
H E W L E T - P A C K A R D

JOURNAL
June 1996

HEWLETT
PACKARD

© Copr. 1949-1998 Hewlett-Packard Co.

I n M e m o r i a m

D a v e P a c k a r d
1 9 1 2 - 1 9 9 6

Dave Packard's idea for the HP Journal originated with a publication called the Experimenter,
published by the General Radio Company. "I remember drooling over the Experimenter when
I was in high school," Dave told Karen Lewis, HP's archivist and historian. Featuring an article
entitled "A New Amplifier for Milli-Microsecond Pulses," the HP Journal made its debut in
September, 1949.

Packard believed the Journal's role was to describe the technology used in the development
of important HP products, and that it should be a vehicle for sharing such information with
the larger engineering community. He also felt the Journal should recognize the contributions
of individual HP engineers to the company and the electronics industry. Forty-seven years
later, dedicated those occasion of Dave Packard's passing, we at the Journal are still dedicated to those
goals.

June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL June 1996 Volume 47 â€¢ Number 3

Articles

 Reduc ing T ime to Ins igh t in D ig i ta l Sys tem In tegra t ion , by Pa t r i ck J . Byrne

 P ro to t ype Ana lyze r A rch i t ec tu re , by Je f f rey E . Roeca

22 Determining a Best-Fit Measurement Server Implementation for Digital Design Team Solutions,
by Gregory J. Peters

} A Normal ized Data L ib ra ry fo r Pro to type Ana lys is , by Mark P . Schna ib le

I A Ful l -Featured Pent iumÂ® PCI-Based Notebook Computer , by T imothy F. Myers

' F lyback Charger Circuit

 A Graph ing Ca lcu la to r fo r Mathemat ics and Sc ience C lasses , by Ted W. Beers , D iana K . Byrne ,
James A. Donnel ly, Robert W. Jones, and Feng Yuan

E * A D i s t r i Distributed Software Team

] Crea t ing HP 38G Ap le ts , by James A. Donne l ly

Execut ive Robin Steve Bei t ler â€¢ Managing Edi tor , Char les L. Leath â€¢ Senior Edi tor , Richard P. Dolan â€¢ Assis tant Edi tor , Robin Everest
Pub l i ca t ion Produc t ion Manager , Susan E . Wr igh t â€¢ Graph ic Des ign Suppor t , Renee D . P igh in i â€¢ Typography /Layou t / l l l us t ra t i on , John N icoara

Adv isory Board

Rajeev Co lo rado In tegra ted C i rcu i t Bus iness D iv is ion , For t Co l l i ns , Co lo rado
W i l l i a m W . B r o w n , I n t e g r a t e d C i r c u i t B u s i n e s s D i v i s i o n , S a n t a C l a r a C a l i f o r n i a
Ra jesh Desa i , Commerc i a l Sys tems D i v i s i on , Cupe r t i no , Ca l i f o rn i a
Kev in G . Ewer t , I n t eg ra ted Sys tems D i v i s i on , Sunnyva le , Ca l i f o rn i a
B e r n h a r d F i s c h e r , B o b l i n g e n M e d i c a l D i v i s i o n , B o b l i n g e n , G e r m a n y
D o u g l a s G e n n e t t e n , G r e e l e y H a r d c o p y D i v i s i o n , G r e e l e y , C o l o r a d o
Gary Gordon , HP Labo ra to r i es , Pa lo A l t o , Ca l i f o rn ia
M a r k O r e g o n I n k J e t S u p p l i e s B u s i n e s s U n i t , C o r v a l l i s , O r e g o n
Ma t t J . Ma r l i ne , Sys tems Techno logy D i v i s i on , f i o sev i l l e , Ca l i f o rn i a
K i y o y a s u H i w a d a , H a c h i o j i S e m i c o n d u c t o r T e s t D i v i s i o n , T o k y o , J a p a n
B r y a n H o o g , L a k e S t e v e n s I n s t r u m e n t D i v i s i o n , E v e r e t t , W a s h i n g t o n
C . S teven Jo ine r , Op t i ca l Commun i ca t i on D i v i s i on , San Jose , Ca l i f o rn i a
R o g e r L J u n g e r m a n , M i c r o w a v e T e c h n o l o g y D i v i s i o n , S a n t a R o s a , C a l i f o r n i a
F o r r e s t K e l l e r t , M i c r o w a v e T e c h n o l o g y D i v i s i o n , S a n t a R o s a , C a l i f o r n i a
Ruby B . Lee , Ne tworked Sys tems Group , Cuper t ino , Ca l i fo rn ia
S w e e K w a n g L i m , A s i a P e r i p h e r a l s D i v i s i o n , S i n g a p o r e
A l f r e d M a u t e , W a l d b r o n n A n a l y t i c a l D i v i s i o n , W a l d b r o n n , G e r m a n y
A n d r e w M c L e a n , E n t e r p r i s e M e s s a g i n g O p e r a t i o n , P i n e w o o d , E n g l a n d

Dona V iew, M i l l e r , Wor ldw ide Cus tomer Suppor t D iv is ion , Mounta in V iew, Ca l i fo rn ia
M i t c h e l l J . M l i n a r , H P - E E s o f D i v i s i o n , W e s t l a k e V i l l a g e , C a l i f o r n i a
M i c h a e l P . M o o r e , V X I S y s t e m s D i v i s i o n , L o v e l a n d , C o l o r a d o
M . S h a h i d M u j t a b a , H P L a b o r a t o r i e s , P a l o A l t o , C a l i f o r n i a
S teven J . Narc i so , VXÃ Sys tems D iv i s ion , Love land , Co lo rado
D a n n y J . O l d f i e l d , E l e c t r o n i c M e a s u r e m e n t s D i v i s i o n , C o l o r a d o S p r i n g s , C o l o r a d o
G a r r y O r s o l i n i , S o f t w a r e T e c h n o l o g y D i v i s i o n , R o s e v i l l e , C a l i f o r n i a
Ken Pou l t on , HP Labo ra to r i es , Pa lo A l t o , Ca l i f o rn i a
G i i n t e r R i e b e s e l l , B o b l i n g e n I n s t r u m e n t s D i v i s i o n , B o b l i n g e n , G e r m a n y
M a r c S a b a t e l l a , S o f t w a r e E n g i n e e r i n g S y s t e m s D i v i s i o n , F o r t C o l l i n s , C o l o r a d o
M i c h a e l B . S a u n d e r s , I n t e g r a t e d C i r c u i t B u s i n e s s D i v i s i o n , C o r v a l l i s , O r e g o n
P h i l i p S t e n t o n , H P L a b o r a t o r i e s B r i s t o l , B r i s t o l , E n g l a n d
S tephen R . Undy , Sys tems Techno logy D i v i s i on , Fo r t Co l l i ns , Co lo rado
J i m W i l l i t s , N e t w o r k a n d S y s t e m M a n a g e m e n t D i v i s i o n , F o r t C o l / i n s , C o l o r a d o
K o i c h i Y a n a g a w a , K o b e I n s t r u m e n t D i v i s i o n , K o b e , J a p a n
Denn is C . Yo rk , Co rva l l i s D i v i s ion , Co rva l l i s , O regon
B a r b a r a Z i m m e r , C o r p o r a t e E n g i n e e r i n g , P a l o A l t o , C a l i f o r n i a

e t t -Packard Company 1996 Pr in ted in U .S .A . T h e H e w l e t t - P a c k a r d J o u r n a l i s p r i n t e d o n r e c y c l e d p a p e r .

June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

R Â¿1 HP PalmVue: A New Heal thcare In format ion Product , by Edward H. Schmuhl , A l lan P. Sherman,
and Jon D. Waisnor

I D a t a T h r o u g h P a g i n g T e c h n o l o g y

I C o n s t r u c t i n g A n A p p l i c a t i o n S e r v e r , b y J i l l E . S w e n s o n

\ I n t e r f a c e T r a n s l a t i o n f o r R e u s e o f A s s e m b l y - L a n g u a g e M o d u l e s i n a T w o - L a n g u a g e E n v i r o n m e n t ,
by James R. Buf fenbarger

Departments
2 I n M e m o r i a m
5 I n t h i s I s s u e

8 2 A u t h o r s

Cover
This provided 16505A rendition of the multiple views of time-correlated data provided by the HP 16505A prototype analyzer.

What's Ahead
The f i rst Five art ic les in the August issue wi l l descr ibe HP's current sof tware engineer ing pract ices. Five of the
ar t ic les are f rom HP's Corporate Engineer ing sof tware in i t ia t ive group and one ar t ic le is f rom HP's Sof tware
Engineer ing Systems Div is ion. There wi l l a lso be f ive ar t ic les f rom HP's 1995 Elect ronics Packaging and Man
ufactur ing Conference.

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d (H P)
p e r s o n n e l . w a r r a n t i e s t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f m e r c h a n t
ab i l i t y damages , ind i rec t , fo r a par t i cu la r purpose and a l l ob l iga t ions and l i ab i l i t i es fo r damages , inc lud ing bu t no t l im i ted to ind i rec t , spec ia l , o r consequent ia l
d a m a g e s , p u b l i c a t i o n . a n d e x p e r t ' s f e e s , a n d c o u r t c o s t s , a r i s i n g o u t o f o r i n c o n n e c t i o n w i t h t h i s p u b l i c a t i o n .

S u b s c r i p t i o n s : T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d y o u i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . T o r e c e i v e a n H P e m p l o y e e s u b s c r i p t i o n y o u c a n s e n d a n e - m a i l m e s s a g e i n d i c a t i n g y o u r
H P e n t i t y a n d m a i l s t o p t o I d c j i t p r o @ h p - p a l o a l t o - g e n 1 3 . o m . h p . c o m Q u a l i f i e d n o n - H P i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s i n t h e U . S . c a n r e q u e s t
a s u b s c r i p t i o n t o : e i t h e r w r i t i n g t o : D i s t r i b u t i o n M a n a g e r , H P J o u r n a l , M / S 2 0 B H , 3 0 0 0 H a n o v e r S t r e e t , P a l o A l t o , C A 9 4 3 0 4 , o r s e n d i n g a n e - m a i l m e s s a g e t o :
h p j o u r n a l @ h p - p a l o a l t o - g e n 1 3 . o m . h p . c o m . W h e n s u b m i t t i n g a n a d d r e s s c h a n g e , p l e a s e s e n d a c o p y o f y o u r o l d l a b e l t o t h e a d d r e s s o n t h e b a c k c o v e r .
I n t e r n a t i o n a l s u b s c r i p t i o n s c a n b e r e q u e s t e d b y w r i t i n g t o t h e H P h e a d q u a r t e r s o f f i c e i n y o u r c o u n t r y o r t o D i s t r i b u t i o n M a n a g e r , a d d r e s s a b o v e . F r e e s u b s c r i p
t i o n s m a y n o t b e a v a i l a b l e i n a l l c o u n t r i e s .

T h e H e w l e t t - P a c k a r d J o u r n a l i s a v a i l a b l e o n l i n e v i a t h e W o r l d W i d e W e b (W W W) . T h e u n i f o r m r e s o u r c e l o c a t o r (U R L) i s :

ht tp : / /www.hp .com/hp jy journa l .h tml

S u b m i s s i o n s : H P - a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h H P -
r e l a t e d c o n s i d e r e d o r s o l u t i o n s t o t e c h n i c a l p r o b l e m s m a d e p o s s i b l e b y u s i n g H P e q u i p m e n t a r e a l s o c o n s i d e r e d f o r p u b l i c a t i o n . P l e a s e c o n t a c t t h e E d i t o r
b e f o r e s u b m i t t i n g s u c h a r t i c l e s . A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s a n d m a y
p u b l i s h l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o r e a d e r s . L e t t e r s s h o u l d b e b r i e f , a n d a r e s u b j e c t t o e d i t i n g b y H P .

Copyr ight pub l ica t ion 1996 Hewlet t -Packard Company. A l l r igh ts reserved. Permiss ion to copy wi thout fee a l l o r par t o f th is pub l ica t ion is hereby granted prov ided that
1) t h e c o p i e s a r e n o t m a d e , u s e d , d i s p l a y e d , o r d i s t r i b u t e d f o r c o m m e r c i a l a d v a n t a g e ; 2) t h e H e w l e t t - P a c k a r d C o m p a n y c o p y r i g h t n o t i c e a n d t h e t i t l e o f t h e
p u b l i c a t i o n a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e a p p e a r s s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

Please Hewlett-Packard inquiries, submissions, and requests to: Managing Editor, Hewlett-Packard Journal, M/S 20BH, 3000 Hanover Street, Palo Alto, CA 94304 U.S.A.

June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
The most unpredictable and t ime-consuming part of developing a complex dig i ta l sys
tem is the system integrat ion phase. Dur ing system integrat ion, the var ious hardware
and sof tware subsystems f ina l ly come together for the f i rs t t ime. Al though the in ter-
dependencies between the var ious subsystems have been s imulated, emulated, and
unit tested before system integrat ion, there are always surprises. These surprises, or
"hard problems," (page 6) dramatical ly af fect the t ime-to-market goals for the product.

To f ind going root causes for these hard problems, engineers need to see what is going
on in several subsystems (e.g., operating system, memory, I/O, etc.) at once. The art icle
on page 15 descr ibes a tool that assists engineers in the search for root causes. The

tool is that the HP 16505A prototype analyzer . The HP 16505A is an X11/Mot i f appl icat ion that runs on an HP
9000 Model 712 workstat ion connected to an HP 16500 logic analyzer. This conf igurat ion provides a graphical
user inter face (GUI) that enables users to create a measurement setup using icons that represent HP 16500
hardware modules and HP 16505A sof tware modules. The sof tware modules d isp lay or l is t the t ime-corre la ted
data from instruments instruments in a variety of formats. To deal with the variety of data types from the instruments
and the normalized uniformity requirements of the analysis and display modules, data is normalized immediately
af ter acquis i t ion and made avai lable to a l l the output modules in a standard format (page 30). The select ion of
the encapsula ted measurement server arch i tec ture o f the HP 16505A(page 22) was based on feedback f rom
an analys is of customer needs and requi rements.

A l l ow ing and use rs t o pa r t i c i pa te i n t he des ign o f a p roduc t i s t he bes t way to f ocus p roduc t goa l s and
hopeful ly produce a successfu l product . The HP 38G graphing calculator (page 45) is a calculator designed
for precalculus students and their teachers. In addit ion to the typical HP design team, an Educat ional Advisory
Commit tee cons is t ing o f h igh school , communi ty co l lege, and un ivers i ty teachers was formed to he lp in de
signing this product. The HP 38G is bui l t on the same software plat form as the HP 48G graphing calculator, so
i t has many aplets. the capabilit ies of the HP 48G but with a simpler user interface and a capability called aplets.
An aplet can 59) is a smal l appl icat ion that focuses on a part icular problem. Thus, teachers can keep students
focused on a par t icu lar sc ient i f ic or mathemat ica l concept (e .g. , po lygons) by creat ing and downloading a set
of aplets for students to work on.

HP OmniBook computer users are used to the idea of having a smal l mobi le computer wi th some of the same
capabi l i t ies and appl icat ions as the i r desktop machines. However , wi th features such as co lor d isp lays, larger
hard dr ives, and faster processors appear ing in the HP OmniBook fami ly o f notebook computers , the expecta
tion is computers course a full-featured notebook computer with the same capabilities as desktop computers (of course
not with the same performance as the high-performance desktop models). The art ic le on page 38 descr ibes the
HP OmniBook 5000, which is a ful l - featured notebook computer based on the Pentium'6' processor. This product
is des igned to sat is fy the demand for a notebook computer wi th complete desktop computer capabi l i t ies .

Today 's mobi le paging systems a l low people to keep in 24-hour contact . One group of people who especia l ly
need th is k ind of serv ice are physic ians car ing for cr i t ica l ly i l l pat ients. They need access to a l l the c l in ical
pa t i en t (page (g raph ica l and tex tua l) no ma t te r where they a re . The HP Pa lmVue sys tem (page 64) f u l f i l l s
this need paging al lowing the transmission of cl inical patient information via conventional alphanumeric paging
systems. who system in tegrates computer networks, pa lmtop computers , paging systems, and phys ic ians who
use HP moni tor ing systems and card iographs to del iver h igh-qual i ty pat ient data to mobi le physic ians.

HP div is ions are a lways t ry ing to f ind tools and processes to increase product iv i ty and improve the qual i ty of
products. The last two ar t ic les in th is issue descr ibe ef for ts a imed at these qual i ty and product iv i ty goals. The
f i rs t dea l (page 70) descr ibes a too l that he lps system admin is t ra tors dea l w i th ins ta l l ing and main ta in ing
appl icat ions in an env i ronment where there are hundreds of workstat ions and servers . The second ar t ic le
(page 76) h igh- level sof tware t ranslators that fac i l i ta te the development of programs consis t ing of h igh- level
C- language modules and low- leve l assembly- language modules . Such dua l - language programs are common
when o ld sof tware modules are reused.

C.L Leath
Managing Edi tor

Pentium is a U.S. trademark of Intel Corporation.
OSF, Open and Open Software Foundation are trademarks of the Open Software Foundation in the U.S.A. and other countries.

June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Reducing Time to Insight in Digital
System Integration
Digital design teams are facing exponentially growing complexities and
need insight and tools that reduce the time needed to gain insight into
difficult system integration problems. This article describes modern digital
systems in terms of the problems they create in the system integration
phase. The debug cycle is described with special emphasis on the "insight
loop," study most time-consuming phase of system integration. A case study
from an HP workstation design effort is used to illustrate the principles.
A new digital analysis tool, the HP 16505A prototype analyzer, is introduced
as a means of solving these vexing problems more quickly by reducing
time to insight.

by Patrick J. Byrne

The digital revolution is upon us in every form. Computer
performance doubles every 18 months. Networks of high-
performance servers are replacing mainframes at a dizzying
pace. Personal communication systems are pervasive, from
remote sales tools to medical information systems to net
worked workgroup tools.

What is behind this revolution? The answer is hardworking
teams of engineers focused relentlessly on reducing time to
market with the latest silicon and embedded systems. These
teams in engineers are taking the latest silicon technology in
ASICs (application-specific integrated circuits) and memory,
exploiting them while adding value in the form of special
application-focused architectures and implementations, and
bringing the end products to market at the right time, price,
and performance. These efforts are often made up of highly
integrated subteams of four to eight engineers â€” hardware
development specialists with expertise in ASIC design,
printed circuit board system design, hardware architectural
trade-offs, and the latest CAE (computer-aided engineering)
tool methodologies. These teams specialize in designing
high-performance, efficient, embedded software systems
using not latest software design tools and languages. It is not
unusual for design teams to use C++ and to have a carefully
crafted multilayer software system with de facto APIs (ap
plication programming interfaces) between layers. These
abstractions are used to manage the growing complexities
of real-time embedded systems. These teams have to keep
the customer in clear view as they make complex trade-offs
between software and hardware implementation, between
time to market and feature sets, between material cost
(hence customer price) and component sourcing risks.

Concurrent Design and the Integration Phase
Figs. 1 and 2 illustrate the nature of the modern digital design
process. Fig. 1 shows how the many competencies are
brought together by the design team into the end product.
The modern digital design process is highly concurrent. To

make progress, each engineer makes assumptions about the
other engineers' work. Sometimes these assumptions are
well-documented, but often they are not because of the
relentless schedule pressures. The risk accumulates through
out the design process because the tools used by different
members of the design team do not explicitly articulate the
interdependÃ¨ncies between subsystems. These design inter-
dependencies are often found in the integration phase, when
the whole design comes together for the first time. This is
the well-known finger-pointing phase. "It's a hardware prob
lem," says the software engineer. "It's a software problem,"
says the hardware engineer. The team members then sort
out the problems from their respective points of view, en
gaging in the iterative and unstructured debug process.

Fig. 2 shows this development process in terms of cycle
times. Twenty to thirty percent of the entire development
process time is used in this unstructured integration phase.
This phase of the design process is unstructured because
there are so few well-designed tools and processes for engi
neering teams to use to work through the key integration
tasks. In the integration phase, hardware meets hardware in
the form of ASICs interacting with the circuit board. Inter-
hardware design and modeling flaws are found here. Hard
ware meets software in the form of driver code running
ASIC subsystems. There are also problems from application
programs causing software integration problems. Application
code provides an incredibly rich and complex stimulation
system to the hardware.

Hardware and software modeling tools (simulators, compil
ers, all synthesis, etc.) falter in their ability to model all
these complex combinations, sequences, and data and code
interdependÃ¨ncies. Fig. 3 shows the simulation execution
speed of a typical 40-MHz system. Most digital circuit simu
lators execute at 10 to 30 cycles per second, leading to total
system simulation times of days and sometimes weeks. This
is too long for designers who are used to the iterative design

6 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Hardware Design Software Development

Prototype Integration, Debug, Verif ication, and Characterization

Fig. 1. Digital system design process.

and debug process. This shows that simulators are just too
slow to expose real-world problems within the mental time
constants designers need.

Hard Problems in the Real World
This rich and complex environment is the real-world envi
ronment indicated in Fig. 2. The modeled world in Fig. 2 is
where designers work in isolation to predict real-world
behavior. But it is very hard to predict every corner case to
which the actual applications will take complex combina
tions of hardware and software. The real-world environment
is the domain of the "hard problems," also called the "inter
esting cases" by some engineers. The software team has

done their best to model the hardware. They have read the
hardware documentation and written their driver and appli
cation code consistent with these models. The hardware
engineers have done their best to model the software. Often,
hardware engineers will standardize hardware interfaces
specifically to avoid unmodeled software behavior. However,
when the team puts the system together, they find unmodeled
or under-modeled cases â€” the interesting cases. They find
that their documentation doesn't cover some sequence of
behavior by which the application code runs the ASIC into a
state machine or switching condition that causes a glitch
that delays response, causing the software to time out at the
fourth layer of the protocol. It is very common to have the

Modeled Environment

4 0 5 0 6 0 7 0 8 0
Project Development Stage of Completion (%)

100 Fig. 2. Stages in the development
process for ASIC-based designs.

June 1996 Hewlett-Packard Journal 7
© Copr. 1949-1998 Hewlett-Packard Co.

4 6 0 D a y s

C
O â€¢̂

1 C y c l e 1 0 C y c l e s 1 0 0 C y c l e s
p e r S e c o n d p e r S e c o n d p e r S e c o n d

Simulation Execution Speed

Fig. a Time required to simulate one second of operation in a
40-MHz system.

problems in the real world be separated, symptom from root
cause, both temporally and spatially. For example, an ASIC
on a peripheral bus has a state machine sequence that causes
an error condition, but the errored packet is not sent back to
the CPU until it fits into the priority stack. Or even more
simply, the bad data is written to memory a long time before
it is read and found to be faulty. The problem is detected
later in time and at a different point in the system from
where and when it was caused. Multiple bus architectures,
such as Peripheral Component Interconnect (PCI), using
intelligent queueing techniques, make these kinds of laten
cies commonplace.

Another common real-world problem is the infrequent prob
lem that only happens at odd, nonrepeatable times because
complex hardware and software systems have deep memory
capacities and latencies in registers and state machines in
addition to complex logical extent. The hard problems are
those that the system stimulates through complex interac
tions between big application systems and deeply sequenced
complex hardware systems. Odd pairings of hardware and
software states cause infrequent behavior. Every engineer
knows the problem of solving an infrequent system crash.

Another common real-world problem is the hidden depen
dency. This is caused by underspecified subsystems working
together at blinding speeds. It is just not possible to specify
every hardware or software component's ultimate use. Envi
ronmental conditions like temperature or application loading
stress the system to expose these hidden dependencies. The
case study described later in this article will show how sim
ple and "perfectly specified" TTL parts can be the root cause
of a very nasty operating system crash. This is typical of the
hard problems.

Complexity: Growing Exponentially
The root causes of these kinds of vexing problems are hard
to anticipate and hard to find. They delay projects and defy
schedule prediction for managers. The reason they are so
common is the exponentially growing complexity of today's
systems. Silicon allows systems with 50,000 to 100,000 gates
to be combined with 32-bit CPU architectures with out-of-
order execution and large on-chip caches, controlled by
3M-to-10M-byte embedded software systems. These soft
ware systems are designed carefully with multiple layers of
functionality to promote reuse and maintainability. These
software layers, combined with poor code execution visibility
because of caches and queues, can create indirection and
poor observability during the integration phase.

Fig. of illustrates the exponentially growing complexities of
today's subsystems. ASIC integration allows entire subsys
tems to be placed beyond the eyes of probes. Modern CPUs

(a) 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5

1 9 7 0 1 9 8 0 1 9 9 0 2000

10,000,000 -j-

3 , 0 0 0 , 0 0 0 - -

1 , 0 0 0 , 0 0 0 - -

300,000 -â€¢

1 0 0 , 0 0 0 - -

3 0 , 0 0 0 - -

1 0 , 0 0 0 - -

(0 1 9 7 0 1 9 8 0 1 9 9 0 2000

Fig. 4. Increasing capability and complexity in digital system
design, (a) In ASIC and FPGA hardware value added. (b) In
microprocessors, (c) In software value added.

8 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

have 10 million transistors and multiple execution units.
Embedded systems grow as well. All these technologies are
brought to bear at varying levels of risk to be competitive
today. Teams must master not only the individual technolo
gies but their inevitable integration. The complexity simply
overwhelms. It is very difficult for engineering teams to pre
dict all the interdependÃ¨ncies between such complex sub
systems. Few engineers on a team understand enough of the
details of each technology to predict the conditions that will
cause a failure during integration. Engineers have to know
their design tools: what they do right and what they do
wrong. They have to know the system functionality and how
it reflects down to the details of their design and the design
of the next engineer. They have to know how to unravel the
odd sequence of events that causes the infrequent system
failures. Most hard problems must be solved by teams of
engineers because the complexities of the interactions cross
engineering disciplines.

Iterative Debug Loop
The process used by engineers to solve these complex inte
gration problems that have eluded their design tools is illus
trated in Fig. 5. The engineers start in the upper right corner,
identifying the problem first by clarifying the symptoms.

The next step in the process, isolating problems correctly, is
often tricky. Rumors and "old problems â€” old solutions"
confuse. It is very common to jump to conclusions based on
symptoms because the engineer once saw a problem like
this before and solved it in a certain way. The correct ap
proach is to perform what doctors call a differential diagno
sis â€” describing in detail and with accuracy what has changed
from the correctly working condition that could cause a
problem, thereby isolating the unique operational sequence.
This takes discipline and careful analysis.

The next phase is to discover the hardware or software de
pendencies that consistently describe the unique configura
tions and sequences to describe the problem correctly.
Sometimes a binary search technique is used: code is sliced

Patch in Fix
Works in All Cases

Bad Fix
New Problems

Identif ication

Describe Problem
Clarify Symptoms

Root Cause Analysis

â€¢ Component Level
â€¢ Explain Symptoms

Insight Loop Discover Uniqueness
Establish Context
What's Changed?

Dependencies
So f tware /Hardware
Interactions
Legacies/Sequences
Configurations

Fig. 5. Iterative debug loop, showing the insight loop.

apart and patched back together to stimulate the hardware
to the unique and small code segment that reliably repeats
the problem. Experience and intuition are very important
here because hard problems seem to have classic root causes
but a variety of symptoms, discovered over and over by each
generation of engineers. Yet the process must be data-driven
so that the team is not led to false conclusions.

It is often the case that only one in twenty engineers can
correctly isolate the dependencies and sequences. This is
because few people are chartered with the task and have the
experience to understand the total picture of how a system
works in enough pervasive detail to lead structured detective
work. The next phase in the debug cycle is finding the true
root cause. Infrequent problems, large unobservable ASIC
systems, complex software systems, and time pressures
make this task difficult. But it is very important to find the
true root cause or a simple fix will unravel when some hid
den dependency is invoked. A new solution causes another
problem. A small change in temperature, voltage, or applica
tion loading will cause the fix to stress to the breaking point.
Margins will be broken. This is the "insight loop": the struc
tured detective work needed to synthesize the true root
cause from confusing and overwhelming data sets caused by
vast complexities. The ability to reach the true root cause
rapidly and explain the symptoms, dependencies, legacies,
and sensitivities is an art form and is deeply insight-based.

The root cause phase leads to the verification phase, in
which the suspected fix is patched in and tested to see if it
works in all cases. Often design members will go back to
their design tools (simulators, etc.) to verify a fix because
design tools provide a much richer method for controlling
stimulation variables than the real world. It is hard to con
trol a train wreck! The design team works hard to recreate
exactly the parameters that caused the problem, and then
they look for other related problems and symptoms. Unfor
tunately, a patched fix often breaks the system in a new way,
causing new problems to occur. Or worse, the root cause
was wrong and the fix doesn't work. Then the team starts
over, having "wasted" time solving the wrong problem or
only partially solving the right problem.

Required Tools and Processes
The time it takes to solve these complex problems correctly
is highly variable and highly sequential. Therefore, it is very
hard to predict or reduce this time systematically. The vari
ability comes from the inner loop, called the insight loop.
This is where the engineers labor over the vast complexities
and try to connect detailed hardware and software compo
nent-level understanding with rich and complex sequences
and interactions. The engineering team must traverse from
operating system to switching sequences to solve the prob
lems. They need tools that traverse these levels of design
hierarchy and the attendant complexity in a way that pre
serves context but reveals details. The engineer must retain
detailed understanding but in the context that describes the
problem, always performing the deconvolutions that slice
the problem into the subcontext. This is the great challenge
of the insight loop.

The other reason for the long integration time is that prob
lems are uncovered sequentially. One problem is solved and
then another is uncovered. An operating system must boot

June 1996 Hewlett-Packard Journal 9
© Copr. 1949-1998 Hewlett-Packard Co.

before a critical performance bottleneck can be discovered.
A clock distribution problem must be fixed before a bus
timing problem is tackled, and so on.

To be competitive, design teams must use the latest technol
ogies to get to the price/performance or sheer performance
they need. The underlying technology pace causes the com
plexity, which causes the long integration phase. The design
teams that master the integration phase are the first to mar
ket, since few companies have a sustainable advantage in
underlying technologies. The winning design teams are able
to master this phase consistently over several product gen
erations while bringing unique architectures and implemen
tations to important customer needs. Saving 20% of a design
cycle may not seem like much, but doing this four times in a
row places the team fully one generation of products ahead
of its competition, a crushing advantage in today's electron
ics markets. This is illustrated in Fig. 6. With product life
cycles in the 6-to-18-month time frame, victors and van
quished are determined injust a few short years using this
logic. The complexity is the blessing and the curse, the en-
abler and the nemesis for competitive market entry.

Design teams need processes and tools to manage this com
plexity during the integration phase so that they can, with
confidence, take one step more in the use of modern tech
nologies without going too far. Reducing the time to insight
in the insight loop is how teams can master complexity
rather than have it curse their design cycles with long and
unpredictable times. The masters of the integration phase
will win over the long term. These are the winning design
teams. The tools and processes they need simultaneously
provide insight into problem dependencies, reducing the time
required to isolate the context, and solve multiple problems
at once. Therefore, these tools must retain context while
revealing details, and must not hide one problem with the
symptoms of another. Without the right tools and processes,
teams will suffer through multiple insight loops in sequence.

The Hard Problems: Summary
To summarize the nature of the hard problems and the de
bug process so that they remain in focus during the case
study to follow, the hard problems are listed here in order of

common occurrence and degree of pain to the digital design
team:

1 Hardware-software integration. Different tools used by
different engineers. Very complex interactions. Data depen
dent.

1 Displaced locality. Symptom is separated from root cause in
location and time.

1 Infrequent. Hard to repeat because of deep legacies in
hardware and software subsystems.

1 Hidden dependencies. Underspecified components find the
corner cases.

The tools and processes needed in the insight loop provide
the following:

1 Design hierarchy traversal. Details are shown in the unique
context that causes them.

1 Correct isolation. The true and unique context of a problem
is found using sequential exploratory logic. Symptoms are
explained.
Correct root cause analysis. The component-level source of
the problem is found.
Verification of proposed fixes, making it possible to move
on to the next problem with confidence.
Accuracy. One problem is not hidden with the symptoms of
another.

HP Workstation Case Study
Following is a case study from an HP development to illus
trate the above principles. Hewlett-Packard is a heavy user
of advanced technologies and tools to bring high-perfor
mance products to market. The product developments are
typically organized in integrated design teams that effec
tively design complete products. Therefore, HP is a good
place to look for the challenges and best practices associ
ated with the hard problems of complex systems. The case
study presented here is described in significant detail in
reference 1. Here it will be used to illustrate the nature of
the hard problems and the iterative debug process (the
insight loop) and the need to reduce the time to insight.

The case study is from the HP workstation group. The target
system is one of the HP 9000 Series 700 high-performance
HP-UX workstations. The block diagram is shown in Fig. 7.

Â£
Z

1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7

Fig. from The cumulative effect of reducing design cycle times from
two years (bottom) to 1.5 years (middle) is equivalent to increasing
the performance of each product generation, as exemplified by the
top curve.

- D a t a S o u r c e

Fig. 7. Block diagram of an HP workstation showing the location
of the ground bounce causing the problem described in the case
study.

10 June 1 996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

It has a multiple-bus architecture with several custom ASICs,
and was designed specifically for high performance at a low
cost. During the final product qualification phase, an operat
ing system crash was found by a test engineer who was veri
fying various hardware and software configurations. The
problem was infrequent and hard to duplicate. The system
just crashed at odd times. The test engineer called together
a team of engineers with the ability to traverse the design
hierarchy with acumen.

The first step was to identify the problem correctly. The team
found that the operating system crashed only when the sys
tem was performing DMA (direct memory access) transfers
from a SCSI drive on the EISA bus. The next step was dupli
cating and isolating the problem. It could have happened
anywhere from the data source on the EISA card to the
DMA cycle termination at the CPU bus. To isolate the prob
lem, the data transfers had to be reduced in size and made
repeatable. This is where the software team got involved,
since they could assist in slicing the data sets into pieces
that might recreate the problem. A binary search ensued,
cutting and trying different data sequences until repeatability
was achieved with a minimum failing sequence (MFS). Even
this arduous trial-and-error process yielded only 90% repeat
ability. The 10% nonrecurrence was ultimately tracked to a
DRAM refresh cycle that changed the timing of the sequence
that caused the failure (all symptoms must be explained to
ensure that a true root cause has been found. Often, teams
will neglect inconvenient facts.) The team was now deeply
in the insight loop, trying to find the sequences and context
that would isolate the problem, leading them to the root
cause.

The next step was to probe all data transfers from the EISA
card into and out of main memory. For this task, they needed
a logic analyzer and multiple, time-correlated, probing points.
They looked through many large (IM-byte) data sets to find
the failing sequences. Comparing data across the bus bridges
is time-consuming, since the latencies are variable as a result

Probe all buses along chain.
Isolate failure to one location and one transaction.

HP 165SOA
Logic State
and Timing

Analyzer

HP 54720A
1 -GHz B W
Real-Time

Scope

Read (+1 us)

Probe inside memory.
Known tr igger delays
are important.

Fig. 9. The root cause of the problem was found with a high-speed
oscilloscope time-correlated to the logic analyzer trigger looking at
the error detecting logic in the CPU.

of the intelligent queuing techniques employed in the bus
bridge ASICs. Fig. 8 shows how the four bus transfers were
observed to isolate the failing transfer. Finally, it was found
that the MFS was isolated to memory writes and reads
across the bus transceivers in the main memory system. The
suspect part became a TTL bus transceiver, a common part
"well-specified" by multiple vendors. The root cause of the
problem was found with a high-speed oscilloscope time-
correlated to the logic analyzer trigger looking at the error
detecting logic in the CPU, as shown in Fig. 9.

The root cause was ground bounce inside the TTL part. A
particular sequence of events placed the TTL part in a situa
tion where a write enable to memory was asserted and
directly followed by the simultaneous switching data transfer
of the entire byte (Fig. 10). While this seems normal and is
indeed within specifications, the closeness of the switching

â€¢ Result:
Failure isolated to PBus read.
Data good on PBus write.

Fig. 8. Four bus transfers had to be observed to isolate the failing
transfer.

Narrow pulse causes
large transient currents.

Data Write B

Fig. 10. The root cause was ground bounce inside the TTL bus
transceiver.

June 1996 Hewlett-Packard Journal 1 1
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 11. HP 16505A prototype
analyzer.

events, combined with the initial state conditions and the
weak ASIC drive circuit nuances and memory system capac-
itive parasitics, caused a 2-to-3V ground bounce inside the
TTL part. This caused the part to open up both bidirectional
buffers, which caused temporary oscillation, which caused
data corruption. This corrupt data, when read back to the
CPU many cycles later (several microseconds in a 60-MHz
design), caused the operating system to crash.

In the end, all symptoms were explained. Redesigned TTL
parts were used and the memory system layout and the ASIC
buffer design were improved. The breadth of experience and
measurements needed to solve the problem was significant
and is a true illustration of the insight loop. Vast data depen
dencies and odd sequences had to be explored and sliced
through to find the MFS. Multiple points in the system had
to be probed in time correlation. Data transfers had to be
compared across bus bridges. In the end, the entire design
hierarchy had to be traversed, from the operating system
crash to the ground bounce triggered by data dependent
signal integrity. To solve the problem, the entire design team
had to be involved: the board designer, the ASIC designers,
the software engineers, and the component engineers.

The Prototype Analyzer
The HP Model 16505A prototype analyzer, shown in Fig. 11,
is a prototyping tool designed specifically to reduce the time
to insight into the common and complex problems plaguing
complex digital systems. The prototype analyzer architec
ture is described in the article on page 15. It is based on a
measurement server architecture, described in the article
on page 22. It is further based on the key concepts of smart
data exploration, through a logically rich postcapture filter
ing capability, as illustrated in the case study and in the ar
ticle on page 15. The key software technology that allows
the product to present multiple time-correlated views across
the design and measurement hierarchy is called normalized

data and is discussed in detail in the article on page 30.

The key concepts of the prototype analyzer product are as
follows:
Insight into problem sources comes from the time sequence
dependencies and is facilitated by sequential ordered explo
ration tools (filters). Therefore, time correlation, using
global time markers, across measurements and across
measurement domains is critical. Use of color and flexible
user-definable data organization is required to aid the deep
insights required to solve the hard problems.
Most important problems are rare in occurrence. Therefore,
the tool must quickly and intelligently filter out and elimi
nate large data sets that don't relate to the problem at hand.
Furthermore, since the hard problems are rare, the tool

LAN

CASE Environment
and Tools for Native
and Cross Software
Development

CASE CAE

Prototype Integration,
Debug, Verif ication,

and Characterization CAE Environment
and Tools for Circuit
Design and Debug

; Â©

Instrumentation

Prototype Analyzer
Environment

Fig. 12. Team profile and design environment for digital system
design.

12 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

must be able to keep data around to postprocess in every
conceivable way to extract the maximum use from the valu
able captured data (the cause is in there someplace!). Avoid
ing the rerun penalty with its associated time delay keeps
problem-solving times short, the way engineers need them.

â€¢ Hard problems are solved by design teams, not by single
members only. Therefore, the measurement server architec
ture needs to reside on the network and allow offline analy
sis by multiple members. Fig. 12 shows a common configu
ration of the prototype analyzer on a network, accessible to
every design member. The easy communication of informa
tion across a local area network using standard file and
server protocols facilitates team solving processes. Further
more, the tool needs to provide team-member-centric views
appropriate to each person and problem. For this reason,
the HP 16505A prototype analyzer provides source-to-signals
correlation, allowing correlated views from C source code
to analog signals, all based on time-correlated measure
ments. The 16500B logic analysis system supports all these
measurement modalities.

â€¢ Designers have vast intellectual property vaults in their
design databases. These form the basic raw material for an
engineer's analysis needs. They must be viewable and com
parable to the measured data to accelerate time to insight.
A file in, file out capability facilitates the easy movement of
the critical data sets to where they can be manipulated with
the best postprocessing tools available. Engineers have
their favorite tools and the prototype analyzer accesses
them all through the XI 1 Window interface.

â€¢ Large data sets are difficult to use to find the elusive root
cause of a problem even if the problem has been captured
in the data set. This is because the user is overwhelmed by
the magnitude of the data and has to wallow around in it.
Overview tools are needed that transform the low-level digi
tal data and software code to a higher level where users can
see the data that lies outside the norm. The human eye easily
distinguishes such signals. The user wants to see changes in
the data rather than just the raw data. This higher level is
called the modulation domain and is a specialty of the
prototype analyzer with its ability to create new labels from
combinations of raw incoming data. An example of this is
shown in Fig. 13. The analyzer is used to extract setup times
on a bus from the raw incoming data and clock signals.
A new label is created from the difference between the data
and the clock. This label can then be displayed as it changes
over large time constants using the chart tool. A user can
easily view a million setup times over several milliseconds.
Dramatic changes of setup time at periodic intervals tell the
engineer that the system timing margins are being stressed
on software time constants, perhaps as a result of a DRAM
refresh or the servicing of a periodic interrupt. This display
of the modulation domain is unique to the prototype analyzer
among digital analysis tools and illustrates the power of
postprocessing large data sets in overview displays to guide
an engineer towards the elusive integration problem.

Prototype Analyzer Solution
Now we revisit the HP workstation case study to see how
the prototype analyzer can solve this problem much faster.
The problem in the target system only occurred when simul
taneous switching occurred on the data lines with write
enable followed quickly by data write changes (refer again
to Fig. 10). Fig. 14 shows how the prototype analyzer can be

Data

Fig. 13. In the modulation domain, changes in the data, rather
than just raw data, can be observed. In this example, the prototype
analyzer extracts setup times on a bus from the raw incoming data
and clock signals and then displays changes in setup time using the
chart tool.

used with postprocessing filters to isolate the case much
faster. The prototype analyzer is able to filter out states that
follow specific sequences. In this case, Filter 1 in Fig. 14
could be set to view only the data for cases in which all
states changed from ones to zeros (FF to 00) or vice versa.
The design team suspected simultaneous switching noise in
their design and this technique would have quickly given
them the opportunity to explore this possible root cause
without rerunning the target system. Any logic analyzer can
find the first case of FF followed by 00, but only the proto
type analyzer can scan an entire one-megasample record,
find all the cases where this is true, and display them all
with the original data, time correlated with other views, such
as analog data. Showing all the data, rather then just trigger
ing on the first occurrence of this transition, allows the de
sign team to find the one in a million times that this transi
tion causes the failure, rather than having to keep
retriggering the logic analyzer, hoping to find this case. The
next step is to filter again using a timing filter (Filter 2 in
Fig. 14). In this case, the design team is testing the theory
that close timing between LEA B and data switching on data,
line A causes a narrow pulse, which, when driving the high
capacitive load of the memory system, causes high ground
currents. Only the prototype analyzer can find all of the
occurrences of these conditions and only those that meet the

Data Bus A
Data Bus B
LEAB

00 f o l l owed
byFF

LEAB 1 â€” 0
within 10ns of
Data A 0 â€” 1

Time Correlated

Fig. 14. Solving the case study problem with the prototype
analyzer.

June 1996 Hewlett-Packard Journal 13
© Copr. 1949-1998 Hewlett-Packard Co.

Hardware Design

T T
ASIC

Design and
Simulation

Printed
Circuit Board

Design and
Simulation

Software
Development

Tools Development,
Operating System

and Application Port,
Hardware Drivers, Boot

Code, and Test Suites

Manufactur ing
Process Design

Process
Architecture

Filter 1 criteria. This consecutive filtering allows engineers
to build isolation techniques into their analysis to test their
theories, rather than having to recapture the data and incur
the retrigger and recapture time penalties. Using the oscillo
scope built into the HP 16500B logic analyzer, they can cap
ture with time correlation the lines that are being corrupted
by the simultaneous switching noise and ground bounce.
The time correlation allows engineers to retain the state and
switching context that created the failing conditions. The
waveform and lister tools merge the analog and code con
texts to form a new measurement domain.

In summary, the prototype analyzer can be used to isolate
the root cause of this problem much more quickly because it
has sequential postprocessing filters, allowing analysis of
entire data records at once. These kinds of problems are the
cause of many delayed developments in advanced digital
systems. The prototype analyzer tool is a way to solve them
more quickly, minimizing time to insight for the design team.

Conclusion
Fig. 15 shows the use model for the prototype analyzer, re
drawing Fig. 1 to show how the risk in the concurrent engi
neering process can be managed with a single digital analy
sis tool platform to unravel the complexities of modern
digital systems and deliver to design teams the tools and

Fig. 15. Updated system design
process using the prototype
analyzer.

processes needed to master the integration phase to com
petitive advantage.

Acknowledgments
Pursuing the hard problems and delivering superior time to
insight to digital design teams was the work of many people
at the Colorado Springs Division. Greg Peters, Steve Shepard,
Jeff Haeffele, Chuck Small, Jeff Roeca, and James Kahkoska
were the leaders. James is the creator of the prototype ana
lyzer concept. His unique ability to understand customer
needs and translate these insights into compelling products
and architectures was the magic behind this product. Fred
Rampey, Dave Richey, and Tom Saponas sponsored the mar
ket and product initiative. Frank Lettang and Rob Horning of
the Computer Organization were the case study agents and
their easy access was critical to deep understanding.

Reference
1. Hewlett-Packard 1993 High-Speed Digital Symposium Digest of
Technical Papers, pp. 10-1 to 10-20.

HP-UX 9. and 1 0 .0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.
UNIX countries, exclusively registered trademark In the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

14 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Prototype Analyzer Architecture
The HP 16505A architecture allows multiple concurrent views of acquired
logic analysis data. Markers on all views are correlated. The user only
needs to place the marker on one view and the markers on the other
views be relocate. Thus a stack anomaly in one view can be
immediately correlated with the software routine causing the violation.

by Jeffrey E. Roeca

The HP 16505 A prototype analyzer is the next-generation user
interface for logic analysis. It is an XI I/Motif application run
ning on an HP 9000 Model 712 PA-RISC workstation directly
tied to the HP 16500 logic analysis mainframe. This system
is a managed, or closed, system. From boot until power-down
this system is solely dedicated to extending the prototype
debug paradigm from the nine-inch touchscreen of the HP
16500 to a multiple-window, high-resolution interface.

The design uses the XI I/Motif graphical user interface (GUI).
This was done to accomplish several goals. First, using an
existing state-of-the-art GUI allowed us to focus on our own
contributions. Second, with the distributed XI 1 interface, we
can make the application available over a network to any X-
compliant computer, including PCs. The software was written
in C++ for the Model 712 workstation platform. This gave
our application affordable MIPS, which were needed because
debugging one-megasample logic analyzer traces across
hundreds of channels will tax any computer.

Architecture
Fig. 1 shows a simple HP 16505A setup. There are three tools
on the workspace. Two tools are analyzer machines, and
one tool is a display tool. This simple configuration reveals
the essential functions. Tools can be placed into a data flow
and run. The analyzers are tools that probe target hardware.

Run

g

Fig. 1. A simple HP 16505A prototype analyzer setup. Available
tools arc selected l'nun the toolbox at left and dropped onto the
workspace, placed into a data flow, and run. Here there are three
tools on the workspace: two analyzer machines (Ml, M2) and
one display tool.

They sample real-world data and the display tools indepen
dently view that data.

To deliver this functionality we have partitioned the architec
ture into the following blocks:

â€¢ Tools. Tools are the atomic unit of value in the HP 16505A.
All meaningful user interaction is performed within a tool
definition.

â€¢ Acquisition Tools. The acquisition tool class is derived from
the tool class. As such, it plays in the data flow workspace.
The reason for making this a derived class lies in the way
we connect or relate acquisition tools to the HP 16500 main
frame.

> Data. All tools export and digest a common unified data
format,

> Workspace and Graph. The workspace is the visual pro
gramming GUI. It allows tools, represented by icons, to be
connected to a data flow, represented by lines. The graph is
the ordered list of tools in the flow.

> Run Management. This is a state machine that pumps data
through the data flow by executing the graph.

â€¢ General Support. This is basically control or "glue" logic.

Data Flow
Let's look at an example data flow through the architecture.

When the user powers up the HP 16505 A we begin an
HP-UX operating system boot procedure. Most of the boot
code is provided by the Model 712 ROM, but we adjust the
daemons and hardware configuration for this application.
Once the operating system is minimally configured we call
the session manager routine, which never returns. The ses
sion manager handles software updates and spawning of the
main application. This is also where the workstation is pow
ered down. (The Model 712 workstation has a front-panel
power switch, which forces the HP-UX file system to be
written to the SCSI drive before actually cutting power. This
prevents the user from crashing the file system. Unplugging
the workstation can be problematic for the file system, how
ever, so the session manager has a power-down button to
remind the user not to simply unplug the product.)

The real application begins as main. c on HP-UX. We begin by
creating an application context under the X Window System
with a as to XtVaApplnitializel). The entire application runs as
an XI I/Motif application. From the GUI mouse/keyboard
callbacks through the acquisition control of the HP 16500,
all software is run as an XI 1 application callback.

June 1996 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

The HP 16505A system software offers a handful of services
to tools. These services are collectively gathered beneath a
structure called the frame. The frame is one of the few glob
ally available pointers. Tools can access these system ser
vices by referencing frame->service. The frame services are:

â€¢ ResourceMgr. Colors, fonts, cursors, path names.
â€¢ RunMgr. State machine for stepping the tools through runs.
â€¢ FileMgr. Storing and loading of configurations.
â€¢ HelpMgr. Help screens.
â€¢ GeometryMgr. Pixel drawing management for the workspace.
â€¢ Symbols. Definition and display.
â€¢ FrameMarkerMgr. Global marker synchronization.
> FrameMessageExchange. Mail service between nodes on the

graph.
â€¢ TbcMgr. Manager of toolbox icons.
â€¢ InstrumentMgr. Manages a list of instruments.
â€¢ AdminMgr. Networking and other HP-UX management.
â€¢ PrintMgr. Print services.

Next we perform a directory search for instruments and
tools. All tools are compiled into shared libraries. These
libraries exist beneath a well-known directory. We traverse
the directories beneath this, searching for valid tools and
instruments. A valid directory consists of a shared library, a
resource file, and a pixmap. The load algorithm is generic and
does not need to be rewritten when a new tool is created.
Simply creating a directory with these three files is sufficient
for this algorithm to attempt to load. Tools are noted, but are
loaded only when placed onto the graph. This can be ob
served as a slight time delay in the creation of the first tool
of a given class. The benefit of demand loading tools is that
the memory is kept free for deep trace analysis.

Unlike tools, instruments are loaded when they are found.
An instrument is an HP 16500. Within the HP 16500 there
can be up to ten modules, but there are not usually so many
and it is efficient and simple to load them at power-up.

Next the workspace is created. All of the loaded and noted
tools are represented by icons in the toolbox.

Next we start the file system, remote procedure call mecha
nism, messaging services, and some other details. Finally,
we submit all processing to the X Window System by calling
XtAppMainLoopO. The application goes dormant until either a
remote command or a GUI event activates a software call
back. Even the remote interface becomes an X event as we
receive remote procedure calls and simply pass them along
to the X Window System. When XtAppMainLoop returns, the
HP 16505A returns to the session manager.

Tool Design
Tools and their design are a major factor giving this platform
room to grow. A tool is a C++ class with a small set of pure
virtual functions. These functions are:
getRev. What release of software (e.g., 1.20)?
about. Returns general tool information in ASCII format.
save. Saves the tools configuration to a file.
load. Loads the configuration from a file.
addToPopup. Call from the workspace frame to add to a menu.
setName. Call from the workspace to change this tool's name.
raiseAII. Open up or raise the windows.
p re Execute. Validates the internal state as legal to execute.
validateConfig. Validates the configuration before loading.
execute. Receives a new data group, returns a data group.

Software
Performance

Analyzer

Fig. 2. Tool class hierarchy.

These tool functions are mostly mundane calls to get, set,
save, or load static information within the tool definition. All
real tools must supply these functions, and the system glue is
written with calls through these functions from tool pointers
kept in the graph.

Only one function deals with the primary objective of a
tool â€” passing data â€” and that is the execute function. This
function is declared as follows:

virtual DataGroup * execute (const DataGroupfc)

= 0;

A tool receives a call and is passed a pointer to the data and
labels. The tool can then interpret, filter, or create data as
needed. All that is required is that the tool return a pointer
to the output data group. This is very simple and powerful.
Compliance with the execution protocol does not require
any coupling between tools.

From this definition all real tools are derived. Fig. 2 shows
the current tool classes in the HP 16505A.

Acquisition Tool Design
The workspace manages an ordered list of tools. Conse
quently, a logic analyzer must be represented as a tool to be
placed on the workspace. According to HP 16500 legacy, the
fundamental working unit of a logic analyzer is a machine.

A single HP 16500 card, or module, can have two machines.
In the HP 16505A, each of the module machines is repre
sented as an individual tool in the toolbox. The abstract C++
class for these machines is called a probed source. Probed
sources must address multiple complications. One is com
munication with the HP 16500 module. Another is handling a
workspace presentation that represents probed sources as
independent tools, while behind the scenes both machines
of a single HP 16500 module are joined at the card. Another
complication is coordinating the remote acquisition of data.
Fig. 3 presents the acquisition tool hierarchy, showing the
basic composition of probed sources and their relationship
to their module (card) and the HP 16500 (enterprise).

The class that is placed onto the workspace is one of the
machine classes. Because these classes are derived from the
probed source class, which is derived from the tool class,

16 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 3. Acquisition tool class hierarchy. The dots and numbers
are Booch notation for N-to-1 relationships. For example, an
HP 16550 card has two machines.

they can be inserted into the workspace. As previously
stated, a logic analyzer card can have multiple analyzers, or
machines. Accordingly, each machine has a relationship with
its parent card class, which is derived from the abstract card
class. Cards in turn are owned by the acquisition enterprise.
The enterprise class is derived from the abstract instrument
class. Within the instrument class exists the transport
knowledge, which happens to be SCSI.

Encapsulating the SCSI transport in the instrument class
allows us to port the transport layer with a minimal impact
on the rest of the software. This was a benefit in the initial
stages of development when the SCSI interface did not exist
and we programmed the HP 16500 over the HP-IB (IEEE 488,
IEC 625).

By using the existing ASCII programming strings of the HP
16500 we are able to acquire data in an existing stable plat
form. By using the SCSI transport we minimize the latency
of transfer from the HP 16500 to the HP 16505A.

Data
Data is different for each analyzer card in the HP 16500.
Historically this slowed development by giving rise to
custom, hardware-specific algorithms to render that data.
Behind similar HP 165xx interfaces may be completely dif
ferent software. Fig. 4 shows the transform that we apply in
the HP 16505A prototype analyzer. As data is uploaded from

HP 16505A Prototype Analyzer

HP 16500 Logic
Analysis System

Fig. 4. Data is different for each analyzer card in the HP 16500
logic analysis system. As data is uploaded into the HP 16505A
prototype analyzer from the unique hardware, it is transformed
into a common, or normalized format.

the unique hardware, it is transformed into a common, or
normalized format. This normalized data is what all tools
downstream from the analyzer source operate upon (see
article, page 30).

Workspace and Graph
The primary role of the workspace is to construct the data
flow relationship that is executed during runs. The data flow
is constructed with tools and data. The GO provides a tool
box that contains icons representing all available tools.
A user drags an icon representing an available tool from the
toolbox and drops it into the workspace. Data flow is repre
sented by lines connecting the icons or tools. Each tool that
is placed onto the workspace is entered into the graph. The
graph is an ordered list of containers. A container is a struc
ture Any holds information about real instantiated tools. Any
software function can execute the graph, which results in an
ordered delivery of containers to the requesting function. The
function can then call the appropriate tool function through
the container.

The graph has a simple set of rules determining the order of
execution of the list of tools:

â€¢ Only tools that are on the workspace are executed.
â€¢ Orphan tools â€” tools that have no data connections â€” are
executed first.

â€¢ Top-level tools such as logic analyzers and oscilloscopes are
executed next.

â€¢ The graph does not transition from one level to the next
until all tools at a given level are complete. This ensures
that any tool that receives data from multiple sources will
have the data available when the tool is executed, since all
parent tools must have completed before the tool is called.

Fig. 5 shows a workspace representation with three analyzer
machines, two filter tools, a lister, and a waveform tool. Ml
and M2 are merging their independently acquired data to
gether into a single data group and then passing that merged
data group through the Filterl tool to the lister. M3 is an
independent data group that passes through Filter2 into the
waveform tool. There are highlighted boxes labeled level 1,
level 2, and level 3. These boxes indicate the order of execu
tion of the graph. Level 1 tools are the data sources, or ana
lyzer tools. This level is executed first. No tool in level 2 or
level 3 will execute until all level 1 tools are complete. Once

Run

Level 1 Level 2 Level 3

Fig. 5. A workspace representation with three analyzer machines,
two filter tools, a lister, and a waveform tool.

June 1996 Hewlett-Packard Journal 17

© Copr. 1949-1998 Hewlett-Packard Co.

U s e r
P r e s s e s
Run

PreRunOownload

User
Appl ies

M a c h i n e
Change

Start Acquisition

C o n t i n u o u s : S t a r t A c q u i s i t i o n

U s e r A p p l i e s
T o o l C h a n g e

Fig. 6. Run manager state diagram.

level 1 is complete then the level 2 tools will execute. No
tools in level 3 will execute until level 2 is finished. This is a
general rule: level N-l must finish before level N executes.

Run Management
The run manager is the software that pumps data through
the graph. It is a state machine that executes the graph.
Remember that executing the graph is an ordered, level-by-
level be This ordering allows for all probed sources to be
configured, started, and uploaded as a coordinated group.

Fig. 6 shows the states and their execution cycle, together
with the entry points into the state machine. The states are:

â€¢ PreRunDownload. The HP 16505A probed source software main
tains internal configurations. The GUI modifies the configu
rations and the changes are stored in the HP 16505A without
remotely updating the HP 16500. When Run is pressed, a
probed source is requested to download to the HP 16500 the
current HP 16505A probed source configuration.

â€¢ PreRunCheck. A given HP 16500 card may have an illegal set
ting that prevents a run from proceeding. This state allows
the HP 16500 status to abort a run.

â€¢ StartAcquisition. The HP 16500 is started. The current release of
the HP 16505A only performs group runs. A group run is one
that time-correlates the trigger events from participating
modules.

â€¢ WaitingForCards. The HP 16505A polls the HP 16500 run status
waiting for the run completion.

â€¢ UploadingNormalizing. Each card is called serially to upload and
normalize the acquisition data.

â€¢ TimeCorrelating. After each card is normalized the system
acquires the timing correlation values and updates the
normalized data.

â€¢ DataExecution. The normalized data is now passed through the
graph to the configured tools. Each tool called will render
the data and update its display.

â€¢ PostExecution. The HP 16505A does some cleanup.

The graph is executed during each state at least once. A given
state may only choose to communicate with a tool if the tool
is a probed source. A state may execute the graph multiple
times. For example, WaitingForCards is a state that can take a

significant amount of time, depending upon the repeatability
and cycle time of the trigger specification. The run manager
could be stuck in this state forever. The logic within this state
executes the graph. If the cards are not complete then the run
manager sets an X timeout and exits.

The setting of the X timeout is significant. It is essential that
the GUI is allowed to run to service potential stop events. At
the first release there is no remote control of the HP 16505A,
and a GUI event on a stop button is the only way to abort a
run.

Example Control Flow through the Software
Fig. 7 shows a simplified control flow for acquiring status
during an acquisition of data. A user has previously pressed
the Run button, which starts the run manager state machine.
In this example the run manager has been called (from an X
timeout) and is processing the WaitingForCards state. This state,
like all run manager states, calls the graph execute function.
This causes the graph to cycle through all of the tools on the
workspace. The run manager calls tools that are probed
sources requesting their status. Now is where the mapping
of analyzer machines, or probed sources, to cards becomes
important. The HP 16500 remote control is ordered by mod
ules. Within a module, communication is with an analyzer
machine. The HP 16505A has requested the run status of an
executing machine. This request is passed to the parent card
class. The card knows which HP 16500 slot to select. The
card also knows what messages to apply to obtain the status.
These ASCII HP 16500 command strings are then passed to
the enterprise, or HP 16500B class. This is the class that
inherits from the abstract instrument class. The SCSI trans
port sends the ASCII programming instructions down to the
HP 16500B and there they are parsed and interpreted.

Fig. 8 shows a similar simplified block diagram with the
normalized data, tools that are not probed sources, and the
tool support blocks added. Ignoring the fine details of the
myriad of support tools, correlated markers, and so on, one
can obtain a good understanding of the HP 16505A architec
ture from this figure. The frame object has a run manager
object which controls the state machine for acquiring and
pumping data through the tools. The workspace has an
ordered list of instantiated tools and controls the execution
order. Tools are either independent tools or probed sources.
If they are probed sources they communicate through their
parent card through their instrument through the transport
layer. Probed sources generate normalized data, and all
other tools can use, modify, and generate normalized data.

Examples of Visualization
The primary value of the HP 16505A lies in its ability to help
the user visualize data. The architecture was defined to allow
multiple concurrent views of the acquired data. By slicing and
dicing data in different ways, fault isolation becomes easier.
Fig. 9 shows an HP 16505 A setup demonstrating how visual
ization in multiple views promotes rapid time to insight. Soft
ware stack corruption is a difficult problem to solve. Usually
a corrupt stack does not directly reveal itself. More often,
the product crashes far away from the actual write violation.
In this example a 68332 microprocessor running software
has been sampled. This data has been displayed both unfil-
tered and filtered. The filtered data is shown in ASCII format,

18 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP 16505A Prototype Analyzer

Workspace

Run Manager

Wait ingForCards:
Graph::

executef status)

Wai t ingForCardsO

Instrument

Enterprise

Probed Source N

as a chart, and as a distribution. The filtered data in chart
mode shows the stack as a function of time. The filter is a
simple range between the low and high boundaries of the
stack. Visually one can see an anomaly in the stack space.
In this example the write taking place beneath the G1 marker
in the Stk vs. Time window is in error. By looking at the ASCII
listing of the unfiltered data in the Raw Trac e window we can
see exactly what software was executing at the time that
this erroneous write to the stack space took place.

Fig. 7. A simplified control flow
for acquiring status during an ac
quisition of data. The run manager
state machine has been called and
is processing the WaitingForCards
state. This calls the graph execute
function, causing the graph to
cycle through all of the tools on
the workspace.

The HP 16505A allows these multiple views â€” the lister and
the filtered chart â€” to be displayed concurrently. Within the
HP 16505 display tools we have correlated markers. The
default behavior of a display tool is to track the placement
of a marker automatically. The user only needs to place the
marker on the visual stack anomaly, and the lister automati
cally relocates itself to reveal the software routine in viola
tion.

June 1996 Hewlett-Packard Journal 19
© Copr. 1949-1998 Hewlett-Packard Co.

HP 16505A Prototype Analyzer

F r a m e W o r k s p a c e

Run Manager

State machine
controls data f low
through the graph.

Normal ized Data

Data Group 1

Instrument

Guarantees
proper
execution
order.

Data Group 2

Enterprise

Tool Support

 I

Data Group Y

Fig. 8. Simplified block diagram
similar to Fig. 7 with normalized
data, tools that are not probed
sources, and tool support blocks
added.

20 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. software corruption write HiolloA setup demonstrating Hie diagnosis of a software stack corruption problem. The write inking place beuen! h the G1
marker the the Stk vs. Time window is in error. By lookliiM Â¡it the ASCII listing of the unfiltered data in the Raw Trace window we can see exactly
whin si ill \\iire was executing at the time that this erroneous write to the stack space took place. The user only needs to place the marker on
I he visual stark anomaly, and the lister in n. mini Â¡rally relocates itself to reveal the software routine in violation.

Acknowledgments
The author would like to acknowledge James Kahkoska for

HP-UX 9." and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.

defining, designing, and driving the product idea into reality.
I would also like to thank Mark Schnaible for helping distill
the HP 16505A architecture down to a few slides.

Motif is a trademark of the Open Software Foundation in the U.S.A. and other countries.

through X/Open Company Limited
X/Open Company is a registered trademark and the X device is a trademark of X/Open Company
Limited in the UK and other countries.

June 1996 Hewlett-Packard Journal 21
© Copr. 1949-1998 Hewlett-Packard Co.

Determining a Best-Fit Measurement
Server Implementation for Digital
Design Team Solutions
Prototype analyzer customers wanted fast throughput, quick answers, a
turnkey solution, an affordable base system price, connection to diverse
open-systems networks and platforms, and interfaces to a wide variety of
tools. An encapsulated measurement server architecture based on a
dedicated workstation and a SCSI II interface best fit the requirements.

by Gregory J. Peters

Implementing an analysis and display architecture for the
next generation of HP logic analyzers presented opportunities
and challenges for the cross-functional design team assigned
to the task. Freed from the boundaries of commercial real
time instrument operating systems and needing to offer a
flexible and high-performance window-based interface, the
project team took a long look at both technologies and the
total envelope of costs before settling on an encapsulated
measurement server architecture based on an HP 9000
Series 700 workstation.

The goal of the HP 16505A prototype analyzer team was to
develop a breakthrough analysis and display environment
for digital design teams involved in the integration and debug
of prototype systems. The resulting product is a combination
of the best of traditional instrument and system benefits.
The turnkey prototyping system provides the performance
and flexibility demanded by leading-edge digital design teams
but its low total system cost appeals to the smaller teams as
well. The tough decisions made very early in the product
definition phase have paid off. The product meets market
needs and has a low cost of sales and support envelope.

Genesis
The genesis of the prototype analyzer occurred with the
realization that digital hardware developers, who are tradi
tional logic analyzer users, were spending an ever higher
percentage of time using electronic design automation
(EDA) tools, such as schematic capture and simulation soft
ware packages. The use of workstation or PC-based EDA
tools came at the expense of time spent in the lab making
measurements on prototype hardware.

The workstation or PC was fast becoming home base for
designers. Traditional test instrumentation was in danger
of becoming less relevant to the design team, in large part
because it didn't interface with EDA tools. The question the
team pondered was how future real-time measurement sys
tems would interface with the designer's workstation home
base.

This concern generated an investigation into workstation
connectivity, and the prototype analyzer project was born.

The development team at first conducted research with hun
dreds of customers worldwide, in different industries and
with different measurement needs. The results of the inves
tigation drove the definition of the prototype analyzer mea
surement server implementation.

Measurement Servers
Measurement servers are denned as a class of solution that
combines physical measurements with cliemVserver comput
ing. Real-world measurement data is captured, analyzed and
shared with users and other tools over the network using a
variety of open-systems standards.

Measurement servers use widely accepted networking stan
dards such as Ethernet, the X Window protocol, and the
Network File System (NFS) to enable customers to control
and view measurement instruments and get easy access to
measurement data. Standard data formats are used to inter
connect the measurement server with other applications.
Specialized host-based software is not required. Measurement
servers can provide anywhere, anytime access to prototype
measurement data via today's ubiquitous networks.

Client/server computing enables each component of the
system to specialize in what it can do best. The locations
and definitions of the interfaces between components are
determined by the nature of the application and the network
topology. A well-recognized example of a client/server appli
cation can be found in the EDA industry: a simulation engine
runs on a large compute server while the simulation inter
face runs on the engineer's desktop. Application developers
must pick the appropriate points to split apart an application
to maximize a product's performance and value.

Measurement server architectures vary depending on the
scope of the solution. Some architectures are completely
encapsulated inside a box, while others are split apart or
distributed (see Fig. 1). Identifying the appropriate point to
split the application apart is critical. Splitting an application
at the wrong place can limit response times or cause nonde-
terministic behavior. Encapsulating the wrong functionality
into a system can increase the cost of the system or the cost

22 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Dis t r i bu ted M i x e d Encapsu la ted

Host
Computers

Open Systems
Env i ronment

P h y s i c a l M e a s u r e m e n t s
Env i ronmen t

Pro to type

D e d i c a t e d / C u s t o m M e a s u r e m e n t C o n t r o l a n d D i s p l a y S o f t w a r e

M e a s u r e m e n t S e r v e r E n c a p s u l a t i o n

Fig. distributed, encapsulated. possible measurement server architectures: distributed, mixed, and encapsulated.

of sales without increasing revenue. Encapsulating too little
functionality may result in trivial or redundant products.

The full use of the client/server paradigm is the differentiating
aspect between traditional instruments and measurement
servers. Traditional instruments can also be connected to
computers via the HP-IB (IEEE 488), but this connection
requires special interface1 and control hardware and soft
ware on the host computer. Additional analysis and display
software is generally custom, and can be time-consuming to
develop and debug. The localized nature of the HP-IB limits
its penetration into open computing environments and the
need for specialized control and interface software puts
HP-IB-controlled instrumentation at a distinct disadvantage
in the networked design environment.

Architecture Selection
To obtain the best price and performance trade-offs, the
proposed solution must be evaluated closely to determine
the optimal measurement server architecture. The three
examples given below highlight some of the issues that must
be addressed. The prototype analyzer development team
was able to gain valuable experience from reviewing each of
these product forms.

An example of a distributed measurement server architecture
can be found in the HP B3740A software analyzer. This soft
ware package provides software developers with a means of
viewing real-time microprocessor traces referenced to
source code. The HP B3740A runs on several workstations
and on PCs.

The host-based nature of this application was derived from a
need to provide source-viewing functionality to a large num
ber of design team members who timeshare a single real
time instrument (the HP 16500B logic analysis system).
In this case, the small amount of data transferred over an
Ethernet link between the HP 16500B and the HP B3740A
does not impact performance. Performance here is mea
sured as update rate.

As a point application, this product does not require exten
sive support. If the same approach were taken for several
applications, however, the sales and support burden could
limit broad market penetration. In particular, maintaining
host-based software on a platform that has frequent operating
system revisions is not only time-consuming but also results
in a low return on investment to the development team.

HP VEE, a visual programming and test development envi
ronment,2 best illustrates a mixed measurement server
architecture. HP VEE runs as a host-based program on PCs
and workstations. This product enables engineers to quickly
develop test programs that control a wide variety of instru
ments over the HP-IB on a standard computing platform such
as a workstation or PC. The key benefit of this approach is
the flexibility afforded both solution providers and end users.
A choice of supported platforms means customers can use a
platform they are familiar with. An open-system development
environment enables value-added engineering, upon which
solution providers can build custom applications.

June 1996 Hewlett-Packard Journal 23
© Copr. 1949-1998 Hewlett-Packard Co.

A mixed measurement server architecture has drawbacks,
however. Maintaining a reliable interface between the host-
based software and the measurement instruments through
operating system revisions or changes in network protocols
can be challenging. Setup and maintenance of a distributed
system require significantly more effort than a turnkey
instrument. A dedicated Ethernet network can impose band
width barriers that severely limit measurement throughput.

The HP 16500B logic analysis system with an HP 16500H.L
interface module is an example of an encapsulated measure
ment server. This system can provide both local and remote
control and viewing via the X Windows protocol. The turn
key nature of this product makes installation and setup sim
ple. Since all data processing takes place in the instrument,
only X Window calls are transmitted over the Ethernet. This
helps keep the update rate fast over most network topolo
gies.

While the support burden of an encapsulated measurement
server is low, it comes at a price. User-defined measurement
sequences and extended data analysis and reporting are not
provided. Customers must make a connection to the HP
16500B and import data and screen images into a general-
purpose computer to perform these tasks.

Considerations such as customer expertise in open systems,
support costs, and the use model for the product must all be
factored in when choosing an architecture for a measurement
system. Trade-offs must be made to fit the needs of the mar
ket and target customer. Table I outlines the advantages and
disadvantages of the three measurement server architectural
approaches.

Customer Requirements
The workstation connectivity investigation generated an
extensive set of customer requirements. These inputs
spanned the entire realm of product definition, from tech
nology needs through user disciplines and measurement
tasks. The investigation revealed:

â€¢ Prototype measurements are essential for hardware/soft
ware integration and product verification.

â€¢ There is a wide variety of use models, from the benchtop
standalone user to completely networked control and
viewing of measurements from a remote site.

â€¢ An analyzer might see single-person use or shared use by
teams of as many as 50 engineers.

â€¢ There is a strong desire for a turnkey system, not a collection
of components that must be integrated by the customer.

â€¢ Equipment setup time must be a minimum. Customers want
to be able to make a connection to the prototype and make
measurements as soon as possible.

â€¢ There is a broad diversity of measurement needs, from signal
integrity to software, and across a variety of probed points,
from serial buses to RISC processors.

â€¢ Surprisingly, we found the potential to address a broader
group of customers than envisioned before the investiga
tion, including software developers, who traditionally
avoided the lab and used host-based software development
tools.

â€¢ We heard a strong request for snappy displays and quick
measurement results (facilitation of the debug loop
explained in the article on page 6).

T a b l e I
M e a s u r e m e n t S e r v e r A r c h i t e c t u r e s

A d v a n t a g e s

Distributed
Fastest leverage of links to other host-based applica
tions.
Most efficient at using customer's available computing
power (MIPS). Takes advantage of idle MIPS on
customer's host computer.
Low cost of goods sold (software only).

Mixed
â€¢ Provides best mix of flexibility and power for custom

system development.
â€¢ Best for integrating different measurement systems.
â€¢ Deterministic performance can be achieved over a

dedicated network (HP-IB).

Encapsulated
â€¢ Turnkey solution (ready to run).
â€¢ Very high measurement throughput.
â€¢ Deterministic performance.
â€¢ Low cost of sales.
â€¢ Low cost of support.
â€¢ Low R&D resources required to support and enhance

the system.

D i s a d v a n t a g e s

Distributed
â€¢ Low measurement throughput.
â€¢ Nondeterministic performance (Ethernet).
â€¢ Requires continuing R&D effort to maintain support on

new operating system revisions.
â€¢ Requires extensive and time-consuming QA on

supported host platforms.
â€¢ Requires some customer operating system and I/O

knowledge.
â€¢ Higher support costs than encapsulated solution.

Mixed
â€¢ Requires special dedicated network hardware and soft

ware.
â€¢ Requires customer operating system, I/O, and networking

knowledge.
â€¢ Throughput can be limited (depending on the perfor

mance of the dedicated network).
â€¢ Requires continuing R&D effort to maintain support on

new operating system revisions.
â€¢ Higher support costs than encapsulated solution.

Encapsulated
â€¢ High cost of goods sold.
â€¢ Fixed functionality.
â€¢ Low efficiency of using customer's available MIPS.
â€¢ Requires some networking knowledge.

â€¢ The solution must interface with a wide variety of design
tool chains, consisting of EDA software programs, test
development programs, and others.

â€¢ There is a desire for connection to diverse open-systems
networks consisting of nearly every possible combination of
computer hardware and operating system software on the
market.

24 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ The base system must be affordable to reach most users
and scalable to cover both performance and mainstream
users.

â€¢ The Ethernet protocol was in use at most customer sites.

Taken together, these inputs overwhelmed the project team.
Scaling the task to available time and resources became a
critical project goal. Reducing the dimensionality required
of the architecture would be the key to delivering an on-time
product that met key user needs.

Demographic Factors
Digital design teams of all sizes are found in every indus
trialized country. Design teams as small as two engineers
expressed many of the desires listed above. Because of the
broad demographics of digital design teams, a key challenge
was offering a low cost of sales and support product struc
ture to fit a sales channel that could reach these customers.

A complex product structure greatly increases the cost of
sales and support. A high cost of sales makes broad product
adoption difficult. This is because complex product struc
tures typically demand a specialized sales and support orga
nization, which in turn limits coverage both geographically
and at smaller accounts. Product specialists are expensive
because of their training and expert knowledge, but also
because it is difficult for them to cover the same geographic
area as thoroughly as a group of generalists who make daily
contact with a wide variety of customers, and who sell a
wide variety of products.

Product generalists are far more likely to make contact with
small customers. These customers are less inclined to pur
chase a system they view as so complex that a specialist is
required to sell and support it. Creating a product that de
mands product expertise and specialization of a sales force
directly contradicts the fact that design teams of all sizes
and budgets have many of the needs listed above.

The resolution of this issue became a focal point of the
prototype analyzer product structure. The outcome of the
measurement server architecture decision would be the
major contributor to the cost of sales. Reducing the dimen
sionality of the product would help lower overall costs and
allow the product to be sold and supported by generalists,
not specialists.

Issues
The four issues that most affected the choice of measure
ment server architecture were:

â€¢ Fast throughput and quick answers
â€¢ A desire for a turnkey solution
â€¢ An affordable base system price
â€¢ Connection to diverse open-systems networks and

platforms and interfaces to a wide variety of tools.

In the Office (Remotel

The additional requirement that was used as a starting point
for the design was that the product must work with existing
HP 16500B systems and measurement modules. The design
team was to create a product that added functionality to the
HP 16500B system but did not require customers to make a
significant new investment in real-time acquisition hardware.

Work on the core software architecture began independently
of the measurement server decision. The four issues were

Host
Computers

â€¢ Remote View and
Contro l

â€¢ Measurement Archive
â€¢ Measurement

D o c u m e n t a t i o n
â€¢ Other Design Tools

(e.g. , EDA Tools)

In the Lab (Local)

X W i n d o w s
FTP, NFS
â€¢ â€¢ â€¢

ASCII Data
OMF Fi les

M e a s u r e m e n t
Se rve r

Loca l V iew and Con t ro l
M e a s u r e m e n t S e t u p
Measu remen t Cap tu re
Da ta No rma l i za t i on

Proto type

Fig. 2. HP 16505A prototype analyzer measurement server
implementation.

used as a basis for discussion about the pros and cons of
each measurement server architecture. In the end, an encap
sulated architecture was chosen, as shown in Fig. 2.

Throughput
Throughput was a key element of the prototype analyzer
design. A customer set a benchmark for the design team by
stating the expectation that a full screen of HP 16550A data
should be refreshed once per second. This became known
as the "one update per second" goal and was used as the de
facto throughput benchmark.

Table II outlines the amount of data that some HP 16500B
logic analysis system measurement modules capture in one
acquisition. The italic numbers indicate common configura
tions. These configurations were used in ad hoc tests by
R&D to evaluate the update rate as the software architecture
progressed.

A single acquisition covering several microseconds could
generate as much as 30M bytes of data. Sending this amount
of data over a customer's local area network would be im
practical and would cause severe network performance
problems. It was obvious that some sort of dedicated net
work would be required to move data quickly from the HP
16500B system to a workstation or PC for data normaliza
tion and display.

The real-time nature of the system implied a robust and
deterministic interface. Handling real-time I/O across open
networks without the benefit of a well-defined protocol is
difficult, and would require special drivers on both ends of
the network. Porting real-time code across platforms would
add complexity to the design.

June 1996 Hewlett-Packard Journal 25
© Copr. 1949-1998 Hewlett-Packard Co.

T a b l e I I
T y p i c a l M e a s u r e m e n t D a t a S e t s

H P 1 6 5 0 0
M e a s u r e m e n t M o d u l e 1 M o d u l e 2 M o d u l e s 3 M o d u l e s

H P 1 6 5 5 0 A 5 0 0 - M H z 5 5 K
Timing, 100-MHz State, bytes
4K Depth,
100 Channels

H P 1 6 5 5 5 A 5 0 0 - M H z 8 M
Timing, 110-MHz State, bytes
1M Depth, 64 Channels

H P 1 6 5 3 2 A 1 - G S a / s 1 6 K

D i g i t i z i n g O s c i l l o b y t e s

scope, 8K Deep,
2 Channels

H P 1 6 5 1 7 A / 1 8 A 1 2 8 K

4 - G S a / s T i m i n g , b y t e s

1-GSa/s State, 64K
Deep, 16 Channels

1 1 0 K N / A
bytes

16M
bytes

32K
bytes

256K
bytes

2 W
bytes

48K
bytes

384K
bytes

Leveraging analysis done by HP Laboratories and other divi
sions,3 the design team was quickly able to evaluate interface
performance characteristics. Table HI provides a comparison
of different interfaces and the estimated throughput of each.
Data handling in the HP 16500B and normalization time in
the HP 16505A is not included in these figures.

T a b l e I I I
I n t e r f a c e S p e e d s a n d E s t i m a t e d T h r o u g h p u t s

f o r 1 1 O K B y t e s o f D a t a

Although all three interfaces perform the llOK-byte transfer
in less than 0.5 second, the SCSI II interface offered a sub
stantial improvement in performance, which would be
needed when transferring the 30M-byte files found in high-
end HP logic analysis configurations.

SCSI II was not the first choice of the design team. The HP
16500B already had HP-IB and Ethernet ports. Adding a
SCSI port would take more time and resources. Some team
members argued that HP-IB performance could be im
proved. However, the HP-IB interface would then require a
corresponding connection on the other end. Since work
stations and PCs don't come standard with HP-IB interfaces,
the use of this port would require special hardware for the
host computer. No one relished the task of designing a
computer-based HP-IB card or evaluating the commercially
available cards.

Ethernet was a clear winner from a user perspective and an
Ethernet port was available on the HP 16500B. The two
strikes against Ethernet were its performance compared to

SCSI II and its inherent nondeterministic behavior, a result
of the collision detection and retransmission scheme used.

In the end, the SCSI II port won out. hi retrospect, the use of
the fastest interface available was an excellent choice, since
HP 16500B data sets continue to grow in size and customer
throughput expectations constantly increase.

As the design team developed the software architecture, it
became apparent that there were many areas where code
optimization could improve throughput. A problem with
software optimization is that it is often dependent on the
architecture of the underlying hardware. Although the team
was using the HP 9000 Series 700 workstation as a develop
ment station, a platform choice had not yet been made. One
factor that swayed the development team in favor of an en
capsulated measurement server was their feeling that signif
icant improvements to performance could be obtained by
tuning the software architecture to one computer architec
ture. This insight proved fortuitous because the R&D team
got the chance to optimize the architecture and gain a lOx
performance improvement when the coding was complete.

The decision to use SCSI II meant that a distributed mea
surement server architecture would not be feasible, since
SCSI is not a network protocol.

Turnkey System
With the interface issue settled, the design team began in
vestigating dedicated controllers. Both workstations and
PCs were evaluated. Each platform had advantages and dis
advantages, as outlined in Table IV.

T a b l e I V
C o n t r o l l e r C o m p a r i s o n

A d v a n t a g e s

Workstations
â€¢ Highest single-processor performance available
â€¢ Standard SCSI interface
â€¢ Good networking
â€¢ Good development environment
â€¢ Can act as X client or server
â€¢ Excellent graphics support

PCs
â€¢ Good performance
â€¢ Generally lower cost than workstation
â€¢ Excellent development environment
â€¢ Customers familiar with Microsoft WindowsÂ®
â€¢ SCSI interfaces available

D i s a d v a n t a g e s

Workstations
â€¢ Higher cost than PCs
â€¢ Many customers not familiar with HP-UX operating

system
â€¢ Potential for file system corruption
â€¢ Requires more base system memory

PCs

â€¢ X client software not readily available
â€¢ Acceptable but not robust networking

26 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

An important factor in the decision between a workstation
and a PC was the ability of a workstation to operate as both
an X client and an X server. Since customers demand both
local and remote viewing and control of the prototype ana
lyzer. X Windows was a necessity, hi general, PC -based oper
ating systems did not support this function or handled it as a
special case.

However, a problem with the choice of a workstation was
the HP-UX operating system. Many customers were not
familiar with HP-UX and did not want to learn it. Seeing an
HP-UX prompt on the screen would also create problems for
HP's general-purpose sales channel, who were generally
unfamiliar with the UNIXÂ® operating system.

The team decided to create a complete turnkey system on
top of the operating system. This meant that the system
could not be used to run other HP-UX applications or as a
general-purpose computer. While the implementation of this
policy was not technically difficult, explaining the concept
took considerable effort. The team found that since there
were many existing models of mixed measurement server
systems, the natural conclusion was that the prototype ana
lyzer would also be open for customer development. The
level of communication required to explain that the proto
type analyzer would be turnkey was much higher than antic
ipated. In the end, the team found that demonstration was
by far the most effective way of communicating the product's
structure and its advantages.

An added benefit of offering a turnkey system was that the
team did not have to worry about operating system revisions.
Maintaining an open system would require the team to put
ongoing effort into supporting three operating system revi
sions: the last, the current, and the future.

The prototype analyzer is built upon only one operating sys
tem revision. The entire system will be revised only when
customer needs change and substantial new functionality is
required. This frees the design team from chasing operating
system revision-related product defects.

Meeting Price Goals
Research indicated that while customers wanted a powerful
analysis and display environment, their perceptions of price
were influenced by the availability of PC and workstation-
based data analysis packages that sold in the U.S.$1000 to
$5000 range. Customers also viewed the prototype analyzer
as a kind of operating system. Operating systems aren't val
ued as highly as the applications that run on them.

This data implied that the total system price would need to
be in the range of U.S.$5000. The design team had two areas
where costs could be lowered. The workstation would rep
resent a large portion of the prototype analyzer material
cost. Selling and support expenses also contribute to the
total system cost.

Concurrent with the prototype analyzer development, HP's
Workstation Group was designing the HP 9000 Model 712
low-cost workstation. A review of the workstation's price
and performance specifications indicated that it would be an
ideal fit as an encapsulated measurement server.

The base system would consist of a 60-MHz CPU, 32M bytes
of RAM and a 525-Mbyte hard drive. The system would be

shipped from HP's workstation manufacturing operation to
the Colorado Springs Division, where a new operating system
and the application code would be loaded and tested. The
completed product would be shipped to customers from
Colorado Springs as a turnkey system. Minimizing the extra
handling helped keep direct manufacturing expenses low. As
with any new product, initial inventory was difficult to esti
mate because there was no order history. However, the abil
ity to order and receive semiconfigured systems with fairly
short lead times helped maintain a low inventory and thus
contributed to a low manufacturing cost.

Cost of sales is defined here as the effort put into customer
contact, demonstration, and objection handling during the
sales process. Although precise numbers on these efforts
are not available, the design team had sufficient practical
experience to know what factors contributed to a complex
product and a higher cost of sales.

Traditional instruments generally have a low cost of sales
because they can be easily explained, demonstrated, and left
with the customer for an extended evaluation. The instru
ment model was used as a goal for prototype analyzer struc
ture, connection, and demonstration.

A learning products engineer was assigned to evaluate barri
ers to installation and first measurement. Two goals were
adopted. The first was that customers should be able to get
the system running from a shipping box in less than one hour.
This was accomplished by examining in detail the steps a
customer would take getting from the shipping box to
power-up.

A second goal of getting from turning on the power to a
measurement in less than 15 minutes resulted in significant
changes to the initial user interface design. The initial inter
face used the standard window bar to access instrument,
analysis, and display tools. After several days of usability
testing at a customer site, the learning products engineer
mocked up a toolbox on the left side of the workspace using
masking tape on the monitor. The toolbox contained all avail
able tools. These tools could be dragged and dropped onto
the workspace (see Fig. 3) and would automatically connect
themselves.

The efforts put into these goals paid off. Both sales engineers
and customers found the product easy to set up and run.
The toolbox proved to be a big hit during customer demon
strations and added significantly to the ease of use of the
product.

Products with a substantial software content present sup
port problems. The EDA industry generally addresses this
issue with software maintenance or support contracts,
which provide the customer with software updates and
defect fixes over a specified period of time. Software main
tenance contracts are generally priced at a percentage of the
total system software cost.

The prototype analyzer team wanted to hold to the instru
ment model. Most instruments do not have software mainte
nance contracts. Instead, software upgrades and defect
fixes are usually distributed through an ad hoc process of
sales and system engineers personally distributing flexible
disks or occasional mailers to customers who have expressed
an interest in future software upgrades.

June 1 996 1 lewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

The prototype analyzer team decided to implement a soft
ware notification process. This process would reduce the
burden on the HP sales or system engineer of distributing
new software and defect fixes. Defects and minor revisions
would be distributed free of charge. Customers would re
ceive notification of the availability of major revisions and
related new products.

The difficulty with this approach lay in the need for many
new processes within HP. These included development of a
call-handling center to interface with customers and get
their names and shipping addresses for the free updates.
Process improvements are ongoing, but customers have
indicated their satisfaction with the approach.

Standard Interfaces
Somebody once commented that the great thing about stan
dards is that there are so many to choose from. The proto
type analyzer design team faced a bewildering array of net
working, data, and tool chain standards. Narrowing the
choices down to just a few supported standards would be
required to meet the project schedule.

Networking standards were quickly defined as a result of
the decision to go with the encapsulated architecture. This
choice necessitated the use of the X Window protocol to
support local and remote control and FTP/NFS to get data in
and out of the system. Ethernet was the natural choice for a

Fig. 3. Tools can be dragged from
the toolbox at the left side of the
display and dropped onto the
workspace of the HP 16505A
prototype analyzer. They connect
themselves automatically.

network connection. Fortunately all of the networking hard
ware and software was already present in the HP Series 712
workstation and only needed to be augmented with a graphi
cal user interface.

Early prototype analyzer users found that the networking
was sufficient but not ideal. In particular, customers asked
for the ability to call up remote X Windows applications
onto the prototype analyzer's local display. This feature was
useful because customers could access a remote application
such as a schematic or text editor from the lab bench. This
capability was added in a subsequent release of the product.

Interfaces to hardware and software tool chains continue to
evolve. The encapsulated measurement server approach en
ables the design team to maintain control over the type and
manner of data exchanged with other design tools. Having
control over this process provides additional robustness and
stability which is critical to maintaining the low cost of sales
discussed above.

The Results
The HP 16505A prototype analyzer has met its price and
performance goals. The only true measure of a product's
contribution, however, is customer acceptance. A wide
range of customers, including all major computer manufac
turers, have purchased prototype analyzers to aid in the
development of their high-performance digital systems.

28 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Measurement throughput continues to improve as the design
team gains knowledge about the cause of performance bottle
necks. The ability to focus on a single platform and the sim
ple software update process afforded by the encapsulated
nature of the prototype analyzer make it easy for the design
team to develop and distribute new software that contains
performance improvements.

Adherence to network standards such as FTP. NFS. and the
X Window System has lowered the support burden. How
ever, the diversity of customer networking schemes does
create a demand for factory-based network troubleshooting
expertise. The design team will continue to apply best net
working practices to the system in an effort to reduce the
occurrence of network setup problems. Usability testing will
be used to gain insight into networking problems.

The ability of the architecture to support additional function
ality makes it a cornerstone of HP's real-time measurement
solution for digital design teams. The reduced cost of incre
mental development and the low cost of sales and support
are important product attributes that outweigh the higher
cost of goods sold compared to host-based architectures.

Conclusions
The development of the HP 16505A prototype analyzer pre
sented unique challenges to the project team. The encapsu
lated measurement server approach taken by the team
meant there were no guideposts to follow. The success of
the project was in doubt until the product was introduced.

The decisions described in this article may appear obvious
in hindsight. They were not. The design team wrestled with
the pros and cons of the measurement server architecture
decision throughout the product development cycle. As new
data became available, the team eventually rallied around
the encapsulated approach. As with any new endeavor, at
the time the decisions must be made, there are no right
answers, only informed judgments.

The design team learned several lessons during the develop
ment process. One clear lesson was to focus on solving cus
tomer needs. Issues such as internal architecture and form
factor are important, but clearly secondary to the problems
the product is trying to solve. An important market research

lesson the team learned is to encourage customers to de
scribe their problems, not their thoughts on instrument
architecture.

Acknowledgments
The author would like to acknowledge several people for
their significant contributions to the HP 16505A prototype
analyzer. James Kahkoska distilled hundreds of customer
needs into an innovative software architecture and provided
the vision, skill, and tenacity needed to bring the product to
market. Pat Byrne acted as mentor for the project through
various internal checkpoints and helped craft and present
the product's benefits to countless customers. The design
team of Frank Simon, Mark Schnaible, Tracy Vandeventer.
Doug Robison, Jeff Roeca, Richard Stern, John Friedman,
Mason Samuels, Dave Malone, Mick Backsen, Bob Beamer,
and Pat Desautels added their expertise, insights, and de
dication to meet project deadlines. Doug Scott added his
unbiased expertise on user task analysis. Steve Shepard and
Jeff Haeffele (the "Binars") provided invaluable moral sup
port and coaching. The extended project management team
spanning all functional areas within the HP Colorado
Springs Division, too numerous to mention here, also merit
appreciation and gratitude for their process expertise and
enthusiasm in support of this project.

References
1. N. Barnholt, "Future Test Systems Will Use Standard Networking
Protocols," Electronic Design, January 10, 1994.
2. R. Helsel, Cutting Your Test Development Time with HP VEE,

Hewlett-Packard Professional Books, Prentice Hall, 1994.
3. J. Burch and K. Moore, Communication Architectures for Next

Generation Measurement Systems, HP Laboratories Technical Re
port HPLÂ·92-137, November 1992.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

HP-UX 9.* and 1 0.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.
UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.
Pentium is a U.S. trademark of Intel Corporation.

June 1996 Hewlett-Packard Journal 29
© Copr. 1949-1998 Hewlett-Packard Co.

A Normalized Data Library for
Prototype Analysis
The goal was that each analysis and display tool to be included in the
prototype analyzer should be designed and written only once. Therefore,
the data library is designed to normalize the variety of basic logic analyzer
data types and the variety of postacquisition data types generated by
various analysis tools and to present this data to other analysis and
display tools in a standard format.

by Mark P. Schnaible

Early in the design of the HP 16505 A prototype analyzer we
realized we needed a new library for storing and retrieving
logic analyzer data if we were going to meet our project
goals. We needed to duplicate the results of hundreds of
software engineer-years of effort in the HP 16500A/B logic
analysis system and measurement modules. We also had to
lay the groundwork to meet the requirements of our proto
type analyzer vision.

Understandably, we did not want to allocate enough people
to meet the first challenge for the duration of our relatively
short schedule. However, looking at where the original time
was spent led to some insights, hi the original HP 16500A/B
system, effort had to be duplicated for each logic analyzer
plug-in card introduced. That is, for each card, the lister,
waveform, chart, and other software modules needed to be
rewritten. Some code leveraging took place, but we did not
come close to complete code reuse. The different ways in
which the analyzer cards present data to the software (largely
because of differing memory layouts) had much to do with
this lack of reuse. Out of this observation came the design
goal that each analysis and display tool to be included in the
prototype analyzer should be designed and written only once.
This meant that our library needed to handle the variety of
basic logic analyzer data types as well as accommodate the
variety of postacquisition data types that our envisioned
analysis tools would generate, and present this data to other
analysis and display tools in a normalized format. Fig. 1
shows the reduction in the dimensions of the coding effort
we hoped to attain because of this library. It also shows that
we would have automatic commonality of feature sets
across acquisition modules. Previously, some features for a
new logic analyzer card were not present at the initial release
of that card.

Several other design goals emerged that would allow us to
meet our challenges:
Retrieval time for analysis and display tools to access the
data should be minimized. In the HP 16500A/B environment,
the acquired data is examined in typically one display per
acquisition. In the prototype analyzer environment, the goal
was to encourage data exploration and to view and analyze
acquisitions with several tools. We wanted to permit users

to examine data simultaneously with the same view in dif
ferent locations and with different views in the same loca
tion. These use models led to multiple accesses of the same
data, in contrast with the HP 16500A/B model of a single
view of data in a single location. Fig. 2 shows the equivalent
prototype analyzer graph of an HP 16500A/B use model while
Fig. 3 shows a prototype analyzer graph with the multiple-
view, multiple-location use model.

Acquisit ion
Modules

HP16517A

HP16532A

HP16550A

HP 16555A

â€¢

â€¢

(a)

Acquisi t ion Modules

Analysis and Display Tools

W a v e f o r m L i s t i n g C h a r t D i s t r i b u t i o n

W a v e f o r m L i s t i n g C h a r t D i s t r i b u t i o n

W a v e f o r m L i s t i n g C h a r t D i s t r i b u t i o n

Analysis and Display Tools

Pattern Filter

Performance Analysis

Software Analysis

(bl

Fig. 1. (a) In the HP 16500A/B logic analysis system coding model,
tool the had to be rewritten for each plug-in card. (b) In the
HP 16505A prototype analyzer coding model, data is normalized
immediately after acquisition and is available to all tools in a stan
dard format. Thus, the tools had to be coded only once.

30 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Single-View Single-Locat ion

Fig. 2. Prototype analyzer graph
of an HP 16500A/B logic analysis
system single-view, single-location
use model.

1 Storage space for acquired data should be minimized. Given
the potential size of some logic analyzer acquisitions
(>40M bytes), undue expansion of the data was unaccept
able. As always, however, there exists the trade-off between
minimized retrieval time and minimized storage space.

1 The storage mechanisms used by the library should be com
pletely decoupled from application or client modules. That
is, changing the way data is stored should not affect any
lines of client code. Examples of client code include the
tools that analyze and display the acquisition data such as
the lister, waveform, chart, distribution, and pattern filter
tools.
The interface to the library should be a "natural" C++-style
application programming interface. No new style of pro
gramming should be introduced that would be different
from normal C++ syntax.

1 The library should provide a layer of memory management
over the acquired data. Again, the possibility of very large
data sets makes it vitally important not to leak these huge
memory chunks or provide stale pointers to nonexistent
data. This goal is made more difficult by the potential com
plexity of graphs possible in the prototype analyzer. Fig. 3
shows that there may be many analysis and display tools
examining and viewing the data simultaneously. All of these
references to the data must be handled properly to prevent
large memory leaks.
Finally, time correlation between different sets of data or
analyzer acquisitions must be possible. This requirement
makes it possible for users to examine their systems on
several different hierarchical levels concurrently, from look
ing at the analog nature of a ground pin bouncing to looking
at the high-level source code executing at that moment in

Fig. 3. Prototype analyzer graph of
an HP l(>r>().r>A prototype analyzer
multiple view, multiple location use
i lei.

June 1996 Hewlett-Packard Journal 31

© Copr. 1949-1998 Hewlett-Packard Co.

time. Time correlation of measurements also makes it feasi
ble to plot one derived measurement against another derived
measurement. Previously nonobvious relationships between
variables may appear as a result of these charts. Simply
having the ability to move markers in one view of an acqui
sition and watch that location automatically tracked in a
different view of the same acquisition is another benefit of
time correlation.

Starting with this list of requirements, we searched for any
existing libraries that would meet our needs. We examined
three HP internal libraries and one public-domain library.
None of these met all of our requirements. Among the rea
sons we rejected them were data set size limitations,
non-C++ APIs, file-based memory storage, inefficient stor
age models, inability to handle the variety of data types, and
mismatches between application models.

Data Sets and Data Groups
The visual programming user interface of the HP 16505A
prototype analyzer presents users with a left-to-right flow of
data from sources to displays. Lines between the icons rep
resent this flow. The first thing to decide was exactly what
kind of objects move from icon to icon.

One of the first things users do in the HP 16500A/B environ
ment is to define what the analyzer probes are connected to.
This seemed like a natural place to start our definition of the
normalized data library. A label entry represents one or
more probes defining a logical value. Typical examples are
the logic analyzer probes connected to an address, data, or
status bus of a microprocessor or an oscilloscope probe
connected to Vcc, Vss, or a clock signal. The label entry has a
name, polymorphic ordinate data, attributes, and perhaps a
database of value-to-symbol mappings associated with it.
Fig. 4 shows the class diagram of a label entry using the
Booch notation.1 A logic analyzer or oscilloscope commonly
probes several of these label entries.

If we collect all label entries that share exactly the same
sampling information, we have a data, set. All of the label
entries from a single logic analyzer acquisition share the
same sampling information, so they can be collected into

List<Label Entry>

Name

Fig. 4. Class diagram of the label entry class using Booch notation.1

a data set. Likewise, all of the label entries from a single
oscilloscope acquisition share the same sampling informa
tion. The data set contains a pointer to some polymorphic
data representing this sampling or x-axis information. We
call this the abscissa data. The actual abscissa data object
varies with the type of acquisition. The data set also contains
time correlation information indicating which other data
sets a particular data set can correlate with and indicating
their relative trigger times. Another form of information
contained in a data set is called tags. Tags represent the
availability of each sample row in a data set. Tools such as
the pattern filter or the sequencing filter can remove lines
from a data set based on some pattern of data or a sequence
of data. The memory for these lines is not deleted; the lines
are simply marked as not available by these tools.

When we collect one or more data sets for input to a tool,
we have a data group. Data groups are the objects that "go
along the wires" of the visual programming graph. A data
group is simply a list of data sets and some information indi
cating the nature of correlation among the data sets. A data
group may contain data sets that have no correlation, time
correlation, state correlation, or both time and state correla
tion. Each tool can indicate to the system what kind of cor
relation it requires incoming data sets to have. Inputs that
do not match this criterion cause a warning message to be

List<Data Set>

Data Group *~
1

Correlation
Information

Abscissa Data

State Correlation
Information

List

Tags

Information Fig. 5. Class diagram for data sets
and data groups.

32 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Absc i ssa Da ta

T i m e T a g s P e r i o d i c

Fig. 6. Class hierarchy for abscissa data.

shown on the display. Fig. 5 shows the class diagram for
data sets and data groups.

Abscissa Data
As mentioned above, the x-axis information (the abscissa
data object contained within each data set) is a polymorphic
type dependent on the type of acquisition or measurement
of the data. Fig. 6 shows the class hierarchy of this informa
tion. The abscissa data base class represents a simple num
bered sequence of states with one of those states being the
trigger state. This concrete base class is the type used for
generic logic analyzer state clocked acquisitions with no time
information, that is, no time tags. Objects of type periodic
are used for logic analyzer timing acquisitions as well as
oscilloscope acquisitions. This class stores information
about the sample period and exact time at trigger. The time
tags class is used for logic analyzer state acquisitions with
time tagging turned on. These tags indicate the exact time
for each sample, which may or may not be periodic. This
class is also used for calculated data sets derived from logic
analyzer acquisitions. For instance, a series of setup and
hold calculations derived from a timing acquisition will have
a time tag for each pair of setup and hold values. We can
save considerable space with this technique because the
setup and hold times are sparse compared to the sample
density of the original acquisition.

Ordinate Data
The probed data or calculated data contained in the label
entries is also a polymorphic object. The base class of this
hierarchy is an abstract base class called ordinate data
which defines the interface for classes derived from ordinate
data. Fig. 7 shows the class hierarchy rooted with ordinate
data. Classes derived from ordinate data are analog, states,
glitch, and state count. Other classes can be added to this

Ordinate Data

hierarchy as needed. The analog class contains a polymor
phic pointer to the quantized samples and an object specify
ing how to convert these quantized values to floating-point
values. In the case of an oscilloscope acquisition, this
header contains the formula to convert from quantized sam
ples to voltage. The states class contains a pointer to some
polymorphic data representing the binan' values acquired at
the logic analyzer probes. The glitch class contains the same
information as the states class as well as a parallel data ob
ject indicating the presence of glitches for each sample. The
HP 16550A logic analyzer card is capable of acquiring this
type of data. The state count class holds the data represent
ing the number of states that transpired between acquired or
store-qualified states. The trigger systems of HP logic ana
lyzers allow users to specify which states to store out of all
the states the logic analyzer sees based on some sequence of
events. The state count object holds values that represent
the number of states that were not stored.

Analyzer Memory Layout
Our definition of a label entry shows that the data for each
label entry is stored with that label and the data for no other
label entry is stored with that label. This contrasts with the
HP 16500A/B series of logic analyzer cards in which all of the
acquisition data is stored in one block of RAM. Each time
the data for a particular label needs to be retrieved, the bits
must be extracted from this block and packed into a value
representing a sample. As Figs. 8 to 10 show, the format of
these blocks of memory differs from analyzer to analyzer.2'3
The data formats in the acquisition cards are designed to be
optimally space-efficient. There is a one-to-one mapping
between bits of memory and probe tips so no memory waste
occurs. There are two downsides to this design choice:
(1) time must be spent every time a sample needs to be ex
tracted from this block of memory and (2) the memory lay
outs are different for each analyzer. For the multiple-view,
multiple-location use model of the prototype analyzer, access
time for each sample of data is critical. For code reuse rea
sons, we need to hide the memory layouts from client code.
Since we acquisition cards were already in production, we

States

Fig. 7. Class hierarchy for ordinate data.

Bit Numbers

Glitch

Fig. 8. HP 16517A acquired data format (three-card analyzer,
full-channel mode only).

June 1996 Hewlett-Packard Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

2 Bytes 2 Bytes 2 Bytes 2 Bytes 2 Bytes 2 B y t e s 2 B y t e s

Sample 0 Clock Pod PodB Pod 5 Pod 4 Pod 3 Pod 2 Podi

Sample 1 Clock Pod Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Pod 1

Sample 2 Clock Pod Pod 6 Pod 5 Pod 4 Pod 3 Pod 2 Podi

had little motivation to alter the way they presented data to
the prototype analyzer. We wanted to minimize the software
investment in these finished products.

Format Specifications for Labels
Fig. 11 shows a partial format specification for the Intel P54C
microprocessor. Customers use this dialog to specify which
pins on various pods of logic analyzer probes are connected
to different labels. Some labels, such as for an address bus or
a data bus, tend to be probed with contiguous probe tips.
However, other labels can be probed with discontinuous pins
from different pods. The exception label (Excptn) in Fig. 11 is
an example of this in the P54C specification. Depending on
the complexity of the format specification, the extraction
time for these labels can vary greatly. Even for contiguous
labels with widths of 32 or 16 bits such as address or data,
considerable time can be spent extracting these values from
the monolithic block of memory.

For the normalized data library, we decided to extract the
data for each label once for each acquisition and store it in
its own chunk of memory. Label entries whose bit widths
match the native machine data type widths (8, 16, or 32 bits)
are extracted and stored as arrays of C++-type chars, shorts,
or Â¡nts. Once these samples have been extracted or normal

ized, subsequent retrievals are simply array lookups. All
labels that have non-native widths are combined into a block
of bytes. Before the values are inserted into this block, how
ever, any discontinuity in the ordering of the bits is removed
to speed later retrievals. Some space inefficiency can result
from this technique. The total possible bit wastage is:

Acquisition Chip n

32 Bits 16 Bits

S O S I S 2 S 3 S 4 S 5 S 6 S 7

(2 Clock Bits per Sample)

(Two Acquisit ion
Chips per Card;

n = 1 to10)

S8 S9 S10 S11 S12 S13 S14 S15

Fig. only). HP 16555A acquired data format (full-channel mode only).

Fig. 9. HP 16550A acquired data
format (one-card analyzer only).

(^non-native widths j mod 8 x acquisition depth.

We make this trade-off to provide faster access times to the
data. Data drivers for each logic analyzer module supported
are responsible for normalizing the data. These drivers can
be arbitrary about choosing data types because they know
the memory layouts of the cards and the specific widths of
labels. Fig. 12 shows the class diagram of the ordinate data
types with the various integral data types.

Accessing the Data
Once we have stored the data in a normalized format, we
need methods to access the data. A study of existing code
and an analysis of how future tools might need to access the
data showed that retrieval tended to be very sequential in
nature. If we picture an acquisition as a matrix of data, with
rows representing samples or time and columns representing
the various labels, two retrieval styles emerge: row major
and column major. Tools that use the row major style want
to examine all of the labels for a certain sample before they
proceed to the next sample. The lister, pattern filter, and
sequencing filter use this style. Tools that use the column
major style look at all samples of a particular label or column
before they look at the next label. Waveform drawing, chart
ing, and histogramming tools access the data this way.

A programming idiom that supports this sequential nature of
accessing data is called an iterator.'1 We defined classes for
iterating over data contained in the abscissa data class hier
archy as well as data contained in the ordinate data class
hierarchy. Fig. 13 shows the abscissa-itor class hierarchy
and Fig. 14 shows the ordinate-itor class hierarchy.

Both diagrams show that there is a one-to-one correspon
dence between data types and iterators over those data
types. Since we don't want client code to know how the data
is stored, we need some way to hide this information from
clients while still providing them with a way to get at the
data. We use the letter/envelope programming idiom to
accomplish this.5 Clients construct an envelope object (gen

eral abscissa-itor and general ordinate-itor in the diagram),
which can then ask the data to construct an iterator over
itself. Clients never have to know what kind of data is being
accessed. The envelope and letters are derived from a com
mon base class which defines the interface for the iterators.
The envelope serves as a forwarding object to the real itera
tor, for letter. The iterators have an orthogonal interface for
data retrieval and iterator positioning. There are methods for
looking at the next and previous data elements (which then
alter the position of the iterator), methods for peeking at the
next and previous data elements (do not alter the position),

34 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

methods for querying and setting the position of the iterator,
and methods for testing forward and backward iterator
exhaustion. Multiple iterators can be constructed to look at
the same data; this would be the case in a prototype analyzer
graph that takes advantage of the multiple-view, multiple-
location use model. Iterators are declared so that they can
only access the data. We provided no iterator methods that
would modify the data.

We also defined an iterator that is a combination of an
abscissa-itor and an ordinate-itor. The data-itor retrieves
pairs of values representing the value of a label and the sam
ple or time at which it occurred. In addition to the orthogonal

Fig. 11. Partial format specification
for the Intel P54C microprocessor.

interface described above, this iterator also provides methods
to report the value and location of the next or previous
change in the ordinate data. These methods are useful for
waveform drawing algorithms.

Row major iteration over multiple correlated data sets is
aided by group abscissa iterators. These iterators examine a
list of abscissa-itors (one for each data set in the data group)
and return the next or previous x-axis value and a list of
identifiers that select the data sets from which that value
comes. These iterators come in handy, for example, in visual
programming graphs that have multiple analyzers fanning in
to a single analysis tool (Fig. 15). For a lister display that has

States Glitch
State Count

Integral Data

.V

Analog

Bit -Packed Data

Integral Array Base

Integral Array 1 B i t B l o c k Fig. 12. Class diagram for the
ordinate data types (top) with
the various integral data types.

June 1996 Hewlett-Packard Journal 35
© Copr. 1949-1998 Hewlett-Packard Co.

Abscissa-l tor Ordinate-ltor

General
Abscissa- l tor

Envelope

Default
Abscissa-ltor

Letters

T i m e T a g s - l t o r P e r i o d i c - l t o r

Fig. 13. Abscissa-itor class hierarchy.

multiple data sets merged (Fig. 16), we need to show the
data from the various analyzers interleaved in time as they
were actually sampled.

Memory Management
With the increasing acquisition depth and width of HP logic
analyzers, data sets can have sizes greater than 40M bytes,
hi the prototype analyzer environment, users can be examin
ing these data sets in several locations with several views.
Having so many references to the data can easily lead to
memory management problems, particularly nasty among
them being memory leaks and pointers to stale memory.
A memory leak occurs when a process no longer has any
references to a chunk of memory that has been allocated
from the heap of memory available to the process, and thus
there is no way to return the memory back to the heap. As
an application leaks more and more memory, less is available
to that process and eventually the application will halt be
cause of an out-of-memory error. Leaking very large blocks
of memory will cause this condition to occur sooner. Pointers
to stale memory result when the application does return a

Default
Ordinate-ltor

Envelope

Integral
Array-ltor

Letters

Bit Packed
Data- l tor

Fig. 14. Ordinate-itor class hierarchy.

chunk of memory to the heap but keeps other pointers to
that same memory, which the application no longer owns.

The normalized data library uses the reference counting
idiom5 to overcome these potential problems. Passing a data
group from one tool to the next creates a copy of the data
group. These copies result in incrementing reference counts
to the individual blocks of data contained in the abscissa data
and ordinate data object hierarchies. Defining an iterator
over this data also constructs a copy of the data, which
causes a reference count increase. Destroying the data
(by deleting a tool) or deleting iterators causes these copies
to be deleted, which then causes the reference counts to be
decremented. When the reference counts reach zero it is
safe to release the memory back to the heap. At that time we
are sure no other references to that memory exist. The nor
mal execution of a tool includes these steps:
Delete the old output data group of the tool.
Delete the old input data group of the tool.
Construct a new input data group for the tool by merging all
inputs.
Execute the tool (delete old iterators and construct new
ones).

Fig. 15. A visual programming
graph with multiple analyzers
fanning in to a single analysis
tool.

36 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fan-In Listing

File Edit Options Markers

luProcessor : Labi ridge ASIC: Labi High-Speed RflM:Labl

-282.000 ns

-253.500 ns

-250.000 ns

-218.000 ns

-186.000 ns

.7Ã54.000 ns_

-Ã25.5Ã’Ã’"ns

-122.000 ns

-90.000 ns

-58.000 ns

-26.000 ns

 O s

2.500 ns

6.000 ns

30.000 ns

32.000 ns

62.000 ns

64.000 ns

94.000 ns

96.000 ns

126.000 ns

128.000 ns

130.500 ns
Fig. 16. A lister display with
multiple data sets fanned in.
The data sets from the various
analyzers are interleaved in time
as they were actually acquired.

1 Construct a new output data group for the tool.

We defined our iterators such that they do not modify the
underlying reference counted data. In cases where tools need
to modify the reference counted data (such as pattern filters
which modify the tags object in a data set), we use the copy-
on-write optimization: operations that would change the
data cause a completely new copy of the data to be created
and cause reference counts to be adjusted accordingly.

Case Study
During the design of the normalized data library for the
prototype analyzer we made a conscious decision to incur
the overhead of normalizing the acquisition data immediately
after transferring the data from the HP 16500B mainframe to
the prototype analyzer. This happens once per acquisition
and before any tools examine the data. We do this immedi
ately to optimize the response time of postacquisition data
exploration. For very large acquisitions, however, this nor
malization time can be considerable.

At the initial release of the prototype analyzer, one customer
was making such an acquisition with IM-byte-deep HP
16555A logic analyzer cards probing an Intel P6 micropro
cessor and a PCI bus. We found the normalization time to be
too large in this case â€” the acquisition data exceeded 30M
bytes. After studying where our code was spending time
during the normalization process, we optimized certain
sections of code as well as significantly changed the way in
which the data driver for that module stored the data in the

object hierarchies. After our optimizations, we reduced the
normalization time by a factor of ten. More important, we
did not need to change a single line of client code (lister,
waveform, chart, etc.) to take advantage of this optimization.

Conclusions
At the introduction of the HP 16505A prototype analyzer we
met most of our project goals. We duplicated almost all of
the HP 16500B functionality for the HP 16550/4/5/6A, HP
16517A, and HP 16532/3/4A acquisition cards and added sev
eral significant features such as pattern filtering and multi
ple-view, multiple-location data exploration. The ability to
write a single dynamically loaded shared library for each
analysis and display tool that would work for any of the data
retrieved from the acquisition cards was prominent among
the reasons we met our goals. We continue to create new
analysis and display tools that will help our customers solve
their most difficult design problems.

References
1. G. Booch, Object-Oriented Design with Applications, Benjamin
Cummings, 1991.
2. HP 16517A/18A Programmer's Guide, Hewlett-Packard Part
Number 16517-97000.
3. HP 16550A Programmer's Guide, Hewlett-Packard Part Number
16550-90902.
4. E. Gamma, et al, Elements of Reusable Object-Oriented Software,

Addison-Wesley, 1995.
5. J.O. Coplien, Advanced C++ Programming Styles and Idioms,

Addison-Wesley, 1992.

June 1996 Hewlett-Packard Journal 37
© Copr. 1949-1998 Hewlett-Packard Co.

A Full-Featured PentiumÂ® PCI-Based
Notebook Computer
The HP OmniBook 5000 computer takes advantage of new technologies
such as hot Pentium, PCI, plug and play, lithium-ion batteries, and hot
docking to give users the same capabilities as their desktop computers.

by Timothy F. Myers

The HP OmniBook 5000 computer (Fig. 1) marks a change
in the direction of notebook computers designed by Hewlett-
Packard. Earlier OmniBook products focused on being
ancillary tools to the conventional desktop PC. The designs
were biased towards small size, long battery life (or more
usually, a smaller battery), and the ability to run most major
programs. They brought to the customer new features such
as instant-on, battery charging while operating, expandability
via the PCMCIA standard (now known as PC Card Standard,
or more simply PC Card), and simplified use. As customers
became acquainted with their mobile computers they de
manded that their portables have the same functionality as
their desktops. Thus began the emergence of color displays,
larger hard drives, faster processors, and external flexible
disk drives in the HP OmniBook family. When the Corvallis
Division became the Mobile Computing Division with the
charter to design, produce, and market a full range of mo
bile computers, we realized that we needed to fill a gap in
HP's computer line: the full-featured notebook computer.

Full-featured notebook computers today are characterized
as having the same capabilities as desktop computers, albeit
with some time lag for the highest performing models. Over
the past few years, the spread in processing performance and
features between notebooks and desktops has narrowed. At

Fig. 1. HP OmniBook 5000 computer.

the end of 1995, the gap was only about three to six months.
Today's customers not only demand that their notebook
have the same capabilities as their desktop but also expect
more in features that make mobile computing easy. In addi
tion to being a desktop replacement the notebook computer
should provide the same flexibility in prepurchase configu
rations and future expandability.

To facilitate HP's entry into the full-featured notebook mar
ket we chose to partner with a foreign notebook design and
manufacturing company to quickly modify and produce a
product for this segment. While the HP OmniBook 4000 was
a very solid and feature-rich notebook product, our custom
ers quickly requested features that were unique to our origi
nal OmniBooks, especially instant-on. Instant-on is a feature
that allows users to put the machine into a low-power state
and later resume working exactly where they had suspended
their work. The main difference between HP's instant-on
and our competitors' suspend feature is that the amount of
time that our products can remain in the suspended state is
measured in weeks, compared with hours or a couple of
days for competitors. With the advent of new technologies
such as mobile Pentium, PCI, plug and play, lithium ion bat
teries, and hot docking, we felt that we could design a prod
uct that would set HP apart from many competitors offering
Pentium notebooks. The HP OmniBook 5000 shows that
there are still abundant areas for contribution, even in a
highly competitive market.

Because of the multiple choices before us in chipset selection
and peripheral 1C technologies, we needed to have some
major goals to guide our design process. While earlier HP
OmniBooks focused primarily on size, power, compatibility,
and performance, in that order, our criteria were different.
Our target market was to be mainly corporate users, so our
first goal was compatibility: "If we can't run it, they won't
buy it." If our product makes it difficult to get some program
or utility working, our customers will pick another product.
The second major goal was performance. If our product is
not near the top in benchmark performance, we will not
appear to be technology leaders. The third goal was power
management. If our product does not run very long on a
battery charge it will not be very convenient. If we do not
manage power wisely, the heat generated by the compo
nents could affect reliability, functionality, and customer
satisfaction. Of course, there were other goals, such as con
venience, quality, reliability, and functionality. However, the

38 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

first three guided the decision process for the HP OmniBook
5000.

Architecture
The HP OmniBook 5000's architecture is based on a layered
bus concept. Fig. 2 is a block diagram of the computer. This
approach allows the devices that need higher data band-
widths to reside on an appropriate layer to maximize perfor
mance, power, number of pins, and functionality. The widest-
bandwidth bus is the Pentium's 64-bit data bus. On this bus
are the system DRAM memory, the level-2 cache, the host
bridge, and the Pentium CPU. The CPU bus can operate at
50, 60, or 66 MHz, depending on the CPU processing speed.

It is imperative that external memory data be delivered to
the CPU as fast as possible. The Pentium processor has 16K
bytes (8K data, 8K code) of internal level-1 cache, and the
CPU module can support 256K bytes of external level-2
cache. The level-2 cache is implemented using burst

synchronous static RAM with fast access speeds so there
are no wait states other than the address lead-off cycle.
Because the Pentium CPU and level-2 cache consume quite
a bit of power even in a nonclocked state, the power to
these devices is turned off during suspend periods and the
control signals from the host bridge are put into a high-im
pedance state (Instated). The host bridge provides the
DRAM and level-2 control and also serves as a gateway to
the PCI bus.

The system DRAM can be arranged into four logical banks
in two physical slots. The user can select from 8M to 64M
bytes of memory in granularity of 8, 16, 24, 32, 40, 48, and
64M bytes by combining 8M-byte, 16M-byte, and 32M-byte
modules. The DRAM supports self-refreshing, so when the
HP OmniBook 5000 is suspended, the DRAM retains its con
tents without clocks or signals from the host bridge. All
DRAM memory is removable and accessible which makes it
easier to replace and upgrade.

Processor
PSALM

Level 2 Cache
256K Bytes

Optional

Bus Buffer
and

Real-Time
Clock

32K-Byte
Flash Memory

Keyboard
Controller

BIOS
256K-Byte

Flash Memory

8-Bit Data Bus (XD Bus)

Fig. 2. Block diagram of the HP OmniBook 5000 computer.

June 1996 Hewlett-Packard Journal 39
© Copr. 1949-1998 Hewlett-Packard Co.

PCI-Based I/O Architecture
The HP OmniBook 5000 I/O bus architecture is designed
around the Peripheral Components Interconnect (PCI) bus.
The PCI bus in the HP OmniBook 5000 is designed to run at
33 MHz for all processor speeds. At 32 bits of data width, the
theoretical bus transfer rate at burst speeds is 132 Mbytes
per second. This overabundance of data transfer bandwidth
allowed us to add many devices to the PCI bus to increase
system performance. The video, SCSI, and 16-bit PC Card
(formerly PCMCIA) controllers all reside on the PCI bus
along with the CPU host bridge and the ISA (Industry Stan
dard Architecture) bridge. The SCSI controller, the CPU host
bridge, and the ISA bridge are capable of bus mastering,
which allows them to assume control of the PCI bus.

The PCI-to-ISA bridge contains the power management unit
that controls the CPU clocking and peripheral power states.
The ISA bridge also contains the standard PC-compatible
components such as the interrupt controller, the DMA con
troller, system timers, memory mappers, and the ISA bus
interface. This 1C translates the 32-bit PCI bus commands
and data that are directed to the 16-bit ISA Bus.

The CPU clocks are managed by using a dock throttling

scheme. This method was developed for the Pentium CPU
since it has an internal fractional frequency multiplier to
allow higher processor speeds while limiting the external
bus speed. Because of this multiplier function, one cannot
just slow down the CPU's frequency to reduce power con
sumption as was done in previous products. Instead, the
power unit makes a request to the CPU for permission to
stop the clock. The CPU responds by issuing a special bus
cycle when it is finished with the current instruction and
then stops its internal clock. When an external event such as
an I/O or timer interrupt occurs, the power unit releases the
request signal and the CPU restarts its internal clock and
resumes operation. Fig. 3 shows the timing of the stop-clock
function.

The ISA bridge includes a 32-bit IDE controller, which allows
faster disk accesses with newer operating systems. This 1C
redefines the ISA bus during idle cycles to handle the 16-bit
IDE hard drive controller signals. Buffers provide isolation
between the IDE and ISA buses and allow the hard disk to
be powered off while the system continues to function.

Video Controller. The HP OmniBook 5000 video controller
features LCD panel (DSTN or TFT) and external video inter
faces with VGA or SVGA options. In addition, the video sys
tem provides NTSC/PAL video output (the video used in

VCRs or camcorders) to allow presentations to be displayed
on a standard TV monitor or recorded on a VCR for playback
at a later date.

The video controller resides on the PCI bus so that data from
the CPU is quickly written to the video memory. The video
memory provides a IM-byte video space for up to 64 million
colors in 640 x 480 VGA mode. It also has a 0.5M-byte frame
buffer to increase the performance of the dual-scan (DSTN)
LCD. The memory on the video controller operates at 3.3V
to conserve power and reduce heat. The video DRAM's self-
refresh mode preserves the video screen data while the HP
OmniBook 5000 is suspended and clocks to the video con
troller are stopped.

The video circuits automatically detect when a user con
nects either SVGA or NTSC/PAL video cable to the HP Omni
Book 5000. The BIOS will detect the appropriate monitor
type and enable the proper video settings based on the
selections made in the system setup utility. This feature
makes it easier for the user to set up presentations quickly.

16-Bit PC Card Controller. The PC Card controller resides on
the PCI bus to allow for several features. By making this
controller a PCI device, we are able to map it to a different
I/O address should there be a conflict with a legacy ISA card
in the docking station (described later). This design makes it
possible to support new PC Card standards (e.g., Cardbus,
based on 32-bit PCI) in the docking station by remapping or
disabling the internal controller. We are also able to increase
the system performance by having PC Card accesses bypass
the bus translations that would be necessary with separate
PCI, ISA, and PC Card buses as in the classical implementa
tion. Performance is also increased because devices that
support DMA (e.g., the sound card) do not slow down CPU-
to-PC Card transfers (i.e., networks). The HP OmniBook
5000 design has two slots for either two type II cards or one
type III (double-height) card. The interface software allows
the cards to be shut off completely during suspend mode
and to be restored when operation resumes. Device drivers
are designed to support advanced power management calls
(described later) to prevent disk corruption during suspend
mode.

SCSI Controller. The SCSI controller option on the HP Omni
Book 5000 is provided to give the user a simple way of con
necting to external devices such as CD-ROM, external hard
disks, backup tape drives, and scanners. This versatile inter
face provides a high data transfer rate (up to 10 Mbytes per
second). The SCSI interface can be disabled when not in use

C P U C L K

S T P C L K * â € ” ~ \
Chipset Asserts Signal Chipset Releases Signal

C P U B u s C P U P r o c e s s i n g ^ ^ S T P G R A N T S p e c i a l C y c l e ^ ^ C P U R e s u m e s P r o c e s s i n g

CPU Turns Off
Internal Clocks

CPUCLK CPU's externa l bus c lock (50 , 60 , or 66 MHz, depending on model) .

STPCLK* Signal asser ted by the chipset to a ler t the CPU to stop i ts in ternal c lock.

CPU Bus tha t da ta bus o f the Pent ium CPU. A spec ia l cyc le is asser ted which s ta tes tha t the CPU
acknowledges the STPCLK* signal.

Fig. 3. Timing of the stop-clock
function used for power conservation.

40 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

to conserve power. A SCSI BIOS is provided so no drivers
are required to operate a SCSI hard disk if it is connected
when the system boots. This SCSI BIOS supports the SCAM
protocol, which allows the user to set the SCSI IDs for SCAM-
equipped devices from the HP OmniBook 5000 keyboard to
simplify setup.

Special device drivers were written to support advanced
power management calls to prevent read/write operations to
the disk from being interrupted when the user tries to go
into the suspend mode. This feature helps prevent corrupt
disk images resulting from mobile use, which was not taken
into account when the SCSI standard was developed.

Keyboard Controller
The keyboard controller in the HP OmniBook 5000 provides
the personality of the notebook. It performs many of the
notebook-related tasks so that the Pentium CPU can remain
focused on compatibility and performance. Some of the
tasks performed by the keyboard controller are:

â€¢ Keyboard scanning
â€¢ Support for three PS/2 ports (internal trackball, external

mouse, external keyboard)
â€¢ Status panel control
' Battery charging and low-voltage monitoring
i Battery capacity gauge communication and tutoring
> Temperature sensing and thermal feedback control
â€¢ Interface to EEPROM for passwords, PC Tattoo, serial

number, and other system tunable parameters
> Docking station control
â€¢ Power on/off control.

Because of the complexity of the tasks it has to perform, the
keyboard controller is flash-memory-based so that it can be
reprogrammed in the field along with the system BIOS and
the EEPROM that contains user and system tunable parame
ters for battery charging, voltage detection, and so on. A
special technique was implemented to perform the in-circuit
programming of the flash memory in the keyboard controller.
First, a bootstrap program is downloaded to the keyboard
controller RAM space and executed. This program takes
over the keyboard controller and handles the communication
with the Pentium. The Pentium downloads the flash update
program into the keyboard controller's RAM. The flash
memory inside the keyboard controller is erased and then
the new keyboard controller BIOS is transferred to the key
board controller and programmed into the flash memory.
Upon a hard reset, the keyboard controller begins function
ing with the new BIOS.

The keyboard controller has eight 10-bit analog-to-digital
converter (ADC) channels, which are used to monitor the
battery temperature for each of the two battery slots, the
CPU temperature, the ambient temperature, both battery
slot voltages, and a 2.5V reference. The voltages read by the
ADC channels are digitally filtered by the keyboard controller
before being used by the system BIOS.

The keyboard controller also handles talking to various I/O
ports such as three PS/2 channels, two Benchmarq smart
battery channels, and an I2C interface. Events that have
higher priorities are serviced first by the keyboard controller.
If the keyboard controller is servicing a lower-priority task
and a higher-priority event occurs, it is processed first and

the lower-priority task is rescheduled. The highest-priority
tasks are docking and low-battery detection, then keyboard
and mouse-related tasks, followed by housekeeping chores
of battery charging, battery capacity monitoring (see below),
and status panel updating.

Smart Batteries with Tutor Assist
ICs in the HP OmniBook 5000 battery packs allow the bat
tery packs to retain their charge state and status information.
If the battery is removed from the HP OmniBook 5000 and
used or charged in another device, the capacity of the bat
tery is reread from the pack when it is reinserted. These
"smart" batteries can measure their temperature and current
flow and perform compensated updates of the battery capac
ity gauge so that, over time, the gauge contents do reflect
the state of the battery.

Although there is quite a bit of intelligence designed into the
battery capacity gauge circuits, there are events and bound
ary conditions that result in the gauge's not representing the
capacity of the battery accurately. One example is the first
time the battery pack is assembled. The capacity gauge re
quires that the battery pack be discharged and then charged
back to a full state to calibrate and initialize the battery
capacity reference. So that the user does not have to per
form this function, the HP OmniBook 5000 will calibrate the
pack under certain conditions when it knows the battery's
charged state. At those times, the HP OmniBook 5000 will
compare the pack's battery capacity reading and if it dis
agrees with the HP OmniBook 5000's own gauge by a fixed
factor, the pack's gauge will be updated. This tutoring ap
proach provides a closed-loop system to help correct for any
inaccuracies caused by component tolerances, bad assump
tions by the smart battery, current crest factor corrections,
and charging inefficiencies. With this approach, the user
does not have to be involved in the recalibration of the bat
tery pack. The philosophy is that, even with machines, two
heads are better than one.

Power Supply and Battery Charging
The power supply generates 3.3V, 5.0V, and 12.0V. It can
charge either a NiMHy battery using a constant current
source or a Li-Ion Battery using a constant current/constant
voltage source. The ac adapter is the same as that used by
the HP OmniBook 600 Series. It provides an output of 12V at
3.3A maximum current or a total power of about 40 watts.
Half of the adapter wattage is used to operate the product
and half is used to charge the batteries in the system. The
battery voltages for both the NiMHy and Li-Ion packs can
each be higher or lower than the + 12V adapter voltage, de
pending on the charge state of the cells. A flyback configura
tion is used in the adapter since it can be designed to support
this voltage span (see "Flyback Charger Circuit" on page 42).
The power to the batteries during charging is limited by both
current and voltage sensing. An important convenience goal
of the HP OmniBook 5000 was to charge and operate at the
same time. This feature allows the user to operate the HP
OmniBook 5000 during the day and still have full battery
power for ready use after disconnecting the computer from
the ac adapter.

The 3.3V and 5.0V regulators use a synchronous switching
topology that allows the power supply to maintain a high

June 1996 Hewlett-Packard Journal 4 1
© Copr. 1949-1998 Hewlett-Packard Co.

level of efficiency. The + 12V output is derived using a trans
former tap on the 3.3V inductor to generate about 14V, which
is then linearly regulated back to + 12V. This technique gen
erates a very clean and stable + 12V to program the system
flash memory, the keyboard controller flash memory, and
any PC Card memory cards. Sometimes the + 12V is used
for analog circuits on PC Cards, so we felt it necessary to
provide a filtered signal.

One challenging design parameter of the power supply is
that it must deliver about 15W during maximum operation
and also maintain regulation while supplying less than
100 mW to the system in suspend mode.

Docking Strategy
The HP OmniBook 5000 docking station (Fig. 4) provides the
docked computer with one PCI slot and 2 ISA slots, giving
the user access to the same options as desktop users. The
docking station provides one-handed, power-assisted docking
(VCR style). The I/O ports on the HP OmniBook 5000 are
replicated on the docking station so that the user does not
have to remake a lot of cable connections. Some ports, such
as the sound system (line in, line out, and microphone), MIDI,
and SVGA out ports, are passed straight through the docking
station. Other interfaces such as the SCSI, RS-232, parallel,
and game ports are replicated by using the same ICs as the
HP OmniBook 5000's internal chips, which are disabled. By
using the plug and play features of the BIOS, the docked HP
OmniBook 5000 can have either the same configuration as
the portable HP OmniBook 5000 or a different configuration.

Control of the docking sequence is handled by the keyboard
controller using some control signals and the I2C bus. The
I2C bus is used to read and write additional signals and to
save and restore configuration information for the docking
station. Fig. 5 shows the timing of the docking sequence.

The user initiates the docking event by placing the HP Omni
Book 5000 on the docking station's receiving tray and pro
viding a gentle shove. When the docking station's detection
switch is activated, the motor engages and captures the HP
OmniBook 5000 and draws it onto the connector. When the
docking connector guide pins begin to mate into the HP

Flyback Charger Circuit

The flyback transformer design of the HP OmniBook 5000 charger
circuit can provide a wide range of output voltages because of the
energy storage, coupling, and isolation of the transformer (see
Fig. 1). During the first portion of a clock cycle, energy is stored in
the primary side of the transformer. During the second portion of
the clock cycle, the energy is transferred to the secondary wind
ing via the core's coupling. Because the current in the primary is
cut off abruptly, the secondary voltage can become higher than
the input (dl/dt is high and V = Ldl/dt).

The secondary output current charges a large output capacitance.
Using a can clock, the output capacitor 's voltage can
be charged up to any desired level and then the converter's con
trol circuitry can be shut down until the output voltage has
decayed by some desired amount for regulation.

The isolation of the secondary winding allows for both voltage
and current sensing to control the flyback operation. This permits
both current and voltage limiting, which are required with Li-Ion
batteries. For current sensing, the voltage across the sense resis
tor is filtered and compared to a set reference. When the output
voltage has risen high enough to cause the desired current in the
battery, the control circuit is turned off. Again, when the current is
reduced by a desired amount to maintain regulation, the control
circuit is reactivated.

+12 V

Fig . 1 . F lyback charger c i r cu i t .

OmniBook 5000 the keyboard controller is notified by a non
maskable interrupt and it notifies the chipset that a hot-dock
event is about to take place. The chipset then halts the Pen
tium processor and tristates the buses. When the two con
nectors mate, the keyboard controller is notified by a signal
on the connector. The keyboard controller verifies that the
docking station has a valid power good signal, and if it does,
the keyboard controller signals the chipset to release the
Pentium and begin driving the PCI and ISA buses. The BIOS
first disables the internal I/O chips and configures the I/O
chips on the docking station before allowing the user to re
sume work. Depending on the operating system on the HP
OmniBook 5000, a reboot of the operating system may be

Fig. 4. HP OmniBook 5000 computer in docking station.

42 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Dock present the Sensor that detects that the OmniBook 5000 is present and ready for docking. Starts the
dock the for VCR-style docking. Moves the OmniBook 5000 into the dock connector.

GUIDON controller that detects that connectors are about to mate. Alerts the keyboard controller to
begin the docking sequence to tristate the system buses.

OmniBook undocking Buses PCI and ISA buses are instated to prevent data corruption during docking and undocking
sequences.

S L I C E I N S i g n a l t h a t t h e c o n n e c t o r s h a v e m a t e d .
Dock that Good Signal read by the keyboard controller to verify that a good docking event has occurred

and the is can resume. If the dock power good signal is not detected, the system is
powered off.

Undock Switch Button or software event to initiate the undock sequence.
Fig. 5. Docking sequence timing
diagram.

necessary to load device drivers for SCSI peripherals or
other cards that may be plugged into the slots.

The undock sequence begins when the user either presses
the undock key on the docking station or initializes an un
dock sequence via the operating system (WindowsÂ® 95).
When the keyboard controller receives the undock event it
signals the chipset to halt the Pentium once again and re
leases control of the buses. It then signals the docking sta
tion via the I2C bus to begin the undock sequence for the
motor. The motor starts and begins to eject the HP Omni
Book 5000 from the docking station. The keyboard control
ler detects that undocking has occurred by monitoring the
docking detect signal. It then tells the chipset to release the
Pentium and drive the buses again. The BIOS then reconfi
gures the I/O devices back to the mobile configuration.
Again, depending on the operating system and selection of
peripherals, it may be necessary to perform a reboot.

CPU Thermal Management
The Pentium CPU has a maximum thermal envelope of about
7.5W. This power is dissipated as heat in the CPU. The HP
OmniBook 5000 combines many techniques to remove the
heat from the CPU to ensure both functionality and reliabil
ity of the product. The tape carrier package (TCP) version of
the Pentium is used to allow the case temperature of the CPU
to be higher than is allowed in the standard ceramic package.
The TCP package is essentially a metal plate attached to the
backside of the CPU die. The pads on the circuit side of the
CPU connect to thin-film conductors on a piece of cellulose
(which looks similar to 35-mm film) rather than using tradi
tional bonding wires. The top side of the die and film are
then covered with an epoxy coating to protect the bond con
nections and to seal the die from contaminants. The net ef
fect of this package is that the thermal heat resistance from

the CPU to the outside mounting pad of the package is mini
mal. This feature allows us to operate the case temperature
at 95Â°C versus 75Â°C for the PGA package.

The TCP package has very little thermal mass, so we need to
move the heat energy away from the package and out into
the product. Aluminum cast heat sinks are attached to two
sides of the CPU package, both to the package epoxy and to
the backside of the package through the use of many via
holes under the die. This approach moves the heat energy
away from the CPU to a larger mass for further disposal out
of the product.

To get the heat out of the product the cast heat sink is at
tached to an extruded aluminum heat sink, which attaches
to the back aluminum I/O panel. This heat sink has the
ridges found in typical heat sinks so that the heat can con-
vect out of vents in the top case.

To remove additional heat from the cast CPU heat sink, a
heat pipe technology is used (see Fig. 6). A heat pipe is basi
cally a small Carnot engine that transfers heat from one end
of the pipe to the other via a temperature differential, using
a wicking action to recycle the fluid. The fluid in the pipe is
just a that has been depressurized to allow it to boil at a
lower temperature. When the CPU heat sink is heated to the
boiling point of the water in the heat pipe, the water changes
state from liquid to gas. This phase change extracts a large
amount of thermal energy from the heat sink. As the water
boils, the wick inside the heat pipe brings cooler water to
the CPU end and the gas moves down the heat pipe to the
condensing end. When the gas in the heat pipe cools below
the boiling point, the energy taken from the CPU is released
into the condenser. The condenser consists of a thin alumi
num stamped sheet. This sheet is attached to the back of the

June 1996 Hewlett-Packard Journal 43
© Copr. 1949-1998 Hewlett-Packard Co.

Heat Pipe

Heat Is Dissipated
Over a Wide Area
by the Condenser

Liquid Boils
in Heat Pipe

/ / I I

Gas Flows to Condenser

Wick ins ide P ipe Draws
Condensed Liquid Back to CPU

Fig. 6. Heat pipe principle.

metal plate of the keyboard and the heat is spread out over
the keyboard surface area.

To prevent the CPU from generating excess heat during typi
cal operation, the chipset provides different methods of con
trolling the CPU activity with the use of advanced power
management (APM). Software APM is the most effective. It
consists of having a running program shut the CPU clock
down when there are periods of inactivity in the program. Of
course, this method requires the software to be APM com
pliant. If the user is operating software that is not APM com
pliant, the HP OmniBook 5000 can be set to use hardware
APM as a default. Hardware APM is implemented by moni
toring the interrupts and major I/O function accesses. When
the program is performing any I/O activity or the I/O devices
generate an interrupt, a timer is reset that keeps the CPU
active from one half second to eight seconds, depending on
the setting. If another event occurs before the timer times
out, the timer will be set back to the full count. If the pro
gram is just executing out of the CPU memory and the timer
expires, then the CPU clock is throttled back to 1/4 speed.
This reduction lowers the power used by the CPU by about
75%. Access to an I/O event will again set the timer to the
full count and enable the CPU to run at full speed again.

To prevent the CPU from reaching the critical case tempera
ture, active thermal feedback is employed. This technique
measures the temperature of the CPU module and the ambi
ent air inside the unit. The temperature limits for each are
monitored by the keyboard controller. If either limit is ex
ceeded, the CPU speed is reduced by clock throttling. When
the CPU and ambient temperatures cool below their restart
thresholds, the keyboard controller will again allow the CPU
to work at full speed. For the thermistor on the CPU mod
ule, the feedback is fairly rapid because of the mechanical
heat removal methods, and the CPU tends to run at an aver
age clock speed at which thermal equilibrium is reached for
the given operating conditions. In the case of the ambient air
sensor (used to protect other ICs in the notebook from over
heating) the effect of slowing down the CPU is not very rapid
because of the large thermal resistance between the sensor

and the CPU module. If this sensor trips the thermal feed
back, the unit will run at a slower speed (1/2 clock rate) until
the air temperature returns to a cooler level. This rate was
chosen so that the user can still operate the machine even if
it takes several minutes for the ambient air to cool.

Summary
The technologies developed for the HP OmniBook 5000
computer are designed to achieve the notebook features
required for the future. The PCI bus will allow higher speed
and functionality in video and communications than is pos
sible today. The heat transfer and modular assembly tech
nologies will permit incorporation of new faster processors
as they become available. The Li-Ion batteries will continue
to provide more energy for a given weight, thereby making
possible lighter products or longer battery life. The instant-on
feature allows the user the freedom to work whenever it is
convenient, thus helping the customer adapt to a more mo
bile lifestyle. The PCI and ISA hot-docking technology allows
the user to have full desktop functionality and performance
when purchasing a notebook computer.

Acknowledgments
The design of the HP OmniBook 5000 posed many challenges
related to the new technologies of PCI, Pentium, plug-and-
play, and hot docking. Many of the product's most significant
features would not have been possible without the efforts of
many people both within and outside of Hewlett-Packard.
Kevin Quan and Justin Maynard of SystemSoft dedicated
themselves to the design and implementation of the system
and keyboard BIOSs. Without the tireless efforts of Shen
Wang, Donald Chen, and Gwo-Huang at Twinhead, the tran
sition from a product concept to a producible notebook
would have been much more difficult. Many HP team mem
bers devoted their time and energy to make the OmniBook
5000 the finest product possible. Dan Rudolph was instru
mental on the video, SCSI, PCMCIA, and sound designs.
Andy Van Brocklin worked ceaselessly on getting the prod
uct qualified for EMI submittal. Tracy Lang's enthusiasm and
diligence on the mechanical design ensured a solid-fitting
product. The HP software team headed by Eric Evett along
with Stan Blascow, Dan Pinson, and Everett Kaiser defined
how the OmniBook 5000 would function for the customer
and ensured that the completed product was as close to the
original specification as possible. Of course, there were many
others that contributed to the product's development that
cannot be named here. Special recognition should be given
to Terry Bradley and Bill Wickes, who as project and section
managers, respectively, were able to coordinate and lead a
team of creative people spanning the world while focusing
individual team member efforts with patience, diligence, and
continual motivation.

Pentium is a U.S. registered trademark of Intel Corporation.

Windows is a U.S. registered trademark of Microsoft Corporation.

44 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A Graphing Calculator for
Mathematics and Science Classes
The HP 38G calculator allows teachers to direct students and keep them
focused while they explore mathematical and scientific concepts. It
features aplets, which are small applications that focus on a particular
area of the curriculum and can be easily distributed from the teacher's
calculator to the students'.

by Ted W. Beers, Diana K. Byrne, James A. Donnelly, Robert W. Jones, and Feng Yuan

The HP 38G calculator is a graphing calculator for students
and teachers in mathematics and science classes. It features
aplets, which are small applications that focus on a particu
lar area of the curriculum and can be easily distributed from
calculator to calculator. This allows the teacher to send an
electronic story problem to each student in the class.

The HP 38G is built on the same software platform as the
HP 48G family of graphing calculators, ' but has a simpler
user interface and feature set. Equations are entered using
algebraic format rather than the reverse Polish notation
(RPN) found in most HP calculators. The features of the
HP 38G include:

â€¢ Graphical user interface
> Function, polar, parametric, stairstep, cobweb, histogram,
scatter, and box and whisker plots

â€¢ Side-by-side split screen
â€¢ Tables
â€¢ Unlimited, scrollable history stack
â€¢ Symbolic equations
> HP Solve numeric root finder
> Equation Writer display
> Statistics functions
> Matrix operations
> User programming.

The hardware platform of the HP 38G is very similar to that
of the HP 48G: they both have 32K bytes of RAM, 512K bytes
of ROM, the same CPU and the same display (131 by 64 pix
els). They both have a two-way infrared link for sending
information to a printer and for transferring information
between two calculators, and an RS-232 link for calculator-
to-computer communications. An accessory that allows the
calculator screen to be displayed with an overhead projector
works with both the HP 48G and the HP 38G, but the HP
38G cable connector has been modified so that the overhead
display accessory works with every HP 38G; no special
handset is required.

The HP 48 case was redesigned to include a sliding plastic
cover to make the HP 38G more durable for use by younger
students. Also, two keys were removed to give visual em
phasis to the navigation keys and to make the keyboard look
less complicated.

Designed for and with Teachers
We set out to design a graphing calculator for precalculus
students and teachers. To help us do this, we formed an
Education Advisory Committee consisting of eight high
school, community college, and university teachers. We met
with the teachers every few months, and between meetings
we kept in touch by email.

The teachers told us that they want to allow students to ex
plore mathematical and scientific concepts, and at the same
time they need to direct the students and keep them focused.
In our first meeting with the teachers, we compared this to
the idea of a child's sandbox: the child is given toys for play
ing and exploration, but within a protected, specialized envi
ronment. Thus, one of our main goals with the calculator
software design was to encourage exploration by limiting
choices. This led us to the concept of aplets: an aplet is a
small application that focuses on a particular problem.

HP 38G Aplets and Views
We based the design of aplets on the National Council of
Teachers of Mathematics "three views": graphic, symbolic,
and numeric. Each problem can be explored using these
different representations. For example, a mathematical
function can be expressed as a graph (Fig. la), in symbolic
form (Fig. Ib), or using a table of numbers (Fig. Ic).

Aplets can be created by teachers (either directly on the HP
38G or with the assistance of a computer) and then "beamed"
to the way, calculators using infrared transfer. This way,
a whole classroom full of students can have their calculators
programmed identically at the beginning of a lesson. Then,
the students can explore within the aplet on their own
calculators.

Each aplet packages the formulas, settings, and other infor
mation associated with a particular problem. If the user
wants to switch from one aplet to another, this can be done
without disturbing any individual aplet's settings, since they
are compartmentalized.

Several aplets are built into the HP 38G. When the calculator
is first turned on, these built-in aplets are empty. The user

June 1996 1 lewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

(a) O M I T f t A C B l (X , Y) F C H D E F N M E N U

(b)

F U N C T I O N Ã Y M f c D L I C V I E W !
' F K X > = R * X ' " 3 + B * X ' " 2 + ,

F 4 < X >
F 5 C X >

E D I T h / C H K SHDU E' . ' l iL

(c)

1.2 5 0 0 8
. 5 0 0 3

Fig. 1. With the HP 38G calculator, a mathematical function
can be expressed (a) as a graph, (b) in symbolic form, or (c)
using a table of numbers.

must add some information, such as equations, notes, or
sketches to make these aplets come alive.

Using Aplets on the HP 38G
Six different types of aplets are built into the HP 38G: func
tion, parametric, polar, sequence, statistics, and solve. Typi
cally, a teacher will start with one of these aplet types, then
customize it by adding particular functions that define a
certain problem, together with settings, pictures, and text
directions.

To start using a particular aplet that is already in the calcu
lator, the student chooses it from the HP 38G library by
pressing the LIB key. Continuing to explore the problem, the
student may want to view the problem in different ways, and
can do this by pressing the different view keys. PLOT, SYMB,
and NUM display the graphic view, symbolic view, and
numeric view, respectively. Additional views, such as split-
screen views (Fig. 2), can be found by pressing the VIEWS key.

The student or teacher can customize the graphical, numeric,
and symbolic views for a specific problem by using the setup
screens. It is also possible to annotate the problem by typing
some text into the note view or by adding a sketch to the
sketch view.

The teacher and student can easily generate custom aplets
that present new examples based on the built-in aplet types.
An aplet is created by working with an aplet type and adding
all of the customizing information that relates to a particular
problem (see article, page 59).

. Main Components
The keyboard (Fig. 3) reflects the seven main components
of the HP 38G's functionality (from top to bottom on the
keyboard):

â€¢ Softkeys for accessing custom behavior defined by softkey
labels along the bottom of the display

â€¢ View keys for moving among the possible representations of
aplet data

â€¢ Library key for selecting the current topic of exploration
with aplets

â€¢ Arrow keys for screen and menu navigation
â€¢ Home calculator keys for numeric entry and basic calculator

operations
â€¢ Alpha keys for access to alphabetic characters
â€¢ Editing environments for creating, editing, and managing

objects such as programs, matrices, lists, and notes.

Four of the key groupings are related as follows: first, a
topic is chosen with the library key. Then, a way of looking

F l

.HUbSS . 317B3B
.31HOB3

F C N D E F N

Softkey Labels

Softkeys

Ar row
(Cursor)

Keys

Library Key

Alpha Shift Key

Shift Key

Fig. 2. The plot-table view is a typical split-screen view. Fig. 3. HP 38G calculator.

46 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

at the problem is chosen with the view selection keys.
Finally, the peculiarities of the problem view are manipu
lated with the softkeys and the arrow keys.

Softkeys
The softkeys are the top row of unlabeled keys, which are
associated with the dynamic menu labels displayed along the
bottom of the screen. They give access to context-specific
custom behavior. Unlike the HP 48G, there is no "next-row"
key since all HP 38G softkey sets are limited to six items for
the sake of simplicity.

View Keys
The view keys provide one-key access to the three National
Council of Teachers of Mathematics representations of aplet
data: graphical, numerical (tabular), and symbolic, plus
annotation and sketch views for documenting a topic. Keys
for setting up view parameters and managing split-screen
views are also included.

â€¢ The plot view gives a conventional mathematical graphical
representation. In most cases it looks like some flavor of
plot output in the HP 48G.

â€¢ The numeric view is generally a table of sampled values. It
is a derived form of the mathematical object (except for
statistics, where it is the defining view).

â€¢ The symbolic view is generally an expression representing
the mathematical object of interest. The variables are defined
by the aplet. This view is the defining form of the mathe
matical object (except for statistics, where it is derived).

â€¢ The note view is a mini word processor that allows the user
to create, edit, and view a text document associated with
the aplet.

â€¢ The sketch view is a set of standard-sized GROBs (graphic
objects in HP 48G terminology) that explain the "story" of the
aplet. The user can create, edit, view, and animate pictures.
Editing capabilities include lines, boxes, circles, text labels,
and Etch-a-Sketch-style drawing.

Moving from view to view is the same as task switching,
which means the user can always go on to the next task, but
there is no concept of going back to somewhere, since tasks
are not being nested.

The LIB key invokes the library, which is the aplet selection
and management environment, in which different aplets
(including those that are not built-in) can be started,
exchanged with others, and created by saving the state.

The VAR key provides access to variables and the MATH key
provides access to scientific functions and other operations
and commands. These variables and operations are available
whenever the user is using an edit line.

Invoking the VAR or MATH menu starts a subtask, which must
be completed or cancelled, at which point the calculator is
back where it was when the subtask was started.

The Library Environment
This environment gives high-level access to aplets. The user
can select an aplet and manage the current collection of
aplets. From within the library, the user can take a snapshot
of a built-in aplet, giving it a name and a directory of its own.
This is how aplets are generated for dissemination and how

users show their work. Also, the user can import or export
aplets from the library to another HP 38G or to a computer.

Arrow Keys
The arrow keys are used for all direction-oriented operations
such as tracing a function plot, moving among fields in an
input form, and selecting commands from a pop-up menu.

The shift key can be used as a modifier for the arrow keys
that signals motion "all the way" in the direction indicated.

Home Calculator Keys
The home calculator environment gives a familiar tool with
a nice graphical interface. The user invokes it by pressing
the HOME key. Inputs are displayed on the left side of a Une,
with the results displayed on the right side of the next Une.

The calculator keys are used to type numbers and to access
basic scientific calculator functions. The ENTER key is used
to terminate data entry, to select operations from menus,
and in general, to make things happen. Some mathematical
operations are available on the keyboard and other opera
tions and commands are available through the MATH pop-up
menu.

The ANSWER shifted key gives access to the variable called
Ans, which always contains the last result.

Alpha Keys
The alpha shift key, A...Z, provides access to the alphabetic
characters, which are labeled on the keyboard overlay.
Pressing the CHARS shifted key invokes the character
browser, which provides access to characters that are not
on the keyboard.

Unlike the HP 48G, there is no alpha lock key to confuse the
user. The user can either press and release the alpha shift
key before pressing each alpha character key, or hold the
alpha shift key down while pressing as many alpha character
keys as desired. However, an alpha lock toggle softkey is
provided in some editing environments.

Editing Environments
The HP 38G has specialized environments for managing pro
grams, matrices, lists, and notes. When the user invokes one
of the the environments, a scrolling choose list of all the
existing objects of that type appears, together with a softkey
menu. From this environment, objects can be transferred
between the HP 38G and a computer or another HP 38G.

â€¢ The program environment provides tools for creating,
editing, storing, sending, receiving, and running programs.
Variables can be accessed through the VAR pop-up menu.
Mathematical operations can be accessed from the key
board or through the MATH pop-up menu, and programming
commands can be accessed through the commands section
of the MATH pop-up menu.

â€¢ The matrix environment provides a two-dimensional matrix
editor for creating, editing, viewing, sending, and receiving
matrices.

â€¢ The list environment provides a list editor for creating,
editing, viewing, sending, and receiving lists.

â€¢ The notepad environment provides an environment for
creating, editing, viewing, saving, sending, and receiving

June 1996 Hewlett-Packard Journal 47
© Copr. 1949-1998 Hewlett-Packard Co.

H O M E M O D E S !
A N G L E M E A S U R E :
NUMBER FORMAT: Standard
D E C I M A L M A R K : D u t Ã ­ . >
T I T L E : H O M E

C H O U S E A N G L E M E A S U R E
C H O D S

Fig. 4. A typical input form.

text documents. The tools for editing notes in the notepad
environment are identical to the editor for the note view.
The documents created in the notepad environment are not
bundled with an aplet as they are in the note view. The note
pad environment can be used for tasks such as creating,
storing, and viewing lists or notes.

User Interface

One of our goals for the HP 38G project was to leverage
software from the HP 48G/GX calculator platform. For the
HP 48G/GX we developed two primary general-purpose user
interface tools: input forms and choose boxes.1

Input forms and choose boxes are interactive environments
that are used to gather user input for a task. Input forms (see
Fig. 4) are flexible, screen-sized dialog boxes similar to
those in other graphical user interfaces. The appearance and
use of input form fields resemble spreadsheet programs.
Choose boxes (see Fig. 5) are either pop-up or screen-sized
boxes optimized for selecting or working with one or more
items from an arbitrarily long list. Input forms and choose
boxes, along with some other user interface constructs, con
tribute to the improved ease of use that distinguishes the HP
48G/GX from its predecessor, the HP 48S/SX.

In the HP 38G, we found that input forms and choose boxes
were a good match for the needs of the utility environments
and most of the nine views available for working with aplets.

Graphical User Interface Applications
Input forms are used in most aplet views for entering a mix
of settings and values. They're also used for gathering input
to complete a task. For example:
The function aplet's plot setup view is an input form in
which modes and parameters are specified (see Fig. 6).
The solve aplet's numeric view is an input form whose ap
pearance varies according to the equation to be solved (see
Fig. 7). The flexible layout and labeling of input form fields

F U N C T I O N P L O T S E T U P

V R N G : - 3 . 1 3 . 2
K T I C K : 1 V T I C K : 1
R E S : D e t a i l
E N T E R M I N I M U M H O R I Z O N T A L V A L U E

PAGE Â¥

Fig. 6. The function aplet's plot setup view input form.

are employed to generate a custom input form each time the
view is entered.
When an aplet is to be saved, a simple input form is displayed
to get the new aplet's name (see Fig. 8).
The statistics symbolic view is a highly customized input
form that scrolls to show more information than fits on one
screen (see Fig. 9). Choose box elements, like the up and
down arrows indicating more information is available off
screen, help suggest the operation of this hybrid view.

Choose boxes are used in a variety of views and utility envi
ronments wherever a list of related items needs to be man
aged. Here are a few examples of choose boxes in the HP
38G:
The aplet library (see Fig. 10) is actually an elaborate choose
box.
Almost all symbolic views, such as the function aplet's
symbolic view (see Fig. 11), are choose boxes.
Choose boxes pop up within input forms like the MODES
input form (see Fig. 12).
The VAR and MATH menus (see Fig. 13) are two-column
choose boxes that show categories of items plus the items
in the selected category.

As these examples illustrate, the look and feel of HP 48G/GX
input forms and choose boxes remain largely unchanged in

S O L V E N U M E R I C ' , ' I E M !
V : 7
M : 1 0
K : 1 3
E"

E N T E R V A L U E O R P R E S S S O L V E
E D I T N F D D E F N S O L V E

Fig. 7. The solve aplet's numeric view, a dynamically generated
input form.

Fig. 5. A typical choose box.

N E W N A M E :

! S A V E A P L E T !

BEflGLE

E N T E R N A M E F O R N E N A P L E T
A . . . Z K r t N C L O K

Fig. 8. The aplet library's save-aplet input form.

48 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

S T A T I S T I C S S Y M B O L I C V I E W

H 2 : C 2
â€¢ H3:C3*2

H 4 :
E N T E R S A M P L E

. 5

S H D H E V f l L

Fig. 9. The statistics aplet's symbolic view, a custom scrolling
input form.

the HP 38G. However, substantial reengineering of the under
pinnings of these tools was required to match other aspects
of the HP 38G's use model, as discussed in the next section.

Topic Outer Loop
Many of the custom interfaces developed for the HP 48S/SX
used an RPL-language tool we developed called the parame
terized outer loop.2 Parameterized outer loop applications
depend on the parameterized outer loop for routine key and
error handling and display management. The graphical user
interface (GUI) elements introduced in the HP 48G/GX are
also parameterized outer loop applications that automate
routine matters of input entry, selection of options, and
presentation of output.

In both the HP 48S/SX and the HP 48G/GX, the user interface
was based on the notion of having a central environment
(the user stack) from which other applications are launched
and to which applications return when completed. All appli
cations on these platforms, including parameterized outer
loop applications like the GUI tools, are based on this
"function call" model: they start, run for a while, then end,
returning the flow of control to where they started. We call
such applications modal.

New Model, New Tool
When we were investigating the use model for the HP 38G, it
became apparent that the function call approach to applica
tion management would not suffice. The HP 38G is a tool for
exploration, so we wanted to provide an environment that
promotes wandering from one subject area to another, or in
HP 38G terms, from one view or aplet to another.

To attain this goal we quickly determined that the modal
nature of the parameterized outer loop and the applications
based on it was too constraining, yet we weren't prepared to
discard the wealth of useful tools and concepts we had built
up from the parameterized outer loop foundation. Further
more, we knew there were still plenty of times when the
modal call-and-return interface would still apply, such as

F U N C T I O N S Y M B O L I C V I E W !
â € ¢ F K X > = 5 * X - 4 * X * X + 3
â€¢F2<X>=SIN<X>

E D I T I v - ' I H K I K S H O W E ' . ' r t L

Fig. 11. The function aplet's symbolic view.

when pausing to get further input from the user before pro
ceeding with a task. To accommodate all these needs, we
developed the new topic outer loop.

Topic Outer Loop Overview
Where parameterized outer loop applications are designed
to preserve the environment from which they're launched
and later restore that environment, topic outer loop topics
are optimized for rapidly setting up and switching from one
topic to the next. Except with regard to the home environ
ment from which the topic outer loop is originally launched
and to which it ultimately returns â€” after running many top
ics, perhaps â€” the topic outer loop doesn't preserve or restore
a previous user interface since there is none to go back to.

The most obvious examples of topic outer loop topics in the
HP 38G are aplets, but many other environments with simi
lar behavior are also topic outer loop topics â€” for example,
the aplet library and the user program catalog (see Fig. 14).

Like the parameterized outer loop on which it's based, the
topic outer loop is launched from the calculator's system
outer loop and temporarily redefines the current user inter
face until some exit condition is met. By design, the topic
outer loop operates very similarly to the parameterized
outer loop, but differs from the parameterized outer loop in
two fundamental ways:
To better support the standard two-tiered structure of HP
38G topics, the topic outer loop manages two nested user

HDME MODES:
HNGI
H U M
['Ecu
T ITL I

Radians
Grads

C H O O S E A N G L E M E N S U R E
K A N C L D K

Fig. 12. A pop-up choose box in the MODES input form.

r t P L E T L I B R A R Y ;
Funct i on
Parametric
Polar
Sequence
So 1 ye
SAVE RESET SORT SEND REC1,1 START

Fig. 10. The aplet library, an elaborate choose box.

F U N C T I O N ' . ' A R S
Plot D i b i t s
Plot FCH
Symbol i c
M u mer i cl T

Format
NumCo 1
NumFont w

Fig. 13. The VAR menu, a two-column choose box.

H O M E A P L E " N A M â € ¢ V A L L E I C A N C L D K

June 1996 Hewlett-Packard Journal 49
© Copr. 1949-1998 Hewlett-Packard Co.

interface levels. The parameterized outer loop manages just
one.

' The topic outer loop fully supports organized and efficient
switching from one topic to another. The parameterized
outer loop is designed to shut down completely before
launching another application.

The operation of the topic outer loop for starting a topic can
be summarized as follows:

I f a t o p i c o u t e r l o o p i s a l r e a d y r u n n i n g {

E v a l u a t e t h e o l d v i e w e x i t h a n d l e r
E v a l u a t e t h e o l d t o p i c e x i t h a n d l e r
S e t t h e t o p i c e n t r y a n d e x i t h a n d l e r s
E v a l u a t e t h e t o p i c e n t r y h a n d l e r
S e t t h e v i e w e n t r y a n d e x i t h a n d l e r s
E v a l u a t e t h e v i e w e n t r y h a n d l e r
S e t t h e r e m a i n d e r o f t h e v i e w u s e r i n t e r f a c e

Else {

Save the home user interface

If error in {

Set the topic entry and exit handlers

Evaluate the topic entry handler

Set the view entry and exit handlers

Evaluate the view entry handler

Set the remainder of the view user interface

If error in {

W h i l e n o t d o n e w i t h t h e t o p i c o u t e r l o o p {
E v a l u a t e t h e v i e w d i s p l a y o b j e c t
R e a d a k e y a n d g e t i t s c u s t o m d e f i n i t i o n
I f e r r o r i n

E v a l u a t e t h e k e y d e f i n i t i o n
Then

E v a l u a t e t h e e r r o r h a n d l e r o b j e c t

Evaluate the view exit handler

Evaluate the topic exit handler

Then {

Evaluate the view exit handler

Evaluate the topic exit handler

Error

â€¢PROGRAM CHTALDG;

Then {

Restore the saved home user interface

Error

R e s t o r e t h e s a v e d h o m e u s e r i n t e r f a c e

C O L ' S L f l W
VECTORS
DGMflTH
Edit line

E D I T N E N Ã ­ E N D R E C T R U N

Fig. 14. The user program catalog, a topic outer loop utility
environment.

The code setting up the topic specifies the user interface and
other environment elements unique to the topic, such as the
topic entry handler and the view display object, when it runs
the topic outer loop. This is how the behavior of the topic
outer loop is customized. The topic outer loop is responsible
for the key-display loop, low-level error handling, and juggling
the topic and view entry and exit handlers and the saved
home user interface.

When an event occurs that calls for running the topic outer
loop, the topic outer loop may or may not already be run
ning. As the first section of the topic outer loop overview
illustrates, if a topic outer loop is already running, switching
to a new topic is quick yet still gives the exiting topic an
opportunity to shut down in an orderly fashion. Since it's
common with the HP 38G to move from topic to topic with
out first returning home, this efficiency translates to faster
performance.

Switching among views within the same topic is also com
mon, and involves a similarly efficient set of operations:

Evaluate the old view exit handler

Set the view entry and exit handlers

Evaluate the view entry handler

Set the remainder of the view user interface

Reengineering the GUI Tools
Although very similar in specifications and use to the stan
dard modal input form and choose box environments, ver
sions of these environments based on the topic outer loop,
which we call modeless environments, differ in the following
ways:

1 OK and cancel keys are nonfunctional.
The default softkey set does not include OK and cancel
keys.
Task-switching keys are processed normally to allow task
switching.
The results returned by the input form or choose box engine
always consist of the confirmed exit values. No flag indicat
ing canceled or normal exit is returned.

To support modeless views and utility environments based
on HP 48G/GX GUI tools, we adapted the input form and
choose box engines to use the topic outer loop. However,
modal input forms and choose boxes are also employed by
the HP 38G. Rather than simply switch the engines from
using the parameterized outer loop to using the topic outer
loop, we modularized the components of the engines to
enable the use of either. We then repackaged the modal
versions of the engines to ensure backwards compatibility

50 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

for existing code using them. To make modeless input form
and choose box programming as straightforward as possible
for programmers familiar with the modal versions, and yet
still meet the requirements of the topic outer loop, we devel
oped tools to translate traditional modal input form and
choose box arguments and results to and from the specifica
tions required for topic outer loop applications. This greatly
simplified the reengineering of existing user interface code
to make use of new modeless input forms and choose boxes.
The process was largely mechanical, requiring only that the
developer follow a few well-documented steps.

Aplets and Views

One of the key ideas of aplets is that they provide different
ways of looking at a problem. For example, when exploring
a story problem about speed and distance, the student can
look at a symbolic expression, a table of numbers, a graph
of the distance function, or even a diagram showing a tortoise
and a hare. These different ways of looking at an aplet are
called views. The topic outer loop manages the transitions
between the views of an aplet. The views are implemented
using the graphical user interface tools plus aplet data. The
data associated with an aplet is encapsulated in a directory
structure inherited from the HP 48G/GX.1

Aplet Structure
Associated with each aplet is a standard set of information.
The topic outer loop uses this aplet information for aplet
directory checking, topic switching, resetting, and so on. It's
also used by the VAR menu and the VIEWS choose box. The
standard information is:

â€¢ Topic ID
â€¢ Initial view
â€¢ Topic name
â€¢ Special views data
â€¢ Aplet-specific variables
â€¢ Topic entry procedure pointer
â€¢ Topic exit procedure pointer
â€¢ Topic reset procedure pointer
â€¢ Aplet directory checker procedure pointer.

An HP 38G aplet is a collection of aplet data and aplet views.
Aplet data includes the aplet name, which is used in the
library, real variables like Xmin and Xmax, which are set via
the plot setup view, symbolic expressions, note text, and
sketches. An aplet usually defines at least eight views: plot,
symbolic, numeric, note, sketch, plot setup, symbolic setup,
and numeric setup. The generic aplet contains items such as:

â€¢ Aplet name
â€¢ Aplet topic
â€¢ Attached library
â€¢ Plot view procedure pointer
â€¢ Symbolic view procedure pointer
â€¢ Numeric view procedure pointer
â€¢ Plot setup view procedure pointer
â€¢ Symbolic setup view procedure pointer
â€¢ Numeric setup view procedure pointer
â€¢ Note view procedure pointer
â€¢ Sketch view procedure pointer
â€¢ Xmin variable
â€¢ Ymin variable
â€¢ Other shared variables

Aplet-specific variables
List of symbolic expressions
Array of independent values for numeric view
List of strings for custom views
Note text
List of graphics objects for the sketch view.

For aplets built into the HP 38G, pointers like the plot view
procedure pointer refer to code built into the 512K-byte ROM.
New aplet types can include a RAM-based support library
containing new view procedures. All aplets must contain a
basic set of variables, but specific aplet types may implement
additional optional variables.

Mew Structure
Each aplet view is managed by the topic outer loop, typi
cally with the help of graphical user interface (GUT) tools
like input forms. To customize its behavior, a view (or its
GUI helper) specifies objects that are used while the view is
visible. These include the view entry and exit handlers, the
display handler, and the key handler, among others:

â€¢ Initialization procedure pointer
â€¢ Exit procedure pointer
â€¢ Display procedure pointer
â€¢ Key handler procedure pointer
â€¢ Non-view-specific-key-allowed flag
â€¢ Softkey menu description
â€¢ Error handler.

Symbolic View
Normally, the symbolic view is the defining view for an
aplet. When the user starts an aplet, its symbolic view will
be shown so the user can enter symbolic expressions or
equations to be used in the aplet.

The symbolic view is the generalization of the HP 48G/GX EQ
list. The EQ variable on the HP 48G is a list of unnamed sym
bolic expressions, which are plotted and traced together.
The HP 38G breaks this into individual named symbolic ex
pressions that have independent check marks. Expressions
for a parametric function are further broken into real and
imaginary parts. The expression for a sequence is broken
into two initial terms and a recursive relation. This simplifies
editing and selection of symbolic expressions. Giving ex
pressions names in the symbolic view allows them to be
reused in other expressions, home calculations, and pro
gramming.

Expressions entered in the symbolic view are checked for
syntax errors and to a limited extent for semantic errors.
Expressions defining a sequence are further classified and
transformed into an internal form for cache-based iterative
evaluation, saving both time and run-time RAM space. An
EVAL menu key is provided in the symbolic view for constant
expression evaluation, expression simplification, and function
unfolding. Fig. 15 shows how the Fibonacci sequence can be
defined and checked using ten keystrokes. (The EVAL menu
key is shown when a command line is not active. It appears
where OK appears in Fig. 15.)

The generic symbolic view is based on the choose box en
gine, which takes over display handling to maintain check
marks on the left of the screen and takes over key mapping
for dynamic menu changes and editing of expressions.

June 1996 Hewlett-Packard Journal 5 1
© Copr. 1949-1998 Hewlett-Packard Co.

S E Q U E N C E
uia>=i
U1<2>=1

U2<1)=

SVMBDLIC Y IEH

C A N C L D K

Fig. 15. Using the symbolic view of the sequence aplet, the
Fibonacci sequence can be defined and checked using ten
keystrokes.

Because of the different requirements for different aplets,
the generic symbolic view is implemented as a derived in
stance of the symbolic view with several data fields and
virtual routines to be overridden. The information for a sym
bolic view includes:

â€¢ Combine factor
â€¢ Total expression
â€¢ Group size
â€¢ Single-pick flag
â€¢ Softkey menu description
â€¢ Edit menu description
â€¢ Move focus procedure pointer
â€¢ Special initialization procedure pointer
â€¢ Edit terminator procedure pointer
â€¢ Expression checker
â€¢ Poststore procedure pointer.

For example, the sequence aplet combine factor is 3 (three
terms define one sequence). The total expression is 30 (up
to 10 sequences allowed). The group size is 3 (every three
terms will share one check mark). The edit terminator pro
cedure transforms definitions into internal form. The move
focus procedure updates menu softkeys with the current
sequence name. The expression checker rejects list or ma
trix expressions and initial terms that depend on the se
quence independent variable n.

The symbolic view for the statistics aplet posed a new
problem because we decided to show two expressions on
one line, one for data and one for frequency, which is not
supported by the choose box engine. The statistics symbolic
view is implemented by customizing the input form to mimic
a scrollable choose box with a check mark and two columns
of data.

Setup Views
After expressions are set up, setup views are the natural
places to go for setting the parameters for further explora
tions. The plot setup view is the main setup view, similar to
the plot dialog box on the HP 48G, but enhanced with wider
fields and a double-page design. The plot setup view, the
symbolic setup view, and the numeric setup view are all
based on the input form engine.

Plot View
The plot view is the most complicated of all aplet views.
Students will spend most of their tune here exploring the
behavior of curves graphically and interactively.

: h- J -
HE. 11

Fig. 16. Box and whisker plot.

The HP 38G takes the DRAW command in the HP 48G/GX plot
window and improves it by implementing a "smart redraw."
When switching back from other views, the picture, cursor
position, and display mode are restored to the same state
instantly, except when the defining parameters are changed.
Plotting can be stopped and resumed later. When the user
tries to move the cursor beyond the screen boundary, the
graph shifts and redraws the scrolled-in portion. Zoom
options are put into a choose box with more descriptive
names. Instead of taking the current point as the first point,
the box zoom prompts the user to select the first point.
Tracing is improved and extended to statistics plots. Fig. 16
shows tracing on box and whisker plots.

For the function aplet, more areas of exploration are sup
ported through the FCN menu key, which displays a choose
box with choices of root, intersection, slope, area, and ex-
tremum. Fig. 17 shows the display for an area computation.

The plot view has overridable routines for curve drawing,
curve tracing, FCN key handling, DEFN key handing, and other
functions. For example, the function, parametric, and polar
aplets share the same plot loop with different preprocessing,
but the sequence aplet uses another plot loop for handling
the discrete independent variable n.

For tracing, the sequence aplet implements four-way scrol
ling: the screen will scroll when the cursor is moved off
screen in all directions. The scatter plot overrides the FCN
menu key to calculate and display a data-fitting curve. The
information for a plot view includes:
Draw procedure
Independent variable ID
Softkey menu description
Display procedure pointer
Key handler procedure pointer
Pointer display procedure
Draw axes flag
Draw grid flag

Hlf iEH:

Fig. 17. Area computation accessible via the FCN softkey.

52 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

x
o
.1
.E
.3
.H
.E

F I j F 2
i

2R55EOE
3BRH1B3
HÃšMESE

R553365

F3

.10033H7

.aoari

.HEE713E

.5Hb3Ã­iE5

E I G DEFN

Fig. 18. Automatic numeric view.

â€¢ Axis labels
â€¢ Display coordinate procedure
â€¢ Tracing procedures
â€¢ Coordinate display procedures
â€¢ Equation display procedure.

Numeric View
The numeric view lets a student explore the functions defined
in the symbolic view in numeric form. The leftmost column
displays values of the independent variable (except for sta
tistics) and adjacent columns represent function results.
There are two basic forms of the numeric view: automatic
(Fig. 18) and build-your-own (Fig. 19). The automatic view
displays a series of independent values with a starting value
and a step specified by either the numeric setup view or the
variables NumStartand NumStep.

The BIG menu key lets the student display the numbers using
a larger font. The ZOOM key provides a series of options for
changing the start and step values for the independent vari
able display.

When the cursor is moved to the upper or lower boundaries
of the display the table scrolls to show adjacent values. The
table can also be reset by entering a new value for the inde
pendent variable in the leftmost column.

The build-your-own numeric view is useful for creating a
table of interesting values. The values for the independent
variable column in the build-your-own numeric view are
accessible via the Numlndep variable.

The information for a numeric view includes:
â€¢ Initialization procedure pointer
â€¢ Numeric zoom choices
â€¢ Softkey menu description
â€¢ Display procedure pointer
â€¢ Key handler procedure pointer
â€¢ Split plot-table configuration information.

F C N D E F N

Fig. 20. Plot-table view.

Plot-Table View
The split plot-table view allows a student to combine the
plot and numeric views (Fig. 20).

This view is implemented primarily as a plot view, with the
right side of the display being a small numeric view that
updates to reflect the position of the plot cursor. As the
student moves the cursor from one function to another, the
right side of the table changes to reflect the function being
traced. The DEFN menu key displays the current function at
the bottom of the display. This lets the student display the
symbolic, plot, and numeric views of a function all at once.

Note View
Besides main aplet views like plot view, symbolic view, and
so on, auxiliary views like the note view and sketch view are
provided to add textual and pictorial descriptions to an aplet.
The note view (Fig. 21) can be used to edit and display a
text string attached to an aplet. The note can provide infor
mation about the aplet's subject, a suggested sequence of
exploration, or the supported keys. The note view is basically
a word-wrapping text editor with a 6-line-by-22-character
display.

Although the original HP 48G/GX edit line supports multiple-
line editing, individual lines are handled independently.
When more than 22 characters are inserted into a line, that
line gets scrolled to the left without affecting the rest of the
lines. The HP 38G note view is implemented independently
from the edit line code. Direct display routines are coded to
show a character or a string at a specified location without
generating intermediate GROBs. System-level keyboard han
dling code is modified to implement a general blinking cur
sor display scheme. Besides the text string to be edited, the
note editor maintains a linewidth array for word-wrapping
bookkeeping.

(continued on page 55)

Fig. 19. Build-your-owii numeric view.

 T R A I N N O T E
Max visited Nancy?
who lives 159 Km
away. He drove 49 Km
to a train station?
then took the train,
fiver age train rate is-4

SPACE P A G E Â ¥ A m Z Ã K S P

Fig. 21. Sample note view screen.

June 1996 Hewlett-Packard Journal 53
© Copr. 1949-1998 Hewlett-Packard Co.

Distributed Software Team

The HP 38G calculator was the first product to be developed by Hewlett-
Packard's Asia Pacific Personal Computer Division after the charter for
handheld products was transferred there from Corvallis, Oregon. The
software team was split between Oregon and Singapore, so we learned
to make good use of communication technology, including Internet tools.

We had to figure out how to overcome a separation of over 9,000 miles
and eight time zones. At the end of normal working hours in Oregon, the
Singapore workday has just begun. Our specific communication needs
included same-time, different-place meetings and documents that could
be accessed anywhere, anytime.

S a m e - T i m e , D i f f e r e n t - P l a c e M e e t i n g s
Two of our Oregon team members were already experienced telecom
muters, working at home a few days each week. They pioneered the idea
of "virtual team meetings." Our first virtual meeting experiments were
practiced with everyone in the office, sitting in our individual work areas
with our headsets and a shared window running on all of our
computers, so that we could all view and edit the same document at the
same time.

We were up to work out the initial kinks in the process by standing up
and shouting to each other if necessary. The next step was to link our
two telecommuters from their Oregon homes. When we added our two
Singapore engineers, we were already familiar with the procedures and
etiquette for same-time, different-place meetings.

The team used HP 9000 workstations as well as computers at home that
were connection to the workstations in the office using a LAN connection
over 56-kbit/s frame relay lines. The applications used for sharing docu
ments and meetings ran on our workstations and included Collage and
HP SharedX. These applications allow a group of people to view and edit
the same document simultaneously. However, our more typical way of
sharing documents during meetings was by individually accessing our
team's Worldwide Web pages.

A n y w h e r e , A n y t i m e D o c u m e n t s
Project documents are used to keep people informed of discussions and
decisions and to provide product descriptions for the extended team
members. Our challenge was to create and maintain project documents
that would be accessible from many different locations. Our documenta
tion hypertext made extensive use of Internet technologies: hypertext
documents, graphical browsers, and electronic mail.

Hypertext documents contain links to other documents. They can be
easily created with any text editor using a special kind of formatting
called Hypertext Markup Language (abbreviated HTML). Our team
members were all able to get started with simple hypertext document
creation after only a few minutes of study.

It became apparent to us that HTML was the best choice for developing
and maintaining our project documentation, because:

1 As a our source file format, HTML is compatible with our source
code with system. This allowed us to maintain HTML documents with
the same familiar tools that we used to maintain source code.

â€¢ A variety of HTML browsers such as Mosaic and Netscape are commonly
available for multiple hardware platforms, which ensured that each team
member could access our documentation.

â€¢ The exten nature of HTML documents provided a natural and exten
sible means to link together our rapidly growing documentation set.

We started with an HP 38G project home page. It had links to conven
tional software project documentation, such as our external reference
specification (ERS) documents, which were also authored in HTML. But
the power of linked documents to disseminate information also led us in
new directions that supported the HP 38G project development process.

In past projects, we often regretted our inability to look back at topics
discussed through less formal means like email, but with our HP 38G
home page and tools to support HTML document generation, we finally
had the enabling technologies to overcome this limitation. We began to
archive our group email discussions and link them into our HP 38G proj
ect home page, indexed by date, author, and subject. On frequent occa
sions refer as a group during a teleconference) we would refer
back to these email archives to revisit a line of reasoning about design
choices.

The success of the discussion archival technique led to the side benefit
of a uniform, centrally maintained mailing list for software team members.
Over time we expanded this concept to include multiple discussion
groups, each with associated email archives and each specialized for a
different audience.

Soon that were using the HP 38G home page to collect information that
was previously scattered throughout paper documents or engineers'
minds. For the first time, documents detailing the setup of our software
debugger systems, EPROM burners, and more were readily available
around the clock.

Other departments involved with the HP 38G began to seek out the re
sources we made available through the HP 38G home page, and it was
quite frustra for us to be able to direct them to our pages. The frustra
tion of trying to coordinate delivery of information by hand was becoming
a distant memory. Some departments, with our encouragement and sup
port, began making information available through linked documents.
These for gladly added to our project page, making it more valuable for
all parties. For example, when our colleagues in Singapore had industrial
design the to share, these were made available to all through the
HP 38G home page, and the QA department's software test plans were
added so that engineers could review and comment on them to ensure
complete test coverage.

C o n c l u s i o n

Our use of linked HTML documents has increased steadily since the HP
38G project. We now have more email discussion groups, our own Web
server to simplify access for remote connections, a team home page with
links of all of our project home pages, a dynamic team calendar of
events, a "what's new" service for quickly learning what's changed, and
a searching service for finding specific topics amongst our wealth of
interconnected documents. We expect exciting new developments to
further increase our productivity as we expand our knowledge and use of
the Web.

54 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Sketch Mew
Some people believe that a picture is worth a thousand
words, so the HP 38G generalizes the HP 48G/GX's bitmap
editing features to form an aplet sketch view. With the
sketch view, the user can edit and display a set of bitmaps
attached to an aplet. Holding down the page-down or
page-up key shows a prestored animation sequence
(Fig. 22).

Compared with the HP 48G/GX, the HP 38G limits the bit
map editing features and improves the user interface and
implementation. The HP 38G implements a rubber band
algorithm when the user drags the second point to define a
une, rectangle, or circle. The circle drawing code uses a fast
integer-based iterative algorithm. The user can drag a text
string in the small or medium font to any location. The HP
38G can store a selected portion of a screen into a GROB
variable and recall it. When bitmaps are stored back into an
aplet directory, they are first trimmed to the minimum
enclosing rectangle to save RAM space.

Additional Views
Each aplet type defines additional views available in the
VIEWS menu. For example, the function aplet offers some
hybrid views and some preconfigured plot views. Fig. 23
shows the function VIEWS menu.

In addition, a user can define a new set of special views that
provide high-level tools for an aplet. Such a custom interface
makes the aplet easier to explore and hides details of the
calculator's operation.

MflX Nf lNCY

4 0 K M 110 KM
S T D H N E H P P A G E T E l Â · l T I D R H N I

(hi

MflX Nf lNCY

4 0 K M 110 KM
(0 S T D t N E H P A P A G E ' E K T I D R A H I

Fig. 23. Function VIEWS menu.

The Home Environment

The freeform home environment fills the traditional calcula
tor role of supporting quick calculations. The user enters
expressions in algebraic form and the value of the expression
(usually a number) is returned.

Unlike aplets, the home environment provides access to all
calculator resources, including lists, matrices, graphics
objects, and programs.

The History Stack
The text of the input and the result are stored on a history
stack (Fig. 24a). The user can review the items on the history
stack and reuse those items as parts of the current input
(Fig. 24b). Expressions and equations on the history stack
can be shown in two-dimensional mathematical format
(Fig. 24c).

(a)

Â¡HOME;

S. 94427191

(b)

i HOME

8.94427191

3. 16227766017

8.944271914
CBPYISNBH

(cl

2 2 4 + 8

Fig. 22. An animation sequence in sketch view.

Fig. the (a) History stack, (b) Previous result copied into the com
mand line, (c) EquationWriter display of the same expression.

June 1996 Hewlett-Packard Journal 55
© Copr. 1949-1998 Hewlett-Packard Co.

1/2+1/3
5 /6

Fig. 25. Fraction number format.

The HP 38G includes special features to help beginners. To
help students learn about fractions, the HP 38G has fraction
number format, which uses continued fractions to convert
results to rational form (Fig. 25). To help students unfamiliar
with standard algebraic syntax, the HP 38G attempts to
interpret ill-formed expressions as implied multiplication
(Fig. 26).

The Variable Ans
Each time the user inputs an expression, the value of the
expression is stored in a variable named Ans. This current
value of Ans is placed on the history stack, and the name Ans
can be used in the next calculation. Even when the user
enters a command that performs some action but doesn't
return a value, the current value of Ans is placed on the
history stack.

If the user starts an input with an infix function such as +, -,
*, or /, the calculator inserts the name Ans first. This saves
keystrokes for tasks such as balancing a checkbook (Fig. 27).
If the is presses ENTER without input, the previous input is
repeated (Fig. 28). This saves keystrokes for iterative opera
tions.

The VAR and MATH Menus

To organize its extensive resources, the HP 38G presents the
most-used variables and functions on the keyboard. Addi
tional resources are available in the VAR and MATH menus.
These two-column menus offer specific items in the right

(a)

JHDMEJ

4RB+C4

(b)

Â¡HDMEi

4 * f l * B + C
2 9

HOME
Fins- 19. 95

R n s - 2 5 . 7 5
467.55

441.80

Fig. 27. Checkbook calculations in the home environment.

column, categories of items in the left column, and broader
choices on menu keys.

In the VAR menu (Fig. 29) the user can choose to examine
variables either from the current aplet or from the shared
home variables. The user also can choose either the name or
the value of a variable.

In the HP 38G most variables are strongly typed, that is, for
many variables the value must be a specific type. For exam
ple, the variable X must contain a real number, Z1 must con
tain a complex number, and M2 must contain a matrix. Sev
eral classes of variables contain exactly ten variables, such
as the ten complex variables Z1, Z2, ..., Z9, ZO (Fig. 30).

Variables are used not only for mathematical objects, but
also for modes. For example, storing the constant Degrees
(whose numerical value is 1) into the variable Angle selects
degrees angle mode.

The classes of home variables include complex numbers (Z1
to ZO), graphics objects (G1 to GO), aplets (user-selected
names), lists (L1 to LO), matrices (Ml to MO), modes (fixed
descriptive names), notepad (user-selected names), pro
grams (user-selected names), and real numbers (A to Z, 8).

The MATH menu (Fig. 31) offers additional functions, com
mands, and constants not available on the keyboard. The
categories of functions are: calculus functions, complex-
number functions, constants, hyperbolic functions, list
functions, loop functions, matrix functions, functions of
polynomials, probability functions, real-number functions,
statistics functions, functions for symbolic manipulation,
tests, and trigonometric functions.

Lists and Matrices
For these composite variable types there are catalogs that
report the variables' sizes, along with special editors to enter
and modify the elements. The catalogs and editors are tasks,

f i n s * 1 . 5
JHDMEJ

1.5
2 . 2 5

3 . 3 7 5

Fig. 26. (a) Implied multiply input, (b) Result.
Fig. 28. If the user presses ENTER without input, the previous
input is repeated. This saves keystrokes for iterative operations.

56 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Complex
Graphic
Library
L i s t T

Zl
Z2
Z3
Z4

HOM â€¢ APLE T NfiM â€¢ VALL E Ã­ ANÃL OK

Fig. 29. VAR menu of the home environment.

so the user can easily move among aplets, home, catalogs,
and editors. The list editor (Fig. 32) is one-dimensional. The
matrix editor is two-dimensional (Fig. 33).

Lists and matrices can also be used as functions of an index
value. For example, L1 is a list, while L1(2) is an expression
whose value is the second element of LI.

Notes and Programs
For these text variable types there are catalogs that show
the user-selected names and editors that allow freeform text
input. The notepad holds simple text flies such as phone
lists (Fig. 34).

There is a program with the fixed name Editline, which holds
the most recent input from the home environment. The user
can choose to edit the most recent home input from within
the program editor, or to execute the program Editline from
the home environment by simply pressing ENTER.

Programs aren't parsed until the first time they're run.
Because of this, and because the program editor is a task,

Graphic
Library
List Z 6

H D M â € ¢ A P L E T N A M - I V H L L E K H N Ã L O K

Fig. 30. Most variable values must be a specific type and several
classes of variables contain exactly ten variables. For example. Zl
to ZO are complex variables.

M H T H F U N C T I O N S
R e a l
Stat-Two
Symbolic
Tests T

CEILING
DEG+RÃ±D
FLOOR
FHROOT

M T H - C M D S C O N S K A N Ã L O K

Fig. 32. The list editor is one-dimensional.

Fig. 33. The matrix editor is two-dimensional.

the user can write a program a little at a time, leaving the
program in an invalid state between editing sessions. Fig. 35
shows part of a program.

Commands that perform some action and return no result
can appear only within programs (which includes Editline).
The categories of commands are: commands to control
aplets, branch commands, commands for scaled drawings,
commands to manipulate graphics objects, loop commands,
matrix commands, printing commands, prompt commands
for input and output, and statistics commands.

Ã±lphie
Betty
Grandma
Delia

PHONE NDTE

123-4567
390-1234
567-3901
234-5673

Â¿PACE A , . , Z B K S P

Fig. 34. The notepad holds simple text files such as phone lists.

P R O G R A M
IF RÂ¿0 THEN 1*R END:
CHECK l:
UNCHECK 2:
UNCHECK 3:>

S T D t S P A C E P A G E W A , , , Z W Ã S P

Fig. 31. MATH menu. Fig. 35. Part of a program.

June 1996 Hewlett-Packard Journal 57
© Copr. 1949-1998 Hewlett-Packard Co.

Programs that Support Aplets
The most important purpose of programs in the HP 38G is to
support the user-defined entries within the VIEWS menu
(Fig. 36). Using the SETVIEWS command, the user specifies a
number of special views that represent the tools for manipu
lating the aplet. These tools can be presented at a high level,
using terms relevant to the particular aplet and hiding the
actual methods of the calculator from the aplet user.

The specification for each special view includes a prompt,
which appears in the VIEWS menu. It also includes a program,
which is run when the special view is selected, and a view
specification, which determines the standard view (plot,
symbolic, etc.) to be started when the program is done.

If an aplet has special views with start or reset prompts,
pressing the menu keys START or RESET within the LIB catalog
(Fig. 37) automatically selects the corresponding special
view.

While the prompt category of commands enables program
matic interaction with the user, the main goal of HP 38G
programs is to modify the configuration variables of the cur
rent aplet. After the program runs, the standard view speci
fied in the VIEWS menu starts, operating with the configura
tion left by the program. This approach has the advantage
that the interface to the standard view is familiar to the user.

A P L E T L I B R A R Y

K H N C L O K

Fig. 36. VIEWS menu with user-specified special views.

Pol '- iS i des
Function
Parametric
Polar
Sequence
S A V E I R E S E l l S D R T S E N D R E C 1 , 1 I Ã T A R T I

Fig. 37. LIB catalog.

All the components needed for special views are automati
cally managed by the HP 38G. The menu of special views is
stored as a part of the aplet, and the programs used by the
special views are automatically transferred with the aplet.

This makes aplets simple to use: a single request gets the
aplet and associated programs, and the VIEWS menu offers
the high-level tools that allow the user to focus more on the
content of the aplet and less on the calculator.

Acknowledgments
We would like to acknowledge the rest of the calculator
software team: Helen Choy, Gabe Eisenstein, and Charles
Patton. Youwen Wu worked closely with us to ensure quality.
Diana Roy (learning products) and Kevin Myers and Gary
McCallister (technical support) provided many valuable
user interface design suggestions. Ron Brooks from our
marketing department contributed input from educators.
Our education advisory committee provided valuable day-to
day input on our design decisions and usability issues.

References
1. D.K. Byrne, et al, "An Advanced Scientific Graphing Calculator,"
Hewlett-Packard Journal, Vol. 45, no. 4, August 1994, pp. 6-22.
2. T.W. Beers, et al, "HP 48SX Interfaces and Applications," Hewlett-

Packard Journal, Vol. 42, no. 3, June 1991, pp. 13-21

58 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Creating HP 38G Aplets
This aplet explores a simple aplet and shows how to construct an aplet
called PolySides.

by James A. Donnelly

In designing an aplet for the HP 38G calculator, it's impor
tant to remember two guiding principles of the HP 38G de
sign. First, the design recognizes that in a classroom setting
there is (and should be) a large discrepancy between the
amount of information entered into a graphing calculator
and the amount of information produced by the calculator.
We sought to minimize the calculator input required of the
student and the teacher and maximize the returned informa
tion. Secondly, we sought to exclude irrelevant possibilities.
By reducing irrelevant choices you focus the user's attention
on the subject of interest and avoid distractions from things
that don't matter. Many choices made during the design of
the HP 38G were based on this goal.

Aplets contain information and have views. The information
in an aplet consists of every major piece required to produce
the views: the equations, setup information, mode informa
tion, sketch or text annotations, and attached libraries or
programs. In this article we'll explore a simple aplet, then
look at an aplet called PolySides and examine how it was
constructed.

Using Built-in Aplets
When the HP 38G is first turned on, the built-in aplets are
empty. There's no equation, note, or sketch. When the user
adds this information, these aplets come alive. You can save
an aplet at any time, so it's easy to start one project, change
in midstream to another, then come back to the first.
(Because the appearance of the screens depends on the
information you enter, the screens on your calculator may
look different from the example screens in this article.)

A simple way to illustrate the aplet concept is to explore the
equation SIN(X2)/X. Select the function aplet, press SYMB, and
enter the equation. â€¢*â€¢

Now press PLOT to see the plot using the default plot
parameters. â€¢Â»â€¢

F U N C T I O N S Y M B O L I C V I E N i

F 2 Ã X > =
F3<X> =
F 4 (X > =
F 5 < X > =

E D I T h / C H K ; â € ¢ !

Use the box option under ZOOM to look at a smaller area of
the plot. â€¢Â»â€¢

I D M T R A C E h K , V 5 F C N D E F N M E N U

You can see the plot scale by pressing [shift] PLOT to see the
plot setup view. â€¢Â»â€¢

FUNCTION PLOT SETUP â€¢

Y R N G : - . 9 5 7 1 4 , , , 1 . 1
K T I C K : 1 Y T I C K : 1
R E S : F a s t e r
E N T E R M I N I M U M H O R I Z O N T A L V A L U E

PAGE Â¥

At this point, you have an aplet that's completely dedicated
to your interest in the function SIN(X2)/X, and the aplet can be
saved under a unique name or transmitted to another HP
38G or a computer. When the aplet is restarted on the origi
nal or another HP 38G, all modes and scales are set just the
way they were saved.

June 1996 Hewlett-Packard Journal 59
© Copr. 1949-1998 Hewlett-Packard Co.

Exploring the PolySides Aplet
The PolySides aplet is designed to explore how a regular
polygon can approximate a circle as the number of sides
increases. PolySides can be loaded from a disk or another
HP 38G in a single operation from the LIB catalog. Once
loaded, PolySides appears in the aplet library. â€¢Â»

After the circle properties have been viewed, the note view of
the aplet is displayed. The PAGE menu key switches between
the pages of the note. â€¢Â»

Â¡fiPLET LIEfiHRY!
P o l y S i d e s
Funct ion
Statistics
Parametric
Polar

SAVE RESET SORT SEND REC1,1 START!

PDLVSIDES NDTE

Press [VIEWS] to
explore how the side
lengths? perimeter;
and area of a polygon
change with the number
of sides.

S P A C E P A G E Â ¥ A . . . Z E K S P

We are now just a single keystroke away from exploring the
aplet. To begin the exploration, press START. The motivation
for the lesson is displayed first. â€¢Â»â€¢

Explore how a regular
polygon begins to
approximate a circle
as the number of sides
increases.

P r e s s a n y k e y , , ,

PDLVSIDES NDTE!
E q u a t i o n s u s e d a r e :

X = H o . o f s i d e s
F K X) = S i d e l e n g t h
F 2 C X > = P e r i m e t e r
F 3 < X > = f l r e a

S P A C E A P A G E A . . . Z S K S P

To see a sketch of the problem, press SKETCH.

After the introduction has been read and a key pressed, the
next step is to enter the radius of the circle to be approxi
mated. â€¢Â»

S T D M N E W P

K = N U M E : E f i D F S I D E S
R=RADIUS
S = F1 = SIDE LENGTH
P = F 3 = P E R I M E T E R
R = F3 = iiF;ErÃ¯

' E X T D R A H

S E T C I R C L E R A D I U S

RADIUS:

F I R S T E N T E R T H E C I R C L E R A D I U S
(A N C L D K

After the radius has been entered, the properties of the
circle are displayed. -Â»

So far we have seen a pretty complete summary of the lesson
with less than a dozen keystrokes. Now we can begin to
explore how may sides are needed to approximate a circle.

Our central point of departure for PolySides is VIEWS (as
mentioned in the note view). â€¢Â»â€¢

Circle Properties

R a d i u s = 1 . 0 0
C i r cumf erence= 6 . 23
R r e a = 3 . 1 4

Press any key,..

These choices let you determine what aspect of a polygon
approximation to a circle you'd like to explore. To explore
how the perimeter of the polygon approximates the circle,
move the highlight down to Perimeter and press OK. The plot-
table view is presented automatically. -Â»â€¢

60 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

F 2
you may decide that a polygon with 57 sides yields a fair
approximation to the circumference of a unit circle. -Â»

F C N D E F N

This is one of the HP 38G's split views, showing the plot and
numeric views of the perimeter approximation at the same
time. The variable X represents the number of sides, and the
equation stored in F2 returns the perimeter as a function of X.
Pressing the left or right arrow key moves the cursors for the
plot and numeric views simultaneously. When the cursor is at
the left edge of the plot, the table on the right shows the rapid
change of the perimeter from a triangle to a nonagon. â€¢Â»

X
5 3
5H
5 5

F 2
f i . E ? R f i H E
fi .

f i . E B C i l l 3

5 7
B I G I D E F N

Now you can look at a summary of a 57-sided polygon by
selecting Polygon Props (for polygon properties) from the VIEWS
choices. â€¢Â»â€¢

F 2

5 . B 7 7 B 5
b
fi . ÃI7H37
b . l E E 1 3
b . l 5 b 3 b

F C N D E F N
Press OK to select this choice. Since the cursor was last on X
= 57, the number of sides defaults to 57. â€¢Â»â€¢

To see the equation, just press SYMB.

P D L Y S I D E S S Y M B O L I C V I E W

F 1 < X > =2*R*SIN<180^ . . .
' F 2 < X : : ' = X * < 2 * R * S I N a , , ,

F4<X>=
F5<X>=

EDIT I-X-CHKI !â€¢! S H O H E V A L

i N U M B E R D F S I D E : ' i

SIDES

E N T E R N U M B E R D F S I D E S
K f l N Ã L D K

The symbolic view is where aplet equations are stored. The
check mark beside F2 indicates that when a plot or numeric
view is displayed, F2 will be used. Another view of the equa
tion is available by pressing SHOW. â€¢Â»â€¢

After the user accepts (or alters) the number of sides, the
polygon data is displayed. â€¢Â»

57 Sided Polygon

fippr ox i mat ing c i re 1 e
of radius 1.00
Side length= 8. 11

Press any key-

Notice that after the introduction there is no fixed order of
events. You can change to any of the views at any time or
press HOME at any time to do a short calculation. Part of the
design philosophy of aplets is to let the student explore the
lesson at will, without following any particular algorithm.
Once you've explored the approximations to the perimeter
and area, and perhaps explored the effect on side lengths,

57 Sided Polygon

polygon perimeter=

Circle circumference:
6.23
Press any key.,,

June 1996 Hewlett-Packard Journal 61
© Copr. 1949-1998 Hewlett-Packard Co.

57 Sided Polygon

Pol'-iQon area=
3.14
U i re 1 e area=
-'.14 o

Pres any key-

we've observed that a 57-sided polygon does a fair job
of approximating a unit circle. More explorations are pos
sible. For instance, if the circle has a very large radius, how
many more sides are required for a polygon to closely
approximate the circle's area?

After the last polygon property screen has been acknowl
edged with a keystroke, the VIEWS menu is displayed. â€¢Â»â€¢

This lets you start with another circle or go back to find a
different approximation.

Notice that the keystrokes involved for the entire exploration
have been oriented to the views. We haven't entered a single
bit of setup or scaling information beyond the radius of the
circle being approximated. This is the goal of a well-formed
aplet; more attention is directed to the lesson and less atten
tion is directed to the mechanics of the calculator. You can
imagine a teacher distributing this aplet in a classroom for
part of a day's lesson.

If you're familiar with the HP 48G/GX calculators, you'll
notice that variables like EQ and PPAR have never been men
tioned, even though we changed the equation and plot scaling
parameters several times. Furthermore, we never went near
an input form to set the scale manually (although we could
have done so by pressing [shift] PLOT to display the plot setup
view).

Building the PolySides Aplet
PolySides was constructed using the function aplet and five
user programs attached with the SETVIEWS command.

Beginning with a reset function aplet, the equations, note,
and sketch were entered directly on the calculator. The
equations are:
Side Length Fi(x)=2*R*siN(i80/x)
Pe r ime te r F2 (x)=x*2*R*s iN(i80 /x)
A r e a F S (x) = . 5 * x * R 2 * s i N (3 6 0 / x)

Then five programs were entered, one for each entry in
VIEWS. After the programs were entered, they were attached
to the aplet with the SETVIEWS command. For convenience
during aplet development, a separate program, SetPolyViews,

was entered that contains the SETVIEWS command. SETVIEWS
allows you to customize the VIEWS key with your own entries
and selected entries from the default VIEWS choices. SETVIEWS
takes triplets of arguments. Each triplet contains the prompt
that will appear in the VIEWS list, a program name, and a
number corresponding to the view that should be displayed
after the program is executed. The SETVIEWS command for
PolySides looks like this:

SETVIEWS

" S t a r t " ; " . P o l y l " ; 8 ;

" S i d e L e n g t h s " ; " . P o l y 2 " ; 1 6 ;

" P e r i m e t e r " ; " . P o l y 3 " ; 1 6 ;

"Area" ; " . Poly4 " ; 1 6 ;

"Polygon Props" ; " . Poly5" ; 7 ;

When Side Lengths is selected, the program .Poly2 is executed,
then view number 16 is displayed. View number 7 is the VIEWS
list, view number 8 is the notes view, and view number 16 is
the split plot-table view. A SETVIEWS convention is that if a
prompt is named Start or Reset, it is associated with the START
or RESET menu key in the LIB catalog. The PolySides aplet
takes advantage of this feature so that pressing START in the
LIB catalog gets a student underway in a single keystroke.

The programs are listed below. (Note that the translation
codes used are the same as translate code 3 on the HP
48G/GX.)

.Polyl (Start)

E R A S E :

DISP 1; "Explore how a regular":

DISP 2, -"polygon begins to":

DISP 3; "approximate a circle":

DISP 4, -"as the number of sides"

DISP 5; "increases .":

DISP 7, -"Press any key. . .":

FREEZE:

IF R<=0 THEN 1\ I >R END:

INPUT R CIRCLE RADIUS";

" RADIUS:";

"FIRST ENTER THE CIRCLE RADIUS'

ERASE:

2\l>Digits: FixedN I >Format :

DISP 1 Circle Properties":

DISP 3; "Radius = " R:

Clear the display
Display the
motivation for
the aplet

Prompt for the
circle radius

Clear the display
Set FIX 2 display
mode
Display the screen
title
Display each
property

DISP 4; "Circumference = "

DISP 5, -"Area = " \pi*RA2 :

D I S P 7 a n y k e y . . . "

FREEZE:

StandardX I >Format : ERASE

2 * p i * R :

Wait for a key
press
Restore standard
display format,
clear the display

Programs .Poly2 through .Poly4 do similar jobs. Each validates
the value for R (the radius), selects the appropriate equa
tions in the symbolic view, calculates the plot scale parame
ters, and sets the initial values for the numeric view. Note
that the plot scale is calculated to fit above the menu. The
menu occupies 1/8 the display, so an adjustment of 1/8 the
calculated vertical range is made to the vertical scale.

62 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

.Poly2 (Side Lengths)

IP R\< = 0 THEN 1I>R END:

CHECK 1:

DNCHECK 2:

UNCHECK 3:

3\ I >Xmin:

67\ I >Xmax:

Fl(Xmax)\l >Ymin:

Fl(Xmin)\ I >Ymax:

Ymin-. 125* (Ymax-Ymin) I >Ymin:

3l>NumStart:

l\l>NumStep:

Poly3 (Perimeter)

IF R<=0 THEN 1\ I >R END:

UNCHECK 1:

CHECK 2 :

UNCHECK 3 :

3\ I >Xmin:

67] >Xmax:

Ensure a reason
able value for R
Select equation Fl

Set the plot scale

Fit the plot above
the menu
Set the numeric
view to begin at 1
and increase in
steps of 1

Select equation F2

FixedX I >Format:

DISP 3, -"Polygon perimeter=":

DISP 4 " F2(X) :

DISP 5 /"Circle circumf erence=

D I S P 6 " s * p i * R :

DISP 7 /"Press any key...":

FREEZE:

ERASE:

StandardX I >Format :

DISP 1; X " Sided Polygon"

FixedN I >Fonnat :

DISP 3 /"Polygon area=":

DISP 4 " F3(X) :

"Circle area=":

" " \pi*RA2:

"Press any key...":

DISP 5;

DISP 6;

DISP 7;

FREEZE:

StandardX I >Format : ERASE

Set FIX 2 format
Display the
perimeter and
ci rcu inference

Wait for a key
press
Clear the display
Set standard
format
Display the screen
title
Set FIX 2 format
Display the area

Wait for a key
press
Restore standard
display format,
clear the display

Select equation F3

F2 (Xmin)\ I >Ymin:

F2 (Xmax)\ I >Ymax:

Ymin-. 125 *(Ymax-Ymin) I >Ymin:

3\ I >NumStart:

1\ I >NumStep:

.Poly4 (Area)

IF R<=0 THEN 1I>R END:

UNCHECK 1:

UNCHECK 2 :

CHECK 3 :

3\ I >Xmin:

67 I >Xmax:

F3(Xmin) I >Ymin:

F3 (Xmax) I >Ymax:

Ymin-. 125* { Ymax-Ymin) I >Ymin:

3\ I >NumStart:

1\ I >NumStep:

. P o l y S (P o l y g o n P r o p e r t i e s)

INPUT X; "NUMBER OF SIDES" / "SIDES" / "ENTER NUMBER

OF SIDES"/X:

ERASE:

Standard I >Format:

Sided Polygon"

2l>Digits: FixedN I >Format :

DISP 3 / "Approximating circle":

DISP 4 /"of radius " R:

DISP 5/"Side length= " F1(X):

DISP 7/"Press any key...":

FREEZE:

ERASE:

StandardX I >Format :

1 X " Sided Polygon" :

Sides prompt
Clear the display
Set standard
format
Display the screen
title
Set FIX 2 format
Display circle
radius and poly
gon side length

Wait f or a key
press
Clear the display
Set standard
format
Display the screen
title

Building Your Own Aplets
Your own aplets can be as simple as the first example,
somewhat more involved (like the PolySides aplet), or very
involved, with more complex user programs. Creating a new
base aplet that can be downloaded into the HP 38G requires
the use of System RPL programming beyond the built-in
user programming language.

Basic Steps. The basic steps for building an aplet are:
Pick an appropriate built-in base aplet â€” function, polar,
parametric, etc.
In each of the views, enter the information that applies.
For instance, you would put your equations in the symbolic
view, plot parameters in the plot setup view, and so on.
Put a sketch of the problem in the sketch view and a
description of the problem in the note view.
For a fancier aplet, use SETVIEWS to attach user programs to
the VIEWS key. Remember that it may be handy to have a
separate program that stores the SETVIEWS command while
you're developing the aplet.

Flow of Control. In general, the user of the aplet should deter
mine the flow of control, so that a problem can be explored
freely. The PolySides aplet provides a little extra guidance
by using the program .Polyl attached to the start prompt in
VIEWS. .Polyl displays an initial screen, prompts for the circle
radius, displays the circle's properties, and finally exits to the
note view as directed by the SETVIEWS command. In general,
the user should be able to navigate freely among the choices
in VIEWS or the various views, or go home and come back.

Shared Variables. The global variables A to Z, Z1 to ZO, and so
on are not stored within an aplet, so if an aplet depends on
the value of a global variable it's a good idea to have the
program associated with Start in VIEWS set these values.

June 1996 Hewlett-Packard Journal 63
© Copr. 1949-1998 Hewlett-Packard Co.

HP PalmVue: A New Healthcare
Information Product
The HP PalmVue system integrates personal computer, alphanumeric
paging, and palmtop computer technology into an effective solution for
delivering timely and high-quality patient data to mobile physicians.

by Edward H. Schmuhl, Allan P. Sherman, and Jon D. Waisnor

The HP PalmVue system (HP M1490A) is a new offering
from HP's Medical Products Group that allows transmission
of clinical patient information to HP palmtop computers via
conventional alphanumeric paging systems. This system
integrates several forms of current technology, including
computer networks, palmtop computers, paging systems,
and devices to deliver a powerful new capability to hospitals
and physicians who use HP monitoring systems and cardio
graphs. This article will provide an overview of the operation
of the PalmVue system and show how the system integrates
several components to deliver this new service to clinical
users.

The User Need
It's Saturday evening, and Dr. Ikeda is enjoying a rare dinner
out with his spouse and another couple. As chief cardiologist
of the Memorial Medical Center, he does not get much time
to relax. This evening, he has largely been able to put out of
his mind the unstable condition of Frank Nielsen, a patient
under his care in the Memorial cardiac care unit (CCU) who
is recovering from a recent heart attack. Suddenly, the waiter
taps him on the shoulder and informs him of an important
telephone call. He goes to the phone, to be told by Laura in
the CCU that Frank has developed a very irregular heart
rhythm and she is very concerned about his condition. Since
he always carries his portable computer and modem card,
he suggests that Laura send him a fax of Frank's ECG so
that he can assess the clinical situation himself. He goes to
get his computer, and finds his way to a telephone jack that
the restaurant has allowed him to use. After several failed
attempts, he finally gets the faxed ECG transmitted to his
laptop computer. He is able to tell from the fax that Frank is
in no immediate danger, but cannot read the ECG well
enough to make a clear diagnosis. He tells Laura that he will
quickly finish his dinner and stop by the CCU on his way
home.

It happens that Dr. Washington, another local cardiologist, is
also out with his family celebrating a birthday at the same
restaurant. He has several patients in the CCU at St. Francis
Hospital. As he is about to enjoy his appetizer, he hears the
familiar sound of a paging alert from his pocket computer.
He removes his HP palmtop computer from his pocket, waits
a moment until the computer displays the HP PalmVue index
screen, and presses a key to display the message. It is a mes
sage from Tony in the CCU. Dr. Washington's cardiac patient
Olga Smetana has been having an increased number of pre
mature ventricular contractions (PVCs), and they seem to

him to have changed shape. Tony's message says he needs to
know if a change in dosage, or perhaps a new medication, is
needed. Dr. Washington pushes another key and views Olga's
ECG waveform in a crisp and detailed display on the palm
top screen. He can easily see that the PVCs are not really
clinically different from those he has been seeing in Olga's
ECG for the past few days. He pulls out his pocket-sized
cellular phone, calls Tony in the unit and tells him that
everything is OK with Olga, and he will check on her in the
morning. He then proceeds to enjoy the rest of his dinner.

HP PalmVue System Description
The HP PalmVue system integrates personal computer,
alphanumeric paging, and palmtop computer technology
into an effective solution for delivering timely and high-
quality patient data to mobile physicians (see Fig. 1). The
dispatch station PC handles acquisition of the clinical pa
tient data. It also runs the user application to review and
select the data, converts the clinical data to paging mes
sages, and sends these messages to a commercial paging
system through a modem connection. The HP PalmVue
critical care system acquires patient data (such as patient
waveforms and vital signs) from the HP CareNet monitoring
network via the SDN interface card. For the HP PalmVue
ECGstat application, the patient's 12-lead electrocardio-
graphic signals taken by an HP cardiograph are transferred
to the dispatch station PC via flexible disk.

The paging messages travel through the paging system in
exactly the same form as a typical "call me at 301-457-8438"
paging message, except that each message consists of a
string of up to 230 meaningless characters. Most of the major
paging providers (radio common carriers) send these pages
from their paging system computers (known as switches) to
a satellite uplink. The satellite retransmits the messages
through a downlink to ground-based paging transmitters in
the geographical area covered by the subscriber's paging
service arrangement. This coverage territory may be a met
ropolitan area, a region, or an entire country. The transmit
ters broadcast the signals, which are then received by the
pager.

The paging receiver used in the HP PalmVue system is a
device called a NewsCard, provided by Motorola. This de
vice combines the radio circuits from a standard pager with
processing, memory, and a PCMCIA (Personal Computer
Memory Card International Association) interface. The indi
vidual paging messages are transferred to the HP 200LX

64 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Central Monitor
wi th

Arrhythmia

HP CareNet Monitor ing Network
â€¢ Shares patient data among patient

monitors and other systems including
PalmVue.

â€¢ Supports up to 2 networks, 24 beds

Dispatch Station
â€¢ Patient Selection
â€¢ Data Review
â€¢ Message Text Entry
â€¢ Select recipient.
â€¢ Initiate transmission to

paging service provider.
â€¢ Connects up to 100 palmtop PCs.

Bui l t - in Modem

Patient Telemetry
Monitors Scrambled

M e s s a g e s ^ / T e l e p h o n e
System

Connection Sends selected
patient data to any
medical palmtop.

Paging Service Provider
â€¢ Radio Common Carrier IRCCi
â€¢ Private Carrier
â€¢ In-House Paging Service

Medical Palmtop Computer
â€¢ Transfers data from pager.
â€¢ Displays patient data/notes.

Fig. 1. HP M1490A PalmVue system.

palmtop computer by a software program developed by HP
for use in the HP StarLink paging service. If the NewsCard is
plugged into the palmtop when an HP PalmVue message
arrives, the palmtop turns on and the messages are automat
ically transferred into the memory of the palmtop. If the
NewsCard is not plugged in, the messages are transferred
later after the user plugs in the card and turns on the palm
top.

The heart of the HP PalmVue system is the software. The
program in the dispatch station PC compresses the complex
patient data, transforms it into a series of short, character-
based messages, and sends them to the paging service. The
palmtop software processes the paging messages to recon
struct the patient data, and handles the user interface and
display of the patient data on the palmtop screen. Refer to
"Data Through Paging Technology" on page 68 for details of
the packetizing and reconstruction process.

The HP PalmVue critical care application provides a snap
shot of the current patient data as acquired from the HP
patient monitor through the HP CareNet. This data may con
sist of a 15-second waveform snapshot (typically the ECG,
used for assessing the patient's heart rhythm), up to three
5-second snapshots of other physiological waveforms (blood
pressure waveforms or other measurements), and the full set
of vital signs (heart rate, blood pressures, etc.). The user at
the dispatch station selects the patient data, reviews it on the
PC screen, and freezes a particular snapshot of information
for transmission to the remote physician. The user can also
enter a text note to explain particular concerns or provide
additional data to the physician. After choosing the recipient's
name, the user initiates the transmission of the message. An
example of the user screen on the dispatch station is shown
in Fig. 2.

June 1996 Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

M a n a L o p e z B E D 1 1 1 2 3 - 5 6 - 8 3 0 1

Main Menu Content Ac t ions Pa t ien t L is t
-IIâ€”

15:11

mV

ABP
180 15:11

CVP
30 15:11

toto

CVP up fron 5. Bilateral rales and

rhonchi. Lasix 20r-ig. IV push as

ordered without response.

Please advise.

Vitals
Â¡Â¡HR 141

PULSE 141
"ABP 134/75(99)

i CVP (10)
- P A P 3 4 / 1 7 (2 4)
Â¡liSpOZ 97

Patient Note
VfevK â€¢:â€¢ Mol B
Rhythm + Note

Waves+Rhy.+Note

Unfreeze ,

Transmission Progress

Send

Dr, Washington

T X S u c c e s s f u l

0 2 - 1 4 - 1 9 9 6 1 5 : 1 1 : 0 9 Fig. 2. An example of the user
screen on the dispatch station PC.

The operation of the HP PalmVue ECGstat application is very
similar, except that a previously acquired patient EGG is read
in from a flexible disk (or it may have been previously stored
in the dispatch station PC).

Operation of the palmtop application is designed to be as
simple and intuitive as possible. If the NewsCard is plugged
into the palmtop when a new HP PalmVue message arrives,
the palmtop turns on, automatically transfers the paging
messages into the palmtop, and executes the application
program. This program reconstructs the patient data file and
shows the index screen on the display with the new message
highlighted (see Fig. 3). The user simply presses Enter, and
the first screen of the new HP PalmVue message appears on
the palmtop display (see Fig. 4). This screen provides patient
identification, the time the data was taken, and the text note
as entered by the sending clinician. The user can access the
clinical data portion of the message by using the function
keys. For example, pressing f5 Vitals brings up the patient's
vital signs (see Fig. 5). The 15-second ECG waveforms can
be accessed by pressing f6 Rhythm (see Fig. 6). Other portions
of the patient data file, or alternate views such as expanded
waveform time scales, are similarly accessed by using the
function keys. Again, the palmtop application for display of

Bed 1 David Murphy
BQd 2 Mary Pizzo
Bed 21 Olga 5netana

Message Index
14- eb 11:43 Men Med C
14- eb 12:46 Men Med C
14- eta 14:07 Men Med "

B e d
B e d
B e d

18 Philip Dubai
3 Rita Ã±lvarez

1 7 E d u a r d f i j a n i
mpleLe Message
5 Helen Zhans

22 Richard Kran
1 David Murphy
Ric-hÂ¿ird Roû

eb 14:51 Men Med C
" 14: 53 Men Med C
._ 15:07 Men Med C

14-Feb 15:08 Men Med C
14-Feb 15:03 Men Med C
14-Feb 15:10 Mem Med C

3 0 0 - 2 3 3
3 0 0 2 9 3
3 0 0 - 2 9 3 -
3 0 0 - 2 9 3
3 0 0 - 2 9 3 -
3 0 0 - 2 3 3
3 0 0 - 2 3 3
3 0 0 - 2 3 3 -
3 1 1 1 1 2 9 3
3 0 0 - 2 9 3
3 0 0 - 2 9 3 -
3 0 0 - 2 9 3

5235
5295
5295
5295
5295
5295
5295
5295
5295
5295
5295
5295

14-1- eb 15 : 12 Men Med CLr
1 4 - F e b 1 5 : 2 8 M e n M e d C L r

1 4 - F e b 1 5 : 4 9 M e n M e d C t r

3 0 0 - 2 3 3 - 5 2 3 5
 1-293-5235

-233-5235

Fig. 3. Index screen on the palmtop display with the new message
highlighted.

a patient's 12-lead ECG operates in a very similar fashion,
with display formats tailored to useful presentation of the
12-lead waveform and diagnostic information.

HP PalmVue Architecture
Several key objectives drove the architectural design of the
HP PalmVue system:
Allow independent development and testing of the dispatch
station and palmtop portions of the HP PalmVue software.
Allocate processing tasks appropriately to the dispatch
station and the palmtop.
Leverage existing software for the critical care application.
Isolate the transmission process as a subsystem to minimize
regulatory concern about the specifics of the paging infra
structure.
Develop the key software modules in the PC and palmtop to
be independent of the paging technology to allow a smooth
transition to alternate wireless communication technologies.

The resulting architecture provides a good solution that
meets these goals and allowed for a smooth development
process.

B e d 1 1 M a r i a L o p e z 1 4 - F e b 1 5 : 1 1
M e m M e c a C t r 3 0 0 - 2 9 3 - 5 2 9 5

F r o m : S a r a h P u t n a m
T o : D r - . W a s h i n g t o n
 S e n d e r N o t e

C U P u p F r o m 5 . B i l a t e r a l r a l e s a n d
r h o n c h i . L a s i x 2 0 r n = r . I U p i _ t s h a s
o r d e r e d w i t h o u t , r e s p o n s e .

P l e a s e a d v i s e .

Fig. 4. When the user presses Enter at the index screen, the first
screen of the new HP PalmVue message appears on the palmtop
display.

66 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

I / V E C 9 9

1 4 - F e t > 1 5 : 1 1

Dni tor- IS : 11 --

= _ 34X 1 VC24J

B e d 1 1 M a r i a L o p e z 1 4 - F e b 1 5 : 1 1 H a m H f d C t r 3 Â » Â « - Z 9 3 - 5 2 9 5

Fig. 5. Pressing 15 Vitals brings up the patient's vital signs.

The HP PalmVue system architecture is shown in Fig. 7. The
key to achieving many of the design objectives is the clinical
message file. This file is a specially defined representation
of the clinical patient data, together with appropriate identi
fication and control information. It exists in the system as a
standard DOS binary file. This allows the clinical message
files to be created, edited, and transported using conventional
PC tools. The clinical message file is provided as input to
the transmission process within the dispatch station PC, and
is reconstructed within the palmtop software.

This sub greatly facilitates testing. Each application sub
system can be tested and verified independently by either
evaluating the clinical message file as output from the PC, or
by providing a valid clinical message file as input to the
palmtop. The entire software system can be tested without
any use of the wireless communication subsystem.

This design also resulted in optimized system performance.
The bulk of the processing load, which is the transformation
of waveforms into scaled display data, is handled in the dis
patch station PC. The scaled waveform data that the palm
top receives in the clinical message file requires very little
processing to display on the palmtop screen.

The inclusion of explicit error codes in the clinical message
file allows the verification of data integrity with total inde
pendence from the transmission subsystem. This allowed

Fig. 6. The 15-second ECG waveforms can be accessed by pressing
f6 Rhythm.

the regulatory concerns for data integrity to be addressed
without consideration of the specific performance charac
teristics of the paging systems. Both the clinical message
file-based architecture and the error code implementation
are capable of transparent migration to other wireless (or
wireline) communication methods.

Background of the Product Concept
The availability of Palmtop computers, along with compat
ible paging devices and services, created the potential for
wireless transmission of patient data to these tiny computers.
The early product concept included the original Palmtop
(the HP 95LX), and a paging device called the NewsStream,
which connected to the serial port of the Palmtop using a
cradle. The HP 95LX display allowed only coarse waveform
presentation, and the combination of the Palmtop, cradle,
and NewsStream was somewhat unwieldy. However, proto
typing based on these concepts, using the 12-lead ECG,
showed the feasibility of the product idea.

Dr. David Albert, a technology oriented physician with pre
vious ties to the HP Diagnostic Cardiology Division, became
a champion for commercialization of the product. Having
formed a company (Data Critical Corporation, or DCC) to

Paging Dispatch Station Transmission Process Paging Receiver

HPVectraPC

Fig. 7. HP PalmVue architecture.

HP 200LX Palmtop Computer

June 1996 Hewlett-Packard Journal 67

© Copr. 1949-1998 Hewlett-Packard Co.

Data Through Paging Technology

The Data Through Paging software, which is licensed to HP by Data
Critical Corporation, allows patient information in the form of a binary
file (the clinical message file) to be transmitted through a conventional
alphanumeric paging system and received on a palmtop computer
equipped with a NewsCard paging receiver.

T r a n s m i s s i o n D a t a S t r u c t u r e
Two types of pages are generated and transmitted by the dispatch station
application. The first type is the file identification packet. This page is
sent redundantly as the first and last packets. It identifies the clinical
message file and provides the clinical callback phone number and the
name dis the institution. This page is sent as readable text and is dis
played when the clinical message is not received successfully.

The second type of page is the clinical message packet. The clinical
message file is divided into clinical message packets using the process
ing step outlined below. The clinical message packets can be transmitted
redundantly if that feature is selected in the dispatch station application.

C l i n i c a l M e s s a g e F i l e C o m p r e s s i o n
The clinical message file is compressed using a lossless compression
algorithm. The approach, which is based on industry-standard concepts
and algorithms, is referred to as LVSS. The algorithm employs dictionary-
based is Huffman encoding processes. This combined algorithm is
similar to the commercially available LHARC program and the widely
used PKZIP The compression is intended to decrease the number of
pages of through the paging service provider by about 50%. As part of
the compression process, a 16-bit CRC error detection code is computed
and included with the compressed clinical message file. The CRC serves
both detect check the integrity of the compression process and to detect
errors that might have been introduced by the transmission process.

E n c o d i n g
The compressed clinical message file, which is in the form of 8-bit binary
data, is translated into 7-bit printable ASCII characters. The binary-to-
ASCII was step is necessary to use the paging system, which was
originally intended for the transmission of only printable ASCII charac
ters. The algorithm is similar to the uuencode utility used with many
UNIXÂ® email programs. This process tends to introduce an overhead of
30% in more clinical message file size. This encoding overhead is more
than offset by the gains obtained through compression.

P a c k e t i z a t i o n

The encoded clinical message file is divided into small blocks of ASCII
characters. The size of a block is dictated by the maximum page length
allowed by the specific paging service used. Each block contains header

information for later identification of the data block, which allows correct
reconstruction of the clinical message file after reception in the palmtop.
The header contains a clinical message file filename, a block sequence
number, the total number of blocks in the clinical message file, and error
detection codes. Each block is then packaged into a page with Telocator
Access for (TAP) control characters embedded in preparation for
sending to the paging service by modem. Each page also contains infor
mation that is used later in the RF transmission stage to target specific
receiving pagers.

D a t a T r a n s m i s s i o n
A telephone line connection is established between the dispatch station
modem and the central paging switch modem. TAP is used to upload the
packetized clinical message file to the paging switch. TAP establishes
communication handshaking, performs forward-acting error correction
using checksum calculation, and retransmits erroneous packets when
requested. The uploaded pages are then RF-transmitted to the target
pager trans (or devices) by the central paging system. The order of trans
mission of the packets is not necessarily the same as the order of recep
tion by the paging switch.

R e c e i v i n g P a g e s
On the receiving end of the RF link, the process is reversed to recreate
the original clinical message file. All pages in a clinical message file are
stored by the NewsCard paging receiver in its local memory, where they
can be relevant into the receiving palmtop computer. The relevant
clinical message file pages are then redirected to a temporary incoming
clinical message file page file based on the header information supplied
with each page. The last page sent contains a coded message that acti
vates a palmtop macro to start processing.

C l i n i c a l M e s s a g e F i l e R e c o n s t r u c t i o n
The HP PalmVue application accesses the incoming clinical message
file page file and, using the page header information, reorders and
reassembles the received pages. The reassembled page message is then
translated from 7-bit ASCII to 8-bit binary data to reverse the pretrans-
mission encoding process. The decoded clinical message file page file is
then decompressed to reconstruct the original clinical message file, which
is then stored. It is displayed by the palmtop application only if the CRC
sent with the clinical message file matches the CRC computed by the
palmtop.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

pursue building products based on this technology, he
searched for partners to provide access to sources of clini
cal patient information as well as established marketing
channels. He found an enthusiastic sponsor in Jim Cyrier,
the division manager of HP's patient monitoring business.
Jim had a well-developed vision of the future needs of medi
cal professionals for access to patient data whenever and
wherever they were, so he saw great promise in this product
concept. Jim set in motion a process that resulted in a con
tract between HP and Dr. Albert's company for the joint
development and marketing of the PalmVue system.

Underlying this product are two major concepts. One is the
usefulness of providing complex patient data to physicians
on a pocket-sized device, which is enabled by the advent of
the HP palmtop, a tiny computer with a high-resolution
graphics display. The other is the ability (seen by many in
the paging industry as "not possible") to send large, binary
information files through the standard and ubiquitous alpha
numeric paging systems. Refer to "Data Through Paging
Technology" above for the details of the data compression,
translation, packetizing and reconstruction process used to
implement this capability.

68 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Product Development
The product definition for HP PalmYue was a joint effort of
the engineering teams from the HP Patient Monitoring and
Diagnostic Cardiology Dhisions. working together with Data
Critical Corporation. The primary design goals were to pro
vide high quality and useful displays of patient data on the
palmtop computer, to provide a very simple and intuitive user
interface for the palmtop user, and to ensure the integrity of
any patient data presented to the physician. The patient moni
toring team developed a prototype of the palmtop displays,
using Visual BASIC on a PC. These display screens were
transferred to the palmtop, where they provided detailed
screen formats and basic user interface controls. This proved
to be a very effective method for quickly developing detailed
prototype screen formats and control structures for evalua
tion by the development team and representative clinical
users.

The development of the HP PalmVue critical care and ECG-
stat applications followed separate paths. The critical care
product built on existing software products to provide a
framework for the dispatch station application and a proven
subsystem to acquire patient data from the HP CareNet
patient monitoring network. The PC application to provide
the HP PalmVue user interface was developed by the engi
neering team in the HP European Project Engineering Center
by leveraging their DocVue product. Data Critical Corpora
tion, under the development provisions of the contract, de
veloped the transmission software for the dispatch station
PC and the data reconstruction and user application soft
ware for the palmtop. The program management, system
integration, testing, and product documentation were per
formed by the project team at the HP Patient Monitoring
Division.

The development path for the HP PalmVue ECGstat product
was far simpler. The HP Diagnostic Cardiology Division de
veloped the initial product specification and Data Critical
Corporation developed all of the PC and palmtop software.
Substantial portions of the software (other than the PC user
application) are common between the two products.

The joint development plan for these products made optimal
use of the strengths of the partners. The HP patient monitor
ing and cardiology groups have substantial knowledge of
their respective clinical application areas. They also have
highly refined and formalized processes for product defini
tion, architectural design, regulatory approval, and software
quality assurance. In the case of the critical care product,
existing product software from the HP European Project

Engineering Center was also a key HP contribution. Data
Critical Corporation provided their established Data Through
Paging technology, current knowledge of paging systems and
paging devices, and specific expertise in programming in the
system manager environment of the HP 200LX palmtop.
Substantial learning occurred by all of the partners. Data
Critical Corporation was forced to conform to the rigorous
testing and software QA methods required by HP's regulatory
and ISO 9001 processes, while HP embraced the spirit of
rapid product creation and aggressive attitudes that are the
strengths of a small startup company.

The project teams needed to adapt quickly to evolving tech
nology as the project progressed. While the early prototype
was based on the HP 95LX, the HP 100LX was introduced
during the early stages of the development work. By the
time of product release, the HP 200LX was announced and
became the platform for the initial HP PalmVue products.
The paging device evolved from the bulky NewsStream to
the PCMCIA-based NewsCard. The advent of the NewsCard
provides the end user with a compact receiver setup that
can be readily carried in a pocket or purse. A team in HP
Corvallis and HP Singapore was concurrently developing
interface software for the NewsCard, and they modified
their software product to make HP PalmVue possible.
Adapting to these changes required the development and
test teams to be flexible and efficiently rework their soft
ware and test procedures to accommodate the evolving HP
PalmVue product configuration.

Acknowledgments
Dr. David Albert and Aziz El Idrisi of Data Critical Corpora
tion worked closely with our team on the development and
introduction of HP PalmVue. Tim Beevers and Eric Meyers
made key contributions to the formulation of early product
definition, market exploration, and project planning. Thomas
Kerker and Olaf Schnapper of the HP European Project
Engineering Center provided the knowledge and technical
capabilities for the successful development of the HP Palm
Vue Critical Care application based on the DocVue platform.
Carla Mond, Steve Slaton, and Michelle Maietta provided the
market introduction ideas and plans, and orchestrated the
highly successful promotional activities. Steve deserves spe
cial mention as the originator of the idea for the user scenario
at the beginning of the article. Our special thanks go to Jim
Cyrier, Patient Monitoring Division general manager, for his
visionary role in sponsoring the HP PalmVue project from its
inception.

June 1996 Hewlett-Packard Journal 69
© Copr. 1949-1998 Hewlett-Packard Co.

Constructing An Application Server
In a dynamic networked environment in which there are several hundred
workstations and servers there is a constant demand for new versions of
software. In this environment software installation procedures must be
quick, flexible, and tolerant of change.

by Jill E. Swenson

With the rapid advancements and constant changes associ
ated with computer technology, new and better hardware
and software capabilities can always be expected. Hardware
comes and goes as needs fluctuate, and software popularity
tends to bloom and fade as fast as software features evolve.
All this change makes managing software installation and
updates across more than 600 UNIXÂ® systems a very chal
lenging task. This paper describes a project to simplify soft
ware administration among a group of workstations at HP's
Integrated Circuits Business Division.

At one time our division software was purchased by system
owners and installed on individual workstations as requested.
Users shared common applications by connecting their work
stations in HP-UX clusters in which one machine's disks
were used by many diskless workstations (cnodes).1 These
clusters grew large, and access to software became a more
important component in deciding system configuration than
performance or networking issues. Some software was
shared between cluster servers through NFS mounts, and
this led to what we call "spaghetti mounts," which is many
machines mounting portions of each others' disks to access
shared software (Fig. 1). Additionally, software installations

were not tracked, software versions were not synchronized,
and network licensing was not effectively implemented.

My goal for this project was to find a way to reduce users'
dependencies on cluster configurations, to untangle the
mounts, and to improve the way we installed, updated,
removed, and tracked software. To do this, I moved the
application code files to a central server and connected all
the user workstations to this server (see Fig. 2). File servers
are not an unusual concept, but application servers create
unique challenges, and this one needed to be as easy to use
as possible.

Developing the Structure
Since we had some spare equipment and disk space, a central
software server was a convenient choice for the application
server. The basic concept was in place â€” add disks to the
application server, install software on those disks, mount
those disks to client machines, and enable the client ma
chines to run the software. Two issues that had to be dealt
with were how to mount disks so that symbolic links would
be followed correctly on the application server and on the
clients, and how to isolate each application and allow it to

User Application B

S o f t W i n d o w s

- User Appl icat ion A

NFS (Remote) Mounts Used to Gain
Access to Software Applicat ions on
Remote Systems

Local Disks

Fig. 1. An example of "spaghetti
mounts," which is many machines
mounting portions of each others'
disks to access shared software.

70 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

NFS (Remote) Mounts Used to Gain
Access to Software Applicat ions on
Remote Systems

Local Disks

reside in its desired location on each system. Finally, since
saving administrative effort was equally important, the
entire process needed to be automated.

A search of the literature produced a helpful article describ
ing how to manage local software on a network.2 Even more
conveniently, the article included the author's installation
script. Although not entirely suitable for our environment,
this article provided valuable ideas for establishing mount
points, isolating applications, and creating configuration
files for each application.

Mount Points
To identify mount points, I looked at documentation for the
HP-internal UNIX Common Operating Environment (UX-
COE) and the HP-UX 10.0 operating system. Both docu
ments recommended using different locations for mounting
local and remote (NFS-mounted) disks. This meant that disks
physically connected to the application server would be
mounted in one location on the server (e.g., /mnt/disk1) and in
a different location on the server's clients (e.g., /nfs/servername/
diskl) (see Fig. 3). This approach makes logical sense, but it
is limited because there is a route to a file on the server that
the client doesn't know about. In other words, the server
could refer to a file by the name /mnt/diskl/filename, but that
name would not be valid on a client. The client must call
that file /nfs/servername/diskl/filename.

Diskl Disk n

Appl icat ion
Server

/mnt/disk1/f i lename

/nfs/servername/disk1/ f i lename
f i lename

NFS Mount

â€¢ Local Mount

Fig. 3. An example of using different locations to mount local
and remote disks.

Fig. 2. A network configuration
in which many machines are
mounted to an application server
to gain access to shared software.

Why Is this a problem?
Calling a file by multiple names typically does not cause
problems. However, most application installation programs
have a problem with multiple names because they act under
the assumption that code is installed on the machine where
it will be used and not on an application server. Many instal
lation programs detect the directory into which code is
installed and then plug that directory name into scripts, use
it to create symbolic links, and so on. The resulting scripts
and links work correctly on the application server, but fail
on client systems.

To handle this, disks were mounted in the recommended
locations and symbolic links were created on the application
server to allow it to refer to its own disks under the names
used by the clients. Thus, when software is installed it is
always redirected, if possible, to the name used by clients.

In retrospect, this was not the best solution. Some particu
larly difficult installation processes resolve all symbolic
links to their absolute paths and use these paths to create
scripts and symbolic links. Thus, no matter what name was
used for the installation directory, I would find some refer
ence to /mnt/diski tucked away in a software configuration
file or script. The only way to fool these programs is to
either ignore recommended standards and mount the disks
to /nfs/servername/disk1 on both the client and the server, or
create "fake" symbolic links to the mount points on both
machines.

After considering both options, I determined that the first
option had the least number of disadvantages and was the
simplest to implement.

Software Organization
The next question was how to organize the software on the
shared disks. Opinions varied. One approach was to put all
code into a common bin directory and set it up so that the
administrator owned the bin directory on all machines.
Although this would ensure consistency, it wasn't very
flexible. Since all users don't have identical software needs
(some may be testing a new version of software while

June 1996 Hewlett-Packard Journal 71

© Copr. 1949-1998 Hewlett-Packard Co.

others might be installing software packages that are not
shared with others), it did not make sense to force all sys
tems to have an identical bin directory.

The approach used in reference 2 suggested isolating each
application in its own directory tree and organizing the com
ponents of the application in explicit directories (documen
tation files under the doc subdirectory, binaries under bin,
etc.). This idea of isolation was good, but it required spend
ing time unnecessarily reorganizing the code components.

The software packages we were dealing with came from
multiple developers, each of whom had a different idea about
where an application's files should reside and the relative
location of different components such as library, binary, and
configuration files. There was some concern that many of
these software packages would not react well to being moved
around or being forced to run out of an unexpected directory.
The best approach was to install each application into a
separate directory on the shared disks, and to use symbolic
links to allow the application's files to be logically located
wherever they would normally expect to be installed.

To keep this neat, each software package is installed into its
own directory as if that directory were the root directory on
the system. In other words, if an application called editor
came with a file called editor.dict, which it expected to reside
in /usr/local/lib, a directory for the new application would be
created:

/nf s /servername/di ski /editor

and the editor.dict(ionary) file would be installed in

/ n f s / s e r v e r n a m e / d i s k i / e d i t o r / u s r / l o c a l / l i b
/ e d i t o r . d i c t

When this software is finally hooked up to client systems,
they will each have a symbolic link:

/usr/local/lib/editor.dict ->

/nf s /servername/di ski /editor /usr/local/lib

/editor.dict

The software can find its data file where it expects, and all
the files associated with the editor program can be isolated in
one directory tree which can be easily removed, replaced, or
modified as needed.

Each application's directory tree mimics the root file system,
making it easy to see where the software components will
ultimately reside on client systems. Developers like the de
sign because they can easily see the relative relationship of
all their files in isolation.

There are two significant issues with this approach. First, it
requires that a large number of symbolic links be maintained
on multiple systems. Second, some applications might require
configuration changes on the client or insist that certain
files physically reside on the client's hard disk.

The solution to both of these problems is a configuration file
and a process (script) to use it.

Configuration File
Every application on the application server has an associated
configuration file. This is an ASCII file, created manually,
that contains all the instructions necessary for installing the

application on a client. For most applications, the configura
tion In simply lists a number of symbolic links to create. In
the example above, one line in the editor program's configu
ration file would look like:

LINK: /nf s /servername/di ski /edit or /usr/local/lib

/editor.dict : /usr/local/lib/editor.dict

Each line in the configuration file contains a tag field fol
lowed by several colon-separated parameters. The tag field
is a word that has meaning to the configuration script. In
this example, the LINK tag tells the script to create a sym
bolic link using the next two fields as arguments. The syntax
for the LINK command is:

LINK: /link/to/directory: /link/from/directory

Additional tags cause the configuration script to copy files
(COPY), unlink directories (UNLINK), or execute programs.

Creating a configuration file is the most time-consuming
action required when installing an application. It requires a
good knowledge of the directory structure on client machines
and an understanding of the run-time environment expected
by the application. The overall goal is to minimize the number
of links while allowing multiple applications to be installed
where any wish. However, with a little creativity, nearly any
application can be dealt with, and once the configuration file
is constructed, it remains unchanged and can be used on
every client.

The configuration file is also used to uninstall software. An
option on the configuration script causes it to deal with cer
tain commands in reverse, removing links and files that had
been copied to the client.

In accordance with HP-UX 10.0 file structure recommenda
tions, the configuration file is created in /etc/opt/appname/con-
fig.fs. To make the configuration files readable from client
machines, they are placed under each application's directory
tree. Thus, the /nfs/servername/disk1/editor/etc/opt/editor/config.fs
file would be the configuration file for the editor application
mentioned above.

The Script
The configuration script is used to install an application
located on a file server on a workstation (i.e., it sets up links
to applications on the server). Because the configuration
(and application) files reside on a remote server, a new client
must mount the remote server's disks before installing soft
ware. The installation script establishes mounts (-m option)
to the file server and creates the required links (-c option)
using information from the configuration file. The installa
tion script has an option (-u) to undo a mount and uninstall
software. The command line to the configuration script to
establish the mount points and set up the links for the editor
application would be:

s c r i p t n a m e - m s e r v e r n a m e : / m n t / d i s k l : / n f s /
s e r v e r n a m e / d i s k l - f - c / n f s / s e r v e r n a m e /
d i s k i / e d i t o r / e t c / o p t / e d i t o r / c o n f i g . f s

The -m option introduces the server and client involved in
establishing the mount points, and the -f and -c options intro
duce the configuration file.

72 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The configuration script is written in Perl (Practical Extrac
tion Report Language) because this is the language that pro
vides the easiest and most efficient techniques for reading
through the configuration file once, storing the information,
and acting on it later. Shell scripts require more coding to
perform the same steps, and a C program would have to be
compiled for every platform we support. Thus, Perl was a
good choice. Fig. 4 shows the portions of the installation
script responsible for mounting disks and reading a configu
ration file.

The configuration script reads and acts on instructions in
the configuration file. It checks the first field of each Une for
a tag, which is a special word (e.g., LINK) describing a com
mand. Unknown tags are ignored.

Because the configuration files reside on the server, clients
must mount the server's disk before attempting to read any
configuration files. Although the configuration script can be
used to mount the server's disk, it does not currently modify
a client's boot procedures or its /etc/checklist file. The system
administrator still needs to perform these steps manually.

The configuration script uses the same configuration file for
installing and uninstalling. It does an uninstall by removing
all files or directories listed as LINK or COPY in the configura
tion file.

Remaining Issues
With any project there are always lingering issues. This sec
tion describes some of these issues.

Software Location and Fine-Tuning. Although it's convenient to
locate software centrally, not everything belongs on a remote
machine. Ideally, enough software should remain on local
workstations so that the users are reasonably functional
when the application server is down for maintenance. This
means that key files such as operating system components,
screen icons, and critical applications such as electronic
mail readers should reside on local systems. Also, perfor
mance is impacted by accessing remote files so finding the
right mix of local and remote files can have a significant role
in application performance.

Software Installation Programs and Headaches. Most installation
programs expect the code to be installed on the machine
from which it is run and don't embrace the concept of remote
access. Good installation programs allow you to change the
default installation location and log every step they take,
and the friendliest programs place all files under a user-
specified location. Bad installation programs silently tread
in certain system areas by adding user accounts, modifying
boot scripts, and changing the system configuration. Bypass
ing installation programs, tracking down all the changes
they made, and rewriting processes to duplicate the installa
tion on client machines is the most time-consuming part of
installing new software.

Read-only Environment. Ideally, the application server's disks
should be mounted read-only. Unfortunately, some applica
tions require write access to shared files, so we use read-
write NFS mounts. However, application directory permis
sions are kept tight so that users are not able to write to the
server.

File Ownership Conflicts. Occasionally, two different applica
tion programs will both try to "own" the same file. I first
encountered this with two Lotus & applications I was install
ing: AmiPro/UX and Lotus Notes/UX. Both versions came
with identical. /opt/lotus/bin/lpconfig file and the files were not identical.
Normally, the version a client receives depends on the order
in which the two software packages are installed. If AmiPro
is installed last, a client will run AmiPro's version of the
Ipconfig file. If Lotus Notes is installed last, the client will run
the Notes version.

Inconsistency and Supportability. To ensure that all users, no
matter which software package was installed, used the same
application versions, some rearranging was necessary. I in
stalled the Lotus applications mentioned above on the appli
cation server into their own separate directories. Next, I
copied all duplicate files to a third directory, using the ver
sion of the files that came with AmiPro. Finally, I modified
the configuration files for both AmiPro and Lotus Notes so
that clients would link to these duplicate files in the common
directory.

This fix allowed the complete AmiPro and Lotus Notes prod
ucts to be installed and available. If a problem arises with
any of the common files, it's easy to change the file in one
place and make sure the fix reaches everyone.

Summary
Overall, the application installation process has been a great
success. Users are running consistent versions of applica
tions, sharing centrally managed licenses, and no longer
choosing to be part of a cluster simply because of the soft
ware available on that cluster. Application providers are
able to make modifications in one location accessed by
everyone. The application server contains no user accounts,
runs very few processes, and is a fairly well-behaved I/O-
dedicated machine. Unlike a cluster, the server can suffer
occasional downtime without bringing down client systems.

We still run clusters, and the application server works in
that environment as well. But the clusters are smaller and
they are being implemented for the right reasons â€” not
because of application availability. Many users are choosing
standalone workstations, where they are allowed greater
flexibility to install experimental versions of code or to use
as much swap and disk space as they like without impacting
other users.

June 1996 Hewlett-Packard Journal 73
© Copr. 1949-1998 Hewlett-Packard Co.

O p t i o n s : #

-m Mountinfo: Revive/establish mount points #

Â®

-c Configfile: Revive/establish links #

-f: Force symlinks and mounts (removes #

existing files and directories) . #

-u: Unmount or remove links, depending #

o n o t h e r o p t i o n s u s e d #

- v : V e r b o s e #

require 'getopts.pl';

do Getopts ('m:c: fuv') ;

Initialize variables

$numlinks=0;

$numunlinks=0;

R e a d m o u n t i n f o r m a t i o n . #

sub readmount {

print "Starting readmount subroutine n"

if ($opt_v);

The mount parameter consists of the machine

to mount from, the directory on that machine

to mount and the directory to mount to (on

the client machine), all separated by ":"

characters.

Break line into its components.

Â ® Â © Â ®
($machine, $mountfrom, $mountto) =split

(/ : / , $mountpoint) ;

}else

exit 97;

} # End subroutine makemounts

Read config file, filling up variables with #

c o n t e n t s . #

sub readconfig {

print "Starting readconfig subroutine n"

if ($opt_v);

while ($_=<CONFIGFILE>) { (Ã“)

The configuration file consists of an initial

tag and colon-separated parameters. Break each

line into its components

chop;

($tag, @parms)=split (/ : /)

if ($tag eq "LINK") (lÂ·l)

$linkto[$numlinks]=$parms[0] ; (T)

$linkfrom[$numlinks]=$parms[l] ; (Â¿)

$numlinks++;

}# while

} # End of subroutine readconfig

}# End subroutine readmount

Perform mounts, creating directories, if #

n e e d e d . #

sub makemounts {

$dontdo=0

if (substr ($mountto, 0, l)eq '/')

{

print "Making" . $mountto ."n";

if ((system ("/usr/bin/bdf $mountto I /bin/

grep $machine: $mountf rom"))==0)

Process links: Create all links specified in #

config file (must run readconfigO first). #

sub linkall {

print "Starting linkall subroutine n"

if ($opt_v);

for ($i=0; $i< ($numlinks) ; $i++)

{

$linkf rompath=$linkfrom[$i] ;

$linkfrompath= s' [a-z_0-9 . \-] *$";

Chop file/dir name off path

print "Correct mount point already existsXn"; # If parent directory path doesn't exist.

$dontdo=l;

Scinakedir ("$mountto") ; (Â¿)

print "mounting $machine : $mountfrom\n";

if ((-d $mountto)&&(!$dontdo))

{

system ("/etc/mount -o soft $machine :

$mountfrom $mountto"); (T)

create it.

Smakedir ("$linkf rompath") ;

Check for existing file/link (exit or

remove it depending on -f option)

if (-e $linkfrom[$i]&&(!$opt_f))

{

print "Non-Link exists:" . $linkf rom[$i] .

"TerminatingXn";

Fig. reading configuration of the configuration script for mounting disks, reading configuration files, and creating links.

74 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

exit 98:

elsif (-e $linkfrom[$i])&&($opt_f))

{

Force (-f) section - force the link (remove

existing file or directory tree.

if (-f $linkfrom[$i])

print "Forcing removal of File"

. $linkfrom[$i] . "n";

unlink ($linkf rom[$i] ;

}

elsif (-d $linkfrom[$i])

{

print "Forcing removal of directory"

. $linkfrom[$i] . "n";

system ("/bin/rm -rf $linkf rom[$i] ") ;

}
for ($i=0; $i< ($numlinks) ; $i++)

symlink ($linkto t$i] , $linkfrom[$i] ; (

print "Linking from " . $linkf rom[$i] .

"to " .$linkto[$i] . "n";

; A ; 'nPu' String:
-m servername : /mnt/diskl : /nf s/servername/
disks -f -c /nf s/servername/disks/editor/

etc/opt/editor/conf ig. f s

Ã¯; Server's Name

Server's Name for Diskl mnt/disk

'J), Client's Mount Point nf s/servername/diskl

(Â£) Make Directory /nf s/servername/diskl

(V) M o u n t n f s / s e r v e r n a m e / d i s k l t o m n t / d i s k l

(J) c o n f i g . s y s

(H) Tag = LINK

(T) /nf s /servername /di ski /edit or /usr/ local/

lib/editor. diet

(j) /usr/local/lib/editor.dict

(J) C r e a t e S y m b o l i c L i n k :
/usr/local/lib/editor.dict -> nfs/
servername /di ski /edit or /usr /local /lib/

editor .diet

Fig. 4. (Continued)

References
1. Hewlett-Packard Journal, Vol. 39, no. 5, October 1988, pp. 6-50.
2. J. for "Sharing Local Software on a Network," The Journal for
UNIX pp. Administrators, Vol. 3, no. 4, July/August 1994, pp.
48-69.

HP-UX 9.* and 1 0.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.
Lotus is a U. S. registered trademark of Lotus Development Corporation.

June 1996 Hewlett-Packard Journal 75
© Copr. 1949-1998 Hewlett-Packard Co.

Interface Translation for Reuse of
Assembly-Language Modules in a
Two-Language Environment
A mixture of low-level and high-level implementation languages is likely
when interfaces modules are reused. In a two-language system, some interfaces
must be expressed in both languages. This paper describes the design and
implementation of a production-quality software tool that solves this
problem for the C programming language.

by James R. Buffenbarger

The advantages of developing a software system in a high-
level programming language rather than a low-level assembly
language are well-known. Nevertheless, many embedded
systems have been and continue to be developed in a low-
level language. This implementation language paradox is typi
cally justified in terms of the required execution efficiency
or the lack of high-level software development tools.

Typically, a new system is built from a mixture of old and
new modules. The old modules are often from a previous
system. Depending on their age, they may be implemented
in a low-level language. The new modules might be imple
mented in a low-level or high-level language.

This paper is concerned with the development and reuse of
intermodule interfaces in a system requiring a mixture of
low-level and high-level implementation languages. Such a
mixture is likely when old modules are reused. New modules
might also be implemented in a low-level language, but they
are more likely to be implemented in a high-level language,
since processors are getting faster, memories are getting
larger, and high-level software-development tools are
becoming available.

In this paper, a problem is identified and defined, several
possible approaches are proposed, and the most promising
approach is selected and pursued. The design and imple
mentation of a production-quality software tool that solves
the problem for the C programming language are described
in detail and short-term industrial experiences with this tool
are briefly described.

The Problem and Possible Solutions
Suppose a two-language system contains a module named f.
Clearly, f should have only one implementation. However,
f may need two equivalent interfaces: one for each language.
There are several possible approaches:

â€¢ Manually develop and maintain a low-level interface only.
This approach requires f and every user of its interface to be
implemented in the low-level language. However, f or one of
its users may be a new module, which suggests a high-level
implementation.

â€¢ Manually develop and maintain a high-level interface only.
This approach requires f and every user of its interface to be
implemented in the high-level language. However, f or one
of its users may be an old low-level module, which should
be reused rather than reimplemented.

â€¢ Manually develop and maintain both interfaces. This
approach allows f to be implemented in either language.
However, the probability of inconsistency is very high, as
it is for any instance of double maintenance.

â€¢ Develop and maintain the high-level interface manually and
derive the low-level interface automatically, according to a
well-defined transformation. This approach also allows f to
be implemented in either language, but avoids double main
tenance. Note that the reverse transformation is not possible.

Interface Translation
The last of these approaches seems to be the most reason
able, and is pursued here. Interface translation is flexible,
accurate, and fast.

In many languages, an interface is contained in what is
called an include file. Thus, deriving a low-level interface
from a high-level interface means translating an include file
written in a high-level language into an include file written
in a low-level language. An include-file translator can be
used in at least two ways.

Suppose a programmer is writing a module named g and
needs to use a module named f . If the programmer is an
assembly-language programmer, module f needs to consist
of an assembly-language include file f.inc, which specifies the
interface of f, and a binary object file f.obj for linking. On the
other hand, if the g programmer is a C-language programmer,
module f needs to consist of a C include file f.h, which speci
fies the interface of f, and a binary object file f.obj for linking.
Therefore, the "user view" of module f is the three files: f.inc,
f.h, and f.obj. These three files must be available so that both
assembly-language and C-language programmers can use
module f.

76 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

C Include
File

Assembly-
L a n g u a g e (3 9 6

Source File

Assembly-
f i n e L a n g u a g e

Include File

Binary
f o b] O b j e c t

File

Fig. 1. For a module f, vvTitten in assembly language, to be usable
by both assembly-language and C programmers, the four files
shown the are needed. With an include-file translator, only the
files on the left need to be maintained manually.

Module f may be written either in assembly language or in C.
If it is written in assembly-language, there will be an assem
bly-language file f.a96 which implements the interface of f
and includes f.inc. If f is written in C, there will be a C file f.c
which implements the interface of f and includes f.h.

Therefore, if f is written in assembly language, the following
files are necessary so that both assembly-language and C
programmers can use module f: f.h, f.a96, f.inc, and f.obj. With
an include-file translator, only f.h and f.a96 need to be main
tained manually; f.inc can be translated from f.h, and f.obj is
assembled from f.a96. The processes are shown in Fig. 1.

If f is written in C, the following files are necessary: f.h, f.c,
f.inc, f.h f.obj. Again, with an include-file translator, only f.h
and f.c need to be maintained manually; f.inc can be trans
lated from f.h, and f.obj is compiled from f.c. The processes
are illustrated in Fig. 2.

Include-file translation is similar to compilation. In fact, one
way of interpreting these ideas is as additional requirements
for a compiler. Perhaps compiler/assembler vendors will
eventually incorporate these features into their products.

The ideas presented here are programming language inde
pendent. However, for demonstration purposes, a particular
assembly language and a particular high-level language (C)
are discussed. Furthermore, just one implementation of
what should be considered a class of translation tools is
described.

Pretranslator Environment
We begin with a description of an environment that needs an
include-file translator.

The software is developed in an evolutionary way, in a heter
ogeneous environment. The software is large and mature,
residing in an centralized version-controlled repository.
The development platforms are workstations based on the
UNIXÂ®, MS-DOSÂ®, and OS2 operating systems. The target

C Include
Assembly-
Language
Include File

C Source
File

Fig. 2. For a module f, written in C, to be usable by both assembly-
language and C programmers, the four files shown here are needed.
With an include-file translator, only the files on the left need to be
maintained manually.

platfonn is an embedded system based on an Intel micro
controller. The software is developed in assembly language
because good cross-compilers for the target platform do not
exist, compiler-generated code is too slow, and compiler-
generated code is too big.

Eventually, the software developers and their managers are
ready for a change. New microcontrollers are much faster,
and they can address much more memory. Management
recognizes the potential benefits of assembler and processor
independence, not the least of which is the freedom to buy
development tools (e.g., emulators) from more than one
vendor. Good cross-compilers are finally available. New
developers would become productive more quickly if they
did not have to learn an esoteric assembly language. All
developers would become more productive if they could
program in a high-level language when appropriate.

In this environment, the high-level language of choice is C,
but its complete and immediate adoption has well-founded
resistance. For speed and space efficiency, some parts of the
software should never be rewritten in C. Furthermore, those
parts of the software that should be rewritten in C represent
an enormous corporate investment. An effort to rewrite all
of them at once would have severe short-term productivity
and quality costs. Instead, the unanimous understanding is
that only some of the assembly-language modules should be
replaced by C modules, and then only in a prioritized piece
meal fashion. Thus, the environment must support two-
language development.

A Tool for Two-Language Development
Consider the consequences of rewriting an assembly-
language module named f in C. The original module has two
parts: an assembly-language file named f.inc, specifying the
module's interface, and an assembly-language file named
f.a96, implementing the module's interface.

Likewise, the new module has two parts: a C file named f.h,
specifying the module's interface, and a C file named f.c,
implementing the module's interface

However, other assembly language modules still need the
assembly-language interface to f. That is, they need to in
clude f.inc in one way or another. One solution is to maintain
both f.h and f.inc manually. This solution is tedious and error-
prone. A better solution is to maintain f.h manually and auto
matically translate it into f.inc with a tool. Such a tool needs
to be able to translate the subset of C that occurs in a .h file
into assembly language.

Two brief definitions are relevant. A target assembler is a
cross-assembler from a development platform to the target
platform. Analogously, a target compiler is a C cross-compiler
from a development platform to the target platform. Note
that the word size of the compiler with which the translator
is developed typically differs from that of a target assembler/
compiler pair.

The characteristics of C are fairly standardized, stable, and
well-known; those of assembly language are not. Thus, the
translator needs to be retargetable, primarily for different
target assembler/compiler pairs. Several aspects of a partic
ular not assembler/compiler pair are described below, not

June 1996 Hewlett-Packard Journal 77
© Copr. 1949-1998 Hewlett-Packard Co.

because they are interesting in themselves, but because they
provide insight into the translation task and help explain the
example presented later.

The target assembler has several relevant characteristics.
It uses a preprocessor, similar to a C preprocessor, to effect
file inclusion, macro definition, and conditional inclusion.
It processes two kinds of equate directive, EQU and SET, whose
difference is irrelevant here. It processes EXTRN directives,
which are analogous to C extern declarations. Symbols and
values have types such as: NULL, BYTE, WORD, POINTER, and
ENTRY. During assembly, the output for each statement goes
to one of several segments that are available (e.g., code,
data, stack, or register).

The target compiler has only one relevant characteristic.
Its algorithm for determining the distance from the begin
ning of a struct to a member requires alignment analysis of
the types of all members of the struct.

Include-File Translation versus Compilation
Although the translator is much like a C-subset compiler,
there are significant differences. For example, the translator
generates code from a #define directive, but a compiler does
not. On the other hand, a compiler generates code from
statements included by a Ã¡nclude directive, but the translator
does not.

A more interesting difference concerns error handling.
A compiler can stop producing output (i.e., object code) as
soon as it detects any nonwarning error. In contrast, the
translator must recover from most errors, including syntax
errors, and produce as much correct output (i.e., assembly
code) as it can. In many cases, translation errors are quite
acceptable, representing C declarations that are simply
inaccessible to assembly-language programmers.

Translation Details
The include-file translator accepts as input a subset of the C
programming language. This subset consists of C modules
(also known as translation units1) that do not define func
tions or variables. Such modules are conventionally stored
in include files, with a .h file name extension. Accordingly,
the translator need not recognize the following reserved
words: auto do return break else static case for switch continue
goto while default if. However, the translator does understand
the reserved words near and far as qualifiers for pointer
types.

Like can conventional compiler,2 the translator's operation can
be understood as a sequence of phases (see Fig. 3):
1. Prior-inclusion preprocessing
2. Define directive preprocessing
3. C preprocessing
4. Scanning and parsing
5. Code generation.

As usual, phases 4 and 5 are interleaved. The phases are
described below.

Prior-Inclusion Preprocessor. An include file can reference an
identifier declared in another include file, but the former
does not necessarily include the latter. The prior-inclusion
preprocessor solves this problem.

Prior-Inclusion
Preprocessing

â € ¢ ^ M

Define Directive
Preprocessing

I^M

C Preprocessing

â€¢â€¢â€¢I

Scanning and Parsing

â€¢â€¢â€¢â€¢â€¢

Code Generation

Fig. of phases. translator operation consists of a series of phases.

For example, suppose f.c contains the following:

^include "a.h"

ttinclude "f.h"

and f.h references an identifier from a.h. To translate f.h, a.h
must be processed first. However, declarations from a.h
must not produce output.

The prior-inclusion preprocessor solves the problem by con
structing a file containing include directives, #line directives,
and the content of the original input file (i.e., f.h). Later
phases only produce output for declarations from the origi
nal input file.

The prior-inclusion preprocessor is implemented with Awk.3

Define Directive Preprocessor. In general, a #define directive in
the input produces output. However, C preprocessors delete
#define directives. The define directive preprocessor solves
this problem.

For example, suppose the following line is une five in file f.h.

ttdefine SIZE 100 / size of something */

The define directive preprocessor translates this into the
following lines.

tfdefine SIZE 100

#line 5 "f.h"

"SIZE" %%% SIZE

Since normal C preprocessing has not yet been performed,
the original /define directive must be retained.

The #line directive allows error messages from subsequent
phases to accurately specify the location of an error. Here,
subsequent phases must recognize that a line has been
inserted during preprocessing.

The three-character token %%% is effectively a new reserved
word. C preprocessing ignores all but the fourth token on

78 June 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

this line, which it replaces with the definition of SIZE in the
usual way. Phases after C preprocessing recognize this state
ment and produce output from it corresponding to the origi
nal Â¿define directive.

Initially, an @ was used rather than %%% but some C prepro
cessors complained about it. The probability of a programmer
accidently using three adjacent modulus operators seems
low. The identifier is used as the fourth token, rather than its
definition, to ensure correct operator precedence during
evaluation in later phases. If the identifier has no definition,
a 1 is used as the fourth token. The line ends with %%% to
prevent the parser from skipping too many tokens during
error recovery.

The define directive preprocessor is also implemented with
Awk.

C Preprocessor. This preprocessor is an ordinary C prepro
cessor (e.g., cpp). The translator expects the value of an
environment variable to specify a particular preprocessor.

Scanner/Parser. This part of the translator is essentially a
front end for a normal C compiler. Several differences are:

â€¢ Only the subset of C described previously needs to be
recognized.

â€¢ The new %%% statements are recognized.
â€¢ The it part of a %%% statement is evaluated. Since it

can be any C constant integer expression, its evaluation is
not trivial. Furthermore, evaluation is simulated to occur
according to the word size of the target compiler, which
may be different from the word size of the translator, and
simulated arithmetic overflow is detected and reported.
The alternative to evaluating the expression during transla
tion is to translate it into an equivalent assembly-language
expression.

' Most errors, including syntax errors, do not preclude code
generation.

The scanner/parser is implemented with Yace,4 Lex,5 and
GPerf.6

Code Generator. Since the translator only translates declara
tions, this part is simpler than the back end of a normal C
compiler. Its primary task is to output, assembly-language
directives and declarations, based on the content of a typi
cal symbol table, which is built by the scanner and parser.

To simplify retargeting, target compiler type sizes and type
alignment rules are encoded in a tabular fashion. Likewise,
target assembler mnemonics and type names are easily
modifiable. Code is generated only for declarations from the
original input file. Declarations from files it includes produce
no output.

Translation Algorithm
The translation from C to assembly language is predomi
nantly syntax-directed. In other words, each syntactic con
struct in the C subset is translated to a line of assembly lan
guage. However, as in a normal compiler, the symbol table
provides context. The translated constructs are described in
the following paragraphs.

Define Directives. A #define directive, without arguments and
whose replacement text is a constant integer expression, is
translated to a SET directive. The value is that of the expres
sion, which is evaluated according to the word size of the

target compiler. Simulated arithmetic overflow is detected
and reported. For example,

tdefine TWO 1+1

is translated to:

T W O S E T 2 : N U L L

Other kinds of fdefine directives are not translated.

Enumeration Members. An enum declaration declares at least
one member. Each such member is translated to an EQU
directive. The value is that which would be assigned to the
member by the target compiler. For example,

enumnumbe r s
z e r o ,
one,
two,
t en=5*2 ,
e l e v e n ,
t w e l v e

is translated to:

zero

one

two

ten

eleven

twelve

EQU

EQU

EQU

EQU

EQU

EQU

0:NULL

1:NULL

2: NULL

10: NULL

11: NULL

12: NULL

Structure and Union Members. A struct or union declaration also
declares at least one member. Again, each such member is
translated to an EQU directive. The value is the offset, in
bytes, from the beginning of the nearest enclosing structure
or union, according to the target compiler. For example,

struct STR {

double d;

double *dp;

int i ;

char c, *cp,b;

float f;

is translated to:

Notice that alignment occurs. A command line option
causes structure and union member names to be qualified
by the nearest enclosing structure or union tag (e.g., the
translation of the second member would equate the identifier
STR_dp to four).

Nested structure and union declarations force an interesting
decision. A member's offset can be computed as the distance
from the beginning of its (1) nearest enclosing structure or
union or (2) outermost structure or union. Both offsets are
valuable to an assembly-language programmer. Both offsets
require name qualification to differentiate identical member
names in distinct structures or unions. However, offset 2
requires a qualification for each level of nesting, which can
quickly exhaust the 31-character length limit for C identifiers.

June 1996 Hewlett-Packard Journal 79
© Copr. 1949-1998 Hewlett-Packard Co.

In addition, offset 1 allows a programmer to compute offset
2, as necessary. Therefore, offset 1 is considered the best
choice.

Structure and Union Tags. In addition to its members, a struct
or union declaration optionally declares a tag. Such a tag is
translated to an EQU. The value is the size in bytes of the
structure or union, according to the target compiler. For
example, for the previous structure, the translation is:

extern Car *car;

extern Car FixCar(Car car) ;

STR EQD 22: NULL

Variable Declarations. A variable declaration (i.e., a variable
definition prefixed by extern) is translated to an EXTRN direc
tive. For example,

e x t e r n i n t a [1 0] ;

e x t e r n i n t e ;

is translated to:

EXTRN

EXTRN

a : POINTER

e : WORD

These directives are output in data segment space. If the C
reserved word register is present, they are output in register
segment space.

Function Declarations. A function declaration (i.e., a proto
type) is also translated to an EXTRN directive. For example,

e x t e r n i n t f (i n t x , i n t y) ;

is translated to:

E X T R N f : E N T R Y

These directives are output in code segment space.

An Example
This section provides a concrete demonstration of the
include-file translator described in earlier sections. Relevant
aspects of the translator's interface are presented and an
example translation is shown.

The translator recognizes a variety of command-line argu
ments and environment variables, but most of them are not
very interesting. The important command-line arguments
are:
-i specifies the input file
-o specifies the output file

â€¢ -q simulates prior inclusion of a #include "..." file
-a simulates prior inclusion of a #include <...> file

The only important environment variable is cppcmd, which
allows any C preprocessor to be used, rather than the
default. Thus, the translator can be executed as follows:

c 2 a s - i c a r s . h - o c a r s . i n c

Suppose cars. h contains the following C code:

#define MAKELEN 9
t f d e f i n e C A R S 3

t y p e d e f e n u m { b l a c k = 1 0 , r e d , b l u e } C o l o r ;

t y p e d e f c h a r M a k e [M A K E L E N] ;

t y p e d e f d o u b l e P r i c e ;

t y p e d e f s t r u c t C a r {

C o l o r c o l o r ;

M a k e m a k e ;

P r i c e p r i c e ;

s t r u c t C a r * o l d c a r s [C A R S - 1] ;

} C a r ;

Then, after translation, cars.inc would contain the following
Intel i960 assembly-language code.

DSEG

EXTRN

CSEG

EXTRN

car : POINTER

FixCar: ENTRY

Integration with Build Process
From a build-process perspective, an include-file translator
is no different than a compiler: it translates a source file
into an intermediate form. Like a compiler, the translator's
invocation should be automated by a build process. There
are several details, which are described below. A build pro
cess based on Make7 is assumed.

In general, only some of a system's C include files need to be
translated. These ,h files need to be identified. Typically, a
Make variable is used for this purpose.

A single rule is sufficient to tell Make how to translate any of
the previously identified .h files into a corresponding .inc
assembly-language file. Some versions of Make can use static
pattern rules for this, while others can use dynamic prereq
uisite macros to accomplish the same thing. If these Make
features are unavailable, multiple rules are required.

Any additional dependencies of each resulting .Â¡nc file must
be specified explicitly, in two ways. First, Make must be told
about the dependencies, but this can be done with ordinary
rules. Second, such a dependency may require a translator
option specifying prior-inclusion preprocessing, as described
above. This second kind of dependency cannot be computed
automatically. Fortunately, an esoteric Make feature called
computed variable names can customize translator options
for different .h files. Again, if these Make features are unavail
able, multiple rules are required.

Conclusion
Include-file translation supports the reuse of modules whose
interfaces must be expressed in both a high-level language
and an assembly language. These two-view interfaces allow
a module to be implemented in either language and refer
enced by other modules implemented in either language.
The basic approach is to maintain the high-level interface
manually and automatically derive the low-level interface.

The C include-file translator described above has recently
been implemented and incorporated into the software build
process used by a group of about 20 firmware engineers at
Hewlett-Packard's Disk Memory Division. The translator was
implemented for the UNIX and MS-DOS operating systems
by one person working half time for about six months. The
firmware upon which the translator operates consists of

80 June 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

interested in user interface design and implementa
tion, he is named as an inventor in a patent involving
key action and has written five papers on the HP
48G/GX, the HP 48S/SX. and the HP 41 . Ted was bom
in West Lafayette. Indiana and was awarded a BS
degree in computer and electrical engineering in
1384 from Purdue University. As a co-op student in
college, he developed an HP 41 calculator well log
analysis module for Petrophysical Data Consultants,
an oil consulting firm. He joined the Handheld Com
puter and Calculator Operation at HP's Portable Com
puter Division in 1985. He enjoys hiking with his wife
and two beagles, gardening, philosophy, animal wel
fare, vegetarian cooking, home improvement n
ects, and science fiction.

D i a n a K . B y r n e

B Diana Byrne Â¡s an R&D proj
ect manager in the Corvallis
Design Center of HP's Asia
Pacific Personal Computer
Division. She Â¡s responsible
for managing a team of
engineers split between
Oregon and Singapore who
are working on handheld

products for education. She was the project manager
for the HP 38G graphing calculator. Previously she
was the project manager for the HP 48G/GX graphing
calculator and contributed to the plot and graphics
code. She also worked as a software engineer on the
HP 48SX scientific calculator for which she designed
and implemented plot and graphics code and worked
on the HP EquationWriter. She Â¡s professionally inter
ested in the use of technology in education and has
coauthored two papers on the HP 48G/GX and HP
48SX calculators. Diana was born in Portland, Oregon
and earned a BS degree in mathematics with high
honors in 1982 from Portland State University. She
went on to receive an MS degree in mathematics in
1 937 and an MS degree in computer science in 1 988,
both from the University of Oregon. Diana is currently
enrolled in a Management of Technology masters
program at the National Technological University.
Before joining HP in 1 988, she was a mathematics
instructor at the University of Oregon and Portland
State University. Diana has two sons. She commutes
to work by bicycle, telephone, or airplane (traveling
to the Corvallis or Singapore site). Her current hobby
Â¡s studying the coffeehouse culture in the U.S. and
Europe.

J a m e s A . D o n n e l l y

Jim Donnelly joined HP's
Corvallis Division in 1981
and contributed to HP 75
and HP 71 computer applica-

Â¿Â¿Â» ' I tions and the HP 14, 22, 32,
I and 42 calculators. He also

/ V I t w o r k e d o n t h e H P 3 8 G c a l c u -
9^ **t^mw lator and tne HP Solve e[]ua-
" ^ ^ ^ t i o n l i b r a r y c a r d f o r t h e H P

48SX. Currently an R&D engineer in the Asia Pacific
Personal Computer Division, he Â¡s responsible for the
design of the next-generation handheld calculators
and information appliances. Recently he worked on
the HP 38G calculator focusing on the numeric views,
matrix catalog, matrix editor, list catalog, list editor,
I/O, and printing, among other areas. He has written
three books about programming the HP 48 and a soft
ware simulator for Babbage's difference engine. Jim

was awarded a BS degree in speech communication
in 1979 from Oregon State University and worked on
instrumentation software in the physics lab at the
University of Oregon. Bom in Chicago. Illinois. Jim is
married and volunteers his time at the local commu
nity theater doing backstage work and set and prop
construction. His hobbies include travel, photography,
home machine shop, and gardening.

Robert W.

Born in Mt. Vernon, Wash
ington. Max Jones received
a BS degree in mathematics
from the University of WHS* .
mgâ„¢ in 197b. He joined HP
in 1982, writing documenta
tion for the HP 41 CX and HP
28 calculators. He also
designed and implemented

software for the HP 48SX and HP 48G/GX calculators.
As a software design engineer, he is currently
responsible for software development for handheld
products. Recently he worked on the HP 38G home
environment and user extensions to aplets. He Â¡s pro
fessionally interested in functional programming and
rational approximation. He authored a paper on the
HP 48SX calculator and Â¡s named as an inventor in a
patent involving interface design using menu keys
and keypress duration. He is a member of the Mathe
matical Association of America and the Society for
Industrial and Applied Mathematics. Max is married
and has two children. His hobbies include New
Orleans rhythm & blues.

F e n g Y u a n

Born in Suzhou, Jiangsu in
the People's Republic of
China, Feng Yuan was
awarded a BE degree in
electronics in 1982 from the
Shanghai University of Tech
nology at Shanghai and a
masters degree in computer
science in 1984 and a PhD in

computer engineering in 1987, both from Nanjing
University at Nanjing. He became a lecturer at Nan
jing University doing teaching and research, then
moved to Singapore to work on computer-aided
embroidery pattern design software. He joined HP's
Asia Pacific Personal Computer Division in 1993. As
an R&D engineer, he worked on the design and im
plementation of the HP 38G calculator, including the
symbolic, note, and sketch views, sequence handling,
statistical plots, external aplet examples, aplet devel
opment kit, and the Pascal compiler for the HP 48 and
HP 38 calculators, on which he published an article.
He also worked on the HP Palmtop FX computer,
which is the Korean flash version of the HP 100LX
computer. He is professionally interested in embedded
system design, language processing and implementa
tion, computer-aided design, and artificial intelligence.
Feng is married and has one child. His hobbies include
reading and playing the Chinese board game Go.

5 9 C r e a t i n g H P 3 8 G A p l e t s

J a m e s A . D o n n e l l y

Author's biography appears elsewhere in this section.

1

6 4 H P P a l m V u e

E d w a r d H . S c h m u h l

Ted Schmuhl joined HP's
Waltham Division in 1973.
He Â¡s currently the program
manager for the PalmVue
product family at HP's Pa
tient Monitoring Division
(the successor to the Wal
tham Division). He is work
ing with wireless ^-rtomc

that deliver medical inform^*â„¢, clinicians via
hanoneld computers. In his years at HP, Ted has held
various positions within product development includ
ing software engineer, project leader, and manager.
Some of his contributions have been the development
of the architecture and software design for HP's first
microprocessor-controlled patient monitor, manage
ment of the design and integration of HP's CareNet
patient monitoring network, and project management
of the HP PalmVue project. Before joining HP, he
worked at RCA Corporation developing automated
test systems for the military. He earned a BSEE
degree from Tufts University in 1967 and an MSEE
degree from Northwestern University in 1972. He is a
member of the IEEE and Â¡s professionally interested
in medical software and systems. Born in Summit,
New Jersey, Ted Â¡s married and has one child. He is
active in his church and community. An amateur
musician, he plays trumpet in a local band. He also
enjoys water sports such as sailing his 26-foot sail
boat.

A l l a n P . S h e r m a n

Born in Boston, Massachu
setts, Al Sherman received a
BSME degree in 1961 and
an MSME degree in 1981,
both from the Worcester
Polytechnic Institute. He
joined Sanborn Company,
which was owned by HP, in
1964 and is currently a soft

ware development engineer at HP's Patient Monitoring
Division. He was recently responsible for the palmtop
software design and for the data handling and com
munication architecture for HP PalmVue. He contin
ues to work on enhancements and extensions to the
HP PalmVue system. Previously he worked on the
mechanical design of electronic, recording, and ana
lytical laboratory equipment. He developed HP's first
computer-based patient monitoring system and de
signed the pressure processing algorithm used in
these systems. He also provided software develop
ment for the early arrhythmia data management sys
tems. He is named as the inventor in two patents on
medical instrumentation and in three patents for
blood pressure measurement techniques. He has
authored two papers on arterial blood pressure mea
surement. Before HP, he was an engineering instruc
tor at Western New England College in Springfield,
Massachusetts. He is a member of the Boston Com
puter Society and teaches classes there. Al Â¡s married
and has two children. His hobbies include computers,
travel, and skiing.

June 1996 Hewlett-Packard Journal 83
© Copr. 1949-1998 Hewlett-Packard Co.

J o n D . W a i s n o r

Jon Waisnor earned a BS
degree Â¡n computer systems
engineering from the Univer
sity of Massachusetts at
Amherst in 1 976. He worked
as a software engineer at
National Semiconductor and
Wang Laboratories before
joining HP's Patient Monitor-

:nn livision in I
neer. He recently worked on software specification,
development, integration, and testing for HP Palm-
Vue. He is currently responsible for follow on versions
of HP PalmVue and the integration of additional wire
less delivery systems. Previously he worked on the
HP M1 275A component transport monitor, a bedside
monitor Ethernet interface card, continuing product
engineering, and arrhythmia analysis options for both
the HP 78560A and HP M2300A central monitors. He
is professionally interested in software maintenance
and program understandability tools. Born Â¡n Wake-
field, Massachusetts, Jon is married and has two
children. In his free time he is the chairman of the
local town hall computer study committee. He also
enjoys bicycling, skiing, gardening, jigsaw puzzles,
and card games.

7 0 A p p l i c a t i o n S e r v e r

J i l l E . Swenson

An information technology
engineer at Co rvallis Site
Operations, Jill Swenson
provides engineering sup
port for HP-UX workstations.
For the server described in
this issue, Jill provided the
orimary Â¡esign and linpif,"

mentation of the configura
tion script for new software installation. Previously
she participated Â¡n a voice recognition and speech
synthesis project. She also provided engineering and
technical support for PC developers. In addition, she
supplied software distribution services to HP-wide
LM/X servers including designing and documenting
the distribution process, supporting the PC applications
and distribution mechanism, and doing application
development. Jill was born Â¡n San Francisco and
received a BA degree in molecular biology Â¡n 1986
from the University of California, Berkeley. She joined
HP Laboratories Â¡n 1981 . She is married and her hob
bies include gardening, cooking, home improvement,
and exploring backroads.

7 6 I n t e r f a c e T r a n s l a t i o n

J a m e s R . B u f f e n b a r g e r

Jim Buffenbarger is a shared
professor in computer sci
ence for HP and Boise State
University. He joined HP's
Boise Printer Division Â¡n
1991. At HP, he is focusing
on software engineering and
software configuration man-

* agement at the Color Laser
Jet and COL ' 'mables Division. He is professionally
interested in soii,"VaTCD engineering, programming
languages, and programming Language translation.
He is a member of the IEEE and the Al'M Jim earned
a BS degree Â¡n computer science from California State
University at Hayward, an MS degree Â¡n compu 'ter
science from San Jose State University, and a PhD ilfi.
computer science from the University of California at
Davis. He was born Â¡n West Covina, California, is
married, and has one daughter. He enjoys outdoor
sports such as camping, fishing, snow skiing, and
water skiing.

. . . ^ ^

Karen

l

: Journal

94304-1181

USA #36574

J u n e 1 9 9 6 V o l u m e 4 7 â € ¢ N u m b e r 3

Techn ica l In fo rmat ion f rom the Labora tor ies o f
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y , H e w l e t t - P a c k a r d J o u r n a
3 0 0 0 H a n o v e r S t r e e t , P a l o A l t o , C A 9 4 3 0 4 - 1 1 8 5 U . S . A .

IVJ H E W L E T T
P A C K A R D

5964 -621 9E

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
June 1996

Dig i ta l System In tegrat ion

Patrick J. Byrne

As R&D manager at HP's
Colorado Springs Division,
Pat Byrne is responsible for
logic analyzers, emulators,
and digital system solutions.
Born in Palo Alto, California,
he earned a BSEE degree in
1982 from the University of
California at Berkeley and an

MSEE degree in 1988 from Stanford University. He
joined HP's Integrated Circuits Business Division in
1983 and worked as an R&D project and section
manager f rom 1986 to 1991 designing custom inte
grated circuits for HP printers, computers, instru
ments, and communications products. In 1991, he
became an R&D section manager for logic analyzers
and emulators at the Colorado Springs Division. He
was the R&D section manager for the HP 1 6505A
prototype analyzer. He is professionally interested in
digital system development tools and processes and
has authored two articles on logic analyzers. He is
named as an inventor in a pending patent on configu
rable logic measurement systems. Pat is married and
has three children. He enjoys outdoor sports such as
golf, mountain biking, cross-country skiing, and soccer.

1 5 P r o t o t y p e A n a l y z e r A r c h i t e c t u r e

Jeffrey E. Roeca

Jeff Roeca is an R&D project
manager at HP's Colorado
Springs Division. He was a
software contributor for the
drag-and-drop GUI, fileout,
and system level software

I for the HP 16505A prototype
f Ã © a n a l y z e r a n d c u r r e n t l y m a n

ages the software develop
ment effort. Jeff joined HP in 1 989 and has worked
on the HP 16500 system software, the HP 1660 Ul
design (as principal designer), and the HP 16505A
software design. He was awarded a BS degree in
applied mathematics at California Polytechnic State
University at San Luis Obispo. Before HP, he worked
at ROLM Corporation on fault tolerant switching soft
ware, database integrity software, and telephony
feature software. Born in Encino, California, Jeff is
married and has three children. His hobbies include
skiing, tennis, biking, hiking, and music.

\

2 2 E n c a p s u l a t e d M e a s u r e m e n t
Server

Gregory J. Peters

^H Born in Cedar Rapids. Iowa,
:- 3^^ I Greg Peters earned a BSEE

J I degree from Iowa State Uni-
s â€¢*'* I versityinMay 1984 and

I joined HP's Colorado Springs
I Division that June. He has
I provided technical support

for HP pulse, pattern, 1C test,
and optical test products,

assisted in defining the pattern generator and other
measurement modules for the HP 16500 system, and
participated in market investigation, definition, and
introduction of products that now form the core of
HP's digital prototyping solutions. Part of his respon
sibility was to act as the contact with HP's Work
station Division on sourcing issues. He is currently
the lead product marketing engineer for the HP 16500
system including measurement modules and the HP
16505A prototype analyzer. He has authored four
articles on logic analyzers and pattern generators. In
1991 he earned an MBA degree from the University
of Colorado at Colorado Springs. In his free time,
Greg enjoys mountain biking, skiing, golf, volleyball,
and travel, especially international travel that mixes
sightseeing and biking. He is also involved in local
trail maintenance activities.

3 0 N o r m a l i z e d D a t a L i b r a r y

Mark P. Schnaible

Mark Schnaible joined HP's
Colorado Springs Division in
1988 after receiving a BSEE
degree from Ohio State Uni
versity. He is currently a
software engineer in R&D
working on the HP 16505A
prototype analyzer software
and assisting with other

projects. He recently was responsible for the proto
type analyzer's normalized data library and was a
major contributor to the overall architecture. Previously
he worked on the HP 54600 series of oscilloscopes
and is named as the inventor in a patent related to
the user interface software used in the oscilloscopes.
Mark is married and has three sons. In his free time,
he has taught object-oriented programming using
C++ at the University of Colorado at Colorado
Springs. He also enjoys Softball, basketball, skiing,
golf, and family life.

H H H

3 8 H P O m n i B o o k 5 0 0 0 C o m p u t e r

Timothy F. Myers

Tim Myers is a hardware
design engineer at HP's
Mobile Computing Division.
He is currently responsible
for the electrical engineering
of new products for the
notebook computer market.

I Recently he was the lead
II ; III E Â« Â¡

OmniBook 5000 computer. He has also worked on the
electrical engineering for the OmniBook 425 and HP
75C computers including 1C design and system manu
facturing support. He is a member of the IEEE and is
a licensed physical engineer in the State of Oregon.
His professional interests include mobile computing
and spread-spectrum communications on which he
has authored several articles. He received a BSEE
degree in 1979 from Montana State University and
an MSEE degree in 1992 from Oregon State Univer
sity where he was a teaching assistant. He joined
HP's Corvallis Division in 1979, then left, returning in
1992. He has also worked at Fortune Systems as an
engineering manager and at Corvallis Microtechnol-
ogy as a vice president for product strategy. Tim was
born in Fort Collins, Colorado. He is married and has
two sons. His hobbies include boating, reading,
investing, fishing, and exploring Oregon's mountains
and beaches.

4 5 H P 3 8 G C a l c u l a t o r

Ted W. Beers

Ted Beers is a software R&D
engineer in the Corvallis
Design Center of HP's Asia
Pacific Personal Computer
Division and is responsible
for the next-generation
handheld products for edu
cation and for maintaining
the group's growing set of

Internet communication tools. He recently worked on
the HP 38G calculator including graphical user inter
face enhancements, the topic outer loop, and the
aplet library. He worked on the HP 48G/GX, develop
ing the graphical user interface. He co-developed the
Program Development Link product, a PC develop
ment environment for HP 48S/SX applications. He
worked on the HP 48S/SX, focusing on the parame
terized outer loop, interactive stack, key handing sys
tem, user customization, and high-level display man
agement. He also contributed to the directory
structure and user memory organization for the HP
28S and the testing for the HP 28C. Professionally

82 .June 1ÃMIB Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

about 275 files occupying over 13 megabytes. About one
quarter of these files contain C source code, while the rest
contain assembly-language source code. The translator is
used on about 30 include files.

For the most part, the experiences and comments of those
involved have been positive. Surprisingly, arithmetic-over
flow checking caused problems, because the target assem
bler's word size depends on the complexity of an expression
(operator-free expressions can be large). In addition, several
users requested an output-file preamble of comments. These
comments contain file names, version numbers, and time
stamps.

The vast majority of difficulties have been with build pro
cess integration rather than translation. Users have had
trouble understanding and correctly using the prior-inclusion
preprocessor. Typically, a file containing a typedef is omitted,
which causes the parser to produce a parse error message.
In addition, a .inc file's dependence on its corresponding .h
file is not properly recognized by the mechanism responsible
for automatically checking out the .h file from the version
control system.

Acknowledgments
I wish to acknowledge the contributions made by other mem
bers of HP's Disk Memory Division to this project: Michael
Banther, especially for his work on the requirements docu
ment, Art Beale, Chris Grand, and Steve Folster, for their

efforts in the inspections, Ken Hibbs, especially for his
thoroughness and patience in the system-test phase, Don
Peterson, Dan Martin, Steve King, and Jeff Aguilera, espe
cially for their help in the build process integration phase,
Roy Foote and Scott Dehart, my project managers, and of
course, the firmware developers who use the tool.

References
1. B. Kernighan and D. Ritchie, The C Programming Language,
Prentice Hall, 1988.
2. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley, 1986.
3. D. Close, A. Robbins, P. Rubin, and R. Stallman, The Gawk Manual,
anonymous ftp distribution, 1993.
4. C. Donnelly and R. Stallman, Bison, anonymous ftp distribution,
1992.
5. V. Paxson, Using Flex, anonymous ftp distribution, 1990.
6. D. Schmidt, GPerf Manual, anonymous ftp distribution, 1989.
7. R. Stallman and R. McGrath, GNU Make: A program f or directing
recompilation, anonymous ftp distribution, 1991.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open Limited a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.
MS-DOS is a U.S. registered trademark of Microsoft Corporation.

June 1996 Hewlett-Packard Journal 81

© Copr. 1949-1998 Hewlett-Packard Co.

	Reducing Time to Insight in Digital System Integration
	Prototype Analyzer Architecture
	Determining a Best-Fit Measurement Server Implementation for Digital Design Team Solutions
	A Normalized Data Library for Prototype Analysis
	A Full-Featured Pentium PCI-Based Notebook Computer
	Flyback Charger Circuit
	A Graphing Calculator for Mathematics and Science Classes
	Distributed Software Team
	Creating HP 38G Aplets
	HP PalmVue: A New Healthcare Information Product
	Data Through Paging Technology
	Constructing An Application Server
	Interface Translation for Reuse of Assembly-Language Modules in a Two-Language Environment

