures used in OSI system
management. These graphs are the inheritance graph, the
registration graph, and the name binding graph. The inheri
tance graph (Fig. 6) shows the inheritance hierarchy of all
the managed object classes in a selected GDMO document,
along with any superclasses derived from other documents.
(All of the tool windows handle referencing across docu
ments. When a template is referenced from another docu
ment, the template is prefaced with the document alias.)
Object class nodes can also be added or deleted on this
graph. GDMO and the GDMO toolset both support multiple
inheritance, which allows classes to inherit properties from
more than one superclass.

The registration graph (Fig. 7) shows part of the registration
tree of object identifiers defined in ITU-T Recommendation
X.721.4 An object identifier is a unique ASN. 1 data type that is
a sequence of nonnegative integers representing a particular
object. GDMO describes the registration tree structure

adopted in the OSI system management standards for allo
cating globally unique identifiers to components of managed
object definitions.5 Objects can be registered via the registra
tion browser or the registration tree. Registration is typically
done in the last phase of GDMO modeling, when document
definitions are stable.

The name binding graph (Fig. 8) displays the containment
relationships defined via the name binding template. The
name binding template specifies a subordinate (contained)
object and a superior (containing) object, along with an
attribute of the subordinate object that will be used to name
instances of that class. The name binding template also speci
fies whether object instances can be created and deleted via
remote management, along with any limitations on those
actions. For example, it may specify that an object instance
can be deleted via remote management, but only if that ob
ject instance does not contain other objects. This contain
ment hierarchy represents the structure of the Management
Information Base (MIB). It shows the objects an agent con
tains and the hierarchy and containment of those objects,
which are used not only to define the MIB structure but also
as a means of unambiguously referencing object instances.6

Once the GDMO document is complete, the semantic checker
verifies that the specifications are complete and correct. It
checks references throughout the object dictionary, including
the detection of templates that are defined but unreferenced.
The document can then be exported to an ASCII file for sub
sequent use by code generators, such as the HP OpenView
Managed Object Toolkit and other tools. The ASCII file con
tains both the GDMO definitions and ASN.l modules. The
Managed Object Toolkit is described in the article on page 52.

The remaining tool, the conformance report generator, gen
erates printed reports that conform to the ISO standard:

inher i ted Character ist ics
M a n a g e d O b j e c t C l a s s j e v e n t l o g R e c o r d

S e a r c h D e p t h 1 5

C h a r a c t e r i s t i c s t o D i s p l a y

J P a c k a g e s ~ i B e h a v i o u r s * A t t r i b u t e s , J A t t r i b u t e C r o u p s W A c t i o n s

- 1 A l l t h e a b o v e

N o t i f i c a t i o n s

***** ATTRIBUTES

ATTRIBUTE X721 : additionallnf ormation

propertylist :

GET

with extension parameters :

none

referenced in package > S721 â€¢ additionaLInformationPackage

included as conditional package in managed object class (es) :

X721 : eventLogRecord

ATTRIBUTE X721: additionalText

propertyList :

BET

with extension parameters :

none

referenced in package > X721 ladditionalTextPackage

included as conditional package in managed object class (es) :

X721 : eventLogRecord

ATTRIBUTE X721 : allomorphs

C o m p u t e . . . I C l o s e D e t a i l s . . . j S a v e R e s u l t i n F i l e . . . I Fig. 5. A GDMO tool for cross-
reference checking: the Inherited
Characteristics window.

46 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

M a n a g e d O b j e c t C l a s s I n h e r i t a n c e G r a p h

log Record

r :Â¡nator

log

e v e n t F o r w a r d i n g
nator

r e l a t i o n s h i p
- Record

s e c u r i t y A l a r m
Repor tRecord

s t a t e C h a n g e
Record

H e l p
F i g . 6 . A m a n a g e d o b j e c t t r e e
s t r u c t u r e i n a M a n a g e d O b j e c t
C lass Inher i tance Graph w indow.

Registration Tree

- m s (9) s r n i (3)

Se lec ted |

nameBinding (6)
smÂ¡2Name
Binding

package (4 ;
sml2Package

" glarrriRecord

2
a t t r i bu te
Val i ieChange
R e cor Ã¼

eventforwardfng
Discr iminator

5
eventL'^g
Record

. 13
system

H
top

backedUp
StatusPa

barkUpObjec t
Package

Fig. 7. A registration tree graph.

October 1996 Hewlett-Packard Journal 47

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 8. A name binding graph.

Fig. 9. Aii example of a proforma,
which is the output from the GDMO
developer toolkit's conformance
report generator.

48 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Requirements and Guidelines for Implementation Confor-

mance Statement Profonnas Associated icith Management

Information (ISO/IEC 10165-6 (ITU-T X.724). Fig. 9 is an
example of a proforma The designer annotates the compo
nents in the report with any additional information that will
be needed by the agent developer implementing the compo
nents. The agent writer will indicate in the proforma report
the level of conformance to the definitions.

Conclusion
Developing a network object model and the associated
GDMO specifications is a complex process. The GDMO
Modeling Toolset aims to reduce the complexity and time
involved in this definition by providing intuitive graphical
tools and object model verification.

Acknowledgments
The author would like to acknowledge the contributions of
many individuals who participated in the development and

deployment of the GDMO toolset, including Paul Stoecker
and Mark Smith for their technical contributions.

References
1. Guidelines for the Definition of Managed Objects. ITU-T Recom
mendation X.722. 1992.
2. Specifications of Abstract Synta.r Notation One (AS\.1J. ITU-T
Recommendation X.208. 1993.

iigemrnt Information Model. ITU-T Recommendation X. 720,
1993.
4. Definition of Management Information. ITU-T Recommendation
X.721. 1992.
5. J. Westgate. Technical Guide for OSI Management, NCC Black-
well Limited. 1992.
6. W. to SNMP, SNMPv2, and CMIP, The Practical Guide to

\etu-ork-Ma nagement Standards, Addison-Wesley Publishing Co,
1993.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/OpenÂ® Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

October 1996 Hewlett-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

Appendix A: A Portion of a GDMO Definition for a UNIX Password File

passwordEntryManagedObjectClass MANAGED OBJECT CLASS

DERIVED FROM

"Rec. X.721 I ISO/IEC 10165-2 : 1992":top;

CHARACTERIZED BY

passwordEntryPackage ;

REGISTERED AS { passwordMOCObj ID 1 } ;

passwordEntryPackage PACKAGE

BEHAVIOUR

ATTRIBUTES

loginName

GET,

password

INITIAL VALUE

GET-REPLACE,

passwordEntryPackageBehav;

PasswordFilelnfo.passwordlnitVal

ATTRIBUTE GROUPS

passwordEntry;

NOTIFICATIONS

passwordEntryWasCreated,

passwordEntryWasDeleted;

REGISTERED AS { passwordPkgObj ID 1 } ;

passwordEntryPackageBehav BEHAVIOUR

DEFINED AS "This is a simple agent/manager designed to

manipulate entries in a UNIX password file, /etc/passwd.

loginName ATTRIBUTE

WITH ATTRIBUTE SYNTAX

MATCHES FOR

BEHAVIOUR

PARAMETERS

PasswordFilelnf o.LoginNameSyntax;

EQUALITY;

loginNameBehav;

loginNameErrorParam;

REGISTERED AS { passwordAttrObj ID 1 } ;

passwordEntry ATTRIBUTE GROUP

GROUP ELEMENTS

loginName,

password,

DESCRIPTION "This is the mechanism whereby an entire password

entry will be referenced in a single call.";

REGISTERED AS { passwordAttrGroupOb j ID 1 } ;

readObjectsFromDisk ACTION

BEHAVIOUR

PARAMETERS

WITH INFORMATION SYNTAX

WITH REPLY SYNTAX

readObjectsBehav;

readObjectsErrorParam;

PasswordFilelnf o.FileNameSyntax;

PasswordFilelnf o . SuccessSyntax;

REGISTERED AS { passwordActionObj ID 1 } ;

passwordEntryWasCreated NOTIFICATION

B E H A V I O U R p a s s w o r d W a s C r e a t e d B e h a v ;

WITH INFORMATION SYNTAX PasswordFilelnf o . LoginNameSyntax;

REGISTERED AS { passwordNotifyObj ID 1 } ;

loginNameErrorParam PARAMETER

C O N T E X T S P E C I F I C - E R R O R ;

W I T H S Y N T A X P a s s w o r d F i l e l n f o . L o g i n N a m e E r r o r ;

B E H A V I O U R l o g i n N a m e E r r o r B e h a v ;

REGISTERED AS { passwordParamOb j ID 1 } ;

passwordEntryNameBinding NAME BINDING

SUBORDINATE OBJECT CLASS passwordEntryManagedObj ectClass ;

NAMED BY SUPERIOR OBJECT CLASS passwordRootManagedObj ectClass ;

W I T H A T T R I B U T E l o g i n N a m e ;

B E H A V I O U R p a s s w o r d E n t r y N a m e B i n d i n g B e h a v ;

C R E A T E W I T H - R E F E R E N C E - O B J E C T ;

D E L E T E D E L E T E S - C O N T A I N E D - O B J E C T S ;

50 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

REGISTERED AS { passwordNameBindObj ID 1 } ;

â€” ASN.l Definitions

PasswordFilelnfo { 1 3 6 1 4 1 11 1001 1 1 }

DEFINITIONS ::= BEGIN

m a x N a m e L e n g t h I N T E G E R : : = 8

LoginNameSyntax ::= GeneralString (SIZE (maxNameLength))

passwordBaseObjID OBJECT IDENTIFIER ::= {136141 11 1001 }

passwordAttrObjID OBJECT IDENTIFIER ::= { passwordBaseObjID 2 }

passwordMOCObjID OBJECT IDENTIFIER ::= { passwordBaseObjID 8 }

END

â€” The products. example is provided with various HP OpenView TMN products.

October 1996 Hewlett-Packard Journal 51

© Copr. 1949-1998 Hewlett-Packard Co.

A Toolkit for Developing TMN
Manager/Agent Applications
Developing manager and agent applications for telecommunications
network management that conform to standards can be a time-consuming
task because of the number of APIs and data types involved in dealing
with network data and protocols. The HP OpenView Managed Object
Toolkit aids and accelerates the development of these TMN applications.

by Lisa A. Speaker

Telecommunications Management Network (TMN) applica
tion developers have to implement large, complex solutions
to manage today's heterogeneous and distributed telecom
munication networks. Telecommunication service providers
(carriers) rely on interoperability standards to integrate and
deploy these solutions in a heterogeneous environment.
Developing these solutions to conform to standards is a
time-consuming task.

This article will provide an overview of the challenges in
volved in developing OSI-based TMN applications and then
will describe the HP OpenView Managed Object Toolkit,
which can be used to accelerate the development of TMN
applications.

Background
Network equipment providers and network service providers
historically have developed their own proprietary solutions
for managing their telephone network equipment. Today,
however, network equipment may come from different pro
viders, and telecommunication network operators manage
large, heterogeneous, and distributed networks. Thus, the
main objective for standards being developed for managing
telecommunications networks is to provide a framework for
telecommunications management that promotes interopera
bility. By introducing the concept of generic network models
for management, it is possible to perform general manage
ment of diverse equipment using generic information models
and standard interfaces.

In 1977, the International Organization for Standardization
(ISO) recognized the necessity for standards to enable the
widespread use of communications networks and, as a re
sult, established a subcommittee to initiate the standardiza
tion process. Because of the complexity of the environment,
they concluded that no single standard would be sufficient.
Rather, they decided that the communication functions
should be partitioned into more manageable components and
organized as a communications architecture. This architec
ture would then form the framework for standardization.1

The essential elements of the model were developed quickly,
but the final ISO standard (ISO 7498) was not published until
1984. The International Telegraph and Telephone Consultative
Committee (CCITT) issued a technically compatible version
as X.200. The result is a massive set of standards referred to

as OSI (Open Systems Interconnect) systems management.
The ISO standards and the CCITT recommendations con
tinue to be developed with close collaboration.

The term OSI systems management actually refers to a
collection of standards for network management that in
clude a management service and protocol and the definition
of a database and associated concepts. The first standard
related to network management issued by the ISO was
ISO 7498-4, which specifies the management framework for
the OSI seven-layer model. Subsequently, the ISO issued a
set of standards and draft standards for network manage
ment. A subset of these standards provides the foundation
for TMN applications.

The TMN recommendations strive to leverage the OSI sys
tems management standards and extend them into the tele
communications network management domain. As in OSI,
the basic concept behind TMN is to provide an organized
architecture and standardized interfaces, including protocols
and messages, to achieve interconnection between various
types of operations systems (OSs) and telecommunications
equipment for the purpose of exchanging management
information.

The OSI systems management standards fall into five
categories:

â€¢ An OSI management framework and overview, which
provides a general introduction to management concepts,
including the OSI seven-layer model

â€¢ The Common Management Information Service (CMIS),
which provides OSI management services to management
applications, and the Common Management Information
Protocol (CMIP), which provides the information exchange
capability to support CMIS

â€¢ Systems management functions, which define the specific
functions performed by OSI systems management, including
fault, configuration, accounting, performance, and security
management

â€¢ A management information model, which defines the
Management Information Base (MIB), a database containing
information about the resources and elements within the
OSI environment that need to be managed

â€¢ The Telecommunications recommendations are now called ITU-T (International Telecommunications Union-
Telecommunications) recommendations.

52 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

S y s t e m 1

Managed
Resources

^ ^ H

OSI Protocol
Stack (CMIP]

OSI Protocol
Stack (CMIP)

^ ^ H

M I B

Manager Requests Agent Notif ications and Responses

CMIS = Common Management In format ion Serv ice
CMIP = Common Management In format ion Protoco l
M I B = M a n a g e m e n t I n f o r m a t i o n B a s e

â€¢ Layer management, which defines management information,
services, and functions related to specific OSI layers.

The fundamental function within OSI systems management
is the exchange of management information between two
entities: the managing system (the manager or requestor)
and the managed system (the agent or responder) by means
of a protocol (see Fig. 1). CMIS provides the services, invok-
able by the management process to initiate management
requests, and CMIP specifies the protocol data unit (PDU)
and associated procedures for transmitting management
requests and responses.

OSI systems management relies heavily on the concepts of
object-oriented design. A managed object class is a model or
template for managed object instances that share similar
characteristics. An OSI systems management managed object
class is defined in terms of its attributes, operations that can
be performed upon it, notifications that it may emit, and its
relationships with other managed objects. Attributes hold
the data values associated with a specific managed object
instance and may have a simple or complex structure. The
data type for an attribute is defined using Abstract Syntax
Notation One (ASN.l). The operations affiliated with a
managed object class are closely associated with the CMIS
services CREATE, DELETE, GET, SET, and ACTION.

A managed object class can be defined for any resource that
an organization wishes to monitor or control. A single man
aged object class may represent a single network resource
or a logical representation of many resources. Examples of
hardware resources include switches, workstations, PBXs,
LAN cards, and multiplexers. Examples of software resources
are queuing programs, routing algorithms, and buffer manage
ment. Examples of logical resources include a network, a
route, or a virtual private circuit.

Fig. 1. The OSI systems manage
ment architecture: the manager
system and the managed system
(agent).

An agent application provides a view of its associated
managed object instances. Manager applications are able to
access the managed object instance attribute values and
manipulate managed object instances through the manage
ment interfaces published by each managed object class.

The foundation of any network management system is a
database containing information about the resources and
elements being managed. In OSI systems management, this
data base is called the Management Information Base (MIB).
The MIB is a structured collection of managed object in
stances, together with their attributes. The MIB is typically a
multilevel hierarchy based on the managed object class con
tainment relationships defined in the object model. The MIB
hierarchy is constructed and traversed by using the object
instances' distinguishing attributes. For example, in Fig. 2 a
switchPort object instance is identified by its portNum attribute,
its associated switchCard cardNum attribute, and its switch
switchNum attribute (switchNum = 1, cardNum = 1, portNum = 2).

The general framework within which a MIB can be defined
and constructed is referred to as the Structure of Manage
ment Information (SMI). SMI identifies the data types that
can be used in the MIB and how resources within the MIB
are represented and named.

To encourage consistency between managed object defini
tions and to ensure the development of object definitions in
a manner compatible with the OSI system management stan
dards, the Guidelines for the Definition of Managed Objects
(GDMO) (ISO/IEC 10165-4, ITU-T Recommendation X.722)
has been developed. This standard provides a formal specifi
cation language for defining the interface for an OSI managed
object class and the semantics for documenting the attributes
and operations (behaviors) associated with a managed object
class. The specification also defines the relationships among

October 1996 Ilcwlctl-I'arkarcl Journal 53

© Copr. 1949-1998 Hewlett-Packard Co.

M I B

swi tch
switchNum = 1 (get)
switchStatus = 1 (get)

â€¢â€¢â€¢

switchCard
cardNum = 1 (get)
cardStatus = 1 (get)

switchCard
cardNum = 2 (get)
cardStatus = 1 (get)

switchPort
portNum = 1 (get)
portStatus = 1 (get/set)
packetsln = 1000 (get)
packetsOut = 1500 (get)

swi tchPort
portNum = 2 (get)
portStatus = 0 (get/set)
packetsln = 0 (get)
packetsOu(= 0(get)

Fig. 2. The contents of a subset of an agent's Management
Information Base (MIB) showing a containment tree made
up of object instances and their attributes.

managed object classes in the management domain. See the
article on page 43 for more about GDMO.

OSI Application Development

OSI application development falls into two major categories:
manager development and agent development. This section
describes the development of the agent and manager applica
tions a the assistance of a toolkit. Development with a
toolkit is discussed in the next section.

Manager development involves the development of applica
tions that issue management requests and process agent
responses and notifications. Notifications are messages
transmitted by agent applications when some trigger, such
as a threshold or an error condition, has been tripped.
Manager application developers must complete the tasks of:

â€¢ Developing the user interface through which management
requests can be initiated and the status of managed objects
can be viewed

i Developing the underlying communications for issuing
requests and processing responses and notifications.

Agent development involves the development of the appli
cation that manages the managed object instance data,
maintains its portion of the MIB, processes inbound man
agement requests, and emits notifications as necessary.
Agent application developers must complete the tasks of:

â€¢ Defining (usually in GDMO) the managed object classes
associated with the resources managed by the agent
application
Developing the underlying communications for processing
management requests
Monitoring managed resources and emitting notifications
as appropriate.

X/OpenÂ®, an independent, worldwide, open systems organi
zation, provides application programming interfaces (APIs)

to facilitate the development of OSI applications. A primary
objective of X/Open is to promote the portability and inter
operability of OSI applications at the source-code level. For
OSI systems management application developers, X/Open
provides the X/Open OSI Abstract Data Manipulation (XOM)
APIs and the X/Open Management Protocol (XMP) APIs.2-3

XOM is a C-language interface specifically designed for use
with application-specific APIs that provide OSI services,
such as X.400 and CMIS. The XOM API is a set of structured
information objects and functions for accessing objects and
shielding programmers from much of the complexities of
manipulating the underlying ASN. 1 data types.

XMP provides the TMN application developer with a C-lan
guage interface to the underlying management services con
sistent with the CMIS/CMIP and the Simple Network Man
agement Protocol (SNMP). The XMP API is designed to be
used and implemented with the XOM API. XOM objects
serve as the parameters for the XMP management service
functions (see Fig. 3).

Manager applications initiate management requests and
process responses returned from agent applications. XMP
functions that support issuing management requests include:

â€¢ mp_create_req(): Initiates a management request to create a
managed object instance

1 rnp_get_req(): Initiates a management request to get data
from a managed object instance

1 mp_set_req(): Initiates a management request to set attributes
in a managed object instance

> mp_receive(): Receives the agent's response to support asyn
chronous requests or a notification emitted by an agent.

XOM objects, denned as C structures, must be created and
passed to these functions to transfer the details of the man
agement request. For example:
mp_create_req() requires a CMIS-Create-Argument XOM object
and is returned a CMIS-Create-Result XOM object
mp_get_req() requires a CMIS-Get-Argument XOM object and
is returned a CMIS-Get-Result XOM object
mp_set_req() requires a CMIS-Set-Argument XOM object and
is returned a CMIS-Set-Result XOM object.

xmp_api (xom_object)

Or

Fig. 3. The relationship between XOM objects and XMP manage
ment to XMP functions use XOM objects as parameters to
send the details of a manager's request via either a CMIP or an
SNMP protocol stack.

54 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ mp_receive() requires a CMIS-XXX-Result XOM object, with
type depending on the response received, and is used for
receiving asynchronous requests.

Fig. 4 shows the specification for the CMIS-Get-Argument XOM
object class. The specification shows that the GET request
XOM object class specification also contains references to
other XOM object classes. To construct a CMIS-Get-Argument
XOM object, all of its contained XOM objects must also be
constructed. The complexities of developing applications
using the XOM API can be seen. The developer is challenged
with the tedious task of traversing several levels of nested
XOM objects either to prepare a request or to extract data
from a response.

When developing agent applications using the XMP/XOM
APIs, the agent developer is responsible for creating func
tions to receive the request, determine the type of request

CMIS-Get-Argument XOM Object Class:

X O M A t t r i b u t e V a l u e S y n t a x

b a s e - M a n a g e d - O b j e c t (O b j e c t - C l a s s) C l a s s o f o b j e c t d e s i g -
O b j e c t - c l a s s n a t e d a s s t a r t i n g

point of request

b a s e - M a n a g e d - O b j e c t (O b j e c t - I n s t a n c e) I d e n t i f i e r o f o b j e c t
O b j e c t - I n s t a n c e d e s i g n a t e d a s s t a r t i n g

point of request

a c c e s s - C o n t r o l O b j e c t (A c c e s s - C o n t r o l) P e r m i s s i o n a n d s e c u
rity information

s y n c h r o n i z a t i o n E n u m (C M I S - S y n c)

scope

fi lter

Object (Scope)

Objec t (CMIS F i l te r)

How to synchronize
selected object
instances

Subtree to be
searched

Characteristics to
test attributes

a t t r i b u t e - l d - L i s t O b j e c t (A t t r i b u t e - l d - L i s t) A t t r i b u t e v a l u e s t o b e
returned

Attribute-ld-List XOM Object Class:

X O M A t t r i b u t e V a l u e S y n t a x

a t t r i b u t e - I d O b j e c t (A t t r i b u t e - I d) Identif ier for a managed
object attribute

An instance of an Attribute-ld-List object wil l contain zero or more attr ibute
identif iers, designating which attr ibute values to retr ieve in the managed
object instance. Each attribute identif ier must be constructed and has the
following form:

Attr ibute-ID XOM Object Class:

(CREATE, GET, SET, ACTION, DELETE, etc.). validate the request,
and process the request. In validating the request, the agent
developer must determine, for example, if the request is for
a valid object instance in the agent's management domain,
or confirm that a SET request has been received on a modifi
able attribute. A significant portion of the agent development
task is in the implementation of request validation.

The agent developer must also manage the application's
representation of the containment tree, which is the in-
process structure holding the representation of the managed
objects and their associated attribute values (see Figs. 1
and 2). As management requests are received, the agent
application must operate on the associated managed object
representation in the agent's containment tree to perform
operations such as:

â€¢ Create new entries in the containment tree as CREATE
requests are received

â€¢ Delete entries in the containment tree as DELETE requests
are received

â€¢ Update entries in the containment tree as SET requests are
received

â€¢ Traverse the containment tree when scoped and filtered

requests are received.

A scoped request operates recursively on an entire branch
of the containment tree, starting at a designated base man
aged object. A filtered request designates criteria that man
aged objects must have to have a management operation
performed. Filters are an optional facility that the agent can
provide. Scoping and filtering allow multiple managed ob
jects to be selected and operated upon in servicing a single
management request.

After processing the request, the agent developer must
prepare the response by constructing the associated XOM
objects and then use the XMP API to issue the management
response.

The XMP API provides a collection of functions to support
agent development, including:

â€¢ mp_receive(): Receives the indication of a management
request

â€¢ mp_create_rsp(): Transmits a response to the manager's
CREATE request

â€¢ mp_get_rsp(): Transmits a response to the manager's GET
request

â€¢ mp_set_rsp(): Transmits a response to a manager's SET request

As in the manager scenario, the data received by the agent
will be in the form of an XOM object, and the agent applica
tion developer must prepare an XOM object to return to the
manager application after servicing the manager's request.

X O M A t t r i b u t e V a l u e S y n t a x

- F o r m S t r i n g (O b j e c t - I d e n t i f i e r) A r e g i s t e r e d a t t r i b u t e
type identif ier

l o c a l - F o r m I n t e g e r Integer identif ier
defined as part of the
appl icat ion context

An instance of an Attr ibute-Id object wil l designate the attr ibute to be
retrieved either through its global-Form or its local-Form.

Fig. class. A specification for the CMIS-Get-Argument XOM object class.

HP OpenView Managed Object Toolkit

As noted above, OSI systems management standards use
object-oriented techniques to model applications in terms of
managed objects, which represent the resources in a net
work. This makes object-oriented programming techniques,
including the C++ programming language, a natural imple
mentation choice to use for development, starting from
object analysis to application coding.

October 1996 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

Historically, developers implementing standards-based OSI
applications have been required to implement the entire
management application, agent, and manager from scratch,
using the complex XOM/XMP APIs and C bindings, as de
scribed above.

However, the OSI systems management standards precisely
define a generic structure and behavior that apply to all
agent applications. The agent developer's task can be greatly
simplified by implementing the generic pieces with reusable
software components, which can be assembled to build
agent applications. In addition, GDMO is provided for for
mally defining the specific managed object class attributes
and interfaces. Given a GDMO specification, it is possible to
define a C++ class mapping representation of the GDMO
managed object classes.

These two fundamental philosophies form the foundation
for the HP OpenView Managed Object Toolkit (MOT). The
Managed Object Toolkit supplies:

â€¢ An object-oriented agent application framework that pro
vides the general-purpose, reusable software components
that make up the generic aspects of an OSI agent application
(An application framework is a generic application that can
be tailored to meet specific requirements. It handles all
generic operations that are common to all applications in
a specific domain. The agent framework is provided as a
library with the Managed Object Toolkit.)

â€¢ A GDMO-to-C++ and an ASN.l-to-C++ code generator that
provides the OSI application developer with a C++ interface
for the implementation of the specific behaviors of a man
aged object in an agent application and C++ classes for
preparing management requests in a manager application

â€¢ An agent application generation capability that merges the
generic framework and the specific GDMO-based generated
C++ classes into an operational agent application.

Agent application development, which previously had taken
programmers weeks, or even months, to code using the XMP/
XOM APIs can now be generated in a matter of minutes or
hours. The Managed Object Toolkit allows agent developers
to focus on the implementation-specific details of their ap
plications, since they no longer need to be concerned with
the tedious task of using the XMP/XOM APIs to implement
the CMIS communications model.

The Agent Development Process
Using the Managed Object Toolkit, agent development is
accelerated with a simple five-step process (see Fig. 5):

1. Define the GDMO managed object class specifications. The
HP OpenView GDMO Modeling Toolset (GMT) can greatly
simplify the design of managed object classes by providing a
graphical, forms-based interface for defining and browsing
GDMO managed object class definitions. It also provides a
graphical representation of the object class inheritance and
managed object naming hierarchies. The HP OpenView
GDMO Modeling Toolset is described in the article on
page 43.

2. Submit the GDMO object model to the Managed Object
Toolkit code generator. This will generate C++ class repre
sentations of the GDMO managed object classes, an agent
main)) function, makefiles to compile the agent executable,
and an object registration file for the HP OpenView Distrib
uted Management Platform's managed object directory ser
vice. The HP OpenView Distributed Management Platform is
described in the article on page 6.

3. Run the provided makefile, which compiles an operational
"default" agent, so-called because it implements default be
haviors for the managed object interfaces.

4. Register the agent's objects with the HP OpenView Dis
tributed Management Platform's object directory service.

5. Run the agent application.

The executing agent is now ready to accept management
requests, including CREATE, DELETE, GET, SET, and ACTION. Since
the agent application is also tightly integrated with the HP
OpenView Distributed Management Platform, it is able to
leverage platform services immediately, such as the object
registration service for object location transparency and
event routing through the event management services. See
the article on page 31 for more about event management.

Managed Object Toolkit Agent Capabilities
The Managed Object Toolkit agent framework handles all
aspects of the underlying management request and response
communications between agent and manager, relieving the
programmer of significant coding effort, including:

make

HP OpenView
GDMO Model ing

Toolset

GDMO Object Definit ions HP OpenView
Managed Object

Toolkit

HP OpenView
Distributed

M a n a g e m e n t
Platform

Developer's Kit

MOT-Generated
Agent

HP OpenView
Distributed

Management
Platform

MOT-Based
Manager

HP OpenView
Distributed

M a n a g e m e n t
Platform

Â ©

Â ®

Fig. 5. The process flow for agent
and manager development using
the Managed Object Toolkit
(MOT).

56 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

> Receiving CMIS requests (CREATE, DELETE. GET, SET, ACTION,
etc.), and routing them to the appropriate CMIS service
handler

> Validating requests and transmitting standard CMIS errors
when invalid requests are received (For example, receiving
a GET request on an attribute in a nonexistent managed
object instance will generate a standard NO-SUCH-OBJECT-
INSTANCE error message.)

> Creating and managing the agent's management information
tree, which holds the managed object instances and their
attributes representing the resources managed by the agent

> Supporting scoped and filtered requests in which a single
request can be routed to several managed object instances

> Preparing and transmitting responses, including packaging
multiple replies in response to a scoped request
Emitting standard CMIS notifications when managed object
instances are created, or deleted, or when an attribute value
is modified.

By providing the CMIS communications handling infrastruc
ture, the Managed Object Toolkit frees the programmer from
the tedious task of implementing code for processing man
agement requests and responses and allows the developer to
focus on the value-added specific agent functionality.

Customizing the Managed Object Toolkit Agent
Because specific managed object behaviors cannot be com
pletely specified using GDMO, the Managed Object Toolkit
agent framework and the generated classes cannot fully
implement managed objects on their own. The framework
provides a default object behavior, and the Managed Object
Toolkit C++ code generator provides a code skeleton for the
implementation. The complete agent application is built by
generating the agent skeleton code from the GDMO specifi
cation and then customizing the generated code stubs (C++
methods). Developers can also integrate Managed Object
Toolkit-provided classes to implement communications with
external devices (supported through standard file descrip
tors) and implement a cooperative multitasking agent.

For example, if a managed object class called switchPort in
cludes an attribute called packetsOut which was defined in the
GDMO specification to be "gettable" (see Fig. 2), the Man
aged Object Toolkit generates a file called MOC_switchPort.cxx
and includes an empty method called get_packetsOut():

M O C _ s w i t c h P o r t . c x x (f i l e n a m e)

v i r t u a l v o i d M o t _ s w i t c h P o r t _ C : : g e t _ p a c k e t s O u t (

O V m o t M o G e t R e s u l t C & r e s u l t _ r)

If the developer wishes to override default behavior of the
CMIS GET request for the packetsOut attribute to query a regis
ter in) associated physical device, the get_packetsOut()
method is easily customized. This method includes a
response parameter, to which the programmer assigns a
response value, and the Managed Object Toolkit agent
framework will appropriately package the response and
return it to the requesting manager application.

The Managed Object Toolkit provides significant value for
processing requests, especially if a get.packetsOut request is
part of a scoped request, which is a single management
request that will operate, potentially, on several managed
object instances in the agent. The agent application must

route the request to all of the relevant managed object in
stances. process the request, gather each of the individual
responses, package them, and return them to the requestor.
With the XOM/XMP APIs, the agent developer is required to
implement the entire process, gather all of the responses.
package them, and transmit the multiple responses to the
requestor. With the Managed Object Toolkit, the agent devel
oper is only required to implement the handlers for each
individual request. Since the agent framework manages all
aspects of the request and response communications, the
framework will track the scoped request, route it to all
appropriate object instances in the Managed Object Toolkit-
managed containment tree structure, collect all of the indi
vidual responses appropriately, and transmit the composite
response to the requestor. The Managed Object Toolkit-
based agent developer is required to implement only the
actual details of each attribute's request handler.

Implementing an ACTION operation provides another good
scenario. The CMIS ACTION service provides a general pur
pose object interface for implementing any operation in a
managed object instance. For example, an action may be
defined to reset a port on a switch. As in the GET scenario,
the Managed Object Toolkit generates an empty C++ method
for the programmer to fill in the specific details for servicing
the ACTION request. But unlike the GET scenario, the stan
dards cannot specify the appropriate response to an ACTION
operation, and GDMO does not provide syntax for the spe
c i f i c i s o f a n A C T I O N o p e r a t i o n . T h e r e f o r e , i t i s
entirely the agent developer's responsibility to provide the
implementation details associated with an ACTION request.

The following generated method provides the programmer
with the ACTION information the management application
passed along, and as in the GET scenario, an empty result
object that the programmer fills in to transmit the agent's
response. The MOT generates a file called MOC_switchPort.cxx,
which includes the empty method resetPort_action().

Moc_switchPort .cxx (filename)

virtual void Mot_switchPort_C: :resetPort_action(

const Mot_resetPort_InfoC*actinfo.p,

OVmotMoActResultC & resultar)

Again, the Managed Object Toolkit provides significant
value, requiring the programmer to implement only the de
tails of the action handler and assign the action response,
allowing the programmer to disregard implementing any of
the CMIS communications processing.

Managed Object Toolkit Agent Framework
In typical object-oriented design philosophy, the agent
framework can be decomposed into several supporting
frameworks (see Fig. 6). Each subframework, implemented
as a class library, provides a particular category of function
ality that contributes to the overall agent request processing
task.

The agent framework is provided as a library with the Man
aged Object Toolkit and is made up of the following compo
nents:

CMIS Service. This class library provides classes that enable
convenient access to the CMIS services. It contains base

October 1990 Hewlett-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

Managing System
(Manager)

Managed System
(Agent)

Communications
Framework

Responses Event Notification

Containment Tree Framework

Managed Object Framework

Management Informat ion
Syntax Framework

~i

Fig. 6. Managed Object Toolkit frameworks.

classes that define the CMIS services and subclasses that
implement the CMIS services using the XMP API.

CMIS Transactions. This class library provides classes that
implement the incoming CMIS requests. It provides an agent
application with the functionality to process the receipt of
CMIS CREATE, DELETE, GET, SET, and ACTION indications.

Containment Tree Framework. This class library provides an
infrastructure for developing a containment tree representa
tion. It also provides concrete classes that implement an
in-memory representation of the containment tree.

Management Information Syntax Framework. This class library
provides the infrastructure for developing C++ classes that
represent syntaxes specified in ASN.l (e.g., attribute values,
action information, and action reply syntaxes). It provides
base classes for representing ASN.l syntaxes.

The Managed Object Toolkit C++ class generator generates
C++ classes representing ASN.l types defined in the GDMO
specification. These C++ classes are derived from the base
classes provided in the management information syntax
framework (see Figs. 2 and 7). Fig. 7 illustrates how the
Managed Object Toolkit generates C++ classes for GDMO-
defined attributes. All toolkit-generated attributes will be

derived from the OVmotAttC C++ class provided by the
Managed Object Toolkit.

Managed Object Framework. This class library provides an
infrastructure for developing managed object implementa
tions. It provides C++ base classes for representing man
aged object instances and managed object metadata.

The Managed Object Toolkit C++ class generator will gener
ate C++ classes representing the GDMO object classes de
fined in the GDMO specification. These C++ classes will be
derived from the base classes provided in the managed ob
ject framework. The C++ inheritance hierarchy reflects the
GDMO specified inheritance hierarchy. For example, Fig. 8

MOT-Provided Framework C++ Class for Attr ibutes

MOT-Generated GDMO-Based Attr ibute C++ Class MOT packe tsOut_C

Fig. 7. The inheritance hierarchy of C++ classes from the base
classes provided in the management information syntax framework.

58 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

GDMO Inher i tance Hierarchy

MOT C++ Inheri tance Hierarchy

M o t s w i t c h P o r t C

MOT-Provided Framework C++ Class

MOT-Genera ted GDMO-Based Managed
Object C++ Class

MOT-Genera ted GDMO-Based Managed
Object Class

Fig. 8. The C++ GDMO inheritance hierarchies of the GDMO-defmed
switchPort managed object class.

shows the C++ inheritance hierarchy for the GDMO-defined
switchPort managed object class. In the GDMO specification,
the switchPort managed object class is derived from the top
managed class. Notice the similarity in the GDMO-defmed
inheritance hierarchy and the C++ inheritance hierarchy
generated by the Managed Object Toolkit.

The managed object framework uses C++ classes from the
management information syntax framework to represent
attribute, action, and notification syntaxes.

CMIS ASN.1 Types. This class library provides specializations
of the ASN. 1 framework classes for representing CMIS argu
ments (e.g., CMIS-Create-Argument and CMIS-Get-Argument).

Communications Framework. This class library provides an
infrastructure for developing C++ classes that are responsible
for controlling communication with external devices. It
coordinates between objects responsible for different com
munication endpoints (file descriptors) using an event-driven
environment, which encapsulates the handling of the UNIXÂ®
select!) function. The library also includes concrete classes
for handling communication with the HP Open View Distrib
uted Management Platform process management functions.

The communications framework also provides an abstract
tasking class, based on USL's (UNIX System Laboratories)
task library, which can be leveraged to implement a coopera
tive multitasking application. Each task is cooperative, in
that it owns control of a process until it exits or explicitly
gives up control. The Managed Object Toolkit CMIS trans
actions are a collection of concrete task classes developed
for processing CMIS requests.

The communications framework classes allow the devel
oper to create a pseudo multitasking, event-driven interface
for communicating with external devices.

Common Application Environment. This class library provides
facilities for multilevel tracing and logging.

Foundation Types. This class library provides classes for rep
resenting common data structures such as lists and strings
and classes for memory management and reference counted
objects. It is based on the OSE class libraries for C++.

Using The Frameworks
The class libraries are leveraged by the Managed Object
Toolkit agent library for processing manager requests. Many
of these classes are also externally \isible, allowing applica
tion developers to leverage them for their own agent devel
opment needs.

For example, when a CMIS GET request is received, the
agent's communications framework will receive and identify
the get-indicate, and then construct and initiate a Managed
Object Toolkit-defined CMIS get-transaction object instance.
This get-transaction object will manage the overall processing
of the GET request, interacting with the containment tree
framework, the managed object framework, and the manage
ment information syntax framework to complete the pro
cessing of the GET request. (The C++ object class representa
tion of the managed object instance and the GET handler for
this request are contained in the managed object framework,
while the syntax associated with the attribute value is held
in the management information syntax framework.)

An agent developer desiring to implement a multitasking
interface to external entities, such as devices or databases,
can derive a user-defined task class from the Managed Ob
ject Toolkit's abstract tasking base class. The application
developer then constructs and initiates tasks in the applica
tion code, as in the following code fragment.

myTask.hxx (filename)

myTaskC Â¡public OVmotTxnC

{

public :

myTask () ;

execute () ;

private:

myTask. cxx (filename)

myTaskC :: execute!)

{

// provide code for task implementation

The following code shows the construction and invocation
of the above task in one of the CMIS service handling
routines.

MOC_switchPort .cxx (filename)

virtual void Mot_switchPort_C : :get_packetsOut (

OVmotMoGetResultC & result_r)

{

myTask atask; // construct a task

atask. execute () run task

October 1996 Hewlett-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

The communications framework provides a communication
coordinator that encapsulates the UNIX select!) interface.
The communication coordinator is used by the Managed
Object Toolkit agent framework to receive and process in
coming CMIS requests.

The application developer can also use the communications
coordinator to process nonCMIS-oriented communications
within the agent application. An example of this would be
communicating to an external device through a serial inter
face. The agent developer need only register the opened file
descriptors with the Managed Object Toolkit-provided com
munications coordinator and implement the associated com
munications handler (read, write, and exception). Then
through the registration and callback mechanism, the com
munication endpoint processing code will be executed when
the file descriptor triggers select!) as in the following code.

somecc.hxx (filename)

SomeCC : OVmotCC

{

public:

SomeCC () ;

- SomeCC () ;

void doRead(int f d) ;

private :

int fd; //File descriptor associated

//with this communication

//interface

};

somecc.cxx (filename)

SomeCC : : SomeCC ()

{

f d = open (...); //open a file descriptor

OVmotCoordC: rregisterCC (fd,

OVmCoordC: :OVMOT_KE_READ, this)

// register file descriptor with MO commnica-

// tions Coordinator

// register for read operations, callback to

// this->doRead() when data is on fd

SomeCC -SomeCC ()

OVmotCoordC: :deRegisterCC (fd,

OVmotCoordC : : OVMOT_KE_READ , thi s) ;

close (fd) ;

// deregister file descriptor with MOT

// Communications Coordinator and close file

// descriptor

}

SomeCC : : doRead (int fd)

{

// Receive and process the data buffered on

// the file descriptor

}

When data is sensed on this open file descriptor, the agent's
communication coordinator will call the doReadl) method,
processing the data on the communications interface.

Developing Manager Applications
Unlike the agent development process, the Managed Object
Toolkit does not generate an executable manager applica
tion (see Fig. 5). For manager developers, the Managed Ob
ject Toolkit provides an intuitive C++ interface which encap
sulates the complexities of XOM object manipulations and

assists the manager developer in the management commu
nications implementation aspect of manager applications.

Manager developers use the XMP API to issue requests and
leverage the Managed Object Toolkit to build the XOM ob
ject parameters required by the XMP API (see Fig. 3). The
manager developer has access to:

â€¢ Managed Object Toolkit-provided CMIS service classes to
build request objects and parse response objects

> Managed Object Toolkit-provided convenience classes,
which represent the underlying components of the CMIS
request objects, including C++ class representations for:

Fully distinguished names
Attribute identifier lists
Attribute lists
Base managed objects for scoped requests
Filters

> Managed Object Toolkit-provided stream-based classes for
transforming C++ request objects to XOM request objects
and XOM response objects to C++ response objects

> Managed Object Toolkit-generated GDMO-based C++
classes representing the managed object classes

â€¢ Managed Object Toolkit-generated ASN.l-based C++ classes
representing the syntaxes associated with the managed ob
ject attributes, actions, and notifications.

The following scenario is an example of a Managed Object
Toolkit-based manager GET request. Note that classes that
begin with OVmot are Managed Object Toolkit-provided
classes and classes that begin with Mot_ are Managed Object
Toolkit-generated classes originating from the GDMO speci
fication.

Scenario: Issue a scoped GET request for all of the "UP" ports
on a specific card in a switch and return the in and out
packet counts across ports that have traffic. Note the fol
lowing containment relationship (see Fig. 2):
A switch contains cards.

1 A card contains ports.

1. Construct each of the attributes that make up the fully
distinguished name for a card in a switch.

Mot_switchNum_C switchNum(100) ;

Mot_cardNum_C cardNum(lO);

This code fragment assigns switchnum to 100 and cardnum to 10.

2. Construct the fully distinguished name for the port base

managed object of the request.

O V m o t D n C d n ;

dn Â« switchNum Â« cardNum;

3. Construct the list of attribute identifiers associated with
the attribute values to be retrieved.

O V m o t A t t l d L i s t C a t t r _ i d s ;
a t t r _ i d s Â « M o t _ p o r t S t a t u s _ i d Â «
M o t _ p a c k O u t _ i d Â « M o t p a c k e t s l n i d ;

4. Construct the base managed object identifier of the port
associated with the request. Request processing to begin at
the switch card with cardNum = 10 associated with the switch
Num = 100.

OVmotBaseMoIdC base_mo_id (
Mot_switchCard_id, dn) ;

60 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

5. Construct the filter. This code fragment looks for in
stances where the values of packetsOut and packetsln are
greater than zero and the portStatus is "UP."

O V m o t F i l t e r C f i l t e r (M o t _ p o r t S t a t u s _ i d = = 1
/ / 1 d e n o t e s U P
& & (M o t _ p a c k e t s O u t _ i d > 0
I I M o t j > a c k e t s I n _ i d > 0)) ;

6. Construct the Managed Object Toolkit GET argument.

OVmotGetArgC get_arg(base_mo_id,

OVMOT_NIL//Omit Access Control

OVMOT_CMI S S YNC_BEST_EFFORT ,

OVMOT_SCOPE_WHOLE_SUBTREE ,

& filter,

attr_ids) ;

// print to standard output

cout Â« "C++ Constructed Get Argument" Â«

get_arg Â« endl ;

7. Build the XOM CMIS-Get-Argument from the Managed Object
Toolkit C++ GET argument.

O M _ o b j e c t x o m _ o b j e c t ;

O V m o t O X o m S t r C g e t _ s t r m (X o m W o r k s p a c e P - >

qWorkspace ()) ;

g e t s t r m Â « g e t _ a r g ;

x o n u o b j e c t = g e t _ s t r m . q A d o p t X o m P r i v O b j () ;

8. Issue a standard XMP get request.

m p _ s t a t u s = m p _ g e t _ r e q (S e s s i o n ,

M P _ D E F A U L T _ C O N T E X T , x o m _ o b j e c t ,

& r e s u l t , & i n v o k e _ i d) ;

Without the Managed Object Toolkit-provided and Managed
Object Toolkit-generated classes the manager developer
would be faced with the challenge of constructing the XOM
CMIS-Get-Request object passed in the mp_get_req() function, a
task that could require at least six times as many lines of
code.

Summary
Developers who build telecommunications network manage
ment applications are implementing large, complex solutions
and telecommunication service providers rely on interoper
ability standards to integrate and deploy these solutions in a
heterogeneous networked environment. Developing applica
tions that communicate via the standard CMIS and CMIP

communication interfaces has historically been an extremely
complex and time-consuming task using the XMP XOM APIs.
The HP Open View Managed Object Toolkit offers the devel
oper significant assistance in this task by helping to trans
form a GDMO specification into an executable, extensible
agent application and providing an intuitive C++ interface
for implementing agent behaviors and manager applications.

Acknowledgments
The author would like to acknowledge the contributions of
the many individuals who participated in the development
and deployment of the HP OpenView Managed Object Tool
kit, including Tom Burns, Mark Smith, and Dan Rice who
assisted in the design, build, and test processes.

References
1. W. to SNMP, SNMPv2, and CMIP, Tlie Practical Guide to

Network Management Standards, Addison-Wesley Publishing
Company, 1993
2. X/Open CAE Specification, Systems Management: Manage n, in /
Protocols API (XMP), X/Open Company Limited. 1994.
3.X/Open CAE Specification, OSI Abstract Data Manipulation API

(XOM), X/Open Company Limited and X.400 API Association, 1991.

Bibliography
1. Managed Object Toolkit Technical Evaluation Guide, Hewlett-
Packard, 1995.
2. Principles for a Telecommunications Management Network,

ITU-T Recommendation M.3010, 1992.
3. TMN Interface Specification Methodology, ITU-T Recommenda
tion M.3020, 1992.
4. TMN Management Functions, ITU-T Recommendation M.3400,
1992.
5. Information Technology â€” Open Systems Interconnection â€”
SI nil-lure of Management Information: Management Information

Model, ITU-T Recommendation X.720 (ISO/IEC 10165-1), 1992.
6. Information Technology â€” Open Systems Interconnection â€”
Structure of Management Information: Guidelines f or the Defini

tion of Managed Objects, ITU-T Recommendation X.722 (ISO/IEC
10165-4), 1992.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

(iriobiT 1996 Hewlett-Packard Journal 61

© Copr. 1949-1998 Hewlett-Packard Co.

A Software Toolkit for Developing
Telecommunications Application
Components
To be data application developers must understand the data
available to their applications, the operations required to access the data,
and the steps required to turn their understanding into an implementation.
A prototype development environment has been built that helps the
developer explore and understand the data in the Management
Information Base (MIB) and construct and deploy pieces of TMN
management applications.

by Alasdair D. Cox

Telecommunications network operators own the largest
distributed computing systems in the world. Their networks
carry enormous volumes of traffic, much of which is highly
valuable. Maintaining service is essential. The penalties for
failure are great, and not just financial â€” emergency services
and some air traffic control transmissions use the same tele
phone network. Not surprisingly, network operators have
considerable systems and network management needs.

The ability to provide new services is becoming vital in the
telecommunications business. Speed and flexibility are key
requirements, not only of the initial implementation and its
deployment, but also of the management systems that ensure
that service continues to operate efficiently. The rapid devel
opment of effective management systems is therefore a major
concern.

The applications that telecommunications companies use to
manage their equipment, networks, and services they pro
vide are known as operations support systems, or OSS. An
established network operator will have hundreds of existing
applications and a continuing need to develop more as their
systems and technologies change.

The development of new applications in the Telecommunica
tions Management Network1 (TMN) area is still carried out
with the aid of a C or C++ compiler. The developer must
understand the data that is available to the application, the
operations that can be performed to reach it, and the applica
tion program interfaces (APIs) and tools available to support
those operations.

HP OpenView products provide support in a number of
these areas. The GDMO Modeling Toolset (page 43) helps
the application developer understand the kind of data that
is stored in the TMN world. The OpenView Distributed Man
agement platform (page 6) provides standard APIs that the
developer can use to send CMIP (Common Management
Information Protocol) messages to the data. The Managed
Object Toolkit (page 52) provides further support to the C++
programmer.

In this paper we describe a prototype development environ
ment that addresses some of the demands of application
development in the telecommunications world. This proto
type helps the user explore the available management data
and make enough sense of it so that the user can construct
and deploy pieces of management applications.

Background
The Telecommunications Management Network is an attempt
to standardize the management of telecommunications net
works. It consists of a set of existing and evolving recommen
dations from the International Telecommunications Union's
Telecommunications Standardization Sector, known as the
ITU-T.2 These recommendations are based on a number of
previous recommendations on Open Systems Interconnection
(OSI) systems management, now adopted as international
standards.3

The OSI systems management standard proposes a Manage
ment Information Base (MIB),4 which is a collection of data
necessary for managing a network. This data is organized
hierarchically and related by containment. The data is in the
form of objects, called managed objects, which are defined
by the Guidelines for the Definition of Managed Objects.5

The Guidelines for the Definition of Managed Objects, or
GDMO, is the language used to define the structure and some
of the relationships between managed objects. The GDMO
definition is in the form of templates used to define man
aged ter classes (classes in standard object-oriented ter
minology), attributes (instance variables), actions (methods),
notifications (events that can be emitted by objects), and
name bindings, which specify the ways in which objects can
be related by containment in the MIB. See the article on
page 43 for more about GDMO.

The Common Management Information Service (CMIS)6 is
used to interact with the MIB, and the Common Management
Information Protocol (CMIP)7 is the way service messages

62 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

are encoded for transmission between TMN management
applications and the MIB.

The available services include getting information from
managed objects, changing their values, making method
calls, and creating and deleting managed objects. In addition,
managed objects can emit events.

The Development Environment
We believe that telecommunication management applications
of the future will be composed of a number of large-grained,
distributed objects. We call these objects application

components. Application components differ from managed
objects in that, at their simplest, managed objects represent
logical and physical parts of a network. Application compo
nents, on the other hand, are pieces of the system that man
ages the network and the services running on the network,
and they may use, manipulate, and create managed objects
as they work.

Some components will be specialized for a particular man
agement function while others will be of a more general
nature and may provide services to more than one applica
tion. Applications will need access to data in a number of
sources, including other applications, traditional databases,
and the MIB.

We believe that the parts of the application that act as data
bridges will be split into components, each capable of sup
porting transactions to a data source. Since our intention is
to support the development of telecommunication manage
ment applications, we decided to focus on the construction
of application components that interact with data, and thus
we have concentrated on the TMN MIB.

We have built a prototype development environment that
includes three tools that operate together to support the de
velopment life cycle of application components (see Fig. 1).

In the initial stages of using the prototype, this means pro
viding aid in understanding the problem and progressing
through to enabling the implementation, testing, and deploy
ment of the solution. By taking this approach we believe the
development process for application components can be
greatly improved.

Although the process is likely to be iterative, the basic steps
in developing an application component using the TMN
prototype environment shown in Fig. 1 are:
Navigation through and exploration of the MIB using the
MIB browser to build an understanding of the data and the
way it is used
Prototyping CMIS operations using the operation definer.

which helps to expand or verify the developer's understand
ing (The results of executing these operations may be fed
back into the browser to aid navigation.)
Storing operations away for future reuse or as documenta
tion aids
Construction of fragments of application functionality from
a number of operations using the application component

editor

Deployment of the completed components as distributed
CORBA (Common Object Request Broker Architecture) or
OLE (Object Linking and Embedding) objects or as source
code for inclusion in libraries or directly into applications.

The use of a common underlying architectural framework is
a major reason why the prototype appears and behaves as
an integrated development environment rather than as a set
of standalone tools. This framework is discussed later in this
article.

' CORBA Â¡s from the Object Management Group (OMG) and OLE is from Microsoft*.

Distributed Applications

T M N M a n a g e m e n t
Information Base (MIB)

Fig. 1. Prototype TMN develop
ment environment.

October 1996 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

MIB Browser
The MIB Browser provides the user with a graphical view of
the MIB (see Fig. 2). By interacting with and manipulating
this view, the user is able to navigate through the MIB to
explore the structure and content of the data stored in its
managed objects.

The view shown to the user is a cached subset of the man
aged objects that exist in the MIB. The contents of this cache
are built up as the user navigates through the MIB. A number
of simple operations are provided for this navigation, each
causing a CMIS service request to be sent to the MIB. The
replies to this request, which can vary from none to very
many, are used to update the cache and hence the view pre
sented to the user.

The browser uses metadata to add meaning to the presenta
tion and to help the user navigate. For example, the names
of managed object classes and attributes and the details of
attribute values are presented to the user as words, rather
than as the numbers that the underlying infrastructure uses.
In addition, the browser is sometimes able to advise the user
in advance when a navigational operation is guaranteed to

Fig. 2. Output from the MIB
browser showing a cached subset
of the managed objects in the MIB.

find nothing new. This decision is arrived at by using meta
data that describes the ways in which the MIB can be orga
nized. The design of the MIB browser, including how the
cache and metadata fit in, is shown in Fig. 3.

The MIB browser is useful to application developers and
operations staff who understand the network and how it is
managed. It is also useful as an educational aid for training
the entire staff. Its main benefit is that it is not nec^ssary to
understand the technical details of a particular area to use
the browser successfully. In fact, we find that it helps users
to increase their understanding of the network.

Navigation by CMIS
The MIB browser provides five predefined CMIS operations
which can be used to retrieve data from the MIB. The user is
shielded from the execution details of CMIS operations by
the user interface.

Three of the CMIS operations (expand fully, expand one
level, and expand by class) are used to discover the struc
ture of the MIB. The result of executing them is a set of

MIB Browser

Context

Operation Viewer
(A Kind of Browser)

Fig. 3. The design of the MIB
C o n f i r m a t i o n s b r o w s e r .

64 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

managed object names. The MIB browser interface presents
them as nodes on the tree displayed to the user.

A fourth operation (all attributes) is used to extract the de
tails of a managed object. These details, or attribute values,
of the managed object are stored in the browser's cache.

Finally, the fifth operation (find class) is used to find out
about the managed object class of an object whose existence
has been inferred from the result of an earlier operation but
about which we know only the name.

We decided against making the structure-finding operations
also discover the contents of the managed objects they
encountered, even though this would have reduced the need
for the fourth operation. There were two reasons for the
decision: performance and size. It is not usually possible to
predict how many responses will be returned from executing
an operation. For example, a large area of the MIB may lie
within the scope of an operation, possibly containing several
thousand objects. Since the nature of the underlying CMIP
protocol means that each object discovery results in the
transmission of an asynchronous message to the browser, if
an operation requested the contents of each managed object,
the size of each message would increase greatly and perfor
mance would be severely affected. In addition, the user is
probably not interested in the details of most discovered
objects. Knowing how they are organized is often what
matters. So the browser does not need to store the details of
every managed object.

We realized that we could let the user decide which man
aged objects had interesting contents, so we provided a set
of navigational operations and a drill-down1 operation, for
the user to execute appropriately.

The following sections describe the navigation operations in
more detail, and Fig. 4 shows the values assigned to the
fields in CMIS GET requests for each of the operations. The
article on page 52 provides more information about CMIS
GET requests.

Expand Fully. This is the crudest navigational operation. It
discovers all the managed objects below a specified position

* A dril l-down operation is one that enables the user to see greater detail about a managed
object.

in the MIB. The user selects a managed object and then
presses the expand fully button on the browser window. The
class and name of the selected managed object provide the
context for the operation. These values are used to fill in the
base managed object class and instance fields of the request.

Expand One Level. This is a safer operation than expand fully
in that it can be used when expand fully would be inappro
priate. Rather than discover all the managed objects below
the selected position in the tree, expand one level discovers
only those objects immediately beneath the selected position.
In MIB-speak. it finds all the managed objects contained by
the base object. In computer-speak, it finds the children.

Expand by Class. In this operation the user is presented with
a list of those managed object classes that could possibly
have instances below the selected position in the MIB. This
list is computed from the metadata (described below). The
user can select the managed object classes of interest or
scan the list and choose likely candidates. Prior knowledge
is helpful but not essential. The choices are used to parame
terize the request.

All Attributes. This drill-down operation targets a single man
aged object that was discovered by an earlier navigation.
The values of all the object's attributes are obtained.

Find Class. This operation can be invoked on a managed ob
ject whose existence and name have been inferred from the
results of an earlier operation, but whose class is unknown.

Operation Definer
The MIB browser provides the user with a small number of
ways to construct CMIS service requests. While this is an
advantage in terms of ease of use, it can appear limiting to
users with a need for selective information. To those with a
greater understanding of the area (i.e., the protocols and
information models used) the operation definer gives full
flexibility in the construction of CMIS requests. Operations
defined this way can be used to extend the browser's reper
toire. The design for the operation definer is shown in Fig. 5.

As the name implies, the operation definer helps the user
specify an operation to be performed on the MIB. Once its
specification is completed, the operation can be sent as a
service request and the corresponding results can be shown

CMIS GET
Request

Expand Fully

Expand One Level

Expand by Class

All Attributes

Base Managed
Object Class

Base Managed
Object Instance

< F r o m B r o w s e r E n t r y > < F r o m B r o w s e r E n t r y >

< F r o m B r o w s e r E n t r y > < F r o m B r o w s e r E n t r y >

< F r o m B r o w s e r E n t r y > < F r o m B r o w s e r E n t r y >

< F r o m B r o w s e r E n t r y > < F r o m B r o w s e r E n t r y >

Synchronization

actualClass [5] <From Browser Entry>

wholeSubtree

f i rs tUve lOn ly

wholeSubtree

baseObject

baseObject

Values

{ o r
{

{equality{objectClass,<user-supplied>}},

1
Fig. the The values subÃ­ nil led in OM1S GET requests to implement the Mil! bnnvser n;ivif>;ili(>ii uperalions.

October 199(i Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

MIB Browser

Context

Operation Definer

Structured
Editor

Parameterization

m^pm

Cache
Update

Operat ion Viewer
(A Kind of Browser)

Graphical
Presentation

Internal
Representation
of an Operation

Internal
Representation

of an Executable
Operation

Execution

Code Generation Application
Component

Editor

Request
Confirmations

Fig. 5. The design of the operation definer.

to the user using an operation viewer, which presents infor
mation in a way that is similar to the MIB browser. The user
can examine the results, and if necessary, modify the opera
tion and reissue it. This cycle can continue until the user is
satisfied with the operation.

The results obtained by executing an operation can be added
to the MIB browser to expand the view it presents of the
MIB. In this case, the operation definer can be seen as a
powerful navigational tool that augments the basic browser.

Alternatively, the real benefit of the operation definer might
be the operation itself, rather than the results of executing it
once. The results returned will be useful because they can
help prove that an operation works correctly. The user
might want to store such an operation so that it can be used
again. The operation definer maintains a repository for this
purpose. By adding to this repository, the user can build up
a toolbox of useful operations, similar to the way a system
administrator builds up a library of shell scripts.

For an operation to be executable, all aspects of its specifi
cation must be fixed. The operation definer picks up the
starting point, which is the base managed object's name and
class, from the browser context. All other aspects of an oper
ation are defined by the user. Once this is done, the operation
can be tested and its definition refined until the user is satis
fied with it. If the finished operation is going to be used again,
it is likely that the user will want it to be made more general-
purpose. A stored operation can be made more general-
purpose by specifying that some aspects of it become para
meterized, meaning that each time it is used the values of
those parameters must be supplied. This allows the effect of
the operation to be tailored to the context in which it is
applied. In this way, for example, it becomes possible for an
operation defined on a particular named network element to
be applied to any network element by supplying the appro
priate name and type information.

Application Component Editor
As stated earlier, we expect that future telecommunications
applications will be made up of a number of large-grained,
distributed objects. We call the objects application compo
nents. Some application components will communicate with
data sources, including the MIB, to obtain the information
that other components will use to perform management
functions. We decided to concentrate our efforts on support
ing the development of application components that interact
with the MIB. They play a more constrained role that is better
suited to automation, and the data they interact with is
described by a standard form of metadata. A window dump
from the application component editor shown in Fig. 6.

An application component has four parts:
1 Entry points that make up the visible interface of a compo

nent (Other parts of an application make calls to this inter
face to use a component.)

' Operations that interact with the MIB and issue CMIS
service requests and receive results

1 Support functions, or scripts, that tie together the operations
to implement the required functionality

1 Test functions, some of which test individual operations and
some of which test the whole component.

As shown in Fig. 7, the application component editor uses
the operation definer's repository. Operations stored in the
repository can be selected for inclusion in components.
They are translated into source code and, like a method, will
perform the same operations when they are executed. The
fields that are identified as parameters when the operation
is stored can be treated as formal parameters to the method.
In addition, simple test functions are automatically generated
that test the operation with its original parameter values.
The results obtained from running the test functions are
presented to the developer in the same style as the MIB
browser.

66 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

IDL descr ipt ion

t is used to check f or the aMtaUty oÃ­ ar

.ewort

- m e a c h
- Ã ­ d i r ec t i ona l by f r jXow ing

- â€¢ the mmiiieO rÃ¯CTPSdireaJonaL The second
; Â « a r t s a l t h e r s T T P B i d r e c t - I ^ - f i c t i o n a l b y f o l i a '

~3SdirecuonaL T>e
jse) au3c I ^Bidirectional managed objects s;

T h i s p r o c e d i r Ã © i s f a l l o w e d f o r b o u i o p 1 : - - n a l m a n a g e d O D . E
y i e l d i n g ! - â € ¢ â € ¢ j s e ; a j 4 C T P B i d i r e o i o n a l m a n a g e d o b j e c t s D
I S M s n e c f t h e N E I e s ' - T h e S D H N e t w o r l i E l e m e n t I s d e t e r m i n e d t o
have member uiused capacity if each set contans at least one member

tf capacity is availabe the component reu/ns a pair of values: me FDN of one free
E a s t - s i d e e . E Â ¿ a n d t h e F D N o f o n e f r e e W e s t - s i d e
airiCTPBidirectional Otherwise rt re'irns a nd) value.

Compile Spawn Fig. 6. Output from the application
component editor.

Although source code generation is not strictly necessary,
the ability to generate source code helps make the tools
acceptable to the traditional telecommunications OSS
(operations support systems) developer market.

The component editor is not restricted to editing new and
existing components, but also provides help in deployment.
There are several ways in which a completed component
can be made available for inclusion in an application, such
as:
As a CORBA object
As an OLE/COM object

' As a fragment of application source code for direct
inclusion in larger application programs

> As a library routine that can be linked into a number of
applications

1 As part of the implementation of a managed object class's
run-time behavior.

We have concentrated on the first option. The signature edi
tor shown in Fig. 7 can be used to define formal signatures
for entry points, using ASN.l types for the parameters and

Application Component Editor

Code Generation Component
Editor Control

Execution and Test Internal
Representation
of an Operation

Data V iewer
(A Kind of
Browser)

Graphical
Presentation

Actual
Parameters

Internal
Representation

of an Executable
Operation

Interface
Definition

Language (IDL)
Generator

Request

Confirmations

Fig. 7. The design of the application component editor.

October 1996 Hewlett-Packard Journal 67

© Copr. 1949-1998 Hewlett-Packard Co.

results. This information is then available to the IDL (Inter
face Definition Language) generator which produces equiva
lent CORBA IDL interfaces using a standard translation
algorithm.8'9 These interfaces help the developer towards
deployment of application components as CORBA objects.
A similar process would enable their distribution as OLE
objects.

The prototype application component editor generates Small
talk source code. In fact, we used HP Distributed Smalltalk10
to automate the entire process of deploying application
components as CORBA objects. Although Smalltalk is in
creasingly being used for product development, it is usually
restricted to research and prototyping work. A fully fledged
tool would have to generate C or C++.

Architectural Framework
Fig. 8 shows the architectural framework upon which the
three prototype tools (the MIB browser, the operation de-
finer, and the application component editor) are built. By
building on top of this framework we were able to increase
commonality in implementation, appearance, and behavior
among the tools.

Graphical Presentation
All the prototypes were implemented in VisualWorks Small
talk, which meant we were able to use its interface con
struction tools to develop the dialog boxes, menus, lists, and
buttons that make up most of the tools' interfaces. In addi
tion, because Smalltalk is an object-oriented language, we
could subclass interfaces and specialize them for particular
tasks. For example, there are several browser-type interfaces
used by all three tools in different ways. These were not
implemented independently. Instead, we implemented the
common features in a superclass, which was inherited from
the supplied VisualWorks classes, and created subclasses
that became the browser and viewers for displaying the
results of operations and test functions. In this way the
three tools share a common look and feel because much of
the code is common to them all. Fig. 9 shows the inheritance
hierarchy.

The managed objects in the MIB are organized into a tree
called a containment tree because the tree's edges repre
sent a containment relationship. This reflects the equipment-
oriented origins of the OSI systems management standards.

Graphical Presentation

Metadata
Services

CMIS Services

Generating

HP OpenView
Distr ibuted Management

Fig. tools. The architectural framework for the three prototype tools.

Fig. classes. Inheritance hierarchy of the graphical presentation classes.

For example, networks contain equipment such as multi
plexers, which contain circuit boards which in turn contain
software. The MIB browser enables users to navigate
through the containment tree. It seemed natural to present a
view of the discovered containment tree and allow the user
to interact with it via buttons and menu selections. These
operations cause the browser to execute CMIS operations to
extend the browser in the way the user directs. The browser
shows a view of the tree as it is discovered during a browsing
session. We felt that users would not see the larger picture if
they focused only on one managed object at a time or were
presented with only a view of the path through the tree to
that object. This larger picture often provides the context
that helps the user understand the smaller picture.

One lesson we learned from this prototyping experience is
that more flexibility is necessary when presenting informa
tion to the user. It is possible to discover quickly many hun
dreds or thousands of managed objects using the browser.
This is generally more than the user wants to deal with.
Currently we advise the user to retrace steps and try again,
applying more constraints to the search. In the future we will
help the user with ways to reduce the clutter on the screen
rather than put the responsibility on the user to figure out
how to reduce it.

Metadata Services
Many different types of metadata are used by the tools that
make up the MIB browser, including:

> GDMO, which describes the kinds of data that can be stored
in the MIB and how it can be structured

> ASN.l, which describes the basic data types that can be
stored

> IDL, which the application component editor generates
from the signature of the components' external entry points

1 Descriptions of how an operation should be parameterized
1 Descriptions of each application component.

The tools obtain the GDMO and ASN.l metadata via the HP
OpenView metadata services. The metadata is stored in a
repository and can be queried by all of the tools. Some
added services are implemented. For example, when the
user wants to find objects of a particular class or classes
that are below a selected object in the MIB, the allPossibleSub-
ordinateClasses service provides a list of the classes that it
makes sense to allow the user to select from. This list is
often much shorter than the list of all known managed

68 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

object classes, making it quicker and easier to perform the
action.

The CMIS requests and confirmations that flow between the
browser and the MIB use the CMIP protocol. The information
passed in the messages is numeric. For example, while the
user wants to refer to the network class, the downstreamConnec-
tivityPointer attribute, and the Â¡nternalTimingSource, speech, locked,
and Sunday data values, the CMIP protocol will expect to see
the numerical values | 0 0 13 3100 0 3 1), (0 0 13 3100 0 7 19 J,
0, 0, 0, and 0. Our metadata services perform these context-
sensitive translations automatically in both directions.

The MIB Cache
The MIB cache contains a subset of the managed objects con
tained in the MIB. This subset is built up in the cache as the
user navigates through the MIB while using the MIB browser.
Operations used to handle this navigation result in responses
being sent from the MIB. A response equates to a single
managed object involved in the operation. Some responses
indicate errors and others return data. Each data-bearing
response contains the name and class of the responding
managed object and possibly some additional data, such as
the values of attributes.

The tools parse the results and store the values in the MIB
cache. This reflects what has been learned about the MIB by
the tools. The cache can be preloaded (seeded) on startup,
which allows the browser to provide an initial context.
When the MIB browser or similar viewers present a picture
of the MIB, they are really presenting views of information
in the MIB cache.

CMIS Services
The CMIS services enable the tools to issue multiple synchro
nous or asynchronous CMIS requests and receive multiple
responses to each request. We built these services on Small
talk's support for multiple thread execution and synchro
nization.

Smalltalk classes that represent CMIS requests and confir
mations were defined. A request object can be submitted to
the CMIS services component, causing the operation that it
represents to be executed. A number of confirmations will
later be received and a confirmation object will be created
for each confirmation. These confirmations are then sent to
the Smalltalk process that made the request,

HP OpenView Distributed Management Platform
The tools connect to an intermediary program called the
CMIS interpreter, which in turn uses the HP OpenView
Distribution Managment Platform as the distribution mecha
nism and communications provider. The CMIS interpreter
uses Open View's standard XOM/XMP APIs to generate,
send, receive, and parse CMIS requests and confirmations.
('ommunication between the tools and the CMIS interpreter
is via an ASCII language, which is like a symbolic form of
CMIS.

This arrangement provides us with the power of a symbolic,
object-oriented language for rapid development while still
enabling us to make use of the communication facilities of
the HP OpenView DM platform, which is designed to work
with C and C++ clients.

ASN.l Representation
The representation of ASN.l types and values is important
to all the major architectural components. Values are passed
to and from the CMIS services, stored in the MIB cache and
displayed by the graphical presentation component. ASN. 1
types are stored in the metadata's repository described
above.

Conclusion
We have described the prototype of a software environment
that aids the construction of telecommunications management
applications. It is made up of three tools that together ad
dress many aspects of the development life cycle, from in
vestigation of the problem to the deployment of the solution.

In choosing to address application components that interact
with the TMN MIB, we deliberately focused on a well-defined
subset of the overall application development area. We were
then able to build tools that partially automate the task. We
believe this automation could greatly increase developer
productivity. The tools' usefulness is not restricted to the
development of applications. The MIB browser, combined
with the operations and components built using the other
tools, is a powerful environment for exploring, understand
ing, and troubleshooting the MIB.

Acknowledgments
This work was carried out in collaboration with Simon Love
and Paul Jeremaes at Hewlett-Packard Laboratories, Bristol,
England. The author and his colleagues wish to acknowledge
the contribution made by Ina Heider of the Technical Uni
versity of Berlin.

References
1. Priiicijili'sffÂ»- ii Ti'li'coiiiiiiiinicntiona .Muniii/ement Network,

ITU-T Recommendation M.3010, 1992.
2. I'rinciiili'Nf'or a Telecommunications Management \elirork:

Orerrieir of TMN Recommendations, ITU-T Recommendation
M.:i()00, 1994.
:i. Information Technology â€” Open Systems Interconnection â€”
Systems Management Overview, ITU-T Recommendation X.701
(ISO/IEC 10040), 1992.
4. information Technology â€” Open Si/stems Inlerconnei-tion

SI niel u IT <>J .Wnnaaen/enl Informa/ion: Management Information

Model, ITU-T Recommendation X.720 (ISO/IEC 101(55-1), 1992.
5. Information Teclinologi/ â€” Open Systems Inli'rciiniiecliini

Sin/flu re of Management InfnriiiiiUnii: < Guidelines fur Hie Defini

tion of M<i iiiii/i'd Objects, ITU-T Recommendation X.722 (ISO/I E('
10165-4), 1992.
6. Information Technology â€” Open Si/Kleins Interconnection

Common Management Information Sen-ice Itefinilinii, ITU-T
Recommendation X.710 (ISO/IEC 9595, 1991.
7. Information Technology â€” Open Systems Interconiii'clion

Common Manage in en I Information 1'mlocol -I'url 1: S/ieeiJ'/eti

linn. ITU-T Recommendation X.711 (ISO/IEC 9596-1), 1991.
S. Inter-Domain Management: Specification Tninstniion, Prelimi

nary Specification, X/Open Company Ltd., 1995.
9. Ina Heider, l-Jncaps/dal/im ofTMNApii/icnl/on Comiionentsas
CORBA Oh/eel*, submitted to the Technical University of Berlin,
Interdepartmental Research and Service Centre for High-Speed
Networking and Multi Media (FSP-PV/TUBK<)M), 1995
10. E. Keremetsis and I. Fuller, "HI" Distributed Smalltalk: A Tool for
Developing Distributed Applications.' Hewlett-Packard Journal,
Vol. 46, no. 2, April 1995, pp. 85-92.
Microsoft is a U-S. registered trademark of Microsoft Corporation.

October l!)!i(i Hewlett-Packard Journal 69

© Copr. 1949-1998 Hewlett-Packard Co.

Business Process Flow Management
and its Application in the
Telecommunications Management
Network
HP OpenPM is an open, enterprise-capable, object-oriented business
process flow management system that manages business activities
supporting complex enterprise processes in a distributed heterogeneous
computing environment. It is a middleware service that represents a
substantial evolution from traditional workflow technologies.

by Ming-Chien Shan, James W. Davis, Weimin Du, and Qiming Chen

Business process reengineering is emerging as one of the
crucial business strategies of the 1990s. Business process
reengineering is the fundamental rethinking and reimple-
mentation of business processes to achieve never-before-
possible levels of quality, cost, throughput, and service. This
is especially significant in an era of workforce downsizing
and greater demands for shortened time to market and faster
customer response. The need for business process reengi
neering is pervasive. Organizations are currently engaging in
business process reengineering in many domains, including
financial services, telecom services, healthcare services,
customer order fulfillment, manufacturing procedure auto
mation, and electronic commerce.

While business process reengineering provides a business
management concept, business process flow management
(BPFM) software â€” or more accurately, middleware â€” pro
vides the enabling technologies for business process reengi
neering to support flexible solutions for the management of
enterprise-wide operations, including:

â€¢ Process flow control, automation, and monitoring
â€¢ Resource allocation, authorization, and authentication
â€¢ Task initialization and data exchange
â€¢ End-to-end communication and security.

BPFM is more than just a technology. It offers an overall
environment and approach to unifying, automating, and
measuring business processes. In addition, BPFM is not a
technology supporting only business process reengineering.
It can be used to manage existing nonautomated legacy
processes â€” what is often called "paving the cow paths."

Business Process Flow Management System
At the enterprise level, the process to be managed can be
very complex, spanning several organizations with multiple
steps being performed in parallel. In such cases, a BPFM
system can act as the superstructure that ties together dis
parate systems whose business purposes are interconnected.

A BPFM system provides procedural automation of a busi
ness process by managing the sequence of process activities

and the invocation of appropriate human, instrument, or
computer resources associated with various activity steps.
It involves the high-level specification of flows, and provides
the operational glue and environment support for managing
and automating the flows, recovering from failures, and en
forcing consistency. A BPFM system also enforces various
administrative policies associated with resources and work.

The structure and flow of a business process managed by a
BPFM system can be preplanned or ad hoc. In the case of a
BPFM system managing the process of providing telecom
munications service, the flow of the process is ad hoc and
depends on the services required by a customer. However,
certain aspects of the process will be preplanned and delib
erately structured. For instance, regardless of the individual
services required by a customer, the process always origi
nates in the sales department and is always ends in the billing
department.

Typically, a BPFM system:
â€¢ Provides a method for defining and managing the flow of a

business process.
â€¢ Supports the definition of resources and their attributes.
â€¢ Assigns resources to work.
â€¢ Determines which next steps will be executed within a

business process and when they will be executed.
â€¢ Ensures that the business process flow continues until

proper termination.
â€¢ Notifies resources about pending work.
â€¢ Enforces administrative policies such as access control.
â€¢ Tracks execution and supports user inquiry of status.
â€¢ Provides history information in the form of an audit trail for

completed business processes.
â€¢ Collects statistical data for process and resource bottle

neck analysis, flow optimization, and automatic workload
balancing.

HP OpenPM
HP OpenPM is an open, enterprise-capable, object-oriented
BPFM system developed at HP Laboratories to manage

70 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

business activities supporting complex enterprise processes
in a distributed heterogeneous computing environment. It is
a middleware service that represents a substantial evolution
from traditional workflow technologies.

Given the trend towards open systems and standards, a
BPFM system must coexist with and take advantage of stan
dards-based commercial products for network communica
tion, legacy application invocation, and system monitoring.
In particular, the OMG's CORBA (the Object Management
Group's Common Object Request Broker Architecture), the
OSFs DCE (the Open Software Foundation's Distributed
Computing Environment), HP OpenView, and ISO OSI
(International Standards Organization Open Systems Inter
connection) X.400 technologies are expected to play an
important role in the development of BPFM systems. HP
OpenPM provides a generic framework and a complete set
of services for business process flow management using the
above-mentioned standard technologies, with emphasis on
performance, availability, scalability, and system robustness.

Basically, HP OpenPM provides:
â€¢ An open system adhering to the CORBA communications

infrastructure and providing a WfMC (Workflow Manage
ment Coalition) standard interface.

â€¢ High performance as a result of optimized database access
and commitment.

â€¢ Effective management with an HP Open View-based system
management environment.

â€¢ A comprehensive solution for business reengineering
including an extensive set of products.

The overall architecture of an HP OpenPM system is de
picted in Fig. 1. The core is the HP OpenPM engine, which
supports five interfaces for business process definition,
business process execution, business process monitoring,
resource and policy management, and business object
management.

A business process is specified via the process definition
interface. An instance of the business process can be
start ed. stopped, or controlled via the process execution
interface. Status information of each process instance and
load information of the entire system can be queried via the
process monitoring interface. The resource and policy man
agement interface is used to allocate, at run time, execution
resources to a task, according to the policies defined by the
organization (including authorization and authentication)
and the availability of the resources. Interaction with the
external world (e.g., the invocation of an application, the
control of an instrument, or the delivery of a work order to
a person's e-mail intray) is the task of the business object
management interface.

HP OpenPM Process Model
A business process is a description of the sequencing, tim
ing, dependency, data, physical agent allocation, business
rule and organization policy enforcement requirements of
business activities needed to enact work.

An HP OpenPM process is a directed graph consisting of a
set of nodes connected by arcs. Fig. 2 shows an example of

Process Status
Moni tor

Process Instance
Execution

Process Designer

Java Applets and
HTML Generator

(Wor ld -Wide Web)

Web Cl ient
Support

HP OpenPM Engine
â€¢ Process Definition Interface
â€¢ Process Execution Interface
â€¢ Process Monitoring Interface
â€¢ Resource and Policy

Management Inter face
â€¢ Business Object

Management Inter face

HP OpenPM
Database

Legacy Applications

Fig. 1. Arcluleeluiv of the HP
Opcnl'M business process How
ni;iii;iMemeiil middleware.

oriniMT 1996 Hewlett-Packard Journal 71

© Copr. 1949-1998 Hewlett-Packard Co.

F i l e E d i t V i e w W i n d o w H e l p
pd led i t

E x p e n s e C l a i m s

Process At t r ibu tes

A u t h o r : | J o e B l o g g s

D e s c r i p t i o n " Â ¡ P r o c e s s u s e d F o r e x p e n s e c l a i m s

D o c u m e n t : j / u s e r s / n i c k s / e x p e n s e , d o c

I c o n ;

_LL
A u t h o r i z e S t a l l : (E m p l o y e e t g r a d e > 5

R e a d y

A u t h o r i z e C h a n g e : Â ¡ A d m i n i s t r a t o r s

A u t h o r i z e G e t | A P I _ I N S T A N C E _ O W N E R I A d m i n i s t r a t v a | Â ¡ , j y o

A u t h o r i z e S e t : j

V e r s i o n :

C r e a t e d :

S t a t u s :

Pr ior i ty :

S e n s i t i v i t y :

I m p o r t a n c e : J N O N E [Â ± j

V a l i d F r o m : (1 / 1 / 1 9 9 6 1 3 : 0 0 : 0 0

N O N E

1 / 1 / 2 0 0 1

G r o u p R e s M g r L i s t s j T e m p l a t e
J C a n c e l

Fig. process graph. kinds of the HP OpenPM user interface. An HP OpenPM process is a directed graph. There are two kinds of nodes: work nodes
(square) and rule nodes (round).

the user interface. There are two kinds of nodes â€” work nodes

and rule nodes â€” and two kinds of arcsâ€” forward arcs and
reset arcs. A work node has at most one inward arc and one
or more outward arcs. A rule node can have any number of
inward and outward arcs.

Work nodes represent activities to be performed external to
the HP OpenPM engine. These activities include authoriza
tion, resource allocation, the execution of business objects,
and the provision of input data for the business objects and
output data from them. Rule nodes represent processing
internal to the HP OpenPM engine. This processing includes
decisions of what nodes should execute next, the generation
or reception of events, and simple data manipulation.

A work node is a place holder for a process activity, which
is a logical representation of a piece of work contributing
towards the accomplishment of a process. A process activity
is mapped to the invocation of an operation on business
objects during the execution of the process. Each process
activity can represent a manual operation by a human or a
computerizable task to execute legacy applications, access
databases, control instrumentation, sense events in the
external world, or even effect physical changes. A process
activity definition includes a forward activity and optionally,

a compensation activity, a cancel activity, a resource man

agement activity, timeout and deadline information, and
input and output data.

Rule nodes are used to specify process flows that are more
complex than a simple sequence. A rule language is used to
program the rule node decision. When executed, a rule node
determines which outward arcs to fire, based on the status
passed along the inward arcs, the time at which each inward
arc is fired, and the process-relevant data associated with
the process instance.

Rule nodes are also used to support events. A rule node can
raise events when certain conditions are met as defined by
the rules, and an event can activate rule nodes that have
subscribed to receive the event.

Forward arcs represent the normal execution flow of process
activities and form a directed acyclic graph. Successful com
pletion of a node at the source end of a forward arc triggers
the starting of the node at the destination end of the forward
arc.

Reset arcs are used to support repetitions or explore alter
natives in a business process. Reset arcs differ from forward
arcs in that they reach backwards in the process graph.

72 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Rule nodes are executed each time any inward arc fires.
Work nodes have states of initial or fired. When the inward arc
is fired on a work node in the initial state, the work node
changes its state to fired and performs its associated activity.
When the inward arc is fired on a work node in the fired
state, nothing is done.

A reset arc, together with the forward arcs between its des
tination and source, forms a loop. When traversed, a reset
arc causes all nodes within its loop to be reset. Resetting a
fired work node changes its state to initial so that the node
can be reexecuted. Resetting an active work node cancels
the current execution of the corresponding process activity
and change its state to initial.

Associated with each business process, there is a process
data template defined by the business process designer. The
process data template is used by users to provide initial data
for the creation of process instances. At run time, based on
the process data template and read/write lists of activities
defined in a business process, HP OpenPM will generate a
case packet for each process instance to facilitate data pass
ing between activities and the HP OpenPM engine.

HP OpenPM Process Execution
Fig. 3 shows a simplified version of the component structure
of the HP OpenPM engine, which coordinates the overall

execution flow of business processes. It functions as a highly
reliable, log-based state machine. The HP OpenPM engine
interfaces with external emironments through a uniform
CORBA-based transport interface, independent of the actual
physical dispatch of the requests.

The HP OpenPM engine launches business process instances
in response to user requests. For each instance, the HP
OpenPM engine steps through the nodes according to the
order specified in its business process definition. For work
nodes, the HP OpenPM engine will execute the associated
process (forward) activity. For rule nodes, the HP OpenPM
engine will evaluate the rules and perform the rule actions
when the rule conditions are met.

Each node transition is durably logged to facilitate forward
rolling of incompleted business processes at system restart
time in the event of a system failure, or to facilitate a sup
port activity compensation process in the case of a business
activity failure, hi addition, HP OpenPM allows flexible
specification of compensation scopes and actions (e.g.,
compensation activity or cancel activity) to support various
application needs.

In HP OpenPM, different versions of similar business pro
cesses are supported by the engine under the concept of a
process group. The user can designate a particular version

Engine Xper t

Process
Definition

Transport
M a n a g e r

Process
Definit ion
M a n a g e r

m t f m

Process Execution

Database Manager

Â«â€¢+â€¢ Function Call

â € ” ^ M e s s a g e F l o w

Fig. 3. Block diagram of the HP OpenPM engine.

Process
Monitor ing

Transport Manager

I

t

Transport
M a n a g e r

October 1996 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

as the default to be used when no specific version is re
quested at the time a business process instance is created.

To monitor the progress of running business activities and
support system management, the HP OpenPM engine main
tains a comprehensive log of all events and provides a native
interface as well as SNMP/CMIP gateways to facilitate inte
gration with the HP OpenView environment. The formats
and contents of the logged information can be customized to
support specific application needs.

HP OpenPM Business Objects
HP OpenPM has to interact with business activities sup
ported by various implementations encountered in real life.
These can range from manual handling by humans to auto
mated processes executed by computers. An infrastructure
is needed to enable the effective management and invoca
tion of these business activities.

Distributed object technologies have become the primary
infrastructure for enterprise-scale distributed computing.
Among them, the OMG (Object Management Group) CORBA
(Common Object Request Broker Architecture) technology
has been developed to support interoperability for applica
tion integration.

Based on CORBA technology, in HP OpenPM an abstraction
called a business object is built to encapsulate whatever
piece of work each process activity has to accomplish.
The wrapping code provides an IDL (Interface Definition
Language) interface and the business objects are catalogued
in the HP OpenPM business object library.

A business object, as defined by the OMG, is a representation
of something active in the business domain, including its
business name and definition, attributes, behavior, and con
straints. It provides a uniform way to encapsulate legacy
systems and applications, and a direct mapping, in under
standable business terms, between the business model and
the possibly sophisticated operational procedures of the
business process system.

By representing these process activities in business objects,
new business processes can be quickly created by assem
bling business objects to describe business processes. The

business object library avoids repetitive coding to tailor the
business activity implementation to each individual business
process.

HP OpenPM Resource and Policy Management
A resource is a person, computer process, or machine that
can be used to accomplish a task. A resource has a name
and various attributes defining its characteristics, such as
job code, skill set, organization unit, and availability.

A policy is a set of rules that determines how resources are
related to tasks within a BPFM system. One common use is
for task assignment. Policies can be used to specify which
resource, under which role, is eligible or available to per
form a task. Policies are also used to ensure proper autho
rization and authentication.

In HP OpenPM, the mapping between the business activity
(task) specified in a business process and the business object
(resource) to be invoked is performed by the resource man
ager during run time as part of the execution of the business
activity. HP OpenPM allows multiple resource managers to
be used to resolve a single resource assignment request;
each resolves the request at a different level within an orga
nization.

HP OpenPM Worklist and Application Data Handlers
Two optional components that can be added into the HP
OpenPM environment to facilitate the execution of business
processes are the worklist handler and the application data
handler (see Fig. 4). Both components are designed to en
hance the scalability of HP OpenPM systems.

The worklist handler supports both engine-push and client-
pull modes to provide more freedom in task assignment.
In addition, the worklist handler can be used to support the
concept of integration on demand. Based on the task
performer's profile, the worklist handler determines and
launches a specific environment for an activity at run time,
rather than hard-wiring it into the process definitions.

The application data handler supports the separation of
application-specific data and process-relevant data to reduce
the amount of data flow over the network. It also provides

Workl is t
Handlers

Appl icat ion
Data Handlers

M

Process
Controllers

HP OpenPM
Engine HP OpenPM

Database

Process
Designers

Process
Monitors

Resource
Data and

Rules

Fig. 4. HP OpenPM system architecture including optional elements.

74 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

the preparation facility for application-specific data to
remove the burden of database access from activity per
formers.

HP OpenPM Security
In today's business environments, security must be imple
mented enterprise-wide. The security service developed by
the OMG provides authentication and encryption for HP
OpenPM to prevent eavesdropping and forgery. The HP
OpenPM infrastructure components can identify each other
and vouch for the credentials of end-user components.

BPFM in the Telecommunications Management
Network
The Telecommunications Management Network (TMN)
defined by the International Telecommunications Union is
changing the way operations support systems and business
support systems solutions are being developed. The TMN
architecture separates layers of functionality and provides
access by elements in any one layer to any element in the
layer immediately below. Before the introduction of the
TMN model, operations support systems and business sup
port systems solutions were isolated from each other and
could not interoperate.

The HP OpenView Distributed Management platform sup
ports the realization of TMN operations support systems and
business support systems solutions for the TMN element
management layer and network management layer (see the
article on page 6 for a description of the TMN layers). Still
needed is a middleware service supporting the service man
agement layer and even the business management layer of
the TMN model. This need offers a great opportunity for
BPFM added value. The next section presents an example of
this support.

At the service management layer, the BPFM process enabling
framework is required to be able to:

â€¢ Support reengineering and transformation processes for
strategic operations support systems and business support
systems.

â€¢ Integrate existing operational environments to form an
enterprise hub for service management and provisioning.

â€¢ Deploy new management services as rapidly as possible.
â€¢ Monitor and measure processes.
â€¢ Tune processes to benefit from experience.
â€¢ Automate processes to reduce execution time.

The overall deployment of BPFM technology in the TMN
environment is depicted in Fig. 5.

SONET Configuration Management Prototype
Based on an HP OpenPM system, we built a prototype to
demonstrate the application of BPFM technology in the
specific domain of SONET (Synchronous Optical Network)
configuration management. The prototype was a joint proj
ect between HP Laboratories in Bristol, England and Palo
Alto, California to demonstrate the middleware technologies
required to automate the processes supporting the configura
tion management of a SONET telecommunications network.

The scenario demonstrated by this prototype consists of the
provision of a new VC4/VC12 path for customers. It goes
through several different steps for this operation: search for
a new route, negotiate the service level agreement (SLA)

Business
Management

Layer

Service
Management

Layer

Ne twork
Management

Layer

Element
Management

Layer

Ne twork

Service
Activation

Service
Assurance

Business Process Flow Management

A T M

SONET

Fig. 5. Telecommunications Management Network layers,
showing management functions provided by business process
flow management.

with the customer, configure the new path, and finally, up
date the SLA for this customer. The HP OpenPM process
definition supporting the process of providing this new
SONET data path is sketched in Fig. 6.

Searching for and configuring a new path in SONET are
complex processes requiring a lot of interaction with the
SONET MIB (Management Information Base) and network
elements. This type of operation is a source of errors when
it is performed manually by an operator as a set of individual,
uncorrelated activities.

In the prototype, such complex operations as searching and
configuring new paths are handled as business processes
and automated by an HP OpenPM engine in an environment
interacting with HP OpenView DM and Oracle DBMS appli
cations.

Depending upon the changing business needs, a customer
can request to add or drop communication paths between
certain endpoints in a. private virtual network (PVN). In HP
OpenPM, these services can be modeled as business pro
cesses to be executed by the service provider. Adding a new
path may consist of the following activities and decision
points:

1. Retrieve the customer's profile from the customer data
base for customer-PVN-specific information.

2. Locate the closest add-drop multiplexers (ADMs) to the
endpoints, based on the information stored in the SONET
physical configuration database.

3. Check whether fiber connections exist between the end-
points and the two end-ADMs.

4. If not, issue a request for an engineer to go onsite and
physically connect the endpoints to the end-ADMs. After the
establishment of the connection, the process continues on
to step 5 and an independent subprocess is initiated to watch
for resource changes.

5. Find valid routes between end-ADMs. This requires access
to the routing table in the SLA database to determine whether

October 1 996 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

Set CASE.new-resource=yes

Start Complete

l a r I B I â € ” ^ s ^ i a r n *
X

Event 7
Raised

Wait for
Event 7

/
Set Up Next Cross-Connection

New Resources Become Avai lab le

Customer Disapprove

* {m) â€” ^ |Â¡ â€” * (RT) â€” ^B â€” * (m) â€” K^^)
Raise

Events

O
Work Node

Rule Node

Event

Forward Arc

R2: I f event 3 then f ire arc E.
R5: I f TRUE then f i re arc I
R6: I f CASE.new-resource=no and

CASE.more-cross-connect ion- to-set=yes
then fire arc R else

R7: I f CASE.customer-approval=yes then f i re arc X
else f ire arc Y.

- -> Reset Arc

Fig. 6. management. OpenView process definition for SONET configuration management.

any valid routes exist between the two end-ADMs. Either a
list of ADMs is returned signifying the ADMs that must be
configured to realize the route, or "No Route Found" is re
turned. For a returned list of ADMs, this activity will then
use the HP OpenView DM facility agent to collect port infor
mation stored in the MIB to determine the available ports
between the ADMs that are fibered together and can be used
to enable the path.

6. Check network element (NE) capabilities. For an ADM in
the route, this activity uses the HP OpenView DM NE agent
to access the MIB information to determine whether a VC4
cross-connection can be set up in the ADM between the
selected ports of the ADM. This activity has to be executed
for each ADM in the route. During steps 5 and 6, if any addi
tional resources become available, HP OpenPM cancels any
currently running activity and starts the process over from
step 5 to consider these newly available resources.

7. Get customer's approval of the selected configuration.
Once a suitable path is identified, the customer will review
the offer, including available date, charges, quality of services
(QoS), and so on. Depending upon the business factors (e.g.,
cheapest service wanted), the customer may request that a
new search be initiated, that is, loop back to step 5 to find
another valid route.

8. Configure the selected route. This activity is responsible
for setting up the cross-connections in each ADM by invok
ing the HP OpenView DM NE agent and updating the SLA
database.

Acknowledgments
The authors would like to acknowledge the contributions of
several individuals. John Manley and Mike Robinson provided

leadership and guidance in the development of an early ver
sion of the SONET configuration management prototype for
demonstration at Telecom '95. Chris Whitney helped provide
the SONET environment simulator. Clemens Pfeiffer spear
headed the initial creation of HP OpenPM and helped gather
the momentum needed for the project to survive. Nick
Sheard led the product development to commercialize the
HP OpenPM research. Chip Vanek helped drive the design
of HP OpenPM as a major internal customer.

Bibliography
1. S. Man and T. Plevyak, Telecommunications Network Man

agement into the 21st Century, IEEE Press, 1994.
2. W. Du, C. Whitney, and M. Shan, "SONET Configuration Manage
ment with HP OpenPM," Proceedings of the 12th International
Conference on Data Engineering, New Orleans, Louisiana, Febru
ary 1996.
3. J. Shan, W. Du, E. Kirshenbaum, K. Moore, M. Robinson, M. Shan,
and F. Shen, "CORBA Management of Telecommunications Net
works, "Proceedings of the Workshop on Distributed Object-Ori
ented Computing, Object World Frankfurt '95, October 1995.
4. J. Davis, W. Du, and M. Shan, "HP OpenPM: An Enterprise Process
Management System," IEEE Computer Bulletin, June 1995.
5. W. Du, S. Peterson, and M. Shan, "Enterprise Workflow Architec
ture," Proceedings of the llth International Conference on Data
Engineering, Taipei, Taiwan, March 1995.
6. U. for and M. Shan, "Issues in Operation Flow Management for
Long-Running Activities," Data Engineering Bulletin, Vol. 16, no. 2,
June 1993.
7. M. Shan, "OpenPm: An Enterprise Business Process Flow Man
agement System," Proceedings of the ACM SIGMOD International
Conference on Management of Data, Montreal, Canada, June 1996.
OSF and the Software Foundation are trademarks of the Open Software Foundation in the
U.S.A. and other countries.

76 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP OpenView Agent Tester Toolkit
In developing HP OpenView agents, a major challenge is to develop and
test this the agent and the manager simultaneously. To fill this need, the
HP OpenView Agent Tester Toolkit generates tests and allows the
developer to execute these tests individually or as a set.

by Paul A. Stoecker

HP OpenView agents can be created by telecommunications
network management developers either by using tools or by
writing the code directly. The tools available include the
GDMO Modeling Toolset (see page 43), which helps in the
design and specification of network management objects
using the GDMO language, and the HP Managed Object

Toolkit (see page 52), which accepts GDMO documents and
produces C++ code to implement a default agent that meets
those specifications. Whether the developer builds an agent
using these tools or writes the code by hand, one of the major
challenges is to develop and test both ends of the commu
nications link simultaneously â€” the agent controlling the
managed device and the manager that sends requests to the
agent and receives the responses. To fill this need, the new
HP OpenView Agent Tester Toolkit generates tests and
allows the developer to execute these tests individually or
as a set.

The Role of an Agent
An agent program enables other programs, called managers,
to control physical and logical resources. Examples of re
sources that are controlled by agents are telephone switching
equipment and phone service databases. From a centralized
location, a telephone service provider can use automated
processes to monitor the performance of the communica
tions lines, reroute traffic as necessary, and maintain the
business and accounting records. Because the communica
tion protocol between managers and agents has been stan
dardized, a wide area network of multivendor equipment
can be efficiently controlled from a small number of central
locations.

The resources being monitored and controlled are modeled
as objects called managed object classes. Managed object
classes are logical groupings of the attributes, events, and
actions associated with a resource. A GDMO specification
defines the various managed object classes that make up
the interface to the resource. Instances of these classes are
called into existence by sending a create request. The attri
bute values for an instance are accessed by issuing set and
get requests to change or retrieve the attribute values, re
spectively. Other message types remove an object instance,
allov\ I lie agent to notify interested parties of an asynchro
nous change, or cause the agent to perform some agreed-
upon activity.

1 GDMO is the ISO (International Standards Organization) Guidelines for the Definition of
Managed Objects.

A collection of managed object instances and their relation
ships is called the containment tree. Subobjects are logically-
contained or grouped within other objects. Fig. 1 depicts a
portion of a containment tree. Each of the boxes in Fig. 1
represents an object instance. The label in each box identi
fies 1, object class of that instance. For example, in Fig. 1,
a fiber-optic network is composed of two network elements.
In one of those network elements, the regenerator and multi
plexer sections are shown.

One of the attributes within each of the contained object
instances is designated as the distinguishing attribute, and
the value of this attribute is used to uniquely distinguish that
instance from all of its siblings. The containment tree is
used to uniquely identify, or name, an object instance. An
object instance anywhere in the containment tree is identified
by specifying the distinguishing attribute and its value from
the top of the tree down to the desired instance. The con
catenation of all of the distinguishing attributes along this
naming path is called the /Â«//// distinguished min/c. In Fig. 1,
the fully distinguished name for the multiplexer section
would 5; of the sequence networkld = "netl"; elementld = 5;
muxld = 56.

Fig. 1. A containment tree.

Odolicr Mulli Ilrwldt-Packarcl Journal 77

© Copr. 1949-1998 Hewlett-Packard Co.

Agent Development
The Managed Object Toolkit saves an enormous amount of
work by handling all of the overhead of decoding and vali
dating incoming requests, locating the selected object in
stance within the containment tree, and invoking an appro
priate C++ method on the selected object. However, the
attribute values that are set or retrieved by the initial Man
aged Object Toolkit output are only internal representations.
The developer is responsible for filling in empty C++ stubs
to make the internal attribute values reflect the state of
external physical devices. During this coding process, it is
helpful to simulate the requests that will eventually be sent
by a manager.

The Agent Tester Toolkit performs this task in two steps.
First, it creates test requests from the GDMO specification.
Second, it transmits these requests over the network to the
agent and receives the responses. During the development
phase, these test files can be sent individually and the re
sponses viewed interactively. As each agent operation is
implemented, the associated test requests can be added to a
test suite. The accumulated tests can then be run in a batch
mode to check that previously implemented functionality
still works properly. Fig. 2 depicts the sequence of steps
needed to generate and send the test requests, and shows
how the Agent Tester Toolkit relates to other development
tools.

Running the Agent Tester
The components of the Agent Tester Toolkit are command-
line tools that are invoked in a straightforward way. For
example, ovatgen -t /tests gdmo.mib reads the GDMO description
in the file gdmo.mib and generates a set of test requests stored
in files under the directory /tests. Next, tests for a particular
object instance can be sent to the agent as follows:

$ ovatrun -i

>create

>getall

>mytest

>delete

The -i option to ovatrun specifies the interactive mode, in
which the user can type the name of a test file in response to
the > prompt and the response from the agent is displayed
immediately (shown by the dots above).

The test files represent CMIS (Common Management Infor
mation Service, ISO/IEC 9595) operations, such as create,
set, get, and so on, and are stored in a directory layout that

mirrors the organization of the agent's containment tree,
with each directory named by its associated managed object
class name. At each level in the containment tree, test files
are generated that create an object instance, get all attributes,
and delete the instance. If there are changeable attributes,
tests are also generated that set those attributes to new
values and retrieve the changed attributes. In addition, files
are generated that test attribute groups and actions. Docu
mentation files describe the object identifiers used in the
tests and optional features called conditional packages.

Each test request is written in a format called ASN.l value
notation, which is a standardized format described in ISO
and ITU-T documents (8824 and X.208, respectively). ASN.l
(Abstract Syntax Notation One) is a notation for expressing
the types of the attributes and operations. For example, a
test file that contains a get request to retrieve the current
values of several attributes might appear as:

GetArgument {

â€” passwordEntryManagedObjectClass

baseManagedObjectClass {1 3 6 1 4 1 11 9 81},

baseManagedObjectlnstance distinguishedName :

{

{

â€” passwordRootName

attributeType {1 3 6 1 4 1 11 9 29} ,

attributeValue Mod. Root Syntax 0

-- loginName

attributeType {1 3 6 1 4 1 11 9 21} ,

attributeValue Mod.LoginSyntax "paÃºl"

I

attributeldList {

â€” password

{1 3 6 1 4 1 11 9 22},

â€” userlD

{1 3 6 1 4 1 11 9 23}

In this example, the first word, GetArgument, announces the
ASN.l type whose value follows. A GetArgument is a struc
tured type, and in this example its fields are baseManagedOb
jectClass, baseManagedObjectlnstance, and attribute-ldÃ¼st. Lanes
beginning with â€” are comments inserted by the Agent Tester
Toolkit generator to help the reader identify the various
object identifiers (OIDs), which are strings of digits (e.g.,
{136141119 23}) that uniquely identify attributes, classes, and

Object
Design GDMO

Model ing
Toolset

Fig. 2. Agent development and
testing tools.

78 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

other fields. Returning to the GetArgument request, when sent
by the Agent Tester Toolkit it asks the agent to return the
current value of the password and user ID attributes of an
object of class passwordEntryManagedObjectClass. The particular
instance is identified by an object instance passwordRootName
= 0. which in turn contains the desired subobject loginName =
paÃºl. A typical response would be:

G e t R e s u l t {
managedObjectClass {1 3 6 1 4 1 11 9 81},

managedobjectlnstance distinguishedName : {

attributeType {136141 11 9 29},

attributeValue Mod.RootSyntax 0

attributeType {1 3 6 1 4 1 11 9 21} ,

attributeValue Mod. LoginSyntax "paÃºl"

I
}

},
currentTime "19960327145135"

attributeList {

attributeld {1 3 6 1 4 1 11 9 22} ,

attributeValue Mod.PasswordSyntax secret"

attributeld {136141 11 9 23},

attributeValue Mod. User IDSyntax 4463

This response returns the requested class and instance infor
mation, and reports that the values of the two requested at
tributes password and userlD were secret and 4463, respectively.

It is also useful to gather as much information as possible
when error conditions exist. For example, if we try to query
an object that doesn't exist, an error is returned, letting us
know what aspect of the request was rejected:

$ ovatrun -i

>getbad

â€” Error: No such object instance

Objectlnstance distinguishedName : {

attributeType {136141 11 9 29},

attributeValue Mod.RootSyntax 0

attributeType {1 3 6 1 4 1 11 9 21},

attributeValue Mod. LoginSyntax "joe"

Test be are ordinary text files, and customized tests can be
crafted using the generated tests as guides. Several support
ing tools are included in the Agent Tester Toolkit.

Batch Testing
After portions of the agent have been developed and the
tests are working individually, it is good practice to run the
tests and check the results in an automated fashion. This is
useful to monitor existing behavior of an agent as new code
is added, or to be able to repeat the testing process as new
versions of the agent are developed or the agent is ported to
new hardware platforms. To this end. the Agent Tester Tool
kit's run program can execute a sequence of tests in succes
sion. The command is ovatrun without the -i option:

$ cd /tests

$ ovatrun

This causes the list of tests in a default test director file,
batchjist, to be run and the responses stored. After all tests
have been run, the responses are compared against a set of
known-good results, and summary statistics are prepared in
a log file, reporting the number of tests run, passed, and
failed. The known-good result files are generally prepared
by copying actual response files that have been manually
verified. A utility tool is provided that copies result files into
place as known-good comparison files. As part of the copying
process, this utility removes lines that contain the current
time, since this would needlessly cause comparison failures
in future test suite runs.

The test director file in its simplest form contains the names
of the test files and the order in which they are to be sent.
Optional commands in this file allow for more complex situ
ations. For example, ISO standard 10164-1 identifies situa
tions (object creation, object deletion, and attribute value
change) in which the agent should emit an event so that all
interested managers can maintain a synchronized view of
the agent's state. To alert the Agent Tester Toolkit to expect
both a response to one of its own create, delete, or set re
quests and the resulting event emitted by the agent, the pair
command can be used. For example, the command pair pass
word/create sends the request command contained in the file
password/create and then receives both the confirmation of
the request and a notification that the creation has occurred.
Similarly, if an isolated event is expected, the event command
can precede the name of a file with which the arriving event
will be compared. Other commands, such as a shell escape
to execute any user command, allow customized testing.
For example, a shell escape allows the test designer to send
a signal to the agent process to trigger some behavior, such
as the sending of an event. This simulates the behavior of
the agent in actual operation where some asynchronous
condition might cause the event, while still allowing the test
process to receive a predictable stream of responses from the
agent. Other commands allow finer control over the testing
process. For example, a timeout value can be set that con
trols how long the tester will wait for a response before
aborting any single test. An example of a test director file
with some of these commands included is as follows:

Comments begin with the '#' character

The following files are regular tests to get

the attributes in the already-created

Root Managed Object Class

root /pas sFileMOC/getall

Some of the next tests expect both a response

October IfliMi Hewlett Packard. lounial 79

© Copr. 1949-1998 Hewlett-Packard Co.

and an event

pair root/passFileMOC/passEntryMOC/create

root XpassFileMOC /pas sEntryMOC/ get all

pair root /passFileMOC/passEntryMOC/ set

root /pas sFileMOC /pas sEntryMOC /get

pair root /pas sFileMOC /pas sEntryMOC /dele t e

Set the timeout to 30 seconds

timeout 30

Send a UNIX signal that triggers an event

! kill SIGINT $(AGENT_PID)

Receive the event

event root /passFi leMOC /pas sEntryMOC/ event 1

Finer Control of the Generation Process
A powerful feature of the object-oriented design methodology
is that the standards bodies have invested much energy into
constructing managed object class building blocks. A side-
effect, however, is that in most cases the standard documents
from which specific agents inherit contain far more definitions
than are needed for that agent, In the case of the Managed
Object Toolkit, this causes needless code to be generated,
producing a larger agent than is required. To counteract this
effect, the Managed Object Toolkit allows developers to
specify a subset of the managed object classes, so that code
is generated only for that subset. The Agent Tester Toolkit
accepts the same subset specifier, and tests are generated
only for that subset.

In some cases, greater control over the nature of the gener
ated tests is needed than simply selecting a subset of man
aged object classes. An example is the containment tree
example given in Fig. 1 that began with a network object as
the root node. The GDMO description of a network class
might allow (as it does hi ITU-T Recommendation M.3100)
that network to be decomposed into subnetworks and sub-
subnetworks, and so on. To allow the test designers to specify
how many levels of decomposition the agent is expecting, a
containment tree specification file can be provided to the
test generator. This specification file is formatted like an
outline, with the level of indentation indicating how deeply
under the root node each class is contained. For example,
the containment tree in Fig. 1 would be depicted:

network

> element

> > regenerator

> > multiplexer

(Only one of the element nodes is shown. It will be ex
plained later how to include both circuit branches.)

If the agent is expecting the network level to be expanded
into network and subnetwork levels, this change can be in
corporated in the specification file by introducing another
network node and indenting its children by an additional
level:

network

> network

> > element

> > > regenerator

> > > multiplexer

This change adds an element to the distinguished name (cor
responding to the subnetwork distinguishing attribute value)
in each test file, so such containment changes have far-

reaching effects. Making such decisions early in the specifica
tion phase saves much work compared to adjusting already
generated test files.

As mentioned earlier, the tests are placed in a UNIX directory
structure that parallels the containment tree structure, with
each level named by its associated managed object class
name. In many cases, managed object class names can be
lengthy, and a pathname to lower-level test cases composed
of a sequence of those names can be unwieldy. For example,
names such astrailTerminationPointBidirectional and connectionTer-
minationPointSource appear in the standards, and when several
of these are joined (as is typically done when specifying
containment relationships), the combination is hard to read.
To populate the directory structure with shorter, meaningful
names, a default heuristic is applied that selects a few letters
from each segment of a managed object class name. For
example, a file deep in the tree described so far might be
n a m e d d e v e l A l t e r n a t i v e l y , t h e t e s t d e v e l
oper can override this heuristic by specifying shorter names
in an optional field in the specification file:

network (net)

> network (subnet)

> > element (NE)

> > > regenerator (rs)

> > > multiplexer (mux)

Finally, the GDMO document doesn't specify actual attribute
values, so the containment tree's distinguishing attributes
have to be supplied by the test designer. Once again, much
work is saved by specifying these early, rather than fixing
tests after they are generated. These distinguishing attrib
utes can be assigned in the last optional field of the specifi
cation file:

n e t w o r k (n e t) n e t w o r k l d = " f t c "
> network (subnet) network!d="Bldgl"

> > element (NE2) elementld=2

> > element (NE5) elementld=5

> > > regenerator (rs) rsld=40

> > > multiplexer (mux) muxID=56

Note that by including the distinguishing attribute values,
we can differentiate between the two element sibling
branches.

A supporting tool called ovatct reads GDMO files and pro
duces a skeleton specification file similar to the one above
(using the same subset selection file as the Managed Object
Toolkit, if provided). More meaningful abbreviations and
attribute values can be noted in the specification file and
then used as an input to the test generator to guide the
production process:

o v a t c t g d m o . m i b > s p e c _ f i l e
o v a t g e n - t / t e s t s - f s p e c _ f i l e g d m o . m i b

Summary
Key design goals of the Agent Tester Toolkit include sup
porting agent developers during the development and main
tenance phases, and confirming compliance to the GDMO
specifications the agent is to implement. Also important is
the ability to generate tests iteratively for evolving designs,
without time-consuming configuration changes of the test
engine itself. The Agent Tester Toolkit complements other
tools in the development life cycle.

80 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Storage Management Solutions for
Distributed Computing Environments
Strategies for dealing with the vast amounts of data generated by today's
information technology environments involve more than just larger and
larger disk drives. They include the right combination of different storage
devices to deal with offline, nearline, and online data storage and
scalable management software.

by Reiner Lomb, Kelly A. Emo, and Roy M. VanDoorn

Storage management is fast becoming one of the most im
portant issues information technology (IT) managers face
today. With data accumulating at enormous rates, and with
end users demanding faster access to more information,
storage management has moved from an operation that was
done only at night to a mission-critical concern that requires
full-time attention.

Storage management consists of all the activities related to
the effective deployment, accessibility, and use of stored
information across a computing infrastructure. Storage man
agement involves several major disciplines, including backing
up and restoring data, storing data online across multiple
classes of storage devices such as disks and tape, archiving
data for legal and historical purposes, and managing storage
resources such as tape or optical media for optimal use.
Managing these storage disciplines takes an effective combi
nation of organization, processes, and technologies to meet
end-user data-availability expectations.

In today's distributed computing environments, IT managers
need consistent storage management strategies and pro
cesses across the enterprise. In addition, storage manage
ment processes cannot be separated from an integrated net
work and system strategy. Therefore, IT managers need
complete solutions that integrate the various storage man
agement components and technologies such as databases,
file systems, storage peripherals, storage management appli
cations, and network and system management strategies.

In the past, storage management solutions have been propri
etary (mainframes) or piecemeal (early clienf server point
products), with specific peripherals working only with spe
cific software and hardware. It was difficult to expand a
solution to meet the demands of rapidly growing collections
of data.

In this article we will describe trends driving storage man
agement technology and the components that make up an
ideal storage management solution. Finally, we'll introduce
IIP hardware and software products, services, and partners
and describe how they work together providing storage
solutions for our customers.

Storage Management Trends

Traditionally, the task of storage management was done
after work hours when the system could be brought down
for storage management functions such as backup and
archiving. Today, much more data is generated, and storage
management solutions need to provide much greater data
availability and reliability. Complicating storage management
are variables that determine data throughput and access.
These variables include disk capacity, CPU, inputyoutput
channels, device speed, networks, and software (Fig. 1).
New ways of transferring and storing large amounts of data
without downtime have to be developed.

Probably the most important driving factor in storage man
agement today is that customers demand continuous acces
sibility to huge amounts of data, very often in the terabyte
range. You can see this demand occurring in the increased
use of the Internet and online services such as CompuServe
and America Online, and in the emergence of new applica
tions such as imaging and multimedia. In the past, data
accessibility was a fairly simple process when mainframes
were the primary storage devices and the only limitation
was disk size. Today, the answers to storage problems
cannot be provided simply by installing a bigger disk on a
central server.

As customers reengineer their businesses, many are choos
ing to migrate away from the mainframe via "mainframe
downsizing." Mission-critical applications are moving to
open systems, and the management of client/server work
groups is being consolidated across LANs and WANs. An
enormous amount of company-sensitive data, which used to
be under central control and located in the data center, is
now distributed and available on the network (Fig. 2). Pub
lished market numbers show that the average amount of
distributed data has surpassed the average amount of data
in the data center. Companies must begin viewing storage
management as integral to their network and system man
agement solutions.

(> r l c) b c i l i l l H i l l r w l r t t - l ' ; i < - k ; i r i l J o i n - m i l 8 1

© Copr. 1949-1998 Hewlett-Packard Co.

I /O Channel
Number of Channels

CPU and
Sof tware

In addition to all the challenges raised by managing storage
on distributed systems, IT managers must deal with the
reality that the amount of data being stored is outstripping
the network's capacity to handle it efficiently (Fig. 3). For
example, a company might need to back up 100 Gbytes of
data in an hour. As the storage staff looks for solutions, they
see processor performance improving faster than disk per
formance. They also see the performance of both disks and
processors outstripping the performance of the installed
network infrastructure. At the rate network infrastructure is
improving, it will be a huge challenge to catch up to proces
sor performance.

If IT managers try to win this contest with only the tradi
tional approach of centrally stored data, they will lose the
storage management race. Instead, today's storage manage
ment solutions must allow distributed storage management
to be performed centrally, decentrally, or in a hybrid fashion,
depending on a company's policies and needs.

To solve the growing issue of storage management, they
need to understand what constitutes a storage management
solution.

Storage Management Requirements

The ideal storage management solution, which is made up of
complementary software, systems, and peripherals, is inte
grated, scalable, and modular, and allows the solution to be
implemented in phases and expanded over time. A flexible
solution addresses both mission-critical enterprise-wide
requirements and business-critical desktop needs. At the
same time, this solution must be easy to use and robust, and
must provide quick, reliable access to data.

The fundamental requirement of any storage management
system is to provide data accessibility to all users, regard
less of where and how the data is stored. To make data
quickly accessible, yet store it efficiently, customers need a
complete, integrated set of storage management functions,

Fig. 1. Components in the chain
that have an impact on data
throughput.

including backup and recovery, archiving and retrieving,
hierarchical storage management, and media management.

In addition, an enterprise-wide storage solution must allow
various storage management applications and peripherals to
manipulate and share media in a consistent manner. It must
also provide an easy and standardized way to access the
various storage devices, library systems, and silos. Many
companies are dedicating servers to specific tasks such as
backup and restore servers or archival and retrieval servers.
A storage solution must be optimized so data is stored and
moved in the most efficient manner.

Other more generic services for storage management include
a central policy definition and a single point of control.
Lights-out operation and unattended remote backup are also
key to many storage management solutions."* Storage man
agement solutions are most manageable when integrated
into management systems such as HP OpenView, which pro
vides integrated network and system management services
dealing with monitoring, problem management, and configu
ration and change services.

Backup and Recovery
One of the most important needs in enterprise-wide storage
is backup and recovery. Very early in a solution deployment,
IT managers must establish a backup and recovery policy
that provides the appropriate level of data integrity. This
policy must ensure that critical data can be completely and
quickly recovered from a backup even in the event of a
disaster. Equally critical is minimizing planned downtime,
or completely avoiding downtime, to create a backup while
keeping user applications up and running.

' A central policy describes a set of features that allow an administrator to define policies about
how distributed storage is to be managed from a central management console. For example,
an administrator defines for a networked environment which data needs to be backed up,
when it will be backed up, which device will be used for backup, and so on.

1 In the without local l ights-out operation means that an IT environment can run without local
operators or administrators.

82 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Reg iona l l y D i s t r i bu ted Sys tems

U l t r i x

AIX

L A N M a n a g e r

Opera t ing Sys tems
Runn ing on Servers
a n d W o r k s t a t i o n s

Data Center

MVS

Sens i t i ve
Company Data

D i s t r i bu ted C l i en t /Se rve r Workg roup

SUN
HP-UX

M i d r a n g e a n d
M a i n f r a m e S y s t e m s

VMS o r UNIX

Fig. service mainframe storage management committed to the same service level as a mainframe environment.

Archiving and Retrieving
The main reason for implementing archival and retrieval
solutions is the need to keep data long-term and guarantee
retrieval when access is required. The data is typically
copied onto a different medium such as tape or optical disk,
while the original copy is deleted from magnetic disk.
Archived data is not frequently accessed, but sophisticated
retrieval mechanisms need to be available. In many cases,

A r c h i v i n g

Loss Pro tec t ion

.
S p a c e M a n a g e m e n t

T ime

Fig. 3. of volume of data being stored is outstripping the ability of
network services to deal with it .

archiving data is required for legal or internal auditing pur
poses. The archiving procedure includes storing data that
logically belongs together in long-term storage, such as a
finished project, a finished design, or a client record.

Hierarchical Storage Management
Hierarchical storage management, or HSM, efficiently man
ages data stored on magnetic disks, optical disks, and tapes.
Depending on cost versus performance requirements, data
is kept on one or more of the different storage hierarchy
levels and migrated transparently among the storage media
according to customer-defined policies. An HSM system
reduces ongoing storage configuration tasks, such as moving
data manually between levels in the hierarchy and subse
quent management costs. It also eliminates frequent storage
maintenance, such as manually archiving files onto tape to
free disk space, and it helps reduce the need to acquire
more expensive media, such as magnetic disks, for infre
quently accessed data. For example, files are migrated from
disk to tape or optical storage if they are not accessed for a
certain time period. Statistical data about access patterns
can help to define the right migration policy. Also, keeping
statistical data about migration patterns and creating appro
priate reports will help to implement the right storage man
agement policies for an organization.

October !!)!Â«> I Icwk-tt-Packanl Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

Media Management
The storage services discussed above handle copying or
moving data onto media or retrieving data from media.
Media management, which keeps track of removable media
such as tapes or optical devices, deals with the medium it
self and not with the data on the medium. A media manage
ment system protects data on the media and makes the
media pools available to storage management applications.
Typical media management functions include mount and
unmount media, rotate media, and provide statistical infor
mation about the media.

Most of today's backup, retrieval, archival, or HSM products
have their own integrated media management functionality
dedicated to a specific product. Enterprise storage manage
ment solutions require generic media management services
delivered in an integrated way, so that media use can be
managed and optimized across applications and systems.

Enterprise-Wide Storage Management
IT departments also require consistent and effective man
agement capabilities for storage management across the
enterprise environment. To provide these management
services, a complete storage solution must provide:

â€¢ A single point of control, which is consolidated console
management, including:
o Central policy definition
o Central monitoring and problem management
o Central configuration of storage

â€¢ Multivendor availability and support
â€¢ Scalable, modular services
â€¢ Integration with an industry-standard network and system

management framework
â€¢ High availability of key storage management components.

HP Storage Management Solutions

HP can offer many different solutions to an organization's
storage needs because of the combined effort of major HP
business organizations in the areas of network and system
management, storage peripherals, and UNIXÂ® servers.

However, each customer's needs for storage management
solutions are different. No one vendor can provide a single
solution for every environment. Rather than create a mono
lithic, proprietary solution, HP is working closely with third-
party partners and many diverse HP divisions to create an
open, standardized environment in which many vendors can
participate in creating solutions.

HP Storage Management Software
Central to HP's storage management offering is the software
that links all the other pieces of a storage management solu
tion together. HP's two leading storage management prod
ucts, HP OpenView OmniBack II and HP Open View Omni-
Storage, are client/server solutions that give IT managers
the flexibility to manage distributed storage centrally and
delegate management responsibility to distributed sites or
departments. HP OmniBack II products address issues asso
ciated with data loss and protection, and HP OmniStorage
products address issues associated with space management.

HP OpenView OmniBack II. HP offers two backup solutions:
HP OpenView OmniBack II for Workgroups, which provides
an entry-level backup solution ideally suited for the work
group environment, and HP OpenView OmniBack II, which
provides a comprehensive backup management solution to
cover all sizes of environments, including the whole enter
prise.

The HP OmniBack II architecture (Fig. 4) consists of three
major pieces:

' Backup Manager. This module centrally administers and
controls the backup environment.

' Backup Device Servers. These servers run on the system to
which the backup device is connected. A backup environ
ment can have many backup device servers.

' Clients. All systems being backed up need a client to invoke
the backup utilities.

All three components can run on the same system or can be
distributed. OmniBack II has its own management interface
and can be run inside or outside the HP Openview manage
ment interface.

Backup
D e v i c e | Â ¿ ~ " S
Server

Backup
Device
Server

Backup
Device
Server

Backup Environment

Fig. 4. The backup environment
and components for HP OpenView
OmniBack II.

84 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

OmniBack II is a scalable and flexible solution. Through
its policy-driven, centrally managed, automated backup
capabilities. OmniBack II reliably protects data distributed
throughout the entire network. Easy-to-use backup and re
store functionality prondes management for desktop PCs to
UNIX-based business servers. In combination with HP Open-
Mew IT/Operations. administration and problem management
for the entire enterprise can be centralized.

Sophisticated media and device management combined with
support for mainframe-class library systems, including silos,
make OmniBack II the ideal solution for data centers.

Increased uptime for application and database servers can
be achieved through high-performance offline backup, re
quiring only a minimum of application downtime. This can
be extended to 100% application availability through online
backup of business data.

The main features provided by OmniBack II include:
â€¢ Network backup and recovery
â€¢ Support for a broad range of devices and libraries
â€¢ Online backup of applications and databases such as

SAP/R3, Oracle, and Sybase
â€¢ Sophisticated media management
â€¢ Support for major UNIX and PC platforms, including

Windows NT
â€¢ High-performance backup and recovery from multiple

drives in parallel, each running at its full native throughput
â€¢ Integration with HP OpenView IT/Operations
â€¢ Integration with HP OpenView OmniStorage, HP's hierarchi

cal storage management solution.

HP OpenView OmniBack II for Workgroups. OmniBack II for
Workgroups is a complete solution that offers everything
needed for a low-administration, automatic, unattended, and
reliable network backup and recovery solution. It is targeted
toward smaller multivendor computing environments with
out dedicated administrators. OmniBack II for Workgroups
includes the following features:

â€¢ Automated and reliable network file system backup and
recovery

â€¢ Sophisticated and automated media management, auto
loader support

â€¢ Support for all major UNIX and PC platforms
â€¢ Easy-to-use intuitive graphical user interface with many

built-in browsers and selection lists.

HP OpenView OmniStorage. OmniStorage is HP's hierarchical
storage management solution. It offers benefits in environ
ments where a significant amount of data needs to be on
line, but where not all of the data is frequently accessed.

OmniStorage provides high-capacity, cost-effective online
storage by supporting HP's broad range of optical libraries
and the newest tape libraries. According to policies defined
by the customer, files are automatically and transparently
migrated among the levels of storage hierarchy.

Fig. 5 shows a typical environment in which OmniStorage
runs. The two main pieces of OmniStorage are the manager
and the clients. The manager administers and controls the
storage environment, and the clients invoke the Omni
Storage functions on behalf of users.

â€¢ Silos are very large tape libraries.

OmniStorage is tightly integrated with HP OpenView IT/
Operations, providing easy administration and problem
management of multiple OmniStorage installations from a
central workstation console. OmniStorage also integrates
with OmniBack Ã¼ for automated backup and recovery of the
HSM environment. However. OmniStorage can run as a
standalone product, which allows customers to implement
storage management in phases.

OmniStorage provides optimal performance if users fre
quently access only a subset of the data. Additionally. Omni
Storage can be used for databases if they are based on a file
system and if major parts of the database, such as decision
support systems, are not frequently accessed.

Finally, OmniStorage provides the following features:
â€¢ Policy-driven automatic and transparent file migration
â€¢ Network migration for HP-UX and Solaris operating

systems
â€¢ Additional multivendor support through NFS
â€¢ Exceptionally fast rebuild capabilities in case of data loss
â€¢ Configurable demigration strategy
â€¢ Archival to WORM (write once, read many) disks
â€¢ Integration with HP OpenView OmniBack II
â€¢ Integration with HP IT/Operations
â€¢ Support for data warehouse environments.

HP OpenView Solutions
HP Open View's solutions are part of a strategy for managing
multivendor networks, systems, applications, and databases
from the mainframe to the desktop PC. The HP OpenView
portfolio and companies that provide network and system
management solutions (solution partners) give IT managers
the tools to control and manage all enterprise resources and
devices centrally, while reducing the cost of systems opera
tions and administration. Besides OmniBack and Omni
Storage, more than 250 HP OpenView-based management
solutions from HP and solution partners integrate with a
complete set of common management services to help
customers improve service and reduce operation costs.

OmniStorage
Client

Tape Storage

Fig. Omni- Tin1 roiiiponenls and environment for IIP OpenView Omni-
Storage,

D e l , , h e r M I M C I I r w i H I I ' a r k a r d . I d l i m i l l 8 5

© Copr. 1949-1998 Hewlett-Packard Co.

Central to the HP Open View products is a user interface that
provides a focal point from which the IT staff can manage
computer systems and network devices. Although control is
centralized through the interface, management functions can
be distributed across the enterprise. More important, flexible,
distributed interfaces allow several operators and adminis
trators to be involved in the process of IT management.

As an important part of the HP Open View solutions frame
work, HP OpenView IT/Operations provides centralized
operations and problem management with distributed intel
ligence across multivendor platforms. With intelligent agents
(managed nodes) installed throughout the enterprise, IT/
Operations collects up-to-date, accurate information to pro
vide 24 x 7 (24 hours a day, seven days a week) uptime for
mission-critical applications. IT/Operations-managed nodes
gather information, messages, and monitoring values from a
variety of sources. Filters and thresholds ensure that only
relevant information is forwarded to the central manage
ment system and presented to the responsible IT/Operations
operators.

HP and Third-Party Storage Peripherals

The HP 9000 supports mass storage products that provide
online, nearline, and offline storage capabilities. The pri
mary differentiator among these three categories of storage
is access time. A storage device is considered online when
the data access time is a fraction of a second. Nearline stor
age devices usually access data in the range of a few seconds
to a few minutes. Offline storage devices typically require
many minutes to hours to access data. Some offline storage
strategies that require retrieval from a storage vault may
take days before the data is available to the user.

HP and its partners can provide a wide variety of products
to meet the individual needs of specific customer environ
ments. These products can be mixed and combined with
HP's storage management software to provide the needed
end-user solutions.

Online Storage
HP offers two classes of online mass storage products:
single-spindle disks and disk arrays.

Single-Spindle Disks. Single-spindle disks offered by HP are
either embedded in the host systems or provided externally
within storage enclosures. These disks provide high-capacity,
nonvolatile, fast-access mass storage. Single-spindle drives
operate at 7200 rpm and are currently available in capacities
of 1.05 Gbytes, 2.1 Gbytes, and 4.3 Gbytes as fast/wide dif
ferential drives.

These new drives are available as embedded devices in ail of
the HP 9000 servers, more than doubling the internal online
storage capacity. With the addition of the 4.3-Gbyte drive,
21.5 Gbytes of external online storage capacity can now be
housed in a single enclosure rack with up to 160 Gbytes in a
1.6-meter-high cabinet,

1 A collection of disk platters on a single spindle.

HP External Storage Enclosures. HP offers two families of stor
age enclosures for online storage: the HP 6000 SCSI mass
storage family and the HP high-availability storage system.
HP's high-availability storage system is based on a package
design that delivers flexibility and ease of use while providing
critical functionality to meet the needs of the enterprise. The
system provides excellent availability, hot-pluggable power
supplies, dual, power cords, cooling fans, and hot-pluggable
storage modules. The subsystem connects to the server via
dual SCSI buses, increasing reliability and enabling disk
mirroring in the same enclosure.

HP Disk Arrays. A disk array is a storage system consisting of
multiple disk drive mechanisms under the command of an
array controller that communicates with the host (Fig. 6).1
The key benefit of disk arrays is high data protection. Arrays
also provide high storage capacities, connectivity, and con
figuration flexibility.

HP currently offers three primary disk array families associ
ated with the HP 9000 business server product line. The first
family is the HP high-availability disk arrays Model 10 and
Model 20, which have a raw capacity of 6 to 80 Gbytes, sup
port RAID levels 1 and 5, and have dual and hot-swappable
controllers and redundant cooling and power.

The second disk array offering is EMC's Symmetrix 3000.
The Symmetrix 3000 is a high-performance integrated-cache
disk array designed for online storage. As such, the Symme
trix 3000 provides a high level of online performance, an
online capacity of up to 1. 1 terabyte, and manageability and
high a to HP 9000 business servers. The result is a
mainframe-class data storage solution that is simple to man
age and is delivered in a high-performing, scalable, protected,
and open architecture.

The final disk array is the fault-tolerant, self-configuring,
high-performance HP disk array product with AutoRAID
technology. The HP AutoRAID disk array eliminates the
need for system administrators to understand RAID levels.
It dynamically adapts to the system's workload, thus opti
mizing for performance and cost. Finally, it offers a raw
capacity of up to 24 gigabytes.

RAID = Redundant Array of Independent Disks.

RAID
Disk Array
Controller

Disks

Fig. 6. A typical RAID architecture.

86 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Nearline Storage
Most files and applications stored on hard disks are never
used. Thus, the major benefit of hard disks â€” high-perfor
mance access â€” is squandered on dormant data. Cost-sensi
tive environments would be better served by a hierarchical
storage management solution in which active data is stored
on hard disks, while dormant or infrequently used data is
cost-effectively stored offline or nearline in media such as
optical disks.

HP SureStore Optical Storage Products. HP offers a broad family
of optical disk drives, ranging in capacity from 40 Gbytes to
618 Gbytes. HP offers multifunction magnetooptical drives
with rewritable and WORM disks. A rewritable optical disk
can be written up to 10 million times. A WORM disk can be
written once but cannot be erased or overwritten, adding a
higher degree of security.

The main features of these nearline storage devices include:
> Fast, near-hard-disk transfer and seek times
â€¢ High capacity
â€¢ Low risk â€” no disk crashes with optical disks
â€¢ Online data availability on a random-access device
> Online drive replacement â€” provides assurance that the

optical system is persistently available
> Removable media
> Long life â€” provides more than 100 years of media life

without maintenance.

Offline Storage
HP's range of offline storage products provide high speeds
and large capacities to meet the increasing demands of HP's
high-performance workstations, network servers, and multi
user systems. HP has combined its reliable DAT products
with an industry-leading autoloader design and networking
software to give customers the flexibility they need for com
plete automated network backup.2

HP DAT Products. HP offers the latest DDS-2 tape drives in
addition to DOS and DOS DC drives. The new DDS-2 format,
combined with 120-meter tapes, has a native mode capacity
of 4 Gbytes. With data compression, customers can typically
store 8 Gbytes on a single tape. For unattended or lights-out
operation, a six-cartridge autochanger is available to rotate
media for full and incremental backup and restore opera
tions. HP also supports 8 mm and QIC tape drives. The main
features of these offline storage products include:

> Unattended backup
â€¢ High capacity with high reliability
' Easy storage in a fireproof safe according to industry
standards

â€¢ DOS format can be interchanged with different
manufacturers' tape drives.

Digital Linear Tape. HP 9000 servers support the HP DLT
(digital linear tape) Library 4/48. This library consists of four
Quantum DLT/4000 drives, accommodating 48 20-Gbyte tape
cartridges and providing greater cartridge capacity than the
DOS format. The DLT/4000 is a 0.5-in cartridge streaming
tape with a capacity of 40 Gbytes per cartridge (with 2:1
compression), and a sustained transfer rate of 3 Mbytes/s.
The HP DLT Library 4/48 enables fast, unattended backup of
over 100 Gbytes of data within the brief windows of time
available for backup in high-end OLTP (online transaction

processing) and decision support system environments
(Fig 1

The main features of digital linear tape include:
â€¢ A native-mode data transfer rate three times faster than

competing technologies
â€¢ Greater media and drive head longevity
â€¢ Sophisticated tape indexing for fast-streaming file searches

and restoration
â€¢ Higher compression ratio for most data types.

â€¢ Driver support provided by HP for the 18-track StorageTek
tape drives (model 4781) and the 36-track single-ended tape
drives (model 4791).

3480/3490 Compatible Tape Subsystems, Libraries, and Silos.
HP provides driver support for 18-track StorageTek tape
drives (Model 4781) and 36-track single-ended tape drives
(Model 4791). Additionally, StorageTek offers Timberline
9490, a fast wide implementation of the Model 4791 with
a 6-Mbyte/s drive. These drives are compatible with ail
StorageTek silos. HP supports StorageTek silos, including
one with a 500-cartridge capacity and 90 cartridges/hour
(upgradable to 1000 cartridges and 350 cartridges/hour) and
another with a 6000-cartridge capacity and 350 cartridges/
hour. Both connect to other devices and silos for easy
growth.

HP 9000 Business Servers
Today's open systems for critical business computing envi
ronments require three essential elements. First, they must
provide the storage management, data integrity, security,
and manageability that information technology managers
have come to expect in running business-critical applications
on centralized processing systems. Second, they must pro
vide connectivity and compatibility with the growing base of
PC desktop users. Finally, they must offer flexibility, perfor
mance scalability, and technical innovation to keep up with
emerging application demands.

As the leading open systems platform, HP 9000 business
servers offer the benefits of all three elements in a single,
unified, UNIX-based platform. The HP 9000 server platform

B

OAT
Mechanisms

and
Autochangers

2 -â€¢

100 2 0 0 3 0 0 4 0 0 5 0 0
System Capacity (Gigabytes)

Fig. based System capacities of different offline backup devices based
on 1 1 ic lockup window (i.e., the amount, ni'thiii- ;i\;iil;il>lc for backup).

OriobiT L996 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

is able to support environments of all sizes, ranging from
workgroups and replicated sites to the departments and
data centers of large enterprises. For storage management,
the HP 9000 business servers offer the following features:

â€¢ Highly available and reliable systems environment
â€¢ Excellent data-movement management
â€¢ A dedicated storage server architecture that is designed for

optimal database and file management
â€¢ Scalable from desktop to data center
â€¢ Hundreds of partners that ensure customizable solutions.

Storage Solutions for the Enterprise

To help understand how to plan a complete storage manage
ment solution, we have looked at scenarios common to many
companies struggling with storage management demands.
In each of the following examples, we'll examine the needs
specific to each environment and the needs of centralized
storage management, starting with small workgroups, and
building up to the enterprise level. Then we'll show how HP
and its partners can provide a unified solution.

Independent Workgroups
Many workgroups implement their own backup and recovery
solutions. These solutions are typically managed by a part-
time administrator. Major requirements for backup and re
covery solutions include ease of use and automation. Omni-
Back II for Workgroups is the best backup and recovery
product for independent workgroups. Combined with HP's
low-cost, high-performance business servers and HP's DOS
II device libraries, backup procedures can be automated and
centrally controlled within the workgroup. OmniBack II for
Workgroups provides easy and fast restoration of files and
the potential to expand the workgroup or even consolidate
multiple workgroups.

Solution Elements. The storage management solution from
HP for independent workgroups includes:

â€¢ HP OmniBack II for Workgroups, with easy-to-use backup
and recovery software for small environments

â€¢ HP 9000 Class D and E business servers for backup
â€¢ HP's DBS II autoloader as a cost-effective tape library.

Distributed Client/Server Workgroups
As information technology departments consolidate work
group management, they need more centralized storage
management for distributed, heterogeneous workgroups.
Two main objectives of this scenario are to increase end
user productivity by providing homogeneous and powerful
storage services, and to increase operator productivity
through central control and administration of those storage
services over the LAN. Significant savings can be achieved
through intelligent resource sharing and reduction of opera
tional overhead.

OmniBack II centrally manages the complete backup and
recovery process of large numbers of distributed workgroups
by dividing large numbers of backup nodes into multiple
manageable backup domains. Central control can be main
tained at the enterprise console while delegating backup
and recovery tasks to the individual end-user departments.
OmniBack II can automate the complete backup process of
distributed client/server workgroups.

In addition, data on shared file servers and on client disks
grows dramatically. Migrating infrequently accessed data
onto different storage media such as optical disks or tapes
becomes an administrative nightmare. OmniStorage helps to
increase the online storage capacity of clients and servers
while keeping storage administration costs under control.

Solution Elements. The storage management solution from
HP for distributed client/server workgroups includes:

â€¢ Centrally controlled backup and recovery for heterogeneous
workgroups with OmniBack II

â€¢ Automated backup based on HP's DDS II Autoloader or DLT
libraries

â€¢ HP 9000 business servers used as reliable and high-perform
ing backup, restore, and HSM servers.

â€¢ Unlimited online storage based on OmniStorage combined
with HP's optical or tape libraries

â€¢ Sophisticated problem management with HP IT/Operations.

Regional Distributed Systems and WAN Connections
Companies with branch offices in the retail or financial indus
tries, for example, often have regional distributed systems
connected via WANs. IT departments for these companies
need to run the IT infrastructure of the branch offices with
out operators or administrators. Remote control and admin
istration of storage services over the WAN are essential.

OmniBack II defines each remote branch office as a backup
domain with one or more local backup servers. The complete
backup and recovery administration process and control
can be performed from a central console via WAN. By
choosing the appropriate devices, with sufficient capacity
for each of the remote offices, the backup and recovery pro
cess for the branch offices can be performed remotely.

Solution Elements. For regionally distributed systems the
storage management solution from HP would include:

> Central backup and recovery for remote sites with Omni
Back II

â€¢ HP 9000 Class D and E business servers for reliable backup
and recovery at branches

> HP's DDS II autoloader for automated tape handling
> HP IT/Operations integration of OmniBack II for sophisti

cated central problem management.

Data Center and Mainframe Downsizing
When customers migrate from the mainframe to open sys
tems, they expect the same functionality and scalability in
storage services as they had with the mainframe. The IT
department is expected to continue to provide the same
level of assurance that computer services are available,
reliable, and secure.

For example, a major multinational company using the
HP-UX operating system with large SAP/R3 projects based
on Oracle requires efficient, reliable, unattended automated
backups and restores. These backups are in the multiple
terabyte-per-week range and will move into 24 x 7 (24 hours
a day, 7 days a week) operation. OmniBack II is a key part of
the solution because it gives the customer online backup by
integrating with either the SAP/R3 online utility or the
Oracle database utility. OmniBack II also integrates with

88 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

IT/Operations. This customer has complete centralized man
agement of all backup sessions and devices with the option
of managing a partially or fully distributed environment.

Because of OmniBack II's modularity and integration with
other online backup services, such as those provided by
Oracle and Sybase, customers can configure OmniBack n
to expand to match their growing infrastructures. Many
customers also may choose to add HP's MC/ServiceGuard
to ensure high availability of stored data.

Solutions Elements
Data centers needing high-end backup and restore are pre
sented with the following storage management solutions
from HP:
High degree of automation with OmniBack II and Storage-
Tek's Tape Suo
High backup and restore performance using StorageTek's
Timberline tape drives
High reliability through HP 9000 systems running the HP-UX
operating system
SAP/R3 online backup with OmniBack II integration
Enterprise monitoring and problem management through
HP IT/Operations integrated with OmniBack II
Full consulting, from investigation through implementation,
by HP's professional consulting services
HP MC/ServiceGuard.

Data Warehousing: Scalable Storage Infrastructure
Much of a company's data remains valuable but does not
need to be online and available all the time. Typical storage
capacity requirements of data warehouses range from tens
of gigabytes to several terabytes. Storage managers need the
ability to move this data cleanly from primary to secondary
storage and back to primary temporarily, as needed.

The combination of HP's business servers, magnetic disks,
optical disks, and OmniStorage offer an ideal storage infra
structure for data warehouse environments. This solution
offers efficient storage hardware costs and high scalability
for large storage capacities.

The ideal ratio between magnetic and optical capacity de
pends on environment. Ratios in the range of 1:5 to 1:10 (i.e.,

1 Gbyte of magnetic disk capacity assigned to 5 or 10 Gbytes
of optical capacity) have been implemented successfully.

Solution Elements. HP provides the following storage man
agement solutions for data warehouses:

â€¢ Automated data migration with OmniStorage
â€¢ Online access to secondary and tertiary storage through

HP's optical and tape libraries
' High-performance data warehouse applications based on

HP 9000 Class K and T business servers.

Conclusion
The ideal storage system would provide complete and inte
grated storage management functionality, smooth integration
with multiple file systems and databases across a broad set
of operating systems, and support for a large variety of peri
pherals to satisfy the needs of different storage management
applications. Preventing this ideal solution from occurring
are a multitude of nonintegrated storage components from
different vendors. This situation forces administrators to use
single-unit solutions for storage management, which leads to
redundant and inconsistent management environments.

The HP storage architecture offers a streamlined and unified
interaction among diverse storage components. This archi
tecture allows for customized solutions using plug-and-play
components and enables different storage components to
interact consistently. For example, HP's backup solutions
are being integrated via APIs with databases such as Oracle
and Sybase.

References
1. T. Skeie and M. Rusnack, "HP Disk Array: Mass Storage Fault
Tolerance for PC Servers," Hewlett-Packard Journal, Vol. 46, no. 3,
June 1995, pp. 71-81.
2. S. Dimond, "DDS-2 Tape Autoloader: High-Capacity Data Storage
in a 5 45, Form Factor," Hewlett-Packard Journal, Vol. 45,
no. 6, June 1994, pp. 12-20.

HP-UX 9. and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.
UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

October 1996 Hewlett-Packard .Journal 89

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
October 1996

H P O p e n V i e w D M P l a t f o r m

Prabha G. Chadayammuri

Prabha Chadayammuri is an
architect on the HP Open-
View Distr ibuted Manage
ment Platform at the Net
work and System
Management Division. He
recently worked on the de
sign and architecture of the
CORBA-based telecommu

nications management platform. He joined the divi
sion in 1985, which was then called the Colorado
Networks Division. Born in Kerala, India, he received
a BSEE degree (1 978) from the Indian Institute of
Technology in Madras, India. He went on to earn an
MS degree in computers and systems engineering
(1 981) from Rensellaer Polytechnic Institute. Before
joining HP, he worked on real-time operating systems.
He is a member of the IEEE. Prabha is married and
has two children.

1 7 D i s t r i b u t e d P r o c e s s i n g E n v i r o n m e n t

Frank Leong

Frank Leong is currently the
HP DPE (Distributed Process
ing Environment) project
manager and the HP OEMF
(Open Element Management
Framework) consulting and
delivery manager at the
Telecommunications Plat
form Division. Previously, he

was the project manager for the HP OpenMail con
sulting group and the HP integrated client/server re
leases. He joined HP's Data Systems Division in 1 981 ,

left in 1984 to join a startup company called Covalent
Systems as a senior development engineer designing
print shop automation systems, and returned to HP in
1986. At HP he has worked as a software scientist
and engineer on the HP System Integration Sockets
product and on the HP Device Interface System prod
uct. Before that, he was a development engineer on
the HP Interactive Visual Interface product, the GM
MAP (manufacturing automation protocol) project,
and the PMC/1000 (process monitoring and control)
product. Professionally interested in distributed com
puting, network management, and protocols, he has
authored or coauthored three papers on these sub
jects. He received a BSEE degree in 1977 and an
MSME degree in automatic controls in 1978, both
from Stanford University. Before joining HP, he worked
at PG&E as a computer applications engineer devel
oping computer control systems. He also worked at
the Sequoia Group on medical billing and information
systems. Frank was born in Hong Kong. He is married
and has two children, a boy and a girl. He is a board
member of his church and was recently on the execu
tive committee at his daughter's school. In his free
time he enjoys playing tennis. Music is his main
hobby and he plays flute, clarinet, and saxophone. He
also sings and directs a vocal ensemble at his church.

Satya P. Mylavarabhatla

Born in Visakhapatnam,
India, Satya Mylavarabhatla
received a bachelor of engi
neering degree in 1983 from
Andhra University in India.
He went on to complete an
MS degree in computer sci
ence from Louisiana State
University in 1988. After

graduating he joined HP's Information Software Divi
sion. He is currently the technical lead engineer on

the HP DPE project in the Telecommunication Plat
form Division and is responsible for the HP DPE archi
tecture and evolution. He recently was responsible
for the HP DPE trader and node controller. Previously
he was the lead engineer for SLVM (shared logical
volume management) on the HP-UX operating system.
Before that, he was the lead engineer on virtual
memory and storage management for the MPE/iX
kernel. He is named as an inventor in a pending
patent on a software-based disk-locking mechanism.
Satya is married and living in California.

Trong Nguyen

Trong Nguyen is a member
of the team responsible for
the implementation of the
core server complex on HP's
broadband internet data
system (BIDS) project.
Recently, he contributed to
the repository subsystem
developed with the HP

ObjectStore engine. Trong received a BS degree in
chemistry in 1 979 f rom the University of Colorado in
Boulder, Colorado and earned an MS degree in com
puter information science in 1981 from San Jose
State University. He joined HP's Optoelectronics
Division (OED) in 1979. Initially at HP, he worked on
process control and automated test equipment soft
ware for the OED gallium arsenide manufacturing
process. He then worked on HP LAS/1000 and HP
ChemServer/ 9000 at the Scientific Instruments
Division. He also worked on HP OpenODB at the
Commercial System Division and on HP DPE while
at the Telecommunication Platform Division. Trong is
professionally interested in distributed computing
and object-oriented databases. He was born in Viet
nam, is married, and has three children. In his free
time, he enjoys reading, camping, and fishing.

90 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Frank Quemada
Frank Quesmada is a techni
cal consultant at HP's Tele
communication Platform
Division and recently worked
on HP OpenView Element
Management Framework
(OEMF] using the HP Open-
View Fault Management
Platform. He received a BA

degree in economics in 1979 from the University of
Chicago and an MBA in 1981 from the University of
Michigan. He worked at Arthur Andersen & Co.'s con
sulting group before joining HP's Corporate accounting
systems in 1982. Initially, Frank worked as a software
engineer and application support engineer before
providing consulting services, customer education,
and HP DPE support. He has authored an Interex
paper on information integration, which was pub
lished in Interact and HP Omni.

Alarm Management

Sujai Hajela

Sujai Hajela isa principal
R&D engineer at HP's Singa
pore Networks Operation.
He currently leads support-

^ ^ ^ ^ ^ ^ r e l a t e d a c t i v i t i e s a n d p r o
vides product consultation
and implementation services

Ã‰ to key customers. Since
v* ^ coming to HP in 1994, he

has contributed to the design and development of the
HP OpenView Fault Management Platform (FMP),
particularly the mediation device. He designed and
implemented the message object used as a message
container in the FMP and the encoding and decoding
libraries for information transfer between the medi
ation device and the FMP server. During FMP installa
tions at key customer locations, he assisted with
modeling of the customer's telecom network for de
ployment of the OEMF platform. Sujai is profession
ally interested in telecom standards and earned his
bachelor's degree in engineering, computer science,
and technology in 1 990 from Bangalore University in
India. Before joining HP, he worked at Siemens
Nixdorf, Inc. in Munich, Germany, where he was a
member of the team responsible for the development
of the network element layer for TMN solutions for
Siemens' SDH transmission system.

3 1 E v e n t C o r r e l a t i o n S e r v i c e s

Kenneth R. Sheers

Ken Sheers is the technical
marketing engineer for the
event correlation services
(ECS) product developed by
HP's Network and System
Management Division
(NMSD) in Melbourne,
Australia, and is responsible
for the supportability of the

ECS product. Ken has been with HP for ten years,
providing customer support for HP-UX systems, and

network and systems management consulting based
upon the HP OpenView family, including two years
consulting in the Telecom Expert Center before join
ing NSMD. Before coming to HP, he spent ten years
with General Motors specializing in computerized
instrumentation in the fields of noise and vibration
measurement and automotive emissions control.
Previously, he spent seven years with the Australian
Department of Defense supporting a laser physics
basic research program. He obtained his diploma in
electrical engineering from Footscray Institute of
Technology in Melbourne, Australia, where he was
born. Ken is married and enjoys skiing, bush walking,
rock climbing, carpentry, and electronics.

4 3 G D M O M o d e l i n g T o o l s e t

Jacqueline A. Bray

A software design engineer
at HP's Network and System
Management Division since
1995, Jackie Bray is cur
rently the technical lead on
the GDMO Modeling Tool
set. Before joining HP, she
worked as a software engi
neer at Convex Computer

and as a senior software engineer at Boeing Com
mercial Avionics. Her software development experi
ence includes statistical process control and demand
flow technology for manufacturing and interference
analysis for microwave communications. She has
also worked on Oracle database design and adminis
tration, client/server development, and system and
network administration. Jackie received a BS degree
in mathematical sciences with a major in computer
science from the University of Texas in 1986. A native
of Dubuque, Iowa, she is married and has two chil
dren, a daughter and a son. In her free time, she en
joys traveling, especially internationally and has been
to over twenty countries to date. She also enjoys
photography and outdoor activities such as water
skiing and downhill skiing.

5 2 M a n a g e r / A g e n t A p p l i c a t i o n s

Lisa A. Speaker

Lisa Speaker is an ISV (inde
pendent software vendor)
program manager at HP's
Storage Systems Division in
Greeley, Colorado. She is
currently responsible for the
market development and ISV
partner programs for the HP
SureStore Optical jukebox

products. Recently she was product marketing man
ager for the HP OpenView Managed Object Toolkit,
including the development of customer training pro
grams. Lisa joined HP's Professional Services Organi
zation at the Novi, Michigan Customer Education
Center in 1988. She trained customers on HP-UX,
networking, and several programming languages and
conducted open systems training on the HP 9000.
She also developed introductory training courses on
the HP-UX operating system and X-Windows/Motif.

She transferred to HP's Network and System Man
agement Division where she focused on application
development and integration of HP OpenView prod
ucts, including HP's SNMP platform. Network Node
Manager, and OpenView Distributed Management
Platform. She has spoken at HP OpenView and HP-UX
Developer conferences on HP OpenView application
development and HP OpenView developer tools. She
describes herself as a generalist with interests in
advanced technologies and their application and
marketability. Born in Dearborn, Michigan, she
earned a BS degree in engineering arts in 1983 from
Michigan State University. She also received an MBA
in 1993 from the University of Michigan. In her free
time, she enjoys swimming, volleyball, and reading.
She plays golf competitively and currently holds the
Fort Collins women's city golf title.

6 2 T o o l k i t f o r T M N A p p l i c a t i o n s

Alasdair D. Cox

A senior member of the
technical staff at HP's Bristol
Laboratories, Alasdair Cox is
responsible for researching
the management of telecom
networks and services.
Since joining HP in 1988, he
has worked on knowledge
base management systems

and federated databases, and was part of the team
that produced two TMN demonstrations for Telecom
'95. Born in Worthing, Sussex in the United Kingdom,
Alasdair received a BS degree with honors in compu
tation from the University of Manchester Institute of
Science and Technology in 1988. His hobbies include
photography, particularly landscape photography.

7 0 B u s i n e s s P r o c e s s F l o w M a n a g e m e n t

Ming-Chien Shan

A project manager at HP
Laboratories, Ming-Chien
Shan is responsible for re
search projects for business
process management, tele
com network management,
electronic medical record
systems, and Internet ser-

w vices. He joined HP in 1985
and worked on an object-oriented DBMS, contribut
ing to the HP OpenODB product, and worked on a
heterogeneous DBMS, contributing to the HP Odapter
product. Before coming to HP he worked at IBM for
eight years on DB2 development. Ming-Chien is
named as the inventor in five software patents and
has authored over forty conference and journal ar
ticles. He earned a PhD degree in computer science
from the University of California at Berkeley in 1980.

October 1996 Hewlett-Packard Journal 91

© Copr. 1949-1998 Hewlett-Packard Co.

James W. Davis

Jim Davis received a BS
degree in mathematics and
an MS degree in computer
science, both in 1980 from
Case Western Reserve Uni
versity. After graduating he
joined HP's Data Systems
Division. He is currently a
member of the technical

staff at HP Laboratories and is responsible for re
search on business process management, telecom
munications network management, and Internet ser
vices. Recently he worked on HP OpenPM
architecture design, including the engine and infra
structure. Previously he worked on a heterogeneous
DBMS, the HP OpenODB/Odapter object-oriented
DBMS, and another object-oriented DBMS. He also
contributed to the XPN lightweight network protocol
and the compiler family for HP 9000 Series 500 com
puters. Professionally interested in database systems,
encryption and security, workflow systems, and pro
gramming languages, he has authored over twenty
conference and journal publications on these sub
jects. Before joining HP, he did computer consulting
for such companies as Occidental Petroleum and
Etak. Jim was born in Niagara Falls, New York. He is
married and is a member of the Sunnyvale Neighbor
hood Actively Prepared program. He and his wife,
Sue, are active participants in modern western
square dancing.

Weimin Du

Weimin Du joined HP Labo
ratories in 1991 after earning
a PhD degree in computer
science from Purdue Univer
sity in 1 991 . Since coming to
HP, he has contributed to a
multidatabase research
prototype and conducted
research and development

on query processing and optimization. He also
worked on the HP OpenPM engine design and imple
mentation and conducted research on compensation
and reliability. Professionally interested in databases,
workflows, and telecommunications, he has authored
over twenty conference and journal publications on
compilers, software engineering, and database and
workflow systems. Weimin is married and has two
children.

Qiming Chen

Qiming Chen received a PhD
degree in computer science
in 1988 from TsingHua
University in China. He
became a professor at the
University and later moved
to the University of California
at Los Angeles as a research
scientist. He joined HP Labo

ratories in 1992. Since then he has conducted research
in such areas as multidatabase integration, multi
layer workflow system architecture, and commit con
trol and failure recovery of nested transactions and
business processes. Currently he is working on HP's
OpenPM project. Previously he contributed to other

HP workflow prototypes and systems. He was ap
pointed to the editorial committees for several inter
national journals and book series, and to the program
committees for a number of international conferences.
Qiming has authored over fifty technical publications
in journals, books, and international conferences on
databases, knowledge bases, logic programming, and
software engineering.

7 7 A g e n t T e s t e r T o o l k i t

Paul A. Stoecker

Born in Urbana Illinois, Paul
Stoecker received a BSEE
degree in 1974 and an

| MSEE degree in 1976, both
from the University of

H I l l ino is . A f te r graduat ing he
joined HP's Desktop Com-
puter Division. From 1976 to
1 986 he held a number of

hardware and firmware design positions on various
products including the HP 9845 and HP 9000 work
stations. He earned an MSCS degree in 1986 from
Stanford University. Since 1986 he has focused on
software development, including C and FORTRAN
compilers. Recently he joined HP's Network and
System Management Division as a software develop
ment engineer, and is responsible for designing tools
to assist developers of telecom network management
applications. In his free time, Paul enjoys bicycling,
exploring the mountains nearby, and playing piano
and organ music.

8 1 S t o r a g e M a n a g e m e n t

Reiner Lomb

Reiner Lomb is a product
line marketing manager at
HP's Network and System
Management Division
(NSMD). He moved from
Boblingen to Fort Collins in
1 994 to assume the lead for
NSMD's storage manage-

â€” â€¢ ment business, including
business planning, marketing, and representing HP
with industry consultants and specialists. He is also
responsible for planning strategic alliances with
other HP divisions, as well as external partners such
as Oracle, Sybase, and Informix. Previously he was a
product manager responsible for HP OmniBack and
before that, was the product marketing engineer for
computer systems at HP's Computer Systems Boblin
gen. He is professionally interested in storage solu
tion concepts and strategies, business planning and
marketing, and partnership strategies. He has spoken
at conferences such as Interex, OpenView Forum, and
the Network Storage Conference on various system
and storage management topics. Reiner earned a
masters degree in computer science. Before joining
HP in 1 988, he worked in Germany as a project man
ager at Val. Mehler AG, as a customer support engi
neer at Sperry Univac (Now Unisys), and as a soft
ware research developer at Nixdorf (now Siemens
Nixdorf).

Kelly A. Emo

As a software planning man
ager at HP's General Sys
tems Division, Kelly Emo is.
responsible for the division's
network and systems man
agement strategy and for
product planning of systems
management for the HP
9000 server product line.

Previously, she was a press and industry analyst rela
tions manager for networking and HP OpenView net
work and system management products. Before that,
she did product marketing for networking products,
including NFS and DCE. She also did telephone cus
tomer support for HP 3000 and HP 9000 networking
products. Kelly received a BS degree in computer
science from California Polytechnic State University
at San Luis Obispo in 1987. While studying at Cal
Poly, she had two coop assignments as a FORTRAN
developer for Versatec, Inc. and as a software devel
oper for Measurex, Inc. After graduating, she joined
HP's Worldwide Customer Support Operation. Later in
her career, she returned to school and earned an
MBA from Santa Clara University in 1995. Kelly is
interested in public speaking and is a charter member
of HP's Toastmaster's Club with a ranking of Able
Toastmaster. She was born in Santa Monica, Califor
nia, and is married. Her husband also works at HP.
Marathon running is a strong interest of hers and she
finished both the 1993 and the 1996 Boston Marathon.

Roy M. Vandoorn

Ray Vandoorn joined HP's
Computer Support Division
in 1980. He received a BA
degree (1978) in mathemat
ics with a concentration in
computer math, and an MS
degree (1980) in mathemat-

 i c s , b o t h f r o m S a n J o s e
State University in California.

Currently he is the mass storage strategy and planning
manager in the General Systems Division. Previously
he was the product manager for HP's Open Systems
Inconnection (OSI) Services. Before that, he worked
as an R&D software engineer on X.500 and expert
systems. Roy was born in Edmonton, Alberta, Canada.
He volunteers his time at the American Red Cross as
an instructor and first aid station coordinator. His
outside interests include SCUBA diving and bowling.

92 October 1 996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

9 0 F i b r e C h a n n e l

Meryem Primmer

A learning products engineer
at HP's Networked Comput
ing Division, Meryem Prim
mer coordinates the techni
cal interface between lab
development engineers and
technical writers for the
Fibre Channel and mass
storage products. She re

cently edited the Tachyon User's Guide. She joined
HP in 1984 as a software engineer and worked on
Advanceunk for the HP 1 50 and HP Vectra PCs at the
Personal Software Division. She then transferred to
the Roseville Networks Division in 1986, where she
worked on the OSI Express I/O board, the token ring
I/O board, and the SCSI-2 I/O adapter board. She also
contributed to the development of the HP 9000 K-class
server. She studied biochemistry at the University of
Chicago from 1 967 to 1 968 and later earned a BBA
degree with high honors in information systems from
Georgia State University in 1983. Before joining HP,
she worked as a software engineer at Symantec Cor
poration and as a programmer at Cox Data Services.
She isa member of the Usability Professionals Asso
ciation. Meryem was born in Germany and grew up in
Chicago. Her hobbies include textile arts and interior
design. She taught weaving at Callanwolde Fine Arts
Center in Atlanta for two years. She also worked on a
20-by-40-foot woven wall hanging, commissioned by
the National Endowment for The Arts, for the lobby
of the Federal building in Columbia, South Carolina.
Currently she is working on silk painting and other
fabric dyeing techniques, and is remodeling her
recently purchased 70-year-old house.

9 8 T a c h y o n Meryem Primmer
Author's biography appears elsewhere in this section.

Judith A. Smith
Born in Sacramento, Califor
nia, Judy Smith received a
BS degree with high honors
in computer science from
California State University at
Sacramento in 1985. After
graduating she joined HP's
Roseville Networks Division.
She is currently a learning

products engineer at HP's Networked Computing Divi
sion and is responsible for developing learning prod
ucts for future Fibre Channel VLSI chips and adapter
boards. Recently she was the simulation engineer re
sponsible for designing and implementing the testing
for the Tachyon chip and another VLSI chip. Previously
she was the simulation engineer for a fast-wide SCSI
chip. Before that she designed, implemented, and
tested diagnostics for FDDI and LAN adapters and
firmware for HP's OSI Express card. She has co-
authored a previous HP Journal article on the OSI
Express data link layer and contributed to the Fibre
Channel/9000 product manual. She is a member of
the Society of Technical Communicators and a found
ing member of the Sierra Foothills Chapter of the
Society of Women Engineers. Judy is married and
has one son. Her husband also works at HP. In her
free time, she is a volunteer on the HP Roseville
donations committee and is an advisor to California
State University, Sacramento, on its technical writing
curriculum. She sings baritone with Sacramento
Valley Chorus, a chapter of Sweet Adelines Interna
tional, she enjoys being a mom, and she likes to read
about a variety of topics, especially child development
and world religions.

October 1996 Hewlett-Packard Journal 93

© Copr. 1949-1998 Hewlett-Packard Co.

An Introduction to Fibre Channel
Fibre Channel is a flexible, scalable, high-speed data transfer interface
that fiber operate over a variety of both copper wire and optical fiber at
data rates up to 250 times faster than existing communications interfaces.
Networking and I/O protocols, such as SCSI commands, are mapped to
Fibre Channel constructs, encapsulated, and transported within Fibre
Channel frames.

by Meryem Primmer

Fibre Channel is a standard, efficient, generic transport
mechanism whose primary task is to transport data at the
fastest speeds currently achievable with the least possible
delay. It is a flexible, scalable method for achieving high
speed interconnection, communication, and data transfer
among heterogeneous systems and peripherals, including
workstations, mainframes, supercomputers, desktop com
puters, and storage devices. It handles both networking and
peripheral I/O communication over a single channel using
the same drivers, ports, and adapters for both types of com
munication.

Fibre Channel began in the late 1980s as part of the IPI
(Intelligent Peripheral Interface) Enhanced Physical Project
to increase the capabilities of the IPI protocol. That effort
widened to investigate other interface protocols as candi
dates for augmentation. The first year of the project was
spent looking for existing implementations to adopt, but
none were found to be sufficient. The focus then changed to
develop a new implementation. That implementation be
came Fibre Channel. Fibre Channel was approved as a proj
ect in 1988 by ANSI X3T9.

During the first year of investigation the ANSI working group
decided to adopt a serial rather than a parallel bus interface.
IBM's 8B/10B encode/decode scheme was adopted, and a
decision was made to support both copper cable and optical
fiber. Copper can be used for low cost while optical fiber
can be used for distance. Fibre is a generic term used by the
Fibre Channel standard to refer to all the supported physical
media types.

The first draft of the Fibre Channel standard was developed
in 1989. The standard addresses the need for very fast trans
fers of large volumes of data, while at the same time relieving
systems of the need to support the multitude of channels
and networks currently in use. The Fiber Channel standard
covers networking, storage, and data transfers. In October
1994 the Fibre Channel physical and signaling interface stan
dard, FC-PH, was approved as ANSI standard X3.230-1994.

Fibre Channel is structured as a set of hierarchical functions
that support a number of existing protocols, such as SCSI
(Small Computer System Interface) and IP (Internet Proto
col), but it does not have a native I/O command set. It is not
a high-level protocol like SCSI, but does contain a low-level
protocol for managing link operations. Fibre Channel is not

aware of, nor is it concerned with the content of the user
data being transported. Networking and I/O protocols, such
as SCSI commands, are mapped to Fibre Channel constructs
and encapsulated and transported within Fibre Channel
frames. The main purpose of Fibre Channel is to have any
number of existing protocols operate over a variety of physi
cal media and existing cable plants.

Fibre Channel is a high-speed data transfer interface that
can operate from 2.5 to 250 times faster than existing com
munications interfaces. Its performance is both scalable and
extendable and it supports multiple cost/performance levels,
from small configurations such as disk arrays and low-cost,
low-performance I/O devices and small systems to high-
performance supercomputers and large distributed systems.

Fibre Channel runs at four speeds (actual data throughput):
100 megabytes per second (Mbytes/s), which translates to
1062.5 megabaud, 50 Mbytes/s or 531.25 megabaud, 25
Mbytes/s or 265.625 megabaud, and 12.5 Mbytes/s or 132.812
megabaud. A single 100-Mbyte/s Fibre Channel port can
replace five 20-Mbyte/s SCSI ports, in terms of raw through
put. Fibre Channel provides a total network bandwidth of
about one gigabit per second.

Fibre Channel operates over a variety of both copper wire
and optical fiber at scalable distances, as shown in Table I.
Distances are easily extendible using repeaters or switches.

Fibre Channel provides full duplex operation with separate
transmit and receive fibers.

Another advantage of Fibre Channel is that it uses small
connectors. The serial connectors used for Fibre Channel
are a fraction of the size of SCSI parallel connectors and
have fewer pins, thereby reducing the likelihood of physical
damage. Also, depending on the topology, many more devices
can be interconnected on Fibre Channel than on existing
channels.

Topologies
Fibre Channel can be implemented in three topologies to
interconnect varying numbers of devices, called nodes in
Fibre Channel terminology. The topologies are point-to-
point, arbitrated loop, and crosspoint switched, or fabric (a
Fibre Channel term for a network of one or more switches
connecting multiple nodes). Nodes contain one or more

94 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

ports, such as an I/O adapter, through which they communi
cate over Fibre Channel. A generic node port is called an
N_Port. The connections between ports are called links.

Table I
F i b r e C h a n n e l M e d i a , D a t a R a t e s ,

D i s t a n c e s , a n d T r a n s m i t t e r s

ECL = Emitter-Coupled Logic, LW = Longwave, SW = Shortwave,
LED = Light-Emitting Diode, STP = Shielded Twisted-Pair

Point-to-point (Fig. 1) is a direct channel connection be
tween two N_Ports, typically between a processor and a
peripheral device controller. In this topology exactly two
devices are connected together. No fabric elements exist
and no fabric services, such as name mapping, are necessary.
Point-to-point is the default topology.

Fibre Channel arbitrated loop, or FC-AL, is a method for
interconnecting from two to 126 devices through attachment
points called L_Ports in a loop configuration. L_Ports can
consist of I/O devices and systems of various performance
levels. FC-AL is a low-cost solution because it does not re
quire hubs and switches. FC-AL is a good choice for small to
medium-sized configurations and provides an upward growth
path by interconnecting the loop with a fabric through an
FL_Port. Arbitrated loop is the most common Fibre Channel
topology.

Fig. 2 shows the Fibre Channel arbitrated loop topology. A
private loop (Fig. 2a) consists only of nodes, called NL_Ports,

and does not connect with a fabric. A public loop (Fig. 2b)
connects with a fabric via an FL_Port. A disk loop uses the
loop topology to interconnect a number of high-performance

Server
(a)

RAID Subsystem

Node 2
Storage Array

Link

m^^m

Fig. 1. (a) Two devices connected point-to-point, (b) Fibre
Channel point-to-point topology. Tachyon is HP's gigabit Fibre
Channel controller chip.

disks, for example, a RAID (Redundant Array of Inexpensive
Disks) device. Fig. 3 shows an office configured in a public
arbitrated loop topology, and Fig. 4 shows a private disk
loop.

All devices on the arbitrated loop share the bandwidth of the
loop and the management of the loop. No dedicated loop
master exists, and any node is capable of being the loop
master. Which node performs the loop master functions is
negotiated when the loop is initialized.

Fig. 2. Fibre Channel arbitrated loop topology, (a) Private Loop,
(b) Public loop.

October 1996 Hewlett-Packard Journal 95

© Copr. 1949-1998 Hewlett-Packard Co.

To FC
Swi tch

wi th
FL_Port

Disk Subsystem
Copper Inside Cabinet

Fibre
Channel

Room
Out let

Fig. 3. An office configured in a public arbitrated loop topology.

Each node has equal opportunity to communicate with an
other node by arbitrating for temporary ownership of the
loop. An arbitration scheme using a fairness algorithm is used
to establish a circuit between two NL_Ports on the loop
before they can communicate. Only one communication, or
loop circuit, can be active at a time. After relinquishing the
loop, an NL_Port cannot win arbitration again until all other
arbitrating ports have had their turn.

The third Fibre Channel topology is crosspoint switched, or
fabric. Fig. 5 shows a generic fabric topology, and Fig. 6
shows the Fibre Channel fabric topology with a single
switching or fabric element.

A fabric topology is implemented as one or more switching
elements. A fabric appears as a single entity to attached
nodes, called F__Ports, even though the fabric can consist of
multiple switches. Typically, a switch has from four to 16
F_Ports attached to it. In theory, there is no size limit to the
number of nodes that can interconnect in a fabric, but ad
dressing space limits the number to a maximum of 224. The
fabric topology is good for interconnecting large numbers of
devices and complex configurations.

Fig. 4. A private disk loop.

The structure and operations of the fabric are transparent
to the F_Ports attached to it. The fabric topology is self-
managed, with the fabric performing station management
functions and the routing of frames. Each port only needs to
manage a point-to-point connection between itself and the
fabric.

A Layered Approach
Fibre Channel is structured as a set of five hierarchical func
tional levels (see Fig. 7). The user protocol being transported
over the Fibre Channel â€” SCSI or IPI (Intelligent Peripheral
Interface), for example â€” is known as the upper level proto

col (ULP) and is outside the scope of the Fibre Channel
layers. The Tachyon Fibre Channel protocol chip described
in the article on page 99 implements the FC-1 and FC-2 lay
ers, which are shaded in Fig. 7. Tachyon also implements

Fig. 5. A generic fabric topology.

96 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fabric Controller

Fig. 6. Fibre Channel fabric topology with a single switching
element.

SCSI assists and IP checksumming, shown as shaded boxes
at the FC-4 level.

FC-4: The Protocol Mappings Layer. This topmost Fibre Channel
level defines the mapping of the ULP interfaces to the lower
Fibre Channel levels. Fibre Channel supports multiple exist
ing protocols, including SCSI, IP, and IPI. Each ULP sup
ported by Fibre Channel requires a separate FC-4 mapping
and is specified in a separate FC-4 document. For example,
the Fibre Channel protocol for SCSI, which is known as
FCP, defines a Fibre Channel mapping layer that uses the
services of the lowest three Fibre Channel layers to transmit
SCSI command, data, and status information between a
SCSI initiator and a SCSI target. ULPs are not tied to a par
ticular physical medium or interface. For example, SCSI is
supported without requiring a SCSI bus.

FC-3: The Common Services Layer. Nodes can be computer
systems or peripheral devices. The FC-3 level defines a set
of services that are common across multiple ports of a node.
The FC-3 layer is still being formulated in the ANSI commit
tee and no functions have been formally defined.

FC-2: The Framing Protocol Layer. This level defines the signal
ing protocol, including the frame and byte structure, which
is the data transport mechanism used by Fibre Channel.
Included in this level is the framing protocol used to break
sequences into individual frames for transmission, flow con
trol, 32-bit CRC generation, and various classes of service.

The FC-2 layer also handles hardware disassembly and re
assembly of sequences of data. Defined in this layer are a
few built-in command primitives, called ordered sets, for
handling such functions as configuration management, error

recoven,-, frame demarcation, and signaling between two
ends of a link.

A frame (Fig. 8) is the smallest indivisible unit of user data
that is sent on the Fibre Channel link. Frames can be vari
able in length, up to a maximum of 2148 bytes long. Frame
size depends on implementation, not hardware or software.
Each frame contains a four-byte Start of Frame delimiter, a
24-byte header, up to 2112 bytes of FC-4 payload consisting
of zero to 64 bytes of optional headers and zero to 2048
bytes of ULP data, a four-byte CRC, and a four-byte End of
Frame delimiter.

A sequence is a set of one or more related frames. For exam
ple, a large file transfer would be accomplished in a sequence
consisting of multiple frames.

An exchange contains one or more sequences. It is compara
ble to a SCSI I/O process, and is the mechanism for coordi
nating the exchange of information between two communi
cating N_Ports in a single operation.

In general, the sequence is the Fibre Channel error recovery
boundary. That is, selective retransmission of frames for
error recovery is not supported in the Fibre Channel physi
cal and signaling interface, FC-PH. If an error is detected in
a transmitted frame and the error policy requires error
recovery, the sequence to which the frame belongs may
be retransmitted.

Fibre Channel provides three classes of service, which are
managed by the FC-2 layer. Class 1 dedicated connection
service provides a dedicated or circuit-switched connection
between two N_Ports. The connection must be established
before communication can begin and must be torn down
when communication is completed. Class 1 guarantees de
livery of frames in the order in which they were transmitted.
Confirmation of delivery also is provided. Class 2 multiplex
service provides a connectionless, frame-switched link. De
livery is guaranteed, but not necessarily in order if multiple
routes exist through the fabric. Class 2 also provides ac
knowledgement of receipt. Class 3 datagram service is a
connectionless service similar to class 2, but without con
firmation of receipt. Neither delivery nor receipt order is
guaranteed in class 3.

FC-1: The Encode/Decode Layer. This layer defines the trans
mission protocol, including the 8B/10B encode/decode
scheme, byte synchronization, and character-level error
control. 8B/10B is a de-balanced encode/decode scheme that
provides good transition density for easier clock recovery
and character-level error detection. In this scheme, 8-bit
internal bytes are encoded and transmitted on the Fibre
Channel link as 10-bit transmission characters. The trans
mission characters are converted back into 8-bit bytes at the

4 B y t e s 2 4 B y t e s

S t a r t o f F r a m e
F r a m e H e a d e r r

Oto 2112 Bytes

FC-4 Data Payload

4 B y t e s 4 B y t e s

0 to 64 Bytes 0 to 2048 Bytes

Data Payload
(e.g., IP Packet,
SCSI Command)

Fig. 7. Fibre Channel's five layers. Fig. 8. A Fibre Channel frame.

i k Ã ¯ o b n l ' K i l i I I , y . l r i i P a c k a r d . J o a l 1 1 7

© Copr. 1949-1998 Hewlett-Packard Co.

receiver. Using 10 bits for each character provides 1024 pos
sible encoded values rather than only the 256 values that are
possible for 8-bit characters. Not all of the 1024 possible
values are used. To maintain a dc balance on the link, only
those that contain four zeros and six ones, six zeros and
four ones, or five zeros and five ones are used. Some of the
extra 10-bit characters are used for low-level link control.
One special character called a comma is used for byte
synchronization.

FC-0: The Physical Layer. FC-0, the lowest of the five levels,
defines the physical characteristics of the media, including
cables, connectors, drivers (ECL, LEDs, shortwave lasers,
longwave lasers, etc.), transmitters, transmission rates, re
ceivers, and optical and electrical parameters for a variety
of data rates and physical media. Reference 1 describes HP
products that implement the FC-0 layer.

Collectively, the three lowest layers constitute the Fibre
Channel physical and signaling interface, FC-PH. FC-PH is
a channel/network hybrid. It supports channel interfaces
for peripheralsâ€” for example, SCSI, IPI, and HIPPI (High-
Performance Parallel Interface) â€” as well as network proto
cols such as TCP/IP. FC-PH is similar enough to a network

to gain connectivity, distance, and serial interfaces, while
being enough like an I/O channel to retain simplicity, reli
ability, and hardware functionality.

Reference
1. J.S. Chang, et al, "A 1.0625-Gbit/s Fibre Channel Chipset with
Laser Driver," Hewlett-Packard Journal, Vol. 47, no. 1, February
1996, pp. 60-67.

Bibliography
1. Fibre Channel â€” Physical and Signaling Interface (FC-PH),
X3.230-1994, Rev. 4.3, American National Standards Institute.
2. Fibre Channelâ€” Arbitrated Loop (FC-AL), X3.272-199x, Rev. 4.5,
American National Standards Institute, June 1995.
3. Fibre Channel Protocol for SCSI (FCP), X3.269-199x, Rev. 012,
American National Standards Institute, May 30, 1995.
4. Fibre Channel: Connection to the Future, The Fibre Channel
Association, 1994.
5. The Fibre Channel Association server URL:

http:/ /www.amdahl.com/ext/CARP/FCA/FCA.html

98 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Tachyon: A Gigabit Fibre Channel
Protocol Chip
The Tachyon chip implements the FC-1 and FC-2 layers of the five-layer
Fibre Channel standard. The chip enables a seamless interface to the
physical FC-0 layer and low-cost Fibre Channel attachments for hosts,
systems, and peripherals on both industry-standard and proprietary buses
through the Tachyon system interface. It allows sustained gigabit data
throughput at distance options from ten meters on copper to ten
kilometers over single-mode optical fiber.

by Judith A. Smith and Meryem Primmer

Relentlessly increasing demands of computer systems con
tinue to stress existing communication architectures to their
limits. Even as processor speeds continue to improve dramat
ically, they are barely keeping up with increasing numbers of
concurrently running applications and CPU-intensive appli
cations, such as multimedia, with higher data throughput
requirements. Additionally, as the number of interconnects
between systems and I/O devices continues to increase,
I/O channels become bottlenecks to system performance.
A channel such as SCSI (Small Computer Systems Inter
face), which operates at a maximum throughput of 20 mega
bytes per second in fast and wide mode, simply cannot keep
pace with ever-increasing processor speeds and data rate
requirements.

Another challenge of contemporary computer systems is the
trend to more widely distributed systems, which require
greater interface distances. Current parallel bus intercon
nects between systems and their I/O devices cannot operate
over the distances needed for true distributed systems, such
as LANs spanning campus areas and high-availability appli
cations requiring remote mirrored disks for disaster recov
ery. SCSI, for example, is limited to a distance of six meters
single-ended (single wire per signal) and 25 meters differen
tial (two wires per signal).

Current peripheral interconnect protocols are limited in the
number of devices they can interconnect. For example, par
allel SCSI can connect eight devices and 16-bit wide SCSI
can connect 16 devices. In addition, peripheral connectors
are becoming too large to fit into the shrinking footprints of
systems and peripherals. Other SCSI limitations include half-
duplex operation only, lack of a switching capability, inabil
ity to interconnect individual buses, and the need for cus
tomized drivers and adapters for various types of attached
devices.

Computer room real estate also is becoming scarce and ex
pensive, fueled by increasing numbers of racked computers,
insufficient room to connect desired numbers of peripheral
devices, and more complex cabling. At the same time, data
storage requirements are skyrocketing as backups of tera
bytes of data are becoming commonplace. An additional

problem is that ever-increasing amounts of data must be
backed up over too-slow LANs, making timely, low-cost
backups ever more difficult to accomplish.

For all these reasons, today's parallel bus architectures are
reaching their limits. Fibre Channel provides solutions to
many of these limitations. Fibre Channel is a forward-think
ing solution to future mass storage and networking require
ments. The article on page 94 presents a technical descrip
tion of Fibre Channel.

HP and Fibre Channel
Searching for a higher-performance serial interface, HP in
vestigated a number of technologies. HP chose Fibre Chan
nel over other serial technologies because it supports sus
tained gigabit data transfer rates (the fastest throughput of
any existing interface), it allows networking and mass stor
age on the same link, and it is an open industry standard.

Although Fibre Channel faces the challenges of lack of mar
ket awareness and industry coordination and a perception
that it can be expensive, it is a stronger contender than al
ternative serial technologies for a number of important rea
sons. It is an open industry standard and an approved ANSI
standard, it has vendor support from switch, hub, and disk
drive and it is extensible, offering three topologies and
four data transfer rates, and it supports both networking and
mass storage.

Fibre Channel's increased bandwidth provides distance flex
ibility, increased addressability, and simplified cabling. Fibre
Channel has versatility, room for growth, and qualified ven
dor support. Mass storage suppliers are using Fibre Channel
to interconnect subsystems and systems and to control em
bedded disk drives. Some midrange system (server) suppli
ers are using Fibre Channel as a clustering interconnect and
for specialized networking. Fibre Channel supporters and
developers include IIP, Sun Microsystems, SGI, and IBM for
workstations, HP, Sun, Unisys, and Compaq in the server
market, HP, Seagate, Quantum, and Western Digital for disk
drives, and Data General's Clariion Business LJnit, DEC,
Symbios, Fujitsu, and EMC for disk arrays, in addition to

October 1996 Hewlett-Packard Journal 99

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Networked
Mass Storage

â€¢ Clustering
â€¢ Specialized

Network ing

â€¢ Low-Cost, High-
Performance
Client Attach

Fig. 1. HP networking technologies.

over 100 other vendors (source: The Fibre Channel Associa
tion).

Fibre Channel's main virtue is that it works as a networking
interface as well as a channel interface. Fibre Channel is
one of three complementary networking technologies that
HP sees as the next step upwards in network performance
(see Fig. 1). The other two technologies are ATM (Asynchro
nous Transfer Mode), and IEEE 802.12, which is also known
as lOOVG-AnyLAN or 100BT.1 Each technology has a set of
strengths and is best suited to a particular networking niche.
Combined, these technologies support all aspects of net
working.

Both Fibre Channel and ATM are switched systems. They
can share the same cable plant and encoding scheme and
can work together in a network (Fig. 2). However, Fibre
Channel and ATM standards are evolving independently to
resolve different customer needs and objectives. ATM,
which is telecommunications-based, is intended for applica
tions that are characterized by "bursty" types of communica
tions, thus lending itself to WAN applications. 100VG-Any-
LAN or 100BT provides low-cost, high-performance client
attachments. Fibre Channel is data communications-based

and particularly well-adapted for networked and embedded
mass storage, clustering, and specialized networking appli
cations requiring sustained data flow rates.

In addition, Fibre Channel resolves the "slots and watts"
problem that current symmetric multiprocessing systems
have. For example, in 1995, three FDDI ports and six fast
and wide SCSI ports were required to use fully the I/O capa
bilities of a symmetric multiprocessing HP server. Fibre
Channel could support these I/O services with just three
slots.

HP's vision of Fibre Channel is that it is at the core of the
virtual data center containing diverse elements including:

â€¢ Fibre Channel switches connecting mainframes and super
computers

â€¢ Network-attached disk arrays and storage archives
â€¢ ATM, FDDI, and Ethernet routers
â€¢ Imaging workstations
â€¢ Fibre Channel arbitrated loop disks and disk arrays
â€¢ High-performance mass storage peripherals
â€¢ Low-cost clients
â€¢ Clustered systems
â€¢ Video, technical, and commercial servers.

Interoperability and the establishment of a critical mass of
Fibre Channel products are the keys to the success of Fibre
Channel. HP is committed to Fibre Channel and is working
with partners and standards bodies to ensure interoperabil
ity. HP is an active participant in the ANSI Fibre Channel
Working Group, the Fibre Channel Association (FCA), and
the Fibre Channel Systems Initiative, which has been inte
grated into the FCA. hi 1994 HP purchased Canstar, a Fibre
Channel switch company, which is now HP's Canadian Net
works Operation. HP has developed Fibre Channel disk

WAN

LAN
Fibre Channel Fabric Switch

Fig. 2. A network containing both
Fibre Channel and ATM elements.

100 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

drives, gigabit link modules and transceivers.2 system inter
faces, and the Tachyon protocol controller chip, which is the
subject of this article. HP is using Fibre Channel's versatility
and speed for high-availability mass storage solutions and
clustered system topologies.

Tachyon Chip
The system interconnect laboratory of the HP Networked
Computing Division became interested in Fibre Channel in
1993 as a method of entering the high-speed serial intercon
nect market because Fibre Channel was the first technology
that could be used for both networking and mass storage.
HP decided to develop the Tachyon chip in mid-1993 after
investigating which Fibre Channel controller chip to use in a
Fibre Channel host adapter card under development for the
HP 9000 Series 800 K-class server.3 The investigation deter
mined that no available chipset would meet the functional
or performance requirements, so the decision was made to
develop a controller internally.

The Tachyon chip (Fig. 3) implements the FC-1 and FC-2
layers of the five-layer Fibre Channel standard (see article,
page 94). Tachyon's host attach enables low-cost gigabit
host adapters on industry-standard buses including PCI,
PMC, S-Bus, VME, EISA, Turbo Channel, and MCA. It is easi
ly adaptable both to industry-standard and proprietary buses
through the Tachyon system interface (a generic interface)
and provides a seamless interface to GLM-compliant mod
ules and components. GLM (gigabaud link module) is a pro
file defined by the FCSI (Fibre Channel Systems Initiative)
and adopted by the FCA (Fibre Channel Association). It is a
subset of the Fibre Channel FC-0 layer.4

Tachyon provides gigabit data throughput at distance op
tions from 10 meters on copper to 10 kilometers over single-
mode optical fiber. Tachyon host adapters save system slots,
minimizing cost and cabling infrastructure.

Fig. 3. Ill" T;i< hyon Fibre Channel controller chip.

Tachyon achieves high performance and efficiency because
many of its lower-level functions are implemented in hard
ware, eliminating the need for a separate microprocessor
chip. Functions such as disassembly of outbound user data
from sequences into frames, reassembly of inbound data,
flow control, data encoding and decoding, and simple low-
level are detection at the transmission character level are
all built into hardware. One set of hardware supports all
upper-level protocols. Errors and exceptions are offloaded
to host-based upper-level software to manage.

Tachyon High-Level Design Goals
The Tachyon designers made several high-level design deci
sions early in the project. The priman,' design goal was to
deliver sustained, full-speed gigabit performance while im
posing the minimum impact on host software overhead. To
accomplish this, Tachyon supports all Fibre Channel classes
of service (see article, page 94), automatically acknowl
edges inbound frames for class 1 and class 2, handles
NL_Port and N_Port initialization entirely in hardware, man
ages concurrent inbound and outbound sequences, and uses
a messaging queue to notify the host of all completion infor
mation. To offload networking tasks from hosts, Tachyon is
designed to assist networking protocols by supporting IP
checksums and two different modes for splitting network
headers and data.

The second major design goal was that Tachyon should sup
port SCSI encapsulation over Fibre Channel (known as
FCP). From the beginning of the project, Tachyon designers
created SCSI hardware assists to support SCSI initiator
transactions. These hardware assists included special queu
ing and caching. Early in the design, Tachyon only sup
ported SCSI initiator functionality with its SCSI hardware
assists. It became evident from customer feedback, how
ever, that Tachyon must support SCSI target functionality as
well, so SCSI target functionality was added to Tachyon
SCSI hardware assists.

Tachyon Feature Set
To take advantage of Fibre Channel's high performance,
Tachyon:5
Provides a single-chip Fibre Channel solution.
Manages sequence segmentation and reassembly in hard
ware.
Automatically generates acknowledgement (ACK) frames for
inbound data frames.
Automatically intercepts and processes ACK frames of out
bound data frames.
Processes inbound and outbound data simultaneously with
a full-duplex architecture.
Allows chip transaction accesses to be kept at a minimum
by means of host-shared data structures.

To provide the most flexibility for customer applications,
Tachyon:
Supports link speeds of 1063, 531, and 266 Mbaud.
Supports Fibre Channel class 1, 2, and 3 services.
Supports Fibre Channel arbitrated loop (FC-AL), point-to-
point, and fabric (crosspoint switched) topologies.
Provides a glueless connection to industry-standard physi
cal link modules such as gigabaud link modules.

October 1996 Hewlrtl-Paokanl Journal 101

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Supports up to 2K-byte frame payload size for all Fibre
Channel classes of service.

â€¢ Supports broadcast transmission and reception of FC-AL
frames.

â€¢ Allows time-critical messages to bypass the normal traffic
waiting for various resources via a low-latency, high-priority
outbound path through the chip.

â€¢ Provides a generic 32-bit midplane interface â€” the Tachyon
system interface.

To provide support for customer networking applications,
Tachyon:

â€¢ Manages the protocol for sending and receiving network
sequences over Fibre Channel.

â€¢ Provides complete support of networking connections.
â€¢ Computes exact checksums for outbound IP packets and

inserts them in the data stream, thereby offloading the host
of a very compute-intensive task.

â€¢ Computes an approximate checksum for inbound IP pack
ets that partially offloads the checksum task from the host.

â€¢ Contains hardware header/data splitting for inbound SNAP/
IP sequences.

To provide support for customer mass storage applications,
Tachyon:

â€¢ Supports up to 16,384 concurrent SCSI I/O transactions.
â€¢ Can be programmed to function as either an initiator or a

target.
â€¢ Assists the protocol for peripheral I/O transactions via SCSI

encapsulation over Fibre Channel (FCP).

To reduce host software support overhead, Tachyon:
â€¢ Allows chip transaction accesses to be kept at a minimum

by means of host-shared memory data structures.
â€¢ Manages interrupts to one or zero per sequence.
â€¢ Performs FC-AL initialization with minimal host interven

tion.

To provide standards compliance, Tachyon:
â€¢ Complies with Fibre Channel System Initiative (FCSI) pro

files.
â€¢ Complies with industry-standard MIB-II network manage

ment.

To ensure reliability, Tachyon:
â€¢ Supports parity protection on its internal data path.
â€¢ Has an estimated MTBF of 1.3 million hours.

Fabrication
Tachyon is fabricated by LSI Logic Corporation using a
0.5-nm 3.3V CMOS process, LCB500K. The chip dissipates
just under 4 watts and is contained in a 208-pin MQUAD
package with no heat sink.

Tachyon Functional Overview

The host interface of the Tachyon chip is a set of registers
used set initialization, configuration, and control and a set of
data structures used for sending and receiving data and for
event notification. This interface is very flexible and allows
the customer to design an interface to Tachyon that best
meets the capability, performance, and other requirements
of a specific application.

Transmitting a Fibre Channel Sequence
To transmit an outbound sequence (see Fig. 4), the host
builds several data structures and sets up the data to be
transmitted. A data structure called the outbound descriptor

block is built first. The outbound descriptor block provides
much of the information Tachyon needs to send a sequence.
The outbound descriptor block points to a data structure
called the extended descriptor block, which points to data
buffers containing the data for the sequence. The host then
creates the Tachyon header structure, which contains im
portant Fibre Channel-specific information such as which
Fibre Channel class of service to use during sequence trans
mission. The host sets up the outbound descriptor block to
point to the Tachyon header structure. The host then adds
the outbound descriptor block to the outbound command
queue.

When Tachyon sees the new entry in the outbound command
queue, it gets the outbound descriptor block from host
memory via DMA. As Tachyon reads the Tachyon header
structure to send the first frame of the sequence, it copies
the header structure to internal registers for use in generating
Fibre Channel headers for subsequent frames.

If this is class 1 service, after sending the first frame, Tachyon
waits until it receives the ACK for the first frame of the se
quence before continuing. Tachyon then inserts an identifier
value, called the responder exchange identifier (RXJD),
which is returned in the ACK, into the Fibre Channel header
on all subsequent frames of this sequence. Tachyon contin
ues to transfer data from the host via DMA in frame-sized
blocks and sends the frames with headers automatically
generated from the previously stored header.

Tachyon keeps track of the frame count for the sequence.
The Fibre Channel header for each frame contains an incre
mental count of the number of frames transmitted for the
sequence along with the relative position of that frame with
in the sequence. As Tachyon sends the frames for the se
quence, it also tracks flow control for the sequence using a
Fibre Channel flow control method called end-to-end credit
(EE_Credit). EE_Credit determines the number of frames that
Tachyon can send to the remote destination without receiv
ing an ACK. Each time Tachyon sends a frame, EE_Credit
decrements. Each time Tachyon receives an ACK from the
destination, EE_Credit increments. If EE_Credit goes to zero,
Tachyon stops transmitting frames and starts a watchdog
timer called the ED_TOV timer (error detect timeout value).
The ED_TOV timer counts down until ACKs arrive. If ACKs ar
rive, Tachyon resumes transmission. If the ED_TOV timer ex
pires, Tachyon sends a completion message to the host indi
cating that the sequence has timed out.

Once Tachyon has transmitted the last frame of a sequence
and received all of the ACKs for the sequence, it sends a com
pletion message to the host via the inbound message queue.
This tells the host that it can deallocate all memory associ
ated with this outbound descriptor block and inform any
processes waiting on its completion. If a sequence terminates
abnormally, Tachyon will notify the host of the error in the
completion message.

102 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Hos t -Based Da ta S t ruc tu res A / I P a i r

ODB Data Buffers

Tachyon
Header

Structure

oca
OCQ Entry

(ODBl

OCQ Entry
(ODB)

OCQ Entry
(0 0 6)

Tachyon *

Inbound
Message
Channel

Outbound
Message
Channel

Inbound
Data FIFO

Outbound
Frame FIFO

i 1

Frame Manager

mmi â€¢â€¢

I M Q = I n b o u n d M e s s a g e Q u e u e
O C Q = O u t b o u n d C o m m a n d Q u e u e
O D B = O u t b o u n d D e s c r i p t o r B l o c k
E D B = E x t e n d e d D e s c r i p t o r B l o c k
I S M = I n b o u n d S e q u e n c e M a n a g e r
O S M = O u t b o u n d S e q u e n c e M a n a g e r

Link

Receiving a Fibre Channel Sequence
Fig. 5 shows an overview of the receive process. To enable
Tachyon to receive data, the host first supplies Tachyon
with two queues of inbound buffers. Two inbound queues
are required because single-frame sequence reception and
multiframe sequence reception are handled independently.
Tachyon needs minimal resources to receive a single-frame
sequence, but for multiframe sequences the chip needs to
use additional resources to manage the reassembly of
frames. Because of this resource demand, Tachyon can reas
semble only one incoming multiframe networking sequence
at a time. Tachyon supports the reception of single-frame
sequences while reassembling a multiframe sequence. This
process allows a host to receive short sequences while
Tachyon is reassembling a longer incoming sequence.

Single-Frame Sequence Reception. The hosts uses the single-
frame sequence buffer queue to inform Tachyon of the loca
tion of host-based buffers that Tachyon should use to re
ceive sequences contained within a single frame. As
Tachyon receives a single-frame sequence, it places the en
tire sequence, which includes the Tachyon header structure
followed by the sequence data, in the buffer defined by the
address from the single-frame sequence buffer queue. If the
sequence is larger than one buffer size, the remaining data
of the sequence is packed into the next buffers, as required,
until all of the sequence is stored. Next, Tachyon sends an
Â¡nbound_sfs_completion message to the host via the inbound
message queue and generates an interrupt to the host.

Fig. 4. Transmit process overview.

Multiframe Sequence Reception. The host uses the multiframe
sequence buffer queue to inform Tachyon of the location of
host-based buffers that Tachyon should use to receive and
reassemble incoming data that has been split into an arbi
trarily large number of frames. When the first frame of a
new sequence arrives, Tachyon copies the Tachyon header
structure into the beginning of the next available multiframe
sequence buffer. Tachyon packs the data payload of the
frame into the next buffer following the buffer with the Ta
chyon header structure. As each new frame arrives, Tachyon
discards the Fibre Channel header information and sends
the data to the host. Tachyon packs this data into each of
the buffers on the multiframe sequence buffer queue, obtain
ing a new buffer when the current buffer is full, until the
entire sequence is stored. Once all the frames arrive and the
sequence is reassembled in memory, Tachyon notifies the
host that the entire sequence has been received by generat
ing a completion message and placing it into the inbound
message queue. Tachyon then generates a host interrupt to
process the entire sequence.

Tachyon can also handle multiframe sequences that are re
ceived out of order. When Tachyon detects an out-of-order
frame, Tachyon generates a completion message that indi
cates the in-order portion of the sequence and the last se
quence buffer used. Tachyon passes the completion mes
sage to the inbound message queue, but does not generate
an interrupt until all frames of the sequence are received.
Next, Tachyon obtains the next available sequence buffer

October 1996 Hewlett-Packard Journal 103

© Copr. 1949-1998 Hewlett-Packard Co.

Host-Based Data Structures

IMQ

Tachyon

SFSBQor
MFSBQ

S F S B Q o r E n t r i e s
MFSBQ

Inbound
Message
Channel

Inbound
Data

M a n a g e r

SFS or MFS
Buffer

Channel

I n b o u n d " F A C K T O u t b o u n d
D a t a F I F O , F I F O Â ¿ F r a m e F I F O

t 1 4 -
Frame Manager

â€¢â€¢ â€¢â€¢

I M Q
SFSBQ

MFSBQ

I S M
OSM

Link

and copies the Tachyon header structure of this out-of-order
frame into it. Then, into the next sequence buffer, it copies
the data payload of this out-of-order frame. At this point, if
the frames that follow the out-of-order frame are in order,
Tachyon discards the Tachyon header structures and packs
the data into the host buffers. Tachyon packs this data into
each of the buffers on the multiframe sequence buffer
queue, obtaining a new buffer when the current buffer is
full, until the entire sequence is stored. If another frame ar
rives out of order from the previous out-of-order portion,
Tachyon generates a new completion message and the pro
cess is repeated. When it receives the final frame of the se
quence, Tachyon passes it to the host and generates a com
pletion message. At this time, Tachyon generates a host
interrupt to process the entire sequence. With the informa
tion in each of the Tachyon header structures that Tachyon
passed to the host for each in-order portion and the informa
tion in the completion messages, the host has enough infor
mation to reorder the out-of-order multiframe sequence.

Tachyon Internal Architecture
Tachyon 's internal architecture is illustrated in Fig. 6. Each
functional block in the architecture is described below.

Outbound Message Channel. The outbound message channel
block manages the outbound command queue. It maintains
the outbound command queue as a standard circular queue.

Inbound Message Queue
Single-Frame Sequence
Buffer Queue
Mul t i f rame Sequence
Buffer Queue
Inbound Sequence Manager
Outbound Sequence Manager

Fig. 5. Receive process overview.

The outbound message channel informs the outbound se
quence manager block when an outbound command is wait
ing in host memory to be processed. When requested by the
outbound sequence manager, the outbound message channel
then reads one 32-byte entry from the outbound command
queue and delivers it to the outbound sequence manager
block for processing.

High-Priority Message Channel. The high-priority message
channel block manages the high-priority command queue.
The host can use the high-priority channel to send urgent
single-frame sequences that need to bypass the dedicated
outbound command queue. For example, the host could use
the high-priority command queue to send special Fibre
Channel error recovery frames that might not otherwise be
transmitted because of a blocked outbound command
queue. The high-priority message channel maintains the
high-priority command queue as a standard circular queue.
The high-priority message channel informs the outbound
sequence manager block when a high-priority outbound
command is waiting in host memory to be processed. When
requested by the outbound sequence manager, the high-
priority message channel reads one entry from the high-
priority command queue and delivers it to the outbound
sequence manager block for processing.

104 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Hos t -Based Da ta S t ruc tu res

Inbound
Data

IMQ SFSBQ M F S B Q S E S T OCQ HPCÃœ

Tachyon

F r a m e M a n a g e r

E las t i c S to re /
S m o o t h i n g

OS/CRC
Genera to r

L ink

Loop State
M a c h i n e

20B/10B MUX

I M Q = I n b o u n d M e s s a g e Q u e u e S C S I = S m a l l C o m p u t e r S y s t e m I n t e r f a c e
S F S B Q = M a n a g e r S e q u e n c e B u f f e r Q u e u e I S M = I n b o u n d S e q u e n c e M a n a g e r
M F S B Q = M u l t i f r a m e S e q u e n c e B u f f e r Q u e u e
S E S T = S C S I E x c h a n g e S t a t e T a b l e
O C Q = O u t b o u n d C o m m a n d Q u e u e
H P C Q = H i g h - P r i o r i t y C o m m a n d Q u e u e

O S M = O u t b o u n d S e q u e n c e M a n a g e r
O S = O r d e r e d S e t
C R C = C y c l i c R e d u n d a n c y C h e c k

Fig. 6. Tachyon internal architecture.

October 1996 Hewlett-Packard Journal 105

© Copr. 1949-1998 Hewlett-Packard Co.

Outbound Block Mover. The outbound block mover block's
function is to transfer outbound data from host memory to
the outbound sequence manager via DMA. It takes as input
an address/length pair from the outbound sequence manager
block, initiates the Tachyon system interface bus owner
ships, and performs the most efficient number and size of
transactions on the Tachyon system interface bus to pull in
the data requested.

Outbound Sequence Manager. The outbound sequence manager
block is responsible for managing all outbound sequences.
The outbound message channel, the high-priority message
channel, and the SCSI exchange manager notify the out
bound sequence manager block when they have data to
send. The outbound sequence manager must determine
which channel has priority. High-priority sequences have
first priority, but the outbound sequence manager deter
mines priority between networking and SCSI transactions
using a fairness algorithm. Once priority is determined, the
outbound sequence manager programs the outbound mes
sage channel to retrieve a data sequence from host memory
and segment it into individual frames for transmission. The
outbound sequence manager transmits the sequence, per
forms a TCP or UDP-type checksum on the sequence, veri
fies that each frame is acknowledged by the receiving node,
handles errors if required, and sends a completion message
to the host through the inbound message channel.

Outbound Frame FIFO. The outbound frame FIFO buffers data
before transmission to prevent underrun. This FIFO is sized
to hold one maximum-size frame. As Tachyon sends the cur
rent frame onto the link, the outbound frame FIFO is simul
taneously filled with the next frame, maximizing outbound
performance and reducing latency.

ACK FIFO. The ACK FIFO holds Fibre Channel class 1 and class
2 ACKs until they can be sent out by the frame manager.

Frame Manager. The frame manager is Tachyon's interface to
the physical link module. The frame manager implements
the N_Port state machine described in the FC-PH specifica
tion and the loop state machine described in the FC-AL
specification. The frame manager can be configured to sup
port link speeds of 1063, 531, and 266 megabits per second.
It also implements initialization in hardware for both
NL_Ports and N_Ports.

The frame manager implements portions of the FC-1 and
FC-2 specifications. It is responsible for the FC-1 functions
of transmitting and receiving Fibre Channel frames and
primitives. It calculates and verifies the CRC for frame data,
checks parity of the transmit data, and generates parity for
the receive data. It generates primitives, encodes and re
ceives Fibre Channel frames and primitives, decodes 10-bit
or 20-bit physical link module data, and implements the run
ning disparity algorithm in FC-1. The frame manager can be
configured to generate interrupts to the host when certain
link configuration changes occur to which the host must
respond. The interrupt process occurs as part of N_Port
initialization and loop initialization and any time the link has
been disrupted.

The ordered set and CRC generator encapsulates data into
FC-1 frames, generates a 32-bit cyclic redundancy check
(CRC), writes it into the frame, and passes the encapsulated

data to the 16B/20B encoder. The 16B/20B encoder converts
outbound 16-bit-wide data into two 8-bit pieces, each of
which is encoded into a 10-bit transmission character using
the 8B/10B encoding algorithm.

The 20B/10B multiplexer is responsible for selecting the
proper width, either 10 bits or 20 bits, of the data path for
the specific type of physical link module being used. The
data width and speed are specified by the parallel ID field of
the physical link module interface.

The 10B/20B demultiplexer is responsible for receiving in
coming encoded data, either 10 bits wide or 20 bits wide,
from the physical link module and packing it into 20 bits for
decoding. The data width and speed are specified by the
parallel ID field of the physical link module interface.

The 20B/16B decoder is responsible for converting 20-bit-
wide data received from the 10B/20B demultiplexer into two
8-bit data bytes.

The elastic store and smoothing block is responsible for
retiming received data from the receive clock to the trans
mit clock. The elastic store provides a flexible data FIFO
buffer between the receive clock and transmit clock do
mains. Receiver overrun and underrun can be avoided by
deleting and inserting duplicate primitives from the elastic
store as needed to compensate for differences in receive
clock and transmit clock frequencies (within specifications).

The ordered set processor and CRC checker block is re
sponsible for detecting incoming frame boundaries, verify
ing the cyclic redundancy check, passing the data to the
inbound FIFO, and decoding and recognizing primitives.

Inbound Data FIFO. The inbound data FIFO buffers frame data
while the frame manager verifies the CRC. It also serves as
high-availability temporary storage to facilitate the Fibre
Channel flow control mechanisms. This FIFO is sized to
hold a maximum of four 2K-byte frames (including headers).

Inbound Sequence Manager. The inbound sequence manager
is responsible for receiving and parsing all link control and
link data frames. It interacts with the SCSI buffer manager
block to process SCSI frames. The inbound sequence man
ager block is also responsible for coordinating the actions
taken when a link reset is received from the frame manager
block and for passing outbound completions to the inbound
data manager block. The inbound sequence manager also
manages class 1 Fibre Channel connections.

Inbound Data Manager. The inbound data manager routes
incoming frames to their appropriate buffers in host mem
ory, transferring SCSI FCP_XFER_RDY frames to the SCSI ex
change manager, sending completion messages to the in
bound message queue, and sending interrupts to the
interrupt controller inside the inbound message channel.

Inbound Block Mover. The inbound block mover is responsi
ble for DMA transfers of inbound data into buffers specified
by the multiframe sequence buffer queue, the single-frame
sequence buffer queue, the inbound message queue, or the
SCSI buffer manager. The inbound block mover accepts an
address from the inbound data manager, then accepts the
subsequent data stream and places the data into the location
specified by the address. The inbound block mover also

106 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

accepts producer index updates and interrupt requests from
the inbound message channel and works with the arbiter to
put the interrupt onto the Tachyon system interface bus.

Inbound Message Channel. The inbound message channel
maintains the inbound message queue. This includes supply
ing the inbound data manager with the address of the next
available entry in the inbound message queue and generat
ing a completion message when the number of available
entries in the inbound message queue is down to two.

The inbound message channel also generates interrupts for
completion messages, if necessary, and handles message
and interrupt ordering. The completion message must be in
the host memory before the interrupt. The inbound message
channel also handles interrupt avoidance, which minimizes
the number of interrupts (strobes on the INT pin on the
Tachyon system interface bus) asserted to the host for each
group of completions sent to the host.

Single-Frame Sequence Buffer Channel. The inbound single-
frame sequence buffer channel manages the single-frame
sequence buffer queue. It supplies addresses of empty
single-frame sequence buffers to the inbound data manager
and generates a completion message when the supply of
single-frame sequence buffers runs low.

Multiframe Sequence Buffer Channel. The inbound multiframe
sequence buffer channel manages the multiframe sequence
buffer queue. It supplies addresses of empty multiframe
sequence buffers to the inbound data manager and gener
ates a completion message when the supply of multiframe
sequence buffers runs low.

SCSI Buffer Manager. The SCSI buffer manager is responsible
for supplying the inbound data manager with addresses of
buffers to be used for inbound SCSI data frames. The SCSI
buffer manager maintains a cache of 16 unique SCSI descrip
tor blocks. Each block contains eight SCSI buffer addresses.
Depending upon the direction of the exchange, the origina
tor exchange identifier (OXJD) or the responder exchange
identifier (RXJD) of the current frame is provided by the
inbound data manager block and is used to point to the cor
rect entry in the SCSI exchange state table.

SCSI Exchange Manager. In conjunction with the SCSI ex
change state table data structure, the SCSI exchange manag
er provides Tachyon with the hardware assists for SCSI I/O
transactions. It converts SCSI exchange state table entries
to outbound descriptor block format for the outbound se
quence manager block's use. The SCSI exchange manager
accepts SCSI outbound FCP_XFER_RDY frames from the in
bound data manager block. It then uses the OXJD or RXJD
given in the frame as an offset into the state table, reads the
entry, and builds the outbound descriptor block.

Register Block. The register block consists of control, config
uration, and status registers. These registers are used for
initialization, configuration, control, error reporting, and
maintenance of the queues used to transfer data between
Tachyon and the host. Each register is 32 bits wide and may
be readable or both readable and writable by the host de
pending upon its function.

SCSI Read/Write Channel. The SCSI read/write channel man
ages requests from the SCSI exchange manager and inlor-
faces to the Tachyon system interface arbiter block.

Tachyon SCSI Hardware Assists
Tachyon supports SCSI I/O transactions (exchanges) by two
methods. The first method uses host-based transaction man
agement. In this method, the host transmits and receives the
various sequences using the general transmit and receive
processes. By using the host-based transaction management
method, Tachyon reassembles only one SCSI unassisted
multiframe sequence at a time. The second method uses
Tachyon's SCSI hardware assists. With this method. Tachyon
assists the host transaction management through the use of
a shared host data structure called the SCSI exchange state
table.

By using Tachyon's SCSI hardware assists, the host can con
currently reassemble up to 16,384 SCSI assisted sequences.
Tachyon maintains an on-chip cache for up to 16 concurrent
inbound transactions. Tachyon uses a least recently used

caching algorithm to allow the most active exchanges to
complete their transfers with the minimum latency.

The protocol for SCSI encapsulation by Fibre Channel is
known as FCP. Fig. 7 shows an overview of the FCP read
exchange and Fig. 8 shows an overview of the FCP write
exchange. The exchanges proceed in three phases: com
mand, data, and status.

SCSI a State Table. The SCSI exchange state table is a
memory-based data structure. Access is shared between
Tachyon and the host. The SCSI exchange state table is an
array is 32-byte entries. The starting address of the table is
programmable and is defined by the SCSI exchange state
table base register. The length of the table is also program
mable and is defined by the SCSI exchange state table
length register. Each used table entry corresponds to a cur
rent SCSI exchange, or I/O operation. Each entry contains
two kinds of information: information supplied by the host
driver for Tachyon to manage the exchange, and information
stored by Tachyon to track the current state of the ex
change. For initiators in SCSI write transactions, the out
bound SCSI exchange state table entries contain informa
tion indicating where outbound data resides in memory and
what parameters to use in the transmission of that data on
the Fibre Channel link. For initiators in SCSI read transac
tions, the inbound SCSI exchange state table entries contain
information indicating where inbound data is to be placed in

Initiator Fabric Target

EC = Exchange Context bi t

Fig. 7. I'd' rciiil CM liante overview.

Octohn l!l!i(i Hewlett-Packard Journal 107

© Copr. 1949-1998 Hewlett-Packard Co.

Init iator

The initiator host
selects a valid
ox ID value.

The init iator Tachyon
uses outbound SCSI
hardware assists.

The target's RXJD
value is copied.

Target

â€” Command Phase

The target host
selects a valid
RXJD value.

Data Phase

The target Tachyon
uses inbound SCSI
hardware assists.

Status Phase

EC = Exchange Context b i t

Fig. 8. FCP write exchange overview.

memory. SCSI exchange state table entries are indexed by
an exchange identifier (XJD) â€” either the originator ex
change identifier (OXJD) or the responder exchange identifi
er (RXJD). In an initiator application, the OXJD provides the
index into the SCSI exchange state table. In a target applica
tion, the RXJD provides the index into the SCSI exchange
state table.

FCP Read Exchange â€” Tachyon as an Initiator. Fig. 9 shows the
FCP read exchange host data structures for an initiator Ta
chyon. For the initiator host to receive inbound SCSI data, it
selects a valid OXJD value that points to an unused location
in the SCSI exchange state table. The OXJD value identifies
this particular exchange. Using the OXJD value, the initiator
host builds a data structure called an inbound SCSI ex
change state table entry. The inbound SCSI exchange state
table entry includes the address of the SCSI descriptor
block. The SCSI descriptor block defines the host buffers
that Tachyon will use to store the received read data.

In the command phase, once the host creates the inbound
SCSI exchange state table entry, it creates an FCPJ3MND for
an FCP read exchange. The initiator Tachyon sends the
FCP_CMND to the target via the outbound command queue.

In the data phase, the initiator Tachyon may receive an
FCP_XFER_RDY from the target. This is an optional step for an
initiator in an FCP read because the data frames contain all
the information needed to process them. When Tachyon

receives the optional FCPJCFER JIDY from the target, it ac
knowledges the frame if appropriate and discards the
FCP_XFER_RDY. As each data frame is received, the SCSI ex
change manager uses the OXJD to access the appropriate
inbound SCSI exchange state table entry for the address of
the SCSI data buffer. The SCSI descriptor block and the rela
tive offset of the data frame determine where data is to be
placed in host memory. Tachyon maintains an internal cache
of 16 inbound SCSI exchange state table entries. If the SCSI
exchange state table information associated with the re
ceived frame is not in cache, Tachyon writes the least re
cently used cache entry back to the host SCSI exchange
state table. Tachyon then fetches into cache the inbound
SCSI exchange state table entry associated with the re
ceived frame and transfers the read data to host memory via
DMA. The initiator Tachyon automatically handles both
single and multiple data phases for inbound data transfers.

In the status phase, when the data phase is complete, the
initiator Tachyon receives an FCPJSP from the target. The
FCPJ^SP is a Fibre Channel information unit that contains
status information that indicates that the SCSI exchange has
completed. The initiator Tachyon passes the FCPJ^SP to the
host via the single-frame sequence channel and sends a com
pletion message to the initiator host. This informs the initia
tor host that the exchange is completed.

FCP Read Exchange â€” Tachyon as a Target. For FCP read ex
changes for the target Tachyon, SCSI hardware assists are
not used. Fig. 10 shows the read exchange target host data
structures.

In the command phase, the target Tachyon receives an
FCPJ2MND for an FCP read from the initiator and sends the
FCPJ3MND to the target host via the single-frame sequence
channel. If configured to automatically acknowledge, the
target Tachyon immediately returns an ACK (for class 1 and
class 2) to the initiator. The target host selects a valid, un
used RXJD value. The RXJD is placed into the header of the
ACK and sent via the high-priority command queue.

In the data phase, the target host builds an outbound des
criptor block that contains the extended descriptor block
address. The target host builds an extended descriptor block
that defines where the read data is located in the target host
memory. The target host may send an FCP_XFER_RDY to the
initiator host to indicate that it is ready to send the re
quested data. The target Tachyon sends the FCP_XFER_RDY(s)
with the appropriate RXJD value to the initiator Tachyon.
Using the outbound command queue, the target Tachyon

Host-Based Data Structures

I M Q S E S T

O X J D

Inbound
SEST Entry SDB

I M Q = I n b o u n d M e s s a g e Q u e u e
SEST = SCSI Exchange Sta te Tab le
S D B = S C S I D e s c r i p t o r B l o c k

Fig. 9. FCP read exchange initia
tor host data structures.

108 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

ODB EDB
ODB

O C Q = I n b o u n d M e s s a g e Q u e u e
O D B = O u t b o u n d D e s c r i p t o r B l o c k
E D B = E x t e n d e d D e s c r i p t o r B l o c k

then sends the appropriate SCSI read data to the initiator via
the outbound command queue.

hi the status phase, the target Tachyon sends an FCP_RSP to
the initiator to indicate that the exchange has completed.

FCP Write Exchange â€” Tachyon as an Initiator. Fig. 11 shows the
FCP write exchange initiator host data structures. For the
initiator host to perform an outbound data transfer, it selects
an unused SCSI exchange state table entry whose index will
be used as the OXJD value. Using the OXJD value, the initia
tor host builds an outbound SCSI exchange state table entry.
The outbound SCSI exchange state table entry includes in
formation about the frame size, the Fibre Channel class, and
writable fields that the initiator Tachyon uses to manage the
SCSI transfer. The outbound SCSI exchange state table entry
also contains a pointer to the extended descriptor block that
contains pointers to the data to be sent.

In the command phase, once the host creates the outbound
SCSI exchange state table entry, the host creates the
FCP_CMND for an FCP write exchange. The initiator Tachyon
sends the FCP_CMND to the target via the outbound command
queue.

In the data phase, when the initiator Tachyon receives the
FCP_XFER_RDY from the target, it uses its SCSI hardware as
sists and manages the data phase for this FCP_XFER_RDY inde
pendent of the host. Tachyon uses the information in the
SCSI exchange state table and the FCP_XFER_RDY to build an
outbound descriptor block to be sent through the outbound
state machine. If the outbound sequence manager is busy,
the SCSI exchange state machine adds the request to a
linked list of outbound transactions waiting for transmis
sion. As the outbound sequence manager becomes available
to process a SCSI transfer, the SCSI exchange state manager
dequeues a waiting transaction and passes it to the out
bound sequence manager. The outbound sequence manager
transmits the write data to the target Tachyon.

Fig. 10. FCP read exchange target
host data structures.

If this FCP _XFER_RDY is part of a multiple-data-phase transfer,
the initiator Tachyon passes this FCP_XFER_RDY as a single-
frame sequence to the initiator host along with a completion
message. The initiator host is responsible for managing the
data the for this multiple-data-phase transfer by using the
general sequence moving services. The OXJD field in the
FCPJ(FER_RDY is an index into the SCSI exchange state table
and identifies the appropriate outbound SCSI exchange
state table entry that points to the extended descriptor
block in which the write data is located. Using the informa
tion in the outbound SCSI exchange state table entry, the
initiator host builds an outbound descriptor block. The initi
ator Tachyon uses the outbound descriptor block to trans
mit the write data to the target.

In the status phase, after the data phase completes, the initi
ator Tachyon receives an FCP_RSP from the target. The initia
tor Tachyon passes the FCP_RSP to the host and sends a com
pletion message to the initiator host. This informs the
initiator host that the exchange has completed.

FCP Write Exchange â€” Tachyon as a Target. Fig. 12 shows the
FCP write exchange target host data structures.

In the command phase, the target Tachyon receives an
FCP_CMND for an FCP write from the initiator. If configured
to do so, the target Tachyon immediately returns an ACK to
the initiator for class 1 and class 2. If Tachyon is not con
figured to return an ACK, the target host is responsible for
sending the ACK. The target host selects a valid RXJD value,
places the RXJD into the ACK header and sends the ACK via
the high-priority command queue.

In the data phase, the target host selects an unused SCSI
exchange state table entry whose index will be the RXJD
value. Using the RXJD value, the target host builds the in
bound SCSI exchange state table entry that points to the
SCSI descriptor block. The SCSI descriptor block contains
as many buffer addresses as necessary to receive the data. If

O u t b o u n d
S E S T E n t r v EDB

S E S T

O X J D

S E S T = S C S I E x c h a n g e S t a t e T a b l e
E D B = E x t e n d e d D e s c r i p t o r B l o c k

A d d i t i o n a l
A / L P a i r s

Fig. 11. FCP write exchange initia
tor host data structures.

October 1996 Hewlett-Packard Journal 109

© Copr. 1949-1998 Hewlett-Packard Co.

Inbound
SEST Entry

SDB
000 Reassembly Data Buffers

SEST

R X J D

SEST = SCSI Exchange State Table
E D B = S C S I D e s c r i p t o r B l o c k
0 0 0 = O u t - o f - O r d e r

the target host has enough buffers and is ready to receive all
of the data from the initiator, the host programs the inbound
SCSI exchange state table entry and the target Tachyon
sends the FCP_XFER_RDY to the initiator via the outbound
command queue. The initiator will send the data when it is
ready.

The target Tachyon checks the RXJD of the data frame to
locate the appropriate inbound SCSI exchange state table
entry. The inbound SCSI exchange state table entry helps
Tachyon determine exactly where within the buffers the
data is to be placed. When the last data frame is received,
the target Tachyon sends a completion message to the target
host to inform the target host that all frames for the SCSI
sequence have been received.

In the status phase, the target host sends an FCP_RSP to the
initiator via the outbound command queue.

Tachyon System Interface
The Tachyon system interface describes the backplane pro
tocol for the Tachyon chip. It is a flexible backplane inter
face that allows customers to interface to Tachyon using
many existing backplane protocols, including PCI, MCA,
S-bus, EISA, VME, and Hewlett-Packard's High-Speed Con
nect (HSC) bus. The Tachyon system interface is capable of
100-Mbyte/s data transfers. Fig. 13 shows the Tachyon sys
tem interface signals.

The Tachyon system interface provides a basic transaction
protocol that uses two major operations: write transactions
and read transactions. Every transaction has a master and a
responder. If the host is the master of a transaction, Tachyon
is the responder in that transaction, and vice versa.

The master of a transaction drives an address and transac
tion type onto the TAD[] and TYPE[] buses, respectively, while
asserting AVCS^L to indicate the start of the transaction. If
Tachyon masters a transaction, the host, as the responder,
uses READY_L as its acknowledgment signal. Similarly, if the
host masters the transaction, Tachyon, as the responder,
uses READY^L as its acknowledgment signal. A Tachyon sys
tem interface bus master has the choice of using one-word,
two-word, four-word, or eight-word read and write transac
tions on the Tachyon system interface bus.

Tachyon System Interface Streaming
To maximize performance, the Tachyon system interface
allows the host to configure the length of Tachyon's bus ten
ancy. When Tachyon obtains mastership of the Tachyon sys
tem interface and has more than one transaction to perform,

Fig. 12. FCP write exchange target
host data structures.

Tachyon may extend its bus tenancy and perform several
Tachyon system interface transactions (up to the maximum
programmed limit) before releasing mastership. Table I
shows how streaming increases performance over non-
streaming.

T a b l e I
T a c h y o n P e r f o r m a n c e S a v i n g s w i t h S t r e a m i n g

1 T r a n s
a c t i o n (n o
s t r e a m i n g)

T a c h y o n S t r e a m S i z e

4 T r a n s - 1 6 T r a n s
a c t i o n s a c t i o n s

6 4 T r a n s
a c t i o n s

Tachyon

Backplane
Interface

Physical
Link

Module
Interface

Backplane
Interface

Chip

Scan Test
Interface

Test
Signals

Fig. 13. Tachyon system interface.

110 October 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Tachyon Host Adapter Requirements
A generic Fibre Channel host bus adapter board using the
Tachyon chip contains the following:

1 Backplane Connector. Connects the backplane interface
chip to the system bus.

â€¢ Backplane Interface Chip. Enables the connection of the
Tachyon system interface bus to PCI. EISA. HP-HSC or
other bus.

1 Tachyon Chip. HP's Fibre Channel interface controller.
1 Physical Link Module. Tachyon interfaces to many GLM-

compliant physical link modules currently in the market
place. Types of modules include:

1063-Mbit/s DB9 copper connectors for distances up to
30 meters.
1063-Mbit/s shortwave laser physical link modules for
distances up to 500 meters.
1063-Mbit/s longwave laser physical link modules for
distances up to 10 kilometers.
266-Mbit/s shortwave laser physical link modules for
distances up to 2 kilometers.

A block diagram of a typical host bus adapter is shown in
Fig. 14. An HP-HSC Fibre Channel adapter is shown in
Fig. 15. This adapter was developed by HP to provide Fibre
Channel connection to the HP 9000 K-Class servers3 for fast
networking and mass storage.

I
Backplane Connector

Backplane Interface Chip

Physical Link Module

T

Hi)

Fig. 15. (a) HP HSC Fibre Channel adapter, side A. (b) HP HSC
Fibre Channel adapter, side M.

Fig. 14. Block diagram of a typical host adapter board.

Development Tools
Effective tools were key to the success of the Tachyon
chip.6 The following tools were used in the development
project:

> Cadence Verilog-XL Turbo was used for interactive and
batch Register Transfer Language (RTL) simulations, gate
functional simulations, and dynamic simulation.

> Chronologic Verilog Compiled Simulator (VCS) was used for
batch RTL simulations.

â€¢ Quad Motive was used for static timing analysis.
â€¢ Synopsys was used for chip synthesis.
â€¢ Veritools Undertow was used as a waveform viewer.
> Inter-HDL Verilint was used to check syntax and semantics

for RTL code.
â€¢ SIL Synth was used to manage and launch synthesis jobs.
â€¢ History Management System (HMS),5 written by Scott A.

Kramer, was used as a revision control system.
â€¢ LSI Logic Corporation's Concurrent Modular Design Envi

ronment (CMDE) was used for floorplanning bonding, delay
calculation, and layout.

1 Hewlett Packard Task Broker6 was used to distribute jobs
to the various compute engines.

Verification Environment
The verification environment used for Tachyon was very
sophisticated and automated. The Tachyon chip model (as
either a Verilog RTL code or a gate-level netlist) was tested
in simulation using Verilog's programming language inter
face capability. Test modules written in C or in Verilog pro
vided stimulation to the Tachyon chip. Other test modules
then verified the functionality of the chip and reported
errors.

Conclusion
The Tachyon Fibre Channel interface controller provides a
high-performance, single-chip solution for mass storage,
clustering, and networking applications. Tachyon has been
selected by many other companies as the cornerstone of

October 1996 Hewlett-Packard Journal 111

© Copr. 1949-1998 Hewlett-Packard Co.

their Fibre Channel product designs. As an understanding of
the capabilities of Fibre Channel technology grows in the
marketplace, Tachyon is expected to be present in a large
number of new Fibre Channel products.

Acknowledgments
We wish to acknowledge the contributions of Randi Swisley,
section manager for Tachyon and the HP HSC FC adapter
projects, Bob Whitson, Bryan Cowger, and Mike Peterson,
technical marketing, Tachyon chip architects Bill Martin,
Eric Tausheck, and Mike Thompson, Fibre Channel stan
dards committee members Kurt Chan and Steve Dean, proj
ect managers Margie Evashenk and Tom Parker, VLSI design
team lead Joe Steinmetz, hardware and VLSI design team
members Catherine Carbonaro, Dave Clark, Mun Johl, Ted
Lopez, Bill Martin, George McDavid, Joseph Nuno, Pery
Pearson, and Christi Wilde, Tachyon simulation team mem
bers Narayan Ayalasomayajula, Tony de la Serna, Murthy
Kompella, Brandon Mathew, Mark Shillingberg, John Schi-
mandle, Gordon Matheson, and Matt Wakeley, Tachyon and
HSC FC adapter bringup team members Navjyot Birak, Bob
Groza, and Donna Jollay, and customer support specialist
Rick Barber, who is happy to answer questions from U.S.
customers at 1-800-TACHYON. Special thanks to learning
products engineer Mary Jo Domurat, who wrote the Tachy
on user's manual, and disk support engineer Leland Wong,
who provided photographs for this article.

References
1. A.R. Albrecht and P.A. Thaler, "Introduction to lOOVG-AnyLAN
and the IEEE 802.12 Local Area Network Standard," Hewlett-
Packard Journal, Vol. 46, no. 4, August 1995, pp. 6-12.
2. J.S. Chang, et al, "A 1.0625-Gbit/s Fibre Channel Chipset with
Laser Driver," Hewlett-Packard Journal, Vol. 47, no. 1, February
1996, pp. 60-67.
3. M.J. and et al, "Symmetric Multiprocessing Workstations and
Servers System-Designed for High Performance and Low Cost,"
Hewlett-Packard Journal, Vol. 47, no. 1, February 1996, pp. 8-17.
4. Gigabaud Link Module, FCSI-301, Rev. 1.0, Fiber Channel
Association.
5. S.A Kramer, "History Management System," Proceedings of
the Third International Workshop on Software Configuration
Management (SCM3), June 1991, p. 140.

When we started to write this article, the possibility existed
that the HP Journal would be able to feature the Tachyon chip
on the cover. We came up with a cover concept, and many
people worked very hard on the cover design. Unfortunately,
it turned out that Tachyon could not be featured on the cover.
We would like to thank the many people who contributed to
this graphic: Margie Evashenk for her concept drawing, LSI
Logic Corporation who contributed the photomicrograph,
Leland Wong who supplied photographs of Tachyon, and
graphic artist Marianne deBlanc who put all the pieces together
so beautifully.

6. T.P. Graf, et al, "HP Task Broker: A Tool for Distributing Computa
tional 1993, Hewlett-Packard Journal, Vol. 44, no. 4, August 1993,
pp. 15-22.

Bibliography
1. Tachyon User's Manual, Draft 4, Hewlett-Packard Company.
2. Fibre Channel Arbitrated Loop Direct Disk Attach Profile (Pri
vate Loop), Version 2.0, ad hoc vendor group proposal.

O c t o b e r 1 9 % V o l u m e 4 7 â € ¢ N u m b e r 5

echn ica l In fo rmat ion f rom the Labora tor ies o f
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y , H e w l e t t - P a c k a r d J o u r n a l
3 0 0 0 H a n o v e r S t r e e t . P a l o A l t o , C A 9 4 3 0 4 - 1 1 8 5 U . S . A .

tvi H E W L E T T 4
P A C K A R D

5964 -6221 E

© Copr. 1949-1998 Hewlett-Packard Co.

	A Platform for Building Integrated Telecommunication Network Management Applications
	Glossary
	Distributed Processing Environment: A Platform for Distributed Telecommunications Applications
	HP OEMF: Alarm Management in Telecommunications Networks
	HP OpenView Event Correlation Services
	Correlation Node Types
	Count Node
	Unless Node
	Table Node
	Fact Store and Data Store
	Annotation
	A Modeling Toolset for the Analysis and Design of OSI Network Management Objects
	A Toolkit for Developing TMN Manager/Agent Applications
	A Software Toolkit for Developing Telecommunications Application Components
	Business Process Flow Management and its Application in the Telecommunications Management Network
	HP OpenView Agent Tester Toolkit
	Storage Management Solutions for Distributed Computing Environments
	An Introduction to Fibre Channel
	Tachyon: A Gigabit Fibre Channel Protocol Chip

