April 1996

Calendar V0.7 Revision 50: rick@ hpcvuie r— - T v e
; File Manager — C
Edit View Browse
- — — Selected View

FF I al —

Fri, December 15 1995

. File Edit Search MNavigate ﬁ

; thlir Dtblink.m m.bm Dtb
Style Manager Help _ : .
With Style Manager, you can easily cug] i

behavior of the deskiop. Choose or mod JESE A S e <) [Dtblink.t m. ks Dtb
the behavior of your mouse, or perform (|

environment to suit your preferences 5 ﬁ 1 [i

* Style Manager Tasks | Dtbshll.m.pm I hll.mom.bm Dtb
* Stvle M '

¢ Style Manager Reference

To Open Style Manager
Click the Style Manager control in the Front Panel,

Mailer — New

File Edit Attachments Format

& T B T3 &

Font Barclr.dr"op Keyboard Mouse Screen

Personal Applicati&ns

lInstalllcon

ture Screen

a Text Editor

. D Terminal

fi‘j_ jcon Editor

v HEWLETT"
Mar [oicknmo
ett—Packard Co.

JOURN

HEWLETT-PACKARD

Articles

6 A Common Desktop Environment for Platforms Based on the UNIX™ Operating System,
by Brian E. Cripe, Jon A. Brewster, and Dana E. Laursen

] 1 Appendix A: CDE Application Programming Interfaces

1 5 Accessing and Administering Applications in CDE, by Anna Ellendman and William R. Yoder

2 2 Application Servers and Clients in CDE

24 The CDE Action and Data Typing Services, by Arthur F. Barstow

2 9 Migrating HP VUE Desktop Customizations to CDE, by Molly Joy

38 A Media-Rich Online Help System, by Lori A. Cook, Steven P, Hiebert, and Michael R. Wilson

50 Managing a Multicompany Software Development Project, by Robert M. Miller

54 Design and Development of the CDE 1.0 Test Suite, by Kristann L. Orton and Paul R. Ritter

6 2 Synlib: The Core of CDE Tests, by Sankar L. Chakrabarti

Executive Editor, Steve Beitler « Managing Editor, Charles L. Leath « Senior Editor, Richard P, Dalan « Assistant Editor, Rabin Everest
Publication Production Manager, Susan £ Wright » Graphie Design Support, Renge 0. Pighini « Typography/Layout/lllustration, John Nicoara

Advisory Board, Rajeev Badyal, Integrated Circuir Business Division, Fort Collins, Calorado » Willism W, Brown, Integrated Circuit Business Division,
Santa Clars, California » Rejesh Desai, Commercial Systems Division, Cuperting, California = Kevin G. Ewert, Integrated Systems Divisian, Sunnyvale,
California » Bernhard Fischer, Boblingen Medical Division, Bablingen, Germany » Douglas Gennetten, Greslay Hardoopy Division, Graeley, Colorsdo

= Gary Gordon, HP Laboratories, Palo Alts, Californiz » Mark Gorzynski, Inkjer Supplies Business Unit, Corvallis, Oregan » Matt J. Harline, Systems
Technology Division, Roseville, California » Kiyoyasu Hiwada, Hachiofi Semicanductor Test Division, Tokyo, Japan « Bryan Hoog, Lake Stevens [nstrument
Division, Everett, Washington » C. Steven Joiner, Optizs! Communication Division, San Jose, California = Aoger L Jungerman, Microwave Technology
Division, Santa Rosa, Califarnia » Forrest Kellert, Microwave Technology Division, Santa Rosa, California » Ruby B. Les, Networked Systems Groug,
Cuperting, California « Swee Kwang Lim, Asia Peripherals Division, Singapore » Alfred Maute, Waldbronn Analytical Divisian, Waldbronn, Garmany =
Andrew McLean, Enterprise Messaging Operation, Pinewood, England » Dona L Miller, Woarldwide Customer Suppaort Division, Mountain View, California »
Mitchell Mlinar, HP-EEsof Division, Westlake Village, California » Michael P Moora, VX! Systems Division, Loveland, Colorado » M. Shahid Mujtaba, HP
Laboratories, Palo Alte, California » Steven J. Narcisa, VX! Systams Divisian, Laveland, Colorada « Danny J, Oldfeld, Electronic Messuraments Division,
Colorado Springs, Colorado » Garry Orsolini, Software Technology Division, Raseville, California » Ken Poulton, HP Laboratories, Palo Alta, Calitarnia e
Gunter Riebesell, Bdblingen Instruments Division, Bblingen, Germany » Marc Sabatells, Software Engineering Systems Divisian, Fort Collins, Colorado
Michael B. Saunders, integrated Circuit Business Divisian, Corvallis, Dregon « Philip Stenton, HP Laboratories Bristol, Bristol, England « Stephen R. Undy
Systems Technolagy Divisian, Fort Collins, Colorado « Jim Willits, Network and Systam Management Division, Fort Collins; Colorada » Koichi Yanagawa
Kobe Instrument Division, Kobe, Japan » Dennis C. York, Corvallis Division, Carvallis, Gregon » Barhara Zimmer, Corparate Enginearing, Palo Alto,
Californig

April 199 Volume 47 » Number 2

EHewlett-Packard Company 1996 Printed in U.SA

2 April 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

The Hewlett-Packard Journal is printed an recycled papar

66 A Hybrid Power Module for a Mobile Communications Telephone, by Melanie M. Daniels

7 Automated C-Terminal Protein Sequence Analysis Using the HP G1009A C-Terminal Protein
Sequencing System, by Chad G. Miller and Jerome M. Bailey

7 4 Abbreviations for the Common Amino Acids

83 Measuring Parasitic Capacitance and Inductance Using TDR, by David J. Dascher

Departments

4 In this Issue
5 Cover
5 What's Ahead
97 Authors
The Hewlett-Packard Journal is publ i hly by the Hewtett-Packard Company 1o 1 hnical contributions made by Hewlett-Packard

(HP) personnel. Whila the information found in this publication is believed to be accurats, the Hewleti-Packard Company disclaims all warranties of
merchantability and fitness for a particular purpose and all abligations and liabilities for damages, including but not limited to indirect, special, or
consequential damages, attarney's and expert’s lees, and court costs, arising out of or in connection with this publication,

Subscriptions: The Hewlett-Packard Journal is distributed free of charge to HF research, design and manufacturing enginearing parsannel, as well as

to qualified non-HP individuas, libraries, and educational institutions. To receive an HP smployee subscription you can send an email message indicating
your HP entity and mailstop to de_litpro@hp-paloaito-gani3.om.hp com. Qualified non-HP individuals, libraries, and educational institutions in the .5
can request a subscription by either writing to: Distribution Manager, HP Journal, M/S 208H, 3000 Hanover Street, Palo Alto, CA 84304, or sending an email
massage 1o: hp_journal@hp-palealto-gen3.om hp.com When submitting an address change, please send a copy of your old [abel to the address on the
back cover, International subscriptions can be requested by writing 1o the HP headquarters office in your country or to Distribution Manager, address
ahove, Free subscriptions may not be available in 2ll countries.

The Hewlert-Packard Journal is available onling via the World-Wide Wab (WWW) and can be viewed and printed with Mosaic and a postscript viewer, or
downloaded to & hard drive and printed 1o a postseript printer. The uniform resource locator (URL) for the Hewlett-Packard Journal is httpy/fwaw.hp.com/
hpjfJournal html

Submissions: Although articles in the Hewletr-Packard Journal are primarily authored by HP employees, articles from non-HP authors dealing with
HP-related research or solutions to tect | problems made possible by using HP equip are also idered fur publ Pleass contact the
Editor before submitting such articles, Also, the Hewlen-Packard Journal encourages technical discussions of the topics presented in recent articles

and may publish letters expectad to be of interest to readers. Letters should be brief, and are subject to editing by HP.

Copyright © 1996 Hewlet-Packard Company, All rights reserved. Permission to copy without fee all or part of this publication is heraby grantad provided
that 1] the capies are not made, used, displayed, or distributed for commercial advantage; 2) the Hewlett-Packard Company copyright notice and the title
of the publication and date appear an the copies, and 3) a notice appears stating that the copying is by permission of the Hewlatt-Packard Company

Pleass add g issions, and r to: Editor, Hewlett-Packard Journal, M/S 20BH, 3000 Hanover Streat, Palo Alto, CA 94304 US.A.

April 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue

A standard, easy-to-use, intuitive user interface for computer systems has been
a goal of system developers since the days of the ENIAC* computer. The UNIX®
operating system, which began life as a system for engineers only, has been a
consistent target for various user-interface schemes.

Before graphical user interfaces (GUls) became commonplace, users interacted
with computer systems via a character mode command-line interface. For UNIX
systems, this command-line interface mode continued until the 1980s with the
arrival of proprietary window systems. By 1988 the X Window System had been
adopted as the standard window system for UNIX systems. Toolkits were created
that allowed UNIX vendors to create as many different proprietary user inter-
face environments as there were vendors. The article on page 6 introduces eight articles that describe
how four UNIX vendors, who normally compete in the marketplace, collaborated on a user interface
environment for UNIX platforms called the Common Desktop Environment, or CDE. This article explains
how this environment is seen from three different viewpoints: developers who write applications to run
in CDE, system administrators who must install and maintain these applications, and finally, end users
who use these applications.

Since UNIX systems are highly networked, it is desirable that a desktop environment allow network
transparency—the ability to launch applications and access data without worrying about where in the
network these items are located. Thus, when the user selects an application (by double-clicking an icon)
that happens to be on a remote system, the user environment automatically establishes links to the
remote application server, allowing the user to run the application as if it were located on the local work-
station. The article on page 15 describes the underlying mechanisms that link icons to applications, and
the tools that enable system administrators to integrate applications into the desktop environment.

In most cases today the icons on a graphical desktop are fairly intuitive. For example, if you drop a docu-
ment on a printer icon very likely the document will be sent to a printer of your choice. The article on
page 24 describes the APIs (application programming interfaces) and databases responsible for defining
the look and behavior of icons in the Common Desktop Environment.

The world of online help has evolved from simple out-of-context cryptic messages to media-rich, context-
sensitive help messages. As the article on page 38 explains, the CDE help system is based on the easy-
to-use HP VUE 3.0 help system. Like HP VUE 3.0, the CDE help system provides a language (HelpTag) for
authors to develop help messages and tools for programmers to integrate customized help messages
into their applications. The main difference between CDE help and HP VUE 3.0 help is the delivery format
for help files. CDE help uses the semantic delivery language (SDL) as a delivery format for help files. SDL
focuses on the semantics of a document.

Many users are content with the special menu and icon customizations they have in their current HP
VUE interface. Therefore, to allow users to keep their menu and icon customizations in CDE, & collection
of utilities are provided to translate HP VUE customizations into CDE equivalents. These utilities are
described on page 29.

As mentioned above, the CDE project was a joint engineering effort between four companies that typi-
cally compete in the marketplace. The companies are HP, IBM, Sun Microsystems, and Novell. All four of
these companies produce computer systems that use the UNIX operating system as their system platform.
Because of different cultures and development strategies, the joint effort presented some interesting
and unigue challenges. In the article on page 50, the author describes the mechanisms and procedures
that had to be putin place to manage the CDE project. Because of the different development strategies,
test tools, and verification methods, the test team had the greatest challenge in this multicompany project.
As the article on page 54 states, to ensure quality in the final product, strict guidelines were established
at the beginning of the project. For example, rules were established for test coverage and assigning
reponsibility when defects were found.

* The ENIAC (Electronic Numerical Integrator And Calculator] was developed in 1948, and is considered to have bean the first truly electronic computer

4 April 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

One of the tools that made testing the graphical user interface of CDE much easier is a test tool called
Synlib. Typically, an image capture and compare technigue is used to verifiy the various windows
(screen states) of a GUI. However, this technigue is sometimes prone to inaccuracies. Although the
image capture technique was used for CDE testing, the majority of GUI testing used Synlib. Synlib
reduces the need to use image capture for checking screen states because it employs a combination
of position independent and position dependent data to manipulate and verify desktop items. Synlib is
introduced in the article on page 54 and described in the article on page 62.

For a mobile telephone to be competitive today it must supply full output power at a supply voltage of
5.4 volts (five NiCad cells) with 40% efficiency and 0-dBm input power. It should also be inexpensive,
small, have a long talk time, and be able to be manufactured in volume. These characteristics determine
the specifications for the power module in a mobile telephone. The power madule in a mobile telephone
is the output stage of the RF (radio frequency) amplification chain of the telephone. The article on page 66
describes the design of a 3.5-watt power module for a GSM (Global System for Mobile Communications)
mobile telephone, which satisfies all the specifications mentioned above.

The article on page 73 is a good example of the wide range of products offered by HP. The HP G1009A
C-terminal protein sequencing system is a complete, automated system for the carboxy-terminal amina
acid sequence analysis of protein samples. Using adsorptive sample loading and a patented sequencing
chemistry, the HP G1009A is capable of detecting and sequencing through any of the 20 common amino
acids.

Time-domain reflectometry (TDR) is commonly used for determining the characteristic impedance of a
transmission line or quantifying reflections caused by discontinuities along or at the termination of a
transmission line. However, as the article on page 83 explains, TDR can also be used to measure the
capacitance or inductance of devices or structures while they reside in the circuit. The typical inductance-
capacitance-resistance (LCR) meter cannot make these measurements accurately. The article shows
how the HP 54750A oscilloscope and the HP 54754A TOR plug-in card can be used to make these mea-
surements.

C.L Leath
Managing Editor

Cover

A screen showing a typical collection of icons, panels, windows, and dialog boxes that make up the
graphical user interface of the Common Desktop Environment.

What'’s Ahead

In the June issue we'll have four articles on the HP 16505A prototype analyzer and articles on the HP
PalmVue mobile clinical patient information transmission system, the HP Omnibook Pentium™ PCl-based
notebook computer, and the HP 38G graphing calculator for math and science classes. There will also be
a paper on developing an application server in a highly networked environment.

UNIX is a regrstered trademark in the Uinited States and other countries, licensed exclusively through X/Open Company Limited

Pentium 15 a U.S. registered trademark of Intel Corparation

© Copr. 1949-1998 Hewlett-Packard Co. April 1996 Hewlett-Packard Journal

5

A Common Desktop Environment for

Platforms Based on the UNIX®

Operating System

User interface technologies from four companies have been combined to
create a single UNIX desktop standard that provides a common look and
feel for end users and a common set of tools for system administrators

and application developers.

by Brian E. Cripe, Jon A. Brewster, and Dana E. Laursen

Until the early 1980s most users interacted with their com-
puters via character-mode interfaces—they typed in com-
mands. What happened to change all this was the arrival of
proprietary window systems. HP's first window system was
embedded in the Integral Personal Computer.! By 1988 the
X Window System had been adopted as a standard for ma-
chines running the UNIX operating system. However, avail-
able user interface toolkits, such as HP's CX1 widgets, were
proprietary. These toolkits provided items such as scroll bars
and pop-up menus, and they allowed software developers to
create applications that had a consistent look and feel. By
1990 two stable toolkits had emerged, OSF/Motif and Open-
Look.t

The stage was now set for proprietary user environments,

A user environment is a collection of programs used by the
end user to manage files, invoke applications, and perform
routine tasks such as edit text files and send and receive
email. HP delivered its first version of HP VUE (Visual User
Environment)? in 1990 with subsequent upgrades continuing
to this day.

In March of 1993 representatives from Hewlett-Packard, IBM,
Sun Microsystems, and Novell agreed to create a common
user environment for UNIX platforms (see the article on
page 50). This joint initiative resulted in the specification and
development of the Common Desktop Environment (CDE).
CDE accomplishes two things: first, it adopts OSF/Motif as
the principal user interface toolkit for UNIX systems, and
second, it establishes this rich new environment and frame-
work as a standard user environment.

CDE is based on the X Window System from the X Consor-
tium and the Motif graphical user interface from the Open
Software Foundation. Fig. 1 shows how these technologies
fit together.

The X Window System (X) components include:

X server. This program writes directly to the user’s display
hardware.

Xlib. This is a library of function calls for communicating
with the X server. Xlib deals with low-level concepts such as

t Openlook i5 the X Window System toolkit from Sun Microsystems.

6 April 1996 Hewlett-Packard Journal

L]

rectangles, arcs, and fonts. It does not know about higher-
level conecepts such as menus and scroll bars (i.e., interface
widgets).

X protocol. This is the data stream that communicates
between Xlib and the X server. This data stream can be
passed across a network, which gives X the ability to run an
application on one system and display the user interface to
another system.

Xt. This is the X toolkit, which provides a framework for
defining and integrating user interface widgets.

The Motif component is Xm, which is the Motif library that
provides a rich collection of user interface widgets such as
dialog boxes, menus, buttons, scroll bars, and text editing
panes.

Different Views of CDE

The rest of this article provides an overview of CDE from
three different perspectives: the end user who uses CDE but
does not care about its internal design, the software devel-
oper who is writing applications that need to be integrated
with CDE, and the system administrator who is responsible
for managing systems that run CDE.

CDE

CDE Applications

Xm (Motif)

[X Protocol

Fig. 1. CDE architecture.

© Copr. 1949-1998 Hewlett-Packard Co.

End-User's View

Putting togeth ronment and application frame

work such as (forces one to be precise about

r nis for the CDE project
rmed LS t nd-user requir

file management, email, and s I

Integration. CDE parts and services need to work together

seamlessly. For "_‘\.'.I.’!].!‘!l' it should be &l yssible to mail a
meeting notice with a calendar appointment in it, allowing
the n--n-;:i'.-:m to add the event "Ei.‘-]]_\ to their calendars.
Also, CDE utilities need to use CDE APIs (e.g., help, drag
and drop, etc.) not only to be consistent with each other,
but to be showease components showing the results of
Proper use.

» Compatibility. Previous applications need to continue to
run. This is true for OpenLook, Motif, and terminal-based
software. For HP VUE users, we were very interested in
ensuring that conversion tools could be created to move
configuration information into CDE.

Ease of use. The resulting environment needs to be guided
by a standard set of usability principles and tested for

b

usability defecis. This work took place at the early stages

and during every step of the CDE project.

Getting agreement on these fundamental end-user require-
ments was critical given the nature of our extended multi
company development team. Many of the more difficult
project decisions required coming back to these basics. For
example, the drag and drop architecture had to be reworked

Calemder ¥ 7 Berisim W e
e]

Wryhe b - Maly
W

Ty Bl Py

Tils

B

several times to accompl it ambitions of tl
team

T'he cover of this issue and Fig. 2 sh 1 typical CDE user
Imteriace I ill the end-user components
some of which are shown in Fig

Basic End-User Tasks

user access 1o the systi Lhis gatekeepel s thie 1

system then invokes the basic session comj
The

session can also be automatically restored. This allows

USEr's previous

the window manager and file manager

items such as running applications, color settings, and the
graphical desktop arrangement to be retained from the logout

of the previous session.

Once the user is logged in, the file manager is used to find
and organize data files. Files can be dragged out of the file
manager and dropped in many inferesting places such as the
printer. Files can be moved and copied by dragging them
about. File icons can be placed on the main screen as if the
screen were a desktop. A file's type (document, spreadsheet,
image, etc.) can be determined by its icon, and various type-
specific actions can be invoked via a pop-up menu that is
made available for each icon. For example, editing a graphics
image and viewing that same image might require fwo
different applications and thus two different actions in the
pop-up actions menu. The file manager also allows different
views of the file directories, such as a tree view (containment
hierarchy) and a full file properties view (size, security,
ete.). Files can be found by manually browsing through the

rplie 03T

=

Mailer - W —

Bty

Wbyt ity g

Pormmal gl 6t s

netall bews

[L.

Tewwimal

L e i

CeRe

Front Panel

Fig. 2. A typical CDE user interface

=]

April 1996 Hewlet-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Table |

End-User Components
Component Function

Login Manager Graphical login and authentication

Session Logout 1o login session save and restore
Manager

Window X11 Windows compliant window
Manager manager

Workspace Window grouping and task switching
Manager

Ubiquitous services access and work-
space switching

Front Panel

Style Manager Customization and configuration

File Manager File manipulation services

Application discovery and launch
services

Application
Manager
Text Editor ASCII text file editor

Icon Editor File type icon creator and editor

Mailer Full MIME compliant multipart email
facility
Calendar Personal and group time manager

Caleulator Financial, logieal, and scientific modes

Terminal VT220 type character mode support

Emulator

Action Creator Linking behavior to specific icons

Print Manager Multiprinter-aware print submission tool

directories or via a finding service that works with name or
content matching. A found file can then be automatically
placed on the desktop.

Applications can be launched in a number of ways. Simply
double-clicking a data file icon and allowing CDE to launch
the correct application with that data file as its argument is
usually the most convenient approach. However, sometimes
running an application directly is more appropriate. The
applications themselves also show up as icons that can be
moved about, organized, and double-clicked for invocation.
These application icons are initially found in the application
manager, which is really just a file manager window onto the
applications directory. A user can drag the application icons
into any other directory or even onto the desktop. For im-
portant and commonly used applications, the icon can be
directly installed into the front panel for easy access.

The article on page 15 describes the data structures in-
volved in linking applications, icons, and actions together.

Task management in CDE is much like any other windowing
environment in that it has various ways to control the win-
dowing behavior of the running applications. However, there
is a major enhancement in CDE called workspaces. The
multiple-workspace paradigm supported by CDE allows a
user to switch between multiple screens full of application
windows. This allows each collection of windows to be
treated as a group (the default is four workspaces). End users
can use workspaces to collect together groups of windows

8§ April 1996 Hewlett-Packard Joumnal

L]

for specific tasks. For example, one workspace could contain
all the windows associated with a remote system, while
another workspace could contain windows for the user's
desktop publishing tools.

Workspace switching is very fast, typically less than a few
tenths of a second, and is accomplished by pressing a single
button within the front panel. Each workspace has its own
backdrop, which is usually color-coded to mateh its button.
The workspaces are also named and can be created and
destroyed at any time by the user.

The front panel is usually located at the hottom of the screen
(see Fig. 2). It is available in all workspaces and provides
access to important and frequently used services. These ser-
vices include:

Clock and calendar functions

Personal file space (file manager access)

General application space (application manager access)
High-use application and data file access

Mail facilities

Workspace management controls

Printer access

CDE configuration controls

Help facilities

Trash can for deleting files

Sereen locking and logout services.

The front panel is a unifying tool for collecting important
services that are otherwise left scattered and hard to find. It
is also a distinctive visunal feature kmown to the development
team as a signature visual in that it distinguishes the ma-
chine running CDE from other machines.

End-User CDE Utilities
CDE has a number of utility programs that support specific
end-user tasks. The following are some of these utilities.

Text Editor. This is a simple ASCII text editor that is neatly
integrated into CDE so that drag and drop, help, and general
Motif text behavior are seamlessly available to the end user.
Text formatting, spell checking, and cut and paste services
are also available,

Mailer. This is a highly integrated set of services that has full
drag and drop behavior with respect to folders, messages,
and attachments. The following scenario illustrates the ser-
vices integrated with the mailer.

The froni panel's mail icon is pressed, bringing up the user's
in-box. A message is dragged from the in-box to the front
panel’s printer icon. Another message is dragged to a mail
folder icon within a file manager for saving. A file is dragged
from the file manager to the mail icon on the front panel for
sending. Finally, a message being read has a graphics attach-
ment that is double-clicked to invoke the graphics viewer.

Thus, from the CDE mailer the user can print a message.,
save a message to a file, view the graphics in a message, and
compose and send a message.

Calendar. The calendar facility is a personal tool for managing
time and to-do items. It is “group aware” so that the user
can examine and search for meeting opportunities with col-
leagues. Individuals can control the privacy of their own
schedules. Meetings can be emailed via the drag and drop

© Copr. 1949-1998 Hewlett-Packard Co.

mechanism, and the calendar view can be flipped between
day, week, month, and six-month views.

Terminal. This tool supports character-mode applications
(some of which predate window systems). The CDE terminal
emulator behaves like a DEC VT220 terminal with minor
changes consistent with ANSI and [SO standards. Full cut
and paste behavior with the rest of the deskiop is built in.
The core feature of this emulator traces its ancestry back to
HP’s Integral Personal Computer, which had HP's first win-
dowing system and thus HP's first terminal emulator for the
UNIX operating system.

Software Developer’s View of CDE

To the software developer, CDE is composed of two distinct
components: the X/Open” standard and CDE product imple-
mentations. The X/Open standard defines the components
that must be present on any system that claims to be CDE-
compliant, HP's CDE product, like CDE products from other
vendors, must support the interfaces defined by the X/Open
CDE standard, but may contain additional functionality.

For example, many vendors have enhanced CDE to provide
backward compatibility with previous proprietary products.
Software developers should be cautious when using features
of a CDE product that are not part of the X/Open standard
because they may not be portable to all CDE systems.

The major benefits that CDE provides to the developer are:
A single GUI toolkit (OSF/Motif) that is supported by all
major UNIX vendors

Tools and libraries to help build an application
Mechanisms to integrate an application with the desktop
environment

Mechanisms to integrate applications with each other.

Table II lists the components available in CDE that enable
developers to integrate their applications into CDE.
Appendix A, on page 11, contains a complete list of all the
CDE APIs, which enable developers to build applications
based on CDE.

CDE defines three levels of application integration from
which the developer can choose: basie, recommended, and
optional. Basic integration consists of the minimal integration
steps that allow a user to access an application from the
desktop environment instead of a command prompt in a
terminal window. Recommended integration requires more
effort by the developer but allows the application to be fully
consistent with CDE and other CDE applications. The final
level, optional integration, is not necessary for most applica-
tions but is useful for applications that need to perform
specialized tasks.

Basic Integration

Basic integration allows an application and its data files to
be managed by CDE. This management includes:

Finding the application and invoking it using an icon in the
application manager

Identifying the application’s data files with a unique icon
Loading a data file into the application by dragging and
dropping the file icon on the application icon

Invoking the application to print a data file by dragging and
dropping the file icon on a printer icon

Using the style manager to specify colors and fonts for the
application

Table ll
Developer Components

Component Purpose

Viewer, API, and administration
tools

Help System

Motif Toolkit OSF/Motif version 1.2.3 plus some

1.2.4 repairs

SpinBution and ComboBox
(taken from Motif 2.0)

Custom Widgets

For adding terminal emulation fo an
application

Terminal Widget

Dtksh A GUI dialoging and scripting facility

Drag and drop conventions, proto-
cols, and APIs

A standard general-purpose message
passing service that enables tight
integration between separate appli-
cations and CDE components

Data Interchange

ToolTalk®

API for access to the desktop engine
typing services

Data Typing

API for access to the desktop
invocation services

Actions

Font Guidelines Conventions for standard font

interactions
Internationalization Overview and reconciliation of
Guidelines relevant standards and style guides
Client/Server Network execution and distribution
Guidelines

model

» Locating information about the application in the help
manager.

Basic integration can be accomplished without any modifi-
cations to the application’s source or executable files. The
steps for performing basic integration include:

» Defining an application group for the application manager
that will hold the application

» Defining the application’s icons and giving them the correct
double click and drag and drop behavior by creating new
CDE actions and data types

» Removing color and font specifications from the applica-
tion’s defaults file so that it will use the default colors and
fonts specified by the CDE style manager

« [nstalling configuration files for the application in the stan-

dard file system locations and registering it with the desktop

using the dtappintegrate command (This command is typically

invoked by the application’s installation seript.)

Creating and installing any appropriate application informa-

tion as desktop help files.

Recommended Integration
Recommended integration includes additional steps that are
necessary to make the application fully integrated into CDE
and consistent with other applications. This level of integra-
tion requires modifications to the application’s source code,
but in return it provides the following benefits:

« The user can access context-sensitive online help from
within the application using the CDE help system. To
achieve this the application must use the help system APL

April 1996 Hewlett-Packard Journal 9

© Copr. 1949-1998 Hewlett-Packard Co.

» The application can achieve tight integration with other
applications using ToolTalk messages. For example, an editor
application that supports the media exchange message suite
can be used by other applications for editing data objects,
To achieve this the application must use the ToolTalk
messaging APl and support one or more of the standard
message suifes.

The user can log out with the application running and upon
login the application will be automatically restarted and
restored to ifs previous state. To achieve this the application
must be able to read and write session files that define the
application’s state, and it must use the session management
API for controlling this behavior.

The user can move data into or out of a running application
using the drag and drop facility. To achieve this the applica-
tion must use the drag and drop APL

The application user interface can be translated into other
languages without modifying the source code for the appli-
cation. To achieve this the application must follow the inter-
nationalization guidelines.

The application can be displayed on a remote workstation
or an X terminal and be assured of getting the expected
fonts. To achieve this the application must access its fonts
using the standard font names defined in the font guidelines.

Optional Integration

Applications with unique needs may choose to use the

optional CDE integration facilities. Applications are not

required or expected to use any of these facilities, but some

applications will find them useful. These facilities include:

Additional Motif widgets such as SpinBox and ComboBox

Data typing functions that enable an application to determine

the type and atiributes of files and other data items in a

manner consistent with CDE and other applications

Action invoeation functions that enable an application to

invoke other applications

Monitor and control functions for the placement of applica-

tions in the user’s workspaces

A terminal emulator widget that can be used to add a con-

ventional UNIX command window to the application

A text editor widget that allows adding a text editing

window to the application, which is more powerful than

the standard Motif text editor widget

An API to access calendar and scheduling capabilities,

which is an implementation of the X.400 association calen-

daring and scheduling API 1.0

* An enhanced version of Korn shell which provides access to
CDE APIs from an interpreted script language.

L]

More information about these integration techniques can be
found in references 3 and 4.

System Administrator’s View of CDE

CDE greatly simplifies the burden of a UNIX system admin-
istrator because it provides a consistent set of capabilities
and configuration mechanisms across virtually all UNIX
systems. Tasks that an administrator of a CDE system might
perform include configuring the behavior of CDE, adminis-
tering CDE in a networked environment, and administering
applications.

Configuring CDE. CDE is a highly configurable environment.
Many of the customizations that a user can choose to do to

10 April 1996 Hewlett-Packard Journal

L]

L]

configure a personal environment ¢an also be done by a
system administrator for all users. Some examples of pos-
sible configuration changes include the ability to:
Customize the appearance of the login screen

Modify the set of applications that get automatically started
when a user [irst logs in

Add or remove printer icons from the print manager
Customize the contents of the front panel

Lock all or portions of the front panel so that they cannot be
modified by the user

Customize the set of controls embedded in window frames
and modify their behavior

Modify the menus available from the root window of the
display

Modify the keyboard bindings and accelerator keys used by
applications

Customize the default fonts, colors, and backdrops used by
CDE and applications.

For more information on any of these tasks see reference 4.

Administering CDE in a Networked Environment. CDE is
designed to work well in a highly networked environment.
The architecture of the desktop lets system administrators
distribute computing resources throughout the network,
including applications, data files for applications, desktop
session services (desktop applications such as the login
manager and file manager), and help services. Help data
files can be put on a central help server.

Typical tasks performed by the administrator of a network
running CDE include:

Installing the operating system and CDE on a network of
systems, some of which might perform specialized tasks
such as act as an application server

Configuring the login manager so that workstations or

X terminals have login access to the appropriate set of
systems

Configuring the distributed file system so that all systems
have access to the necessary set of data files

Installing and configuring devices such as printers so that
they are accessible from the desktop environment
Configuring application servers that run applications on
behalf of other systems in the network

Configuring other servers such as database servers or help
Servers,

CDE includes a number of daemons. System administrators
often do not need to be aware of these daemons because
they are installed and configured automatically when CDE is
installed. However, in some situations system administrators
may need fo use the information in the manuals and man
pages to create some nontypical configurations.

These daemons include:

dtlogin. The login manager, which provides login services
to the workstation or X terminal

disped. The subprocess control daemon, which provides
remote command invocation

rpc.tidbserver. The ToolTalk database server, which is used
by the ToolTalk messaging system and performs filename
mapping

ttsession. The ToolTalk message server, which provides
message passing

© Copr. 1949-1998 Hewlett-Packard Co.

» rpc.cmsd. The calendar daemon, which manages the calendar
databases.

More information about these daemons can be found in
reference 3.

Administering Applications. The networking capabilities of
the HP-UX* aoperating system, the X Window System, and
CDE can be used to create many different application exe-
cution configurations. The simplest configuration is local
application execution in which applications are installed on
the local disk of a workstation and executed locally.

A variation of this configuration is to install applications on
a disk on a central file server and then mount that disk on
other workstations. Each workstation accesses the applica-
tion’s executable and configuration files across the network,
but executes them locally. This configuration reduces the
total amount of required disk space because multiple work-
stations are sharing a single copy of the application files.

Another approach is to use centralized application servers.
This configuration uses the client/server capabilities of the
X Window System to execute the application on one system
and display its user interface on another workstation or X
terminal.

Application servers are a good solution to the problem of
giving users access to applications that have special run-time
requirements. For example, if users need access to an appli-
cation that only runs on HP-UX 8.0, an HP-UX 8.0 application
server ean be created and accessed from workstations run-
ning HP-UX 9.0.

CDE makes these distributed application environments sim-
ple to use by representing all applications as icons in the
application manager. The user does not need to know or care
whether the application is installed locally or on a remote
application server.

CDE also makes these distributed configurations easy to
create and administer. Applications are installed the same

way whether they will be used locally or accessed remotely.
When a workstation is configured to access another system
as an application server, all of the applications on that system
that have been registered with CDE automatically become
available. The article on page 15 provides a more detailed
discussion about CDE application administration tools.

Summary

The HP VUE user will find much to appreciate in CDE. CDE
retains the best end-user features of HP VUE, such as work-
spaces and the iconic desktop behavior. CDE adds many
new end-user services, such as an integrated mailer and a
calendar system. The system administrator gets a rich and
new standard set of configuration options that also shares
much of the HP VUE approach. A software developer has
optional access to a new programming framework to take
advantage of deep environment integration. Other than the
help facility, these programming services were not available
as part of HP VUE.

References

1. Hewlett-Packard Journal, Vol. 36, no. 10, October 1985, pp. 4-35.
2. C. Fernandez, “A Graphical User Interface for a Multimedia Envi-
ronment,” Hewlett-Packard Journal, Vol. 45, no. 2, April 1994, pp.
20-22,

3. CDE Programmer’s Overview, Hewlett-Packard, Part Number
B1171-90105, January 1996,

4. CDE Advanced User's and System Administrator’s Guide,
Hewlett-Packard, Part Number B1171-90102, January 1996,

HP-UX 9.* and 10.0 for HP 9000 Series 7007and BOD computers are X/Open Company UNIX 43
branded products.

UNIX is a registared tradamark in the United States and other countrias, licensed exclusively
through X/Open Company Limited.

X/Oper is a registerad trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries.

0SF. Matif, and Open Software Foundation are trademarks of the Open Software Foundation in
the U S.A and other countries

ToalTalk is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S.A. and
certain other countries

Appendix A: CDE Application Programming Interfaces

This appendix lists the CDE libraries and header files that contain the
CDE APIs.

Desktop Services Library (libDtSvc)

Desktop Initialization APIs. The deskiop services library must be
initialized with DtAppinitialize() or Dtinitialize() before an application can
use the APIs for action invocation, data typing, drag and drop, screen
saving, session management, or workspace management.

#include <DYDth>

Dt(5): Miscellaneous desktop definitions.

DtApplnitialize(3), Dtinitialize(3): Desktop services library initialization
functions.

Action Invocation APls. These APls provide applications access to the
desktop action database to query action attributes and to invoke actions.
The DtActioninvoke() function selects the correct desktop action to invoke
based on its arguments and actions in the database. The DtDbLoad() and
DtDbReloadNotify() functions apply to the shared database for actions
and data types.

e #include <DYAction.h>

« DtAction(5): Action service definitions

« DtActionCallbackProc(3); Notifies application that the status of an action
has changed

» DtActionDescription(3): Obtains the descriptive text for a given action

» DtActionExists(3); Determines if a string corresponds to an action name

= DtActionlcon(3): Gets the icon information for an action

» DtActionlnvoke(3): Invokes a CDE action

» DtActionLabel(3): Gets the Iocalizable |abel string for an action

» DtDbLoad(3); Loads the actions and data types database

« DtDbReloadNotify(3): Registers callbacks for changes to actions and data
types database.

Data Typing APIs. Data typing APIs provide applications with access to
the desktop data type database to query data type attributes and to
determine the data type of files, buffers, and data.

» #include <DYDts.h>
» DtDts(5): Provides data typing definitions

April 1006 Hewlett-Packard Journal 11

© Copr. 1949-1998 Hewlett-Packard Co.

» DtDtsBufferToAttributeList(3): Gets a list of data attributes for a byte
stream

» DtDtsBufferToAttributeValue(3): Gets a single data attribute value for a
byte stream

» DiDtsBufferToDataType(3): Gets the data type for a byte stream

= DtDtsDataToDataType(3): Gets the data type for @ set of data

» DtDtsDataTypelsAction(3): Determines if the data type is an action

» DtDtsDataTypeNames(3): Gets a list of available data types

» DiDtsDataTypeToAttributeList(3): Gets a list of attributes for a data type

« DiDtsDataTypeToAttributeValue(3). Gets an attribute value for a specified
data type

= DtDtsFileToAttributeList(3): Gets a list of attributes for a file

» DtDtsFileToAttributeValue(3): Gets a specified attribute value for a file

= DtDtsFileToDataType(3). Gets a data type for a file

= DtDtsFindAttribute(3): Gets a specified list of data types

= DiDtsFreeAttributeList(3): Frees a list of data attributes

« DtDtsFreeAttributeValue(3): Frees a data attribute value

= DiDtsFreeDataType(3): Frees a data type pointer to memary

» DiDtsFreeDataTypeNames(3): Frees a list of data type names

= DiDtsIsTrue(3): Returns a Bonlean value associated with a string

= DiDtsLoadDataTypes(3): Loads and initializes the data types database

= DiDtsRelease(3): Frees memory associated with the data types database

» DiDtsSetDataType(3): Sets the data type of a directory.

Drag and Drop APIs. The drag and drop APls are a convenience and
palicy layer on top of Motif 1.2 drag and drop. The drag and drop APls
manage the configuration and appearance of drag icons, define a transfer
protocol for buffers, enable animation upon drop, provide enumeration of
targets for text and file transfers, allow dual registration of text widgets
for text and other data, and provide prioritized drop farmats.

= #include <D¥Dnd.h>

= DtDnd(5): Provides drag and drap definitions

= DiDndCreateSourcelcon(3): Creates a drag source icon
» DtDndDragStart(3): Initiates a drag

= DtDndDropRegister(3): Specifies a drop site

= DtDndDropUnregister(3); Deactivates a drop site.

Screen Saver APls.

» #include <Dt/Saverh>

= DtSaver(5): Provides screen saver definitions

» DtSaverGetWindows|(3): Gets the list of windows for drawing by a screen
saver application.

Session Management APls.

 #include <0t/Session.h>

= DtSession(5): Provides session management services definitions

= DtSessionRestorePath(3): Gets a path name for the application’s state
information file

= DtSessionSavePath(3): Gets a path name for saving application state
information.

Workspace Management APIs. The workspace management APIs
provide functions to access and modify workspace attributes and to
request notification of workspace changes.

* #include <DYWsm.h>

» DtWsm(5); Workspace manager definitions

= DtWsmAddCurrentWorkspaceCallback(3): Adds a callback to be called
when the current workspace changes

* DtWsmAddWorkspaceFunctions(3): Adds workspace functions for a
window

» DtWsmAddWarkspaceModifiedCallback(3): Adds a callback to be called
when any workspace is changed

= DtWsmFreeWorkspacelnfo(3): Frees workspace information

= DtWsmGetCurrentBackdropWindow(3): Gets the backdrop window for
the current workspace

= DtWsmGetCurrentWorkspace(3); Gets the current workspace

= DtWsmGetWorkspacelnfo(3): Gets detailed workspace information

» DtWsmGetWorkspacelist(3): Gets the names of the currently defined
workspaces

» DtWsmGetWorkspacesOccupied(3): Gets the workspaces in which a
window resides

= DtWsmOccupyAllWorkspaces(3): Puts a window into all workspaces

» DtWsmRemoveWorkspaceCallback(3): Removes a workspace callback

» DtWsmRemoveWorkspaceFunctions(3): Removes a window's workspace
function

o DtWsmSetCurrentWorkspace(3): Sets the current workspace

» DtWsmSetWorkspacesOccupied(3): Sets the workspaces in which a
window resides.

Help Widget Library (libDiHelp)
Help Utility APIs. These APls are used to manage application help

« #include <Dt/Help.h>

« DtHelp(5): Help services definitions

= DtHelpReturnSelectedWidgetld(3): Selects a widget or gadget

» DtHelpSetCatalogName(3): Assigns the name of the message catalog to
use for help services

HelpDialog Widget API. The DtHelpDialog widget provides users with
the functionality for viewing and navigating structured online information
(CDE help volumes). This functionality includes text and graphics render-
ing, embedded hypertext links, and various navigation methods to move
through online help information. The widget supports rendering of COE
help volumes, system manual pages, text files, and character string values.

s #include <Dt/HelpDialog.h>

« DtHelpDialog(5): DtHelpDialog definitions

» DtCreateHelpDialog(3): Creates a general DtHelpDialog widget
« DtHelpDialog(3}); The DtHelpDialog widget class.

HelpQuickDialog Widget APls. The DtHelpQuickDialog widget provides
users with the same functionality as the DtHelpDialog widget, The differ-
ence here is that the functionality is for the quick dialog widget.

= #include <Dt/HelpQuickD.h>

» DtHelpQuickD(5): DtHelpQuickDialog definitions

« DtCreateHelpQuickDialog(3): Creates a DtHelpQuickDialog widget

» DtHelpQuickDialog{3): The DtHelpQuickDialog widget class

= DtHelpQuickDialogGetChild(3): Gets the child of a DtHelpQuickDialog
widget.

Terminal Widget Library (libDtTerm)

Terminal Widget APlIs. The DtTerm widget provides the core set of
functionality needed to emulate an ANSI X3.64-1979- and IS0
6429:1992(E)-style terminal, such as the DEC VT220. This functionality
includes text rendering, scrolling, margin and tab support, escape se-
quence parsing, and the low-level, operating-system-specific interface
required to allocate and configure a pty or streams pseudoterminal de-
vice and write to the system’s utmp device.

e #ginclude <Dt/Term.h>
« DtTerm(5}: DiTerm widget definitions
» DtCreateTerm(3). Creates a DtTerm widget

12 April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

» DtTermi3): DtTerm widget ciass

« DtTermDisplaySend(3): Sends data to a DtTerm widget's display

» DtTerminitialize{3): Prevents accelerators from being installed on a
DtTerm widget

« DtTermSubprocReap(3); Allows a DiTerm widget to clean up after subpro-
cess termination

« DtTermSubprocSend(3): Sends data to a DiTerm widget's subprocess

Desktop Widget Library (libDtWidget)

Editor Widget APls. The DtEditor widget supports creating and editing
text files. It gives applications running in the desktop environment a
consistent method for editing text data. The widget consists of a scrolled
edit window for text, dialogs for finding and changing text, and an optional
status line. Editing operations include finding and changing text, simple
formatting, spell checking, and undoing the previous editing operation,

= #include <DYEditor.h>

= DtEditor(5): Editor widget definitions

= DtCreatekditor(3): Creates a DtEditor widget

« DtEditor(3): DtEditor widget class

« DtEditorAppend(3): Appends data to a DtEditor widget

« DtEditorAppendFromFile(3): Appends data from a file into & DtEditor widget

« DtEditorChange(3): Changes one or all occurrences of a string in a DtEditor
widget

« DtEditorCheckForUnsavedChangesi(3): Reparts whether text has been
edited

» DtEditorClearSelection(3); Clears the primary selection in a DtEditor widget

» DtEditorCopyToClipboard(3): Copies the primary selection in a DtEditor
widget to the clipboard

« DtEditorCutToClipboard(3): Copies the primary selection in a DtEditor
widget to the clipboard and deletes the selected text

« DtEditorDeleteSelection(3): Deletes the primary selection in the DtEditor
widget

» DiEditorDeselect(3): Deselects the current selection in a DtEditor widget

» DtEditorDisableRedisplay(3): Temporarily prevents visual update of a
DtEditor widget

« DtEditorEnableRedisplay(3): Forces the visual update of a DiEditor widget

» DtEditorFind|3); Searches for the next occurrence of a string in a DtEditor
widget

« DtEditorFormat{3); Formats all or part of the contents of a DiEditor widget

» DiEditorGetContents(3): Retrieves the contents of a DtEditor widget

« DtEditorGetinsertionPasition(3): Retrieves the position of the insert cursor in
a DtEditor widget

» DiEditorGetLastPosition(3): Retrieves the position of the last character in
a DtEditor widget

« DtEditorGetMessageTextField1D(3): Retrieves the widget |0 of the message
text field in the DtEditor status line

» DtEditorGetSizeHints(3): Retrieves sizing information from a DtEditor
widget

« DtEditorGaToLine(3): Moves the insert cursor for a DtEditor widget to a
specified line

= DtEditorInsert{3): Inserts data into a DtEditor widget

« DtEditorinsertFromFile(3): Inserts data from a file into a DiEditor widget

« DtEditorinvokeFindChangeDialog(3): Displays the DtEditor widget dialog
for searching and replacing text

» DtEditorinvokeFormatDialog(3): Displays the DiEditer widget dialog for
thoosing formatting options

» DtEditorlnvokeSpellDialog(3): Displays the DtEditor widget dialog for
checking text for spelling errors

« DtEditorPasteFromCliphoard(3): Inserts the clipboard selection into a
DtEditar widget

» DifditerReplacei3): Beplaces a portion of the contents of 2 DiEditor widget

« DtEditorReplaceFromFile(3): Replaces a portion of the contents of a
DtEditor widget with the contents of a file

« DtEditorReseti3): Resets a DiEditor widget o its default state

» DtEditorSaveContentsToFile(3): Saves the contents of a DiEditor widget to
afile

« DtEditorSelectAll(3): Selects all the text in a DtEditor widget

» DiEditorSetContents(3): Places data into a DtEditor widgst

« DiEditorSetContentsFromFile(3): Loads data from a file into a DtEditor
widget

« DtEditorSetinsertionPosition{3): Sets the position of the insert cursor in 2
DtEditor widget

« DtEditorTraverseToEditor{3): Sets keyboard traversal to the edit window
of a DiEditor widget

» DtEditorUndoEdit(3): Undos the last edit made to the text in a DtEditor
widget.

ComboBox Widget APls. The DtComboBox widget is a combination of a
TextField and a List widget that provides a list of valid choices for the
TextField. Selecting an item from this list automatically fills in the Text-
Field with that list item.

« #include <DYComboBox.h>

» DtComboBox(5): DiComboBox widget definitions

= DtCreateComboBox(3): Creates a DtComboBox widget

» DtComboBox(3); DiComboBox widget class

» DtComboBoxAdditem(3): Adds an item to the CamboBox widget
« DtComboBoxDeletePos(3): Deletes a DtComboBox item

» DtComboBoxSelectitem(3): Selects a DtComboBox item

» DtComboBoxSetitem(3): Sets an item in the DiComboBox list.

MenuButton Widget APls. The DtMenuButton widget is a command
widget that provides the menu cascading functionality of an XmCascade-
Button widget. DtMenuButton can only be instantiated outside a menu
pane.

« #include <Dt/MenuButton.h>

» DtMenuButton(5): DtMenuButton widget definitions

s DtCreateMenuButton(3): Creates a DtMenuButton widget
» DtMenuButtan(3): DtMenuButton widget class

SpinBox Widget APIs. The DtSpinBox widget is a user interface control
for incrementing and decrementing an associated TextField. For example,
it can be used to cycle through the months of the year or days of the
month.

» #include <DYSpinBox.h>

« DtSpinBox(5): DSpinBox widget definitions

» DiCreateSpinBox(3): Creates a DtSpinBox widget

= DtSpinBox(3): DtSpinBox widget class

» DtSpinBoxAddltem(3): Adds an item to the DtSpinBox

» DtSpinBoxDeletePos(3): Deletes a DtSpinBox item

» DtSpinBoxSetitem(3): Sets an item in the DtSpinBox list.

Calendar Library (libcsa)

Calendar APIs. The Calendar APIs include functions for inserting,
deleting, and modifying entries, functions for browsing and finding
entries, and functions for calendar administration.

= #include <csa/csa.h>

« csacsa(s): Calendar and appointment services definitions

» ¢sa_add_calendar(3); Adds a calendar to the calendar service
« csa_add_entry(3): Adds an entry to the specified calendar

April 1996 Hewlett-Packard Jonrnal 13

© Copr. 1949-1998 Hewlett-Packard Co.

= csa_call_callbacks(3): Forces the invocation of the callback functions
associated with the specified callback lists

= csa_delete_calendar(3). Deletes a calendar from the calendar service

o gcsa_delete_entry(3): Deletes an entry from a calendar

» csa_free(3): Frees memory allocated by the calendar service

« csa_free_time_search(3): Searches one or more calendars for available
free time

» ¢sa_list_calendar_attributes(3): Lists the names of the calendar attributes
associated with a calendar

= csa_list_calendars{3): Lists the calendars supporied by a calendar service

= csa_list_entries{3): Lists the calendar entries that match all the attribute
search criteria

= csa_list_entry_attributes(3): Lists the names of the entry attributes
associated with the specified entry

= csa_list_entry_sequence(3): Lists the recurring calendar entries that are
associated with a calendar entry

= csa_logoff(3): Terminates a session with a calendar

= csa_logon(3): Logs on to the calendar service and establishes a session
with a calendar

s csa_look_up(3): Looks up calendar information

= csa_query_configuration(3): Determines information about the installed
CSA configuration

* csa_read_calendar_attributes(3): Reads and returns the calendar attribute
values for a calendar

= csa_read_entry_attributes{3): Reads and returns the calendar entry
attribute values for a specified calendar entry

» csa_read_next_reminder(3): Reads the next reminder of the given type in
the specified calendar relative to a given time

= ¢csa_register_callback(3): Registers the callback functions to be invoked
when the specified type of update occurs in the calendar

= csa_restore(3): Restores calendar entries from an archive file

= csa_save(3): Saves calendar entries into an archive file

= ¢csa_unregister_callback(3): Unregisters the specified callback functions

 csa_update_calendar_attributes(3); Updates the calendar attributes
values for a calendar

= csa_update_entry_attributes(3): Updates the calendar entry attributes

= csa_x_process_updates{3); Invokes a calendar application’s calendar
event handler.

ToolTalk Messaging Library (libtt)
ToolTalk Messaging API. This APl provides functions for managing all
aspects of ToolTalk messaging.

= #include <Tt/tt_c.h>
* Tttt_c(5): ToolTalk messaging definitions.

ToolTalk Toolkit APIs. The ToolTalk toolkit APIs are a set of higher-level
interfaces to the ToolTalk messaging APls. The ToolTalk toolkit APIs facil-
itate use of the deskiop message set and the media exchange message
set.

» #include <Tt/tttk.h>

o Ttittk(5): ToolTalk toolkit definitions

= ttdt_Get_Modified(3): Asks if any ToalTalk client has changes pending an
a file

= ttdt_Revert(3): Requests a ToolTalk client to revert a file

« ttdt_Save(3): Requests a ToolTalk client to save a file

o ttdt_close(3): Destroys a ToolTalk communication endpoint

» ttdt_file_event(3): Uses ToolTalk to announce an event about a file

« ttdt_file_join(3): Registers to observe ToolTalk events on a file

= ttdt_file_notice(3): Creates and sends a standard ToolTalk notice about a
file

= ttdt_file_quit(3): Unregisters interest in ToolTalk events about a file

= ttdt_file_request(3): Creates and sends a standard ToolTalk request about
afile

o ttdt_message_accept(3): Accepts a contract to handle a ToolTalk request

» ttdt_open(3): Creates a ToolTalk communication endpoint

» ttdt_sender_imprint_on(3): Acts like a child of the specified tool

= ttdt_session_join{3): Joins a ToolTalk session

» ttdt_session_quit{3); Quits a ToolTalk session

= ttdt_subcontract_manage(3): Manages an outstanding request.

Motif Toolkit Libraries (libXm, libMrm, libUil)

Motif Widget API. The COE Motif Widget API (Xm| consists of the Matif
1.2 widget library (libXm| with enhancements to existing functionality
and bug fixes. The CDE Motif widget APl maintains source compatibility
and binary compatibility with Motif 1.2 applications.

» #include <Xm/XmAll.h>

Motif Resource Manager API. The Motif resource manager APl {Mrm)
creates widgets based on definitions contained in user interface definition
files created by the user interface language (UIL) compiler. The Motif
resource manager interprets the output of the UIL compiler and generates
the appropriate argument lists for widget creation functions.

» #include <Mrm/MrmAppl.h>
= #include <Mrm/MrmDecls.h>
* #include <Mrm/MrmPublic.h>

Motif User Interface Language (UIL) APL. The Motif UIL is & speci-
fication language for describing the initial user interface of a Motif
application.

= #include <uil/Uil.h>

» #include <uil/UilDBDef.h>
* #include <uil/UilSymDef.h>
= #include <uil/UilSymGl.h>

ToolTalk is a trademark or a registered trademark of Sun Microsystems, Inc. in the U.S.A. and
certain other countries:

Motif is trademark of the Open Software Foundation in the U.S.A. and other countries.

14 April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Accessing and Administering
Applications in CDE

Setting up transparent access to applications and resources in a highly
networked environment is made simpler by facilities that enable system
administrators to integrate applications into the CDE desktop

by Anna Ellendman and William R. Yoder

A major purpose of a graphical desktop is to make it easier integrate applications into the desktop’s graphical environ-
for users to browse and run applications and to identify and ment. The information is also relevant for application devel-
manipulate the applications’ data files. Since UNIX™ systems opers, since the administration model and tools for integrat-
are generally highly networked, it is desirable that a desktop ing existing applications are also used to provide basic

also provide network transparency—the ability to launch deskiop integration for new applications.

applications and supply data to them without worrying

about where in the network the applications and data are User Model for Applications

located. CDE makes it easier for users to access and run applications

by providing:

* A way to represent an application as an icon. The user can
start an application by double-clicking the icon. These icons
are called application icons.

« A special container for application icons. This container is
called the application manager.

This article describes how users locate and launch applica- = A way to specify the unique appearance and behavior for

tions from the CDE desktop and how system administrators icons representing an application’s data files.

Wherever possible, these ease-of-use features should not be
provided at the expense of system administrators. There
should be a standard procedure for incorporating preexisting
applications into the desktop, and the desktop should provide
tools for performing these procedures.

L A_ppIiEatEm Manager {|F
| File Selected View Help

E

BestSpreadSheet BestTextEditor

=

Desktop_Apps eskt op_Tools

Uil ol

EasyAccounting Information

| =

System_Admin

9 Item(s) 2 Hidden

- —— e —— — - — : Fig. 1. CDE application manager

Applil':minn window and the front panel icon
Manager lcon for opening the window,

April 1996 Hewlett-Packard Journs
© Copr. 1949-1998 Hewlett-Packard Co. April 1996 Hewlett-Packard Journal - 15

Application Manager and Application Icons. The application
manager is a single container for all the applications avail-
able to the user and is opened by clicking a control in the
CDE front panel (see Fig. 1). Each item in the top level of
the application manager is a directory containing one or
more related applications. These directories are called
applicalion groups.

By convention, an application group contains, for each
application in the group, the application icon that starts the
application, plus other files related to the application such
as sample data files, templates, and online information (see
Fig. 2). The system administrator can organize the applica-
tion groups into deeper hierarchies.

Since the application groups are displayed together in a
single window, they appear to occupy the same file system
location. This makes applications easy to find and launch.
The fact that this is not the case, and that the application
groups are actually located in a variety of local and remote
locations, is hidden from users.

From the end user’s point of view, the application manager
window is owned by the system. The user does not have the
ability to create or move icons in the window directly.

Data Files and File Manager. Like the application manager, the

[Sile manager represents objects as icons. Frequently, these

objects are the application data files. The desktop provides
a way to specify the behavior of various types of data files.
This makes it possible for users to start an application from
the file manager by double-clicking one of its data files, by
dropping a data file on the application icon, or by choosing
Open from the data file’s pop-up menu (see Fig. 3).

Application Manager Administration

The application manager is designed to meet several impor-
tant requirements:

It must appear to be a single location into which applications
are gathered from a variety of locations.

It must be customizable on a personal (per-user) or system-
wide (per-workstation) basis.

[—] File Manager - anna e
File Selected View Help File Selected View
CE =
/ home anna AL S
/hame/anna =
| o Xterm Rlogin
B B
.. = 2
..(go up} memo Vel
J il Rwd Capture
: river.au screen.xwd “screen, xwd

Hwd Uisplay
screen.xwid

Change Permissions...
Put in Workspace

21 Items 17 Hidden Put in Trash

Help
Open

(a) Print (b)

45 ltems 1 Hidden

Application Manager — Desktop_Tools

_|' ~"iAp_pIication Manager = BestSpreadSheel?_- I__J:I

File Selected View

Help [

templates
Icon to Start Appli- =— Sample Data File
3;‘ cation {Action lcon)
fait I
BestSpreadSheet BSS.mt
| lam
Help.sdl README

7 Item(s) 1 Hidden

Fig. 2. Contents of an application group for a single application.

It must be network capable, that is, it must be able to gather
applications located on other systems,

It must be dynamic so that its contents can be changed
when applications are added to or removed from the local
system or application servers in the network.

To meet these requirements, the CDE designers chose to

make the application manager a file manager view of a spe-
cial temporary directory. The application manager directory
is created automatically when the user logs in at the location:

/var/dt /appconfig/appmanager/login-display

For example, when user anna logs into CDE at display
hpevxpaed, the CDE login manager creates the directory:

/var/dt/appconfig/appmanager/anna-hpcvxpae-0

| File Manager - anna
E“E §Blected \i‘lew

i-i8-5

Help |

! home anna
/home/anna
= B
..lgo up) memo
-------- river.au screan.xwd

21 ltems 17 Hidden

Fig. 3. Running an application using (a) a data file’s pop-up menu in the file manager or (b) drag and drop between the file manager

and the application manager.

16 April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The directory is both user and display dependent. Each user
gets an application manager directory, and a user logging
into more than one system obtains a separate application
manager directory on each system. This is necessary o
allow the application manager to be customized on both a
per-user and a per-system basis.

The application manager directory persists for the length of
the user's CDE session and is recreated each time the user
logs in. The temporary nature of the application manager is
possible because none of its contents are actually located in
its file system location.

Gathering Applications. After the login manager creates the
application manager directory, it must gather application
groups into the directory. The application groups are gathered
by means of symbolic links, and the links are made from
multiple locations. This is what makes it possible for the
application manager to display application groups located in
a variety of directories, including personal. system-wide,
and remote locations.

The symbolic links that gather the application groups are
created by the CDE utility dtappgather, which is automatically
run by the login manager each time the user logs in. For
example, the desktop provides a built-in application group:

/usr/dt/appconfig/appmanager/C/Desktop Apps
Af login time, dtappgather creates the following symbolic link:

/var/dt/appconfig/appmanager/anna-hpcvxpae-0/
Desktop Apps->
/usr/dt/appconfig/appmanager/C/Desktop Apps

The result is that the application manager contains the
Desktop_Apps application group (see Fig. 4).

Application Search Path. To gather application groups from
various locations, dtappgather requires a list of locations con-
taining the application groups to be gathered. This list of
locations is called the desktop's application search path.

q'J Application Manager | A=

| File Selected View Help

E]

el

i BestSpreadSheet BestTextEditor

Jusr/dt/appconfig/appmanager/C/Deskiop_Apps
Desktop_Apps
- —
(1

EasyAccounting Information
et [
=] |
System_Admin -

| 9 item(s) 2 Hidden =i

Fig. 4. The Deskop_Apps application group is a built-in group

provided by the desktop.

The default application search path consists of three local
locations:

Personal $HOME/.dt /appconfig/appmanager
System-wide /etc/dt/appconfig/appmanager/<S$SLANG
Built-in /fusr/dt/appconfig/appmanager/<$SLANG>

The built-in location is used for factory-installed application
groups. System administrators can add application groups to
the system-wide location to make those applications available
to all users logging into the system. The personal location
allows a user to add application groups that are available
only to that single user.

System administrators or users may need to add other loca-
tions to the application search path. CDE provides two envi-
ronment variables that modify the application search path:
the system-wide variable DTSPSYSAPPHOSTS and the personal
variable DTSPUSERAPPHOSTS.

The entire application search path, consisting of the default
locations plus the additional locations specified by the envi-
ronment variables, is created by a CDE uatility named
disearchpath. The login manager runs the dtsearchpath utility
just before it runs dtappgather. The dtsearchpath utility uses a
set of rules to define how the total value of the search path
is assembled. Directories listed in the personal environment
variable have precedence over the default personal location,
and personal locations have precedence over system-wide
locations.

The most common reason for modifying the application
search path is to add remote locations on application servers
so that those remote applications can be easily started by
users. The application search path variables accept a special
syntax that makes it easy to add application servers. For
example, VARIABLE=hostname: is expanded by dtappgather
(assuming NFS mounts) to the system-wide location on
hostname:

/net/<hostname>/etc/dt/appconfig/appmanager/
<SLANG>

For example, if DTSPSYSAPPHOSTS specifies two remote
systems:

DTSPSYSAPPHOSTS=SystemA:, SystemB:

and these systems contain the following application groups:

SystemA /etc/dt/appconfig/appmanager/C/
EasyAccounting

SystemB /etc/dt/appconfig/appmanager/C/
BestSpreadSheet

then dtappgather creates the following symbolic links:

/var/dt/appconfig/appmanager/anna-

hpcvxpae-0/EasyAccounting -»>

/net/SystemA/etc/dt/appconfig/appmanager/C/
EasyAccounting

/var/dt/appconfig/appmanager/anna-

hpcvxpae-0/BestSpreadSheet -»>

/net/SystemB/etc/dt/appconfig/appmanager/C/
BestSpreadSheet.

April 1996 Hewlet-Packard Journal - 17

© Copr. 1949-1998 Hewlett-Packard Co.

i

Application Manager | = |

‘Eile §Blected View

Help

[net/SystemB/etc/dt/appconfig/appmanager/C/BestSpreadSheet E
[
Bests

[usr/dt/appconfig/appmanager/C/Deskiop_Apps
|

ﬁ

[net/SystemA/etc/diappconfig/appmanager/C/EasyAccounting

[usr/d/appconfig/appmanager/C/System_Admin

 S—

preadfheet BestTextEditor

EasyAccounting

System_Admin

|

|

[etc/dt/appconfig/appmanager/C/BestTextEditor

ﬁ (usr/dt/appconfig/appmanager/C/Desktop_Tools

Desktop_Tools I
|

f“sr-’Wﬂlecunﬁwnppman_lagat C/information

Information

| |
- SHOME/.dt/appconfig/appmanager/Telephone
Telephone

9 Item(s) 2 Hidden

Fig. 5. The application manager gathers application groups on the application search path.

If the system uses a mount point other than /net, the system
administrator can set a desktop environment variable
DTMOUNTPOINT to specify the mount point location.

Fig. 5 shows an application manager containing application
groups gathered from personal, system-wide, and built-in
locations and from two application servers.

Application Infrastructure

The ability to represent applications and data files as icons
that have meaningful behavior and appearance on the desk-
top is made possible by an infrastructure of desktop con-
structs and configuration files. These constructs are actions,
data types, and icon image files.

Actions. The desktop uses actions to create a relationship
between an icon in the application manager (or file manager)
and a command. Actions are the constructs that allow you
to create application icons (icons that the user can double-
click to run applications).

For example, consider the following definition for an action
named Xwud:

ACTION Xwud

{
LABEL Xwd Display
ICON XwudIcon
ARG TYPE XWD
WINDOW_TYPE NO_STDIO
DESCRIPTION Displays an X Windows screen)
file

EXEC STRING xwud -in %Arg 1"XWD file:"%
}

The desktop assembles and maintains a database of action
definitions, including built-in actions and others created by
users and system administrators, Once an action is defined
in the actions database, it can be visually represented in the
application manager or file manager as an icon. This icon is

18 April 1996 Hewlett-Packard Journal

called an application icon because the underlying action
usually is written to launch an application. Since icons in the
file manager and the application manager represent files,
creating an application icon involves creating a file that is
related to the action. The relationship is provided by giving
the file the same name as the action (in this case, Xwud), and
by making the file executable. The real content of the file is
irrelevant. Fig. 6 shows an application icon for the Xwud
action,

The ICON and LABEL fields in the Xwud action definition de-
scribe the appearance—the icon image used and the text
label for that icon. The DESCRIPTION and EXEC_STRING fields
describe the icon’s behavior. The DESCRIPTION field contains
the text displayed in the CDE help viewer when the user
selects the icon and requests help (F1). The EXEC_STRING
specifies the command that is run when the user double-
clicks the icon. For the Xwud action, the command is:

xwud -in <file>
where file is the file argument.
|~ Application Manager - Desktop_Tools | | |
| File Selected View

Help

E-

)

X Server Information

=2

Xterm
= L}
| Xterm Remote Xterm Rlogin
|
| ﬁ‘[=]=—Icon
Xwd Capture Kwd_Display=— Label

| 45 tem(s) 1 Hidden

Fig. 6. [con for the Xwud action

© Copr. 1949-1998 Hewlett-Packard Co.

The EXEC_STRING field uses a special syntax to represent file
arguments. For example, the file argument in the Xwud
action is represented as:

%Arg 1"XWD file:"%

This syntax specifies how the application icon treats data
files. If the user drops a data file on the icon labeled
Xwd_Display. its path name, supplied by the desktop drag and
drop infrastructure, is used as the argument. If the user
double-clicks the icon, the action prompts for that path by
displaying a dialog box with a text field labeled XWD file:,
which indicates that user must enter the file name of an

X Window dump (.xwd) file.

The ARG_TYPE field limits the action to a particular type of
data. If the user tries to use a different type of file, either by
dropping the file on the action icon or responding to the
prompt, the action returns an error dialog box.

Data Types. Files and directories are represented in the CDE
file manager as icons that users can manipulate. There is
little advantage to this iconic representation unless the
desktop can supply meaningful appearance and behavior to
these icons. Data typing provides this capability.

For example, directories appear in the file manager as folder-
like icons, and users open a view of a directory by double-
clicking its icon. That behavior, which is unique to directories,
is provided by data typing.

The most common use for data typing is to provide a con-
nection between data files and their applications. If an appli-
cation reads and writes a special type of data, it is useful to
create a data type for the data files. This data type might
specify that the data files use a special icon image and that
double-clicking a data file runs the application and loads the
data file,

A data type definition has two parts:

DATA_CRITERIA: specifies the criteria used to assign a file to

that data type.
DATA_ATTRIBUTES: defines a file's appearance and behavior.

For example, here is a data type definition for X Window
dump files (the data files for the Xwud action):

DATA CRITERIA XWD1

{
DATA ATTRIBUTES NAME XWD
MODE £
NAME PATTERN * xwd

¥

DATA ATTRIBUTES XWD

{

ACTIONS Open, Print

ICON Dtxwd

DESCRIPTION This file contains \
an XWD graphic image.
}

The criteria definition specifies that the data type applies to
files (MODE f) whose names (NAME_PATTERN) end with the
suffix xwd. (CDE also supports content-based data typing.)

The ACTIONS field in the attributes definition describes the
file's behavior. The first entry (in this case, Open) describes
the file’s double-click behavior. All the entries in the ACTIONS
list also appear in the file manager Selected menu (see Fig. 7).

In the desktop, Open and Print are general action names that
are used with many data types. For xwd files, the Open action
is a synonym for the Xwud action, and the desktop must pro-
vide a connection between them. This connection is made
through another action definition in which an action named
Open is mapped to the Xwud action for the xwd data type:

ACTION Open
r

TYPE

MAP
MAP ACTION Xwud
DATA TYPE XWD
}

When a user selects a data file in the file manager and runs
the Open action on it (by double-clicking the file or by
choosing Open from the Selected menu), the desktop searches
for the appropriate Open action for that data type. Since this
action is mapped to the Xwud action, the desktop then runs
the Xwud action, and passes the selected data file to it as the
file argument.

The Print action is handled similarly to Open. The following
declaration is a set of actions for printing xwd files:

ACTION Print

{
TYPE MAP
MAP ACTION XWD_ Print
DATA_TYPE XWD

}

ACTION XWD _Print
{
ARG TYPE XWD
EXEC_STRING /bin/sh -c ‘cat %(File)Arg 1% N
| xwd2sb|pcltrans -8 -R -e2 > \
$HOME/temp.pcl; A\
dtaction PrintRaw S$HOME/temp.pcl; \
rm $HOME/temp.pcl’

H—
J File Selected View
H--N

/ home anna

~ File Manager — anna

B =

..(go up) testdest testsource

|
B i i |
memo river.au sc screensewd

Change Permissions... |

| 24 Items 18 Hidden Jeutin Workspace

Put in Trash
Help

Open
Print

Fig. 7. An xwd data file in the file manager, with Open and Print actions
in its pop-up meny

April 1996 Hewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

The XWD_Print action illustrates two additional features of
actions:

An action can invoke a shell (bin/sh in this case)

An action can invoke another action. This is done using the
dtaction command. The XWD_Print command changes the xwd
file to a PCL file and then invokes a built-in action named
PrintRaw which prints PCL files.

The article on page 24 describes the different types of data
structures and databases associated with CDE action and
data types.

lcon Image Files. Since the deskiop makes heavy use of icons
to represent files, directories, and applications, icon image
files are an important part of the suite of desktop configura-
tion files.

A particular object on the desktop generally requires several
icons. For example, the file manager has viewing prefer-
ences for representing files as large icons (32 by 32 pixels)
or small icons (16 by 16 pixels). Furthermore, the desktop
uses pixmaps for color displays and bitmaps for mono-
chrome displays. To differentiate icons by size and type (pix-
map or bitmap), icon files use the naming convention base-
name.size.type. For example, a large pixmap for the Xwud
action might be named Xwud.|. pm.

The icon image used by an object is specified in its action or
data type definitions by the ICON field (see examples above),
which specifies the icon image to use in the file manager and
the application manager. The ICON field specifies only the
base name, and the desktop adds the appropriate file name
extensions, depending on the file manager view setting and
type of display. Furthermore, the ICON field does not specify
a path. The desktop uses search paths to locate icons and
other parts of the desktop infrastructure.

Locating Actions and Icons. As with application groups, the
desktop uses search paths to locate action and data type
definitions and icon files. Each application search path loca-
tion has a set of corresponding locations for actions, data
tyvpes, and icons. For example, Fig. 8 shows the default
system-wide search path locations. The types directory for
actions and data types and the icons directory for icon image
files are analogous to the appmanager directory for the appli-
cation groups.

The help directory is used for application help files created
using the CDE Help Developer’s Kit. CDE help is described
on page 38.

[etc/dt fappconfig

[= | |
appmanager types icons help
| !
e —_— —d ! — __]
C SLANG C SLANG C SLANG C SLANG
| | |
Application Action and Data Pixmap and Help Data
Groups Type Definition Bitmap Image Files
Files Files

Fig. 8. Directory structure of system-wide desktop configuration
files.

20 April 1996 Hewlett-Packard Journal

The search paths for action, data type, icon, and help files
are automatically updated when the application search path
is modified. This ensures that the desktop will find all the
desktop configuration files needed by the application.

For example, if SystemA: is added to the application search
path, the locations:

/net/SystemA/etc/dt/appconfig/types/<$LANG>
/net/Systemh/etc/dt/appconfig/icons/<SLANG>
/net/Systemi/etc/dt/appconfig/help/<SLANG>

are automatically added to the action/data type, icon, and
help search paths.

Create Action

The syntax of action and data-type definitions provides a
great deal of flexibility in specifying desktop behavior. While
this makes the definitions very powerful, it also makes the
syntax somewhat complex.

The desktop includes an application, ereate action, that
allows users and system administrators to create typical
actions and data types without having to learn the syntax
rules for the definitions. Create action provides fill-in-the-
blank text fields for supplying various parts of the action
and data type definitions and provides a way to browse and
choose from available icons (see Fig. 9). Furthermore,
create action allows the user to enter the command to be
executed (EXEC_STRING) using shell language for file argu-
ments (e.g., $n rather than %{File}Arg_n%).

Create action is optimized for creating actions and data types
for applications. It creaies an action to launch the application
and one or more data types for the application. For each data
type, create action produces an Open command that runs the
application. Optionally, it can also create a Print action.

Application Integration

An application can be integrated into the desktop by placing
its desktop configuration files into the locations specified by
the desktop search paths shown in Fig. 8. However, this can
make administration difficult because the files are scattered
among numerous directories, each of which contains files
for many applications.

It is usually preferable to gather all the configuration files
for an application in one location, called the application root
(app_root). Applications generally are installed this way. For
example, the files for an audio application might be installed
under /opt/audio. However, since the directories under the
app_root are not on the desktop search paths, the application
groups, actions, data types, and icons would not be found
unless the search paths were modified.

Application Registration. CDE provides the utility dtappintegrate
which lets system administrators install desktop-related
application files under an app_root directory without modify-
ing the deskiop search paths. The function of dtappintegrate is
to create links between the desktop files in the app_root loca-
tion and the system-wide search path locations. The process
of creating these links with dtappintegrate is called application
registration.

© Copr. 1949-1998 Hewlett-Packard Co.

Create Action

Dropable Datatypes: Oy Sbaove List

All atatypes

Add Datatype

a4
e ;,"
fertapraanchest appoiZation y Oatabine e
y'l‘
/ Firid St
Wiridow Type: Graphicai [}~ Window) == i S8
Basi = ﬂ Edit lcon...
When Action Opens, A s=rs for: Commands
I Cormimand ta Openi this Datatype: i
|BSSheat
Uiatatypes That Lze This Action:
= Carnrnarid to Print this Datatype:
bl BSSheetPrint ~file $1 ‘
Edit...
o Apply Cancel Help | Fig. 9. Create action main window
|
|

The collection of desktop configuration files beneath the
app_root directory is called the registration package. Fig. 10
illustrates a registration package for an application named
BestSpreadSheet.

The registration package contains the desktop configuration
files needed by the application, including the application
group, actions, data types, icons, and help files. The registra-
tion package uses the same directory organization as the
search paths (compare Fig. 10 with Fig. 8).

and dialog box.

Once the registration package has been created, the regis-
tration is accomplished by running the dtappintegrate utility,
which creates the symbolic links shown in Fig. 11.

The system administrator can also use dtappintegrate to break
the symbolic links for an application’s desktop configuration
files. This is necessary to move an application to a different
application server. In addition, the system administrator can
also use dtappintegrate to move the application configuration
registry to a different location on the application server to

app_root
| — e e |
|
hin appdefaults l
Registration Package d[‘l
appeontig
|
| I i |
appmanager types icons help
Tl—l | [
C SLANG C SLANG (2 SLANG c SLANG
| | ! [
BestSpreadSheet BSSheetdt BSSheetm.pm BSSheet.sdl
o BSSheet.t.pm [
'_'~’ e : BSSData.m.pm wiiiice
BSShest README ote, “————— E8Daa L0 |
Action Action and Data e BSS1.if
lcon Type Definition . BSZ. it
= = Hles - Basa i
Application Group Pixmap and
Bitmap Image Hel "D o
Files Fil:: L Fig. 10. Example of a registration

package.

April 1996 Hewlett-Packard Journal 21

© Copr. 1949-1998 Hewlett-Packard Co.

Application Servers and Clients in CDE

CDE operates in a networked, client/server environment. This article
describes the services and configuration files provided in CDE to support
client/server remote execution.

CDE Networking Services
The CDE networking model includes four primary services:

» Desktop display services. These services consist of the X171 display
server, keyboard and pointing devices, and limited auxiliary processing,
such as window management and audio services.

« Session services. Session servers provide login and authentication,
session management, and deskiop services such as file manager, style
manager, and action invacation,

= Application services. Application servers provide both terminal and
GUI-based applications. When an application is located and running on
a system other than the session server, it is said to be a remote applica-
tion, and the system running the application is the application server.

= File services. File servers store the data that applications produce and
manipulate.

The primary way that application servers, file servers, and session serv-
ers share data in CDE 1.0 is through the remote file system (RFS) mecha-
nisms, as offered by the DCE Distributed File Service (DFS),' the Andrew
File System (AFS), and the Network File System (NFS).

There may be other system services available in the distributed desktop
environment, such as font, printing, and fax servers.

Remote Application Models
The desktop can access a remote application by RFS-based execution or
by remote application execution.

» RFS-based execution. In this configuration, the application binaries
reside on the remote system but are run on the session server. From the
session server's point of view, the remate system is simply a big disk
attached to the workstation by means of RFS. The remote system is not
a true COE application server because it is not providing application
execution services.

= Remote application execution. In this configuration, the application
runs on the application server and displays its output on the user’s desk-
top display. This configuration requires the linkages shown in Fig. 1. An
advantage of this configuration is that the application server can be a
different machine type or operating system version than the sessian
server. This is common in today's heterogeneous environments.

CDE provides a small subprocess control daesmon (dtsped) that is
installed on application servers. The subprocess control daemon receives
requests from CDE components {such as the application manager) ta
launch processes on the application server on behalf of the user.

xhost/xauth

i Application
Server

Desktop

Display

Binaries Execute Here J

Session
Server

RFS Mounts

Fig. 1. Linkages for remote application execution.

Configuring a CDE Application Server

Typically, a CDE application server contains the application binaries,
application configuration files (such as app-defaults and message cata-
logs), and the application's COE desktop configuration files (application
group, action and data type definition files, icon image files, and help
files). Locating all the application’s configuration files on one system
makes the application easier to install and administer. During or after
installation, the dtappintegrate utility is run o link the configuration files
to a location where clients expect to find them. In addition, the subpro-
cess control daemon must be configured, and clients must have permis-
sion to access files by RFS.

Configuring a CDE Application Client

A system accessing a COE application server must add the application
server to its application search path. This is done by setting a system-
wide or personal environment variable. For example, the following line in
the file /usr/dt/config/Xsession.d/0010.dtpaths adds an application server
named SystemA to the client’s application search path: DTSPSYSAP-
PHOSTS=SystemA..

In addition, the client must have RFS access to the application server
Furthermore, a client must be configured to provide X authorization for
the application server to access the client’s display. The easiest way to
set up authorization is to configure the user’s home directory so that it is
available to all application servers. This configuration is called a net-
worked home directory.

Reference

1, M. Kong, "DCE: An Environment for Secure Client/Server Computing,” Hewlett-
Packard Journal, Vol 46, no. 8, December 1395, pp. 622

control which users can access an application from the
desktop.

Regathering Applications. Applications registered by dtappinte-
grate do not become available from the application manager
until the utility that gathers applications from search path
locations, dtappgather, is rerun. Since dtappgather runs automat-
ically at login time, newly registered applications become
available when the user logs out and back in again. To save
users the inconvenience of logging out, the deskiop provides
an action named Reload Applications. The user can run this

22 April 1996 Hewlett-Packard Journal

action by opening the application manager and double-
clicking the Reload Applications icon.

Conclusion

CDE provides the ability to represent applications and their
data files as icons, and supplies a single container for appli-
cations called the application manager. Applications are
gathered into the application manager from multiple loca-
tions specified by the application search path. Remote loca-
tions can be added to the application search path so that

© Copr. 1949-1998 Hewlett-Packard Co.

app_root
bin appdefaults
dt
appconfig
appmanager types icons help
Registration
Package c SLANG H SLANG C SLANG c SLANG
BestSpreadSheet BSSheet.dt BSSheetm.pm BSSheetsdl
. BSSheetLpm
— ——sasw . BSSData.m.pm :
| L] BSSDatat. Graphics
BSSheet README s)
g BSS1.tif
BBS2.1tif
C/D @ BBSa.tif
/ 4 s
[etc/dt fappconfig
|' T
. appmanager types icons help
System-Wide =
Location —_— — —_— e (1) = Symholic Links
C SLANG € SLANG C SLANG C SLANG

Fig. 11. Links created by dtappintegrate.

applications on networked application servers can be infe-
grated seamlessly into the application manager. The infra-
structure required to represent applications as icons consists
of actions, data types, and icon image files. These files can
be placed into a registration package for the application and
then registered onto the desktop using the dtappintegrate utility.

Acknowledgments

Thanks to Jay Lundell, Bob Miller, and Brian Cripe for con-
tributing to the design of the application administration
model for CDE and to Julia Blackmore for her great atten-
tion 1o detail in reviewing the documentation. Special thanks

© Copr. 1949-1998 Hewlett-Packard Co.

to John Bertani for his work on the search path utilities and
to Ron Voll for his work on actions. Finally, we were fortu-
nate to have the opportunity to work with Troy Cline and
Sandy Amin at [BM as they implemented dtappintegrate and
the file manager and with Rich McAllister of SunSoft who
contributed the CDE file mapping routines.

UNIX i5 a registered trademark in the United States and other countries, licensed exclusively

through X/0Open™ Company Limited

tré ark and the X device is & trademark of X/Open Company Limited

XfOpen isare
in the UK and oth

April 1096 Hewlett-Packard Journal 23

The CDE Action and Data Typing

Services

Several different types of databases and their associated APIs are
involved in determining the look and behavior of icons presented in the

Common Desktop Environment.

by Arthur F. Barstow

Two fundamental requirements of a computerized desktop
system are a unified view of a user’s data and a consistent
access method to the data. This article describes how
Hewleti-Packard’s Common Desktop Environment (CDE)
meets these requirements through the use of its data typing
and action services. The data typing service defines attributes
of a data type such as its appearance (icon) and behavior
(action). The aciion service provides mechanisms for linking
a data type's behavior to its associated application or execu-
tion command,

The data typing service and the action service both use data-
bases. The data typing service database contains data criteria
and data atiribute records, and the action service database
contains action records. The term database in the context of
data typing and action databases refers to records stored in
flat, ASCII files and not in a generalized database service.

Applications wanting to use these CDE services must first
load the databases into the application’s memory. Once
loaded, application programming interfaces (APIs) described
in this article can be used {o access the database. CDE only
provides APIs to retrieve data from the databases.

Each database record consists of the record type name, the
name of the record, and one or more attributes (also called
fields). Each attribute has a name and a value and each
attribute must begin on a separate line. Fig. 1 shows the
basic elements of a database record.

Although CDE defines numerous data types and actions in
its default databases, these databases can be augmented
with system-wide and user-defined records. User-defined
definitions have the highest precedence, followed by sys-
temwide definitions. The defanlt databases have the lowest
precedence.

Record Type Name

————————— Record Name
' '

DATA CRITERIA ImageViewl

{
DATA ATTRIEUTE NAME Image
MODE few Attributes
NAME PATTERN *.gif
3

Fig. 1. The basic structure of records contained in the CDE data
typing and action databases.

24 April 1996 Hewlett-Packard Journal

L]

Fig. 2 shows an overview of the CDE data typing and action
services and and their interrelationships. These data struc-
tures and their relationships are described in this article.

The Data Typing Service

As mentioned above, the data typing service contains data
criteria and data attribute records. Data criteria records
contain rules for recognizing a data type. The rules may
specify a data type’s file name extension or file permissions.
Data attribute records are used to define a data type’s
appearance and behavior such as a type’s icon and associated
applications. A data type can be defined for a file or a buffer
of memaory.

Data Criteria Records. Data criteria records define the rules
for recognizing or identifying a data type by using the
following criteria:

File name (including shell pattern matching symbols)
Contents (may be a file or memory buffer)

» File permissions and file type (a file type may be a directory,

symbolic link, ete.).

The following declaration contains three data criteria
records for an image viewer application that can display
files and data in formats such as X11 bitmaps, GIF images,
and X11 pixmaps.

DATA_CRITERIA ImageViewl

{
DATA ATTRIBUTE _NAME Image
MODE faw
NAME PATTERN . gif
}

DATA_CRITERIA ImageView2
{

DATA ATTRIBUTE NAME Image
PATH_PATTERN */bitmaps/*.bm

DATA CRITERIA ImageView3
{

DATA ATTRIBUTE NAME Image

CONTENT 0 string #define
}

All of these records refer to the data type Image. The Image-
View1 record will match any writable file with a file name
extension of .gif. The ImageView?2 record will match any file

© Copr. 1949-1998 Hewlett-Packard Co.

Data Criteria Record

» Defines Rules for Recogrizing

a Data Type
Data Typing « Recognition Criteria
Service File Name

— File Extensions
— Permissions
» Link:
— Data Annibute Name

Message Actions Command Actions

» Command Line to
Execute

+ Host Machine on
which to Execute

* Message-Based

Actions {Send and
Receive Protocol)

Data Annbute Record

+ Delines Appearance
{icons) and Behavior
{Actions}

Map Action

» Name of Data
Attribute Record
+ Name of Action to
Be Indirectly
Invoked (e.g., Print) . -
Fig. 2. An overview of the rela-
tionships between data typing

Action Service

ending in .bm, but the file must be in a directory named bit-
maps. The ImageView3 record will match any file containing
the siring #define at the beginning of the file. Fig. 3 contains a
pseudo-BNF (Backus-Nauer form) for a data eriteria record.

Data Attribute Records. Data attribute records define a data
type’s name as well as other attributes of the data type such
as its icon and application binding. The data type name is
the same as the data attribute record name. The following
declaration shows the data attribute record for the Image
data attribute defined in the data criteria records above.

A data attribute record can be associated with an unlimited
number of data criteria records.

DATA ATTRIBUTE Image

{

ACTIONS Open, Print

ICON imagedata

MIME TYPE image/jpeg

PROPERTIES visible

MEDIA Image Data

DESCRIPTION Data type for the

ImageViewer application

}

This data type's icon is imagedata. Applications such as the
CDE file manager will use this icon to represent image files.
For example, if the file manager finds a file named kite.gif, the
file will be represented with the imagedata icon. This data
type also defines attributes that may be of interest to other
data-typing-aware applications, For example, a mailer appli-
cation may use the value of the MIME_TYPE attribute to decide
how an attachment should be viewed,

Data attribute records are the only record type that can con-
tain application-specific fields—they are not limited to a
fixed set of field names. Fig. 4 shows a pseudo-BNF for data
attribute records.

Data Typing Service APIs. Before the data typing APIs can be
used, an application must first load the databases by calling
the DiDbLoad function. After this, an application should regis-
ter a database modification callback function using the
DtDbReloadNotify funetion. This callback will be invoked when
a user invokes the action ReloadActions to notify data-typing-
aware applications that a data type or action record has
been added, modified, or deleted. If an application fails to

© Copr. 1949-1998 Hewlett-Packard Co.

and action service data strucures

register the modification callback, it will not be notified of a
database change, resulting in the application having an out-

dated database in memory and possibly appearing and behav-
ing differently than applications that received the notification.

The first consideration in choosing the API to retrieve infor-
mation from the data type database is whether the applica-
tion already has a data type name for an object or if the ob-
Ject ol interest is a file or a pointer to a memory buffer. For
example, if an application wants to determine the icon asso-
ciated with the file tanagergif, it would first make the following
call:

char *data type name = DtDtsFileToDataType
(“tanager.gif")

to determine the data type name of the file, To retrieve the
icon for this data tvpe, the application would then call:

char *icon_name =
DtDtsdatatypeToAttributeValue
(data_type name,
*ICONY;
NULL)

For the data criteria and data attribute records given above,
these two sequences of calls would result in setting
icon_name to imagedata.

The next consideration is whether the desired information is
a specific attribute of a data type or a (NULL-terminated) list
of all attribute name and value pairs for a data type. The
following function retrieves all of the attributes for a memory
buffer:

DtDtsAttribute **attributes =
DeDtsBufferToAttributeList
{(void *buffer,
int buffer length,
NULL)

For performance reasons, if an application needs more than
one attribute for a data type, the APIs to retrieve all aftributes
with a single call should be used,

The Action Service

In CDE, the action service provides the infrastructure for
consistent data access through polymorphic action naming.

April 1906 Hewlett-Packard Jowmal 25

DataCriteriaDefn ::= ‘DATA CRITERTA’ blanks record name
!{r

data criteria defn
r};

data criteria defn ::= (

'PATH PATTERN' blanks pattern datas newline
| 'NAME PATTERN‘ blanks pattern _datas newline
| 'LINK PATH' blanks pattern datas newline
| ‘'LINK NAME' blanks pattern datas newline
| ‘CONTENT' blanks content fields newline
| 'MODE’ blanks mode specs newline
| *DATA ATTRIBUTES NAME' blanks name newline

)

pattern datas :1:= pattern data [('&" | '|’) pattern datas]
pattern data -3 [*1*] pattern
pattern ::= a shell pattern matching expression, as
defined in sh(1)
mode specs 1:= mode _spec [('&" | '|’) mode specs]
mode_spec st
type spec [permission_spec]
| type spec ('&' | '|') permission spec
i
type spec t:= ["1'] type char {type char}
type char gim: (g@r | el | AER) egy | EpE) epe)
permission spec t:1= [*1'] permission char {permission char}
permission char free | et |ty

content_fields t1:= content field [('&' | *|') content fields]
content field 1= |
[*1*] offset blanks ‘string’ blanks string
[*1*] offset blanks ‘byte' blanks data wvalues
[1"] offset blanks ‘short’ blanks data_walues
[t'] offset blanks ‘long’ blanks data_walues
[*1"] offset blanks ‘filename’ blanks string
)
offset ::= an ungigned decimal integer
data values = data value [blanks data values]
data wvalue

"

:= an unsigned integer: decimal, octal (leading
0) or hexadecimal (leading 0Ox or 0X)
name 1:= ("A-2" | "a-z") [name_char]
name char pe= { “R-Z* | “a-gr | MQ-9n | w3
string ::= a character string, not including <newline> 1 =
newline = 7\n’ Fig. 3. The pseudo-BNF for a data
blanks ::= one or more <blank»s (epaces and/or tabs) eriteria record.

Desktop components, such as the CDE file manager and the The following action types are provided in the action

CDE mailer, use the action service to start an application service:

with a user’s data. When a user opens a data file in the file » Map actions, which provide consistent action naming
manager, the action service opens the application associated * Command actions, which encapsulate command lines

with the data type. For example, when a mail folder is = Message actions, which use the CDE message service to
dropped on the mail control in the CDE front panel, the encapsulate a request or notification message.
action service is used to open a mail instance with the
dropped folder.
DataAttributesDefn ::= 'DATA_ATTRIBUTES' blanks record name
. { ’

data attributes defn
l}r

data_attributes defn ::= |
‘DESCRIPTION’' blanks string newline
| *ICON' blanks string newline
I *INSTANCE ICON‘ blanks string newline
| *‘PROPERTIES' blanks string {‘,' string} newline
| ‘ACTIONS’ blanks name {’,' name} newline
| 'NAME TEMPLATE' blanks string newline
| 'IS_EXECUTABLE' blanks string newline
| ‘MOVE_TO ACTION® blanks string newline
| *COPY_TO ACTION’ blanks string newline
I ‘LINK TO ACTION' blanks string newline
| *IS8 TEXT' blanks string newline
| ‘MEDIA' blanks string newline
| ‘MIME TYPE' blanks string newline
| ‘X400_TYPE’ blanks string newline
| unique string blanks string newline
| *#* string newline

)

string % a character string, not including <newline>

newline s *An”

unigue string t:= a uniquely named string for implementation " ’ e
i enEEoas l*‘uzT 4, The pseudo-BNF for a data

blanks ::= one or more <blank»s (spaces and/or tabs) attribute record.

26 April 1996 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Map Actions. Map actions provide a mechanism to present
action names consistently, regardless of data type. CDE pro-
vides numerous data types and each type has an associated
open action (an open action usually starts the type’s applica-
tion). To get consistent naming, the open action for each
data type is named Open and each data type’s print action is
named Print. This allows applications such as the file manager
to include in a data file’s list of actions the names Open and
Print, regardless of the actual action used to open or print the
data type. The following are examples of map actions.

ACTION Open

{
TYPE MAP
ARG_TYPE Image
MAP ACTION Open_Image
}
ACTION Print
{
TYPE MAP
ARG TYPE Image
MAP ACTION Print Image
}
ACTION Open
{
TYPE MAP
ARG TYPE Gif
MAP ACTION Open Gif

}

The TYPE attribute is MAP for map-type actions. The ARG_TYPE
attribute gives the name of the associated data attributes
record. The MAP_ACTION attribute gives the name of the
action that will be indirectly invoked when the Open action is
invoked.

The first Open and Print definitions are map actions for the
Image data type defined in the Image data attribute record
given above. Data attribute records and action records are
linked by an action’s ARG_TYPE field. If an application invokes
an open action on an Image data type, the resulting action
that gets invoked is Open_Image.

The second Open definition is another open action but for
GIF-type files. When data of this type is opened, the Open_Gif
action is indirectly invoked. Overloading map action names
makes it possible to present the user with consistent action
NAmes.

Command Actions. Command actions are used to encapsulate
arbitrary command lines (e.g., UNIX" commands and shell
scripts) and application execution strings. Command actions,
identified with a TYPE field of COMMAND, have three types of
attributes: invocation, signature, and presentation. The fol-
lowing declaration shows these three types with a command
action definition for the Open_Image action.

ACTION Open_ Image

{

Invocation attributes:

TYPE COMMAND

EXEC_STRING /opt/imageviewer\
bin/imageviewer)
%BArg 1%

WINDOW TYPE NO_STDIO

EXEC HOST %DatabaseHost%, \

mothra.x.org

Presentation attributes:

ICON imageapp
LABEL Image Viewse
DESCRIPTION Invokes the Image-\

viewer application\
for Image data types

Signature attributes:

ARG_TYPE Image
ARG_COUNT -
ARG _CLASS L

}

The invocation attributes define an action’s execution
parameters. The EXEC_STRING attribute contains the action’s
command line. The command line may contain keywords
(e.g., %Arg_1%) which are replaced when an action is invoked.

The WINDOW _TYPE attribute specifies the window support
required by the action. In this example, the image viewer
application creates its own window so its WINDOW_TYPE is
NO_STDI0. Other window types are available for commands
needing terminal emulation support.

The EXEC_HOST attribute is used to specify a list of potential
hosts on which the command could be executed. A keyword
can be used to refer to a host name generically rather than
explicitly naming a host. For example, the keyword %Data-
baseHost% refers to the host on which the action is defined.
When a list of hosts is used, the command will only be exe-
cuted once, on the first host on which the command exists.

The presentation attributes (all are optional) are ICON, LABEL,
and DESCRIPTION. Applications like the file manager use the
ICON attribute to determine the icon to use to represent an
action. The LABEL attribute defines a (potentially localized)
user-visible name for an action, The DESCRIPTION attribute
contains a short description of the action. An application
should display the description as a result of a user’s request
for specific information about an action.

The signature attributes ARG_TYPE, ARG_COUNT and ARG_CLASS
define the arguments accepted by an action. ARG_TYPE speci-
fies a list of the data type names an action accepts. The data
type names refer to data atiribute record names. The ARG_

COUNT attribute specifies the number of arguments an action
accepts. The ARG_CLASS attribute specifies the class of argu-
ments the action accepts, such as files or memory buffers.

When an application invokes an action, it gives the action
service an action name and data arguments. The action ser-
vice first searches the action database for actions matching
the action name. Next the action record that matches the
action name is checked for a match between the action
record’s signature attributes and the data arguments. It a
match is found, the associated action will be invoked, other-
wise an error is returned to the application.

Message Actions. The CDE message service provides the
ability for applications to send and receive messages. The
action service in turn provides the ability to encapsulate a
message. A message-type action is specified by setfing the
TYPE attribute to TT_MSG. The following is an example of a
message-type action.

April 1996 Hewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

ACTION OpenDirectoryView

{
TYPE TT MSG
TT _CLASS TT_REQUEST
TT_SCOPE TT SESSION
TT OPERATION Edit
TT_FILE %Arg 1"Folder to open:”%
TT_ARGO _MODE TT_ INOUT

TT_ARGO VTYPE FILE NAME

DESCRIPTION Request the File\
Manager to open a \
user-specified folder

}

The TT_CLASS attribute specifies if the message is a request
or a notification. A request message requires that the appli-
cation that accepts the message respond to the request.

A notification message may be accepted by more than one
application but no response is required.

The TT_SCOPE attribute specifies the message’s scope. The
scope of a message is typically the user's current CDE ses-
sion. However, a message can also be file-scoped. File scop-
ing is used by applications that are interested in receiving
message events for a specific file. For example, if a file-
scoping-aware editor opens or saves a file, other applications
that are also file-scoped to the same file will be notified of
the operation.

The TT_OPERATION attribute specifies the message’s operation.
The operation field may be application-specific, but may
also specify a generic desktop operation such as Display or
Edit as defined by the message service's media exchange
message set.

The TT_FILE attribute specifies a file name for a message. In
the example above, this field contains a keyword that re-
sults in the user being prompted for the name of a folder to
open, The user’s input will be placed in the message before
it is sent.

A message can have any number of arguments. The argu-
ments can be used to give data to the servicing application
or to specify that data should be returned to the requesting
application. The attributes TT_ARGi_MODE and TT_ARGi_VTYPE
specify the input/output mode and type of a message for the
ith message argument.

Actions, Data Typing, and Drag and Drop. The data typing and
action services can be combined to define the drag and drop
semantics for a data type. The following data attribute defi-
nition defines its default action (the action to be invoked
when data of this type is opened) as OpenAction. This defini-
tion uses the MOVE_TO_ACTION, COPY_TO_ACTION, and LINK_TO_
ACTION attributes to define actions to be invoked when data
of this type is moved, copied, and linked respectively.

28 April 1996 Hewlett-Packard Journal

DATA ATTRIBUTE DragAndDropAwareType

{

ACTIONS OpenAction

MOVE_TO ACTION MoveAction

Move = Shift + Mouse Button 1

COPY_TO_ ACTION CopyAction

Copy = Control + Mouse Button 1

LINEKE_TO ACTION LinkAction

Link = Control + Shift + Mouse Button 1
}

Action Service APIs. The function used to invoke an applica-
tion, DtActionlnvoke, has several arguments. However, the
parameters described here include the name of the action to
invoke, an array of data arguments for the action, the number
of arguments, and a callback function to be invoked when
the action terminates.

The action name is used to find action records with the same
name in the action database, and the signature attributes of
the matching action records are searched to find a match
with the APT's data arguments. If a matching action is found,
the action is invoked and an action invocation identification
number is returned to the application, otherwise an error is
returned to the application. The data arguments can be files
or memory buffers. If an action is defined to accept zero or
one arguments but more than one argument is provided, an
instance of the action will be invoked for each argument.

To be notified when an action terminates, an application can
register an action termination callback when the action is
invoked. This is particularly useful for applications that in-
voke actions on behalf of embedded objects. For example,
the mailer uses this feature to get notified when its attach-
ments, which have been opened by an action invoecation,

are closed. If an action has more than one action instance
outstanding, it can use the action invocation identification
number to determine which action instance terminated.

When a data argument is a memory buffer, the application
must provide a pointer to the buffer, the size of the buffer,
and an indication of whether the action is allowed to modify
the buffer. Additionally, the application can provide the data
type of the buffer and a file name template to be used if a
temporary file for the buffer is needed. When necessary, such
as when a buffer is writable, the buffer is copied to a tempo-
rary file and the file name is used in the action invocation.
When the action terminates, the contents of the file are
copied to the buffer, and the temporary file is removed.

UNIX is & registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries

© Copr. 1949-1998 Hewlett-Packard Co.

Migrating HP VUE Desktop
Customizations to CDE

With CDE becoming the UNIX® desktop standard, it is important to allow
HP VUE users to preserve their customizations when moving over to the
CDE desktop. A set of tools has been developed to make this transition as

complete and effortless as possible.

by Molly Joy

The HP Visual User Environment (HP VUE), combined with
a set of applications, is a powerful graphical environment
for interacting with the computer. It provides a consistent
user interface and is based on OSF/Motif, which was created
to enable different applications fo behave the same way,
eliminating the need for users to learn multiple command
sets to control applications.

The need for standards was recognized early by Hewlett-
Packard with its support for industry standards such as the
X Consortium and the Open Software Foundation (OSF).
Although HP VUE provided users with an easy-to-use desk-
top interface, there was no industry standard graphical user
interface (GUI) for desktop computers running the UNIX
operating system and the X Window System. What this
meant was that even though Motif applications behaved the
same across multiple platforms there was no commonality
in the graphical user interface, which was referred to as a
desktop. This was a serious limitation from the perspective
of both the end user who had to learn to operate different
desktops in a heterogeneous computing environment and
the application developer who had to develop and integrate
applications into multiple desktops. This was also a cost
factor in enterprises with multivendor computing environ-
ments because of the costs involved in training users and
integrating new systems into existing heferogeneous net-
worked environments.

Hewlett-Packard has a long-standing commitment to open
system standards. HP is one of four sponsor companies that
contributed key technologies and helped to develop CDE
(Common Desktop Environment). CDE’s consistent look
and feel is based on HP's proven and accepted HP VUE tech-
nology. This rich graphical user interface has become a core
component of CDE.

Although HP VUE and CDE have the same look and feel, the
two technologies are somewhat different with the result
being that HP VUE customizations cannot be directly incor-
porated into the CDE desktop and be expected to work.
HP's commitment to supporting customer investments
dictated that a searmless transition from HP VUE to CDE
was necessary. Even though a complete transition is not
possible in some cases, the intent was to make the transition
as complete and effortless as possible.

© Copr. 1949-1998 Hewlett-Packard Co.

Developing the Migration Tools

The decision to develop a set of tools to allow HP VUE-io-
CDE migration was made in the second half of 1994, This
decision included an agreement between Hewlett-Packard
and TriTeal Corporation to develop these tools jointly.
TriTeal and HP have a long history with the HP VUE product
because through a licensing agreement with HP, TriTeal has
marketed and sold HP-VUE on AIX, Solaris, SUN, DEC
OSF/1 and AT&T GIS operating systems.

A customer survey was conducted by HP in June 1994 to
help determine the user categories most concerned with
migration. 213 customers were randomly surveyed. We had
a 34% (73 responses) response rate, Fig. 1 shows the percent-
age of respondents falling into the various user categories.
Respondents were allowed to select multiple categories. For
example, almost all of the respondents were end users, and
65% of them were system administrators.

— End
1
% User

System
Administrator

a0 +

Application
Developers

System

Integrators Don't Use

VUE

Other .

User Type

Fig. 1. The categories of users interested in migration tools

April 1906 Hewlett-Packard Journal 29

Percentage of Respondents

lcons

Print

Drag Drop
Help

Lib Loc
Remote Exec
Toolbox

VUE Lite

Sessions

Front Panel
Dtterm
Actions
Backdrop

VUE Dialog
Help Migration
Annotation

Window Mgr

Migration Tool

Fig. 2. The areas of interest for the type of migration tools.

The survey listed areas of HP VUE customizations and
asked customers to choose the areas for which CDE must
provide a migration mechanism. Fig. 2 shows this list and
the percentage of respondents choosing various areas for
migration.

It was decided early that the migration tools would be a set
of shell scripts, modularized so that customers could run
them to suit their specific needs. It was also recognized that
although converters would be written to deal with the com-
mon kinds of customizations, it would be impossible to cater
to all types and forms of customization. The tools would be
written to be noninvasive and not change any of the HP VUE
customizations.

The Difference Between HP VUE and CDE

A brief look at the major differences between HP VUE and
CDE will help explain what the various converters written
for migration have to accomplish. Converters were written
for:

* Actions and file types

* [con image files

* Toolboxes

* Front-panel and session customizations

Actions and File Types. Actions make it easier to run applica-
tions by representing the applications as icons that can be
manipulated. When an action is created, the application is
integrated into the user’s graphical environment, teaching
the desktop how to run the application.

A file type (referred to as a data type in CDE) provides the
ability for different types of files to have different appear-
ance and behavior. The file-type accomplishes this by:
Defining a unique icon for the each file in the file manager
windows

Providing a custom actions menu for tasks that users do
with data files

Providing context sensitivity for actions (for example,
different versions of the print action can be written for
different file types, creating a file-type-sensitive printer
control for the front panel).

Both HP VUE and CDE use actions and file (data) typing in
the same way. Both maintain a database of actions and file

Lype.

File types, used in conjunction with actions, can be thought
of as components that create a grammar for a user's system.
If files are thought of as nouns, then file types are the adjec-
tives and actions are the verbs. Like grammar, the pieces are
related to one another. There are rules that govern how they
are put together and how they affect one another. It's these
rules that have changed between HP VUE and CDE. This can
be better illustrated with action and file type definitions in
the two environments (see Fig, 3).

While action definitions have undergone only minor syntac-
tical changes between HP VUE and CDE, the file type defini-
tions have undergone some major changes between the two

HP VUE CDE
ACTION ImageViewClient ACTION ImageViewClient
ARG-TYPES * i
TYPE COMMAND ARG-TYPE *
WINDOW-TYPE NO-STDIO TYPE COMMAND
EXEC-HOST hpcvusa WINDOW-TYPE NO-STDIO
EXEC-STRING usr/bin/X1l/imageview) EXEC. HOST hpcvusa
%(File)Arg_ 1% EXEC_STRING /usr/bin/X1l/imageview\
L-ICON imagevw.l %(Pile)Arg 1%
8-ICON imagevw.s ICON imagevw
DESCRIPTION This action invokes the) DESCRIPTION This action invokes the)
image Viewer, on tha) Image Viewer, on the client)
client side if possible side if possible
END ¥
FILETYPE BM DATA ATTRIBUTES BM
L-ICON bitmap.1l £
8-ICON bitmap.s ICON bitmap
ACTIONS ImageViewClient ACTIONS ImageViewClient
DESCRIPTION A BM file contains data\ DESCRIPTION & BM file contains data in\
in the X1l bitmap format. the X11 bitmap format.
FILE-PATTERN *.bm }
END DATA CRITERIA BM1
{
DATA ATTRIBUTES NAME BM
NAME PATTERN *.bm
¥ Fig. 3. Action and file tvpe defi-
nitions in HP VUE and CDE.
30 April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

environments. In addition, the file naming convention and
the locations of files that contain actions and file types have
changed between HP VUE and CDE.

Unlike the file type definition in HP VUE, the CDE definition
consists of the following two separate database record defi-
nitions:

DATA_ATTRIBUTE. This definition describes the data type's
name and the appearance and behavior of files of this type.
DATA_CRITERIA. This definition describes the typing criteria.
Each criteria definition specifies the DATA_ATTRIBUTE defini-
tion to which the criteria apply.

There must be at least one DATA_CRITERIA definition for each
DATA_ATTRIBUTE definition. A DATA_ATTRIBUTE definition can
have multiple DATA_CRITERIA definitions associated with it.
DATA_CRITERIA and DATA_ATTRIBUTE records are described in
the article on page 24,

To allow applications integrated into HP VUE to be inte-
grated into CDE, a converter had to be written to do the
necessary syntactical conversions. These include the syntac-
tical differences illustrated in Fig. 3, as well as others not
shown in Fig. 3. The tool also writes these changes to files
with the appropriate CDE suffix.

Icon Image Files

Icons are an important part of the visual appearance of both
HP VUE and CDE. Icons are associated with actions, data
types, front-panel controls, and minimized application win-
dows. For HP VUE components, icon image file names use
the convention: basename.size format, where basename is the
name used to reference the image, size indicates the size of
the file (I for large, m for medium, or s for small), and format
indicates the type of image file (pm for X pixmaps or bm for X
bitmaps). The different desktop components such as the file
manager and the workspace manager choose the icon to be
displayed based on the size field in the icon name.

In CDE, the same format applies. However, there are four
different sizes: large (1), medium (m), small (s), and tiny(t),
and the sizes are used differently. For example, by default
the file manager in HP VUE uses large (I) icons whereas in
CDE the file manager expects medinm icons (.m). To migrate
these customized icons to the CDE desktop, a tool was
written o do the necessary icon name mapping to allow the
customized icons to be displayed by the different CDE desk-
top components.

Toolboxes

In HP VUE, toolboxes are containers for applications and
utilities. Each application or utility is represented by an icon
called an action icon. The toolboxes in HP VUE include:
Personal toolbox. This toolbox is one that is personally
configured with actions created by the user or copied from
other toolboxes.

General toolbox. This toolbox contains applications and
utilities built into HP VUE or provided by the system
administrator.

Network toolbox. This toolbox allows the user to have
aceess Lo actions on other systems.

CDE replaces toolboxes with the application manager. The

application manager integrates local and remote applications
into the desktop and presents them to the user in a single

container. A goal of the migration tools was to incorporate
the personal and general toolboxes into the CDE deskiop so
that the users could continue to use their favorite application
or utility from the CDE desktop. A decision was made not to
migrate the network toolbox because the HP VUE and CDE
approaches to the application server are radically different.
It is easier to configure a CDE application server than an HP
VUE application server.

Workspace Manager Customizations

The workspace manager controls how windows look, behave,
and respond to input from the mouse and keyboard. In HP
VUE the workspace manager geis information about the front
panel, window menus, workspace menus, button bindings,
and key bindings from a resource file called sysvuewmre. In
CDE this information is divided into two files, which reside
in different locations: dtwm.fp (front-panel definitions) and
dtwmre (menus, button and key bindings).

Front-Panel Customizations. The front panel is a special desk-
top window that contains a set of controls for doing common
tasks. The front panel has undergone a visual as well as a
definition change between HP VUE and CDE. In the case of
HP VUE, there are three main elements to the front panel:
the main panel, which includes both the top and bottom row,
and subpanels (Fig. 4a). In CDE there is no bottom row,
Instead, some of the controls that resided in the HP VUE
bottom row, such as the busy signal, exit, and lock buttons
have moved to the workspace switch in CDE, while the
other controls are available through the personal applica-
tions slideup (see Fig. 4b). The toolbox in HP VUE has been
replaced by the application manager.

Besides the visual differences, the front-panel definitions for
panel, box, and control have also changed. To state it simply,
in HP VUE, a container (panel) has knowledge of its contents
(box), but a box has no knowledge of its parent (panel). In
CDE the reverse is true (e.g., a box knows about its parent
(panel), and a control knows about its parent (box) but not
vice versa. Fig. 5 shows these differences.

Since there were both syntactical and logic differences be-
tween the HP VUE and CDE front panels, this was one of
the most difficult converters to write. While preserving user
customizations, the converter also had to replace HP VUE
controls with their equivalent CDE counterparts (e.g., re-
placing the toolbox with the application manager). In the
case of a one-to-one mapping between an HP VUE conirol
and a CDE control such as the mail icon, the converter has
to migrate any customizations made to these controls in HP
VUE or replace them with the equivalent CDE defaults,

Session Customizations. A session refers to the state of the
desktop between the time the user logs in and the time the
user logs out. A session is characterized by:

The applications that are running

The icons on the desktop

The look (colors, fonts, size, location, etc.) of application
windows

Other settings controlled by the X server such as mouse
behavior, audio, volume, and keyboard click.

Sessions are divided into two categories: current sessions
and home sessions. A current session is one that is stored at
logout so that when a user logs in again the session state at

April 1996 Hewlett-Packard Journal - 31

© Copr. 1949-1998 Hewlett-Packard Co.

Control Panel

On Eront Panel

Un ltem

(a) Bottom Row
l_ Personal Applications Slideup

One i

ﬁ'hrl:ﬂe

Toolbox Control

Workspace Switch

(b}
Fig. 4. (a) HP VUE default front panel. (Iy) CDE default front panel.
logout is reestablished. A home session, which is explicitly

stored by the user at some other time during a session,
allows the user to return to some known session.

Session information is stored in the files listed in Table 1.

Table |
Session Files
File Contents
vue.session The names of active clients and their

window geometries, workspaces, states
(normalized or minimized), and startup
strings.

The resources for the active clients
(including the workspace manager) in
the session.

vVue.resources

vue.settings Server and session manager settings such
as screen-saver timeout, audio, and key-

board repeat

Smce the goal of the migration tools was to allow a seamless
transition from HP VUE to CDE, we determined that it was
necessary to bring over the users’ sessions, so that their CDE
sessions resembled HP VUE sessions as much as possible.

A converter was written to convert the appropriate session
files to their CDE equivalents. This meant creating equivalent
dt.session, dtresources, and dt.settings files with the names of HP

32 April 1996 Hewlett-Packard Journal

Application Manager
Control

VUE clients being replaced with their CDE counterparts if
they existed. For example, substituting Yuewm with Dtwm and
Vuefile with Dtfile.

A Graphical User Interface for Migration Tools

While the individual converters were being developed, a
graphical user interface for the converters was being
designed. Migration tool users can be classified into two
groups: system administrators and end users. The interfaces
for the migration tool had to be tailored to the needs of
these two types of users even though the converters being
used were essentially the same. This involved several itera-
tions on paper of the various dialogs that would take the user
through the migration process. Since all of the converters
were written using shell scripts to allow easier modification
by the customer if needed, a decision was made to use dtksh
for developing the GUI. Dtksh is a utility that provides access
to a powerful user interface from Korn shell seripts. Dtksh is
part of the CDE APL

The different converters were gathered together into a
migration application called VUEtoCDE. To run the migration
tools, the VUEtoCDE migration product has to be installed on
the system after CDE has been installed. The first time the
user (system administrator or end user) logs into the system
the migration dialog box (Fig. 6) appears if the user’s home
directory contains a .vue directory. The assumption here is
that the user has used HP VUE and might choose to move

© Copr. 1949-1998 Hewlett-Packard Co.

HP VUE CDE
PANEL FronmtPanel /* Parent references PANEL FrontPFanel /* Parent has no references to
child */ i children */
{ DISPLAY HANDLES True
80X Top /% child */ DISPLAY MENU True
BOX Bottom /* child */ DISPLAY MINIMIZE True
3 CONTROL BEHAVIOR single click
DISPLAY. CONTROL LABELS PFalse
HELP_TOPIC FPOnltemProntPanel
BOX Top HELP VOLUME FPanel
{]
TYPE primary
CONTROL Clock /* child */ BOX Top
CONTROL Date I* child */ {
CONTROL Load /* chiid */ CONTAINER NAME FrontPamel /*child references parent */
. POSITION RINTS first
. HEL? TOPIC FPOnItemBox
. HELP VOLUME FPanel
¥ }
CONTROL Clock
{
TYPE clock
SUBPANEL ClockSubpanel CONTROL Clock
HELP_TOPIC FPClock {
} TYPE clock
CONTAINER NAME Top /* child references parent */
CONTAINER _TYPE BOX
BOX ClockSubpanel POSITION_HINTS 1
{ ICON Fpclock
TYPE subpanel LABEL Clock
TITLE “Time Zones” HELP TOPIC FPonItemClock
HELP_STRING “This subpanel ceontains HELP VOLUME FPanel
time-related funtions” }
CONTROL Japanesellock
}
CONTROL JapaneseClock SUBPANEL ClockSubpanel
{ {
TYPE button CONTAINER NAME CLOCK /* child references parent */

IMAGE clock TITLE Time Zones”

PUSH_ACTION f.action TimeJapanese }

LABEL “Japan” CONTROL JapaneseClock

} {
TYPE icon
CONTAINER_NAME ClockSubpanel/* child references parent */
CONTAINER_TYPE SUBPANEL
POSITION_HINTE 1
ICON clock
LABEL Japan
PUSH_ACTION TimeJapanese
HELP TOPIC FPOnItemClock
HELP VOLUME FPanel
}

Fig. 5. Front panel definitions in HP VUE and CDE.

HP VUE 3.0 customizations to CDE. Several options are pro-
vided by which the user could migrate now or later or not at
all. The user can invoke the tool from the application man-
ager at any time.

If the user chooses to migrate, the tool determines if the
user is a system administrator or an end user and presents
the appropriate dialog. Fig. 7 is the dialog presented to the
end user when the Yes Now button is selected.

The thinking here was that more often than not, the user
would choose the one-step migration (default option), but

Welcome to the Common Desktop Environment |
| Do you wish to migrate your VUE 3.0 customizations to CDE?

| Yes Now

Not_i"l;_r._ Later i No Help

Fig. 6. Initial migration dialog.

we wanted to provide choices for those who didn't want the
default option. Also, by choosing the various converter op-
tions, the user can exercise a specific converter in the event
that it did not work as expected in the one-step migration,

The converters were designed to avoid modifying any of the
HP VUE directories, allowing the user to rerun the converters
as many times as needed. In the case of actions, file types,
and icons the converter expects an HP VUE source directory
and a CDE destination directory. This allows the user to
enter nonstandard source and destination locations for
action, file type, and icon image files. When a nonstandard
destination is entered, the tool displays a message that this
path has to be added to the user's dtprofile file with a specific
input environment variable to update the global search path.
This option was chosen over having the tool modify the
user’s dtprofile, which was considered to be too invasive.
Initially, the user is presented with the default HP VUE and
CDE locations (see Fig. 8), but the user can type in as many
source and destination directories as desired.

April 1996 Hewlett-Packard Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

Migrate selected customizations:

‘ | Actions and Filetypes
Icon Image Files
Personal Toolbox

Front Panel and Session Files |

_ ' +| Migrate all customizations
(All of the above)

_ﬁigrate ' | Cancel

Fig. 7. User-level migration.

Because of the shift from toolboxes in HP VUE to the appli-
cation manager in CDE, the migration of a toolbox to any
location other than the CDE application manager is not
straightforward. It requires some in-depth understanding of
how to integrate applications into the CDE desktop before
the user can specify a nonstandard destination for an HP
VUE toolbox. Thus, the migration tool disallows specitying a
nonstandard destination and only provides the flexibility of
choosing the name of the application group for an HP VUE
toolbox (see Fig. 9).

Each converter that is run generates a log file in a directory
prepended with the user’s login name (e.g., molly]_ Vue2Cde_Log)
in /tmp, allowing for faster diagnosis of problems.

When the user has completed the personal migration, a final
dialog is displayed that contains a special button for exiting
the current CDE session. This button is necessary because
of the design of the CDE session manager. Ordinarily, when
the user logs out, the contents of the current session are
written to the current session configuration files, overwriting
the previous contents. Thus, if the user were to simply log
out after migration, the migrated session files would be
overwritten. To prevent this problem, the CDE session man-
ager provides a special termination option used only by the
VUEtoCDE tool. This option ends the current session without
saving it so that the migrated session information is pre-
served and available at next login.

VUEtoCDE — Actions and Filstypes

ource Path (HP VUE): Destination Path (CDE):

/mollvi/.vue/types

Apply Close

Fig. 8, Actions and file types conversion

34 April 1996 Hewleti-Packard Journal

Source Path (HP VUE):
rs/mollyj/.vue/types/tools|

Application Group Mame (CDE):
{Personal Toolbox

B

[Close

ADeE

Fig. 9. Toolbox conversion.

Migration of a User’s Front-Panel Customizations
Consider the simple case of an HP VUE front panel that has
been customized to add a media control with a correspond-
ing subpanel in the top row and an icon box in the bottom
box (see Fig. 10). The user running the migration tools would
expect these controls to be migrated over to the CDE front
panel. The results are shown in Fig. 11. The media subpanel
has been migrated to the main CDE front panel and the icon
box to the personal applications subpanel because of the
absence of a bottom row in the default CDE front panel. The
personal applications subpanel and the application manager
icon are placed after the trash icon. These two controls do
not have analogs in HP VUE, and a decision had to be made
regarding the placement of these two controls on the con-
verted front panel. Since an HP VUE front panel could take
any shape or form (multiple rows versus just a top and bot-
tom row), a definitive location was needed for these two
controls. A decision was made to place them as the last two
controls of the last row in the converted front panel. This
conversion can be achieved either by clicking the Migrate
button on the dialog box shown in Fig. 7, which results in
migrating all customizations, or by selecting from the same
dialog box one of the following options and then clicking the
Migrate button:

Actions and File types

leon Image Files

Front Panel and Session Files

Now that we have illustrated how the tools convert a front
panel with some relatively simple customizations, we would
like to illustrate what the migration tool can do in cases
where the customizations are complex and unconventional.

Fig. 12 shows an example of a highly customized HP VUE
front panel. It’s a box with five rows and several subpanels.
During the development phase of our project this panel was
considered to be the ultimate test for the front-panel con-
verter. This front panel helped shatter several assumptions
made in the design and pushed the limits of the front-panel
converter. The desire here was to preserve the row positions
and subpanels while modifying the front panel so that it con-
formed to the CDE default front panel. What we ended up
with is a reasonably accurate conversion (Fig. 13), The HP
VUE front panel had five rows, one of which was the bottom
row. This translated to four rows in CDE since the defauli
CDE front panel does not have a bottom row. The HP VUE
controls in the bottom row (e.g., lock, exit, and busy con-
trols), for which there are CDE equivalents, are not migrated
unless they have been customized. This also applies to the
terminal window and text editor controls in the bottom row

© Copr. 1949-1998 Hewlett-Packard Co.

S

Fanx

Scanner

—a
=

Image

-

Audio
Video

Capture

Shared>

3

Jun 11

Media Control Subpane!

~Mail

Sun i) T | = Notes

Icon Box Control

Fig. 10. User’s customized HP VUE front panel.

for which there are CDE equivalents in the personal applica-
tions slideup. Any other customized controls in the bottom
row are also moved to the personal applications slideup.

HP VUE controls that do not map to controls in CDE are
removed. Keeping this in mind, note the one-to-one mapping
of controls to rows between the HP VUE panel in Fig. 12 and
the CDE panel in Fig. 13. What is unexpected is the extra
space seen at the end of rows in the converted CDE front
panel, The reason for this is that the application manager
and the personal applications slideup, which have no analogs

[t

Fig. 11. (onverted CDE front panel

in HP VUE, need a definitive location in the converted front
panel. The decision to place them as the last two controls in
the last row of the converted front panel has resulted in this
row being rather long, creating the extra space. Other factors
that have contributed to this extra space are the area around
the workspace switch, which did not exist in HP VUE, the
space taken by the window frame, which was missing in the
HP VUE front panel, and the size of the default workspace
buttons in CDE, which are wider than their HP VUE counter-
parts.

Personal Applications

Alrstall lean

Bl Text Editor

) Terminal

April 1996 Hewlett-Packard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

Toolhox
7

E| Admin =

Fig. 12. A highly customized HP VUE front panel.

System-Level Migration

In designing the system-level migration, the thinking was that

system administrators typically do not like one-step migra-
tions but would much rather do a step-by-step migration to
allow more control. Exactly the same converters available
to the user are available here with the defaults being set to
system level. Log files for the converters are created in a
directory called System_VuetoCde_Log in /tmp, The system-level
migration options and the front-panel and session files con-
version menu are shown in Fig. 14,

Remote Execution from the CDE Desktop

In addition to the options specified in the VUEwCDE-System
Migration Options dialog in Fig. 14a, a command-line converter
is available to create a minimum CDE fileset for remote
execution.

j Emacs | i'!mages =
— EIDiSReR | [Feln

Personal Applications Slideup J

36 April 1996 Hewlett-Packard Journal

VUEtoCDE — System Migration Options

Actions and Filetypes
[feon Image Files
System—Wide Toolboxes

i «| System Front Panel and Session Files
|

Migrate Cancel Help

| VUEtoCDE — System Front Panel and Session Files

«| Front Panel and Workspace Manager configuration
file (sys.vuewmrc)
| «Default session resource file (sys.resources)

| Default session startup file (sys.sessions)

Cancel

-M.i-g.rate Help

(b}
Fig. 14. (a) System-level migration options, (b) Front-panel
and session files conversion,

The fileset required on a remote machine for an HP VUE
action to execute remotely is different from that required for
CDE remote execution. While HP VUE requires the spcd ser-
vice, CDE relies on dtsped and ToolTalk® services. Sped,
dtsped, and ToolTalk are services that allow actions to invoke
applications that run on remote machines. A converter was
written to build the minimum CDE fileset that could then be
installed on the remote machine (if CDE is not already
installed) to allow actions to continue working from the CDE
desktop after migration. This converter does not provide as
complete a migration as some of the other converters

Fig. 13. A migrated CDE front

Application Manager — panel.

© Copr. 1949-1998 Hewlett-Packard Co.

because system files have to be modified manually as well
Nevertheless it was felt that any form of help provided
during this transition from HP VUE to CDE would be worth-
while.

Usability Testing

The migration tools underwent usability testing at HP's
Corvallis and Fort Collins laboratories. Several system
administrators and end users were asked to run the migra-
tion tools. These sessions were remotely observed by the
engineer conducting the tests. These sessions were also
videotaped and reports were put together by the usability
engineer and sent to the learning products and development
engineers. This input was used to further modify the tools,
online help, and documentation. Most often the confusion
was over the choice of names for buttons or not having
enough feedback when a task was completed.

Conclusion

Although the migration tools described here do not provide
a complete migration from HP VUE to CDE, the converters
do bring over a large portion of a user's customizations

through an easy-to-use graphical user interface. Since HP is
commiitted to its customers, we will continue to support HP
VUE as long as our customers want it, but we hope that
these tools will be an incentive for HP VUE users to embrace
CDE sooner rather than later and make CDE the true desk-
top standard.

Acknowledgments

I would like to acknowledge Steve Beal, from TriTeal Corpo-
ration, who collaborated in developing the converters for
the HP VUE to CDE migration suite. Special thanks to Anna
Ellendman, Julia Blackmore, and Ellen McDonald of the
learning products team for their valuable user interface de-
sign reviews and testing. 1 also wish to acknowledge Jay
Lundell, a former HP employee, for his insightful human
factors review and project managers Ione Crandell and Bob
Miller for their support.

OSF Matif, and Dpen System Foundation are trademarks of the Open Softwars Foundation in
the L.S.A and other countries.

ToolTalk is a trademark or registered trademark of Sun Microsystems, Inc. in the LS A and
certain other countries.

April 1996 Hewleti-Packard Journal 37

© Copr. 1949-1998 Hewlett-Packard Co.

A Media-Rich Online Help System

Based on an existing fast and easy-to-use online help system, the CDE
help system extends this baseline to provide features that will work

across all UNIX® platforms.

by Lori A. Cook, Steven P. Hiebert, and Michael R. Wilson

With the growing demand by users for a unified desktop
strategy across all UNIX operating system platforms comes
the requirement for a standard help system. Users expect
some base level of online help to be provided from within
the desktop they are using. They expect online information
to be easy to use and graphical, with growing expectations
of direct audio and video support and interactive capabilities.

The Common Desktop Environment (CDE) help system pro-
vides media-rich, online information that is both fast and
easy to use. It has its basis in the standard online help system
from HP that is used extensively by HP VUE 3.0 and HP
MPower! components and by many other HP OSF/Motif-
based products.

Background

The CDE 1.0 help system originated with HP VUE. An early
version, HP VUEhelp 2.0, satisfied few of the requirements
of a modern help system. VUEhelp 2.0 did not allow rich
text and graphics, was hard to integrate into an application,
lacked authoring tools, and suffered from poor performance.
The HP VUE 3.0 help system delivered a complete solution
for creating, integrating, and shipping rich online informa-
tion with an OSF/Motif-based application, while keeping its
presence (use of system resources) to a minimum. HP VUE
3.0 walked a very fine line between providing the rich set of
features that customers required while maintaining perfor-
mance. In 95% of the cases where features and performance
came into conflict, performance won. The HP VUE 3.0 help
system was submitted to the CDE 1.0 partners for consider-
ation. It was the only existing, unencumbered, rich text help
system put forward for consideration. After an evaluation
period, the HP VUE 3.0 help system was accepted almost as
is. It contained all the functionality required, and with a little
work, it could use a standard distribution format.

The Help Developer’s Kit

The CDE 1.0 developer’s kit includes a complete system for
developing online help for any OSF/Motif-based application.
It allows authors to write online help that includes rich
graphics and text formatting, hyperlinks, and communication
with the application. It provides a programmer’s toolkit that
allows developers to integrate this rich online help informa-
tion with their client applications. The help dialog widget
serves as the main display window for the CDE 1.0 help
system. A second, lighter-weight help widget, called quick
help dialog, is also available from the toolkit. Following is
the list of components supported within the toolkit:

38 April 1996 Hewleti-Packard Journal

L]

L]

For authors:

The CDE 1.0 HelpTag markup language. This is a set of tags
used in text files to mark the organization and content of
online help. HelpTag is based on SGML (Standard General-
ized Markup Language).

The CDE 1.0 HelpTag software. This is a set of software
tools for converting the authored HelpTag files into their run-
time equivalents used to display the online help information.
CDE 1.0 HelpTag is a superset of the HelpTag used with HP
VUE 3.0. HP VUE 3.0 HelpTag source files compile under
CDE 1.0 with no modification. One exception to this is if
authors use the old HP VUE 3.0 help distribution format.
The dthelpview application. This program is for displaying
online help so it can be read and interacted with in the same
manner as end users will use it.

For programmers:

The DtHelp programming library. This is an application
programming interface (APT) for integrating help windows
(custom OSF/Motif widgets) into an application.

A demonstration program. This is a simple example that
shows how to integrate the CDE 1.0 help system into an
OSF/Motif application.

Changed or new features for CDE 1.0:

Public distribution format based on SGML conforms to
standards.

A new keyword searching capability allows users to search
across all volumes on the system.

A new history dialog allows the user to select previously
viewed volumes.

A different table of contents mechanism allows full browsing
of the volume without using hypertext links.

A richer message formatting capability is provided. (While
HelpTag does not allow tables, other documents that do
allow tables can be translated into the public distribution
format and displayed. Also, the table of contents now
allows graphics in the fitles.)

Public text extraction functions are removed, but available
for old HP VUE 3.0 users by redefining.

General Packaging Architecture

An online help system needs to feel like it is part of the hos!
application to the end user, not an appendage hanging off to
the side. For developers to leverage a third-party help system,
it must be delivered in such a way as to provide easy and
seamless infegration into their applications. Furthermore,
the effort and overhead of integrating and redistributing the
help system along with their applications must be minimal,

© Copr. 1949-1998 Hewlett-Packard Co.

while at the same time meeting application and end-user
requirements for a help system. Users should feel as if they
have never lefi the application while getting help.

During the initial prototyping of the HP VUE 3.0 help system.
two key issnes kept occurring: performance and packaging.
The help system needed to be light and fast and easy to inte-
grate into any OSF/Motif-based application and redistribute
with that application. HP VUE 2.0 help suffered greatly on
both these points. VUEhelp 2.0 was server-based, large.
slow, and dependent on the HP VUE deskiop. Any applica-
tion using this help service had to run within the HP VUE
desktop environment.

These two issues were addressed in HP VUE 3.0 help and
we found no reason to change the paradigm in the CDE
development. To fix the performance problems (slow startup
times), functionality is linked into the client via a library
rather than starting up a separate help server process (as
was the case for HP VUE 2.0). Since most OSF/Motif applica-
tions tend to incorporate the same widgets as those used by
the help dialogs, the increase in data and text for attaching a
help dialog to an application is minimal.

Fig. 1 represents two different approaches to integrating on-
line help into an application. Our initial prototypes quickly
exposed the value of a client-side embedded solution espe-
cially with respect to performance (e.g., fast rendering time)
and memory use.

The following advantages are gained by using a library-
based help system instead of a server-based architecture.

Integration advantages:

« OSF/Motif-based API (simple to use for Motif knowledge-
able developers)

« Application control of the help system dialog management
(creation, destruction, caching, and reuse)

« Smooth transition into help system via consistent resource
settings between the application and the help system (same
fonts and color scheme and quick response times)

« Ready support for a tightly coupled application-to-help-
system environment (application defined and processed
help controls such as hypertext links)

» Application-specific customizing of the help system
(dialogs, controls, resources, and localization).

Embedded Embedded
Help System Help System API
Client Client Help Server
Application Application Application
(a) (b)

Fig. 1. Two different approaches to integrating online help into an
application. (a) Client-side embedded implementation. This is the
scheme used in CDE 1.0, (b) Server-side implementation of the
help system. This was the implementation used in HP VUE 2.0.

© Copr. 1949-1998 Hewlett-Packard Co.

CDE dependencies:
« DtHelp is delivered in shared-library form only.
« Application must link with the CDE libraries DtSvc and .
« CDE is not required as long as the libraries it depends on
are available.

Integration Concepts, Practices, and Mechanisms

The intricacies of how to author online information, or the
different ways a developer can integrate help into an applica-
tion, are described in the CDE 1.0 help system developer's
guide. We will describe in this section the general integra-
tion concepts and practices for which this help system was
intended.

The run-time help facility is made up of a collection of help
dialogs (complex, composite widgets), and compiled help
volumes (described below). The help widgets are linked
directly into the client application via the help library
libDtHelp.s! (shared library) and instantiated by the client to
display help information. The help dialogs serve only as the
vehicle for displaying rich online help information, while
standard OSF/Motif, Xlib, and Xt services serve as the glue
to integrate them into the application. For this reason, it is
necessary to stray from discussing the specifics of the help
system and its components, and describe some of the OSF/
Motif and toolkit mechanisms that must be used to integrate
help into an application.

There are two levels of integration with respect to this help
system: integrating help into an application and integrating a
help-smart application into CDE.

Integrating Help into an OSF/Motif Application
Developers have many degrees of freedom with respect to
how much or how little help they include in their applica-
tions. If an application and its help information have very
loose ties, there may be only a handful of topics that the
application is able to display directly. In contrast, the appli-
cation could provide specific help for nearly every object
and task in the application. This requires more work, but it
provides potentially much greater benefits to the end user if
done well.

Help menus and buttons in an application serve as the most
basic of help entry points for an application. Reference 2
provides more information about integrating help menus
and buttons into an application.

Contextual Help. Contextual help provides help information
about the item on which the selection cursor® is positioned.
Contextual help information provides users with information
about a specific item as it is currently used. The information
provided is specific to the meaning of the item in its current
state.

The OSF/Motif user interface toolkit provides direct support
for contextual help entry points via its help callback mecha-
nism. When a valid help callback is added to a widget and
the user presses the help key (F1) while that widget has the
current keyboard focus (selection cursor), the widget's help
callback is automatically executed. From within the help

* A selection cursor s visual cue that allows users 1o indicate with the keyboard the item with
which they wish to interact 1t is typically represented by highlighting the choice with an
outling box.

April 1996 Hewlett-Packard Journal 39

callback the application has the opportunity to display some
help topic directly based on the selected widget, or the appli-
cation could dynamically construct some help information
based on the current context of the selected item.

Any level of granularity can be applied when adding help
callbacks to an application’s user interface components.
They can be added to all the widgets and gadgets within the
application dialogs, to the top-level windows for each of the
dialogs, or to any combination in between.

If the user selects F1 help with the selection cursor over a
widget or gadget that has no help callback attached to it, the
OSF/Motif help callback mechanism provides a clever fall-
back mechanism for providing more general help. The help
callback mechanism will jump to the nearest widget ancestor
that has a help callback assigned, and invoke that callback.
The theory is that if you don't have a specific help on that
widget or gadget, then it's better to provide more general help
than none at all.

Application developers are responsible for adding their own
help callbacks to their user interface components within
their application. OSF/Motif sets the help callbacks to NULL
by default.

Item Help. Item help allows users to get help on a particular
control, such as a button, menu, or window, by selecting it
with the pointer. Item help information should describe the
purpose of the item for which help is requested and tell users
how to interact with that item. This information is typically
reference-oriented.

Item help is usually accessed via an application’s help under
the On ltem menu selection. Once selected, the selection cur-
sor is replaced with a question mark cursor and users can
choose the item on which they want help by making the
selection over that item.

The CDE help system API utility function DtHelpReturnSelected-
Widgetld() assists developers in providing item help within
their applications. This function provides an interface for
selection of a component within an application.

DtHelpReturnSelectedWidgetld() will return the widget ID for any
widget in the user interface that the user has selected via
the pointer. The application then has the opportunity to dis-
play some help information directly on the selected widget
or gadget.

At any point while the question mark cursor is displayed, the
user can select the escape key (ESC) to abort the function call.
If the user selects any item outside the current applications
window, the proper error value will be returned.

Once DtHelpReturnSelectedWidgetld() has returned the selected
widget, the application can invoke the help callback on the
returned widget or gadget to process the selected item.

From within the help callback, the application has the op-
portunity to display some help topics based on the selected
widget, or it could dynamically construet some help infor-
mation based on the current item selected.

Integrating a Help-Smart Application into the Desktop
There are no restrictions regarding where run-time help files
are installed. However, a suggested practice is to set up the
help file installation package with the ability to redirect the

40 April 1896 Hewlett-Packard Journal

default help file install location (e.g., put them on a remote
help server system). By default, the run-time help files should
be installed with the rest of an application’s files. Installing
the run-time help files in the same location as the applica-
tion’s files gives system administrators more flexibility in
managing system resources.

An important step in installing help files is registration. The
registration process enables two important features of the
CDE 1.0 help system: cross volume hyperlinks and product
family browsing.

Registering Help Volumes. After the run-time files have been
installed, the volume is registered by running the CDE 1.0
utility, dtappintegrate. This utility registers the application’s
help volume by creating a symbolic link from where the help
volumes are installed to the registry directory /etc/dt/appconfig/
help/<8LANG>. By using this utility to register the help vol-
umes, the application can ask for a help volume by its name
only and the DtHelp library will search the standard locations
for the volume's registry. Then, no matter where the applica-
tion’s help volume ends up, the DtHelp library finds the sym-
bolic link in a standard location and traces the link back to
the real location. The article on page 15 describes registra-
tion and the utility dtappintegrate.

If access to an application’s help volume is restricted to the
application, then the location of the help volume can be hard-
coded into the application. The disadvantage of this method
occurs when a system administrator moves the application’s
help volumes to another location. If the application looks in
only one place for the help information, moving the help
volume causes a serious problem.

Registering a Product Family. When registering a product fam-
ily, which is a group of help volumes belonging to a particu-
lar product, a help family file (producthf) should be created
and installed with the rest of the product’s help files. The
dtappintegrate utility creates a symbolic link for the product file
to a standard location where the browser generator utility,
dthelpgen, can find and process it. The dthelpgen utility creates
a special help volume that lists the product families and the
volumes within each family installed on the system.

Access to Help Volumes

The CDE 1.0 help system has a simple, yet extensible mech-
anism for transparent access of help volumes installed on the
desktop. It supports both local and remote access to help
volumes and works with any number of workstations. The
only dependencies required are proper help registration
(discussed above), NFS services (i.e., remote systems
mounted to the local server), and proper configuration of
the help environment variables discussed below.

When an application creates an instance of a help widget the
DtNhelpVolume resource can be set using one of two formats: a
complete path to the volume.sdl file, or if the volume is regis-
tered, the base name of the volume. When using the base
name, the help system searches several directories for the
volume. The search ends when the first matching volume is
found. The value of the user’s SLANG environment variable is
also used to locate help in the proper language (if it's avail-
able).

DTHELPUSERSEARCHPATH. This environment variable contains
the user-defined search path for locating help volumes, The

© Copr. 1949-1998 Hewlett-Packard Co.

default value used when this environment variable is not sef

MtNhalnVa

H isthe

g (help volume) resource specified

%T is the type of file (volume or family) being searched for.

Whenever this resource is set to a relative path, the resource
value will be prefixed with the user’s default home directory.

Examples:

Juser/vhelp/volumes/C/reboothv
Juser/vhelp/family/SharedX.hf.

Help volume:
Product family:

The .hv and hf extensions are provided for backwards com-
patibility with the HP VUE 3.0 help and family volumes.

DTHELPUSERSEARCHPATH supplements any system search path
defined. Therefore, the user uses this environment variable
to access help volumes that should not be available to every-
one,

DTHELPSEARCHPATH. This environment variable specifies the
system search path for locating help volumes, The default
values used when this environment variable is not set
include:

Jetc/dt /appconfig/help/%T/%L/%H: \
Jetc/dt/appconfig/help/%T/%L/%H.sdl: \
[etc/dt/appconfig/help/%T/%L/%H. hv:

Where: %L, %H, and %T are the same as above.

When setting either of these environment variables it is a
sound practice to append the new values to the current
settings.

Help Widgets

The CDE 1.0 help dialog widgets are true OSF/Motif widgets.
The syntax and use model for programmers is the same as
for every OSF/Motif widget, whether custom or part of the
toolkit. This makes it easy for developers familiar with OSF/
Motif programming to understand and use help widgets.

The OSFE/Motif-based API directly supports various controls
to manage an instance of a help dialog. Through standard
OSF/Motif, Xt, and Xlib functions, programmers access help
dialog resources and manipulate these values as they see fit.
Developers add callbacks (XtAddCallbackl)), set and modify
resources (XtSetValues()), manage and unmanage the dialogs
(XtManageChild, and XtUnmanageChild) and free resources
(XtDestroyWidget()).

The General Help Widget

The general help widget for CDE 1.0 is very similar to the
general help widget in HP VUE 3.0 help. It contains a menu
bar, a table of contents area, and a topic display area. Added
for CDE 1.0 are buttons to the right of the table of contents
for easy access to menu items. Behavior for the table of con-
tents area and keyword searching has changed for CDE 1.0.
Fig. 2 shows a general help widget.

Menu
File Edit Search Navigate - Bar
Table of
Contents

COE1D
Addition

Volume: Syl :
= Sityle Manager Help
History...

Indenc..

Topic
— Display
Area

To Open Style Manager

ick the Style Manage

e e e

Fig. 2. General help dialog box

New Buttons. For convenience, buttons for the backirack
functionality, history, and index dialog boxes have been
added to the general help dialog widget for CDE 1.0.

Tahle of Contents. The table of contents area changed signifi-
-antly from its HP VUE 3.0 help system predecessor. The old
version was a “here you are” type of listing, and it did not give
the user the chance to explore other side topics unless they
were direct ancestors of the current topic. Consequently,
this type of table of contents required the authors to write
help topics with extensive hypertext linking to other topics
such as child topics that would be of direct interest to the
user or direct descendants of the current topic. Fig. 3 shows
the difference between HP VUE 3.0 and CDE 1.0 table of
contents boxes.

CDE 1.0 help shows the topic, the subtopics related to the
current topic, the ancestor topics, and the ancestor’s sibling
topics. As the user selects other topics from this table of
contents, the listing changes so that it always shows the
path to the topic, the siblings of any topic in the path, and
the children of the current topic. Thus, the writer only has to
include hypertext links to topics of interest if the topic isnot a
child of the current topic, an ancestor topic, or an ancestor’s
sibling.

Another change is that the table of contents now displays
graphics. Before, the table of contents was limited to text.
Now, the table of contents displays multifont and graphical
headings.

Searching for a Keyword. The search dialog for CDE 1.0 help
has been completely redesigned. A common complaint was
that the old HP VUE keyword search dialog displayed or
knew about keywords for the current volume only.

Now the user has the option to search all known volumes on
the machine for a keyword. Since this can be a time-intensive

April 19896 Hewlett-Packard Journal 41

© Copr. 1949-1998 Hewlett-Packard Co.

File Search Navigate

Topic Hierarchy

‘Welcome to HP VLUE
What's New with Version 3.0

File Edit Search Navigate Help

Volume: Introducing the Di

Introducing the Backtrack
History...
Des i Index...
Skills for Be
Top Level

tion Windows
Leaving the
Getting Help

(b)

Fig. 3. Help table of contents for (a) HP VUE 3.0 and (b) CDE 1.0

operation, the search engine allows the user to interrupt a
search operation. Additionally, the user can constrain the
search to a limited set of volumes. Fig. 4 shows the new
CDE 1.0 search dialog box.

Quick Help Dialog
From the programmer’s point of view, the quick help dialog
is a stripped-down version of the general help dialog. Its

Search-

All Volumes

(" Selected

—Show
Complete Index

Entries with:

Complete Index

Start Search

Close Help

Fig. 4. CDE 1.0 help search dialog box.

42 April 1996 Hewlett-Packard Journal

Using Help
Help organizes information Inta toplcs. You choose and display help topic
help window
You can choose a topic in two ways:
+ Select a title in the list of topice at the top of the help windoy
2 a hyperlink In the dispiay area of the help window
erink 15 an active wo to a related
n a help window
=i box identifies

phrase, ar graphic that
erlined text |5 a hyperlink. A grey open

c hiyperlirk

Hyperlinks look like this In a help toplc

Text atyle M3 Br 1asks f Graphic

hyperinks hyperink

e about using Help -k this hyperlink for a list of topics

Fig. 5. Quick help dialog box.

functionality is the same as HP VUE 3.0 quick help. It still
contains a topic display area and a button box (see Fig. 5).

Display Area

From the developer’s perspective the help dialogs are treated
as a single widget. They are created, managed, and destroyed
as one single object. If one were to look inside one of the
help widgets there would be not one monolithic help entity
but two separate very distinct components: the text display
engine component and the widget component.

The display engine component, as seen by the developer, is
the region in the help widget that renders the rich text and
graphies and provides hyperlink access and dynamic format-
ting of the text. The widget component consists of the OSF/
Motif code that makes it a widget and the remainder of the
user interface, including topic hierarchy, menu bar, and sup-
porting dialogs (print, index search, and history).

Display Area Text. The display area allows text to be rendered
using many different fonts. It also allows for various types of
text. The author can specify dynamic text that will reformat
according to the window size and static text that will not.
For dynamic text, a sequence of two or more spaces is com-
pressed into a single space and internal new lines will be
changed into a space. For static text, all spaces and internal
new lines are honored.

To Reformat or Scroll? While vertical serolling is accepted as
necessary when help topics are longer than the available
screen space, horizontal scrolling is not. Therefore, when
users resize help windows, dynamic text is reformatted and
figures are centered according to the new window size. This
dynamic reformatting on the fly is seen as beneficial by the
customer.

Scrolling Supported. Even using these line breaking rules,
sometimes the lines are too long to fit in the available space.
For this case or when static text pushes the boundary of the
display area, the help system gives up and displays a scroll

© Copr. 1949-1998 Hewlett-Packard Co.

bar so that the user can see the information without having
to resize the window.

Flowing Text. The display area has the ability to flow text
around a graphic. This is seen as a space-saving measure and
highly desired functionality. The graphic can be placed on
the left side or the right side of the display area and the text
occupies the space to the side of the graphic (see Fig. 6). If
the text is too long and does not fit completely in the space
beside the graphic, the text wraps to below the graphic.

European (One-Byte) Rules. For most European languages
(including English), breaking a line of text at spaces is suffi-
cient. The only other line-breaking rule applied is to hyphens.
If a word begins or ends with a hyphen, the hyphen is con-
sidered a part of the word. If the hyphen has a nonspace
before and after it, it is considered a line breakable character
and anything after it is considered safe to place on the next
line.

Spaces and hyphens can be tagged by the author as non-
breaking characters. This allows the added flexibility for an
author to demand that a word or phrase not be broken.

Asian (Multibyte) Rules. For Asian language support, breaking
a line of texi on a space is unacceptable since some multi-
byte languages do not break their words with spaces (e.g.,
Japanese and Chinese but not Korean). With the Japanese
language, the characters are placed one after another with-
out any word-breaking character, since each character is
considered a word. There is also the concept that certain
characters cannot be the first character on a line or the last
character on a line. English (one-byte) characters can be
mixed with multibyte characters,

Given these considerations, line breaking for multibyte

languages boils down to the following rules:

1. Break on a one-byte space.

2. Break on a hyphen if the character before and after
the hyphen is not a space.

3. Break on a one-byte character if it is followed by a
multibyte character.

4. Break on a multibyte character if it is followed by a

one-byte character.

Break between two multibyte characters if the first

character can be the last character on a line, and the

other character can be the first character on a line.

o

Rather than hard code the values of those Japanese charac-
ters that can’t start or end a line into the CDE help system,
the message catalogue system is used. This provides a gen-
eral mechanism for any multibyte language. All the localiz-
ers are required to do is determine which characters in their

§ Text Wrapping Example

iy

This Is an example of text wrapping around a

graphic. When the window is narrow, the text

will wrap down to under the graphic instead of aligning
with the text next to the graphic.

Fig. 6. Example of text flowing around a graphic

language cannot start or end a line and localize the appropri-
ate NLS file. The file /usr/dt/lib/nis/%|/%tTmt_tbi.cat contains the
values of those characters that are used for rule 5 of the
line-breaking rules. If this file does not exist for a given lan-
guage, rule 5 is ignored and line breaking will occur between
any two multibyte characters.

One Library for All Locales. The help system uses the same
library for processing one-byte or multibyte documenits. It
intermalizes how many of the rules to use based on the SLANG
environment variable and the character set used in the docu-
ment. If a document specifies an ISO-LATIN1 character set,
the display engine does not bother looking at Rules 3, 4, and
5 or using multibyte system routines. Only when the docu-
ment and the SLANG environment variable specify a multibyte
character set are these rules and routines used. This impacts
the access and rendering time (minimally) but allows the
same library to be used in the United States, Europe, and
Asia.

Color Degradation. A feature of HP VUE 3.0 that was strongly
desired was the ability to degrade color images. Having to
provide three different images for each of three types of files
is not feasible because of disk use. The color degradation
algorithms used by the CDE 1.0 help system are the same as
used by the HP VUE 3.0 help system. For TIFF (.tif) images,
the HP image library forces the image to the proper color set
depending on the display type. For X pixmaps (.xpm), the Xlib
routines take the same approach depending on the display.
This leaves the X window (xwd) files to manipulate.

The task is to reduce an xwd file from a full-color image to

a grayscale image containing no more than the maximum
number of gray colors available. The first step in this process
maps each of the X Window colors that the image uses to a
grayscale luminosity value. This is done using the NTSC
(National Television Standards Committee) formula for con-
verting RGB values into a corresponding grayscale value:

luminosity = 0.299 x red + 0.587 x green + (.114 x blue

where red, green, and blue are the X window color values
with a range of 0 to 255.

The next step is to count the number of distinct luminosity
values used by the image. The help system then determines
how many luminosity values to assign to each grayscale. For
example, if there are 21 distinct luminosity values and eight
gray colors, then the first five gray colors will represent
three luminosity values, and the last three gray colors will
represent two luminosity values. Next, a gray color is as-
signed to the luminosity values it will represent, The last
step is to change the original color pixel to the gray color its
Iuminosity value indicates.

If the number of distinct luminosity colors is less than the
number of gray colors being used, then the help system
spreads out the color use. For example, if there are three
distinct luminosity values and eight gray colors, then the
first, third, and sixth gray colors are used in the image,
instead of using the first three gray colors. This provides a
rich contrast to the image.

If the system has to degrade the image to black and white, it
first calculates the grayscale colors using the luminosity

April 1996 Hewlett-Packard Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

calculation given above, Then the image is dithered using a
Floyd-Steinberg error diffusion algorithm,? which incorpo-
rates a Stucki error filter.

Color Use. The user can force the help system to use gray-
scale or black and white by setting the HelpColorUse resource.
The CDE 1.0 help system will also degrade an image if it
cannot allocate enough color cells for the graphic. For ex-
ample, if the image uses 31 unique colors, but there are only
30 color cells left, the help system will try to display it in
grayscale and if that fails, the image will be dithered to use
black and white.

Run-Time Help Volumes

The flexibility and power of this help system are largely
placed in the author’s hands. With the CDE HelpTag markup
language and a creative author, very different and interesting
approaches can be taken with respect to presenting informa-
tion to the end user. Documents can be organized in either a
hierarchy with hyperlinks referencing the children at any
given level or in the form of a network or web, with a linear
collection of topics connected via hyperlinks to related
topics, It is up to the author to explore the many capabilities
with respect to authoring online help for this system.

Help Volume Structure. A help volume is a collection of related
topies that form an online book. Normally, the topics within
a volume are arranged in a hierarchy, and when developing
application help, there is one help volume per application.
However, for complex applications or a collection of related
applications, several help volumes might be developed.

Topices within a help volume can be referenced by unique
location identifiers that are assigned by the author. Through
these location identifiers help information is referenced in
the run-fime environment.

Help Volume Authoring. The authoring language for the CDE
1.0 help system is HelpTag. This authoring or markup lan-
guage conforms to a variant of the Standard Generalized
Markup Language (SGML (ISO 8879:1986)), which is a sim-
ple language consisting of about fifty keywords, or tags.

SGML is a metalanguage used to describe the syntax of
markup languages. In a sense, SGML is very similar to the
UNIX utility YACC in which the syntax of programming lan-
guages such as C is deseribed in a formal, machine readable
format. SGML itself does not provide a method for attaching
semantics to markup constructs. That is, the equivalents of
the YACC actions are not contained in or described by SGML.
An SGML syntax description is known as a document type
definition (DTD).

Other examples of markup langnages described via SGML
include HTML (HyperText Markup Language), which is used
for documents on the World-Wide Web (WWW), DocBook,
which is used for documentation of computer software, and
PCIS (Pinnacles Component Information Standard), which
is used for the exchange of semiconductor data sheets.

SGML is a very powerful markup description language and,
as such, allows a great variety in the markup languages to be
deseribed. However, in a typical application SGML is used to

* Containment refers to the hiearchy of an itam. For example, a book can contain chapters,
chapters can contain sections, and sections can contain paragraphs, lists, and tables. Para-
graphs can contain lists and tables, strings can be marked up as proper names, and so on

44 April 1896 Hewlett-Packard Journal

describe a highly structured markup language with the con-
cept of containment playing a large role.* The concept of
containment works very well for applying style to text be-
cause text styles can be pushed and popped on entry to and
exit from a container.

SGML containers are known as elements. SGML elements
are demarcated by the keywords or tags using the form:

<keyword> text......... < / keyword >

where keyword is replaced by the tag name. In SGML terms,
the keyword making up the tag name is known as the generic
identifier or GL. The form <keyword> is known as the start-tag,
and the form </keyword > is known as the end-tag. An SGML
element consists of the start-tag and all the text or contained
markup up to and including the end-tag. For example, a sim-
ple paragraph would be marked up as:

<P> This is a paragraph with P being the generic
identifier</P>

The syntax of SGML is itself mutable. SGML-conforming
documents all start with an explicit or implicit SGML decla-
ration in which SGML features are enabled or disabled for
the document, the document character set is specified, and
various parts of the SGML syntax are modified for the dura-
tion of the document. For example, the default form of an
SGML end-tag is left angle bracket, slash, generic identifier,
and right angle bracket (<, /, GI,>). For historical reasons,
the form of an end-tag in HelpTag is left angle bracket, back-
slash, generic identifier, right angle bracket (<, \, GI,>). The
change of slash to backslash in the end-tag opener is speci-
fied in the SGML declaration for HelpTag.

As implied by a previous paragraph, SGML elements may
themselves contain other SGML elements. Depending upon
the markup described in the document type definition, ele-
ments can be recursive.

Further, siart-tags can contain attribute and value pairs to
parameterize the start-tag. For example, the HelpTag element
<list> has an attribute to determine if the list is to be an or-
dered (number or letter label) list or an unordered (no label)
list. Creating an unordered list in HelpTag is done with the
following markup:

<list>

* item 1
* item 2
* item 3
<\1list >

which generates:

item 1
item 2
item 3

To create an ordered list (starting with Arabic numerals, by
default), one would enter:

<list type=order>
* item 1
* item 2
* item 3
<\list>

© Copr. 1949-1998 Hewlett-Packard Co.

which generates:

1. item 1
2. item 2
3. item 3

To create an ordered list starting with uppercase Roman
numerals in the labels, one would enter:

<list type=order order=uroman>
* jtem 1
* item 2
* item 3
<\list>

which generates:

I item 1
II. item 2
L item 3

Note that in the markup described above for list, the individ-
ual list items are initiated with the asterisk symbol. In this
case, the asterisk has been defined as shorthand or, in SGML
terms, a short reference for the full list item markup <item>.
Without using short references, the unordered list markup
given above as the first example would look like:

<list>

<item>item l<\item>
<item>item 2<\item>
<item>item 3<\item>
<\list>

The short reference map of the HelpTag document type
definition states that within a list element the asterisk char-
acter at the beginning of a line is shorthand for the list item
start-tag, <item>, and for second and subsequent list items,
also serves as the end-tag for the previous list item.

In HelpTag, the generie identifiers and attribute names are
case-insensitive. Attribute values are case-sensitive for
strings, but the enumerated values of those attributes with a
fixed set of possible values are also case-insensitive.

To reduce typing when creating a help volume, the SGML
features known as SHORTTAG and OMITTAG are set to the value
yes for the classic HelpTag document type description. The
most noticeable result of allowing these features is the ability
to leave off the attribute names when specifying attributes
in a start-tag. For example, the markup:

<list type=order:>
is equivalent to:
<list order>

According to the SGML standard, the enumerated values
(i.e., order and uroman), must be unique within an element's
start-tag so the atiribute name can be omitted without creat-
ing ambiguity.

Creating a HelpTag Source File. Currently there are no SGML
tools for authoring HelpTag documents. To date, all HelpTag
authoring has been done using the common UNIX text edi-
tors such as emacs and vi. The concept of short references
has been used heavily to simplify the process of authoring
the HelpTag source and minimizing the amount of typing
Necessary,

One hindrance to using SGML tools to author HelpTag source
code is that the markup language does not adhere strictly to
the SGML standard. In particular, short references have been
used aggressively to the point of requiring extensions to the
SGML syntax. Certain changes in the SGML declaration,
while perfectly acceptable according to the standard, are
not supported by any SGML tool vendor.

To enhance the possibility of future use of SGML tools for
authoring HelpTag source code, a second version of the
HelpTag document type definition (DTD) has been created.
This second version of the DTD follows the SGML syntax to
the letter and makes no use of esoterie features of SGML.
This canonical form of the DTD is referred to as the formal
HelpTag DTD.

The tools described here for processing HelpTag source
code will accept documents conforming to both the classic
HelpTag DTD and the formal HelpTag DTD. A switch to the
dthelptag script -formal determines whether a document is to be
processed according to the classic or formal HelpTag DTD.

The Semantic Delivery Language. The distribution format*
chosen for CDE 1.0 changed from the format used in HP
VUE 3.0. The old format could not be used for CDE 1.0
because:

The distribution format was known only within HP and then
only by some members of one division. The specification of
this distribution format was never published or intended for
publication.

The potential for growth using this distribution format was
severely restricted.

The help volume existed in several files, resulting in
problems such as losing one or more of the files during
installation.

The run-time format of the CDE 1.0 help system is known as
the Semantic Delivery Language, or SDL. SDL conforms to
the IS0 8879: 1986 SGML standard. The benefits derived by
moving to this distribution format are:

SDL is based on SGML, which is a standard that is strongly
supported and recognized in the desktop publishing arena.
The format is publicly available. Anyone can create a parser
to produce SDL.

The growth potential of this public distribution format is
unbounded.

« The resulting SDL exists in one file, reducing installation

problems for developers.

The SDL language can be thought of as a halfway point be-
tween the typical SGML application, which ignores formatting
in favor of describing the semantic content of a document
(from which formatting is to be derived), and the typical
page description language such as PostScript™ or nroff,
which ignores the semantic content of a document in favor
of rigorously describing its appearance,

Unlike typical SGML applications that break a document into
specific pieces such as chapters, sections, and subsections,
SDL breaks a document into generic pieces known as blocks
and forms. SDL blocks contain zero or more paragraphs and
SDL forms contain zero or more blocks or other forms (re-
cursively). The SDL block is the basic unit of formatting, and

* The file format of the help files delivered to customers,

April 1996 Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

</SDLDOC >

Metainformation
List of Identifiers (LOIDS)
Table of Styles and Semantics (TOSS)
Index Entries (lndex)

</SOLDOC >

the SDL form is a two-dimensional array of blocks and
forms. Fig. 7 shows the structure and elements that make up
an SDL volume, which is also a help volume.

Most elements in SDL have an attribute known as the source
semaniic identifier (SS1), which is used to indicate the
meaning in the original source document (HelpTag in this
case) of a particular construct that got converted into SDL
markup. It is also used to help in the run-time formatting
process by enabling searches into an SDL style sheet.

The SDL style sheet mechanism, known as the table of
semantics and styles (TOSS), is also an element within the
SDL document. SDL blocks or forms and their constituent
parts can contain a source semantic identifier attribute and
other attributes such as CLASS and LEVEL, which are used to
match similar attributes on individual style elements in the
table of semantics and styles. When the attributes of an ele-
ment in the body of the document match a style element in
the table of semantics and styles, the style specification in
that style element is applied to the element in the document
proper. That style specification is then inherited by all sub-
elements where appropriate until overridden by another
style specification.

Groups of SDL blocks and forms are collected in the SDL
construct known as the virtual page (VIRPAGE). Each virtual
page corresponds to an individual help topic. For example,
the HelpTag elements chapter and s1 through s9 (subchapter
levels 1 through 9) would each begin a new virtual page. An
SDL virtual page is self-contained in that all the information
needed to format that page is contained in the page. There is
no need to format the pages preceding a virtual page to set a
context for formatting the current page. Fig. 8 shows an
example of a VIRPAGE.

46 April 1996 Hewletr-Packard Journal

<VSTRUCT >
<LOIDS >

</LOIDS >

< J'T"J 55>

<Index >
< findex >

</VSTRUCT >

< VIRPAGE >
< Head >
< Form >

. <Head >

< fForm >
<Block »

</[Block >

< /VIRPAGE >

Fig. 7. The structure and elements
of an SDL volume.

For rapid access to help topics, an SDL file also contains an
element known as the list of identifiers (LOIDS). When an
SDL file is accessed and the virtual page containing a spe-
cific identifier is requested, the run-time help viewer can
scan the list of identifiers to find the requested identifier.
Each list entry contains a reference to the identifier it de-
scribes and the absolute byte offset from the beginning of
the volume to the virtual page containing that identifier.

<P>This is a paragraph with a
<KEY CLASS="BOOK"
8§SI="TITLE”>Book Title

</KEY> in it.</P>

{a)
v

<VIRFAGE ID="MYCHAPTER" LEVEL="1"
DOC-ID="MYDOC">

<HEAD>An Example Chapter</HEAD>
<BLOCK>

<P>This is a paragraph with

<KEY CLASS="BOOK”

SSI="TITLE"”> Book Title

</KEY> in it.</P>

</BLOCE>

</VIRPAGE>

(b)

Fig. 8. (a) An SDL statement (using SGML syntax) that defines a
paragraph with a book title in it. (b) A VIRPAGE representation of
the paragraph in (a).

© Copr. 1949-1998 Hewlett-Packard Co.

Since SDL virtual pages can be formatted independently of
the preceding pages, the information in a list-of-identifiers
entry can be used to get directly to the desired page and
formatting can begin at that point.

Each of the entries in the list of identifiers also contains an
indicator that tells whether the element containing the iden-
tifier is a paragraph. block, form, virtual page, or any of the
other elements that can carry identifiers. In the case of vir-
tual pages, the list-of-identifier entries also carry an indica-
tion of the page's semantic level (e.g., is the virtual page a
representation of a chapter, subchapter, etc.).

Duplicating the level and type information of an element in
the list of identifiers is a performance enhancement. Know-
ing which identifiers in the list correspond to virtual pages
and knowing the semantic level of those pages allows a hu-
man-readable table of contents to be generated for a docu-
ment by processing only the list of identifiers, avoiding read-
ing and parsing the full document.

Processing a HelpTag Source File. The dthelptag compilation
process performs a number of different tasks in generating
the compiled run-time help volume:

Syntax validation

Conversion from the authored format to run-time format
Location identifier map generation

Topie compression.

While designing and implementing the help volume compila-
tion process, techniques for improving performance emerged.
The objectives were to create a file that supported quick
access and a small overall disk footprint. Fig. 9 shows the
components involved in the HelpTag compilation process.

For run-time display, a HelpTag source file must be converted
into a form usable by the CDE 1.0 help system viewer. This
conversion process is often referred to as compiling or trans-
lating the HelpTag source file. The output of the conversion
process is a single file containing all the information (except
the graphics) necessary to display a help topic. The graphics
associated with a topic are left in their own files and are
referenced from within the CDE 1.0 help system run-time
format, the Semantic Delivery Language.

The dthelptag utility, which converts HelpTag source code to
SDL, is a shell script driver for the multiple passes of the
conversion process, The conversion takes place in three
major steps:

1. The HelpTag source is read in and the first step in con-
version to SDL is made. During this step side buffers are

Run-Time Help Volume
Graphics
Files
HP HelpTag 1.2 it
Source Files I
HP HelpTag
foo.hitg Compiler foo.sdl
% Help Topics

*3if

Graphics Files

Fig. 9. The HelpTag compilation process.

created to hold references to graphics and hyperlinks
outside of the current document and keyword entries
that will later be used to enable keyword searches of
the document. The keyword entries correspond to an
index in a printed book. Forward cross-reference entries
may cause this step to be executed twice for complete
resolution.

2. The keyword side buffer is sorted using the collation
sequence of the locale of the document. Duplicate key-
word entries are merged at this time.

3. The SDL output of the first step is reparsed and exam-
ined for possible optimizations. Then the optimizations
are performed, the keyword list created in step two and
the external reference information from step one are
merged in, and the SDL file is preprocessed to facilitate
fast run-time parsing and display. Finally, the SDL file is
compressed and written to disk.

The optimization possibilities mentioned in step three are
created when the first pass must make worst-case assump-
tions about text to follow or be contained in an element
when the start-tag for that element is encountered. If the
worst-case scenario does not manifest itself, the resulting
SDL code will be suboptimal. The equivalent of a peephole
optimizer* is used to detect the suboptimal SDL and to re-
place, where possible, suboptimal SDL with equivalent but
simpler constructs.

The compression mentioned in step three uses the UNIX
compress{1) utility, which is a modified version of the LZW
(Lempel-Ziv and Welch) compression algorithm. The run-
time decompression of the help topic is performed via a
library version of the LZW algorithm to avoid requiring the
creation of an extra process with its attendant time and
memory penalties,

To preserve the random-access nature of the help topics
within the help volume, the volume is compressed on a per-
virtual-page basis (Fig. 10). That is, each virtual page is com-
pressed and prefaced with a single null byte followed by
three bytes containing the size of the virtual page in bytes.
After compressing the virtual pages, the list of identifiers
must be updated to reflect that all virtual pages following
the compressed page are now at a new, lower offset into the
file. When the run-time help viewer reads a virtual page, the
reader looks at the first byte of the virtual page and if it is a
null byte, decompresses the virtual page starting four bytes
into the page (the null byte and three bytes for length
occupy the first four bytes of the page).

Finally, after all the virtual pages have been compressed, the
metainformation in the SDL file, including the list of identifi-
ers, is compressed. Since for performance reasons all the
metainformation is at the front of the SDL file, compressing
that information must necessarily be an iterative process.
After compressing the metainformation, the offsets to the
virtual pages in the list of identifiers must be updated to
reflect that they all are now at new addresses. When the
offsets in the list of identifiers have been updated, the meta-
information must be recompressed resulting in new values
for the offsets in the list of identifiers.

* In this application, the peaphole optimizer reads a small subsection of a document, such as a

chapter or paragraph, and works an that portion in isolation from the rest of the document

April 1996 Hewlett-Packard Journal 47

© Copr. 1949-1998 Hewlett-Packard Co.

Before Any Compression After VIRPAGE Compression
<SDLDOC > <SDLDOC >
<VSTRUCT > <VSTRUCT >
<LOIDS > <L0IDS >
<10 rid = PAGE1 <ID rid = PAGE1
Ofisel = 126327 . , Offset = 126327 ., .=
<10 rid = PAGE2 <10 rid = PAGEZ
Dffset = 126622 . . . > Difset = 126511 . ..
<D nid = PAGE3 <10 rid = PAGE3
126327 Bytes | Offset = 128903 Offset = 127814
< /LOIDS >
< VIRPAGE id = PAGET > VIRPAGE 1 Compressed
: to 184 hytes
195 Bytes ¢
< IVIRPAGE > VIRPAGE Z Compressed
to 1303 bytes
< VIRPAGE id = PAGEZ >
2381 Bytes {
< /VIRPAGE >

<VIRPAGE id = PAGE3 >

< VIRPAGE >

Fig. 10. The compression sequence for an SDL file.

At some point while iterating through this compression and
update cycle, the result of compression will be no reduction
in size or, worse, an increase in size. If the result is no
change, we are done and we can write out the final SDL file.
If the result is an increase in size, a padding factor is added
after the end of the compressed metainformation and that
factor is added to the offsets in the list of identifiers. The
iteration then continues, increasing the padding factor on
each pass until the size of the compressed metainformation
plus all or part of the padding factor stabilizes. The first pass
in which the size of the compressed metainformation plus
zero or more bytes of the added padding equals the most
recently computed offset for the first virtual page terminates
the iteration. The compressed metainformation plus as much
padding as is necessary is then written to the output SDL file
and all the compressed virtual pages follow.

Graphic File Formats. Complaints about the text-only nature
of HP VUEhelp 2.0 strongly demonstrated the truth of the
adage that “one picture is worth a thousand words.” The
CDE 1.0 Help System supports the following graphic formats:
X Bitmaps

xwd Files

xpm Files

TIFF 5.0

48 April 1996 Hewlett-Packard Journal

After VIRPAGE and Meta-
information Compression

Compresses to
24174 Bytes Now the values in ‘Offset’ are incorrect.
So recompress the metainformation af-
ter subtracting 102153 (126327 - 24174)
from each value.

The decompression, adjustment, and
compression are repeated until no
further change to the offset values is
required.

VIRPAGE 1 Compressed
to 184 bytes

VIRPAGE 2 Compressed
to 1303 bytes

Graphic Compression. While JPEG compression schemes are
common for use with TIFF files, no compression was being
used with the X graphical formats. After several complaints
from authors about how much space xwd files require, the
help system was modified to find and access compressed
files. The author can use the UUNIX compress(1) command to
compress the graphic files. The help system decompresses
the graphic file into a temporary file and then reads the file
as usual.

Using compression on X graphic format files can impact
access time. For very large graphic images or for a topic that
uses many graphics, this impact can be noticeable. The
trade-off between speed and disk space is one that the help
volume author and application engineer must address. In
most cases the best results, both for performance and disk
usage, are gained by using JPEG-compressed TIFF images.

Printing

Currently, CDE 1.0 DiHelp renders only text to hard copy de-
vices. The printing solution for the CDE 1.0 help system
allows the user to print a comprehensive table of contents
and index, complete with page numbers. When an entire
help volume is printed, each page is numbered allowing easy
cross reference from the table of contents or index. This

© Copr. 1949-1998 Hewlett-Packard Co.

D4 FOTCOEE

Fig. 11. Sample localized help window,

functionality did not exist in the HP VUE 3.0 help system, [i
was developed for CDE 1.0.

Localization

The CDE 1.0 help system supports authoring and displaying
of online help in virtually any language. The online help in-
formation can be authored and translated in either single-
byte or multibyte character sets, and all the components
within the developer's kit are multibyte-smart and can parse
and display the localized information.

The help widgets use the user’s SLANG environment variable to
determine what language directory to retrieve the requested
help volume from. If SLANG=japanese when the request to dis-
play help occurs, the widget code will attempt to open the
Japanese localized version of that help volume. If one does
not exist, then the default version, which is English, will be
used.

When an authored help volume is compiled via HelpTag, the
author sets the proper character set option. The character
set information is used at run time to determine the proper
fonts to use for displaying the localized help text. The Help-
Tag compiler assumes a defaunlt locale (SLANG=C). Currently,
hecause of the complexities involved, only one multibyte
character set per volume is supported (e.g., a Japanese-to-
Korean dictionary cannot be displayed). Fig. 11 shows a
sample of a localized window,

© Copr. 1949-1998 Hewlett-Packard Co.

Parsing Multibyte Characters. To make dthelptag work for single
and multibyte character sets without constantly checking
for the length of the current character, all characters are

wchar_t) on input. This input

converted to wide characters (
conversion is driven by a command line option, a HelpTag

entity file, or the current setting of the locale. All internal

processing of characters is done on wide characters with

characters being converted back to multibyte

those wi

characters on output

igle-byte character sets are treated
just like multibyte character sets in that the conversions in

and out always take place.

This scheme of doing all internal processing on wide charac-
ters has proven {o be a very effective means for making one
tool work for all langunages. The scheme did require imple-
mentation of wide character versions of most of the siring
functions (e.g., strepy, strlen), but those functions were all
quite straightforward to create.

Localizing User Interface Components. The menus, buttons,
labels, and error messages that appear in help dialogs also
support full loealization to native languages. The help dia-
logs read these sirings from a message catalog named
DtHelp.cat. Various localized versions are supported by de-
fault and included with the developer’s kit product. For lan-
guages not supplied, the developer must translate the mes-
sage catalog /usr/dthelp/nis/C/DiHelp.msg and then use the gencat
command to create the needed run-time message catalog file.

Conclusion

Building upon the sirong foundation provided by the HP
VUE 3.0 help system, the CDE 1.0 help system (DtHelp) has
become the standard help system for the desktop of choice
for the providers of a majority of UNIX systems across the
world. As more companies provide the CDE desktop, this
help system will become even more pervasive.

References

1. Hewlett-Packaird Jowrnal, Vol. 45, no. 2, April 1994,

2. OSF/Mutif Style Guide Release 2.1, Prentice Hall, 1993,

3. R. Ulichney, Digital Halftowing, MIT Press, 1988, Chapter 5.

ates and other countries, lice

UINEX 15 & regis ark in the United !
through X/Open Company Limited

a tragemark

X/Open demark and the X device is
ystems Incorporated which may be reqistered in certair

s of the Open Software Foundation in

April 1986 Hewlett-Packard Journal 49

Managing a Multicompany Software
Development Project

The development of the Common Desktop Environment version 1.0
involved a joint engineering project between four companies that normally

compete in the marketplace.

by Robert M. Miller

In March of 1993 executives from HP, IBM, Sun Microsystems
and USL (now Novell) announced at a UNIFORUM confer-
ence the COSE (Common Operating Software Environment)
initiative. The purpose of the initiative was to unify the
UNIX® operating system industry in the areas of distributing
computing (ONC, ONC+, DCE),* multimedia technology,
object technology, graphics, system management, and desk-
top technology. While there have been other attempts to unify
aspects of the UNIX world, COSE was different in that it
succeeded in producing results. CDE (Common Desktop
Environment) was the first promised deliverable of this
initiative and after two years its completion was announced
at UNIFORUM in March of 1995.

CDE 1.0 was a joint engineering effort between HP, IBM, Sun
Microsystems, and Novell that was aimed at producing a de
facto and de jure standard in a critical and highly visible
technology—the X Windows graphical desktop. CDE 1.0 is
about 1.2 million lines of source code and over a thousand
pages of end-user, system-administrator, and software-
developer documentation. The jointly owned CDE 1.0
source tree also contains over 1200 automated regression
tests written in C. These tests were developed to test the
CDE code base.

The primary aims of all of the participants involved in
creating CDE were:

To end the many years of battles between the Motif and
OpenLook®* camps, which helped to fragment the UNIX
industry and slowed the development of UNIX applications
To create a single desktop standard that would provide a
common look and feel for users, a common set of adminis-
tration tools for system administrators, and a common set
of desktop APIs for sofiware developers (A list of these
APIs is provided in Appendix A on page 11.)

To lay the foundation for the future evolution of the UNIX
desktop in a way that would meet the needs of the open
systems market,

The original goal was to take the best technologies from
each of the four companies mentioned above with roughly
90% of the code coming from existing products and 10%
coming from new work. As it turned out this was not pos-
sible, and the percentage is approximately 60% reuse and
40% new code.

* ONC 15 Open Network Computing and DCE is Distributed Computing Environment

** Dpenlook is Sun Microsystem’s X Window System toolkit

50 April 1996 Hewleti-Packard Journal

This was truly a joint engineering project between four large
organizations, which required a whole new software devel-
opment infrastructure and many new processes. This project
was also the collision of four different corporate cultures and
standards of practice on project management and software
development processes. This article examines some of the
challenges that needed to be surmounted, and the processes
that needed to be created before CDE could be successful.

History

The odyssey of CDE began in the summer of 1992 when HP
and IBM began exploratory discussions on the possibility of
creating a standard UNIX environment. In the months that
followed they were joined by Sun Microsystems and the
UNIX Software Labs (USL), which was later acquired by
Novell. The agreement between these companies to work
together marked the birth of the Common Operating System
Environment (COSE) , and more specifically, the Common
Deskiop Environment (CDE).

However, on the CDE side, agreeing to work together may
have been the easiest part of the process. Deciding what
technology fragments would be the starting point, what
would be the minimum acceptable functionality, and who
was responsible for what pieces took a significant amount
of difficult discussion. As we worked through these and
other difficult issues it became very obvious that good com-
munication would be what would make CDE successful.

To facilitate this communication and to get things going, the
following teams (with a representative from each company)
were established:

Management. The management team dealt with contract
issues and major allocation of resources (like funding for
localization). They were the oversight team and all other
committees reported periodically to the management team.
Formal project checkpoints were presented to this team and
when necessary, they acted as the arbiter for other teams
when a deadlock occurred.

Product Description and Requirements. This team was the day-
to-day project management team, handling issues such as
staffing, technology ownership, and blending the technologies
offered from each company in the new UNIX deskitop. They
were responsible for finding owners for new or unplanned
work items and defining the content and scope of the project.

© Copr. 1949-1998 Hewlett-Packard Co.

Process. The process team was the heart of the CDE project.
It was the job of the process team to determine the software
life cycle and defect tracking system to use and the mecha-
nism for tracking and reporting schedule information. They
defined the hardware configurations that needed to be
exchanged between each company. Their most challenging
task was to figure out how to allow access to a single, live
source code tree for each pariner through their corporate
firewalls without violating security constraints. This team
was essentially responsible for creating a whole new set of
policies that would allow four engineering teams from four
different companies to work together productively.

Architecture. While the intent was to use as much existing
technology as possible, it was important to determine how
that technology would be joined together and then identify
what new functionality would be needed to ensure a clean,
well-integrated desktop. It was the job of the architecture
team to ensure that these things happened and to ensure
that individual component owners provided the minimum
feature set required by each of the four companies.

Standards. From the beginning it was understood that the
CDE project would work closely with X/Open® to submit
design documentation and later specifications to help CDE
quickly become an industry standard. The standards team
was responsible for working with X/Open and other stan-
dards bodies to understand their needs and processes and to
ensure that we could present our materials in a useful way.
This team also acted as a channel for feedback to the other
CDE teams.

User Model. Each partner in the CDE project had a signifi-
cant interest in defining the direction of the user model for
the desktop (i.e., its look and feel). IBM had CUA (Common
User Access) and each of the other participants had been
shipping desktop products with fully defined user model
policies. The goal of this team was to resolve disagreements
about the general user model, as well as deciding specific
questions about component behavior and its level of integra-
tion with the system.

As this first set of six teams began to interact and started to
deal with the issues, it quickly became evident that we
needed more teams to focus on specific issues. Thus, the
following teams were added:

Build. This team was responsible for keeping the multi-
platform builds healthy at each site and making sure that the
code was built successfully on a nightly basis.

Learning Products. This team decided what online help and
hardeopy manuals would be written, who would write
manuals, what tools would be used, the schedule for manual
review, and so on.

Performance. Those of us shipping large UNIX desktops had
a wealth of experience which showed the need to be very
mindful of performance issues early, when it was still pos-
sible to correct performance problems. This team was re-
sponsible for establishing benchmarks (i.e., user tasks to be
measured), finding bottlenecks in the system using perfor-
mance tools, and working with the individual component
owners to fix problems.

Internationalization. This team was responsible for guiding
the development teams to ensure that components were

properly written so that they could be localized and that
policies were followed so that the CDE code worked on all
four platforms and followed industry-standard practices in
this area.

Localization. This team managed the process of localizing
message catalogs, online help, and hardcopy manuals. They
were also responsible for deciding on the subset of target
languages, finding translators, getting translations into the
source tree, and ensuring that the translations were correct.

Test. This team decided on the test tools to be used, defined
and implemented the test scaffold, and created the automated
and manual tests that would prove the quality level of the
desktop.

Change Control. Halfway through the project, this team was
set up to ensure that changes were made to the code ina
thoughtful and controlled manner and that the appropriate
trade-offs were considered. The change control team was
instrumental in ensuring that we were able to meet a variety
of delivery dates with stable code. In the final months of the
project this team played a critical role in determining what
defects would be fixed in CDE 1.0 and what defects and
design issues would be postponed until a later release of
CDE.

Aside from these teams, many of the component owners set
up small intracompany teams to better ensure that they
were meeting the needs of the other participants. Examples
of this were the teams doing the terminal emulator (DtTerm)
and the team doing the desktop services (like drag and
drop) who held weekly telephone conferences to ensure
that there was acceptance from the other partners on their
directions and implementation choices.

All of these teams held weekly phone conferences and ex-
changed email almost daily—especially the build and pro-
cess teams. Communication was the most difficult part of
this project. Despite the fact that we spent communication
resources lavishly, communication breakdowns were the root
cause of many of the misunderstandings and functionality
problems that arose during the course of the project.

Some teams worked better than others. For example, the
process team worked extremely well together throughout
much of the project, whereas the test team seemed to have
more than its share of problems. Partly, this was caused by
the sheer enormity of the test team’s task. They were faced
with the challenge of creating from scratch a whole test
scaffold and infrastructure that would meet the needs of all
four participating companies. While AP1 testing is a relatively
straightforward process, testing GUI clients is not. Also, the
test team was in the unfortunate situation of having to evolve
processes as we went along which caused a good deal of
rework and other problems. A discussion about CDE testing
is provided in the article on page 54.

Those teams that worked best did so because the individuals
involved had the time to come to some level of trust and
respect for each other. They learned to seek a common
ground and attempted to present a common position to the
other committees. A surprising but significant problem for
several teams was the amount of employee turnover resulting
from reassignments and resignation. This always caused a
team to go through a reset, which was very time-consuming,

April 1996 Hewlet-Packard Journal 51

© Copr. 1949-1998 Hewlett-Packard Co.

New Processes

Some of the individuals in each participating company were
very devoted to their own internal processes. Thus, in creat-
ing new joint processes for CDE we often faced severe inter-
nal resisiance from the engineering teams at all sites. This
was partly because we were all operating under very tight
schedules and didn't have the time to cope with new ways of
doing things. Another factor was that, not only did the teams
have to learn new processes, but they also had to defend
these new processes within their oerganizations.

By the end of the project we did evolve an effective method-
ology for implementing new processes across all four com-
panies. The first step involved communicating to everyone
concerned (engineers, project managers, etc.) the new pro-
cess and why it was selected. This was done well in advance
of when we wanted to implement the process to allow for
questions and issues to be raised at all levels and for the
process to be tuned il needed. Later the process team per-
sonally visited and got acceptance from all of the project
managers so that they would cooperate in implementing
{and enforcing) the new process. Finally, it usually involved
some degree of follow-up from the process team to make
sure that the teams were fully engaged in the new process,

A Single Source Tree

The time available to accomplish the project was incredibly
short, and the split of technologies was very interconnected
so that it was not possible to work separately and make
code deliveries to each other. We were all dependent on new
functionality being created by the other teams and needed
that functionality to fulfill our own objectives. Also, all of
the partners wanted to be on an equal footing with regard to
aceess to the source tree, It was conceivable that people
could be working in the same areas of the tree so we had to
prevent multiple people from working on the same code at
the same time.

We agreed that we would put together a single shared source
tree that would be live, in that when an engineer checked
out a file at Sun Microsystems, it was immediately locked to
all of the other partner sites. The major obstacles to imple-
menting this were our corporate firewalls and the bandwidth
between our sites. After significant research (and a lot of
help from our respective telecom departments) we put in
place a frame relay system between all sites. This gave us T1
(1.544 Mbits/s) bandwidths. While it took a long time to ac-
quire the hardware and work the issue through our various
corporate security departments, the efforts paid off hand-
somely. This was a critical key success factor that really
enabled joint development between the various companies.

To overcome the firewall problem we created a separate
suspect network at Corvallis which had a single machine on
it. This machine was the keeper of the golden CDE bits. This
machine was set up to only allow UNIX socket connections
from four specific machines (one from each site). A daemon
written in Perl® ran on this machine and handled RCS (re-
vision control system) requests coming in from each site. At
each partner site a series of Perl scripis were written which
wrapped the RCS functionality. When an engineer did a

* Perl (Practical Extraction Report Languane) is 8 UNIX programming language designed to
tandle system-administrator functions.

52 April 1996 Hewlett-Packard Journal

checkout, the request was funneled through another firewall
machine to the CDE source machine, which did the appro-
priate checkout, encrypted the file, and sent it to the re-
questing machine where it was decrypted and deposited in
the appropriate directory. Each night the CDE source ma-
chine created a tarball of the entire source tree and passed it
along to each partner site where it was built.

Each of the participating companies provided approximately
six machines to each partner for build and test purposes.
Every night each company built on all four platforms. Each
company had to develop significant expertise in developing
software on multiple platforms. This simultaneous cross-
platform development was not only a necessity, but also
very expensive. As engineers made code changes they were
required to build and run the new code on all four platforms.
Thus, it took a long time to make changes to the code and
check it in. The advantage, of course, was that by ensuring
that the code always ran on multiple platforms, we didn’t
find ourselves in a situation where we had to redesign and
rewrite functionality at the end of the project to work within
different operating system configurations.

Decision Making

It was clear from the beginning of the project that we would
not get anywhere if we used a consensus model for decision
making. Therefore, we decided to use essentially the model
created by the X Consortium. In this model a representative
from a single company became the architect for a technology
(e.g., Motif toolkit) and was responsible for designing, docu-
menting, and creating a sample implementation of a compo-
nent or library. Although the architect was required to be
open Lo input for requirements and needs from the other
participants, the final say regarding that technology was the
responsibility of the architect.

This was the model we agreed to use and in large part we
were successful at using it. However, there were times when
we ran afoul of this process and the technical decisions of
component owners were challenged by one or more of the
other participants. These challenges often were escalated all
the way up to the management team where, because they
were distanced from the technical problem at hand, it took a
significant amount of time to work through the issues. It
was recognized by all parties that future efforts would make
better progress by defining a single poini of authority for
making final, binding rulings on technical issues.

Scheduling

When the COSE initiative was announced, the schedule for
the CDE project was also announced. This schedule was
intended to be very aggressive and also reflected the initial
assumption that 50% of CDE would be existing code with
only 10% new code. The reality was that the melding of the
technologies from each of the participants required extensive
rewrites in many areas. Also, the functionality was somewhat
fixed since none of the participating companies felt they
could end up with a desktop that was less functional than
the ones they were currently shipping.

Starting with the desired end point, the process team created
a schedule that had alpha, beta, and code complete mile-
stones followed by a final test cycle. We needed to define

© Copr. 1949-1998 Hewlett-Packard Co.

exactly what each of us meant by these milestones in terms
of functionality, defect status. localization status, and
branch flow coverage. We created checklists for component
owners to fill out and attempted to normalize the data we
received from individual project managers.

These first scheduling efforts were flawed for a number of
reasons. The first was that coordinating the efforts of four
different companies was very time-consuming. Second, we
were unprepared for the scope of new processes we would
have to put into place and the amount of time it would take
to implement them. In some cases we made the classic soft-
ware management error of trying to legislate the schedule,
functionality, and effort with predictable bad resulis.

We eventually understood the kind of overhead we were
dealing with and were able to create a viable schedule that
was used to good effect.

Conclusion

There were hundreds of aspects of the CDE project that
could have been discussed. Only those issues which in retro-
spect seemed most important have been discussed. Partici-
pating in a multicompany joint development project is a very
challenging affair. It requires a willingness to rethink all of
the familiar software development processes and tools and
to come up with new solutions from both management and
engineering teams. It requires an open mind in listening to
what each participant is saying since they may use the same
terms but with different contexts and meanings. The impor-
tance of communication at all levels cannot be stressed
enough. Taking the time to build personal relationships at all
levels will pay back dividends over the life of the project.

In the best of circumstances, the work being done by the
other partners must be constantly monitored to minimize
misunderstandings, ensure that commitments are being met,
and help shape the inevitable trade-off decisions that occur
during a project. Also, it's important to plan for the fact that

© Copr. 1949-1998 Hewlett-Packard Co.

disagreements and escalations will happen in the most ami-
cable of projects. While it means some loss of control, creat-
ing a neutral single point of authority for resolving these
escalations will save enormous amounts of time and help to
preserve the necessary good will between the participants.

It's natural to underestimate the time it will take to put new
processes in place, to develop software on multiple plat-
forms, and to communicate and work out issues with joint
development participants. This tendency to underestimate
Jjoint project overhead will also appear in individual engi-
neer’s schedule estimates. Of course it is absolutely neces-
sary that the engineering teams have the opportunity to
resolve ownership and functionality and do a bottom-up
schedule that can then be discussed in terms of trade-offs
of functionality, performance, and other features before the
project schedule is decided upon.

In most cases the work will be done by engineering teams
from a variety of geographic locations. Usually these teains
do not know each other—except as the competition. Yet
they will need to work productively together to make each
other successful. It will almost always be worth the time and
money to bring the teams together face to face to build a
relationship that will prevail through the inevitable tensions
of a joint development project.

Finally, it's important to realize that, despite the problems,
joint development can be done. Further, because of the
diversity of experience and abilities of the different partici-
pants, the end result will be richer and appeal to a broader
set of customers.

HP-UX 8.* and 10.0 for HP 8000 Senes 700 and B00 computers are X/Open Company LUNIX 83
branded products

UNIX is a registered trademark in the Uinited States and other countries, licensed exclusively
through X/Open Company Limited

X/Open is a registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries

0SF, Motif, and Open Saftware Foundation are trademarks of the Open Software Foundation in
the LLS A and other countries

April 1996 Hewlett-Packard Journal 53

Design and Development of the

CDE 1.0 Test Suite

Testing a product whose parts are being developed in four different
environments that have different test tools and test procedures requires
setting some rigorous test goals and objectives at the beginning of the

project,

by Kristann L. Orton and Paul R. Ritter

The Common Desktop Environment (CDE) test team was
given the challenge of designing and organizing the develop-
ment of an automated regression test suite for CDE 1.0 com-
ponents. This project contained all the usual problems in-
volved in designing and creating a test suite for a large and
complex desktop environment, plus a number of challenges
that came up because the development was a joint project
between four different companies. The article on page 50
provides some background about the creation of the CDE
project and the four companies involved.

Several goals for the tests were developed early in the project
that influenced the design of the test suite, the choice of
software testing tools, and the implementation of the testing
process. The rationale for some of these objectives will be
developed in more detail in later parts of this article.

In setting the goals for the test suites, we determined that
they had to be:

Easy to develop. There wasn't a lot of time in the CDE
schedule.

Robust. Tests shouldn't start failing because of a minor
visual change, a different font selection, and so on.
Reliable. Tests should find the defects located in the code,
but they should not report a defect when there isn't one.
Consistent operation. Even though four companies would
be developing tests, individuals at each company had to be
able to run the entire test suite, not just the parts written ai
their own site. It was not acceptable to make someone learn
four different ways to run tests.

Consistent design and implementation. At the end of the
joint development, personnel at each site would get engi-
neering responsibility for the whole suite, including those
portions written at other companies. It was important that
the tests be written such that an experienced test engineer
at one company could easily understand the internal work-
ings of the tests written at other sites.

Portable. The test suite not only had to run on each of four
reference platforms (one from each company), but also had
to be easily ported to other nonreference platforms.
Maintainable. The test suite was not just for the CDE 1.0
sample implementation, but was to be the basis for company
products or later versions of CDE.* It had to be relatively

* After the sample implementation of COE, each participating company was expected to go off

and productize their own COE desktop

54 April 1996 Hewleti-Packard Journal

painless to update the tests if they had defects, enhance the
test suite for new functionality, and so on.

CDE Components

The CDE components were the software under test (SUT)
for this project. From a testing point of view, CDE compo-
nents can be divided into three types: CDE API (application
programming interface) components, CDE GUI (graphical
user interface) components, and graphical APl components.
CDE API components have no effect on the desktop, that is,
no visual impact. An example of a CDE API component is
the ToolTalk® APL** CDE GUI components present desktop
graphics that can be manipulated by the user, resulting in
graphical changes on the desktop. Examples of CDE GUI
components are the file manager and the icon editor. Graph-
ical APl components consist of a library of functions like a
standard API, except that calls to these functions usually do
result in visual changes on the desktop. Examples of this
type of CDE component include the DtHelp library and the
DtWidget library.

Tools, Utilities, and Environment

This section describes the tools selected for the test suite,
the utilities created to augment the tools, and the structure
of the test implementation and operating environment.

Synlib

The Synlib API was one of the most important tools used in
the development of the test suite. Synlib is a C-language
interface that provides a means to simulate programmatically
the actions of a user with a GUI It also contains features
that allow the test program to monitor the state of the desk-
top, such as watching for windows to appear or disappear,
checking the title of a window, or checking other desktop
features.

Synlib was used to develop all the tests that required either
manipulation of objects on the desktop or verification by
checking the state of objects on the desktop. This turned out
to be the majority of the tests. The CDE test team chose
Synlib as the GUI test tool because:

** ToolTalk is the messaging system used by CDE

© Copr. 1949-1998 Hewlett-Packard Co.

« Synlib is portable. The only requirement for using Synlib is
that the server be equipped with either the XTEST or the
XTestExtension! extensions,® which are used by Synlib to do
such things as simulate keyboard and mouse events. Synlib
was functional on all partner systems.

« Synlib is unencumbered. Synlib was developed at HP and
was made available in source code form to each of the CDE
partners without charge.

« Test development could begin immediately. Engineers could
begin writing tests based on the components’ specifications.
Since Synlib is not a record-and-playback method, a func-
tioning CDE component is not required for initial test
development.

¢ Synlib reduces dependence upon image capture and com-
parison. Many of the earlier tools for testing GUI components
use a method that depends heavily on capturing correct
screen images during an initial phase, then comparing that
image to the screen in a later test run. Experience shows
that this method is quite fragile and likely to produce many
false failure reports. With Synlib, other ways of checking for
screen state make the need for image capture and compari-
son much less important,

= Synlib cantains a feature that allows position independent
manipulation of desktop items. A special data file called a
Jfocus map is created that defines the keyboard traversal for
selting focus fo items within a window (Fig. 1).** With the
focus map, the test program can set the keyboard focus to a
particular button or text field without needing to know its
physical location in the window. Since the focus map is a
separate data file that is read by the test program, changes
in the component that result in changes in the traversal
order can be incorporated into the tests by editing the focus
map file. Recompiling the test is not necessary. Since the
focus map file is platform independent, there only needs to
be one focus map file per platform.

TItems that cannot be reached by keyboard traversal need a
position. Synlib features the concept of an object file. This is
a separate data file that defines locations (x,y pairs) or re-
gions (rectangles) relative to a window origin (Fig. 2). The

* XTest and XTestExtension? are industry-standard extensions to the ¥ Server, which allow a
client access to server information
** Kayboard focus is the term used to describie which of possibly several objects ina window
will receiva the results of keystrokes. For example, a Matit window may have three different
text fields, and the field that has the keyboard focus will get the characters typed by the user

I Button 1][Button 2]

| Bumon3 | | Butons |

Text
Field 1

(FocusGroup One

(FocusMap MotifGui

mouse pointer can be directed to an item by referring to its
location defined in the object file. Any change in a compo-
nent that changes locations requires that the object file be
edited, but the test code remains position independent. Also,
since the locations vary somewhat for each platform. there
needs to be one object file for each platform.

The Synlib test tool is described in the article on page 62.

The Test Environment Toolkit

The test environment toolkit (TET) was chosen as the fest
hamness for the CDE test suite. C-language or shell-based
tests were installed in the toolkit and run using the toolkit's
ufilities. TET is maintained by the X Consortium and is avail-
able in the public domain, is portable across many platforms,
and has a fairly large group of users. In the X world TET is
becoming a de facto standard for test suites.

TET brought two important pieces of functionality to the
CDE project. First, it provided an API for journaling, which
gave us a standard way to report test results. This was an
important aspect in keeping the tests consistent because no
matter which site wrote the test, the results journal would
have the same format and could be interpreted and summa-
rized using the same tools.

The second piece of functionality provided by TET was a
mechanism whereby tests could be collected into groups
(called scenarios) and run as a set with a single command.
Since the complete test suite for CDE contains literally thou-
sands of individual tests, the ability to run a batch of tests in
a single step was essential.

Test Framework

The selection of TET as the framework toolkit for our test
environment meant that we had to choose a specific struc-
ture for our test tree. This gave us a starting point for build-
ing our test suite and provided a logical structure that was
expandable and at the same time, robust and maintainable,
Fig. 3 shows our test framework.

Located at the root of the tree were the test and environment
configuration seripts and libraries containing common APIs.
These utilities and libraries were available for use by all of

the test suites and, with a few exceptions (Synlib and TET),
were developed jointly by the CDE test team. Each function

Fig. 1. An example of a focus
map. For keyboard traversal pur-
poses, the Motif client can orga-
nize its objects in foeus groups. In
this example there are three
focus groups. The focus map file
allows the test designer to name
the nbjects that can receive input
focus and define the correct com-
hination of keystrokes (tabs and
up and down arrows) needed to
shift the focus from one object to

| Button 6] (Fﬁi‘;iitpm;e;onz BEEtN3: SetLntr) another. For example, the test
(TextFieldl)) designer can specify that the
| Button 7] {FocusGroup Three input focus should be moved to
(Button5 Button6 Button7))) object MotifGui, Three.ButtonB without
e = any information about the loeation
Motif GUI Window Focus Map of the object,

DB Hewleti-Pacles "
© Copr. 1949-1998 Hewlett-Packard Co. April 1996 Hewlett-Packard Journal 55

xly 20 a0 60 80
If_ o
20
| Button 1] [Button 2]
40 - I
| Button3] | Button 4 I
60
Text
8 Field 1
100 . | Location Buttonl
| | Button 5] Location Button2
| : | Location Button3
2
120 [A] Location Buttond
140 Location Buttonb
l Button 7] Location Buttoné
Location Button7
Motif GUI Window

and binary had to have, at a minimum, an associated man
page describing its functionality and use,

The following sections describe the test tree components in
Fig. 3 as they were used for testing CDE 1.0.

Libraries. Synlib and DtTest are described in more detail in
other sections of this article. The tet_api library was modified
slightly for our environment, adding code that allowed the
tests to be run from a build tree. The area occupied by the
build tree was not writable by the test user, so any Lests
could not expect to use that space for creating test run data.

Utilities. The utilities were important for providing a common
way for tests to set up and clean up their environment. The

Region TextFieldl 37 62 90 B0

Object File

20 20
60 20
20 40
60 40

Fig. 2. An example of an object file.
The test designer can use the loca-
tion in the object file to set the
focus to Button6 as is done in Fig. 1.
However, if the GUI is redesigned
and objects are moved, the test will
fail until the object file locations are
updated,

20 100
20 120
20 140

build_scen script was used to create a new TET scenario file
by searching through the test files for tet_testlist structures,
preventing the tests and their associated scenarios from
getting out of synchronization. The TET journal filter
searched through the usually huge journal file and separated
failures and their associated assertions, improving the effi-
ciency of test result analysis.

Dt Config. The scripts in the Dt Config directories contained
environment variables used by TET and Synlib and for satis-
fying platform-specific environment requirements. There
was a convenience function in the DiTest library that set up
global pointers to these environment variables, making
them accessible from any test.

Global Directories Component-Specific Directories
Synlib
m
Files
+ Sun0S » Synlib » Test Case <cde_componentfm> « Sun0S
s AIX » DiTest Controller (tce) * HP-UX
+ HP-UX * tet_api « huild_scen « AIX
« UNIX_sv = TET Journal Filter * UNIX sv
* disession Setup
and Cleanup
Subdirectories for Each
CDE Compaonent
<cde_componest> L]
Test Test Synlib
Libearies fecus ol .sn'I:;‘Zﬁ
Maps Files
* Sun0S « TestSource « Exec Tool <Test namefm> « Sun0S
« HP-UX * Test Output « Test Setup « HP-UX
= AIX » TestData « TestCleanup « AlX
* UNIX_sv and Images * UNIX_sv
Fig. 3. Shared test tree framewark
56 April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The other pieces of the tree are specific to each component
test suite. A basic map of each component lives at the top of
the tree, providing maximum leverage for suites testing inter-
client communication and doing any system testing.

Focus Maps. Each CDE component having a GUI front end
was required to provide a focus map file that was accessible
to all the test suites. For example, the calculator component
had a file in the directory named dtcalc.fm containing the key-
board focus map for the caleulator GUL

Synlib Object Files. Each CDE component provided an object
file containing aliases for the interesting x,y locations in its
GUL Since these objects were platform dependent and var-
ied greatly from platform to platform, object files had to be
generated for each of the reference platforms.

Component Suites. There was a subdirectory under comp_suites
for each GUI and library in CDE. For most suites, this was
the top of the test tree branch. For suites having functionality
that was more complex than could be encompassed in one
suite, this directory contained several subdirectories for
better granularity of the covered functionality. A good exam-
ple of this is the CDE help component, which is made up of
a help viewer and several APIs. This suite was broken into
four subsuites with a top-level library and test client that
was accessible by all suites (Fig. 4).

Each test suite directory had a regimented structure so that
the suites could be efficiently maintained in a consistent
manner. At the same time, we tried to provide some flexibil-
ity so that creative solutions could be engineered for the
myriad of difficulties faced by the test-suite developers.

Test Libraries. As the test developers learned the test tools
and framework, they found a lot of commonalties among the
tests in their suites. These commonalities were gathered
into a common library so they could be used by other tests.
Some of these commonalities included the way tests were
started and closed, and the verification methods used on
components,

Test Subsuites
HelpApi, HolpCanvas, HelpGui,

HelpView

Test Clients. Many of the suites that tested the CDE APls used
a test client to exercise their code and verify their assertions.
For example, 1o test the subprocess control daemon, a cou-
ple of clients were developed to send and receive messages,
verifying the validity of data sent at the same time.

Test Config. Like the Dt Config scripts described above, Test Con-
fig scripts set up environment variables that were optionally
platform dependent and used by the tests. An associated
function was added to the test library to set up environment
variables as global variables accessible within their tests in
the same manner as that in the DtTest library.

Test Focus Maps. The majority of the test focus maps under
this subdirectory were used for defining the keyboard tra-
versals of test clients,

Test Synlib Object Files. Object files contain aliases for x,y
locations in GUI components. Test developers used these
location aliases to define areas in the GUI that needed to be
tested for cut and paste and drag and drop operations and
regions for image comparisons.

Shared Images. Although we encouraged test developers to
limit the number of image comparisons, this method had to
be used when validation was not possible by any other
means. The next best thing was to reuse images so that
more than one test could use the same image for verifica-
tion.

Tests. The tests directory contained the tests and other files
that made up a test suite. A README file in the directory de-
scribed the test suite structure and any special environment
considerations that needed to be taken into account when
running the tests. Optionally, there was a directory at the
top level that contained manual test descriptions. The tests
were intended for tests in which automation was not feasible
(e.g., testing the animation look when a file was dropped on
a drop site).

v @
fih
{libcommon.a)

helpsetup helprester

Focus Map and Object
Files for Test Client.

Test man Tesi
Pages Volumes

Sample man Pages and
Help Volumes Used by
all Test Suites

Fig. 4. Component suite far CDE
help.

April 1996 Hewlett-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

The test source code lived in the tests directory. This direc-
tory contained as many subdirectories as needed. Developers
were encouraged to divide their tests into groups based on a
component’s functionality, making it easy to determine
which tests covered which piece of code. This directory also
contained an image directory for images that applied to only
one assertion and a data directory that contained validation
data such as window titles and text for text comparisons.
The test output directory was a place holder used by the test
case controller (tcc) at run time. The tests stored informa-
tion about failures in these directories and the test case
controller copied them into a resulis directory at run time,
facilitating easy results analysis. The following listing is an
example of a typical test source file,

#include <DtTest.h> /* DtTest library header */
/* Forward declaration of routines */
statiec void tpl(); /* test purpose one*/
static void startup().,cleanup(); /*TET startup
and cleanup routines* /

/* Initialize test environment toolkit data
structures */
void(*tet_ startup) () startup();
void (*tet_cleanup) () cleanup();
struct tet testlist[] = {
{ tpl, 11},
{ NULL, O }

}:

static wvoid startup()
{
DtTestStartup();
DtTestGetTestEnv();
}
static void cleanup()
{
DtTestCleanup();

static wvoid tpl()
{
DtTestAssert(l, DT _ACCEPT | DT REGRESS,
“Asgertion text here.”) ;
/* Code for validation of the assertion would go
here. */
DtTestResult (TET_ PASS,
“Assertion passed.”);
}

Scripts. Many of the test suites used the test case controller
mechanism that allows the tests to define their own execu-
tion tool. This seript, found in the seripts subdirectory, did
such things as start the component with special options and
set test-specific environment variables. Additionally, a test
developer could define a separate script for test-specific
setup and cleanup that was called from within the exectoal.

The DitTest Library

Early in the CDE test development process, it was noted
that certain combinations of TET or Synlib functions were
commonly used as a unit. This led to the creation of the
DtTest library which provided a more efficient mechanism for
accessing these units in a uniform manner.

This library is a set of convenience functions developed to
supplement the basic TET and Synlib functionality. These

58 April 1996 Hewlett-Packard Journal

functions provided an easier way for test developers to per-
form common testing practices and support the CDE testing
methodology. Use of the DtTest library functions also helped
enforce internal consistency among tests developed at dif-
ferent sites.

The convenience functions that augmented TET functionality
made it easier to print messages in the journal file, enter the
test result, and control the operation and execution of tests.
The DtTest library provided an initialization and a cleanup
routine that TET did not provide, and a way to get the values
of the CDE environment variables.

Funetions to supplement Synlib were focused on two areas.
One was to deal with text in a GUI text field or text widget.
Funections were written to place text, retrieve text, or re-
trieve and compare text. The second area dealt with tech-
niques for screen image capture, storage, and comparison.
These functions took care of image naming conventions,
storing images, and saving image analyses when image
comparisons failed.

The CMVC Defect Report Mechanism.

The tests were programs, and like any set of programs some
of them contained bugs. Often the defects were found not by
the originators of the tests, but by other partners during test
runs. After some unsuccessful attempts to keep track of
defects and defect fixes via email and phone conversations,
the test team started using the Code Management and Version
Control, or CMVC tool from IBM. This method of reporting,
tracking, and verifying defects and fixes was used for all
CDE components,

Code Coverage Tools

Code coverage tools provide coverage statistics for a set of
tests. They determined how much of the tested component’s
code was actually exercised during a test run. Typically
these tools produce coverage statistics in terms of the num-
ber of branches taken, the number of functions called, and
so on. The CDE test team needed to get coverage statistics
since these metries were one of the measures of a test
suite’s completeness.

There was no single code coverage tool that was generally
available to all of the CDE partners, but each had a solution
that worked on their platform. Analysis of each of the differ-
ent tools showed that they produced results that were com-
parable. The test team agreed that all partners would use
their own code coverage tools to provide test coverage sta-
tistics for their own component test suites. These metrics
would be provided at certain developmental milestones to
ensure that adequate progress was being made toward the
coverage goals.

Test Design Objectives

Early in the project, the test team adopted a set of high-level
design objectives. These objectives were based on the testing
experience that was brought to the project from the differ-
ent partners. Although team members from each company
had considerable software testing experience, the philosophy
and testing methods used by each company were often quite
different.

© Copr. 1949-1998 Hewlett-Packard Co.

The test team did achieve agreement on a number of basic
objectives and goals, which resulted in the following high-
level test design goals.

Formal Test Plan and Test Cases. Each CDE component was
required to have a formal test plan document, written by the
test engineers who had responsibility for that component.
The test team provided a template document (see Fig. 5).
The test plan was written before test development began.
One of the sections of the test plan contained a list of test
cases for the component. These test cases were based on
the contents of the component’s formal specification docu-
ment. The rationale for this requirement was to get test
developers to plan their components’ test suite carefully
before writing any tests.

Assertion-Based Testing. Tests had to be written using an
assertion verification methodology. With this method a test
begins with a statement of functionality about the component
that can be answered true or false. For example, “Clicking
mouse button one on the cancel button will dismiss the dia-
log box,” or “Calling the OpenFile function to open file fao in
read mode will return error code NoSuchFile when foo does
not exist.” Following the statement of assertion in the test
comes the code necessary to perform the action implied in
the assertion (e.g., click the cancel button, call the OpenFile
function). Code to verify the results of the action would
report a pass or fail to the journal file.

Testing Based on Component Specifications. The test team
strongly encouraged that the design of the initial tests be
based on a component’s specifications. A component was to
be treated as a black box until all the functionality deseribed
in the formal specification document was tested. This ap-
proach ensured that when a component was out of phase
with the specifications, an error would be reported. Resolu-
tion of the error sometimes meant updating the specifica-
tion, ensuring that changes would be captured in the docu-
mentation.

Testing Based on Code Coverage Goals. The test team realized
that formal specification documents cannot cover every
single detail, and that a test suite based only on the document
contents would fall short of achieving the test coverage goals.
Thus, the team decided that after the functionality covered
in the specification document was incorporated into tests,
the test suite’s code coverage would be measured. If coverage
fell short of the coverage goals, the code could be examined

Common Desktop Environment
Functional Verification Test Plan

1.0 Introduction — Define the scope of the testing and
the components tested.

20 Test Environment — Define hardware and software
requirements.

3.0 Test Matrix

3.1 Test Strategy — Plan of attack, including the
functionality covered.

3.2 Test Cases — List of test cases, identifying
interoperability, 118N, stress, and interplatform
tests.

33 Untested Code

Fig. 5. Outline for a test plan.

to determine how to design new tests that would exercise
code branches or functions missed by the initial test set.

Test Suite Completeness Based on Coverage Statistics. A com-
ponent test suite would be considered complete when it
tested all the functionality described in the specifications
and reached the minimum coverage goals set by the test
team. The initial coverage goals for all components were
that 85% of all branches would be hit at least once, and 1009%
of all internal functions would be called at least once. There
was an additional requirement for API components that
1009 of all external (developer visible) functions would be
called at least once. Typically these statistics would be pre-
sented as a triplet of numbers (e.g., 85/100/100).

This was one of the goals that was revisited during the proj-
ect. Although there was not total agreement in the test team,
the majority felt that writing tests for GUI components was
more difficult than writing tests for nongraphical API com-
ponents. As a result, the GUI coverage goal was lowered to
T0% overall, with only 10% required in automated tests.

Automated Tests. The objective was to create an automated
regression test suite. As the test plan overview document
stated, “The expectation is that all tests are automated and
that only where absolutely necessary will manual tests be
acceptable.” However, as noble as this goal was, we had to
lower our expectations a bit. By the end of the project the
test team was still requiring automated tests for the AP1 and
graphical API components, but for GUI components, the
requirement was that the automated tests provide at least
409 branch flow coverage. The remaining 60% branch cover-
age could be obtained by manually executing tests based on
either the list of test cases in the test plan or in a separate
test checklist document.

Minimum Reliance on Screen Image Capture and Comparison.
Experience with automated testing of desktop components
showed that test suites that relied heavily on screen image
capture and comparison were found to be unreliable—they
would generate many false failures. The new Synlib test tool
contained features that could be used to verify a correct
desktop state without resorting to comparisons to previously
saved “golden” images, and the test team aggressively inves-
tigated and promoted these techniques. It's estimated that
the CDE test suite contains less than 10% of the “golden”
images that would be required if a record-and-playback tool
had been used.

Test Development Process

Once the CDE test team had straightened out the details of
the testing framework and produced a set of guidelines for
the test developers to follow, it was time to implement the
solution. We set up test goals for each of the component
development milestones. We jointly developed a training
course designed to get test developers familiar with our pro-
cess and test tools as soon as possible. Lastly, we set up a
process for each of the members on our team to follow as
we accepted the test suites for incorporation into the CDE
sample implementation test suite.

Each CDE component had functionally complete, function-
ally stable, and code complete milestones. Each of these

April 1996 Hewlett-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

milestones had test coverage goals as shown in Table I. An
API would be functionally stable when it had 70% coverage.

Table |

Test Coverage at Component Milestones
Milestone API GUI External Internal
(Breadth) (Depth)

Functionally 50% SEH/10% 90% T0%
Complete
Funetionally T0% 40% 100% 90%
Stable

ode 85% T0% 100% 100%
Complete

* Five tests defined or 10% coverage, whichever is greater

When measuring the source code coverage of a test suite,
besides the base number of overall coverage (lines of code
hit divided by the total lines of code—the numbers in the
GUL and API columns in Table I), there is also a need to look
al the external or breadth coverage. For an API, this was the
number of external functions called divided by the total
number of external functions. For a GUI, this was the num-
ber of functional modules exercised divided by the total
number of modules (i.e., Were all the buttons in the dialog
box hit?). Internal or depth coverage is the number of inter-
nal (nonpublic) functions called divided by the total number
of internal functions.

All components were expected to have a base level of auto-
mated acceptance tests, but GUIs could make up the rest of
their test coverage through either automated tests or well-
defined manual tests. For some components, such as the
front panel which had to test the animation of the subpanels,
creating some scripts that would be run by hand and manual
verification of the results was the best way to go. APIs were
expected to provide all automated tests.

As components reached one of their milestones, the test
Leam representative from the company responsible for the
component would check for more test development specific
milestones. These milestones were put in place to ensure
that the test team’s final product was a robust, maintainable
test suite.

The first item the test team checked for at each milestone
was a complete test plan. It was important that the test plan
thoroughly define the testing to be done since as a last resort,
we would use the list of test cases in the test plan as a list of
manual tests to complement the automated tests.

The second task the test team performed at the milestones
was a review of the automated tests. We developed a criteria
checklist that would check for the following:

Acceptance tests. The priority for the functionally complete
milestone was to have automated acceptance tests that
could run in less than an hour.

Assertions. Assertions were checked to be sure that they
described the component’s functionality and clearly stated
what was being tested and how it was being verified. This
was the hardest area for new test developers to learn and
the hardest for us to judge.

Use of the DiTest convenience functions, These functions
were developed to ensure consistent journaling of tests,

60 April 1996 Hewlett-Packard Journal

Ll

error handling, and naming conventions of image and data
files.

Use of copyright notices and standard header files. These
tests were done manually for the first five or ten tests for a
particular component. The test developers were expected to
use their “blessed” test suites as a template for the rest of
their tests.

Test suites must run autonomously. TET allows for a very
fine granularity of execution, down to individual test pur-
poses within one test case, A test purpose is a function
made up of an assertion, code validating the assertion, and
code for reporting the result. Test purposes could be
grouped together within an invocable component, ensuring
that they always ran together, but beyond that, these invoca-
ble components always had to be able to run on their own.
Test-specific libraries and clients. These were reviewed to
be sure that the library calls were documented in a header
file and test clients in a README file.

« Portability. Tests were reviewed for nonportable practices

such as hardcoded path names and x,y locations. The total
number of stored images was also expected to stay under 15
per test suite.

Test Execution. Tests had to run using the test case control-
ler on every platform.

As the project wore on, this checklist stretched out to 77
items and became affectionately known by the component
engineers as the “77 points of pain.” Our last milestone item

was Lo check that memory integrity was being checked.

About halfway through the project, test development efforts
really got into full swing at all the companies. We all used
temporary test engineers from time to time, and it was nec-
essary for the test team to get these new engineers familiar
with our methodologies as soon as possible, We jointly de-
veloped a two-to-three-day training course that new test
engineers took before getting started. This covered training
for the tools, how to write a good assertion, and creating
Imakefiles. By the third day, a test engineer would have com-
pleted at least one test and be familiar enough with the test
tree structure to get around without help. We used some test
suites that were good examples of the kind of tests we were
looking for, and we had an example test suite as a guide for
engineers to use for doing more complex functional verifica-
tion. Finally, we developed a “how to” document that archi-
tecturally described the test tree design and defined all of
the tools and interfaces available for use. Despite our best
efforts, it still took about two to four weeks for a new test
engineer to develop the ability to do a couple of test cases
per day.

Test Execution Cycles

Throughout the development of CDE there were several
places where we stopped and executed a common test exe-
cution cycle in which all CDE partners participated. These
test cycles were driven by events such as conferences and
trade shows, where the desktop was displayed, and mile-
stone completion dates. We developed a test report form so
that the results could be compiled in a consistent fashion
and results reported at each company. Journal files from the
test runs were checked into the tree so that it was easy to
check for both component and test regressions. After each

© Copr. 1949-1998 Hewlett-Packard Co.

.

test cycle, we would do a postmortem to improve the pro-
cess for the next test cycle.

Our first goal in the test execution arena was to define an
execution cycle that would enable each company to execute
the tests in a uniform, automated fashion. The phases of this
cycle are listed below. Phases four through eight were re-
peated for each test suite.

Phase | Machine Setup. This included seiting up the reference
platforms at each company, taking into account any hardware
or software requirements documented in the test plans.

Phase Il Test Environment Build and Installation. This was easy
for us since our test trees were set up to build on a nightly
basis in the same fashion as the source trees, The more diffi-
cult part was the installation. Since the test suites would
certainly run overnight, the build would interrupt the test
execution, causing indeterminate results. The short-term
solution was to turn off test builds during test cycles. For
the long term, we wanted to create an installation process as
automated as the build process.

Phase lll General Test Environment Configuration. This phase
included defining configuration data and executing any
setup programs, including:

Putting the general environment configuration defined in
the Dt Config files into the test execution environment
Setting up user permissions and scripts that must be run as
TOOt.

Phase IV Component Specific Test Environment Configuration.
Analogous to the previous phase, during this phase the com-
ponent’s test environment was set up, including:

Putting the component-specific configuration file into the
test execution environment

Starting the session using the dtsession setup seript

Running build_scen to create a current scenario file.

Phase V Run Test Cases. The tests were executed using the test
case controller, specifying an output directory for saving
results and a journal file.

Phase VI Test Results Evaluation. The journal files were run
through the TET journal filter script to find any test failures.

Phase VII Component-Specific Shutdown. Between each test
suite, the test environment was cleaned up using the same
seript as for setup. The session was stopped via the cleanup
dtsession script to keep the previous tests run’s exit state
from affecting the next test.

Each company had to check their test results into the
shared test source tree at the end of the test cycle. They had

© Copr. 1949-1998 Hewlett-Packard Co.

to state for each component the type of testing done (auto-
mated or manual), the current branch flow numbers, the
number of test cases run (number of test assertions), and
the pass/fail status for the total run. A postmortem was done
after the test cycle, looking in particular for test snites that
had different outcomes at the different companies. Defects
were filed against the test suites and the components, and if
a particular test cycle was targeiing a release, the defects
were fixed and the tests were rerun.

System testing was done more sporadically. We developed a
fairly extensive system test plan covering areas of interoper-
ability, 118N (internationalization), interplatform, and stress
testing, Unfortunately, these tests were never automated, in
part because of a shortage of resources. These tests were
more complex, and therefore more difficult to automate
than the functional tests. We did make sure that both inter-
operability and [18N functionality were tested with each test
cycle. We usually relied on the CDE test team members to
manually run through the system test plan for their compa-
ny’s platform. For interoperability, a matrix was developed
showing the types of interclient communications that were
allowed for each component. The 118N section described
pieces of the component that used input methods for EUC
(Extended UNIX™ Code) 4-byte characters as well as sec-
tions that were expected to be localized. Our reference lan-
guages were Japanese and German, so the manual checklist
was run against these two languages.

Conclusion

By the time the CDE sample was done, some of the CDE test
suite was not complete. Some of the components had no
automated tests and some test suites were in various states
of completion. However, the existing test suites and the test
framework provided a good basis for a maintainable test
suite for the HP CDE product. In fact, the framework and
methodologies have been expanded to encompass other HP
products with a great deal of success. Work continues to be
done in this area, adding further expansions such as interna-
tionalized tests and other system festing.

UNIX Is a registared trademark in the United States and other countries, licensed exclusively
through X/Open Company Limitad

/Open isa registered trademark and the X device is a trademark of X/Open Company Limited
in the UK and other countries
0SF, Motif, and Open Software Foundation are trademarks of the Open Software Foundation in
the UL.S.A and othar countries
ToalTalk is a trademark or registered trademark of Sun Microsystems in the U.S.A. and certain
nther countnes

April 1996 Hewlett-Packard Journal 61

Synlib: The Core of CDE Tests

Synlib is an application program interface for creating tests for graphical
user interface applications. A collection of Synlib programs, each
designed to verify a specific property of the target software, forms a test
suite for the application. Synlib tests can be completely platform
independent—an advantage for testing the Common Desktop
Environment (CDE), which runs on the platforms of the four participating

companies.

by Sankar L. Chakrabarti

Synlib is a C-language application program interface (API)
designed to enable the user to create tests for graphical user
interface (GUI) software. The user simply tells Synlib what
to do and it will execute the user-specified tests on a variety
of displays and in a variety of execution environments.

A complete description of the Synlib API is beyond the
scope of this article and can be found in references 1
through 4. In this article we will only indicate how the ideas
and capabilities supported by Synlib were applied to the
development of tests for the Common Desktop Environment
(CDE) described in the article on page 6. An overview of
CDE test technology including a description of the role
played by Synlib can be found in the article on page 54.

To test GUI software, we create programs using the Synlib
API. These programs in turn manipulate and verify the ap-
pearance and behavior of the GUI application of interest
(the target application). The recommended approach is to
create many small Synlib programs to test the target soft-
ware:

1. View the targei GUI software as a collection of imple-
mented properties.

2. Create a Synlib-based program to verify each property.
3. A collection of such Synlib programs forms a test suite
for the GUI software.

With Synlib, the main task of testing GUI software reduces
to creating the individual test programs. Considering each
test program to be your agent, your task is to tell the agent
what to do to verify a specific property of the program you
wish to test. Assume that you want to test the following
property of the front panel on the CDE display (Fig. 1): On
clicking the left mouse bution on the style manager icon on
the CDE front panel, the style manager application will be
launched. 1t is likely that you will tell your agent the follow-
ing to verify if the property is valid for a given implementa-
tion of the front panel:

1. Make sure that the front panel window is displayed on
the display.

2. Click the style manager icon on the front panel window.
Alternatively, you might ask the agent to select the siyle
manager icon on the front panel and leave it to the agent to
decide how to select the icon. Synlib supports both alterna-
tives,

3. Make sure that a new style manager window is now dis-
played. If the style manager window is mapped then the
agent should report that the fest passed. Otherwise, the
agent should report that the test failed.

These instructions are captured in the following Synlib pro-
gram. All function calls with the prefix Syn are part of the
Synlib APL

main(argec, argv)
int argc;
char **argv;
{
Display *dpy;
int windowCount;
Window *windowList;
Window shell window;
char *title;
SynStatus result;

dpy = SynOpenDisplay (NULL) ;
result = SynNameWindowByTitle (dpy,
"MyFrontPanel”, *“One”, PARTIAL MATCH,
&windowCount, &windowList);
if (result == SYN SUCCESS)
{
result = SynClickButton(dpy., “Buttonl”,
“"MyProntPanel”, "gtyleManager icon”);
f *
* In the alternate implementation using focus
* maps we could simply say:
* result = SynSelectItem (dpy.
* rMyFrontPanel”,
* #StyleManager Icon FocusPath”);
*f
regult = SynWaitWindowMap (dpy,
"StyleManager”, TIME_OUT) ;

e e Ty =5 e — T

|ﬁ I _. fl-lree- >

| Four

Fig. 1. Front panel of the CDE desktop,

62 April 1996 Hewlett-Packard Journal

Style Manager

© Copr. 1949-1998 Hewlett-Packard Co.

if (result == SYN_ SUCCESS)

{ result = SynGetShellAndTitle (dpy,
"Style Manager”, &shell window, &title);
if (strcmp (title, “Style Managezr”) ==

0)
printf
window appeared.

else

printf (“Test Failed: Expected Style
Manager window; found %s\n”,title);

("Test Passed: Style Manager
\n*);

}
else
printf ("Test Failed: Expected Style Manager
window would map but none did.\n");

}

else

printf
could not be found.

("Test Aborted: Front Panel window
\n”");

SynOpenDisplayl) connects to the display on which the target
application is running or will run. SynNameWindowByTitle() de-
termines if a window of the specified title (in this case One)
is already displayed. If so, the user (i.e., the programmer)
chooses to name it MyFrontPanel. Through SynClickButton(), the
Synlib agent is instructed to click on the window MyFrontPanel
at a location called styleManager_icon. The agent is being asked
to expect and wait for a window to map on the display. The
function SynWaitWindowMap accomplishes the wait and names
the window StyleManager if and when a window maps on the
display. If the mapped window has the expecied fitle, Style-
Manager, then the agent is to conclude that the test succeeded,
that is, the front panel window had the specified property
{clicking on the style manager icon really launched the style
manager application).

In practice, the tests would be more complicated than this
example. Nonetheless, this simple program illusirates the
basic paradigm for creating test agents. You need to name
the GUI objects of interest and provide a mechanism for the
agent to identify these ohjects during execution. The agent
should be able to manipulate the named objects by deliver-
ing keystrokes or button inputs. Finally, the agent should be
able to verify if specified things happened as a result of pro-
cessing the delivered inputs. Synlib is designed to provide
all of these capabilities. Table I is a summary of Synlib’s
capabilities.

Platform Independence

Synlib programs can be written so that they are completely
platform independent. For example, in the program above
there is nothing that is tied to specific features of a platform
or a display on which the target GUI application may be
executing. All platform dependent information can be (and
is encouraged to be) abstracted away through the mechanism
of soft coding. In the program above, the statement using
the function SynClickButton is an example of soft coding. The
last parameter in this statement, styleManager_icon, refers to a
location in the front panel window. The exact definition of
the location—the window’s x,y location with respect to the
FrontPanel window—is not present in the program but is de-
clared in a file called the object map. At execution time the

Table 1
Synlib Capabilities

Functions to Name GUI Objects of Interest
SynNameWindow
SynNameWindowByTitle
SynNamelLocation
SynNameRegion

Functions to Deliver Inputs to Named Objects
SynClickButton
SynClickKey
SynPressAndHoldButton
SynReleaseButton
SynMoavePointer
SynPrintString
SynPressAndHoldKey
SynReleaseKey
SynSetFocus
SynSelectltem

Functions to Synchronize Application State with
Test Agent

SynWaitWindowMap

SynWaitWindowUnmap

SynWaitWindowConfigure

SynWaitProperty

Functions to Verify the State of a GUI Application
SynGetShellAndTitle
SynStoreText
SynCompareWindowlmage

Miscellaneous Functions to Process Needed
Test Resources from the Environment
SynParseCommandOptions
SynParse0bjectFile
SynBuildFocusMap
SynParseKeyMap

object map is made available to the Synlib agent through a
command line option. The agent consults the object map to
decode the exact location of the named object styleManager
icon, then drives the mouse to the decoded location and
presses the button. Because the location is soft coded, the
program itself remains unchanged even if the front panel
configuration changes or if the exact location of the named
object is different on a different display. The named location,
styleManager_icon, represents a semantic entity whose meaning
is independent of the platform or the display or the revision
of the target application. The semantics of the name is
meaningful only in the test. In other words, the test remains
portable. If changes in the platform, display, or application
require that the exact location of the named object be
changed, this is achieved either by editing the object map
file or by supplying a different object map file specific for
the platform. Synlib provides automated methods to edit or

April 1996 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

generate environment-specific object map files. The agent
itsell does not need any change.
The format of a typical Synlib object map is:

! Object Map for the sample program

| Declares the locations named in the test
! program

Location styleManager icon 781 51

! Declares the full path of an item named in a

! focus map

FocusgPath StyleManager Icon FocusPath
FrontPanel.ActionIcons.dtstylelIcon

Focus Maps

A far superior method of naming GUI objects of interest is
to use Synlib's concepts of focus maps and focus paths. A
focus map is a deseription of the logical organization of the
input enabled objects in a widget-based application. An
input enabled object is a region in a window that can accept
keystrokes or button inputs from a user. Generally these
objects are widgets or gadgets used in constructing the user
interface.

The method of constructing a focus map is fully described in
the Synlib User’s Guide.! A more complete description of the
concept of a focus map and its use in testing X windows
applications has been published elsewhere.? A focus path is
a string of dot-separated names declared in a focus map. For
example, StyleManager_lcon_FocusPath is the name of the focus
path FrontPanel Actionlcons.dtstylelcon, which is a string of dot-
separated names declared in the focus map named FrontPanel.
Focus maps are described in focus map files. Focus paths,
on the other hand, are declared in object map files because,
when associated with a window, a focus path identfies an
actual object capable of accepting input.

In the example program above, the function SynSelectitem()
represents an instruction to the agent to select the object
named by the string StyleManager_lcon_FocusPath, which can be
declared in the object map file as shown above.

The following is the focus map for the front panel window.

!
! Focus map for the default front panel window
! of the CDE desktop.

]

({FocusMap FrontPanel
(FocusGroup ActionIcons
(App_Panel dtpadIcon dtmailIcon dtlockIcon
dtbeeplcon workspace One workspace_ Three
workspace Two workspace Four exitIcon
printer_Panel printerIcon dtstylelcon
toolboxIcon Help Panel helplIcon trashIcon

dtcmIcon dtfileIcon)))
1

If the proper focus map and object maps are provided, the
agent will apply Synlib embedded rules to decide how to set
focus on the named item and then select or activate the item.
During execution, Synlib first processes all supplied focus
maps and creates an internal representation. Whenever the
program refers to a focus path, Synlib decodes the identity
of the desired object by analyzing the focus map in which
the focus path occurs. Using the declarations in the focus
map and applying OSF/Motif supported keyboard traversal

64 April 1996 Hewleti-Packard Journal

specifications, Synlib generates a series of keystrokes to set
the keyboard focus to the object indirectly named via the
focus path. The rules for transforming the focus path name
to the sequence of keystrokes are somewhat complex and
have been fully described elsewhere.” These rules are em-
bedded in Synlib and are completely transparent to the user.

This example shows the use of a focus map in naming icons
in the front panel. Although the example here deals with a
simple situation, the same principles and methods can with
equal ease be used to name and access objects in deeply
embedded structures like menus and submenus. In general,
naming objects by means of a focus map is far superior to
naming them by means of an object map. Because access

to the objects of interest is via a dynamically generated se-
quence of keystrokes, the programs employing these methods
are resistant to changes in window size, fonts, or actual
object locations. This makes the tests completely portable
across platforms, displays, and other environmental variabi-
lities. Synlib programs using focus maps to name GUI
objects need not be changed at all unless the specification
of the target application changes.

Using a similar soft coding technique, Synlib makes it pos-
sible to create locale newtral tests, that is, tests that can
verify the behavior of target applications executing in differ-
ent language environments without undergoing any change
themselves. Use of this technique has substantially reduced
the cost of testing internationalized GUI applications. A
complete description of the concept of locale neutral tests
has been published.?

Test Execution Architecture

Synlib provides concepts and tools that enable us to create
“one test for one application.” The tests, assisted by the re-
quired environment dependent resource files like object
map, focus map, and key map files, can verify the behavior
of target applications executing on different platforms, using
different displays, and working in very different language
environments.

Fig. 2 shows an execution architecture for Synlib tests. A key
map file contains declarations to name keystrokes, button
events, and sequences of keystrokes and button events. The
key map file provides a way to virtualize and name all inputs
to be used by a test program. This mechanism is very useful
for creating tests for internationalized applications and is
fully described in reference 4.

The cost of creating or modifying the environment resource
files is minuscule compared 1o the cosi of creating the tests
themselves. Thus, the ability to create tests that are insensi-
tive to differences in the execution environment of the target
application has been a great productivity boost to our testing
efforts.

A feature of Synlib test technology is that it does not require
any change in the target application. It does not require that
the application code be modified in any way. There is no
need to incorporate any test hook in the application, nor is
the application required o relink to any foreign test-specific
library. Synlib supports a completely noninvasive testing
framework. The test is directly executed on the application

© Copr. 1949-1998 Hewlett-Packard Co.

G GUI
Application

Application

Window

Synlib Agem

r//: I\\\‘._
Object Map

Fig. 2. Synlib test execution architecture.

off the shelf. Synlib even makes it possible to write the tests
before the application is ready for testing.?

The author originally designed Synlib to solve the problems
of GUI testing facing our lab, mainly testing GUI applications
that supported a variety of HP displays and operating sys-
tems. We designed Synlib to provide a technology that yields
robust and platform-insensitive tests at a low cost. Synlib
proved to be a marvelous fit for testing the CDE desktop
since one of the main conditions was that the tests would
have to verify applications running on the platforms of the
four participating companies. Essentially it was a problem
of creating platform-insensitive tests, a problem that we had
already solved. The success of Synlib in this endeavour is
shown by the large body of functioning test suites for the
complex applications of the CDE desktop.

Acknowledgments

The development of Synlib has benefited from the com-
ments, criticism, and support of many people. The author
wishes to thank everyone who willingly came forward to
help mature this technology. Harry Phinney, Fred Taft, and
Bill Yoder were the first to create test suites for their prod-
ucts using Synlib. Their work proved the value of Synlib to
the rest of the laboratory. Subsequently, Bob Miller allowed
his group to experiment with Synlib, which led to its adop-
tion as the testing tool for CDE. Thanks Bob, Harry, Fred,
and Bill. Julie Skeen and Art Barstow volunteered their time
to review the initial design of Synlib. A very special thanks is
due Julie. In many ways the pleasant and intuitive user inter-
face of Synlib can be traced to her suggestions. Thanks are
also due the engineers at the multimedia lab who proved the
effectiveness of Synlib in testing multimedia applications.
Ione Crandell empowered this effort. Kristann Orton wrote
many of the man pages. Dennis Harms and Paul Ritier effec-
tively supported Synlib in many stormy CDE sessions. Thanks
Dennis, Kritann, and Paul. Michael Wilson taught me how
Synlib could solve the knotty problem of testing hyperlinked
systems. Thanks, Mike. Claudia DeBlau and Kimberly Baker,
both of Sun Microsystems, helped in developing Synlib's
interface to the Test Environment Toolkit (TET). Finally the
author thanks Ken Bronstein. Ken appreciated the value of
this unofficial job from the very beginning. Ken's unwaver-
ing support has been crueial to the continued development
of this technology.

References

1. S.L. Chakrabarti, Synlib User’s Guide—An Experiment in Creat-
ing GUI Test Programs, Hewlett-Packard Company.

2, 8.L.. Chakrabarti,"Testing X Clients Using Synlib and Focus Maps,”
The X Resource, Issue 13, Winter 1995,

3. 8.L. Chakrabarti, R. Pandey, and S. Mohammed,"Writing GUI
Specifications in C." Proceedings of the International Software
Quality Conference, 1995,

4. 8.L. Chakrabarti and S. Girdhar,"Testing ‘Internationalized” GUI
Applications,” accepted for publication, The X Resource, Winter
1996.

[SF/Matif is a trademark of the Open Software Foundation in the U.S A and ather countries

April 1996 Hewleti-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

A Hybrid Power Module for a Mobile
Communications Telephone

This article describes a 3.5-watt power module designed for a GSM
(Global System for Mobile Communications) handheld telephone. The
design features proprietary silicon power bipolar devices, lumped
elements for input, interstage, and output matching, thick-film alumina
ceramic technology, and laser trimmed bias resistors. High-volume

manufacturing was a design requirement.

by Melanie M. Daniels

Power modules, as discussed in this article, are the output
stage of the RF (radio frequency) amplification chain in a
mobile telephone (Fig. 1). Some telephones use integrated
circuits as power solutions, but for output power greater
than one watt a discrete device is usually used. A power
module uses networks to match the discrete stages in a
hybrid amplifier.

This article describes a power module designed for a GSM
(Global System for Mobile Communications) handheld tele-
phone. GSM telephones transmit in the frequency range of
880 to 915 MHz. The peak transmitter carrier power for
power class 4 is 3.5 watts at 1/8 duty cycle. Unlike other
TDMA (time division multiple access) systems, it is possible
to run a GSM power module close to compression because
the amplitude is constant using GMSK (Gaussian minimum
phase shift keying) modulation. The pulse width of the
transmission burst is 577 microseconds, and the rise time of
the power module must be less than 2 ys. It is necessary to
supply full output power at a supply voltage of 5.4 volts (five
NiCad cells at end of life) with 40% efficiency and 0-dBm

Power
Module 11—

Receive |

Transmit ‘_6_,)

| E <
.

! "-

Fig. 1. Block diagram of a typical handheld digital telephone.

66 April 1996 Hewlett-Packard Journal

input power. This is a requirement of the customer for the
phone to be competitive. Future generations of phones may
use only four NiCad cells or other battery types and volt-
ages. Of course, a handheld phone must be inexpensive and
small and have long talk time (i.e., efficiency) and this dic-
tates the specifications for the power module.

The design goals called for the power module to be small,
inexpensive, user friendly, efficient, and manufacturable in
volume, and to supply full output power.

Silicon bipolar devices were chosen over GaAs FET devices
for this product because of their cost advantages and the
fact that HP had developed new silicon power devices that
met the stringent requirements of applications in which
GaAs had traditionally been used (i.e., low device voltages
and excellent efficiency).

Fig. 2 is a photograph of the power module. The schematic
diagram, Fig. 3, shows the electrical design of the power
module. The bias circuits must be simple and fast because
of the pulsed nature of the GSM modulation. Because of the

Speaker

|

\
h .

Microphone

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. 5M power module evolution.

low voltage requirements, proprietary silicon power bipolar
devices were developed. The collector of each stage simply
has an RF choke to the 5.4V minimum supply voltage, V.,
and a bypass capacitor to ground. The base voltage supply is
used to turn the amplifier on and off and to control the out-
put power level of the module. The control voltage, V., is
pulsed at 1/8 duty cycle with a square wave from 0V when
the module is off to 4.0V when the module supplies full out-
put power. The base of each stage has a series resistor to
the control voltage. This resistor is adjusted to compensate
for each transistor’s current gain, 5. This is done using ac-
tive laser trimming and will be discussed as a separate topic.
Since the power control voltage supplied by the phone does
not have the capability of supplying the base current of each
stage, a low-frequency n-p-n transistor, Q4, is used to buffer
the control voltage. The collector of Q4 is biased by the sup-
ply voltage, Vee, The base of Q4 is driven by the power con-
trol voltage and the emitter supplies the necessary voltage
and current to the base of each RF stage.

The RF design uses lumped elements for input, interstage,
and output matching. The design requires three stages to

achieve the gain requirements. The first stage is a driver
stage that is class-A biased. The second and third stages are
class-AB biased for efficiency.

The third-stage transistor also has some internal matching
within the package. The input impedance of the silicon power
transistor chip is about 1.5 ohms. This must be transformed
up to a larger impedance by a matching network that is
physically as close to the chip as possible. This is achieved
using a 0.001-inch-diameter bond wire as a series inductor
from the base of the chip to a shunt MOS capacitor at the
input of the transistor package (Fig. 4). This configuration
makes a very high-Q) input matching network. The exact
value of capacitor and the length of bond wire had to be
empirically optimized o achieve the maximum transforma-
tion within the transistor package.

The most critical and sensitive part of the matching networks
is the output of the final stage. High-Q lumped-element com-
ponents are used in the output matching network to achieve
the low losses necessary to meet the efficiency requirements.

Since the design has more than 45 dB of small-signal gain in
a l-inch-by-0.5-inch package, stability and isolation were quite
challenging. The placement and values of the RF chokes and
decoupling capacitors were critical. Large-value capacitors
could not be placed on the base bias network, since this
would slow down the pulse response of the module.

Mechanical Design

As previously mentioned, some of the primary design goals
were (1) low cost because this is a commercial product, (2)
small size to allow phone manufacturers to design smaller
products for portability (also a competitive advantage for
HP), and (3) compatibility with high-volume manufacturing.
In addition, the power module component had to be supplied
as a surface mount component in tape-and-reel form. The
mechanical design of the power module turned out to be one
of the most challenging paris of the development project. At
the time the project was started, most competitors were
using soft board for the substrate material and surface mount
lumped components for matching. This material definitely

e [+I5.4\'l l
)
. sk
|——|c(2 EC Crs % §| PI I-i_?

Gy I

(Laser Trimmed)

(Laser Trimmed)

Ciz

e
i & 9| (— AFom
i

Cyy
3 E"‘

C1g

U el

)

Ci -
&)1

Ry
(Laser Trimmed)

Fig. 3, Schematic diagram of the GSM power module

67

April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Ceramic

Substrate \

Top View

Mos
Capacitors

0.001-inch-
Diameter
Gold Wire

Four Single Cells

In Parallel

meets the cost eriteria, but there were thermal, RF matching,
and laser trimming limitations, Thick-film alumina ceramic
technology was chosen for the board material. Even though
the material is more expensive, this is offset by the fact that
the RF matching networks are more compact because of the
high dielectric constant €, = 9.1. Also, the resistors and in-
ductors can be printed on the board, thus reducing the part
count. Ceramic has superior thermal conductivity compared
to soft boards. The most persuasive reason for ceramic sub-
strates is that they do not require a metal carrier to be sur-
[ace mounted. The vias in a ceramic board can be filled with
metal paste so components can be placed directly on top of
the via. This reduces the emitter-to-ground inductance for
the transistors and gives superior gain and efficiency perfor-
mance. This factor also reduces the size of the module to

1 inch by 0.4 inch. Standard surface mount components on
PdAg traces are used for lumped-element matching and cus-
tom surface mount packages are used for the RF transistors.

The inputs and outputs of the power module use wraparound
edge vias. This is commonly referred to as an LOC (leadless
chip carrier) for surface mount component manufacturers.
It is inexpensive because no leadframes need to be attached.
The metal thick film used in the vias must pass all solder-
ability tests.

Volume Assembly

Fig. 5 shows the process flow for manufacturing the power
modules. Modules are built in array form with 40 modules
per 4-inch-by-4-inch array. More modules per array reduces
the ceramic substrate cost and the surface mount assembly
cost but also increases the complexity of substrate manufac-
turing. The boards are populated by a subcontractor with
standard pick-and-place equipment, then reflowed at a peak
temperature of 220°C using SN96 solder paste. The high-
temperature reflow was chosen to prevent a secondary re-
flow by the customer when the power module is surface
mounted into the telephone, Developing the reflow profiles
with the chosen thick-film paste and high-temperature solder
was not a trivial task.

The populated arrays are then actively laser trimmed. Each
base bias resisior (three per module) must be trimmed with

68 April 1996 Hewlett-Packard Journal

Fig. 4. Packaged ouiput stage
transistor.

Side View

Fabricate Substrates
|Subcontractor)

Populate Beard in Arrays
(Subcontractor)

Reflow Using No-Clean SN96 (220°C)
{Subcontractor)

Active Laser Trim in Arrays
|Subcontractor and HP)

Attach Lids in Arrays
HP)

Snap Arrays into Individual Modules
(HP)

Package in Tape and Reel
(HP)

Fig. 5. Volume assembly process flow.

© Copr. 1949-1998 Hewlett-Packard Co.

the laser to set the transistor collector current. This is to

‘ounding » thie odules are it

Extensive development was required to obtain
good RF grounding on the backside of the module and in the
bias probes while laser trimming. A grounding gasket made
of silver impregnated rubber is used with a vacuum to
achieve backside grounding. High-frequency probes with
goad 50-ohm loads are used on all inputs and outputs to
avoid oscillations.

Special software was developed for the laser trimmer. Algo-
rithms were written to compensate for the current drawn
through the grounded-base transistors. In addition, the resis-
tors and transistors heat up during the trim process and this
has to be compensated. The trim process has to be done in a
pulsed bias mode, since the module cannot be run in CW
mode without thermal runaway. Finally, the output power
cannot reach saturation before the maximum control voltage
is reached, since this impacts the customer’s power control
loop. To resolve this issue, the modules are trimmed at a
control voltage of 3.2V maximum.

After laser trimming the lids are attached in array form. The
array is then separated into individual units, which are
tested using automated test equipment. All of the problems
addressed for the laser trimming were also present for the
automated test process. The module grounding is absolutely
critical to testing RF parameters. Developing test fixtures
that could test hundreds of modules per hour, three shifts a
day, and still retain a good RF ground was critical to the
success of the product. The average test time per module is
20 seconds. The automated test programs are complex be
cause of the number of tests that have to be performed and
the fact that they all have to be done in pulsed mode.

Transistor Modeling

Transistor modeling was used to develop linear and nonlinear
device models for a single cell of the transistor used in the
power module. These building blocks were then used to
model the entire power module. The modeling effort included
correlating measured device data with the models and modi-
fying the models when necessary. The HP Microwave Design
System was used for the linear and nonlinear modeling of
the device and the package.

The first step was to use parameter extraction techniques to
get a Gummel-Poon SPICE model! of the single-cell device.
Next, models were developed for the packages.

To make low-voltage bipolar transistors, many new processes
were used. These devices have fine geometry to achieve the
higher gain necessary for talk-time efficiency. This changed

many of the model parameters traditionally used for silicon

power transistors.

Fig. 6. Single device cell

The single device chosen for modeling actually consists of
four separate quarter cells on each device as shown in Fig. 6.
Each quarter cell has 40 emitter fingers with each finger
having an approximate capacity of 2 mA of continuous cur-
rent. With the existing technology it was not possible to ex-
tract the parameters of the entire device with 160 fingers
and a maximum current of 360 mA, so the quarter cell with
40 fingers was used for the parameter extraction. These
devices have HP proprietary epitaxial material and geome-
tries.

The device was placed into the standard 86 package shown

in Fig. 7 for the second stage of the power module. This is a

0.51(0.020) —

i S A, | H B _,_—T_

1 3 |
2.43 (0.107)
1.96 (0.077)
[
2 1
3.05 (0.120}]
2.16 (0.085) "l
]
— i 2.16(0.085)
¥
1.77 (0.070) '
1.27 (0.050)
v 1
[.
i '
0.66 0.25 (0.010)
(0.026) 0.15 (0.006)

Dimensions are in millimeters (inches).

Fig. 7. Standard 86 packags

April 1996 Hewlett-Packard Journal 69

© Copr. 1949-1998 Hewlett-Packard Co.

plastic encapsulated package used for high-volume manu-
facturing and low power dissipation. The output stage has a
custom package as shown in Fig. 4. Thermal dissipation is
not a major issue in our application because of the 12.5%
duty cyecle pulsed operation,

The Ebers-Moll model** is a good general-purpose model,
but is not sufficient over wide regions of operation because
of approximations in the equations. The Gummel-Poon
model! takes second-order effects into account and gives
more accurate results, The model we used is a modified
Gummel-Poon model.! The n-p-n transistor de¢ and ac cir-
cuits are shown in Figs. 8 and Y respectively.

Among the second-order effects included in the Gummel-
Poon model is junction capacitance in the emitter, base, and
collector. The Ebers-Moll model holds these capacitances
constant but they are more accurately modeled in the
Gummel-Poon model as functions of junction voltage. A
total of nine model parameters are needed to model the
junction capacitance accurately.?

Finite resistance and the effects of surfaces, high current
injection, and nonideal diodes make the collector and base
current vary nonuniformly with base-to-emitter voltage.
These effects are modeled using two diodes.

Another complex second-order effect is the variation of unity-
gain bandwidth, fy, with I, and V... At low currents, fy is
almost totally dependent on the g, of the device and the
junetion capacitance.® At moderate currents, the diffusion
capacitance at the base-emitter and base-collector junctions
starts to cancel any increase in g, which causes fr to remain
constant. This is the constant transit time region. At high
currents, the forward transit time of the transistor increases
because of space charge limited current flow, which leads to
base widening and two-dimensional injection effects.

All of the parameters of the modified Gummel-Poon model
are extracted using a modeling system developed by HP.
Complete and accurate model parameter sets can be obtained
in about two hours using Hewlett-Packard's test system,

Q;
1€
0y
46—
|
i. R - Re - lo
o—e- Ao pl—o—o o O
Base lie - Collector
— o T 5
Pt O Substrate
& 1 &
lie 'tli lgi
Y ¥| = |8
i/
@ e
E
.._
g
O
Emitter
Fig. 8. Modified Gummel-Poon n-p-n de model

70 April 1996 Hewlett-Packard Journal

Oz
I
Cy
I
Rub o, Re
o—eVWNveo——8 \NNo—0 *— " \VN—0

Base Collector
0, g

ulll
i) e
o [:pl - "::Jj Gy ~ Css

o}

& @ @ Substrate

S

O
Emitter

Fig. 9. Mo« d Gurmmel-Poon n-p-n ac model

test and modeling software, and new modeling methods.”
A through-reflect-line (TRL) calibration method is used and
the fixture and bond wires to the device are completely
characterized and deembedded to get an accurate model of
the device alone.

At the time this work was completed, it was not possible to
measure large transistors because of the limitations of the
de power supplies and thermal dissipation problems. To over-
come this difficulty, one quarter of the cell was extracted.
This was possible since there was a small quarter-cell test
transistor on the original engineering wafer as shown in

Fig. 10. The Gummel-Poon SPICE file that was obtained by
HP's parameter extraction software of this quarter cell is
shown in Fig. 11. The schematic for the SPICE file can be
seen in Fig. 12

Since this work was completed, HP has developed a pulsed
parameter extraction system that can measure power tran-
sistors and a power Gummel-Poon model is being developed
to compensate for thermal considerations. With the basic
model obtained previously, however, the model for the entire
device was developed on the HP Microwave Design System
by paralleling four of the quarter cells as shown in Fig. 13.
The quarter cell has one base and one emitter pad as shown
previously in Fig. 10. The entire cell has one base pad for all

Fig. 10. Quarter device cell

© Copr. 1949-1998 Hewlett-Packard Co.

SUBCKT melanie 123
LE343E-10

LB 256E-10
CFIXBE23 1E-14
CAXBCZ13E-14
CHXEC 13 2E-13
CPADBCS14.1E-13
CPADEC414.1E-13
01154 NPN
+AREA=1
MODEL NPN NPN
+ 1S = 3598E-15
+BF=2807

+ NF =0.9935
+VAF=3316
+IKF=2999
+ISE=9.91E-1
+NE=2399
+BR=5481

+ NR =0.9886
+VAR=15M
+IKR =81

+I1SC =8.674E-13
+ NC =1587
+RB=0.752
+IRB=0

+RBM =0
+RE=2.448
+RC=1228
+XTB=0
+EG=111
+XTl=3

+ CJE = 5.055E-12
+VWJE=1148

+ MJE = 0.5965

+ TF=16E-11

+ XTF = 0.006656
+ VTF = 0.02785
+ITF= 0.001
+PTF=23

+ CJC = 1.352E-12
+\VJC =04776

+ MJC = 0.2508

+ XCJC =0.001
+TR=1E-09
+FC=0999
.ENDS

Fig. 11. Quarter-cell SPICE parameter extraction output.

four cells and one emitter pad for two cells as shown in

Fig. 6. This must be compensated in the models. The param-
eter extraction SPICE file (Figs. 11 and 12) clearly shows
the eapacitance of both the base and emitter pads, CPADBC
and CPADEC, respectively. The two-emitter-pad capacitance
and the one-base-pad capacitance are added to the model of
the four parallel quarter cells (Fig. 13) as components CMP103

Collector
CFIXBC
{ R
|
| CPADBC Is
———
- = |
2 .
. o—¢fTl g @ ~~ CPADEC
Base 5 ;
= CFIXEC
CFIXBE

q
..
3 LE |
i |
!
(o]
Emitter

Fig. 12. Quarter device cell schematic of the SPICE file.

© Copr. 1949-1998 Hewlett-Packard Co.

CMPI3

e —@e—
C=041pF

cMPs3

NPNEST
= 3 Y

CMP106 -~ C=082pF
& c=082p
cMPss
NPNBJT
o
._ EDE——
— 9

CMPS7

NPNBJT |
grEn-

1 —&—9 Py
—t+—& > 2
CMPs5
NPNBJT |,
W i =0.01 nH
—e » 3
CMP102

Fig. 13. HP Microwave Design System model for a full single cell.

and CMP106. This file is the basis for the models of the full
device.

Separately, similar parameter extraction methods were
performed to model the 86 package and the custom output
stage package. The 86 package has been modeled exten-
sively for use with other products and can be found in the
HP Components Data Book.” The HP Microwave Design
System package model for the 86 package is shown in

Fig. 14.

Both of these models were used for linear and nonlinear
designs of the power module. Agreement between the mea-
sured performance and the simulated performance was
excellent for the linear design (within £0.5 dB of gain) and
good for the nonlinear design (within £2 dBm of the 1-dB
compression point). The performance of the models was
good because this was a pulsed application and deviations
because of thermal considerations were not a factor.

Results

The GSM power module was engineering released in
November 1993 and manufacturing released in May 1994,
Over one million of the original GSM power module have
been shipped and the module has since gone through two
design upgrades to smaller and leadless modules to satisfy
customer redesign needs. We now have a manufacturing line
and processes that are being used for new products. The
module has been a success in the power cellular market.

Project Management and Acknowledgements

This was and is a global project, The customers and sales
offices are in Europe and the wafer fab is in Newark, Cali-
fornia. The marketing team was originally in San Jose, Cali-
fornia, the R&D team was in Folsom, California, and the
manufacturing team was in Malaysia and Folsom. We had

April 1996 Hewlett-Packard Journal -~ 71

——4 |—ITTL gyt
—0 L.
|
. —
CMP10 CMP8 7=13
n —m \ Ry L=D3
L=11 & @ V=V3
| R=0
L ® G=0
Z=21 " F=0
L=D1 |
V=i CMP3 § L=LE
R=0 | |
6=0 | tmps— c-ces CMP4 —— C=CEC
F=0 |
| o
=22
L=D2 — ® @
v=v2 [|
R=0 CMP3
G=0 | ¢ |
F=0 [
cmp12 § L=L2
I [
= ’ —— .
i Fig. 14, Simplified HP Microwave
Vv Design System mode] of the second-
GND stage transistor in the 86 package.

never worked together before and there were large learning
curves. HP's Malaysia operation had never manufactured a
product using thick-film surface mount technologies with
the complex RF testing and active laser trimming required.
The engineering team had never designed a product for
these high volumes. Communication and project manage-
ment were critical. Many hours were spent on the phone, in
meetings, writing email, and traveling. I would like to ac-
knowledge Hanan Zurkowski, Thomas Franke, Rich Levitsky,
Mark Dunn, the power module groups in Folsom and Malay-
sia, and the field sales team for their contributions to the
success of this project.

References

1. HLK. Gummel and H.C. Poon, “An Integral Charge Control Model
of Bipolar Transistors,” Bell System Technical Jouwrnal, May-June
1970, pp. 827-852.

2, R. Pierret, Modular Sevies on Solid State Devices, Volumes T and
11, Addison-Wesley Publishing Company, 1983,

3. L. Getreu, “Modeling the Bipolar Transistor, A New Series,”
Electronics, September 19, 1974, pp, 114-120.

T2 April 1996 Hewlett-Packard Journal

4. HP 94453A-UCR Bipolar Transistor Model and Parameter
Extraction, Section 5, Hewlett-Packard Company, 1993,

B, I. Getreu, “Modeling the Bipolar Transistor, Part 2, Electronics,
October 31, 1974, pp. 71-75.

6. M. Dunn, “Device Model and Techniques for Fast Efficient Non-
linear Parameter Extraction of BJT Devices,” The HP-EEsof High-
Frequency Modeling and Stmulation Sewinar, Hewlett-Packard
Company, 1994,

7. Convmaunication Components Calalog—GaAs and Silicon
Produels, Hewleti-Packard Company, 1995,

Bibliography

1. G. Gonzalez, Micrownuve Transistor Amplifiers, Prentice-Hall,
1984,

2. Simulating Highly Nonlinear Civeuits using the HP Microwave
and HP RF Design Systems, Application Note 85150-2, Hewlett-
Packard Company, 1993,

3. TK. Ishii, Micvowave Engineering, Harcourt Brace Jovanovich,
1989,

4. PW., Tuinenga, SPICE, A Guide to Cireuwit Simulation and
Analysis Using PSPICE, Prentice-Hall, 1992,

© Copr. 1949-1998 Hewlett-Packard Co.

Automated C-Terminal Protein
Sequence Analysis Using the
HP G1009A C-Terminal Protein

Sequencing System

The HP G1009A is an automated system for the carboxy-terminal amino
acid sequence analysis of protein samples. It detects and sequences
through any of the twenty common amino acids. This paper describes a

number of applications that demonstrate its capabilities.

by Chad G. Miller and Jerome M. Bailey

Peptide and protein molecules are compaosed of amino acid
molecules covalently coupled end-to-end through peptide
bonds, resulting in linear sequences of the amino acid resi-
dues. These polypeptide molecules have two chemically
distinguishable termini or ends. identified as the amino (N)
terminus and the carboxy (C) terminus. The N-terminal and
C-terminal amino acid residues define the ends of the amino
acid sequence of the polypeptide as depicted in Fig. 1.

The amino acid sequence of the polypeptide molecule im-
parts its chemical properties, such as the 3D spatial con-
formation, its biological properties including enzymatic
function, its biomolecular recognition (immunologic) prop-
erties, and its role in cellular shape and architecture. It is the
actual amino acid sequence of the polypeptide (the order in
which the amino acid residues occur in the polypeptide
from terminus to terminus) rather than the amino acid com-
position as a random linear arrangement that is crucial in
defining the structural and functional attribuies of pepiides
and proteins.

C-terminal amino acid sequence analysis of peptide and pro-
tein samples provides crucial structural information for
bioscientists. Determination of the amino acid sequence
constituting the C-termini of proteins is required to define or
verify (validate) the full-length structural integrity of native
proteins isolated from natural sources or recombinantly
expressed protein products that are genetically engineered.

N-Terminus C-Terminus
0 R 0 R 0 R
*NH; €y CTNH-C,~ CTNH-C,~C~NH-Cy;~C—OH
H H ST H H

Fig. 1. Amino acid sequence of a polypeptide depicting the
N-terminal end (indicated by the subseript n+1) and the C-
terminal end (indicated by the subseript 1) of the molecule
with the intervening amino acid residues indicated by the sub-
seript n. C-terminal sequence analysis begins at the C-terminal
amino acid residue and sequentially degrades the polypeptide
toward the N-terminal amino acid residue

© Copr. 1949-1998 Hewlett-Packard Co.

The cellular processing of proteins at the C-terminus is a
relatively common event yielding proteins with varying de-
grees of amino acid truncations, deletions, and substitutions. !
The processing of the C-terminal end of the protein results
in a family of fragmented protein species terminating with
different amino acid residues. The N-terminal amino acid
sequence, however, may remain identical for all of these
protein species. These ragged C-terminal proteins often
constitute the family of mature protein forms derived from a
single gene expression. Many proteins and peptides are ini-
tially biosynthesized as inactive large precursors that are
enzymatically cleaved and processed to generate the mature,
smaller, bioactive forms. This type of post-translational
processing also serves to mediate the cellular levels of the
biologically active forms of peptides and proteins. Informa-
tion derived solely from DNA analysis does not permit the
prediction of these post-translational proteolytic processing
events. The identification of the resultant C-terminal amino
acids helps elucidate these cellular biosynthetic processes
and control mechanisms.

The polypeptide alpha-amino and alpha-carboxylic acid or-
ganic chemical functional groups of the N-terminal and C-
terminal amino acid residues, respectively, are sufficiently
different to require different chemical methods for the de-
termination of the amino acid sequences at these respective
ends of the molecule. N-terminal protein sequence analysis
has been refined over the course of four decades and is cur-
rently an exceptionally efficient automated chemical analysis
method. The chemical (nucleophilic) reactivity of the alpha-
amino group of the N-terminal amino acid residue permits a
facile chemical sequencing process invoking a cyclical degra-
dative scheme, fundamentally based on the reaction scheme
first introduced by P. Edman in 1950.2 Automation of the
N-terminal sequencing chemistry in 1967 resulted in a surge
of protein amino acid sequence information available for
bioscientists,”

The much less chemically reactive alpha-carboxylic acid
group of the C-terminal amino acid residue proved to be

April 1996 Hewlett-Packard Jouwrmnal 73

Abbreviations for the Common
Amino Acids

Three-Letter Single-Letter

Amino Acid Code Code
Alanine Ala A
Asparagine Asn N
Aspartic Acid Asp 0
Arginine Arg R
Cysteine Cys C
Glycine Gly G
Glutamine Gin 0]
Glutamic Acid Glu E
Histidine His H
lsoleucing lle |
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe E
Praline Pro P
Serine Ser S
Threonine Thr T
Tyrosine Tyr ¥
Tryptophan Trp W
Valine Val Y

exceedingly more challenging for the development of an
efficient chemical sequencing process. A variety of C-terminal
chemical sequencing approaches were explored during the
period in which N-terminal protein sequencing using the
Edman approach was optimized.*5 None of the C-terminal
chemical reaction schemes described in the literature
proved practical for amino acid sequence analysis across a
useful range of molecular weight and structural complexity.
Carboxypeptidase enzymes were employed to cleave the
C-terminal amino acid residues enzymatically from intact
proteins or proteolytic peptides. These carboxypeptidase
digests were subjected to chromatographic analysis for the
identification of the protein C-terminal amino acid residues.
This manual process suffered from the inherent enzymatic
selectivity of the carboxypeptidases toward the amino acid
residue type and exhibited protein sample-to-sample vari-
ability and reaction dependencies. The results frequently
vielded ambiguous sequence data. The typical results were
inconclusive and provided, more often than not, amino acid
compositional information rather than unambiguous se-
quence information. An alternative approach required the
proteolytic digestion of a protein sample (typically with the
enzyme trypsin), previously chemically labeled (modified) at
the protein C-terminal amino acid residue, and the chromato-
graphic fractionation of the resulting peptides to isolate the
labeled C-terminal peptide. The isolated peptide was sub-
Jjected to N-terminal sequence analysis in an attempt to iden-
tify the C-terminal amino acid of the peptide. The limited
amount and quality of C-terminal amino acid sequence infor-
mation derived from these considerably tedious, multistep
manual methods appeared to apply best to suitable model
test peptides and proteins and offered little generality.

74 April 1996 Hewlett-Packard Journal

HP Thiohydantoin C-Terminal Sequencing Chemistry
The general applicability of a chemical sequencing scheme
for the analysis of the protein C-terminus has only very re-
cently been reported and developed into an automated ana-
Iytical process.? The Hewlett-Packard G1009A C-terminal
protein sequencing system, introduced in July 1994, auto-
mates a C-terminal chemical sequencing process developed
by scientists at the Beckman Research Institute of the City
of Hope Medical Center in Duarte, California. The overall
chemical reaction scheme is depicted in Fig. 2 and consists
of two principal reaction events. The alpha-carboxylic acid
group of the C-terminal amino acid residue of the protein is |
modified to a chemical species that differentiates it from

any other constituent amino acid residue in the protein

sample. The chemical modification involves the chemical

coupling of the C-terminal amino acid residue with the se-

quencing coupling reagent, The modified C-terminal amino

acid residue is in a chemical form that permits its facile

chemical cleavage from the rest of the protein molecule. The

cleavage reaction generates the uniquely modified C-terminal

amino acid residue as a thiohydantoin-amino acid (TH-aa)

derivative, which is detected and identified using HPLC
(high-performance liquid chromatography) analysis. The

remaining component of the cleavage reaction is the protein
shortened by one amino acid residue (the C-terminal amino

acid) and is subjected to the next round of this coupling/

cleavage cycle. The overall sequencing process is thus a

sequential chemical degradation of the protein yielding

successive amino acid residues from the protein C-terminus

that are detected and identified by HPLC analysis.

As shown in Fig. 3, the coupling reaction event of the se-
quencing cycle begins with the activation of the carboxylic
acid funcfion of the C-terminal amino acid residue, promoting
its reaction with the coupling reagent, diphenyl phosphoryl-
isothiocyanate (DPPITC). The reaction is accelerated in the
presence of pyridine and suggests the formation of a peptide
phosphoryl anhydride species as a plausible chemical reac-
tion intermediate. The final product of the coupling reaction
is the peptide thiohydantoin, formed by chemical eyclization
of the intermediate peptide isothiocyanate.

§ Hz _HH coz“

Chemical
Coupling

Chemical
Cleavage

NHZ H EGZH k o

Fig. 2. Overall reaction scheme of the C-terminal seqgueneing
process depicting the initial chemical coupling reaction, modifying
the C-terminal amino acid (as indicated by a cirele}, and the
chemical cleavage reaction, generating the C-terminal amino acid
thiohydantoin derivative (indicated as a circle) and the shortened
peptide.

© Copr. 1949-1998 Hewlett-Packard Co.

0
Ph0
0 R 0 0 P-Cl + [N=C=S]
Peptide ~C— NH -~ CH—C—OH X
\ 0 l""
PhO
DPPITC
PhO P~ N=C=5
LY
0 R O 0
Peptide —C~NH—-CH-C—0— P~ N=C=S
Pyridine 2 ER <
/ Peptide Mixed Anhydride
[0 R 0
| Peptide ~C— NH—CH— C— N=C=S |
Peptide Isothiocyanate wﬂﬁﬂwmncmic Acid)
R
R N
Peptide —C- N H ¢
.C— NH
s
Peptide Thichydantoin
Potassium CHs
Trimethylsilanolate CHy— Si— 0 K*
(KOTMS) t:Ha
R
P N ‘;u
) + HNH ¢
sde—C—0"] {
Peptide —C o NH
S
Shortened Peptide Thiohydantoin Amino
Acid Derivative

Fig. 3. Detailed reaction scheme of the HP thiohydantoin C-terminal
sequencing chemistry. The chemical coupling reactions with diphe-
nyl phosphorylisothiocyanate (DPPITC) generate a mixed anhydride
followed by the extrusion of phosphate with ring formation to yield
the peptide thiohydantoin. The subsequent chemical cleavage reac-
tion with potassium trimethylsilanolate (KOTMS) releases the C-ter-
minal amine acid thiohydantoin derivative (TH-aa) from the short-
ened peplide.

The peptide thiohydantoin, bearing the chemically modified
C-terminal amino acid, is cleaved with trimethylsilanolate
(a strong nucleophilic base) to release the C-terminal thio-
hydantoin-amino acid (TH-aa) derivative for subsequent
analysis and the shortened peptide for the next cycle of
chemical sequencing. The thiohydantoin derivative of the
C-terminal amino acid residue is chromatographically de-
tected and identified by HPLC analysis at a UV wavelength
of 269 nm.

Data Analysis and Interpretation of Results

The data analysis relies on the interpretation of HPLC chro-
matographic data for the detection and identification of thio-
hydantoin-amino acid derivatives. The sequencing system
uses the HP ChemStation software for automatic data pro-
cessing and report generation. By convention, the amino
acid sequence is determined from the successive single
amino acid residue assignments made for each sequencer
cyele of analysis beginning with the C-terminal residue (the
first sequencer cycle of analysis). The thiohydantoin-amino

acid derivative at any given sequencer cycle is assigned by
visually examining the succeeding cycle (n+1) and preceding
cycle (n-1) chromatograms with respect to the cycle in
question (n). The comparison of peak heights (or widths)
across three such cycles typically enables a particular thio-
hydantoin-amino acid derivative to be detected quantita-
tively, rising above a background level present in the preced-
ing cycle, maximizing in absorbance in the cycle under
examination, and decreasing in absorbance in the succeeding
cycle. Exceptions to this most basic algorithm are seen in
sequencing cycles in which there are two or more identical
amino acid residues in consecutive cycles and for the first
sequencer cycle, which has no preceding cycle of analysis.

An HPLC chromatographic reference standard consisting of
the twenty common amino acid thiohydantoin synthetic
standards defines the chromatographic retention time (elu-
tion time) for each particular thiohydantoin-amino acid de-
rivative. The TH-aa derivatives chromatographically detected
in a sequencer cycle are identified by comparison of their
chromatographic retention times with the retention times of
the 20-component TH-aa derivatives of a reference standard
mixture. The practical assignment of amino acid residues
in sequencing cycles is contingent on an increase in peak
absorbance above a background level followed by an absor-
bance decrease for a chromatographic peak that exhibits
the same chromatographic retention time as one of the
twenty thiohydantoin-amino acid reference standards. A
highly robust chromatographic system is required for this
mode of analysis to be reliable and reproducible.

The chromatographic analysis of the online thiohydantoin-
amino acid standard mixture is shown in Fig. 4. The peaks
are designated by the single-letter codes for each of the 20
common amino acid residues (see page 74) and correspond
to approximately 100 picomoles of each thiohydantoin de-
rivative. The thiohydantoin standard mixture is composed of
the sequencing products of each of the amino acids so that
Ser and Cys amino acid derivatives each result in the same

161
-

12+

3
=

vPYM L

£
- \l |
L ot i o
: _I '__.l '\" T .'| !LI_.‘ IL...J h.._.| ".Jlbll-_;lu x,l II
5 10 15 20 3I5 30 k]
Retention Time (min)

Absorbance Units (mAU)

8+ Dy K R F

LLL

—
1
T

Fig. 4. HPLC chromatogram of the thiohydantoin-amino acid
standard mixture (TH-Std). The thiochydantoin-amino acid
derivatives of the common amine acids are indicated by their
single-letter code designations (see page 74). The peak identi-
fied as S/C represents the thishydantoin derivative of serine
and cysteine. The peak designated D' represents the methyl
ester sequencing producet of aspartic acid and the E’ peak
represents the methyl ester sequencing product of glutamate.
Isoleucine, designated [, elutes as two chromatographically
resolved sterecisomeric thiohydantoin derivatives.

April 1996 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

compound, designated S/C, which is the dehydroalanine
thiohydantoin-amino acid derivative. The peaks labeled D'
and E' signify the methyl esters of the thichydantoin-amino
acid derivatives of Asp and Glu.

The C-terminal protein sequencing system is configured
with the HP G1009A protein sequencer which automates the
chemical sequencing, the HP 1090M HPLC for the chromato-
graphic detection and identification of the thiohydantoin-
amino acids, and an HP Vectra personal computer for instru-
ment control and data processing as shown in Fig. 5. The
chemical sequencer consists of assemblies of chemically
resistant, electrically actuated diaphragm valves connected
through a fluid path of inert tubing that permit the precise
delivery of chemical reagents and solvents. The fluid delivery
system is based on a timed pressurization of reagent and
solvent bottles that directs the fluid flow through delivery
valves (including valve manifolds) into the fluid path. The
sequencer control software functions on a Microsoft®™
Windows platform and features an extensive user-interactive
graphical interface for instrument control and instrument
method editing. The sequencer data analysis software is a
modified version of the HP ChemStation software with
features specific for the analysis and data reporting of the
thiohydantoin-amino acid residues.

Sample Application to Zitex Membranes

The sequencing chemistry oceurs on Zitex reaction mem-
branes (inert porous membranes), which are housed in Kel-F
(inert perfluorinated plastic) sequencer reaction columns.
The Zitex membrane serves as the sequencing support for
the coupling and cleavage reactions. The membrane is
chemically inert to the sequencing reagents and retains the
sample through multipoint hydrophobic interactions during
the sequencing cycle. The chemical methodology performed
on the Zitex membrane enables the sequence analysis of
proteins and low-molecular-weight peptide samples. The
sequencer sample reaction columns are installed in any one
of four available sequencing sample positions, which serve
as temperature-controlled reaction chambers. In this fashion,
four different samples can be independently programmed
for automated sequence analysis.

C-terminal sequence analysis is readily accomplished by
directly applying the protein or peptide sample to a Zitex
reaction membrane as diagrammed in Fig. 6. The process
does not require any presequencing attachment or coupling
chemistries. The basic, acidic, or hydroxylic side-chain
amino acid residues are not necessarily subjected to any

76 April 1996 Hewlett-Packard Journal

SR

-]

Fig. 5. The HP G1009A C-terminal
protein sequencing system consists
of the HP C-lerminal sequencer,
the HP 1090M HPLC, and an HP
Vectra computer.

presequencing chemical modifications or derivatizations.
Consequently, there are no chemically related sequencing
ambiguifies or chemical inefficiencies. Protein samples that
are isolated using routine separation procedures involving
various buffer systems, salts, and detergents, as well as
samples that are prepared as product formulations, can be
directly analyzed using this technique. The chemical method
is universal for any of the 20 common amino acid residues
and yields thiohydantoin derivatives of serine, cysteine, and
threonine—all of which frequently appear in protein C-
terminal sequences.

To be successful, the sequence analysis must provide unam-
biguous and definitive amino acid residue assignments at
cycle 1, since all protein forms—whether they result from
internal processing, clippings, or single-residue truncations—
are available for analysis at that cycle in their relative pro-
portions.

New Sequencing Applications

The Hewlett-Packard G1009A C-terminal protein sequencing
system is capable of performing an expanded scope of se-
quencing applications for the analysis of peptide and protein
samples prepared using an array of isolation and purification
techniques. The recently introduced version 2.0 of the HP
thiohydantoin sequencing chemistry for the HP G1009A C-
terminal sequencer now supports both the “high-sensitivity"
sequence analysis of protein samples recovered in 50-to-
100-picomole amounts and an increase in the number of

1. Zitex membrane is treated with alcohol.
2. Sample solution is directly applied to membrane and allowed to dry.

3. Membrane is inserted into a sequencer column.

J—'_F_ =
| mm— fm—
I —— i
(I

Fig. 6. Procedure for sample application (loading) onto a Zitex
C-terminal sequencing membrane.

© Copr. 1949-1998 Hewlett-Packard Co.

sequenceable cycles. The high-sensitivity C-terminal sequence
analysis is compatible with a great variety of samples en-
countered at these amount levels in research laboratories.

C-terminal sequence analysis of protein samples recovered
from SDS (sodium dodecylsulfate) gel elecirophoresis is an
important application enabled by the high-sensitivity se-
quencing chemistry. SDS gel elecirophoresis is a routine
analytical technique based on the electrophoretic mobility of
proteins in gel matrices. The technique provides information
on the degree of overall sample heterogeneity by allowing
individual protein species in a sample to be resolved. The
sequence analysis is performed on the gel-resolved proteins
after the physical transfer of the protein components to an
inert membrane, such as Teflon, using an electrophoretic
process known as electroblotting. SDS gel electrophoresis
of native and expressed proteins frequently exhibits multiple
protein bands indicating sample heterogeneity or internal
protein processing—both of critical concern for protein
characterization and production.

The combined capabilities of high-sensitivity sequence analy-
sis and sequencing from SDS gel electroblots has enabled the
development of tandem N-terminal and C-terminal sequence
analyses on single samples using the HP G1005A N-terminal
sequencer in combination with the HP G1009A C-terminal
sequencer. This procedure unequivoeally defines the protein
N-terminal and C-terminal amino acid residues and the pri-
mary structural integrity at both termini of a single sample,
thereby eliminating multiple analytical methods and any
ambiguities resulting from sample-to-sample variability.

C-Terminal Sequence Analysis Examples

The first five cycles of an automated C-terminal sequence
analysis of horse heart apomyoglobin (1 nanomole) are
shown in Fig. 7. The unambiguous result observed for cycle 1
confirms the nearly complete homogeneity of the sample,
since no significant additional thiohydantoin derivatives can
be assigned at that cycle. The analysis continues clearly for
five cycles enabling the amino acids to be assigned with
high confidence, The results of a sequence analysis of 500
picomoles of recombinant interferon are shown in Fig, 8,
The first five cycles show the unambiguous sequencing resi-
due assignments for the C-terminal amino acid sequence of
the protein product.

The results of a C-terminal sequence analysis of 1 nanomole,
100 picomoles, and 50 picomoles of bovine beta-lactoglobulin
A are shown in Fig. 9 as the cycle-1 HPLC chromatograms
obtained for each of the respective sample amounts. The
recovery for the first cycle of sequencing is approximately
4% to 509 (based on the amounts applied to the Zitex mem-
branes) and an approximately linear recovery is observed
across the range of sample amount. The linear response in
the detection of the thiohydantoin-amino acid sequencing
produets and a sufficiently quiet chemical background per-
mit the high-sensitivity C-terminal sequence analysis,

The automated C-terminal sequencing of the HP G1009A
C-terminal sequencer facilitated the detection and identifica-
tion of a novel C-terminal modification observed for a class
of recombinant protein molecules expressed in E. coli that
has compelling biological implications. Dr. Richard Simpson
and colleagues at the Ludwig Institute for Cancer Research

G
5
l Cycle 1
15+
|
5 S T - PSR | S
5+ 1
s Cycle 2
15+
A
U) T . e
xL |
Cycle 3 F

A ||

5+, i__,"..__.l IL‘____,_-\F.._:‘-_-'\._'_H_;__,_,.__,.__‘_,._J WL

Absorbance Units (mAU)
o

%5+ 6 "
Cycled I
154
" § | |'
5+ Y l:\-w \I—-_/'\-r‘g_.j_._t._ﬂ_'_k_.__r.q_rl\ \J s el
25 L
Cycle5
15 = L
X 1
shd kA PN e e o jm_ll M
5 10 15 20 25 3o 35
Retention Time {min)

Fig. 7. Cycles 1 to 5 of C-terminal sequencing of 1 nanomole of
horse apomyoglobin,

16+ |
12+ Cycle 2 ‘

= ‘:"'i‘—‘:—_:‘“ A L

s 1 T
t

Cycle 3 L ‘

] T R

05 - :

T T T t T t

Absaorbance Units (mAU)

Cycle d

- A
B TSy SRS | -

D+ . L :

t T T

|
d J»._’U' \»L_

Y
_‘F .-_n_:'-_ll‘.,._.'\

Cycle5
= LA_;“_A’_;’-_.-—-}LAJ" \‘J‘—

L ' | il } i
T

10 15 20 5 30 35
Retention Time (min)

-
3
4
<+ @0

Fig. 8. Cycles 1 to 5 of C-terminal sequencing of 500 picamoles of
recombinant beta-interferon applied to Zitex (230 picomoles of Asn
recovered in cyele 1).

April 1906 Hewlett-Packard Journal 77

© Copr. 1949-1998 Hewlett-Packard Co.

lie
10+ . ‘
8 !
6 1 nmole i
4 | |
2+ J \ | |
b+ A l\ —. .~I—-—_A.I- - !'-,_.I. l—-. \‘“—J"l
10 4+
bl 100 pmol
Al pmole
= lle
E 2 Tl ._rl SR Ti— ——— LJI |- :
= 0+
= { t 1 t T
8
g |
2
; |
= 50 pmole |
i lle I
. PR . S
Thiohydantoin Amino Acid Standard F w
K L
Py
sic H F 2 Viim
E | | E,. h
: | ||_ . ﬂ ‘
- Y - '“\)u.\._!LJl-LL_,_)'\f‘. et R Rl
10 15 20 25 30 35

Retention Time (min}

Fig. 9. C-terminal sequence analysis of bovine beta-lactoglobulin A
across a 20-fold range of sample amount.

in Melbourne, Australia reported the identification of a pop-
ulation of C-terminal-truncated forms of murine interleukin-6
molecules recombinantly expressed in E. coli that bear a
C-terminal peptide extension.” Fig. 10 shows the results of
the first five cycles of a C-terminal sequence analysis of a
purified form of C-terminal-processed interleukin-6 identi-
fying the amino acid sequence of the C-terminal-appended
peptide as Ala(1)-Ala(2)-Leu(3)-Ala(4)-Tyr(5).

High-Sensitivity C-Terminal Sequence Analysis

Protein samples in amounts of 50 picomoles or more are
applied in a single step as liquid aliquots to isopropanol-
treated Zitex reaction membranes. The samples disperse
over the membrane surface where they are readily absorbed
and immobilized. The dry sample membranes do not usually
require washing once the sample is applied even in those
cases where buffer components and salts are present. As a
rule, the matrix components do not interfere with the auto-
mated chemistry and are eliminated during the initial steps
of the sequencing cycle.

Fig. 11 shows the unambiguous residue assignments for the
first three cycles of sequence analysis of a 50-picomole sam-
ple of bovine beta-lactoglobulin A applied to a Zitex mem-
brane. Again, the linear response in the detection of the thio-
hydantoin-amino acid sequencing products coupled with a
sufficiently quiet chemical background enable high-sensitivity
C-terminal sequence analysis. The sequence analysis of

50 picomoles of human serum albumin is shown in Fig. 12.
The chromatograms permit clear residue assignments for
the first three cycles of sequencing.

78 April 1996 Hewlett-Packard Journal

Absorbance Units (mAU)}

0+
Cycle 4 |

1+ | A ~
1] b :i‘lla_._.a_,]f-_-q'-__,_T-_,»..l.\ A Preii— eI S

1 T
t T T 1

30 - I
20 + Cycle 5

10+ | ¥
0 kA Al

5 10 15 20 25 30 35
Retention Time (min)

Fig. 10. Cycles 1 to 5 of C-terminal sequencing of recombinant
murine interleukin-6 identifying the C-terminal extension peptide
(AALAY) as described in the text. {1 nanomole applied to Zitex:
5A5 picomoles of Ala recovered in cyele 1.)

C-Terminal Sequence Analysis of Electroblotted SDS
Gel Samples

Analytical gels are routinely used for the analysis of protein
samples and recombinant products to assess sample homo-
geneity and the occurrence of related forms. The common
observation of several closely associated protein SDS gel
bands is an indication either of cellular processing events or
of fragmentations induced by the isolation and purification
protocols. Because of its capacity to perform high-sensitivity
analysis, C-terminal sequence analysis provides a direct
characterization of these various protein species and facili-
tates the examination of their origin and control.

In collaboration with scientists at Glaxo Wellcome Research
Laboratories, Research Triangle Park, North Carolina, SDS
gel electroblotting procedures have been developed and
applied to protein samples of diverse nature and origin.®
Typically, 50-picomole (1-to-10-microgram) sample amounts
are loaded into individual SDS gel lanes and separated ac-
cording to molecular weight by an applied voltage. Following
electrophoretic resolution of the protein samples, the protein
bands on the SDS gel are electroblotted to a Teflon mem-
brane. The electroblotted proteins, visualized on the Teflon
membrane after dye-staining procedures, are excised in the
proper dimensions for insertion directly into C-terminal
sequencer columns as either single bands (1 em) or multiple
bands. The visualization stain does not interfere with the

© Copr. 1949-1998 Hewlett-Packard Co.

3 “> Cycle1
T
I
|
1+
| |\
(1] ‘,AJ':JJ P A e '\,H"""""-r. A s
3l
_ | Cycle 2
S |
: | |
£ 2 ‘
3 H
@
g ‘ |
£, l
: |
=
=

o Cycle 3
z = i 1
1 =

| 1
T t

30

J\,_LJ\‘:-L . ww ;

5 10 15 20

5
Retention Time (min)
Fig. 11. High-sensitivity C-terminal sequencing of 50 picomoles
ol bovine beta-lactoglobulin A indicating approximately 50%
recovery (24 picamoles) of eycle-1 isoleucine.

sequence analysis and the excised bands do not have to be
treated with any extensive wash protocol before sequencing.

Fig. 13 shows the results of sequence analysis of approxi-
mately 250 picomoles of a bovine serum albumin (68 kDat)
sample loaded into one lane of the SDS gel, subjected to
electrophoresis, and electroblotted to a Teflon membrane.
The chromatograms for cycles 1 to 3 of the single 1-cm pro-
tein band sequenced from the Teflon electroblot illustrate
the high sensitivity of the sequencing technique. In Fig. 14,
approximately 50 picomoles of a phosphodiesterase (43 kDa)
sample were applied to an SDS gel lane, subjected to electro-
phoresis, electroblotted to Teflon, and excised as a single
1-cm sulforhodamine-B-stained band. C-terminal sequence
analysis of the Teflon blot enabled the determination of the
extent of C-terminal processing as demonstrated by the
presence in cycle 1 of the Ser expected from the full-length
form, in addition to the His residue arising from a protein
form exhibiting the truncation of the C-terminal amino acid,
in about a 10:1 ratio. The expected full-length C-terminal
sequence continues in eycle 2 (His) and cycle 3 (Gly), with
the truncated form yielding Gly in cycle 2 and Glu in eycle 3.
Additional processed protein forms also are identifiable,

kDa = kilodaltons. A dalten 15 @ unit of mass measurement approximately equal to 1,66 =
10-24 gram

|
4.
|
o T Cycle 1
2.1 L
. T I
0 ,J_-_,LJ_/—-‘—-.__. aaaaii e O i T | e
3— 4 1
E G
2 3 l’ Cycle 2
5
2 2l |
: r
2 1_! A H'F‘ull‘ Ay pmh A e
< 9 _»JL'-\L»—‘\\.—/_—'_ — M~ v |
4
*3 Cycle 3
21 L
i 22 N
u MMM_,J_” 4
0L
5 10 15 20 5 30]

Retention Time {min)

Fig. 12. High-sensitivity C-terminal sequencing of 50 picomoles
of human serum albumin indicating approximately 56% recovery

(28 picomoles) of cyele-1 leucine.

54

44 “ Cycle 1

34 |

N 10 N WY | &
s 6}

\

% " Cycle2 '-}
| N N | S e R L

5 10 15 20
Retention Time (min)

Fig. 13. C-terminal sequence analysis of 250 picomales of
bavine serum albumin applied to an SDS gel, electroblotted to
Teflon tape, and subjected to three cycles of analysis. 70 pico-
moles of Ala recovered in cycle 1.

April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

79

84+
6+ Cycle1
44
24g ? ||| . I\
1 el '"-"‘:—*-—‘l"ﬂ‘-—-—f—*-’w-.—-‘“—f’*": e
s -+
61g Cycle 2
2 I Ho g |
RN I,
E 1 ——Jnri__r-kr__,_.hwﬂ.l L Y, »_'I'uL_.I."'-_.u._F_H,J?._.*.h.__lvm b s
: | f f : : } i
£t |
s 67 Cycle 3 |
= a4+ &
2 l
l A !lJ| ,u P
1 LA ___,J b, MRS 1) lk__.\,-_F_, Jhoa L_‘_r,ﬂ Al M el
i X [F W
H R P L
6+lp g v
a i A
E
L \ I I
I { .
1 |l'v '._-ij.:’ \IJ —_ L __JI‘_/
5 10 30 35

Hetan'uon Time {mm}

Fig. 14. Cycles 1 to 3 of a C-terminal sequence analysis of 50
picomoles of phosphodiesterase electroblotted from an SDS
gel to Teflon tape. Three protein species are identified at
cvele 1 of the sequence analysis indicating protein C-terminal
processing of the sample.

This application was exploited by researchers at the Depart-
ment of Biological Chemistry of the University of California
at Irvine to investigate the C-terminal amino acid sequences
of polio virus capsid proteins and examine additional viral
systems.” Polio viral capsid proteins VP2 and VP3 were
electroblotted to Teflon tape from SDS gels for C-terminal
sequence analysis. Figs. 15 and 16 show the results of the
sequence analysis, which unambiguously identifies the C-ter-
minal residue in both proteins as GlIn, with additional amino
acid residue assignments being GIn(1)-Leu(2)-Arg(3) for VP2
and GIn(1)-Ala(2)-Leu(3) for VP3 subunits, respectively.

Tandem N-Terminal and C-Terminal Sequence Analysis
The amino acid sequence analysis of both the N-terminus
and the C-terminus of single protein samples enables amino
acid sequence identification af the respective terminal ends
of the protein molecule in addition to a rapid and reliable
detection of ragged protein termini. The tandem sequence
analysis process of N-terminal protein sequencing followed
by C-terminal protein sequencing of the same single sample
provides a combined, unequivocal technique for the deter-
mination of the structural integrity of expressed proteins
and biologically processed precursors. The analyses are
performed on a single sample of protein, thereby eliminating
any ambiguities that might be attributed to sample-to-sample
variability and sample preparation.

The protein sample is either applied as a liquid volume onto
a Zitex membrane or electroblotted to Teflon from an SDS
gel and inserted into a membrane-compatible N-terminal
sequencer column. The sample is subjecied to automated
N-terminal sequencing using the HP G1005A N-terminal

80 April 1996 Hewlett-Packard Journal

Cycle 2

| |
1 --i J \ !_
LWL ~ Ir—---—'ﬁ""- l't-—u..._._.rhuf—-m‘_,’ui_,._ha—-.-l-___,,.._,_, el

| N | | N
T t T T T T L

Absorbance Units (mAU)

2] I\ Cycle 3 |
1 J‘ I R kG
| ~ _.lr-J\ | Ko SN M et
0+ ; } = ;
15 20 25 30 35
Retention Time (min)

Fig. 15. Cycles 1 to 3 of a C-terminal sequence analysis of polio viral
capsid protein, VP2, electroblotted from an SDS gel ta Teflon tape.

1]
T
3+ |
| ' Cycle 1
({
.\ |

24
‘.

ol | \

L ,J-' I\\ e P S ey | AN 1“"}
04 + t t + + }
5 47
-4
£ 3
E A Cycle 2
L '.
'g 1 —-l l 1 I_ﬁﬁf
2 AP L SRR | S
0 } | ¢ - : =
§3F |
3l |
Cycle 3 ‘
724
| Li 1
1+ | 1 b,
I \i}; = | | AL ey Y
0 } 4 . t }
5 1D 15 20 25 30 35

Retention Time (min)

Fig. 16. Cycles 1 to 3 of a C-terminal sequence analysis of polio viral
capsid protein, VP3, electroblotted from an SDS gel to Teflon tape.

© Copr. 1949-1998 Hewlett-Packard Co.

2 -

| G Cycle 1
10 + |
o | - . I A A A = o
271 Cycle 2 L
10 +
R L e — . H A "
L-4
E
- 18
E m | Cycle3
g 14t
H s "
= IR T . il 4. Tl Lok BTG, (RS~ T
3 ¥ T T
- D
s 7 Cycled
10+ .
U]
B - -_F_.'\-—.-_.-\.-{.-\-P-...- —_ -4————=_—'-.__d-__.-’ ; _-_Jk
A Cycle5
10 + ? :
| Il
u ""' I e __H":'-: ———— 5 e -,I_A_m’h'_'_Jl
q 8 12 16 20
Retention Time (min)

(a)

Cycle 1

Cycle2

Absorbance Units (mAU)
o

Cycle 3

0 ---;l'"*-J = ~\Lr—~—"- I"‘-—-AT-—L‘_-_.‘- - I'l Mt

5 10 15 20 25 30 35
Retention Time (min)

(b)

Fig. 17. (a) Cyveles 1 to 5 of an N-terminal sequence analysis of 250 picomoles of horse apomyoglobin electroblotted from an SDS gel to
Teflon tape. The HP G1005A N-terminal sequencer was used to sequence the sample applied to the Zitex membrane. 47 picomales of Gly
recovered at cvele 1. (b) Cyeles 1 to 3 of the C-terminal sequence analysis of the N-terminal-sequenced myoglobin sanple of Fig. 17a
subjected to C-terminal sequencing using the HP (G1009A C-terminal sequencer. The sample membrane was directly transferred from the
HP G1005A N-terminal sequencer to the HP G1009A C-terminal sequencer. 79 picomoles of Gly recovered at eyele 1.

protein sequencer. The sample membrane is subsequently
transferred to a C-terminal sequencer column and subjected
to automated C-terminal sequence analysis using the HP
GLO09A C-terminal protein sequencer. In this fashion, a
single sample is analyzed by both sequencing protocols,
resulting in structural information that pertains precisely to
a given population of proteins.”

Figs. 17a and 17b demonstrate the tandem sequencing proto-
col on an SDS gel sample of horse myoglobin. About 250
picomoles of myoglobin were applied to an SDS minigel
across five lanes, subjected to electrophoresis, and electro-
blotted to a Teflon membrane. Five sulforhodamine-B-stained
bands were excised and inserted into the N-terminal se-
quencer column. Five cycles of N-terminal sequencing iden-
tified the sequence Gly(1)-Leu(2)-Ser(3)-Asp(4)-Gly(5) with
47 picomoles of Gly recovered at cycle 1 as shown in

Fig. 17a. The sequenced Teflon bands were transferred to a
C-terminal sequencer column and the results of Fig. 17h
show the expected C-terminal sequence Gly(1)-GIn(2)-
Phe(3) with 79 picomoles of Gly recovered at cycle 1. The
HP tandem sequencing protocol is currently being employed
to ascertain the primary structure and sample homogeneity
of pharmaceutical and biotechnology protein products in
addition to protein systems under active study in academic
research laboratories.

Summary

The HP G1009A C-terminal protein sequencer generates pep-
tide and protein C-terminal amino acid sequence information
on a wide variety of sample types and sample preparation
techniques, including low-level sample amounts (< 100 pico-
moles), HPLC fractions, SDS gel electroblotted samples, and
samples dissolved in various buffer solutions and formula-
tions. The automated sequence analysis provides unambigu-
ous and definitive amino acid residue assignments for the
first eycle of sequence analysis and enables additional resi-
due assignments for typically three to five cycles. The ability
to sequence through any of the common amino acid residues
provides researchers with a critical component for reliable
sequence identification. The tandem process of N-terminal
and C-terminal sequence analysis of single protein samples
provides a significant solution for the evaluation of sample
homogeneity and protein processing. The utility of these
current applications is being applied to the investigation of
many protein systems of importance in biochemistry and in
the development and characterization of protein therapeutics.

Acknowledgments

The authors wish to thank James Kenny, Heinz Nika, and
Jacqueline Tso of HP for their technical contributions, and
our scientific collaborators including William Burkhart

April 1996 Hewlett-Packard Journal 81

© Copr. 1949-1998 Hewlett-Packard Co.

and Mary Moyer of Glaxo Wellcome Research Institute,
Research Triangle Park, North Carolina, Richard Simpson
and colleagues of the Ludwig Institute for Cancer Research,
Melbourne, and Ellie Ehrenfeld and Oliver Richards of the
Department of Biological Chemistry, University of California,
Irvine, California.

References

1. R. Harris, “Processing of C-terminal lysine and arginine residues
of proteins isolated from mammalian cell culture,” Jowrnal of Chro-
matography A, Vol. 705, 1995, pp. 129-134.

2. P. Edman, “Method for determination of the amino acid sequence
in peptides,” Acta Chemica Scandinaviea, Vol. 4, 1950, pp. 283-203.
3. P. Edman and G. Begg, “A protein sequenator,” European Jowrnal
of Biochemistry, Vol. 1, 1967, pp. 80-91.

4. A.S. Inglis, "Chemical procedures for C-terminal sequencing of
peptides and proteins,” Analytical Biochemistry, Vol. 195, 1991,
pp. 183-196.

82 April 1996 Hewlett-Packard Journal

5..J.M. Bailey, “Chemical methods of protein sequence analysis,”
Jowrnal of Chromatography A, Vol. 705, 1995, pp. 47-65.

6. C.G. Miller and J.M. Bailey, "Automated C-terminal analysis for
the determination of protein sequences,” Genetic Engineering
News, Vol. 14, September 1994,

7. G-F Tu, G.E. Reid, J-G Zhang, R.L. Moritz, and R.J. Simpson,
“C-terminal extension of truncated recombinant proteins in Escheri-
chia coli with a 108a RNA decapeptide,” Jowrmal of Biological
Chemistry, Vol 270, 1995, pp. 9322-9326,

8. W. Burkhart, M. Moyer, J.M. Bailey, and C.G. Miller, “C-terminal
sequence analysis of proteins electroblotted to Teflon tape and
membranes,” Poster 529M, Ninth Symposium of the Protein
Society, Boston, Massachusetts, 1995,

9. C.G. Miller and J.M. Bailey, “Expanding the scope of C-terminal
sequencing,” American Biotechnology Laboratory, October 1995,

Microsaft and Windows are U.S. registered trademarks of Microsoft Corporation

© Copr. 1949-1998 Hewlett-Packard Co.

Measuring Parasitic Capacitance and
Inductance Using TDR

Time-domain reflectometry (TDR) is commonly used as a convenient
method of determining the characteristic impedance of a transmission line
or quantifying reflections caused by discontinuities along or at the
termination of a transmission line. TDR can also be used to measure
quantities such as the input capacitance of a voltage probe, the
inductance of a jumper wire, the end-to-end capacitance of a resistor, or
the effective loading of a PCI card. Element values can be calculated
directly from the integral of the reflected or transmitted waveform.

by David J. Dascher

Why would anyone use TDR to measure an inductance or
capacitance when there are many inductance-capacitance-
resistance (LCR) meters available that have excellent reso-
lution and are easy to use? First of all, TDR allows measure-
ments to be made on devices or structures as they reside in
the circuit. When measuring parasitic quantities, the physical
surroundings of a device may have a dominant effect on the
quantity that is being measured. If the measurement cannot
be made on the device as it resides in the circuit, then the
measurement may be invalid. Also, when measuring the
effects of devices or structures in systems containing frans-
mission lines, TDR allows the user to separate the charac-
teristics of the transmission lines from the characteristics of
the device or structure being measured without physically
separating anything in the cirenit. To illustrate a case where
TDR can directly measure a quantity that is very difficult to
measure with an LCR meter, consider the following example.

A printed circuit board has a long, narrow trace over a
ground plane, which forms a microstrip transmission line. At
some point, the trace goes from the top of the printed circuit
board, through a via, to the bottom of the printed circuit
board and continues on. The ground plane has a small open-
ing where the via passes through it. Assuming that the via
adds capacitance to ground, a model of this structure would
be a discrete capacitance to ground between the top and
bottom transmission lines. For now, assume that the charac-
teristics of the transmission lines are known and all that
needs to be measured is the value of capacitance to ground
between the two transmission lines.

Using an LCR meter, the total capacitance between the trace-
via-trace structure and ground can be measured but the
capacitance of the via cannot be separated from the capaci-
tance of the traces. To isolate the via from the fraces, the
traces are removed from the board. Now the capacitance
between just the via and ground can be measured. Unfortu-
nately, the measured value is not the correct value of capaci-
tance for the model.

Using TDR instead of an LCR meter, a step-shaped wave is
sent down the trace on the printed circuit board and the

83 April 1996 Hewlett-Packard Journal

wave that gets reflected from the discontinuity caused by
the via is observed. The amount of “excess” capacitance
caused by the via can be calculated by integrating and scaling
the reflected waveform. Using this method, the measured
value of capacitance is the correct value of capacitance to
be used in the model.

The discrepancy between the two measurements exists
because the LCR meter was used to measure the total ca-
pacitance of the via while TDR was used to measure the
excess capacitance of the via. If the series inductance of the
via were zero, then its total capacitance would be the same
as its excess capacitance. Since the series inductance of the
via is not zero, a complete model of the via must include
both its series inductance and its shunt capacitance. Assum-
ing that the via is capacitive, the complete model can be sim-
plified accurately by removing the series inductance and
including only the excess capacitance rather than the total
capacitance.

It should be no surprise that the value of excess capacitance
measured using TDR is the correct value for the model. The
reason to model the trace-via-trace structure in the first place
is to predict what effect the via will have on signals propa-
gating along the traces, TDR propagates a signal along the
trace to make the measurement. In this sense, TDR provides
a direct measurement of the unknown quantity.

To derive expressions that relate TDR waveforms to excess
capacitance and inductance, an understanding of fundamen-
tal fransmission line parameters is required. This article
presents a cursory review of transmission lines and the use
of TDR to characterize them, and then derives expressions
for excess capacitance and inductance. If you are already
familiar with transmission lines and TDR, you may wish to
skip the review sections.

Fundamental Transmission Line Parameters

First, a few words about “ground.” Twin-lead (or twisted-pair)
wire forms a two-conductor transmission line structure that
can be modeled as shown in Fig. 1. The model includes the

© Copr. 1949-1998 Hewlett-Packard Co.

Twin-Lead Wire
A O 0 B1

o Oom

Twin-Lead Lumped LC Model

L8 IJﬂ L4 L4 L8
apo—M TMN_g Mg MM_gp1
f CﬂT t ca 1 o T ca |
Ly == Lpy Lin == tm
4L i T v o
c1 —0O D
L8] La ua 7}

(a)
Coaxial Cable
.~
Az O—'I—I]— e -: O B2
\

20— —?) Lo D2

Coax/Microstrip/Stripline Lumped LC Model
o_l‘l'h_l_f‘r‘h_l I'YTL I_ﬂ'l‘l_. ﬁTL O B2
— Cia

20 6 @ O p2

(b)

Fig. 1. Two-conductor transmission lines and lumped LC maodels.

self-inductance of each conductor, mutual inductance be-
tween the self-inductances, and capacitance between the

two conductors. Skin effect and dielectric loss are assumed

to be negligible in this model. Injecting a current transient i

into one side of the transmission line, from node Al to node
(1, causes a voltage v = iZ to appear between nodes Al and
(1 and also causes a voltage v = Ldi/dt to appear across the

series inductance of both the A-B and C-D conductors.
Referring back to the physical structure, this means that
there is a voltage difference between the left side and the

right side of each conductor. Even if you name the C-D con-

ductor “ground,” it still develops a voltage between its left
side and its right side, across its series inductance.

Microstrip traces and coaxial cables (coax) are two special

cases of two-conductor transmission line structures, Inject-

ing a current transient into one side of a microstrip or coax

transmission line causes a voltage to appear across only one

of the two conductors. In the case of an ideal microstrip,
where one of the conductors is infinitely wide, the wide

conductor can be thought of as a conductor with zero induc-

tance. Hence the voltage generated across the infinitely
wide conductor is zero. With coax, the inductance of the

outer conductor is not zero. However, the voltage generated

across the inductance of the outer conductor has two com-
ponents. One component is a result of the current through
the self-inductance of the outer conductor (v = L di/dt).

84 April 1996 Hewlett-Packard Journal

The other component is a result of the current through the
center conduetor and the mutual inductance between the
center and outer conduetors (ve = Ly, di/dt). Current that
enters the center conductor returns through the outer con-
ductor, so the two currents are equal but in opposite direc-
tions. The unique property of coax is that the self-indue-
tance of the outer conductor is exactly equal to the mutual
inductance between the center and the outer conductors.
Hence the two components that contribute to the voltage
generated across the inductance of the outer conductor ex-
actly cancel each other and the resulting voltage is zero,
When current is injected into a coax transmission line, no
voltage is generated along the outer conductor if the current
in the center conductor is returned in the outer conductor.

The point here is that the generalized model for a two-
conductor transmission line can be simplified for microstrip
and coax constructions. The simplified model has zero in-
ductance in series with one of the conductors since, in both
cases, no voltage appears across the conductor. This con-
ductor is commonly referred to as the ground plane in micro-
strip transmission lines and as the shield in coax transmission
lines. The other conductor, the one that develops a voltage
across it, is referred to as the transmission line, even though
it is really only half of the structure.

There are tiwo ways to model a lossless transmission line.
One method defines the transmission line in terms of char-
acteristic impedance (Zg) and time delay (tg) and the other

Zy =50 ohms
ly=6ns
o o — —O
- v v
2 Q
4 L =tyZy=300 nH
One-Segment Model C=1y/Zy=120 pF

%73 L2
AOTTTNL_g MMy

E 4
T
W 7 v

Iy =50 ohms
Rs:'juﬂ!lms _ _td=5ll$

JOW— ——@—0 Vou
2Vy, _O v v § R, =50 ohms
Fig. 2. Two LC models for a coaxial cable. The five-segment model

is accurate over a wider range of frequencies than the one-segment
model.

© Copr. 1949-1998 Hewlett-Packard Co.

5000 T -
‘% P = | | \ |1] 1 j
= | =i
= ! T |
= 100
- 50+ — "'Tr | (%, ; 2 |
& g \ AN\
1 8
5 4 i : [] : |
LR
14 | ! d o |
al < One-Segment < Five-Segment Transmission
Model — Model 7 Line —
A / /
= 1 . — ."I 3 -
= sl Vi
= [Vi
T o6 i
05 _ Fig. 3. (a) Magnitude of the input
04 I impedance Zy, for the transmission
03 | line and models of Fig. 2. (b)
L 1 2 4 6 8 10 20 2 &0 BI; 100 200 00 600 Vout/Viy! for the transmission line
Frequency (MHz) and models of Fig. 2 (in the circuit
{b) at the bottom of Fig. 2).

method defines the transmission line in terms of total series
inductance (Lypq1) and total shunt capacitance (Crgpar). There
are times when it is beneficial to think of a transmission line
in terms of Zg and t4 and likewise, there are times when
thinking in terms of Cogpay and L. is best.

If one end of a long transmission line is driven with an ideal
current step, the voltage at that end will be an ideal voltage
step whose height is proportional to the current and the
characteristic impedance Zy of the transmission line: Vy,, =
I Zg. The waveform generated at that end will propagate
along the transmission line and arrive at the opposite end
some time later. The time it takes the wave to propagate
from one end to the other is the time delay () of the trans-
mission line.

The total capacitance and inductance of a fransmission line
can be measured with an LCR meter. To determine the total
capacitance of a coaxial cable, measure the capacitance be-
tween the center conductor and the shield at one end of the
cable while the other end is left open. The frequency of the
test signal used by the LCR meter should be much less than
1/(41y) where t is the time delay of the cable. To measure the
total inductance of the cable, measure the inductance from
the center conductor to the shield at one end of the cable
while the other end of the cable has the center conductor
connected to the shield. Again, the test frequency must be
much less than 1/(41y).

If the characteristic impedance and time delay of a transmis-
sion line are known, then the total shunt capacitance and
total series inductance of the transmission line can be calcu-
lated as:

Lg

Crow = 5

Total T
L’I'ulul o l'llzl]-

If the total shunt capacitance and total series inductance are
known, then Zj and 14 can be calculated as:

B I-/I‘:)I;al
7V Crota

tqg = y‘flLTOIaJCTntal-

As an example, many engineers use 50-ohm coaxial cables
that are about four feet long and have BNC connectors on

each end. The time delay of these cables is about six nano-
seconds, the capacitance is 6 ns/50 ohms = 120 picofarads,
and the inductance is 6 ns x 50 ohins = 300 nanohenrys.

Fig. 2 shows two LC models for a 50-ohm, 6-ns-long coaxial
cable. The distributed inductance of the transmission line
has been collected into two discrete inductors in the first
model and six discrete inductors in the second model. The
distributed capacitance has been collected into one discrete
capacitor in the first model and five discrete capacitors in
the second. Collecting the distributed capacitance and in-
ductance into discrete, lumped elements reduces the range
of frequencies over which the model is accurate. The more
discrete segments there are, the wider the range of frequen-
cies over which the model is accurate. Fig. 3 shows the mag-
nitude of the impedance seen looking into one end of each
model while the other end is left open. The five-segment
model is accurate over a wider range of frequencies than the
one-segrment model.

Fig. 3 also shows the transmifted response through each of
the models in a circuit that is both source and load termi-
nated in 50 ohms. The discrete LC models are both low-pass
filters. Again, the five-segment model is accurate over a
wider range of frequencies than the one-segment model. In
the time domain, a good rule of thumb is to break a trans-
mission line into five segments per rise time. For example,
to build a model that will accurately simulate the response
of a step with a I-ns rise time, the model should contain five
segments per nanosecond of time delay. This would require
a 30-segment model for the 4-foot, 6-ns coaxial cable.

April 1996 Hewleti-Packard Journal 85

© Copr. 1949-1998 Hewlett-Packard Co.

The transmission line model used in SPICE and many other
time-domain simulators is defined by characteristic imped-
ance and time delay. It consists only of resistors, dependent
sources, and time delay. It is an accurate model of a lossless
transmission line over an infinite range of frequencies. There
are three situations in which lumped LC models may be pre-
ferred over the Zj-tg model used by SPICE. When modeling
very short sections of transmission lines, the maximum time
increment is never greater than the time delay of the shortest
transmission line. Short transmission lines can cause lengthy
simulations. When modeling skin effect and dielectric loss,
discrete LC models can be modified to include these effects.
And finally, discrete LC models can be used to model trans-
mission line systems that contain more than two conductors.

Characteristic impedance and time delay, or series induc-
tance and shunt capacitance, completely specify the electri-
cal properties of a lossless transmission line. Propagation
velocity and length are also required to specify a physical
cable or printed circuit board trace completely. If the time

delay (also known as the electrical length) of a cable is 6 ns
and the physical length of the cable is 4 feet, then the propa-
gation velocity is 0.67 feet per nanosecond. The propagation
delay is 1.5 ns per foot.

Reflection Coefficients for Impedance Changes

Fig. 4 shows a typical measurement setup using an oscillo-
scope with an internal TDR. The oscilloscope input is a
50-ohm transmission line terminated in 50 ohms. The TDR
step generator can be modeled as a current source that con-
nects to the 50-ohm transmission line between the front of
the oscilloscope and the 50-ohm termination. When the cur-
rent source transitions from low to high at time = 0, voltages
are generated in the system as shown. Note that the upper
traces in Fig. 4 are plots of voltage as a function of position
along the transmission lines, not time. The waveform
viewed by the oscilloscope is the waveform at the 50-ohm
termination, which is shown at the bottom of Fig. 4. This is
the TDR waveform.

2y =50 ohms 2 =50 ohms 2y =50 ohms Zy=T75 ohms
14=025ns ty=025ns tg=1ns ti=1ns
s : r B ~ F = 3
—ftn) L L} B iy et | V—
L ¥—oT®e é ¢ ¢ — —é
wmdV V|V v vV Ll
500 | |
= SmA — T | |
Scope
b= | Front | |
Panel | |
v | |
Time=0" T ! |
|
Time=0.1ns T ﬂ |
[
| |
Time =0.24 ns] j _. |
| [
' |
s Time =1.2ns I T -
£ | |
= |
Time=1.3ns I | *-r\-
| |
|
Time=22ns T l *v_
|
===
Time =27 ns |
|
|
Time =28 ns x |
! Physical Position
Voltage at x
Node F ; " I ' : ; : :
0 1 2 3
Fig. 4. Typical measurement
pE———————
Vscope T [/ setup and waveforms for an
(TOR Waveform) ; + f f f f } oscilloscope with an internal
0 1 2 3 Time (ns) time-domain reflectometer (TDR).

86 April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

There is only one discontinuity in the system: the transition
between the 50-ohm cable and the 75-ohm cable at node F.
When the wave propagating along the 50-ohm transmission
line arrives at the 75-ohm transmission line, reflected and
transmitted waves are generated. The wave that is incident
on the transition is shown at time = 1.2 ns. Waves that are
reflected and transmitted from the transition are shown at
time = 1.3 ns. Defining a positive reflected wave to be propa-
gating in the opposite direction from the incident wave, the
reflected wave is given as:

_ Zp -7y
- ZptIa

reflected
incident

where Zj, is the characteristic impedance through which the
incident wave travels and Zg is the characteristic impedance
through which the transmitted wave travels. The transmitted
wave is given as:

2Zp

transmitted _
Zg + 2y’

incident

If Z = 50 ohms, Zg = 75 ohms, and the incident waveform is
a 1V step, then the reflected waveform will be a step of
height 1(75 = 50)/(75 + 50) = 0.2 volt, and the transmitted
waveform will be a step of 1(2 x 75)/(75 + 50) = 1.2 volts.

It is important to note that the waveform that appears at
node F is the waveform that is transmitted into the 75-ohm
cable. The waveform at node F can be derived by simplifying
the circuit at the transition. Looking back into the 50-ohm
cable, the circuit can be modeled as a voltage source in series
with a resistor. The source is twice the voltage of the step
propagating along the 50-ohm cable and the resistor is the
characteristic impedance of the 50-ohm cable. Looking into
the 75-ohm cable, the circuit can be modeled as a 75-ohm
resistor. The simplified circuit is just a voltage divider in
which the divided voltage is 2VgiepZo/(Z + Z1) = 1.2Vg0p.
This is the transmitted waveform.

The TDR waveform, the waveform at the 50-ohm termina-
tion of the oscilloscope, is shown at the bottom of Fig. 4.
The incident step is shown at time = 0.25 ns and the re-
flected step is shown at time = 2.75 ns. The characteristic
impedance of the 75-ohm transmission line can be calculated
from the TDR waveform by solving for Zy in the above rela-
tionship, which gives:

7 = (in(:idem + refiected)
"B “Alncident — reflected /-

Both the incident and reflected waveforms are step functions
that differ only in amplitude and direction of propagation. In
the expression for Zp, the step functions cancel and all that
remains is the step heights. The TDR waveform in Fig. 4
shows the incident step height to be +1V and the reflected
step height to be +0.2V. Knowing that the impedance looking
into the oscilloscope is Zs = 50 ohms, the characteristic im-
pedance of the second cable, Zg, can be calculated as Zp =
501V + 0.2V)/(1V - 0.2V) = 75 ohms.

There is a “transition” between the front panel of the oscillo-
scope and the first cable. The characteristic impedance on
either side of the transition is the same, so the reflected
wave has zero amplitude, If there is no reflected wave, the
transmitted wave is identical to the incident wave. Electri-
cally, there is no discontinuity at this transition since it

causes no reflection and the transmitted wave is identical to
the incident wave.

The transition between transmission lines of different charac-
teristic impedances is a discontinuity that produces reflected
and transmitted waves that are identical in shape to the inci-
dent wave. The reflected wave differs from the incident wave
in amplitude and direction of propagation. The transmitted
wave differs only in amplitude. Discontinuities that are not
simply impedance changes will produce reflected and trans-
mitted waves that are also different in shape from the inci-
dent wave.

Discrete Shunt Capacitance

Fig. 5 shows two 50-ohm transmission lines with a shunt
capacitor between them. The capacitance produces a dis-
continuity between the two transmission lines. A wave that
is incident on the discontinuity produces reflected and
transmitted waves. In this case, both the reflected and trans-
mitted waves have a different shape than the incident wave.

Given an incident step, the voltage at node H can be ascer-

tained by simplifying the circuit as shown in Fig. 5. The inci-
dent step, shown at time = 1.8 ns, has an amplitude of inc_ht
and is propagating along a 50-ohm transmission line. Looking

Z;=50 ohms 25 =50 ohms
0Q o tg=2ns H lg=2ns
AW <0 —
+
VO vsm 6 . é é 500
0 - =
|
Time =0.5ns i 3
Time=18ns [:I_.__
2 |
z .
Z Time=22ns T e _—_,IA
= T
i
Time=30ns T -V_ | _-\-
|
Time=6.0ns x |
| Physical Position
50 2 H 50 H
AAA- I - W
+ +
W— aile
i Wiy« et i 500 | Vstap -
o | 0 -
s Node H T . ‘,'_ i I ;
£ 0 1 2 3 4 5
= Node G (TDR
Waveform)
0 1 2 3 4 5
Time (ns)
Fig. 5. Two 50-ohm transmission lines with a shunt capacitor
hetween them. The capacitance C s to be measured.
April 1996 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

to the left of the capacitor, the circuit can be simplified as a
voltage source in series with a resistor. The voltage source
is twice the incident voltage and the resistance is Zg = 50
ohms (not Rg = 50 ohms). Looking to the right of the capaci-
tor, the circuit can be simplified as a resistor of value Zy = 50
ohms (not R, = 50 ohms). The simplified circuit contains no
transmission lines. The circuit can again be simplified by
combining the two resistors and the voltage source into their
Thevenin equivalent,

Note that if the left transmission line did not have a source
resistance of 50 ohms or the right transmission line did not
have a load resistance of 50 ohms, the simplified model
would still be valid for 4 ns after the incident step arrives at
node H. After 4 ns, reflections from the source and load ter-
minations would have to be accounted for at node H.

Looking ai the simplified circuit and redefining time = 0 to
be the time when the incident step arrives at node H, the
voltage at node H is zero for time < 0, For time > 0, the
voltage at node H is:

Vi inc_ht(l - e‘%),

where T

The voltage waveform that appears on node H is the trans-
mitted waveform. The reflected wave can be determined
knowing that the incident wave equals the transmitted wave
plus the reflected wave (defining each wave as positive in its
own direction of propagation). For time < (, the reflected
wave is zero. For time > 0, the reflected wave is:

Normalizing the reflected waveform to the incident step
height and integrating the normalized reflected waveform

dives:

reflected
ine_ht

reflected_n

W0

Lo
I reflected_n - dt =
s

+ =

L
j ~etat

0

=4
Te Y

L]

Solving for the shunt capacitance between the two transmis-
sion lines gives:

_ .3
T Ty
0

Thus, the amount of capacitance between the two transmis-
sion lines can be determined by integrating and scaling the
normalized reflected waveform.

e o]
.

= reflected n - dt.
Zi'l

Fig. 6 shows a measured TDR waveform from a 50-ohm
microstrip trace with a discrete capacitor to ground at the
middle of the trace. The TDR waveform has been normal-
ized to have an incident step height of 1. The TDR waveform
shows the incident step at (.15 nanosecond and the re-
flected wave superimposed on the incident step at 2.3 nano-
seconds. The reflected wave can be ascertained from the
TDR waveform to be the TDR waveform minus one for all
time after the incident step has settled. The bottom trace is
the integral of the normalized reflected waveform scaled by

=217 = -1/25. Mathematically, the reflected waveform needs
reflected = —inc_ht - e‘%, to be integrated until time = infinity, but practically, the re-
flected waveform only needs 10 be integrated until it has
eherd = 0o E}ﬂ C. seftled reasonably close to zero. In this case it takes about
Start Stop
Integrating Integrating
| |
10 + A l . ﬁ___._l__.

~—— Incident Step

Normalized TDR Waveform (V)

00—

30

Scaled Integral of Normalized
Reflected Wave (pF)

Fig. 6. (top) Measured TDR wave-
/ form from a 50-ohm microstrip
trace with a discrete capacitor to
ground at the middle of the trace.
(bottom) The integral of the re-

0.0
Time (ns)

88 April 1996 Hewlett-Packard Journal

flected waveform reveals that the
capacitance is 2.0 pl.

30

© Copr. 1949-1998 Hewlett-Packard Co.

500 picoseconds for the reflected wave to settle. The bottom
trace shows that the discontinuity is a 2.0-pF capacitance.

Fig. 5 shows an ideal reflected wave to be an exponential
with the same height as the incident step, but Fig. 6 shows a
measured reflected wave to be similar to an exponential but
with a rounded leading edge and a height much less than
that of the the incident step. The measured reflected wave
differs from the ideal reflected wave because of the nonzero
rise time of the incident step and loss in the fransmission
lines. Neither of these nonideal conditions affects the inte-
gral of the reflecied wave, as will be shown later.

Discrete Series Inductance
Fig. T shows two 50-ohm transmission lines with a series
inductor between them, Given an incident step, the circuit

Time =0.5ns T_l-
ﬂm:‘l.ins T ﬂ

13

Time=22ns T

Time =3.0ns T T
| Physical Position
Node J 1 .
0 1 2 3 4 5
% i
5 Node K [> : .
0 1 2 3 4 5
Node | (TOR N
Waveform)
0 1 2 3 L} 5
Time (ns)

Fig. 7. Two bi-ohm transmission lines with a series inductor
between them. The inductance L is to be measured.

can be simplified as shown to determine the voltage wave-
forms at nodes J and K. The voltages at nodes J and K are
zero for time < 0. For time > 0, the voltages at nodes J and
K are:

Il

Vi

. t
|m.'_h|(i = e'?)

Vg = im'_hl(l - {-‘_')

PESRCINE e O
where 1 = R = 3%
In the previous case of a shunt capacitor, there was only one
node between the two transmission lines at which the rela-
tionship incident = transmitted + reflected was applied. Now
there are two nodes, each of which has unique incident,
transmitted, and reflected waveforms. The voltage wave-
form at node J is the waveform that is transmitted to the
inductor and the voltage waveform at node K is the wave-
form that is transmitted to the right transmission line. The
waveform that is reflected at node J is the incident wave-
form minus the waveform transmitted to the inductor, that
1S, VJ.

For time < 0, the reflected wave is zero. For time > (), the
reflected wave is:
i
reflected = inc_ht - e™ 7.
Normalizing the reflected waveform to the incident step
height and integrating the normalized reflected waveform
gives:

reflected_n = reflected
inc_ht
+x + = +x
[
J reflected_n - dt = J e wdt = -—te 7 =%
=" (0 0o

Solving for the series inductance between the two transmis-
sion lines gives:

4 e
L = 2Zgt = QZUJ reflected_n - dt.
1]

Thus, the amount of inductance between the two (ransmis-
sion lines can be determined by integrating and scaling the
normalized reflected waveform.

April 1996 Hewleti-Packard Journal - 89

© Copr. 1949-1998 Hewlett-Packard Co.

Excess Series Inductance

In the previous two cases of shunt capacitance and series
inductance, the discontinuity was caused by discrete, lumped
capacitance or inductance. Discontinuities can also be caused
by distributed shunt capacitance and series inductance.
Consider the printed circuit board traces shown in Fig. 8.
Being over a ground plane, the traces form microsirip trans-
mission lines. The circuit can be modeled as two long, 1-ns,
50-ohm transmission lines separated by a short, 100-ps,
80-ohm transmission line. Modeling the discontinuity as a
short, high-impedance transmission line produces accurate
simulations up to very high frequencies, or for incident
waveforms with very fast transitions.

The discontinuity can also be modeled as a single discrete
inductor. Modeling the discontinuity as an inductor pro-
duces less-accurate simulations at high frequencies, but
when transition times are much larger than the time delay of
the discontinuity, a simple inductor produces accurate simu-
lation results. The simpler model provides quick insight into
the behavior of the circuit. To say a discontinuity looks like
4.9 nH of series inductance provides most people with more
insight than to say it looks like a 100-ps-long, 80-ohm trans-
mission line. Also, simulating a single inductor is much faster
than simulating a very short transmission line.

The total series inductance of the 100-ps-long, 80-ohm trans-
mission line is:

Lot = taZpign = 100 ps x 80 ohms = 8 nH.

Physical Layout
Zy =80 ohms
2 =50 ohms t4=100 ps 2y =50 ohms

) [t
T

A S A

Zy =80 ohms, 13=100 ps Zy =50 ohms, ty =50 ps | —
—— e, ———
4nH 4nH 156nH 156 nH 4.88 nH
AspF — T 1.25 pf
v v
Zy =50 ohms Lescass Zy =50 ohms
_% 488 nH L 2 —
v v

Fig. 8. Two 50-ohim microstrip transmission lines with a distributed
discontinuity between them. The discontinuity can be modeled as a
short 80-chm transmission line or (less accurately) as a series
inductor. The correet inductance to be used to model the narrow
trace is Lpyesss: (If the discontinuity were mueh wider than the
A0-ohm traces, instead of narrower as shown here, it could be
modeled as a shunt capacitor.)

90 April 1996 Hewleti-Packard Journal

To model the short frace as an 8-nH inductor would be in-
correct because the trace also has shunt capacitance. The
total shunt capacitance of the trace is:

Ta 100 ps
Zuigh 80 ohms

Crotal = = 1.25 pF.

To simplify the model of the discontinuity, separate the total
series inductance into two parts. One part is the amount of
inductance that would combine with the total capacitance to
make a section of 50-ohm transmission line, or “balance” the
total capacitance. The remaining part is the amount of induc-
tance that is in excess of the amount necessary to balance
the total capacitance. Now, combine the total capacitance
with the portion of the total inductance that balances that
capacitance and make a short section of 50-ohm transmission
line. Put this section of transmission line in series with the
remaining, or excess, inductance. The short 50-ohm trans-
mission line does nothing except increase the time delay
between the source and load. The excess inductance (not
the total inductance) causes an incident wave to generate a
nonzero reflected wave and a nonidentical transmitted wave,
This is the correct amount of inductance to use to model the
short, narrow trace.

In this case, the portion of the total inductance that balances
the total capacitance is:

Lpatance = (“.q-m‘.,]Zﬁ = 1.25 pFx (50 ohms)® = 3.125 nH
and the remaining, excess inductance is:

Lgxcess = Lrotal — LBalance
= 8 ni — 3.125 nH = 4.875 nH.
Expressing the excess inductance in terms of the time delay

and impedance of the narrow trace (g, Zyigy) and the im-
pedance of the surrounding traces (Zg = Zgep) gives:

I-'Excess = Lota = LBalance
; 2 : ta .o
= taZuigh — CrowatZrer = taZnigh - nghZRef
2
ZRet
Ligeess = talm 1 =] ==
Excess o £High (Zl-[igh)

Fig. 9a shows TDR waveforms from a SPICE simulation that
compare the reflection generated from an ideal 4.88-nH in-
ductor to the reflection generated from an 80-ohm, 100-ps
transmission line, both in a 50-ohm system. Fig. 9b shows
TDR waveforms of the same circuit as Fig. 9a, but the rise
time of the incident step in Fig. 9b is longer than the rise
time used in Fig. 9a. Notice that when the rise time of the
incident step is much larger than the time delay of the dis-
continuity, the simplified model agrees with the transmission
line model. As the rise time of the incident step changes, the
peak value of the reflected waveform also changes but the
integral of the reflected waveform does not change. Using
the integral rather than the peak value to quantify the dis-
continuities makes the measurement of excess inductance
rise time independent.

© Copr. 1949-1998 Hewlett-Packard Co.

V)

lized TDR W
(Incident Step Not Shown)

' P Reflection from Series L
15+ .
“—, _— Reflection from

| Transmission Line
1.0 e

Iof

Reflected Wave (nH)

50 -
Series L

Model —_ L/ ~—— Transmission Line Model

q41

35 40 45 50 55

Time (ns)

15

Reflection from
Series L — Reflection from
\ . Transmission Line
————,

10 P sl . T

Normalized TOR Waveform (V)
(Incident Step Not Shown)

Series L /_/_/
MHEI_‘H"‘“‘; /T~ Transmission
S Line Plﬂnde!

|
35 4.0 45 50 55
Time (ns)

Scaled Integral of
Reflected Wave (nH)

[l
(=

{b)

Fig. 9. (a) TDR waveforms from a SPICE simulation showing
reflections from an ideal 4.88-nH inductor and an 80-ohm, 100-ps
transmission line, both in a 80-ohrm system. The final value of the
integral of the reflected wave is the same for both. (b) Same as (a)
for an incident step with a longer rise time, The agresment between
the reflected waves for the single-inductor model and the trans-
mission line is better. The final value of the integral of the reflected
wave is unchanged,

Excess Shunt Capacitance

In the example shown in Fig. 8, the discontinuity is a section
of trace that is narrower than the surrounding traces. This
discontinuity can be modeled as an inductor. If a discontinu-
ity is a section of trace that is wider than the surrounding
traces, the discontinuity can be modeled as a capacitor. As
in the previous case, the correct value of capacitance is not
the total capacitance of the wide section of trace but rather
the difference between the total capacitance and the portion
of that capacitance that combines with the total inductance
to make a section of transmission line of the same imped-
ance as the surrounding, reference impedance. In terms of
the time delay and impedance of the wide trace (ty, Zyow)
and the impedance of the surrounding traces (Zy = Zgrep), the
excess capacitance is:

2
_ ta - Zyow
Zger Zer

Y
C Excess

The length of the transmission line to the right of the discon-
tinuity has no effect on the reflected or transmitted wave-
forms since it is terminated in its characteristic impedance.
It has been shown as a long transmission line so the trans-
mitted wave can be viewed easily. If the right transmission
line is removed then the discontinuity is at the termination
of the left transmission line. Quantifying parasitic induc-
tance and capacitance at the termination of a transmission
line is no different from quantifying parasitic inductance and
capacitance along a transmission line.

Non-50-Ohm Zger

Often, the impedance of the system to be measured is not
the same as the impedance of the TDR/oscilloscope systen.
There are two ways to deal with non-50-ohm systems. First,
the TDR can be connected directly to the system to be mea-
sured. Second, an impedance matching network can be in-
serted between the TDR and the system to be measured. In
either case, the above relationships can be applied if correc-
tions are made to the TDR waveform.

Connecting the TDR directly to a non-50-ohm system, as
shown in Fig. 10, creates a system with two discontinuities,
one being the transition between the 50-ohm TDR and the
non-50-ohm system and the other being the discontinuity to
be measured. The incident step will change amplitude at the
non-50-ohm interface before arriving at the disconfinuity to
be measured. The reflected wave from the discontinuity
creates another reflection when it arrives at the non-50-ohm-
to-50-ohm interface. This secondary reflection propagates
back into the non-50-ochm system and generates another
reflection when it arrives at the discontinuity being mea-
sured. If twice the time delay of the transmission line be-
tween the non-50-ohm interface and the discontinuity being

Zp =50 ohms 2y =100 ohms
=1ns ty=2ns
509 o, W= b oo
[—W? 0 o e T
+
zﬂ— Viep é 3 é é ¢ 1000
i g _
v v
P,
NodeR T f
0 2 q] 8 10
Start Stop
{Inmgminu lrlmagra‘ting
@
£ NodeP(TOR | ' 4
= Waveform) r
0 2 4] B 10
~Integral of |
Reflected f
wn'e i I L 4
0 z q 6 B 10
Time (ns)
Fig. 10. A TDR connected to a non-60-ohm transmission line with a

capacitance C to be measured. There are mulliple reflections. The
discantinuity ean be accurately quantified as long as the reflection
to be measured can be isolated from other reflections on the TDR
waveform.

April 1990 Hewleii-Packard Journal 91

© Copr. 1949-1998 Hewlett-Packard Co.

measured is larger than the settling time of the first reflected
wave, then the integral of the normalized reflected wave can
be evaluated before any secondary reflections arrive. Other-
wise, all of the secondary reflections must settle before the
integral can be evaluated. If the discontinuity is purely
capacitive or inductive, then the rereflections will not
change the final value to which the integral converges.

Two corrections need to be made to the TDR waveform.
First, the height of the step that is incident on the discontini-
ity, inc_ht, is not the same as the height of the step that was
generated by the TDR, tdr_ht. Second, the reflected wave-
form that is viewed by the oscilloscope, reflected_scope,
has a different magnitude from the waveform that was re-
flected from the discontinuity, reflected. The relationships
between the characteristic impedance of the system being
measured, the characteristic impedance of the TDR, and the
above waveforms are:

2Zper

inc_ht = tdr_hts——————
Zyer + ZrpR

2ZtpR

reflecied_scope = reflected 5—————.
R Ztpr + Zper

The characteristic impedance of the system being measured
can be calculated from the height of the step reflected from
the transition between the 50-ohm TDR system and the
non-50-ohm (Zg.f) svstem, refl_ht.

Zrer = Z (mﬂdem + reﬂected)

incident — reflected

- 50 ohms(tdr‘ht o !‘efl_ht.)‘

tdr_ht — refl_ht

To calculate series inductance or shunt capacitance, the
integral of the waveform reflected from the discontinuity,
normalized to the height of the step incident on the disconti-
nuity, needs to be evaluated. In terms of the measured TDR
waveform, the normalized reflected waveform is:

Zrer + ZTDR
reﬂecred_scope(L——

reflected n = reflected _ 2ZtpR
' = inc_ht 2ZRet

tdr_ht{ 57—

~ \Zrer + Zrpr

2
_ reflected_scope (Zrer + Zrpg)
- tdr_ht AZnetoR

As an example, the shunt capacitance would be:

+
2
(‘ =
Zrer
0

) g 4=

_ Zpet + Zrpr) J
2ZTDR fer

%

reflected n - dt

reflected_scope

tdr_ht ik

Reflections between the discontinuity and the non-50-ohm
transition can be removed if an impedance matching net-
work is inserted between the TDR and the non-50-ohm sys-
tem. Two resistors are the minimum requirement to match
an impedance transition in both directions. Attenuation

92 April 1096 Hewlett-Packard Journal

across the matching network needs to be accounted for be-
fore integrating the reflected waveform. When a matching
network is used, neither the impedance of the system being
tested nor the attenuation of the matching network can be
ascertained from the TDR waveform. If tran_12 is the gain of
the matching network going from the TDR to the system and
tran_21 is the gain going from the system to the TDR, then
the normalized reflected waveform is:

(reﬂ(-cted-_scope)
)
reflected n = reflected _ -

inc_ht tdr_ht - tran_12
_ reflected_scope 1
h tdr_ht tran_12 - tran_21°

Series Capacitance

So far, all of the discontinuities that have been measured
have been mere perturbations in the characteristic imped-
ance of transmission line systems. The discontinuities have
been quantified by analyzing the reflected waveforms using
TDR. Now consider a situation where a capacitance to be
measured is in series with two transmission lines, as shown
in Fig. 11. The series capacitance can be quantified using the
transmitted waveform rather than the reflected waveform,

Z; =50 ohms E;::O ohms
ty=2ns =2ns
50 €2 = — M N _—2 —]
L~ 3 : .
T ‘M—‘—- ! '—I I——f - —_
- b ? g ; |
_' "'Slsp V V
] = 509
v
|
|
Time =05ns T -1_. |
I
|
Time=18ns I l——
@
£ .
=
Time=22ns T M-
|
! Physical Position
Node M r I
T 0 1 2 3 4 5
s Node N _'k ‘
& 0 1 2 3 4 5
2 de L (TDR !
Node r
Waveform) i \] 1 . o
Node O (TOT 4 0 1 2 8 h 8
Waveform) L
0 1 2 3 4 5

Time (ns)

Fig. 11. A series capacitance between two transmission lines can
be measured using the transmitted waveform (time-domain
transmission or TDT) rather than TDR.

© Copr. 1949-1998 Hewlett-Packard Co.

or using time-domain transmission (TDT). Given an inci-
dent step that arrives at the series capacitance at time = 0,
the transmitted waveform is zero for time < 0. For time

> (), the transmitted waveform is:

transmitted = inc_ht - e 3,

where T = RE 2ZyC

Note that T is now proportional to 2% instead of Zy/2.
Normalizing the transmitted waveform to the incident step
height and integrating the normalized, transmitied wave-

form gives:

transmitied n = fransmted
inc_ht
+ > + = %
; L t
transmitted_n - dt = e 1-dt = —1e 1 = 1.
R 0 0

Solving for the series capacitance gives:
-+

V= ¥
= o

Snil ; : .
= 22“[transmitted_n - dt.

0

Shunt Inductance

The last topology to be analyzed will be shunt inductance to
ground. Given an incident step that arrives at the shunt in-
ductance at time = 0, the transmitted waveform is zero for
time < 0. For time > 0, the transmitted waveform is:

; F =1
transmitted = inc_ht - e "7,

ik geeiy
R (z“/zj

e

where T

el

This is the same transmitted waveform as in the case of
series capacitance, tis 2177, so the shunt inductance is:

ZO A :
L =—51=+| ftransmitted_n - dt.

(

More Complex Discontinuities

Consider a circuit in which a transmission line is brought to
the input of an integrated circuit (1C) and terminated

(Fig. 12). Looking from the termination into the IC, there
might be inductance of the lead in series with a damping
resistance in series with the input capacitance of the IC.

A first-order approximation of the load that the IC puts on
the termination of the transmission line is simply a capaci-
tor. The reflected wave can be integrated to calculate the
capacitance, but will the series inductance and resistance
change the measured value? Looking back to Fig. 5, the cur-
rent into the shunt capacitor is:

2ine_ht
| ="—F—

t 9
e 1 = —reflected .

Zo Zo
The integral of the reflected wave is directly proportional to
the integral of the current into the capacitor. This means

«— L here would affect the integral.

500 Zr—".iiuiuus 'w

U Z,:Sﬂohms

b

v~ _MN_.— s N . 4 e —'_.
o Ok v 3 v v g”“
v v
3
-
Packaged IC along & V

transmission line.

L here would affect the integral.

500 U ’Zgnﬁunlll'l‘ls "iw L
AAA & \ & m

?_—Q Vstep 6 v § 500 R
v v

— c
Packaged IC at the termination of

a transmission line,
(a)
s 10+ P
5 | M c-2pER=100
T2 | |f \—I:=ZpF.L=3nH.R=1B!!
= = | _
= C =2 pF Onl
E 0.0+ J P ¥
550t Phems il
E 3 fI=,7
=] COnly —=|| /
£ = ’ I/ TS candR
o o
= 2 /
3300+ I—f

0.0 1.0 20 30 4.0 5.0

(b Time (ns)

Fig. 12, L and R in series with a shunt capacitance do not affect
the measurement of €,

that the value of capacitance calculated from integrating the
reflected wave is proportional to the total charge on the
capacitor. Resistance or inductance in series with the shunt
capacitor does not change the final value of charge on the
capacitor. Hence, these elements do not change the mea-
sured value of capacitance. Series resistance decreases the
height and increases the settling time of the reflected wave.
Series inductance superimposes ringing onto the reflected
waveform. Neither changes the final value of the integral of
the reflected wave. Note that inductance in series with the
transmission line, as opposed to inductance in series with
the capacitor, will change the measured value of capaci-
tance, Similarly, when measuring series inductance, resis-
tance or capacitance in parallel with the series inductance
does not change the measured value of inductance.

April 1996 Hewlett-Packard Journal 93

© Copr. 1949-1998 Hewlett-Packard Co.

When building a model for the input of the packaged IC,
integrating the reflected wave provides the correct value of
capacitance for a single capacitor model and also for higher-
order models. If, for example, a higher-order model contains
a section of transmission line terminated with some capaci-
tive load, then the value of capacitance measured is the total
capacitance of the transmission line plus the load. To ascer-
tain values for L and R in Fig. 12, a more rigorous analysis of
the TDR waveform must be performed.

Now consider a situation in which a voltage probe is used to
measure signals on printed circuit board fraces. What effect
does the probe have on signals that are propagating along
the traces? To a first-order approximation, the load of a
high-impedance probe will be capacitive and the value of
capacitance can be measured by integrating the reflected
wave. However, some passive probes that are optimized for
bandwidth can also have a significant resistive load (these
probes usually have a much lower capacitive load than high-
impedance probes). Looking at the reflected wave in Fig. 13,
the resistive load of the probe introduces a level shift at

4 ns. The level shift adds a ramp to the integral so that the
integral never converges to a final value. To measure the
value of capacitance, the integral can be evaluated at two
different times after the reflected wave has settled to its
final value, say at 6 and 7 ns. Since the reflected wave has
settled, the difference between the two values is caused
only by the level shift. The component of the integral result-
ing from the level shift can be removed from the total inte-
gral by subtracting twice the difference between the values
at 6 and 7 ns from the value at 6 ns. The remaining compo-
nent of the integral is a result of the shunt capacitance.

Multiple Discontinuities

Sometimes, the transmission lines between the TDR/oscillo-
scope and the discontinuity to be measured are less than
ideal. For example, the connection between a 50-ohm coax-
ial cable and a 50-ohm printed circuit board trace can look

2y =50 ohms Zy=50 ohms
50 ld 2ns T . 1¢ Ins
[_ vStep é é 500

i

oS

£ NodeS(TDR

£ Waveform)

T 2 3

e

gz

g‘ o

EE e —

=3 c =

s 7

m @

2 T T

? E 2 3

Time (ns)
Fig. 13. A voltage probe used to measure signals on printed circuit

hoard traces may act like a shunt RC load, adding a ramp to the
integral of the reflected wave,

94 April 1996 Hewlett-Packard Journal

G [=— Inductive l—- Start Stop
Es = _.' ' Connector Imgmtmg Imegraﬁng
1T | =
E H p Discontinuity to
22 0.0 he Measured
Clean Connection

frg |
B= 20 | I|
= @ -+ | =
%é |I '_ Scaled integral is
= = | \ independent of other
EE | \ ' discontinuities.
=2 00+ | - d
@ B | [

0.0 10 20 30 40 5.0
Time (ns)

Fig. 14. Intermediate discontinuities do not affect the measurement
as long as the discontinuity to be measured can be isolated on the
TDR waveform.

quite inductive if a short jumper wire is used. Also, the sys-
tem being measured may have more than one discontinuity.

Intermediate discontinuities between the TDR and the dis-
continuity to be measured act as low-pass filters that in-
crease the rise times of both the incident step and the re-
flected wave. Infermediate discontinuifies also cause
secondary reflections in the TDR waveform, as shown in
Fig. 14. If the discontinuity to be measured can be separated
from surrounding discontinuities on the TDR waveform,
then the discontinuity can be accurately quantified by inte-
grating the reflected wave. Increasing the rise time of the
system decreases any separation between discontinuities
but, as was shown earlier, does not change the integral of
the reflected wave.

Minimizing Effects of Discontinuities (Balancing)
There are many instances in which discontinuities in trans-
mission line systems are unavoidable. The effects of an un-
avoidable discontinuity can be minimized by introducing
discontinuities of opposite polarity as close as possible to
the unavoidable discontinuity. For example, if the narrow
part of the trace shown in Fig. 8 is required, then the traces
on either side of the narrow trace can be made wider to
compensate for the excess inductance of the trace. The
amount of excess capacitance required to compensate for
the 4.88 nH of excess inductance is ZiL = (50 ohms)? x 4.88
nH = 1.95 pF. If the widest trace that can be added has a
characteristic impedance of 30 ohms, then 152 ps of this
trace will add 1.95 pF of excess capacitance. Propagation
delays on typical printed circuit board traces are around
150 psfinch, so adding 0.5 inch of 30-ohm transmission line
on each side of the narrow trace will balance the excess
inductance of the trace. Balancing the discontinuity reduces
reflections and makes the transmitted wave more closely
resemble the incident wave. A discontinuity that is balanced
will produce a reflected wave whose integral is zero. In this
case, the integral of the reflected wave can be used to deter-
mine how well a discontinuity is balanced.

© Copr. 1949-1998 Hewlett-Packard Co.

27.0066 ns

Measured Capacitance

Instrumentation

Hewlett-Packard recently introduced the HP 54750A oscillo
scope and the HP 54754A TDR plug-in. All of the measure-
ments discussed above can be made by positioning two cur-
sors on the TDR or TDT waveform. For TDR, the position of
the leftmost cursor defines when to start integrating the
reflected wave and also determines the reference imped-
ance for the calculation of excess L or C. The position of the

rightmost cursor determines when to stop integrating the

27.0756 ns

0 my/div 150 my

Measured Inductance

Reference

'IIIIIIIIIIII Fig

€

Marker units... e

around the reflection caused

by the probe

reflected wave. Likewise, when using TDT, the cursors
determine when to start and stop integrating the transmitted
wave. The oscilloscope calculates the integral of the normal
ized reflected or transmitted wave and displays the appro-
priate value of capacitance or inductance, as shown in

Figs. 15 and 16. Parasitic inductances and capacitances can
be accurately measured in the time it takes to position two

CUIrsOrs.

+ Position

1.961 ns

X Source

¥ Position

Reference

Fig. 16. Measuring the excess
inductance of a connector in a
Harianivndts. 100-ohm system by placing cursors

around the reflection caused hy

the inductance

\pril 1996 Hewleti-Packard Journal -~ 95

© Copr. 1949-1998 Hewlett-Packard Co.

Summary

TDR ecan be used to measure impedances and discontinui-
ties in transmission line systems very accurately. Disconti-
nuities that are either primarily eapacitive or primarily in-
ductive can be accurately modeled by a single element
whose value can be determined by integrating the reflected
or transmitted waves. In 50-ohm systems, the integral of the
normalized reflected wave is simply the time constant of the
network.

Discontinuities can also be quantified in terms of the peak
value of the reflections they generate. The problem with
using the peak value of the reflection is that the value de-
pends on the rise time of the incident step and the loss of

96 April 1996 Hewleti-Packard Journal

the transmission line system between the TDR and the dis-
continuity. Using the integral of the reflected wave to quan-
tify a discontinuity makes the measurement independent of
the rise time of the incident step and also independent of
discontinuities between the TDR and the discontinuity being
measured, as long as the discontinuity being measured can
be isolated from surrounding discontinuities on the TDR
waveform.

Acknowledgment

The author would like to acknowledge the contributions of
John Kerley who provided insight and direction in the mod-
eling of transmission line systems.

© Copr. 1949-1998 Hewlett-Packard Co.

B Common Desktop Environment

Brian E. Cripe

Brian Cripe s a software
gngineer at the Technicat
Computing Center, in HP's
Carvallis lab. He joined HP in
1982 after graduating from
Rice University with a BS
degree in electrical engi-
neering and a BA degree in
computer science. Initially at
HP he worked as a firmware enainesr on the Think.Jet
and DeskJet printers. He is named as an inventor in
two patents related to printer firmware, including
test scale mode and delta row data compression, and
he authared an article about the DeskJet. He was
responsible for representing HP's technical interest in
the multicompany design process far COE. He is cur-
rently responsible for investigating new middleware
opportunities in 30 graphics. Brian was born in
Annapolis, Brazil. He is married, recently celebrated
the birth of his second daughter, and is considered to
be the world champion swing pusher at his local
park. He is also intergsted in all forms of cycling,
especially mountain bike racing, and enjoys telemark
skiing

Jon A. Brewster

Jon Brewster is an architect
for enterprise visualization
at HP's Corvallis lab. He was
a section manager for the
early CDE work and HP VUE
Befare that, he was the proj-
ect manager for the early X
Window System products.
He also acted as project
lead and architect for HP's first window systems. He
graduated in 1980 from Oregon State University with
a BS degree in electrical and computer engineering
and has worked at HP since that time except for a
two-year stint in Hawaii where he worked on Mauna
Kea telescopes. Jon is married and has five children
He loves astronomy and motoreycle riding.

Dana E. Laursen

Dana Laursen is a technical
contributor at the Technical
Computing Center at HP's
Corvallis lab. He is currently
an architect for desktop en-
viranments including HP CDE
1.0, digital media integra-
tion, and the developer’s
toolkit. He recently worked
on the architecture for the sample implementation for
CDE 1.0 and was HP's representative on the CDE
change review and architecture teams. In addition,
he was a major contributor to the X/Open standard
and was the principal architect for default eonfigura-
tion. He came to HP in 198B. Initially he warked on
user-interface toolkit projects including Motif 1.0 and
prejects investigating usesinterface bullders and
HyperCard for the UNIX operating system. He is pro-
fessionally interested in desktop environments, tool-
kits, builders, and the World-Wide Web. He has
coauthored several papers about the Common Desktop
Enviranment, the X Window System, and the use of
computars in education, Before coming to HP, he
worked as an architect for window system software
at Tektronix. He was also an engineer for artificial
intelligence languages and graphics and did artificial
intelligence research at the University of Oregan. He
taught computer science at Clackamas Community
(College, was a graduate teaching fellow in computer
science and art education at the University of Oregon,
and taught at lllinois Valley High School. He received
a BA degree in art from Reed College in 1974. He did
coursewark at Lewis and Clark College for an Oregon
teaching certificate. He graduated with an MS degree
in art-education in 1979 and an MS degree in com-
puter science in 1984, bath from the University of
Oregon. Born in Minneapolis, Minnesota, Dana is
married and has a daughter. His hobbies include
hiking, gardening, and reading

16 Applications in CDE

Anna Ellendman

Born in Philadelphia, Penn-
sylvania, Anna Ellendman
received a BS degres in
chemistry from Pennsylvania
State University in 1970 and
an MS degree in science
education from Oregon State
University in 1975. She was
a chemistry instructor at
Oregon State University and also at Linn Benton
Community College. Joining HP's Corvallis Division in

© Copr. 1949-1998 Hewlett-Packard Co.

1880, she wrate manuals for HP Series B0 computer
products and for several financial and scientific
calculators. After joining the Workstation Systems
Division, she worked an OSF/Motif documentation
and the system administration documentation for

HF VUE. She was HP's project leader for the COE doc-
umentation. Currently she is responsible for informa-
tion access projects. Anna fs a music enthusiast and
her hobbies include playing guitar, piano, and harp.
She also enjoys producing folk music concerts and s
president of the Corvallis Folklore Society and a mem-
ber of the Da Vinci Days entertainment committee.

William R. Yoder

A software project manager
in the Carvallis software lab,
Bill Yoder joined HP in 1380
He is currently responsibie
for enterprise connectivity

| solutions for workstation
customers. He was responsi-
ble for the X11R6 X server,

. the X11R6 font server, the
federal computer operation, and technical security.
Previously he was responsible for client/setver imple-
mentation, application integration, and desktop print-
ing for the COE project, When he first came to HP, he
worked as a senior technical writer creating owner’s
manuals, programmer’s manuals, and tutarials for
such products as the HP 75C and HP 858 calculators,
Word/80, CP/M, Series 80 p-system, and the HP Inte-
gral partable computer, He then became a lab engi-
neer and worked on the X10 Window System, HP
Vectra Pascal, HP VUE 2.0, and HP VUE 3.0. He was
the project lead for the Starbase/X11 Merge server
and HF MPower. He coauthored a paper on Starbase/
X11 Merge and authored one on HP MPower. His pro-
tassional interests include graphical user interfaces,
security, distributed computing, and collaboration. He
is a member of ACM, IEEE, USENIX, and CPSR (Com-
puter Professionals for Social Respansibility). Bill
was born in Bloomington, [llinois. He received a BA
degree in history and literature in 1972 from Harvard
University and an MA degree in English in 1875 from
the University of California at Santa Barbara, He
taught high school and college English classes in
California and Oregon for six years. He also earned a
BS daegree in computer science in 1985 from Oregon
State University and an MS degree in computer sci-
ance in 1988 from Stanfard University. He is married
and has one child in high school. In his free time he
enjoys mountain biking, rock guitar, fiction, and
refereeing high school soccer

April 1996 Hewlett-Packard Jowrnal 97

25 Action and Data Typing Services

Arthur F. Barstow

Art Barstow joined HP's User
Interface Division in 1988,
He worked on HP VUE's in-
frastructure, test execution
systems, and X server devel-
opment. He is professionally
_ interested in distributed
AN /'J\ computing systems and was
L : responsible for the develop-
ment and testing of the CDE remote execution system
He left HP in May 1895 to work for the X Consortium
an the next generation of COE. Before joining HP, he
earned a BS degree in forest management from the
University of Idaho in 1880. He then worked for the
U.5. Forest Service as a forester and also worked
with their computer mapping systems. He went an to
earn a BS degree in computer science from Oregan
State University in 1985. He was also an instructor
there. Art was born in Baltimore, Maryland. He en-
joys hiking, cycling, and birding and spending time
with his twao sons.

30 HP VUE Customizations

Molly Joy

Born in Kerala, India, Molly
Joy received a BA degree in
economics from the Stella
Maris College in Madras,
India, in 1979. She earned a
BS degree in computer sci-
ence from Oregon State Uni-
versity in 1985 and joined
HP's Workstation Technology
Division in 1988, She is currently a software develop-
ment engineer at the Waorkstation Technology Center
and is working on HP's CDE offering. She is responsi-
ble for several components, as well as the migration
suite. For CDE 1.0, she developed an application that
would allow HP VUE customers to move their VUE
customizations to COE, She designed and developed
the framework, the user interface, and several of the
tools for this project. Previously, she designed and
developed various components for OSF/Motif toolkits
1.0, 1.1, and 1.2. She coauthored a paper on improv-
ing Motif test technology. Molly is married, has two
children, and has warked part-time at HP since 19390
to spend time with her children. Some activities she
enjoys with her family are biking and traveling

39 CDE Help System

Lori A. Cook

Lori Cook is a software de-
sign enginger at the Techni-
cal Computing Center at
HP's Carvallis lab, She is
currently responsible for the
next generation of COE, in-
cluding isolation and cre-
ation of APls for sections of
the CDE 1.0 help system
She joined HP's Personal Computer Division in June
1980, after completing her BS degree in computer

science from Oregon State University where she ma-
jored in systems design. At HP, she initially worked
on the mass storage, printer/plotter, and sewvice
ROMS for the HP B7 computer. She then worked on
the electronic disk ROM for the HP 85 and 87 com-
puters and on the mass storage driver for the HP 110
laptop computer. She also worked on the Pascal com-
piler for the HP Integral computer and the HP-1B com-
mands library for the HP Viectra. For the HP-UX oper-
ating system, she worked on the first X11 Windows
clients (HP-UX 6.5), the help server (HP VUE 2.0), and
the help library (HP VUE 3.0). She coauthored an ar-
ticle on the HP VUE 3.0 help system. She worked an
the help library for the COE 1.0 help system and was
respansible for the interface layer between the appli-
cation and the help infermation, including reading
help files, laying out text and graphies, and rendering
displayed information. Lori was born in Tacoma,
Washington. She is married and her hobbies include
knitting, skiing, racquetball, and firearms competition.

Stephen P. Hiebert

A software design engineer
at the Technical Computing
Center at HP's Corvallis lab,
Steve Hiebert is currently
waorking on a DocBook-to-
SOL (Semantic Delivery
Language) translator for the
next release of the Common
Desktop Environment. For the
CDE 1.0 project, he worked on the design of SOL and
the HelpTag-to-SDL translator. Previously he worked
on SGML (Standard Generalized Markup Language)
for the HP VUE 3.0 help system and wrote the Help-
Tag-to-CCOF (Cache Creek delivery format) translator,
Before that, he provided engineering support for the
X toalkit, worked on the embedded C interpreter in
the UIMX Interface Architect, and developed the
MatifGen application, which generates standard out-
put from the Interface Architect. He also worked on
the X10 and X11 servers including the Starbase/X11
Merge server, developed the software engineering
ROM for the HP Integral portable computer (IPC), and
ported compilers and systems utilities to the IPC. He
has coauthored articles on Starbase/ X11 Merge and
the HP VUE 3.0 help system. He also authored an
article on the design and implementation of a ROM-
based set of UNIX utilities for the IPC. His professional
interests include computer language translators,
compilers, and interpreters, especially the use of
these tools for SGML processing. He is a mermber of
IEEE, ACM, and USENIX, and is a sponsoring member
of the Davenport Group (the standards body for the
DocBook SGML document type definition (DTD) for
computer software documentation). Before joining
HF's Portable Computer Division in 1981, he worked
at Electro-Scientific Industries, Inc. designing and
developing a commerical Pascal compiler. He was
also a systems pragramming and engineering man-
ager at TimeShare Corporation. Steve was bom in
Portiand, Oregon and attended Portland State Univer-
sity, majaring in mathematics with a computer em-
phasis. He spent four years in the U.S. Air Force as
an instructor of electronics communications and cryp-

tographic equipment systems repair and achieved the

rank of staff sergeant. He enjays commuting to work
on his hicycle

Michael R. Wilson

Mike Wilson is a member of
the technical staff at the
Technical Computing Center
at HP's Corvallis lab. He is
currently the project lead
responsible for maintaining
and enhaneing the lab’s test-
ing framework. He recently
worked on the CDE help sys-
tem and was responsible for product packaging, cus-
tom widget developmeant, and test planning and im-
plementation. Except for test planning, he did the
same things for HP VUE. He has authored or coau-
thored three papers on help systems, He eamed a BS
degree in computer science from California State
University at Chico and joined HF's Electronic Design
Division in 1987 Mike is married, has twao children,
and his primary hobby is cyeling.

51 Multicompany Development

Robert M. Miller

An R&D section manager in
HP's Technical Computing
Center at Corvallis, Bob
Miller is currently responsi-
ble for technical enterprise
connectivity, including CDE
deskiop technology, Web
tools technology, collabore-
tion, and security He joined
HP's Handheld Calculator Division in 1981. In R&D. he
worked on software modules for the HP 41C series,
including the plotter module about which he authored
a paper. He also worked on software products for the
HP 75 calculator, including the FORTH language and
text formatter. He was also a team member for the
HP 28C advanced scientific calculator and is named
as a coinventor in a patent related to stacking, eva-
luating, and executing arbitrary objects. He also pub-
lished a paper on the HP 28C. He was a product mar-
keting engineer for high-end calculator products, after
which he transferred to the Corvailis Werkstation
Technology Center where he was a project manager
responsible for Motif 1,0, HP VUE 2.0, HPVUE 3.0,
COE joint development, and CDE 1.0. He received a
BA degree in English literature in 1973 from LaSalle
College and a BS degree in computer science in 1980
from California Polytechnic State University at San
Lowis Obispo. He also earned an MS degree in com-
puter science in 1989 from the National Technology
University. Born in Philadelphia, Pennsylvania, Bob is
married and has twa children. He enjoys reading and
outdoor activities such as hiking, camping, and golf

98 April 1996 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

55 CDE Test Suite

Kristann L Orton

ECAD markets. She |
ng & BS degree in comput e
of Califomnia, Santa Barbara, When she first came to
HP she warked on the Motif development team, then
maved to a team formed to automate the validation
of HP's release software. Afterwards, she bacame
one of HP's representatives on the joint COE test
team. She worked an the joint development and im-
plementation of the testing framework, oversaw test
enginears, and ensured timely deliverables. Before
coming to HP. Kristann worked as a securities trader
in an investment counseling firm in Santa Barbara

Paul R. Ritter

Paul Ritter garned 3 BS de-
QFEE IN Computer SCIence i
1970 from the University of
Califarnia at Berkeley, where
he also worked at the Uni-
versity’s space science lab
developing application soft-
ware for digital analysis of
remote sensing imagery. He
started wark at HP as a contractor in 1989. He was
hired by the Workstation Technology Division as a
regular employee in 1993 and earned an MS degree
in computer science from Oregon State University the
same year. He is currently a softwara development
engineer at HP responsible for X server support
Previously, he worked on testing of Motif 1.0 and HP
VUE 2.0, and recently helped develop the test suite
for CDE 1.0. He has authared three papers, two on
remote sensing algarithms and techniques and one
on testing of Motif 1.0, He is a member of ACM and
|[EEE. Born in Washington state, Paul is married and
has one child. His hohbies include skiing, softball,
and motarcycles, and he is an avid reader of fiction
and nonfiction books,

Synlib

Sankar L. Chakrabarti

Born in Azimgan|, W. Ben-
gal, India, Sankar Chakra-
barti received a PhD degree
in chemistry in 1974 from
the Tata Institute of Funda-
mental Research in Bombay,
India. In 1985 he received an
M3 dearee in computer sci-
ence from Oregon State Uni-
versity. He joined HP's Portable Computer Division in
1981 and is now a member of the technical staff at
the Workstation Technology Center. He has worked
on all aspects of the X Window System, has devel-
oped tools for automating the testing of this system,

67 GSM Power Module

Melanie M. Daniels

A hardware design engineer
at HP's Communication Com-
ponents Division since 1991
Melanie Daniels is currently
warking on the design of
base station amplifiers. She
was a design engineer and
team leader for development
of the GSM power module
described in this issue. She has authored a paper on
a 1-watt low-cost power module, and her wiork on an
ultralinear feed-forward base station amplifier has
resulted in a pending patent. Before jpining HE she
was a design engineer for modular compaonents at
Avantek. She was awarded a BS degree in micro-
waves and RF in 1886 from the University of Califor-
nia at Davis and an MSEE degree in digital commu-
nications in 1395 from California State University at
Sacramento. Melanie is married. In her free time, she
is @ member of ToastMasters and enjoys traveling,
camping, and reading.

74 Protein Sequence Analysis

Chad G. Miller

A product marketing man-
ager at HP's California Ana-
lytical Division, Chad Miller
is currently responsible for
protein sequencing products,
He has also served as prod-
uct manager for the HP
\] ; G1003A C-terminal se-
quencer and the HP G1004B
protein chemistry station, and as an applications
manager and applications chemist. He is profession-
ally interested in protein chemistry, bioscience tech-
nologies, and bio-organic chemistry. He 1s @ member
of the U.S. Protein Society and of the American Asso-
ciation for the Advancement of Science. He has pub-
lished numerous articles in the past five years on
protein sequencing and analysis and on C-terminal
analysis. He received a BS degree in chemistry in
1976 from the University of Califonia at Los Angeles
and an AM degree in chemistry in 1980 from Harvard
University. Before coming to HP. he worked at the
Beckman Research Institute of the City of Hope Med-
ical Center as a senior research assaciate in the Divi-
sion of Immunoiogy. He joined HP's Scientific Instru-
ments Division in 1990. Chad is married and has two
children. His outside interests include creative writing,
U.S. stamp collecting, backyard astronomy, and gour-
met coffees

e
yEars
sequencing chemistry and hardware He left t
tute and joined HP's Protein Chemistry System
sion in 1994. As a research scientist, he Is currently
responsible for C-terminal sequencing of proteins and
R&D. He is professionally interested in enzymalogy
and pratein characterization and is named as an in-
ventor in twelve patents involving these areas of in-
terest, especially C-terminal and N-terminal sequenc-
ing. He has also authored and coauthored numerous
articles on these topics. He is @ member of the Amer-
ican Chemical Society, the Protein Society, and the
American Association for the Advancement of Science
Jerome was born in Southington, Cannecticut. He is
married and has one child.

Hie wnrk
FHS WOTK

84 Time-Domain Reflectometry

David J. Dascher

3 Dave Dascher graduated
from Colorado State Univer-
sity with a BSEE deqree. He
joined HP's Colorado Springs
Division in 1984 as a hard-
ware design engineer. He is
currently developing a high-
density analog probe system
Previously he consulted on
the HP 54754 TDR feature set and worked on the HP
54720 oscilloscope analog-to-digital converter (ADC)
system and the HP 54111 oscilloscope ADC. His work
has resulted in four pending patents related to probing

© Copr. 1949-1998 Hewlett-Packard Co.

April 1996 Hewlett-Packard Journal 99

HEWLETT-PACKARD HEWLETTI‘T
JOURNAL () Pyxtriid

5964-B218E

© Copr. 1949-1998 Hewlett-Packard Co.

	A Common Desktop Environment for Platforms Based on the UNIX Operating System
	Appendix A: CDE Application Programming Interfaces
	Accessing and Administering Applications in CDE
	Application Servers and Clients in CDE
	The CDE Action and Data Typing Services
	Migrating HP VUE Desktop Customizations to CDE
	A Media-Rich Online Help System
	Managing a Multicompany Software Development Project
	Design and Development of the CDE 1.0 Test Suite
	Synlib: The Core of CDE Tests
	A Hybrid Power Module for a Mobile Communications Telephone
	Automated C-Terminal Protein Sequence Analysis Using the HP G1009A C-Terminal Protein Sequencing System
	Abbreviations of the Common Amino Acids
	Measuring Parasitic Capacitance and Inductance Using TDR

