
H E W L E T - P A C K A R D

JOURNAL
A u g u s t 1 9 9 6

W h ~ 0 \ H E W L E T T â€¢L'HM PACKARD

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL A u g u s t 1 9 9 6 V o l u m e 4 7 â € ¢ N u m b e r 4

Articles

Evolutionary Fusion: A Customer-Oriented Incremental Life Cycle for Fusion, by Todd Cotton

What Is Fusion?

Â¡ Implementing the Capability Maturity Model for Software Development, by Douglas E. Lowe and
' Guy M . Cox

, Software Failure Analysis for High-Return Process Improvement Decisions, by Robert B. Grady

25
2 7
3 Q The Evolutionary Development Model for Software, by Elaine L. May and Barbara A. Zimmer

A / T h e S o f t w a r e I n i t i a t i v e P r o g r a m

46
| Reuse Roles: Producers, Supporters, and Utilizers

HP Domain Analysis: Producing Useful Models for Reusable Software, by Patricia Collins
Com we II

Management

j A Model for Platform Development, by Emi! Jandourek

Execut ive Robin Steve Bei t ler â€¢ Managing Edi tor , Char les L. Leath â€¢ Senior Edi tor , Richard P. Dotan â€¢ Assis tant Edi tor . Robin Everest
Pub l i ca t ion Produc t ion Manager , Susan E . Wr igh t â€¢ D is t r ibu t ion Program Coord ina to r , RenÃ©e D. Wr igh t â€¢ Layout / I l l us t ra t ion , John N icoara

Adv isory Board

Rajeev Colorado Integrated Circuit Business Division, Fort Collins, Colorado
Wi l l iam W. Brown, Integrated Circui t Business Div is ion, Santa Clara Cal i fornia
Rajesh Desai , Commercial Systems Division, Cupert ino, Cal i fornia
K e v i n G . E w e r t , I n t e g r a t e d S y s t e m s D i v i s i o n , S u n n y v a l e , C a l i f o r n i a
Bernhard Fischer, Bobl ingen Medical Division, BÃ²bl ingen, Germany
Douglas Gennetten, Greeley Hardcopy Divis ion, Greeley, Colorado
Gary Gordon, HP Laboratories, Palo Alto, Cal i fornia
Mark Oregon InkJe t Supp l ies Bus iness Un i t , Corva l l i s , Oregon
M a t t J . M a r l i n e , S y s t e m s T e c h n o l o g y D i v i s i o n , R o s e v i l l e , C a l i f o r n i a
Kiyoyasu Hiwada, Hachioj i Semiconductor Test Div is ion, Tokyo, Japan
Bryan Hoog, Lake Stevens Instrument Division, Everett , Washington
C. Steven Joiner, Optical Communication Division, San Jose, Cal i fornia
R o g e r L J u n g e r m a n , M i c r o w a v e T e c h n o l o g y D i v i s i o n , S a n t a R o s a , C a l i f o r n i a
F o r r e s t K e l l e r t , M i c r o w a v e T e c h n o l o g y D i v i s i o n , S a n t a R o s a , C a l i f o r n i a
Ruby B. Lee, Networked Systems Group, Cupertino, California
Swee Kwang L im, Asia Per iphera ls Div is ion, S ingapore
A l f r e d M a u t e , W a l d b r o n n A n a l y t i c a l D i v i s i o n , W a l d b r o n n , G e r m a n y
Andrew McLean, Enterpr ise Messaging Operat ion, P inewood, England

Dona View, California Worldwide Customer Support Division, Mountain View, California
M i t c h e l l J . M l i n a r , H P - E E s o f D i v i s i o n , W e s t l a k e V i l l a g e , C a l i f o r n i a
Michael P. Moore, VXI Systems Div is ion, Loveland, Colorado
M. Shahid Mujtaba, HP Laborator ies, Palo Al to, Cal i fornia
Steven J. Narciso, VXI Systems Division, Loveland, Colorado
Danny J, Oldf ie ld, Electronic Measurements Division, Colorado Springs, Colorado
Garry Orsolini , Software Technology Division, Rosevil le, Cal i fornia
Ken Poulton, HP Laboratories, Palo Alto, Cal i fornia
Giinter Riebesell , Boblingen Instruments Division, BÃ²blingen, Germany
M a r c C o l l i n s , S o f t w a r e E n g i n e e r i n g S y s t e m s D i v i s i o n , F o r t C o l l i n s , C o l o r a d o
Michael B. Saunders, Integrated Circuit Business Division, Corval l is , Oregon
Phil ip Stenton, HP Laboratories Bristol , Bristol , England
Stephen R . Undy , Sys tems Techno logy D i v i s i on , Fo r t Co l l i ns , Co lo rado
J i m W i l l t t s , N e t w o r k a n d S y s t e m M a n a g e m e n t D i v i s i o n , F o r t C o l l i n s , C o l o r a d o
Koichi Yanagawa, Kobe Instrument Div is ion, Kobe, Japan
Dennis C. York, Corvall is Division, Corvall is, Oregon
Barbara Zimmer, Corporate Engineering, Palo Alto, Cal i fornia

^Hewlet t -Packard Company 1996 Pr in ted in U.S .A.

2 August 1996 Hewlett-Packard Journal

The Hewlet t -Packard Journal is pr inted on recycled paper .

© Copr. 1949-1998 Hewlett-Packard Co.

/) A D e c i s i o n S u p p o r t S y s t e m f o r I n t e g r a t e d C i r c u i t P a c k a g e S e l e c t i o n , b y C r a i g J . T a n n e r

I C y c l e S a f a i I m p r o v e m e n t f o r F u j i I P 2 P i c k - a n d - P l a c e M a c h i n e s , b y F e r e y d o o n S a f a i

R e d u c i n g S e t u p T i m e f o r P r i n t e d C i r c u i t A s s e m b l y , b y R i c h a r d C . P a l m , J r .

L o w - T e m p e r a t u r e S o l d e r s , b y Z e q u n M e t , H e l e n A . H o l d e r , a n d H u b e r t A , V a n d e r P Ã ­ a s

j A s s e s s m e n t o f L o w - T e m p e r a t u r e F l u x e s , b y H u b e r t A . V a n d e r P Ã ­ a s , R u s s e l l B . C i n q u e , Z e q u n M e i ,
a n d H e l e n A . H o l d e r

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

1 0 4 A u t h o r s

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b v t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d (H P)
p e r s o n n e l . w a r r a n t i e s t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f m e r c h a n t
ab i l i t y damages, ind i rec t , fo r a par t i cu la r purpose and a l l ob l iga t ions and l iab i l i t ies fo r damages, inc lud ing bu t no t l im i ted to ind i rec t , spec ia l , o r consequent ia l
damages , pub l i ca t i on . and expe r t ' s f ees , and cou r t cos t s , a r i s i ng ou t o f o r i n connec t i on w i t h t h i s pub l i ca t i on .

S u b s c r i p t i o n s : T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d y o u i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . T o r e c e i v e a n H P e m p l o y e e s u b s c r i p t i o n y o u c a n s e n d a n e m a i l m e s s a g e i n d i c a t i n g y o u r H P
e n t i t y a n d m a i l s t o p t o I d c j i t p r o @ h p - p a l o a l t o - g e n 1 3 . o m . h p . c o m . Q u a l i f i e d n o n - H P i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s i n t h e U . S . c a n r e q u e s t a
subsc r i p t i on by e i t he r w r i t i ng t o : D i s t r i bu t i on Manage r , HP Jou rna l , M /S 20BH, 3000 Hanove r S t ree t , Pa lo A l t o , CA 94304 , o r send ing an ema i l message t o :
h p _ j o u r n a l @ h p - p a l o a l t o - g e n 1 3 . o m . h p . c o m . W h e n s u b m i t t i n g a n a d d r e s s c h a n g e , p l e a s e s e n d a c o p y o f y o u r o l d l a b e l t o t h e a d d r e s s o n t h e b a c k c o v e r .
I n t e r n a t i o n a l s u b s c r i p t i o n s c a n b e r e q u e s t e d b y w r i t i n g t o t h e H P h e a d q u a r t e r s o f f i c e i n y o u r c o u n t r y o r t o D i s t r i b u t i o n M a n a g e r , a d d r e s s a b o v e . F r e e s u b s c r i p
t i ons may no t be ava i l ab le i n a l l coun t r i es .

T h e H e w l e t t - P a c k a r d J o u r n a l i s a v a i l a b l e o n l i n e v i a t h e W o r l d W i d e W e b (W W W) . T h e u n i f o r m r e s o u r c e l o c a t o r (U R L) f o r t h e H e w l e t t - P a c k a r d J o u r n a l i s :

h tt p : // w w w. h p . c o m/h p j/ J ou rna I .htm I

S u b m i s s i o n s : H P - a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h H P -
r e l a t e d c o n s i d e r e d o r s o l u t i o n s t o t e c h n i c a l p r o b l e m s m a d e p o s s i b l e b y u s i n g H P e q u i p m e n t a r e a f s o c o n s i d e r e d f o r p u b l i c a t i o n . P l e a s e c o n t a c t t h e E d i t o r
b e f o r e s u b m i t t i n g s u c h a r t i c l e s . A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s a n d m a y
p u b l i s h l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o r e a d e r s . L e t t e r s s h o u l d b e b r i e f , a n d a r e s u b j e c t t o e d i t i n g b y H P .

Index : i ssue . Hew le t t -Packa rd Jou rna l pub l i shes a yea r l y i ndex i n each December i ssue .

C o p y r i g h t ' 1 9 % H e w l e t t - P a c k a r d C o m p a n y . A l l r i g h t s r e s e r v e d . P e r m i s s i o n t o c o p y w i t h o u t f e e a l l o r p a r t o f t h i s p u b l i c a t i o n i s h e r e b y g r a n t e d p r o v i d e d t h a t
1) t h e c o p i e s a r e n o t m a d e , u s e d , d i s p l a y e d , o r d i s t r i b u t e d f o r c o m m e r c i a l a d v a n t a g e ; 2) t h e H e w l e t t - P a c k a r d C o m p a n y c o p y r i g h t n o t i c e a n d t h e t i t l e o f t h e
p u b l i c a t i o n a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e a p p e a r s s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

P lease Hewlet t -Packard inqui r ies, submiss ions, and requests to : Managing Edi tor , Hewlet t -Packard Journal , M/S 20BH, 3000 Hanover St reet , Palo Al to , CA 94304 U.S.A.

August 1990 Hewlett-Packard Journal 3

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
Process improvement , cost sav ings, shor ter t ime to market , qual i ty and produc
t iv i ty , and customer sat is fact ion are some of the goals that dominate the mission
statements of many manufactur ing organizat ions. The two sets of ar t ic les in th is
issue manufac from two different areas associated with computer systems manufac
tur ing. The f i rs t s ix ar t ic les cover the processes involved in developing sof tware
systems, wi th f ive of these ar t ic les f rom HP's Corporate Engineer ing sof tware
in i t ia t ive program. This program is an ef for t to make sof tware development a
core competence at HP. The second set o f ar t ic les, cover ing the manufacture of
pr inted c i rcui t boards, consists of papers presented at HP's 1995 Electronic
Packag ing and Manufac tu r ing con ference.

The f i r s t a (page 6) i s a good examp le o f a p rocess improvemen t e f f o r t . The a r t i c l e desc r i bes a
successful project at HP's Software Engineering Systems Divis ion to put in place a software development
p rocess Eng i ca l l ed the Capab i l i t y Ma tu r i t y Mode l (CMM) . CMM was deve loped by the So f tware Eng i
neer ing Inst i tute at Carnegie-Mel lon Univers i ty . This model has f ive stages, or matur i ty levels. Each
succeeding leve l d ic ta tes ever s t r ic ter qual i ty processes to be in p lace for evaluat ing sof tware products .
Because from the str ict requirements of CMM, i t normally takes an organizat ion 36 months to go from
level-1 reach level-2 CMM compliance. The authors describe how their organization was able to reach 100%
level -2 CMM compl iance in less than a year.

We al l know that i f we don' t learn f rom our mistakes, we are bound to repeat them. This is the centra l
theme for the art ic le on page 15 in which the author encourages software developers to perform a fai lure
analys is les the i r sof tware defects (mis takes) to understand the root cause of each defect . Wi th the les
sons learned f rom th is analys is an organizat ion can do the appropr iate th ings in i ts development process
to prevent cer ta in defects f rom occurr ing again. The ar t ic le a lso descr ibes a way to c lass i fy sof tware
defect defect and the steps an organizat ion can take to col lect , analyze, and use defect data to make
improvements i ts sof tware deve lopment process.

The t rad i t ional water fa l l l i fe cyc le has served sof tware developers wel l for many years. Wi th th is model ,
once requirements and system requirements were captured in the requirements phase, developers could
proceed previous each phase unt i l manufactur ing re lease wi thout rev is i t ing any of the previous phases
or co l lec t ing any more cus tomer input . Th is model worked we l l when compet i t ion was l im i ted and sof t
ware had l i fe spans of severa l years . Today, compet i t ive products , customer needs, and even develop
ment too ls Th is every few months . An a l te rna t ive l i fe cyc le i s descr ibed in the a r t i c le on page 25 . Th is
new model , ca l led Evolut ionary Fusion, breaks the sof tware l i fe cyc le in to smal ler chunks so that cer ta in
phases Fusion revisited and customer input is al lowed throughout the development process. Fusion is a
systemat ic sof tware development method for ob ject -or iented sof tware development . Th is ar t ic le is a
f i rs t for the Journal in that i t is an excerpt f rom a chapter in an HP Press book ent i t led Object-Or iented
Development at Work: Fusion in the Real World, publ ished by Prent ice-Hal l PTR in 1996.

Discuss ion about the evolut ionary model for sof tware development cont inues in the next ar t ic le on page
39. In th is HP. the authors present p rac t ica l examples o f the mode l 's app l ica t ion to pro jec ts w i th in HP.
I t a lso d iscusses factors that af fect the success or fa i lure of us ing evolut ionary development .

I t is reuse wel l accepted, that i f a sof tware des ign team can reuse an ex is t ing component dur ing product
development, they wil l reap great benefi ts in terms of productivi ty, qual i ty, t ime to market, and cost savings.
The quest ion is, what is a component? In ear ly sof tware reuse ef forts, sof tware components consisted of
l ib rar ies o f genera l -purpose rout ines or funct ions. However , recent sof tware reuse ef for ts have focused
on i tems such as designs, archi tectures, appl icat ions, and of course, code, as viable software components.
As the ar t ic le on page 46 points out , arch i tecture-based, domain-speci f ic reuse can y ie ld greater qual i ty
and product iv i ty improvements than ear l ie r reuse ef for ts . A domain-based reuse s t ra tegy focuses on
f ind ing a a o f sys tems or app l ica t ions tha t share some common func t iona l i ty . The ar t i c le descr ibes a
domain-based technique ca l led HP domain analys is .

August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The next ar t ic le on page 56 cont inues the sof tware reuse d iscussion by ta lk ing about bui ld ing sof tware
products on top of an establ ished sof tware p la t form. The author descr ibes a p la t form development
model cr i ter ia includes not only considerat ions regarding acceptable cr i ter ia for a software platform to be
reusable, but a lso the management and env i ronmenta l issues associated wi th p la t form development and
so f tware and The a r t i c le has a ve ry good d iscuss ion abou t the in te rac t ions be tween p la t fo rm and
product development l i fe cyc les.

Sof tware the hardware des igners have at least one th ing in common today, and that is choos ing the
bes t ava i lab le . to use in a product f rom among the many cho ices ava i lab le . The ar t i c le on page 72
descr ibes a decis ion suppor t too l ca l led PASS (Package Select ion System), which enables in tegrated
circui t designers to choose the best package for an integrated circui t f rom the large number of packaging
al ternat ives avai lable, many of which have s imi lar capabi l i t ies. PASS is an in-house expert system that
uses a f rom var ious packag ing con t rac to rs to come up w i th a l i s t o f techn ica l l y feas ib le a l te rna t i ves
based on the cr i ter ia input by the designer.

Once mounted integrated circuits are in their packages, they must be mounted on the printed circuit boards.
The product iv i ty goal in th is process is to keep the component p lacement t ime (cyc le t ime) for each
board shop of as possib le. This is par t icu lar ly important in a h igh-volume shop because most of the
assembly mount is spent in part placement. The art ic le on page 80 descr ibes how one HP surface mount
center 16% Fuj i IP2 p ick-and-p lace machines was ab le to improve i ts cyc le t ime by 16% over hand-
created improvement optimized pick-and-place recipes. The techniques they used to achieve this improvement
have been incorporated in setup and sequence generat ion modules for HP's Man-L ink rec ipe generat ion
system. Other enhancements to the Man-L ink too l reduce the t ime to set up p ick-and-p lace machines by
ordering creating boards being assembled to exploit the commonality of parts among them and by creating
sequences of setups that di f fer very l i t t le f rom one another (page 84).

Af ter se lect ing the best package for the in tegrated c i rcu i ts and ef f ic ient ly p lac ing them on the pr in ted
c i r cu i t t o t he nex t s tep i s t o ancho r t hem to t he boa rds w i th so lde r and f l ux . The goa l he re i s t o
anchor components to the board wi th so lder and f lux mater ia ls that reduce the r isk of thermal shock and
a l l ow 99 re f l ows on a s ing le boa rd . The a r t i c l es on pages 91 and 99 desc r i be e f f o r t s t o deve lop a
low- temperature so lder and f lux that would make thermal -shock reduct ion and mul t ip le re f lows feas ib le .
The ar t ic le on low- temperature so lder descr ibes the examinat ion of a l loys that mel t a t temperatures
between step and 183Â°C. Finding an al loy with a low-temperature melt ing point is only the f i rst step in
deve lop ing a low- temperature so lder ing process. A su i tab le f lux must be found that ac t iva tes a t temper
atures electrical con 30Â°C below the melting point of the solder alloy and bonds the solder to the electrical con
ductor . The second ar t ic le descr ibes the invest igat ion into th is a l loy- f lux interact ion.

C.L Leath
Managing Edi tor

Cover
A computer-co lor ized and embossed photograph of a cracked 58Bi42Sn solder jo in t , showing that the
b r i t t l e o f o f t he B i - r i ch phase (l i gh t l y co lo red phase) was t he cause o f t he b r i t t l e f a i l u re o f t he
solder (see art icle, page 91).

What's Ahead
In the October issue we' l l have n ine ar t ic les on te lecommunicat ion network management . The ar t ic les
wi l l focus on the tools of fered by HP for developing telecommunicat ion network management appl icat ions.
Other description include an overview of HP's storage management solutions, a description of HP's first gigabit
F ibre Channel contro l ler for connect ing host systems to h igh-performance networks and mass-storage
per ipherals, and an introduct ion to the Fibre Channel standard.

August 1990 Hewlett-Packard Journal 5

© Copr. 1949-1998 Hewlett-Packard Co.

Implementing the Capability Maturity
Model for Software Development
Continuous support for a software development improvement effort
requires at least two things: a clearly defined Â¡mprovement model and
success at applying the model in the organization. One HP division was
able to apply one such model and achieve measurable success on several
product releases.

by Douglas E. Lowe and Guy M. Cox

Manufacturing entities are always looking for more efficient
ways of producing products because they realize that an effi
cient process yields lower costs, better quality, and increased
customer satisfaction. Software manufacturers are no differ
ent from their hardware counterparts in that they want to
use the best software development process available. The
Capability Maturity Model (CMM) for software, developed at
the Software Engineering Institute (SEI) at Carnegie-Mellon
University, is a process model that provides excellent guid
ance to improve software development processes.

The Model
CMM is used to evaluate and improve the way software is
built and maintained. First released in 1987, CMM was origi
nally based on the experience of members of SEI. CMM has
been continuously improved and refined since 1987 through
successive revisions based on industrywide and worldwide
input. Yet, even though it is based on experience, it is only a
model, which is an abstract, general framework describing
the processes used to develop and maintain software. Like
any model, it requires interpretation to be used in a specific
context. The approach used by CMM is to describe the prin
ciples and leave their implementation up to the managers
and technical staff of each organization, who will tailor CMM
according to the culture and the experiences of their own
environment.

Perhaps the most well-known aspect of the CMM is its de
scription of five stages, or maturity levels, of an organiza
tion's software process (see Fig. 1). The first level of the
software development process, referred to simply as the
initial level, is described as ad hoc, poorly controlled, and
often with unpredictable results in terms of schedule, effort,
and quality. At level 2, the repeatable level, the outputs of the
process are consistent (in terms of schedule, effort, and
quality) and basic controls are in place, but the processes
that produce those results are not defined or understood.

1 SEI is U.S. by the U.S. Department of Defense and was establ ished in 1 984 by the U.S.
Congress as a federally funded research organization. Its mission is to provide leadership in
advancing the state of the practice of software engineering to improve the quality of systems
that depend on software.

Optimizing (Continually Improving Processi

â€¢ Process Change Management
â€¢ Technology Change Management
â€¢ Defect Prevention

Level 4

Managed (Predictable Process)

* S o f t w a r e Q u a l i t y M a n a g e m e n t
Quanti tat ive Process Management

Defined (Standard, Consistent Process)

Peer Reviews
Software Product Engineering
Intergroup Coordination
Integrated Sof tware Management
Training Program
Organization Process Definit ion
Organization Process Focus

Level 2

Repeatable (Discipl ined Process)

I Sof tware Conf igurat ion Management
â€¢ Software Quality Assurance
â€¢ Software Subcontract Management
â€¢ Software Project Tracking and Oversight
â€¢ Software Project Planning

Requirements Management

Initial (Ad Hoc, Chaotic)

Manager ia l Processes
Technical Processes

Fig. 1. The five levels of the Capability Maturity Model (CMM).
The items listed at each level are called key process areas. These
areas determine an organization's software development maturity.

6 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Level 3. the defined level, is the point at which the software
engineering practices that lead to consistent output are
known and understood and are used across the whole orga
nization. The managed level, or level 4. is where the defined
elements from level 3 are quantitatively instrumented so
that level 5. the optimizing level, can be achieved. Level 5
exists in organizations in which the development process
operates smoothly as a matter of routine and continuous
process improvement is conducted on the defined and quan
tified processes established in the previous levels.

Thus, CMM is seen as a maturity or growth model in which
an organization works its way up the five levels and, even
after having attained level 5, is still in the process of contin
ually improving and maturing.

Each of the five levels is also defined by the key processes
associated with it. There are 18 key process areas that make
up the five levels (see Fig. 1). These processes were chosen
because of their effectiveness in improving an organization's
software process capability. They are considered to be re
quirements for achieving a maturity level.

Managerial processes are those that primarily affect the way
management operates to make decisions and control the
project. Technical processes are those that primarily affect
the way engineers operate to perform the technical and
engineering work.

CMM provides a structure for each of the key process areas
(see Fig. 2). Also, each key process area has one or more
goals that are considered important for enhancing process
capability. Fig. 3 shows the goals for three of the key process
areas in level 2.

Process Capability:

Discipl ined process

G o a M :

Software est imates are
documented for use in

planning and tracking the
software project.

Implementation or
Institutionalization

Indicates Maturity Level:

Level 2 (Repeatable)
M Â « H

Contains

Achieves Key Process Area:

Software Project Planning
â€¢M

Organized by

Addresses Common Feature:

Activit ies Performed
â€¢ ̂

Contains

Infrastructure
or Activities

Describes

Key Practice:

Activity 9. Estimates for the
size of the software work
products (or changes to the
s ize of sof tware work prod
ucts) are derived according
to a documented procedure.

Fig. key The elements that make up the structure of the level-2 key
process area: Software Project Planning. Each key process area has
a similar set of elements.

Level 2: Repeatable. Basic project management processes are established to
t rack cost schedule, and funct ional i ty The necessary process discipl ine is in
place to repeat earl ier successes on projects with similar applicat ions.

Requirements Management

1. Requirements are control led to establ ish a basel ine for engineering
and management use.

2. Plans, products, and activit ies are kept consistent with the requirements.

Software Project Planning

1. Estimates are documented for use in planning and tracking.

2 Project act iv i t ies and commitments are planned and documented.

3. Affected groups and individuals agree to their commitments related
to the project

Software Project Tracking

1. Actual results and performances are tracked against the software plans.

2 . Correct ive act ions are taken and managed to closure when actual
results and performance deviate significantly from the plans.

3. Changes to software commitments are agreed to by the affected groups
and individuals.

Fig. 3. The list of goals for three of the key process areas for
level-2 CMM compliance.

Finally, each key area has five common features or attributes:
â€¢ Commitment to perform describes the actions needed to

ensure that the process is established and will endure and
typically involves policies and senior management sponsor
ship.

â€¢ Ability to perform describes the preconditions that must
exist in the project or organization to implement the soft
ware process competently. Ability to perform typically
involves resources, organizational structures, and training.

â€¢ Activities performed describes the roles and procedures
necessary to implement a key process area. These typically
involve establishing plans and procedures, performing the
work, tracking it, and taking corrective actions as necessary.

â€¢ Measurement and analysis describes the need to measure
the process and analyze the measurements.

â€¢ Verifying implementation describes the steps needed to
ensure that the activities are performed in compliance with
the process that has been established. Verification typically
encompasses reviews and audits by management and soft
ware quality assurance.

The intent of CMM is to describe what needs to be done to
develop and maintain software reliably and well, not how to
do it. CMM further describes practices that contribute to
satisfying the intent of these attributes for each key process
area. Any organization can use alternative practices to ac
complish the CMM goals.

The Challenge
It usually takes most organizations about two to three years
to go from level- 1 to level-2 CMM compliance. However,
based on very sound business reasons, our general manager
at HP's Software Engineering Systems Division (SESD) com
mitted us to reaching level 3 in 36 months. To show a com
mitment to this aggressively scheduled task, three people
were assigned to the project.

August 1996 Hewlett-Packard Journal 7

© Copr. 1949-1998 Hewlett-Packard Co.

During the planning stage, we discovered that because this
was such a reasonable program, we could complete level 2
in less than 12 months with less than three full-time people.
Perhaps more important, we found that this program could
provide immediate benefits.

In this article we describe how our product teams reached
level-2 CMM compliance within a few months of starting the
project, beginning with investigating the project in September
and continuing with implementation in November 1994.
By May of 1995 we had completed two deployment cycles
with the product teams, and our internal audits of the teams'
processes verified that we were operating at level-2 CMM.
After several more audits of all the product teams, we found
that the organization was operating at 100% level-2 CCM by
August 1995. By May 1996 SESD had taken major steps
toward achieving level 3 and is on track to achieve level 3
in 36 months. We expect that our description of how we
accomplished this will provide insight for other organiza
tions trying to achieve similar improvement in their soft
ware development processes.

The Improvement Project
HP's Software Engineering Systems Division (SESD) pro
duces UNIXÂ® software development tools, including Soft-
Bench, C, C++, COBOL, UIM/X, HP Distributed Smalltalk,1
and configuration management tools. At SESD, software
engineers work together in cross-functional teams of 10 to
15 engineers. The cross-functional teams are made up of
representatives from R&D, marketing, and learning products.
These teams report to two business teams, one for the tech
nical market and one for the commercial market. A combined
quality and productivity function completes the organiza
tional picture.

For several years SESD has attempted to change and improve
its software engineering process. However, like most organi
zations the development priorities were to get products out
first and work on improvement if time permitted. Usually,
there was very little time to work on improvement. The
development priority for SESD is still to get the product out
(as it should be), but the software engineering process is
seen as an integral part of achieving that priority.

When we began this project SESD had in place and in use a
standard software life cycle, excellent software development
tools, and good practices relative to configuration manage
ment, defect management, inspections, coding, and testing.
SESD also had an excellent customer satisfaction program
in progress, and a basic metrics collection program in place.

However, there were still weaknesses in our engineering
process. It took a long time to define products and our
design process needed some improvement. The life cycle
was defined, but there was a lack of procedures for perform
ing work and a lack of engineering discipline for following
defined processes. As a result, products were consistently
taking longer than expected, product completion dates were
missed, and many features appeared in a product that weren't
originally planned.

There was expert help available from HP Corporate Engi
neering's software initiative program. HP's software initiative
program has built expertise in software process areas that
are critical to software improvement, and we were able to

enlist the help of this organization in the early stages of our
project.

HP's software initiative group is a team of engineering and
management experts who deliver knowledge and expertise
through consulting in software engineering practices. The
software initiative team works with multiple levels of the
organization to optimize the organization's investment in
development capability, accelerating the rate of making last
ing strategic improvements and reducing the risk of change.

Beginning with the End in Mind
As mentioned above, we knew that it would be difficult to
achieve level-3 CMM compliance in 36 months based on the
experiences of other organizations inside and outside HP.
Our problem was one of finding a way to institute process
changes in an orderly way without adding major risks to the
product teams' execution of their projects.

Adding to the sense of urgency were the very real business
goals that needed to be achieved for SESD to be fully suc
cessful. The critical business issues were product time to
market and quality improvement. These issues were evident
in the past performance of the product teams in delivering
products within an 18-to-24-month window and in the diffi
culty of delivering products that addressed major customer
satisfaction issues. Responding to these critical business
issues provided the real endpoint and goal that the entire
organization could work to achieve.

The SoftBench2 product team, which was the first group
within our division to begin applying CMM level 2, had a
business goal of releasing an update in a 12-month cycle,
which would mean a 6-to-12-month reduction in typical
cycle time. The team also had additional goals of reducing
the number of lines of code in the product, delivering three
major customer satisfaction enhancements and three com
petitive enhancements, and fixing all major customer re
ported problems.

We designed the software improvement project to help sup
port the goals of the SoftBench product. The life cycle and
the processes were defined to map into the objectives of a
12-month release cycle, provide methods for requirements
analysis and specification in a short period, and provide
aggressive management of defects during the development
process.

Investigation: Training and Planning

To evaluate our current practices we used a technique called
a software process profile, which was developed by HP in
collaboration with the Software Engineering Institute at
Carnegie-Mellon University. The process profile is an assess
ment of the state of an organization's software development
process, identifying strengths and weaknesses, highlighting
the process improvements the organization values most, and
recommending areas for change. The profile uses CMM as
the standard for evaluating the software process. Using ques
tionnaires and open-ended interviews, it provides results for
all eighteen of the key process areas shown in Fig 1.

8 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Level 3: Defined

Peer Reviews

Software Product Engineering

Intergroup Coordination

Integrated Sof tware Management

Training Program

Organization Process Definit ion

Organization Process Focus

N o t P a r t i a l l y F u l l y
S a t i s f i e d ; S a t i s f i e d S a t i s f i e d

Level 2: Repeatable

Conf igurat ion Management

Quality Assurance

Subcontract Management

Project Tracking

Project Planning

Requirements Management

Fully
Satisfied

Fig. 4. A software process profile
indicating the compliance of SESD
to the requirements of levels 2 and
3 of CMM at the time the software
improvement project began.

To complete the profile, engineers and managers in an orga
nization must fill in a questionnaire that is designed to evalu
ate that organization's software process maturity against the
CMM requirements. The results of this questionnaire are
compiled into a software process profile for the organization.
Fig. 4 shows SESD's software process profile.

We selected a representative group of 30 engineers and man
agers to participate in the assessment and, over a period of
two days, we provided a short overview training session on
CMM and a two-hour period for small groups to answer the
assessment questions.

An example of a typical question from the project tracking
and oversight area asks the participant:

"Does someone review the actual project results
regularly with your section and lab managers?"

1 -Almost Always 2-Often 3-Seldom
4-Almost Never 5-Doesn't Apply 6-Don't Know

For SESD, the process profile results (Fig. 4) indicated that
four level-2 process areas were partially satisfied and two
areas, requirements management and subcontract manage
ment, were areas that were not satisfied at all. Out of the
seven level-3 processes, SESD partially satisfied only one
area â€” peer reviews. These results meant that our organiza
tion would need to focus on implementing improved prac
tices for all of the level-2 key process areas.

After the results were processed, we held several review
sessions with engineers and managers to explain what the
results meant. In one of the early sessions we asked the
attendees to help us identify the benefits of improving our
performance in each area and the roadblocks to achieving

the requirements in each area. For example, Table I shows
the assessment results from the software project tracking
and oversight key process area.

T a b l e I
A s s e s s m e n t R e s u l t s f o r S o f t w a r e P r o j e c t

T r a c k i n g a n d O v e r s i g h t

P e r c e n t o f S u r v e y
R e s p o n d e n t s

S u r v e y Q u e s t i o n s F u l l y P a r t i a l N o t

A r e t h e p r o j e c t ' s p l a n n e d a c t i v i - 4 3 2 4 3 3
ties and deliverables tracked
(e.g., schedule, effort, and
tests)?

A r e t h e a c t u a l r e s u l t s c o m p a r e d 1 0 1 9 7 1
to your estimates throughout the
project?

I f t he r e i s a va r i ance , does some- 14 38 48
one take corrective action or
explain why the variance has
occurred?

A r e c h a n g e s t o t h e a c t i v i t i e s , 1 9 5 8 2 3
deliverables, and schedule
discussed with the people who
will be affected?

D o e s s o m e o n e r e v i e w t h e p r o j e c t 1 8 1 8 6 4
results regularly with your sec
tion and lab managers?

August 1996 Hewlett-Packard Journal 9

© Copr. 1949-1998 Hewlett-Packard Co.

We found that the assessment process was an important
element for describing the improvements needed and deter
mining how we should go about making the improvements.
It quickly focused the entire organization on an improvement
goal for our software processes and provided the starting
point for getting participation in planning what actions we
needed to take.

Applying the CMM Model Effectively
One of the critical steps in getting started was to understand
CMM in detail. Over a period of several weeks three process
consultants met daily to review the CMM specifications,
develop our interpretation of the model, and translate it into
language that could be applied within our organization.
This was an important step because CMM contains many
practices that are better suited to large organizations and it
was necessary to interpret which of these practices would
apply to our organization. Also, during these meetings ideas
of how best to deploy these practices were developed.

The process consultants examined each of the key process
areas and decided what would be required to define our
processes in a way that satisfied the requirements for level-2
CMM compliance. Several discoveries were made in the
course of this work:

> SESD already had many process assets that could be lever
aged to support the key process area requirements. These
assets were our software life cycle, our formal documenta
tion for patches, releases, and defect management proce
dures, and several informal methods of documentation for
specifications, design, and testing.

1 We discovered the need for a process architecture when we
attempted to describe what deliverables would be needed to
support the definition of our processes. A process architec
ture is analogous to other types of engineering architectures
(e. g., buildings, software, hardware, etc.). It describes the
layout of components needed to build a system for a specific
purpose. Fig. 5 shows the process architecture elements we
used to create parts or all of the documentation needed to
provide SESD specifications for creating work products and
performing software development activities.
Level-2 CMM permits each project team to document the
procedures that will be used in developing products. By
writing a general procedure to cover the way product devel
opment is generally performed and then customizing the
procedure for each project team, if necessary, we realized
that we could save several months of effort and speed up
the eventual move to level-3 CMM, where organizational
processes must be standardized.

Formal Project Planning and Decisions
To give this improvement project the greatest chance of suc
cess and reduce the overall risk for the project, we developed
a formal project plan covering every phase of the definitional
work and the timing for deployment of the processes. This
plan was reviewed and approved by the division staff before
beginning the implementation.

Several key decisions needed to be made about how the proj
ect deliverables would be designed, reviewed, approved, and
deployed into the product development team's operations.

' The software consultants were originally members of the SESD software quality assurance
group. management had extensive experience in software engineering practices management and
software consulting.

Element Type

Policy

Procedure

Checklist

Template

Training

Work Product

Purpose

Speci f ies what wi l l happen
Sets the cultural expectations
"That's how we do things around here"

Specif ies how i t wi l l happen
A set of steps for doing something
May speci fy who does what when

Specif ies what or how in abbreviated format
A short form of procedures for easy reference or
verif ication of actions

Specif ies the content or quali ty of what wil l happen
Provides guidance for creating necessary work products

Provides organized information on processes that
individuals need to perform their jobs
Covers policies, procedures, checklists, templates, or
instructions
May be formal classroom or informal orientation

Specifies a plan or results
Created as an output of applying a defined process
May need to be "managed and control led"

Fig. 5. The process architectural elements and their purpose.

Several models for process creation, approval, and deploy
ment were examined and discussed before it was decided to
use a define-deploy approach that mapped into each devel
opment project's life cycle. This allowed the improvement
project team to stage the work by life cycle phase (i.e., re
quirements, design, implementation, and test). This model
also provided a structure within which process deliverables
could be refined and improved.

Measuring Progress
Methods for measuring the progress of the project needed to
be established. The only way to do this was through auditing
the product development teams after each major check
point. Thus, we decided that a thorough audit of how the
product development teams conducted work should be
done after checkpoints when the pressure to complete the
checkpoint had subsided and the team would be more open
to listening to the audit findings. These findings were re
viewed with the management team and any major issues
were addressed by assigning owners and developing action
plans. The results of the audits were summarized and pub
lished within the division to let everyone understand the
accomplishments of the program.

Measurement of progress in each key process area was per
formed by interviewing project team members and using a
checklist of requirements for that phase of the project. This
checklist was based on the practices needed to satisfy the
goals for each of the key process areas that apply to level-2
CMM.

From previous experience, we realized that communication
would play an increasingly important role for the project's
success as new procedures and supporting documentation
were developed. We decided that all of the documentation
would be integrated into the software life cycle so that there
would be just one place to find the information. Secondly,
this documentation would all be online and the Mosaic

A define-deploy approach means that the processes are defined in the project team just
be fo re t o Th i s a l l ows p rocesses needed fo r t he requ i remen ts phase to be de f i ned
and deployed as the requirements phase of the project is executed.

10 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

browser coupled with our configuration management tool
would be used to store and control the documents and pro
vide an easily navigable interface for users.

Implementation: Managing the Change

Getting an organization to adopt the changes necessary for
level-2 CMM compliance was an important step in imple
menting our new processes. Defining the new policies and
procedures and then providing training in these new policies
and procedures was necessary but not sufficient. Changing
the processes involved changing the culture, and this is
where it was critical to get everyone thinking about the
changes in a positive way. We approached this aspect of
change management by deciding we would try to accom
plish the following goals:

> Demonstrate success with a phased approach
> Leverage existing processes and minimize some areas of

change
' Make the contributions of everyone very visible.

Demonstrate Success with a Phased Approach
The software improvement project needed to show results
as early as possible to capture the attention of the organiza
tion and to keep things focused on process improvement. To
accomplish the objective of showing results early, the deploy
ment stages of the improvement project were designed to be
about three months each. This tactic provided visible re
sults and feedback to the organization by coinciding with
the life cycle phases of the SoftBench product.

The implementation stage of the improvement project con
sisted of a series of short steps for defining, reviewing, and
approving the policies, procedures, and templates before
deploying them to the product development teams. Commu
nicating what was expected, describing changes from the
way we used to do things, and providing group or individual
training in new methods were very important steps in the
way we deployed the process changes. We knew that the
project teams needed to understand the rules early so that
the project could proceed smoothly.

An Example: The Requirements Phase
During the requirements phase of the product life cycle, the
key process areas we worked on were practices for require
ments management and project planning. By using readily
available customer survey data, structured processes, man
agement review milestones, and training, we were able to
reduce the time for the requirements phase from what was
historically a six-to-eight-month process to three months.
For the SoftBench teams, it was important to gain a deeper
understanding quickly of the new features demanded by our
customers and to translate this information into work steps
that would be needed in the design phase.

One of the problems the teams faced was reducing the list of
possible things to accomplish to a few high-impact require
ments that could be accomplished within the schedule. Thus,
to collect requirements information, survey questionnaires

' Deployment was a term we used to mean communication, training, and consulting with the
product the team, followed by application of the procedures or templates by the
engineers and managers. Templates consisted of the structured outlines for the work products,
such as design specifications, test plans, data sheets, and so on.

based on a user-centered design methodology were created
to facilitate rapid feedback from customers using telephone
surveys. The process consultants designed standard tem
plates for the engineers to describe the customer require
ments and the Mosaic browser was used to post work in
progress, allowing managers to review the work. Fig. 6
shows a portion of one of these templates.

One criterion for determining what new features to include
was an estimation of the resources and effort needed to
design the new features. A standard procedure was provided
for the engineers to do this (Fig. 7). These estimates were
then available when the managers needed them for decision
making and for the engineers to do more detailed planning
of the design phase activities.

The decision making process was essential for narrowing
the scope of the project and finalizing the work commit
ments for the next phase of the product development.

An Example: The Design Phase
During the design phase of the product life cycle, the key
process areas were the practices in project tracking (i.e.,
managing and controlling work products, especially changes
in requirements), and in project planning for the next phase.
The success in applying the software life cycle and CMM
level-2 processes to this phase of the work was evident from
two major accomplishments. The first was that the team
completed every aspect of the design work, including re
views and inspections, in three months. In the past, design
specifications and design reviews were cut short because of
schedule pressures. The team was also able to make deci
sions early in the project about eliminating features that
would be too costly to implement. For example, unit testing
capability was a feature considered for the product, but it
was eliminated during the requirements phase because of
staffing trade-offs. This action substantially reduced the risk
of schedule slippage later on.

Leverage Excellence to Minimize Change
As mentioned earlier, during the assessment and planning of
the improvement project, we recognized that many practices
used by SESD were already at level-2 CMM compliance.
Therefore, it was important to leverage as many of the cur
rent practices and procedures to minimize the effort required
and reduce the amount of change being introduced. We
already had a standard software life cycle defined and in
use, an excellent software development toolset, and good
practices and tools in configuration management, defect
management, inspections, coding, and testing. Part of our
standard operations included a customer satisfaction survey
and software metrics. These were all areas that were ac
knowledged as excellent and that should be maintained and
supported.

The development environment consisted of a suite of tools
integrated with SoftBench. UIM/X (user interface Motif) was
used as a rapid prototyping tool. SoftBench provided the
framework for editing, compiling, and debugging the code.
Capabilities in SoftBench were also being used to assist in
program understanding through call graphs and documenta
tion of object-oriented designs for the new features. Inte
grated into SoftBench was a configuration management tool

August 1996 Hewlett-Packard Journal 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 6. used portion of a template containing a survey that the SoftBench product team used to solicit customer requirements.

(SoftCM) for managing source code, and the ability to ac
cess our defect tracking tool DDTs from QualTrack. Having
these tools already in place and used by the engineers was a
major factor in maintaining developer productivity while
making process changes in other areas.

Inspections and software metrics were already a well-estab
lished part of our culture. Although both of these areas are
elements of level-3 CMM and we were working on level 2,
we used them anyway because we did not want to lose the
benefits we were achieving with these practices. Because
inspections and metrics (defect tracking, schedule slippage,
and effort reporting) were institutionalized in our engineer
ing and project management practices, we recognized that

this would be a distinct advantage for us when we went to
level-3 CMM.

There were other opportunities to minimize change. These
were in the areas of software configuration management,
software quality assurance, and subcontract management.
The first two areas needed only minor changes to be level-2
compliant. Our practices in these areas were robust enough
but needed to be documented, with better definitions of
roles and responsibilities. SESD wasn't doing any software
subcontracting, so it was decided to leverage a best practice
from within HP to document a starting point for future use.

n KNCSS = Number of KNCSS (Thousand Lines of Noncomment Source Statements)

Fig. 7. A template for engineers
to estimate the documentation
delivery dates and code size of
new software components.

12 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Make Contributions Visible
Managing change requires good communication of the change,
acknowledgment of the progress made, and encouragement
toward the goal. After each product life cycle checkpoint,
the software quality assurance team performed an audit by
interviewing the product team members using a checklist
for level-2 requirements. The software quality assurance
members were actually the process consultants from SEL
They were able to bring experience and maturity to the au
dit interviewing, reporting, and follow-up consulting. Fig. 8
shows portions of the checklist for the requirements phase.

These audits had several major benefits. First, the project
team knew ahead of time that a process they used during a
phase would be objectively evaluated by an independent
team. This had the effect of elevating the importance of using
a defined process. Second, the audit interviews uncovered
critical issues and risks for the product's development that
were almost always a result of deviating from the project's
plan or processes.

Checklist: SQA Project Audit Plan for Requirements Phase

Template

Requirements Management Checkl ist

 Respons ib i l i t i es were ass igned for deve lop ing and ana lyz ing
requirements.

 S ta f f ing was suf f ic ient for developing and analyz ing requi rements .
 Adequate t ra in ing and too ls were prov ided for deve lop ing and

analyzing requirements.
_ Requirements are documented in the project data sheet .
_ Requirements were rev iewed by af fected indiv iduals and groups.

 I ssues re la ted to requ i rements were repor ted and t racked .
_ T h e a d a t a s h e e t w a s r e v i e w e d a n d a p p r o v e d a c c o r d i n g t o a

documented procedure.

Project Planning Checklist

_ Responsibi l i t ies were assigned for the planning requirements phase
activities.

 S ta f f ing was suf f ic ient for p lann ing ac t iv i t ies .
Adequate training and tools were provided for planning activit ies.

 Requ i rement phase ac t iv i t i es were documented in a requ i rements
phase plan.

 Est imates o f schedule were prepared and inc luded in the requi rements
phase schedule.

 A sof tware l i fe cyc le was ident i f ied or documented in the requ i rements
plan and the design phase plan.

 Work products for contro l of the project dur ing the requirements phase
were identif ied in the project planning documents.

 Commi tments were negot ia ted w i th the bus iness team managers and
other affected groups.

 Ex te rna l commi tments were rev iewed and approved by the bus iness
team managers.

 Respons ib i l i t i es were ass igned for deve lop ing and mainta in ing the
design phase plan.

 Adequate t ra in ing and too ls were prov ided for p lanning the des ign
phase.

 A des ign phase p lan was prepared accord ing to a documented
procedure.

 Des ign phase act iv i t ies are documented in the des ign phase p lan .
 Est imates of s ize , ef for t , and cost for design phase planning were

prepared according to a documented procedure.
 R isks were ident i f ied in the des ign p lan and cont ingency p lans were

developed.
 Requ i rements a re t raceab le in the des ign p lan .
â€” Issues related to design are reported and tracked.
â€” Design phase plans were updated to ref lect changes in requirements.

Fig. phase. Portions of the audit checklist for the requirement phase.
These checklists were used to assess the SESD life cycle against
the level-2 CMM requirements.

For example, during the audit we identified a problem with
inadequate staffing for test planning activities. The project
plan called for the completion of test plans before design
was finished. The audit found incomplete test plans for the
context feature changes before the design complete check
point. This introduced additional schedule risk because the
schedule and staffing were not accurately estimated. It
turned out that this part of the project was actually critical
path during the implementation and testing phase.

These issues and risks were reviewed by the management
team and decisions were made to take corrective actions.
This had the effect of identifying tangible contributions of
the level-2 model.

Key Results and Benefits
The improvement project to achieve level-2 CMM has had
several direct results. First, the cycle time for the SoftBench
release was reduced from 18 to 24 months to 14 months.
This resulted in a significant reduction in engineering time,
and consequently, a saving in the cost of developing the
product. While the 12-month release cycle required a little
longer than planned, the commitment date at the tune of
design completion was met with no schedule slip and no re
duction in product reliability standards. Across all of SESD's
products there was a reduction from an average of 4.6 open
serious defects at manufacturing release in 1994 to 1.6 open
serious defects per product in 1995. In fact, the product
team fixed all outstanding major customer service requests
during this period. In addition, the product team reduced the
overall code size by 12%, reduced documentation size by
35%, and delivered three major customer satisfaction im
provements and three major competitive improvements. All
of these are, of course, significant business results coming
from the level-2 CMM process. On SoftBench alone there
was a cost reduction of two million dollars per year, or a
return on investment of approximately 9 to 1.

Other results of the improvement effort are that all of the
product releases in 1995, which also met level-2 CMM com
pliance, were completed in under 12 months with no schedule
slip. the 9 shows the cycle times for similar projects over the
past was years. The average cycle time for the 1995 projects was
9.8 months, which is a 46% reduction in cycle time from the
running average of 18 months for previous years. The schedule

22.00

Calendar
Months

15

19.67

Average Cycle Time

- - '
16.00

Average Schedule Estimation Error

1.00

9.80

1990-91 1991-92 1994

Fig. 9. The average cycle times (design complete to project
complete) for projects similar to SoftBench over the last five
years.

August 1996 Hewlett-Packard Journal 13
© Copr. 1949-1998 Hewlett-Packard Co.

estimation error (from design completion to project completion)
was reduced to zero during 1995, compared with much higher
errors in previous years.

Improved Execution. In past projects, the investigation phase
usually lasted from 6 to 12 months, mainly because of the
unstructured, exploratory nature of the process used. By
adopting a formal structure (i.e., tasks and schedules), the
investigation phase was reduced to four months.

Given the 12-month release cycle, it was critical to meet the
intermediate phase deadlines to keep the project on track.
In past projects, these milestone deadlines were consistently
delayed by months. As a result of the careful planning and
tracking processes used, the SoftBench team was able to
meet the checkpoint deadlines within a very narrow margin
of error (i.e., a few weeks).

Customer Orientation. Historically, our product requirements
process had been focused on prototyping features and func
tionality that engineers identified through an infusion of
"next bench" ideas. Product marketing would test these
ideas with customers and use this feedback to select the
best set of features to include in the next release. Everyone
recognized the limitations of this approach in getting fresh
ideas and direction for a product. Process improvement
efforts were underway to define a user-centered design pro
cess that would really focus on what customers had asked
for. The major change that occurred as a result of adopting
the level-2 CMM practices is that we forced ourselves to
adopt a new paradigm in the way we acquired and evaluated
customer input.

The Ability to Respond to Changes. In most of our earlier proj
ects, when changes in requirements or personnel occurred,
there would be several weeks of confusion before revised
plans or schedules could be started. In the new model of
project management and level-2 practices, when a change
occurs the management team knows that replanning must
start immediately. Operating at level 2, the SoftBench team
was able to estimate the impact of proposed changes and

then schedule the time for engineers to replan and estimate
the new schedule. When this occurred, we did not have the
usual confusion about what to do. Instead, the team was
able to respond with confidence and with very little lost
time.

Conclusion
We believe that our circumstances and development envi
ronment are not unique. Many other organizations are trying
various quality improvement programs for software devel
opment and finding it very difficult to make the changes
necessary to be more rigorous and disciplined in their engi
neering practices. We also believe that we have discovered
many of the essential ingredients to make a software im
provement program succeed in a very short period of time.

Our work at SESD has convinced us that the Capability
Maturity Model from SEI provides an excellent framework
for defining software engineering process improvement for
a small software organization. Achieving level-2 status has
largely been a matter of establishing a direction with leader
ship from top management and then instituting a credible
program for improving the practices used by software proj
ects in planning and managing the work according to the
CMM guidelines. We believe that other organizations can
achieve similar results in one year if leadership and execu
tion of the software improvement project are a priority for
the management team.

References
1. E. for and I. Fuller, "HP Distributed Smalltalk: A Tool for
Distributed Applications," Hewlett-Packard Journal, Vol. 46, no. 2,
April 1995, pp. 85-92.
2. Hewlett-Packard Journal, Vol. 41, no. 3, June 1990, pp. 36-68.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.
OSF/Motif is a trademark of the Open Software Foundation in the U.S. and other countries.

14 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Software Failure Analysis for
High-Return Process Improvement
Decisions
Software failure analysis and root-cause analysis have become valuable
tools in enabling organizations to determine the weaknesses in their
development processes and decide what changes they need to make and
where.

by Robert B. Grady

When I was growing up, my father was fond of using sayings
to encourage me to remember important lessons. One of his
favorites was "Do you know the difference between a wise
man and a fool?" He would then go on to say that a wise man
makes a mistake only once. A fool makes the same mistake
over and over again.

Applying my father's saying to software defects, it some
times seems as if there are many "fools" among software
developers. However, there aren't. Individually, they learn
from their mistakes. What's missing is organizational learning
about our software mistakes. I guess that many organizations
have earned my dad's "fool" label.

One useful way to evaluate software defects is to transfer
process learning from individuals to organizations. It in
cludes not only analyzing software defects but also brain-
storming the root causes of those defects and incorporating
what we learn into training and process changes so that the
defects won't occur again. There are five steps:

1. Extend defect data collection to include root-cause infor
mation. Start shifting from reactive responses to defects
toward proactive responses.

2. Do failure analysis on representative organization-wide
defect data. Failure analysis is the evaluation of defect
patterns to learn process or product weaknesses.

3. Do root-cause analysis to help decide what changes must
be made. Root-cause analysis is a group reasoning process
applied to defect information to develop organizational
understanding of the causes of a particular class of defects.

4. Apply what is learned to train people and to change
development and maintenance processes.

5. Evolve failure analysis and root-cause analysis to an
effective continuous process improvement process.

How do these steps differ from other popular methods for
analyzing processes? One popular method is process assess
ments, for example, SEI (Software Engineering Institute)
process assessments. ' Most assessments document peoples'
answers to subjective questions that are designed around
somebody's model of ideal software development practices.
If such models are accurate and if peoples' answers reflect

reality, the models provide a good picture of an organiza
tion's status. Thus, the results may or may not be timely,
representative, or motivational.

The combination of failure analysis and root-cause analysis
is potentially more valuable than subjective assessments,
because it quantifies defect costs for a specific organization.
The key point to remember is that software defect data is
your most important available management information
source for software process improvement decisions. Further
more, subsequent data will provide a measurable way of
seeing results and evaluating how methods can be further
adapted when a specific set of changes is done.

Reactive Use of Defect Data (A Common Starting
Point)
After initial analysis, everyone reacts to defects either by
fixing them or by ignoring them. Customer dissatisfaction is
minimized when we react quickly to fix problems that affect
a customer's business. This is often done with fast response
to issues and by following up with patches or workarounds,
when appropriate. Some Hewlett-Packard divisions track
the resolution of "hot sites." Fig. 1 shows an example.2 Such
a chart is a valuable way to track responsiveness, but it does
little to prevent future defects. Furthermore, hot sites and
patch management are very expensive.

Short Length

Medium Length

Long Length

" I

W e e k

Fig. week. Tracking the number of hot sites during any particular week.
For example, for the week indicated there were M - N hot sites that
had been hot for a long time and N hot sites that had been hot for a
short time. Â© 1992 Prentice-Hall used with permission.

August 1996 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

- 3 0 -

- 6 0

Service Requests or Discrepancy
Requests Closed

Incoming Service Requests
or Discrepancy Requests

Progress

J u l A u g S e p O c t N o v D e c J a n F e b M a r A p r M a y J u n
9 1 9 1 9 1 9 1 9 1 9 1 9 2 9 2 9 2 9 2 9 2 9 2

Fig. 2. Incoming maintenance requests, closed maintenance
requests, and net progress for one NASA project. This figure is
reprinted by permission of the publisher from "A Software Metric
Set for Program Maintenance Management," by G. Stark, G.L.
Kern, and C. Vowell, Journal of Systems and Software, Vol 24,
p. 243. Â©1994 by Elsevier Science Inc.

Cumulative defects for long-lived software products are also
tracked. For example, Fig. 2 shows the incoming service
requests or discrepancy reports, the closed service requests
or discrepancy reports, and the net progress for one NASA
software project.3 Some HP divisions also track progress like
this,2 although HP's progress measure subtracts incoming
defects from closed defects so that positive progress repre
sents a net reduction in defects. NASA appears to do the
reverse.

Both the hot site graph and the defect closure progress
graph show reactive uses of defect data. In the examples,
the respective organizations were using the data to try to
improve their immediate customer situations. The alterna
tive is to ignore the data or to react much more slowly.

Ignoring defect data can lead to serious consequences for an
organization's business. For example, the division producing
one HP software system decided to release its product de
spite a continuing incoming defect trend during system test.
The result was a very costly update shortly after release, a
continued steady need for defect repairs, and a product with
a bad quality reputation. This is the kind of mistake that can
cause an entire product line's downfall. A recent article de
scribed how one company learned this lesson the hard way.4

Responses should not be limited only to reaction. Besides
endangering customer satisfaction and increasing costs,
here are some other dangers that could occur if reactive
processes aren't complemented with proactive steps to
eliminate defect sources:

1. People can get in the habit of emphasizing reactive think
ing. This, in turn, suggests that management finds shipping
defective products acceptable.

2. Managers get in the habit of primarily rewarding reactive
behavior. This further reenforces fixing defects late in devel
opment or after release. Late fixes are both costly and dis
ruptive.

3. People place blame too easily in highly reactive environ
ments because of accompanying pressure or stress. This is
demoralizing, since the root causes of most defects are poor
training, documentation, or processes, not individual incom
petence.

16 August 1996 Hewlett-Packard Journal

Remember that effectively reacting to defects is an important
part of successfully producing software products. However,
because business conditions change rapidly, many organiza
tions can't seem to find the time to break old habits of using
defect data reactively without considering ways of eliminat
ing similar future problems. The elimination of the causes of
potential future defects must be included in any successful
long-term business strategy.

Failure Analysis (Changing Your Mental Frame of
Reference)
The proactive use of defect data to eliminate the root causes
of software defects starts with a change in mental frame of
reference. The reactive frame generally focuses on single
defects and asks "How much do they hurt?" It also considers
how important it is to fix particular defects compared with
others and asks "When must they be fixed?" The proactive
frame asks, "What caused those defects in the first place?
Which ones cause the greatest resource drain? How can we
avoid them next time?"

Various reports have described successful efforts to analyze
defects, their causes, and proposed solutions. But the ter
minology among them has differed, and the definitions could
mean different things to different people. In the fall of 1986,
the HP Software Metrics Council addressed the definition of
standard categories of defect causes. Our goal was to provide
standard defect terminology that different HP projects and
labs could use to report, analyze, and focus efforts to elimi
nate defects and their root causes. Fig. 3 is the model that
has evolved from our original definitions.2

The model is used by selecting one descriptor each from
origin, type, and mode for each defect report as it is resolved.
For example, a defect might be a design defect in which part
of the user interface described in the internal specification
was missing. Another defect might be a coding defect in
which some logic was wrong.

Fig. 4 gives some idea of how defects vary from one entity to
another.5 The different shadings reflect the origin part of
Fig. 3. The pie wedges come from the middle layer of Fig. 3,
the defect types. The eight largest sources of defects for
different HP divisions are shown in each pie. All four results
profile defects found only during system and integration
tests.

We can immediately see from Fig. 4 that the sources of de
fects vary greatly across the organizations. No two pie charts
are alike. These differences are not surprising. If everyone
developed the same way and experienced the same problems,
then we would have fixed those problems by now. Instead,
there are many different environments. While many proposed
solutions to our problems apply to different situations, they
don't necessarily apply equally well to all problems or all
environments.

Some of the differences are because of inconsistencies in
peoples' use of the origin and type definitions. Because the
definitions are just a means to focus process improvement
efforts on the costliest rework areas, groups resolve incon
sistencies when they define root causes to problems and
brainstorm potential fixes. It is the triggering of these dis
cussions that makes the data in Fig. 4 so important. Discuss
ing root causes is a way to instill a process improvement

© Copr. 1949-1998 Hewlett-Packard Co.

Specif icat ions/
Requirements

Origin
(Where?)

Requirements or
Specif icat ions

Functionality

Environmental
Support Documentation

Hardware Inter face

Software Interface

User Interface

Functional
Description

Process (Interprocess)
Communications

Data Definit ion

Module Design

Logic Description

Error Checking

Computation

Data Handling

Module In ter face /
Implementat ion

Test Software

Test Hardware

Development Tools

Integrat ion Software

Type
(What?)

Mode
(Why?) M i s s i n g U n c l e a r W r o n g C h a n g e d B e t t e r W a y

Fig. 3. permission. of software defects. Â© 1992 Prentice-Hall used with permission.

attitude in an organization. Defect data will provide a mea
surable basis for decisions that must be made. By continuing
to track defect data, an organization can also measure how
successful its solutions are.

Acting on Causal Data
Collecting defect source data is only the first step. Persuasive
as the data might be, improvements won't happen automati
cally. Both managers and engineers must agree on what the
data means and the importance of acting on it. One of the
best ways to help ensure that this happens is to tie proposed
improvements to stated business goals. This also keeps
improvement priorities high enough to help ensure sustained
management support.

Besides management support, some first-line managers and
engineers affected by a proposed change must be motivated
to do something and be assigned responsibility to plan and do
the necessary changes. Finally, as for any effective project,
there must be a way of monitoring progress and gauging
success.

As a group, software developers now have several decades
of software development experience. It is time to break out
of our pressure-driven reactive habits and use our accumu
lated knowledge to drive lasting improvements. Failure anal
ysis changes the way managers and developers look at soft
ware defects. This finally opens the way to a proactive frame
of reference.

Root-Cause Analysis Processes
There are many possible ways to analyze root-cause data.
Any successful way must be sensitive to project pressures

and personnel motivation. HP has used several approaches
in different organizations. For this discussion, I will label
three that seem to evolve naturally from each other as one-

shot root-cause analysis, post-project root-cause analysis,

and continuous process improvement cycle. These three
approaches include many common steps. Since the first is
an introductory process, the most detailed explanation is
saved for the post-project root-cause analysis.

One-Shot Root-Cause Analysis
A good starting approach for organizations that have not
previously categorized their defect data by root causes is a
one-shot root-cause analysis. This approach minimizes the
amount of organizational effort invested by using someone
from outside the organization to facilitate the process.
At HP most divisions have defect tracking systems with
complete enough information to extract such data.

The one-shot process has six steps.

1. Introduce a group of engineers and managers to the
failure-analysis model (Fig. 3) and the root-cause analysis
process. (About one hour.) Make it clear that the goals of
the one-shot process are to:

> Create a rough picture of divisional defect patterns.
â€¢ Identify some potential improvement opportunities.

2. Select 50 to 75 defects from the defect tracking system
using a random process. Make sure that the team thinks the
defects have enough information to enable them to extract
the necessary causal information. (About two hours some
time before the meeting.)

August 1996 Hewlett-Packard Journal 17

© Copr. 1949-1998 Hewlett-Packard Co.

Other Code 10.8% Data Handling 6%

Computation 18.0%

Error Checking 13.7%

Documentation 19.2%

Software
Interface 14.5%

â€” Requirements 4.8%

Hardware Interface 3.6%

Process/Interprocess 5.4%

User Interface 23.4%

Functional Description 11.3%

Logic 6.4%
Data Handling
4.5%

Module
Interface 4.2%

Requirements 22.0%

Logic 32.2%

Module Design 17.0%

Data Definit ion
4.0%

Process/
Interprocess

10.0%

Software Interface 23.0% â€” '

|â€” Logic Description 4.0%

Data Handling 16.0%

Other Code 8.0%

Data Handling 20.0%

Logic 28.8%

Requirements 18.0%

Process/Interprocess 6.2%

Module Design 7.5%

Computation 15.0%

User Interface 10.0%

Requirements 7.5%

Functionality 5.0%

Specif icat ions/
Requirements Design Code Documentation

Fig. 4. Sources of defects found during testing in four HP divisions.

3. Have the people in the group classify one defect per
person and discuss the findings as a group. Then have them
classify enough defects so that you have about 50 total.
Draw a pie chart of the top eight defect types. (About two
hours.)

4. Pick two defect types to focus on. Create fishbone dia
grams from the combined root causes and additional com
ments. A fishbone diagram is a brainstorming tool used to
combine and organize group thoughts.2-6 (About half an
hour.)

5. Develop some recommendations for improvements.
(About half an hour)

6. Present the results and recommendations to management.
Make assignments to do initial changes. (About one hour)

Participants in this process have been generally surprised
and excited that they could learn so much in a very short
time. They have also been uniformly interested in adopting
the analysis process permanently. How quickly they have
followed through has varied, depending on many business
variables such as immediate product commitments, other
in-progress changes, or a tight economic climate.

Post-Project Root-Cause Analysis
The major difference between this process and the one-shot
process is that organizations that start with the one-shot

process have not previously collected causal data. Organiza
tions that already collect failure-analysis data and have an
understanding of their past defect patterns analyze their
data and act on their results more efficiently. The steps in
this approach follow the meeting outline shown in Fig. 5.

Premeeting
â€¢ Identify the division's primary business goal.
â€¢ Have the division champion and root-cause facilitator analyze data.
â€¢ Have the champion send out the meeting announcement and

instructions to engineers.
o Pick two defects from their code that have been chosen from the

defect categories.
o Think of ways to prevent or f ind defects sooner.

Meet ing
â€¢ State the meeting's goal (use insights gained from failure analysis

data to improve development and support practices).
â€¢ Perform issues selection (10 minutes).
â€¢ Review the defects brought to the meeting (15 minutes).
â€¢ Perform analysis (15 minutes).
â€¢ Take a break (10 minutes).
â€¢ Brainstorm solutions (10 minutes).
â€¢ Test for commitment (10 minutes).
â€¢ Plan for change (10 minutes).

Postmeeting
â€¢ Have the division champion and root-cause facilitator review

meeting process.
â€¢ Have the division champion capture software development process

baseline data.

Fig. 5. Root-cause analysis meeting outline.

18 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Note that the times shown in Fig. 5 are intended to force the
meeting to keep moving. It is best to schedule a full two
hours, since all that time will be needed. The example used
here to illustrate this process came from a root-cause analysis
meeting done at an HP division shortly after a team at that
division released a new product.

Premeeting:
â€¢ Identify the organization's primary business goal. This goal

is an important input when prioritizing which high-level
defect causes should be addressed first. It also helps to
frame management presentations to ensure sustained man
agement support. Typical business goals might be framed
around maximizing a particular customer group's satisfac
tion, evolving a product line to some future state, or control
ling costs or schedule to get new customers.

â€¢ The division champion and root-cause facilitator analyze
the data. The champion is a person who promotes a process
or improvement activity, removes obstacles, enthusiastically
supports implementers and users, and leads through active
involvement. The root-cause facilitator is a person who runs
the root-cause analysis meeting. The champion and the
facilitator need to be skilled at meeting processes and
dynamics and be familiar with software development and
common defect types. One simple data-analysis approach is
to enter the data into an electronic spreadsheet. Draw pie
charts of the top eight defect types by quantity and by find
and fix effort (either actual or estimated). Fig. 6 shows the
system-test data for four projects at one HP division. The
shading represents defect origin information, and the pie
wedges are defect types. The left pie chart shows the eight
most frequently recorded causes of defects. The right pie
chart shows the data adjusted to reflect that design and
specification defects found during system test cost much
more to fix than coding defects do. Since the HP division
that provided this data did not collect their defect-fix times,
the weighting factors are based on six industry studies sum
marized in reference 2. The right pie chart in Fig. 6 was pre
pared by multiplying the left pie chart wedge percentages
(or counts) by the appropriate weighting factor and then
converting back to 100%.

' Select two defect types to brainstorm based on the best
estimate of the organization's concern or readiness to imple
ment solutions. The two defect types selected for this meet
ing were user-interface defects and specifications defects.
The specifications defect type was picked because it was
the largest division category (64 out of 476 defects were
classified as specifications defect types for this project
team). User-interface defects were picked because they
were the largest category (110 defects) that the particular
brainstorming team had experienced. Both categories repre
sented significant divisional improvement opportunities.

â€¢ Send out instructions to engineers. The organization cham
pion should have each engineer bring hard-copy information
on two defects from their code, based on the chosen types.
Tell invitees to think back to the most likely root cause for
each defect and to propose at least one way to prevent or
find each defect sooner.

Meeting:
â€¢ State the meeting's goal (use insights gained from failure-

analysis data to improve the organization's development
and maintenance practices). Present the defect categoriza
tion model, show typical patterns for other organizations,
and show your organization's pattern. Set a positive tone for
the meeting. Remind participants that they will be looking
at process flaws, and that they must avoid even joking com
ments that might belittle the data or solutions discussed.

â€¢ Issues selection. Reiterate the reasons for selecting this
meeting's particular defect types. Let people make initial
comments. Address concerns about potential data inaccura
cies (if they come up at this point) by emphasizing the solu
tion-oriented nature of the brainstorming process. Suggest
that inaccuracies matter less when combining pie wedges to
consider solutions. For example, for the sample division
meeting, some engineers had a hard time calling some
defects "user interface" as opposed to "specifications." We
simply used both labels for such defects during the meeting
instead of getting sidetracked on resolving the differences.
You want to get people ready to share their defects by dis
cussing a future time (like their next major product release)

Software
Interface 6%

Hardware
Interface 7.7%

Logic 20.8%
Error Checking 10.0%

Data Handling 10.5%

User Interface 10.7%

Standards 7.0%

Weighted Data

r

Error
Checking

User Interface 11. 7%

Specif ications 25.5%

Hardware Interface 7.0%
Software Interface 5.5%

Logic 7.6%

Data Handling 3.8%

Standards 2.5%

Specif ications 52.9%

Specif icat ions/
Requirements Design Code

Weighting Factors

S p e c i f i c a t i o n s 1 4 . 5
D e s i g n 6 . 2 5
C o d e 2 . 5
D o c u m e n t a t i o n 1

Fig. 6. Top eight causes of defects for one division.

August 1996 1 lewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

when they will have done something in their process to
eliminate the reasons for the defects.

> Review the defects brought to the meeting. Have engineers
read their own defects, root causes, and solutions. The major
reason to do this is to get attendees involved in the meeting
in a nonthreatening way. Thus, don't criticize those who did
not prepare, rather encourage them to contribute in real
time. Unlike inspections, root-cause analysis meetings re
quire very little preparation time for attendees. After their
first meeting, attendees will realize this, and it will be easier
to get them to review their defects before the next meeting.

Get in a creative, brainstorming mood by showing the engi
neers that all their inputs are right, and begin to form a
shared understanding of terminology and definitions, and an
acceptable level of ambiguity. This section also gives you
some idea whether there is some enthusiasm for any partic
ular defect types. You can use such energy later to motivate
action.

The following two examples are from the root-cause meeting
held by the example HP division. There were 12 engineers
and managers at this meeting.

1. User-interface defect: There was a way to select (data)
peaks by hand for another part of the product, but not for
the part being analyzed.

Cause: Features added late; unanticipated use.

Proposed way to avoid or detect sooner: Walkthrough or
review by people other than the local design team.

2. Specifications defect: Clip function doesn't copy sets of
objects.

Cause: Inherited code, neither code nor error message
existed. Highly useful feature, added, liked, but never found
its way back into specifications or designs.

Proposal to avoid or detect sooner: Do written specifica
tions and control creeping features.

> Perform analysis. Create fishbone diagrams2'6 from com
bined root causes and additional comments. Use this discus
sion to bring the group from their individual premeeting
biases regarding defects to a group consensus state. A use
ful technique for grouping the defects is to write the sug
gested causes on movable pieces of paper. Then have the
group silently move the papers into groupings of related
areas. If some of the papers move back and forth between
two groups, duplicate them. The resulting groupings are
called an affinity diagram? These are major bones of the
fishbone that the group must name. Don't expect the fish
bone to be perfect here or even complete. The next session
will potentially contribute more. Also, don't get concerned
about form. Let the group know that a fishbone is just a
means to an end, that it will be cleaned up after the meeting,
and that it is likely to change even after that point. The fish
bone diagrams in Figs. 7 and 8 are from analyzing the two
defect types mentioned above.
Take a break. This type of meeting takes a lot of energy and
focus. It's hard to sustain that for two full hours.

Guidelines Not
Fol lowed

Lack of
Feedback

No Time
Too Busy to

Do Them

Some Product Parts
Don't Resemble Others

Internal Customers
Decide Based on

Functionality
Prototype

Not Enough

Users Not Focused
on New Product

No Process to
Provide Early

Feedback

Some Panels
Not Used As

M u c h

No Central
Location

Tests Don't Model
User Environment

Adequately

Too Many
Combinations

of Features
Decided Based
on Incomplete
Customer Base

User
Interface

Corner Cases,
Part icular
Problems

Result of
Changes

Resource
Limits

Different
Perspectives

Oops! (Forgotten)

Fig. 7. Fishbone diagram for the causes of user-interface defects.

20 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Limited Understanding External Reference Specif icat ion

User Needs Not
Wel l Understood/

Interpreted

No Next
B e n c h / " Internal Chemists Not

Always Same as External

Backward
Compatibility

Not Understood

Lack of Laboratory Standard
for Documentation

\

\

Poor
Organization

NoERS
Created

S p e c i f i c a t i o n T o o N o S t a n d a r d F o r m a t
Complicated

Unforeseen
Side Effects

\
None Provided
With Inherited

Product

No Process for
Inheriting Product

Lack of Laboratory Standard
for Documentation

Inadequate Project
Communications

Interfaces to Operating
System Not Clearly

Documented

Hardware
Changes

System
Architecture

Changing
Environment

Insufficient
Training

Fig. 8. Fishbone diagram for the causes of specifications defects.

â€¢ Brainstorm solutions. Use this time as an orthogonal
approach to analyzing the issues at hand. This is also the
transition from analysis to action planning for change.
Think about what group energy can be turned into solution
planning.

For our sample team, there was a lot of group interest in
both defect types. Because a task force already was working
on specification defects as a result of the previous root-cause
analysis meetings, planning focused on user-interface defects.
In the solution list they created, some of the solutions may
seem vague. Remember that the brainstorm list is only an
intermediate step toward defining action steps. Just be sure
that the group understands what it means by the solutions.
If members seem to understand the solutions, there is no
need to slow down the brainstorming process for more pre
cise definitions. These can be added later.

The solution list they created is as follows:

1. Learn from past experience â€” track user interfaces,
particularly when changes occur.

2. When new functionality is thought of or added, always
design and specify user-interface implications.

3. Evaluate other applications.

4. Use a checklist when designing panels.

5. Use the Caseworks design tool.

6. Complete an entire feature when you do it.

7. Give a new feature to someone else to use right away.

8. Solicit thoughtful feedback. Create guidelines for feedback
and watch users use interfaces.

9. Perform usability walkthroughs and training.

10. Use standard modules (e.g., common dialog boxes).

â€¢ Test for commitment. Normally there is no need for this
section, but some organizations that are more tightly con
trolled than others may not feel empowered to implement
solutions. In these organizations, solutions should be directed
toward doing what the group feels it is empowered to do.
When those solutions are successful, they can be more
broadly or completely applied. You may need to test to iden
tify the roadblocks to change (e.g., time, schedule, etc.).

Our example HP division seemed very committed. This was
reinforced in the next step when several people volunteered
to initiate specific changes.

â€¢ Plan for change. Discuss which defects can be eliminated
with the proposed solution. Create an action plan with
responsibilities and dates. A model action plan might
contain the following steps:

1. Establish working group
2. Meet and define outputs

10/8
10/15

August 199(5 Hewlett-Packard Journal 2 1

© Copr. 1949-1998 Hewlett-Packard Co.

3. Present objectives and gather inputs 1 1/1
4. Create a change process and artifacts 12/1
5. Inspect and fix process and artifacts 12/15
6. Celebrate
7 . U s e a n d m e a s u r e r e s u l t s . 2 / 1

Our example division team decided to create guidelines for
user interface designs that addressed many of its fishbone-
diagram branches. The division's action plan consisted of
the following steps.

1. Patty will create a checklist for designing panels. (First
pass by 12/17)

2. The project manager will set expectations that all new
functionality will be accompanied by design and specification
implications. (Consider using new specification formats.)

3. Art will give the project team a presentation on Caseworks.

4. Follow up the project presentation with a discussion on
the use of prototyping.

Remember to end the meeting with a clear understanding of
ownership and responsibility. Use standard project-manage
ment techniques to plan and schedule follow-up.

Postmeeting:
> Review meeting process. The organization champion and
root-cause facilitator review the process and develop
changes to meeting format, data collection, analysis, and
responsibilities. They should redo the fishbone diagram,
being careful not to change it so much that participants no
longer feel that it is theirs. Promptly send out meeting notes
that include the fishbone diagram, responsibilities and action
items, and schedule dates.

1 Capture process baseline data. As part of structuring a
process improvement project for success, someone (the
organization champion) should record a minimum amount
of process information before and after the project.2 It is
particularly important to document the basic divisional
processes so that when the improvement is done, the group
can better understand other influences besides the particular
changes that were made. In this example, the team didn't
do this step.

Results from Eliminating Defect Root Causes
The team from the example division did their checklist and
used it during their next project. It had 30 items to watch
out for, based on their previous experience and their defects.
Fig. 9 shows an excerpt from their checklist. Over 20 percent
of the defects on their previous project had been user-inter
face defects (though the division-wide average was lower).
The results of their changes were impressive.

1 They reduced the percentage of user-interface defects in
test for their new year-long project to roughly five percent
of their total system test defects.

1 Even though the project produced 34 percent more code,
they spent 27 percent less time in test.

Of course, other improvement efforts also contributed to
their success. But the clear user interface defect reduction
showed them that their new guidelines and the attention
they paid to their interfaces were major contributors.8
Finally, the best news is that customers were very pleased

â€¢
â€¢

7. Are f ields case sensit ive or not? What implications are there?
8. Are abbreviat ions kept to a minimum?
9. Are there any spell ing mistakes on the panel?

10. Does the panel have a t i t le that matches the action of the panel?
11. Is the screen too crowded? For data entry, less than 50 percent of the

panel should be writ ing. Controls should "fi l l" the panel without
cluttering it.

12. Is help available to the user? Is there a help l ine to aid the user in
understanding the field?

13. Has the help wri ter been updated with informat ion on the new panel?
14. Are the units for edit f ie lds given when appropriate?

Fig. 9. A checklist of things to look for while developing dialog
boxes.

with the user interface, and initial product sales were very
good.

Two other project teams finished their projects recently, and
their results were equally impressive. Both projects used
new standard divisional specification templates created to
eliminate many of the root causes shown in Fig. 8. A cross-
project team task force had created two two-page specifica
tion templates (one for user-interface-oriented routines, one
for software-interface-oriented ones) that they felt would
help. Both teams substantially reduced specification defects
compared with their previous project levels. While the reason
for one team's reduction could possibly be that the project
was second-generation, the other project wasn't.

While the action steps discussed here follow those of suc
cessful improvement projects at one HP division, they can
also be applied in organizations with different defect patterns
and business needs. One of the division people who worked
with all three project teams summarized their results:
"... We must conclude that the root-cause approach is an
effective mechanism to identify and introduce change into
our software development process."9

Continuous Process Improvement Cycle
Some organizations have felt that root-cause analysis is so
beneficial that they now use it to pursue continuous process
improvement. It appears to be a natural evolution from post-
process root-cause analysis successes. This approach extends
the supporting infrastructure and requires an ongoing man
agement commitment.

The first step that an organization generally takes is to widely
adopt root-cause information logging by engineers. Causal
information is then included as a normal part of the defect-
handling process. Analysis is triggered in a variety of ways,
often by a product or system release. Sometimes it is trig
gered by the end of a development phase or a series of in
spections. It can also be triggered by an arbitrary time pe
riod. Fig. 10 shows how one HP division runs its process.
Root-cause solution teams are empowered by management
to initiate smaller process improvements.10 More far-reach
ing improvements still require lab management approval.

Knowing which defects occur most often in test or later helps
to focus improvement efforts. We saw two examples of this

22 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Release-Based
Metr ics

T ime-Based
Metr ics

Suppl ies More
Information
as Needed

Root-Cause
Solution Teams

Large-Scale
Improvement
Suggestions

Assign Introduction
and Discovery Phases
and Root Cause
Complete Lab Text
Template

Final Root
Cause

Just Do It!
Smal l - or Medium-Scale

Improvement
Implementat ions

Fig. 10. Root-cause analysis
process.

in the post-project root-cause analysis discussion. The con
tinuous process improvement cycle encourages examination
of similar data throughout the development process. Take
the HP division whose test data was shown as the lower-
right pie chart in Fig. 4. It also captured data for specifica
tions, design, and code inspections. All this data is shown in
Fig. 11. Some caution should be used in interpreting this
specific data, since it was not uniformly collected. For ex
ample, there may have been a higher percentage of design
work products than code work products, but still less than
there was code tested. Nevertheless, this figure suggests
some interesting questions and reveals possible insights.

The bars above the centerline show counts for different de
fects that were found in the same phase in which they were
created. Tall bars represent good opportunities to reduce
these defect sources significantly. For example, the large

number of module design defects suggests that a different
design technique might be needed to replace or complement
existing methods.

The bars below the line show counts for defects found in
phases after the ones in which they were created. The later
defects are found, the more expensive they are to fix. There
fore, the tall bars are sources of both better prevention and
earlier detection opportunities. For example, the require
ments, functionality, and functional description defects com
bine to suggest that designs may be changing because of
inadequate early product definition. It might be useful to use
prototypes to reduce such changes.

It is clear that this type of data can contribute to more
informed management decisions. It also provides a way of
evaluating the results of changes with better precision than

Defects

Specif ication
Inspections

Design
Inspections

Code
Inspections Test

Specif icat ions Design

Where Caused

Coding

Fig. 11. A defect profile, an
interesting way of analyzing
defect data during the continuous
process improvement phase.

August 1996 Hewlett-Packard Journal 23
© Copr. 1949-1998 Hewlett-Packard Co.

Software Fai lure Analysis Matur i ty Model

Level 5: Optimizing: Divisional goals set to achieve competitive
advantage via specif ic software capabil i t ies. People given primary
responsibil i t ies that include process improvement through root-
cause analysis.

Level 4: Managed: Root-cause analysis meetings are a regular part of
development process. There may be people responsible for improve
ments. Not all root-cause analysis meetings result in action items,
but management reviews data.

Level 3: Defined: Defect source information uniformly collected,
root-cause analysis meetings held, but not as a standard part of
process. Data validating subsequent improvements is mostly
anecdotal .

Continuous
Process

Improvement
Cycle

Post-Project
Root-Cause

Analysis

Level 2: Emerging: Defect source information collected, but not
necessari ly uniformly and not necessari ly val idated. General
agreement on what requirements, design, and coding are.

Level 1: Init ial/Ad hoc: Defect source information not regularly
collected. No recognized divisional defect source patterns.
Incomplete R&D process descriptions.

A
-Shot F
Â¡e Ana

V

T
One-Shot Root-
Cause Analysis

in the past. The amount of effort required to sustain a con
tinuous process improvement cycle will vary, depending
largely on the cost of implementing the changes suggested
by analyses. Which changes are chosen for implementation
will depend on other business aspects besides the projected
costs and benefits. Just remember that the cost to sustain
failure-analysis practice and modest improvements is small,
and the returns have proven to far outweigh those costs.2'5'8

Conclusion
Process improvement projects are started in many ways, for
many are In the software field especially, processes are
changing and adapting daily, and software products and
businesses are also rapidly evolving. One of the most effec
tive ways to both motivate and evaluate the success of net
improvements is to look at defect trends and patterns. This
paper has shown how software defect data is a powerful
management information source. Using it effectively will
help achieve an optimal balance between reacting to defect
information and proactively taking steps toward preventing
future defects. HP divisions have used several successful
approaches to handling defect causal data. The three root-
cause analysis processes described in this paper are posi
tioned against a suggested five-level maturity model shown
in Fig. 12.

Like many other best practices, failure analysis can be ap
plied with increasing levels of maturity that lead to different
possible paybacks. HP's experience says that the biggest
benefits of driving to higher maturity levels are:
Increased likelihood of success when implementing process
changes, particularly major ones
Accelerated spread of already-proven best practices
Increased potential returns because necessary infrastructure
components are in place.

Our successful results from three failure-analysis approaches
are very encouraging. While the time it takes to progress to
higher maturity levels will vary among groups, our experi
ence suggests that failure analysis starts providing returns
almost immediately, particularly in \isualizing progress.

Ironically, the main limiter to failure-analysis success is that
many managers still believe that they can quickly reduce

Fig. 12. A five-level software
failure-analysis maturity model.

total effort or schedules by 50 percent or more. As a result,
they won't invest in more modest process improvements.
This prevents them from gaining 50 percent improvements
through a series of smaller gains. Because it takes time to get
any improvement adopted organization-wide, these managers
will continue to be disappointed.

It has not been difficult to initiate use of the Fig. 3 defect
model and the root-cause analysis process. The resulting
data has led to effective, sometimes rapid, improvements.
There are few other available sources of information that are
as useful in identifying key process weaknesses specific to
an organization. This information will help to drive process
improvement decisions and commitment in an organization.

Acknowledgments
I'd like to thank Jan Grady, Debbie Caswell, Cate Meyers,
Barbara Zimmer, Dell Fields, Tom Van Slack, and Jean Mac
Leod for their helpful suggestions in the development of this
article. Finally, thanks to Brad Yackle, Marc Tischler, and
others at HP's Scientific Instrument Division for sharing
their failure-analysis results.

References
1. M. Paulk, B. Curtis, M. Chrissis, and C. Weber, "Capability
Maturity Model, Version 1.1," IEEE Software, July 1993, pp. 18-27.
2. R. Grady, Practical Software Metrics for Project Management

and Process Improvement, Prentice-Hall, Inc., 1992, pp. 37, 79, 129,
130, 137-157.
3. G. for G., L. Kern, and C. Vowell, "A Software Metric Set for
Program Maintenance Management," Journal of Systems and

Software 24, 1994, pp. 239-249.
4. D. Clark, "Change of Heart at Oracle Corp.," San Francisco

Chronicle, July 2, 1992, pp. Bl and B4.
5. R. Grady, "Practical Results from Measuring Software Quality,"
Proceedings of the ACM, Vol. 36, no. 11, November 1993, pp. 62-68.
6. K. Ishikawa, A Guide to Quality Control, Tokyo: Asian Productiv
ity Organization, 1976.
7. M. Brassard, The Memory Jogger Plus+, GOAIVQPC, 1989.
8. R. Grady, ."Successfully Applying Software Metrics," IEEE

Computer, September 1994, pp. 18-25.

9. M. Tischler, e-mail message, Aug. 10, 1994.
10. D. Blanchard, "Rework Awareness Seminar: Root-Cause
Analysis," March 12, 1992.

24 August 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

HP Press Book Excerpt

Evolutionary Fusion: A Customer-
Oriented Incremental Life Cycle for
Fusion
Creating and maintaining a consistent set of specifications that result in
software solutions that match customer's needs is always a challenge.
A method is described that breaks the software life cycle into smaller
chunks so that customer input is allowed throughout the process.

by Todd Cotton

Fusion provides a thorough and consistent set of models for
translating the specification of customer needs into a well-
structured software solution. For reasonably small projects,
the sequential steps of Fusion map well into the sequential
software life cycle commonly known as the waterfall life
cycle. For larger projects, those representative of most com
mercial and IT software projects today, an incremental life
cycle such as Evolutionary Development provides a much
better structure for managing the risks inherent in complex
software development. This paper introduces Evolutionary
Fusion, the combination of Fusion, with its advantages pro
vided by object orientation, and the key Evolutionary Devel
opment concepts of early, frequent iteration, strong customer
orientation, and dynamic plans and processes.

Although based on the best of other object-oriented meth
ods, Fusion is a relatively new method. The Fusion text1
was published in October 1994, and as a member of the
Hewlett-Packard software development community, the
author was exposed to preliminary work by Derek Coleman
and his team earlier in 1993. The response from the first few
teams to apply Fusion to their work was extremely encour
aging. As members of the Software Initiative, an internal
consulting group focused on further extending Hewlett-
Packard's software development competencies, the author
and his colleagues have helped facilitate the rapid adoption
of Fusion within Hewlett-Packard. Fusion is now used in
nearly every part of Hewlett-Packard, contributing to prod
ucts and services as diverse as network protocol drivers,
real-time instrument firmware, printer drivers, internal infor
mation systems, and even medical imaging and management
producÃ­s. This paper is based on these collected experiences.

To simplify the presentation of concepts, the paper first dis
cusses experiences gained working with small, collocated
development teams. Later sections deal with the extensions
that have been made to scale Evolutionary Fusion up for
larger teams split across geographic boundaries.

* Adapted from Object-Oriented Development a! Work: Fusion in the Heal World, Ruth Malan,
Reed Letsinger, and Derek Coleman, Editors, Hewlett-Packard Professional Books, Published
by Prentice Hall PTR, Prentice-Hall Inc., 1996, ISBN 0-13-243148-3. All rights reserved.

Need for an Alternative to the Waterfall Life Cycle
The traditional waterfall Ufe cycle for software development
has served software developers well. By breaking software
projects up into several large sequential phases â€” typically
an investigation or definition phase, a design phase, an im
plementation phase, and a test phase â€” project teams could
move forward with confidence. System requirements were
captured through significant customer interaction during the
definition phase. Once these requirements were complete,
the other phases could progress with focus and efficiency
since few if any changes to the specification would be
allowed. With limited competition and with products that
would remain viable for years, it was safe to assume that the
system requirements captured many months or even years
earlier would still be accurate. Unfortunately, this is no
longer the environment in which software is developed.

Today, our ability as software engineers and project managers
to accommodate all risks and accurately schedule projects
that may include tens or even hundreds of engineers over
several years of development is seriously challenged. Cus
tomers' needs, competitive products, and even the develop
ment tools we use can change as often as every few months.
We have at least two choices. We can try to further refine
our estimation and scheduling skills, fixing more parameters
of our projects at very early stages of knowledge and experi
ence, or we can look for an alternative development Ufe cycle
that better supports the dynamic and complex nature of our
business today.

One alternative to the waterfall life cycle is Barry Boehm's2
spiral life cycle. Actually more of a meta life cycle, the spiral
life cycle can be instantiated or "unwrapped" in a number of
ways. One instantiation is the iterative life cycle, an approach
advocated by industry-leading OO (object-oriented) method-
ologists such as Jim Rumbaugh:i and Grady Booch.4 An
iterative life cycle replaces the monolithic implementation
phase of the waterfall life cycle with much smaller imple
mentation cycles (Fig. 1) that start, by building a very small
piece of the overall functionality of the system and then add
to this base over time until a complete system is delivered.

August 1996 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

Waterfal l Development Li fe Cycle

Investigate Design Plan Cycle 1 C y c l e 2 I C y c l e 3 I

Incremental Development Life Cycle

Customers: Use N - 1 Plan N + 1

User FeedbackÂ»

Evolutionary Development Life Cycle

Incremental development "determines user needs and de
fines the system requirements, then performs the rest of the
development in a sequence of builds."5

Another instantiation of the spiral life cycle is Evolutionary
Development, proposed by Tom Gilb.6 Evolutionary Devel
opment adds to the iterative life cycle a much stronger cus
tomer orientation that is implemented through an explicit
customer feedback loop. Evolutionary Development "differs
from the incremental strategy in acknowledging that the
user need is not fully understood and all requirements can
not be defined up front ... user needs and system require
ments are partially defined up front, then are refined in each
succeeding build."5 The Evolutionary Development life cycle
has been used successfully within Hewlett-Packard since
1985 and was the natural choice to combine with Fusion
when we needed an alternative to the waterfall life cycle.

Evolutionary Development

Evolutionary Development (EVO) is a software development
method and life cycle that replaces traditional waterfall
development with small, incremental product releases or
builds, frequent delivery of the product to users for feedback,
and dynamic planning that can be modified in response to
this feedback. As originally presented by Tom Gilb, the
method had the following key attributes:
1. Multiobjective-driven
2. Early, frequent iteration
3. Complete analysis, design, build, and test in each step
4. User orientation
5. Systems approach, not merely algorithm orientation
6. Open-ended basic systems architecture
7. Result orientation, not software development process
orientation.

Using EVO, a product development team divides the project
into small chunks. Ideally, each chunk is less than 5% of the
overall effort. The chunks are then ordered so that the most
useful and easiest features are implemented first and some
useful subset of the overall product can be delivered every
one to four weeks. Within each EVO cycle, the software is

Fig. 1. Different models of the
software development life cycle.

designed, coded, tested, and then delivered to users. The
users give feedback on the product and the team responds,
often by changing the product, plans, or process. These
cycles continue until the product is shipped.

EVO is thus characterized by early and frequent iteration,
starting with an initial implementation and followed by fre
quent cycles that are short in duration and small in content.
Drawing on ongoing user feedback, planning, design, coding,
and testing are completed for each cycle, and each release
or build meets a minimum quality standard. This method
offers opportunities to optimize results by modifying the
plan, product, or process at each cycle. The basic product
concept or value proposition, however, does not change.

At Hewlett-Packard, we have found that it is possible to
relax some of Gilb's ideas regarding EVO.6* In particular, it
is not absolutely necessary to deliver the product to real
customers with customer-ready documentation, training,
support, and so on, to benefit from EVO. For instance, cus
tomers participating in the feedback loop change during the
development process. Results from the early cycles of devel
opment are typically given to other team members or other
project teams for feedback. Less sensitive to the lack of
complete documentation and training materials, they can
still give valuable feedback. Results from the next several
cycles are shared with surrogate customers represented by
members of the broader Hewlett-Packard community. The
goal is still to get the product into the hands of actual cus
tomers as early as possible.

There are two other variations to Tom Gilb's guidelines that
we have found useful within Hewlett-Packard. First, the
guideline that each cycle represent less than 5% of the over
all implementation effort has translated into cycle lengths of
one to four weeks, with two weeks being the most common.
Second, ordering the content of the cycles is used within
Hewlett-Packard as a key risk-management opportunity.
Instead of implementing the most useful and easiest features
first, many development teams choose to implement in an
order that gives the earliest insight into key areas of risk for

1 See also the article on page 39.

2 6 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

What is Fusion?

Fusion is a systematic software development method for object-oriented
software development. Developed at Hewlett-Packard Laboratories in
Bristol, England, the method integrates and extends the best features of
earlier object-oriented methods. Fusion is a full-coverage method, provid
ing a direct route from a requirements definition through analysis and
design to a programming language implementation.

What Fusion Offers
â€¢ It provides a process for software development. It divides this process

into guid and says what should be done in each phase. It gives guid
ance on the order in which things should be done within phases so that
the developer knows how to make progress. It provides criteria that tell
the developer when to move on to the next phase.

â€¢ It provides a comprehensive, simple, well-defined notation for all of its
models. Because this notation is based on existing practices, it is easy to
learn.

â€¢ It provides management tools for software development. The outputs of
the different phases are clearly identified, and there are cross-checks to
ensure consistency within and between phases. Each phase has its own
techniques and addresses different aspects of translating a requirements
document into executable code.

â€¢ It is adaptable. A lightweight version can be used in projects that cannot
afford process effort required to use the full version, or parts of the process
or notation can be used within other development processes to address
their weak points.

The Process
The Fusion method structures the development process into analysis,
design, and implementation phases (see Fig. 1).

Analysis
During of analysis phase the analyst defines the intended behavior of
the system. Models of the system are produced, which describe:

â€¢ The classes of objects that exist in the system
â€¢ The relationships between those classes
â€¢ The operations that can be performed on the system
â€¢ The allowable sequences of those operations.

Design
The designer chooses how the system operations are to be implemented
by the run-time behavior of interacting objects. Different ways of breaking
an operation into interactions can be tried. During this process, operations
are attached to classes. The designer also chooses how objects refer to
each are and what the appropriate inheritance relationships are
between classes.

The design phase delivers models that show:
â€¢ How objects on the system are implemented by interacting objects
â€¢ How classes refer one to another and how they are related by

inheritance
â€¢ The attributes of and operations on classes.

Designers may need to investigate the substructure of some classes and
their operations in more detail. They do so by applying the analysis and
design techniques to those classes, regarding them as a subsystem.

R e q u i r e m e n t s
Docu

Analysis

D e s i g n

I m p l e m e n t a t i o n

Fig. I.The Fusion process.

Implementation
The implementer must turn the design into code in a particular program
ming following Fusion gives guidance on how this is done in the following
ways:

â€¢ Inheritance, reference, and class attributes are implemented in
programming-language classes.

â€¢ Object interactions are encoded as methods belonging to a selected
class.

â€¢ The permitted sequences of operations are recognized by state
machines.

Fusion also maintains a data dictionary, a place where the different
entities of the system can be named and described. The data dictionary
is referenced throughout the development process.

In summary, Fusion is a complete, yet lightweight development method
that projects. be tailored to meet the different needs of software projects.

Derek Coleman
Professor of Computer Science
University of London

August 1 996 Hewlett-Packard Journal 2 7

© Copr. 1949-1998 Hewlett-Packard Co.

the project, such as performance, ease of use, or managing
dependencies with other teams.

Benefits of EVO
The teams within Hewlett-Packard that have adopted Evolu
tionary Development as a project life cycle have done so
with explicit benefits in mind. In addition to better meeting
customer needs or hitting market windows, there have been
a number of unexpected benefits, such as increased pro
ductivity and reduced risk, even the risks associated with
changing the development process.

Better Match to Customer Need and Market Requirements. The
explicit customer feedback loop of Evolutionary Develop
ment results in the delivery of products that better meet the
customers' need. The waterfall life cycle provides an inves
tigation or definition phase for eliciting customer needs
through focus groups and storyboards, but it does not pro
vide a mechanism for continual validation and refinement of
customer needs throughout the long implementation phase.
Many customers find it difficult to articulate the full range of
what they want from a product until they have actually used
the product. Their needs and expectations evolve as they
gain experience with the product. Evolutionary Development
addresses this by incorporating customer feedback early
and often during the implementation phase. The small im
plementation cycles allow the development team to respond
to customer feedback by modifying the plans for future im
plementation cycles. Existing functionality can be changed,
while planned functionality can be redefined.

One Hewlett-Packard project used a variation of Evolutionary
Development that also included an evolutionary approach to
product definition.7 During the first month, the development
team worked from static visual designs to code a prototype.
In focus group meetings, the team discussed users' needs
and the potential features of the product and then demon
strated their prototype. The focus groups expressed strong
support for the product concept, so the project proceeded to
a second phase of focus group testing incorporating the
feedback from the first phase. Once the feedback from the
second round of focus groups was incorporated, the feature
set was established and the product definition completed.

Implementation consisted of four-to-six-week cycles, with
software delivered to customers for use at the end of each
cycle. The entire development effort spanned ten months
from definition to product release. The result was a world-
class product that has won many awards and has been easy
to support.

Original Plan

Original Plan

Execution

You know you're
in trouble !

v Actua l Pro jec t Checkpo in ts

Fig. 2. Hitting market windows with a waterfall life cycle.

Hitting Market Windows. To enhance productivity, many large
software projects divide their tasks into independent sub
sets that can be developed in parallel. With few dependen
cies between subteams, each team can progress at its own
pace. The risk in this approach is the significant effort that
must be invested to bring all the work of these subteams
together for final integration and system test. When issues
are uncovered at this late stage of development, few options
are available to the development team. It is difficult if not
impossible to prune functionality in a low-risk manner when
market windows, technology, or competition change. The
only option open to the team is to continue on, finding and
removing defects as quickly and as efficiently as possible
(see Fig. 2).

With an EVO approach, the team has greater flexibility as
the market window approaches. Two attributes of EVO con
tribute to this flexibility. First, the sequencing of functionality
during the implementation phase is such that "must have"
features are completed as early as possible, while the "high
want" features are delayed until the later EVO cycles.
Second, since each cycle of the implementation phase is
expected to generate a "complete" release, much of the inte
gration testing has already been completed. Any of the last
several EVO cycles can become release candidates after a
final round of integration and system test. When an earlier-
than-planned release is needed, the last one or two EVO
cycles can be skipped as long as a viable product already
exists. If a limited number of key features are still needed,
an additional EVO cycle or two can be defined and imple
mented as illustrated in Fig. 3.

Engineer Motivation and Productivity. Some of the gains in
productivity seen by project teams using EVO have been

Execution 1 (Early Release)

Execution 2 (Added Features or Schedule Sl ippage)

Existing Project Checkpoints

j Optional Project Checkpoints
Fig. 3. Hitting market windows
with an evolutionary life cycle.

28 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

attributed to higher engineer motivation. The long imple
mentation phase of the waterfall Ufe cycle is often charac
terized by large variations in engineer motivation. It is diffi
cult for engineers to maintain peak productivity when it may
be months before they can integrate their work with that of
others to see real results. Engineer motivation can take an
even greater hit when the tyranny of the release date pro
hibits all but the most trivial responses to customer feedback
received during the final stages of system test.

EVO has led to higher productivity for development teams
by maintaining a higher level of motivation throughout the
implementation phase. The short implementation cycles
keep everyone focused on a small set of features and tasks.
The explicit customer feedback loop and the small imple
mentation cycles also allow the development team more
opportunity to respond to customer feedback and thereby
deliver a product that they know represents their best work.

Quality Control. Although software development is in many
ways a manufacturing process, software development teams
have struggled to apply quality improvement processes such
as Total Quality Control (TQC). Unlike the manufacturing
organizations that can measure and refine processes with
cycle times of hours, minutes, and even seconds, the water
fall life cycle gave cycle times of months or years before the
software development process repeated. With EVO, the soft
ware implementation cycle is dramatically reduced and re
peated multiple times for each project. All parameters of the
implementation process are now available for review and
improvement. The impact of changes in processes and tools
can be measured and refined throughout the implementation
phase.

Reducing Risk when Changing the Development Process. Many
teams experience considerable anxiety as they make the
transition to an object-oriented approach to development.
The transition to OO usually entails a number of changes in
the way a software engineer works. There are new analysis
and design models to apply, new notations to master, and
new, occasionally eccentric, tools and compilers to learn.
There is also valid concern about adopting a new method at
the beginning of the development process. Few teams are
willing to make a full commitment to a new method when
they have little experience with it. There may even be orga
nizational changes anticipated if the organization is looking
for large-scale productivity gains through formalized reuse.

Development teams and managers want some way to man
age the risks associated with making so many simultaneous
changes to their development environment. EVO can help
manage the risks. The repeating cycles during the implemen
tation phase provide for continual review and refinement of
each parameter of the development environment. Any aspect
of the development environment can be dropped, modified,
or strengthened to provide the maximum benefit to the team.

Costs of EVO
Adopting Evolutionary Development is not without cost. It
presents a new paradigm for the project manager to follow
when decomposing and planning the project, and it requires
more explicit, organized decision making than many manag
ers and teams are accustomed to.

In traditional projects, subsystems or code modules are
identified and then parceled out for implementation. As a
result, planning and staffing of large projects were driven by
the structure of the system and not by its intended use. In
contrast. Evolutionary Development focuses on the intended
use of the system. The functionality to be delivered in a
given cycle is determined first. It is common practice to im
plement only those portions of subsystems or modules that
support that functionality during that cycle. This approach
to building a work breakdown structure presents a new par
adigm to the project manager and the development team.
Subsystem and module completion cannot be used for inter
mediate milestone definition because their full functionality
is not in place until the end of the project. The time needed
to adopt this new paradigm and create an initial plan can be
a major barrier for some project teams.

Many development teams lack a well-defined, efficient
decision-making process. Often they make decisions im
plicitly within a limited context, risking the compromise of
the broader project goals and slowing progress dramatically.
Evolutionary Development forces many decisions to be
made explicitly in an organized way, because feedback on
the product is received regularly and schedules must be
updated for each implementation cycle.

The continual stream of information that the project team
receives must be translated into three categories of decisions:
changes to the product as it is currently implemented,
changes to the plan that will further the product implemen
tation, and changes to the development process used to de
velop the product. Fortunately, because of EVO's short cycle
time, teams have many opportunities to assess the results of
decisions and adjust accordingly.

Evolutionary Fusion

Fusion and Evolutionary Development are complementary.
One of the primary assumptions of EVO is that one can
decompose the functionality of a project into small manage
able chunks. It is also expected that these chunks will pro
vide some measurable value to the intended user and can
thus be given to the user for feedback. Fusion provides the
method of decomposition. At the highest level, Fusion
decomposes the functionality of a system into use scenarios.
Use scenarios are defined from the perspective of a user or
agent of the system and are expected to capture a use of the
system that provides some value to the agent.

EVO also presupposes that an architecture capable of
accommodating all the expected functionality of the system
can be defined prior to implementation. This architecture
must be flexible enough to accommodate new or redefined
functionality resulting from customer feedback. Fusion helps
create this flexible architecture. The object model provides
an architecture that encapsulates common functionality into
classes and provides flexibility and extensibility through
generalization and specialization. Fusion also accommodates
large-scale change through the well-defined linkages between
models. If necessary, changes to functionality can be rolled
all the way up to the use scenarios and then cascaded back
down through the appropriate analysis and design models,

August 11)96 Hewlett-Packard Journal 29

© Copr. 1949-1998 Hewlett-Packard Co.

replacing guesswork in assessing the impact of a change
with a more systematic approach.

Evolutionary Fusion divides a project into two major phases:
the definition phase and the development phase (Fig. 4).
During the definition phase, a project's functionality is speci
fied and its viability as a product or system is first estimated.
The Fusion analysis models play a key role in this phase.
The use scenarios serve to remodel the specification docu
ment, checking it for clarity and completeness. They can
also be reviewed with customers to validate the development
team's understanding of customer needs. The object model
captures the initial architecture for the system and provides
additional checks of the specification. The data dictionary
captures the team's emerging common vocabulary and
understanding of the problem domain. The operation model,
through its system operation descriptions, gives an indication
of the is and complexity of the project. This information is
critical for estimating resource needs and developing the
initial plan for the development phase.

The second phase is the development phase, in which code
is incrementally designed, implemented, and tested to meet
the specification. Each development cycle follows the same
pattern. First, the analysis models are reviewed for com
pleteness with respect to the functionality to be imple
mented during that cycle. Next, the Fusion design models
are created or updated to support the functionality. And
finally, the code is written and regression tests executed
against the code. In parallel with the development activities
of the team, selected users or customers of the system are
working with and providing feedback on the release from
the previous cycle. This feedback is used to adjust the plan

for the following cycles. To complete the development
phase, a final round of integration and system testing is
done. The next two sections discuss these two phases in
more detail.

Definition Phase
The definition phase is best characterized as a period of
significant communication and thought. Communication
must occur between all members of the project team to
make sure that everyone shares a common understanding of
the project's goals. Thought must be put into the specification
document to make sure that it is complete and unambiguous
and that it meets the requirements. Communication must
occur between the development team and the intended users
of the system to ensure that the system, at least as it can be
specified on paper during this early stage of the project, will
meet their needs. Thought must go into defining an architec
ture capable of supporting the intended functionality of the
full system. The goal is to identify and resolve as many issues
as possible during this phase. Specification errors that are
not resolved during this phase can be extremely costly to
repair later.

Our experience has shown that the Fusion analysis models
are ideal for stimulating the thought and supporting the
communication that must occur during the definition phase.

Analysis Models â€” First Pass
Like Fusion, Evolutionary Fusion requires some form of
system specification as a starting point, and just about any
level of detail in the system specification will do. When the
specification is at a high level, the analysis models serve to

Definition Phase Development Phase

Develop
Specification

Analysis Models Planning (Group
(F i r s t P a s s) a n d P r i o r i t i z e)

Development Development
C y c l e 1 C y c l e 2

Development Integration and
C y c l e N S y s t e m T e s t

Product
Specification

U s e L
Scenarios

D a t a [
Dictionary

Operation
Model

Refine Analysis Develop Design
M o d e l s M o d e l s I m p l e m e n t

Object ' â€”
Interaction

Graphs

Visibility
Graphs

Inheritance
Graphs

Verify (Test)

Fig. 4. Evolutionary Fusion life cycle.

30 August 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

identify large numbers of issues and questions that need to
be resolved before development can begin. When the speci
fication is at a more detailed level, the analysis models serve
to remodel and recapture high-level structure and function
ality that may be lost in the detail. We have yet to define what
level of detail in the system specification yields the most
efficient definition phase for Evolutionary Fusion. Regard
less of the level of specification detail, the analysis models
provide the beginning of a common vocabulary and under
standing of the problem domain that will serve the team well
throughout the project.

The most critical component of the system specification is
the value proposition.8 The value proposition clearly articu
lates why the intended customer of the system will choose
to use it over the other options available. The functionality
defined in the specification is the development team's initial
best estimate as to how to deliver that value proposition.
There are usually countless other ways to deliver it. The
explicit customer feedback loop of Evolutionary Fusion will
validate the best estimate over time and will suggest better
ways to deliver the value proposition. The value proposition
itself should remain constant throughout the entire develop
ment process. If the value proposition changes during the
development phase, it will be quite difficult for the team to
make all the modifications necessary to implement a new
one and still end up with a coherent set of product features.

Use Scenarios
The first analysis model to be created is the set of use
scenarios. To provide some structure for this activity, it is
useful to first generate a list of all the agents that exist in the
system's environment. It can often be a challenge to decide
what constitutes an agent. For example, the file system pro
vided by the operating system is clearly part of any system's
environment. It can be expected to provide services to and
make demands on the system being defined. Representing the
file system as an agent does not add any additional clarity to
the team's understanding of the system under definition.
However, representing specific files as agents, such as con
figuration files, legacy databases, or data input files, does
add clarity. In one project, it was useful to model, as an
agent, a critical data input file generated externally to the
system. A general rule of thumb is that an agent must add to
the understanding of the system if it is to be included at this
early stage.

Once the list of agents is complete, each agent can be exam
ined with respect to the demands it will make on the system.
These demands are captured as use scenarios. As with de
fining agents, determining an appropriate level of granular
ity for the use scenarios can be a challenge. Another rule of
thumb is that use scenarios should provide complete chunks
of value from the perspective of the agent. In the project
mentioned above, the system was modeled as providing
value to the input file by accepting records of data from the
file be translating those records into a format that could be
used by the rest of the system. This approach will help avoid
the issue of trying to keep all use scenarios at the same level
of granularity. It is the agent that defines the appropriate
level of granularity, not the system as a whole.

Once the use scenarios have been specified, each is dia
grammed to decompose it further into discrete system
operations and events. It is also useful to annotate in the

Use Scenar io A

r
<50ms

L

Place Segmentat ion Marker

Display Segmentat ion Marker

Start Format Segmentation

Store Segmentat ion Marker

Fig. 5. Use scenario with time-constraint annotation.

margins of the use scenario diagram any time constraints
that may exist (see Fig. 5). For systems of reasonable size,
it is difficult to define a correct set of use scenarios on the
first pro Building the use scenarios is itself an iterative pro
cess of refinement.

Object Model
As Ould9 states in his text on software engineering strategies,

"The success of the incremental delivery approach rests
on the ability of the designer to create â€” from the start â€”
an architecture that can support the full functionality of
the system so that there is not a point during the sequence
of deliveries where the addition of the next increment of
functionality requires a massive re-engineering of the
system at the architectural level (p. 59)."

The Fusion object model, the next analysis model to be
created, serves as that architecture.

Once the use scenarios are complete, the development team
has a much clearer understanding of the demands that will
be placed on the system. The use scenarios are an excellent
source of information for building the object model. The use
scenario diagrams can be stepped through, making sure that
analysis classes exist to support the need of each system
operation. It is also quite common that building the object
model will generate further refinements and improvements
to the use scenarios.

Operation Model
The last analysis model to be created during the definition
phase is the operation model. It documents in a declarative
fashion the change in the state of the system as it responds
to a system operation. Each system operation is described
using only terms from the use scenarios, object model, and
data dictionary.

A complete 'specification of the system exists when the
operation model is completed. The use scenarios capture
the intended uses of the system from the agents' point of
view. The object model captures the high-level architecture
of the system. The operation model documents the effect
that each system operation has on the system. The creation
of each model has stimulated the thought necessary to iden
tify and resolve issues, while the notation for each model
establishes a common communication format for the team.

Managing the Analysis Process
An appropriate question to ask at this point is how much
time should be invested in making a first pass at the analysis
models. Although there is no formula that we can offer for

August 1996 Hewlett-Packard Journal 31

© Copr. 1949-1998 Hewlett-Packard Co.

Evolutionary Fusion, the application of a progress measure
ment technique used by many development teams during
implementation works surprisingly well at this early stage of
development. During the integration and system test phase,
many teams compare the rate at which defects are being
identified to the rate at which defects are being isolated and
repaired. In the early part of this phase, the rate of defect
identification exceeds the rate of defect repair. At some
later point in this phase, the rate of repair exceeds the rate
of identification, and estimates can be made on when the
desired defect density will be reached and the product can
be released.

A similar approach can be used to track progress during the
creation of the analysis models in Evolutionary Fusion's
definition phase. Any issue identified during the creation of
the analysis models can be considered a potential defect in
the specification of the system. As with testing code, the
initial attempts to build the analysis models will generate a
large number of potential issues, or defects. As the creation
of the analysis models progresses, fewer and fewer issues,
or defects, will be found. Once the rate of resolving, or re
pairing, these issues exceeds the rate of finding new issues,
a completion date for the first pass at the analysis models
can be estimated.

An additional parameter often assigned to defects is a classi
fication that represents the severity of the defect. Few sys
tems are shipped with known defects that can cause unre
coverable data loss, but many are shipped with known
defects that have only limited impact on the system's use. It
can be helpful to apply a similar classification scheme to the
issues found during analysis.10 Many issues identified will be
of such impact that they must be resolved before moving on
to the development phase. Other issues will be of lesser
impact and, as such, resolution can be delayed until the
development phase. There is also a third class of issues that
relates directly to design or implementation. These must be
reclassified as design or implementation issues and marked
for resolution during that phase.

There is an expectation that a team must complete all the
analysis phase models before moving on to implementation.
Our experience has shown that this is not the case. It is only
necessary to complete a high-level view of the complete
system and to resolve the critical and serious "defects" that
have been logged against the analysis models. This approach
can also help teams avoid "analysis paralysis," the malady
that afflicts many teams when they try to resolve every
known issue before moving on to design and implementation.
The analysis models will be revisited as the first step of each
implementation cycle, so further additions and refinements
can be made then.

It is difficult to accurately estimate the length of the analysis
phase, especially if it is the team's first use of object tech
nology. Fortunately, using the approach described here can
provide early indication of progress so that resources can be
managed accordingly.

Building the Plan
The last task of the Evolutionary Fusion definition phase is
to plan the next phase, development. This task consists of
three major steps: assigning ownership for the key roles that

must be played during this phase, defining the standard EVO
cycle, and determining the sequence in which functionality
will be developed. 1 1

Key Roles. For the development phase to progress in a smooth
and efficient manner, it is helpful to define and assign owner
ship for three key roles: project manager, technical lead, and
user liaison. On large project teams, these roles may be
shared by more than one person. On smaller project teams,
a person may play more than one role.

Project manager: Many aspects of the project manager's role
become even more critical with Evolutionary Development.
The project manager must work with the marketing team
and the customers to establish the project's value proposi
tion, identify key project risks, document all commitments
and dependencies, and articulate how Evolutionary Devel
opment will contribute to the project's success. Agreement
on the value proposition is critical, as it will help keep the
decision-making process focused. The key project risks will
be used to sequence the implementation so that these risks
can be characterized and addressed as early as possible. The
commitments and dependencies will also be a key consider
ation when sequencing the implementation cycles. It is also
important that the project manager solicit and address any
concerns that the project team has with the Evolutionary
Development approach.

The project manager must also define and manage the deci
sion-making process. Although this is often an implicit task
of the project manager, the large amount of information and
the increased number of decisions that must be made using
Evolutionary Fusion require that this process be made ex
plicit. Based on the kinds of changes anticipated during the
project, the project manager must consider how information
will be gathered, how decisions will be made, and how deci
sions will be communicated. With very short development
cycles, delayed decisions can slow progress dramatically.

Working with the technical lead, the project manager may
also decide to include explicit design cycles in the schedule.
For software architectures and designs that are expected to
survive many years, supporting multiple releases or even
multiple product lines, it is important to invest in the evolu
tion of the architecture. As the development phase pro
gresses, certain isolated decisions that compromise some
aspect of the architecture will be made. There will also be
new insights into the architecture and its robustness that
could not have been anticipated during the definition phase.
Design cycles dedicated to the architecture will deliver no
new functionality for the user. By including tasks such as
architecture refinement, design development, and design
inspections, these cycles will deliver to future EVO cycles
an architecture that is better equipped to meet the demands
that will be placed on it.

Technical lead: The technical lead is responsible for manag
ing the architecture of the project as well as tracking and
helping to resolve technical issues and dependencies that
arise between engineers and between subsystems. The tech
nical lead also plays a key part in defining the detailed task
plans for each implementation cycle. With a broad view of
the system, the technical lead can make sure that tasks

32 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Wednesday Thursday

F i n a l T e s t o f l a s t R e l e a s e L a s t W e e k ' s
W e e k s B u i l d B u i l d t o U s e r s

R e v i e w a n d E n h a n c e C r e a t e D e s i g n
A n a l y s i s M o d e l s f o r M o d e l s f o r N e w
N e w F e a t u r e s F e a t u r e s

B e g i n I m p l e m e n t a t i o n I n c r e m e n t a l B u i l d
o f N e w F e a t u r e s O v e r n i g h t

Weekend Bui ld
from Scratch

Wednesday Thursday

Al l User Feedback
Collected

Functionality
Freeze â€” No New
Features Added
Beyond this Point

Incremental Build
Overnight

Tes t New
Functionality

Tes t New
Functionality

Review Feedback,
D e t e r m i n e C h a n g e s W e e k e n d B u i l d
f o r N e x t R e l e a s e f r o m S c r a t c h

scheduled for an implementation cycle are feasible and that
they all contribute to the stated deliverable for the cycle.

User liaison: The user liaison manages the team's interaction
with the users, including setting up the user feedback pro
cess by defining expectations of the users, locating and qual
ifying users against these expectations, and coordinating
any initial training that the users will need on the system.
Once the development phase is underway, the user liaison
will be responsible for collecting feedback, tracking user
participation and satisfaction with the process, and ensuring
that users are kept informed of the development team's re
sponse to their feedback.

It is important to keep in mind that the users providing feed
back on the system may change over time. In the early de
velopment phase, it may be unrealistic to deliver the system
to actual users, since there may simply not be enough func
tionality in the system. For these releases, other members of
the project team or other members of the organization can
act as surrogates for actual users.

Defining the Standard EVO Cycle. The next step in planning the
development phase is to define the standard EVO cycle to
be used. This task includes establishing the length of the
cycle as well as the milestones within the cycle. The general
rule of thumb is to keep the cycle length as short as possible.
Within Hewlett-Packard, projects have used a cycle length
as short as one week and as long as four weeks. The typical
cycle time is two weeks (see Fig. 6). The primary factor in
determining the cycle length is how often management
wants insight into the project's progress and how often they
want the opportunity to adjust the project plan, product, and
process. Since it is more likely that a team will lengthen
their cycle time than shorten it, it is best to start with as
short a cycle as possible.

Grouping and Prioritizing Functionality. With key roles assigned
and the standard cycle defined, the last step in planning the
development phase is to group and prioritize the functionality
into implementation chunks. The chunks must be no larger

Fig. 6. Sample two-week EVO
cycle.

than can be delivered in the standard cycle time. Prioritiza-
tion ensures that critical or high-risk features are completed
early and that low-risk features are delivered last. Some of
the most common criteria used for grouping and prioritizing
functionality will be discussed later in this section.

The deliverable from the planning phase is an implementa
tion schedule that maps all functionality for the system into
implementation cycles and provides enough detail for the
first three or four cycles so that actual implementation can
begin. To help develop this schedule and to maintain a user
perspective, the Fusion use scenarios and system operations
provide a useful grouping of system functionality. System
operations, which may appear in multiple use scenarios, are
grouped together to define use scenarios.

The first step is to divide the system development into four
or five major chunks and to group those use scenarios that
include top-priority functionality into the first chunk (Fig. 7).
The rest of the use scenarios can then be grouped into the
following major chunks, with the use scenarios containing
the lowest priority functionality in the last chunk. At this
stage each chunk should contain approximately the same
number of use scenarios.

The next step is to order the use scenarios within the first
chunk using the same criteria as before (Fig. 8). When pro
ducing this ordering, it is not uncommon to move scenarios
between groups to achieve a better balance and sequence.
Since system operations may appear in multiple use scenar
ios, many of the system operations that are contained in the
use scenarios of later groupings will be implemented with
use scenarios in earlier groupings. Therefore, it is best to
have the fewest use scenarios in the first chunk and the
most in the last chunk.

The system operations from the use scenarios in the first
group can now be grouped and sequenced into the first few
implementation cycles (Fig. 9). Keep in mind that the deliv-
erables from each cycle should be defined in such a way that
they can be validated by a user of the system. For these early

August 1996 Hewlett-Packard Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

Highest Priority

cycles, the limited functionality may be best validated by
another member of the development team. The key concept
is that you must be able to validate the success of the cycle
in some way.

When estimating the number of system operations that the
development team can implement in a cycle, experience has
shown that taking the common wisdom of the team and
dividing that number in half yields the best results. Because
this approach to development may be new to the team, it is
extremely important from a motivational perspective that
these first few implementation cycles be successful. Also,
keep in mind that there is a fair amount of infrastructure
developed and put in place during these first few implemen
tation cycles as well. The tools and the process will undergo
significant refinement during these first few cycles. For
these few keep the functionality content of the first few
implementation cycles to a minimum.

A technique used widely within Hewlett-Packard is to adopt
a naming scheme for the implementation cycles. One team
used the names of wineries from their local Northern Cali
fornia region. As they completed each cycle, their project
manager would buy a bottle of wine from that winery and
store it away. Once several cycles were completed, the team
would celebrate by taking the wine to a fine restaurant for
lunch.

Lowest Priority Fig. 7. Prioritize use scenarios.

The final step is to estimate the number of cycles needed for
the rest of the intended functionality and to project a final
implementation completion date (Fig. 10). This is accom
plished by counting the new system operations that must be
implemented in the rest of the chunks and dividing by the
number of system operations that can be completed in each
cycle to give the total number of implementation cycles. In
the example used to illustrate the planning process, the esti
mated length of the implementation phase is 32 weeks. To
facilitate communication, it is useful to assign themes to
each of the implementation chunks. The project team and
the users will need both a detailed and a high-level view of
the project, but there are typically many members of the
organization that prefer to see just the "big picture." The
themes can help convey that big picture.

With the deliverables now defined for the first several EVO
cycles, the technical lead can prepare the detailed task list
for these cycles. This detailed task list should include a clear
description of the task, an owner for the task, and any de
pendencies that the task may have on other tasks within the
cycle.

It is not necessary to provide any additional detail for the
groupings of use scenarios beyond the first. It is only neces
sary to make sure that all functionality as it is defined at this
early stage is accounted for and that an overall estimate of

Highest Priority

Fig. 8. Order the first group of use scenarios.

Lowest Priority

34 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

sys op X
sys op Y
sys op Z

sys op J
sys op K

sys op A
sys op B
sys op C

Highest Priority

Fig. 9. First implementation cycles defined.

the effort is calculated. It is expected that experiences from
the first few implementation cycles will affect future cycles
in many ways. These later implementation cycles will be
denned in more detail several cycles before their start date.
On small projects with one or two collocated teams, detailing
the next three or four implementation cycles is adequate.
On larger projects, it may be necessary to maintain detailed
schedules that reach further out in time.

Some of the criteria commonly used in setting priorities dur
ing this initial planning activity are the following:
Features with greatest risk. The most common criterion
used for prioritizing the development phase implementation
cycles is risk. When adopting object technology, many teams
are concerned that the system performance will not be ade
quate. Ease-of-use is another common risk for a project.
The use scenarios that will provide the best insight into

Lowest Priority

areas of greatest risk should be scheduled for implementa
tion as early as possible.
Coordination with other teams. Most software development
teams today have commitments to or are dependent on
other teams. For example, firmware development depends
on some form of hardware development. Reusable software
platforms make a strong commitment to the products that
are built on them. It may be necessary to adjust the priority
assigned to functionality to accommodate these dependen
cies and commitments.
"Must have" versus "want" functionality. All product fea
tures are not created equal. Some features are considered
critical to the success of a project, while some features
would simply be nice to have. Some development projects
must meet well-defined standards and may even have to
pass certification tests of their functionality that are defined

Getting Startedâ€” Theme 1

sys op X
sys op Y
sys op Z

sys op J
sys op K

heme 2 Theme 3 Theme 4

sys op A
sys op B
sys op C

Four 2-Week Cycles = 8 Weeks

Fig. 10. Completed implementation plan.

12 System Operations

6 Weeks

16 System Operations

8 Weeks

20 System Operations

10 Weeks

August 1996 Hewlett-Packard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

by governing regulatory agencies. On these projects, it is
often best to complete the required or "must have" function
ality before the value-added or "want" functionality. Those
use scenarios that capture the required functionality should
be given higher priority than those that capture only desired
functionality.
This same criterion can also apply to core or fundamental
functionality that must be in place before additional func
tionality can be implemented. It may be necessary to build
up in a layered fashion the core functionality that all other
functionality will depend on. It is imperative that each cycle
contributing to the core functionality be defined so that
some validation or feedback can be obtained.

â€¢ Most popular or most useful features first. If project risks
are minor and if project commitments and dependencies are
insignificant, then prioritization of use scenarios can be
based on value to the intended user. Those use scenarios
that are the most popular or will be of the most value to the
user should be completed first.

â€¢ Infrastructure development: A significant amount of devel
opment environment infrastructure must be put in place
during the first few implementation cycles. The tools that
will be used, such as the compiler, debugger, and software
asset configuration manager, as well as the processes that
are adopted, can be developed in an evolutionary fashion in
parallel with the functionality intended for the user. Some
teams have found it valuable to make the infrastructure tasks
an explicit category in the plan for each implementation
cycle.

Development Phase
With both the development phase plan and the detailed plans
for the first few EVO cycles in place, the implementation
process can begin. Each EVO cycle consists of the same
basic steps: refining the analysis models, developing the
design models, and writing and validating the code. The
customer feedback process is executed in parallel with
these tasks. The deliverables from the previous EVO cycle
are evaluated by selected users or their surrogates, and deci
sions are made that shape the content of the subsequent
EVO cycles.

Refining the Analysis Models. The EVO cycle begins with a
review of the existing Fusion analysis models against the
functionality or system operations defined as deliverables
for that cycle. For each cycle, new functionality may be de
fined for delivery and existing functionality may be identi
fied for modification.

The process for moving through the Fusion analysis models
remains the same. Use scenarios that include the system
operations must be reviewed for changes that were the re
sult of feedback and refinement from previous EVO cycles.
The object model must be reviewed for similar changes.
Additional detail may be required in the object model. The
system operation descriptions are reviewed for any changes
and to ensure a common understanding by all members of
the team.

The technical lead is a key player during the refinement of
the analysis models. Because they represent the overall
architecture for the system, any extensions or enhancements
of the models must be made without serious compromise to
the integrity of the architecture. If compromises must be

made, they should be logged as defects against the architec
ture and considered for possible repair in a later EVO cycle.

Design Models. Based on the clear understanding of the de
liverables for the cycle generated by the review and refine
ment of the analysis models, the Fusion design models can
be created or updated. Object interaction graphs will deter
mine the new classes that will be needed or the new methods
that will be added to existing classes. The Fusion design
models determine what coding must be done for the cycle.

Coding and Validation. In addition to the code that must be
generated to implement the design models, any tests needed
to validate this work in later cycles must also be completed.
Many teams make use of test harnesses to validate their
code during the early cycles of development. These test har
nesses are software modules or subsystems that can exer
cise the method interfaces of other software subsystems.
They are particularly useful during the early cycles of devel
opment when major portions of the architecture have not
been implemented. They also provide great value in later
EVO cycles as tools for focused and automated regression
testing.

Customer Feedback. The customer feedback loop operates
simultaneously with the implementation tasks. Beginning
with the second cycle and continuing throughout the devel
opment phase, some group of users or surrogate users will
be validating the product that the team has completed so far.
The feedback that they provide must be evaluated against
the value proposition of the project for appropriate decision
making. It is important that the project manager, technical
lead, and user liaison allocate enough time during each cycle
to review plans, processes, and architectural documents to
assess the impact of each decision.

System Test Using Use Scenarios. Although the use scenarios
can be helpful in conducting unit and integration testing for
each implementation cycle, they can provide the greatest
value during system test. Since the use scenarios are not
structured along architectural or subsystem boundaries, they
tend to provide a broad level of system testing that generates
paths of execution through the entire system. They may be
augmented to generate boundary and stress-test conditions,
and they can also serve as a basis for creating user-level
documentation.

Scaling up for Large Projects
hi the use of Evolutionary Fusion with large projects, and
especially with those that include multiple development
teams that may not even be collocated, there are a number
of additional issues to consider. It may not be appropriate to
integrate the deliverables from all project teams every EVO
cycle. It is useful to define a higher-level set of EVO cycles
and to integrate all work together at the end of those cycles.
To manage these multiple levels of EVO cycles, as well as
the broad set of technologies that may be involved, it is also
useful to employ multiple technical leads, or architects.

Hierarchical EVO Cycles. As the size of a project team grows,
a larger and larger portion of the standard EVO cycle is dedi
cated to integrating the work of the many project team
members. To keep the standard EVO cycle as small and as
efficient as possible and to let project teams progress in
parallel, it is necessary to introduce hierarchical EVO

36 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

M a j o r C y c l e ! M a j o r C y c l e 2 M a j o r C y c l e 3

s y s o p W
s y s o p X
s y s o p Y
s y s o p Z

s y s o p J
s y s o p K
s y s o p L
s y s o p M

s y s o p A
s y s o p B
s y s o p C
s y s o p D

Fig. 11. Hierarchical EVO Cycles.

cycles. These hierarchical cycles are essentially a formalized
version of the chunks of functionality or groupings of use
scenarios introduced earlier, under "Grouping and Prioritizing
Functionality."

The four or five major chunks or groupings that the use
scenarios are initially broken into become the highest-level
EVO cycles. As before, the use scenarios for the first chunk
or EVO cycle are sequenced and the system operations allo
cated between multiple teams (Fig. 11). For large teams, it is
also useful to add an integration EVO cycle at the end of
each major EVO cycle.

Each team is expected to define its own user feedback and
validation process for its minor EVO cycles. There will also
be a feedback and validation process for each major EVO
cycle of the system.

Role of Architects. Since it is difficult to define subsets of
functionality that are completely independent of one another,
it is important to have an identified individual or group of
individuals to manage the dependencies throughout each
major EVO cycle. This role is best played by the technical
leads of each team, the architects. The architects play a key
role in allocating system operations among the various teams
during each planning phase, and they are best positioned to
resolve any technical issues that emerge as a result of the
parallel implementation approach. For large projects within
Hewlett-Packard, weekly meetings or conference calls are
typical for the architect teams.

Conclusion
Much of Hewlett-Packard's success is attributable to the fact
that it is a diverse company composed of many independent

Fusion in the Real World

The use of Fusion has spread rapidly since its introduction in 1993.
Today, design is the most widely used object-oriented analysis and design
method in Hewlett-Packard. Many other companies worldwide are also
employing the method on a wide variety of applications and products.

Fusion is a living method that is being extended and evolved based on
lessons learned in the real world. Todd Cotton's work on Evolutionary
Fusion, described in the accompanying article, is an exemplary illustration
of how of benefits from the collaboration of a broad community of
users, was and researchers. The book listed in reference 1 was
created to provide a forum for articulating and disseminating such con
tributions to the method. It does this by collecting together reports from
the field that describe the practical lessons that have been learned from
projects using Fusion. Todd Cotton and other contributors combine their
expertise to give the most comprehensive look yet at how Fusion is
changing the world of object-oriented development. Throughout the book
the emphasis is on practicality and lessons learned. The main themes of
the book include:

â€¢ An introductory overview of Fusion together with full reference
documentation

â€¢ Detailed experience reports of industrial projects discussing how
to introduce Fusion to a project and how to succeed using it

â€¢ An account of how to reduce risk by integrating Fusion into an
evolutionary life cyle

â€¢ A report on metrics and defect tracking in a Fusion project
â€¢ Lessons learned from a wide variety of applications and backgrounds,

including product development organizations, research laboratories,
academia, software houses, and consultancies.

Ruth Malan
Software Engineer
Hewlett-Packard Laboratories

Reed P. Letsinger
Project Manager
Hewlett-Packard Laboratories

Reference
1. R. Malan, R. Letsinger, and D. Coleman, Editors, Object-Oriented Development
at Work: Fusion in the Real World. Prentice Hall/HP Press, 1996.

August 1996 Hewlett-Packard Journal 37
© Copr. 1949-1998 Hewlett-Packard Co.

organizations. However, relatively few software develop
ment best practices have achieved widespread adoption in
this environment of autonomy and diversity. Fusion appears
to be an exception to this rule. Fusion's appeal is largely a
result of the respect that its creators have for software de
velopment teams. Fusion does not attempt to address every
possible nuance of software development with complex
notations and model variations. It does provide a reasonably
simple, complete set of models that supports a team through
most of the development process, acknowledging that soft
ware engineers are highly educated and talented profession
als and that they are best suited to adapt a method to meet
their unique project needs and working styles.

Evolutionary Development has been positioned here as a
life cycle for software development, but it really has much
broader application to any complex system. Fusion, the
method, is changing to better meet user needs using an evo
lutionary approach. Based on user feedback, we merged
Evolutionary Development with Fusion as the deliverable
from one evolutionary cycle. There have been a number of
other changes to the method, as well as to the method of
delivery, again all based on user feedback. As our experience
with Fusion grows, so will the method. It is our hope that
the Fusion user community will continue to share experi
ences and to evolve the method in a direction that is both
respectful and useful to all software development teams.

Acknowledgments
It is impossible to thank all those that have contributed in
some way to the material covered in this paper, but I must
try. First, I would like to thank the many Hewlett-Packard
development teams that I have had the privilege to work
with. Their unwavering dedication to creating innovative
products and to adopting innovative ways of working make
Hewlett-Packard a very successful company and an ex
tremely rewarding place to work. Next, I would like to thank
my colleagues of the Software Initiative who have worked

with me to make Fusion and object technology as easy to
learn, adopt, and adapt as possible. I would like to offer a
very special thanks to the reviewers of this material, Ruth
Malan, Reed Letsinger, Elaine May, and Tom Gilb. Their
wealth of knowledge and experience generated insights and
suggestions that have added significantly to the clarity and
presentation of this material. And finally, to Derek Coleman
and his team, for providing us all with the very powerful and
useful set of models and notation that we call Fusion.

References
1. D. Hayes, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes,
and P. Jereniaes, Object-Oriented Development: TlÂ·ie Fusion Method,

Prentice Hall, 1994.
2. B. Boehm, "A Spiral Model of Software Development and
Enhancement," ACM SIGSOFT Software Engineering Notes,

Vol. 11, no. 4, 1986.
3. J . o f J . "OMT: The Development Process ," Journal o f

Object-Oriented Programming, May 1995.
4. G. Booch, "The Macro Process of Object-Oriented Software
Development," Report on Object Analysis and Design, Vol. 1, no. 4,
1994, pp. 11-13.
5. Software Development and Documentation, MIL-STD-498,
December, 1994.
6. T. Gilb, Principles of Software Engineering Management,
Addison-Wesley, 1988.
7. E. May and B. Zimmer, Evolutionary Product Development at

Hewlett-Packard, Hewlett-Packard internal publication, 1994.
8. G. A. Moore, Crossing the Chasm: Marketing and Selling
Technology Products to Mainstream Customers, Harper Business,
1991.
9. M. Ould, Strategies for Software Engineering â€” The Management
of Risk and Quality, Wiley, 1990.
10. R. Crough and R. Walstra, Structured Common Sense: A Design
Approach f or Front-End Software Development, Hewlett-Packard
internal publication, 1993.
11. E. May and T. Cotton, Evolutionary Planning Workshop,

Hewlett-Packard internal publication.

38 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The Evolutionary Development Model
for Software
The traditional waterfall life cycle has been the mainstay for software
developers for many years. For software products that do not change very
much once they are specified, the waterfall model is still viable. However,
for software products that have their feature sets redefined during
development because of user feedback and other factors, the traditional
waterfall model is no longer appropriate.

by Elaine L. May and Barbara A. Zimmer

Hewlett-Packard, like other organizations developing soft
ware products, is always looking for ways to improve its
software development processes. One software develop
ment method that has become quite popular at HP is called
Evolutionary Development, or EVO (see reference 1 and the
article on page 25). EVO uses small, incremental product
releases, frequent delivery to users, and dynamic plans and
processes. Although EVO is relatively simple in concept, its
implementation at HP has included both significant chal
lenges and notable benefits. This paper begins with a brief
discussion about the EVO method and its benefits, then de
scribes software projects at three HP divisions that have
used EVO, and finally discusses critical success factors and
key lessons about EVO.

The EVO Method
Fig. 1 shows the difference between the traditional waterfall
life cycle and the EVO life cycle. The EVO development
model divides the development cycle into smaller, incremen
tal waterfall models in which users are able to get access to
the product at the end of each cycle. The users provide feed
back on the product for the planning stage of the next cycle
and the development team responds, often by changing the
product, plans, or process. These incremental cycles are
typically two to four weeks in duration and continue until
the product is shipped.

At Hewlett-Packard, we have found that it is possible to
relax some of our original ideas regarding EVO. In particu
lar, it isn't absolutely necessary to deliver the product to
external customers with customer-ready documentation,
training, and support to benefit from EVO.

Benefits of EVO
Successful use of EVO can benefit not only business results
but marketing and internal operations as well. From a busi
ness perspective, the biggest benefit of EVO is a significant
reduction in risk for software projects. This risk might be
associated with any of the many ways a software project
can go awry, including missing scheduled deadlines, unusable
products, wrong feature sets, or poor quality. By breaking
the project into smaller, more manageable pieces and by in
creasing the visibility of the management team in the project,
these risks can be addressed and managed.

Because some design issues are cheaper to resolve through
experimentation than through analysis, EVO can reduce
costs by providing a structured, disciplined avenue for ex
perimentation. Finally, the inevitable change in expectations
when users begin using the software system is addressed by
EVO's early and ongoing involvement of the user in the de
velopment process. This can result in a product that better
fits user needs and market requirements.

Design Implement

(a)

P l a n D e s i g n I m p l e m e n t

C y c l e 1 â € ¢ C y c l e 2 â € ¢ C y c l e 3 â € ¢ â € ¢

(ID

Fig. 1. Software development life
cycles, (a) Traditional waterfall
model, (b) Evolutionary (EVO)
development model.

August 1996 Hewlett-Packard Journal 39

© Copr. 1949-1998 Hewlett-Packard Co.

Amount
of User

Feedback

la)

Amount
of User

Feedback

Ib)

Investigate D e s i g n I m p l e m e n t Test

I n v e s t i g a t e D e s i g n C y c l e 1 C y c l e 2 . . . C y c l e n T e s t

Fig. 2. Amount of user feedback during (a) the traditional waterfall
development process and (b) the evolutionary development process
(EVO).

EVO allows the marketing department access to early deliv
eries, facilitating development of documentation and demon
strations. Although this access must be given judiciously, in
some markets it is absolutely necessary to start the sales
cycle well before product release. The ability of developers
to respond to market changes is increased in EVO because
the software is continuously evolving and the development
team is thus better positioned to change a feature set or
release it earlier.

Short, frequent EVO cycles have some distinct advantages for
internal processes and people considerations. First, continu
ous process improvement becomes a more realistic possibil
ity with one-to-four-week cycles. Second, the opportunity to
show their work to customers and hear customer responses
tends to increase the motivation of software developers and
consequently encourages a more customer-focused orienta
tion. In traditional software projects, that customer-response
payoff may only come every few years and may be so filtered
by marketing and management that it is meaningless. Fig. 2
illustrates the difference between the traditional life cycle
and EVO in terms of how much user feedback can be ex
pected during product development.

Finally, the cooperation and flexibility required by EVO of
each developer results in greater teamwork. Since schedul
ing and dependency analysis are more rigorous, less dead
time is spent waiting on other people to complete their work.

While the benefits can be substantial, implementation of
evolutionary development can hold significant challenges.
It requires a fundamental shift in the way one thinks about
managing projects and definitely requires more management
effort than traditional software development methods. The
next section examines how EVO was applied in three differ
ent HP divisions and what we learned from the experience.

Evolutionary Development in Practice

Some form of EVO has been used in at least eight Hewlett-
Packard divisions in over ten major projects. Much of this
has been done drawing on expertise from HP's Corporate
Engineering software initiative, which is a central service
group of consultants in software engineering and manage
ment (see the article on page 42). The software initiative
group is currently leveraging existing experience and pro
moting the use of EVO at HP.

The three divisions described below are in three entirely
different businesses. While all the product names used in
this paper are fictitious, the case descriptions are real.

First Attempts
The first project was undertaken at HP's Manufacturing Test
Division. The project (called project A here) consumed the
time of four software developers for a year and a half and
eventually was made up of over 120,000 lines of C and C++
code. Over 30 versions were produced during the eleven-
month implementation phase which occurred in one- and
two-week delivery cycles (see Fig. 3). The primary goals in
using EVO were to reduce the number of late changes to the
user interface and to reduce the number of defects found
during system testing.

Project A adapted Gilb's EVO methods.1 One departure was
the use of surrogate users. The Manufacturing Test Division
produces testers that are used in manufacturing environ
ments. If the tester goes down, the manufacturer cannot
ship products. Beta sites, even when customers agree to
them, are carefully isolated from production use, so the beta
software is rarely, if ever, exercised. Fortunately, the project
had access to a group of surrogate users: application engi
neers in marketing and test engineers in their own manufac
turing department. The use of surrogates did not appear to
have any negative impact.

About two thirds of the way through the project, the rigorous
testing and defect fixing that had been done during the EVO
cycles was discontinued because of schedule pressures. The
cost of this decision was quality. With all efforts focused on
finishing, developers began adding code at a rate double that
of previous months, and over half of the critical and serious
defects were introduced into the code in the last third of the
project schedule.

Even though EVO was not used to complete the project, the
product was successful and the team attributed several posi
tive results to having used the EVO method for the majority
of the project. First, EVO contributed to creating better
teamwork with users and more time to think of alternative

Development Team Users

â€¢ System Test and Release Version N
â€¢ Decide What to Do for Version N+1
â€¢ Design Version N+1

Develop Code
Use Version N and
Give Feedback

Develop Code
Meet to Discuss Action Taken Regarding
Feedback From Version N-1

Complete Code

Test and Build Version N+1
Analyze Feedback From Version N
and Decide What to Do Next

Fig. 3. An example of a typical one-week EVO cycle at the Manu
facturing Test Division during project A.

40 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

solutions. Second, the project still had significantly fewer
critical and serious defects during system testing. Third, the
team was surprised to see an increase in productivity (mea
sured in KNCSS per engineer-month). The project manager
attributes this higher productivity primarily to increased
focus on project goals.

Despite having abandoned the EVO method in project A.
many in the division felt that because of the benefits derived
from the method, they should give it another try. Project B,
the second project to use the EVO method, involved creating
custom hardware with a team of three project managers and
20 engineers. The project required significant changes to over
1.5 million Unes of code. One project manager coordinated
the efforts of three development teams.

The primary reason for using EVO for this project was to
demonstrate the feasibility of the product's new test tech
nique through the use of beta sites. Internal users were used
early in the cycle and external customers became involved
with later versions. This decision resulted in actually selling
systems to beta-site customers. Further, the traditionally
long startup time for the division's sales cycle was shortened
significantly by the use of EVO and validation of the product
by users (see Fig. 4). This created a major business impact
since it typically takes nine to fifteen months before the
market believes a product of this type can live up to its
claims. Even more time passes before customers will actually
buy the product. Because EVO encourages early exposure of
a product to users, sales started even before the product
shipped!

Start Small
The experience of HP's Personal Software Division with
EVO also began with some startup problems, followed by
remarkable success. The first project to use EVO was chosen
because it was felt that EVO would help to prioritize new
features, respond quickly to customer needs, and, because
of EVO's many release cycles, enable the release of the soft
ware product at any time in response to competition.

The six to eight project managers and approximately GO
engineers on this project were all new to the EVO method.
The plan was to do a complete release, including customer-
ready documentation and support, every month. Unfortu
nately, the first release consisted of paper prototypes and
the users were not able to provide good feedback. The sec
ond release used real code, took six weeks rather than the

four weeks scheduled, and EVO was generally thought not
to be worth the integration and logistical effort. For this
reason, the dhision decided to abandon EVO.

Although EVO had a bad reputation at the division after the
first project, in a smaller follow-on project, one project man
ager and eight engineers decided to try their own variation
of EVO, calling it "phased development." During the first
one-month phase, the development team worked from static
visual designs to code a prototype. In focus group meetings,
the team discussed users' needs and the potential features
of the product and then showed a demonstration of its
prototype. The excellent feedback from these focus groups
had a large impact on the quality of the product.

After the second cycle of focus groups, the feature set was
frozen and the product definition complete. Implementation
consisted of four-to-six-week cycles, with software delivered
for beta use at the end of each cycle. The entire release took
10 months from definition to manufacturing release. Imple
mentation lasted 4.5 months. The result was a world-class
product that has won many awards and has been easy to
support.

The success of phased development for this second product
led to the use of a similar process in the second release. The
project manager concluded that the phased development
process was the best approach for projects with an aggres
sive, user-driven schedule. Team experience and confidence
were definite contributing factors to the product's success,
and a compelling product vision proved to be absolutely
necessary.

Several potential issues arose during the project. EVO can
add overhead, particularly in small one- or two-person com
ponents. This is mainly because of the need for rapid con
text switching between various activities. Another potential
problem is the amount of time consumed by evaluation. The
team is investigating how to make evaluation feedback more
timely. A third issue is the need to schedule enough time for
front-end activities like design and inspections. Scheduling
longer evaluation cycles at the beginning of a new release
could accommodate this, as could setting aside intermediate
cycles for design, inspections, and code cleanup.

The project postmortem listed a number of benefits from
using EVO. The team particularly liked seeing the results of
their work often. Other benefits included:

â€¢ Long-term vision broken into short-term steps

Implement

J = Book F i rs t Order o f New Product
(b)

Manufactur ing
Release

Fig. 4. An accelerated sales cycle
in (a) the traditional waterfall life
cycle and (b) the EVO cycle.

August 1996 Hewlett-Packard Journal 41

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Prioritized implementation within component teams
â€¢ Cross-functional, empowered component teams (decision

making pushed down to the project engineers)
â€¢ Early results â€” good communication tool inside and outside

the division
â€¢ External customer feedback
â€¢ Six-week planning at the system level
â€¢ Excellent for incremental improvements to existing

products
â€¢ Early realism about how much can be done.

A New Platform
The last project described in this article involved one project
manager and eight engineers from HP's Microwave Instru
ment Division. It was a firmware project to build a platform
for developing new products.

Since a reusable platform design was a new way of working
for the division, the EVO method was expected to get more
visibility (via frequent delivery dates) for construction of the
prototype. The platform team expected to get good feedback
from the teams developing the follow-on projects. The proj
ect manager had strong reservations about using EVO and
about being able to produce a verifiable slice of the plat
form architecture in six weeks. The project manager de
cided to give EVO a try even if it seemed that it would take
ten weeks to complete the feasibility demonstration work.
The team completed the bulk of the feasibility work six
weeks into the project and finished it all by the ninth week.

Some engineers initially struggled with breaking their work
down into two-week chunks. Eventually, they not only
learned to do it but saw some real value in doing it, such as
getting better estimates so they could meet their commit
ments and handle coordination and linkages with the rest of
the team.

The team members also benefited from using EVO to de
velop their software development environment. Because of
the improved infrastructure, the project team was able to
train new engineers quickly on the new platform develop
ment paradigm. The project manager reported much greater
insight into the progress of the team and felt better able to
manage the project. EVO helped to uncover key issues early
and focus attention on the right things. One-third of the way
through the project, the team was able to verify and meet
their first performance goals. Traditionally, this didn't happen
until at least halfway through a project.

Unfortunately, after completing more than half of the planned
cycles, the project was cancelled because of a shift in the
division's short-term R&D strategy. The lab currently plans
to use EVO in two new projects.

Critical Success Factors

Based on accumulated HP experience in evolutionary devel
opment, including the three division experiences described
above, we have compiled a list of critical success factors.
Since not every project is suited for evolutionary develop
ment, the following success factors provide some indicators
for deciding if a project is a good candidate for EVO.

The Software Initiative Program

HP's corporate Engineering software initiative (SWI) is a major corporate
effort to make software development a core competence at HP. Drawing
on the expertise of its members in software engineering, management,
and business methods, the SWI partners with product development orga
nizations, delivering knowledge and expertise in key software compe
tence areas to get more products to market faster, with lower costs and
higher quality.

SWI's mission is to foster sustainable breakthroughs in product genera
tion capabilities for HP's business goals as related to software and
solutions. To achieve this, SWI consultants' work is driven by customer-
directed outcomes. In practice, determining what these outcomes are is
often in itself a significant contribution to the customer organization and
is the first step in any SWI engagement. The SWI team works with multi
ple levels of group and division management to understand the entity
business goals and explore ways of gaining competitive advantage.
These goals, along with challenges or obstacles that need to be consid
ered, drive the creation of specific improvement plans.

SWI's value is in its ability to accelerate software development and re
duce the risk of having to make fundamental changes to existing software
development and management practices. SWI is currently partnering with
product development organizations in all of HP's business sectors. This
includes significant efforts focused on software reuse, platform develop
ment, and testing.

Clear Vision
Perhaps the most critical success factor in using EVO is hav
ing a clear and compelling vision of the product. The per
ceived vision or value of the product is the reason why
someone would buy a given product rather than another, or
buy no product at all. Whether adding incremental function
ality to an existing product or developing major new compo
nents or functionality, the project team needs to understand
and accept this vision.

This vision will help guide prioritizing and decision making
and will make it easier for users and developers to under
stand why some changes are approved and others are not.
The project manager at the Personal Software Division noted
that the lack of clear focus for the second version of the
product made the project much more difficult to manage
than the first release. A clear vision is critical to convergence
on a releasable product.

Project Planning
Three factors need special consideration in planning EVO
projects. First, managing an evolutionary development
project requires substantially more effort than managing a
traditional waterfall development project. The contents of
each delivery should be planned so that no developer goes
more than two releases without input to a release. The goal
is to get everyone on the project team developing incremen
tally. Although it is difficult and time-consuming, the work
breakdown structure and dependency information must be
done and done correctly.

42 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In addition to more management effort. EVO also requires a
fundamental shift in how we think about software develop
ment. Traditionally, the first third of a project is spent
getting the infrastructure in place before developing any
customer-visible capability. This is a problem for an EVO
project because EVO requires earlier development of
customer-visible functionality to elicit customer response.
Delaying customer interaction with a product until the sec
ond third of the project is incompatible with this objective.

The solution typically lies in finding some existing code to
leverage. Although there is almost always resistance to
using this approach, it is usually possible to find something
to leverage. If this is not possible, then think about imple
menting the infrastructure in an evolutionary manner. In any
case, the first delivery should be released in no more than
two EVO cycles (see Fig. 1) from the start of implementa
tion. The first reason for this is that many of the concerns
developers have with evolutionary development are best
addressed by doing EVO. Second, if the start of EVO deliver
ies is delayed too long, the risk that delivery will never
happen (until manufacturing release) is increased.

The final planning recommendation is to create a standard
development plan that can be used for each cycle. Having
the same activities occur at the same time within each cycle
helps team members get organized and makes process im
provement easier. The activities of three groups should be
planned: developers, users, and the group who will make
decisions about user feedback. Keeping the cycles short
helps keep the developers motivated to make changes in
response to customer feedback.

Fill Key Organizational Roles
The unique needs of EVO projects require two additional
key project roles to be filled: technical manager and user
liaison. Because of the extra management burden imposed
by EVO, it is useful to have one of the engineers act as a
technical manager. This person is responsible for developing
the EVO plan (with the project manager) and keeping track
of the progress of the group. The technical manager is key
to moving the project forward, resolving daily tactical issues,
and handling most coordination activities, with the manage
ment team as backup. Typically, technical managers also
have development responsibilities, so they tend to under
stand the dependencies between tasks and can relate more
freely to the other engineers.

The other key position, user liaison, trains users, collects
their feedback, and communicates changes in the status of
the project. The user liaison is the single point of contact for
all the users and developers. This person should be the first
one to use each delivery to see what has changed and if
there are any problems in the code. The liaison's job is to
make it easy for users to be involved in the project. A strong
user advocate in this role can also contribute to management
decisions. Without this role, communication between the
developers and users can be haphazard, inefficient, and a
major energy drain.

Manage the Developers
Although evolutionary development may seem intuitively
obvious, implementing it in a traditional software Ufe cycle
environment should not be undertaken lightly. Much of the
challenge has to do with managing people. The following
steps have also contributed to success at HP:

â€¢ Establish a credible business reason for using EVO
â€¢ Discuss the method and the rationale for using EVO with

the development team
i Ask for feedback
' Develop an initial plan that addresses as many concerns

as possible
â€¢ Ask the development team to try EVO for a couple of

releases and then evaluate future use.

Two major concerns arise in managing developers. The first
is a concern that the development effort will degenerate into
hacking. To prevent this, the software architecture must be
well-partitioned and loosely enough coupled to enable easy
modification. This is why object-oriented programming tech
niques are particularly well-suited to evolutionary develop
ment. In addition, one or more persons must be assigned to
maintain architectural integrity, and if substantial redesign is
required, time must be scheduled. This should be a major
consideration in determining if a project is appropriate for
EVO methods.

A second concern is that it will be too difficult to make so
many releases. If it is difficult to make one release every 9
to 18 months, how much more difficult will it be to release
every two weeks? The answer is that when you make fre
quent releases, you get better at it (if this is not the case,
EVO becomes too inefficient). Further, the small chunks in
each cycle keep things to a manageable size.

Be aware of a few potential problems that could make man
aging developers difficult in the implementation phase if not
addressed properly. First, users tend to focus on what they
don't like, not what they do like. To keep this from being
discouraging for the developers, it might help to provide a
standard feedback form that elicits "Things I liked" followed
by "Things I didn't like." Because many more project manage
ment decisions need to be made in EVO, handling decisions
can also become a problem. If the decisions are not timely
or cause dissension, progress can be delayed. Participatory
decision-making techniques have been one solution at HP.
Finally, developer overwork or burnout is a potential hazard.
Most developers overestimate the amount of software they
can write in one or two weeks. While working long hours
may seem attractive for a short period, it will ultimately be
destructive.

Select and Manage Users
Evolutionary development requires users to exercise each
delivery. Many potential users have been alienated in the
past by the inability of developers to respond to their feed
back in a timely manner. Additionally, users are usually
being asked to do a task above and beyond their regular

August l!)0(i Hewlett-Packard Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

jobs. Consequently, the selection, care, and treatment of the
user base is a key issue for an EVO project manager.

The source of the user base is the first issue to address.
External customers (through field organizations), internal
customers, marketing or field people, and temporary workers
have all been used successfully to test products. The closer
the project team gets to external customers, the more accu
rate the feedback tends to be, but the more difficult the cus
tomer-relations situation becomes. Several projects satisfac
torily used internal surrogate users for early releases and
then shifted to external customers.

The user group should have a mix of customers that are
representative of the target market. The group must be big
enough so that one person doesn't skew the results, yet not
so big that managing users overwhelms the project team.
Among the user expectations that need to be set are:

â€¢ Time commitments to use the product and give feedback
â€¢ The possibility of critical problems with the software
â€¢ The possibility that the software may or may not change

substantially during the project
â€¢ Prohibition against discussing the software with anyone

outside the project.

If the user is an external customer, the field organization
must also be comfortable with their involvement.

In addition to setting expectations correctly, keeping users
satisfied during the development process is the other main
challenge of managing users. An obvious way to keep users
happy is to give them code that works reasonably well. If the
code keeps failing, they will get frustrated and tend to stop
using it. A second key to customer satisfaction is to take
their comments seriously and let them know what changes
resulted from their feedback. If a suggestion can't be imple
mented, explain why to them or, better yet, have one or
more of the users involved in the decision-making process.
Finally, streamline the software distribution and feedback
collection process. Find out what mechanisms customers
like to use for installing the software and providing feed
back. Then accommodate those desires as much as possible.

Shift Management Focus
Traditional software project management focuses 95% of the
team effort on shipping code. With EVO, it is important to
focus attention equally on all three components of the pro
cess, as shown in Table I.

T a b l e I
M a n a g e m e n t F o c u s d u r i n g T r a d i t i o n a l

a n d E V O L i f e C y c l e s

A c t i v i t i e s T r a d i t i o n a l E V O

Because of the need to radically shift the focus of all in
volved, getting feedback and making decisions in the early
part of the project should be emphasized. Putting a lot of
structure around those two activities by doing such things
as scheduling regular meetings to review feedback and
make decisions will help ensure that they get done. These

two activities are prerequisite to getting real value from
EVO.

Manage Builds
To do evolutionary development, a project team must have
the ability to construct the product frequently. If the product
will be released every two weeks, developers should be able
to do a minimum of one build per week, and preferably a
build every other night. The engineers must be able to inte
grate their work and test it, or they can't release it. Code that
is checked into the configuration management system must
be clean, and the build process itself must run in 48 hours or
less. Identifying a build engineer or integrator can help the
process.

Focus on Key Objectives
While there are many reasons to use evolutionary develop
ment on a project, focusing on one or two critical benefits
will help optimize efforts. These goals will guide later deci
sions such as how to structure user involvement, how to
change plans in response to user feedback, and how to orga
nize the project. Regardless of what goals are focused on, it
is critical to communicate the reasons for strategic decisions
to both management and the development team.

Evolutionary development is a different way of thinking
about managing software projects. Most groups will probably
experience some of the pain that usually accompanies
change, so start with a small pilot project first and then try
a larger project.

Conclusion
The evolutionary development methodology has become a
significant asset for Hewlett-Packard software developers.
Its most salient, consistent benefits have been the ability to
get early, accurate, well-formed feedback from users and the
ability to respond to that feedback. Additional advantages
have come from the ability to:

' Better fit the product to user needs and market requirements
â€¢ Manage project risk with definition of early cycle content
â€¢ Uncover key issues early and focus attention appropriately
> Increase the opportunity to hit market windows
1 Accelerate sales cycles with early customer exposure
1 Increase management visibility of project progress
' Increase product team productivity and motivation.

The EVO method consists of a few essential steps: early and
frequent iteration, breaking work into small release chunks,
planning short cycle times, and getting ongoing user feed
back. Other components can be modified to accommodate
the needs of specific projects, products, or environments.
Examples where situation judgments are appropriate include
selection of users and length of cycles.

Additional activities, like establishing a clear product vision,
identifying a technical manager and user liaison, creating a
standard development plan, and setting correct user ex
pectations, will help optimize the benefits of using EVO.
The challenges in using EVO successfully are mostly, but not
exclusively, human resource issues. These include the shift
in thinking about a new project structure paradigm and
perceptions that EVO requires more planning, more tasks to

44 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

track, more decisions to make, more cross-functional accep
tance and coordination, and more difficulty coordinating
software and firmware development with hardware.
As noted earlier, many of these perceptions are valid but
have extremely advantageous cost-benefit trade-offs. Since
many software developers are no longer primary users of
their products, they now need to be able to understand the
primary users' needs, skill levels, and motivations. Finally,
major changes in the customer-developer relationship can
result in customer demand for more input and involvement
in product definition and design.

HP is continuously improving the EVO process, building on
our experience at different divisions. The software initiative
team now offers a workshop and consulting expertise on the
EVO method. Experience with the value of using EVO to
develop the infrastructure and the need for management
focus have framed recent implementation efforts.

The key lessons to remember when first attempting EVO are
to start small, keep good records, and be diligent about
doing the essentials.

Acknowledgments
The authors would like to thank Mike Teska at Manufacturing
Test Division for his support of software development
method improvement, the board consultant development
team consisting of Sharon LaTourrette. John McDermid, Bob
Illick. Kathy Withers-Miklos. and Charles Zeng, and the users
of the board consultant EVO releases, especially Kent
Dinkel. We'd also like to thank Todd Cotton and Beatrice
Lam for discussing with us their EVO experiences on some
HP projects, and Tony Dicolen and other members of his
team at the Microwave Instrument Division for sharing their
EVO experiences with us. Finally, we'd like to thank the other
development teams within HP that have shared their EVO
experiences with us and the software initiative management
for sponsoring this work.

Reference
1. T. Gilb, Principles of Software Engineering Management,

Addison Wesley Publishing Company, 1988.

August 1996 Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

HP Domain Analysis: Producing Useful
Models for Reusable Software
Early software reuse efforts focused on libraries of general-purpose
routines or functions. These fine-grained assets did not produce the
hoped-for quality and productivity improvements. Recent software reuse
efforts have shown that architecture-based, domain-specific reuse can
yield greater quality and productivity improvements.

by Patricia Collins Cornwall

A software domain is a set of systems or applications that
share some common functionality. This common functional
ity is typically embodied in various software components.
Domain analysis is a software engineering process that pro
duces a characterization of a software domain to support the
reuse of the software components. The HP domain analysis
method produces a set of models that guide the design of
reusable software.

While a few papers and books have been published on as
pects of domain analysis,1'2'3-4'5 very little has been published
on practical domain analysis methods. HP has developed
and refined a practical domain analysis method which has
been used in several reuse projects. The method has proven
to be an effective and efficient way to get the information
needed for the design of domain-specific software. The
focus of each domain analysis is guided by the business
priorities and anticipated uses of the domain models.

This article describes a reuse process framework and the
essential activities, deliverables, and typical uses of the re
sults from the HP domain analysis method. Because the HP
domain analysis method is designed to be tailored to the
strategies of HP's business organizations, sections of this
article will describe the business contexts for reuse strate
gies and special reuse roles in the organization.

Reuse Process Framework
Early reuse efforts focused on libraries of general-purpose
routines or functions. These small-grained assets did not
produce the productivity and quality improvements hoped
for because so much engineering effort had to go into inte
grating these assets to produce a useful product. More re
cent efforts have shown that architecture-based, domain-
specific reuse with larger assets can provide significant
productivity and quality improvements. For the past five
years, practical engineering experience in adapting reuse to
meet HP's business needs has confirmed that the biggest
return on investment comes from reuse that is based on
domain-specific components that work in a flexible, but

' A complete software component includes both object code and all related information needed
to use it. Tbis related information includes parameterization information, source code if not
proprietary, test information, design information, evaluation results, and other descriptive
information.

well-defined architecture. Reuse-oriented engineering ad
dresses how these software assets are produced, supported,
and used.

Because each organization has its own variations on pro
cesses and often quite distinct choices of specific methods,
the U.S. Department of Defense's Software Technology for
Adaptable, Reliable Systems (STARS) program sponsored a
project to develop a conceptual framework for reuse pro
cesses.3 This conceptual framework helps organizations
understand the relationships among their software asset
production, support, and utilization processes. HP partici
pated heavily in the definition of the reuse process frame
work and provided some of the earliest experiences in its
application. The usefulness of this reuse process was vali
dated with organizations adopting reuse-oriented software
engineering practices. This article's discussion of major re
use processes blends the knowledge gained from the STARS
Conceptual Framework for Reuse Processes (CFRP)6 with
subsequent experience in reuse adoption at HP.

Fig. 1 shows the fundamental relationships among the reuse
engineering processes: produce assets, support assets, and
utilize assets. All three processes are guided by the results
of one or more domain analyses performed in the Analyze
Domain process, which analyzes and models a domain for
architecture-based, domain-specific reuse efforts. Essential
assets of software reuse-oriented engineering include a
domain architecture and reusable software components.
Domain analysis produces domain models and other domain
information used by the other three reuse-oriented engineer
ing processes. The domain models and information are valu
able assets, capturing the organization's knowledge about its
product line capabilities and how those capabilities can work
together in a range of competitive products. Fig. 2 shows a
conceptual model for a data analysis domain, and Fig. 3
shows a physical environment model for a device measure
ment domain.

Domain analysis is an essential part of any reuse effort. How
ever, the domain analysis methods being used in industry
range from an informal and quick expert prediction of what

' Some reusable software assets include software generators rather than components that are
based on reusable code.

46 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Business Objectives
and Priorities

Expert Knowledge.
Product Plans, and

Documentation

Domain
Analyst

Producer

Support
Requests

Supporter

Product Requirements -
N e w

Products

Uti l izer

Fig. 1. The domain analysis software engineering process.

the domain should cover to a highly structured, exhaustive
analysis and modeling effort with hundreds of pages of doc
umentation. For different business situations, either of these
extremes or more moderate alternatives may be appropriate.
Across software engineering businesses, it is not possible to
define one domain analysis method that meets all needs. In
fact, even the higher-level descriptions of an overall reuse
process may differ significantly from organization to organi
zation. Rather than defining a domain analysis method that
would work in only one business context, the HP domain
analysis method is adaptable to a wide range of businesses
that generate products that include software or firmware.

The Produce Assets process shown in Fig. 1 uses domain
models to develop reusable assets for use in portfolios of
products within the domain. The Support Assets process
includes managing the collection of assets and assisting the
users in understanding how to take best advantage of the
assets. Asset support also includes serving as a users' advo
cate with producers, integrating the needs of many user
groups and assessing the relative benefits of producing or
reengineering particular assets. The Utilize Assets process
constructs new products with supported assets.

O = Domain of Focus
Fig. 2. Conceptual model for
a data analysis domain.

August 1996 Hewlett-Packard Journal 47
© Copr. 1949-1998 Hewlett-Packard Co.

Custom Hardware

PC or
UNIX

Customer's Enterprise
Computing Environment

Input/Output
Card

Configuration
Control

Instruments

Business Contexts for Reuse Strategies
The first step in any domain analysis is to understand the
business priorities and constraints where reuse is going to
be used. There are numerous business circumstances that
demand an improvement in the way software is developed
and maintained. Reuse-oriented software engineering is often
used to address business pressures for reducing product
cycle time, increasing product quality, escalating the rate
of introduction of new product features, and improving
employee job satisfaction. However, software reuse is not
always an appropriate way to accomplish business goals.
Like so many software engineering methods, software reuse
has become the goal for some organizations, rather than a
means to accomplishing an organization's business goals. To
ensure that reuse serves the business needs, we recommend
that the management of a reuse effort begin by explicitly
identifying the business priorities and analyzing what kind
of reuse strategy (if any) will best support achieving those
priorities.

Some organizations have launched reuse initiatives only to
find that their products do not lend themselves to produc
tive, cost-effective use of the software assets they develop.
The two aspects of business context that most influence the
decision to employ a reuse approach are the business goals
and the product portfolio characteristics.

Businesses need to be more productive than ever to be com
petitive. Software reuse is rarely a short-term solution for
meeting these increased productivity pressures. However,
with a managed investment in adopting reuse, the benefits
can be measured within the first few uses of the software
assets.

Product Cycle Time. In many commercial businesses, the
strongest competitors are those who dramatically reduce
the time between introduction of a product and the intro
duction of its successor. To determine the potential impact
of software reuse in meeting shortened time-to-market goals,
we first assess whether software engineering (development
and quality assurance) has critical path activities for the
overall product development and release process. Managers

Card Cage

Fig. 3. Physical environment
model for a device measurement
domain.

who are being encouraged to reduce product cycle time need
to focus on engineering activities that produce more and do
it faster, possibly with a smaller team. They cannot afford to
make organizational or process changes to noncritical path
efforts if those changes won't substantially improve the
product cycle time. Adopting software reuse involves an
up-front investment in new skills and, often, in additional
engineering effort. Therefore, investing in software reuse is
appropriate when there is a predictable long-term benefit
from the up-front investment, and the short-term costs of
the investment are tolerable.

Product Quality. To determine the potential impact of software
reuse in meeting product quality goals, we first assess how
much of a product's quality is determined by the software or
firmware. Software reuse is valuable in improving product
quality when a significant amount of the functionality is con
sistent from product to product, so that as that software is
tested and in use, more defects are found and fixed. For HP
products, the question is often not so much of ensuring the
highest quality (which is a must) as it is of providing that
quality with less testing time. Nevertheless, as the reusable
software "ages" and fewer defects are found in successive
uses, customers tend to experience higher quality in the
products.

Rate of Innovation. Many businesses make ongoing trade-offs
between the rate of introduction of new products and the
number of innovations that are new to each successive
product. The rate of innovation in products can be increased
when the product is based on a stable software platform.
A reusable software or firmware platform provides that base
functionality without the effort to design and implement the
same functionality for each product, freeing the product
team to focus on innovations for each new product.

Employee Job Satisfaction. Improved employee job satisfaction
has become a very important business goal in some organi
zations, especially those where intense pressures for meeting
deadlines have resulted in employee burnout. We have
worked with organizations where the move to reuse was
motivated as much by the desire to provide a better work

48 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

emironment for sustainable employee job satisfaction and
work-life balance as it was to meet marketplace pressures.
For an organization that already has the market share it
needs and has a competitive product Une, the goal may be to
release those future products with a team that is energized by
the software engineering effort rather than exhausted by it.

Note that software reuse often makes it imperative for an
organization to adopt architecture, design, implementation,
and quality practices that would be a significant benefit to
their software engineering projects even if reuse were not
accomplished. Many software engineers welcome the move
to software engineering methods that make them more pro
ductive, which contributes to their job satisfaction.

Product Portfolio Characteristics. An increasing number of HP
divisions have business plans for a portfolio of products.
The products may be tailored to address different market
segments, from personal uses to enterprise uses, or tailored
to meet specific industry needs, like automotive or banking
businesses. We can look at this portfolio as a snapshot-in-
time of the set of products a business wants to deliver. In
addition, the product portfolio must be managed over time,
with the introduction of additional features in successive
versions of products. The business's vintage chart antici
pates the desired product evolution and provides essential
information for assessing the potential for reuse.

The characteristics of a product portfolio that can improve
the prospects for software reuse rely mostly on the stability
of the feature set in the product portfolio. There must be
some significant set of base functionality that the set of
products have in common to make it profitable to invest in
reuse. This common functionality may constitute as little as
10% of a product's software and still be worth implementing
with reuse in mind.

To reduce the risk of adopting reuse (any change involves
risk, as does no change), those chartered with producing the
reusable software rely on access to experts in the kinds of
functionality for the products that will be produced. These
people are often referred to as domain experts. These ex
perts must be made available to the domain analysis effort
as part of management support for the reuse strategy.

We use a rule of thumb in which the asset designers must
get access to at least three existing examples of products
that have the kind of functionality they want to provide in a
reusable form. They also need characterizations of at least
three intended future products that would also have that
kind of functionality. The three examples give concrete in
formation about what functionality is common (an existence
proof). The three projected uses suggest that the invest
ment will be amortized adequately to realize the benefits of
designing, developing, and maintaining the software assets.
The future uses also suggest the range of variation the assets
must support.

HP Domain Analysis
The HP domain analysis method was developed by HP's
software initiative (see page 42). The HP domain analysis
method supports analysis and modeling of capabilities
(functionality or services) provided by domains such as
microwave frequency measurement modules, crosscorrela-
tion The algorithms, or report generation routines. The

method explicitly addresses gathering the constraints and
requirements of producers, supporters, and anticipated
users of the domain analysis and related assets. A reuse
strategy for software engineering is most successful when
producers, supporters, and utilizers are full, active contribu
tors to the domain analyses they will later use. The roles of
the producers, supporters, and utilizers are described in
"Reuse Roles" on page 50.

The Analyze Domain process shown in Fig. 1 produces a
kind of reusable asset in the HP domain analysis method
and is, therefore, conceptually a kind of Produce Assets
process. Nevertheless, Fig. 1 shows the Analyze Domain
process separately to emphasize that HP domain analysis
guides and is guided by all three fundamental reuse engi
neering processes.

Basics of HP Domain Analysis
The HP domain analysis method includes domain analysis
and modeling. The analysis identifies capabilities of systems
in a domain of focus (i.e., the set of systems being analyzed),
and classifies the common capabilities and the range of vari
ation across systems that are anticipated in the future. The
modeling captures the relationships among critical capabili
ties in the domain and creates models of the capabilities and
their relationships without imposing a particular implemen
tation solution.

In HP domain analysis, the term "domain" refers to any set
of implementations (systems or subsystems, for example) in
which the implementations have some common capabilities.
Most of the time we define the domain by the set of common
capabilities, rather than by listing all the potential implemen
tations that could fall in the domain. For example, for a do
main like a microwave measurement test system, there are
endless possible products. However, most implementations
of microwave measurement test systems include capabilities
like test management, data management, report generation,
signal measurement, and so on.

There are no common rules about what makes a set of capa
bilities the right size and complexity to be called a domain.
If the domain of focus represents a consistent set of capabil
ities in a larger context (for example, in the context of a
product portfolio), the most useful scope for such a domain
is one in which there is a high degree of cohesiveness among
the capabilities within the domain, and a limited coupling to
other domains with which the domain of focus might be com
bined to produce products. For example, a domain like a
graphics editor has significant complexity within it. However,
in a larger context like document publishing, the graphics
editor might have connections to other domains like text
editing and document printing, which have a well-defined
and comparatively simple interface.

Intuitively, domain assets are much more likely to be reusable
if they provide a coherent "chunk" of desired capabilities and
if the assets are easy to integrate into a complete solution.
Typically, ease of integration is accomplished with a simple
interface between the assets and the rest of the product
software or firmware.

August 1996 Hewlett-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

Reuse Roles: Producers, Supporters, and Utilizers

In the early stages of moving to reuse-oriented product development,
software engineers take on the roles of being responsible for developing
their software to be reusable (producers), learning how to use software
developed by others (utilizers), and supporting their software for use by
others for As reuse becomes more systematic, it is common for
organizations to evolve so that individuals take on the specific roles of
producer, supporter, or utilizer for the duration of a product development
cycle.

Fig. 1 shows the primary relationships among software engineering roles
in a reuse-oriented organization, and the following sections describe the
responsibilities for each of the roles.

D o m a i n A n a l y s t
â€¢ Analyze the common feature set and the range of feature variation

across the projected uses of the assets.
â€¢ Characterize capabilities the domain must provide to support the users

of products built with domain assets by the product developers. Capture
the characterization in models that can be used to design and develop
domain assets and guide the use of those assets.

â€¢ Produce conceptual models that are readily understandable by managers,
new project managers, and engineers who will produce, utilize, or support
the domain assets.

â€¢ Extract domain information from diverse sources such as past designs,
interviews with experts, product data sheets, and trade press articles.

â€¢ Use domain unambiguous terminology captured in the domain
lexicon to communicate about the domain.

â€¢ Develop and maintain a working partnership with producers, supporters,
utilizers, managers, and key technical contributors.

P r o d u c e r s
â€¢ Include utilizers' requirements and needs as part of the design. Consider

the utilizers' assessment of product requirements and what it takes for
them to be able to tailor and integrate the assets easily to build products.

â€¢ Include supporters' requirements and needs as part of the design.
Consider the supporters' ability to maintain the assets, to manage the
asset base's evolution, and to provide assistance to utilizers.

â€¢ Develop an architecture for the product portfolio that clearly defines the
common elements and the range of variation across the uses of those

elements. Design the architecture's evolution to meet delivery
requirements.

â€¢ Design the assets to support critical abilities like portability, support-
ability, extensibility, scalability, and tailorability and to meet function
ality and performance requirements.

â€¢ Develop and maintain a working partnership with the domain analysts,
supporters, and utilizers, including managers and key technical
contributors.

S u p p o r t e r s
â€¢ Develop and maintain a configuration management process and envi

ronment that support the producers and the various teams of utilizers, as
well as making it easy to configure and distribute releases.

â€¢ Provide asset use consulting to utilizers.
â€¢ Join with producers throughout the producers' development effort to

ensure port. the assets will be easy to understand, maintain, and port.
â€¢ Contribute to the prioritization of asset development and support plans

and consider the overall business priorities and needs.
â€¢ Develop and maintain a working partnership with domain analysts,

producers, utilizers, managers, and key technical contributors.

U t i l i z e r
â€¢ Use every architecture and available software assets to guide every

phase of the product development life cycle. This includes everything
from determining product requirements to quality assurance.

â€¢ Design the product to take advantage of new combinations of features
that could provide a market advantage.

â€¢ Join with producers throughout the producer's development effort to
influence their design and implementation of assets so that they will
meet the utilizer's product needs.

â€¢ Join with the domain analyst to influence the scope of the domain and
the domain utilizer's model.

â€¢ Contribute to the prioritization of asset development and support
plans, considering overall business priorities and needs.

â€¢ Develop and maintain working partnerships with domain analysts,
producers, supporters, managers, and key technical contributors.

Domain Analyst
and Domain Models

Asset Requests
Supporters' Needs
and Requirements

Use Consulting
Configuration
M a n a g e m e n t

Support
Requests

Util izer's Needs
Product Capabil i t ies
and Requirements

Products

Fig. 1. Relationships among the software
engineering rales in a reuse-oriented
organization.

50 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Bus iness
Ob jec t i ves

Establish
Domain Analysis

Objectives

Doma in In fo rma t ion ,

Domain Analysis Objectives

Gather
In fo rmat ion ,

Analyze Domain

Domain-of-Focus
Statement
Conceptual Model
Analyzed Domain
Information

Capabi l i t ies Model
Environment Model
End-User Characterization
Uti l izer Requirements
Reusabil i ty Requirements

The Method
The HP domain analysis method usually involves three
cycles through a set of well-defined activities. Fig. 4 shows
these 5 and the deliverables they produce, and Fig. 5
shows a typical level of effort expended on each deliverable
during each of the three cycles through the domain analysis
process. At each step through these cycles the analysis and
models are refined and deepened and go through the same
basic the The first cycle usually needs to focus on the
context in which the domain will function because the team
is still analyzing just what part of the overall product port
folio the domain must cover. The second and third cycles

Domain-of-
Focus
Statement
Conceptual
Model
Domain
Lexicon

Fig. 4. The activities and deliver
ables that make up the domain
analysis process.

refine the scope of the domain and fill in details on domain
capabilities and their relationships.

The following sections describe the activities shown in
Fig. 4 and the deliverables produced by each activity.

Establish Domain Analysis Objectives. Use business goals and
constraints to produce a clear statement of the purpose for
the domain analysis. Identify those who have a stake in the
domain analysis. Typically stakeholders include managers in
the product development organization, those who will design
and implement the domain assets, those who will support

Effort

Megadomain
Context Models

Domain Conceptual
Mode l

Domain-of-Focus
Statement

Physical
Environments
Context Model

Users Model

Uti l izers Model

Domain Capabil i t ies
Mode ls

Domain Lexicon

Cycle 1 Cycle 2 Cyc le3 Time

Fig. 5. The level of development
effort expended during each cycle
of the domain analysis process.

August 1996 Hewlett-Packard Journal 51

© Copr. 1949-1998 Hewlett-Packard Co.

Object ive: The domain analys is wi l l assess the va lue of bui ld ing products
based on reusable software, where that value is based on
potential competit ive advantage,

Metr ics: â€¢ Count the number of compet i t ive capabi l i t ies in the domain
capabil i ty models.

â€¢ Name the clusters of capabilities that marketing identifies
as a competit ive advantage.

Object ive : Determine what sof tware would be h igh ly reusable as a
software platform in our products targeted for the years 1997
to 2001.

Metr ics: â€¢ Does the domain context model c lear ly ident i fy which par ts
of the domain constitute the platform domain?

â€¢ Does the platform domain's conceptual model capture the
capabil it ies needed for targeted products in the years 1997
to 2001? Are those capabil it ies highly similar across the
targeted products?

Domain of Focus Statement

The Rainbow domain [domain common name] is the system f irmware that
supports the set of all color printing solutions products [targeted products]
anticipated in 1994 - 1997 (see Rainbow genealogy chart) , [uti l ization t ime
frame] There are three classes of end users for the Rainbow domain: people
who send print jobs to the printer to obtain printouts, third-party application
developers of applications that have printing capabil i t ies (i .e. , applications
that interface to Rainbow-compatible printer drivers), and the person who
detects and reports problems with the printer behavior, typically a systems
administrator or product f ield service technician, [targeted end users]

The Rainbow domain supports people who send print jobs to the printer
through its abil ity to detect and report (to the application from which the
p r in t to was made) any ma l func t ions and o ther s ta tus o f the p r in te r , to
receive, interpret, and dispatch print commands (also, from the application
from printing, the print request was made), and to control the actual printing,
paper handling, and front panel displays (if any), [externally observable
capabil i t ies]

Fig. 6. An example of some of the objectives and metrics for a
domain analysis project.

Fig. 7. A portion of a domain-of-focus statement for a printer
command handling domain.

those assets, and those who are targeted to utilize the assets.
Get agreement from these people on the objectives.

The deliverables from this activity include a statement of de
sired objectives for this domain analysis and a set of metrics
that will determine the progress and success of the analysis.
The documentation will also show how the domain analysis
objectives are aligned with the business goals. Fig. 6 shows
an example of some of the objectives and metrics for a do
main analysis project.

The value of this activity is that it ensures that the domain
analysis meets business needs, enables the domain analysis
team to manage its investment of time and effort, and estab
lishes a partnership with stakeholders to ensure that the
domain analysis results meet their needs.

Develop a Domain Context Model. Identify examples of existing
systems that include capabilities of the domain you have
identified. Use the list of targeted uses of the domain from
the domain-of-focus statement to identify examples of future
systems that include the domain. Develop a top-level model
of the major elements of the systems. This is called the mega-
domain. Normally this model contains five to eight elements,
with labeled relationships shown on the interconnections
between the elements. Fig. 2 shows a conceptual model of a
megadomain. This model serves as the organization's domain
context model, since the parts of the megadomain that are
in the domain-of-focus statement can be highlighted and the
relationship to the overall megadomain can be identified.

This activity identifies a top-level interface between the
domain and the rest of a system. The focus of the activity is
in identifying what parts of a system are within the domain.
The domain boundary decision is refined over the three
cycles of the domain analysis.

Identify the Domain of Focus. Determine what domain will be
the focus of the domain analysis and produce a domain-of-
focus statement. The domain-of-focus statement is a de
scriptive statement (about three to five pages long) of what
characterizes the domain, in terms of its anticipated uses and
the scope of its capabilities. This statement complements
the conceptual model (described below) and provides a
basis for shared understanding about the domain, without
needing to understand the detailed relationships of elements

in the domain. Because it describes the scope of the domain,
it guides the more detailed modeling efforts. Fig. 7 shows an
excerpt from a domain-of-focus statement for a printer com
mand handling domain.

Be sure the terminology used is documented in the domain
lexicon (described below). As the description of the domain
evolves, be sure to keep the domain-of-focus statement con
sistent with the domain models, especially the conceptual
model. Fig. 8 shows a portion of the lexicon for an I/O bus
project.

Access Functions: Functions that read or write data within the domain
database.

Arbitration Block: A software component that monitors and controls
arbitration for a bus.

Arbitration: The act of controll ing access to a shared bus.

Bus Driver: The component that controls a given set of signals on the bus.
Note that there is only one bus driver for a given set of signals.

Bus Signal: This term has two different meanings: hardware bus signal and
software bus signal. A hardware bus signal is a voltage on a wire that
connects architecture components together. A software bus signal is a
variable that models the hardware voltage on a wire.

I /O Bus: The set of signals needed for communication between I /O devices
and the processor bus.

I /O Controller: Hardware or HDL model that handles all I /O transfers from the
processor bus to the I/O bus.

Processor Bus: The set of signals needed for communication between
processors, I /O controllers, and memory.

Transaction: A series of events on a bus that accomplish a certain task.
A transaction transfers data, inquires about or change state, or provides the
system with information.

Fig. 8. An example of definitions that might appear in a domain
lexicon.

52 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

This activity provides a succinct statement of the essential
characteristics of the domain for use with stakeholders. It
also serves as a reference for decisions about the scope of
the domain.

Gather Domain Information. Look at existing systems that in
clude the domain. Also look at information on future prod
ucts that might be able to use reusable designs and imple
mentations in the same domain. Interview domain experts
for their knowledge about trends in technology or capabili
ties associated with the domain. Identify the externally
observable capabilities of the domain.

This activity provides the technical information for analyzing
and modeling the domain, and ensures that the domain char
acterization is accurate and adequately complete.

Develop a Conceptual Model. Create a graphical depiction of
the domain's primary elements and their relationships. This
model may not be a technically accurate, top-level represen
tation of the eventual design, but rather is an easy way to
understand the "big picture" of the domain. It complements
the domain-of-focus statement. Often the domain-of-focus
statement and the conceptual model are used in manage
ment briefings and as part of the support documentation for
engineers who need a general understanding of the domain.

There is no need to be fancy with the conceptual model, hi
fact, an intuitive model is preferred. Arcs between elements
of the model must be labeled and the intended interpretation
of the connections between those elements must be docu
mented. The conceptual model should use the terminology
defined in the lexicon and must be consistent with the
domain description in the domain-of-focus statement.
Usability of the conceptual model is enhanced by using a
single modeling paradigm such as process flow, data flow,
or entity-relationship diagrams.

Define the Domain Lexicon. This is an ongoing activity in which
terms used to discuss the domain are defined, with pointers
to related terms. The lexicon is used as a reference docu
ment for the terminology of choice for communicating about
the domain. The domain lexicon includes every term in the
domain models. It is invaluable in saving time and minimizing
misunderstandings among the asset producers or between
asset producers, supporters, and utilizers because it enables
them to interpret the domain models consistently. The do
main lexicon also allows a new member of a team to study
the domain models and gain an initial understanding of the
models without needing full-time assistance.

This effort will create a common understanding of concepts
related to the domain, capture decisions about preferred
terminology, and support efficient learning about the domain.

Model Domain Capabilities. Develop a model or set of models
that capture the relationships among externally observable
capabilities of the domain. This model is based on the gath
ered domain information, uses the terminology of the lexicon,
and is consistent with the domain-of-focus statement and
the conceptual model. The capabilities model is the primary
reference used by the domain architect and asset designers.
Thus, ex must contain a characterization of all essential, ex
ternally observable capabilities of the domain. Also, because
the capabilities model is concerned with the externally
observable capabilities of the domain, it can be a valuable

document for those needing to understand how to maintain
or use the domain.

Later, the architecture and designers (who are members of
the producer team) will transform the capabilities model
into a chosen engineering solution. For organizations that
have not done formal architecture and design, the capabili
ties model may serve as the design, supplemented by the
other domain models. As the organization's skill in software
design increases, the capabilities model will be the primary
source of information for guiding the more detailed and for
mal software design. The domain analyst documents links
between gathered domain information and decisions about
capabilities and their relationships.

The most practical approach to capabilities modeling is to
use the same paradigm as will be used in the architecture and
design of the domain assets. Feature-based models, entity-
relationship-attribute models, object-services models, and
logic-rules models can be employed. However, the domain
models are not meant to reflect implementation decisions.
Furthermore, the capabilities models show only what is ob
servable to utilizers and end users of the domain capabilities.

Most capabilities modeling requires a combination of aggre
gation, abstraction, and decomposition approaches to identify
the top two or three layers of externally observable capabili
ties. the these layers may not be strictly hierarchical, the
models must capture the kinds of relationships that exist
among the capabilities. Capability models identify each of
the capabilities as required, or optionally, identify sets of
alternative capabilities and note other capability inter-
dependencies.

The most practical way to capture the range of variation
across intended uses of the domain is through use scenarios.
One very useful kind of model shows stimulus-response
relationships among capabilities (i.e., what services or
actions transpire as a result of what events) for different
scenarios.

Modeling the domain capabilities provides domain architects
and asset designers with a characterization of the domain's
externally observable capabilities in sufficient detail for
architecture and external design needs.

Model Physical Environments. Characterize the physical envi
ronments in which the software for the domain needs to
work. This may mean describing the processors in an instru
ment where firmware runs, or the various heterogeneous
enterprise environments where application software will
run. Also, if there are diverse interface standards to be met,
those are captured in this model. Fig. 3 shows an example of
a simplified physical environment context model.

This activity ensures that asset designers have the informa
tion needed to accommodate computing environment con
straints, like parallel or distributed processing, and refines
the scope of the intended use of the domain assets.

Model End Users' Needs. Capture the characteristics of the
end users that could influence the design or the implementa
tion of domain assets. Each targeted development project
may provide a characterization of their end users that in
cludes skill level, understanding of how the product works,
expectations, and a mental model of the user interface. The

August 199G Hewlett-Packard Journal 53

© Copr. 1949-1998 Hewlett-Packard Co.

Management

Successful reuse depends on a different kind of relationship among engi
neering teams. The teams behave as true partners, each concerned for
and respectful of the legitimate needs and constraints of the other. Be
cause whose partnership is so critical to successful reuse, managers whose
responsibilities span the producer and utilizer organizations need to
understand the issues involved, support the reuse effort with computing
and training resources, allow time for regular communication and joint
decision-making by producers and utilizers, and acknowledge the value
of the reuse investment.

This slip no easy task when the next product's release is in danger of slip
ping and the return on the reuse investment will not be felt until products
after without current product are in development. Nevertheless, without
informed senior management involvement and support, producer and
utilizer organizations find it difficult to behave as true partners, and typi
cally fall back into the old ways of engineering software, which are the
very ways they had decided to abandon because they would not meet
future business needs.

In one HP organization, a lab manager endorsed a pilot reuse project for
reengineering existing software into a more easily reused software plat
form. engineer lab manager's responsibilities spanned the platform engineer
ing team and numerous product development teams that would use the
platform. The lab manager's leadership and active involvement in under
standing the issues, providing resources, and rewarding reusable results
transformed the way software and firmware components for an entire
product line were produced. The transformation did not take place over
night. per the business is now producing four to six products per
year rather than the one per year that it was producing four years ago
when the reuse effort began. This has been accomplished with a modest
increase in staffing and a great deal of software and firmware reuse or
leverage.

In another business sector, a group of businesses agreed to cooperate on
the development of a reusable software platform that could be used in
numerous product lines. The senior management (R&D group managers)
invested in the project and encouraged the individual businesses to invest
senior senior contributors in the asset production effort. These senior
technical contributors served as producers in the early months of the
reuse the However, they were also responsible for representing the
needs soft their individual organizations as potential utilizers of the soft
ware platform. As a serendipitous result, the resulting platform was
used to bootstrap a new business that had many of the same product
capabilities that had been analyzed and designed into the reusable soft
ware, highly HP to get to market substantially faster with a highly
competitive product.

Unfortunately, there are also examples where talented engineers have
developed solid technical solutions for reuse, but were unable to engage
their involve utilizers or were unable to get senior management involve
ment and active support. Eventually, each of these investments was
abandoned with a return to the short-term product development methods
that were not meeting business needs when the reuse effort began.
There utilizers, a very strong correlation between engaging producers, utilizers,
and managers and succeeding with reuse.

models of end users translate the end-users' usability require
ments into a model of the capabilities the domain provides
to meet those requirements.

This and ensures end-user usability of domain assets and
often influences the set of capabilities provided.

Model Utilizer Needs. Use identified utilizer needs for usabil
ity of the domain assets. This list usually includes the utiliz
er's constraints with respect to development environment
(programming tools, version control and configuration man
agement expectations, etc.), usage support requirements,
and skill level. This information may influence the reusability
requirement decisions and the domain architecture or asset
design. The utilizer model translates the utilizer's usability
requirements into a model of the capabilities the domain's
components provide to meet those requirements. This model
is typically quite different from the end-user model because
it shows what will need to be provided in the product devel
opment phase, rather than the functionality needed in the
delivered product.

Reusability Requirements. Develop a clear statement of how
the domain will interpret such reusability characteristics as
portability, modularity, scalability, extensibility, tailorability,
interoperability, plug compatibility, and standards confor-
mance. This statement defines how the team will know
when they have achieved adequate reusability in their
domain design and implementation.

Validate Models. Ensure consistency, completeness, and
usability of the domain analysis and models. This activity is
best supported with regular and explicit quality assurance
activities, like minireviews or checkoffs against objectives
and measures defined in establishing domain analysis objec
tives. This activity will ensure quality and provide an assess
ment of when the domain analysis is adequately complete.

How Much
The knowledge captured during a domain analysis is essen
tial for success in reuse. Therefore, domain analysis is not
overhead but rather a low-risk, efficient way of gathering
and developing domain knowledge in forms that are readily
accessible to those in the organization who:
Develop reusable software or firmware
Develop products that use the reusable assets
Support the assets.

The larger the domain, the more people are typically involved
in the domain analysis. Nevertheless, planning for it to take
about six weeks of full-time effort from the start of the anal
ysis and modeling until the stakeholders have what they
need to delve into architecture and asset design is reason
able. Normally, the stakeholders are the first people to use
the domain analysis results. For a team new to domain
analysis, productivity will be greatly enhanced by having an
experienced domain analyst (even one from a very different
domain) available to guide the team through the method.

As mentioned earlier, the HP domain analysis method has
three cycles of well-defined activities. For a typical domain,
the first cycle generally takes about a week of focused effort
for the domain analyst, who is leading the domain analysis
effort, plus 10 to 30 hours for each of the domain experts
providing information and assisting in the analysis. The sec
ond cycle takes about two weeks of information gathering,

54 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

analysis, and modeling for the domain analyst and those
who will be involved in the design and implementation of
the domain assets. The users are consulted during this cycle,
but the time commitment may only need to be a few hours
for review and suggestions. The final cycle takes about three
weeks for refining and validating the analysis and models.
The domain analyst is involved full time, while the domain
architect and domain asset designers may begin sketching
out their first asset design ideas in parallel with the third
domain analysis cycle. This parallel approach can ensure
that the refining and validating activities meet the designers'
needs. Domain analysis typically ends as an explicit activity
when the design team has the information it needs to de
velop or reengineer an architecture and reusable software.
However, it is important to maintain consistency between
requirements, domain models, domain architecture, and
asset design.

Using HP Domain Analysis Results
The deliverables from an HP domain analysis are designed to
be useful in other, specific reuse activities. In architecting the
domain and designing the reusable assets (Produce Assets in
Fig. 1), all of the deliverables are used. The capability models
and domain characterizations are primarily targeted to be
used to guide these activities.

In supporting asset utilization, the lexicon is indispensable.
The conceptual model and domain-of-focus statement are
especially useful in acquainting developers with the domain
assets (a form of asset support). The capability models and
domain characterizations provide useful details for the uti
lizer, who is trying to understand how the assets might best
provide the capabilities needed in the product (another form
of asset support). The lexicon and capability model also
support asset management through library classification,
asset access, and configuration management.

In using assets, the utilizer will likely reference most of the
domain analysis deliverables, initially relying on the con
ceptual model and domain-of-focus statement. Part of using
assets is taking the initiative to identify asset requirements
to the producers, who will translate requirements requests
into refinements of the impacted deliverables. For example,
the need for a new capability is reflected in the capability
models and lexicon.

Generally, managers rely most heavily on the conceptual
model and domain-of-focus statement, with the lexicon as
background material.

Conclusion
The HP domain analysis method provides a simple and effec
tive way of getting information needed to be successful in
domain-specific, architecture-based reuse. By providing a
method with a clear set of deliverables that have well-defined
uses, we improve the efficiency and effectiveness of the
domain analysis. Following the HP domain analysis method
can substantially reduce the risks in reuse-oriented software
engineering, risks that arise when the assets produced and
supported do not adequately meet utilizers' or end-users'
needs.

In most cases, we find the best results are obtained working
with an experienced domain analyst the first time a team
goes through the cycles to do their first domain analysis.
Over time, that team's experience in domain analysis can
increase to a level of domain analysis expertise that can be
spread throughout the organization.

Acknowledgments
The HP domain analysis method was initially captured as a
domain analysis workbook. Its primary author was Mark
Simos of Organon Motives, who was a consultant to HP's
software initiative program. Modifications to the workbook
and the underlying process model were influenced by the
work of Ruben Prieto-Diaz and Guillermo Arango.4'5 A com
pletely new workbook was developed after the modified
workbook was used with HP product development teams in
the computer peripherals, computer systems, medical, and
test and measurement businesses. Mike Ogush and Tom Van
Slack from the software initiative program have provided
valuable suggestions for making the method match the needs
of HP software development organizations.

References
1. J. and Hooper and R. O. Chester, Software Reuse: Guidelines and
Methods, Plenum Press, New York, 1991, pp. 51-66.
2. Symposium on Software Reusability, ACM SIGSOFT, Seattle,
Washington, April 28-30, 1995.
3. T. Vols. and and A. J. Perlis, Software Reusability, Vols. 1 and
2, ACM Press, New York, 1989.
4. G, Arango, "Domain Analysis : From Art Form to Engineering
Discipline," Proceedings of the Fifth International Workshop on
Software Specifications and Design, 1989, pp. 152-159.
5. R. Proceed "Domain Analysis of Reusability," IEEE Proceed

ings ofCOMPSAC '87, 1987, pp. 23-29.
6. STARS Conceptual Framework for Reuse Processes (CFRP),
Volume I: Definition, STARS-VC-A018/001/00, September 30, 1993,
and STARS Conceptual Frameivorkfor Reuse Processes (CFRP),
Volume II: Application, STARS-VC-AO 18/002/00, September 30, 1993.

August 1996 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

A Model for Platform Development
For many software and firmware products today, creating the entire
architecture and design and all the software modules from the ground up
is no longer feasible, especially from the point of view of product quality,
ease of implementation, and short product development schedules.
Therefore, the trend is to create new product versions by intentionally
reusing the architecture, design, and code from an established software
platform.

by Emil Jandourek

HP's software initiative program has been working in part
nership with product development organizations in Hewlett-
Packard for almost five years. Its goal is to help take soft
ware and firmware development off the critical path of new
product introductions and transform HP's software and
firmware development capability into a competitive advan
tage. Through our work we have observed and participated
in the a t o f many d i f fe ren t s t ra teg ies , a l l a imed a t
raising an R&D team's collective ability to build software
and firmware that meets the overall market requirements,
including functionality, usability, reliability, performance,
supportability, and time-to-market goals.

Several patterns have emerged that many HP organizations
are successfully using to elevate their software and firm
ware development capability. One pattern corresponds to a
set of operational practices that we call the platform devel

opment paradigm. The software initiative program has
created a conceptual model for platform development (see

Fig. 1) which builds upon HP's product development experi
ence and integrates many of HP's best practices in software
development. The individual elements of the model are
closely tied to the technical and management systems used
in the company and have been validated through actual team
experiences in developing new products.

Since the platform development model is conceptual, it is
used as a framework for determining the elements that an
organization needs to invest in to attain a competency in
platform development. The software initiative program works
with product development organizations to identify the areas
of the model that are applicable to a given organization's
situation and works with the organization to customize the
model accordingly. The resulting instantiation of the model
yields processes tuned to the specific needs and requirements
of the particular development organization, leading to a new
level of development capability. Organizations within HP
that have established a competency in platform development

Architectural Elements

Architectural
Definit ion and

Partitioning

Product Feature
Mapping

Platform Management Elements

O r g a n i z a t i o n a l p a r , n e r s h i p M o d e l
S t r u c t u r e a n d a n d C o n t r a c t

Work Part i t ioning

Test
Architecture
and Strategy

Product Portfolio Planning

Development
Tools and

Infrastructure
Support Model

M a n a g e m e n t
Processes and
Steering Teams

Communication
and Feedback

Model

Val idation and
Test Processes

VÂ¡ = Platform Versions
PÂ¡ = Products

Development Elements

Development Model
and Process

Platform and
Product Life Cycles Del ivery Model

Metr ics and Measurement Processes Values and Reward System
Fig. 1. Major elements of the
platform development model.

56 August 1 996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

have significantly reduced their time to market, improved
operational efficiency, and become more responsive to the
needs of their customers. These gains are accompanied by
improved business results.

The following are brief descriptions of the elements of the
platform development model shown in Fig. 1.

â€¢ Product Portfolio Planning. This element defines the strategic
relationship between the platform and all product versions
to be released over a multiyear period. It identifies the key
business drivers and sets the overall goals, direction, priori
ties, and parameters of the platform strategy.

â€¢ Architecture. This group of elements includes:
c Architectural definition and partitioning of the major

functional and technology subsystems.
o Product feature mapping, which identifies appropriate

subsystems and component modules used in the imple
mentation of each feature (i.e., translation of customer
needs to product features to specific platform or product
modules)

o Test architecture and strategy, which define the overall
structure and methods for verification and validation to
ensure necessary quality levels in the final product.

â€¢ Platform Management. This group of elements includes:
o Organizational structure and work partitioning, which

defines the organization's operating model at an abstract
level (e.g., reporting relationships and team organization)

o Partnership model and contract, which provides the
generic framework for instantiating the operating model
between platform and product teams (e.g., interdepen
dence between teams and expectations for their working
relationships)

o Management processes and steering teams, which define
how the product portfolio plan is created and how its
execution is managed

o Communication and feedback model, which defines the
timing and content of the information that flows between
teams.

â€¢ Development. This group of elements includes:
o Platform and product life cycles, which define the major

phases, with goals, activities, and deliverables for both the
platform and products

o Development model and process, which specify the pro
cesses followed for the creation and enhancement of a
module through its integration into the final product

o Delivery model, which defines how platform components
and subsystems are delivered for use within products

o Validation and test processes, which define the specific
quality criteria and test procedures used throughout the
product and platform life cycles

o Development tools and infrastructure, which provide a
common development environment and processes for
platform and product work (e.g., procedures and tools
for creating, storing, finding, building, and testing
components).

â€¢ Support Model. This element defines the mechanics and
logistics of how individuals and teams get help when using
platform components.

â€¢ Metrics and Measurement Processes. This element defines
the means by which progress and results for each of the
other elements are monitored to ensure achievement of
business goals.

â€¢ Values and Reward System. This element integrates and
aligns the organization's values and culture with its perfor
mance evaluation and reward mechanisms to support the
other elements of the model and thereby achieve platform,
product, and business goals.

The remainder of this article describes the key elements of
the model in greater detail, including the deployment and
use of the elements, anecdotes about their implementation,
and finally, HP's experiences with the model. The use of the
word "software" throughout this article refers to both soft
ware and firmware.

Definitions and Background
For HP and many other high-technology businesses, the
evolution of product development organizations parallels
that of a company's business. The character of a business
changes as its products evolve, mature, and expand their
market penetration beyond the innovators and early adopters.

This technology adoption life cycle has implications for how
an organization develops its products.1 An organization's first
product for a new, emerging market is often an experiment
aimed at validating a product concept and getting feedback
to help shape its evolution. Consequently, the first product is
often incomplete and may in fact be a cleaned-up prototype.
Successful market introduction and subsequent demand for
the product inevitably lead to plans for follow-on products.

Paradigm I: Serial Development Projects
Development during the early stage of a new product's life
cycle is characterized by a series of independent projects
(see Fig. 2). A "just build it" mentality often drives the first
few products because of uncertainty about the market ac
ceptance of the product. From a software development per
spective, the product's architecture and design are often
implicit and poorly documented. Little structure and formal
ity work reasonably well for small development teams as
long as there is continuity between the initial product team
and the teams that develop subsequent products. In fact,
very often the initial team and the teams for follow-on prod
ucts are the same. This continuity of individuals and teams
enables both design and code leverage between projects.

In paradigm I, the time to market (TTM) is defined as the
time between the start or initial staffing of the project and
its release to customers. Organizational learning and leverage
between any two successive projects can reduce the TTM
for the latter project. Thus, if a similar amount of functional
ity is contained in both projects one expects the TTM for
project N + 1 to be less than the TTM for project N. Ideally,
the bulk of the effort invested in a latter project is directed
at those value-added, differentiating features that are visible
to customers.

An organization can choose any number of different devel
opment methodologies or life cycles for its development
effort. Within HP, many organizations are adopting an evolu
tionary delivery approach as opposed to a waterfall model
(see the articles on pages 39 and 25 and reference 2). In fact,
even those using a waterfall model have modified it to sup
port increased concurrency and reduce the impact of a reset
at any stage.

August 1996 Hewlett-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

Investigation, Design, etc.

Code, Test, Integration, etc.

M/R

S I / L
x ~ ~ x

V,

Design Leverage

Every Project Is the First Project

Characteristics:
Serial Development
Project Independence
"Just Build It" Philosophy
Design Is Implicit
Design Is not Necessarily Documented
Lots of Leverage
Same Team
Little Structure, Low Overhead, and
Little Bureaucracy

Challenge:
â€¢ Make design explicit and do enough of

it to accelerate the schedule.

The time between successive products (TBSP) is calculated
by subtracting the release date of the earlier product from
that of the later product. This measure is referred to as time
to market prime (TTM') by some organizations. In the case
of serial independent projects TBSP is equivalent to the TTM
of the last product.

Paradigm II: Multiple Parallel Projects
When a business finds increased market acceptance of its
products and has market penetration beyond the innovators
and early adopters, it is common for customers to demand
follow-on products with shorter intervals between them.
The pressure to do faster product releases and thereby cut
TBSP almost invariably results in a shift within the product
development organization to multiple independent projects.
We call this paradigm II (see Fig. 3). This situation usually
results in different teams working in parallel to build closely
related products.

In paradigm II, the TTM does not necessarily change, but
the TBSP shrinks because of the overlap between projects.
Customer demands for frequent product releases and con
sistency within a product family put pressure on the product
development organization to achieve an appropriate level of
consistency across products and shrink both TTM and TBSP.
The potential to reduce the TTM for follow-on products
exists if there is a high degree of leverage from previous
products. Since leverage fundamentally looks into the past
for existing assets to draw upon, there is no guarantee that
the software found will not require require extensive modifi
cations to work for the new product. Thus, the benefit of
leverage is subject to an inherent limitation and in the worst
case may be negative (i.e., when the cost of leverage exceeds
that of a new implementation).

Same Team

M/R

S I / L M/R

- T T M -
(=TBSP)

PÂ¡ = Different Products in the Same Product Line
S = S t a r t o f P r o j e c t
I/L = Transition Checkpoint from Investigation to Development
M/R = Manufacturing Release
TTM = Time to Market
TBSP = Time Between Successive Products

Fig. 2. Paradigm I, serial develop
ment projects.

A much greater reduction in TTM can be achieved if exten
sive reuse is possible. Reuse fundamentally looks to the
future and orients development around what follow-on
products will require. Since reusable software components
are designed with the future in mind, they can be plugged
into new products without any modifications. This is known
as black-box reuse because the component user's primary
concern is with the external behavior and interfaces and not
with the internal details of the component. The practices of
leverage and reuse form two ends of a continuum in terms
of benefit to recipient project teams. In general, the benefits
for project teams that reuse components are greater than
those that leverage components. However, components that
are not specifically designed for reuse typically need to be
modified and hence end up being leveraged. There are sig
nificant differences in the development processes used to
build reusable components.

The challenge for organizations doing multiple independent
but related projects in parallel is to make the practices of
leverage and reuse happen predictably across projects. These
practices can happen at multiple levels, from the sharing of
architecture and high-level designs to object code and test
vectors. The larger the granularity of work shared, the greater
the impact on reducing project TTM. For example, reusing a
complete error-handling subsystem will reduce project effort
more than reusing just a few selected error handling routines.

In paradigm II, individual teams usually have dedicated
project managers and architects for each product. This con
figuration provides each team with a large degree of inde
pendence and autonomy. At the same time it can also make
it difficult to coordinate the sharing of work between teams.
Many organizations find that their predominant mode of

58 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

j = A r c h i t e c t u r e â € ” D e s i g n L e v e r a g e o r R e u s e â € ” C o d e L e v e r a g e o r R e u s e

Only One First Product per Portfolio (Customer View)

Characteristics:
â€¢ Parallel Development
â€¢ Project Independence
â€¢ Local Optimization
â€¢ Products Look Similar
â€¢ Design Is Probably not Explicit
â€¢ Different Teams, Some Leverage
â€¢ Architecture Benefits Accrue to

Fol low-on Projects

Pi
S
I/L
M/R
T T M
TBSP

= Different Products in the Same Product Line
= Start of Project
= Transit ion Checkpoint from Investigation to Development
= Manufac tur ing Re lease
= T ime to Marke t
= T ime Between Successive Products

Challenge:
â€¢ Make leverage or reuse of both design and code

happen predictably.

operation closely follows paradigm II. For businesses with
different product lines there may be several sets of indepen
dent projects underway at any given time.

Paradigm III: Platform Development
Businesses that have firmly established a presence for their
products in the marketplace, have moved beyond the early
adopters, and have achieved a deep customer and product
understanding may consider moving to platform develop
ment, paradigm III (see Fig. 4). Platform development is
essentially an extension of paradigm II, where the common
elements within a product family are factored out and devel
oped once. The essence of paradigm III is to pull out those
product elements, features, and subsystems that are stable
and well-understood, and that provide a basis for value-
added, differentiating features.

A platform is different from a reuse library in that it has a
cohesive, underlying architecture. The exact composition of
the platform for any given product family can range from a
complete product framework to a collection of subsystems
to sets of individual components. The platform's contribu
tion to individual products can vary from 10% to nearly 90%,
either in terms of code or development effort. The exact
amount and form of the contribution depend on the specific
needs of each product family. Products developed using the
features and pervasive structures (e.g., error handling and
GUI standards) resident within the platform have a much
shorter TTM.

The shift to platform development takes the effort an organi
zation normally puts into product basics and reduces it
through reuse. Although new functionality and features can
be provided by either platform or product software, in cases
involving a large degree of uncertainty new features are
usually implemented as part of the product. Once the new

Fig. 3. Paradigm II, multiple
parallel projects.

product functionality stabilizes and is accepted by the
marketplace, it can be migrated into the platform. Thus, it
becomes available to subsequent product development
efforts.

The net result of implementing paradigm III is a reduction in
the TTM for individual projects. This reduction coupled with
the parallel development inherent in paradigm II allows
organizations to shrink their TBSP. This also enables better
market responsiveness, and not surprisingly, in mature busi
nesses a whole series of platforms may be developed to sup
port different product families.

Examples
The following two examples serve to illustrate the power of
platform development. In the consumer electronics world,
Sony Electronics Inc. is a large producer of handheld porta
ble, radio and cassette players. In fact, Sony makes over
twenty different WalkmanÂ® stereo radio and cassette players
that it sells in the United States. Close examination of these
products reveals that only a few underlying cassette mecha
nisms and cases are used for the entire product family. These
mechanisms and packaging constitute Sony's platforms, and
they enable Sony to generate an assortment of products
targeted at a broad spectrum of customer needs extremely
rapidly. The incremental investment needed for Sony to bring
out a new model is small because of the large amount of
reuse offered through its platforms. There are numerous
other examples like this in the consumer electronics markets.

Within the computer networking market, HP offers a product
called HP OpenView, a software product used for managing
complex networks. In HP Open View's case, parts of the soft
ware form a platform that HP's customers use to build net
work management applications. In addition to offering HP
OpenView to other network management vendors, HP also

August 1996 Hewlett-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

Coupling

l G >
I/L

Release

'V2

Platform
Development

I/L M/R

ir I /L

P ,
V,
S
I/L
M/R
TTM
TBSP = Time Between Successive Products

^ j = A r c h i t e c t u r e

(^ = P r o d u c t L e v e l D e s i g n

Platform Generates a Series of Products

Characteristics:
â€¢ Lots of Parallel Development
â€¢ Producer/Consumer Model (Interproject

Dependencies, Global Trade-offs)
â€¢ Separation of Platform Efforts from

Product Efforts
â€¢ Support and Evolution of Platform
â€¢ Architecture and Design Must Be Explicit

(Common Artifacts, Clear Hand-offs)

Challenge:
â€¢ Manage the Complexity
â€¢ Manage the Timing and Resources

markets its own suite of HP Open View-based network man
agement applications. The HP division responsible for Open-
View produces additional network management applications
in under half the time required for a grounds-up implementa
tion. This represents a TTM reduction of over 50%. Third
parties working with HP Open View also experience similar
levels of effort and time savings. Unlike HP OpenView,
which is sold and used external to HP, most development
labs are producing and using platforms internally to provide
the foundation for individual product lines.

Changing an organization's development paradigm to plat
form development is nontrivial and requires a significant
investment. Richer, more robust, and more competitive
products along with TTM reductions of one third to one half
are not uncommon. Coupling the use of a platform with
doing multiple products in parallel results in significant
reductions in TBSP. The lower limit for TBSP is the rate at
which the market can absorb new products.

Platform Competency Model

The purpose of the platform competency model is to depict
the core elements that make up an organization's software
development system (see Fig. 1). Each individual element of
the model addresses a particular aspect of how an organiza
tion's development system works. The model collectively
represents the overall operating model for software develop
ment within an organization. At the same time the model is
holographic since each of the elements contains references
to aspects of the other elements. As a result of this, the
model is not amenable to hierarchical decomposition. This
will become apparent as each element is reviewed.

M/R
Product

Development

M/R

M/R

TBSP
TTM

= Different Products in the Same Product Line
- Platform Version
= Start of Project
- Transition Checkpoint from Investigation to Development
= Manufacturing Release
= Time to Market

Fig. 4. Paradigm HI, platform
development.

Product Portfolio Planning
The heart of the platform competency model centers around
what the business requires of the teams developing software.
A product development organization is constrained by the
dynamics of the marketplace and the competitive environ
ment within which it participates. The combined market and
competitive forces determine accepted operating ranges for
investment, time-to-market goals, product specifications,
ongoing support, and so on. These constraints put limits on
development organizations and establish acceptable bounds
for TTM, TBSP, and R&D resource efficiency (e.g., engineer
ing years/product).

The result of integrating these constraints and high-level
business goals is articulated as part of a business plan. The
business plan includes a product vintage chart, which shows
target release dates for individual products over a multiyear
period (see Fig. 5). Apart from their use in business plans,
product vintage charts are often supplemented by a set of
product lineage charts showing the hereditary relationships
between products and their constituent components. Fig. 6
illustrates the structure used for a traditional lineage chart
and Fig. 7 shows a platform-based lineage chart. Separate
lineage charts are often constructed to highlight different
components of a product (e.g., electrical circuits, software
and firmware, industrial design, mechanical assembly, etc.).
Lineage charts are also used outside of development labs to
depict the evolution of marketing, training, and support
materials.

The key in planning a product portfolio is deliberate, sys
tematic attention focused on developing a product lineage
chart that effectively addresses the organization's product
needs. The software version of the lineage chart sets forth

60 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

T a r g e t M a r k e t S e g m e n t

Low-End
(e.g., Low-End
Workstations)

S p r i n g F a l l S p r i n g F a l l S p r i n g

1 9 9 2 1 9 9 3 1 9 9 4
Product Release Dates

* The market segment also determines the product's price.

Fall Spring Fall

1995 Fig. 5. An example of a product
vintage chart that might be used
for workstation products.

what can be accomplished as a result of the organization's
platform strategy. Together the product vintage chart and
lineage chart provide the framing for the product portfolio
plan (see Fig. 8). The plan establishes the targets for the
amount of contribution that a platform makes to individual
products. This is frequently expressed as both a target effort
savings and a target reuse percentage (i.e., the platform will
reduce product investment by X engineering months and
will provide Y% of the final product code). It also sets forth
the goals for TTM (time to market) and TBSP (time between
successive products) for an entire product family.

The product portfolio plan also includes a statement of over
all goals, direction, and priorities. Details regarding product
definition and customer needs are incorporated by references
to individual product plans (see Fig. 8). Thus, the product
portfolio plan provides the link between an organization's
platform strategy and underlying business goals. As such, it
acts to align and unify both platform and development teams
and to set the context for individuals in the organization who
are charged with working out the implementation details for
the platform strategy.

Within HP, the portfolio plan tends to be a collection of slides
built around an annotated product lineage chart. The product
lineage chart is modified to show the flow of software from

Notes:
1 . M, N, and L are the same products as shown in Fig. 5
2. Typical ly, the arrows are annotated with software subsystems

or component names
3. Branches generate mult iple versions of a software component.

Fig. 6. An example of a lineage chart that might be used for the
software in different versions of the workstation products shown
in Fig. 5.

the platform to individual products and includes a develop
ment time line. This package of materials is augmented with
details on the goals and objectives for the platform and
product teams. The loose structure and informal nature of
HP's portfolio plans work well as long as there is constant
communication to reinforce the underlying message about
the organization's chosen development paradigm and the
link between this paradigm and the organization's business
goals.

It is essential that all players understand why an organization
has chosen the platform development paradigm and what it
hopes to achieve as a result of this choice. HP's experience
reveals that the rationale and expected benefits leading an
organization to adopt the platform development paradigm
must constantly be reaffirmed by management. HP divisions
that have aligned their development labs around the platform
strategy, engendered confidence throughout their organiza
tions, and provided ongoing direction and support during
the transition to the new ways of working have adopted plat
form development more rapidly and achieved better success
than divisions lacking active management sponsorship.

Architecture Definition and Partitioning
Since platform development involves separating out the
common elements contained within a product family, having
a clear and explicit platform architecture becomes very im
portant. This is a key shift compared to traditional product
development in which a product's architecture is often im
plicit and may not even be written down. In fact, often the
architectural knowledge of a product or set of products is
contained within the head of a single architect or small group
of architects. Implicit and informal architectures work for

Platform Origin

Platform Versions

Product Versions
for Different
Market Segments

Fig. Fig. 6. version of I he software lineage chart given in Fig. 6.

August 1996 Hewlett-Packard Journal 61

© Copr. 1949-1998 Hewlett-Packard Co.

Product Vintage Chart
and the Software

Lineage Chart

Product Portfolio Plan
â€¢ Goals and Direction
â€¢ Priorities
â€¢ Platform Plan

o Plat form Def ini t ion and Architecture
o Contr ibut ion
o Target Integration Effort
o Reuse Percentages
o Schedule and Del iverab les

Product Plan A
â€¢ Product Definition
â€¢ Customer Needs
â€¢ Platform Contribution
â€¢ Product Contribution

(e.g., Value-Added Features)

Fig. 8. The components of a portfolio plan.

serial independent projects and even for parallel product
development when team sizes are small, the level of com
plexity is low, and the amount of concurrent development is
minimal (see Figs. 2 and 3).

These conditions make it possible for the architect or archi
tects to explain the product architecture informally and to
assist other engineers as they develop their code. However,
increasing complexity and simultaneous pull from multiple
teams often forces architects to spend most of their time
communicating and helping others with the product archi
tecture. While this would be an extreme in the case of inde
pendent products, it is virtually certain to happen in the case
of a platform. In addition to supporting others, architects
need to have time to focus on evolving and extending the
architecture.

The solution to this situation is to have architects document
and make explicit the platform and product architecture.
Formal architecture documents (diagrams and text) make it
possible for engineers to access the architectural knowledge
that they need to complete their design and implementation
tasks without having to refer to the architects constantly.
A documented architecture also provides a means through
which development teams can provide feedback to the
architects so that they can tune and evolve the platform and
product architecture. This not only directly benefits the
architects, but also helps to ensure that a set of high-quality
and better-integrated products result. Having an explicit
architecture also makes it possible to quantify trade-offs
between the platform and the product in a systematic way
and feeds the management planning processes for current
and future products.

Another key distinction of the platform architecture is that
it subsumes the partitioning between the platform and plat
form-based products. In this respect it differs from traditional
product architectures which usually do not differentiate
between individual products within a product family. Like
all architectures, the platform architecture typically includes

major functional or technology subsystems and the interfaces
between them. The chosen partitioning of architectural
responsibility between platform and product teams deter
mines the degrees of freedom that product teams have in
their work. The shared challenge for platform and product
architects is to determine where to draw the platform and
product boundary. The boundary needs to be drawn so that
it balances the foundation and the infrastructure provided
by the platform with the amount of flexibility needed to sup
port value-added product features.

HP organizations struggle in their selection of the initial
boundary. In practice their initial partitioning is adjusted
over time to achieve the proper balance between platform
contribution and product flexibility. Another lesson learned
is the need to delineate clearly which interfaces are jointly
owned by platform and product teams and which are sepa
rately owned. Translating architectural constructs down to
the level of interface, module, and code ownership helps
avoid conflicting and uncoordinated changes to the plat
form. It also makes it easier to trade off changes explicitly
since it provides a means of linking to all directly impacted
teams.

Product Feature Mapping
A closely related area of the platform development model is
product feature mapping. This involves the translation of cus
tomer needs into product features and ultimately into code
implementation. The process of going from customer needs
to product feature definition is unchanged from traditional
methods. A key shift occurs in the step where product engi
neers figure out how to map their features to the architec
ture. Product engineers may no longer have full control in
cases where this mapping logically places part of a feature
within the product and another part within the platform.

Fig. 9 illustrates the decision-making process that engineers
go through to map their features to the platform and product
architecture. The ultimate goal of this process is to get engi
neers to understand what they need to implement and where
it falls within the code base. The productivity of product
engineers is largely determined by how well they can apply
the architecture and move on to implementation. In the case
of one HP division with a newly created object-oriented
architecture, product engineers were not able to use the
architecture at first. The engineers' lack of experience with
object-oriented concepts and the fact that the architecture
was separated into logical, functional layers that did not
directly correspond to product features made it extremely
difficult for them to understand how to use the architecture.
As a result, no product development progress was made.

The underlying lesson learned from this experience was the
need for the platform architecture to be explained from a
product feature perspective, the way in which the product
engineers thought about it. This division's dilemma was
solved when the platform architect made explicit the pro
cess for mapping features to the architecture and taught this
to the product teams. What the architect and the rest of the
platform team did was to walk through the process and pro
vide direct coaching to help product engineers work through
mapping their features to the platform architecture.

62 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Type of
Feature

Who Wi l l Do the
Implementation

Fig. to The processes involved in mapping product features to
platform and product architectures.

An equally critical dimension of product feature mapping is
the understanding by product project managers. Since project
managers are responsible for the schedule and resource
plan for the product, they need to know what work their
team will do and what specifically will be provided by the
platform. Consequently, the managers must understand the
partitioning of work across the platform-product boundary
and also the overhead costs of incorporating reusable com
ponents from the platform. This information in turn enables
them to create an appropriate work breakdown and arrive at
a schedule for their project. The underlying shift here is to a
new way of product planning. Within HP we have found it
extremely beneficial to provide training and coaching to
product project managers to help them with their planning
tasks.

Test Architecture and Strategy
The platform architecture not only helps define the dividing
line between the platform and product, but also drives
changes in test strategies and implementation. Since the
platform provides components, modules, and subsystems to
product teams before final system integration, some degree
of testing of platform work products is necessary before
they are delivered to the product teams. Ideally, the platform
team fully tests its work products so that product teams can
focus on their specific extensions to the platform. This divi
sion of test effort results in an overall reduction of the effort,
defects, and schedule once the first platform-based product
is released.

Unfortunately, several factors complicate this ideal. It may
be difficult to fully test platform functionality without addi
tional product-specific code, and in many cases platform
functionality is developed concurrently with product func
tionality rather than sequentially. Both result in lower code
quality and potentially increase the testing burden placed on
product teams. Product teams usually cannot afford to be

the de facto systems test organization for the platform be
cause doing so compromises their own goals, and in particu
lar, their schedule. If product teams get overwhelmed with
defects or integration problems passed on by the platform
team, conflicts in schedule, priorities, and even team rela
tionships arise. Furthermore, since platform and product
teams often sit in close proximity, problem solving gets
driven by personal priorities and urgency rather than an
objective, organized approach. As a result the organization's
cumulative testing effort may actually increase, negating any
potential savings.

Thus, a key factor of successfully using the platform develop
ment approach is the creation of a shared test architecture
and strategy that ensures the delivery of high-quality plat
form components, thereby enabling product teams to focus
their development and testing efforts on product-specific
features. The goal of the test strategy is not to outline ex
haustively the details of how the appropriate level of quality
is built into deliverables, but rather to describe the overall
risk management and test approach. The test strategy makes
reference to specific product milestones, checkpoints, and
activities. As expected, code drops correspond to key points
of synchronization between platform and product teams. At
each code drop, there are specific outcomes, questions, and
measures that describe both product and platform goals.
Based upon these expectations, testing and risk management
activities can be determined. The test strategy specifies
what these activities are and when they occur, but not the
details about their execution. For instance, the test strategy
may call for design reviews and inspections at particular
points along the life cycle. The specific kinds of reviews or
inspections, to what degree, and of what documents, will
depend on the types of risks that need to be mitigated.

The test architecture focuses and streamlines the multilayer,
multicycle test process. Each element in the test architecture
is linked to the product architecture at the component, sub
system, interface (integration), system, or solution level.
The individual elements also serve to set the scope and pur
pose for test suites. For instance, multiple suites may exist
to test subsystems for functionality, usability, performance,
or reliability. Once each test architecture element is defined,
it gets mapped to the test strategy and reconciled with de
velopment and milestone dependencies.

Without a test architecture to define the scope and purpose
of a test suite, cycles in the test process will often be redun
dant, increasing the time and resources used in each product
team. A product and test architecture can also facilitate the
development of a platform regression test strategy. As a
platform is used in more projects, the platform team will
want a method of ensuring that changes made to the plat
form don't inadvertently impact the functionality of one
product over another.

Organizational Structure and Work Partitioning
In addition to the many architectural implications for devel
oping products under the platform development paradigm,
there are many management issues that need to be ad
dressed. The spectrum of management concerns is quiie
broad and includes defining the context within which teams
are configured, deliverables specified, and conflicts re
solved, and defining how teams communicate with one

August 1996 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

another. One pivotal management activity is the definition of
the organization's structure and its processes for partitioning
work.

Crucial differences in individual roles between platform
development and traditional development paradigms are at
the heart of structural and work-assignment issues. Platform
development does not result in the creation of new roles
within an organization, rather it causes existing roles to be
come explicit and more formal. In traditional development
projects, one or more individuals fulfill the roles of program
management, project management, people management,
product architecture, and process architecture. A brief defi
nition of each of these roles is contained in Table I.

Product Portfolio
Responsibility

Role

T a b l e I
P r o d u c t D e v e l o p m e n t R o l e s

R e s p o n s i b i l i t i e s

Program Integrate and coordinate all the functions
Management involved in developing the product, includ

ing marketing, development, learning prod
ucts, and field support.

Project Develop and maintain the project budget
Management and schedule, allocate resources, and

manage work assignments.

People Perform employee training, skill develop-
Management ment, performance evaluation, salary

administration, and other administrative
and legal tasks.

Product Develop and evolve the product architec-
Architecture ture including coaching and mentoring

others on its application and use.

Process Define and integrate the various processes
Architecture used during product development, including

how work is done, extensive communica
tion, and process training.

Until fairly recently within HP, the roles of project manage
ment, people management, product architecture, and pro
cess architecture were filled by a single project manager.
This is still common in some HP divisions. As a result of
increasing product complexity, many divisions have created
explicit positions for product architects and have thereby
removed this responsibility from their project managers.
Some divisions have gone farther and pulled process archi
tecture responsibilities from their project manager positions
and added new process architect positions. The separation
of responsibilities is especially important for platform devel
opment since multiple teams are working in parallel on
products within a single family. The larger scale of this en
deavor makes it difficult for any one individual to juggle
combinations of these roles while simultaneously attending
to the broad scope that accompanies each role. As a result,
individual jobs tend to be more specialized and better de
fined in this paradigm.

The key shift in organizational structure for platform devel
opment occurs when separate platform and product teams
are created (see Fig. 10). The separation of platform and
product teams becomes a necessity when there is more than
one product under development at any given time. HP's ex
perience has shown that having one team simultaneously

Process
Architect

I

Plat form Manager
â€¢ Architects
â€¢ Team Members

Product A's
Development
M a n a g e r
â€¢ Architect
â€¢ Team Members

Product B's
Development
Manager
â€¢ Architect
â€¢ Team Members

Fig. 10. The organizational structure for the platform development
paradigm.

develop a platform and a product while another team works
on a different product is unworkable because of a perceived
lack of trust between teams. The underlying issue here is
perceived favoritism by the platform manager for the plat
form team's own product effort. This perception is hard to
counter and requires an explicit way to address conflict of
interest issues. Our solution is to separate the product
responsibility from the platform to ensure that the platform
effort is equally shared between the various products. This
solution takes advantage of an organization's reporting
structure and relationships.

Just picking an appropriate organizational structure is not
sufficient for ensuring that work gets done smoothly. Indi
vidual work assignments need to be aligned with the report
ing structure. Otherwise, individuals within the organization
can wind up spending a lot of their time trying to figure out
who does what for whom. In HP's experience, formalizing
individual roles and responsibilities helps a lot. It simplifies
the tracking of individual accountability and provides the
context for optimization of work assignments. In addition,
management leadership and direction are needed to help
people cope with ambiguity and to address coordination of
activities across team boundaries.

Partnership Model and Contract
Management, through its own style and working relations,
sets the tone and context for how teams work together. As a
result, management behavior largely determines the kind of
partnerships that will exist within the the organization. The
purpose of having a partnership model and contract is to
make explicit how teams are to work together.

The reuse of software components fundamentally involves a
producer-consumer relationship in which one or more teams
produce software assets that other teams use. In the case of
platform development the platform team is the producer and
the product teams are the consumers. How the teams work
together determines the overall success of their combined
effort. Team perceptions of autonomy, accountability, and
control all weigh heavily in setting the context and bound
aries for how teams can work together.

The starting point for establishing a solid working relation
ship is given by the organization's existing social and cul
tural norms. Within HP we have found that if either team

64 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

seeks to gain sole control of the relationship, the platform
development system will fail. The key shift that is needed is
for all teams to think and act as full partners. The notion of
working together on a collaborative effort creates a win-win
situation and avoids the inherent conflict in one team being
superior to another. It also blurs the distinction between
platform and product team roles and thus provides a greater
degree of flexibility in work assignments (refer back to
Fig. 9).

While the partnership model defines the preferred working
mode between teams, the partnership contract is the ultimate
agreement that is reached between product and platform
teams with respect to their mutual deliverables. As such, the
partnership contract incorporates and builds upon the part
nership model. It contains the specifics of what gets deliv
ered, by whom it is delivered, and when it is delivered. It also
includes the explicit communication channels that will be
used between teams as well as the mechanisms and proto
cols for handling changes and exceptions. The partnership
contract is not a legally binding document, rather it results
from discussions between platform and product teams.

Within HP the process of negotiating a partnership contract
is more important than the contract itself. For each new
product, the corresponding platform and product team
members sit down and work through a series of questions to
arrive at a mutual agreement that supports the organization's
product portfolio plan. The final answers to the questions
can then be incorporated into the platform and product team
plans as appropriate (see Fig. 8). This negotiation process
serves as a mechanism for joint planning and lays the
foundation for the ongoing relationship between the plat
form and product teams.

Management Processes and Steering Teams
Management processes provide mechanisms for managing
ongoing team relationships and for addressing changes in
both internal and external requirements. The processes in
clude mechanisms for interproject planning and resource
prioritization, tracking and controlling progress, and recog
nizing, escalating, and resolving issues. At an aggregate level
these processes need to be aligned with the product portfo
lio plan. Management is responsible for achieving alignment
and for providing their people with the means to work toward
the overall strategy.

A key shift in platform development is the creation of stand
ing teams to deal with ongoing issues. In particular, manage
ment typically charters a management steering team and an
architecture steering team. The management steering team
is made up of the portfolio manager, the platform manager,
the product team managers, and the process architect. The
team may also include the manager of a separate quality or
testing team. The team is responsible for monitoring pro
gress, maintaining resources and schedule synchronization,
and resolving daily operational issues. The existence of the
team is not meant to replace ongoing, one-on-one work.
Rather, team meetings serve as a forum for surfacing issues
and establishing linkages for issue resolution.

Architecture steering teams are staffed by senior designers,
architects, and technical people. They also include an orga
nization's process architects. Their charter is to focus on
managing the overlap between the platform and product

architecture. The team is responsible for ensuring that the
architecture can be used by product teams effectively and
for managing the evolution of the architecture so that over
all architectural integrity is preserved.

Within HP, management and architectural steering teams are
used at multiple levels. The number of teams and their struc
ture depends on the complexity of a division's business, the
number of product lines, and the number of distinct platforms
within those product Unes. Generally, one steering team is
created per platform. In our experience steering teams work
well when they are staffed with key stakeholders and have
clear, well-articulated charters. Management needs to set
appropriate team expectations and model new desired team
behaviors, especially if they differ from the organization's
existing norms.

Communication and Feedback Model
The success of an organization's platform development sys
tem is largely a function of the strength of its communication
and feedback paths. Good communication between platform
and product teams is essential for reducing unexpected sur
prises and supporting rapid decision making. For communi
cation to be effective, the right information must reach ap
propriate individuals in the organization at the proper time.
Incorrect, inappropriate, or out-of-date information has little
value, and in fact, can be counterproductive.

The attributes of a good communication and feedback
model are that it:

â€¢ Specifies communication roles and responsibilities
â€¢ Enumerates the taxonomy of information types
â€¢ Identifies explicit communication links, channels, and

pathways between teams
â€¢ Establishes triggers for certain types of informational

exchanges
â€¢ Creates a context for continual organizational learning.

The communication and feedback model can be thought of
as an architecture for the movement of information within
an organization. As such it plays a major role in helping to
ensure that the right information gets to the right place at
the right time.

The key shift for most organizations is coping with the need
for wider dissemination of information. As the number of
interdependent teams increases, the number of stakeholders
with interest in a given piece of information increases. Put
ting together a communication model in the form of a data
flow diagram helps teams identify who needs to know about
plans, assignments, issues, status, best practices, and suc
cesses. However, getting information to flow is not enough
because the recipients of the information need to be able to
respond and act on the information, if appropriate. The chal
lenge for individuals transmitting information is to gather
feedback on the effectiveness of their communication and to
tune future information exchanges. Having individuals auto
matically check their communication effectiveness serves to
build and promote organizational learning.

Within HP we have seen significant gains in organizational
performance as a result of eliminating communication slip
page and optimizing its efficiency. Pleasant, clear communi
cation lowers organizational stress and makes it easier for

August 1ÃJ9U Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

people to work together. It also enables faster and higher-
quality decision making. Many divisions are using e-mail and
World-Wide Web publishing to make platform information
more readily available to product teams.

Support Model
It goes without saying that for product teams to be effective,
they must be able to understand, incorporate, and success
fully use the platform. This includes the platform architec
ture, its components, development tools, and the underlying
process infrastructure. The support model addresses how
product teams get assistance as they work to incorporate
platform components into their products. It provides the
means by which product teams get help in the following
situations:

1 Achieving understanding and resolving "how to" questions
(e.g., How do you do X? How does Y work?)

â€¢ Sorting out instances of something not working as expected
or not meeting a product's needs (e.g., There appears to be a
bug in X. Can Y be adapted to support product feature Z?)

The creation of a support model starts with the identification
of detailed support requirements and establishes the mechan
ics and logistics for how platform and product teams work
together. It includes both initial training and ongoing sup
port during implementation. The support model identifies
the types of support provided, the mechanisms through
which it is delivered, and the overall service level expecta
tions (e.g., typical turnaround or response time). The model
covers activities such as providing documentation, delivering
training, answering questions, making defect repairs, and
releasing enhancements. It also sets forth support roles and
responsibilities â€” to whom to go for assistance. Finally, it
includes an escalation path for resolving impasses.

The concept of a support model is not new. In fact, most
organizations have an explicit model for supporting their
customers. The key shift in platform development is the
creation of an explicit support model for in-house product
development work. The need for putting formal structures
in place increases with the number of product teams work
ing in parallel, hi HP's experience the most effective platform

support models are developed jointly by platform and prod
uct teams. We have found that including a set of agreed-upon
performance measures serves to calibrate and set individual
expectations. Typical measures include support availability,
response time, and limits on the maximum number of hand-
offs. Finally, the support model's scope extends beyond
product construction and needs to include product planning
and testing.

Platform and Product Life Cycles
In addition to the need for more formalized support, platform
development results in many changes to an organization's
development practices. The development process changes
are incremental in nature and generally reflect a formaliza-
tion and refinement of existing practices. An organization's
platform and product life cycles provide the structure and
context within which individual processes fit. Like other life
cycles, they are characterized by major phases with associ
ated goals, activities, deliverables, and checkpoints.

Fig. 1 1 shows the underlying structures of the platform and
product life cycles. The major phases of the two life cycles
are very similar. Since the platform architecture and compo
nents flow from the platform into products, there is a depen
dency between the two life cycles. The close coupling of the
two life cycles represents a key shift compared to autono
mous development projects.

The output of the platform investigation phase is a definition
of the overall system architecture and answers to the follow
ing questions:

â€¢ What is the platform?
â€¢ How is it intended to be used?
â€¢ How will it be delivered to product teams?
â€¢ How will it be supported?
â€¢ How will it be extended and evolved over time?

As part of this phase, the platform team identifies necessary
changes to existing development practices needed to sup
port platform development. The proposed ways of doing
things form the basis for what is called the platform way.

Investigation I/L

Iteration and
Interim Releases

Implementation
Final

Release

Platform
Version 1

P l a t f o r m c . , P l a t f o r m I n f r a - C o d e C o n s t r u c t i o n

R e t i r e m e n t s Â « " 7 " â € ¢ " - * â € ” n ~ Â » - p T ' ^
D e f l n l t l o n P l a n D e v e l o p m e n t p , a n D e s Â ¡ g n Ã ­ m f Ã ­ e m e a t T e s t (A s N e e d e d)

Input and
Feedback

Product 1

Input and
Feedback

Iteration M/R

Feasibility '
Platform

Instantiation

Code Construction

P l a n D e s i g n l r n p l e n) e n , T e s t

â€” Product 2

Fig. 11. The platform and product development life cycles.

66 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The deliverables from the investigation phase of the plat
form need to be essentially complete when product teams
move from requirements definition and feasibility validation
to instantiating the platform architecture and building upon
the platform plan. There is a similar dependency in the
implementation phase between infrastructure development
and use. The infrastructure consists of the processes and
tools that support the platform way.

The implementation phase of the platform life cycle often
overlaps with product implementation work. This arrange
ment requires coordination between iterations of platform
and product code construction. The use of an evolutionary
development methodology, which subdivides code construc
tion into a series of short plan, design, implementation, and
test cycles, provides one way to achieve the needed coordina
tion (see the article on page 25). In addition to continuous
feedback and integration of platform and product compo
nents during implementation, continued support for platform
use is essential. As mentioned earlier, the test architecture
and strategy will determine the overall approach to verifica
tion and validation by the platform and product teams.

The platform life cycle does not end when the platform com
ponents for all currently active products are finished. Rather
it wraps around and a new investigation phase begins. In
subsequent iterations the platform architecture, processes,
and components are modified and extended based on new
requirements. The boundary between the platform and prod
ucts may change as certain features migrate into the platform
so that they can be used by subsequent products.

HP's cumulative experience underscores the need to separate
platform and product life cycles. Furthermore, life cycles
must be linked to existing hardware life cycles, or software
work may not begin until after the hardware prototype is
done, thereby delaying product introduction. We have also
learned that securing future product input during the devel
opment of the overall system architecture and definition of
the platform way is essential to building strong interteam
relationships. One particularly effective way to engage future
product teams is to involve them in signing off on platform
checkpoints.

Development Model and Development Process
The development model and the development process de
scribe how new functionality is created. They cover the pro
cesses used in the creation and enhancement of a platform
module through its integration into products. They are anal
ogous to a module or component life cycle in that they cata
log the development steps spanning from construction to
final use. Since platform modules and components are ulti
mately used by product teams, the development process
really includes two different perspectives: software asset
development and software asset utilization. The key shift in
platform development is formalization of these perspectives.

In cases where the boundary between platform and products
is diffuse, a single process incorporating both perspectives
can be used. The common process can be applied by both
teams regardless of whether they were building platform or
product functionality. On the other hand, a sharp boundary
has the advantage of providing product and platform teams
with greater autonomy over their work, since each can use
different processes. For example, if the platform-product

interface is confined to unking a set of library modules,
then the platform might be designed and built using object-
oriented methods and tools, while product teams might use
traditional structured programming methods and tools. This
decoupling is not without cost because the use of different
methods and approaches makes it harder for teams to com
municate â€” consider the difference between object-oriented
programming in C++ and functional programming in C.
Furthermore, its very existence raises the cost of modifying
the platform and product boundary and makes it significantly
more expensive to migrate functionality across the boundary.
It also reduces resource flexibility by making it more diffi
cult to move engineers between the platform and product
teams.

Experience within HP has shown that platform development
proceeds smoothly when platform and product teams follow
highly complementary development processes. By agreeing
to use common methods and tools, platform and product
teams make it easier for one another to cross the boundary
between their work domains. This provides flexibility so
that resource use can be optimized. It also allows for evolu
tion of the platform through incremental redefinition of the
platform-product boundary. HP division's have reaped signif
icant benefits from having documented development pro
cesses since these reduce the support burden for bringing
new engineers up to speed on how things are done.

Delivery Model
The delivery model defines how platform modules, compo
nents, and subsystems are passed on to product teams.
Platform deliveries are essentially a microcosm of the prod
uct release process since they cover the depth and breadth
of what a development organization delivers at the manufac
turing release (M/R) of a product. At M/R, a final production
build is delivered to manufacturing along with a set of re
lease notes, documentation, and other supporting material.

Final release may be proceeded by multiple iterations and
intermediate releases, especially in the case of complex
systems products. Furthermore, each constituent part of
the whole product can be delivered in a different way. For
example, while physical hardware and firmware go to manu
facturing along with detailed assembly, calibration, and
packaging instructions, the product's software drivers may
simply be given to a third party for replication.

Although most organizations have long had internal hand-
offs among teams, the key shift in platform development is
making these handoffs and deliveries explicit. While the
platform life cycle outlines the types of artifacts that get
delivered and when they are delivered, the platform delivery
model provides specifics on what is delivered and how it is
delivered. If a delivery is analogous to passing a package
from one team to another, then the delivery model corre
sponds to a packing list or bill of materials.

The delivery model also specifies how the package is deliv
ered to the product teams. The delivery mechanism typically
falls somewhere along the continuum from push to pull. In
the push case, the platform team delivers packages when
they are ready. In the pull case, product teams request pack
ages when they want them. There are pros and cons to each
approach. The push approach can force product teams to
use something before they are ready, while the pull approach

August 1996 Hewlett-Packard Journal 67

© Copr. 1949-1998 Hewlett-Packard Co.

can cause the platform team to support multiple versions of
the same component. Within HP most divisions have adopted
a hybrid model in which both push and pull approaches are
used depending on the type of each deliverable.

Although it might be tempting to rely on an ad hoc delivery
model, HP's experience shows that having an explicit, for
mal delivery model is essential to ensure that product teams
can successfully use the platform. This is particularly true
when multiple product teams are simultaneously using the
platform. Furthermore, the delivery model provides addi
tional means of supporting product team members.

Validation and Test Processes
Another important aspect of platform and product develop
ment is the accompanying validation and test processes.
These processes correspond to the tactics used to imple
ment the overall system test strategy and architecture,
including the selection, implementation, and execution of
appropriate testing methods and procedures.

In traditional product development, testing is often relegated
to the back end of the life cycle and almost becomes a certi
fication step intended to ensure that the product meets cer
tain quality and reliability requirements. In contrast, progres
sive development organizations view testing as a process of
verification and validation that can be applied throughout
the product life cycle. These organizations conscientiously
perform verification and validation activities as early as pos
sible in their life cycles to catch defects early and thus re
duce overall development effort and shorten back-end cycle
time.

Organizations that have successfully made the shift to early
defect detection see testing for platform development as a
variant of their current processes. For others, the move to
platform development forces a shift in testing emphasis to
architected, early defect detection. When this shift is not
made in time, platform development projects become very
painful and can even fail.

The key shift needed is for the platform team to certify its
work products before they are delivered to product teams.
Many testing techniques can be used to ensure appropriate
levels of quality throughout the development life cycle.
Techniques such as formal design techniques, reviews, and
inspections can be used to catch errors before moving into
implementation. Prototypes can be used to demonstrate
feasibility and validate certain design constructs. Coding
standards help to ensure code portability and bounds check
ing is accomplished via assertions in the code. Downstream
activities include white box and black box testing, unit test
ing, and regression testing. The stability of code modules or
product components is verified by doing frequent, regular
builds. Finally, integration testing is used to ensure proper
cohesion between platform and product components. This
list of possible verification methods is by no means exhaus
tive and many additional types of tests and quality methods
exist. It is incumbent on the teams to pick those methods
that best address their particular project risks.

Once the platform team has developed processes that meet
the delivery criteria of the product teams, the second key
shift is for the product teams to leverage and complement
the validation and verification already accomplished by the

platform team. This shift involves making changes in the
product test process to leverage the test architecture and
focus test cycles on product-specific contributions and their
integration with the platform. If product teams find them
selves testing platform components, then something is wrong.
This is analogous to having teams that use C compilers do
testing on the accompanying C libraries.

Experience within HP indicates that when the product
test strategy is not revised, unnecessary redundant testing
occurs. In this case the platform is fully tested as part of
every product. As the number of simultaneous products
under development increases, so does the burden placed on
those doing system testing. The end result is repeated testing
of parts of the platform, at high cost, and with little added
risk reduction.

Development Tools and Infrastructure
The final element of how engineers undertake their work is
made up of the development tools and infrastructure that
they work with. The tools needed for platform development
are no different from those used in other development acti
vities. However, platform development often demands more
from the development tools and infrastructure than tradi
tional product development. Since platform development is
usually accompanied by a higher degree of complexity, tool
flexibility and robustness often become issues. Key shifts in
this area have to do with (1) formal tracking of project issues,
(2) architecture, design, and process documentation, and
(3) robust configuration management.

Ad hoc issue management breaks down in the case of plat
form development because of the large number of stake
holders external to the platform team. The use of a process
and tool to maintain a database of issues and their resolu
tions not only supports the ongoing issue management, but
also provides a means of capturing historical information
about key project decisions.

Design documentation and automation tools help with the
generation of documentation that is essential for success
fully supporting product teams. Standard design tools also
help to ensure consistency across the work of the members
of the platform team by providing common formats for indi
vidual work products.

Finally, tools for simple version control are replaced by a
full-fledged source configuration management system that
provides the needed horsepower to address concurrent plat
form and product development needs. In HP's experience
moving to a robust source configuration management sys
tem leads to new ways of working. The transition to more
sophisticated processes for version, build, and workspace
management is nontrivial.

Metrics and Measurement Processes
Metrics and measurement processes cut across all the other
elements of the platform development model. These pro
cesses are used to know how things are going and to flag
potential exceptions. Although any organization can collect
metrics, the real question is whether or not the organization's
metrics are driving effective decision making. A good metrics
program measures the right things and then provides a
means for acting on the data collected.

68 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Since metrics communicate what is important and focus
organizational energy, they provide a mechanism for shaping
and institutionalizing the platform way of doing things. Con
sequently, they provide a means of reinforcing the new be
haviors that are required for platform development to be
successful. A set of metrics can be defined for the elements
of the platform model in such as way that the metrics corre
spond to how well each element is working for the organiza
tion. Defining this set of metrics, rolling them out, and fol
lowing through correspond to the key shifts in this area.

The management processes and steering teams and the plat
form and product life cycle directly link many of the metrics
to decision making within an organization. An organization's
management processes and steering teams provide the con
text for ongoing review of metrics and for taking appropriate
follow-up actions, particularly those related to planning,
management, and support issues. With respect to the archi
tecture and development elements of the platform compe
tency model, metrics are included as part of the platform and
product life cycles. The metrics for individual elements are
tied to specific life cycle checkpoints (refer back to Fig. 10).

The metrics that an organization collects and uses largely
depend on its business requirements and level of maturity.
A technique that has been particularly effective within HP is
the goal/question/metric paradigm (GQM).2 The principles
behind GQM are rather simple. It begins with a goal or set of
goals, defines a set of questions that provide visibility into
how well the organization is doing at meeting the goals, and
identifies a set of measures that provide answers to the
questions (see Fig. 12). Since GQM is not necessarily linear,
it can be used as a means of exploring and clarifying the
meaning of a stated goal. This makes it a powerful technique
for defining the metrics for the individual elements of the
platform model.

Values and Reward System
In most organizations individuals act based on their beliefs,
values, and understanding of the consequences of their
actions. Although people do extraordinary things when pre
sented with dire consequences, in most cases an extraordi
nary level of performance is not sustainable. High turnover
and burnout in development organizations are often the re
sult of continually demanding individual and team heroics.
The norms for individual and team behaviors depend on an
organization's culture which in turn is shaped by the collec
tive beliefs and values of individuals within the organization.

Goal: Reduce software integrat ion t ime.

QÃ¼estioni : How many builds are there in the integration time?
M e t r i c : N u m b e r o f b u i l d s .

Question 2: How long does an average bui ld take?
M e t r i c : C a l e n d a r t i m e , e n g i n e e r i n g e f f o r t .

Question 3: How many unplanned bui lds are there?
M e t r i c : N u m b e r o f p l a n n e d b u i l d s v e r s u s u n p l a n n e d b u i l d s .

Question 4: How many fai led bui lds occur?
M e t r i c : N u m b e r o f f a i l e d b u i l d s v e r s u s s u c c e s s f u l b u i l d s .

Fig. 12. An example of the goal/question/metric paradigm (GQM).

The importance of shaping organizational culture to support
platform development cannot be understated. The first step
in making the transition to new behaviors for platform de
velopment is to identify the vision for how things will be
working when platform development is fully functioning
within the organization. The \ision needs to be vivid, rich,
and descriptive. Having a vision is not sufficient to get an
organization to its desired state. The organization's culture,
values, and rewards must be aligned with the vision.

The organization's recognition and rewards systems play a
major role in reinforcing the desired new behaviors that are
part of the platform way. It is extremely important to align
performance evaluation, recognition, and reward mechanisms
with behaviors that simultaneously support achieving plat
form, product, and business goals. A common failure is to
assume that all of these mechanisms and systems are aligned.
The key shift is to link the desired state explicitly to specific
roles and activities within the organization and to make sure
that those roles, activities, and behaviors are reinforced.

Within HP we achieve alignment by working issues both top-
down and bottom-up. As a result we integrate business think
ing with the logistical, operational, and personal attributes
of vision in such a way that individuals throughout the orga
nization know how they fit in. We have also found it neces
sary tie revise existing performance evaluation criteria to tie
them to an organization's platform development strategy.

Results
Various divisions within HP have realized productivity and
efficiency gains as a result of adopting the platform develop
ment paradigm. The degree of improvement varies between
divisions and further gains are expected since many divisions
are still in the midst of their transition.

One division has doubled its product generation capability
from an average of two to four new products per year with
no increase in development staff. Another division has cut
its time between product releases (TBSP) from twelve to six
months and has slowed staffing growth despite an exponen
tial increase in the number of new product releases per year.
This division's staff grew linearly while the number of prod
uct releases went up almost tenfold over a three-year period.
The experience at another division included increased prod
uct consistency, improved similarity between products within
a product family, and better overall quality. These benefits
ultimately enabled this division to offer a better integrated
solution to its customers. Furthermore, this division cut its
time to market for new products and has reduced the time
required to bring new staff on board and make them fully
productive.

Fortunately, organizations do not have to wait until they
complete the transition to platform development before they
start reaping benefits. Since platform development mandates
a higher level of organizational maturity and individual skill,
it helps to institutionalize solid engineering practices. Typi
cally, there is an incremental productivity gain associated
with each improvement in existing engineering practices.
Thus, an organization's transition to platform development
effectively compounds multiple productivity improvements.
Benefits can be reaped all along the journey and not just at

August 1996 Hewlett-Packard Journal 69
© Copr. 1949-1998 Hewlett-Packard Co.

the end. In fact, for those HP divisions that have had to can
cel or delay their platform efforts, most are better off than
before their migration to the platform development paradigm.
The reason for this is quite simple: they continue to use
better engineering practices on new and existing projects.

In comparison to the business impact of platform develop
ment, the results from using the platform competency model
in development are not quite as dramatic. The model has
primarily been used as a tool for exploring the many facets
of platform development. It has proved to be an excellent
vehicle for building a shared understanding of what it will
take to institutionalize platform development within an
organization. The model has also been used as a diagnostic
tool to identify areas requiring further attention, thus provid
ing the basis for developing an overall investment plan.

Significant differences exist between the investment plans
of different organizations. Differences in the magnitude and
sequencing of investments in the elements of the compe
tency model can be traced to differences in an organization's
respective level of software expertise, the maturity of its
operating practices, and its business constraints. Since each
organization has a different profile, its roadmap for estab
lishing a platform capability is uniquely its own. In our expe
rience, when organizations stumble in their adoption of the
platform development paradigm, the root cause of their dif
ficulty can be traced to one of the model's elements.

The feedback that we have received as a result of using the
competency model with HP divisions has only served to
validate the model. There have been a few minor additions
to the model, but no significant changes. The unanimous
consensus within HP is that each and every element of the
model is critical. All sixteen elements of the model are nec
essary for successful deployment of platform development.

Conclusion
Although numerous product development strategies and
paradigms are in use throughout HP, platform development
is becoming the paradigm of choice within HP. The platform
competency model discussed in this article captures the
essence of HP's cumulative experience in platform develop
ment. The model is being used by HP product development
organizations to understand the requirements and implica
tions of platform development, to guide the creation of in
vestment plans, and to assist in the customization and tailor
ing of the model's elements to fit each organization's
particular situation.

Engineering Perspective
From an engineering and technical perspective, the platform
development paradigm is an enabler for technologically
superior products. The use of a platform as the base for new
products allows engineers and architects to focus their
efforts on the key, new technical contributions. The use of a
platform also results in more solid products that are higher
in quality, better integrated, and more consistent. This degree
of robustness results from the continual evolution and im
provement of the platform.

Management Perspective
The platform development paradigm results in a number of
changes in the way development teams are managed. Since

new products are developed using both platform and prod
uct component streams, management attention shifts from
an intense product focus to a more integrated and global
perspective. Managers find themselves actively involved in
charting their organization's future, in setting appropriate
goals and objectives, and in establishing the necessary sup
porting infrastructure. Managers through their own actions
shape how their organization transitions into new ways of
working within the platform development paradigm.

In platform development, managers are principal actors in
understanding the trade-offs between product and platform
team needs, communicating and making those trade-offs
explicit, linking them to short-term and long-term project
and business goals, and finally, taking appropriate action.
Ultimate success is rooted in the ability of the entire man
agement team to align its thinking and actions around its
instantiation of the platform development paradigm. Active
participation by multiple levels of management, appropriate
acceptance, and support are necessary but not sufficient
conditions for successful implementation of the platform
development paradigm.

Platform development enables an organization to deliver
innovative, feature-rich, high-quality, and consistent prod
ucts on short development schedules. It does so through
increased reuse, reductions in per-product testing, and ever
increasing product quality. Simultaneously, it raises overall
engineering efficiency, makes it easy to assimilate new engi
neers, and improves schedule predictability. These gains
ultimately translate into reduced development cycle times
and shorter time to market.

Organizational and Business Perspective
From a systemic viewpoint, the platform development para
digm is just one of many product development strategies.
Increased development efficiency and cycle-time reduction
can be achieved in incremental steps by gradually evolving
an organization's development competencies. Transitioning
to platform development is nontrivial and is in many ways
analogous to reengineering the product development process.
So even though changing development paradigms is a busi
ness imperative for some HP divisions, the shift away from
largely independent and autonomous development projects
to collections of interrelated projects is somewhat counter-
cultural. Successful adoption of the platform development
paradigm requires aligning the organizational culture, values,
and rewards to support new ways of working.

There are numerous approaches to adopting platform devel
opment. Within HP most development organizations tend to
follow an incremental, evolutionary approach as opposed to
a complete, ground-up, or reengineering approach. The for
mer supports ongoing, new product development efforts and
gradually improves an organization's development capability.
As such it reduces the amount of change the organization
must assimilate at any given time and stretches the change
investment out over a longer period of time.

Regardless of the approach that an organization selects,
there are many common issues and challenges that it will
face and yet each organization inevitably faces some unique
issues and challenges. How an organization goes about im
plementing the capabilities underlying the model's individual

70 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

elements will van,- depending on its situation. Each organiza
tion needs to work out an implementation plan that fits the
parameters of its business context.

Acknowledgments
I would like to thank the many individuals within the soft
ware initiative who have been working in partnership with
HP divisions to implement platform development. I believe
that they are truly making a difference for HP by helping
divisions reach a new level of competitiveness in their soft
ware development effort. The platform competency model is
the result of their hard work and the many learnings from

actual applications of the model. I would like to extend spe
cial thanks to Todd Cotton. Ron (Trough. Mark Davey, Joni
Ohta, and Mike Ogush for working with me on the defini
tion, application, and evolution of the platform competency
model.

References
1. G. A. Moore, Crossing the Chasm: Marketing and Selling Tech
nology Products to Mainstream Customers, Harper Business, 1991.
2. T. Gilb. Principles of Software Engineering Management,

Addison-Wesley, 1988.
3. R. B. Grady, Practical Software Metrics for Project Management
and Process Improvement, P T R Prentice-Hall Inc., 1992.

August 1996 Hewlett-Packard Journal 71

© Copr. 1949-1998 Hewlett-Packard Co.

A Decision Support System for
Integrated Circuit Package Selection
The package provides signal and power distribution, heat dissipation, and
environmental protection for an integrated circuit (1C). The process of
selecting a package is complicated by the large number of packaging
alternatives with overlapping capabilities. To handle these difficulties, a
decision support system was developed. The Package Selection System
(PASS) decision expert system tools and multiple-attribute decision
making techniques. The expert system provides a list of technically
feasible alternatives. The multiple-attribute decision making modules are
used to rank the alternatives based on nontechnical criteria.

by Craig J. Tanner

Two current trends in the electronic industry greatly increase
the need for tools that assist in the selection of 1C packages.
The first trend is the emergence of a new field of electronics
known as "manufacturingless manufacturers" (MLMs). The
second trend involves the introduction of competing and
overlapping technologies from subcontract packaging ser
vices. This trend complicates the package selection process
because it creates many technically feasible packages for
the decision maker to choose from.

MLMs are only concerned with the design phase of 1C manu
facturing, and in some cases final package test. All of the
support activities associated with ICs, such as wafer fabrica
tion, test, and packaging of the 1C are subcontracted outside
of the company to foundry services. The finished product is
then sold by the MLM to the end user. MLMs have several
advantages over full-service semiconductor companies. They
can concentrate on doing one thing (design) well and they
have no overhead or R&D costs associated with maintaining
and developing 1C manufacturing processes. Because the
engineers who work for MLMs are typically focused on the
design phase and are not experts in packaging, an 1C pack
age selection system can be a valuable tool.

The introduction of competing technologies from packaging
subcontractors has made the selection process more difficult.
In the past, there was usually one dominating technology
that filled a particular niche. As United States and Asian sub
contractors have become more involved in the research and
development of new technologies, sometimes several pack
ages that have similar technical attributes have been made
available to users almost simultaneously. For example, the
packages shown in Table I were released within 18 months
of each other and all were aimed at users who need thermally
enhanced surface mount packages.

Multiple-attribute decision making (MADM) techniques are
incorporated into the decision support system to provide the
decision maker with a method for selecting an 1C package
from among technically feasible alternatives. The MADM

Table I
Competing Thermally Enhanced Surface Mount Technologies

T e c h n o l o g y C o m p a n y

M e t a l Q u a d F l a t P a c k O I T

M i c r o C o o l M o t o r o l a

Enhanced Dissipative
Quad Flat Pack

Power Quad I & Ã¼

ASAT

Anam

modules allow the decision maker to rank the feasible alter
natives using nontechnical criteria. This technique can effec
tively address the emerging trend of simultaneous introduc
tion of competing technologies from different suppliers.

System Overview
The Package Selection System (PASS) contains all of the
subsystems that are typical components of a decision
support system: l

â€¢ Database management system (DBMS)
â€¢ Model-base management system (MBMS)
â€¢ Dialog generation and management system (DGMS).

The DBMS is composed of a database and a management
system. A database is a file or set of files containing infor
mation needed, generated, or manipulated by a computer
program. The management system provides the method for
creating, accessing, and maintaining the database. The PASS
database is an individual records model. This model consists
of a set of records in which each record contains a set of
fields. Each record represents a type of package. Attributes
of that package, such as price, are contained in the fields.
Because the database is an ASCII file, a separate manage
ment system is not required. The database can be updated
and maintained through the use of any text editor or word
processor that is capable of reading and writing ASCII files.

72 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The MBMS consists of three models. The first model is a
knowledge-based expert system. The expert system is used
to determine which 1C packages are technically feasible. The
second and third models use the multiple-attribute decision
making techniques known as PROMETHEE and AHP. These
models allow the decision maker to rank the technically
feasible alternatives based on pricing and other nontechnical
attributes.

The DGMS is classified as a graphical user interface. A
graphical user interface (GUI) is a means of visually commu
nicating between the user and the application. The attributes
of visual communication include the graphical techniques
used to communicate a concept, a task, a message, the con
tents of a screen, or any other interface component. The
overall look and feel of a GUI is established through the use
of screens, windows, controls, panels, icons, menus, anima
tion, and sometimes sound (while sound is not visual, it can
be a visual enhancer).

A sample screen from PASS is shown in Fig. 1. This screen
is used for entering custom alternatives. Output from PASS
sessions is presented in two ways: graphically and as an
ASCII text file. The DGMS also contains an online help
facility.

The three subsystems described above must interface with
each other and the decision maker to form a complete deci
sion support system. A block diagram of the PASS compo
nents is shown in Fig. 2. The MBMS contains analytical tools
and heuristic tools. The AHP and PROMETHEE modules are
mathematical models while X-PASS employs expert heuristics
in the form of a knowledge base and an inference engine.
Decision support systems that use both of these problem-
solving methods are frequently called hybrid decision
support systems.2

Multiple-Attribute Decision Making
Multiple-attribute decision making (MADM) is the study of
techniques that can be used by a decision maker to select a

Pi ice ($]

Des ign (Wks)

Lead T ime (Wks)

Support (hrs)

Souic ing (t t)

Quali ty

Rework

Prototyping

11 25

Fig. 1. Package Selection System (PASS) screen used for entering
custom alternatives.

good alternative from a finite number of alternatives when
faced with conflicting objectives. MADM techniques are
necessary in PASS because X-PASS typically generates mul
tiple alternatives and a method is needed to evaluate these
alternatives. X-PASS only makes recommendations based on
the technical aspects of electronic packaging. Technical
attributes tend to overlap packaging technologies.

Nontechnical attributes such as price and delivery have
varying degrees of importance based on the application and
the decision maker's objectives for a particular integrated

DBMS

Individual Records
Mode l

Pac Da t .Tx t

Excel Spreadsheet
Database lor General

MADM Prob lems

M B M S

X-PASS

Fig. 2. PASS block diagram.

August 1996 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

circuit. MADM techniques offer powerful ways of dealing
with the decision maker's preferences and for ranking alter
natives. For this reason multiple-attribute decision making
has been included in PASS.

PASS contains two modules for performing multiple-attribute
decision making. The first module uses PROMETHEE
(Preference Ranking Organization Methods for Enrichment
Evaluation). The second module uses AHP (Analytic Hier
archy Process).

Including both PROMETHEE and AHP in the decision sup
port system allows those users who subscribe to either the
French or the American schools of thought to take advan
tage of that preference. Offering both techniques is also an
advantage for those users who have no preference or are
not familiar with MADM techniques. These users benefit by
examining both methods and selecting the technique with
which they are most comfortable. The following sections
contain a brief discussion of the PROMETHEE and AHP
methods.

PROMETHEE
The PROMETHEE technique was presented by Brans and
Vincke in 1985.3 PROMETHEE is an outranking method
and can result in the partial preordering of alternatives
(PROMETHEE I) or the complete preordering of alterna
tives (PROMETHEE II). The PROMETHEE methods consist
of three steps: construction of generalized criteria or prefer
ence functions, calculation of the multicriteria preference
index, and determination and evaluation of an outranking
relation to give an answer to the multiple-attribute problem
of interest.

During the construction of generalized criteria, the decision
maker must assign a preference function, Ph(a,b), to each
criterion f^, where h = 1,2,. ..,k. The preference function
gives the degree of preference of the decision maker for
selecting action a rather than action b. Four meanings are
given to the preference function:
Ph(a,b) = 0 No preference for a over b, fj,(a) and fh(b)
indifferent.
Ph(a,b) - 0
Ph(a,b) - 1
Ph(a,b) = 1

H|(d)

Weak preference for a over b, fh(a) > fh(b)).
Strong preference for a over b, fh(a) Â» fh(b).
Strict preference for a over b, fn(a) Â»> fh(b).

For example, if in comparing a $5.00 package a to a $7.00
package b, the decision maker feels that the $2.00 difference
between fh(a) = $5.00 and fh(b) = $7.00 is insignificant,
then there is no preference for a over b and Pn(a,b) = 0.

The difference between the two evaluations, d, is equal to
fh(a) - fh(b). Hh(d) is then defined as:

Hh(d) = Ph(a,b), d > 0

= Ph(b,a), d < 0.

The function Hh(d) combined with the criterion fh, that is,
Hh(d) = (Hh(d),fh), is called the generalized criterion asso
ciated with ff,. Brans, Vinke, and Mareschal4 have developed
six possible types of generalized criteria. While other gen
eralized criteria can be defined, these six should meet most
decision makers' needs. They require that the decision maker
define only a few parameters.

- 1 / 2

- d - p - q
Fig. 3. Graph of the generalized criterion HÂ¡(d). The parameters p,
q, and d are defined in the article.

One of these generalized criteria is defined as follows (see
Fig. 3):

HÂ¡(d) = 0, |dj < q

= 1/2, q < |d| < p

= 1 , o therwise ,

where q is the indifference threshold, which represents the
largest value of d below which the decision maker considers
there is indifference, and p is a strict preference threshold,
which represents the lowest value of d above which the
decision maker considers there is strict preference.

The second step of the PROMETHEE method is to calculate
the multicriteria preference index for each alternative over
all criteria. The preference index is defined as:4

Ji(a,b) = TwhPh(a,b),
h = l

where

Â£wh = i
h=l

and

0 < jr(a,b) < 1.

This index is the mean of the values of the k preference
functions. W^, is a weight associated with each criterion.
A weak preference of a over b is denoted by the value of
iT,(a,b) being close to zero. A strong preference of a over b
is denoted by the value of jr(a,b) being close to one.

The third and final step of the PROMETHEE method, deter
mination and evaluation of an outranking relation, requires
that positive and negative outranking flows be determined
from the multicriteria indexes. The positive and negative
flows are defined as:3

= T

and

bÂ£A

beA

where A is the set of possible actions.

74 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The following rules can then be used to generate a partial
preordering of the alternatives. P means "is preferred to."
I means "is indifferent to." and iff means "if and only if."

> aP-b iff 0>*(a) > O+(b)
> al-b iff <t+(a) = 4>+(b)
> aP-biff<t>~(a) < 3>~(b)

The outranking relationship is then constructed from these
rules:

> a outranks b if aP+b and aP~b or aP+b and al~b or al+b and
aP-b.

' a is indifferent to b if al+b and al~b.
a and b are incomparable otherwise.

Analytic Hierarchy Process
AHP was developed by Thomas L. Saaty in the 1970s. It is
based on a set of axioms developed by Saaty0 and published
in a paper by Harker and Vargas in 1987.6 A good mathemati
cal analysis of these axioms can be found in reference 7.
The four axioms were paraphrased by Harker as follows.

1. Given any two alternatives i and j out of the set of alter
natives A, the decision maker is able to provide a pairwise
comparison ay of these alternatives under any criterion c
from the set of criteria C on a ratio scale that is reciprocal,
that is,

aJi - aÂ» for all i,j e A.

2. When comparing any two alternatives i,j E A, the decision
maker never judges one to be infinitely better than another
under any criterion c, that is, ay ^ Â°Â° for all i,j e A.

3. One can formulate the decision problem as a hierarchy.

4. All criteria and alternatives that impact the given decision
problem are represented in the hierarchy, that is, all expecta
tions must be represented (or excluded) in terms of criteria
and alternatives in the structure and be assigned priorities
that are compatible with expectations.

Using these axioms, decision applications of AHP can be
carried out in two phases: hierarchy design and evaluation.

The first phase, hierarchy design, involves the estimation of
weights for each criterion that is used to rank alternatives.
Most decision makers are faced with two types of criteria:
quantitative and qualitative. For criteria based on quantita
tive data such as cost or size, the weights can be estimated
by normalizing or inversely normalizing the comparison fac
tors for each column of alternatives such that the weights
sum to 1:

for all = 1,2, ...,n.

k = l

For criteria based on qualitative data, a relative weight ma
trix can be constructed using Saaty's scale of measurement6
(see Table II).

The positive reciprocal matrix constructed using a verbal
scale technique may contain errors in judgment.4 Column
normalization of this type of data would produce different
results depending on which column was chosen.

Table I I
Saaty 's Scale o f Measurement

V a l u e D e f i n i t i o n

1 Equally important or preferred

3 Slightly more important or preferred

Strongly more important or preferred

Very strongly more important or preferred

9 Extremely more important or preferred

2,4,6,8 Intermediate values to reflect compromise

Reciprocals Used to reflect dominance of the second
alternative over the first

Saaty's eigenvector method8 is one technique for generating
weights that effectively deals with these errors. The eigen
vector method results in final weights that are an average of
all possible ways of comparing the alternatives. The weights
from the eigenvector method are calculated by raising the
matrix of alternatives A = (ay) to increasing powers of k
and then normalizing the resulting system:4

w = h m Ake
k-, oc eTAke '

where e is a column vector consisting of all Is and eT is the
transpose of e. When w converges, the process is complete
and a consistency index can be calculated that is an indica
tion of the magnitude of the errors in the matrix.

After construction of the hierarchies, the second phase of
AHP is evaluating the hierarchies to make a decision. Evalu
ation begins with constructing a final hierarchy of the pair-
wise comparisons of the criteria. Because the criteria are
not usually equally important or quantifiable, Saaty's scale of
measurement and eigenvector approach are well-suited to
developing the weights for ranking the importance of the
criteria. The order of preference can then be determined by
summing the relative priorities by weighting them with the
overall priority of the given criterion.

Using PASS
The Package Selection System is a Microsoft WindowsÂ®-
based application. It was developed using Microsoft's Visual
BASIC, version 2.0. Visual BASIC is a programming method
ology that allows the developer to create programs that can
take advantage of the Windows graphical user interface
(GUI). Visual BASIC applications have the overall "look and
feel" of professional Windows applications including pull
down menus, buttons, check boxes, scroll bars, text boxes,
and icons. Visual BASIC programs can take advantage of
other Windows features including multiple-document inter
face (MDI), dynamic data exchange (DDE), object linking
and embedding (OLE), and dynamic link libraries (DLL).

A typical PASS session is run in the following manner:

1. Select technically feasible alternatives using the expert
system, X-PASS.

2. Start the multiple-attribute decision making module by
clicking on MADM.

3. Input the number of criteria and alternatives.

August 1996 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

Package Select ion System
(PASS)

I 1

Fig. 4. Hierarchy of the major
PASS modules.

4. Select the MADM tool (AHP or PROMETHEE).

5. Input the alternatives. Usually alternatives are selected
from those suggested by X-PASS but the user is free to
select other alternatives or define a custom alternative.

6. Input the criteria. Several criteria are suggested by PASS
for the purpose of ranking alternatives, but the user is free
to define custom criteria.

7. Input the information required to describe the decision
maker's preferences.

8. Tell PASS to evaluate alternatives by clicking on Eva I from
the PASS window menu.

PASS contains 18 separate modules for accomplishing this
task. The modules are used for inputting data, selecting

criteria and alternatives, creating custom alternatives, dis
playing results, and interfacing with other Windows applica
tions. The hierarchy of the major PASS modules is shown in
Fig. 4.

PASS can be started by clicking on the PASS icon or by typing
in the proper path and Pass.exe in one of the Windows Run
screens. During startup, a welcome screen is displayed. After
a brief pause, a module selection screen is displayed. From
this screen the user can choose an expert system consulta
tion or select multiple-attribute decision making.

Selection of X-PASS causes the expert system module to
start. The knowledge base for X-PASS is automatically
loaded. The X-PASS screen is shown in Fig. 5. This form
contains four control buttons: Go, Restart, Stop, and Cancel.

F i l e H e l p

I R e s t a r t | Â ¿ t o p

- - W e l c o m e t o X - P A S S - T h e e X p e r t P a c k a g e S e l e c t i o n S y s t e m - - - - - - - - -

T h i s e x p e r t s y s t e m w i l l h e l p y o u t o s e l e c t i n t e g i a t e d c i r c u i t (1 C) p a c k a g e s w h i c h a r e
t e c h n i c a l l y f e a s i b l e a l t e r n a t i v e s f o r t h e p r o p o s e d 1 C .

X - P A S S I f a s k y o u a s e r i e s o f q u e s t i o n s t o h e l p d e t e r m i n e f e a s i b l e a l t e r n a t i v e s . I f
y o u a r e u n s u r e o f a n a n s w e r y o u m a y p r e s s " U n k n o w n " W h e n p r e s s i n g " U n k n o w n " ,
X - P A S S w i l l a n s w e r t h e q u e s t i o n f o r y o u , u s i n g v a r i a b l e s w h i c h a l l o w f o r t h e b r o a d e s t
r a n g e o f f e a s i b l e p a c k a g e s . A f t e r c o m p l e t i n g t h e i n i t i a l c o n s u l t a t i o n , y o u s h o u l d
d e t e r m i n e v a l u e s f o r a l l " U n k n o w n " q u e s t i o n s a n d t h e n r e p e a t t h e c o n s u l t a t i o n .

I f y o u a r e u n s u r e o f w h y X - P A S S i s a s k i n g a p a r t i c u l a r q u e s t i o n y o u m a y p r e s s " W h y " .

S h o u l d t h e s e l e c t e d p a c k a g i n g t e c h n o l o g y h a v e t h e a b i l i t y t o u s e
e x t e r n a l h e a t s i n k s ?

S e l e c t : a n y i t e m .

R e s t a r t c o n s u l t a t i o n
Fig. 5. X-PASS form.

76 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The X-PASS screen also contains three response buttons:
Why. Unknown, and OK.

Go is used to begin a consultation. Restart continues a con
sultation that was inadvertently aborted. Stop ends a con
sultation but preserves the current knowledge cache. Cancel
ends the consultation immediately and clears the knowledge
cache.

A user can respond to a question asked by X-PASS with Why,
Unknown, or OK. A response of Why causes a message to appear
that explains why the expert system needs that particular
piece to information. Selecting Unknown forces the system to
pick an alternative that is the least restrictive in terms of
eliminating alternatives. It also associates a low certainty
factor with that choice (a certainty factor is a number be
tween 0 and 1 representing the decision maker's confidence
in an answer given in response to a question from X-PASS).
Selecting OK enters the user's highlighted response into the
knowledge cache.

Also on the X-PASS form, certainty factors can be entered in
the box labeled CF, and other knowledge bases can be entered
into X-PASS through the use of the file menu. This powerful
feature allows the X-PASS database to be modified by any
user. It also allows X-PASS to be used as an expert system
shell for other, nonpackaging-related problems. Feasible
alternatives that are determined by a consultation with X-
PASS are saved in an ASCII file for optional use by the
MADM modules.

Clicking the MADM button on the module selection form
initiates the process for using the multiple-attribute decision
making tools. The first form in the MADM module (Fig. 6)
allows the user to input the number of alternatives and crite
ria. The AHP or PROMETHEE technique is also selected by
using this form. A list box on the form shows the decision
maker all of the standard criteria supported by PASS. The
user also has the option to check the box labeled Use X-PASS
Alternatives. Selecting this option enters the feasible alterna
tives determined by the most recent X-PASS consultation
into working memory. Otherwise, the decision maker can
type the number of alternatives and criteria into the text
boxes at the righthand side of the form. A maximum of 20
alternatives and 20 criteria can be used. This limitation is a
result of the way in which Visual BASIC handles large
arrays.

The remainder of the MADM forms are activated by using
the menu on the main PASS form. Most of the data entry for
PASS is self-explanatory and a help facility is provided to
assist in data entry.

O p t i o n s
(~~ Promethee

r AHP
r U s e X - P A S S A l t e r n a t i v e *

Possible Cri ter ia
P r i c e ($)
D e s i g n (W k s)
L e a d T i m e (W k s)
O v e r h e a d (h r s)
S o u r c i n g (t t)

A l t e r n a t i v e s

Cr i t e r i a

Fig. 6. Initial MADM form.

Entering Criteria for AHP and PROMETHEE
Criteria for AHP and PROMETHEE are entered in different
ways. The criteria input modules are activated by selecting
Grit from the main menu. For AHP, two forms are used to
enter selec The first form (Fig. 7) is for alternatives selec
tion As contains a combination list box labeled Criteria. As
the name implies, it is a list of the standard criteria sup
ported by the packaging selection system. After all criteria
are entered into working memory, a second screen is acti
vated. This screen, shown in Fig. 8, allows pairwise compari
son of the criteria, based on Saaty's scale of measurement.

Comparisons are made by entering a number from Saaty's
scale in the matrix in the upper lefthand corner. This causes
a row to be compared with a column. The reciprocal com
parison is automatically entered into the proper cell. After
all comparisons have been made the weights and consistency
index can be displayed by using the Eva I button.

A consistency index greater than 0. 1 indicates that modifica
tions to the matrix may need to be made. The Reset button
clears the weights and consistency index but leaves the
matrix intact. This is useful if only slight modifications to
the matrix are desired. The Clear button clears the matrix as
well as the weights and consistency index. Pressing Exit
enters all data into working memory and returns the system
to the main menu. Saaty's scale is shown in a list box at the
lower lefthand corner of the form.

F r o m (h e " C r i t e r i a C o m b o B o x " ,
S e l e c t C r i t e r i a N u m b e r :

D e s i g n
L e a d T i m e (W k s)
O v e r h e a d (h r s)

S o u i c i n g I l t |
Q u a l i t y
R e w o r k
P r o t o t y p i n g

Fig. 7. Selecting alternatives in
AHP.

August 1996 Hewlell-Packard Journal 77

© Copr. 1949-1998 Hewlett-Packard Co.

Contro ls

E n t e r

W e i g h t s a n d C o n s i s t e n c y I n d e x

C o n s i s t e n c y I n d e x
 j ^

Saaty's Scale
1 - E q u a l l y i m p o r t a n t o r p r e f e r e d
3 â€¢ Sl ight ly more important or prefered
5 - S t r o n g l y m o r e i m p o r t a n t o r p r e f e r e d
7 - V e r y s t r o n g l y m o r e i m p o r t a n t o r p r e f e r e d

Entering criteria for the PROMETHEE technique is a three-
step process. The PROMETHEE form is shown in Fig. 9.

The first step is selecting a criterion from the list box in the
criteria section of the form. The criterion is entered into
working memory by pressing OK. A range of values for each
of the criteria corresponding to the preselected alternatives
is shown in the range list box.

The second step involves selecting a preference function by
pressing one of the six buttons located in the upper lefthand

AH P
Fig. 8. Making pairwise compari
sons in AHP.

corner of the form. When a preference function is selected,
a graph of the function showing the parameters appears in
the screen to the right of the buttons. For the form shown in
Fig. 9, preference function four (P4) has been selected.

The third and final step is to enter the appropriate values for
the parameter(s) in the text boxes located in the parameters
section of the form. The listing of the range of data is useful
for this step. All data is entered into working memory by

P1

P 4

ale
P2

P5

P 3

P 6

E n t e r t h e v a l u e f o r q i n ' P a r a m e t e r V . E n t e r t h e v a l u e f o r p i n ' P a r a m e t e r 2 ' .
E n t e r t h e w e i g h t f o r c r i t e r i a 1 , t h e n p r e s s ' R e c o r d C r i t e r i a ' . W e i g h t s w i l l b e n o r m a l i z e d
over a l l c r i te r ia .

Fig. 9. Entering criteria in
PROMETHEE.

78 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

clicking on Record. This process is repeated for all selected
criteria.

PASS Output
Output from PASS is presented visually and interactively
while using the software. ASCII files are also generated;
these can be imported into reports or other applications.
The output from X-PASS is a list of technically feasible alter
natives. With each alternative a confidence factor is reported.
The confidence factor ranges from 20% to 100% and is based
on the number of questions answered as "unknown." The
output from the MADM modules consists of a ranking of the
alternatives and their associated weights. A sample of the
ASCII output from an AHP session is shown in Fig. 10.

N u m b e r o f C r i t e r i a i s 5
Number of A l ternat ives is 5

Note: Weights are computed from the principal right
eigenvector of the pairwise comparisons matrix.

C R I T E R I A A 1 A 2 A 3 A 4 A S W e i g h t
P r i c e (S I 0 . 1 5 4 6 0 . 1 2 1 3 0 . 1 8 6 9 0 . 2 4 6 6 0 . 2 9 0 5 0 . 5 3 8 3
D e s i g n (W k s) 0 . 1 6 6 7 0 . 2 2 2 2 0 . 1 6 6 7 0 . 1 1 1 1 0 . 3 3 3 3 0 . 2 2 2 8
L e a d T i m e (W k s) 0 . 0 6 4 1 0 . 3 8 4 8 0 . 3 8 4 8 0 . 0 9 6 2 0 . 0 7 0 0 0 . 0 4 3 0
Q u a l i t y 0 . 1 8 1 8 0 . 3 6 3 6 0 . 0 9 0 9 0 . 2 2 7 3 0 . 1 3 6 4 0 . 1 2 2 2
F o o t p r i n t 0 . 1 1 5 2 0 . 1 2 4 8 0 . 2 3 0 3 0 . 2 3 0 3 0 . 2 9 9 4 0 . 0 7 3 6

â€” Ranking of the Alternatives â€”

Alternative 1 : 196-tab
Alternative 2 : 208-mquad
Alternative 3 : 208-cpga
Alternative 4 : 208-cqfp
Alternative 5 : 208-pcpga

Composite Weight
0.2724
0.2064
0.1850
0.1824
0.1538

Acknowledgments
The development of PASS would not have been possible
without the guidance of Dr. John Labadie, who provided
expertise in multiple-attribute decision making, and Dr.
Thomas Siller, who offered advice on expert systems and
inference engines. Both Dr. Siller and Dr. Labadie are pro
fessors of civil engineering at Colorado State University.

References
1. A.P. Sage, Decision Support Systems Engineering, John Wiley
and Sons, Inc., 1991.
2. J.P. Ignizio, Introduction to Expert Systems. The Development

and Implementation of Rule-Based Expert Systems, McGraw-Hill,
1991.
3. J.P. Brans and P.H. Vinke, "A Preference Ranking Organization
Method (The PROMETHEE Method for Multiple Criteria Decision
Making)," Management Science, Vol. 31, 1985, pp. 647-656.
4. J.P. Brans, P.H. Vinke, and B. Mareschal, "PROMETHEE: A New
Family of Outranking Methods in Multicriteria Analysis," in J.P.
Brans, ed., Operations Research '84, Elsevier Science Publishers,
1984, pp. 477-490.
5. T.L. Saaty, "Axiomatic Foundation of the Analytic Hierarchy
Process," Management Science, Vol. 32, 1986, pp. 841-855.
6. P.T. Harker and L.G. Vargas, "Theory of Ratio Scale Estimation:
Saaty's Analytic Hierarchy Process," Management Science, Vol. 33,
1987, pp. 1383-1403.
7. R. it "The Analytic Hierarchy Process â€” What it Is and How it
Is Used," Mathematical Modeling, Vol. 9, 1987, pp. 161-176.
8 . T . L . S a a t y , T h e A n a l y t i c H i e r a r c h y P r o c e s s , M c G r a w - H i l l , 1 9 8 0 .

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Fig. 10. ASCII output from AHP.

August 1996 Hewlett-Packard Journal 79
© Copr. 1949-1998 Hewlett-Packard Co.

Cycle Time Improvement for Fuji IP2
Pick-and-Place Machines
Some of the major enhancements are eliminating head contention,
reducing or eliminating nozzle changes, supporting user-defined nozzles,
supporting large nozzles for holders 2 and 3, and being able to define
multiple part data for a given part number. The cycle time improvement
exceeds the original goal of 5%, and the result at one surface mount
center was more than 16% over hand-created and optimized recipes.
The solution helps both the high-volume and the high-mix centers.

by Fereydoon Safai

Reduction of placement cycle time in an assembly line is
one of the major goals in a surface mount shop. It is more
important in a high-volume shop than in a high-mix shop
because most of the assembly time is spent in part place
ment. The reduction of placement cycle time at high-volume
centers would have a higher impact than at our high-mix
centers.

HP owns many Fuji IP2 machines at our surface mount cen
ters, one on each line. The Fuji IP2 machine is a fine-pitch
pick-and-place machine capable of placing parts from reel,
stick, and waffle feeders. It is considered a general-purpose
pick-and-place machine because of its ability to place a wide
range of parts. It has two heads, which alternately pick up
parts from the feeders and place them on the panel. Each
head has two holders, one with a fixed nozzle and one with
an automatic nozzle. A fixed nozzle must be installed into
the fixed holder before the machine starts placing parts. An
automatic nozzle of size S, M, L, or LL can be picked up by
the automatic holder from a nozzle station. The nozzle station
has six nozzles: one S nozzle, one M nozzle, two L nozzles,
and two LL nozzles. The S and M nozzles are shared between
the two automatic holders of the two heads. Each automatic
holder has its own L and LL nozzles; they are not shared
between the two automatic holders.

Since the S and M nozzles are shared between the two auto
matic holders, it is important that the sequence of placement
be arranged so that the two automatic holders do not require
the S or M nozzle at the same time. If they do, depending on
the particular Fuji IP2's firmware, either one side will halt
until the other side finishes its placement and releases the
nozzle, or the IP2 software will crash. In either case, head
contention is created, which is a problem for IP2 placement
machines.

87 51

The Fuji IP2 machine has slot numbers 1 through 37, 51
through 87, and 101 through 110. Slots 101 through 110 are
used by the waffle unit. If the waffle unit is installed, it inter
feres with the machine and makes slots 1 through 3 inacces
sible. Slots 1 to 37 and 51 to 87 can be used for mounting
either reel feeders or stick feeders. Slots 101 to 110 are used
for waffle feeders.

The IP2 machine has a number of of constraints. Only one of
the automatic holders (holder 1) can access waffle parts from
slots 101 to 110. This holder can also access slots 4 to 37 if a
waffle unit is installed or slots 1 to 37 if no waffle unit is
installed. The other automatic holder (holder 4) can access
slots 51 to 87. One of the fixed holders (holder 2) can access
slots 4 to 37 (not 1 to 37) and the other fixed holder (holder
3) can access slots 51 to 84 (not 51 to 87). The two fixed
holders 2 and 3 can pick up parts up to 3.5 mm in height and
the two automatic holders can pick up parts up to 10 mm in
height.

The Problem
The issues related to the Fuji IP2 are in two categories. One
category consists of the issues that reduce the placement
cycle time, such as use of the next device, use of multiple
part data, the ability to assign a part to both sides, and the
ability to assign placements to holders based on reference
designators. The other category consists of the issues that
make the machine perform correctly. The main item in this
category is head contention. If head contention occurs, for
certain IP2 firmware the machine halts and the user must
change the sequence of the recipe to run the machine again.

Station 2 Feeders
Nozz le S ta t ion

Ho lde rs

Head 2

Station 1 Feeders

Headl Fig. 1. Fuji IP2 pick-and-place
machine layout.

80 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The Methods
In this section, we describe our solution for each issue re
lated to the Fuji IP2 machine. This includes elimination of
head contention, support of the next device mechanism of
the IP2, support for user-defined nozzles such as a modified
medium nozzle for holders 2 and 3, use of multiple part data
for a part number, and assignment of a part to both sides of
the machine to achieve a better head balance.

Our general solution is as follows: we assign placements to
holders to balance the load among the four holders. In the
process, we consider first the placements that have slots
already assigned. This is the case when the part numbers
are in the input setups. Then we assign slots to those place
ments that do not have slots in the input setup. This general
solution is used for both setup and sequence modules, hi
the sequence module, all the placements have their slots
assigned.

In the following sections, we describe many issues which
are considered when assigning placements to holders. Our
solutions have been incorporated in setup and sequence
generation modules for the Man-Link recipe generation
system, which is used by all HP surface mount centers that
have Fuji IP2 machines. Other Man-Link enhancements are
discussed in the article on page 84.

Eliminating Head Contention. Head contention occurs when
holders 1 and 4 need the same nozzle (S or M) at the same
time. At this time, the machine behaves differently depend
ing on what firmware it has. Machines having older versions
will stop and the user must edit the recipe to eliminate the
head contention. In newer versions, the holder that needs
the S or M nozzle must wait until the other holder finishes
its placements and releases the S or M nozzle.

In our solution, we do not assign parts requiring the S or the
M nozzle to both holders 1 and 4. We assign each nozzle only
to one of them, depending on the loads of the holders. This
way, the machine in the worst case will place all such parts
with one side. This would not be worse than the case in
which one side must wait until the other side finishes.

As an example, assume that there are two parts, each requir
ing the M nozzle and each having 10 placements. Further
assume that holders 2 and 3 do not have any nozzles attached
to them. Assigning both of these parts to one side, say to
holder 1, would not be worse than the case in which one
part is assigned to holder 1 and the other part is assigned to
holder 4. Using our solution, Man-Link assigns both parts to
one side, say holder 1. In this case, the machine will go back
and forth and place one part at a time for total of 20 round
trips. If one part is assigned to holder 1 and the other is as
signed to holder 4, and if the machine has the latest firm
ware, holder 1 will pick up the M nozzle and go back and
forth and make its 10 placements. While holder 1 is placing
parts, holder 4 must wait until holder 1 releases and replaces
the M nozzle. At that time, holder 4 will pick up the M nozzle
and go and make its 10 placements. The machine has to do
two nozzle changes for each board, both of which are un
necessary. Our solution does not need any nozzle changes in
this particular case, thereby saving 10 to 15 seconds.

Our solution not only eliminates the head contention, but
has the additional benefit of eliminating nozzle changes be
cause of head contention. In the past, users would not assign

to the IP2 parts requiring S or M nozzles because of the head
contention issue. This caused the IP2 to be underutilized.
Now users can assign such parts to the IP2 when necessary
and this will help to reduce the overall cycle time of products
being built.

Using Slot Link (Next Device). With Fuji IP2 machines it is pos
sible to place multiple feeders containing the same part on
the machine and have the recipe reference one of the slots.
When the parts from that slot are depleted, the machine
goes automatically to the next slot that has that part and
continues placing.

This slot link mechanism is very helpful for waffle parts.
Since the waffle feeders do not take many parts, the operator
frequently has to stop the machine and replenish the parts.
If a recipe uses only one fine-pitch part from the waffle unit,
all 10 waffle feeders of the IP2 can be filled at once and all
of these parts can be used before the machine needs to be
stopped to refill that part.

The mechanism provided by Man-Link is as follows. The user
enters, in an input setup, the slots that a particular part is to
occupy and then Man-Link takes over and creates the recipe
appropriately. As an example, if a part is assigned to all 10
slots of the waffle pack unit, we would have a recipe con
taining the slots and slot links (next devices) shown in Table I.

T a b l e I
S l o t L i n k (N e x t D e v i c e) E x a m p l e

P a r t N u m b e r S l o t (D e v i c e) S l o t L i n k (N e x t D e v i c e)

As shown in Table I, a circular link is created between slots
101 through 110. The next slot for slot 101 is 102, the next
slot for slot 102 is 103, and so on. The last slot, slot 110, is
linked to slot 101, the first slot, to create a circular link. The
operator will fill all ten trays with part 1. In the recipe for
this part, slot 101 is referenced. The machine starts picking
up parts from slot 101 and places them on the board until all
parts are used up. Then the machine will go to the next slot,
which is slot 102, and start placing parts. This will continue
until parts from all ten feeders are depleted. Then the
machine will stop, the operator will fill all ten trays, and
the cycle will begin again.

User-Defined Nozzles. Holders 2 and 3 take a fixed nozzle.
The nozzle sizes that Fuji supplies for these two holders are
S and M. One of our surface mount sites created a larger
nozzle for these two holders. This expanded the capability
of the machine so that it can pick up as many as four larger

August 1996 Hewlett-Packard Journal 81

© Copr. 1949-1998 Hewlett-Packard Co.

part data, the user defines a nozzle (like Modified Medium)
and then links this nozzle to a Fuji nozzle, which might be M.
We use the user-defined nozzles of each part to assign them
to nozzles of the machine, which are also specified by the
user.

In Table III, the actual dimensions of the different nozzles
used at different HP surface mount sites are listed.

Multiple Part Data for a Part. From the discussion of the pre
vious section, it is obvious that a part might be picked up
successfully by multiple nozzles. For example, a part might
be picked up by both Modified Medium and ML nozzles.
Their nozzle diameters are very close: 6 mm and 7 mm,
respectively. For this reason, we have provided part data
preferences such that the user can decide which part data
(and in turn which nozzle) is the best for picking up a part,
and give it the highest preference. The user can then provide
additional part data, using other nozzles sizes, for that part
with lower preferences. Our software will try to use the part

Assigning Placements to Holders by Reference Designators.
Assume that there is only one part assigned to an IP2 for a
product and it is placed on the right side of the machine,
where holders 1 and 2 are located. Further assume that the
part requires an S nozzle, and an S nozzle is fixed into holder
2. hi this case, it is reasonable that the reference designators
of the part be split between the two holders, 1 and 2. This
will speed up the placement cycle time since the right head
can pick up two parts and then go and place both of them.
This is what our software will do. It attempts to split the
placements among holders such that the load is balanced
among all holders.

Of course, if that part is duplicated on the left side of the
machine and an S nozzle is placed into holder 3, then three
holders would be picking up parts and placing. This way
both sides of the machine would be used.

82 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Minimizing Nozzle Changes. Reducing nozzle changes is an
other important task. It was shown earlier that eliminating
head contention also reduced the nozzle changes by two.
Each nozzle change takes five to seven seconds. In a high-
volume shop, it is important that the number of nozzle
changes be minimized.

Since holders 1 and 4 have their own L and LL nozzles, it is
important to assign all parts requiring the L nozzle to one
holder and the parts requiring the LL nozzle to the other
holder. The imbalance between such holders determines
whether to assign parts requiring L and LL nozzles to one of
these holders. For example, if there are parts requiring the L
nozzle and their total placements are much more than the
parts requiring the LL nozzle, then we assign the parts
requiring the LL nozzle to one side and the parts requiring
the L nozzle to both sides. In this case, we create one nozzle
change on the side containing the parts with L and LL
nozzles. The decision to assign the parts with the L nozzle to
both sides of the machine or to a single side is made so as to
minimize the total placements including the nozzle change
cost.

Since the nozzle change time is not a constant time, we use
a configuration parameter to set the cost of nozzle changes
in terms of placements. The name of the configuration
parameter is NOZZLE_CHANGE_COST. It has the default value
of 2.5. This means that each nozzle change takes as long as
2.5 placements.

Prerotation and Rescan. Fuji part data has two fields called
prerotation and rescan. If the prerotation field is set, the
part must be prerotated before the camera can look at it.
Therefore, the head that performs such placements can only
pick up one part instead of two, thereby slowing down the
machine. We keep track of such parts since they affect the
load balance between the holders.

The effect of the rescan is the same as that of the prerota
tion. If the rescan field is set for a part, the head that picks
up such parts can only pick up one part and not two. Again,
we keep track of such parts and take them into account for
load balancing among the holders.

Slot 34 and 54. Because of the construction of the Fuji IP2
machine, part placements from slots 34 (by holder 1) and 54
(by holder 4) have the fastest cycle time. Therefore, it is
important that the high-count parts are assigned to these
two slots. If the parts are assigned to holders 2 and 3, this
does not hold. For holder 2, a part at slot 37 has the fastest
cycle time, and for holder 3, it is slot 51.

Using slots 34 and 54 for high-count parts has the drawback
of potentially wasting one to two slots, so if feeder space is
at a premium this mechanism is not appropriate. However, if
feeder space is not an issue, the cycle time can be reduced
by using this mechanism. This is especially important for
high-volume shops. We have provided a configuration pa
rameter for users to choose whether to use this feature.

Slot Numbers. The center-to-center distance of the two hold
ers of each head is 63 mm. The pitch of the feeder bank is

21 mm. The fastest pickup occurs when the parts for two
placements made by the two holders of a head are 3 slots
away from each other.

After the assignment of placements to holders is completed,
we order the placements of each holder by slot number, hi
general, it may help the cycle time to pick up two parts with
each head.

X and Y Coordinates of Placements. Another factor that can
help reduce the cycle time is the distance between two
placements on the panel. For example, if both holders of a
head are picking up two parts, it will be faster if the two
placements are close together on the panel. Therefore, after
we sort the placements of each holder by slot (as explained
above) then we order them by their separation on the panel.

Results and Discussion
One HP surface mount center was editing recipes to balance
the load among the four holders. An engineer was doing this
task. This was critical because of the high volume of some
of the center's products. When our solution was available,
the center tried it and got a very good result. Our solution
was more than 16% faster than the recipe that was hand-
optimized by an engineer. We should note that when this
project was funded, the goal was to achieve 5% improvement,
but in all cases we have exceeded this initial goal.

As explained earlier, one of the major issues was head con
tention. Formerly, the user had to edit the recipe to get
around this problem. As a result, many users were not
assigning certain parts to the IP2. This tended to increase
the cycle time of their component placement machines
because it increased the load on the fast machines. Since we
have eliminated the head contention issue, users have moved
more parts to their IP2 machines and have increased their
throughput.

At other centers, the next device mechanism has saved
0.5 hours per shift on each line.

For contract manufacturing, especially for high-volume
products, the cycle time reduction can provide an important
competitive advantage. We can create recipes with our tools
and give the optimized recipes to contractors to be used on
Fuji machines.

Acknowledgments
The work described in this paper was funded by all HP sur
face mount centers who have Fuji IP2 machines. All IP2
Man-Link users have helped us to understand the issues
described in this paper. Don Martorello, Sheldon Stewart,
Pat Manfull, and Jim Hudson have helped in denning many
issues related to Modified Medium nozzles and head balanc
ing. All members of the Man-Link team, especially Rick Palm,
have contributed to the implementation of this project. Man-
Link is one of the products provided by the design automa
tion group of HP's product generation information systems
department and managed by Eiko Johnson.

August 1996 Hewlett-Packard Journal 83
© Copr. 1949-1998 Hewlett-Packard Co.

Reducing Setup Time for Printed
Circuit Assembly
In 1994, HP's Man-Link recipe-generation system was enhanced to reduce
the time required for setting up pick-and-place machines. This was done
by ordering the products to exploit the commonality of parts among them
and by from sequences of setups that differ as little as possible from
one another. This paper documents the issues and trade-offs and
discusses the potential benefits.

by Richard C. Palm, Jr.

Early in 1993, we began an investigation into ways to de
crease the cost of setup time for HP surface mount manu
facturing centers. Our initial investigation covered a range
of options, including:

â€¢ Common setups for both sides of a printed circuit assembly.
All of the parts needed for both sides of the printed circuit
assembly are placed in a single setup.

â€¢ Partially fixed setups. Commonly used parts are assigned
fixed locations on the machines.

â€¢ Family setups. All of the parts required to build a group of
printed circuit assemblies are placed in a single setup. The
printed circuit assemblies in the group are chosen so that all
of the required parts will fit into one setup.

â€¢ Feeder bank exchange. Some machines offer the ability to
change a large number of parts in the setup quickly by
means of removable feeder banks. The operator can set up
the parts for a product in an offline feeder bank while the
machine is building a different product. The operator then
trades the offline feeder bank for the online feeder bank,
and can start building the new product immediately.

â€¢ Optimization by schedule, described below.

We soon narrowed the investigation to two options. We
considered these to offer a good return on investment and
to be a good fit with the architecture of HP's internal Man-
Link system, which creates recipes for pick-and-place
machines. The two options were family setups and optimiza
tion by schedule. We asked our customers to estimate the
benefit to their sites, using mathematical models of these
options. Based on their inputs, we chose to proceed with
optimization by schedule. This was implemented in 1994.

Setup optimization by schedule takes advantage of the fact
that many printed circuit assemblies use common compo
nents (Fig. 1). If the machine setup for each new printed
circuit assembly is based on the setup of the previous printed
circuit assembly, parts that are used in both don't have to be
moved, and the total number of parts that need to be set up
(called "feeder changes") is reduced. For example, in Fig. 1,
four parts each are used on three products. Since parts that
are common to multiple products are reused, the operator
would only have to do six feeder changes (one each for
parts 1 to 6) rather than the twelve that could be required if
parts changed slots between products.

Further reduction in feeder changes can be achieved by
changing the order in which printed circuit assemblies are
built. Printed circuit assemblies with a large number of
common parts should be built sequentially.

The advantages of this approach include:
1 It works well if feeder space is limited. For example, it has
been used effectively in a line containing only one Fuji CP
pick-and-place machine and one Fuji IP pick-and-place
machine. In contrast, partially fixed setups and family set
ups require a larger amount of excess feeder capacity to be
effective.

1 It does not require any additional equipment or stock, as is
required to use feeder bank exchange.

1 It works well for very small lot sizes, even single panels.

Setup for Product A Setup for Product B Setup for Product C

Slot l

Slot 2

S lo ts

Slot 4

S l o t s Fig. 1. Setup optimization by
schedule.

84 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Disadvantages include:
â€¢ It requires machine downtime to change feeders. The user

can prepare feeders for the next product, but cannot set up
offline and use feeder bank exchange or the Fuji CP split-
bank mode.

â€¢ It has limited effectiveness if the schedule cannot be set by
the setup optimization tool. Estimates of the lost effective
ness vary from 10% to 60%.

â€¢ Recipe generation must be dynamic, that is, recipes must be
generated after identifying the printed circuit assemblies to
be built in a particular time period.

â€¢ Late schedule changes may reduce the tool's effectiveness,
or require that it be rerun.

SOFT
A software tool to optimize schedules by setup, called SOFT
(for setup op/imization), was created by HP Laboratories
and later adapted to an HP proprietary recipe generation
system. This system generates programs, or recipes, for
pick-and-place machines. Any references to SOFT in this
paper refer to this system.

The SOFT tool works on a list of printed circuit assemblies.
It considers only those parts assigned to a particular ma
chine for each printed circuit assembly. First, the printed
circuit assemblies are ordered using a traveling salesman
heuristic with the number of common parts between printed
circuit assemblies as the cost function. Next, a setup is gen
erated for each printed circuit assembly, and the number of
feeder changes is calculated. Finally, the schedule is per
turbed, and the feeder changes are recalculated to determine
if a slightly different schedule would be an improvement.
When no further improvements can be found, the program
stops. The user can alter the order (for example, if one
printed circuit assembly must be built first). The program
will then recalculate the setups.

Outputs of SOFT include setup files for the printed circuit
assemblies, and an operator instruction file giving the
ordered list of printed circuit assemblies and the feeder
changes required between each pair of printed circuit
assemblies.

Man-Link
Man-Link is a newer HP-proprietary tool that generates
recipes for pick-and-place machines. The assembly process
is modeled as an ordered list of steps. In each step, a
machine or person installs parts on one side of the printed
circuit assembly. To generate recipes for all of the steps in a
process, Man-Link executes the following sequence of tasks:

â€¢ Assign Reference Designators. Responsibility for the place
ment of each reference designator is assigned to a step in
the process. In making assignments, Man-Link considers
other setups, user-input responsibilities, user step prefer
ences, the number of parts each machine can handle, bal
ance among steps, and other factors. This task must be done
once for the entire process, to ensure that each placement
is assigned to exactly one step.

â€¢ Generate Setups. For each step, Man-Link determines where
the parts assigned to the step should be loaded on the pick-
and-place machine, considering other setups, machine con
straints, placement speed, and other factors. This task is
normally done separately for each step.

â€¢ Optimize Sequence. For each step. Man-Link determines the
order in which parts should be placed. This task is always
done separately for each step.

Fig. 2 shows these tasks. In Figs. 2, 3, and 4. each shape
identifies a part of the problem space that is solved as a unit,
either by a single program invocation or by a series of pro
gram invocations sharing data. In Fig. 2. assignment of refer
ence designators to steps is done by a single program in
vocation to ensure that each reference designator is assigned
to exactly one step. The other tasks are done by individual
program invocations for each step because there is no need
to share information among steps.

These tasks are performed in two phases. The first, called
strategic recipe generation, performs an initial subsequence
of these tasks and stores its output in a database. The sec
ond phase, called tactical recipe generation, performs the
rest to the tasks, producing the final recipes that are used to
build the printed circuit assembly.

It did not seem prudent to integrate the SOFT tool into Man-
Link for a number of reasons. These included the SOFT im
plementation language (Pascal) and the data structures for
setups (SOFT uses files, while Man-Link uses database
tables). We decided to create a Man-Link solution using
SOFT ideas and algorithms. In the following sections, some
of the design issues are discussed.

Build Lists
To handle multiple printed circuit assemblies in Man-Link,
we introduced build lists, which are lists of printed circuit
assemblies. We modified the programs to generate recipes
for all of the printed circuit assemblies in a build list. In the
process, Man-Link must order the build list and create set
ups with minimal feeder changes.

Ordering and Responsibility
An early issue in the design was how to integrate build list
ordering into the list of tasks given above. The SOFT imple
mentation has a single program that orders the list and gen
erates setups for one step (Fig. 3). For each of the other
steps, all of the setups are determined together but the list
order determined for the first step cannot be altered. The
advantage of this approach is that the ordering algorithm
has detailed knowledge of what parts will or will not fit on a

Process Step 1

Process Step 2

Process Step 3

Assign Reference
Designators

to Steps

Determine
Setups

Optimize
Placement
Sequence

Fig. multiple Man-Link recipe generation model â€” single product, multiple
steps.

August 1996 Hewlett-Packard Journal 85

© Copr. 1949-1998 Hewlett-Packard Co.

Product A

Process Step 1

Process Step 2

Process Step 3

^ ^ ^ ^ ^ P r o d u c t s

I ^ ^ ^ k P r o d u c t

Assign Reference
Designators to Steps

O r d e r P r o d u c t s a n d D e t e r m i n e
D e t e r m i n e S e t u p s S e t u p s

machine, and can therefore calculate (and optimize) the
exact number of feeder changes required. The disadvantages
are that the ordering program must include all of the setup
code for the target machine (and therefore be machine-
specific), and that the ordering considers only one step.
An order that is very good for one step in the process may
be very bad for another.

For the Man-Link implementation, we wanted to keep our
code modular and to consider all steps when ordering. For
these reasons, we decided to separate ordering and setup
generation.

As a separate task, build list ordering must precede the gen
eration of setups, since the setups are dependent on the
printed circuit assembly sequence. The next question is
whether ordering should precede or follow the assignment
of reference designators. If ordering is done first, then
assignment can use that information. On the other hand,
if assignment is done first, ordering can focus accurately on
the parts assigned to selected machines.

Perhaps the most compelling consideration was that our
users wanted to be able to alter the order after the ordering
program had run, but before the setups had been generated.
To do this within the Man-Link architecture, we had only
two options:
Make ordering the last task in strategic recipe generation.
This means that setup generation must be tactical, and
therefore, tactical recipe generation would always have to
be run for the entire build list.
Make ordering a separate phase preceding strategic recipe
generation. The strategic phase could then include setup
generation, and the tactical phase could be run for a single
printed circuit assembly on a single step.

Optimize Placement Sequence Fig. 3. SOFT recipe generation
model.

After discussing these issues with our users, we decided to
implement the second alternative. Fig. 4 shows that ordering
is done for all products, independent of steps, before any
other task. Assignment of reference designators to steps is
then done by a series of program invocations sharing data
and using ordering information.

Equipment Sets
Since build list ordering precedes reference designator
assignment in Man-Link, the ordering cannot consider the
set of parts assigned to a particular step. We therefore
thought we could just order printed circuit assemblies based
on all of the parts on the printed circuit assemblies. The
problem with this approach is that the parts on the two
sides of a printed circuit assembly are often quite different.
This could lead to poor results for processes consisting of
one set of machines for top-side placement and a second set
of machines for bottom-side placement. For this reason, we
decided to order top-side parts separately from bottom-side
parts. To do this requires the concept of an equipment set,

which is defined as the set of machines used to place all of
the parts on one side of a printed circuit assembly. For ex
ample, in Fig. 5, machines 1 and 2 form one equipment set,
and 3 and 4 form a second equipment set. The ordering pro
gram will consider separately the parts assigned to each of
the two equipment sets.

Schedule Dependence
In the SOFT implementation, any change in schedule nor
mally requires that the SOFT program be rerun. We hoped to
alleviate this in Man-Link by separating setup generation
from operator instruction generation. The idea is to keep
track of the parts loaded on a machine. When the operator

Product A

Process Step 1

Process Step 2

Process Step 3
F i g . 4 . M a n - L i n k r e c i p e g e n e r a t i o n

O r d e r P r o d u c t s A s s i g n R e f e r e n c e D e t e r m i n e S e t u p s O p t i m i z e P l a c e m e n t S e q u e n c e m o d e l â € ” m u l t i p l e p r o d u c t s w i t h
D e s i g n a t o r s t o S t e p s s e t u p o p t i m i z a t i o n .

86 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Equipment Set 1

Machine 1 M a c h i n e 2

Equipment Set 2

Machine 3 M a c h i n e 4

Product A

Product B

Product C

Product D

selects the next printed circuit assembly to be run, Man-Link
runs a machine dependent program that compares the cur
rent setup with the setup for the new printed circuit assembly
(Fig. 6). This program lists the minimum number of changes
required to get the required parts for the new printed circuit
assembly in the right slots. If the operator follows the deter
mined schedule, changes are minimized. If the operator
deviates from the schedule, there may be more changes, but
the setups do not have to be regenerated. This should be
particularly effective if the only change is to insert a proto
type into the schedule.

The difficulty with this approach is that Man-Link must al
ways know the current setup. We have a means in Man-Link
to ensure this, but it is not robust and has been a source of
frustration to our users.

Steps and Machines
A Man-Link process is made up of a sequence of steps, each
of which refers to a machine. A particular machine may be
used for more than one step in a process. In this case, Man-
Link could do one of two things. First, Man-Link could treat
each step independently, creating a separate sequence of
setups for each step. This assumes that the user runs all
printed circuit assemblies through a given step before going
on to the next step, which is not realistic. Alternatively,
Man-Link could generate all setups for a given printed cir
cuit assembly before going on to the next printed circuit

Fig. 5. An equipment set is the set
of machines used to place all of
the parts on one side of a printed
circuit assembly.

assembly, and create a sequence of setups for each machine.
We chose to implement the second approach.

One result of this decision is that the setups for each printed
circuit assembly must be sequential in the setup list. For
example, in a two-sided surface mount process, the setup
for each printed circuit assembly's bottom side will immedi
ately precede the setup for its top side, assuming the same
machine is used for both sides. (See the next section for a
way around this constraint.)

This is a change from the SOFT implementation, which treats
different sides of a printed circuit assembly as separate
printed circuit assemblies. This turns out to be both good
and bad â€” good because the sides can be ordered with other
printed circuit assemblies to require fewer feeder changes,
but bad because SOFT may put the sides in the wrong order,
requiring manual shuffling of the schedule.

One related note â€” Man-Link can be configured to create a
single setup for a pair of steps using the same machine. For
example, if a two-sided process uses the same CP3 machine
to place both the top and the bottom sides of a printed cir
cuit assembly, then the user can configure Man-Link to
create one CP3 setup containing all the parts required for
both sides. In this case, the sequence of setups for the CP3
would have only one setup for the two-sided printed circuit
assembly.

SOPT Method Man-Link Method

Fig. 6. Calculating operator
instructions.

August 1996 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

Separating Sides
For certain applications, it may be advantageous to treat the
different sides of a printed circuit assembly as separate
printed circuit assemblies. This would allow the top and
bottom sides of the printed circuit assembly to be separated
in the build list, or even to be in different build lists. This
feature would be useful for processes that use different ma
chines to place the top and bottom sides.

Man-Link does not support this capability directly, but does
provide a way to achieve it. The user must define a dummy
machine that does not cause setups or recipes to be gener
ated. To satisfy the reference designator assignment module,
steps using this machine can take responsibility for parts.
The user must then define a top-side process with a dummy
step for the bottom side, and a bottom-side process with a
dummy step for the top side. To generate recipes for a
double-sided printed circuit assembly, the user must run
recipe generation using both processes. The two printed
circuit assembly/process pairs can be included at different
points in a build list, or even in different build lists.

Starting Setups
To get the most out of optimization by schedule, it is best to
take advantage of any parts left on the machines from pre
vious builds. In other words, the last setups for yesterday's
build list should be an input for recipe generation for today's
build list (Fig. 7). In generating the setups for today's first
printed circuit assembly, we can use any parts left over from
yesterday's last printed circuit assembly setups.

Man-Link provides this capability by saving the last setup
generated for each machine. This works well as long as set
ups are generated by only one person at a time. If two
people try to generate setups for the same machines at the
same time, they will overwrite each other's starting setups,
causing all manner of confusion. Man-Link therefore has the
constraint that strategic recipe generation for build lists may
not be done for the same machines by more than one user
simultaneously.

A suggested way around this constraint is to have a directory
for starting setups for each user. This would keep multiple
users from interfering with each other, but does not address
the problem of determining the correct starting setup for

Generate
Recipes for
Build List B

each machine, that is, how each machine will be set up
before the first printed circuit assembly in the build list is
started.

Estimating Benefits
To assist users in projecting the benefits of optimization by
schedule, we constructed this model of the setup process:

â€¢ Let N = the number of printed circuit assemblies to be built
in a schedule.

â€¢ Let C = the average number of parts in the printed circuit
assemblies.

â€¢ Let P = the probability that any given part used by a partic
ular printed circuit assembly is also used by a second given
printed circuit assembly. In other words, P is the average
fraction of parts shared by any two printed circuit assemblies
in the schedule. For typical build lists, this varies from
around 0.13 to 0.37, with an average of about 0.25.

â€¢ Let F = the number of parts the machines can hold. For a
CP3, this is around 112, assuming that three times as many
one-slot parts are used as two-slot parts.

â€¢ Let U = the total number of unique parts for all of the
printed circuit assemblies in the schedule.

â€¢ Let X = the total number of feeder changes required by the
setups.

The average number of parts that are common to two printed
circuit assemblies is CP. The total number of parts in two
printed circuit assemblies is therefore C + (C â€” CP), or
2C - CP. Assuming that commonality is uniformly distrib
uted, the average number of parts common to three printed
circuit assemblies is CP2, so the total number of parts in
three printed circuit assemblies is C + (C - CP) +
(C â€” 2CP + CP2). Continuing this reasoning, we arrive at
the following estimator of U:

U = f 1 - - P) (1)

Fig. 7. Using starting setups.

This should immediately raise some alarms, because it pre
dicts that the total number of unique parts converges to C/P
as the In of printed circuit assemblies (N) gets large. In
fact, if turns out to be a reasonable first-order estimator if
the number of printed circuit assemblies is not too big. If N
is between 2 and 5, it is pretty good, but as N approaches 10,
it is consistently low. Fig. 8 shows estimator values and
actual values based on a random collection of products from
one surface mount center.

The number of feeder changes required, X, depends on F. If
F < C, the parts for a printed circuit assembly will not fit on
the machines, so C must be a lower bound for F. If F > U,
all of the parts may be mounted at once, so the number of
changes depends on the commonality with the starting set
ups. If the starting setups do not contain any parts in the
printed circuit assemblies, then X = U. If the starting setups
have all of the parts, X = 0. In the real world, X is generally
between these two extremes, and in fact, U turns out to be
a reasonable estimator. In an analysis of 25 build lists used
at surface mount centers, U predicted a 61% decrease in
feeder changes, compared to an actual decrease of 65%.

Ordering the build list for maximum commonality can raise
the effective value of P from an average of 0.26 to an aver
age of 0.28 in the 25 build lists mentioned above.

88 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 8. Accuracy of the U estimator based on data from one
surface mount center.

conveying the panels and reading marks more than once.
This cost can be modeled as follows:

â€¢ Let V be the overhead per panel. This is the sum of the con
veying time, the time to read fiducials. and the time to read
image-reject marks.

â€¢ Let S be the average number of seconds required to place a
single component. For the CP2 and CP3 machines, a figure
of 0.3 second works well.

â€¢ Let M be the number of placements to be done by the CP
machines.

For one CP machine, the time required to build a panel is
V + MS seconds. If two CPs in series build the panel, each
placing half of the parts, the total time is:

Setup vs. Cycle Time
Most strategies that reduce setup time do so at the expense
of cycle time. In other words, you can save time setting up
the machine if you are willing to live with setups that do not
build printed circuit assemblies as quickly. There are several
reasons why this occurs:

â€¢ A setup that can be used for multiple printed circuit assem
blies is less compact. It requires greater machine movement
(either of the part feeder carriage or of the placement heads)
to access the parts for each printed circuit assembly.

â€¢ On the Fuji CP machines, a movement of one slot on the
part feeder carriage between placements does not slow the
machine down. The Man-Link sequence generators take
advantage of this by optimizing placement sequences for
pairs of adjacent parts. Careful selection of parts to put
together in the setup can therefore have a big impact on the
cycle time.

â€¢ The Fuji CP3 must place all "tall" parts after all "short" parts.
An optimized setup will have all of the tall parts at one end
of the part feeder carriage, so each printed circuit assembly
can be built with a single pass through the carriage.

â€¢ Fuji IP2 optimization is compromised. When Man-Link gen
erates a setup for a single printed circuit assembly, it will
balance the loads on the two heads. The user can request
that a high-use part be loaded on both banks to further im
prove the balance. Also, high-use parts are assigned to slots
with the lowest access times.

The combined impact of these effects has been measured to
be an increase of cycle time of between 5% and 10%. For
small lot sizes, this is a good trade-off, but for large lot sizes
(greater than 100 panels) overall throughput will suffer.

Parallel versus Serial Lines
As noted above, the benefit derivable from this setup strategy
is dependent on the amount of excess feeder capacity avail
able. The immediate temptation is to put machines in series
to increase the effective feeder capacity. This could be a
mistake, however, because the utilization of machines in
series decreases as a result of the increased overhead of

Total machine time = 2 x f x s) = Ã­ = 2V + MS. (2)

The increase in cycle time caused by having two machines
in series rather than in parallel is:

Change in total machine time = 2V + MS
V + MS ' (3)

Assume that the overhead is 17 seconds. This is enough time
for conveying the panel and reading four panel fiducials and
two image-reject marks. For panels with 100 placements, the
cycle time is increased by 36% by the serial configuration.
Again, for some shops this will be a reasonable trade-off.

The Bottom Line
To estimate the potential value of this optimization method,
the user must:

1. Estimate the reduction in setup time. If the surface mount
center is currently performing a complete teardown and set
up for each printed circuit assembly, the number of feeder
changes should be reduced from N x C to approximately

U from equation 1. If it takes T seconds to change one

feeder, the savings is (NC - U)T.

For example, for five products, with an average of 50 parts
per product, and part commonality of 0.20, the expected

number of feeder changes U will be 168. This means that
the reduction in feeder changes will be 250 - 168 = 82. If
each feeder change takes one minute, I he total reduction in
feeder changes will be 82 minutes, or about 16 minutes per
product.

2. Estimate the increase in cycle time. This will be about 10%
of the total run time. If machines that are currently running
in parallel need to be put in series to get sufficient feeder
space, the user should also estimate the resulting increase in
total machine time, using equation 3 above.

In the above example, if the average number of placements
per product is 400, and the average placement time is 0.3
second, the increase in cycle time will be about 400 x 0.3
second x 10% = 12 seconds = 0.2 minute/panel.

3. The break-even lot size can then be calculated by setting
the decrease in setup time equal to the increase in cycle
time. In the above example:

16 minutes/product
0.2 minute/panel

= 80 panels/product.

August I99(i Hewlett-Packard Journal 89
© Copr. 1949-1998 Hewlett-Packard Co.

4. Alternatively, the user can calculate the time savings per
lot. In the above example, assuming 10 panels per lot:

â€¢ Without optimization: 50 minutes setup + 20 minutes build
= 70 minutes

â€¢ With optimization: 34 minutes setup + 22 minutes build =
56 minutes

â€¢ Savings per lot = 14 minutes.

This represents a 20% decrease in the time to build a lot.

We expect an improvement for lines that are dominated by
setup time, such as lines for prototypes or high-mix, low-
volume products. If the lot size is consistently less than
100 panels, optimization by schedule may be a good fit.

Conclusion
Life is a series of trade-offs. We believe that the choices we
made in this work will provide the best benefit to our cus
tomers. We have received encouraging statistics from the

surface mount centers that are using the product. The
estimation methods given above should allow other surface
mount centers to evaluate this strategy for their shops.

Acknowledgments
Many thanks to Shailendra Jain for dreaming this up, creat
ing a prototype, and providing crucial input on our efforts.
Thanks to Fereydoon Safai and Ed Katz for their work in the
design and implementation of both the SOFT and Man-Link
solutions. And thanks to our customers, who funded the
project, and to Eiko Johnson, who managed it.

90 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Low-Temperature Solders
The application of low-temperature solders in surface mount assembly
processes for products that do not experience harsh temperature
environments is technically feasible. One single alloy may not be
appropriate as a universal solution.

by Zequn Mei, Helen A. Holder, and Hubert A. Vander PÃ­as

Low-temperature soldering has been a subject of research at
HP's Electronic Assembly Development Center (EADC).
Several benefits may come from developing this technology,
including thermal shock reduction, step soldering capability,
and possibly, lead (Pb) elimination.

Thermal Shock Reduction. The risk of thermally induced dam
ages will be reduced if the peak exposure temperature is

reduced. A significant decrease in the peak reflow tempera
ture (the oven temperature at which the solder melts and
makes the connections between the components and the
board) will reduce damage to components. Currently, peak
reflow temperatures are around 210CC to 230Â°C. These tem
peratures are sufficient to cause phenomena such as pop-
corning, a fairly well-known phenomenon in which air and

Sn A 232Â°C

109 Â°C

183Â°C

327 Â°C

Pb A 327 Â°C

Ph 220Â°C 200Â°C 180Â°C 160Â°C

140Â°C

1 5 0 Â ° C 1 5 6 . 7 Â ° C
In In

WÂ°C

125 C

e 7 2 Â ° C 9 0 Â ° C 1 1 0 Â ° C e
l n , B i h i B i (c) (d)

Fig. 1. (b) points of ternary systems of all possible combinations of (a) BiPbSn, (b) BilnSn, (c) PblnSn, and (d) BilnPb.

271 C
B i

August 1996 Hewlett-Packard Journal 91

© Copr. 1949-1998 Hewlett-Packard Co.

moisture that have been trapped in the plastic package of an
1C are heated to the point where they expand and cause the
component case to crack open. The damage from popcorning
is immediate and usually detectable, but there are other ther
mally induced damages that can cause long-term problems,
such as warping of printed circuit boards or damage to ICs,
which would also be reduced with lower peak temperatures.

Step Soldering. The availability of solders with lower melting
points will make multiple reflow processes on a single board
possible. For example, all of the normal components that
can tolerate higher reflow temperatures could be soldered
to a board using the standard process, and then the lower-
temperature components could be added in another reflow
process. Since step soldering is a bulk reflow process, it
takes less time and is more uniform than hand soldering,
and doesn't take any different equipment or special training.

Possible Pb Elimination. Many low-temperature solders con
tain no lead.

Selection of Low Melting Alloys
We call a solder alloy low melting if it melts at temperatures
below 183Â°C and above 50Â°C. Most of the alloys that meet
this requirement are made of four elements: Sn (tin), Pb
(lead), Bi (bismuth), and In (indium). The Cd (cadmium)
bearing alloys are not considered because of their extreme
toxicity. Various compositions of these elements produce
alloys that melt at any given temperature between 50Â°C and
183Â°C. Commercially available low-melting alloys are listed
in Table I. The numbers associated with each alloy in Table I
are the percentages by weight of the components that make
up the alloy.

To better understand the correlation between the alloy com
positions and their melting temperatures, we can use the
ternary diagram of melting temperature. A ternary diagram
uses a triangle to represent chemical compositions of a
three-element alloy system. A physical property, such as
melting temperature, is plotted over the triangle. Figs, la to
Id show the melting points of ternary systems of all possible
combinations of the elements BiPbSn, BilnSn, InPbSn, and
BilnPb.

These diagrams show what are called the liquidus tempera
tures, as opposed to the solidus temperatures. A typical
alloy melts not at a single temperature but over a tempera
ture range. The solidus temperature is the highest tempera
ture at which an alloy remains solid, while the liquidus tem
perature is the lowest temperature at which an alloy
remains liquid. At the temperatures between the solidus and
liquidus temperatures, an alloy is a mixture of solid and liq
uid. The solidus temperatures of these alloy systems are not
shown in Fig. 1. However, for a few specific compositions
labeled "e" or "E" in Fig. 1, the so-called eutectic alloys, the
solidus and liquidus temperatures are equal. Alloys with
eutectic compositions or small differences between their
liquidus and solidus temperatures are often favored for sol
dering applications because they melt and solidify rapidly
instead of over a range of temperatures.

Not all the compositions found on the ternary phase dia
gram are suitable for soldering applications. To determine
which are most appropriate, we use the following criteria:

92 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Wettability. A metal is said to have icetted u-ith a surface
if it forms a sound metallurgical bonding with the surface.
Wetting is essential in the soldering process because it
ensures that the joint created won't come apart at the inter
face. Any new alloy must be able to wet to the common pad
surface finishes: Cu. PbSn, and Ni coated with Pd or Au.

â€¢ Reliability. Lower-temperature alloys should still be reliable,
so we measure the following properties to estimate how
reliable solder joints made of an alloy will be: shear
strength, creep resistance, isothermal fatigue resistance,
and thermal fatigue resistance.

â€¢ Long-term stability. Microstructural evolution, grain growth.
and recrystallization contribute to changes in the solder
joint mechanical properties over time, so we want to make
sure that the changes are slow and stable and won't reduce
the mechanical properties of the solder joints to unaccept
able levels over the Ufe of the joint.

â€¢ Practicality. Alloys used for mass production should be
cheap and widely available. It should be possible to make
them into solder pastes so that they can be used in standard
assembly processes, and suitable fluxes should be available.
The alloys shouldn't be more toxic than what's currently
used.

To begin our alloy selection and evaluation, we found refer
ences in the available literature to low-temperature alloys
that might fit these requirements. Three alloys were selected
for further evaluation:

â€¢ 43Sn43Pbl4Bi. The solidus temperature of this alloy is 144Â°C
and the liquidus temperature is 163Â°C, 20Â°C lower than
63Sn37Pb, but with similar mechanical properties.

â€¢ 58Bi42Sn. This composition is a eutectic alloy that melts at
139Â°C. It is lead-free and strong, but brittle. Also, its fatigue
resistance is questionable.1'2

â€¢ 40Sn40In20Pb. The solidus temperature of this alloy is
121Â°C and the liquidus temperature is 130Â°C. It is soft and
ductile. It doesn't have the problem of embrittlement when
soldering to thick gold surfaces, like PbSn, because of the
high In content. Unfortunately, the high In content drives
the price of this alloy up because In is extremely expensive
right now.

Fig. 2. Solder bead formed by reflowing paste on a plain Cu surface,
a is the wetting angle.

These three were chosen mostly because there was more
information available on them than on other low tempera
ture alloys, not necessarily because we thought they would
make the best solders. They provided a starting point.

Because the technical data on the low temperature alloys
was limited and inconclusive,3 we conducted a series of
tests based on our selection criteria listed above.

Wetting and Solderability
Two types of tests were conducted to look at the wetting
performance of these alloys: spreading tests and wetting
balance tests.

hi spread tests, a dollop of solder paste is deposited on a
copper board or test coupon. The coupons are then heated
to 30Â°C above the liquidus temperature of the alloy in an
oven under a nitrogen atmosphere. The dollop of solder
paste melts, and as long as the flux is active enough to re
move the surface metal oxides, the solder forms a bead, or
cap (see Fig. 2). The diameter and height of the solder cap
can then be measured to determine the contact angle (a) of
the solder to the board. This contact angle, or wetting angle,
is a measure of how well the solder will wet in a surface
mount process â€” smaller is better.

Factors that affect the spread test include the activity of the
flux, the surface tension of the molten alloy, and the alloy's
ability to make a metallurgical bond with the surface metal
lization. All of these factors have to be taken into account
when interpreting the results of spread tests.

NC2

63Sn37Pb
15flÂ°Cto220Â°C

40Sn40ln20Pb
130Â°Cto170Â°C

Fig. 3. Wetting angles determined
from spreading tests of solder
pastes on copper, reflowed in a
nitrogen oven. The x axis indicates
the solder alloys and reflow temper
atures. The fluxes are indicated at
the tops of the bars (WC = water-
clean, NC = no-clean, RMA = rosin
mildly activated).

August 1996 Hewlett-Packard Journal 93

© Copr. 1949-1998 Hewlett-Packard Co.

The results of the wetting angle tests are shown in Fig. 3.
The 63Sn37Pb and 43Sn43Pbl4Bi alloys both wetted well
and similarly with the same flux. The 58Bi42Sn and
40Sn40In20Pb alloys generally wetted the copper surface
(a < 90Â°), but not as well as the other two alloys, averaging
two to three times the wetting angle with the same fluxes. In
fact, the 40Sn40In20Pb alloy didn't wet at all with one no-
clean flux (NC2). These differences may have to do with the
fact that indium and bismuth oxides are more difficult to
remove than tin and lead oxides. These alloys also have low
er surface tensions than PbSn.

Another factor in how the lower-temperature alloys per
formed is that the current water clean and no-clean fluxes
were developed for 63Sn37Pb and activate at about 150Â°C.
They may not be suitable for the low-temperature solders
since most of the low-temperature solders melt at tempera
tures below 150Â°C. Wetting balance tests were conducted to
find fluxes that would be appropriate for use at lower tem
peratures, and the results of those tests are presented in
reference 4 and in the paper on page 99.

Reliability and Long-Term Stability
Before we could suggest that anyone change from PbSn
solder to an alternative alloy, we needed to understand the
mechanical properties of the alloy well enough to know
what the trade-offs would be. Therefore, the bulk of the
tests we did to evaluate the alloys focused on the areas of
shear, creep, isothermal fatigue, and thermal fatigue.

Shear. Solder joints experience shear because of coefficient
of thermal expansion mismatches. To look at the behavior of
solder joints of different alloys in shear, we used specimens
as shown in Fig. 4. These specimens have nine solder joints
of dimensions 0.050 by 0.080 by 0.010 inch sandwiched be
tween two copper plates. When the ends are pulled in a test
ing machine at different temperatures and strain rates, the
stress in the solder joints can be measured. Plotting the
measured maximum stress against the strain rates gives us
the relative shear strength of the different alloys and allows
us to compare them to PbSn.

Our shear tests were conducted at three temperatures
(25Â°C, 65Â°C, and 110Â°C) and at three strain rates (lO'2, lO"3,
and 10^* per second). The results of the shear strength tests
for the low-temperature solders and several high-temperature
solders are plotted in Fig. 5.

From these plots we can see that at 25Â°C, under the same
strain rates, 58Bi42Sn is the second strongest, inferior only
to a high-temperature Pb-free alloy. 43Sn43Pbl4Bi had about

9 Solder Joints
0.050 by 0.080 by 0.007 inch

Cu Plates

a a a
e n a e n
L J e n L J

10-2

S . i r 3

55 ID-Â» -â€¢

1 0 5

â € ¢ 6 3 S n 3 7 P b
D 63Sn37Pb/10%in
O 43Sn43Pb14Bi
A 40Sn40ln20Pb
A 58BÃ 42Sn
â€¢ 99Sn1Cu
0 96.5Sn3.5Ag
â€¢ 90Sn7Bi2Ag1Cu

0.1

10-2

1 1 0
Shear St ress (MPa)

100

1 0 3

E 1 (H -

â€¢ 63Sn37Pb
D 63Sn37Pb/10%ln
O 4 3 S n 4 3 P b H B i
A 40Sn40ln20Pb
A 5 8 B i 4 2 S n
â€¢ 99Sn1Cu
0 9 6 . 5 S n 3 . 5 A g
â€¢ 90Sn7Bi2Ag1Cu

0.1
(b)

1 1 0
Shear Stress (MPa)

100

10-2

io-3

â€¢ 63Sn37Pb
D 63Sn37Pb/10%ln

43Sn43Pb14Bi
40Sn40ln20Pb
58Bi42Sn
99Sn1Cu
96.5Sn3.5Ag
90Sn7Bi2Ag1Cu

0.1
le]

1 1 0
Shear Stress (MPa)

100

Fig. 4. Specimen for shear and creep tests.

Fig. 5. Results of shear strength tests for the low-temperature
solders and several high-temperature solders at (a) room
temperature, (b) 65Â°C, and (c) 110Â°C.

the same strength as 63Sn37Pb, while 40Sn40In20Pb is the
softest. As the temperature increased to 110Â°C, the low-
temperature solders became much softer while the high-
temperature solders were still relatively strong.

Creep. If a constant load is applied to a material while it is
held at an elevated temperature, it will deform, or flow, over
time. This time dependent deformation is called creep, and
is most significant at absolute temperatures greater than
about half the melting point of the material. Since creep is
the main deformation mechanism in solders, it's important
to know how creep resistant a new solder alloy will be.

The same kind of specimens used in shear tests were used in
the creep tests. The steady-state strain rates as a function of
shear stress at 25Â°C, 65Â°C, and 90Â°C are plotted in Fig. 6. The
data has been fitted with standard creep (Dorn) equations:

dl = A n -AH/RT
d t A T

94 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

10-2

i r 3

Ã¯ un

Ã­s 1(r5

i r 7 - -

" Â °

Â°

A
O

6>

Ã­ 8Â°

io-Â« 1H
(c)

0.1 1 1 0
Shear Stress (MPa)

100
(d)

0.1 1 1 0
Shear S t ress (MPa)

100

90Â°C A 65Â°C 0 20Â°C

Fig. as shear creep (strain) rates at 20Â°C, 65Â°C, and 90Â°C as a function of shear stress for 63Sn37Pb (a) and the low temperature
solders: 00 58Bi42Sn, (c) 40Sn40In20Pb, and (d) 43Sn43Pbl4Bi.

where y is the shear strain or creep, A is a materials constant,
T is the shear stress, n is an empirical constant typically be
tween 3 and 7, H is the activation energy, R is the gas con
stant, and T is the absolute temperature in K. The resulting
Dorn equation parameters are listed in Table II.

Table II
Creep Equation Parameters for Three Solder Alloys

AH
A l l o y A n (k c a l / m o l e)

4 0 S n 4 0 I n 2 0 P b 4 . 0 4 8 8 x 1 0 4 2 . 9 8 2 2 . 0 0

5 8 B i 4 2 S n 5 . 5 4 0 3 x 1 0 ~ 7 4 . 0 5 1 6 . 8 5

4 3 S n 4 3 P b l 4 B i 0 . 1 1 5 5 2 2 . 9 4 1 7 . 0 5

The rupture strains of the low-temperature solders were
also determined from the creep tests. 58Bi42Sn showed the
slowest creep rate but the least rupture strain for the same
stress compared with the other low-temperature solders and
the 63Sn37Pb, while 40In40Sn20Pb exhibited the fastest
creep rate but the largest rupture strain.

Isothermal Fatigue. When materials are subjected to small
repeated loading, they can eventually fracture. This process
of gradual fracture is called fatigue. Solder joints experience

loading because of coefficient of thermal expansion mis
matches. These loads are cyclic, caused by temperature
excursions during operation. Isothermal strain cycles can be
used to rapidly simulate joint exposure to show relative fa
tigue lives of different solder alloys. There is a relationship
called the Coffin-Manson Law, which is one way of estimating
the fatigue life of the material. Fatigue life is defined as the
number of cycles at a given strain that will cause failure in
the material.

Coffin-Manson relations for the low-temperature solders
have been determined at both 25Â°C and 75Â°C. The data for
58Bi42Sn and 63Sn37Pb is shown in Fig. 7. The isothermal
fatigue life of 58Bi42Sn is shorter than 63Sn37Pb under the
same cyclic strains.

Thermal Fatigue. Although isothermal fatigue can be used to
estimate fatigue life, we also do actual thermal cycling to
show how the joints will perform as the temperature cycles.
For our thermal fatigue tests, a new type of test vehicle was
designed (see Fig. 8). Five ceramic plates, all 1/16 inch thick,
and 4, 2, 1, 1/2, and 1/4 inch square respectively, were sol
dered onto a 1/8-inch-thick FR-4 board. Eight solder joints
0.010 inch thick and 0.050 inch in diameter, located in a ring,
were sandwiched between each ceramic plate and the FR-4

August 1996 Hewlett-Packard Journal 95

© Copr. 1949-1998 Hewlett-Packard Co.

10

I 1 m

=

I 0 . 1

0.01

Ã

D

SÃ²lid: 75 C
Open: 25Â° C

A

cf

Tr iangle: 63Sn37Pb
S q u a r e : 5 8 B i 4 2 S n

a

0.1 1 0 1 0 0
Fatigue Life (Cycles)

1000 10,000

Fig. 7. Isothermal shear fatigue test results.

board. Each solder joint was individually tested for electri
cal continuity while being temperature cycled in a thermal
chamber. Two temperature profiles were used, 25Â°C to 75Â°C
and -20Â°CtollOÂ°C.

The results of the - 20Â°C-to-110Â°C test are plotted in Fig. 9.
Since the test is still in progress, only the fatigue data for the
failed solder joints is plotted. 63Sn37Pb lasted longer than
58Bi42Sn, and approximately the same number of cycles as
43Sn43Pbl4Bi. The 40Sn40In20Pb solder joints have the
longest fatigue lives.

Practicality
To examine the practical side of using these alloys, we did a
prototype build. Since the 40Sn40In20Pb alloy is so expen
sive, so an unlikely candidate for large-scale production, so
we excluded it from the prototype builds. The 58Bi42Sn
alloy is harder to solder than 43Sn43Pbl4Bi (it has a lower
melting temperature and its oxide is harder to remove), so
we chose to test the worse case of the two remaining alloys
and build with 58Bi42Sn.

The 58Bi42Sn alloy was made into a solder paste with a
water-soluble RMA flux.5 This kind of flux was used because,
unlike most standard no-clean fluxes, it is active at the lower
oven temperatures used with BiSn. The assembly we chose
for this build had a variety of components, including
0.025-inch-pitch components.

Two types of board platings were used: organic coated cop
per (OCC) and hot air solder leveling (HASL). These coatings
protect the copper pads from oxidation before the reflow

63SnPb 5 8 B i S n 4 3 S n 4 3 P b B i 4 0 S n 4 0 l n P b

Fig. 8. Test vehicle for thermal fatigue tests.

Fig. Fatigue Results of the -20Â°C-to-110Â°C thermal fatigue test. Fatigue
lives are shown only for joints that had failed at the time of writing.

process. For OCC, the copper pads are coated with a thin
layer of a polymer that preserves the solderability of the
surface by preventing the oxidation of the copper under
neath, but burns off during the reflow process to allow for
metallurgical bonding between the surface and the solder.
HASL or HAL (hot air leveling) accomplishes the same pro
tection but uses a thin layer of PbSn solder that has been
blown level with air knives.

The entire assembly process was the same as for 63Sn37Pb,
except that a different reflow profile was used. The low-
temperature profile had a preheat period of 4 minutes at
130Â°C and a peak period of 1.5 minutes at temperatures
between 138Â°C and 175Â°C (0 to 39Â°C above the melting point
of the alloy).

Twenty boards were built with no defects. The boards passed
functional tests as well as out-of-plane random frequency
vibration (45 minutes at 6g) and board environmental stress
testing (BESTâ€” thermal cycling from - 45Â°C to 100Â°C, 1 hr/
cycle, functionality monitored throughout).

Failure of 58Bi42Sn on Pb-Containing Surface
During the thermal cycling of the prototype boards, we
observed a thermal fatigue failure mechanism of the BiSn
solder on Pb-containing surfaces.6 Some components on the
prototype boards fell off after about 500 cycles of BEST.
Boards soldered with 63Sn37Pb failed after about 900
cycles.

Fig. 10 shows top views of the 58Bi42Sn solder joints before
and after BEST. Before BEST, the solder joint surfaces were
smooth. After BEST, the solder joints between OCC boards
and the components with Ni-Pd coating remained smooth,
but the solder joints between either the HAL boards or the
components with PbSn coating developed very rough sur
faces. This roughness corresponded to the extraordinary
grain growth as shown in the cross-sectional views of solder
joints in Fig. 11.

The reason for the accelerated grain growth and phase
agglomeration was that the Pb from component leads and
HAL coatings on the pads had dissolved into the BiSn joints
during the reflow process and formed 52Bi32Pbl6Sn, the
ternary eutectic phase of the BiPbSn system (point E in
Fig. la), which melts at 95Â°C. Since each cycle of the test
took the temperature to 100Â°C, that phase became liquid at

96 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

C E & A 0 6 1 0m m

(d)

Fig. organic BiSn 100Â°C, (a) between a Ni-Pd component lead and an organic coated copper board before thermal cycling from - 45Â°C to 100Â°C,
(b) between a Ni-Pd component lead and an organic coated copper board after thermal cycling, (c) between a Ni-Pd component lead and a
hot air leveled board after thermal cycling, and (d) between a PbSn-coated component lead and an organic coated copper board after ther
mal cycling. (Reprinted from ASME Technical Paper 95-WA/EEP-4. Â© Copyright 1995 ASME. Reproduced with permission.)

the grain boundaries and provided channels for fast atom
transportation.

Although only a tiny percentage of Pb on the boards or on
the component leads dissolved into the BiSn joints, the
small amount of the ternary eutectic ruins the mechanical
properties over the course of thermal cycling to 100Â°C. The
joint goes from having a fine microstructure (as formed) to
essentially having large chunks of Sn and Bi held together
by some weak BiPbSn, which indicates that BiSn is only
compatible with Pb-free surfaces.

Discussion
With all the data we've collected, it's still difficult to conclude
which low-temperature alloy is the best in general. Each has
different advantages and disadvantages. They offer a spec
trum of melting ranges: 43Sn43Pbl4Bi melts at 144Â°C to
163Â°C, 58Bi42Sn melts at 138Â°C, and 40Sn40In20Pb melts at
121Â°C to 130Â°C. Each has certain benefits we might want,
such as 40In40Sn20Pb soldering on Au-coated surface with
out embrittlement, but also has trade-offs, such as BiSn's
intolerance for Pb on the printed circuit board and compo
nent leads or In's extremely high cost.

Most of the test data obtained so far is positive, with a
couple of exceptions. These results seem to indicate that
low-temperature soldering with one or more of the alloys we
investigated (or some closely related alloys) is feasible as a
manufacturing technology. The exceptions include (1) the
nonwetting of 40In40Sn20Pb with the no-clean flux, and (2)
microstructural coarsening and early failure during the ther
mal cycling of 58Bi42Sn joints on Pb-containing surfaces.
The first problem is being addressed in a flux development
program, working with paste vendors to create fluxes
intended for use in low-temperature applications with the
harder-to-solder alloys such as 58Bi42Sn and 40In40Sn20Pb.
The solution for the second problem has not been obtained,
although several options are being pursued.

Conclusion
The application of low-temperature solders in surface mount
assembly processes for products that do not experience
harsh Low- environments is technically feasible. Low-
temperature assembly appears promising as an addition to
the surface mount landscape as a way of increasing process
flexibility and component reliability. However, one single

Angus! Ifl'Mi Hewlett-Packard Journal 97

© Copr. 1949-1998 Hewlett-Packard Co.

(a)

Fig. 11. SEM cross section views of two solder joints at the same
magnification after thermal cycling, (a) BiSn joint between a Ni-Pd
component and an organic coated copper board, (b) BiSn joint
between between a PbSn-coated component and a hot air leveled
board. (Reprinted from ASME Technical Paper 95-WA/EEP-4.
Â© Copyright 1995 ASME. Reproduced with permission.)

alloy won't be a universal solution. Specific component and
assembly requirements will have to be considered in choos
ing or tailoring the best solder alloy for each application.

Acknowledgments
The authors would like to thank Jerry Gleason for providing
direction and guidance for this project in its early, critical
stages. We would also like to thank Judy Glazer, Fay Hua,
Jim Baker, Charlie Martin, and Meng Chow for their help
and support.

References
1. J. alloys "Thermal fatigue of low-temperature solder alloys in
insertion mount assembly," Journal of Electronic Packaging,
Vol. 115, 1993, pp. 305-311.
2. J. solder "Thermal fatigue behavior of low melting point solder
joints," Journal of Electronic Packaging, Vol. 115, 1993, pp. 305-311
(sidebar).
3. Z. of H. Vander PÃ­as, J. Gleason, and J. Baker, Proceedings of
the Electronic Materials and Processing Symposium, 1994, Los
Angeles, California, pp. 485-495.
4. H.A. Vander PÃ­as, R.B. Cinque, Z. Mei, and J. Baker, "The Assess
ment of Low-Temperature Fluxes," HP EAMC Conference Proceed
ings, 1995.
5. H. build PÃ­as, J. Gleason, Z. Mei, and G. Carter, Results of build
ing BLD Ponderosa formatter boards with 58Bi-42Sn solder paste,
HP internal report, August 1994.
6. Z. Mei, A failure mechanism of 58Bi-42Sn solder joints, HP
internal report, September 1994.

Bibliography
1. G. Humpston and D.M. Jacobson, Principles of Soldering and
Brazing, ASM International, 1993, p. 63.
2. Choongun Kim and J.W. Morris, Jr., University of California at
Berkeley, unpublished work.
3. R. Circuit and S. Smernos, "Low Temperature Soldering," Circuit
World, Vol. 10, no. 3, Spring 1984, pp. 23-25.
4. A. Prince, "A Note on the Bi-In-Pb Ternary Phase Diagram,"
Materials Research Bulletin, Vol. 11, 1976, pp. 1105-1108.
5. J.R. Sovinsky, Pb-free alloys program manager, Indium Corpora
tion of America, communication, February 1994.
6. B.R. Allenby, J.P. Ciccarelli, I. Artaki, J.R. Fisher, D. Schoenthaler,
T.A. Graedel, D.W. Dahringer, Y. Degani, R.S. Freund, T.E. Graedel,
A.M. Lyons, J.T. Plews, C. Gherman, H. Solomon, C. Melton, G.C.
Munie, and N. Socolowski, "An Assessment of the Use of Lead in
Electronic Assembly," Proceedings of Surface Mount International,
August 30 to September 3, 1992, San Jose, California.
7. Smithetts Metals Reference Book, 6th Edition, Butterworths,
1993.
8. Metals Reference and Encyclopedia, The Atlas Publishing Co.,
Inc., pp. 37-39 and pp. 115-116.

98 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Assessment of Low-Temperature
Fluxes
The subject of this paper is the evaluation of the wetting balance as a
technique for studying the flux activity of newly developed
low-temperature solder paste fluxes. The most effective configuration of
the wetting balance was the standard configuration with only one change:
the PbSn eutectic solder was replaced with a eutectic solder alloy with a
melting point of 58Â°C. Since 58Â°C is significantly less than the proposed
activation temperatures of the solder fluxes, wetting curves as a function
of temperature could be studied for each of the fluxes. The resulting data
was used to rank the fluxes in terms of their activation requirement.

by Hubert A. Vander PÃ­as, Russell B. Cinque, Zequn Mei, and Helen Holder

Solder alloys with melting temperatures between 110Â°C and
160Â°C are currently under evaluation within Hewlett-Packard.
An investigation of the mechanical properties of these solders
has indicated that a suitable alloy can be found in the ternary
or binary subsets of the BilnPbSn system (see article, page
91). However, alloy selection is only the first step in devel
oping a low-temperature soldering process. A suitable flux
must be chosen for use in a solder paste and the alloy-flux
interaction must be studied. Thus, the ability of fluxes to
activate at temperatures 20 to 30Â°C below the melting point
of the alloy must be evaluated. In the case where different
solder metallurgies have similar mechanical properties,
the optimal metallurgy for a low-temperature process may
be determined by the availability of the appropriate flux
chemistry.

For the flux selection phase, there is no standard procedure
for testing the activity of a solder flux. The degree of wetting
in a system (solder, substrate, atmosphere, flux) may be
characterized with a sessile spread test or by a wetting force
measurement. (The sessile spread test is often simply called
a spread test.1) The two tests are complementary. Each of
the tests involves a balancing of surface tensions at a three-
phase junction. For an assessment of flux activity, a dynamic
measurement is more appropriate than a static measurement.
Thus, the wetting force measurement is preferred to the
sessile spread measurement.

The wetting balance was developed to test the solderability
of component leads in a wave solder process. The technique
has been adapted to characterize the solderability of surface
mount component leads.2 The focus of this paper is the eval
uation of the wetting balance as a technique for studying the
flux activity of newly developed low-temperature solder
paste fluxes. Specifically, the Multicore MUST System II
wetting balance was modified to evaluate flux activity at
lower temperatures. Sample preparation and testing proce
dures were adapted to compare the wetting of various low-
temperature solder alloy/flux combinations.

Review of the Wetting Balance
A wetting balance measures the force produced by the solder
meniscus when a solid test specimen is partially immersed
into a molten solder. The force is plotted as a function of
time to produce a wetting curve. The measured force, F, is
the sum of two components: a wetting force Fw, and an
Archimedes buoyant force Ft,.

F = Fw + Fb

- p g V .
(1)

where p is the sample perimeter, yiv is the liquid-vapor inter-
facial energy, 0 is the liquid contact angle, p is the solder
density, g is the gravitational acceleration, and V is the sub
merged volume of the solid. Fig. 1 shows the relationship
between the solder meniscus and the wetting curve. The
buoyant force, shown as a dashed horizontal line in Fig. 1,
is determined by the immersed volume. Since this remains
constant throughout the test, the evolution of the wetting
curve reflects changes in wetting force as the solder menis
cus rises. The act of immersion (Figs, la, Ib) causes the
meniscus to curve downward, producing a negative wetting
force. As the meniscus rises (Fig. Ic) and becomes horizon
tal, the wetting force tends to zero. If solder wets the speci
men, the meniscus will climb above the level of the bath,
producing a positive wetting force. Eventually, the solder
meniscus reaches its equilibrium configuration (Fig. Id) and
the wetting curve comes to an equilibrium value.

When using wetting force measurements to study flux
efficacy, it is essential to understand how fluxes may affect
wetting curves. There are essentially only two points of
comparison for wetting curves: the equilibrium wetting
force and the rate of wetting. From equation 1, it can be
seen that the wetting force is proportional to the cosine of
the solder contact angle 6. The equilibrium wetting force is,
therefore, proportional to the cosine of the equilibrium con
tact angle 9eq. For simple systems, as shown in Fig. 2a, the

August 1996 Hewlett-Packard Journal 99

© Copr. 1949-1998 Hewlett-Packard Co.

I o

Fw,eq = P(Ysv - Ysl)- (3)

Time

(a)

I .

(b)

\-
Time

V
Time

(0

(d)
^ ^ â € ” W e t t i n g F o r c e
 B u o y a n t F o r c e (c o n s t a n t)

Fig. 1. Relation between the solder meniscus and the wetting
curve.

equilibrium contact angle is given by Young's equation:3

Y s v - Y s l = Y i v c o s e e q (2)

where ysv is the solid-vapor interfacial energy, ys\ is the solid-
liquid interfacial energy, and yiv is the liquid-vapor interfacial
energy. By combining equations 1 and 2, the equilibrium
wetting force Fw>eq is determined by the difference in the
solid-vapor and solid-liquid surface energies:

Vsv

(al

Fig. 2. The balance of surface energies at the three phase
junction, (a) Basic system, (b) More complex system with
flux forming a viscous ring around the solid.

Thus, fluxes may improve the wetting force by increasing
solid-vapor surface energies or by lowering solid-liquid sur
face energies. Notice that the liquid-vapor surface energy
does not appear in equation 3.

The system becomes more complex when flux forms a vis
cous ring around the solid. As shown in Fig. 2b, flux re
places vapor at the original three-phase junction, altering
the surface energies, which determine the wetting force.
Furthermore, the mass of flux and the creation of two addi
tional three-phase junctions may alter the wetting force by
distorting the shape of the solder meniscus. Despite these
complications, measurement of the wetting force should still
provide useful information that reflects the efficacy of the
flux.

The second point of comparison for wetting curves is the
rate of wetting. This can be reasonably defined in a number
of ways. In this paper, the rate of wetting will be taken as
the time to reach the buoyant force (0 = 90Â°). hi the stan
dard mode of operation, the heat for flux activation is sup
plied when the specimen is immersed into the solder bath.
In this case, progress of wetting may be limited by the rate
at which flux reduces the surface oxide of the specimen.
The time to wet, t, normally follows the exponential form
expected for an activated process:

t = t0eQ/kT,

where to is a constant, k is Boltzmann's constant, T is the
temperature of the solder bath, and Q is an activation energy.
It follows that higher temperatures and more active fluxes
will produce more rapid wetting. The situation is altered
when a furnace preheat is used for flux activation. In this
case, oxide reduction and the rate of wetting will depend on
the time at high temperature in the furnace. If the flux
works properly the surface oxide will have been reduced
before initiation of the wetting test.

Procedure
The activation requirements of low-temperature fluxes and
the effects of flux alloy interaction were investigated using a
Multicore Universal Solderability Tester (MUST II). All tests
were conducted in air using a standard copper wire as the
test specimen. Standard samples consisting of 1-mm-diameter
copper wire were prepared by etching the as-received wire
to remove all surface oxides. These samples were aged at
100Â°C for one hour in air to produce a uniform, repeatable
oxide coating on the samples.

Fluxes were applied in one of two ways. First, when the flux
was in liquid form, the specimen was dipped into the liquid
to produce an even coat. The liquid fluxes (Actiec 5, Actiec 2,
and SM/NA) are standard fluxes provided by Multicore with
the MUST II system. Second, when the flux was part of the
solder paste flux vehicle, a uniform weight of flux vehicle
(approximately 4 to 5 mg) was evenly spread on the surface
of the Cu wire.

Since the goal was to evaluate each flux as a component of a
solder paste, all of the experimental fluxes were obtained as
part of the solder paste flux vehicle, that is, the solder paste

100 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Furnace

Solder

(b) (c)

Fig. 3. The three configurations of
the wetting balance studied.
(a) Standard configuration.
(b) Furnace preheat configuration.
(c) Microbath configuration.

without the solder. All of the fluxes â€” flux 1, flux 2, and flux
3 â€” evaluated in this program were low-temperature flux
systems under development. The performance of the devel
opmental fluxes was compared to a flux vehicle developed
for use with eutectic PbSn solder.

The Multicore wetting balance was set up in the three differ
ent configurations shown in Fig. 3.
Standard configuration (Fig. 3a). This is the normal mode of
operation for the Multicore MUST II. The copper wire is
dipped into a large volume (6 cm in diameter by 5 cm deep)
of molten solder. Two different solder alloys were used in
the large bath: eutectic PbSn, which melts at 183Â°C, and
49Bi21Inl8Pbl2Sn, a quaternary eutectic alloy (the numbers
are the percentages by weight of the four components of the
alloy) that melts at 58Â°C. Heating the sample occurs when it
is dipped into the molten solder.
Furnace preheat configuration (Fig 3b). A separate heater is
attached on top of the solder bath in the standard configura
tion. This allows the sample to be heated before immersion
into the molten solder. The preheat temperature can be con
trolled independently of the solder bath temperature.
Microbath configuration (Fig. 3c). The volume of molten
solder is reduced to 0.6 cm in diameter by 0.5 cm deep. This
configuration minimizes the amount of each solder alloy
that is required to do the tests.

When the quaternary eutectic alloy is used in the standard
configuration, the bath temperature can be set to investigate
the activation as a function of temperature for the low-tem
perature fluxes. The furnace preheat technique is a variation
of the standard test that was developed to imitate more

closely the thermal cycle of a standard surface mount sol
dering process. The furnace, mounted directly above the
solder bath, provides control of the specimen temperature
independent of the solder bath temperature. Finally, the
microbath was used to investigate the effects of flux-alloy
interaction for a variety of alloys. The microbaths are alumi
num containers that were machined to sit atop the MUST II
globule heater. The baths, which hold less than 10 grams of
solder, minimize the amount of solder required for testing.
The microbath setup yielded more reproducible results than
the standard globule tests provided by Multicore.

Results
Equilibrium Wetting Force. Differences in equilibrium wetting
force can be produced either by varying the solder bath
composition or by varying the flux composition. Fig. 4
shows the differences in the equilibrium wetting force pro
duced by varying the solder composition. In this test, both
the PbSn eutectic solder and the BilnPbSn quaternary eutec
tic solder were used with the standard configuration and a
bath temperature of 235Â°C. One flux, Actiec 5, is plotted for
both alloys and clearly shows the difference in the equilib
rium wetting force.

Fig. 5 shows the differences in the equilibrium wetting force
that can be produced by changing the flux composition. Flux
1 and flux 2 are two different experimental low-temperature
fluxes. They were both used with the eutectic quaternary
alloy and a bath temperature of 190Â°C in the microbath con
figuration. Tests conducted using flux 2 exhibit a consistently
greater equilibrium wetting force.

1 . 5 T

0 . 5 -

Time (s)

Flux = Actiec 5
Solder Temperature = 235 Â°C

Fig. 4. The effect of solder composition on the equilibrium
wetting force.

0.5

0.5

Flux 2

F l u x l

4 6
Time (s)

10

Microbath Configuration
BilnPbSn Eutectic

Solder Temperature = 190 C

Fig. 5. The effect of flux vehicle composition on the equilibrium
wetting force.

August 1996 Hewlett-Packard Journal 101

© Copr. 1949-1998 Hewlett-Packard Co.

2 3 4 5 6 7
Time (s)

No Power

Solder = PbSn Eutectic, 235 C

-1 .5

Fig. 6. The effect of flux activity on wetting times.

Rate of Wetting. Differences in the rate of wetting can be pro
duced by varying the flux composition or by varying the bath
temperature. Fig. 6 shows the difference in wetting rate as
the hydrochloric acid content (flux composition) is varied
from 0 to 5% using the standard liquid fluxes supplied by
Multicore. These tests used the standard configuration with
PbSn eutectic solder and a bath temperature of 235Â°C. They
illustrate that the wetting balance is capable of detecting a
change in wetting rate as the flux composition is changed.

Differences in the rate of wetting produced by varying the
bath temperature are shown in Fig. 7. These tests were
conducted using the standard configuration, the quaternary
alloy, and flux 1. The bath temperature was varied from
110Â°C to 160Â°C as indicated. Each curve represents the
average of two tests. The wetting behavior improves as the
bath temperature is raised. At 160Â°C, the equilibrium wetting
force reached its maximum value of 0.5 mN.

The furnace preheat configuration provided a method of
changing the flux activation temperature while maintaining
a constant solder bath temperature. For the data presented
in Fig. 8, the solder bath temperature was set at a constant
value of 100Â°C using the quaternary eutectic solder. The
activation temperature was changed by varying the power to
the heater. In each case, the sample was submitted to a
short (30 s) preheat at the indicated power setting before
immersion into the solder bath. Fig. 9 shows the tempera
ture as a function of time for each power setting. Insertion
into the solder bath and the start of the 30-s preheat are at
time = 50 s in Fig. 9. As the power is increased from 0 to
60% (~50Â°C to ~ 160Â°C), the rate of wetting improves and
the equilibrium wetting force remains constant. The furnace

-0 .5

- 1 . 0

- 1 . 5 x

Flux = Flux 2
Solder = BilnPbSn Eutectic, 10QÂ°C

Preheat Duration = 30 s

Fig. 8. Wetting curve for flux 2 as a function of furnace preheat
power settings.

preheat was intended to replicate the flux activation time
used in a normal reflow furnace. Thus, preheat times of a
few minutes were planned. However, longer preheat times
produced a progressive deterioration of the wetting behav
ior. The low-temperature fluxes were unable to protect the
specimens from reoxidizing during the longer preheats. Pre
heating in a nitrogen atmosphere was considered. However,
this option requires a major modification of the equipment
that was outside the scope of this project. As a result, the
objective of using the preheat configuration to assess flux
activation requirements was not accomplished.

Analysis
Equilibrium Wetting Force. Figs. 4 and 5 indicate that the wet
ting force measurement is able to distinguish the effects of
varying the solder alloy and the flux composition on the
equilibrium wetting force. From equation 3, the wetting
force is reduced by the difference (ysv - ysÂ£). For the test
shown in Fig. 4, the solid, vapor, and flux are constant. As a
result, YSV should remain constant and the differences in the
equilibrium wetting force are produced by variations in ysi.
hi Fig. 5, the solid, liquid, and vapor remain constant and the
flux is varied. The equilibrium wetting forces produced by
flux 2 1. consistently greater than those produced by flux 1.
This difference is difficult to associate with either ysv or ysi.
The equilibrium wetting force is a function of both the solid-
liquid and the solid-vapor interface. Both of these interfaces
may depend on the presence of the flux. The solid-vapor
interface will be influenced by the presence of the flux. In
addition, different fluxes will remove surface oxides from the
solid with different efficiencies. Thus, the observed differ
ences in equilibrium wetting forces are difficult to associate
with either interface.

Solder = BilnPbSn Eutectic

Fig. 7. Wetting curves for flux 1 as a function of solder temperature
using the quaternary alloy as the solder bath. Fig. 9. Temperature calibration curves for the preheat furnace.

102 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

F l u x 3

E u t e c t i c P b S n C o n t r o l F l u x

110Â°C

Fig. vehicles. Wetting curves comparing the wetting behavior of flux vehicles. The BilnPbSn eutectic solder was used for each test. The label for
each curve is the solder bath temperature.

Rate of Wetting. Figs. 6 and 7 indicate that the rate of wetting,
defined here as inversely proportional to the time to cross
the Fw = 0 axis, is a function of both the flux composition
and the activation temperature. In Fig. 6, the solid, liquid,
and vapor remain constant and the flux is variable. The rate
of wetting increases as the acid content of the flux increases.
The rate of wetting is dependent on the degree of oxide
removal, which is a function of acid concentration and
temperature. In Fig. 7, only the temperature was varied.
The rate of wetting increases with increasing temperature
and the equilibrium wetting force reaches its maximum at
160Â°C. This indicates that the flux has effectively removed
surface oxides within the first three to four seconds at this
temperature.

Ranking of Low-Temperature Fluxes
The four plots in Fig. 10 compare the wetting behavior of the
three developmental fluxes â€” flux 1, flux 2, and flux 3 â€” to the
control flux formulated for use with eutectic PbSn solder. In
each test, the standard configuration was used with the qua
ternary eutectic alloy. The bath temperature was varied
from 110 to 160Â°C. As expected, the control flux shows no
wetting until the bath temperature is 160Â°C. Flux 3 performs
similarly to the control flux and would not be a candidate
for use with low-temperature solders. Flux 1 is the most
promising of the three developmental flux vehicles. Its wet
ting times at 110Â°C are equivalent to the wetting times of
flux 2 of 160Â°C. In addition, the equilibrium wetting force of
0.5 mN is greater than the equilibrium wetting force of flux 2.

hi summary, the ranking of fluxes in terms of activation re
quirements is (flux 1 < flux 2 < flux 3 and the control flux).

Conclusions
The wetting balance as a method to discriminate the wetting
behaviors of various solder alloys and fluxes has been gen
erally successful. Replacing the standard eutectic PbSn solder
with a low-temperature solder alloy in the standard configu
ration was the most effective method for evaluating the low-
temperature fluxes. Operating in the standard configuration
with a low-melting-point quaternary eutectic alloy, the wetting
balance was able to rank the fluxes in terms of activation
requirement (flux 1 < flux 2 < flux 3 and the control flux).
The results illustrate the usefulness of wetting force measure
ments in the characterization of low-temperature fluxes.

Acknowledgments
Glenn Carter of the HP Boise Printer Division assisted during
the project planning and provided the aluminum containers
used in the microbath configuration. Dr. N.-C. Lee of Indium
Corporation suggested the use of the low-temperature solder
in the wetting balance.

References
1. EG. Yost, KM. Hosking, D.R. Frear, editors, The Mechanics of

Solder Alloy Wetting and Spreading, Van Nostrand Reinhold, 1993,
pp. 215-216.
2. Ibid, pp. 16-17.
3. Ibid, p. 146.

August 1996 Hewlett-Packard Journal 103
© Copr. 1949-1998 Hewlett-Packard Co.

Authors
August 1996

Capability Maturity Model

Douglas E. Lowe
Doug Lowe is a senior qual
ity consultant at HP's Soft
ware Engineering Systems
Division. During the past
twelve years at HP, he has
held a number of positions
including firmware designer,
project manager, section
manager, and program

manager in the development of software products for
computer-aided electronic design. During recent years
at HP, he has contributed to SoftBench products as
quality manager, engineering services manager, and
quality leader for the quality improvement program
based on the Capability Maturity Model (CMM) from
the Software Engineering Institute (SEI) at Carnegie-
Mellon University. He is a member of the Colorado
Software Process Improvement Network and is
actively involved in the SEI CMM V2.0 review commit
tee. Before joining HP, he worked for thirteen years at
Owens-Illinois' research headquarters, initially as an
analytical chemist and then as a computer engineer.
He earned BS and MS degrees at Michigan State
University and the University of Toledo in the areas of
applied math and chemistry. He has taught operating
systems architecture at the graduate level. Doug is
married and has two girls. His wife is an ordained
minister. Doug is an avid reader of speculative fiction,
enjoys cycling, and participates in community service
projects.

Guy M. Cox

As a consulting project manager in HP's Software
Initiative program at Corporate Engineering, Guy Cox
helps HP organizations evaluate and improve their
methods for software development and change man
agement. Recently he completed a software initiative
project with HP's Software Engineering Systems Divi
sion (SESD). Previously in SESD and Corporate Engi
neering, he was the lead software process analyst on
the software process assessment team evaluating
software R&D organizations. He established a collab
orative effort between Carnegie-Mellon University's
Software Engineering Institute and HP to foster im
provement in software development. Over the last six
years, he has given five presentations, two of them
keynote presentations on papers he has written on
software development and process improvement. He
also authored a chapter of a book on sustaining soft
ware metric programs. Guy was awarded an MA in
educational anthropology from the University of Cali
fornia at Berkeley in 1984. Before joining HP in 1987,
he studied the effectiveness of computer-based tech
nology in public schools. He evaluated school district
programs and the teaching skills required, researched
environmental and outdoor education, and coauthored

an article on his work. He also taught classes on re
search methods at the University of California, Berke
ley and published a case study on his findings. He is
a member of the American Anthropology Association
and the American Evaluation Association.

15 Software Failure Analysis

Robert B. Grady
Software development and
project management using
software metrics have been
key professional interests
for much of Bob Grady's
25-year career at HP. He
managed HP's Software
Engineering Laboratory, has
been a quality and produc

tivity manager, managed a group doing manufactur
ing automation and information systems, and man
aged a variety of major projects, including the HP
ATLAS compilation system, the HP 2240A measure
ment and control processor hardware, and the HP
1 2050A fiber-optic HP-IB link. Presently he is the soft
ware metrics program manager in HP's software ini
tiative program. Bob is a member of the IEEE and has
written and coauthored numerous papers and articles
on software subjects, as well as the books Software
Metrics: Establishing a Company-Wide Program and
Practical Software Metrics for Project Management
and Process Improvement, published by Prentice-Hall.
A native of Chicago, Illinois, he received a BSEE de
gree from the Massachusetts Institute of Technology
in 1965 and an MSEE degree from Stanford University
in 1969. Bob is married and has a daughter and a
son. His wife works at HP managing the solutions
integration department for HP's Americas Information
Technology Organization. In his free time, Bob enjoys
playing basketball and softball in local leagues and
likes hiking, skiing, and oil painting.

25 Evolutionary Fusion

Todd Cotton
Todd Cotton is a consulting

J f f ' ~ " V p r o j e c t m a n a g e r f o r H P ' s
â€¢w ~Â¡M software in i t iat ive program.

He is working with HP devel-
opment teams worldwide
to improve their software
development capabilities.
Areas of focus include proj-
ect definition and design,

product life cycles, project planning, object-oriented
software methodologies, and management and orga
nizational development. Previously he was an R&D
project manager at HP's Personal Software Division

where he was responsible for HP 3000 graphics ap
plications, HP Graphics Gallery products (for which he
also worked as a design engineer), and HP NewWave
agent technology. He collaborates with a number of
HP development teams using the Evolutionary Fusion
design process. He has presented tutorials and par
ticipated in panel discussions at Interex, OOPSLA,
and the HP-UX developers' conference. Todd was
awarded a BS degree in mathematics in 1983 and an
MS degree in computer science in 1984, both from
Stanford University.

39 Evolutionary Development Model

Elaine L. May
Elaine May is a software project manager for the HP
84000 RFIC test system. She was also a project man
ager for the HP 3970 board test system and was a
consulting project manager in HP's software initiative
program, consulting on evolutionary development,
software configuration, and change management.
Elaine earned a BS degree in electrical and computer
engineering from the University of California at Davis
in 1983. After graduating, she joined HP's Loveland
Instrument Division where she initially worked as a
software engineer on the HP 3065 and HP 3070 board
test systems. She is professionally interested in soft
ware engineering and management and in software
for commercial ATE systems. She authored an article
about in-circuit test development and is named as
the inventor in a patent involving a serial frame data
generator which tests telecommunications circuits.
Elaine's hobbies include riding motorcycles, playing
computer games, and working on home improvement
projects. She is a member of HP's Gay & Lesbian Em
ployee Network. Her civic activities include being an
HP volunteer scientist in the California and Colorado
public schools, assisting in a kindergarten science
program and a high school mathematics class.

Barbara A. Zimmer
Barb Zimmer was awarded a
BA degree in journalism in
1975 and an MBA in 1982,
both from the University of
Washington. After graduat
ing she joined HP's Spokane
Division as a financial ana
lyst. Since that time she has
worked as a senior financial

analyst and program analyst at HP's Stanford Park
Division and as a quality engineer at HP's Software
Development Environments Division, which transferred
to Corporate Engineering and eventually became HP's
software initiative program. As a member of the soft
ware quality and productivity assessment team, she
reviewed software processes throughout HP's R&D
labs. She is currently a consulting engineer working

104 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

with division partners in such areas as software met
rics and internal communications. She is responsible
for the research, development, and packaging of lev-
eragable products and services that the software
initiative program provides to customers. She has
authored a software quality and productivity guide
and several articles on software development. She is
a member of the steering committee for the HP-UX
developers' conference and for the HP Product Engi
neering Conference. Born in Boston, Massachusetts.
Barb is married and has five-year-old twin daughters
Her hobbies include playing violin and bluegrass
fiddle. She also enjoys running, and qualified in the
1984 and 1988 Olympic marathon trials. Biking is also
an interest, having toured Texas, North Carolina,
Wisconsin, Oregon, Washington, and California by
bike. She also coaches a girls' Softball team and was
a member of the University of Washington's first
women's soccer team.

4 6 D o m a i n A n a l y s i s

Patricia Coll ins Cornwell

Patricia Cornwell has led the
research, development, and
testing of the HP domain
analysis method. She was
awarded a BA degree in
mathematics and philosophy
from Dickinson College in
1971 and an MSEE degree
from Stanford University in

1978. She joined HP Laboratories in 1980. Over the
next eleven years, she conducted research in speech
recognition systems and object-oriented software
engineering environments. She also served as research
project manager for work in multithreaded operating
systems. For the past five years she has served as a
senior software engineering consultant in HP's soft
ware Initiative program. Her rales in the program
include being an account manager, senior technical
contributor, product development steward, and mem
ber of the business team. She recently married a
fellow consultant. Their blended family includes
two 1 3-year olds, an 8-year old, and two German
shepherds. Gourmet California cooking is her periodic
respite from the hectic family routine.

5 6 P l a t f o r m D e v e l o p m e n t

Emil Jandourek

Since 1992, Emil Jandourek
has worked as a consulting
project manager for HP's
software initiative program.
He works with HP develop
ment teams worldwide to
improve their software
development capabilities.
Areas of focus include para

digms for product development, product definition
and design, platform and product life cycles, project
and portfolio planning, and competency identification
and investment planning. He also works in manage
ment and organizational development, assisting with
the integration of new processes and methods in HP
R&D organizations. Emil received a BS degree in cel
lular molecular biology and a BSE degree in computer
engineering, both from the University of Michigan in

1988 He went on to earn an MS degree in computer
science in 1992 and an MSE degree in engineering
management in 1995, both from Stanford University.
He joined HP's Information Networks Division in 1988
as an R&D design engineer and worked on the IBM
SNA cluster controller software for HP-UX work
stations and servers. In 1990 he joined HP Laborato
ries as an R&D engineer. He developed common ser
vices, interfaces, and tools to bridge PC and UNIX1
connectivity. He pioneered work on a scalable, inter
operable, client-server backup system for both PCs
and workstations.

7 2 1 C P a c k a g e S e l e c t i o n S y s t e m

Craig J. Tanner

Born in Cheyenne, Wyoming,
Craig Tanner received a BS
degree in industrial engi
neering in 1984 f rom the
University of Wyoming. He
joined HP's Integrated Cir
cuits Division a year later
and worked as a manufac
turing development engineer

for 1C packaging assembly. He also did materials
engineering for 1C packaging subcontract assembly.
In 1993 he earned an MSME degree from Colorado
State University. As a project manager at HP's Com
puter Interconnect Operation, he currently manages a
team of engineers and technicians that develop new
processes for surface mount assembly in Fort Collins,
Colorado. Recently he was responsible for developing
the knowledge base, system and windows program
ming, and system debug and implementation for HP's
Package Selection System. He is professionally inter
ested in expert systems, decision support systems,
and 1C packaging. Craig is married and has two chil
dren. He enjoys golf, bicycling, and coaching soccer
and baseball.

8 0 C y c l e T i m e I m p r o v e m e n t

Fereydoon Safai

Born in Mashad, Iran, Ferey
doon Safai received a BS
degree in 1971 in mechani
cal engineering from the
Aryamehr University of Tech
nology in Tehran, Iran. He

-^ studied for an MBA degree
I L ^ ^ - a t t h e I n d i a n a U n i v e r s i t y o f

Pennsylvania, and went on
to receive an MS degree in mechanical engineering
in 1984 and an MS degree in computer science in
1994, both from Stanford University. Fereydoon came
to HP's Stanford Park Division in 1985 as a process
engineer for printed circuits. He is currently a soft
ware design engineer at HP's Product Generation
Information Systems Division and is a principal con
tributor to the HP Man-Link system used in HP's sur
face mount centers. Previously, he was a principal
contributor to HP's CAD Data Link system. Profession
ally interested in optimization and heuristic algorithm
development, he has authored or coauthored six re
cent papers on cycle time improvement, setup gen
eration and optimization, and applications of mathe
matical algorithms to control network and inventory

problems. Before joining HP. he was the project man
ager for the engineering, purchasing, and construc
tion of a steel plant for the National Iranian Steel
Industries Company in Tehran, Iran. He also worked
as the head of the engineering and planning depart
ment at Kharg Chemical Company, Kharg Island, Iran.
Fereydoon is married and has two children. He is a
California registered professional engineer. He coor
dinated HP's Second Harvest food bank drive for the
Bay Area in 1994 and 1995. He is also an advanced
amateur photographer and has opened four one-hour
photo shops from the initial step of selecting a desired
construction site to the training of new employees.
He is interested in Iranian (Persian) literature and is
studying Divan of Hafiz. His homemade baghlava is
much enjoyed and is always "eaten to the last piece."

8 4 R e d u c i n g S e t u p T i m e

Richard C. Palm, Jr.

A software development
engineer at HP's Product
Processes Organization, Rick
Palm is the main architect
for the HP Man-Link system.
Born in St. Louis, Missouri,
he was awarded a BSEE
degree and an MSCS degree
in 1975 from the Massachu

setts Institute of Technology. While in school, he
worked as a cooperative student at Bell Laboratories.
After graduating, he joined HP's Data Terminals Divi
sion. With over twenty years at HP, he has worked in
a variety of capacities. Initially he developed firm
ware for microprocessor-controlled terminals, includ
ing the HP 2645 and HP 2647F. He then became a
manufacturing engineer developing test programs
and strategies for the HP 3060 and developing bar
code tracking systems. In 1985 he joined HP's Surface
Mount Development Center and worked on factory
floor systems including software for bar-code recog
nition, machine control, recipe selection, and quality
reporting. Rick is married and has five children. His
greatest outside interest is teaching. He has taught
elementary and junior high school students astron
omy and science and college students digital logic
design. As a Sunday school teacher, he has taught
various ages from two-year-olds to adults. He is an
active volunteer in the community and schools and
has been a basketball coach, chairperson of the
school site council, and singer and backstage support
for local musicals. He has served on a variety of
church committees and has recently built houses in
Mexico with a high school service project. He enjoys
camping, hiking, and traveling with his family, who
have visited more than thirty states often traveling in
their trusty tent trailer.

August 1996 Hewlett-Packard Journal 105

© Copr. 1949-1998 Hewlett-Packard Co.

9 1 L o w - T e m p e r a t u r e S o l d e r s

Zequn Mei

Zequn Mei was born in
Wuhan, Hubei, China and
earned a PhD degree in
materials science from the
University of California at
Berkeley. He joined HP in
1993 and initially worked on
solder alloy and electronic
assembly process develop

ment. He is currently a reliability physics engineer at
HP's Electronic Assembly Development Center and is
responsible for solder alloy selection and interconnect
reliability. He was written over thirty technical papers
on metallurgy and is named as an inventor in two
pending patents. He is a member of the Minerals,
Metals, and Materials Society, ASM, and the Ameri
can Society of Mechanical Engineers. Zequn is
married. Prior to joining HP, he worked at Lawrence
Berkeley Laboratory.

Helen A. Holder

A manufacturing develop
ment engineer at HP's Elec
tronics Assembly Develop
ment Center, Helen Holder
is responsible for evaluating
low-temperature fluxes and
solder pastes and for devel
oping the manufacturing
processes for high-volume

production with low-temperature solders. Previously
she was a process engineer at HP's Networked
Computer Manufacturing Operation, working on HP
700/xx Series terminals and WindowsClients. She
has authored articles on low-temperature solders,
contract manufacturing, and thermally conductive
adhesives. She is a member of the Minerals, Metals,
and Materials Society, ASM, the American Society of
Mechanical Engineers, and the Surface Mount Tech
nology Association. Helen earned a BS degree in
mechanical engineering from the Massachusetts
Institute of Technology in 1993. Before joining HP, she
worked at the Institute's fluid mechanics laboratory
designing and building ultrasound transducers.

9 9 L o w - T e m p e r a t u r e F l u x e s

Hubert A. Vander PÃ­as

Hugh Vander PÃ­as received
a BA degree in physics from
Calvin College in 1972. He
went on to earn an MS de
gree in 1973 anda PhD in
1977, both in materials sci
ence and engineering from

f Stanford University. Before
; coming to HP, he worked at

Varian Associates on concentrator solar cells and at
Xerox Palo Alto Research Center on the metallization
of Si wafers and amorphous silicon arrays. He joined
HP's Electronic Assembly Development Center in 1989
and worked on various surface mount technologies.
He also helped to remove Freon (CFCs) from HP's
surface mount processes. Currently a member of the
technical staff, he is working on flip-chip assembly,
specifically soldering Si die to printed circuit boards.
Previously he was responsible for evaluating low-
temperature fluxes. He has written twenty-three pub
lications in the areas of solar cell performance and
fabrication and processes for advanced metal inter-
connectivity. He is named as an inventor in a patent
involving demountable tape automated bonding. He
also has a patent pending on forming solder bumps
on various substrates. Professionally interested in
interconnect technologies, he is a member of the
IEEE and American Scientific Affiliation. Born in
Downey, California, Hugh is married and has two
children. In his free time he trains soccer referees
and is one himself. He is also active in a variety of
youth sports and teaches high school Sunday school.

Russell B. Cinque

Russell Cinque is a senior process engineer at Intel
Corporation's mask operation. Previously he worked
on low-temperature flux evaluation with HP's Elec
tronic Assembly Development Center, conducting
wetting balance tests to characterize flux behavior.
Russell was born in Houston, Texas and earned a PhD
degree in materials science from the University of
California at Berkeley in 1995.

Zequn Mei

Author's biography appears elsewhere in this section.

Helen Holder

Author's biography appears elsewhere in this section.

Hubert A. Vander PÃ­as

Author's biography appears elsewhere in this section.

106 August 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A u g u s t 1 9 9 6 V o l u m e 4 7 â € ¢ N u m b e r 4

Techn ica l In fo rmat ion f rom the Labora tor ies o f
H e w l e t t - P a c k a r d C o m p a n y

wlett-Packard Company, Hewlett-Packard Journal

ÃÃSt HEWLETTa mLHM PACKARD

5 9 6 4 - B 2 2 0 E

© Copr. 1949-1998 Hewlett-Packard Co.

	Implementing the Capability Maturity Model for Software Development
	Software Failure Analysis for High-Return Process Improvement Decisions
	Evolutionary Fusion: A Customer-Oriented Incremental Life Cycle for Fusion
	What Is Fusion?
	Fusion in the Real World
	The Evolutionary Development Model for Software
	The Software Initiative Program
	HP Domain Analysis: Producing Useful Models for Reusable Software
	Reuse Roles: Producers, Supporters, and Utilizers
	Management
	A Model for Platform Development
	A Decision Support System for Integrated Circuit Package Selection
	Cycle Time Improvement for Fuji IP2 Pick-and-Place Machines
	Reducing Setup Time for Printed Circuit Assembly
	Low-Temperature Solders
	Assessment of Low-Temperature Fluxes

