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In this Issue 
There 's  a good chance that  many of  the mechanical  par ts  of  the products you 
use,  such as your  car  or  your  of f ice pr in ter ,  began thei r  ex is tence as sol id  mod 
els in systems 3D computer-aided design (CAD) system. 3D solid modeling systems 
provide geometr ic  models that  can be t ranslated in to inst ruct ions for  rapid par t  
pro to typ ing,  in jec t ion moldmaking,  or  numer ica l ly  cont ro l led machine too l  oper  
at ion.  Such systems,  both commerc ia l ly  avai lab le and manufacturer-propr ie tary,  
are now undergoing rap id evolut ion,  and mechanica l  des igners are enjoy ing 
unprecedented and rap id ly  increas ing product iv i ty .  However ,  most  cur rent  sys  
tems doesn't still history-based, meaning that if the designer doesn't have Â¡n-depth 
knowledge of  the under ly ing so l id  model ing technology or  doesn ' t  thoroughly  

understand the h is tory  of  the des ign,  even seemingly  t r iv ia l  changes made to  the model  may have unan 
t ic ipated s ide ef fects.  In  contrast ,  HP Precis ion Engineer ing Sol idDesigner  (PE/Sol idDesigner)  is  an ad 
vanced explained ar modeling CAD system based on dynamic modeling technology. As explained in the ar 
t i c le  on  to  6 ,  dynamic  mode l ing  removes  any  dependenc ies  on  h is to ry  and  e l im ina tes  the  need  to  
ant ic ipate fu ture changes,  so that  loca l  geometry  and topology changes can be made easi ly .  When a 
change Boolean op a tool  body is created and then transformed to the appropriate posi t ion. A Boolean op 
erat ion between the or ig ina l  model  and the tool  body resul ts  in  the desi red change.  The HP PE/Sol id  
Designer user inter face (page 14) is  designed to make the system easy to use for  both experts and f i rst -  
t ime or  occas ional  users .  In terna l ly ,  ac t ion rout ines represent ing commands in teract  w i th  the user  
in ter face ob jects  through a "personal i ty" ;  th is  arch i tecture makes i t  easy to  change the user  in ter face 
wi thout  changing the command syntax.  To a computer ,  a  3D so l id  model  is  a  h igh ly  complex data s t ruc 
tu re .  HP  cha rac te r i s t i cs  da ta  s t ruc tu re  manager  (page  51 ) ,  wh ich  has  many  o f  t he  cha rac te r i s t i cs  o f  
an ob ject -or iented database,  suppor ts  the data  manipu la t ion requ i rements  o f  the so l id  model ing pro  
cess,  packages the abi l i ty  to s l ice the model  into manageable packages that  can be sent  around the 
wor ld,  may example to subcontractors.  Because HP business partners and customers may use other sol id 
model ing systems instead of  or  in addi t ion to HP PE/Sol idDesigner,  HP part ic ipates in internat ional  data 
e x c h a n g e  M o d e l  e f f o r t s ,  m o s t  n o t a b l y  S T E P ,  t h e  S t a n d a r d  f o r  t h e  E x c h a n g e  o f  P r o d u c t  M o d e l  
Data. sol id PE/Sol idDesigner can import and export both surface and sol id STEP data f i les. I t  can also im 
port wireframe data Graphics Exchange Standard) surface and wireframe data f i les, and can import data 
f i les f rom on predecessor,  the HP PE/ME303D CAD system. Data exchange is  the subject  of  the ar t ic le on 
page 35.  provides sur faces are of ten needed in sol id  model  creat ion,  and HP PE/Sol idDesigner provides 
two methods for  creat ing them: b lending,  or  edge rounding,  and lof t ing.  The ar t ic le  on page 24 descr ibes 
the many subt le t ies  o f  the sophis t ica ted a lgor i thm used for  var iab le- rad ius b lend ing.  Complex combina 
tions of challenge. and concave edges are blended predictably and reliably â€” a diff icult design challenge. 
The ar t ic le  on page 61 te l ls  how the product 's  geometr ic  kerne l  implements lo f t ing us ing a s ing le-data 
type geometr ic  in ter face and a  hybr id ,  mul t ip le-data- type in terna l  implementat ion.  The lo f t ing funct iona l  
i ty  features a c lever  analy t ic  sur face detect ion a lgor i thm. The Boolean operat ions used to  ef fect  model  
modi f icat ions are implemented in  the system's topology kernel ,  ca l led the "Boolean engine."  The ar t ic le  
on page 74 expla ins the Boolean engine's complex a lgor i thms in s imple terms.  Much of  HP PE/ 
Sol idDesigner is  wr i t ten in  the Common Lisp programming language,  which is  a lso inc luded in HP PE/ 
Sol idDesigner as an extension and customizat ion language for  users (page 69).  

The microwave s igna ls  that  r ide our  a i rwaves today are l ike ly  to  have much wider  bandwidths than 
t h o s e  o f  a n d  S p r e a d  s p e c t r u m  t e c h n i q u e s ,  i n c r e a s i n g l y  u s e d  i n  r a d a r  s y s t e m s  a n d  s a t e l l i t e  a n d  
ter res t r ia l  communicat ions sys tems,  t rade increased bandwidth  for  benef i ts  such as increased no ise 
immuni ty ,  lower  power  dens i ty ,  or  increased secur i ty .  The spect rum analyzers  t rad i t iona l ly  used to  ana 
lyze informat ion s ignals aren' t  up to the job of  extract ing a l l  o f  the informat ion f rom modern microwave 
s ignals behavior .  they don' t  have the bandwidth and don' t  reveal  pulse,  phase,  or  t ime-vary ing behavior .  
The HP combines wide-bandwidth receiver is designed to f i l l  this need. I t  combines the attr ibutes of a 
microwave rece iver ,  inc lud ing wider  bandwidths  and demodula t ion capabi l i ty ,  w i th  the s t rengths o f  a  
microwave spect rum ana lyzer ,  wh ich  inc lude low in terna l  no ise ,  ampl i tude measurement  accuracy ,  and 
wide f requency tun ing wi th  synthes izer  accuracy and f ine reso lu t ion.  The HP 70910A wide-bandwidth  
receiver consists of  two components:  the HP 70910A RF module and the HP 70911A IF module.  The IF 

October 1995 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



module intermediate the funct ions usual ly associated with a microwave receiver, such as intermediate fre 
quency options bandwidths from 10 to 100 MHz and pulse detection. It  also offers options for FM demodula 
t i o n ,  d i g i t a l  I F  o u t p u t ,  a n d  I - Q  o u t p u t  ( t h e  t y p e  o f  m o d u l a t i o n  u s e d  i n  d i g i t a l  c o m m u n i c a t i o n s  s y s  
tems). 89410A I-Q option can be used with a dual-channel vector signal analyzer such as the HP 89410A to 
extend configurations analyzer's bandwidth and frequency range. The two most common HP 70910A configurations 
operate wide-band a frequency range of 100 hertz to 26.5 gigahertz. The design of the HP 70910A wide-band 
w id th  80 .  and  tha t  o f  i t s  RF modu le  a re  desc r ibed  in  the  a r t i c le  on  page  80 .  The  IF  modu le  des ign ,  
featur ing var iab le-bandwidth ,  synchronous f i l te rs  wi th  tapped-capac i tor ,  varactor - tuned resonators ,  is  
described in the art ic le on page 89. 

A color  pages is  typ ica l ly  used for  a var ie ty  of  documents,  f rom s imple b lack text  pages that  take a few 
seconds designer, how to color graphics pages that take several minutes. If you're the printer's designer, how 
do you e f fec ts  how many pages per  minute  i t  w i l l  p r in t  so  that  you can judge the e f fec ts  o f  des ign 
changes on a user 's percept ion of  i ts  speed? The designers of  the HP DeskJet 1600C pr inter considered 
the s imple average and the s imple weighted average,  but  re jected them in favor  of  the log weighted 
average. The art ic le on page 104 tel ls why. 

R.P. Dolan 
Senior Editor 

Cover 
A solid SolidDesigner created and displayed using the HP Precision Engineering SolidDesigner 3D solid model 
ing system. 

What's Ahead 
The December issue wi l l  have ten ar t ic les on aspects of  HP's implementat ion of  the Open Sof tware 
Foundat ion Distr ibuted Computing Environment (OSF DCE). There wi l l  a lso be art ic les on the design of 
the  HP fo r  50  T  fe ta l  te lemet ry  sys tem and the  HP HSMS-2850 zero  b ias  d iode fo r  rad io  f requency  
ident i f icat ion appl icat ions.  
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HP PE/SolidDesigner: Dynamic 
Modeling for Three-Dimensional 
Computer-Aided Design 
In most solid modeling CAD systems, knowledge of the history of the 
design making necessary to avoid unanticipated side-effects when making 
changes. With dynamic modeling, local geometry and topology changes 
can be both independently of the model creation at any time, using both 
direct and dimension-driven methods. The core components enabling 
dynamic modifications are the tool body and the relation solver. 

by Klaus-Peter Fahlbusch and Thomas D. Roser 

HP Precision Engineering SolidDesigner (PE/SolidDesigner) 
is a 3D solid modeling design system based on the ACISÂ® 
Kernel (see "About Kernels" on next page). It provides the 
geometric model needed by design workgroups in product 
development environments. The system's dynamic modeling 
technology gives the designer the freedom to incorporate 
changes at any time and at any stage of product development, 
without dependence on the history of the product design. 

HP PE/SolidDesigner is a member of the HP Precision Engi 
neering Systems (PE/Systems) product family. Today, HP 
PE/Systems consists of: 

â€¢ HP PE/SolidDesigner for solid modeling 
â€¢ HP PE/ME10 for 2D design, drafting, and documentation 
â€¢ HP PE/ME30 for 3D design 
â€¢ HP PE/SurfaceStyler, an engineering styling application in 

tegrated with HP PE/SolidDesigner 
â€¢ HP PE/SheetAdvisor, a sheet-metal design-for-manufactur- 

ability application 
HP PE/WorkManager for product data and workflow 
management 

â€¢ HP PE/DDS-C for electrical system design 
HP PE/Complementary Application Program (CAP), a joint 
research and development and marketing program that pro 
vides HP PE/Systems users with access to more than 200 
leading applications from 70 companies. 

HP PE/SolidDesigner 
HP PE/SolidDesigner makes it easy for designers to move to 
3D solid modeling. It supports the coexistence of surface 
data with solid data and provides the ability to import and 
modify surface and solid design data from a variety of CAD 
systems. It also offers new modeling functionality and en 
hanced ease of use. 

Using improved IGES (Initial Graphics Exchange Standard) 
import capability, both surface and wireframe data can be 
imported. Surface data and solid data can also be imported 
and exported using the STEP (Standard for the Exchange of 
Product Model Data) format. Once imported, this data can 
coexist with HP PE/SolidDesigner solid data. It can be 
loaded, saved, positioned, caught to (see footnote on 

page 15), managed as part and assembly structures, deleted, 
and used to create solids. Attributes such as color can be 
modified. If the set of surfaces is closed, HP PE/SolidDe 
signer will create a solid from those surfaces automatically. 
Other solid modeling systems, which are history-based, are 
unable to import data and then modify it as if it had been 
created within the system itself. 

HP PE/SolidDesigner allows solid parts and assemblies to be 
exported to ACIS-based systems using Version 1.5 of the 
ACIS SAT file format. This feature provides a direct link to 
other ACIS-based applications. 

With HP PE/SolidDesigner, users can set part and layout 
accuracy. Because users can model with parts of different 
accuracy by forcing them to a common accuracy, they can 
import and work on models from other CAD systems regard 
less of their accuracy. 

Dynamic modeling is the underlying methodology within HP 
PE/SolidDesigner. This flexible, nonhistory-based, intuitive 
design technique provides direct interaction with modeling 
tools and designs, allowing the engineer to focus effectively 
on the design task. 

HP PE/SolidDesigner allows designers to work with user-de 
fined features to capture design intent. Users can explicitly 
group a variety of 3D elements such as faces and edges of a 
part. These features then can be viewed, edited, renamed, 
deleted, or used to drive changes to a design. 

HP PE/SolidDesigner has variable radius blending, which 
allows users to create, modify, and remove variable blends. 
They can now create constant and variable blends during 
one session. Another new feature, called shelling, provides a 
quick way for users to create thin-walled parts from solids, 
as in injection-molded parts, for example. 

Also new in HP PE/SolidDesigner is mass property capabil 
ity. The following properties can be calculated for parts and 
assemblies: face area, volume, mass, center of gravity, iner 
tia tensor, and boundary area. Tolerances can be supplied 
and achieved accuracies are returned. HP PE/SolidDesigner 
also which interference-checking capabili t ies,  which 
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allow detection of interference, face touching, and noninter 
ference of assemblies and part combinations. The results 
can be shown as text reports or in graphic format with color 
coding for easy identification. 

About Kernels. A kernel is the heart of a modeling system. 
Currently, three kernels are used in various CAD systems. 
These are Romulus from Shape Data. Parasolid, an exten 
sion of Romulus, and the ACIS Kernel from Spatial Technol 
ogy. The ACIS Kernel is rapidly becoming a de facto stan 
dard, having been accepted to date by 25 other commercial 
licensees, 50 academic institutions, and 12 strategic devel 
opers. As of July 1995, companies that officially have com 
mitted to using ACIS as theu" underlying technology include 
MacNeal-Schwendler/Aries, Applicon, Autodesk, Bentley 
Systems, CADCentre, Hewlett-Packard, Hitachi-Zosen Infor 
mation Systems, Camax Manufacturing Technologies, Inter 
graph, and Straessle. 

About STEP. The STEP protocol for data exchange is the 
product of a group of international organizations including 
PDES/PDES Inc. USA, a joint venture with several member 
companies, ESPRIT (European Strategic Program for Re 
search and Development in Information Technology), Euro 
pean data exchange technology centers such as CADDETC 
(CADCAM Data Exchange Technical Centre) and GOSET, 
and ProSTEP, the German industry project for establishing 
STEP in the automotive industry. 

HP has been active in STEP technology since 1989 through 
projects such as CADEX (CAD Geometry Exchange), PRO- 
DEX (Product Data Exchange), and ProSTEP. HP provides 
STEP processors with its HP PE/SolidDesigner 3D solid 
modeling software. 

Dynamic Modeling 

Currently, the most popular 3D CAD solutions are history- 
based. When designing with these systems, dimensions and 
parameters have to be specified at the outset. The model 
can only be manipulated indirectly by modifying these di 
mensions and parameters. The initial definitions have a major 
influence on the ease or difficulty of carrying out subsequent 
modifications, which can only be reliably implemented if all 
the previous steps in the design process are known. Labori 
ous manipulation may be necessary to make changes that, 
intuitively, should be achievable in a single step. 

Unless the history of the design is thoroughly understood, 
any change made to a model may have unanticipated side- 
effects. Relatively straightforward changes to the model 
involve many convoluted steps. Future interpretation be 
comes ever more difficult and the effects of further modifi 
cations are unpredictable. Even when a single designer 
takes a part from start to finish, the designer will usually 
recreate the model from scratch many times as decisions 
made earlier make further progress impossible. 

Although history-based systems are appropriate for solving 
family-of-parts problems, and are ideal for companies who 
simply produce variations on a given design, they are inflex 
ible when used during the conceptualization phase of a 
project. 

Dynamic Modeling 
Dynamic modeling has been developed by HP to overcome 
the many problems designers experience with history-based 
CAD systems. In particular, it aims to remove any dependen 
cies on history and the need to anticipate future changes. 

The concept underlying dynamic modeling is to make opti 
mal use of technologies without constraining the designer s 
creativity and flexibility. In contrast to history-based sys 
tems, dynamic modeling allows direct manipulation of 
model elements in 3D space. With dynamic modeling, local 
geometry and topology changes can be made independently 
of the model creation at any time, using both direct and di 
mension-driven methods. In the latter case, dimensions can 
be specified at any stage in the design, not just at the outset. 

The core components enabling dynamic modifications are 
the tool body and the relation solver. To make a model modi 
fication a tool body is created and then transformed to the 
appropriate position. A Boolean operation between the orig 
inal model and the tool body results in the desired model 
modification. 

HP PE/SolidDesigner is the only currently available CAD 
solution that uses dynamic modeling. The remainder of this 
article describes the underlying technology of dynamic mod 
eling and compares it with other methods like parametric 
model modification techniques. 

State of the Art 
Currently, solid modelers use two different approaches to 
create the final geometrical model. CSG (constructive solid 
geometry) modelers are based on volume set operations 
with volume primitives such as cubes, cones, or cylinders. 
This approach is characterized by a Boolean engine, which 
implements the basic operators unite, subtract, and inter 
sect. The sequence of all the Boolean operations, parame 
ters, and positions of the primitives are kept in the CSG tree. 

Modification of the solid later in the design process can be 
done by using more primitives or by editing the CSG tree. 
Local modifications of the model are not possible, since no 
access to faces or edges is given. This cumbersome way to 
modify solids requires the user to analyze the design before 
hand and dissect it into the necessary primitives and opera- 
lions. While anticipating design modifications and building 
designs out of primitives is not typical in the mechanical 
engineering design process, pure Boolean modelers have 
proven useful when entering a final design for postprocess 
ing, such as for finite-element analysis (FEM) or NC tool 
path programming. 

B-Rep (boundary representation) modelers represent the 
solid by concatenating surfaces towards a closed volume. 
Model creation is similar to CSG modeling, but the user can 
work locally with surfaces, trim them against each other and 
"glue" them together. Local geometry modifications are very 
flexible and represent the way engineers think. For exam 
ple, "I would like to blend this edge" is a natural way of 
specifying a model change for a mechanical engineer, while 
"I have to remove a volume that cuts away all material not 
needed" is a very unnatural way of specifying the same task 
during design. 
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As the development of B-Rep modelers continued, a new 
class of operations emerged in the early 1980s from the re 
search institutes and appeared in commercial implementa 
tions. These operations are called local operations, or more 
commonly, LOPs, in contrast to global operations like Bool 
ean set operations. Typical representatives of this kind of mod 
eler are all Romulus-kernel-based systems like HP PE/ME30. 

The difference between modifications with Boolean opera 
tions and modifications with LOPs lies in the amount of con 
text analysis required. A Boolean operation always works on 
the complete volume of the operands (global operation). A 
LOP only analyzes the neighborhood of the operand and is 
usually not able to perform topological changes. To perform 
a model modification several constraints have to be met by 
the model, two of which are illustrated in Figs. 1 and 2. 

The example shown in Fig. 1 is a block with edge El to be 
blended (rounded). If the radius chosen for the blend is 
larger than the distance between the two edges El and E2, 
the topology of the model would need to be changed or the 
model would be corrupted. 

Fig. 2 shows a block with a pocket on its left side. To move 
or copy the pocket from the left top face to the right one 
cannot be done using LOPs, because both top faces would 
change their topology (i.e., add or remove faces or edges). 
The left top face would lose the inner loop resulting from 
the pocket while the right top face would add one. 

These two restrictions are only examples of the complex set 
of constraints on the use of LOPs. Removing these restric 
tions one by one means evaluating more and more scenar 
ios, thus adding to the complexity of the algorithms needed 
for the operations. A new approach was necessary. 

The Tool Body 
The limitations illustrated above led to the question, why 
can't Boolean set operations do the job? Boolean operations 
would be able to handle all special cases and at the same 
time would increase the stability of the algorithms. In the 
late 1980s a lot of research and development was done using 
this approach. Two directions were taken. The first was to 
further develop the old-style CSG modeling systems to make 

them easier to use. The second was to remove the limita 
tions of LOPs in systems like HP PE/ME30 and all other 
Romulus-kernel-based systems. HP took the latter approach 
to develop the dynamic modeling capabilities of HP PE/- 
SolidDesigner. 

To enable model modifications with topology changes, Bool 
ean operations were added to the LOP modification capabili 
ties. The system generates a tool body and positions it ac 
cording to the specifications of the modification. A Boolean 
operation between the original model and the tool body re 
sults in the desired model modification. 

In this article, the term basic local operations (B-LOP) will 
be used for the normal LOP, which cannot perform topology 
changes, while the process of using the Boolean operation, 
if necessary or more appropriate, will be referred to as an 
intelligent local operation (I-LOP). Although the Boolean 
operation does not need to be done in all cases, the term 
I-LOP will be used to indicate that there can be a Boolean- 
based part of the operation. 

To use the Boolean set operations for I-LOPs the system 
needs to create a tool body first. Two major approaches can 
be distinguished: 

. Analysis of the the geometry to be modified and generation 
of an appropriate topological primitive (i.e., a basic volume 
element such as a cube, prism, or other) whose faces will be 
forced (tweaked) to build up the geometry of the tool body. 

i Topological and geometrical creation of the tool body in 
only one step by analyzing the geometrical and topological 
neighborhood of the face to be moved. 

The first approach is easier to implement if a utility function 
(a set of B-LOPs) is available that performs the task of 
tweaking a topologically similar object onto the required 
geometry of the tool body. The tweaking function, however, 
is tied to the restrictions of this utility function. The second 
method is more flexible but requires more knowledge about 
the internal structure of the CAD system's kernel. 

We chose the first approach because HP PE/SolidDesigner 
already provided a working internal utility function for 
tweaking. The tool body generation for moving and tapering 

Fig. 1. An example of the limitations of local operations (LOPs). 
Edge 1 is to be blended (rounded). If the radius chosen is larger 
than the distance between El and E2, the topology of the model 
must be changed or the model will be corrupted. 

Fig. in Another example of the limitations of LOPs. The pocket in 
the left top face cannot be copied or moved to the right top face 
using LOPs because both top faces would change topology by adding 
or removing faces and edges. 
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Fig. 3. The first step in the I-LOP (intelligent local operation) 
approach for a stretch (move face) operation in HP PE/Solid- 
Designer is the generation of the tool body, a four-sided prism 
in this case. 

faces (and for bosses and pockets) follows two steps, which 
are carried out by the system automatically without any user 
intervention. First, a 3D body is created that has the topol 
ogy of the final tool body. The part to be modified is ana 
lyzed to determine the topology of the 3D body that has to 
be generated for the requested operation. Depending on the 
number of edges in the peripheral loops of the face to be 
modified this body is either a cylinder (one edge), a half 
cylinder (two edges), or an n-sided prism, where n is the 
number of peripheral loops. Second, the geometry of this 
body is modified using basic local modifications. The result 
is the final tool body to be used for the model modification. 

Figs. 3 to 5 illustrate this approach in further detail, showing 
the I-LOP approach for a stretch (move face) operation in 
HP PE/SolidDesigner. The user wants to stretch the box in 
Fig. 3, which means that the right face of the box will be 
moved to the right. The only and outer loop of the face to be 
moved contains four edges. Thus, the system creates a four- 
sided prism in space at an arbitrary position. 

As shown in Fig. 4, the system then forces the faces of the 
prism onto the surfaces underneath the front, top, back, and 
bottom faces of the box (B-LOP). The left face of the prism 
will be forced onto the right face of the box and the right 
face of the prism will be forced into its final position, speci 
fied by the user. 

The last step, shown in Fig. 5, is the Boolean set operation 
(in this case a unite) of the tool body with the original 3D 
part, resulting in the modified 3D part. Although the modifi 
cation in this example could have been achieved by employ 
ing a B-LOP operation, the use of the Boolean set operation 
will allow topological changes like interference of the 
stretched 3D part with some other section of the model. 

The same approach works for faces with outer loops of n- 
sided polygons. The curves describing the polygons are not 
restricted to straight lines. All types of curves bounding the 
face are valid, as long as the boundary of the face is convex. 
In cases of convex/concave edges special care has to be 
taken in tweaking the faces of the prism onto the geometry 
of the adjacent elements of the original part. An approach 
similar to the one described applies for tapering faces. 

Fig. the The second step in stretching the box of Fig. 3 is to force the 
faces of the tool body to the final geometry, using a B-LOP (basic 
local operation). 

There is a high risk of getting unpredictable results or self- 
intersecting tool bodies when dealing with several faces that 
are not related to each other. Although the example in Fig. 6 
may look somewhat artificial, it is characteristic of many 
possible situations. The user wants to move the two vertical 
faces Fl and F2 farther to the right, and expects a result as 
represented by the right part in Fig. 6. However, depending on 
the sequence of selection, two different results can be obtained. 

If F2 is selected before Fl, the I-LOP performs as expected 
and the result is as shown at the right in Fig. 6. If Fl is se 
lected first, however, Fl will be moved first. The tool body 
belonging to F2 will then be subtracted from the body and 
will interfere with the final position of Fl. This leads to the 
unexpected result shown in the middle of Fig. 6. 

The conclusion is that only single faces can be modified and 
change topology during the modification. For multiple faces 
the I-LOP is too risky. If multiple faces are to be modified at 
once, basic local operations (B-LOPs) instead of Boolean 
operations will be activated. No topology change is allowed, 
of course. One major exception to this rule is the case of 
bosses and pockets, which will be discussed later. 

Although in most cases the I-LOP approach will be applied, 
there are situations where self-intersecting tool bodies 
would be created and therefore the B-LOP approach is 

Fig. the The final step in stretching the box of Fig. 3 is to unite the 
tool body and the original part, using a Boolean operation. 
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preferred even in cases with only one face to be moved. 
Fig. 7 shows such a situation. The user wants to rotate the 
right face around an axis lying in the face itself. Another 
likely situation would be aligning the right face with another 
face of the model. 

Using an I-LOP in the way described above, a self-intersect 
ing tool body would be created without special care to dis 
sect the tool body into two tool bodies, one to add to the 
part and one to subtract from the part. In Fig. 7, the volume 
to be added is colored green and the volume to be removed 
is red. a HP PE/SolidDesigner detects a situation like this, a 
B-LOP is used for the modification. 

Geometry Selection and Automatic Feature 
Recognition 
The next step in terms of increased complexity is the han 
dling of groups of faces, which are known as bosses or 
pockets by mechanical engineers. These bosses and pockets 
need to be moved or copied, allowing topology changes. Of 
course the end user would appreciate it very much if these 

Fig. 6. Modification of several un 
related faces can lead to unantici 
pated results. Here the user 
wants to move faces Fl and F2 to 
change the part at the left into 
the part at the right. If F2 is se 
lected before Fl the result is as 
expected, but if Fl is selected 
first the result is the part in the 
middle. 

features could be selected as a unit as opposed to the 
cumbersome selection of faces sequentially. 

First, the terms boss and pocket need to be further speci 
fied. Bosses and pockets can be denned as a number of con 
nected faces whose exterior boundary loops (the edges de 
scribing the intersection of the tool body with the original 
3D part) are internal loops of a face. This definition is not 
easily conceivable and can be replaced by the more under 
standable, yet not very exact definition, "a number of con 
nected faces contained in one or two nonadjacent others." 
This is easily conceivable by the end user and fits a lot of 
cases. Figs. 8 and 9 illustrate the copying of a pocket to 
which this definition applies. 

For moving or copying bosses or pockets the system dis 
sects the part along the edges that connect the boss or 
pocket with the remaining part. Both the tool body (the for 
mer boss or pocket) and the part to be modified now have 
open volumes (missing faces, or "wounds"), which are 
"healed" by the algorithm before further processing with the 
tool body. 

Figs. 8 and 9 show only simple pockets. The question re 
mains of how to deal with more complicated situations like 

Fig. axis Here the user wants to rotate the right face around an axis 
lying in the face itself. This would create a self-intersecting tool 
body if an I-LOP were used. HP PE/SolidDesigner detects such situa 
tions and uses a B-LOP instead. Fig. 8. A part with a pocket to be copied to the right top face. 
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Fig. 9. The part of Fig. 8 with two pockets, one copied. The system 
recognizes simple and compound bosses and pockets. 

countersunk holes or bosses inside pockets. Fig. 10 shows 
the extension of the simple bosses and pockets. A boss or 
pocket containing countersunk bosses or pockets will be 
referred to as a compound boss or pocket. Any number of 
nested bosses or pockets is allowed, as shown in Fig. 10. 

Simple and compound bosses and pockets are recognized by 
the system automatically, depending on the selection of the 
user. If one face within the boss or pocket is selected, the 
feature recognition algorithm identifies all other faces be 
longing to the selected boss or pocket. 

Fig. 1 1 shows a part with a countersunk pocket. If the user 
selects one of the red faces in Fig. 11, the whole pocket is 
selected. If the user selects one of the yellow faces a smaller 
pocket will be recognized. 

Feature recognition very much simplifies geometry selec 
tion. Instead of many picks to sample the list of faces for a 
move or copy operation, one single pick is enough. HP PE/ 
SolidDesigner recognizes the list of faces as a boss or 
pocket and the subsequent modification can include topo- 
logical changes. 

Once the bosses or pockets are selected, various I-LOPs are 
applied: 
The "wound" in the top face of the part to be modified is 
healed, resulting in a simple block and a tool body consist 
ing of the two nested pockets (the colored faces). 

Fig. 11. Part with a countersunk pocket. 

' This compound tool body is split into the larger pocket 
(colored red, nesting level 1) and a smaller pocket (yellow, 
level 2). 

> Both tool bodies are transferred to their final positions. 
The larger tool body is subtracted from the block. 

> The smaller tool body is subtracted from the result of the 
preceding, leading to the desired modification of the part. 

The additional complexity of working with compound pock 
ets or bosses is mainly handled by the Boolean engine of 
HP PE/SolidDesigner. Only a small part â€” the detection and 
subdivision of compound bosses or pockets â€” is needed in 
the I-LOP code itself. 

Fig. 12 shows the result of tapering a compound pocket with 
HP PE/SolidDesigner. (The front comer of the block has 
been cut away to show the tapered pocket.) If there were a 
need to change the topology by this operation, the Boolean 
operation inside the I-LOP would take care of it. 

These features in PE/SolidDesigner don't have anything to 
do with the generation method of the model, as is the case 
in history and feature-based modelers. The features are de 
fined of for specific purposes; they are not part of 
the model. The flexibility of defining features at any stage in 
the design process is very much appreciated by most me 
chanical engineers. 

Fig. 10. 1 'mi with one compound pocket and a boss Inside a pocket. 
Fig. corner Part with a tapered, countersunk pocket. The front corner 
of I tic Mock tins been cut away to show the tapered pocket. 
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3D Labels for Dimension-Driven Modifications 
In the past, if a mechanical engineer or draftsman had to 
adapt an existing design to new dimensions, the easiest way 
was to mark the dimensions as "not true in scale," erase the 
original value and put in the new value. The rest was left to 
the people on the shop floor. 

This concept of modifying labels was adapted by CAD sys 
tems that use variational or parametric approaches in either 
2D or 3D. The difference between the parametric and varia 
tional approaches is minor in this respect. Both systems 
require a completely constrained drawing or 3D model 
which is generated with the help of user constraints and 
system assumptions. New values of the dimensions cause a 
recomputation of the whole model. Any dependencies that 
the user might have specified are maintained even when the 
model becomes modified later in the design process. The 
design intent is captured in the model. While this approach 
is most efficient for family-of-parts designs, it does not sup 
port flexible modifications, which are needed in the typical 
iterative design process. 

HP PE/SolidDesigner's dynamic modeling capabilities sup 
port the concept of 3D labels that can be attached to the 

Fig. 13. Part of an HP DeskJet 
printer printhead. 

model at any time during the design process and can be 
used as driving values. Tapering of the selected geometry 
can be driven by angled labels, while the transformation of 
the selected geometry can be defined by employing distance 
labels. The user adds one or several 3D labels to the part, 
selects the geometry to be modified, and specifies new di 
mension values. Using the new values the system then per 
forms the modification employing B-LOPs or I-LOPs. After 
the modification all values of the labels are updated to the 
current values of the geometry. 

Fig. 13 shows the HP PE/SolidDesigner model of a part of 
the printhead of an HP DeskJet printer. Figs. 14 through 18 
illustrate the concept of 3D labels. 

As indicated in Fig. 14, the first draft of the design contained 
a 30-degree ramp that was to be used to aid manufacturing. 
All edges of the area are blended to meet casting require 
ments. Assume that later in the design process it turned out 
that the ramp was not needed at all or a different angle was 
needed. There are several ways to define the transformation 
in space for the ramp to disappear (e.g., aligning the original 
ramp face and the adjacent face below the ramp). If the user 
is trying to define the axis of rotation for the ramp face, 

Fig. Fig. Changing a dimension (the angle of the ramp) of the part of Fig. 15. The part of Fig. 13 with the new ramp angle (the ramp has 
F i g .  1 3 .  b e e n  r e m o v e d ) .  
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Fig. 16. The part of Fig. 13 changed by I-LOPs without the 
knowledge that there is a blended edge. 

problems arise because the axis is a virtual one and cannot 
be found in the model. Either a special method for axis defini 
tion is needed or the user has to do the calculation by hand. 

A third possibility is employing 3D labels. Using the 3D label 
already defined to show the functional angle enables the 
system to do all the necessary computation. A new value (in 
this example 180 degrees) needs to be entered by the user. 
The system derives the transformation that has to be applied 
to the ramp face and the model becomes updated. (Fig. 15). 

If the label had not been ready for use, it could have been 
created to drive the modification. The labels are indepen 
dent from the model creation and can be used temporarily. 
If the model has been changed, the values of the dimensions 
update automatically to their new values. 

Relation Solver 
Once the geometry to be modified is selected and new val 
ues of the labels are entered, the system will start with the 
unspecified transformation and six degrees of freedom 
(three translational and three rotational). The solver will 
derive the relations from the labels and reduce the number 
of degrees of freedom sequentially one after the other until 
all specified relationships are satisfied or an impossible con 
figuration is encountered. 

The system is only designed to solve relationships that can 
be described by equations solvable by algebraic means. No 
iterative solution is attempted. 

Fig. as After suppressing the blend, the system makes the change as 
shown here. The final step is to readd the blend as shown in Fig. 15. 

The resulting transformation is dependent on the order in 
which the user has selected the modification-driving labels. 
Thus, the result of the modification is order dependent, es 
pecially if rotational and translational transformations are 
specified for the same modification. 

Modifying Blended Faces 
In Fig. 14, there are blends adjacent to the face to be moved. If 
the system didn't know that there were blends in the neigh 
borhood of this face and how to handle them, moving the face 
might create a strange object like the one shown in Fig. 16. 

To avoid this behavior, the system suppresses the blends in 
a preprocessing step before doing the main operation (ro 
tate the ramp face) and recreates them after performing the 
main operation in a postprocessing step. Figs. 17 and 18 
show the steps used by the system internally. 

This concept adds to the flexibility of HP PE/SolidDesigner 
tremendously, because it overcomes the limitation of the 
B-LOPs that only modifications can be done that do not in 
volve topological changes. 

Summary 
This paper shows the strengths of the dynamic modeling 
techniques. Topology changes are possible in most cases. 
Model modifications can be defined when they become re 
quired within the design process. Design changes do not 
have to be anticipated when starting the model creation. No 
constraints within the model exist, and predictable results 
avoid the trial-and-error approach of parametric and history- 
based systems. Dynamic modeling's core component besides 
the relation solver is the tool body, which is defined by the 
system automatically for the Boolean operation during a 
model modification. Although some limitations exist, most 
design changes are possible in one or several steps. 
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User Interaction in HP 
PE/SolidDesigner 
The HP PE/SolidDesigner user interface is modeled after the successful, 
easy-to-use, easy-to-learn interface of earlier HP CAD products. All 
commands are coded as Common Lisp action routines. A user interface 
builder helps command programmers by hiding details of the X Window 
System and the OSF/Motifâ„¢ graphical user interface. Prototyping was 
done using a specially developed Lisp-based interface to OSF/Motif called 
HCLX. 

by Berthoid Hug, Gerhard J.Walz, and Markus Kuhi 

As the use of CAD systems has become more and more 
widespread, two conflicting trends have emerged. On one 
hand, the complexity of CAD systems has grown with their 
increasing functionality. On the other hand, the typical CAD 
system user is no longer a computer hobbyist. Designers 
and detailers are busy enough maintaining expertise in their 
own areas without having to be computer experts as well. 
Therefore, CAD software must be easy to learn and easy to 
use for first-time or occasional users without sacrificing 
flexibility and effectiveness for more experienced users. The 
conflict between the need for simple operation and the in 
creasing functional complexity can lead not only to less user 
satisfaction, but also to decreased productivity. As a result, 
a simple and consistent user interface has been a long-stand 
ing goal of HP CAD products. 

The user interface of HP PE/SolidDesigner is based on the 
successful user interface of HP PE/ME10 and PE/ME30. The 
key components of this user interface are: 

1 Ease of Use. The product is designed not only for experts, 
but also for first-time or occasional users. 

1 Menu Structure. A task-oriented, flat menu structure mini 
mizes menu interaction and the length of cursor movements. 
Macro Language. This allows the user to customize the 
menu structure. User-defined functions can be set up to 
increase productivity by using existing CAD operations and 
measure/inquire tools for model interaction. 
Online Help System. This provides all relevant information 
to the user without using manuals. 

The HP PE/SolidDesigner graphical user interface is based 
on OSF/Motif and the X Window System, universally ac 
cepted graphical user interface standards for applications 
software running on workstation computers. The OSF/Motif 
graphical user interface provides standards and tools to en 
sure consistency in appearance and behavior. 

The large functionality built into HP PE/SolidDesigner is 
accessed by means of a command language with a defined 
syntax, referred to as action routines. The user communi 
cates with the command language via the graphical user 

interface. All prompting, error checking, and graphical feed 
back are controlled by means of the command language. All 
CAD functionality is provided in this way, along with a user 
interface builder for implementing the graphical user interface. 

The action routines are implemented in Common Lisp, 
which provides an easy and effective way of prototyping and 
implementing user interactions. For the first interactive pro 
totypes, HCLX, a Lisp-based OSF/Motif interface, was used. 

During the development of HP PE/SolidDesigner, HP me 
chanical engineers spend hundreds of days testing the prod 
uct and providing feedback to tune its user interaction to 
meet their needs. They mercilessly complained about any 
awkward interactions. They made suggestions and drew 
pictures of how they would optimize the system for their 
particular tasks. As a result, commands were designed and 
redesigned to reflect their needs. The user interface verifica 
tion was also supported by many external customer visits. 

User Interface Description 
If the user is familiar with other OSF/Motif-based applica 
tions, it's easy to feel comfortable with HP PE/SolidDesigner 
quickly. The mouse, the keyboard, and the knob box or 
spaceball are the tools for interaction. 

When HP PE/SolidDesigner is started it looks like Fig. 1. The 
different areas are: 
Viewport (center of the screen). The viewport covers the 
main portion of the user interface and consists of the graph 
ics area and the viewport control buttons at the top. In the 
graphics area of the viewport, the model is displayed and 
the user interacts with the model. Several viewports can 
exist, each with its own control buttons. Using more than 
one viewport, the user can view a part simultaneously from 
different sides and in different modes. Resizing and iconi- 
fication of viewports are possible. 
Utility Area (top row). In the utility area, the user finds util 
ity tools that support the current task. They do not termi 
nate, but rather interrupt and support the current command. 
The help button at the right end gives access to the general 
help menu. 
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Fig. 1. Main screen of the HP PE/Solid Designer user interface. 

â€¢ Main Menu (right side). The main menu buttons appear in 
the right column below the application name. This is also 
called the main task area. All the functionality is grouped 
into task-oriented logical areas. By selecting a main task 
button, the user opens a set of subtasks or a command 
dialog menu with buttons for all stages in the modeling 
sequence. 

â€¢ Prompt Lines and General Entry Field (bottom left). The 
two-line prompt area is used for general system feedback, 
messages, or user guidance. The general entry field is used 
for entering commands, general expressions, and the like. 

Â» Global Control Buttons (bottom right). The buttons at the 
bottom are always available. The select button is only active 
when the system is prompting the user to select something. 
The buttons and display fields inside the scrolled windows 
display general system settings like the active workplane or 
part, units, and catch information.t The other buttons are 
commands that the user needs frequently. They are always 
available. 

tDepending on the current command, the catch setting indicates how a pick in the graphics 
area (viewport! is processed to identify an element. For example, "catch vertex on current 
workplane" means that if the user picks near the end of a straight line, the resulting pick point 
will exactly match the endpoint of the line. The catch radius is customizable. 

Command and Option Dialogs 
Command dialog boxes (see Fig. 2) are accessed either from 
the main task area or the utility area. The current command 
dialog box is replaced by the new selected one. If the default 
home position of the command dialog box is inside the 
drawing area, the dialog box is closed upon completion of 
the operation (this is typical for command dialogs from the 
utility area). With this behavior the user always has optimal 
use of the screen space. 

Nevertheless, sometimes the user wants to have parallel ac 
cess to different dialog menus at the same time (flat struc 
ture). This can be achieved by pinning the command dialog to 
the screen using the small icon in the upper left corner. 
Pinned command dialog boxes are helpful whenever the 
user is using several menus constantly. The user can keep as 
many or as few dialog boxes open as desired and arrange 
them on the screen to suit the present task. Fig. 2 shows two 
pinned dialog boxes and one unpinned dialog box. 

Activation of a command by a mouse click or by typing in a 
command in the general entry field leads to the same behav 
ior. The command button snaps into pressed mode. If there 
exist a number of additional controls of the command, a 
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Fig. 2. Command dialog boxes 
with pin icons in the upper left 
corner. Two boxes are pinned to 
the screen and one is not. 

subdialog is attached at the bottom of the command dialog 
box (see extrude box in Fig. 3). The command becomes in 
teractive and a prompt asks for further input. The dialog box 
gets a If border, a signal that this dialog box is active. If 
the action is suspended by an interrupt action, the border 
changes to red. Thus, the user never loses track of what is 
active and what is not. 

The subdialog provides options in the form of buttons, data 
entry fields, and check boxes for further control of the com 
mand. The system provides good defaults to minimize the 
required user input. All options can be manipulated in any 
appropriate order; the command supplies a parallel syntax. 
All settings are displayed in the dialog box. Required data 
fields are highlighted in yellow, meaning that the user must 
define a value. 

The help buttons of the command dialog boxes give access 
to context-sensitive help. 

Context-Sensitive Help 
Help messages relating directly to the task the user is per 
forming can be accessed immediately by pressing the help 
button located in the currently active menu or dialog box. 
The help information appears in its own dialog box, which 
can be positioned anywhere on the screen and resized for 
convenience (see Fig. 4). 

Words used in help text are directly linked to other defini 
tions or explanations. The user need not go back to indexes 
to look up further words to aid in understanding the help 
information. 

Machine  
Add Mate  

E x t r u d e  U n i t e  

Remove  Mater ia  

Subtract  

S t a m p  I n t e r s e c t  

Sect ion 

Extrude 

W o r k p l a n e  i w l .  

Distance 

Reverse  D i r  

i  K e e p  W P  

O K  C a n c e l  H e l p  

Fig. a If a command has controls in addition to the basic ones, a 
subdialog box is attached to the command dialog box. The extrude 
command is an example of this behavior. 
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In addition to the context-sensitive help, the help system 
provides a task-based index with search facility, a command- 
based index with search facility, an overview of HP PE/Solid- 
Designer. information on HP PE/SolidDesigner's concepts, 
filters, and displays of user-typed keywords, version infor 
mation, and help on help. The help system can be used in a 
standalone mode without running HP PE/SolidDesigner. 

Task-Sensitive Tools and Feedback 
Whenever the user has to enter a value for a command, the 
system provides the appropriate tool for data entry. For in 
stance, if the user has to enter a direction, the direction tool 
(Fig. 5) pops up. The user can extract the information di 
rectly out of the model with a minimum of effort by access 
ing parts of the model such as edges and faces. The result is 
displayed either textually or graphically as part of the 
model. 

These task-sensitive tools are implemented as subactions so 
that all commands (action routines) have access to the same 
tools. Using these tools guarantees consistent system behav 
ior, for example in specifying directions. 

Browsers 
Browsers (see Fig. 6) display lists of files, workplanes, 
parts, and assemblies, and allow selection of items for use in 
commands without typing in names. Even complex assem 
blies become easy to understand and manipulate when 
browsers are used. 

Customizing the User Interface 
HP PE/SolidDesigner provides different facilities for chang 
ing its user interface. The following customization capabili 
ties exist: 

â€¢ Flattening the Menu Structure. This facility is provided by 
allowing the user to pin command boxes to the screen. 
When the environment is saved, pinning and location infor 
mation is stored for later access. 

â€¢ Toolbox. The toolbox (Fig. 7) allows the user to build a cus 
tom command dialog box. The user can put any command 
into the toolbox, and can put the most-used commands to 
gether in one area for easy access. The toolbox can be left 
open like a command dialog box. If a command becomes 
interactive, the original subdialogs are attached at the bot 
tom of the toolbox dialog. 

â€¢ Lisp. The user can write Lisp functions, which can contain 
action routine calls. Thus, the user can combine Lisp with 
CAD functionality to optimize the system for particular 
needs. 

â€¢ Key Button Bindings. HP PE/SolidDesigner commands or 
Lisp functions can be accessed via X translations. Function 
keys, mouse buttons, or any key sequence can be defined 
for accessing any given functionality. This tool allows the 
expert user to accelerate the use of the system. 

â€¢ Record/Playback. The record/playback feature allows the 
user to record a series of command picks to be used later to 
duplicate the action, like a macro. The information is stored 
in a file for playback. The file contains the command syntax, 
so it can be used to support writing user-defined Lisp 
functions. 

Action Routines and Personality 
This section describes the user interaction in HP PE/Solid 
Designer in more detail. It explains the basic technology 
underlying the concepts that were described in the preced 
ing section. A simplified extrude example is used to clarify 
the explanation. 

Fig. 4. Context-sensitive help in 
formation appears in its own dia 
log box, which can be positioned 
anywhere on the screen and re 
sized for convenience. 
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Fig. 5. When the user has to en 
ter a value for a command, the 
system provides the appropriate 
tools for data entry. The result is 
displayed either textually or 
graphically as part of the model. 

Fig. 8 is a simplified diagram of the action routine/personal 
ity communication model of HP PE/SolidDesigner. The com 
munication model is divided into three parts. On the left side 
are the action routines and on the right side are the user 
interface objects. Bidirectional communication between the 
action routines and the user interface is the task of the per 

sonality, which is shown in the middle of Fig. 8. This divi 
sion into three separate components allows the implemen- 
tor of an HP PE/SolidDesigner command to change the user 
interface and its behavior without changing the command 
syntax. It is also possible to switch off the user interface for 
certain commands. 

The action routine concept is used to implement the com 
mand language of HP PE/SolidDesigner. A command is 
coded as a state machine with several states and transitions 
between these states. The term personality refers to the 
information coded in the GUI update table shown in Fig. 8. 

HP PE/SolidDesigner distinguishes three types of action 
routines: 
Terminate Actions. Terminate actions terminate every other 
running action routine negatively (i.e., they cancel them). 
At any time there can only be one active or suspended ter 
minate action. All action routines that modify the solid 
model must be defined as terminate actions. 
Interrupt Actions. Interrupt actions interrupt the current 
running action routine. When the interrupt action is fin 
ished, the interrupted (suspended) action routine continues 
from where it was interrupted. There is no limit on the 
stacking of interrupt actions. Interrupt actions must not 
modify the solid model. They are only allowed to inquire 
about model data. A measure command is an example of an 
interrupt action. 

Part Browser 
Assembly 

Parts /Assem1*" 
a l  ( A )  

accdoor (P) 
chassis (P) 
tc_doskpd (P)  

a2 (A)  
carbase (P) 
enc_cover (P) 
outrigger (P) 
r a d i i l !  ( P )  

a 3 ( A )  
outcover_2 (A) 

outcover (P) 
outeover.1 (P) 
outcover.2 (P) 

outtray (P) 
papsled (P) 
wingleft (P) 
wingright (P) 

Selection 

A p p l y  A s s y  C l o s e  H e l p  

Fig. and Browsers make complex assemblies easy to understand and 
manipulate. 
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Viewport  

S o l i d D e s i g n e r  

Toolbox 

T o o l b o x  
R e c o r d e r  C - l i n e  V  

R e s e t  W P L b y f a c e  

S t a r t  M E 1 0  E x t r u d e  

W P - B r o w s e r  

C- l ine  H  Move face 

P a r t  / p l l  

Workplane 

Distance 

To Part  

Reverse Dir  

Keep WP 

O K  C a n c e l  H e l p  

Fig. 7. The toolbox allows the user to build a custom command 
dialog box containing often-used commands. 

â€¢ Subactions. Subactions are used to implement frequently 
used menus so that they can be reused in other action rou 
tines. This avoids code duplication, allows better mainte 
nance, and improves usability. Subactions can only be 
called from within other action routines. This means that 
the user cannot call a subaction directly. Some typical 
examples of subactions are: 

Select 
' Measure axis, direction, point 

r-j Color editor 
0 Part positioning. 

Basic Action Routine Structure 
As mentioned above, the user interface in HP PE/SolidDe- 
signer is Lisp-based. Therefore, the implementation of an HP 
PE/SolidDesigner command using the action routine con 
cept is a kind of Lisp programming. The following is a sche 
matic representation of a terminate action: 

(de fec t ion  name 

(  )   L is t  o f  loca l  var iab les (wi th  or  wi thout  in i t ia l izat ion)  

(   ac t i on  desc r i p t i on  

(  s t a t e n a m e  ( s t a t e _ f o r m )  
(s tate_prompt)  
he lp- index-symbol  

(  t r a n s i t i o n p a t t e r n  ( t r a n s i t i o n _ f o r m )  p e r s - u p d a t e - s y m b o l  n e x t _ s t a t e  
) 

. . .   more  t rans i t ions  

. . .   more  s ta tes  

)   end  o f  ac t ion  descr ip t ion  

(   l o ca l  f unc t i ons  

( l o c a l - f u n d  

. . .   more  loca l  func t ions  

)   end o f  loca l  func t ion  de f in i t ions  

The structure of an interrupt action or subaction is equiva 
lent to that of the terminate action shown above except that 
an interrupt action is defined using the keyword defection 
and a subaction is defined using the keyword defsaction. The 
second parameter of the action routine definition is the 

Callbacks and Put Buffer 

Fig. 8. In the HP PE/SolidDe 
signer user interface communica 
tion model, the action routines 
representing the commands com 
municate with the user interface 
objects through the. personality. 
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name of the command that is coded through the action rou 
tine. For an extrude command this would be extrude. Follow 
ing the command name is a list of local action variables. 
These variables can only be accessed from within this action 
routine. Action routine local functions and each state and 
transition form have access to them. They are used to store 
user-entered command parameters and as variables to con 
trol the execution of the command. 

Next comes a description of the state machine. The states 
are those defined by the railroad of the command plus inter 
nal administrative states. The railroad of a command is a 
structure used to describe the syntax of an HP PE/SolidDe- 
signer command for the user. Fig. 9 shows the simplified 
railroad of the extrude command (a few options have been 
omitted for clarity). The railroad reflects the concept of par 
allel can syntax. Each keyword (:part, :wp, distance) can 
be given at any time and the command loops until the user 
completes or cancels it. 

A distinction is made between prompting and nonprompting 
states. A prompting or prompt state requires the input of a 
token (a keyword or parameter value) from the user. This 
token is read from the input stream, which is filled either 
interactively by the user (hitting an option button, entering a 
number, selecting a part, etc.) or from a file (such as the 
recorder file). As many tokens as desired can be entered 
into the input buffer. Entered tokens are processed by the 
action routine handler. Processing stops as soon as an error 
occurs (such as an unknown keyword) or the input buffer 
becomes empty. HP PE/SolidDesigner then becomes inter 
active and requires more input from the user. A prompt state 
with an empty input buffer displays the prompt coded in its 

(:part) â€” Iselecl parti 

(:wp) â€” Iselect workplanel 

(distance) â€” llengthl 

Fig. extrude Simplified railroad giving the high-level syntax of the extrude 
command. 

state. After the user has entered a token, the action routine 
handler tries to match the input with one of the state transi 
tions. If a match is found the action routine handler pro 
cesses this transition and jumps to the next state. A non- 
prompting state (administrative state) takes the result of its 
state form to find a match with the coded transitions of this 
state. If the action routine handler was not able to find a 
match in the transitions and no "otherwise" transition was 
coded, it signals an invalid input error. 

Implementation of the extrude railroad leads to the state 
machine shown in Fig. 10. As the extrude command starts, 
the first state is Â¡nit. In this state the local variables are ini 
tialized and filled with useful defaults such as the current 
part and the current workplane with a valid profile. Since Â¡nit 
is a nonprompting state and only one "otherwise" transition 
is coded the action routine handler goes on to the next state, 
top-prompt. This prompt state and the nonprompting dispatch 
state top-opt are the central states of this example command. 
The top-opt state takes the input of the previous state (top- 
prompt or any extract or check state) and tries to match its 
transitions. The states select-part and select-wp call on their 
only "otherwise" transition, the select subaction, as their 
transition form, with the specific select focus of part or 

Legend: 
Prompt State 

Nonprompting 
State 

transition pattern transition form 

Sta te -Name 

(state form) 
Fig. 10. State machine for the 
extrude command. 
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workplane, respectively. These states prompt through the 
select subaction. The extract states take the result of the 
transition form (select subaction call) and process the result 
of the select operation. The distance state has a special key 
word an :lengtti â€” as its transition pattern. For this keyword an 
input conversion is involved. The transition pattern will 
match any entered number, whereupon a units converter 
will be called automatically. A user can work in length units 
of millimeters or inches, and the units converter converts 
the length into the internal units (here mm). There are also 
other converters such as the angle converter which converts 
the user input (e.g., degrees) into internal units (here radians). 

The extrude command loops until the user completes or 
cancels the command, hi both cases the action routine han 
dler jumps into the separated state end. Depending on a posi 
tive (complete) or negative (cancel) termination of the com 
mand, the software that actually performs the action will be 
called with the parameters that were collected by the action 
routine. 

Personality 
As explained earlier, the task of the personality is bidirec 
tional communication between the action routine and the 
user interface objects. The core of the personality is the GUI 
update table shown in Fig. 8. This table stores all of the 
actions to be performed when an action routine executes, 
and it also receives data from the user. It guarantees that the 
user interface is in sync with the action routine state when 
ever HP PE/SolidDesigner requires data from the user. 

The GUI update table is realized as a hash table with the 
pers-update-symbol (see action routine representation, page 19) 
as key and a Lisp form as entry. As soon as the action rou 
tine handler finds a match in the transition pattern of the 
current state it performs the transition form and triggers the 
user interface update using the third parameter of the transi 
tion definition as value. The action routine handler looks up 
whether a Lisp form is coded for the pers-update-symbol and 
evaluates it if found. The Lisp form can contain things like 
set-toggle of a command option or update-toggle-data to show 
the value the user has entered. This mechanism reflects the 
state of the action routine and its values at any time in the 
user interface. 

There are special personality keywords for every action 
routine: 

'  '  ac t ion_name_ENTRY 
'  '  ac t ion_name_EXIT 
'  ' (ac t ion_name ac t ion- in te r rup t -by- iac t ion)  
'  ' (ac t ion_name ac t ion-con t inue- f rom- iac t ion) .  

' action_name_ENTRY is triggered as soon as the action routine 
starts. Normally the Lisp form coded for this entry ensures 
the display of the command options filled with all default 
values. ' action_name_EXIT cleans up the user interface for this 
command and removes the options from the screen. The 
other two keys are triggered when the command is inter 
rupted or when it resumes its work after an interrupt action. 
In this case the coded Lisp form normally deactivates and 
reactivates the command options, since they are not valid 
for the interrupt action. 

Delayed Update. A sequence of action routine calls (e.g., from 
the recorder file) or the input of several tokens into the 

input buffer should not cause constant updating of the user 
interface. Delayed update means that the user interface will 
not keep track of the action routine until the action routine 
becomes interactive, that is. until it requires data input from 
the user. At that time the user interface of the interactive 
command will reflect its state and values exactly. 

A completely parameterized action routine does not cause 
any reaction on the user interface. If a command changes 
any status information (e.g., current part), this information 
will be updated. These updates bypass the GUI update table 
using the event mechanism. 

The delayed update mechanism is implemented using a per 

sonality enti-y stack. Each trigger of a pers-update-symbol 
through the action routine handler will not lead to a direct 
execution of the Lisp form. All triggers are kept on the per 
sonality entry stack until the action routine becomes inter 
active. If an action routine doesn't require data from the 
user, all entries between and including ' action_name_ENTRY 
and ' action_name_EXIT are removed from the stack. As an ac 
tion to becomes interactive all Lisp forms belonging to 
the personality entries on the stack are performed until the 
stack is empty. The user interface is again in sync with the 
action routine state. 

A problem came up with fully parameterized action routines 
behind a command toggle. Normally the ' action_name_EXIT 
trigger cleans up the command user interface, but with a 
fully parameterized action routine no personality trigger 
occurs. To solve this problem the system triggers two addi 
tional personality entries which are called in either delayed 
or undelayed update mode. These are ' action_name_PRE_ENTRY 
and ' action_name_POST_EXIT. The release of the command 
toggle is coded in ' action_name_POST_EXIT. The need for 
' action_name_PRE_ENTRY is discussed below. 

Personality Context. One requirement for the user interface of 
HP PE/SolidDesigner was that a command should be call 
able from other locations as well as from the default loca 
tion. The motivation was the toolbox, which can be filled by 
the user with often-used commands. The main requirement 
was that a command's behavior in another context should 
be equivalent to its behavior in the default context. A user 
who calls the extrude command out of the toolbox expects 
the extrude options in the toolbox and not those in the de 
fault menu. The toolbox concept is based on the assumption 
that a command context is specified by: 

1 A calling button 
1 A dialog shell, in which the calling button resides 
1 A communication form where the command options are 
shown 

' A shell position where the command options are shown if 
they are realized in a separate dialog shell. 

All other things are command-specific and independent of 
the context. 

The default context of a command is coded in ' ac- 
tion_name_PRE_ENTRY. Here the programmer of the com 
mand's personality defines the context in which the com 
mand should awake as the user types it in. This context can 
be overridden when the command is called out of, for exam 
ple, the toolbox. Context dependent calls of the command 
personality have to check the current context settings 
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instead of having this behavior hardcoded in the default con 
text. This concept also makes it possible to program a to 
tally different personality for a command or to switch off the 
user interface of a command. 

Stacked Personality. The possibility of invoking the same 
interrupt action several times makes it necessary to provide 
a method of creating independent incarnations of the inter 
rupt action user interface. This is done by separating the 
building instructions of the command option user interface 
into a Lisp function. As an interrupt action is called a second 
time (or third, etc.) after an initial invocation, the widgets of 
the latest command option block are renamed to save the 
state and contents. Then a new incarnation of the option 
block is created using the building instruction function. 
When the most recent interrupt action terminates its execu 
tion the user interface incarnation is destroyed and the wid 
gets of the saved option block are renamed again to become 
valid once more. One incamaLion of the option menu of a 
command is always kept. All other necessary incarnations 
are created and destroyed at run time. 

User Interface Development Tools 
To speed up the user interface development process a proto 
typing tool was required that would allow modifications to 
be made quickly. Since the command language of HP PE/So- 
lidDesigner is Lisp-based and the commands are intended to 
interact closely with the graphical user interface (GUI), 
standard C/C++-based user interface builders could not be 
used as prototyping tools. Such tools would have required 
the standard editycompile/link/test cycle, which slows down 
the prototyping process heavily. They also didn't offer Lisp 
interfaces or facilities to change the GUI of the CAD system 
at run time, a required feature. 

In 1989 only a few Lisp interfaces to the X and OSF/Motif 
toolkits were available. Because none of these had all of the 
features we needed, we decided to produce our own. Called 
HCLX, it is a Common Lisp interface to the XI 1 Xlib, the X 
toolkit intrinsics, and OSF/Motif widgets (Fig. 11). It pro 
vides Lisp functions for all the functions available in libXll, 
libXt and libXm, as well as all the constants and resources in 
the XI 1 .h files. It provides functions to create, access, and 
modify all the structures used by the X toolkit and Xlib. Wid 
get class variables are also defined, and Common Lisp func 
tions can be used as callback routines in widgets and as 
functions for translations. 

Although it is possible to do all X and OSF/Motif-related 
coding in HCLX, experience during the development process 
showed that certain low-level X programming should be 
done in C++. This includes such things as initialization, 
color maps, and the color button. 

Color Maps. The use of a graphics library like HP StarBase 
and the demand for high-quality shaded solid models imply 
the need for a private color map within the graphics win 
dows of HP PE/SolidDesigner. When the graphics window or 
its top-level shell window is focused, the graphics color map 
is installed (copied into the display hardware) by the X win 
dow manager. On displays that support only one color map 
in hardware (most of the low-end and old displays), every 
thing on the entire screen is displayed using the installed 
color map. When a private color map is installed, all win 
dows using the default color map take random colors. As 

C/C++ 

User Interface Builder 

C/C++ 

Fig. 11. Tools used to develop HP PE/SolidDesigner's user interface. 
HCLX X a specially created Common Lisp interface to Xlib, the X 
toolkit, and OSF/Motif widgets. 

soon as a window using the default color map gains the 
focus, the default color map is reinstalled, and the graphics 
windows with their private color map will have random col 
ors. As the current color map switches back and forth from 
default to private, the user sees color flashing. To avoid this 
for the user interface of HP PE/SolidDesigner, a private 
color map is used for the user interface windows that has 
the same entries as the color map used for graphics. Along 
with the color map, a color converter is installed that for a 
given X or OSF/Motif color specification tries to find the 
best matching color within the color map. 

Color Button. For the light settings commands, a color editor 
is required to give the user feedback on the colors used in 
the graphics windows. Therefore, a color button widget was 
inherited from OSF/Motif's drawn button. The color button 
has a small StarBase window in which colors are rendered 
in the same way as in the graphics windows. 

User Interface Builder 
HP PE/SolidDesigner's user interface builder was created 
using HCLX. During the prototyping phase for the user inter 
face it became obvious that it is too expensive to train every 
application engineer in the basics of the X Window System 
and OSF/Motif. The user interface builder hides X and OSF/ 
Motif details from the application engineer and offers facili 
ties to create a subset of the OSF/Motif widgets. 

Unique Naming. OSF/Motif widget creation procedures re 
turn a unique ID for a widget, which must be used whenever 
a widget is modified or referenced by some other procedure. 
The user interface builder changes this. Widgets are identi 
fied by unique names. These names can be specified or 
created automatically. The user interface builder ensures 
the uniqueness of the names. 

Properties. For every widget only a small subset of its origi 
nal resources are made available. To distinguish these re 
sources from the full set of resources, they are called prop 
erties. A user interface builder property consists of a name 
and a corresponding value. The name is derived from the 
original OSF/Motif resource name by removing the prefix 
XmN. For example, XmNforeground becomes foreground. Some of 
the widget's callbacks are offered as properties. Callback 
properties have as a value a Lisp form, which will be evalu 
ated when the callback is triggered. The user interface 
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Machine 
Add Mater ia l  

Extrude 

Reflect 

Remove 

*  D i a l o g  E x a m p l e  #  
Group Title 

C o m m a n d  1  C o m m a n d  2  

Command 1 Options 

F i l e n a m e  f t m p / f o o . r e c  

Punch 

Stamp 

Sect ion 

Subt ract  

Intersect  

C a n c e l  H e l p  

Line Style 

Fig. 12. Command dialog box created with a call to create-right-menu- 
dialog. 

builder ensures that Lisp errors within these forms are 
trapped and handled gracefully. After a property has been 
specified for a widget, its value can be queried and the user 
interface builder will return the Lisp form that was used for 
the specification. This means that specifying red or #FFOOOO as 
a value for the property background will result in a return of 
red or #FFOOOO and not just a pixel value as in OSF/Motif. 

User Interface Builder Action Routines. All user interface 
builder commands are offered as action routines. They 
make heavy use of the property decoders to detect input 
errors such as wrong property names or values. There are 
user interface builder commands to create widgets, modify 
and query widget properties, display, hide, and position wid 
gets, and access the graphics widgets. 

User Interface Convenience Functions 
The user interface convenience function level is located on 
top of the the user interface builder level (see Fig. 11). While 
all the user interface builder functions are closely related to 
OSF/Motif, the user interface convenience functions are 
more abstract and not related to any window system. This 
level allows the programmer of a new command a fast and 
easy-to-use implementation of the command's user inter 
face. The functions guarantee that the new command fits the 
look and feel of HP PE/SolidDesigner's user interface. 

The function create-right-menu-dialog is used to create standard 
HP PE/SolidDesigner menus which generally appear on the 
right side of the user interface. The base of every right-menu 
dialog is a dialog shell. This allows moving and positioning 
these menus anywhere on the screen. A right-menu dialog 
can be constructed top-down with various elements. Only its 
width is limited to the size of two standard buttons. Fig. 12 
shows a typical HP PE/SolidDesigner command dialog con 
structed with a call to create-right-menu-dialog. 

With the function create-options-block, typical HP PE/SolidDe 
signer user interface objects for command options can be 
created. An option block can never be without a parent wid 
get. This means that the function create-options-block doesn't 

Subtitle 

Toggle 1 Toggle 2 

*  O p t i  O p t  2  O p t 3  

Left Toggle 

X 42.0815 

Wide Toggle 

Fig. with Some heterogeneous option types that can be created with 
create-options-block. 

create a dialog shell as a basis, but a form widget, which is 
realized in a parent widget (generally an empty form widget, 
also called a communication form in this article). Fig. 13 
shows some of the possibilities out of which a heteroge 
neous option block can be constructed. Each option block 
has an optional title, a main part underneath the optional 
title, and an optional suboption form, an empty form widget 
below the main part as a placeholder for suboption blocks. 

The function create-dialog-shell creates an empty HP PE/Solid 
Designer standard dialog shell in any size. Possible elements 
are pin, title, close, OK, cancel, and help buttons. The empty 
main form can be filled with any user interface objects, 
which can be created using standard user interface builder 
calls. This function is used to create nonstandard menus 
such as browsers, the color editor, and so on. 

Conclusion 
The effort put into the development of HP PE/SolidDesign 
er's user interface was a good investment. The user interface 
is one of our key competitive differentiators. Customers like 
the clear structure, ease of use, and ease of learning. The 
Lisp-based implementation allows broad customization pos 
sibilities. The powerful concepts of HP PE/SolidDesigner's 
user interface and its technology provide a firm foundation 
for future developments. 

OSF/Motif is a trademark of the Open Software Foundation in the U.S.A. and other countries. 
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Enhancements in Blending Algorithms 
This article describes a rounding operation for a 3D CAD boundary 
representation (B-Rep) solid model. Complex combinations of convex and 
concave edges are handled predictably and reliably. At vertices the 
surfaces are smoothly connected by one or more surface patches. An 
algorithm for the creation of blending surfaces and their integration into 
the model is outlined. The sequence of topological modifications applied 
to the case model is illustrated by examples including some special case 
handling. 

by Stefan Freitag and Karsten Opitz 

Apart from the basic Boolean operations, a modern solid 
modeling CAD system needs to provide easy-to-use facilities 
for local modifications of the primary model. One of the 
most important examples is the blending or rounding of 
edges, in which a sharp edge of the model is replaced by a 
surface that smoothly joins the two adjacent faces (see 
Fig. 1). 

Blending surfaces serve several purposes in mechanical 
designs, including dissipating stress concentrations and en 
hancing fluid flow properties. In addition, some machining 
processes do not permit the manufacture of sharp edges. 
Smooth transitions between surfaces are also often required 
for aesthetic reasons. Besides functional requirements, edge 
blending is conceptually quite a simple operation, which 
makes it very popular among designers using CAD systems. 

A common characteristic of almost all applications is that 
the smoothness of the blend is more important than its 
exact shape. For the user this means that it should be pos 
sible to create a blend by specifying only a few parameters. 
It is then the system's task to fill the remaining degrees of 
freedom in a meaningful manner. 

From an algorithmic point of view, blending one or more 
edges of a solid model simultaneously falls into two sub- 
tasks. The first is to create a surface that provides the transi 
tion between the adjacent surfaces defining the edge. 
Secondly, the surfaces need to be trimmed properly and 
integrated into the body such that a valid solid model is 

maintained. While the first step is a purely geometric prob 
lem, the second one involves both geometric and topological 
operations. 

The blending module in HP PE/SolidDesigner was designed 
with the goal of allowing blending of a wide variety of com 
plex edge combinations in a robust manner. This is accom 
plished through the use of freeform geometry as blending 
surfaces, along with quite involved geometric and topologi 
cal considerations in several phases of the algorithm. 

The lack of freeform surfaces was the primary reason for 
most of the restrictions concerning edge blending in HP 
PE/SolidDesigner's predecessor, the HP PE/ME30 3D 
modeling system. HP PE/ME30's kernel, the Romulus 
geometric modeler, does in fact provide more complex 
surfaces, 1 but these enhanced blends were never imple 
mented in the product. 

The current capabilities of HP PE/SolidDesigner's blending 
algorithm go far beyond HP PE/ME30 with respect to the 
topological situations that can be handled reliably. More 
over, the architecture of the algorithm allows the inclusion 
of future enhancements in a consistent manner. 

It is the aim of this paper to illustrate the basic blending 
algorithm and to provide the reader with examples that 
demonstrate the complexity of the geometric and topologi 
cal problems that must be solved to integrate one or more 
blend surfaces into a solid model. More information on this 

Fig. 1. (a) A solid model 
with sharp edges, (b) Edges 
rounded by blending. 
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subject can also be found in Woodwark2 and the excellent 
survey of Yida.:i 

HP PE/SolidDesigner's underlying philosophy allows flexible 
modifications of the solid model in every stage of the model 
ing process. In the context of edge blending this means that 
it should always be possible to remove or modify- an existing 
blend surface without regard to how it was created. 

In the next section, the second section of this article, we 
introduce some terminology commonly used in solid model 
ing, in particular in the blending context. The third section 
describes the use model of edge blending in HP PE/SolidDe- 
signer. An overview of the algorithm is given in the fourth 
section, followed by a more detailed discussion of its major 
steps. Finally, in the last section, we discuss some perfor 
mance and stability issues. 

Blending Module of the HP PE/SolidDesigner Kernel 
Currently, the blending operation in the HP PE/SolidDe 
signer kernel implements what is commonly known as the 
rolling ball blend. This type of blend can easily be visualized 
as a ball moving along the edge and touching the adjacent 
surfaces (the primary surfaces) simultaneously. The touch 
ing loci are curves that define the boundaries of the blend 
surface. Depending on whether the radius of the ball is con 
stant or varies while it is moving, we speak of constant- 

radius or variable-radius blends. 

The geometry module of HP PE/SolidDesigner's kernel sup 
ports a number of different surface types (Fig. 2). These 
include the natural quadrics (planes, spheres, cylinders, and 
cones), toruses, and NURBS (nonuniform rational B-spline) 
freeform surfaces. All of the surface types are represented 
parametrically. The object-oriented design of the kernel 
allows the use of generic algorithms for general surfaces as 
well as special-case solutions for particular surface types. 

Most algorithms such as surface/surface intersections or 
silhouette calculations behave considerably more stably and 
perform more efficiently when dealing with nonfreeform or 
analytic surfaces. Consequently, the blend algorithm tries to 
employ analytic surfaces whenever possible. This necessi 
tates several case distinctions during the process of blend 
creation, which will be pointed out later. 

Depending on the local geometry, that is, the convexity of 
the edge, blending an edge may involve adding or removing 
material. These operations are sometimes distinguished as 

filleting or rounding, respectively. In this article we will 
refer to both cases as blends. 

If several edges to be blended meet at a common vertex, the 
blending surfaces should be joined in a smooth manner. \Ye 
call these transitions vertex regions because they replace a 
vertex by a set of surfaces. In some special cases, a vertex 
region can be defined by a single analytic surface like a 
sphere or a torus. In general, however, they are defined by 
up to six tangentially connected B-spline freeform surfaces. 

HP PE/SolidDesigner belongs to the class of B-Rep (bound 
ary representation) modelers, in which the solid model is 
represented internally as a set of vertices, edges, and faces. 
In addition, the representation contains information about 
how these entities are related to each other â€” that is, the 
topology of the model. B-Rep modelers usually employ a 
restricted set of operations to perform topological manipula 
tions of the model. The application of these Euler operators 

ensures the topological integrity of the model. 

Integrating one or more blend faces into a solid involves 
quite a number of topological modifications and different 
Euler operators. We will not discuss the underlying concepts 
in detail here, but refer the reader to the standard sources.4'5'6 
For our purposes, it suffices to know that the blend algo 
rithm employs these basic operators (for example, ADEV, 
ADED, of KE) to create the new topological representation of 
the blended body. 

The blend module also takes advantage of basic functional 
ity provided by the geometry module of HP PE/SolidDesign 
er's kernel. Examples are closest-point calculations with 
respect to a curve or a surface. We call these operations 
relaxing a point on a curve or surface. This applies to 
curves or surfaces of any type. For instance, it is often nec 
essary to relax an arbitrary point on the intersection curve 
of two surfaces. Since these operations are part of the ker 
nel's generic functionality, we will not go into the details of 
their implementation. 

Using the Blend Command 
Like all of HP PE/SolidDesigner's commands, the user inter 
face for the blend command is designed to be easy to use 
and require as little input as possible from the user. This is 
greatly facilitated by some general mechanisms used 
throughout HP PE/SolidDesigner's user interface such as the 
selection methods and the labeling feedback. 

Fig. 2. Detail from Fig.l showing 
cliÃ­Ã¯cTcril types of surfaces em 
ployed liy the blending algorithm- 
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The blend command distinguishes two modes: the defini 

tion mode and the preview mode. In definition mode, single 
or multiple edges can be selected and assigned a radius (of 
the rolling ball). Variable-radius blends are specified by start 
and end radii to be assigned to the end vertices of the edge. 
Since the choice of the start and end vertices is arbitrary, 
the vertices of the currently selected edge are marked with 
labels. The radius of the rolling ball varies linearly between 
the two end vertices of the edge. 

An important feature of the blend command is its ability to 
handle both types of blends simultaneously. This gives the 
user the ability to specify an arbitrary combination of con 
stant and variable radius blends, each with possibly differ 
ent radii, in a single blend session. 

The blend command uses straightforward radius defaulting. 
For example, the constant radius of the active edge carries 
over to all subsequently selected edges unless the user 
chooses a new radius explicitly. 

While processing the selected edges, the algorithm decides 
about the inclusion of a vertex region to provide a smooth 
transition between the blend surfaces. A vertex region will 
be created if all edges adjacent to a particular vertex are to 
be blended in the same session. In other words, a vertex 
region can easily be suppressed by blending adjacent edges 
one after another. 

In preview mode, the blend faces are shown using a preview 
color. Modification of the radius or the edge information is 
not possible in this mode. However, upon returning to the 
definition mode, the user can specify further edges to be 
blended, modify the blend radius assigned to an edge, or 
remove an edge from the list. 

There are two ways to terminate every command in HP 
PE/SolidDesigner. Canceling the blend command causes the 
blends to be discarded, while completing it makes the 
blends "real." 

For convenience, the blend menu contains a small number 
of options: 

â€¢ The part checker usually run on the blended part can be 
switched off to provide a faster, although possibly invalid 
result. 

â€¢ The labels attached to edges and faces, which might be an 
noying if a large number of edges are selected, can be 
turned off. 

â€¢ A chain option allows the user to select all edges connected 
tangentially to a given edge by a single pick. 

Because of the complexity of the operation, blending one or 
multiple edges sometimes fails. While some problems are 
easily detected, others are caused by topological or geomet 
rical restrictions rooted at a relatively low level. A typical 
example for the first kind of problem is the case where the 
blend radius is chosen too large, hi any case, a failure is re 
ported to the user by displaying an error message and high 
lighting the edge that is causing the problem. 

How the Blending Algorithm Works 
As noted above, the rolling ball blend provides us with a 
very intuitive way to define a blend surface. While moving 
along the edge, the ball sweeps out a certain volume. The 
blend surface is simply a part of the surface bounding this 

volume. In mathematics, surfaces that are swept out by fam 
ilies of moving spheres are called canal surfaces.7 The cylin 
der and the torus are the most obvious examples. 

A number of blending problems can be handled by inserting 
surfaces of these types. We will refer to these cases as ana 

lytic blends. In other than the simple cases, however, the 
explicit representation of a canal surface takes on quite a 
complicated form. Therefore, an approximation of the ideal 
blending surfaces by freeform blends is constructed. In par 
ticular, we use C '-continuous B-spline surfaces. 

The general algorithm is divided into a number of smaller 
modules. Each of these modules typically scans over all 
edges to be blended and performs a certain task. However, 
care is taken that the result is symmetric, that is, it does not 
depend on the order in which the edges are operated on. 

The task of the first module is to filter out all cases where an 
analytic solution exists and flag the corresponding edges 
accordingly. In the second step, the touching curves of the 
ball with the primary surfaces are calculated. While this is 
straightforward for analytic blends, the boundaries of free- 
form blends must be computed numerically. This is accom 
plished by a marching algorithm. 

Having calculated the boundaries of the blend surface, we 
determine their intersection points with other edges. It is 
often necessary to remove edges from the model to find 
useful intersection points. This is the first step that possibly 
involves topological modifications of the original body. 

Other major changes to the model are done in the next two 
modules, which represent the blend face topologically. The 
first module performs the zipping of the original edge, that 
is, it replaces this edge by two new ones connected to the 
same end vertices. Secondly, the appropriate topology at the 
end vertices is inserted. 

From a topological point of view, the model containing the 
primary blends is now complete. However, several topologi 
cal entities are still without geometry. The surfaces corre 
sponding to the blend faces, for instance, are not yet de 
fined. These are computed in the next module based on the 
already available boundary data. 

Furthermore, the surfaces need to be trimmed at the end 
vertices of the original edges. The trimming curves of the 
surface are, in general, computed by intersecting them with 
adjacent surfaces. However, it might also be necessary to 
intersect two adjacent blend surfaces created in the same 
session. The intersection curves are then "hung" under the 
corresponding edges. 

Finally, the last major module performs the inclusion of ver 
tex regions, both topologically and geometrically. These 
steps will be described in more detail later. 

Analytic or Freeform Blends 
It is not difficult to list all cases where a cylindrical or toro- 
dial surface fits as a blend between the two primary sur 
faces. The simplest case is the one in which two intersecting 
planes blended by a cylindrical surface. A torus can be used 
when blending the edge between a conical and a planar sur 
face as shown in Fig. 3. In a first pass over all involved 
edges, the algorithm tries to match one of the cases where 
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Fig. 3. A torus provides a smooth blending of the edge between 
a conical surface and a planar surface. 

such a solution exists. The corresponding edges are then 
flagged as analytic. 

The decision about when to employ analytic or freeform 
blends, however, is also dependent on other, more global 
factors. For example, suppose that three cylindrical blends 
with different radii meet at a common vertex (Fig. 4). This 
necessitates the inclusion of a freeform vertex region. De 
pending on the numerical tolerance used in the system, this 
might lead to very expensive B-spline surfaces in terms of 
data generated (the B-spline boundaries of the vertex region 
must lie â€” within some tolerance â€” on the adjacent cylin 
ders). Therefore, it is often necessary to use freeform blends 
rather than analytic ones at a subset of the edges for the 
benefit of reducing overall data size. The corresponding 
checks are done in a second pass over the edges. 

As a side-effect of switching from an analytic to a freeform 
blend for a particular edge, other edges adjacent to this one 
might be affected. This is also taken care of in the second 
pass. 

The results of these operations are flags attached to all in 
volved edges and their end vertices which provide informa 
tion to all following modules about the types of surfaces to 
be used. 

Blend Boundary Creation 
The task of the second module is to compute the blend 
boundaries and tangency information along these curves. 
This information will be used later for the construction of 
the blend surfaces. The calculation of the boundaries for 
cylindrical and torodial blends is a straightforward exercise 
in analytic geometry and will not be described here. More 

involved and computationally more expensive is the general 
case, which will be the main topic of this section. 

A major advantage of the rolling-ball blend is that its defini 
tion can be put into mathematical terms quite precisely. Sup 
pose a ball with radius r moves along the edge between the 
primary surfaces. The curves where the ball touches the 
surfaces will be the boundaries of the blend surface to be 
inserted. The center of the ball moves along a third curve, 
the spine of the canal surface. If the radius of the ball 
changes while rolling, the curves touching the surfaces will 
define a variable-radius blend surface. In HP PE/SolidDe- 
signer a general B-spline curve is used to define the radius 
function. 

The spine lies entirely on a surface with constant distance r 
from the original surface. This is called the offset surface. 

This applies to both primary surfaces. Therefore, we can 
calculate the spine as the intersection curve of the two off 
set surfaces (Fig. 5). 

Computing surface/surface intersections is a ubiquitous 
problem in solid modeling and many algorithms have been 
devised for its solution. Very popular are the marching algo 
rithms, which trace out the intersection curve starting from 
a given point in its interior. In our blending algorithm, we get 
such a starting point by taking the midpoint of the original 
edge and relaxing it onto the spine. The entire curve is then 
computed by marching the intersection of the two surfaces 
in both directions. The marching stops when the curve 
leaves a certain 3D box provided by the calling routine. The 
boxes are chosen such that the resulting blend surfaces are 
large enough to fit into the model. 

The particular strategy we employ for the marching is to 
reformulate the problem as one of solving a differential 
equation in several unknowns. The solution is then com 
puted by a modified Euler method. 

Fig. 4. Three cylindrical blends with different radii connected 
by a freeform vertex region. 

Fig. 5. The center of the rolling ball moves on the intersection 
curve between the two offset surfaces. 

October lil!)5 I Icvvlcil-Packard Journal 27 

© Copr. 1949-1998 Hewlett-Packard Co.



A common problem in marching algorithms is the choice of 
an appropriate step size. Choosing the step size too big 
might lead the algorithm astray. On the other hand, very 
small steps usually guarantee convergence of the method 
but might generate too much data. Therefore, we use an 
adaptive technique based upon the curvature of the intersec 
tion curve: a small curvature indicates that the intersection 
curve behaves almost like a straight line. This means that we 
can proceed with a large step. On the other hand, if the 
curve bends sharply, that is, its curvature is large, we use 
very small steps to capture all of its turns. 

The result of these computations is a set of isolated points 
lying exactly on both offset surfaces and thus on the spine. 
Conceptually, the corresponding points on the blend bound 
aries can be determined by projecting these points onto the 
original surfaces (Fig. 6). In fact, for parametric surfaces 
this operation is trivial because the offset surface inherits its 
parameterization from the underlying surface. This means 
that we simply have to evaluate the primary surfaces at the 
parameter values of the points on the spine. 

The blend boundaries are now created by constructing cu 
bic Hermitian segments between the given points. However, 
we still have to check whether the entire segment lies on the 
surface, within a given tolerance. In cases where it doesn't, 
we use a fast bisection method for "pulling" the curve seg 
ment onto the surface. 

While the intersection curve â€” and thus the blend bound 
aries â€” are traced out, we also collect tangential information 
along the boundaries. This information is used in the surface 
creation step to construct smooth transitions between the 
primary surfaces and the blend surface. The same bisection 
and representation techniques as for the boundary curves 
are used for these cross-tangent curves. 

Before we conclude this section, we still have to address the 
question of singularities, which are critical for every march 
ing algorithm. In our context, we have to deal with two 
types of singularities: those of the surfaces to be marched 
and those of their intersection. 

The first problem is illustrated in Fig. 7. While a small offset 
leads to well-behaved curves, larger distances result in off 
set curves with cusps or self-intersections. Analogously, we 
might have degenerate offsets of the primary surfaces if the 
distance (radius of the blend) is chosen too large. For too 
large a radius, a rolling ball blend is not possible. When such 
a situation is detected the marching stops, the entire blend 
algorithm stops, and the user is advised to try the operation 
again with a smaller radius. 

The second type of singularity occurs if the primary surfaces 
and consequently their offsets possess a common tangent 
plane (Fig. 8). These tangential intersections typically 
create the biggest problems for marching algorithms. 
Loosely speaking, it is very difficult to find where to go at 
these points. However, a rolling ball blend is still well-de 
fined. The touching curves of the ball are identical with the 
original edge, and the blend surface degenerates to one with 
zero width. HP/PE SolidDesigner's kernel enforces the rule 
that these extraordinary points may only occur at the end- 
points of an edge. This considerably eases the task for the 
blending algorithm. It is quite simple to check whether the 
intersection curve degenerates at its endpoints. This infor 
mation is provided to the routine that performs the march 
ing. Since the algorithm starts at the midpoint of the inter 
section curve, the occurrence of a singular point of this type 
indicates that we have reached one of the endpoints of the 
edge. 

In a final step, the segments of the boundaries and the cross- 
tangent curves are merged into C ^continuous B-sp lines. The 
overall result of this module consists of four ^-continuous 
curves with a common parameterization describing the 
boundary curves and tangency information of the blend 
surface. 

Trimming the Blend Boundaries 
After creating the blend boundaries we need to integrate the 
boundaries into the body. Most important, we have to find 
the position where the boundaries are to be trimmed. Fig. 9 
shows a particularly simple example. 

The six points shown in blue can be calculated by intersect 
ing the blend boundaries with the adjacent edges at the end 

Fig. 6. The blend boundaries (red) are created by mapping the 
spine (black) onto the primary surfaces. 

Fig. 7. When the blend radius is chosen too big, the blend boundary 
will have a cusp (red curve) or even be self-intersecting (black 
curve). 
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Fig. edge, If the primary surfaces have the same normal along the edge, 
the blend surface (blue) degenerates. 

vertices. However, usually the set of edges to be blended 
with possibly different radii is not limited to one edge but 
may contain several edges or even all of them. This means 
that while the boundaries of a given blend face are being 
trimmed they must be intersected with other blend bound 
aries created in the same session (red points). 

Intersecting a blend boundary with an existing edge of the 
solid model may have three results: 
One intersection point found. This is the general case. 
No intersection found. The edge is too short to be inter 
sected by the blend boundary. In this case the edge will be 
removed from the model. The edge newly attached to the 
vertex will now be intersected by the blend boundary. Re 
peating this procedure guarantees the existence of at least 
one intersection point. 
Multiple intersection points found. Such a situation might 
occur, for instance, if the adjacent edge is part of a B-spline 
curve "wiggling" around the blend boundary. In this case, 
the most valuable intersection point has to be chosen. A 
valuable point in this context is the one that produces the 
most predictable and expected result. 

Fig. a Selecting the correct intersection point between a 
blend boundary and an adjacent edge also depends on the 
local surrounding geometry. 

In fact, very often there are several possible solutions and 
all of them result in a valid solid model. Several different 
criteria are used to select the best intersection point. Fig. 10 
shows two examples. The remaining intersection points are 
ignored. 

Creating the Topology of the Blend Face 
Having computed the trimming points of the blend bound 
aries, we build up the topology of the blend face. The first 
step is similar to opening a zipper: the original edge of the 
body is replaced by two new ones connected to the same 
vertices. The new face is then extended at its end vertices. 
More precisely, four new edges â€” two at each end â€” are 
added. In addition, the adjacent edges are split at the four 
trimming points (Fig. 11). 

Blend Surface Creation 
Now the face is ready for the inclusion of the blend surface. 
There are two possibilities. In the first case, analytic sur 
faces are inserted based on the decision made in the first 
module. Possible surface types are cylinders, cones, and 
toruses only (Fig. 12). In all other cases a freeform surface 
is created. We use C'-continuous B-spline surfaces. This 
surface is defined by the blend boundaries created by the 
marching algorithm, the tangency information along these 
boundaries represented by cross tangent curves, and the 
fact that, the blend surface should have circular cross sec 
tions. Using this knowledge the surface can be created very 
easily. The circular cross section is approximated by a single 
cubic B-spline segment. Although not precise, this approxi 
mation is sufficiently good for practical purposes. In fact, 

Fig. 9. The- blend boundaries are trimmed at. points where they 
intersect adjacent edges (blue) or another blend boundary (red). Fig. 11. Creating the topology of a blond face. 
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Fig. 12. A model containing only analytic blend surfaces: 
cylinder, cones, and toruses. 

given the input data for the cross section â€” boundary points 
and tangent directions â€” we use an optimal approximation 
based on a method described by Dokken.8 The boundary 
curve to and parameterization transfer directly to 
the surface (Fig. 13). 

Trimming the Blend Surfaces 
The last step in integrating the blend surface into the solid 
model is to trim it at the ends. The goal is to keep the trim 
area as simple as possible. 

Unfortunately, the authors of many edge-blend algorithms 
assume that they are dealing with a trimmed-face surface 
model and they offer no suggestion about what to do at the 
ends of the edge to be blended. The topological and geomet 
rical issues are quite complex, especially when multiple 
edges meet at a common vertex. 

The simplest type of termination issue arises when there is 
only one edge to be blended. Both boundaries must be 
joined at the ends of the blend face. The easiest way to do 
this is to intersect the blend face with all edges and faces 
connected to its end (Fig. 14). Intersecting the blend face 
with these edges creates intersection points which are to be 
connected to form the boundary of the blend face. 

The intersection points are calculated by curve/surface in 
tersections between the blend surface and the curves of the 
edges at the end of the blend face. In general, a curve/sur 
face intersection will result in multiple intersection points, 
hi this case, the one chosen is the one closest to the vertex 
of the edge to be blended at this end. 

If there is no intersection point of the blend face and an 
edge this edge is removed from the model using the Euler 
operator KEV. If this edge is the last one of its face, the face is 
removed using the Euier operator KBFV. Removing an edge 
means disconnecting it from its vertices and filling the gap 
by connecting other edges to these vertices. The newly con 
nected edges have to be intersected with the blend face, too. 
However, if one of these edges is also to be blended, an in 
tersection between its blend boundaries and the blend face 
is calculated. The intersection points are then connected by 
intersection tracks of the blend surface and the adjacent 
ones. In general, the result of this surface/surface intersec 
tion do is a set of intersection tracks. Tracks that do 
not contain the intersection points described above are fil 
tered because they are not needed. The remaining tracks are 
sorted by the distance between two intersection points. The 
shortest arc is the one chosen because it minimizes the trim 
area at this end. 

Fig. the Creating the geometry of a freeform blend surface: the 
control polygon of the blend boundaries (left) and the resulting 
blend surface (right). 

Fig. 14. Trimming a blend surface involves a number of curve/ 
surface intersections (red points) and surface/surface inter 
sections (blue curves). Note how the faces marked dark red 
are "eaten up" by the blend face. 
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Fig. 15. \\Tien more than two edges to be blended meet at a 
common vertex, a vertex region is inserted to connect the blends 
smoothly. 

Vertex Regions 
A totally different situation occurs when more than two 
edges meet at a common vertex. In this case a set of addi 
tional faces and surfaces must be created to build a transi 
tion patch that smoothly connects all of the blend faces 
meeting there. This set of faces is called a vertex region 
(Fig. 15). 

In some special cases a vertex region has only one face, 
which is an analytic surface (sphere or torus). In general, 
however, a vertex region will contain three or more faces. In 
HP PE/SolidDesigner the number of faces in a vertex region 
is currently limited to six. 

Topology of Freeform Vertex Regions. At a vertex where five 
edges to be blended meet each other, the topology shown in 
Fig. 16a arises after extending the blend faces as described 
above. The blending algorithm transforms this topological 
situation by integrating five faces, each having four edges, 
as shown in Fig. 16b. Transforming the topology requires the 
use of the Euler operators KEV, ADEV, and ADED to kill an edge, 
add an edge, and add a whole face. Fig. 17 shows the se 
quence of Euler operators. 

Topology of Analytic Vertex Regions. When a sphere or torus 
fits a vertex region the topology is changed in another way. 
Instead of the "star" where the blend faces meet, a single 
face will be created using KEV and ADED, as shown in Fig. 18. 
Fig. 19 illustrates the algorithm, showing the transformation 
step by step. 

Geometry of Freeform Vertex Regions. After creating the topol 
ogy of a vertex region, the corresponding geometry must be 
constructed and integrated. To provide a smooth transition, 

Fig. 16. (a) Topology of a vortex region where five faces meet 
after extending the edges, (b) Topology created for the repre 
sentation of the vertex region. 

Fig. 17. Sequence of Euler operators used to transform the topology 
of Fig. 16a to the one of Fig. 16b . 

the surfaces must satisfy two constraints. First, their bound 
aries must match the ones of the adjacent surfaces. Sec 
ondly, the vertex regions and the blend surfaces should pos 
sess the same tangent planes along their common 
boundaries. The construction of vertex regions satisfying 
those constraints is a classical problem in geometric model 
ing.9 Among the many solutions, we mention the one pro 
posed by Charrot and Gregory.10 They fill a vertex region by 
a procedurally defined surface, that is, a surface that does 
not have an analytic mathematical representation but rather 
is defined by a method of generating it. Since the geometry 
kernel of HP PE/SolidDesigner does not support this type of 
surface, we employ an algorithm that generates a set of four- 
sided B-spline surfaces. More precisely, for filling an n-sided 
hole, we use n B-spline surfaces of polynomial degree 6 in 
both parameter directions. 

Geometry of Analytic Vertex Regions. From the geometrical 
point of view analytic vertex regions are quite easy to com 
pute because only one surface is needed and the surface 
type will be either a sphere or a torus. 

Transition Curves. When large radii are combined with very 
small radii, a vertex region can look very strange, deformed, 
or even self-intersecting, like the left solid in Fig. 20. In such 
cases, instead of a three-sided vertex region, a four-sided 
one is used, giving a result like the right solid in Fig. 20. In 
general, an (n+l)-sided region is used instead of an n-sided 
region. This is done by introducing a transition curve be 
tween two boundaries sharing the same face. The transition 
curve is used whenever an intersection of two boundaries is 

Fig. face When part of a sphere fits as a vertex region, a single face 
is created. 
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Fig. 19. Sequence of Euler operators used to create the face 
of Fig. 18. 

"behind" the direct connection of its neighboring intersec 
tion points. 

Geometrically, the transition curve is a B-spline curve de 
fined at its endpoints by tangency conditions to both bound 
aries and in between by a tangency condition to the corre 
sponding face. This curve is created using an adaptive 
curvature-controlled bisection algorithm similar to the one 
used to create the blend boundaries. The endpoints of the 
transition curves are constructed such that the cross section 
of the resulting blend surface is an isoparametric of this 
surface. In certain cases it is also necessary to insert a tran 
sition curve to smoothly connect two nonintersecting adja 
cent blend boundaries. Fig. 21 shows an example. 

Special Cases 
A reliable blending algorithm must be able to handle various 
topological and geometrical special cases predictably. Four 
major special cases are tangential intersections, apex cre 
ation, a singularity at the end of a blend surface, and closed 
curves. 

Tangential Intersections. Real-life solid models often contain 
edges connected tangentially at a vertex to another edge. 
Blending these edges will result in very complex and time- 
consuming surface/surface intersections in the process of 
trimming the blend faces at the common vertex, especially 
when their radii differ only slightly. 

Fig. is A transition curve (lower edge of the vertex region) is 
also inserted when two adjacent blend boundaries around a vertex 
region don't intersect. 

If two boundaries are tangential to others, the intersection 
point calculation is numerically very unreliable and expen 
sive. In addition, both blend surfaces share a common re 
gion of partial coincidence, so the intersection track calcula 
tion is even more expensive than the intersection point 
calculation. 

To avoid these problems, two edges to be blended are han 
dled in a totally different way. No curve/surface or surface/ 
surface intersections need to be calculated. Rather, an addi 
tional face is created that smoothly connects the two 
surfaces (Fig. 22). 

Apex Creation. If an edge to be blended is concave, material 
is added to the solid model. This means that other edges 
become longer and faces become larger, and sometimes a 
singular point moves into a face. HP PE/SolidDesigner re 
quires a topological entity, a vertex, right at the apex in this 
case. Therefore, after creating the blend face the required 
vertex is added (Fig. 23). 

Singularity at the End of a Blend Surface. Sometimes at an end- 
point of the edge to be blended the surface normals of the 
adjacent surfaces are equal â€” for example, two cylinders 
with the same radius intersected orthogonally (Fig. 24). In 
this case both boundaries of the blend surface meet at a 
common point where both surface normals are equal. There 

Fig. 20. When the vertex region would be too badly deformed, 
an additional transition curve is inserted to provide a smoother 
transition. 

Fig. blends Additional faces (red) are inserted where adjacent blends 
are tangentially connected. 
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Fig. 23. When material is added by blending an edge, an apex 
might move from the boundary to the interior of a face. 

is no need to execute the trimming part of the blend algo 
rithm because the solid is already closed at that end. 

However, from the geometrical point of view, the blend sur 
face is degenerate. One side or in this case both sides of the 
blend surface are degenerate isoparametric boundaries. This 
means that evaluating any parameter space point at this 
surface boundary results in the same object space point. 
This object space point is the position where both blend 
boundaries meet and the adjacent surfaces have the same 
surface normal. 

Data Size and Performance versus Accuracy 
The size of the data structures that represent freeform ge 
ometry mainly depends on the number of control points 
defining the curve or surface. In practice, curves can have 
hundreds of control points and surfaces many more. As an 
example, let's consider a medium-size surface with 500 con 
trol points with three coordinates each. In double-precision 
format, such a surface requires 3 x 8 x 500 bytes or approxi 
mately 12K bytes of memory. In fact, a real-life model may 
contain many freeform surfaces. It is therefore quite impor 
tant to reduce both the number of such surfaces and the 
number of control points used to represent them. 

Fig. the Another example of two adjacent surfaces that have the 
same normal at an endpoini ufan edge to be blended. The trimming 
part of the algorithm is not needed. 

The size of a freeform blend surface is basically determined 
by the complexity of its boundaries. Boundaries with n con 
trol points lead to surfaces with 4n control points. Conse 
quently, it is critical to generate approximations of the "true" 
blend boundaries with a minimal amount of data. On the 
other hand, the creation of the blend boundaries is one of 
the major factors determining the algorithm's overall perfor 
mance. Finding an acceptable compromise between the con 
flicting requirements of speed and quality of the solution is 
an important design decision in the algorithm. 

The same applies to the surfaces used for filling the vertex 
regions. The size of such a surface is quadratically depen 
dent on the size of its boundary curves. Let's again consider 
an example. Assume that the boundary curves of a three- 
sided vertex region are general intersection curves between 
the primary blend surfaces and planes. It is not uncommon 
for approximations of those curves to contain 50 control 
points (HP PE/SolidDesigner works with an accuracy of up 
to 10 ~~ 6). This would lead to a vertex region of 3 x 25 x 25 = 
1875 control points (three surface patches of 25 x 25 control 
points each), requiring 3 x 8 x 1875 bytes or approximately 
44K bytes of data. Clearly, this is unacceptable for nontrivial 
models. 

There are several possibilities for reducing the amount of 
data. The most critical factor is the approximation tolerance 
used in the system. For example, reducing the accuracy 
from 10 ~6 to 10 ~3 typically reduces the size of freeform 
data structures by a factor of ten. Not only are the geometric 
calculations speeded up considerably when using a lower 
accuracy but also the overall performance of the system is 
improved because of the reduced demand for memory man 
agement. HP PE/SolidDesigner offers the user the ability to 
select the accuracy in a range of 10 ~2 to 10 ~G. This allows 
the user to choose between high-precision modeling and a 
faster but less precise approach. 

Secondly, the handling of special cases can reduce the 
amount of data significantly. Let's again take a look at free- 
form vertex regions. If the primary blend surfaces are 
created such that the boundaries of the vertex regions are 
isoparametric curves of the primary blends (the procedure 
for doing this is beyond the scope of this article), the 50 con 
trol points can be reduced to 4. The vertex region will then 
contain 3x7x7= 147 control points (the additional control 
points along the boundaries â€” seven rather than four â€” are 
the result of the mathematical construction), for a total of 
approximately 3.5K bytes. 

Another example is the trimming of a blend face. In this step 
a number of surface/surface intersections must be calcu 
lated. In general, an intersection of two surfaces will result 
in not only one curve, but several intersection points, 
curves, or even surfaces. However, in the blending context 
there is important knowledge about the blend surface and 
the face it intersects. At least one and in some cases two 
points on the intersection track are known from the preced 
ing curve/surface intersections. Providing these points as 
"seeds" to the intersection routines increases both the speed 
and the reliability significantly. In addition, boxes in the 
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parameter space of the surface are used to limit the calcula 
tion of intersection information to regions that are of in 
terest. 

From these examples we see that the good overall perfor 
mance of the algorithm is mainly guaranteed by appropriate 
special case handling at critical points. In fact, a large por 
tion of the code in the blending module was developed to 
deal with these situations. 
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Open Data Exchange with 
HP PE/SolidDesigner 
Surface and solid data can be imported from HP PE/ME30 and exchanged 
with systems supporting the IGES, STEP, and ACIS formats. Imported data 
coexists with and can be manipulated like native data. 

by Peter J. Schild, Wolfgang Klemm, Gerhard J. Walz, and Hermann J. Ruess 

HP PE/SolidDesigner supports the coexistence of surface 
data with solid data and provides the ability to import and 
modify surface and solid design data from a variety of CAD 
systems. Backward compatibility with HP PE/ME30 pre 
serves the investment of existing HP customers. Using im 
proved IGES (Initial Graphics Exchange Standard) import 
capability, both surface and wireframe data can be im 
ported. Surface data and solid data can also be imported and 
exported using the STEP (Standard for the Exchange of 
Product Model Data) format. Once imported, this data can 
coexist with HP PE/SolidDesigner solid data. It can be 
loaded, saved, positioned, attached to, managed as part and 
assembly structures, deleted, and used to create solids. At 
tributes such as color can be modified. If the set of surfaces 
is closed, HP PE/SolidDesigner will create a solid from 
those surfaces automatically. 

HP PE/SolidDesigner 3.0 also allows solid parts and assem 
blies to be exported to ACIS-based systems using Version 
1.5 of the ACISÂ® SAT file format. This feature provides a 
direct link to other ACIS-based applications. 

From PE/ME30 to PE/SolidDesigner 

HP PE/ME30 is a 3D computer-aided design (CAD) system 
based on the Romulus kernel, t To preserve the investment 
of existing customers it was required that the transition 
from HP PE/ME30 to HP PE/SolidDesigner be as smooth as 
possible. Therefore, an HP PE/ME30 file import processor is 
a integral component of HP PE/SolidDesiger. 

In HP PE/ME30, 3D objects are built from analytic surfaces 
like cylinders, cones, spheres, planes, and toruses. The inter 
sections of these surfaces can be represented as explicit 
analytic curves such as straight lines, circles, and ellipses, or 
implicitly by describing the surfaces involved and providing 
an approximation of the intersecting arc. Parabolic and hy 
perbolic intersections are represented implicitly. 

HP PE/ME30 Native File Organization 
HP PE/ME30 supports the Romulus textual transmit format. 
The transmit file is not intended to be read by humans but 
the general structure can be examined. The file contains 
only printable characters, and real values are represented as 

t A kernel CAD the heart of a modeling system. Currently, three kernels are used in various CAD 
systems. These are Romulus from Shape Data, Parasolid, an extension of Romulus, and the 
ACIS Kernel from Spatial Technology. 

text six The full format of a transmit file consists of six 
different sections. These will be described using the exam 
ple of a single cylinder positioned at the origin of HP 
PE/ME30's coordinate system with base circle radius 10 and 
height 20. 

The first section, the header section, describes the environ 
ment, the machine type, the user login of the file creator, 
and the time and date when the model was created. 

@ * A O S  
@* Mach ine  type  HP-UX 
@* Transmit ted by user_xyz on 27-May-94 at  13-06 

The second section contains index and counting information 
related to the schema described in the third section. The 
schema defines the data structures used to represent the 
objects. It consists of a collection of record definitions. The 
following is an example of a record definition: 

S H  2  F S  3  - 1  B K  3  1  

t_ 

One record def in i t ion 

Property def ini t ion 1 
-  Property def ini t ion 2 

Number  o f  proper ty  def in i t ions 
-  Name of  record def in i t ion 

The following is an example of a property definition: 

F S  3 - 1  - Â «    O n e  p r o p e r t y  d e f i n i t i o n  

-  Length f ie ld :  I f  -  1 :  var iab le length 
"Type f ie ld 
" ID name 

In the second section of the transmit file the number of 
record types, the numbers of record instances and property 
instances, the name of the schema, and its version and up 
date number are supplied. The record instances and prop 
erty instances contain the concrete data describing the 
model. The semantics and the sequence of data entities have 
to conform to the format specified by the corresponding 
record definition and property definition entities. 

The information in the cylinder example file says that 1 1 
instances of record definitions are supplied to describe the 
schema for the instance of the cylinder. For the actual ob 
ject, 23 record instances built out of 115 property instances 
are used. 
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I 
11 
23115  
R O M D S C H M A 7 4  
16 

The third section, the schema section, contains the defini 
tion of the data structures used to represent the model. This 
section consists of the subset of record definitions from the 
HP PE/ME30 internal data structure schema that are needed 
to represent the model. The schema sections of files repre 
senting different models will be different. The schema sec 
tion for the example cylinder is: 

B Y  1 9  U P  4  - 1  S E  3  - 1  T X  5  - 3 6  F l  4  - 6  C l  4  - 1 2  P I  4  - 8  
G l  4  - 1  S I  4  - 3  T l  4  - 3  

R A  2  1  R N  2  1  Z l  4  - 2  F N  1  1  C N  1  1  P N  1  1  T N  1  1  
S N  1  1  Z N  1  1  N M  1  1  
S H  2  F S  3  - 1  B K  3  1  

F A  8  U P  4  -  1  A K  3  -  1  R V  1  1  S F  3  1  S X  2  1  V R  3  -  1  
H A  2  - 3  S L  3  1  

V R  4  P T  3  1  B E  3  1  B V  3  1  F E  3  1  

E D  2  C U  3  1  R V  1  1  

C U  3  U P  4  - 1  A K  3  - 1  T R  3  1  

T R  6  U P  4  - 1  A K  3  - 1  B K  3 1  E Q  2  - 7  T S  3  2  T Y  1  1  

P T  4  U P  4  - 1  A K  3  - 1  C O  2  - 3 G P 3  1  

G P  5  U P  4  - 1  A K 3  - 1  B K  3  1  C O  2  - 3  P X  3  1  

S F  7  U P  - 1  S D  3  - 3  A K  3  - 1  B K  3  1  E Q  2  - 7  S U  3  - 5  T Y  1  1  

U A  3  O W  3  1  C L  1  1  I I  1  * 1  

The fourth section contains, for each record type defined in 
the schema section, the number of data objects used for the 
transmission of the model. The sequence of numbers is iden 
tical to the sequence of record definitions used in the 
schema section. In the cylinder example, the object consists 
of one body built of one shell built of three faces. Four ver 
tices, four coedges, two curve geometries, two edges, two 
points with two geometric point definitions, three surfaces, 
and one attribute are needed to represent the cylinder ob 
ject. The file contents are: 

1 1 3 4 4 2 2 2 2 3 1  

The fifth section, the data section, contains the data struc 
ture instances. The contents of all records needed to repre 
sent the object are found in this section. To every record an 
integer record label is assigned. This number will be used in 
other record instances to point to the instance. In general 
the instances in the file appear in the order in which they 
are referenced by other entities. The data of an entity in 
stance is not split. If forward references are contained in the 
instance definition the next instances can be found in ex 
actly the same sequence as referenced. Because this rule 
applies recursively, newly referenced entities can be found 
first en the physical file sequence. If all references of an en 
tity are resolved completely the next reference of the next 
higher level will be resolved. For the cylinder, the data 
section is: 

1 
1 1 25 Color 1 2 O 3 3 FO 4 F1 5 F2 2 14 EO 15 E1 2 18 PO 19 PI 0 0 0 0.000001 
0 . 0 0 0 0 0 0 0 0 0 0 1  0 3 3 2 0 0 0 0  2 5 1  1 1  1 6 7 7 7 2 1 5 2 0 1  3 0 0 0  2 2  0 1  6 0 2  2 2  
0 0 0 0 6 0 0 0 0 0  - 1 0 1  6 1 8  1 0  6  1 0  1 8  0 0 0  2 0  2 0  0 0 0 3 0  1 0  0 1 8  1 0  1 4  
0 1 4 0 0  1 6  1 6 0 0 0 7 0 0 0 0 0 - 1 1 0 0 0 2 4 0 0 1  2 3  0 1 7 0 2  2 3  0 0 0 0 6  
0 0 2 0 0 0  - 1  0 1  7 1 9 1 1  7 1 1  1 9 0 0 0 2 1  2 1  0 0 0 3 0 1 0 2 0 1 9 1 1  1 5 1  1 5 0  
0 1 7  1 7  0 0 0 7 0 0  2 0  0 0 - 1  1 0  0 0 2 5 0 0 0  2 4  0 2 8 9 0 2  2 4  0 0 0 0 7 0 0  
0 0 0 1  1 0  0 2 8 1 8  1 2  8 1 2 1 2 1 4 1  9 1 9  1 3  9  1 3  1 3 1 5 0  

The sixth and last section contains, for each top-level object 
transmitted in the file, the corresponding root entity and its 
name. In the cylinder example only one object is trans 
mitted. HP PE/ME30 supports user-named objects, but in 
this example an HP PE/ME30 default name, BO, has been 
used for the cylinder. 

1 
BO 

Analyzing the Transmit File 
Because the information content of an HP PE/ME30 file can 
not be understood by simply looking at the file, several in 
ternal analysis tools are used to extract the information. 
Statistics showing the number of different curve and surface 
types give a first hint of the complexity of the file. A graphi 
cal presentation of the data instances of a file can be 
generated. 

I _ B Y    I J J A    l - >  
I _ S H    l - >  
I _ F A    I _ S F    

I _ V R    I _ P T    i _ G P    
L E D    L C U    L T R    

I _ F A    L S F    
I _ V R    I _ P T    t _ G  P    

L E D    ! _ C U    I _ T R    
I _ F A    I _ S F    

L V R    l - >  
L E D    l - >  

I _ V R    l - >  
L E D    l - >  

This reference structure can be read easily. The (cylinder) 
object in the file is a body (BY) which consists of a shell (SH) 
and three faces (FA). Shell and faces share the same hierar 
chy level. Each face consists of a reference to a surface (SF) 
and a start vertex (VR). Each start vertex is based on a geo 
metric definition of a point (PT) and serves as the anchor 
vertex of an edge loop. A loop is not represented explicitly 
in the HP PE/ME30 exchange file. The implicit connection 
is done by a reference from a start vertex to the next and 
previous vertices in the loop. The edge (ED) entity repre 
sents the topological direction of the edge with respect to 
the loop. The curve (CU) entity is an intermediate instance 
on the way to the curve's geometry (TR). 

If complete information from the data section is needed a 
translation tool is available that maps the data section to a 
format much more useful for human readers. The following 
extract describes how one of the faces and the correspond 
ing surface component of the cylinder example are repre 
sented. The mapping from the data section to the readable 
format is also supplied. 
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For this component from the data section: 

  5 000 24 028902 24 0000700 

0 0 0 1  1 0 0 2    

the corresponding translated part is: 

5 = FA (Face owning (anchor)  ver tex) ,  the propert ies are :  
UP is EMPTY 
AK is EMPTY 
R V :  I N T E G E R  =  0  

POINTER = 24 
R E A L  = 0  
POINTER = 8 
POINTER = 9 

SF 
SX 
VR 
VR 
HA is EMPTY 
S L :  P O I N T E R  =  2  

. . .  L ist  of  permanent universal  at t r ibutes 

. . .  Backpointer  f rom element  of  feature 

. . .  Sense e f face,  edge geometry  

. . .  Surface of face 

. . .  Hatching pi tch 

. . .Anchor  o f  face  

. . .  Anchor of  face 

. . .  Hatch direct ion 

. . .Shel l  o f  face 

24 = SF (Surface of face),  the propert ies are :  
U P  i s  E M P T Y  . . .  L i s t  o f  p e r m a n e n t  u n i v e r s a l  a t t r i b u t e s  
S O  i s  E M P T Y  . . .  S u r f a c e  s u p p o r t i n g  t h i s  s u r f a c e  

def in i t ion 
A K i s  E M P T Y  . . .  B a c k p o i n t e r  f r o m  e l e m e n t  o f  f e a t u r e  
B K :  P O I N T E R  =  0  . . .  B a c k p o i n t e r  f r o m  a s s e m b l y  o r  b o d y  t o  

token 
. . .  Geometry def ini t ion 
. . .  Geometry def ini t ion 
. . .  Geometry def ini t ion 
. . .  Geometry def ini t ion 
. . .  Geometry def ini t ion 
. . .  Geometry def ini t ion 
. . .  Geometry def ini t ion 
. . .  Surface supported by th is  suface 

CYLINDER) . . .  Geometry type 

Import Module 
The HP PE/ME30 to HP PE/SolidDesigner import inter 
face is linked directly to the HP PE/SolidDesigner code. In 
IIP PE/SolidDesigner's user interface it simply adds a button 
to the external filing menu. If a file name is specified, the 
processor is activated. Internally, several C++ classes are 
added to HP PE/SolidDesigner to represent the schema and 
instance entities of the HP PE/ME30 file. For every sup 
ported HP PE/ME30 record definition entity a class derived 
from a generic record instance object is defined. The most 
important member function of each of these classes is the 
convert function. This function performs the mapping of the 
HP PE/ME30 file object to the corresponding HP PE/Solid 
Designer entity. 

The three main components of the HP PE/ME30 to HP 
PE/SolidDesigner processor are a lookup table, a schema 
manager, and a set of classes to represent the supported HP 
PE/ME30 file entities. 

The lookup table is part of the interface to an HP PE/ME30 
file. The main task of this table is to manage the mapping of 
HP PE/ME30 file entities to already created corresponding 
HP PE/SolidDesigner entities. A lookup table is generated 
for every open HP PE/ME30 file. 

A schema manager is initialized if a new HP PE/ME30 file is 
opened. It contains the schema section information found in 
the newly opened file. For every open file a corresponding 
schema manager is available to control the interpretation of 
Hie enlilies of the file. 

The record instance class builds the third basic data struc 
ture of the processor. Record instances are generic contain 
ers to store all of the data objects that can be expressed by 
valid record definitions. The constructor of the record in 
stance class calculates the entity type from the reference 
number and then allocates memory and reads in the proper 
ties from the file corresponding to the property definitions 
of the schema. For even,' supported HP PE/ME30 entity a 
separate C++ class is derived from the record instance 
class, but the generic constructor is used for all subtypes. 
The main differentiator between the classes is the convert 
function. 

Conversion Process 
The convert function of the record instance class itself is 
not called by the conversion process. Rather, every derived 
class implements its specific conversion function (in this 
sense the convert function is purely virtual in C++). The 
individual conversion function converts itself to an HP PE/ 
SolidDesigner entity. 

Conversion and the creation of new derived instances of the 
record definition class constitute a recursive process. If dur 
ing an active conversion an unresolved (not already con 
verted) reference is found the corresponding HP PE/ME30 
file entities can be found as the next entities in the physical 
file (see the description of the data section). The conversion 
module then creates a new derived instance of the record 
instance class and forces the translation of this entity to a 
HP PE/SolidDesigner entity that can be used to complete the 
conversion of the current entity. The algorithm is as follows: 

A reference to an HP PE/ME30 f i le  ent i ty  is  found:  

A l ready  "conver ted"?  ( lookup  tab le  search)  
YES:  Use the ava i lab le  convers ion resu l t  
NO:  Crea te  the  new der i ved  c lass  o f  reco rd  ins tance  

Cal l  the conver t  funct ion 
At tach the convers ion resu l t  to  the lookup tab le  
Delete  the ins tance to  f ree the memory used 
Use the  newly  genera ted convers ion  resu l t  to  cont inue the  

convers ion.  

Nonanalytic Intersection Curves 
The conversion for intersection curves is not done on the 
fly, but by a postprocessor after the rest of a body is con 
verted completely. The convert routine for an intersection 
track simply collects the two intersecting surfaces and all 
available additional information found in the file to repre 
sent the intersection. The completion of the intersection 
curves is done by the convert function for HP PE/ME30 bod 
ies. After a first intermediate topology of the new HP PE/ 
SolidDesigner body is calculated and all analytic surfaces 
and analytic curves are attached to the created body, the 
calculation of the intersections begins. 

The topology of the intersection between two surfaces in 
HP PE/SolidDesigner is not always the same as in HP 
PE/ME30 because different constraints on topology and ge 
ometry exist in the two modelers. For instance, it may be 
necessary to represent the single segment found in HP 
PE/ME30 as a sequence of different curves. In such cases 
the original topology has to be modified and some edges 
may be split. To find the appropriate intersection in IIP 
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PE/SolidDesigner is mainly a selection process. In many 
cases two surfaces intersect at not only one but several dis 
tinct sections. 

Consider the intersection of a cylinder with a torus in the 
case of perpendicular axes. Four possible intersection 
curves may be part of the model (see Fig. 1). In the 
HP PE/ME30 file additional help points are supplied to allow 
the correct selection. The direction of the intersection curve 
(the tangent to the curve) is not guaranteed to be the same 
in HP PE/SolidDesigner as in HP PE/ME30. Therefore the 
correct fit to the model is calculated and the resulting direc 
tion is reflected in the topology of the imported model. 

Quality and Performance 
To test the quality of the HP PE/ME30 import processor a 
large HP PE/ME30 test library has been compiled. It now 
contains more than 2300 examples of parts and assemblies. 
All of the test cases used during HP PE/ME30 development 
and support are included along with new user models con 
sisting of recently acquired data from internal and external 
HP PE/ME30 users. An additional test matrix subtree was 
developed by creating base parts with critical features. In 
particular, all possible surface-to-surface intersections and 
various special cases have been generated. 

The regression test procedure is to import HP PE/ME30 
models from the test library part by part and perform the 
HP PE/SolidDesigner body checker operation on each. The 
loading time and the body checker result are collected in a 
reports file. A reports file can be analyzed by a shell script to 
supply a statistical summary of the current quality of the 
HP PE/ME30 interface. Because of the large amount of test 
data a complete test takes a long time. Therefore, an inter 
mediate test is available. The complete test performs the 
basic load and check test on all currently available test mod 
els of the library directory. The intermediate test examines 
the reports file of the latest complete test and repeats all 
reported problems. It also repeats a random selection of the 
successful tests. At this time over 99% of the complete test 
conversions are classified as successful. 

The performance of the import process for HP PE/ME30 
files is mainly dependent on three variables: the size of the 
schema, the number of entities, and the number of intersec 
tions that have to be calculated: 

Fig. 1. Intersection of a torus and a cylinder. 

Load Time = Size x kl + Entities x k2 + Intersections x k3, 

where kl < k2 < < k3. The size of the schema section does 
not vary very much between different files and is normally 
relatively small compared to the size of the data section. The 
number of entities and the file size are strongly related. The 
calculation and selection of the nonanalytic intersection 
curves fitting the model is a relatively expensive component 
of the processor because a completely new representation 
of the data structure has to be generated. 

Data Exchange Using IGES 

An important task in computer-aided design is the transfer 
of the completed model to downstream applications and 
other CAD applications. These applications vary from finite 
element analysis and numerically controlled (NC) manufac 
turing to visualization and simulation. HP PE/SolidDesigner 
currently uses IGES 5.1 (Initial Graphics Exchange Specifi 
cation) for file-based data exchange. 

Because of the broad variety of receiving systems an IGES 
interface must be flexible so that the contents of the output 
file match the capabilities of the receiving system. It must be 
possible to transfer whole assemblies keeping the informa 
tion on the parts tree, or only specific parts of a model, or 
even single curves or surfaces. This is achieved by a mixture 
of configuration and selection mechanisms. 

An analysis of the IGES translators of many different sys 
tems showed that it is possible to classify them in four main 
categories: 
Wireframe Systems. These systems are only capable of im 
porting curve geometry. This is typical for older CAD sys 
tems or 2D systems with limited 3D capabilities. 
Surface Systems Using Untrimmed Surfaces. These systems 
are capable of importing untrimmed surfaces and indepen 
dent curve geometry. This is typical for low-end NC systems 
that need a lot of interaction to create tool paths and define 
areas. 
Surface Systems Using Parametrically Trimmed Surfaces. 
These systems are able to handle trimmed surfaces. Trim 
ming is performed in the parametric domain of the surfaces. 
Periodic surfaces are often not handled or are incorrectly 
handled. Each surface is handled independently. This is typ 
ical for surface modelers and sophisticated NC systems. 
Topological Surface Systems and Solid Modelers. These 
systems are able to handle trimmed surfaces using 3D 
curves as trimming curves. They are able to handle periodic 
surfaces, nonplanar topology, and surface singularities. Con 
nection between adjacent trimmed surfaces is maintained 
and the normal to the trimmed surface is important for in 
side/outside decisions. This is typical for advanced surface 
and solid modelers. 

HP PE/SolidDesigner's IGES interface is designed to work in 
four output modes: wireframe, untrimmed, trimmed para 
metric, and trimmed. Each output mode represents one of 
the categories of receiving IGES translators. This has the 
advantage of giving as much information about the solid 
model as possible to high-end systems (trimmed, trimmed 
parametric), without burdening low-end interfaces with too 
much information. For some modes (trimmed parametric) 
more configuration parameters allow fine tuning to specific 
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systems to maximize the transfer rate. Each mode has a 
specific entity mapping that describes which IGES entities 
are used to describe the model (see Tables I. II. and III). 
Users can specify additional product related data and arbi 
tran- comments for the start and global sections of the IGES 
file directly \ia the IGES output dialog box. Specific configu 
rations can be saved and loaded so that the configuration 
has to be determined only once for each receiving system. 
Fig. 2 shows the IGES dialog menu. 

To allow maximal flexibility in what is translated, the user is 
allowed to select assemblies, parts, faces, and edges and 
arbitrary combinations. All selected items are highlighted 
and the user can use dynamic \iewing during the selection 
process. If the user selects assemblies, the part tree is repre 
sented with IGES entities 308 and 408 (subfigure definition 
and instance). Shared parts are represented by shared geom 
etry in the IGES file. 

I G E S  S e t t i n g s  

Table I  
Curve Mapping 

O u t p u t  M o d e  

Tr immed Parametr ic  

Wiref rame 

Â» Trimmed 

Unt r immed 

Accurac1 

r immed Parametr ic  Swi tches 

C i Ã ³ s e  P a r a m ,  S p a c e  N o n n a i u r t *  A r c  

P -Curves as Lines 

P C V  A c c u r ,  o , o o j f  

â€¢ Global 

*  H P - U X  

A u t h o r  

Coord ina te  Sys tem 

Output  F i le  Format  

Global  Sect ion 

HP PE/Sol idDesigner  

Straight 

Circle 

B-spline 

Intersection curve 

Parameter curve 

IGES 3D Entity 

L i n e  ( 1 1 0 )  

Circular arc (100) 
with transformation 

Rational B-spline 
curve (126) 

Rational B-spline (126) 

Rational B-spline (126) 
or line (110) 

Trimmed Mode 
The trimmed mode is the closest description of the internal 
B-Rep (boundary representation) data structure of HP PE/ 
SolidDesigner. It uses the IGES bounded surface entities 143 
and 141 as the top element of the model description. Each 
selected face of the part maps to one bounded surface (en 
tity 143) containing several boundaries (entity 141). Trim 
ming of the surfaces is performed by 3D model space 
curves. To fulfill the requirements of the IGES specification 
of entities 141 and 143 some minor topological and geomet 
rical changes of the HP PE/SolidDesigner internal model 
have to be made. Vertex loops are removed, propedges on 
toruses are removed, and intersection curves are replaced 
by B-spline approximations. 

Because the IGES bounded surface entity 143 does not have 
any information about topological face normals, the sur 
faces are oriented so that all geometrical normals point to 
the outside of the part (Fig. 3). Thus, enough information is 
put into the IGES file that a receiving system can rebuild a 
solid model from a complete surface model. 

Untrimmed Mode 
The untrimmed mode contains basically the same informa 
tion as the trimmed mode. For each face the untrimmed 
surface plus all trimming curves are translated. But instead 
of explicitly trimmming the surfaces with the appropriate 
entities, surface and trimming curves are only logically 
grouped together. This usually requires manual trimming in 
the receiving system, and is only suited for some special 
applications. 

Organ isa t ion  

Send ing  P ID  

Rece ive  P ID  

Star t  Sect ion 

Conf ig 

C o n f i g  N a m e  < j e f a u l t . c f a  

Save Conf ig  
Fig. 3. (left) Solid model, (right) Surface model with normals. 

Fig. 2. HI1 I'K/SolidDcsiMMci- KiKS output dialog menu. 
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HP PE/SolidDesigner 

Plane 

Cylinder 

Sphere 
Torus 
Cone 
Spun B-spline 

B-spline surface 

Parallel swept B-spline 

T a b l e  I I  
S u r f a c e  M a p p i n g  

IGES 3D Ent i ty  
( t r i m m e d  a n d  u n t r i m m e d )  

Plane (108) 

Surface of revolution (120) 

Surfare of revolution (120) 

B-spline surface (128) 

Ruled surface (118) 

IGES 3D Ent i ty  
( t r i m m e d  p a r a m e t r i c )  

Ruled surface (118) 

Ruled surface (118) 

Surface of revolution 

B-spline surface (128) 

Ruled surface (118) 

Trimmed Parametric Mode 
The trimmed parametric mode uses the IGES trimmed para 
metric surface entity (144) and the curve on parametric sur 
face entity (142) as representations of a trimmed surface. 
These entities have been established in the IGES standard 
for a longer time than entities 143 and 141 or the trimmed 
mode. For this reason they are more commonly used. The 
main difference from the trimmed mode is that the trimming 
is performed in the parametric domain of the surfaces. Each 
surface must have a parametric description that maps a 
point from the parameter domain D (a rectangular portion 
of 2D space) to 3D model space: 

S(u,v) = (X(u,v), Y(u,v), Z(u,v)) for each (u,v) in D. 

D = (all (u,v) with umin < u < umax, vmin < v < vmax). 

The following conditions apply to D: 
There is a continuous normal vector in D. 
There is a one-to-one mapping from D to 3D space. 
There are no singular points in D. 

Furthermore, trimming curves in 2D space must form closed 
loops, and there must be exactly one outer boundary loop 
and optionally several inner boundary loops (holes). Fig. 4 
illustrates parameter space trimming. 

These restrictions make it clear that there will be two prob 
lem areas when converting HP PE/SolidDesigner parts to a 
parametric trimmed surface model: periodic surfaces and 
surface singularities. 

On full periodic surfaces like cylinders, HP PE/SolidDe 
signer usually creates cylindrical topology. There will not 

necessarily be exactly one outer loop. Furthermore, 3D 
edges can run over the surface seam (the start of the period) 
without restriction. This leads to the situation that one edge 
may have more than one parametric curve (p-curve) associ 
ated with it. Also the p-curve loops may not be closed even 
if the respective 3D loop is closed. Fig. 5 illustrates this 
situation. 

HP PE/SolidDesigner avoids this problem by splitting peri 
odic surfaces along the seam and its antiseam. The seam 
and antiseam are the isoparametric curves along the param 
eters Ujnin and umin+Uperjod/2. Thus, one face may result in 

) ^  

Parameter Space 

Fig. 4. Trimming in parameter space (p-space). 
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Fig. 5. ( Ylinder topology in 3D and p-space. 

two or four parametric-ally trimmed surfaces (u- and v- 
parametric surfaces (toruses)) in the IGES model. Fig. 6 
illustrates this situation. 

Another problem with parametric trimmed surfaces are sur 
face singularities. Singular points are points where the sur 
face derivatives and normal are not well-defined. For such 
points there is not always a one-to-one mapping from 2D 
parameter space to 3D model space. This means there is an 
infinite set of (u,v) points in parameter space that result in 
the same 3D model space point. Such singularities are easily 
created by rotating profiles around an axis where the profile 
touches the axis. Examples are cones, spheres, degenerated 
toruses, triangular spline patches, and so on (see Fig. 7). 

HP PE/SolidDesigner is designed to handle singularities as a 
valid component of a model. They are marked with a vertex 
if they are part of a regular loop or with a special vertex 
loop if they are isolated from the remaining loops. However, 
it is not possible to express singularities in trimmed para 
metric surfaces legally in IGES. 

To resolve this issue we reduce the singularity problem to 
the problem of the valid representation of triangular sur 
faces. The splitting algorithm just described is applied so 
that all singularities are part of a regular loop. Thus, we are 
always faced with the situation illustrated in Fig. 8. 

Each singularity of a face is touched by two edges, one en 
tering and one leaving the singular vertex. Knowing how 

" m i n  " m m  " m m  
â € ¢ " â € ¢ " p e r i o d / ?  ^ " p e r i o d  

Fig. 6. Periodic surfaces in 3D and p-space after splitting. 

triangular surfaces are handled in potential receiving sys 
tems, we offer four ways to export this kind of geometry. 
These are the four possible combinations of closed or open 
parameter loops and avoiding or using singularities. 

Some systems do not need closed p-space loops, while 
others strictly expect them. If the closed option is chosen, 
the endings of the p-curves are simply connected with a 
straight line. 

Geometrical algorithms usually become unstable near singu 
larities. Some systems are not prepared to handle this situa 
tion and will fail. To avoid this, it is possible to shorten the 
parameter curves when entering or leaving a singular vertex 
and connect them at a numerically safe distance. This dis 
tance is measured in 3D space and is also configurable. It 
usually varies between 0.1 and 0.001. This will result in a 
surface where the region around the singularity is cut out. 
Fig. 9 illustrates the four possible singularity representa 
tions. 

Wireframe Mode 
For the wireframe mode HP PE/SolidDesigner also avoids 
the cylindrical topology, because in some cases information 
about shape would be lost (e.g., a full surface of revolution). 
After applying the face splitting algorithm all edges of the 
selected faces and parts are translated. No surface informa 
tion is contained in the resulting IGES file. 

Fig. 7. Kx:iiii|)li>.s ofsiiifiicc 

sin^iihirilics in pann 

space. 
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Fig. 8. Triangular surface situation. 

Extracting Solid Information from Surface Models 
IGES surface data from solid modelers often contains all 
surfaces of a closed volume or a connected face set. How 
ever, the connectivity between adjacent faces is lost. If the 
surface model fullfills some specific requirements it is pos 
sible for the receiving system to recompute this missing 
information. The following describes these requirements 
and shows how connectivity between faces can be reestab 
lished. This method can be used to create a solid model 
from HP PE/SolidDesigner IGES output. 

Automatic comparison of all boundary curves on coinci 
dence or reverse coincidence would be a very time-consum 
ing and numerically unstable task. However, it is common 
for the endpoints of the trimming curves of adjacent faces to 
be coincident within a very small accuracy. This makes it 
possible to identify trimming curves that share common 
start points and endpoints. If the two faces of these trim 
ming curves have the same orientation one can try to con 
nect the faces to a face set. For this task one must try to find 
a geometry for a common edge that fulfills the following 
accuracy constraints (see Fig. 10): 

â€¢ The curve is close enough to surface 1. 
â€¢ The curve is close enough to surface 2. 
â€¢ The curve is close enough to curve 1. 
â€¢ The curve is close enough to curve 2. 

The first candidates for such a curve are the original trim 
ming curves, curve 1 and curve 2. If either satisfies all four 

requirements it is incorporated into both face descriptions 
and the connection is established. If neither curve can be 
used, one can try a combination of the two, or reduce the 
receiving system's accuracy. 

This if fails if the face orientation is inconsistent or if 
adjacent faces do not share common start points and end- 
points. 

Importing IGES Wireframe Data 
IGES wireframe data can be easily imported into HP PE/- 
SolidDesigner, since HP PE/SolidDesigner's kernel supports 
wire bodies. The modified wire data can be saved in HP 
PE/SolidDesigner's data format. Possible uses for this capa 
bility include migration from old-line systems to HP PE/Sol 
idDesigner, interaction with different sources and suppliers, 
and communication with manufacturers. 

In HP PE/SolidDesigner a wire is defined as a set of edges 
connected by common vertices. A body consisting only of 
wires is called a wire body. IGES 3D curve data is used to 
generate the edges of a wire body. This includes lines, 
circles, B-splines, polylines, and composite lines. IGES sur 
face data such as trimming curves of trimmed surfaces are 
also used to generate edges. To simplify later solid model 
generation the axis and generatrix of a surface of revolution 
are also transformed into edges for the wire body. Since 
only edges have to be generated for a wire body, there are 
no accuracy problems as described above for IGES surface 
importation. On the other hand, information on B-spline 
surfaces is lost. 

Wire data imported from an IGES file is collected into an 
assembly. The assembly gets the name of the IGES file. Any 
substructure of the IGES file like grouping in levels is trans 
formed into parts within the assembly. Thus, hierarchical 
information contained in the IGES files is maintained within 
HP PE/SolidDesigner. The generated parts can be handled 
like any other part in HP PE/SolidDesigner. To distinguish 

Use Singularity Avoid Singularity 

Open 
p-space 

Fig. 9. Four possible singularity 
representations. 
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Fig. 10. Finding a common edge for adjacent faces. 

wire parts, they can be colored. The options of HP PE/Solid- 
Designer's show menu work for the parts as well as the set 
tings of the part container. A wire part can become the ac 
tive part. The edges and vertices of a wire part are 
displayable, all browsers work with wire parts, and wire 
parts can be moved or become members of an assembly. 

To build a solid model from a wire body, the edges and ver 
tices of the wire body can be used to position a workplane. 
Then edges of the wire body can be selected and projected 
onto the workplane. The resulting profile can then be used 
to create a solid, for example by measuring an edge length 
needed for an extrude operation. 

Fig. 1 1 shows an example of an IGES wireframe model with 
four parts and the resulting solid model. Automatic genera 
tion of solids from wires could be implemented but freeform 
surface information would probably be lost. The real benefit 
of wireframe import is for reference purposes. 

STEP-Based Product Data Exchange 

Manufacturing industries use a variety of national and indus 
trial standards for product data exchange. These include 
IGES for drawing and surface exchange (international), 
VDA-FS for surface exchange (mainly the European automo- 
tive industry), and SET for drawing and surface exchange 
(France and the European Airbus industry). This variety of 
different incompatible standards causes a lot of rework and 
waste of valuable product development time which cannot 
be afforded if companies are to survive in the competitive 
marketplaces of tomorrow. Today's standards, originated in 

the early 1980s, are no longer satisfactory for product data 
description and exchange. Standards like IGES or \~DA-FS. 
which are limited to surface or engineering drawing ex 
change, do not adequately handle other explicit product 
data categories such as product structure or assemblies or 
geometric solid models. 

Industry trends today are characterized by internationaliza 
tion of manufacturing plants which are spread over the con 
tinents of the globe, and by lean production in which many 
parts are subcontracted or bought from local or interna 
tional suppliers. National standards and incompatibilities 
between existing standards are obstacles to these trends 
and will have to be replaced by international standards. 

Large companies in the aerospace and automotive industries 
in the U.S.A. and Europe have now taken the offensive to 
wards the implementation and use of STEP (Standard for 
the Exchange of Product Model Data) as an international 
standard for product data exchange and access, starting in 
1994. Companies such as BMW, Boeing, Bosch, General 
Motors, General Electric, Daimler-Benz, Pratt&Whitney, 
Rolls Royce, Siemens, and Volkswagen have been using 
STEP prototype implementations in pilot projects with 
promising results. 

Ultimately, STEP is expected to meet the following require 
ments for an international product data exchange standard: 
Provides computer interpretable and standardized neutral 
product model data. Neutral implies compatibility with any 
CAD or CIM system that best fits the design or manufactur 
ing task. 
Implements the master model concept for product data. The 
entire set of product data for a product with many single 
parts is kept in one logical master model which makes it 
possible to regenerate the product as a whole at a new man 
ufacturing site. This means that product assemblies, includ 
ing administrative data and bills of material, are handled. 
Provides completeness, conciseness, and consistency. This 
requires special data checking and validation mechanisms. 
Provides exchangeable product data without loss. The prod 
uct data must be exchangeable from one CAD or CIM sys 
tem to another without loss of data. 

Fig. 11. Imported wire-body 
HIM! i lie solid model constructed 
by HP PE/SolidDesigner. 
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' Provides long-term neutral data storage and interpretability. 
Product data is an important asset of a manufacturing com 
pany. The product data should be retrievable and interpret 
able by any CAD or CIM system after a long period of time, 
say 10 years or more. This is a significant challenge. 

These requirements cannot be satisfied immediately. The 
STEP program also has shorter-term priorities for standard 
izing specific subsets of the product data. These include: 
The complete 3D geometric shape in the form of a 3D 
boundary representation solid model (B-Rep solids) 
Surface model and wireframe model data 
Product structure and configuration data. 

Another priority is product documentation. An important 
goal is consistency of the engineering drawing with the 3D 
product geometry. 

STEP Overview 
STEP, the Standard for the Exchange of Product Model 
Data, is the ISO 10303 standard. It covers all product data 
categories that are relevant for the product life cycle in in 
dustrial use. STEP describes product data in a computer 
interpretable data description language called E.rpress. The 
STEP and is organized in logically distinct sections and is 
grouped into separate parts numbered 10303-xxx (see Fig. 12). 

The resource parts of the standard describe the fundamental 
data and product categories and are grouped in the Ix, 2x, 
3x, and 4x series. The Express data description language is 
defined in part 11. All other product description parts use 
the Express language to specify the product data character 
istics in the form of entities and attributes. In addition to the 
product description parts there are implementation re 
sources which are given in part 21, the STEP product data 
encoding scheme (the STEP file), and part 22, the Standard 
Data Access Interface (SDAI), which provides a procedural 
method for accessing the product data. There are different 
language bindings for part 22, such as C or C++ program 
ming languages. The 3x series parts specify conformance 
requirements for STEP implementations. 

Examples of STEP-standard resource parts are the funda 
mentals of product description and support (part 41), the 
geometrical shape (part 42), the product structure (part 44), 
material (part 45), the product presentation (part 46), toler 
ances (part 47), and form features (part 48). The application- 
specific resources are grouped in the Ixx series. Examples 
are drafting resources (part 101), electrical (part 103), finite 
element analysis (part 104), and kinematics (part 105). On 
top of the resource parts and application resources are the 
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application protocols (AP) which use the underlying re 
sources in a specific application context, such as mechani 
cal design for discrete part manufacturing, and interpret the 
resource entities in the application-specific context. STEP 
implementations for CAD or other computer-aided systems 
are based on application protocols. Application protocols 
are under definition for application areas like basic drafting, 
associative drafting, mechanical design, electrical design, 
shipbuilding, piping, architecture, and others. Here, we high 
light just two examples, AP20-3 and AP214. 

AP203: Configuration-Controlled 3D Design. AP203 was devel 
oped under the leadership of PDES Inc. It covers the major 
requirements for U.S.-based industries such as the aero 
space industry for government and industrial manufacturing 
contracts. The product data covered in AP203 includes geo 
metric shape (B-Rep solid models, surface models, wire 
frame models), product structure, and configuration man 
agement. AP203 is the underlying STEP specification for 
many CAD and CIM system implementations. 

AP214: Core Data for Automotive Mechanical Design. AP214 has 
been developed by the automotive industry and covers prod 
uct data categories relevant for the design and manufactur 
ing of automotive parts and products. AP214, initiated in 
Germany and internationally supported, is still under final- 
ization in parallel with its industrial implementation in CAD 
and CIM systems. The implementations have been coordi 
nated and harmonized in the European ProSTEP consortium 
and the implementation is focused initially on the geometri 
cal product descriptions (solid models, surface models) and 
product structure. However, all other kinds of product data 
categories relevant for mechanical design in the automotive 
industry (e.g., form features, materials, tolerances) are 
within the scope of AP214 and are going through the stan 
dardization process. 

Initial Release 
The initial release of STEP parts focuses on the most ur 
gently needed kernel definitions of the standard, which 
cover the geometrical shape description, including all topo- 
logical information, the product structure, and the configu 
ration management data. Basic product documentation in 
the form of low-level engineering drawings is also covered. 
The parts included in the initial release are parts 1, 11,21, 
31, 41, 42, 43, 44, 46, 101, 201, and 203. The first two applica 
tion protocols to become standards are AP201: Explicit 
Drafting and AP203: Configuration-Controlled 3D Design. 

Upcoming releases of STEP will cover the next priorities in 
the area of drafting, such as AP202: Associative Drafting, 
materials, tolerances, form features, and parametrics, and 
other application protocols such as AP204: Mechanical De 
sign Using B-Rep Solid Models and AP214: Core Data for 
Automotive Mechanical Design. 

HP Involvement in STEP 
HP has been working on the standardization of product 
model data since 1989 and has focused on the emerging in 
ternational standard STEP for 3D product data. The product 
data focus has been on 3D kernel design data, completeness 
of topology and geometry, B-Rep solid models, and product 
structure and assemblies, as well as on associative drafting 
documentation. HP is an active member in organizations 

that have an impact on the ISO STEP standard, and contrib 
utes to STEP through national standards organizations in 
the U.S.A (e.g.. N 1ST. ANSI i and Europe (e.g.. DIN in Ger 
many). Of particular interest are the organizations PDES 
Inc.. PRODEX. and ProSTEP. 

PDES Inc. HP has concentrated on three major areas of 
PDES Inc. s STEP activities: mechanical design of 3D prod 
uct data, associative drafting for CAD data, and electronic 
data definition and exchange. 

The mechanical design initiative of the U.S. aerospace and 
aircraft industries, the automotive industry, and the com 
puter industry resulted in STEP application protocol 203. 
HP, a PDES Inc. member in the U.S.A. and an ESPRIT CA- 
DEX member in Europe, contributed to the 3D geometric- 
design definition of AP203 in a joint effort of PDES Inc. and 
CADEX. The AP203 3D geometries cover solid models, sur 
face models, and wireframe models and are shared by other 
application protocols, thereby promoting interoperability 
between different application areas. 

HP has also been actively supporting the U.S. initiative to 
define a good-quality standard for associative drafting docu 
mentation in STEP. Associative drafting, covered by AP202, 
is considered an integral portion of the product data for con 
tractual, archival, and manufacturing reasons. For example, 
government contracts and ISO 9000 require that product 
data be thoroughly documented. This includes engineering 
drawing data of a product in addition to the 3D product data 
and the configuration data. Electronic design and printed 
circuit board design data are also covered in STEP. 

PRODEX. In 1992 participants in the ESPRIT CADEX project 
demonstrated publicly the first B-Rep solid model transfer 
via STEP for mechanical parts in Europe. To develop this 
new technology the PRODEX project was founded in 1992 
with the goal of developing STEP data exchange for CAD 
design, finite element analysis, and robot simulation sys 
tems. Twelve European companies joined the project. So far, 
the project's achievements include the definition of a STEP 
implementation architecture, the development of a STEP 
toolkit, and the development of STEP preprocessors and 
postprocessors. 

Product data exchange between the different vendors is 
ongoing and shows very promising results for CAD-to-CAD 
data exchange, CAD-to-finite-element-system exchange, and 
CAD-to-robot-simulation-system exchange. The STEP stan 
dard has been further fostered by a joint effort with the 
ProSTEP project to develop AP214, in cooperation with the 
U.S., European, and Japanese automotive industries. 

ProSTEP. ProSTEP is an automotive industry initiative for a 
highway-like STEP product model data exchange. In 1992 
the GemÃ­an companies Bosch, BMW, Mercedes-Benz, Opel 
(GM), Volkswagen, and Siemens launched an initiative to 
bring the major CAD vendors together with the goal of im 
plementing the first harmonized set of STEP product data 
exchange processors (product data translators) for indus 
trial use in the automotive industry. The approach taken was 
to compile the user requirements, to build on the results and 
experiences of the ESPRIT CADEX project, and to launch at 
the ISO level a STEP application protocol, AP214, which 
covers the core data for automotive mechanical design. 
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The following CAD/CIM systems are involved in the project 
and have STEP data exchange processors either available or 
under development: Alias, AutoCAD, CADDS/CV-Core, CA- 
TIA, EUCLID3, HP PE/SolidDesigner, EMS-Power Pack, 
I-DEAS Master Series, SIGRAPH STEPIntegrator, SYRKO, 
Tebis, ROBCAD, and others. 

The initial focus in ProSTEP for STEP products is on design 
data exchange for 3D geometry: B-Rep solid models, surface 
models, and wireframe models. For migration from legacy 
systems, wireframe data needs to be supported, at least for 
data import. Communication with applications like numeri 
cal control (NC) programming systems today typically re 
quires surface model data, although in the future more solid 
model data will be used. Initially, the HP emphasis is on bi 
directional product model exchange (input and output) of 
3D B-Rep and surface models. 

STEP Tools Architecture 
In STEP implementation projects, standardization has been 
extended beyond the product data to the STEP implementa 
tion tools. The CADEX, PDES Inc, PRODEX, and ProSTEP 
projects have all taken this approach. 

A standardized STEP tool architecture provides the follow 
ing benefits. These include shareability of tools between 
different implementors, shortened development time for 
STEP processor implementations (software development 
productivity gain), increased likelihood of compatibility be 
tween STEP implementations (differences in STEP defini 
tion interpretations are minimized), parallel development of 
tools (concurrent engineering), extendability of tools to 
track new standardization trends, increased flexibility (new 
STEP models require fewer code changes), and centralized 
maintenance of tools. 

Fig. 13 shows the PRODEX STEP tools architecture. The 
functional blocks of a STEP toolkit or STEP development 
set are: 
STEP Standard Data Access Interface (SDAI), 
STEP Express compiler 

STEP file scanner/parser 
STEP file formatter 
STEP data checker 
STEP conversion tool. 

The main interface to the STEP application is the STEP 
Standard Data Access Interface, which provides a computer 
programming language for dynamic access to the STEP 
data. Application-specific mapping and conversions are im 
plemented on top of this interface. 

The Express compiler conveys the product data descrip 
tions contained in an Express schema (the metadata of the 
data model) to the toolkit. It contains an Express file reader 
and compiles the file contents to the internal representation 
of the data model. The SDAI is the recipient of the product 
data metamodel and uses the metamodel as a reference for 
the product instance data, which is imported through the 
STEP file scanner/parser. 

The STEP file scanner/parser reads (scans and parses) the 
STEP instance data contained in a STEP data file and uses 
the currently valid metamodel for checking the syntax of the 
imported instance data. 

The STEP file formatter formats the data to a part-21 -confor 
mant STEP file which is read from the SDAI by using the 
current valid metadata (e.g., a specific application protocol 
such as AP203). 

The STEP data checker is a validation tool that checks the 
instance data currently in the SDAI based on the corre 
sponding metadata model, which is also contained in the 
SDAI. The checking covers consistency checks like refer 
ences between entities (e.g., existence dependency), and 
rule checking, which is covered in the metamodel. The 
checking is optionally applicable to the data in the SDAI. It 
is very helpful during the development of processors, for 
checking new metadata models, or for checking the first 
data imported from a new system. 
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Fig. 13. PRODEX STEP tools 
architecture. 
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The STEP conversion tool is a pool of conversion functions 
(a libran*) that includes all kinds of geometrical, topological. 
and other model conversions. The focus is on geometrical 
conversions which are heavily used for data exchange be 
tween systems with different geometric modeling concepts. 
For example, one CAD system might use rational polyno 
mial representations for its inherent geometric representa 
tion of curves and surfaces (e.g., NURBS, nonuniform ratio 
nal B-splines). while the other might use nonrational 
representations (e.g.. NUBS). In this case an approximation 
to the nonrational representation has to be applied, at the 
price of increasing the amount of data. For another exam 
ple, a surface modeling system might export trimmed sur 
face data with curve representations in 2D parameter space, 
whereas the receiving system might handle only 3D space 
curves. In this case the 2D parameter curves have to be eval 
uated and converted to 3D trimming curves in 3D space. 

By using a STEP toolkit the requirements for the implemen 
tation of a STEP processor might be reduced to just the na 
tive data interface to the STEP tools, which consists of the 
data output to the SDAI (for the STEP preprocessor) and the 
data imported from the SDAI (for the STEP postprocessor). 

The main task in linking a CAD system to the toolkit con 
sists of defining and implementing the mapping between the 
system internal representation and the standardized entity 
representation in the schema of the standard (e.g., an appli 
cation protocol). 

HP PE/SolidDesigner STEP Implementation 
The target application protocols for HP PE/SolidDesigner 
are initially AP203 and AP214, in which both solid and sur 
face models are supported. In addition to the HP PE/Solid 
Designer internal data models, the solid and surface models 
of other CAD systems are of major interest. With the intro 
duction of STEP, B-Rep solid model data exchange comes 
into industrial use, representing a new technology shift. 
HP PE/SolidDesigner has its focus on solid models and is 
best suited for STEP-based bidirectional solid model ex 
change. However, surface models are also supported. 

In addition to the geometric specifications, product informa 
tion In configuration are covered in the implementation. In 

this article, the geometric and topological mappings are dis 
cussed. The assembly, product structure, and administration 
mappings are not covered. 

STEP Preprocessor (STEP Output) 
The preprocessor exports the HP PE/SolidDesigner model 
data in a STEP file. The preprocessor takes care of the map 
ping of the HP PE/SolidDesigner model to the STEP model. 

The internal geometrical and topological model of HP 
PE/SolidDesigner is in many respects similar to the STEP 
resources of part 42 of the STEP standard. Hence the map 
ping is often straightforward. On the other hand, there are 
data structure elements that are not mapped to the STEP 
model. 

HP PE/SolidDesigner uses the following geometric 3D 
elements: 

1 Analytics: 3D surfaces such as planes, cones, cylinders, 
spheres, and toruses, and 3D curves such as lines, arcs, 
circles, and B-splines 

1 Nonanalytics: typically 3D elements such as B-spline curves 
and surfaces, and linear and rotational swept surfaces. 

The topology used for the exchange of solid models is based 
on the manifold topology of STEP part 42. The elements 
used are manifold solid boundary representations, closed 
shells, faces, loops, edges, and vertices. The link between 
the topology and the geometry is given by references from 
faces to surfaces and from edges to curves. The geometrical 
points are referenced by vertices. 

The HP PE/SolidDesigner STEP surface models are also 
based on topological representations. Special elements are 
used for surface models, such as shell-based surface models 
and closed and open shells. The other underlying topolocial 
elements are the same as in the solid models. The geometric 
representations of the surfaces are typically the same as in 
the solid model representations. 

STEP Postprocessor (STEP Input) 
The HP PE/SolidDesigner postprocessor supports the im 
port of B-Rep solid models and surface models along with 
the necessary product structure data. The postprocessor is 

Advanced B-Rep Faceted B-Rep 

Fig. 14. Data exchange eye Ics 
between different CAD systems, 
including robot simulation sys 
tems, in the ProSTEP project. 
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Fig. 15. Golf club solid B-Rep model imported into HP PE/Solid- 
Designer from CATIA (CAP-Debis). 

capable of covering at least the functionality of the prepro 
cessor so that it is possible to store and retrieve HP PE/Sol- 
idDesigner data in a STEP file representation (this is called 
the short cycle test). 

The STEP postprocessor imports STEP files from other sys 
tems based on specifically supported application protocols. 
Postprocessing is one of the most difficult tasks in data ex 
change, especially when the data imported comes from a 
system that is very different from the receiving system. Po 
tential problems arise in postprocessing if the sending and 
receiving systems have different accuracies, use different 
modeling techniques to generate the data, have different or 
missing surface connectivity, use different algorithms or 
criteria to determine surface intersections or connectivity, 
or use different model representations for similar model 
characteristics. 

When surface models are imported, it cannot be guaranteed 
that they can be migrated to solid models even with user 
interaction. However, in special cases imported surface 
models can be migrated to solid models without problems. 

In many cases imported surfaces provide boundary condi 
tions for the solid model. In most cases the data can be used 
as reference geometry to check interference or provide di 
mensions for the solid models. For example, an imported 
surface set might represent the surrounding boundary geom 
etry within which the final mechanical part has to fit without 
interference. 

Importing surface models into HP PE/SolidDesigner is con 
sidered important and critical since many other CAD sys 
tems, especially legacy systems, often support only surfaces 
or wireframe models, not solid models. Therefore, the post 
processing of STEP surface models needs to cover a 
broader scope than the preprocessing. Sometimes, different 
surface representations are used in different application 
protocols, such as AP203 and AP214. Hence, different exter 
nal representations may need to be mapped to one internal 
representation in HP PE/SolidDesigner. 

In the initial implementation of the HP PE/SolidDesigner 
postprocessor, topology bounded surface models are sup 
ported. These provide the most sophisticated description of 
the connectivity of the individual surfaces used in a solid 
model. Geometrically bounded surface models are sup 
ported as a second priority. 

The Accuracy Problem 
When importing CAD data from other systems the accuracy 
of the data plays a key role and determines whether a co 
herent and consistent CAD model can be regenerated to 
represent the same kind of model in the receiving system, t 

Let's define the term accuracy. There are different accuracy 
or resolution values that must be considered in geometric 
modeling and CAD systems. For 3D space, a minimum linear 
distance value (a length resolution value) can be defined, 
which is the absolute distance between two geometric 
points that are considered to coincide in the CAD internal 
algorithms; this represents the zero distance. We'll call this 
value the linear accuracy. A typical value could be 
10 ~6 mm which is highly accurate for many mechanical 

t Often, CAD surface models are not consistent because the generating system lacks 
checking mechanisms or does not track connectivity. Very often, consistency and accuracy 
are the responsibilities of the user of the system rather than under system control. 

Fig. II Clamp solid B-Rep model imported from Unigraphics II 
(EDS). 

Fig. 17. Wheel solid model imported from SIGRAPH-3D (Siemens- 
Nixdorf). 
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Fig. 18. B-Rep model imported from Unigraphics (EDS). 

design applications. A similar value can be specified for an 

gular accuracy, parametric accuracy, and so on. The dis 
cussion here is limited to linear accuracy. 

If the sending system uses a higher linear accuracy (more 
precise data) than the receiving system, distinct geometric 
points will be detected to coincide in the receiving system. 
This might result in a change in the topology (which might 
cause further inconsistencies) or the geometry. If the send 
ing system uses a lower linear accuracy (less precise data), 
the receiving system might complain that the topology is not 
correct or the geometry and the topology are inconsistent. 

To prevent or at least minimize these kinds of accuracy 
problems it should be possible to adjust the accuracy in the 
receiving system to the accuracy values of the data to be 
imported. For example, if the sending system uses a differ 
ent accuracy for the model generation process, say a linear 
accuracy of 10 ~2 mm, then the receiving system should ad 
just its internal algorithms to the same accuracy. 

Experience with HP PE/SolidDesigner has shown that this 
kind of adjustable accuracy helps regenerate CAD models 
that were generated in different systems with different accu 
racies. Also, for data models composed of components with 
different accuracies, the components can be brought together 
on the assembly level to form a complete product model. 

In the STEP implementation of AP214 an adjustable linear 
accuracy value is conveyed in the STEP file to tell the re 
ceiving system the appropriate accuracy value for postpro 
cessing. 

User Features 
The user can select via the HP PE/SolidDesigner graphical 
user put the objects (e.g., several B-Rep bodies) to put 
into a STEP file. For example, the user decides whether to 
send the data in a B-Rep solid model or a surface model rep 
resentation. The user can choose some configuration param 
eters that help tailor the model data set for best communica 
tion to a specific target application. However, all data must 
comply with the STEP standard. 

When importing (postprocessing) a STEP file the user can 
define some parameters that ease the processing of data. 
For example, the user might set the accuracy value before 

importing a data set that was designed with a specified ac 
curacy, or might choose to convert the imported data to a 
different representation. 

STEP Model Exchange Trials 
Various STEP file exchanges have been performed within 
the last 12 months, not always with satisfying results. This 
has resulted in more development work by the exchange 
partners. This process of harmonizing the STEP preproces 
sors and postprocessors of different CAD vendors is consid 
ered to be of vital importance for the acceptance of the 
STEP standard and its application protocols. Within the 
ProSTEP project this process has worked particularly well. 
Other work has been done with, for example, AP203 imple- 
mentors together with PDES Inc. 

At this time, solid model data exchange can be said to be 
working very well, especially compared with what was pos 
sible with existing standards. STEP-based surface model 
exchange has also reached a level that was not possible with 
existing standards like IGES or VDA-FS, especially with re 
spect to topological coherence, which is easily conveyed 
with STEP between many CAD systems. Of course, the wide 
variety of surface models, with the resulting accuracy and 
connectivity problems, will need to be addressed by the dif 
ferent CAD system vendors to optimize data transfer via 
STEP. In the meantime, STEP file exchange has matured to 
the point where STEP products are offered by various CAD 
vendors and system integrators. 

Within the ProSTEP project one of the broadest ranges of 
STEP-based data exchange trials have been performed 
between HP PE/SolidDesigner and other CAD systems 
(see Fig. 14). Solid model industrial part data has been 
exchanged, for example, with CATIA (CAP Debis and 
Dassault/IBM), Unigraphics II (EDS), SIGRAPH Design and 
STEP Viewer (Siemens-Nixdorf), and others. Some of the 
successful results are shown in Figs. 15, 16, 17, and 18. 
Surface model industrial part data has been exchanged with 
CATIA, EUCLID, SYRKO (Mercedes-Benz corporate design 
system), and others. Some of the successful results are 
shown in Figs. 19 and 20. 

Next STEPs 
Future releases of the STEP standard covering product data 
categories such as materials, tolerances, form features, man 
ufacturing process data, and others are expected in the next 
few months. The expected release of AP202, associative 
drafting, will allow documentation of the product data in 
engineering drawings. Work is ongoing towards the parame 
terization of product features, which needs further develop 
ment in the STEP standard. 

The expected finalization of AP214 will make it possible to 
convey the product data categories in STEP files and will 
help to reduce design and manufacturing development 
cycles for simple as well as complex products. This process 
will be supported by further extensive use of data communi 
cation networks in the various countries. The migration 
from existing standards is aided by several product offerings 
of IGES-to-STEP and VDA-FS-to-STEP data converters. 
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Fig. 19. Surface model imported from SYRKO (Mercedes-Benz 
corporate design system). 

The STEP implementation technology based on the STEP 
Standard Data Access Interface will be broadened and used 
in database access implementations to allow concurrent 
access by product design and manufacturing development. 

Fig. 20. Headlight reflector surface model imported from EUCLID 
(Matra Datavision). 

However, for industrial use, the database technology and the 
STEP data access technology need to be extended and inte 
grated. This process is expected to take several years. 

ACIS Inc. a U.S. registered trademark of Spatial Technology, Inc. 
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Providing CAD Object Management 
Services through a Base Class Library 
HP PE/SolidDesigner's data structure manager makes it possible to save a 
complex 3D solid model and load it from file systems and databases. 
Using of concepts of transactions and bulletin boards, it keeps track of 
changes to a model, implements an undo operation, and notifies external 
applications of changes. 

by Claus Brod and Max R. Kublin 

A solid 3D model is a highly complex data structure consist 
ing of a large number of objects. The modeling process re 
quires flexible, fast, reliable, and generic means for manipu 
lating this structure. It must be possible to save the data 
structure to and load it from file systems and databases. 
Furthermore, application suppliers need versatile interfaces 
for communication between the modeling kernel and the 
applications. 

This article describes how the requirements of the solid 
modeling process translate into requirements for a CAD 
object manager, and how HP PE/SolidDesigner's data struc 
ture manager (DSM) is designed to meet these needs. 

Besides data abstractions and powerful tools for debugging 
networks of data, DSM provides a basic data object, the en 
tity. An entity's functionality is used by the entity manager 
to file, copy, and scan nets of entities. The cluster manager 
module adds capabilities for building subnets within the 
whole data structure {clusters) and manipulating them. This 
makes it possible to slice the model into manageable pack 
ages that can be sent around the world to subcontractors for 
distributed modeling. The state manager implements a 
transaction mechanism, which allows the user to browse 
through the modeling steps and undo changes to the model 
at any time. 

The DSM compares quite nicely with today's object-oriented 
databases and implements most of their features without the 
overhead that is often associated with them. 

Requirements for a CAD Object Manager 
A CAD object manager provides the data infrastructure for 
the CAD system. It is used by the other components to build 
and change the model. At the same time, it is a base class 
library for internal and external programmers. It must fulfill 
many different user requirements. 

It must be able to handle extremely large and complex data 
structures. When there is a choice of algorithms, the algo 
rithm with the best behavior for large data sets must be se 
lected. 

A typical modeling operation changes many individual ob 
jects and the structure of the model. Each such change in 
volves the object manager, so its operations will be called 
very often. Their overhead must be kept at a minimum to 

prevent the object manager from becoming the performance 
bottleneck of the system. 

Because of the large number of objects, it is also essential 
that the object manager add only marginal overhead in 
terms of additional memory to each object. 

hi a CAD model, many kinds of connections between ob 
jects are needed. The object manager should allow and sup 
port not only the types of connections that the core product 
needs, but also any other kind of connection that third-party 
applications or future modules may require. 

CAD programs are large projects which are developed over 
several years and evolve with the customers' needs. Not all 
of these needs can be anticipated in the original design. 
Therefore, the object manager must be flexible enough to 
allow later extensions, both unlimited new connectivity and 
completely new kinds of objects. The latter requirement is 
also essential for third-party applications. 

The core solid modeler and its applications operate on the 
same model. The object manager must offer both sides a 
view of the model and inform external applications about 
changes in a generic way. Therefore, the object manager 
must offer communication mechanisms and interfaces to 
applications. 

The object manager's services are used when building a new 
type of object and dealing with it. The developer of such a 
new object will appreciate every kind of support that the 
object manager can provide, such as debugging tools, handy 
utilities for frequent tasks, or a library of commonly needed 
basic data structures, such as lists, tables, stacks and nets. 

Finally, the object manager must provide generic mecha 
nisms to store objects and whole models to a file system or 
database and to load models from there, that is, it has to 
make the objects persistent. 

The design and the use model of HP PE/SolidDesigner add 
some special requirements to those just described. To sup 
port later extensions and the general concept of openness, it 
is essential that existing object schemes be able to evolve 
while remaining fully compatible with old data. Further 
more, the object manager, or data structure manager (DSM) 
in HP PE/SolidDesigner terminology, must support a 
transaction concept. Transactions must be freely definable 
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to allow modeling steps that the user perceives as natural. 
The data structure manager must record all changes to the 
model in a transaction to be able to roll them back in an 
undo operation. 

The DSM must help to ensure model consistency even if 
errors occur internally or in external applications. The trans 
action mechanism can be used to this end. 

Concurrent engineering is becoming more and more impor 
tant in computer-aided design. Files have to be exchanged. 
Parts of the model are developed independently and assem 
bled later. The data structure manager must support assem 
blies of parts and the exchange of parts. 

Design Principles 
HP PE/SolidDesigner's data structure manager was designed 
with both the above list of requirements and some architec 
tural principles in mind. 

One of HP PE/SolidDesigner's key principles is to offer a 
highly dynamic system with very few static restrictions. The 
DSM has to support not only today's models, but also future 
models, so there should be no fixed limits on the size or 
number of objects. Additionally, the DSM must offer mecha 
nisms to define new objects and object types at run time. 
This is especially important for external applications. 

Each object should only know about its direct neighbors, 
not about the overall structure of the model. Special data 
managers are used to collect the local knowledge and form 
a global picture. This reduces interdependÃ¨ncies between 
objects which would make later extensions a daunting and 
dangerous task. 

The sequence in which DSM's algorithms traverse the model 
is not fixed. Since the objects cannot and do not rely on 
fixed sequences, DSM can also employ parallel algorithms if 
they are needed and are supported by the hardware and 
operating system. 

Problems in the data structure or in object behavior must be 
detected as early as possible. In its debug version, DSM 
checks the consistency of the model thoroughly and offers 
advanced debugging mechanisms to support the program 
mer. In the version shipped to the customer (the production 
version), DSM still employs robust algorithms, but relin 
quishes debug messages and the more elaborate tests for 
optimum performance. 

Basic Data Abstractions 
One way to look at the data structure manager is as a pro 
grammer's toolbox. As such, it provides all common building 
block classes: 

â€¢ Dynamic arrays 
â€¢ Lists including ring lists 
â€¢ Stacks 
â€¢ Hash tables 
Â« Dictionaries such as string tables and address translation 

tables 
â€¢ Bit sets 
â€¢ Vectors, matrices, and transformations 
â€¢ Events 
â€¢ General networks of objects. 

These building blocks can be combined to form real-world 
programming objects. They share basic functionality to stan 
dardize their manipulation, such as functions to load and 
store them, or to scan the data structure and apply a method 
to each of its elements. 

The most important data structure in HP PE/SolidDesigner 
is the general network. DSM provides net node objects and a 
net manager class. Each node maintains a list of neighbors 
in the net. To obtain information about the network as a 
whole, the net manager visits each individual node, calls its 
local scan function to retrieve a list of neighbors, and pro 
ceeds with the neighbors until all nodes in the net have been 
visited. 

DSM Object Management 
The core of DSM is formed by the definition of a generic 
object, or entity, and manager classes that deal with various 
aspects of entity administration, delivering higher-level ser 
vices. In the following, we will outline the DSM entity ser 
vices, beginning with the definition of an entity. 

Entities are nodes in a complex network. As such, they use 
the network functionality described earlier. Additionally, 
specific entity functions deliver the basic services for trans 
action handling, filing, object copying, run-time type infor 
mation, and others. 

To benefit from the DSM services, a programmer simply 
derives a new object from the entity base classes and fills in 
a few obligatory functions. Almost every object in an HP PE/ 
SolidDesigner model is an entity. 

Entities provide a method for inquiring their type at run 
time. The type can be used to check if certain operations are 
legal or necessary for a given entity. Object-oriented soft 
ware should try to minimize these cases, but it cannot com 
pletely do without them. An HP PE/SolidDesigner model is 
an inhomogeneous network of entities. When scanning the 
net, one finds all kinds of entities. The algorithm that in 
spects the net often applies to specific types of entities and 
ignores others. But to ignore entities that we are not inter 
ested in, we must be able to check each entity's type. 

In an ideal world, type checks could be avoided by using 
virtual functions. However, to provide these in the base 
class, it would be necessary to anticipate the functionality of 
derived classes before they have been created, including 
those that come from third parties as add-ons to the 
product. 

Run-time type information has been under discussion for a 
long time in the C++ community, and is only now becoming 
part of the standard. Therefore, we had to develop our own 
run-time type system with the following features: 
No memory overhead for the individual object 
Very fast type check 
Checks for both identical and derived types 
Registration of new entity types at run time. 

A pure entity is a very useful thing, but certain types of enti 
ties are needed so often that we implemented not only one 
base class, but also a set of standard entities which offer 
certain additional functionality. 
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Standard Entity Types 
The three most important standard entities are attributes, 
relations, and refcount entities. Attributes are attached to 
other entities and maintain bidirectional links to them auto 
matically, so they save the user a lot of housekeeping work. 
For any given type of attribute, only one instance can be 
attached to an entity. A typical example is the face color 
attribute. If a face already has been marked as green by a 
color attribute, attaching another color attribute, say red. 
will automatically delete the old attribute. 

Relations are like attributes, but without the "one instance 
of each type" restriction. One of the many applications is for 
annotation texts. 

Attributes and relations often are the entity types of choice 
for a third-party module. They can be attached to entities in 
the HP/PE SolidDesigner core, and even though the core 
doesn't have the faintest idea what their purpose is, the con 
nectivity will be maintained correctly through all kinds of 
entity and entity manager operations. We also use this tech 
nique in HP/PE SolidDesigner itself. The 3D graphics mod 
ule, for example, calculates the graphical representation for 
the kernel model and then attaches the result to the kernel 
model as attributes. 

Refcount entities maintain a reference counter. Other enti 
ties that have a reference or pointer to a refcount entity 
"acquire" it. Only after the last owner of a refcount entity is 
deleted is the refcount entity destroyed. (You can think of 
refcount entities as the equivalent of a hard link in a file sys 
tem.) Refcount entities can be used to share entities in the 
entity network to improve memory utilization and perfor 
mance. We use this type of entity extensively for HP/PE 
SolidDesigner's geometry. 

Nearly all objects in HP PE/SolidDesigner are entities, de 
rived from a common base class. Currently, there are more 
than 600 different entity types in HP PE/SolidDesigner. 
Being derived from a common base class, they inherit a set 
of generic functions which can be applied to any of these 
600 different entity types. The most important of these func 
tions are create, delete, copy, store, load, and scan. 

HP PE/SolidDesigner allows loading third-party modules at 
run time. Completely new entity classes can be integrated 
into the system dynamically. Thus, third-party applications 
can implement their own entity classes. Entities in external 
modules are not restricted in any way compared to entities 
in the HP PE/SolidDesigner kernel. External entities inte 
grate seamlessly into the existing entity network and share 
all the entity services provided by DSM. 

The Entity Manager 

In HP PE/SolidDesigner, entities can have any type of con 
nection to other entities. A 3D body, for example, is a very 
complex network consisting of dozens of entity types. In the 
entity network of a body, there are substructures such as 
lists, ring lists, and trees of entities. 

An assembly in HP PE/SolidDesigner is a network of other 
assemblies or subassemblies and 3D solids (parts). This 
creates another level of structure, in this case a directed, 
acyclic graph of entity networks. 

Suppose we want to copy a part. To do that, we (1) find all 
entities that belong to the part, (2) copy each single entity. 
and (3) fix up any pointers in the copied entities. Fig. 1 
shows what happens to two entities El and E2 that have 
pointers to each other. First, the entities are copied. In a 
separate step, the connectivity is fixed. This must be a sepa 
rate step because when Elc is created (assuming that El is 
copied first), we do not know yet where (at which address) 
the copy E2c of E2 will be. 

Copying a network of entities in HP PE/SolidDesigner is a 
recurring, nontrivial task. One has to be aware that we deal 
with dynamic and inhomogeneous networks with entities in 
them that we might never have seen before because they 
have been added to the system by a third-party module. 

For copying and other entity network services, HP PE/Solid 
Designer uses manager classes. The entity manager class is 
an example of a manager class. 

Copying an Entity Network 
How does an entity manager implement the three steps in 
copying a part? Step 1 (see Fig. 1) is to find all entities that 
belong to the part or network. The entity manager only 
knows that it deals with an inhomogeneous network of arbi 
trary entities (potentially of unknown type). To find all the 
entities in a network, the entity manager needs some infor 
mation about the structure of the network. It collects this 
information by asking each entity about its direct neighbors 
in the structure. Suppose the entity manager starts with en 
tity El. El will tell it, "My neighbor is E2." The entity man 
ager will then ask E2 the same question, and the answer will 
be, "My neighbor is El." Then â€” oops, we had better stop 
here or we will fall into an endless loop! So we see that the 
entity manager also has to remember which entities in the 
network it already has visited. 

How can the entity manager ask an entity a question, and 
how can the entity give an answer? The entity manager calls 
a function (method) called scan. Each entity class in 
HP PE/SolidDesigner provides such a function. We also 
call this function a local scanner. The philosophy behind 
this is that each entity has a local context, that is, it knows 
its direct neighbors since it has pointers to them. The entity 
manager uses this local knowledge of the entities to move 
forward in a network of entities from one entity to the other, 
at the same time making sure that each entity will be visited 

(a) (b) ( 0  

Fig. 1. Steps in copying two entities that have pointers to each other, 
(a) Before copying, (b) After copying, (c) After pointer conversion. 
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only once. This we call global scanning, and it is imple 
mented in the entity manager's scan function. 

The restriction that each entity in the network is only visited 
once becomes really important only if a certain operation 
has to be executed on each entity. Therefore, the entity man 
ager's scan function not only receives a start node (the entry 
point into the network), but also a task function, which is 
called for each node that is visited in the network. 

With the knowledge gained from scanning the network, we 
can move to step 2, copying each entity. The task function 
that is passed as a parameter to the entity manager's scan 
method solves this part of the problem by calling the copy 

method of each entity. This is another method that every 
entity in the system provides. 

While in step 2, we have to make provisions for the next 
step. We record in a table where each entity has been copied 
to. For each entity, the task function creates an entry of the 
form [old entity address, address of the copy] in this table. 
Actually, this table is a hash table that can be accessed using 
the old entity address as the key. Address translation tables 
like this are used in many other places in HP PE/SolidDe- 
signer, so DSM offers a special pointer dictionary class for 
this purpose. 

After step 2, we have a copy of each entity and we have built 
an address translation dictionary. Now we're ready for step 
3. For each entity in our dictionary, or more precisely for 
each entity recorded in the right side of a dictionary entry, 
we call another method, convert pointers. By calling the 
convert pointers method, we request that the entity convert 
all the pointers it has local knowledge of. In the case of the 
entity Elc (the copy of El), for example, this means, "I have 
an old pointer to E2, and I need to know where the copy of 
E2 (E2c) is." This question can be answered using the ad 
dress translation dictionary built in step 2 since it has an 
entry of the form [E2, E2c] in it. After we have called the 
convert pointers method for .each copied entity, we are fin 
ished. We have copied a network of entities without know 
ing any of these entities! 

So far, so good. Now we know how to copy a network of 
entities in main memory. At some point, the entities will 
have to wander from main memory to permanent storage. 
Therefore, let us examine next how we store and load a net 
work of entities into and from a file. 

Storing and Loading an Entity Network 
Storing and loading, like copying, are operations on a net 
work of entities. Therefore, the entity manager provides 
these functions. Storing a network of entities works like 
this: 
(1) Open a file. 
(2) Find all entities that belong to the network. 
(3) For each entity: 

(a) write an entity header 
(b) store the entity 
(c) write an entity trailer. 

(4) Close the file. 

Besides opening and closing the file, storing essentially 
means writing each entity in the network into a file. This 
sounds simple enough. To solve the problem, we can even 
use existing functionality. The entity manager's scan method 
will help us find all entities in a network, just as it did for 
copying. 

All we have to do is to provide a new task function which 
executes step 3 for each entity. In 3a and 3c we write admin 
istrative information that we will need for loading. For 3b 
we need a way to store an entity generic-ally. Of course, we 
want not only to store, but also to load entities. Therefore, 
each entity has a store method and a load method. The store 
method is an ordinary member function of the object. The 
load method, however, is a static member function since it 
creates the object out of the blue (well, actually, from the 
information in the file) and then returns it. 

When everything is stored, the file contains entities in a 
form that is equivalent to the situation in step 2 in the entity 
copy operation. All pointers between entities are invalid, 
and they have to be fixed when the file is loaded again. 

Loading a file is also a task for the entity manager, since it 
deals with a whole network of entities. Loading works as 
follows: 
(1) Open the file. 
(2) While not at the end of the file: 

(a) read the entity header 
(b) call the entity's load method (a new entity is 

created in main memory) 
(c) enter the entity information into a dictionary 
(d) read the entity trailer. 

(3) Close the file. 
(4) For each entity in the dictionary, call the convert point 
ers method. 

Reading the Entity Header. The entity header contains two 
important data items: the entity type and a virtual address. 
The entity manager uses the entity type to decide which of 
the 600 or more different load functions is to be called. 
When storing an entity, the object exists and its store 
method can be called. When loading entities, a different ap 
proach must be taken. The entity manager maintains an en 
tity type table which can be added to dynamically. For each 
entity, the table contains, among other things, a load 
function. 

Note that an entity type translates into a class in C++. All 
objects of a class have the same type (for example, face). 

The second data item in the header is the virtual entity ad 

dress. The virtual address is a unique entity ID which is used 
to represent pointers between entities in the file. When stor 
ing an entity, the entity does not know where a neighbor 
entity that it points to will be placed when the file is loaded 
again. Therefore, all pointers between entities in the file are 
virtual pointers and have to be converted after loading the 
file. 

Calling the Load Method. The entity manager detects the type 
of the entity from the entity header. It will then call the right 
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Exception Handling and Development Support 

DSM has didn't roots in the late eighties â€” the early days of C++. Compilers didn't 
support exception handling then. Conventional error handling by passing error 
codes large the return stack is a prohibitively code-intensive approach in a large 
software project with many nested procedural levels such as HP PE/SolidDesigner. 
Therefore, we had to implement our own exception handling mechanism which is 
very similar to what has been implemented in today's C++ compilers. 

HP PE/SolidDesigner's code is divided into code modules. Each module has its 
own module information object containing module-specific error codes and mes 
sages. In case of an error condition inside a module, the code triggers the excep 
tion mechanism by throwing a pointer to the module information object. 

Code that wants to catch an exception inspects the module information object 
returned by the exception mechanism and acts accordingly. If it has already allo 
cated be they are cleaned up and returned. The exception can then be 
ignored (and suppressed], or it can be escalated to the next code level. 

The listing below shows a code example for this. You may notice the similarities 
to the exception handling mechanism introduced with C++ 3.0. Now that the 
throw/catch mechanism is finally available in many C++ compilers on various 
platforms, we will be able to adopt Â¡t with only a few changes in the code. 

Â¡nt  process_f i le(const  char  *const  (name) 

{ 
int  words = 0;  
FILE Â«file = 0; 

TRY 
f i le  =  open_f i le ( fnamel ;  
wo rds  =  coun t_words ( f i l e ) ;  
c lose_f i le | f i le ) ;  
f i le = 0; 

RECOVER 
i f  ( f i l e )  {  / / c l e a n  u p  r e s o u r c e s  

c l o s e j i l e ( f i l e ) ;  
f i le = 0; 

/ /  hand le  spec i f i c  excep t ions  
i f  (dsm_except ion_code == F2_CORE:: in fo_pt r |  {  

sw i tch(F2_CORE: :e r rno) {  
case F2_CORE::BREAK_RECEIVED: 

/ /  We  won ' t  esca la te  t h i s  " so f t "  excep t i on .  
handle_break() ;  
break; 

case F2_CORE::MEM_OVL: 
/ /  F ree  memory  b locks  a l loca ted  here ,  then  esca la te  the  p rob lem.  
f r ee_my_meml ) ;  
E S C A P E ( d s m _ e x c e p t i o n _ c o d e ) ;  / /  " t h r o w "  i n  C + +  3 . 0  
break; 

defaul t ;  
break; 

/ /  Use r  has  cance l l ed  p rocess ing  

/ / O u t  o f  m e m o r y  

} e l s e {  
// Pass up all other exceptions. 
ESCAPEIdsm_exception_codel; 

} 

E N D J B Y  

return words; 

D e v e l o p m e n t  S u p p o r t  

To find precondi proactively, DSM stresses the importance of checking precondi 
tions, macros and postconditions. It offers convenient assertion macros and a 
context dependent run-time debugging system which uses debug module objects. 

These debug module objects hold their current debug level which can be checked 
using macros and set during run time. A debug module is associated with a cer 
tain code area. This allows fine-grained control for debug checks and messages. 
We think this control is important for the acceptance of a debug system; the pro 
grammer will ignore debug messages Â¡f there are too many, and won't find the 
system useful if it doesn't deliver enough detail where needed. 

Macros are provided to reduce typing and #ifdef constructs: 

boo l  compare l cons t  cha r  *s1 ,  cons t  cha r  *s2 )  

M E _ M O D U L E _ S T O P W A T C H ( " c o m p a r e " , f o o ) ;  

Â¡f (DEBUG_LEVEL(foo) >= DEBUG.CALLS) { 
fp r in t f (DEBUG_STREAM() ,  " compare  ca l led " ) ;  

} 

DSM_ASSERT(s1 && s2) ;  

/ /  Now ca l cu la te  t he  resu l t  

DSM_ASSERT(some_cond i t i on ) ;  
return TRUE; 

/ / f o r  r un - t ime  p ro f i l i ng  

/ / t r a c e  p r o g r a m  f l o w  

/ / c h e c k  p r e c o n d i t i o n  

/ / c h e c k  p o s t - c o n d i t i o n  

DSM also defines special debug modules to switch on sophisticated debugging 
tools. objects are tools to find memory leaks, to calculate checksums for objects 
(allowing us to detect illegal changes), and to create run-time profiles for the 
code. 

In a software package as large as HP PE/SolidDesigner, the common UNIX profil 
ing tools were not applicable. Therefore, we had to build our own set of versatile, 
efficient and highly precise utilities. You can define a stopwatch tot any function 
that might need profiling, and you start and stop the stopwatch using the debug 
module call The results can be analyzed, producing a hierarchical call 
graph that shows what portion of the run time was spent In the individual func 
tions. We can also find out the amount of memory allocated for a function at run 
time using these tools. 

load function, using the information in its type table. This 
transfers the control to the entity's load method which is 
responsible for creating a new entity from the data in the 
file. The new entity is returned to the entity manager. Creat 
ing an entity from a given type implements a virtual 
constructor function, which is missing as a language ele 
ment in C++. 

Entering the New Entity into a Dictionary. Here we create an 
entry in a dictionary that contains the virtual entity address 

in the file and the new real address in main memory. These 
values will be used in pointer conversion. 

Reading the Entity Trailer. When the entity is loaded, the entity 
manager resumes control by reading the entity trailer. This 
might appear to be an artificial overhead operation, but it 
makes sense when we consider the dynamic nature of the 
system. We mentioned earlier that new entity types can be 
created and registered dynamically, for example by a third- 
party module. When storing an entity network, these entities 
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are also stored. A user might try to load such a file into an 
HP PE/SolidDesigner system that does not know about 
these entities because the third-party module has not been 
installed. When the entity manager loads such a file, it will 
encounter entity headers of entity types for which a load 
function has not been announced. Here's where the entity 
trailer helps. The entity manager simply skips all following 
data in the file until it finds the entity trailer. Thus, HP PE/ 
SolidDesigner ignores unknown entities in a file, but it can 
still load the rest of the file. 

Converting Pointers. After loading, all pointers between enti 
ties are virtual and have to be converted into real memory 
addresses. For each entity in the dictionary, that is, for each 
entity that has been loaded, its convert pointers method is 
called. We have already discussed this method for copying 
networks of entities. Each entity knows its pointers to other 
entities, and it asks the entity manager, "Now I have a virtual 
pointer to entity El, so please tell me where El is in main 
memory." For each pointer, the entity calls the entity manag 
er's convert pointer service function. This function is passed 
a virtual entity address and returns the real memory address 
of the loaded entity. The dictionary built while loading the 
file contains the necessary information. 

When all entities have been converted, we have written a 
network of entities into a file and loaded it from there with 
out knowing any of the entities in detail. The analogy to the 
copy operation does not come by chance, but is the result of 
careful design. For copying or storing and loading entity 
networks, DSM employs the same functionality wherever 
possible. In theory, we could have built the copy operation 
completely on a store and a subsequent load operation. 

Entity Revisions 
As the CAD system evolves, the need arises for changes in 
entity layout, either by adding a new data field or by chang 
ing the meaning of an existing one. In object database terms, 
this is known as the schema evolution problem. The load 
function of a DSM entity can check the revision of the entity 
in the file before actually loading the contents of the entity. 
Depending on the entity revision, the load function will then 
know what data fields are to be expected in the input. This 
means that the load function is prepared for any revision of 
the entity. The same holds true for the store function, which 
can write different revisions of an entity depending on the 
given storage revision. 

This feature ensures upward compatibility of HP PE/ 
SolidDesigner files. All new versions automatically know 
about the old object revisions, and no converters are neces 
sary. In database language, our object database can be inho- 
mogeneous with respect to entity revisions. From a pure 
DSM point of view, even downward compatibility is pos 
sible, since you can set the storage revision to a previous 
level and then save a model, as long as the new revision did 
not introduce new entities that are essential for the overall 
consistency of the model in the new scheme. 

The Cluster Manager 

From the entity manager's point of view, the current HP PE/ 
SolidDesigner data model is one coherent network of enti 
ties. Each and every entity will be reached when the entity 

manager's global scan method is used. The user's point of 
view, however, is different. The user works with well- 
defined objects such as parts, workplanes, assemblies, work- 
plane sets, layouts and so on, which can be arranged in a 
hierarchy. An assembly is like a directory in a file system, 
and a part is like a regular file. Assemblies can have sub- 
assemblies just as directories can have subdirectories, and 
parts and assemblies can be shared just as directories and 
files can be linked in a file system. 

The cluster manager closes this gap between the entity 
world and the user's perception. It creates facilities to define 
a cluster of entities â€” for example, all entities that belong to 
a part. There is no hard-coded knowledge about cluster 
structures in the cluster manager, however. Instead, the enti 
ties in the network themselves define what the cluster is. 
Because of this flexibility, the cluster manager can offer its 
services for any kind of entity network. 

The following algorithm collects all entities belonging to a 
given cluster X: 
(1) Start with a representative of the cluster and look for all 
direct neighbor entities. 
(2) Ask each entity found during the scanning process to 
which cluster it belongs. 

(a) If the entity's answer is "I belong to cluster X," 
continue the search with the entity's neighbors. 

(b) If the entity answers "I belong to cluster Y," the 
global search has arrived at a cluster boundary. 
The entity is excluded and the search will not be 
continued from this point. 

The entity manager's scan method helps with (1), and the 
cluster manager provides a task function for (2). The task 
function's return value controls how the entity manager nav 
igates through the network of entities. It is the entity manag 
er's job to find the neighbors for each entity and to ensure 
that nodes are visited at most once. 

There are implications for the topology of a cluster: it must 
be possible to reach any entity in the cluster using a path 
that is completely within the cluster. Figs. 2 and 3 show ex 
amples of correct and malformed clusters. 

How can an entity tell to which cluster it belongs? Actually, 
this is asking too much of a mere entity. What we can expect 
from an entity, however, is that it can point us in the direc 
tion of another entity that is one step closer to the represen 
tative of the cluster. Each entity has a local master method 
for this purpose. 

In most cases, the entity chooses one of its neighbors as its 
local master, but this is not obligatory. By following the 
trace laid out by the individual local master functions, we 
will eventually find the main representative of the cluster 
(which is special in that it points to itself when asked for its 
local master). We call this special entity the cluster master. 

Note that this is another case in which we build global 
knowledge from local knowledge at the individual entities. 
This is how we can define a cluster structure in a complex 
network. The highlights of this method are: 

â€¢ The entity manager's global scanning services are used. 
â€¢ The entities need local context only. 
â€¢ Only one additional method, local master, is needed for 

each entity. 
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Clus te r  Mas te r  

Cluster  
Boundary 

â€¢ Entity 
â€” ^ Pointer to an Enti ty 

Fig. 2. A correct cluster. 

The approach is fully object-oriented. The objects them 
selves determine the size, structure, and shape of the clus 
ter. Completely new entities can be integrated into the clus 
ter in the future, and completely new clusters can be built. 

The cluster manager offers services for storing, loading, and 
copying clusters. It implements these by using the entity 
manager's basic services. The entity manager is controlled 
by cluster manager task functions, which determine the 
(cluster) scope of each operation. 

The cluster manager services can be used to handle an indi 
vidual part or a workplane. The cluster manager also sup 
ports hierarchical structures such as assemblies and work- 
plane sets. 

Fig. 4 shows two types of screwdrivers. They share the 
shaft; only the blades are different. The parts browser shows 
the part hierarchy. The notation "(P :2)" indicates a shared 
part and the backward arrow "<-" indicates the active part 

Error 
Isolated subnet not 
reachable from 
cluster master 
Would be OK if  
X  were master  

Error 
No path to entity Y inside 
the cluster boundary â€” 

The DSM user  
intended this to be 
the cluster boundary. 

Fig. 3. An illegal cluster. 

(which is also highlighted in green). The shaft part is con 
tained in both assemblies. When using standard parts, we 
will in fact by default have many instances of the same part 
(or even whole assemblies) in multiple assemblies. If we 
now change something in the shared pail (in this case the 
shaft), we expect the changes to be reflected in both assem 
blies, since both assemblies have a reference to the same 
part. This we call sharing parts and assemblies. Work- 
planes can also be shared by using them in different work- 
plane sets. 

In the base version, HP PE/SolidDesigner stores the model 
data to files in the regular file system. To ensure that the 
sharing is preserved when storing and loading models, the 
following rules apply: 
Every object that can be shared in HP PE/SolidDesigner has 
its own file in the file system. 

Fig. 4. Two assemblies with 
shared parts. 
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â€¢ For a shared object, exactly one file exists, regardless of 
how many owners the object has. This makes sure that 
whenever the shared object changes, all instances will be 
changed as well. 

â€¢ When storing an assembly, all objects below the assembly 
have to be stored as well. This ensures that the data in the 
file system is complete, so that another HP PE/Solid- 
Designer system can pick it up immediately. 

â€¢ A file contains exactly those entities that correspond to one 
cluster. 

Suppose we want to store the screwdriver assembly. We 
expect that three files will be created: one for the assembly, 
one for the blade, and one for the shaft. The cluster manager 
will do this for us; we just tell it to store the screwdriver 
assembly. It will find the parts and any subassemblies of the 
assembly on its own. Since the cluster manager must work 
with an arbitrary network, it needs another entity method. 
scan child clusters, to build on. This method is implemented 
by those (few) entities that take over the role of a cluster 
master. The scan method of each entity would not help us 
here since it just gives us access to all direct neighbors with 
out helping us determine a direction. 

The cluster manager uses the scan child clusters method to 
find the children of a cluster in a generic way. Applying the 
method recursively, all objects within the assembly can be 
found. It is possible that a child will be reached more than 
once (for instance, a standard screw within a motor assem 
bly). The cluster manager keeps track of the clusters that 
have already been visited to prevent a cluster from being 
stored twice. 

Given these methods, we can describe how an assembly 
(actually, any kind of cluster structure) is stored: 

â€¢ Start with the given cluster and find all children recursively. 
â€¢ For each child cluster, use the entity manager's store 

method to store the entities of the cluster into a separate 
file. The entity manager is controlled by a cluster manager 
task function that makes sure that only those entities be 
longing to the cluster are stored. A special store pointer 
function is responsible for storing pointers to entities. 

The store pointer function deserves a discussion of its own. 
When storing clusters into several separate files, we will 
encounter pointers that point from one cluster (file) to an 
other. In the case of the screwdriver assembly, we will have 
at least two pointers to the external clusters representing 
the blade and the shaft. Since the entity manager's store 
function by default stores all entities in the network into one 
file, the problem doesn't arise there. By providing a special 
store pointer function, the cluster manager extends the en 
tity manager so that pointers are classified as external 

(pointing to another file) or internal when they are stored. 

When loading an assembly, the cluster managers goes 
through the following procedure: 
(1) Open the file. 
(2) Use the entity manager's load method (with the special 
load pointers function) to load all entities in the file. 
(3) Close the file. 
(4) While there are external references to other clusters 
left, open the corresponding file and proceed with (2). 

An external reference is a pointer to an entity in a different 
cluster. To make sure that external pointers are unambigu 
ous, we developed a scheme for unique entity IDs. An entity 
is assigned such an ID when it is created, and it keeps it as 
long as it exists. External pointers refer to these unique IDs. 

The algorithm above is analogous to linking relocatable ob 
ject files in the HP-UX operating system. When loading the 
file into HP PE/SolidDesigner, it is the special load pointer 
method's job to detect external references. In step (4), the 
cluster manager behaves quite similarly to an object file 
linker. Where the linker needs one or more libraries, which 
it searches for objects to satisfy open references, the cluster 
manager uses the UNIXÂ® file system or a database as its 
library. 

The State Manager 

The state manager introduces a notion of transaction han 
dling into HP PE/SolidDesigner. Model changes can be 
grouped together to form a single transaction. In database 
technology, a transaction has the following properties: 

> Atomicity. The transaction is atomic. It must either be 
closed completely or undone. 

' Consistency. Transactions transform a given consistent 
state of the model into a new state which again must be 
consistent in itself. 

1 Isolation. Transactions do not influence each other. 
1 Durability. The changes made by a transaction cannot be 

cancelled by the system except by special undo transac 
tions. 

Transactions in HP PE/SolidDesigner have these properties. 
They are not only used for ensuring data integrity, however. 
Their main purposes in HP PE/SolidDesigner are to notify 
kernel applications about changes in the model at defined 
intervals (when a transaction is completed) and to allow 
interactive undo operations. 

The general model of an HP PE/SolidDesigner transaction is 
shown in Fig. 5. A transaction T12 transforms a given con 
sistent model state SI into a new consistent state S2. A roll 
back to SI is possible. As Fig. 5 shows, it is also possible to 
roll forward, that is, move towards the modeling "future" 
after an undo operation. 

Bulletin Board 
DSM introduces a special mechanism to record changes to 
the model, which is the bulletin board. Information about all 
changes within a transaction are collected in one bulletin 

Transac t i on  T ransac t i on  

T 1 2  T 2 3  

Rol lback  (Undo)  

Ro l l  Fo rward  

Fig. 5. HP PE/SolidDesigner transaction model. A transaction 
transforms one state into another. A transaction can be rolled 
back or rolled forward. 
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board. In other words, the bulletin board describes the 
transaction completely, so that we sometimes use "bulletin 
board" and "transaction" interchangeably. 

A bulletin board is a collection of individual bulletins. A 
bulletin describes a change of state of a model entity, that is, 
it contains delta information. At the beginning of a transac 
tion, the bulletin board is empty. Each change to an entity 
creates a bulletin describing the change, so at the end of the 
transaction, the bulletin board contains all of the changes 
that happened during the transaction. 

When a transaction completes, a special event, the transac 

tion end event, is triggered. Update handlers subscribe to 
this event. When they are called, they receive as a parameter 
a pointer to the bulletin board created in the transaction. 
They can then inspect the contents of the bulletin board to 
look for changes that they have to act upon. The 3D graph 
ics module, for example, which, slightly simplifying things, 
is just an update handler, checks for the creation or changes 
of 3D bodies. It then creates a faceted graphics model from 
the change information that is suitable for sending to a 
graphics library. Since it only deals with the delta informa 
tion, the 3D graphics handler will in general complete its job 
more quickly than if it regenerated the whole graphics 
model after each transaction. 

An update handler may also choose to ignore the bulletin 
board information. It will then use the transaction end event 
as a regular opportunity for cleanup tasks or to rescan the 
model. Most update handlers, however, use the information 
in the bulletin board to optimize their work. 

Changes 
The DSM's state manager module uses basic entity services 
to create bulletin board information. To provide systemwide 
transaction handling and the undo mechanism, each entity 
has to follow a few simple conventions. The most important 
of these conventions is that before any kind of change to 
itself, an entity has to announce the change. It does so by 
calling a special log change method, which is provided by 
the entity base classes. 

The log change method does a lot of things. First, it creates 
a bulletin in the bulletin board. The log change method is 
passed a change type from the caller which it also records in 
the bulletin. Using the change type, the changes are classi 
fied, and update handlers can ignore changes of types they 
are not interested in. They can also ignore changes to cer 
tain entity types. Using these two restriction types, update 
handlers can narrow down the search to a few bulletins 
even if the transaction is very large. 

After building the bulletin, the state manager uses the enti 
ty's generic copy method to create a backup copy of the 
entity. Note that the entity is still in the original state since 
the log change method has to be called before any change 
takes place. (To ensure that the convention is followed, we 
have built extensive debugging tools that detect changes 
that are not announced properly.) 

Pointers to both the entity in its current state and the 
backup copy of the entity are maintained in the bulletin 
board. This gives the update handlers a chance to compare 
the data in an entity before and after the change, making it 

possible for an update handler to trigger on changes to indi 
vidual data items in the entity. 

So far. we have only discussed changes to an entity. The 
bulletin board also records creation and deletion informa 
tion for entities. The entity base classes, together with the 
state manager, take care of this. 

hi an undo operation, all changes to entities are reversed. 
An entity that has been reported as deleted will be recre 
ated, and new entities will be marked as deleted. (They will 
continue to exist in the system so that it is possible to roll 
forward again.) If an entity has changes during a transac 
tion, its backup copy will be used to restore the original 
state. Again, we use the generic copy function in the entity 
base classes for this purpose. 

Relation to Action Routines 
The action routines (see article, page 14) define when a 
transaction starts and ends. When the user selects an opera 
tion in the user interface, an action routine will be triggered 
that guides the user through the selection and specification 
process. A transaction is started at the beginning of such an 
action routine. After each significant model change, the ac 
tion routine completes the transaction, thus triggering the 
transaction end event and giving update handlers a chance 
to react to the changes. 

When an action routine terminates without error, all transac 
tions generated within the action routine are usually merged 
into one large transaction. Thus, the user can undo the ef 
fect of the action routine in one step. If an error occurs 
within an action routine, all changes in the action routine 
will be undone using the generic rollback mechanism and 
the information in the bulletin boards. 

Some action routines also implement minisessions. After 
collecting all the options and values, the operation itself can 
be triggered and its effect previewed. If the effect is not 
what the user thought it should be, it can be undone within 
the action routine. The minisession will then use the roll 
back mechanism internally. The user changes parameters, 
triggers the operation again, and finally accepts the outcome 
when it fits the expectations. An example of this in HP PE/ 
SolidDesigner is the blend action routine. 

In general, however, operations can be undone using the 
interactive undo mechanism. At any point, the user can 
choose to roll back to a previous state. For this purpose, 
HP PE/SolidDesigner keeps the last n states (or bulletin 
boards) in memory where n is a user-configurable value. The 
user can also move forward again along the line of states 
that was created in the modeling session. 

Fig. 6 shows HP PE/SolidDesigner's user interface for undo 
operations. 

As discussed earlier, HP PE/SolidDesigner's transaction 
mechanism also offers an interface to external applications, 
that is, the transaction end event. Third-party applications 
subscribe to the event, and from then on, they can monitor 
all changes to the model. One example of an "external" ap 
plication is the 3D graphics module. Parts browsers, which 
also have to react to changes of the model, are another ex 
ample. Finite-element generators can also hook into the 

October 1995 Hewlett-Packard Journal 59 

© Copr. 1949-1998 Hewlett-Packard Co.



Undo 
*â€¢ Backward [I 

F o r w a r d  j l  

Expand 

History  

Max Back Ã­? 

Max  Forward  11  

S t e p s  3 0  

O K  C a n c e l  H e l p  

Fig. 6. User interface for undo operations. 

transaction end event to keep track of the model. Another 
possible external application is one that provides the cur 
rent volume properties of given bodies. (HP PE/SolidDe- 
signer provides volume calculations, but they have to be 
triggered explicitly from the user interface.) The bulletin 
board is the door-opener for external applications, making it 
one of the most important interfaces within HP PE/Solid- 
Designer. 

Conclusion 
This article can only give a very high-level overview of what 
DSM is all about. Much of what really makes DSM usable, 
effective, and efficient is beyond the scope of this discus 
sion. We are confident that the data structure manager is a 

strong and robust building block for any kind of application 
that has to deal with complex data networks. We have found 
that DSM deals with a lot of problems that are typical for 
object databases: 

â€¢ Data abstraction (through a set of base classes) 
â€¢ Object persistence (storing and loading objects) 
â€¢ Object schema evolution (changes in object layouts) 
â€¢ Object clustering (bundling low-level objects to user-level 
objects such as parts and assemblies) 

â€¢ Exchange of clustered objects, fully maintaining connectiv 
ity through unique object IDs) 

â€¢ Transaction concept with undo. 

By solving all of these problems, DSM enables HP PE/ 
SolidDesigner to support typical modeling operations on 
user-level objects (parts, workplanes, etc.). In other words, 
it makes HP PE/SolidDesigner speak in terms that the user 
can easily understand. The support for object exchange is 
the basis for modeling workflow solutions. Apart from this, 
the data structure manager can serve as a general frame 
work for any kind of object-oriented application. 
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Freeform Surface Modeling 
There are two methods for creating freeform surfaces in HP 
PE/SolidDesigner: blending and lofting. This article describes the basics of 
lofting. The geometry engine, which implements the lofting functionality, 
uses a interface, implementation for its geometric interface, but 
takes a multiple-data-type, hybrid approach internally. 

by Michael Metzger and Sabine Eismann 

HP PE/SolidDesigner's kernel functionality consists of sev 
eral modules that communicate through well-defined inter 
faces, supported by logical class definitions and hierarchies. 
In Fig. 1, for example, the geometric data interface for the 
topology engine (the Boolean engine, see article, page 74) 
consists of three basic elements (points, curves, and sur 
faces) and the corresponding utility functions like intersec 
tions. This technique makes it easy to add new functionality. 
For example, introducing new geometry data types is just a 
matter of delivering all member functions of the geometric 
interface for the new geometry type. 

The implementation of such a concept looks simple, but 
reality has shown that it takes a lot of effort to keep the in 
terface clean and to avoid copying and converting data. This 
is especially true for data having connections on both sides 
of the interface, such as pieces of a curve or curves on a 
surface. 

The Geometry Engine 
In designing a completely new implementation of the geo 
metric kernel for a solid modeler one has a chance to avoid 
the problems of older implementations. What are the real 
problems of existing implementations? There are two funda 
mental approaches: NURBS libraries and hybrid methods. 

NURBS libraries have only one data type: NURBS, or non- 
uniform rational B-splines. This data type can represent all 
analytics (like planes, cylinders, spheres, etc.) exactly. This 
means that complex freeform surfaces as well as simple 
analytics are represented with one single data structure. The 
geometrical problems only have to be solved for this single 
type. This sounds promising, but it turns out that the algo 
rithmic stability does not satisfy the requirements of HP 

Topology 
Engine 

Geometric Interface 

Geometry 
Engine 

Fig. 1. The IIP I'K/SolidDesigiicr topology and geometry engines 
communicate through a well-defined geometric interface. 

Library Encapsulator 

Analytic Geometry Package (AGP) 

B-Spline/NURBS Library (SISL) 

Fig. 2. HP PE/SolidDesigner geometry engine. 

Fig. 3. ( A lulled surface, (b) Lolling original rd in ship design 
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Fig. 4. Specifying the tangent profile, a kind of vector field 
along a curve, influences the shape of a surface. 

PE/SolidDesigner. In addition, the performance is poor, es 
pecially when analytic surfaces (represented as NURBS) are 
intersected. 

Hybrid methods are used in the HP PE/ME30 kernel (Romu 
lus). All possible geometry data types are available, and 
clever special case handling results in high performance. 
The disadvantage is that the introduction of a new data type 
is an enormous effort. In addition, the Romulus kernel 
doesn't distinguish cleanly enough between geometry and 
topology, so building new functionality on this kernel can be 
very cumbersome and error-prone. 

In HP PE/SolidDesigner we tried to combine the advantages 
of both approaches. The advantage of a NURBS library (one 
data type) is realized in the class hierarchy of HP PE/Solid 
Designer: the geometric interface knows only points, curves, 
and surfaces. For the internal geometry structure the hybrid 
method was chosen. Data types include analytic types 
(plane, sphere, cylinder, cone, torus), semianalytic types 
(parallel swept B-spline, spun B-spline), B-splines, and 
NURBS as an extension of B-splines. 

Fig. 5. Multiply connected curves. 

As shown in Fig. 2, HP PE/SolidDesigner's geometry engine 
consists of three parts: the library encapsulator, the analytic 
geometry package (AGP), and the B-spline/NURBS library 
(SISL). 

The library encapsulator delivers many convenience func 
tions for the geometric interface and ensures its integrity. All 
functions dealing with geometry have to pass through the 
geometric interface. The only exception is a small part of 
the blending algorithm, which for performance reasons by 
passes the library encapsulator and calls SISL directly. 

The AGP was developed by DCUBED Ltd. of Cambridge, 
England and SISL was developed by the Senter for Industrie- 
forskning of Oslo, Norway. 

Freeform Surface Modeling 
There are two methods for creating freeform surfaces in HP 
PE/SolidDesigner: blending and lofting. The remainder of 
this article describes the basics of lofting. 

Lofting means the (exact) interpolation of a set of points or 
curves by a smooth curve or surface. Fig. 3 shows examples 
of lofting. Lofting originated in ship design and was used a 
long time before computers were invented. 

The mathematical solution of this problem leads to the defi 
nition of splines. There are many spline types, each having 
its specific advantages and disadvantages. The most com 
mon spline types are BÃ©zier splines, B-splines, and NURBS. 

For CAD applications the most general splines are NURBS, 
since they can represent analytics exactly. This can be im 
portant when it comes to intersections of splines and ana 
lytic to B-splines are NURBS with all weights equal to 
1. They are more stable and faster in intersections but can 
not represent analytics (except the plane) exactly. B-splines 
are made up of a sequence of BÃ©zier pieces, connected ac 
cording to their continuity at the transition points. We won't 
go into detail concerning spline mathematics here since 
there is abundant literature on this topic.1-2 

In addition to the pure interpolation of points and curves, 
lofting allows the definition of tangent profiles at each 3D 
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Fig. points Reparameterizing surfaces by specifying matching points 
on different input curves. 

curve. A tangent profile is a kind of vector field along the 
given curve, as shown in Fig. 4. Both the directions and the 
lengths of the tangents influence the shape of the surface. 

In practical applications the user normally wants to interpo 
late not only a series of single curves but also a series of 
multiply connected curves, as shown in Fig. 5. For this pur 
pose HP PE/SolidDesigner connects the incoming profiles to 
a single B-spline curve. It is not required that a profile be 
smooth; it only needs to be CÂ° continuous (closed). The CÂ° 
locations in the profiles later correspond to edges in the 
complete model. 

In addition to tangent profiles, the parameterization of the 
input curves is another important factor determining the 
shape of the lofted surface. In HP PE/SolidDesigner, para 
meterization can be influenced by splitting the input curves 
at arbitrary points (match points) and defining different 
length ratios in the subsequent profiles (Fig. 6). Within a 
curve segment, HP PE/SolidDesigner tries to create a para 
meterization according to the chord length of the curve 
(chorclal parameterization). 

Fig. 8. Topological elements: vertex, edge, loop, face. 

It is also possible to create closed (periodic) surfaces using 
lofting, hi this case the first and last profiles are identical 
(Fig- T). 

Topology 
Before explaining how topology is attached to the loft geom 
etry, some definitions are needed (see Fig. 8): 

â€¢ A vertex lies on a 3D point and can be \iewed as the corner 
of a face. 

â€¢ An edge is a bounded portion of a space curve. The bounds 
are given by two vertices. 

â€¢ A loop represents a connected portion of the boundary of a 
face and consists of a sequence of edges. 

â€¢ A face is a bounded portion of a geometric surface in space. 
The boundary is represented by one or more loops of edges. 

Given a B-spline surface obtained from the spline library 
using the profile interpolation method, topology has to be 
built on this surface to get a loft body. As a boundary for the 
face, a loop consisting of four edges is created (Fig. 9). The 
edges lie on the first and last interpolation curves (el and 
e3) and on the left and right boundaries of the B-spline sur 
face (e2 and e4). 

The interpolation profiles don't have to consist of only one 
curve per profile. For more complex shapes different curves 
can be combined in a profile. It is necessary to generate a 
face for each matching set of curves. One way to do this is 
to use lofting to create a B-spline surface for each matching 
set and then build the appropriate faces on these surfaces. 
Because there is no exact specification of how the left and 
right boundaries of these B-spline surfaces should look 
there may be gaps between the faces (Fig. 10a). This would 

Fig. 7. Closed (periodic) surface created using lolling. Fig. a Building topology on a B-spline surface by creating a 
IxiiiiKhiry consisting of four edges. 
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lead to an illegal body, since all neighboring faces in a body 
have to share a common edge. When there are gaps between 
the faces no common edge can be found and it isn't possible 
to generate a valid body. 

To eliminate gaps, the curves in one profile are joined tem 
porarily and only one loft surface is generated. This B-spline 
surface then is split into appropriate parts at the start and 
end points of the interpolation curves. The faces are then 
built on the split surfaces. This ensures that there is no gap 
between the faces. 

To match the correct curves or the correct portions of the 
curves it is necessary that all curves in a matching set have 
the same parameter interval. This is ensured by reparame- 
terizing all curves belonging to the same matching set to the 
same  a  pa ramete r  in te rva l .  Af te r  th i s  a l l  cu rves  o f  a  
profile are joined and the joined curves then automatically 
have the same parameter interval. 

A valid solid body must describe a closed volume. For this 
reason only closed interpolation profiles are used. From 
these the lofting facility will generate faces forming a tube, 
which still has two open ends (Fig. 11). For each of the two 

Fig. 11. Lofting generates a tube. Endfaces are added to make a 
solid body. 

ends a planar face is added. Theoretically these top and bot 
tom faces can lie on any type of surface as long as the first 
and last interpolation profiles lie on the respective surfaces. 

Lofting in HP PE/SolidDesigner 
The spline library allows arbitrary 3D curves in space as 
interpolation profiles for lofting. To simplify the input pro 
cess for the user, only planar profiles are allowed in the cur 
rent release. These planar profiles can easily be generated in 
a workplane using 2D creation methods. All workplanes 
containing the profiles are gathered in a workplane set. The 
user specifies which set of curves should match in lofting. 
Different matching specifications will produce different loft 
results (Fig. 12). 

Because the spline library only accepts B-spline curves as 
interpolation curves the analytic curves in the profiles have 
to be approximated by B-splines. Another reason for this is 
the above-mentioned joining of curves in a profile to obtain 
only one B-spline surface. 

Fig. 10. (a) Illegal body with gaps between faces, (b) The system 
generates a common edge to eliminate gaps. 

Fig. of Changing loft results by specifying different sets of 
matching curves. 
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Fig. 13. Adding tangent conditions to change the shape of a body, 
(a) By defining a tangent direction to one or more vertices in the 
profile, (b) By specifying a constant direction for the entire profile, 
(c) By is an angle at one point of the profile.  This angle is 
kept constant along the entire profile. 

Another possibility for influencing the shape of the loft body 
is to add tangent conditions, hi HP PE/SolidDesigner there 
are three different methods for doing this (Fig. 13): 

â€¢ Define a tangent direction to one or more vertices in the 
profile. 

â€¢ Specify a constant direction for the entire profile. 
â€¢ Specify an angle at one point of the profile. This angle is 

kept constant along the entire profile. 

For topology creation, especially face generation, the curves 
underneath the bounding edges of the faces have to be de 
termined. Because the lofting algorithms only generate one 
B-spline surface, to get a properly connected tube this sur 
face has to be split somehow. Because the single curves on 
the profiles have already been reparameterized to the same 
parameter interval for correct matching, this knowledge can 
be used to split the B-spline surface correctly. The bound 
aries of the split surface all lie on isoparametric curves of 
the loft surface. An isoparametric curve is a curve on a sur 
face that has a constant u or v parameter value, hi our case 
the loft direction is the v-parameter direction of the surface. 
This means that the left and right boundary curves of the 
faces are v-isoparametric curves. Splitting the surface along 

Fig. solid HP PE/SolidDesigner checks for various properties that solid bodies shouldn't have, (a) Self-intersecting body, (b) Vanishing 
noniials or derivatives, (e) Intersection with the top or bottom face, (d) Change of convexity at an edge. 
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the v-parameter values of the start points and endpoints of 
the interpolation curves will result in the desired subsur 
faces. The edges created on these v-isoparametric curves 
are always common to two neighboring faces. 

Analytic Surface Type Detection 
From a mathematical point of view the interpolation task 
that constitutes lofting is finished when the B-spline surface 
is created. From a CAD user's point of view the work is only 
partially finished. The reason is that it very often happens 
that a lofted body contains B-spline surfaces that represent 
analytical surfaces, mostly planes and cylinders. A CAD user 
wants to recognize these analytics in later processes for 
easier control in manufacturing. Data size, intersection per 
formance, and stability are much better when dealing with 
analytics rather than approximated geometry. For these rea 
sons a in analytic detection algorithm is implemented in 
HP PE/SolidDesigner which replaces the B-spline strips by 
analytics after the B-spline creation and before the final 
topology is built. 

The algorithm is based on the geometry of the input profiles. 
If curves of the same type are matched the basic definitions 
of these curves are compared (for example, the center of a 
circle, its radius, its starting point, etc.). Then, starting from 
the first two profiles, a corresponding analytic surface is 
built. In the next steps the other curves along the profiles (in 
the loft direction) are examined to see whether they fit this 
surface. If they do, the corresponding B-spline strip is ex 
changed and the neighboring topological information is 
adopted. This is done for each curve in the profile loop. 
Since the algorithm is based on the profiles and not on the 
lofted B-spline surface it is extremely fast and takes less 
than 1% of the time required for the lofting operation. 

Special Cases 
Lofting is a powerful tool for creating freeform surfaces in 
HP PE/SolidDesigner. On the other hand, there is a danger 
of creating surfaces that are not manufacturable or that 
have properties that can cause problems in later operations. 
For this reason, HP PE/SolidDesigner applies extra checks 
to ensure that the result of lofting is a clean body. These 

Fig. 16. Spring created using the workplane inclined command. 

checks take extra time, normally more than the creation of 
the surface itself. HP PE/SolidDesigner therefore offers a 
button on the user interface to switch off these checks. It 
makes sense to switch the tests off in the surface design 
phase. For the final acceptance, however, it is recommended 
that the tests be run, since a corrupt model cannot be re 
paired later. 

In the following examples we show the various properties a 
solid model shouldn't have. HP PE/SolidDesigner checks all 
of them and rejects the lofting operation if at least one of 
them appears. In the preview mode, the user can examine 
the object to find the root cause for the problem. The forbid 
den properties are: 
A self-intersecting body (Fig. 14a) 
Vanishing normals or derivatives (Fig. 14b) 
Intersection with the top or bottom face (Fig. 14c) 
Change of convexity at an edge (Fig. 14d). This test is al 
ways done and ensures that the specific edge can be 
blended later. HP PE/SolidDesigner will insert a topological 
vertex at the place where the convexity changes. 

Practical Experience with Lofting 
The most critical point in using lofting is the proper defini 
tion of the profiles and the workplanes. It turns out that in 
many real-life applications the profiles do not vary at all 
(e.g., helical constructions) or only a little. HP PE/SolidDe 
signer supports these surface classes by offering special 

Fig. com Drill created using a special HP PE/SolidDesigner com 
mand given define a set of parallel workplanes, each turned by a given 
angle around an axis orthogonal to the base workplane. 

Fig. 17. Positioning too many profiles over too short a distance 
results in a wavy surface. 
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commands to create series of workplanes in the 3D space. 
These commands let the user define a set of parallel work- 
planes, each turned by a given angle around an axis orthogo 
nal to the base workplane. Objects like drills can be created 
very easily (Fig. 15). 

Using the "workplane inclined" command defines a set of 
workplanes at an angle to the base workplane. This is a way 
to create springs and other helical shapes (Fig. 16). 

These special commands do not help in all situations. Some 
times the complete workplane set has to be defined by hand. 
Here it is important to know some basic behavior of the loft 
ing algorithm to avoid subsequent problems with the Bool 
ean topology engine. Often lofting is not used to create a 
completely new body but to cut off some existing geometry 
(loft remove) or to fill gaps (loft add). The most important 
property of lofting the user must keep in mind is that the 
surface starts oscillating if too many conditions (profiles, 
tangency conditions) are specified on too short a distance. 

The temÃ­ "short" means short relative to the total object 
size. Positioning ten profiles over a distance of 100 millime 
ters causes no problems. Doing the same over a distance of 
one millimeter creates an awful surface. The same is true for 
the complexity of the profiles and the way the profiles 
change from one workplane set to another (Fig. 17). 

Fig. 18. (a) In creating a helical shape connected to a cylindrical 
shaft, if the helix base profile touches the cylinder a nonmanufac- 
turable part, results since I he freeform helix oscillates around the 
cylinder surface, (b) If the helix base profile cuts into the cylinder 
a little the oscillating surface lies completely inside the cylinder 
and the result. -Â¡ilimi uf i lie two bodies will yield the exported result. Fig. 19. (a) Sweeping, (b) Skinning, (c) Cupping. 
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For this reason, one should never try to approximate other 
geometry using lofting in combination with a Boolean opera 
tion. It is much safer to create the loft tool body a little big 
ger to get clear intersections later. The example of Fig. 18 
illustrates this. The task is to create a helical shape con 
nected to a cylindrical shaft. The "workplane inclined" com 
mand is used to position the profiles for the loft. If the base 
profile touches the cylinder the unification of the lofted body 
and the cylinder will result in a nonmanufacturable part since 
the freeform helix oscillates around the cylinder surface 
(Fig. 18a). 

However, if the profile cuts in a little the oscillating surface 
will of completely inside the cylinder and the unification of 
both bodies will yield the expected result, as shown in 
Fig. 18b. 

Summary 
Lofting in HP PE/SolidDesigner is a powerful tool that en 
ables the CAD user to create various freeform shapes within 
a solid model. The main task being solved by the user is the 
optimal selection of the profiles and clever positioning of 
the workplanes in the 3D space. With a little experience to 

gain familiarity with the behavior of the surface interpola 
tion algorithms, many design tasks can be done in a short 
time. However, some tasks are cumbersome or nearly im 
possible using lofting, but are easily done using other HP 
PE/SolidDesigner capabilities. In electromechanical and 
mechanical engineering these tasks include mainly skinning, 
capping, and sweeping. Sweeping (Fig. 19a) is related to 
lofting since it means creating a surface by sweeping a pro 
file along an arbitrary 3D curve. Skinning (Fig. 19b) is the 
task of defining a smooth surface through a net of 3D 
curves. Capping (Fig. 19c) means the replacement of a 
closed loop on a body by some smooth, tangentially con 
nected surface; it is a subclass of skinning. Although these 
functionalities are the classical domain of surface modeling 
systems the open architecture of HP PE/SolidDesigner 
readily accommodates their implementation. 

References 
1. 1. G. Farm, Curves and Surfaces for Computer-Aided Geometric 
Design, Academic Press, 1988. 
2. C. deBoor, A Practical Guide to Splines, Applied Mathematical 
Sciences no. 27, Springer, 1978. 

68 October 1995 Hewlett-Packard Journal 
© Copr. 1949-1998 Hewlett-Packard Co.



Common Lisp as an Embedded 
Extension Language 
A large Common of HP PE/SolidDesigner's user interface is written in Common 
Lisp. Common Lisp is also used as a user-accessible extension language. 

by Jens Kilian and Heinz-Peter Arndt 

Ã­ 

HP's PE/ME10 and PE/ME30 CAD systems contain an exten 
sion language based on the macro expansion paradigm. The 
user's input (commands and data) is separated into single 
tokens, each of which denotes a command, function, vari 
able, macro name, number, string, operator, or other syntac 
tic element. Commands, functions, and arithmetical expres 
sions are evaluated by the language interpreter. Each macro 
name is associated with a macro definition, which is another 
token sequence (either predefined by the system or defined 
by the user). When the language interpreter encounters a 
macro name, it substitutes the corresponding token se 
quence (this process is called expanding the macro) and 
continues with the first token of the expansion. 

Macro expansion languages are easy to implement and have 
been used in many applications where one would hardly 
expect to find an embedded language. For example, the TgX 
typesetting system contains a macro interpreter. 

The HP PE/ME10 and PE/ME30 macro language includes 
powerful control constructs (such as IF/THEN/ELSE and LOOP/ 
EXIT_IF/END_LOOP), local variables, and a mechanism for pass 
ing parameters to a macro when it is being expanded. These 
constructs make it possible to solve general programming 
problems. Because the HP PE/ME10 and PE/ME30 macro 
language is interpreted, programs can be developed in an 
interactive fashion and modifications can immediately be 
tried out. However, the resulting program is slower than a 
program written in a compiled language like C. HP PE/ME10 
and PE/ME30 macros can be compiled to an intermediate 
form which executes faster than the pure interpreted ver 
sion, but which is still slower than an equivalent C program. 

One disadvantage of the HP PE/ME10 and PE/ME30 macro 
language is that it is nonstandard. No other application uses 
the same language, and programs written in it have to be 
ported when the user switches to another CAD system. 

Common Lisp 
Common Lisp was chosen as an extension language for HP 
PE/SolidDesigner because it is nonproprietary and widely 
used. 

Surprising as it may be, Lisp is the second oldest high-level 
programming language still in common use. The only older 
one is FORTRAN. Lisp is to researchers in artificial intelli 
gence what FORTRAN is to scientists and engineers. 

Lisp was invented by John McCarthy in 1956 during the 
Dartmouth Summer Research Project on Artificial Intelli 
gence. The first commonly used dialect was Lisp 1.5, but 

unlike FORTRAN (or any other imperative language) Lisp is 
so easy to modify and extend that over time it acquired 
countless different dialects. For a long time, most Lisp sys 
tems belonged to one of two major families, Interlisp and 
Maclisp, but still differed in details. In 1981, discussions 
about a common Lisp language were begun. The goal was to 
define a core language to be used as a base for future Lisp 
systems. In 1984, the release of Common Lisp: The Language1 
provided a first reference for the new language. An ANSI 
Technical Committee (X3J13) began to work on a formal 
standardization in 1985 and delivered a draft standard for 
Common Lisp in April 1992. This draft standard includes 
object-oriented programming features (the Common Lisp 
Object System, or CLOS). For a more detailed account on 
the evolution of Lisp, see McCarthy2 and Steele and 
Gabriel.3 

HCL, the implementation of Common Lisp used in HP PE/ 
SolidDesigner, is derived from Austin Kyoto Common Lisp 
(itself descended from Kyoto Common Lisp). It corresponds 
to the version of the language described in reference 1, but 
already incorporates some of the extensions from reference 
4 and the draft standard. 

Applications of Extension Languages 
Adding extension languages to large application programs 
has become a standard practice. It provides many advan 
tages, some of which may be not as obvious as others. For 
the normal user of a system, an embedded programming 
language makes it possible to automate repetitive or tedious 
tasks. An inexperienced user can set it up as a simple re 
cord/playback mechanism, while "power users" can use it to 
create additional functionality. If the extension language has 
ties to the application's user interface, user-defined function 
ality can be integrated as if it were part of the original 
application. 

If the application provides an API for adding extensions on a 
lower level, the extension language can itself be extended. 
This enables makers of value-added software to integrate 
their products seamlessly into the main application. As an 
example, the HP PE/SheetAdvisor application has been im 
plemented within HP PE/ME30, offering a user interface 
consistent with the rest of the program. 

As a final step, portions of the application can themselves be 
implemented in the embedded language. An example would 
be I he popular GNU Emacs text editor, a large part of which 
is written in its embedded Lisp dialect. 
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A large part of HP PE/SolidDesigner, too, is written in its 
own extension language â€” about 30 percent at the time of 
writing. Most of this 30 percent is in HP PE/SolidDesigner's 
user interface. 

Lisp in HP PE/SolidDesigner 
Fig. 1 shows the major components of HP PE/SolidDesigner. 
The Lisp subsystem is at the very core, together with the 
Frame (operating system interface) and DSM (data structure 
manager, see article, page 51) modules. All other compo 
nents including Frame and DSM are embedded into the Lisp 
subsystem. This indicates that each component provides an 
interface through which its operations can be accessed by 
Lisp programs. 

The introduction of new functionality into HP PE/SolidDe 
signer is usually done in the following steps: 

â€¢ Implement new data structures and operations in C++ 
â€¢ Add Lisp primitives (C++ functions callable from Lisp) for 

accessing the new operations 
â€¢ Add action routines to implement new user-visible com 

mands, using the Lisp interface to carry out the actual 
operations 

â€¢ Add menus, dialog boxes, or other graphical user interface 
objects to access the new commands. 

As long as the Lisp interface â€” the primitive functions â€” is 
agreed to in advance, this process can be parallelized. A 
user interface specialist can work on the action routines and 
menus, calling dummy versions of the interface functions. 

The article on page 14 describes, from a user interface de 
veloper's perspective, how action routines are written and 
how menus and dialogs are created. The mechanisms used 
there are not part of the Common Lisp standard but are ex 
tensions provided by the HCL dialect. 

Fig. 1. HP PE/SolidDesigner system architecture. HCL is the 
Common Lisp subsystem. All components including Frame 
(operating system interface) and DSM (data structure man 
ager) have interfaces to Lisp. K2 is the solid modeling kernel. 
PPG is the planar profile generator. 
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Action Routines 
Action routines implement the commands that a user types 
or issues via user interface elements to HP PE/SolidDe 
signer. Commands are identified by their names, which are 
Lisp symbols evaluated in a special manner (similar to the 
SYMBOL-MACROLET facility in the Common Lisp Object Sys 
tem). Each action routine is actually an interpreter for a 
small language, similar in syntax to the command language 
used in HP PE/ME10 and PE/ME30. Like HP PE/ME10 and 
PE/ME30 commands, action routines can be described by 
their syntax diagrams. Fig. 2 contains the syntax diagram for 
a simplified version of HP PE/SolidDesigner's exit com 
mand. Below the syntax diagram is a state transition graph 
which shows how the command will be processed. 

The definition of an action routine corresponds closely to its 
syntax diagram. The defining Lisp expression, when evalu 
ated, generates a normal Lisp function that will traverse the 
transition graph of the state machine when the action rou 
tine is run. For example, the following is an action routine 
corresponding to the syntax diagram of Fig. 2: 

(de fec t ion  s imp le_ex i t  

( f l a g )  ;  l o c a l  v a r i a b l e  

( ;  state descr ipt ions 

(start nil 
"Terminate  PE/Sol idDes igner?"  
nil 

( : y e s  ( s e t q f l a g t )  a n s w e r - y e s  e n d )  
( : n o  ( s e t q  f l a g  n i l )  a n s w e r - n o  e n d )  
(otherwise (d isp lay_error  "Enter  e i ther  :YES or  :NO." |  n i l  s tar t ) )  

(end (do-it) 
nil 
nil)) 

( ;  local  funct ions 

(do-it () 
(when f lag 

(quit))))) 

As can be seen in this example, an action routine can have 
local variables and functions. Local variables serve to carry 
information from state to state. Local functions can reduce 
the amount of code present in the state descriptions, en 
hancing readability. 

When HCL translates this action routine definition, it pro 
duces a Lisp function which, when run, traverses the state 
transition graph shown in Fig. 2b. If a state description con 
tains a prompt string, as in the start state in the example, the 
translator automatically adds code for issuing the prompt 
and reading user input. Effectively, the translator converts 
the simple syntax diagram into the more detailed form. 

For the example action routine, the translator produces a 
Lisp function definition much like the following: 

 Dec la ra t ions  o f  some ex te rna l  func t ions ,  fo r  more  e f f i c ien t  ca l l ing  

(p roc la im  ' ( f unc t i on  ge t -pa ramete r  ( t t ) t ) )  
(proc la im ' ( funct ion match-otherwise ( t )  t ) )  
(proc la im ' ( funct ion t r igger -ac t ion-s ta te- t rans i t ion-event  ( t  Sopt iona l  t )  

t)) 
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(a) 

o the r  i npu t  
i s s u e  e r r o r  m e s s a g e  

(b) 

Fig. 2. (a) Simplified syntax of the exit command, (b) State 
transition diagram for the exit command. 

 T rans fo rmed  ac t i on  rou t i ne  

(defun s imple_ex i t  (&rest  argument- l is t  &aux input )  

( l e t  ( f l a g )   l o c a l  v a r i a b l e  

( l a b e l s  ( ( d o - i t  ( )   l o c a l  f u n c t i o n  
(when f lag 
(quit)))) 

(block ni l  
( tagbody 

 l abe l  f o r  s ta te  " s ta r t "  
1 

 p romp t i ng  i n  s t a te  " s ta r t "  
(setq input  (get -parameter  argument- l is t  "Terminate HP PE/Sol id  
Designer?"))  

 pa t te rn  ma tch ing  i n  s ta te  " s ta r t "  
(cond ((equal input :yes) 

( s e t q  f l a g  t )   a c t i o n  t a k e n  
( t r i gger -ac t ion -s ta te - t rans i t i on -even t  ' answer -yes )  

( g o  0 Â »   t r a n s i t i o n  t o  " e n d "  s t a t e  

((equal input :no) 

(se tq  f lag  n i l )   ac t ion  taken 
( t r i gger -ac t ion -s ta te - t rans i t i on -even t  ' answer -no)  

( g o  0 ) )   t r a n s i t i o n  t o  " e n d "  s t a t e  

( (match-o therwise input )  

(d isplay_error "Enter ei ther :YES or :NO.")  

( g o  1  ) ) )   t r a n s i t i o n  t o  " s t a r t "  s t a t e  

 l a b e l  f o r  s t a t e  " e n d "  

 i n i t i a l  ac t i on  fo r  s ta te  "end"  
(do-it) 

 ex i t  f rom ac t i on  rou t i ne  
(return)))))) 

Transitions in the state machine are transformed into goto 
statements within the function's body. The conditional con 
struct cond represents decisions, like the three-way branch 
in state start. Before each state transition, the code can trig 
ger an external event to enable graphical feedback in menus 
or dialogs. 

The actual translation is somewhat more complicated be 
cause errors and other exceptional events must be taken 
into account. The translator also adds code to support de 
bugging and profiling of an action routine. This code is 
stripped out when building a production version of HP PE/ 
SolidDesigner. 

Compiling Lisp Programs 
It has often been said that Lisp is inherently slow and cannot 
be applied to application programming (one common joke is 
that the language's name is an acronym for "Large and In 
credibly Slow Programs"). This is not true. Even very early 
versions of Lisp had compilers.3 Lisp systems have even 
beaten FORTRAN running on the same machine in terms of 
numerical performance. 

In HCL, the Lisp compiler takes a Common Lisp program 
and translates it into an intermediate C++ program, which is 
then compiled by the same C++ compiler that is used to 
translate the nonLisp components of HP PE/SolidDesigner. 
This approach has several advantages: 

> The Lisp compiler can be kept small and simple (only 12,500 
noncomment lines of code, less than 5% of the total amount 
of Lisp code) 

â€¢ The Lisp compiler does not need to be retargeted when 
porting to a different machine architecture 

â€¢ The Lisp compiler does not need to fully optimize the gener 
ated code; this task can be left to the C++ compiler 

â€¢ The generated code is fully call and link compatible with the 
rest of the system 

â€¢ The generated code can be converted to a shared library 
and dynamically loaded into a running HP PE/Solid 
Designer. 

The Lisp compiler is itself written in Lisp. Bootstrapping a 
new compiler version is easy because an interpreter is 
available. 

The calling conventions for compiled Lisp functions are 
such that interpreted and compiled functions can transpar 
ently call each other. This allows keeping most of the Lisp 
code in compiled form, even when using the interpreter to 
develop new programs. 

Continuing the above example, here is the C++ code that the 
Lisp compiler produces for the simplified translated action 
routine (reformatted for better readability): 

/ /  Header  f i le  dec lar ing s tandard L isp data  s t ruc tures and funct ions 
/ /  ( for  example,  LOBJP is  the type of  a  gener ic  pointer- to-L isp-object )  

l i n c l ude  <cmp inc lude .h>  

/ /  Dec larat ions for  the compi led code (normal ly  wr i t ten to  a  separate  f i le ,  
/ / i nc luded  here  fo r  c la r i t y )  

static void LI (...); 
s tat ic  void L2ILOBJP*);  

s tat ic  char  *Cstar t ;  

static int Csize; 
stat ic  LOBJP Cdata;  
s ta t ic  LOBJP W[14) ;  

/ /  Funct ions def ined in th is f i le 

/ /  Data  for  communicat ion wi th  the L isp 
/ / l o a d e r  

/ /  Run-t ime L isp objects 
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s t a t i c  v o i d  L n k T 1 3 ( )  ;  / /  L i n k s  t o  e x t e r n a l  L i s p  f u n c t i o n s  
s ta t i c  vo id  ( *Lnk13) ( |  =  LnkT13 ;  / /  ( see  be low fo r  an  exp lana t ion )  
stat ic void LnkT1 1();  
stat ic void (*Lnk11)()  = LnkT11; 
s ta t i c  LOBJPLnkTLMO(LOBJP) ;  
stat ic LOBJP (*LnkLI10)(LOBJP ) = LnkTLIIO; 
stat ic LOBJP LnkTLI9(int narg, . . .)  ;  
stat ic LOBJP (*LnkLI9)( int narg, . . .)  = LnkTLIS; 
stat ic LOBJP LnkTLI8(LOBJP ,  LOBJP ) ;  
stat ic LOBJP (*LnkLI8)(LOBJP , LOBJP ) = LnkTLIS; 

/ /  In i t ia l izat ion funct ion,  ca l led immediate ly  a f ter  the f i le  is  loaded 

vo id example_in i t ia l ize(char  *s tar t ,  in t  s ize,  LOBJP data)  
{ 

/ /  Reserve space on the L isp s tack 

r eg i s t e r  LOBJP  base=vs_ top ;  
r eg i s te r  LOBJP  sup=base+0 ;  
vs_top=sup;  
vs_check ;  

/ /  Store data suppl ied by the loader ,  inc lud ing L isp ob jects  
/ /  tha t  were  ex t rac ted  f rom the  o r ig ina l  source  code and tha t  
/ /  wi l l  be needed at  run- t ime (e.g. ,  s t r ings and symbols) .  

Cstar t=star t ;  
Csize=size; 
Cdata=data;  
se t_W_data(VV,14,data ,s tar t ,s ize) ;  

/ /L ink  the  compi led  func t ion  "L I "  to  the  L isp  symbol  s to red  in  VV[6 ] ,  
/ / w h i c h  i s  " S I M P L E _ E X I T " .  

MFnew(VV[6] , (void(*) ( ) )L1,data) ; / /  

/ /Res to re  L i sp  s tack  

vs_ top=vs_base_mod=base ;  
} 

/ /  Compi led  func t ion  SIMPLE_EXIT 

static void L1(...) 
{ 

reg is te r  LOBJP*base=vs_base;  / /  Reserve  space  on  the  L isp  s tack  
reg is te r  LOBJP*sup=base+3;  
vs_check ;  

{  L O B J P  V I ;  / /  F e t c h  A R G U M E N T - L I S T  f r o m  t h e  L i s p  
/ /  s tack  

vs_top[0]=Cni l ;  
{  LOBJP *p=vs_top;  

f o r (  

/ /  Set  up var iables INPUT and FLAG 

V1=(base[0](;  
vs_top=sup;  
{ LOBJP V2; 

V2= Cnil; 
base[1 ]=Cni l ;  

T 3 : ;  / /  L a b e l  " 1 "  Â ¡ n  T A G B O D Y  
V2=(* (LnkLI8) ) ( (V1) ,VV[0] ) ;  / / (GET-PARAMETER ARGUMENT-LIST 
Â ¡ f ( ! ( e q u a l ( ( V 2 ) , V V [ 1 ] ) ) ) {  / /  F i r s t  c l a u s e  o f  C O N D  c o n s t r u c t  

goto T8; 
} 
b a s e [ 1  ] = C t  / /  ( S E T Q  F L A G  T )  
( v o i d ) ( ( * ( L n k L I 9 ) ) ( 1 , V V [ 2 ] ) )  ' A N S W E R - Y E S )  
g o t o T 4 ;  / / ( G O O )  

T8:; 
Â¡f(!(equal((V2),W[3]))){ 

gotoT14;  
} 
base[1]=Cni l ;  
(void)((*(LnkLI9))(1,VV[4])); 
goto T4; 

T14:; 
if(((*(LnkLMO))((V2)))==Cnil){ 

goto T4; 
} 
base[2]=VV[5] ;  
vs_top=(vs_base=base+2)+1;  
(void) (*Lnk1 1)(); 
vs_top=sup;  
goto T3; 

T4:; 
vs_base=vs_top;  
L2(base); 
vs_top=sup;  
base[2]= Cnil; 
vs_top=(vs_base=base+2)+1;  
return; 

/ /  Second c lause o f  COND const ruc t  

/ /(SETQ FLAG NIL) 
// (TRIGGER-.. .-EVENT 'ANSWER-NO) 
/ / (GOO) 
/ /  Th i rd  c lause o f  COND const ruc t  

/ / (DISPLAY-ERROR". . . "  

/ / ( G 0 1 )  
/ /  Label  "0"  in  TAGBODY 
/ /Cal l  (DO-IT) ,  passing a pointer  to 
/ /  the lex ica l  var iables of  SIMPLE_EXIT 

/ /  Return f rom SIMPLE_EXIT 

/ /  Compi led local  funct ion DO-IT 

stat ic void L2(LOBJP*baseO) 

reg is ter  LOBJP*base=vs_base;  / /  Reserve space on the  L isp  s tack  
reg is ter  LOBJP*sup=base+1;  
vs_check;  
vs_top=sup;  
i f ( ( b a s e O [ 1 ] ) = = C n i l ) {  / /  C o n d i t i o n :  l e x i c a l  v a r i a b l e  F L A G  

goto T26; 

vs_base=vs_top;  
(void)(*Lnk13)() ;  
return; 

T26:; 
base[OJ= Cnil; 
vs_top=(vs_base=base+0)+1;  
return; 

/ / (QUIT)  

/ /Re tu rn  f rom DO- IT  

/ /  L inks to  externa l  funct ions.  These funct ions are ca l led ind i rect ly ,  v ia  
/ /  C++ funct ion  po in ters .  A t  the  f i rs t  ca l l ,  the  cor responding compi led 
/ /  funct ion is  looked up and stored in  the funct ion pointer ,  thus avoid ing 
/ / the  L isp  ca l l ing  overhead on subsequent  ca l ls .  

s tat ic  vo id LnkT13()  
{ / /  QUIT;  ca l led v ia  normal  L isp ca l l ing convent ions 

ca lLor_ l ink (VV[13] , ( in t * )&Lnk13) ;  
} 

stat ic void LnkT11() 
{ / /  DISPLAY-ERROR; cal led v ia normal  L isp cal l ing convent ions 

ca lLor_ l ink (VV[11 ] , ( in t * )&Lnk11) ;  
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static LOBJP LnkTLIIOILOBJP argO) 
{// MATCH-OTHERWISE; declared to take exactly one parameter, which 
// can be passed without using the Usp stack. 

return(LOBJP)call_fproc(W[10],(int*)&LnkLMO,1,argO); 

static LOBJP LnkTLI9(int narg, ...) 
{//TRIGGER-ACTION-STATE-TRANSITION-EVENT; declared to take one 
//fixed and one optional parameter, which can be passed without using 
//the Lisp stack. 

va j i s tap ;  
va_start(ap, narg); 
LOBJP result=(LOBJP)call_vproc(W[9],(int*)&LnkLI9,narg,ap); 
va_end(ap); 
return result; 

} 

static LOBJP LnkTLI8(LOBJP argO, LOBJP argl) 
{ //GET-PARAMETER; declared to take exactly two parameters, which 

// can be passed without using the Lisp stack. 

return(LOBJP)callJproc(W[8],(int*)&LnkLI8,2,argO,argl); 
} 

This example illustrates several important properties of 
compiled Lisp code. First, the C++ code still has to access 
Lisp data present in the original program; for example, it has 
to attach a compiled function to a Lisp symbol naming that 
function. Second, parameter passing for Lisp functions is 
usually done via a separate stack, but the overhead for this 
can be avoided by declaring external functions. In a similar 
way (not shown here), the overhead of using Lisp data struc 
tures for arithmetic can be avoided by introducing type dec 
larations (which are not compulsory as in C++). Third, some 
Lisp constructs (e.g., lexical nesting of function definitions) 
have no direct C++ equivalent. 

Compiling a Lisp program can have quite a dramatic impact 
on its performance. HP PE/SolidDesigner takes about one 
half to two minutes to start on an HP 9000 Series 700 work 
station. If all the Lisp files are loaded in uncompiled form, 
start time increases to between one half and one hour. 

Conclusion 
A large part of HP PE/SolidDesigner is written in Common 
Lisp. To the developers, this approach offered a very flex 
ible, interactive mode of programming. The finished pro 
grams can be compiled to eliminate the speed penalty for 
end users. 

Common Lisp is also used as a user-accessible extension 
language for HP PE/SolidDesigner. It is a standardized, open 
programming language, not a proprietary one as in HP 
PE/ME10 and PE/ME30, and the developers of HP PE/Solid 
Designer believe that this will prove to be an immense 
advantage. 
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Boolean Set Operations with Solid 
Models 
The Boolean engine of HP PE/SolidDesigner applies standard and 
nonstandard Boolean set operations to solid models to perform an 
impressive variety of machining operations. Parallel calculation boosts 
performance, especially with multiprocessor hardware. 

by Peter H. Ernst 

Machining operations like punch, bore, and others play an 
important role in the function set of contemporary CAD sys 
tems. In HP PE/SolidDesigner, the impressive variety of ma 
chining commands are driven by a single topology engine, 
often referred to as the Boolean engine. 

It might seem that the algorithm used by the Boolean engine 
would be extremely complex and esoteric, and this is indeed 
true in some respects. The underlying principles, however, 
are simple. l Most of this article demonstrates this by taking 
a fairly intuitive look at the internal machinery. This will 
provide a road map for the second, more technical part of 
the article, in which some key algorithms are explained in 
greater depth. Finally, some unusual applications of the 
Boolean engine are briefly mentioned. 

Different Flavors of Solids 
Before exploring the internals of the Boolean engine, let's 
take a look at the objects that it works on. These objects are 
called solids, or simply bodies. Solids, in our terms, are 
mathematical boundary representation (B-Rep) models of 
geometric objects. Fig. 1 shows a B-Rep model of a cylinder. 

Usually several categories of solids are distinguished based 
on their manifold characteristics. For our purposes we just 
need to know that manifold solids represent real objects 

Fig. 2. A screwdriver representing the class of manufacturable 
bodies. 

and nonmanifold solids are impossible in some way. Man 
ifold bodies are of general interest, since they can be manu 
factured. Fig. 2 shows a screwdriver representing the class 
of manufacturable bodies. 

The class of nonmanifold bodies is the realm of the impossi 
ble bodies. These bodies cannot be manufactured because 
the material thickness goes to zero (that the thickness goes 
to zero is a consequence, not a cause of the nonmanifold- 
ness). Nevertheless, they have have some importance as 
conceptual abstractions or simplifications of real (manifold) 
solids. Nonmanifold solids sometimes are (conveniently) 
generated as an intermediate step in the design process. 
They are also important to various simulation applications, 
and sometimes to finite-element analysis and NC machining. 
Fig. 3 shows a selection of nonmanifold bodies. To the left is 

Fig. 1. A boundary representation (B-Rep) model of a cylinder. 

Fig. zero Bodies that are nonmanufacturable because of (left) zero 
thickness in general, (center) zero thickness at edges, and (right) 
zero thickness at vertices. 
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a sheet, which has zero thickness in general. The middle 
solid is edge nonmanifold, having zero thickness at edges, 
and the right solid is vertex nonmanifold, having zero thick 
ness at vertices. 

The Boolean engine in its different guises is used to change 
bodies by the rules of Boolean set operations. In other 
words, it is able to combine two volumes using one of the 
three The operators: subtract, unite, or intersect. The 
operation is performed on solids in the same way as on the 
sets of mathematical set theory. The effects of the standard 
operations on sets and volumes are illustrated in Fig. 4. The 
two bodies at the top of the picture are combined in three 
ways, using the three standard Boolean operations. The re 
sult of each Boolean operation is shown at the bottom. 

An Intuitive Approach to the Boolean Engine 
Now that we are equipped with the right background, we 
can explore the various stages of the Boolean algorithms. To 
do this we will use a thought experiment (such experiments 
are widely acknowledged as safe and cheap). To perform 
this experiment we only need some paint, a sharp knife, and 
some imagination. 

Coloring. In the first stage both solids participating in the 
Boolean operation are filled with different colors, let's say 
yellow for one and blue for the other. Fig. 5 shows two bod 
ies that have been set up for a Boolean operation and col 
ored according to our rule. Let's assume that, unlike real 
solids, they can permeate each other without problems. 
Since the Boolean operation hasn't been performed yet the 
picture still shows two disjoint solids that just happen to 
overlap. To show what's going on inside the bodies, the yel 
low body has been made transparent. 

Now we mark the lines where the two bodies permeate each 
other, let's say with red color. The red lines in Fig. 6 are 
called the intersection graph. The two solids are still dis 
joint. 

Fig. 5. Two disjoint solids that happen to overlap. 

Making Soap Bubbles â€” Cellular Bodies. In the second stage 
we knit both solids together using the intersection graph. A 
structure very similar to those formed by soap bubbles is 
created, as shown in Fig. 7. The two solids now hang to 
gether at the intersection graph. In the space where both 
bodies overlap a green color can be seen. This is the mixture 
of yellow and blue. To get a better vision of the geometric 
situation some faces have been made transparent. 

Fig. 4. Results of applying the standard Boolean set operations 
to two solid bodies. Fig. 6. Intersection graph (red). 
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Fig. 7. Result of knitting the two bodies together at the intersection 
graph. Choosing a Boolean operation is now equivalent to deciding 
which colors to keep and which to delete. 

Getting Rid of the Wrong Colors. In the third and last stage of 
our imaginary process not much is left to do. Up to now we 
have not said which kind of Boolean operation (union, sub 
traction, or intersection) we wanted. Now is the time to 
decide. 

To get the desired result we simply pick the appropriate 
color and get rid of all volumes of a different color than the 
one we picked. Initially we chose two colors â€” blue and yel 
low â€” so we will find three colors in our soap bubble cluster: 
blue, yellow, and green. In regions where blue and yellow 
volumes overlap we get green. The table below shows which 
colors will be kept or deleted from the body depending on 
the particular type of Boolean operation we choose. 

Union 
Subtraction 
Intersection 

Keep 
blue and yellow 
yellow 
green 

Delete 
green 
green and blue 
blue and yellow 

Easy, isn't it? Pat yourself on the back (and clean up the 
mess of paint and chipped-off pieces). 

Technical Talk: The Boolean Algorithm 
In the preceding example we only had to mark the lines 
where the color changes to obtain the intersection graph. 
The Boolean engine algorithm that does this is a bit more 
complex. To understand it we must again look at the mathe 
matical representation of a solid. In Fig. 1 we have seen the 
general data structure layout of a cylinder. That sketch, 
however, lacks any explicit references to geometry. In HP 
PE/SolidDesigner's B-Rep structure, three base classes of 
geometries are used: points, curves, and surfaces. The last 
two have several subclasses. For example, a curve can be a 
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straight line, circle, ellipse, or spline. In the following discus 
sion the geometric subclasses are used for illustration pur 
poses, but the Boolean algorithm itself does not depend on 
any specific geometry types, since it is implemented in a 
generic way. 

Each geometry class has a corresponding topological carrier 
that puts it into perspective in the context of a solid model. 
The table below shows this relationship: 

Topology Geometry 

V e r t e x  * -  P o i n t  
E d g e  Â « -  C u r v e  
F a c e  Â « -  S u r f a c e  

The topological entities face and edge arc smart carriers 
because they not only hold their geometries, but also bound 

or trim them. To understand what this means we must real 
ize that most geometries are of infinite extent, and even if 
they are finite only a small segment might be of interest. 

Fig. 8 exemplifies the relationship between topology and 
geometry. Looking at the cylinder (sf3), notice that only a 
segment of the otherwise infinite cylindrical surface is used. 
This segment is called a face (fa3). Likewise, only two circu 
lar regions of the otherwise infinite planes sf 1 and sf3 are 
used to close the cylinder. The circular regions are face fal 
and face fa2. (Note: The top and bottom faces of the cylin 
der have been lifted off a bit for better demonstration. The 
double yellow edges coincide in reality.) 

The concept of trimmed surfaces is essential for the next 
section, because it introduces some unexpected complica 
tions when constructing the intersection graph. 

Constructing the Intersection Graph. Earlier we simply used an 
excellent pattern recognizer called the human brain to find 
the lines where the color changes. Teaching this ability to a 
computer involves a considerable amount of mathematics. 

Fig. 9 shows the construction of one segment of an intersec 
tion graph (a graph edge). The drawing shows two intersect 
ing surfaces sfl and sf2 carrying two faces fal and fa2. To 
construct the graph edge (the piece of the intersection track 
inside both faces) the following steps are required: 

The two unbounded surfaces sfl and sf2 are intersected, 
giving the intersection track (track). 

sf l  (Plane sf2 (Plane) 

Fig. 8. An example of the relationship between topology and 
geometry. Faces and edges bound or trim their geometries, which 
consist of infinite curves and surfaces. 
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Fig. 9. Construction of one segment of an intersection graph 
(a graph edge). 

The edges of fal are intersected with surface sf2 to yield the 
edge/surface intersection points il and 12. Similarly, the 
edges of fa2 are intersected with sf 1 giving the intersection 
points i3 and i4. 
The intersection points are ordered along the track. 
The ordered points are examined for their approach values. 

The approach values simply tell if a face is entered or left 
when passing a particular point. This information can be 
used to deduce the containment of a segment of the inter 
section graph with respect to its generating faces. The 
approach and containment values for the intersection points 
in the previous drawing are: 

P o i n t  C o n t a i n m e n t  w i t h  r e s p e c t  t o :  
A p p r o a c h  f a l  f a 2  

o u t s i d e  o u t s i d e  

i n s i d e  o u t s i d e  

i n s i d e  i n s i d e  

The number of required intersections grows rapidly (qua- 
dratically) with the complexity (number of faces) of the 
solids. Fortunately the different face/face intersections can 
be easily performed in parallel. The algorithm is structured 
such that it can create a cascade of threads (a sort of sub- 
process). For each pair of faces a subprocess is launched 
that splits itself to calculate the surface/surface intersec 
tions the the edge/surface intersections in parallel. With the 
availability of multiprocessor hardware the advantages of 
this algorithmic structure are seen as increased perfor 
mance of the Boolean operations. 

Imprinting and Coloring. In the intuitive approach, coloring 
the faces, that is, determining which pieces are inside or 
outside, was no problem because it could easily be seen. On 
the machine level other means are required. 

Intersection tracks split surfaces and faces into left and 
right halves. Additionally, surfaces split space into halves 
called half spaces. We can classify each piece of the split 
face to a half space with respect to the other surface. This 
procedure is demonstrated in Fig. 10. 

Classification is done with respect to the surface normals 
(colored arrows) of both surfaces (sf 1 and sf2) and the 
intersection track. 

Unusual Boolean Applications 
It is easy to see that the Boolean engine is driving most ma 
chining operations. Here are some applications in which it is 
not so obvious. 

Partial Booleans. Regular Boolean operations attempt to cal 
culate all intersection tracks between bodies. In contrast, 
partial Boolean operations calculate only one intersection 
track. Which one depends on the particular application. One 
example of a partial Boolean operation in HP PE/SolidDe- 
signer is wrapped into the extrude-to-part command. It fires 
a profile defined in a workplane onto a body as shown in 
Fig. 11. The picture shows a body and a profile set up for the 

outside 

outside 

inside 

outside 

The segments of the intersection graph inside both faces are 
used to create the graph edge(s) of a particular intersection. 
In this example only the segment bounded by i2 and i3 ful 
fills this condition. 

Parallelism. The complete intersection graph of two bodies is 
obtained by pairwise intersection of faces selected from 
both solids. The number of required face/face intersections 
depends on the number of faces in both solids: 

i = nm, 

where i is the number of intersections, n is the number of 
faces in one body, and m is the number of faces in the other 
body. 

Ins ide 
sf1 

Fig. (inside Surfaces split space into halves called half spaces (inside 
and outside along surface normals). Each piece of a split surface 
can be the as belonging to a half space with respect to the 
other surface. 
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Fighting Inaccuracies: Using Perturbation to Make Boolean Operations Robust 

The robustness of Boolean operations between solids is crucial for the usability of 
a solid is like HP PE/SolidDesigner. Unfortunately, geometric modeling is 
like shoveling sand. With every shovel you pick up a bit of dirt. The numerically 
imperfect nature of geometric algorithms can challenge HP PE/SolidDesigner's 
Boolean engine with contradictions and inconsistencies. The Boolean engine uses 
a perturbation method1 -2 to push the frontier of robustness. This article explains 
the notion of model consistency and demonstrates what can go wrong inside a 
Boolean operation and what can be done to come up with a correct result anyway. 

C o n s i s t e n c y  o f  a  S o l i d  

Looking at a solid we usually believe that it is mathematically correct, that is, that 
the edges are exactly on their adjacent faces and the edges meet exactly at their 
common vertices. In reality, however, the limited floating-point accuracy of a 
computer introduces errors. On the microscopic level there are gaps and holes 
everywhere (see Fig. 1). 

The tolerable amount of erroi is specified by the modeling resolution. The system 
will ignore gaps and holes smaller than the resolution. However, some geometric 
algorithms, such as the various intersection calculations, tend to magnify errors in 

certain geometric configurations. This means that given an input where all errors 
are within limits, the result can be inconsistent in the context of the solid and 
prohibit the successful completion of the requested Boolean operation. 

S o l v i n g  t h e  N u m e r i c a l  P u z z l e  

One area in the Boolean operation that is particularly vulnerable to numerical 
inconsistencies is the intersection graph construction. The graph construction 
assumes that all intersections of curves defined on one of two intersecting sur 
faces than also on the intersection track (here the term on means closer than the 
resolution). This is no problem if the surfaces are reasonably orthogonal. However, 
for intersections between tangential or almost tangential surfaces, a small error in 
the orthogonal direction of a surface implies a larger error in the direction of the 
surface, and this assumption becomes false. 

Fig. and sfl a shallow intersection between the two surfaces sfl and sf2 and the 
intersection with sf2 of a curve (cv) contained in sfl . The curve/surface intersec 
tion point (small colored triangle) has, because of the small distance (epsilon) 
between cv and its containing surface sf 1 , moved farther away from the surface/sur 
face permits. track (colored line) than the resolution permits. The smaller the angle 
|3 the larger the distance d from the intersection track and hence the larger the 
inconsistency. 

Fig. faces exactly solid models edges seem to be exactly on their adjacent faces and meet exactly 
a t  the i r  a  ver t i ces .  In  rea l i t y ,  because o f  the  l im i ted  f loa t ing-po in t  accuracy  o f  a  
computer, on the microscopic level there are gaps and holes everywhere. 

Fig. sf2 the shallow intersection between the two surfaces sfl and sf2 and the 
intersection with sf2 of a curve (cv) contained in sfl. 

Fig. 11. A body and a profile set up for an extrude-to-part 
operation. To the right is the result of the operation. 

extrude-to-part operation. Only the intersection graph where 
the extruded profile hits the body is used to build the result. 
To the right is the result of the operation. 

Usually the extruded profile would exit the body at the bot 
tom, producing a second intersection graph. 

Reflection of Solids. Another unusual Boolean application is 
the reflection of solids at a plane. Fig. 12 shows a body with 
a green reflection plane set up. At the right is the result of 
the reflect operation. 

This operation can be simulated with regular Boolean opera 
tions by copying, mirroring, and uniting the left body. How 
ever, this would burden the Boolean engine with difficult 
tangential intersections. Instead, the reflect command inter 
sects the left body with the reflection plane to obtain an 
intersection graph which can be used to glue the left body 
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Fortunately, there is a method called perturbation than can come to the rescue in 
situations like this. It solves the inconsistency by moving the curve/surface inter 
section point along the curve until it is closer than the resolution to the surface/ 
surface intersection track. In Fig. 2 the point will be moved to the left. When the 
intersection point is moved, a new error is introduced because the point is moved 
away it sf2. However, the overall error is reduced so that it no longer exceeds 
the resolution. 

The perturbation method can be applied to similar situations in which even the 
number result intersections has to be corrected. The difference in number is a result 
the freedom algorithms have below the resolution. They may return anything in 
the range of the resolution. 

Two  Curve /Su r face  In te rsec t i on  Po in t s  w i th  One  Sur face /Su r face  In te r  
section Track. Fig. 3 shows a geometric configuration in which the intersection 
between sfl and sf2 yields one intersection track (colored line) but the intersec 
tion of (colored curve contained Â¡n sf1 with sf2 gives two intersection points (colored 
triangles) which are farther than the resolution away from the track. The perturba 
tion algorithm moves both points inwards (horizontal arrows) and contracts them 

into a single point (black triangle] which is closer than the resolution to the inter 
section track (colored line). 

Two  Su r face /Su r face  In te rsec t i on  T racks  w i th  One  Curve /Su r face  In te r  
section Point Fig. 4 shows a geometric configuration in which the intersection 
between sf 1 and sf2 yields two intersection tracks (colored lines) but the intersec 
tion of (colored curve contained Â¡n sf 1 with sf2 gives one intersection point (colored 
triangle) which is farther than the resolution away from the tracks. The perturba 
t ion moves spl i ts the single intersection into two and moves them outwards 
(horizontal arrows) until both are closer than the resolution to an intersection track 
(colored line). 
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Fig. between yields geometric configuration in which the intersection between sfl and sf2 yields 
one intersection track (colored line) but the intersection of the curve contained in sfl 
w i th  s f2  the two in tersect ion po in ts  (co lored t r iang les)  which are far ther  than the 
resolut ion away from the track. 

Fig. between yields geometric configuration in which the intersection between sfl and s(2 yields 
two intersection tracks (colored l ines) but the intersection of the curve contained in sfl 
wi th sf2 resolu one intersect ion point (colored tr iangle) which is farther than the resolu 
t ion away from the t racks.  

Fig. 12. A body with a green reflection plane set up and, at right, 
the result of the reflect operation. 

and its mirrored copy together. The intersection with the 
mirror plane is nicely orthogonal and relatively easy to per 
form compared to the tangential intersections. 
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A Microwave Receiver for Wide 
Bandwidth Signals 
The HP 71910A wide-bandwidth receiver extends modular spectrum 
analyzer operation for more effective measurements on modern 
communications and radar signals. 

by Robert J. Armantrout 

The microwave spectrum analyzer is an invaluable instru 
ment for making measurements on signals with frequencies 
ranging from 100 Hz to 110 GHz with a variety of modulation 
formats. The spectrum analyzer is primarily a tool for the 
frequency domain. The measurements for which it excels 
are those in which the signal parameters of interest are 
accessible in this domain. 

For the most part, these measurements are made in a test 
environment, in which the signals usually originate from a 
signal source or from the device under test and where a 
physical connection is made to the spectrum analyzer with 
coaxial cable. In this environment, there is usually a high 
degree of knowledge about the signals present and the num 
ber of signals that must be characterized. Also, there is often 
some control over the power level of the signals present. 
The spectrum analyzer is normally used in swept mode. The 
emphasis is on the fundamental signal parameters, not on 
the information content present in the modulation. 

Microwave spectrum analyzers are also used in the opera 
tional environment. In contrast to the test environment, the 
signal or signals of interest in the operational environment 
usually come out of the air rather than from a device under 
test. This means that the spectrum analyzer is connected to 
an antenna rather than to a device under test. Another con 
trast to the test environment is the number of signals pres 
ent at the input to the antenna. Depending on the frequency 
coverage of the antenna or antennas used, the number of 
signals present can number in the hundreds or even thou 
sands. In the operational environment the emphasis is on 

searching for signals of interest and extracting the informa 
tion content of those signals. The information can have 
many forms including voice, video, or data. To extract this 
information, it is necessary to tune to the signal of interest 
with a bandwidth comparable to the signal's bandwidth and 
apply the correct demodulation. 

Although the spectrum analyzer plays a major role in signal 
searching, it has not gained acceptance outside this role 
because of the limitations discussed below. Rather than the 
spectrum analyzer, a microwave receiver is normally used to 
perform the down-conversion and demodulation of wide- 
bandwidth microwave signals. 

Bandwidth Limitations. One of the most predominant trends 
in modern microwave signals is the move toward wider 
bandwidths. This trend has been growing since the 
mid-1970s as satellite communications developed and radars 
began employing a form of spread spectrum known as chirp. 

The trend continues to be evident in all areas of satellite and 
terrestrial microwave communications. Signal bandwidths 
of 30 MHz or more are typical. Furthermore, various forms 
of spread spectrum, such as frequency hopping or direct 
sequence, whether used for multipath mitigation, noise im 
munity, lower power density, or increased security, have led 
to increased bandwidths for otherwise narrowband signals. 

For such signals, the bandwidth that is adequate for spec 
trum display or parametric measurements may not be suffi 
cient to preserve the information content of the signal for 
demodulation. 

Fig. 1. (left) HP 71910A receiver, 
(right) HP 71910A Option Oil 
(a display module like the one at 
right may be added). 
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Frequency-Domain Limitations. In addition to having wider 
bandwidth, many modem microwave signals employ more 
complex modulation formats such as PSK (phase-shift key 
ing) and QAM (quadrature amplitude modulation). Paramet 
ric measurements made in the frequency domain are not 
adequate to characterize these complex signals fully. Mod 
ern microwave signals can also have characteristics that 
vary during the sweep of a conventional microwave spec 
trum analyzer, making accurate characterization difficult. 
Finally, pulsed, bursted, gated, and time division multiplexed 
signals all have characteristics and information that are dif 
ficult if not impossible to extract in the frequency domain. 

Amplitude-only Limitations. Because the traditional spectrum 
analyzer employs an envelope detector, it provides only sca 
lar information, and phase information is lost. Since much of 
the information in modern complex signals is conveyed 
with phase shifts or variations, this limitation is signifi 
cant. 

Solutions 
All three of the spectrum analyzer limitations mentioned 
above have been recognized and have led to the develop 
ment of new types of instruments such as modulation- 
domain analyzers1 and vector signal analyzers.2 Although 
these instruments can aid greatly in the analysis of a com 
plex signal, they do not operate at microwave frequencies 
and are not well-suited for direct connection to an antenna 
as required in an operational environment. 

The HP 71910A wide-bandwidth receiver (Fig. 1) combines 
the attributes of a microwave receiver with the strengths of 
a microwave spectrum analyzer. The spectrum analyzer 
strengths include wide frequency coverage, synthesized 
1-Hz tuning, excellent phase noise, and amplitude accuracy. 
The microwave receiver attributes include wider IF band- 
widths and demodulation. 

The HP 71910A provides easy interfacing to vector signal 
analyzers and modulation-domain analyzers and extends the 
measurement capability of these instruments into the micro 
wave frequency range. Finally, the HP 719 10A provides 
standard connection to commercial communications de 
modulator products. 

provides microwave receiver operation only. The rest 
of this article will focus on the HP 71910A Option Oil 
configuration. 

Receiver Hardware 
A block diagram of the HP 71910A Option Oil is shown in 
Fig. 2.The optional preamp module provides improved sensi 
tivity and includes an internal bypass switch. The HP 
70900B LO module provides the local oscillator and 
300-MHz reference signals to the HP 70910A RF module. The 
HP 70900B also provides the firmware control of the mod 
ules that make up the HP 71910A. For operation as a spec 
trum analyzer or a receiver, the HP 71910A modules are 
slaves to the HP 70900B. The HP 70910A RF module pro 
vides microwave preselection and frequency conversion to a 
321.4-MHz IF output, which provides the input to the HP 
70911 A module. 

RF Module. The HP 70910A RF module was developed to 
provide wide bandwidths in the front end of the receiver. 
Aspects of the design important for microwave receiver 
operation include: 
Increased-bandwidth YTF (YIG-tuned filter) preselector 
Preselector bypass 
Mixer microcircuit for improved sensitivity 
Programmable gain at 321.4-MHz IF output. 

The partial block diagram of the HP 70910A RF module in 
Fig. 3 shows four signal paths. The first is the low-band 
path, which is used for frequencies up to 2.9 GHz. There are 
two microwave paths, preselected or bypassed, which can 
operate from 2.7 GHz to 26.5 GHz. Finally, there is an IF 
input for use with external mixers covering from 26.5 GHz 
to 110 GHz (millimeter-wave frequencies). 

The minimum bandwidth of the microwave preselector in 
previous spectrum analyzer designs ranged from 25 to 
30 MHz. The design goal of the HP 70910A was to improve 
the minimum bandwidth of the YTF to at least 36 MHz. This 
was accomplished by modifying the doping profile of the 
YIG spheres used in the YTF. A YTF bypass path is included 
to allow unpreselected operation when appropriate. When in 
bypass, the bandwidth of the microwave path is much wider 
than the bandwidth of the preselector. In addition, the group 

Description 
The HP 71910A is an MMS (Modular Measurement System) 
product which includes a new IF module, the HP 709 11 A, 
and a new revision of system firmware. The firmware revi 
sion permits operation of the HP 7091 1A with an existing 
microwave spectrum analyzer, the HP 71209A Option 001, 
and provides improved performance for signal searching 
(see the firmware description on page 84). The HP 7091 1A, 
which is described on page 89, provides the functions usu 
ally associated with a microwave receiver, including IF 
bandwidths from 10 to 100 MHz and pulse detection. The HP 
70911 A also offers options for FM demodulation, 70-MHz IF 
output, and 70-MHz channel filters. Another feature not 
found in other microwave receivers is the I-Q output option. 

The two most common configurations of the HP 71910A 
operate over the frequency range of 100 Hz to 26.5 GHz. The 
standard HP 71910A (Fig. 1, left) provides both microwave 
spectrum analyzer and microwave receiver operation. An 
alternate configuration, Option Oil (Fig. 1, right), 

1 0 0  H z  t o  R F  
26.5 GHz 

HP 70620B 
Preamp 
Module  

(Optional) 

RF 

HP 70910A 
RF Module 

HP70911A 
IF Module 

3 0 0 M H z  

HP 70900B 
LO Module 

F M  I  
,-Q 
7 0  M H z  j  

Wideband 
Video 

Optional 

Narrowband 
Video 

Fig. 2. A simplified block diagram of the main components of 
the HP 71910 Option Oil receiver. 
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100-Hz-to-2.9-GHzPath 

2.9 GHz 3.6 GHz 

321 .4MHz  

321.4 MHz IF 
Out (to HP 
70911AIF  
Module}  

- 2.7-GHz-to-26.5-GHz Path - 
Fig. 3. A partial block diagram of 
the HP 709 10A RF module. 

delay performance is improved when the preselector is by 
passed. 

The preamp-mixer microcircuit following the preselector 
improves sensitivity in two ways. First, the preamp compen 
sates for the loss of the YTF while retaining acceptable in- 
termodulation performance. Second, the mixer design takes 
advantage of a special diode configuration to minimize con 
version loss in the harmonic-mixing bands. 

The final 321.4-MHz block is the programmable-gain ampli 
fier. The purpose of this amplifier is to maintain a constant 
gain from the RF input to the 321.4-MHz IF output as a func 
tion of frequency. The gain is set based on lookup table val 
ues determined during final test. 

IF Module. The design goals for the HP 70911A IF module 
included: 

â€¢ 100-MHz bandwidth variable in 10% steps 
â€¢ 70-dB gain in accurate 10-dB steps 
â€¢ Pulse detector for 10-ns pulses 
â€¢ 70-MHz IF output 
â€¢: FM demodulator. 

Variable bandwidths and accurate gain are standard in spec 
trum analyzers, but typically at center frequencies of 3 MHz 
or 21.4 MHz. In the HP 7091 1A all variable gains and 
bandwidths are centered at 321.4 MHz. The higher center 
frequency and the higher fractional bandwidth presented 
significant design challenges. 

An envelope detector for AM and pulse detection is also 
standard in spectrum analyzers, but in the HP 70911 A de 
sign we had to accept a 321.4-MHz input and have band 
width consistent with recovering 10-ns wide pulses. 

Wide-bandwidth FM signals are common in both satellite 
and terrestrial microwave communications. For this reason, 
wideband FM demodulation, not found in spectrum analyz 
ers, was an important design goal in the HP 709 11 A. 

Within the communications industry, 70 MHz is a standard 
IF frequency. Most commercial communication demodula 
tors accept 70-MHz inputs. For this reason, a 70-MHz IF out 
put was considered essential for interfacing to demodula 
tors for formats other than wideband AM or FM. 

321.4 
M H z  Var iable  

Gain and 
Bandwidth  

Calibration 
Attenuator 
and Linear 

Detector 

Option 
Control 

3 2 1 . 4 M H z  

FM 
Discriminator 

I-Q 
Down-Converter  

Wideband Video Output 

70-MHz 
Output 

FM Output 

I Output 

Q Output 
Fig. 4. The major functional blocks 
that make up the HP 70911 A IF 
module. 
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Fig. 4 shows the major functional blocks that make up the 
HP 7091 1A. The variable gain and bandwidth block includes 
a bandpass filter with bandwidth that varies from 10 to 
100 MHz with DAC control. The filter is a five-pole synchro 
nously tuned design. The gain consists of seven stages of 
step gains interspersed with the poles of the filter. 

The calibration attenuator and linear detector block in 
cludes a precision attenuator with 15-dB range and an enve 
lope detector with 100-MHz bandwidth. The detector is fol 
lowed by video gain and level control. 

Several optional functions can be added for expanded re 
ceiver capability. These plug into an option card cage and 
are controlled over a common internal bus. 

FM Discriminator. This block includes a delay line discrimina 
tor with excellent linearity and a maximum bandwidth of 
40 MHz. Two sensitivity positions, 10 MHz/V and 40 MHz/V, 
can be selected. 

70-MHz Down-Converter. This block consists of a down-con 
version path and a fractional-N synthesized local oscillator. 
The tuning range of the LO provides, with a change of out 
put filter, 140-MHz and 160-MHz IF outputs. 

Channel Filters. The standard IF bandwidths are of the syn 
chronously tuned class and provide very good response for 
pulses but lack the shape factor desired for communication 
signals. The channel filters provide a selection of five six- 
pole Chebyshev filters centered at 70 MHz for use as prefil- 
ters for the communication demodulators. 

I-Q Down-Converter. This block provides I and Q baseband 
outputs with a 50-MHz bandwidth for each output. The local 
oscillator for the down-conversion is synthesized and the 
design is the same as that used for the 70-MHz output. 

A more detailed discussion of the design and implementa 
tion of the HP 7091 1A is given on page 89. 

Receiver Bandwidth Improvements 
The increase in bandwidth for the HP 71910A is dependent 
on the frequency band selected. The receiver bandwidth, 
which depends on the bandwidth of both the RF and the IF 
modules, ranges from 36 MHz to 100 MHz. The RF band 
width of the low-band path is set to 48 MHz minimum by the 
bandpass filter in the 3.6-GHz second IF. In the preselected 
microwave path, the bandwidth of the RF module ranges 
from 36 MHz to 60 MHz over the 2.7-GHz-to-26.5-GHz fre 
quency range. However, when the preselector is bypassed 
the bandwidth of the microwave path approaches 200 MHz. 
Finally, when using external mixers for frequencies above 
26.5 GHz, the bandwidth of the RF path will be set by the 
mixers, but is at least 200 MHz. The resulting receiver band 
width for each path is summarized in Table I. 

T a b l e  I  
H P  7 1 9 1  O A  R e c e i v e r  B a n d w i d t h s  

Receiver Operation 
To simplify the HP 71910As operation as a microwave re 
ceiver, a personality downloadable program was created. 
This program, which is loaded into the HP 70900B LO mod 
ule, presents the user with the display shown in Fig 5. This 
screen provides information to assist the user in establishing 
the correct gain through the receiver when other processors, 
instruments, or demodulators are connected at the outputs. 
The RF/IF Gain annotation shows the total gain from the RF 
input to the 70-MHz IF output. It accounts for fixed or vari 
able gain and attenuation in both the RF and the IF modules. 

In addition to calculating and displaying gain through the 
receiver, the receiver personality extends the gain resolution 
available to the user. In normal spectrum analyzer opera 
tion, the IF gain resolution is 10 dB. However, for the HP 
7091 1A IF module, the personality combines the 10-dB reso 
lution of the step gains with the 1-dB resolution of the inter 
nal calibration attenuator to provide 1-dB gain setting reso 
lution over a 70-dB range. 

The receiver personality also provides control of the op 
tional receiver functions such as FM, I-Q, and channel filter 
ing. This partitioning from the basic firmware control of the 
HP 70911 A was made to allow for adding options in the 
future without the need for a firmware revision. 

In addition to providing an interface for manual control, the 
receiver personality card also provides a programming inter 
face for automatic operation. After the receiver personality 
is loaded and initialized, control extensions appear as 
additional programming commands not present in the basic 
firmware. 

Microwave Vector Signal Analysis 
As mentioned earlier, vector signal analyzers have baseband 
processing capabilities which when used with RF or micro 
wave down-converters permit a more complete character 
ization of wide-bandwidth signals. 

The I-Q down-conversion option of the HP 71910A was 
designed specifically for use with other HP digitizers and 
oscilloscopes. This option can also be used with a dual- 
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channel vector signal analyzer such as the HP 89410A to 
extend both the measurement bandwidth and the frequency 
range of vector signal analysis. This configuration is shown 
in Fig 6. A special processing mode and careful attention to 
calibration are required for this configuration. The HP 89410A 
and vector signal analysis are briefly described on page 87. 

Applications 
Although much of the early definition work on the HP 
71910A focused on radar applications, the attention in later 
phases of the design shifted to microwave communications. 
For example, in satellite communications, which requires 
extensive prelaunch testing, postlaunch qualification, and 
periodic quality monitoring of live traffic after commission 
ing, the HP 71910A has much to offer. 

The large investment necessary to launch a modern commu 
nications satellite makes it imperative to test the satellite 
and the satellite payloads thoroughly during development 
and manufacturing and just before launching (called high-bay 
testing). The number of tests required to fully characterize 
performance combined with aggressive launch schedules 
make testing throughput a major consideration. 

One of the most time-intensive measurements is spurious 
testing. This is because of the complexity of satellites and 
the nature of the measurements taken using the typical 
spectrum analyzer approach. Sweeping a spectrum analyzer 
over the full transponder band with the narrow resolution 
bandwidth necessary for spurious testing leads to very slow 
sweep times and therefore very long measurement times. 

Fortunately, vector signal analyzers such as the HP 894 10A 
have much faster sweep times for the resolution bandwidths 
of 1 kHz or less, which are used for spurious (spur) test 
ing. By connecting the I-Q outputs of the HP 7191ÃœA to the 
two input channels of the HP 894 10A as shown in Fig. 6, it is 
possible to perform rapid spur search over a 20-MHz span. 
Repeating this process by step tuning the HP 71910A over all 
the satellite bands provides nearly a xlO improvement in 
spur search speed over sweeping the spectrum analyzer 
with the same bandwidth over the same frequency range. 

Once it satellite is commissioned and carrying live traffic, it 
is important to maintain the quality of the signals since fail 
ure to do so can lead to reduced revenues. One important 
measurement is the total power of the down link. The total 

Firmware Design for Wide-Bandwidth IF Support and Improved Measurement Speed 

The addition of a wideband linear IF module to a Modular Measurement System 
(MMS) spectrum analyzer presented two main challenges to the firmware: provid 
ing sufficient operational speed and adding new features and operations. The 
concern over operational speed was heightened by the fact that many of the 
applications targeted by this product required speed similar to that obtained by 
instruments that did not have to account for either software calibration or 
modularity. 

Operational Speed 
The challenges associated with operational speed involved finding a way to apply 
calibration in near real time and efficient handling of incoming data and temporary 
variables. 

Calibrated Operation. To obtain calibrated data from an MMS spectrum ana 
lyzer, the trace data point obtained from the ADC must be corrected using the 
appropriate calibration data. This needs to be done as close to real time as pos 
sible correc the lag between the incoming raw data and the completion of the correc 
tion retrace will quickly become the dominant factor in the retrace dead time. 

The particular calibration data that must be applied and the algorithms that must 
be used the apply it are dependent upon the currently active signal 'path of the 
instrument. This can change as the user selects different IF bandwidths, different 
ADCs, be so on. This situation is complicated further by the desire to be able to 
do trace math (such as calculating the difference of the active trace and a base 
line needs as the data is received. Finally, the trace data needs to be sent to the 
remote display (if one is active) as the processing is completed. All of these com 
plications exist even without a linear IF module. 

If a conventional program is used to apply the per-point calibration, the time to 
perform the necessary number of conditional tests would overwhelm the actual 
calculation times. An alternative approach has been used since the beginning by 
the MMS each analyzers. Instead of performing the conditional tests for each 
data perform an efficient state machine constructs a program to perform the neces 
sary done for the current instrument state. This is done by properly combin 
ing machine code program fragments. The construction of this program (known as 
the RAM program) is properly synchronized with the appropriate state changes 
and trace operations. 

During table execution of the RAM program, calibration and interpolation table 
addresses and calibration constants are stored in the CPU registers whenever 
possible. A preloaded register set is prepared at the same time that the RAM 
program is constructed. If the RAM program catches up with the incoming data 
stream, the process running the RAM program can swap out to allow other opera 
tions to occur. By keeping all the necessary data in the CPU registers, this swap 
ping occurs quickly. 

To account for a linear IF module, various additions to the RAM program were 
required. Previously, all IF modules supported by the system were log IF modules. 
Since section, data calibration occurs after the signal has traversed the IF section, it 
made sense to keep almost all of the correction factors in dB. This has the addi 
tional apply of allowing simple addition and subtraction to be used to apply 
the calibration data. Further simplification is achieved by storing the correction 
factors as 16-bit, fixed-point values. A scaling factor of 100 is used. For example, 
a value of 10.34 dB would be stored as 1034. 

With incoming addition of a linear IF module, the assumption of logged incoming data 
was no longer valid. The main alternatives were either to rework the RAM pro 
gram to be able to handle linear data (including the need to do multiplication and 
division instead of simply addition and subtraction) or to translate the incoming 
linear at to log data (preinterpolation). The latter approach is much quicker at 
performing the calculations, but it also has the potential for a loss of accuracy. 
However, with the ADCs currently supported by the MMS spectrum analyzer, both 
the accuracy and the range are limited by the ADC, not by an initial interpolation. 
Thus, the preinterpolation approach was taken. 

Later experimentation showed that, with the reference level set properly, a 
38.5-dB range could be achieved with the required accuracy. This was sufficient 
for the intended use of the product. When a display of linear voltage or power is 
desired, a table lookup and postinterpolation is performed toward the end of the 
RAM program. 

Hardware Caches. At fast (short) sweep times, even the RAM program, running 
on a 20-MHz MC68020, is not fast enough to keep up with the incoming data 
stream. At this point, the data is buffered for the RAM program to process when 
it can. in the fastest sweep times, the data acquisition loop is actually locked in 
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power may come from one wideband carrier or it may be 
the sum of hundreds of narrowband carriers. In either case, 
the instantaneous power over the full transponder band 
width is desired. Using swept spectrum analyzer techniques 
for this measurement can limit speed and degrade accuracy. 
However, when the channel filters option of the HP 71910A 
is used with the HP 70100A power meter module, a single 
accurate power measurement of the full transponder band 
width, or individual measurements of carriers with specified 
standard bandwidths, can be performed (see Fig. 7). 

Terrestrial microwave communications is an application that 
involves wide-bandwidth signals with complex modulation 
schemes. For monitoring microwave link performance, the 
HP 71910A offers an optional 70-MHz IF output for connec 
tion to products that can demodulate these complex modu 
lations. This feature might be used for assessing the BER 
(bit error rate) performance of the communications link. 
The BER performance of the HP 71910A was characterized 
during development. The results of those measurements are 
shown in Fig 8. 

20MHz 

HP 7191 OA Wide- 
Bandwidth Receiver  

Fig. 6. The HP 71910A configured with the HP 89410A vector 
signal analyzer. 

Other aspects of link performance are often assessed using 
a constellation display. The I-Q output option of the HP 
71910A can be used to display the signal constellation on an 
oscilloscope (see Fig. 9). 

Although swept spectrum analyzers have been used for 
characterization of radar signals for many years, the trend 
toward narrow pulses and intrapulse modulations have limited 
their usefulness primarily to spectrum displays. By connecting 
the HP 71910A outputs to high-speed oscilloscopes it is pos 
sible to extract much more information about the radar. 

the MC68020 instruction cache to minimize memory accesses for this time-critical 
operation. 

Software Caches. In addition to the hardware cache built into the MC68020, 
the MMS appropri analyzer firmware makes use of software caches as appropri 
ate. Because of the modular nature of the instrument, a change of state can 
impose a heavy calculation burden. This burden must be borne by an affordable 
CPU. 

Detailed timing and analysis of the operation of the instrument revealed several 
intensive calculations that could be identified by a minimal number of internal 
state ap These variables are used as tags for software caches. This ap 
proach saves 60 ms or more for some common state change operations. Use of 
these caches was integrated with the RAM program so that a register could ac 
cess the cache data directly, avoiding costly data copying. 

Further performance improvements were realized by recognizing situations in 
which a before might need to be redone because of further user inputs before 
a data calculation is performed. In such cases, if it is possible, calculation is 
delayed. 

A d d i t i o n a l  A d a p t a t i o n s  f o r  a  W i d e b a n d  L i n e a r  I F  

Adding more features and operations to the MMS spectrum analyzer involved 
advertising the capabilities of the IF module to the analyzer and preselector cen 
tering. 

Configuration Support. In addition to the changes to the RAM program, the 
main for routing algorithms had to be enhanced to account for the linear IF 
module. to the MMS spectrum analyzer, all modules advertise their capabilities to 
the control module via an ASCII capability string. This machine readable string is 
effectively a logical block diagram of the module, including all inputs, outputs, and 
switching capabilities. Some of the elements of this model are named so that the 
control module can properly manipulate the hardware via a standardized command 
language. 

The addition of support for a linear IF module required minimal additions to the 
capability string language. Most of the components of the module had already 
been modeled. Support for an additional value to an existing option flag was the 
only thing required. 

Preselector Centering. The wideband IF module presented an additional 
difficulty with preselected systems. With a narrowband IF, the tuning of the 
preselector is done via peaking. In peaking a test signal is injected into the system 
and the preselector hardware is tuned to provide a maximum response. This 
approach does not work for a wideband IF module, since the peak of the passband 
may not IF near the center. Hence, using preselector peaking with a wideband IF 
module could easily result in a substantially reduced available signal bandwidth. 

The proper approach for adjusting a preselector to work with a wideband IF mod 
ule is to center the filter based upon a user-configurable signal delta value (typi 
cally sketches dB). Centering occurs in three main stages. First, a coarse search sketches 
the shape of the curve and identifies where to search for the peak value. Next, a 
fine similar identifies the actual peak. Both of these steps are similar to what 
occurs final preselector peaking, except that coarse values are saved. The final 
step involves fine searches in the areas of the curve that correspond to the user- 
specified delta from the peak value. In all searches, an appropriate amount of 
overlap is used since the curve might not be locally monotonic. 

The initial implementation worked correctly, but test users sometimes complained 
that The preselector still wasn't being centered correctly. The typical situation 
was that a user had a band-limited signal path that had not been previously con 
nected the a narrowband spectrum analyzer. Thus, the user was not aware that the 
signal path was the problem. 

The solution to this situation is to display the centering graphically as it occurs. 
All of the coarse and fine points are plotted so that the user can see what is 
happening. In addition, the user can examine and change the selected centering 
setting. 

C o n c l u s i o n  
By using the techniques described above, we were able to add support for a 
wideband linear IF module into the MMS spectrum analyzer family and achieve 
speed functionality matches or even exceeds that of instruments with less functionality 
and configurability. 

Thomas A. Rice 
Development Engineer 
Microwave Instruments Division 
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Fig. 7. The HP 71910A channel 
filters configured with an 
HP 70100A power meter to 
measure transponder bandwidth. 
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Fig. for Results of a 64 QAM 150-Mbit/s bit error rate (HER) test for 
the HP 71910A. 

Fig. 9. A 16-QAM constellation plot from an HP 54600A oscillo 
scope, captured using the I-Q option of the HP 71910A. 
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The HP 89400 Series Vector Signal Analyzers 

The HP 89400 Series vector signal analyzers are designed specifically for today's 
complex signals. They provide insight into a signal's time-domain, frequency- 
domain, and modulation-domain characteristics. The HP 89440A and HP 89441 A 
analyzers are limited in frequency coverage to 1.8 GHz and 2 65 GHz respectively. 
Both information limited to a 7-MHz information bandwidth, where the information band 
width is the widest-bandwidth signal that can be analyzed without any loss of 
information. The HP 71910A microwave spectrum analyzer and HP 89410A vector 
signal analyzer can be used together to obtain frequency coverage to microwave 
frequencies and information bandwidths to 20 MHz. 

By itself, the HP 8941 OA Â¡s considered to be a two-channel baseband analyzer. 
Each operating channel incorporates an anti-alias filter, an ADC operating at a 
25.6-MHz sample rate, and dedicated hardware to perform digital signal process 
ing. Normally, these channels are used independently. However, when used with a 
quadrature down-converter, such as the HP 7091 1 A Option 004, the in-phase (I) 
and quadrature-phase (Q) signals from the down-converter are each connected to 
an input channel on the vector signal analyzer where they are digitized and then 
recombined into a single complex signal of the form l+jd. Fig. 1 shows an example 
of the measurements obtained when the HP89410Aand HP 70911 A are used 
together. Although the I and Q signals are each limited to 10-MHz bandwidth by 
the analyzer's anti-alias filters, the combined complex signal has a bandwidth of 
20 MHz. 

Complex Signals 
In any system where the I and Q signals are analog, the accuracy of the system 
and its the range will be limited by the orthogonality of the signals and by the 
match mea the I and Q signal paths. Calibration routines can be used to mea 
sure and improve system performance (see Fig. 2). The system errors observed 
during elec are reduced using both hardware adjustments (performed elec 
tronically) and digital signal processing techniques. Table I lists the system errors 
and the action taken to reduce the effects of the errors. 

A program has been developed that performs the system calibration and provides 
some with of instrument control. This program Â¡s compatible with the HP 8941 OA's 
HP Instrument BASIC Option IC2, eliminating the need for an external controller. 

Bibliography 
1 . Extending Vector Signal Analysis to 26. 5 GHi with 20-MHz Information Bandwidth, 
Publication Number 5964-3586E, Hewlett-Packard, 1995. 

TRflCE fl: Ch1+jCh2 Spectrun 

I  -Eye 

200 
n 

/ d i v  

 

A  
Start : -1 syiÂ·i S t o p :  !  s y i Â · i  

Fig. 1. The upper trace shows the spectrum of a QPSK signal operating a! 10 MBits/s. The 
lower trace is the eye diagram obtained using the HP 89410A's optional digital demodulator. 

TRACE A:  D1  Spect rum 
A Offset 

LogMag 

IQdB/d iv  

-53.638 dB 

Center: 0 Hz 

T R A C E  B :  C h H j C h 2  S p e c t r u m  
B  O f f s e t  4  0 0 0  0 0 0  H z  

Span: 20 MHz 

-57 .84  dB 

- 6  
dBm 

LogMag 

tOdB/d iv  

- 1 0 6  
dBm 

Center: 0 Hz Span: 20 MHz 

Fig. signals calibra upper trace shows the spectrum computed using the I-Q signals without calibra 
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Table I 
Summary of Analyzer System Errors 

and Methods to Reduce Them 

Method Used to Reduce Error 
Vector Signal 

by Robert T. Cutler 
Development Engineer 
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Fig. high-speed Connecting the outputs of the HP 71910A to an HP 70703A high-speed oscilloscope enables the capture and display of much 
information from a radar signal, (a) A narrow 20-ns pulse, (b) An FM chirp. 

Fig. 10a shows a narrow pulse produced by using the video 
output of the HP 70910A, and Fig. lOb shows an intrapulse 
chirp produced by using the FM output of the microwave 
receiver. 
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An IF Module for Wide-Bandwidth 
Signals 
The HP 7091 1 A IF module provides the HP 71 91 OA receiver with wideband 
demodulation and variable bandwidths up to 100 MHz, while maintaining 
the gain accuracy of a spectrum analyzer. 

by Robert J. Armantrout, Terrence R. Noe, Christopher E. Stewart, and Leonard M. Weber 

The HP 7091 1A IF module provides much of the new func 
tionality present in the HP 71910A microwave receiver. 
From the start, the primary design goal of the HP 7091 1A 
was to overcome the 3-MHz IF bandwidth limitation of exist 
ing Modular Measurement System (MMS) spectrum analyz 
ers. At a minimum, we wanted a tenfold increase in band 
width, but really hoped to achieve 100 MHz. Although 
bandwidth was the major design focus, several other goals 
were also important, including: 

1 Accurate gain 
1 Variable bandwidths 
1 Pulse detection 
1 Direct connection to demodulators 
1 FM demodulation 
1 I-Q down-conversion. 

Of these goals only the first three are usually considered in 
spectrum analyzer IF design. The others were based on the 
need to better address the more complex signals employed 
in modern communication and radar systems. 

Given the range of bandwidths required, previous spectrum 
analyzer IF design work has concentrated on center fre 
quencies of 3 or 21.4 MHz. Obtaining the accuracy and sta 
bility of both gain and bandwidth required even at these IF 
frequencies has always been challenging. While there are a 
number of well-understood design alternatives and ap 
proaches available for 21.4-MHz and 3-MHz IFs, they did not 
exist for the 321.4-MHz center frequency chosen for the HP 
7091 1A. Because of this some degradation of accuracy and 
stability was anticipated, and the design team was anxious 
to minimize any such degradation. 

Fortunately, advances in both components and fabrication 
techniques were underway that were applicable to the 
needs of the project. The increasing availability of wide- 
bandwidth RF components in surface mount packages and 
the growing internal repertoire of surface mount manufac 
turing expertise suggested that the performance goals could 
be achieved without the need for internal microcircuit 
developments. 

The resulting design makes extensive use of surface mount 
technology to achieve the goal of 100-MHz bandwidth at the 
321.4-MHz center frequency while maintaining the excellent 
gain accuracy and stability expected of spectrum analyzers. 
In addition, optional down-conversion and demodulation 

features extend the utility for wide-bandwidth signals with 
complex modulations. 

Fig. 1 shows the major internal functional blocks that make 
up the HP 70911 A. A detailed discussion of the design con 
siderations for these blocks is given below. Note that the 
module is partitioned into standard and option sections. An 
option cardcage, similar to that offered in the HP 859xE 
Series spectrum analyzers, provides a standard interface for 
all options. 

Variable-Bandwidth Design 
The following discussion is divided into three parts. The first 
part gives some background about the design of variable- 
bandwidth filters. The second part describes an alternative 
design that was considered and proven for 1-MHz-to- 
10-Mllz bandwidths, but not included in the final product 
release. The final part discusses the design of the 10-MHz- 
t o-100-MHz bandwidths of the HP 709 11 A. 

Background. To serve as background material for describing 
variable-bandwidth filter design, the design approach used 
in the HP 70903A IF module is described here. The HP 
70903A was the predecessor of the HP 70911A and used the 
synchronously tuned class of filters. 

Synchronously tuned filters consist of several poles with the 
same center frequency and Q with buffering between the 
stages. There are several advantages to using this particular 
topology, foremost being the excellent pulse response of 
these filters. This response allows for fast sweep speeds on 
a spectrum analyzer. Since we are trying to create a continu 
ously is bandwidth over a large adjustment range, it  is 
also important to have a filter that can be easily adjusted. 
Synchronously tuned filters are easy to tune and are tolerant 
of a slight misalignment in different stages. Also, unlike 
other bandpass topologies, the Q of each stage is less than 
the final required filter Q. 

To make these stages variable-bandwidth, a series resis 
tance is added to reduce the Q of each of the individual 
stages. The individual stages look like the circuit in Fig. 2. 
The bandwidth of this circuit is given by the following 
equation: 

t Here Q is filter quality factor, not quadrature as in I-Q modulation. 
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Fig. 1. Block diagram of the HP 7091 1A IF module. 

where Rp is the equivalent parallel resistance across the 
tank circuit and Rs is the series Q-reducing resistance. By 
adjusting Rs, the bandwidth can be adjusted continuously. 
Rp is the combination of the input impedance of the buffer 
stage and the equivalent parallel resistance of the tank 
circuit. 

By cascading several of these individual stages, a synchro 
nously tuned filter with the desired bandwidth can be 
created. The equation for the bandwidth of an n-stage syn 
chronously tuned niter is: 

BWtotal = BWS 2 Â ¿ -  

The typical HP spectrum analyzer has four or five stages in a 
synchronously tuned filter, which results in individual stage 
bandwidths of 2.3 to 2.6 times the overall filter bandwidth. 

To implement a continuously variable synchronously tuned 
filter, the series resistance is created by using p-i-n diodes as 
variable resistors. The p-i-n diodes used are optimized as 
current-controlled RF resistors. The RF resistance varies 
with forward bias current according to the following rela 
tionship: 

Ampli f ier  Ampl i f ier  

where a and b are constants and I is the forward bias cur 
rent in the diode. 

This resistance characteristic holds for frequencies above 
the low-frequency limit, which is set by the minority carrier 
lifetime of the p-i-n device. Below that frequency the devices 
behave like ordinary p-n junction devices and rectify the 
signal. This results in distortion effects that can limit the 
dynamic range of the filter. The recommended operating 
frequency is ten times the low-frequency limit, which is 
given by the following equation: 

f min = 2 nr 

where T is the carrier lifetime. To minimize the distortion 
effects from rectification, often several p-i-n diodes are used 
in series to minimize the signal voltage across each individ 
ual diode (see Fig. 3). 

This topology depends on a low impedance driving the p-i-n 
diodes and a high impedance buffering the tank circuit. 
Typically an FET buffer amplifier is used as the amplifier at 
the output of each stage because of its high input imped 
ance. Care must be taken in the design of this amplifier to 
avoid distortion problems caused by the large signal voltage 
across the tank circuit. Keeping the nonlinear junction 
capacitance of the FET buffer amplifier small compared to 

Ampli f ier  

Fig. 2. RLC tank circuit with a series resistance (Rs) for adjustment. 
This filter. represents one stage of a synchronously tuned filter. 

Fig. 3. RLC tank circuit with p-i-n diodes in place of a series 
resistance. 
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the capacitance of the overall tank circuit minimizes these 
distortion effects. 

Adjusting the current in the p-i-n diodes can provide contin 
uously variable bandwidths over a large range. Usually a 
digital-to-analog converter (DAC) is used to control the cur 
rent in the p-i-n diodes and allow for setting different band- 
widths. 

This method of varying the bandwidth of the filters works 
very well with one slight problem. The series resistance in 
combination with the parallel resistance across the tank 
circuit creates a voltage divider. Varying the series imped 
ance into the tank circuit not only changes the filter band 
width, but also changes the loss through the filter as well. 
This amplitude change is an undesirable side effect. Several 
methods have been used to compensate for this change in 
amplitude. 

One of the methods that has been patented by Hewlett- 
Packard uses feed-forward compensation (see Fig. 4). This 
method has several advantages over previous schemes that 
rely on feedback for amplitude compensation. The idea is to 
sum the proper signal at the output node to offset the drop 
across the series resistance element. 

By summing a properly scaled version of the input signal 
back into the output node with a compensation resistor Rc, 
the voltage drop across Rs can be canceled. By setting 
K = 1+Rc/Rp, the voltage at the output node is always equal 
to Vjn, independent of Rs. 

Since Rp is determined by the Q of the tank circuit and the 
input impedance of the FET buffer amplifier, it does not 
vary with bandwidth. Thus Rc can be adjusted for each pole 
of the filter to compensate for amplitude variations. Varia 
tions in Rp over temperature can be compensated by using a 
thermistor in the Rc circuit to cancel their effect. 

Summing a scaled version of V^ into the output node with 
out introducing significant amounts of noise and distortion 
is accomplished in some HP IF circuits with a transformer 
circuit. By adding a primary winding to the tank inductor a 
transformer is created with a one-to-four turns ratio (Fig. 5). 
This sets the value of K to be four and determines the value 
of Rc for a given Rp as: Rc = 3Rp. Using a transformer with a 
one-to-four turns ratio yields an impedance transformation 
of 1 to 16. Thus, a resistor on the primary side of the trans 
former looks like 16 times the resistance from the secondary 
side. Feeding the primary side of the circuit from VÂ¡n 
through a compensation resistor requires a resistance of: 

Rc = 3Rp/16- 

Cascading several of these stages together implements a 
synchronously tuned filter that has a continuously variable 
bandwidth and no change in amplitude. 

i l if ier 

Fig. circuit. Topology for a feed-forward amplitude compensation circuit. 

Fig. 5. Feed-forward amplitude compensated RLC tank circuit. 

The HP 70903A uses four of the stages shown in Fig. 5 to 
implement bandpass filters with bandwidths adjustable from 
100 kHz to 3 MHz at a center frequency of 21.4 MHz. 

Design for 1-MHz-to-10-MHz Bandwidths. In the HP 70911AIF 
module we originally wanted to have continuously variable 
bandwidths down to 1 MHz at a center frequency of 321.4 
MHz. This required an overall Q of 321.4. Even with several 
cascaded stages in a synchronously tuned configuration, the 
individual poles still required a loaded Q greater than 120. 
To achieve a loaded Q this high requires a device that be 
haves as a resonant circuit with a much higher unloaded Q. 
At a center frequency of 321.4 MHz there are very few 
choices of resonators that can achieve a Q this high. Given 
the size constraints of fitting on a PC board inside an MMS 
module, the possible solutions to this design problem were 
limited. 

Some of the traditional choices for high-Q resonators in this 
frequency range include helical resonators and transmission 
line resonators. The size of either of these choices was the 
biggest obstacle to their use in the HP 70911 A module. 
A new resonator technology was found that met all of the 
constraints. This resonator is a quarter-wavelength shorted 
coaxial transmission line formed from a high-dielectric- 
constant ceramic material. The dielectric constant of the 
ceramic is approximately 90.5, which yields a length of less 
than 1 inch at 321.4 MHz for a quarter-wavelength resonator. 
The coaxial resonators are formed with a square outer con 
ductor 0.238 inch on a side and a circular inner conductor of 
0.095-inch diameter. These dimensions are small enough to 
mount four of these resonators on a single printed circuit 
board with the appropriate circuitry to create a four-pole 
synchronously tuned filter. The unloaded Q of these ceramic 
coaxial resonators at 321.4 MHz is around 220. 

A shorted transmission line (TiJ behaves like a parallel RLC 
resonant circuit at a center frequency corresponding to a 
quarter wavelength of line. An equivalent RLC lumped-ele 
ment model for this circuit can be calculated by matching 
the slope of the reactance change with the frequency of the 
transmission line circuit at resonance to an equivalent RLC 
circuit (Fig. 6). The equivalent parallel resistance can be 
calculated from the Q of the resonator. 

To implement a synchronously tuned filter all of the stages 
need to be aligned to exactly the same center frequency. By 
adding an adjustable capacitance in parallel with the 
shorted transmission line the stages can be pulled into align 
ment with the center frequency. This requires that the 
resonant frequency of the resonator be higher than the final 
required center frequency because the added parallel capac 
itance will lower the resonant frequency. 

October 1995 Hewlett-Packard Journal 91 
© Copr. 1949-1998 Hewlett-Packard Co.



c = 
Resonator 

T L  â € ¢  X / 4  T 1  
I  

4 Z n Q  

Fig. 6. Equivalent circuit for a ceramic resonator. 

The resonator chosen for the HP 70911 A investigation was 
cut to a length that corresponded to approximately 360 MHz 
so that it could be pulled into alignment at 321.4 MHz. Using 
varactor diodes for the parallel capacitance allows the align 
ment of all of the center frequencies using a DAC under 
automated computer control. 

For a square transmission line with a round center conduc 
tor the characteristic impedance of the line can he approxi 
mated by the following formula: 1 

Z,, ^ l n [ l . 079 j ]  ohms 

where w is the width of the square transmission line, d is the 
diameter of the coaxial element center conductor, and er is 
the relative permittivity of the dielectric. 

From the dimensions given above for coaxial resonators, ZQ 
is calculated to be approximately 6.3 ohms. Using the formu 
las given for R, L, and C in Fig. 6, the equivalent circuit of 
the resonator looks like Fig. 7. 

To implement a four-pole synchronously tuned filter, the 
final Q of each stage needs to be 140 to meet the final de 
sired bandwidth of 1 MHz. This implies a total parallel equiv 
alent resistance of 1004 ohms. Since the resonator parallel 
resistance is only 1765 ohms, the total impedance of the 
circuit that buffers each stage must be greater than 2327 
ohms. It is a challenging design task to generate a buffer 
stage with that high an impedance at a frequency of 
321.4 MHz. To attain a maximum bandwidth of 10 MHz the 
equivalent parallel resistance needs to be 100.4 ohms. 

The circuit topology used for the 10-MHz to 100-MHz band- 
widths, which is discussed in the next section, worked well 
at the lower Q levels, but was unable to provide the high 
impedance necessary for the minimum bandwidth of 1 MHz. 
To attain the high impedance needed, a GaAs FET buffer 
stage is used across the resonator (see Fig. 8). The driver 
stage is a common-base configuration so the output imped 
ance level can be set high enough to be stepped up by a 
tapped-capacitor transformer circuit, which is similar to the 
10-MHz-to-lOO-MHz bandwidth circuit. The varactor diodes 
used to vary the capacitive taps have a tuning range of ap 
proximately 10 to 1. 

1 7 6 5  O h m s  3 . 5 5  n H  5 5 ,  p F  

F E T  B u f f e r  

Fig. 8. Resonator with circuitry for bandwidth and center frequency 
tuning. 

For a tapped-capacitor transformer the effective turns ratio 
is given by: N = CyC( + 1. The impedance ratio varies with 
N2. This impedance ratio provides the required bandwidth 
range but there is a drawback. The tapped-capacitor trans 
former also steps up the signal voltage at the input of the 
FET amplifier. This leads to distortion problems. The solu 
tion was to step the voltage back down with a fixed-ratio 
tapped-capacitor transformer (see Fig. 9). This keeps the 
voltage at the FET down to a level that keeps the distortion 
within allowable limits. 

Varying Q and Cj, can set the desired bandwidth from 
2.3 MHz to 23 MHz for each pole. Cc is used to adjust the 
center frequency to 321.4 MHz for each pole. Since the effec 
tive capacitance across the resonator changes as the tap 
capacitors are varied, the center frequency needs to be re 
adjusted as the bandwidth is varied. This is accomplished 
with varactor diodes driven by DACs and a lookup table 
containing the appropriate voltage settings for each band 
width in 10% increments over the entire range of band- 
widths. Cascading four of these stages as a synchronously 
tuned bandpass filter yields an overall bandwidth of 1 MHz 
to 10 MHz. 

Design for 10 MHz-to-100-MHz Bandwidths. The dynamic range 
limitations of the resolution bandwidth filter design ap 
proaches described above meant that they would not work 
for the HP 709 11A. A different approach was needed. A syn 
chronous type of filter was still desired because synchro 
nous filters have low group delay variation. This is a require 
ment for good pulse fidelity, which was one of the goals for 
the HP 709 11 A. A five-resonator synchronous filter was cho 
sen for the shape factor requirements and the range of band 
width desired. These are two conflicting requirements 
because, unlike other filter types, increasing the number of 
resonators in a synchronous filter decreases the required Q 
of the individual resonators. For the required maximum 

FET Buffer 

Fig. circuit. Circuit values for the ceramic resonator's equivalent circuit. 
Fig. 9. 1-MHz-to- 10-MHz bandwidth filter stage. 
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bandwidth of 100 MHz at a resonant frequency of 321.4 MHz. 
the fractional bandwidth of the composite filter is over 3096, 
and with five resonators, each tank would have a fractional 
bandwidth of over 80% of its center frequency. 

A variable resonator with low insertion loss and low distor 
tion was needed. Existing variable-bandwidth filters 
changed the Q of the resonator by varying its load resis 
tance. For a five-resonator synchronous filter 

Qsection â€” Qoverall x Â»2 ' â€” 1. 

For the 10-MHz bandwidth. 

Qsection = (321.4/10) X > 2 > > -  1 = 12.39,  

and for the 100-MHz bandwidth, 

Qso(,km = (321.4/100) x ,21/5- 1 = 1.24. 

For a single resonator, the bandwidth would be 26 MHz for 
the composite filter to have a 10-MHz bandwidth and 260 
MHz for a 100-MHz setting. That means that a parallel reso 
nator with an impedance of about 35 ohms at resonance 
would need to see a parallel resistance of between 45 and 
450 ohms. 

One of the ways the Q was changed in previous variable- 
bandwidth filters was to change the loading on the resona 
tor with p-i-n diodes. A current source drove a series of p-i-n 
diodes connected to the top node of the resonator, which 
was connected to a high-impedance amplifier. 

This is a good solution since p-i-n diodes act like inexpen 
s i v e  i n  c o n t r o l l a b l e  R F  r e s i s t o r s .  D i s t o r t i o n  i n  
p-i-n diodes can be reduced by putting a lot of them in series 
and using the same bias current. This method was tried but 
there was a problem. For the narrow bandwidths, a large RF 
voltage is present at the top node of the resonator. When 
this voltage is applied to the gate of a FET or the base of a 
bipolar junction transistor, the junction capacitance is var 
ied by the RF voltage, causing distortion. At 21.4-MHz or 
3-MIIz center frequencies where this scheme has been used, 
the change in impedance because of this parasitic varactor 
is not significant. At 321.4 MHz the degradation in the third- 
order intercept is too great given the aggressive goals of the 
HP 7091 1A. 

It seemed wise at 321.4 MHz to avoid high impedances, high 
RF voltages, and noise-figure-degrading p-i-n diodes. Trans 
forming our characteristic impedance of 50 ohms up and 
then down using reactive transformations would allow us to 
avoid high-impedance amplifiers and p-i-n diodes. A capaci- 
tive transformer could be implemented with varactors to 
give us the desired continuous bandwidth variation. How 
ever, reference texts suggest that capacitive transformers 
should be used in cases where the resonators are only oper 
ated up to 20% bandwidth. In the HP 7091 1 A, the resonators 
need to operate up to 81% bandwidth. It seemed like there 
was little hope of getting this scheme to work, but it, was 
tried anyway. 

With this topology the only place that there would be high 
RF voltages is at the top node of the resonator. Since there 
were going to be varactors at that node, there was concern 
about distortion. This was solved by putting the varactor 
diodes in a back-to-back configuration so that there would 

Fig. 10. Resonator for 10-MHz-to-lOO-MHz bandwidth. The 
variable capacitors are varactor diodes. 

be some cancellation of the effect of the RF voltage (see 
Fig. in In this circuit, when the upper varactor increases in 
capacitance because of a positive swing of the RF voltage, 
the lower varactor decreases its capacitance, canceling out 
the change. Thus, the distortion problem was minimized. 

The main effect of trying for over 80% bandwidth with ca- 
pacitive taps is a nonideal filter shape (Fig. 11). At the wider 
bandwidth settings the upper tap capacitors are much larger 
than the lower tap capacitors. The circuit resembles a high- 
pass filter and doesn't have the ideal resonator rejection 
above resonance. This can be compensated by adding series 
inductors that will resonate with the upper tap capacitors 
(Fig. 12). The bandwidth of these outer resonators is high 
enough for the maximum bandwidth desired. As the main 
resonator bandwidth is decreased the outer resonator shifts 
up in frequency because the upper tap capacitance1 de 
creases. This shift does not cause trouble since the outer 
resonator has a bandwidth that is high regardless of the tap 
setting because of its 50-ohm loading on one port and vari 
able loading on the other port. 

The main resonator impedance was chosen to be 35 ohms at 
resonance so that for the widest bandwidths the Q-reducing 
resistance required was greater than 25 ohms (50 ohms at 
the input in parallel with 50 ohms at the output). Once that 

-10 .0  
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Fig. 11. The iinniileal filler shape lluÃ¯t results from iisinM eapacitanee 
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Fig. that Resonator compensated by adding series inductors that 
will resonate with the upper tap capacitors. 

was decided, the values for L and C were easy to calculate. 
One of the complications of using the tapped capacitors is 
that the equivalent capacitance in shunt with the tank induc 
tor changes with the bandwidth. This problem is solved by 
using DACs to control the voltages of all the varactors. A lot 
of calibration ROM space is required to support this circuit 
topology. All five resonator circuits have the lower and up 
per tap varactors ganged together (see Fig. 13). The shunt 
tank capacitors are connected to separate DAC outputs al 
lowing independent control of the center frequency of each 
resonator. 

The resonator circuit shown in Fig. 13 is used in the HP 
709 11 A. The insertion loss for this circuit is less than 6 dB 
for the 26-MHz setting and about 1 dB at 260-MHz band 
width. The third-order intercept point is about +29 dBm re 
ferred to the output for all settings. Group delay variation is 

less than half a nanosecond in wide mode and about 3 ns for 
the narrow-bandwidth setting. 

Accurate Gain 
The gain accuracy of the HP 7091 1A IF module depends on 
the gain of the seven step gains and the five filter poles and 
the accuracy of the calibration attenuator. How gain accu 
racy is achieved in each of these elements is discussed 
below. 

Calibration Attenuator. The calibration attenuator is used dur 
ing self-calibration of the HP 71910A receiver. The customer 
performs receiver self-calibration periodically to ensure that 
the receiver meets all of its specifications. This procedure 
measures and corrects several aspects of receiver perfor 
mance. Among other things, it measures the gain of the step 
gain and attenuator stages and measures and corrects dis 
played linearity errors in the linear detector. 

Since the calibration attenuator is used as a reference stan 
dard against which other parts of the receiver are measured, 
it is essential that the attenuator yield accurate and stable 
gain over the receiver's specified 0-to-55Â°C operating tem 
perature range. Over this range, and over the attenuator's 
O-dB-to-13-dB attenuation range, accuracy is guaranteed 
within 0.3 dB at 321.4 MHz. 

At these frequencies, variable attenuators are traditionally 
designed using semiconductors with bias dependent resis 
tivity. Examples would be p-i-n diodes with a current depen 
dent resistance or GaAs FETs with a resistance that depends 
on gate voltage. Unfortunately, these types of attenuators do 
not demonstrate the required temperature stability. For this 
reason, the calibration attenuator was designed as a series 

2 2 0 0  p f  1 7 . 5  n H  

â€”  
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Fig. the Circuitry for one pole of the IF bandwidth filter showing the upper and lower tap varactors ganged together. 
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of fixed switchable attenuator sections (Fig. 14). The 1-dB 
through 8-dB attenuator stages are pi attenuators made with 
surface mount thick-film resistors. The 0.25-dB through 
0.03-dB attenuator stages could not be designed as pi attenu 
ators because the resistance values required for these very 
low attenuation values would not be achievable at 321.4 
MHz. 

Instead of trying to figure out a way to build a 0.03-dB atten 
uator, we built a 6-dB tee attenuator with an attenuation we 
could vary slightly. This was done by changing the resis 
tance of the shunt element of the 6-dB attenuator. By switch 
ing around small resistors in series with much larger ones, 
very small attenuation steps can be realized. Changing only 
the shunt element in this attenuator does cause the attenua 
tor's return loss to vary across its 0.5-dB attenuation range, 
but this effect is small enough to be acceptable. 

With standard 1% tolerance resistors, the attenuation accu 
racy of this circuit will not be exact enough without align 
ment. During alignment of the HP 7091 1A, each 1-dB calibra 
tion attenuator step is measured and corrected to the 
desired value by turning on the appropriate combination of 
small attenuator steps. This alignment data is then stored in 
EEPROM. 

Step Gains. The purpose of step gains is to substitute a 
known fixed gain ahead of the detector to enable accurate 
measurement of low-level signals. The ideal step gain has a 
0-dB gain state and a 10-dB gain state. The implementation 
in the HP 7091 1A is shown in Fig. 15. The 0-dB (bypass) path 
actually has approximately 2 dB of loss, while the 10-dB 
(gain) path has approximately an 8-dB gain. The goal of the 
circuit is to make the gain difference between the 0-dB and 
10-dB states exactly 10 dB. The variable attenuator in the 
gain path allows the gain to be trimmed to achieve this accu 
rate gain difference. During alignment the DAC values re 
quired to trim the gain are determined for each of the step 
gains from measurements made at 0, 25, and 55Â°C. These 
DAC values are stored in EEPROM tables which are con 
sulted by the module firmware during operation. As men- 
lionod above, the calibration attenuator is used during cali 
bration to measure the actual gain step value. In addition, 
because the calibration attenuator is accurate to within 

Fig. 14. The calibration attenuator 
is designed as a series of switch- 
able attenuator sections. 

0.3 dB, it can be used in conjunction with the step gain to 
provide accurate 1-dB gain steps over most of the 70-dB gain 
range. 

Filter Pole Gain. As discussed above, bandwidth variation is 
obtained with a controlled variation of the Q of the filter 
pole. Because of this, the gain of the filter pole also varies 
with bandwidth. It is necessary to compensate for this gain 
variation if the module gain is to be accurate for all band- 
widths. Since bandwidths are in 10% steps (10, 11, 12.1, ...), 
there are a finite number of bandwidths for which gain com 
pensation is required. Associated with each filter pole is a 
programmable gain block (see Fig. 16). This gain block is 
used to provide the necessary gain compensation. The DAC 
values for this compensation are determined during align 
ment and stored in EEPROM tables, which are consulted by 
the firmware each time the bandwidth is changed. 

In addition to controlling the nominal gain of the filter pole 
these programmable gain blocks also play a role in tempera 
ture compensation of the overall gain of the module. Gain 
drift with temperature is most troublesome during warmup. 
For this reason, the temperature of the module is monitored 
during warmup and the temperature value is used to adjust 
the gain to keep the output levels relatively constant. The 
warmup period is defined as the first hour after the module 
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Fig. 15. A block dirÃ­an! of the step gains in the Hi' 709 11 A. 
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DAC Control 

Fig. 16. A representation of a programmable gain block. 

is powered on. During this period the temperature is mea 
sured once per minute and the rate of change is used to de 
termine the size of the gain adjustment required. After the 
warmup period, the gain is stable for small changes in tem 
perature so this compensation mechanism is disabled. 

The module firmware orchestrates gain changes based on 
sampling a temperature sensor voltage with an ADC. The 
ADC values are used to calculate the gain change based on 
the following equation: 

( V l  -  V n ) G p  

V 5 5  -  V n  

where Vt is the voltage representation for the current tem 
perature, Vn and Vr,5 represent the voltage values for 25 and 
55Â°C respectively, and Gp is the peak gain change between 
25 and 55Â°C for each bandwidth. Gp is determined during 
alignment. 

The gain change calculated is used to index into an 
EEPROM table to determine the DAC value necessary to 
achieve the desired gain. The DAC-value-versus-gain rela 
tionship is determined and stored during factory alignment. 

Pulse Detection 
The linear detector allows the receiver's user to recover AM 
and pulse modulation from the input signal. It strips the car 
rier from the input signal and leaves only the envelope 
(Fig. 17). The resulting envelope information can then be 
displayed on an oscilloscope, allowing the user to analyze 
the modulation or transient characteristics of the input 
signal. 

The key performance specifications for the detector are 
bandwidth, dynamic range, and pulse fidelity. We would like 
the detector bandwidth to be much wider than the IF mod 
ule's bandpass filters so that it does not limit the IF module's 

bandwidth. The bandpass filters have a maximum band 
width of 100 MHz, which is equivalent to 50 MHz after detec 
tion. The detector is guaranteed to have at least twice this 
bandwidth, or 100 MHz. Dynamic range is a measure of the 
linearity of the detector. This is measured by changing the 
input RF voltage in 1-dB steps and measuring the resulting 
change in the dc output voltage. Ideally, it should also 
change by 1 dB. Our specification guarantees that over a 
26-dB range, this change will be accurate within 3%. 

Previous linear detectors in HP spectrum analyzers have 
achieved this performance, but at much lower IF frequen 
cies of 10.7 or 21.4 MHz. Achieving this performance at 
321.4 MHz was the most challenging aspect of this design. 
A schematic of this circuit is shown in Fig. 18. Q 1 is a 
common-base buffer stage that drives Q2, which is the de 
tector transistor. Q2 and CR1 each act as half-wave rectifi 
ers. Positive half cycles of Ql's output current flow through 
CR1 to ground. Negative half cycles flow through Q2's emit 
ter and collector and develop a voltage across Rl, the load 
resistor. 

The fundamental linearity problem is that the input imped 
ance of Q2 varies dramatically with signal level. With no 
input signal, Q2 is biased at 120 uA. This yields a dc resis 
tance looking into the emitter of 217 ohms. At full-scale out 
put, the dc emitter current is 10 mA, reducing the resistance 
to 2.6 ohms. This load resistance is in parallel with several 
parasitic loads (Fig. 19). Among these parasitic loads are 
Ql's output capacitance, Ql's collector bias network, the 
parasitic capacitance of the printed circuit board, and the 
capacitance of Q2's base-emitter junction. At high signal 
levels, Q2's input resistance is low, and essentially all of Ql's 
output current is delivered to the desired load. At low signal 
levels, Q2's input resistance is high, and the parasitic ele 
ments tend to shunt current away from the desired load. 
This variable current shunting degrades the linearity, so 
good linearity requires that these parasitic elements load the 
circuit as little as possible. 

(a) [bl 

Fig. linear (a) Inpul lo the linear detector, (b) Output from the linear 
detector after the carrier is stripped off. 

Fig. 18. Linear detector circuit. 
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Fig. 19. Linear detector equivalent circuit. 

Ql's output capacitance is minimized by using a common 
base configuration. Also, a microwave transistor is used 
because of its low capacitance. The load impedance of the 
collector bias network is maximized by careful design of the 
bias network. The printed circuit board layout is also 
carefully designed to make nodal capacitance as small as 
possible without sacrificing manufacturability. 

The selection of the right transistor for Q2 was perhaps the 
most critical component of the design. We needed to use a 
microwave transistor to get the low junction capacitance we 
wanted. We needed two things from this transistor: a low 
base-emitter capacitance and, if possible, a capacitance that 
decreases linearly with decreasing collector current. We 
wanted this relationship between capacitance and current 
because if capacitance decreases linearly with current, then 
that capacitance will not degrade the detector's linearity. 
This is because the junction's capacitive reactance will in 
crease as its resistance increases, and the fraction of current 
"stolen" by the capacitor will not vary with signal level. 
Since this shunting effect is independent of signal level, it 
will not degrade linearity. 

It rarely happens, but sometimes semiconductor physics 
dec-ides to give you just what you'd like. This is one of those 
cases. To a first-order approximation the base-emitter ca 
pacitance of a bipolar transistor is linearly proportional to 
bias current, at least at moderate current levels. Even better, 
we could easily extract this information from a transistor's 
data sheet curves. Low base-emitter capacitance is roughly 
equivalent to high fr (transition frequency). A capacitance 
proportional to bias current will reveal itself as a curve of fp 
that is flat versus bias current. Theory suggests, and experi 
ment demonstrated, that the best detector transistors are 
1 1 lose that have a high and relatively constant fr-over their 
entire operating current range. Unfortunately, most micro 
wave transistor data sheets do not give fr curves over the 

100:1 range of bias currents that we wanted. Fortunately for 
us, we have a lot of data books and found some microwave 
transistors that met our needs. As expected, the transistors 
with the best f 7 curves yielded the most linear detectors. 
Typical linearity error for the detector we selected is shown 
in Fig. 20. 

The detector's output current flows across Rl. generating a 
1-volt drop at the maximum input level. Since the other end 
of Rl is tied to the 8-volt supply, it is necessary to use a dif 
ferential amplifier to reference the signal to ground. A sim 
pler approach would have been to tie Rl to ground instead 
of +8 volts and to tie CRl's cathode to -8 volts. This would 
have eliminated the need for a differential amplifier. But this 
would have made it difficult to achieve good pulse fidelity. 

Achieving good pulse performance can be hard even with 
nominally linear circuits, but it is particularly difficult to do 
with inherently nonlinear ones like detectors. These circuits 
can exhibit overshoot, droop, or both on any time scale 
(microseconds to seconds) if their bias networks are not 
designed correctly. If the bias networks exhibit significant 
impedance at virtually any frequency below hundreds of 
MHz, the bias voltages in the detector can vary with the 
input signal, causing imperfections in the detector transient 
response. For this reason it seemed risky to try to build a 
good enough bypass network that could have presented 
CRTs cathode with uniformly low impedance across a broad 
frequency range. Rather than accept this risk, we chose to 
ground CRTs cathode and accept the complexity of a differ 
ential amplifier to recover the detected voltage. 

The differential amplifier is integrated with a low-pass filter 
that removes the 321.4-MHz component from the half-wave 
rectified voltage across Rl. This is an elliptic low-pass filter 
with a 200-MHz corner frequency. Even though elliptic filters 
have notoriously poor pulse response, we can use one here. 
We can do this because of the bandwidth limitation imposed 
on the input signal by the IF module's bandpass filters. The 
elliptic filter's bandwidth is four times higher than the effec 
tive postdetection bandwidth of the IF module's resolution 
bandwidth filters. Since these filters prevent the higher- 
frequency components from reaching the elliptic filter, only 
very low levels of ringing are observed in the detected out 
put. We were able to demonstrate this by simulating the 
pulse response of the resolution bandwidth filters cascaded 
with an elliptic detector filter. As a result, we avoided the 
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need for a more complex full-wave rectifier with its inherent 
carrier suppression. 

Standard IF Outputs 
For direct connection to commercial demodulators a 
70-MHz or 140-MHz IF output is required. The HP 7091 1A 
offers either or both of these outputs as options. 

A simplified block diagram for these options is shown in 
Fig. 21. Both down-converters use the 321.4-MHz local oscil 
lator circuits (described later). This design has a VCO tuning 
range sufficient for both down-converters. The LO frequency 
for the 70-MHz down-converter is 391.4 MHz and the LO 
frequency for the 140-MHz down-converter is 461.4 MHz. 
These LO signals are applied to a mixer which has some 
buffering in front of it and is followed by an optional filter 
and an amplifier. Image rejection filtering is not part of the 
design since it is assumed thai, the vanable-bandwidth filters 
are in the upstream path. The output filter is used to confine 
the output bandwidth to a specified amount. 

The same basic design is used for both down-converters. 
The key difference is that in the 140-MHz design a pad fol 
lows the mixer, whereas in the 70-MHz design there is a 
diplexer at the mixer output, which provides a good out-of- 
band impedance match. The 70-MHz design has also been 
made available as a special option for the HP 859XE Series 
spectrum analyzers. 

Channel Filters 
The channel filters option provides an electronically switch- 
able bank of five bandpass filters and variable gain that can 
be used at 70-MHz, 140-MHz, or 160-MHz center frequencies. 

The input of the board goes to each filter cell through a 
series of GaAs switches and well-isolated stripline 50-ohm 
printed circuit board traces. The cells are large enough for a 
standard-size printed circuit board-mounted filter. The ma 
chined aluminum shield has pockets on the bottom to keep 
the signal pins of the filter isolated from each other. There is 
also a through path available for bypassing the filters. After 
the switching network, there is a p-i-n diode attenuator that 
allows continuous electronic amplitude control. Next, there 
is a high-dynamic-range, wide-bandwidth amplifier. The am 
plifier also provides temperature compensation for the gain 
of the board. The compensation is done by using a thermistor 

to vary the current in a p-i-n diode which varies the emitter 
degeneration impedance with temperature. 

The excellent isolation, wide bandwidth, and variable gain 
make the channel filters a flexible option for any of the 
standard IF outputs. 

FM Outputs 
The FM discriminator generates an output voltage that is 
linearly proportional to the frequency of the input signal. It 
is used to demodulate wideband frequency modulated sig 
nals such as those found in satellite television links or chirp 
radars. 

The key performance specification for the FM discriminator 
is linearity. Ideally, the frequency-input-to-voltage-output 
transfer function should be a straight line. Our goal was to 
make the maximum error from a straight line less than 1% of 
the full-scale output across the 40-MHz deviation range of 
the demodulator. The techniques used in this design were 
driven primarily by that goal. 

Many different types of circuits have been designed to do 
FM demodulation. There are Foster-Seely discriminators, 
ratio detectors, phase-locked and frequency-locked demodu 
lators, and slope detectors. Digital techniques, which count 
the zero crossings of the input signal and extract the fre 
quency information mathematically, offer the promise of 
the highest linearity. These techniques are used in the 
HP 5371A,2 the HP 53301A, and other modulation-domain 
analyzers from Hewlett-Packard. Although they achieve ex 
cellent linearity, these products are large and expensive and 
certainly would not fit on a single 4-inch-by- 7-inch card in 
the HP 70911 A. For these reasons, it was necessary to pur 
sue a different approach. 

Two analog demodulators seemed to offer the best potential 
for high linearity across a broad band: a pulse count demod 
ulator and a time-delay discriminator. A pulse count demod 
ulator (Fig. 22) generates a fixed-length output pulse at 
every zero crossing of the input signal. Since higher-fre 
quency signals have more zero crossings, the output pulses 
occur more frequently. As a result, the dc average value of 
the output pulse train is higher for higher-frequency inputs. 
The low-pass filter placed after the pulse generator filters 

321 .4MHz  

3 0 0 M H z  

7 0 M H z  

3 2 1 . 4 M H z  

3 0 0 M H z  

Bandpass 
Filter 1 4 0 M H z  

461 .4MHz  Fig. 21. Simplified block diagram of the 
output options for direct connection to 
commercial demodulators, (a) 70-MHz 
IF output, (b) 140-MHz IF output. 
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FM Out 

Fig. 22. Pulse count discriminator. 

out the carrier frequency component of the pulse train, leav 
ing a dc value linearly proportional to the input frequency. 
This linear conversion of input frequency to output voltage 
is just what we needed to build a linear discriminator. 

This type of demodulator can be implemented very simply 
and inexpensively by using a retriggerable one-shot timer to 
generate the output pulses. It does, however, have disadvan 
tages in our application. For one, very narrow pulses would 
be required to make this work at 321.4 MHz. Also, these sim 
ple one-shot timers tend to have noisy outputs because of 
variations in the width of the output pulse. 

A time-delay discriminator works by converting the input 
signal's frequency modulation into phase modulation 
(Fig. 23). A delay line delays the input signal by a fixed 
amount of time. A phase detector on the delay line output 
compares the phase of the input signal against the phase of 
the time-delayed version of the input. Since the phase of a 
high-frequency signal changes more rapidly than the phase 
of a low-frequency signal, the phase difference between the 
two inputs to the phase detector will increase linearly with 
frequency. The output voltage of the phase detector is pro 
portional to this phase difference and thus, proportional to 
the frequency of the input signal. Typically, the length of the 
delay line is chosen so that the signal will be delayed 90 de 
grees at the center frequency of the discriminator. This gives 
zero volts dc output at the center frequency and centers the 
output in the middle of the phase detector's transfer func 
tion. This inherently linear conversion of frequency to phase 
seemed to make this type of circuit a logical candidate for 
our application. 

However, this type of discriminator posed two potential dis 
advantages for our application. First, this discriminator is 
inherently limited in the maximum frequency deviation and 
the maximum modulation rate it can handle. Typical phase 
detectors only behave well when the phase difference be 
tween the inputs varies by less than 180 degrees. Because 
phase difference is proportional to input frequency, the max 
imum frequency deviation the discriminator can handle is 
limited. Also, the sensitivity inherently rolls off at high mod 
ulation rates. In other words, as the input frequency starts to 
vary more quickly, the level of the demodulated output will 

Time Delay 

A A  
Splitter 

F M O u t  

start to drop. The longer the delay une. the lower the modu 
lation rate at which this will occur. In our case, we need to 
demodulate broad frequency deviations and as a result the 
maximum delay line length is limited by deviation require 
ments and not modulation rate needs. 

The second disadvantage of the time-delay discriminator is 
based on phase detector characteristics. Our high IF of 
321.4 MHz would suggest using a double-balanced mixer as 
a phase detector. Conventional double-balanced mixers are 
designed to work with a sinusoidal RF port drive. The result 
is that the mixer output voltage varies sinusoidally with the 
phase difference between the LO and the RF waveforms 
(Fig. 24). Therefore, it is only linear if the phase difference 
between the input signals does not vary much from 90 
degrees. Since we wanted good linearity, that meant a short 
delay line. Unfortunately, the shorter the delay line, the 
lower the sensitivity of the discriminator. Short delay Unes 
mean low phase shifts and therefore low output voltages. 
For good signal-to-noise ratio, we wanted to maximize the 
time delay. 

A double-balanced mixer has a sinusoidal transfer function 
because its RF input voltage is sinusoidal. Ideally, if its in 
puts are square waves, the transfer function would be linear 
over a 180-degree range. However, generating very fast 
square waves is hard, and the mixer would need a very 
broadband de-coupled IF to work well. Fortunately, there is 
a type of double-balanced mixer that meets these require 
ments: the exclusive-OR gate. An ideal double-balanced 
mixer generates its IF by inverting the RF waveform when 
ever the amplitude of the LO crosses zero (Fig. 25). This is 
exactly what a digital exclusive-OR gate does with logic-level 
inputs. Thus, with this characteristic an exclusive-OR gate 
can be used as a double-balanced mixer. 

Because of our high IF and broad frequency range, we 
needed to use very fast logic circuitry if we wanted this to 
work. Motorola's ECLinPS Lite family of emitter-coupled 
logic turned out to be perfect for our application. These 
logic gates come individually packaged in eight-pin small- 
outline ICs and feature rise times under 300 picoseconds. 
The fast, square pulses generated by this logic are perfect 
for making a very linear phase detector. 

When logic gates are as small and fast as these, it's only nat 
ural to use them wherever you can. In the end almost all the 
functions on the board including limiting amplifiers, mixers, 
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Fig. 23. Time-delay discriminator. Fig. 24. Transfer function for a double-balanced mixer. 
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Fig. 25. Exclusive-OR transfer function. 

and phase detectors were implemented using these RF logic 
gates. Because of the nature of FM modulation and demodu 
lation, logic parts work well in frequency modulation 
applications. 

Fig. 26 shows a block diagram of the FM discriminator. The 
321.4-MHz input is applied to a limiting amplifier. The limit 
ing amplifier is a high-gain stage that turns the incoming FM 
sine wave into a constant-level frequency modulated square 
wave. Given that our signal processing is done with logic- 
parts, we obviously needed something like this to convert 
the input into ECL levels. 

An ideal FM demodulator is insensitive to amplitude modu 
lation of the input signal. The output voltage should not 
change at all when the input amplitude varies. Limiting am 
plifiers are used to achieve this. They have high gain and 
clip the level of the output signal at a predefined level. Our 
limiting amplifiers are implemented with ECL line receivers, 
which are differential-input high-gain amplifiers with ECL- 
level outputs. Their high gain and hard limiting allow the FM 
demodulator to work properly with inputs as low as -:i() dBin. 

The output of the limiting amplifier is a square wave with a 
nominal center frequency of 321.4 MHz. This is mixed 
against a 250-MHz LO to a lower frequency of 71.4 MHz, 
where the actual demodulation takes place. Originally, the 

intent was to do the demodulation at 321.4 MHz. As we bet 
ter understood the problems we faced in trying to achieve 
good FM linearity, it became clear that using a lower fre 
quency would produce better results. At a lower frequency, 
the period of the IF is longer. The rise time of the parts used 
does not change, so overall the square waves are "squarer." 
Our analysis of the time-delay discriminator showed that it 
was perfectly linear, but this is true only if the square waves 
are perfect. 

The use of small surface mount logic parts enabled us to 
design compact LO generation and frequency conversion 
circuitry. The 250-MHz LO is derived from the 300-MHz ref 
erence frequency available in the HP 709 11 A. The 300-MHz 
signal is converted to ECL levels by a limiting amplifier. The 
300-MHz reference clocks a prescaler, which divides the 
input frequency by six to produce ft 50-MHz output. The 
300-MHz and 50-MHz ECL square waves are then applied to 
the inputs of an ECL exclusive-OR gate. This gate performs 
as a double-balanced mixer, producing 250-MHz and 
350-MHz outputs. The 250-MHz output is selected by a band 
pass filter. This filter is ac coupled, so a limiting amplifier is 
placed on the output to convert the 250-MHz LO back to 
ECL levels. 

The 250-MHz LO and the 321.4-MHz hard-limited input signal 
are then applied to another exclusive-OR gate. This gate is 
also used as a double-balanced mixer, producing outputs at 
71.4 MHz and 571.4 MHz. The 71.4-Hz output is selected with 
a low-pass filter. The entire LO synthesis and frequency con 
version circuitry occupies only 3 in-. 

The use of exclusive-OR gates and square waves, as opposed 
to traditional diode mixers and sine waves, has a surprising 
consequence. As noted earlier, a traditional diode mixer has 
a sinusoidal phase-to-voltage transfer characteristic. As a 
result, the IF out of an ideal diode ring mixer with sinusoidal 
inputs is another sine wave. In contrast, the logic level mixers 
we use here have a triangular transfer function. As a result, 
the IF output of these mixers is a triangular, rather than a 
sinusoidal waveform. In our case, we don't care whether it's 
sinusoidal or triangular, because we immediately convert 
the IF to a square wave with another limiting amplifier. 

Time Delay 

321 .4-MHz 
IF Input 

Differential  
Ampli f ier  

Limiting 
A m p l i f i e r  u _ ^ ^ ^ h _  _ 5 O M H z  

Fig. 26. FM discriminator block diagram. 
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The 71.4-MHz IF is next applied to the discriminator cir 
cuitry. The IF is applied to a special ECL cable driver 1C 
which produces ECL-type outputs that have a larger than 
usual voltage swing. This large voltage swing allows us to 
place a series 50-ohm resistor on the output, cutting the sig 
nal amplitude in half. The resistor increases the output im 
pedance of the gate to around 50 ohms, which turns out to 
be crucial to achieving good discriminator linearity. 

The outputs of the cable driver follow two different paths. 
One output goes directly to the input of the phase detector. 
The other output goes to a delay Une. This delay line is a 
19-in-long 50-ohm stripline trace embedded in the middle of 
the printed circuit board. Numerous bends and turns 
squeeze it into a l-in-by-3-in area The board, made out of 
HP FR4, has a dielectric constant of about 4.5, yielding a 
3.5-ns delay. This delay produces a 90-degree phase shift at 
the center frequency of 71.4 MHz. 

The delayed and undelayed signals now meet at the phase 
detector, which is another exclusive-OR gate. The square 
waves are applied to the high-impedance input of the phase 
detector through a 50-ohm matching pad. The attenuation 
value of this pad is critical to good discriminator linearity. 
As mentioned earlier, good square waves are critical for 
good FM linearity. The attenuation value chosen strikes a 
balance between two "desquaring" mechanisms. 

If the attenuation value is small, the delay line output will 
not be isolated from the 1-pF input capacitance of the phase 
detector. This capacitor degrades the return loss of the 
delay line's load. When a pulse emerges from the delay line 
output and hits a poor impedance match, some of the pulse's 
energy is reflected back into the delay line. It then travels 
backwards through the line to emerge at the delay line input 
3.5-ns later. When the pulse reemerges here, it hits the out 
put of the cable driver. This incident voltage disturbs the 
bias of the cable driver output transistors, and as a result 
causes disturbances in the shape of the new square wave 
that the cable driver is trying to generate. The degraded 
shape of the square wave degrades the FM discriminator's 
linearity. As it turns out, this effect is worst when the re 
flected pulse arrives at the cable driver at the edge of a new 
pulse. Unfortunately, this inherently occurs at the frequency 
where the delay line has 90 degrees of phase shift â€” right in 
the center of the passband. This effect is seen as the linear 
ity ripple in the center of the passband (Fig. 27). 
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The way to minimize this problem is to use a matching pad 
to isolate the delay une from the capacitance of the phase 
detector's input. The attenuation can only be so large be 
cause excessive attenuation introduces other problems. The 
attenuator reduces the voltage swing to less than ECL lev 
els. As a result, the phase detector must provide gain to pro 
duce ECL levels at its output. Unlike the ECL une receivers, 
these exclusive-OR gates have a relatively low gain of 12 dB. 
So, with low-lex-el inputs, the output pulses of the phase 
detector start to look less square. This manifests itself as the 
broad, slow droop in the linearity curve. In the end, an atten 
uation value of 4 dB was chosen as a reasonable compro 
mise between these two linearity degrading mechanisms. 

In the frequency domain, the phase detector can be thought 
of as producing a dc voltage proportional to the phase differ 
ence between its outputs. Looking at it in the time domain is 
also interesting. The two inputs to the phase detector are 
square waves with a fixed time delay of 3.5 ns between 
them. As a result, the phase detector produces output pulses 
of fixed 3.5-ns width. As the input frequency changes, these 
pulses occur more frequently, but the pulse width remains 
the same. This is also exactly how the pulse count demodu 
lator works! So as it turns out, by using a linear phase detec 
tor our time delay discriminator turns out to be equivalent to 
a pulse count demodulator. It works as well as it does be 
cause using a delay line to fix the output pulse width is more 
stable than the RC time constant of a simpler implementa 
tion. 

The phase detector outputs are applied to low-pass filters to 
remove the ac component of the pulse train. These filters 
have a 12-MHz bandwidth that sets the maximum frequency 
modulation rate the discriminator can respond to. Since the 
phase detector has differential outputs, a differential ampli 
fier re used after the filters. The differential amplifier re 
moves the dc offset inherent in the ECL level output of the 
phase detector. Further gain after the differential amplifier 
is used to give a 1-volt swing for a 40-MHz change in input 
frequency. The maximum frequency deviation the FM dis 
criminator can handle is limited by the drive capability of 
t l i is  I t  rather than the discriminator circuitry i tself .  I t  
has been verified experimentally that the discriminator will 
respond to as much as 100 MHz of deviation with essentially 
nondegraded linearity. A switchable amplifier provides a 
higher-sensitivity setting, giving a 1-volt swing for a 10-MHz 
frequency change. 

I-Q Outputs 
The I-Q down-converter (Fig. 28) recovers the in-phase and 
quadrature components of the input signal. The IF input, 
with a nominal center frequency of 321.4 MHz, is mixed 
against a 321.4-MHz local oscillator. This creates an IF with 
a nominal center frequency of zero hertz, or dc. The output 
bandwidth extends from -50 MHz to -I- 50 MHz. 

The input signal is split into two paths. Each of these paths 
goes to the RF port of a mixer. The 321.4-MHz LO is applied 
to the LO ports of both mixers. The LO input to one of these 
mixers is shifted by 90 degrees. The IF outputs are low-pass 
filtered to remove the image frequency, then amplified and 
sent to the front panel of the HP 7091 1A. 
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321.4-MHz LO. The 321.4-MHz LO produces a synthesized sig 
nal that is locked to the 300-MHz reference signal and level 
stabilized (Fig. 29). The LO has a VCO that runs at twice the 
output frequency (642.8 MHz). The reason for running at this 
frequency is based on the availability of a 600-MHz-to- 
1 000-MHz VCO design that has proven to have good phase 
noise and has been in use for some time. The VCO output is 
buffered and split into two paths: the main signal path and 
the phase-locked loop path. The phase-locked loop path 
goes to the splitter to a pad-amplifier-pad combination to 
maintain reverse isolation from the prescaler. The prescaler 
divides the 642.8-MHz signal by 32, 33, 36 or 37. The divide 
number is controlled by an HP synthesizer 1C that imple 
ments the fractional-N division. The output of the synthe 
sizer 1C is equal to 300 MHz/160 = 1.875 MHz when the VCO 
is phase-locked. This signal goes to one input of a phase 
detector. The phase detector output is low-pass filtered, 
summed, and fed to an integrator and loop filter. This is 
where the synthesizer IC's noise is filtered. The noise comes 
from the method of fractional-N synthesis used in the 1C. 
This noise is designed to be well outside the few kilohertz of 
bandwidth of the phase-locked loop where it is easy to filter. 

The main signal path goes from the splitter to a divide-by- 
two 1C. This is an ECL part that is biased in the middle of its 
threshold to allow for ac coupling of the 642.8-MHz VCO 
signal. The output of the divider is 321.4 MHz which is then 
input to an amplifier and resistive splitter. The splitter out 
puts are fed to the last gain stages of the board. These ampli 
fiers are run well into compression to get a constant output 
power. The amplifier outputs are combined with a 3-dB split 
ter/combiner and then aggressively low-pass filtered to re 
ject the harmonics produced by the limiting action. 

Fig. 28. 1-Q demodulator block 
diagram. 

I-Q Down-Converter. Two key performance specifications for 
an I-Q demodulator are amplitude balance and phase bal 
ance. Amplitude imbalance is the gain difference between 
the I and Q output ports. Ideally this gain difference should 
be zero across the 100-MHz input bandwidth of the demodu 
lator. Phase imbalance is a measure of the error in the phase 
shift between the I and Q outputs. Ideally this phase shift 
should be 90 degrees across the input bandwidth. 

The amplitude and phase balance of the demodulator are 
both factory adjusted for best performance. Variable p-i-n 
diode attenuators in the I and Q RF paths allow the gain of 
the two channels to be adjusted independently. The 90-de- 
gree phase shifter on the LO is also adjustable and is used to 
align quadrature. These adjustments allow us to align the 
channels very closely. The mixers used are purchased as a 
matched set, with specified gain and phase matching across 
our passband. 

The difficult part was maintaining this balance across the 
entire 100-MHz input bandwidth of the demodulator. If the 
frequency responses of the two channels differ even slightly, 
amplitude and phase balance will be degraded. For this rea 
son, we tried to make the two channels as symmetrical as 
possible and as flat as possible. The printed circuit board 
layout of the RF paths for both channels is identical so that 
any board parasitics will be the same for both channels. The 
IF circuitry was designed to be as broadband as possible. 
For example, the IF low-pass filters have a corner frequency 
of 175 MHz, even though they only need to pass frequencies 
as high as 50 MHz. The corner frequency was placed this 
high to minimize the filter's phase shift in the 50-MHz pass- 
band. Our IF amplifiers are fast op amps that provide over 
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Fig. 29. Block diagram of the 321.4-MHz LO. 
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Fig. 30. (a) I-Q quadrature phase error, (b) I-Q amplitude imbalance. 

200 MHz of bandwidth. These op amps are also used to 
minimize the phase shift in the 50-MHz passband. If these 
parts be significant phase shift, then there are likely to be 
significant phase shift differences between the two chan 
nels, and phase balance will be degraded. Representative 
performance for the I-Q demodulator is shown in Fig. 30. 

To achieve the best phase balance across our bandwidth, an 
adjustable all-pass filter is used on the I-channel output. The 
phase is versus frequency of this circuit is adjustable. It is 
used to compensate for mismatches between the channels 
in phase shift as a function of output frequency. 
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The Log Weighted Average for 
Measuring Printer Throughput 
The log weighted average balances the different time scales of various 
plots in a test suite. It prevents an overemphasis on plots that take a long 
time to print and allows adjustments according to the expected user 
profile weighting. It is based on percentage changes rather than absolute 
plot times. 

by John J. Cassidy, Jr. 

The HP DeskJet 1600C printer is designed to be used for a 
variety of documents, from simple memos to complex color 
graphics. One of the main characteristics on which the 
printer will be judged is throughput. We needed a way to 
measure throughput across a wide range of plots that would 
reflect a user's subjective perception of the product. 

The two most common metrics â€” simple average and simple 
weighted average â€” had serious problems when applied to 
the disparate plots in our test suite. A simple and common 
mathematical technique was used to overcome these prob 
lems, resulting in a metric called the log weighted average. 

This paper explains how to calculate the log weighted aver 
age, and why it is a good metric. 

The Problem 
We use a standard set of plots to measure the speed of the 
HP DeskJet 1600C printer. For the sake of this paper, I sim 
plify the test suite down to four plots â€” we actually use 15. 
The actual timings have also been simplified and are not 
accurate for any version of the printer under development. 
The four plots are (1) text page, a normal letter or memo, 
(2) business graphic, some text with an embedded multi 
color bar chart, (3) spreadsheet with color highlighting of 
some of the numbers, and (4) scanned image, a complex, 
full-page, 24-bit color picture. 

For a given version of the HP DeskJet 1600C printer, call it 
version 3.0, let's say the time to process and print each of 
these pages is as follows: 

Text page 
Business graphic 
Spreadsheet 
Scanned image 

10 seconds 
20 seconds 
45 seconds 
10 minutes (600 seconds) 

There are various things we can do to the printer to change 
the speed of each of these plots. Often a change will speed 
up one plot while slowing down another. What we need to 
do is compare alternative possible version 3.1s and see 
which one is faster overall. 

Simple Average 
The simple average is calculated by adding up the time for 
each of the plots and dividing by the number of plots. The 
formula for this is: 

Simple Average = 2TÂ¡/n, 

where n is the number of plots and TÂ¡ is the time to process 
plot number i. 

For version 3.0 above, the sum of the four times is 675 sec 
onds which divided by four gives a simple average of 169 
seconds (rounding from 168.75). 

The problem with the simple average is that it gives equal 
importance to each of the seconds spent on each of the 
plots. If a version 3. la saved five seconds on the scanned 
image, this plot would go down from 600 seconds to 595 
seconds and the user would barely notice. But if a version 
3.1b saved 5 seconds from the text plot, this plot would go 
from 10 seconds to 5 seconds, twice as fast! The user would 
be very, very happy with the text speed. 

The simple average tells me that these two changes are of 
equal value. So if I am using this metric, I'll go for the easy 
change of speeding up the scanned image by a little bit (less 
than 1% faster), instead of the much more difficult and more 
useful speedup of the text page (50% faster). 

Simple Weighted Average 
A common way to improve the simple average is to make 
use of the fact that we know how often the user is going to 
print each type of plot (at least we make good guesses). We 
know, for example, that someone in our target market will 
print a lot more simple text pages than complex scanned 
graphic pages. 

The simple weighted average applies a weight to each of the 
plots, corresponding to the proportion of time the user will 
be printing that type of plot. In mathematical terms: 
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Simple Weighted Average = 

where \VÂ¡ is the weight for plot i. If the WÂ¡ add up to 1.0. the 
denominator can be ignored. 

For the HP DeskJet 1600C printer, let's say half of the plots 
will be like the text page, one-fifth like the business graphic, 
one-fifth like the spreadsheet, and one-tenth like the 
scanned image. This gives the following calculation: 

Plot 

Text Page 
Business Graphic- 
Spreadsheet 
Scanned Image 

Sum 

Time  ( s )  Weigh t  TÂ¡WÂ¡  ( s )  

10 
20 
45 

600 

0.5 
0.2 
0.2 
0.1 

1.0 

B 
4  
9 

60 

78 

The simple weighted average is 78 seconds. 

This method of calculation is much better than the simple 
average. It takes into account our knowledge of the target 
market, and any average we come up with needs to be able 
to do this. 

But there are still problems with this average. Say that ver 
sion 3. la speeds up the scanned image by 5% (down to 570 
seconds), and version 3.1b speeds up the text page by 50% 
(down to 5 seconds). 

We know from our own experience that speeding something 
up from 10 minutes to 9.5 minutes is not very significant. On 
the other hand, the 3. Ib version, which makes the most fre 
quent task go twice as fast, would represent a very notice 
able improvement. However, the simple weighted average 
rates the two versions very similarly, with the 3. la winning 
(at 75 s) over the 3.1b version (at 75.5 s). 

Our subjective experience of time is such that we tend to 
notice changes not in absolute seconds, but in percentages 
of time. A one-percent speedup of any of the categories 
would be impossible to detect without a stopwatch, but a 
twenty-five percent speedup would be dramatic for any plot. 

Criteria for a Good Average 
A good averaging technique would have the following char 
acteristics: 
It is based on percentage changes. For a short task, a small 
speedup is significant. For a long task like the scanned 
image, it takes a big speedup to make a difference. A good 
average would not focus on how many seconds were saved, 
but on what percentage of the task was saved. 
It reflects user profile weighting. For the HP DeskJet 1600C 
printer we need to emphasize text speed, since that is the 
center of our market. But for another printer aimed at an 
other market, the spreadsheet or the scanned image might 
be most important. The average has to allow tailoring. 
It is invariant under a many-for-one substitution. If instead 
of one text page weighted at 0.5, we substituted five text 
pages each weighted at 0. 1 into the calculation (to avoid 
dependence on the quirks of a single document), and if each 
of the five text pages took the same time as the original one 
(10 s) to print, the average should not change. 

Log Weighted Average 
The log weighted average fulfills the above criteria Its gen 
eral principle is to use a standard mathematical technique 
(logarithms) for keeping large and small numbers on the 
same scale. 

The formula for the log weighted average is: 

Z(lnT,)W - \ 
Log Weighted Average = exp 

where hi is the natural logarithm (log to the base e), and exp 
is the exponent function, e to the x. As before, if the sum of 
the weights is 1.0, 

Log Weighted Average = exp(Z(lnTÂ¡)WÂ¡). 

For our example, the calculation would be: 

P l o t  T Â ¡  ( s )  l n T Â ¡  W e i g h t  

Sum 3.15 

Log Weighted Average = e:i = 23.4s. 

One of the first things you notice about the log weighted 
average (aside from the fact that it took an extra step to do 
the calculation) is that the result of 23 seconds is shorter 
than the results of the other two calculations. The simple 
average gave 169 seconds, and the simple weighted average 
gave 78 seconds. This is because the more sophisticated 
averages do a progressively better job of moderating the 
influence of the very long 10-minute scanned image plot. 
Also, this example was artificially constructed with a wide- 
variation in plot times. Often we deal with plots that are 
more similar than these. If the plots were very similar and 
every plot in the test suite had exactly the same timing, say 
30 seconds, then it wouldn't matter which method you used. 
All three methods would give the same average: 30 seconds. 

Rule of Thumb 
The biggest drawback of the log weighted average is that it 
is less intuitive than the other two methods. There is some 
thing if  counterintui t ive about  using logari thms if  
you aren't a professional mathematician. They tend to throw 
off our mental approximations of what is reasonable. 

However, there is a relatively simple rule of thumb to help 
us know what to expect when doing comparisons: A small 
percentage change in one component is equivalent to the 
same percentage change in another component, multiplied 
by the ratio between their weights. 

In our example, this means that a small change in the text 
page (with a weight of 0.5) would be five times as important 
as a change in the scanned image (with a weight of 0.1), and 
two and a half times as important as a change in the spread 
sheet or business graphic (with a weight of 0.2). Thus, we 
would expect a 1% change in the text page to be equivalent 
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to a 5% change in the scanned image or a 2.5% change in the 
other two plots. 

This approximation is very close. A 1% speedup in the text 
page, from 10 s to 9.9 s, reduces the overall log weighted 
average from 23.4 to 23.3 seconds. The equivalent change 
required for one of the other plots to get the average down 
to 23.3 is shown in Table I. 

T a b l e  I  
E q u i v a l e n t  S p e e d u p s  ( S m a l l  D e l t a s )  

T e x t  p a g e  1 0  s  - ^  9 . 9  s  =  1 . 0 0 %  f a s t e r  

Business Graphic 20 s -Â» 19.5 s = 2.48% faster 

S p r e a d s h e e t  4 5  s  - Â »  4 3 . 9  s  =  2 . 4 8 %  f a s t e r  

S c a n n e d  i m a g e  6 0 0  s  -  5 7 1  s  =  4 . 9 0 %  f a s t e r  

As changes get bigger, the rule of thumb becomes less accu 
rate. If you make a big change in one of the components, 
like speeding up the scanned image by 40%, you stray farther 
from the expected equivalent speedups of 20% (half as 
much) for the spreadsheet and business graphic, or 8% (one 
fifth as much) for the text page. This change brings the log 
weighted average down to 22.2 seconds. Table II shows the 
equivalent speedups for larger changes. 

T a b l e  I I  
E q u i v a l e n t  S p e e d u p s  ( L a r g e r  D e l t a s )  

T e x t  p a g e  1 0  s  - Â »  9 . 0 3  s  =  9 . 7 %  f a s t e r  

Business Graphic 20 s -Â» 15.5 s = 22.5% faster 

S p r e a d s h e e t  4 5  s  - Â »  3 4 . 9  s  =  2 2 . 5 %  f a s t e r  

Scanned image 600 s  -Â» 360 s  = 40.0% faster  

The Exact Rule 
Exact calculation of equivalent speedups for any situation 
using the log weighted average can be done using the fol 
lowing rule: Multiplying the time for component A by a 
factor r is equivalent to multiplying component B by r 
raised to the power WA/WB, the ratio of the weights of the 
two components. 

For example, if we multiply the text page time by 1.2 (slow 
ing it down by two seconds), that would raise the log 
weighted average from 23.4 seconds to 25.6 seconds. To get 
an equivalent change by altering the scanned image time, we 
would have to multiply it by 1.2 to the fifth power (the ratio 
of the text page weight to the scanned image weight is five), 
or 600x1. 25 = 1493. Thus, by changing the scanned image 
time to 1493 seconds, we could also raise the average from 
23.4 to 25.6 seconds. 

For very large changes in any of the components, the log 
weighted average gives results that can conflict with intu 
ition. For example, speeding up the text page from ten sec 
onds to one second would improve the average dramatically. 
Such a speedup is wildly improbable for the HP DeskJet 

1600C printer, but can be anticipated for some comparable 
printer to be developed in our lifetime. 

To get an equivalent improvement in the average by only 
changing the scanned image, we would have to print it in 
600x0. 15 = 0.006 second (which probably violates some laws 
of physics). You can use the exact rule to verify that the 
same sort of numerical blowup results when you try to com 
pare any two printers that are greatly dissimilar. This is not 
a particular problem for us. Greatly dissimilar printers also 
have dissimilar weighting profiles, and we don't know any 
way to compare them well. 

Usefulness of the Log Weighted Average 
The log weighted average is designed around a user's subjec 
tive perception of printer speed. It assumes the common 
situation in which a user is working at a computer, sends 
something to the printer, and somehow notices how long it 
takes to come out. There is also an assumption that if some 
thing takes twice as long, the user is unhappy and if some 
thing takes half as long, the user is happy, and the unhappi- 
ness in the first situation is roughly equivalent in intensity to 
the happiness in the second situation. 

There are some situations for which this isn't true and the 
log weighted average is the wrong average to use. For exam 
ple, you could have a printer in continuous use with no stop 
ping except to add paper and change pens. This might be at 
a real estate office producing a large number of personalized 
letters and envelopes each day and a smaller number of 
scanned house photos. For a customer like this, the subjec 
tive perception of speed is not important. Two seconds 
saved on a text page is no more important than two seconds 
saved on a scanned image. The simple weighted average 
would be the correct average to use here. 

Our success with this technique resulted from regular appli 
cation. On the HP DeskJet 1600C project, we timed the 
15-plot test suite twice a month. This helped us quickly iden 
tify and resolve issues that might otherwise have caused 
problems. 

Conclusion 
The log weighted average does a good job of balancing the 
different time scales of various plots in a test suite. It pre 
vents an overemphasis on plots that take a long time to 
print, and allows adjustments according to the expected 
user profile. 

The main cost of the log weighted average is that it is less 
intuitive than other methods. The rule of thumb and the 
exact rule are good guides as to how the average will react. 

The log weighted average has limits, but for comparing two 
reasonably similar printers in a normal home or office envi 
ronment, it gives extremely helpful results. 
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c h a n i c a l  D e s i g n  D i v i s i o n  a n d  
i s  p resen t l y  r espons ib l e  f o r  
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W i t h  H P  s i n c e  1 9 8 9  a t  t h e  
M e c h a n i c a l  D e s i g n  D i v i s i o n ,  
G e r h a r d  W a l z  i s  r e s p o n s i b l e  
f o r  t h e  t r a n s f e r  o f  d a t a  f r o m  
t h e  H P  P E / S o l i d D e s i g n e r  
p r o d u c t  t o  H P  P E / M E 1 0  a n d  
t o  A C I S - b a s e d  C A D  s y s t e m s .  
Fo r  t he  HP  PE /So l i dDes igne r  
p r o j e c t ,  h e  h a s  w o r k e d  o n  

L i s p  i n t e r f a c e s ,  i n t e g r a t i o n  o f  M o t i f  a n d  S t a r b a s e ,  
a n d  I G E S  w i r e  i m p o r t .  B e f o r e  j o i n i n g  H P ,  h e  w o r k e d  a t  
t h e  K a t h a r i n e n  H o s p i t a l  i n  S t u t t g a r t ,  d e v e l o p i n g  a n d  
m a i n t a i n i n g  i n t e r f a c e s  t o  a n a l y t i c a l  l a b o r a t o r y  i n s t r u  
m e n t s .  G e r h a r d  w a s  b o r n  i n  B a l i n g e n ,  B a d e n -  
WÃ¼r t temberg ,  Germany  and  rece ived  a  D ip lom In fo r -  
m a t i k e r  d e g r e e  f r o m  t h e  U n i v e r s i t y  o f  S t u t t g a r t  i n  
1 9 8 7 .  A s  a  s t u d e n t ,  h e  w o r k e d  a t  H P ' s  B o b l i n g e n  
I n s t r u m e n t s  D i v i s i o n  w h e r e  h e  w r o t e  h i s  t h e s i s  o n  
use r  i n te r face  de f i n i t i on  fo r  a  d ig i t a l  1C  tes t  sys tem.  
H e  a l s o  w o r k e d  a t  t h e  C o l o r a d o  S p r i n g s  D i v i s i o n  a s  
a n  e x c h a n g e  s t u d e n t .  I n  h i s  f r e e  t i m e ,  h e  p l a y s  b a s  
s o o n  i n  t h e  c o n c e r t  b a n d  a t  t h e  U n i v e r s i t y  o f  H o h e n -  
h e i m ,  S t u t t g a r t  a n d  i n  v a r i o u s  w o o d w i n d  e n s e m b l e s .  
H i s  o the r  mus i ca l  i n te res t s  i nc l ude  j azz ,  G rego r i an  
c h a n t ,  a n d  o v e r t o n e  m u s i c .  H e  a l s o  s p e n d s  t i m e  
b i k i ng ,  h i k i ng ,  and  t r ave l i ng  

M a r k u s  K u r i l  

R & D  e n g i n e e r  M a r k u s  K i i h l  
r e c e i v e d  a  D i p l o m  I n f o r m a -  
t i k e r  d e g r e e  f r o m  t h e  U n i v e r  
s i t y  o f  E r l a n g e n - N i i r n b e r g  i n  
1 9 9 1 .  A f t e r  h i s  g r a d u a t i o n ,  
h e  j o i n e d  t h e  H P  M e c h a n i c a l  
D e s i g n  D i v i s i o n ,  w h e r e  h e  i s  
c u r r e n t l y  R & D  p r o j e c t  l e a d e r  
f o r  t h e  V A R  d e v e l o p m e n t  

t o o l k i t  f o r  t h e  H P  P E / S o l i d D e s i g n e r  p r o d u c t .  H e  i s  
a l s o  r e s p o n s i b l e  f o r  u s e r  i n t e r f a c e  e n h a n c e m e n t s .  
H i s  p r e v i o u s  c o n t r i b u t i o n s  i n c l u d e  d e v e l o p m e n t  o f  
t h e  p r o d u c t ' s  u s e r  i n t e r f a c e  c o n v e n i e n c e  f u n c t i o n s ,  
t h e  a c t i o n  r o u t i n e / p e r s o n a l i t y / u s e r  i n t e r f a c e  c o m m u  
n i c a t i o n  m o d e l  a n d  v a r i o u s  a c t i o n  r o u t i n e s  a n d  p e r  
s o n a l i t y  f e a t u r e s ,  a n d  s p e c i a l  u s e r  i n t e r f a c e s  l i k e  
b r o w s e r s  a n d  t h e  c o l o r  e d i t o r .  H e  a l s o  i n t e g r a t e d  
d y n a m i c  i n p u t  d e v i c e s  s u c h  a s  t h e  k n o b  b o x  a n d  t h e  
s p a c e b a l l ,  i n c l u d i n g  d y n a m i c  v i e w i n g  u s i n g  t h e  
m o u s e ,  a n d  d e v e l o p e d  a n d  p r e s e n t e d  a  t r a i n i n g  
c o u r s e  o n  u s e r  i n t e r f a c e  d e s i g n  f o r  i n t e r n a l  a n d  e x  
t e r n a l  c u s t o m e r s .  B o r n  i n  B a d  O e y n h a u s e n ,  N o r t h  
R h i n e - W e s t p h a l i a ,  G e r m a n y ,  M a r k u s  e n j o y s  s q u a s h ,  
t enn i s ,  b i k i ng ,  mo to r cyc l i ng ,  t r ave l i ng ,  and  danc ing .  
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2 4  B l e n d i n g  A l g o r i t h m s  

Stefan Fre Â¡ tag 

S te fan  F re i t ag  j o i ned  HP  i n  
1 9 9 1  a s  a n  R & D  e n g i n e e r  a t  
t h e  M e c h a n i c a l  D e s i g n  D i v i  
s i o n .  H i s  c u r r e n t  r e s p o n s i b i  
l i t i e s  i n v o l v e  p a r a m e t r i c  
m o d e l i n g  u s i n g  a  c o n s t r a i n t  
s o l v e r .  H i s  p r e v i o u s  c o n t r i b u  
t i o n s  i n c l u d e  s e r v i n g  a s  p r o j  
ec t  l ead  f o r  t he  HP  PE /  

S o l i d D e s i g n e r  v a r i a b l e - r a d i u s  b l e n d  p r o j e c t  a n d  
d e v e l o p i n g  t h e  l i n k  b e t w e e n  H P  P E / M E 3 0  a n d  P E /  
S o l i d D e s i g n e r .  H e  h a s  a l s o  w o r k e d  o n  k e r n e l  d e v e l  
o p m e n t ,  b l e n d  a n d  c h a m f e r  f u n c t i o n a l i t y ,  a n d  a  
s h e e t - m e t a l  p r o d u c t .  H i s  w o r k  h a s  r e s u l t e d  i n  a  p a t  
e n t  o n  a  r n e t h o d  f o r  b l e n d i n g  t h e  e d g e s  u f  g e o m e t r i c  
o b j e c t s  u s i n g  C A D  s y s t e m s .  S t e f a n  w a s  b o r n  i n  
M i n d e n ,  G e r m a n y  a n d  r e c e i v e d  a  M a s t e r ' s  d e g r e e  i n  
c o m p u t e r  s c i e n c e  f r o m  t h e  T e c h n i c a l  U n i v e r s i t y  o f  
Be r l i n  i n  1  990 .  H i s  spec ia l  a reas  o f  s t udy  we re  d i g i t a l  
Â ¡mage  p rocess ing  and  compu te r  v i s i on .  He  en joys  
p l a y i n g  s a x o p h o n e  a n d  l i s t e n i n g  t o  j a z z ,  e s p e c i a l l y  
t h e  " c o o l  j a z z "  s t y l e  d e v e l o p e d  b y  M i l e s  D a v i s  i n  t h e  
1 9 5 0 s .  

K a r s t e n  O p i t z  

K a r s t e n  O p i t z  h a s  b e e n  a n  
R & D  e n g i n e e r  a t  t h e  M e  
c h a n i c a l  D e s i g n  D i v i s i o n  
s i n c e  1 9 9 3 .  H e  h a s  a n  M S  
d e g r e e  i n  c o m p u t e r  s c i e n c e  
f r o m  t h e  T e c h n i c a l  U n i v e r  
s i t y  o f  B r a u n s c h w e i g ,  
Ge rmany  (1989 )  and  a  PhD in  
c o m p u t e r  s c i e n c e  f r o m  

A r i zona  S ta te  Un i ve r s i t y  ( 1  992 ) ,  whe re  h i s  a rea  o f  
s p e c i a l i z a t i o n  w a s  c o m p u t e r - a i d e d  g e o m e t r i c  d e s i g n .  
H e  w a s  r e s p o n s i b l e  f o r  s o f t w a r e  d e v e l o p m e n t  f o r  H P  
P E / S o l i d D e s i g n e r ,  f o c u s i n g  o n  t h e  g e n e r a l  k e r n e l  a n d  
b l e n d  f u n c t i o n a l i t i e s .  C u r r e n t l y ,  h e  i s  t h e  p r o j e c t  
l e a d e r  f o r  b l e n d  a n d  c h a m f e r  f u n c t i o n a l i t y .  K a r s t e n  
h a s  p r o f e s s i o n a l  i n t e r e s t s  i n  g e o m e t r i c  a n d  s o l i d  
m o d e l i n g  a n d  h i s  p u b l i c a t i o n s  i n c l u d e  s i x  p a p e r s  o n  
c o m p u t e r - a i d e d  g e o m e t r i c  d e s i g n .  B e f o r e  j o i n i n g  H P ,  
h e  c o n d u c t e d  r e s e a r c h  o n  s c i e n t i f i c  v i s u a l i z a t i o n  a t  
G e s e l l s c h a f t  f u r  M a t h e m a t i k  u n d  D a t e n v e r a r b e i t u n g ,  
i n  B o n n .  H e  w a s  b o r n  i n  C l o p p e n b u r g ,  G e r m a n y  a n d  
i s  a  m e m b e r  o f  t h e  A C M  a n d  t h e  S I A M .  

35 n  n  x  r -  ,  O p e n  D a t a  E x c h a n g e  

P e t e r  J .  S c h i l d  

Pe te r  Sch i l d  i s  cu r ren t l y  
w o r k i n g  a s  t e c h n i c a l  c o o r d i  
n a t o r  f o r  t h e  d a t a b a s e  i n t e  
g r a t i o n  p r o d u c t  f o r  H P  
P E / S o l i d D e s i g n e r  ( P E / W o r k -  
M a n a g e r  f o r  P E / S o l i d -  
D e s i g n e r )  a t  t h e  M e c h a n i c a l  

I H B &  D e s i g n  D i v i s i o n .  H e  j o i n e d  
- ^  H P  a s  a n  R & D  e n g i n e e r  i n  

1 9 9 1 .  H e  t o o k  o v e r  r e s p o n s i b i l i t y  f o r  t h e  d e v e l o p m e n t  
o f  t h e  i n t e r f a c e  b e t w e e n  H P  P E / S o l i d D e s i g n e r  a n d  
P E / M E 3 0  a n d  d e v e l o p e d  t h e  f i r s t  S T E P  i n t e r f a c e  f o r  

P E / S o l i d D e s i g n e r .  H e  w a s  a l s o  r e s p o n s i b l e  f o r  i n  
f l uenc ing  t he  t echn i ca l  s t anda rd i za t i on  o f  STEP  i n  t he  
i n t e r n a t i o n a l  s t a n d a r d i z a t i o n  f r a m e w o r k .  H e  p a r t i c i  
pa ted  as  t echn i ca l  r ep resen ta t i ve  o f  HP  i n  t he  ESPRIT  
p r o j e c t s  C A D E X  a n d  P R O D E X ,  f u n d e d  b y  t h e  E u r o  
p e a n  C o m m u n i t y .  P e t e r  w a s  b o r n  i n  W e i l  i m  S c h o e n -  
b u c h ,  B a d e n - W u r t t e m b e r g ,  G e r m a n y .  H e  s t u d i e d  
p s y c h o l o g y  a n d  c o m p u t e r  s c i e n c e  a t  t h e  U n i v e r s i t i e s  
o f  T u b i n g e n  a n d  K a r l s r u h e  a n d  r e c e i v e d  h i s  D i p l o m  
I n f o r m a t i k e r  d e g r e e  f r o m  t h e  U n i v e r s i t y  o f  K a r l s r u h e  
in  1  991 .  Peter  en joys  b ik ing ,  t rave l ing ,  cook ing,  and 
ski ing. 

W o l f g a n g  K l e m m  

|  W o l f g a n g  K l e m m  h a s  b e e n  a  
s o f t w a r e  e n g i n e e r  a t  t h e  
M e c h a n i c a l  D e s i g n  D i v i s i o n  
s i n c e  1 9 9 1  H e  i s  c u r r e n t l y  
r e s p o n s i b l e  f o r  t h e  a u t o  
m a t i c  a n d  i n t e r a c t i v e  c o n  
v e r s i o n  o f  s u r f a c e  m o d e l s  t o  
so l i d  mode l s .  H i s  p rev ious  
c o n t r i b u t i o n s  i n c l u d e  d a t a  

e x c h a n g e  u s i n g  I G E S  a n d  o t h e r  d a t a  e x c h a n g e  i n t e r  
f a c e s  f o r  t h e  H P  P E / S o l i d D e s i g n e r  p r o d u c t .  W o l f g a n g  
w a s  b o r n  i n  P f o r z h e i m ,  G e r m a n y  a n d  r e c e i v e d  a  
D i p l o m  I n f o r m a t i k e r  d e g r e e  f r o m  t h e  T e c h n i c a l  
Un i ve rs i t y  o f  Ka r l s ruhe  i n  1989 .  H i s  hobb ies  i nc l ude  
hang  g l i d i ng ,  s k i i ng ,  and  as t r onomy .  

G e r h a r d  J . W a l z  

A u t h o r ' s  b i o g r a p h y  a p p e a r s  e l s e w h e r e  i n  t h i s  s e c t i o n .  

H e r m a n n  J .  R u e s s  

H e r m a n n  R u e s s  w a s  b o r n  i n  
O b e r t e u r i n g e n ,  G e r m a n y  a n d  
w a s  a w a r d e d  a  D i p l o m  I n g e -  
n i e u r  i n  e l e c t r i c a l  e n g i n e e r  
i n g  f r o m  t h e  U n i v e r s i t y  o f  
S t u t t g a r t  i n  1 9 7 9 .  A f t e r  
g radua t i ng ,  he  j o i ned  HP 's  
B o b l i n g e n  C o m p u t e r  D i v i  
s i o n ,  d e v e l o p i n g  s o f t w a r e -  

s u p p o r t e d  i n t e r a c t i v e  d i s p l a y  h a r d w a r e  f o r  C A D  
a p p l i c a t i o n s .  T h i s  w a s  a  c o o p e r a t i v e  p r o j e c t  w i t h  H P  
L a b o r a t o r i e s  t h a t  d e v e l o p e d  a  h i g h - r e s o l u t i o n  l a s e r -  
a d d r e s s e d  l i q u i d  c r y s t a l  d i s p l a y  t e c h n o l o g y .  L a t e r  h e  
w a s  r e s p o n s i b l e  f o r  d e v e l o p m e n t  o f  o n e  o f  t h e  f i r s t  
H P  C A D  s y s t e m s ,  H P  D r a f t .  S u b s e q u e n t l y ,  w i t h  t h e  
M e c h a n i c a l  D e s i g n  D i v i s i o n ,  h e  w a s  r e s p o n s i b l e  f o r  
2 D  l i n k  s o f t w a r e  a n d  d e v e l o p e d  t h e  M o d e l  I n t e r f a c e ,  
t h e  s t a n d a r d  d a t a  i n t e r c h a n g e  f o r m a t  o f  H P  P E / M E 1 0  
a n d  P E / M E 3 0 ,  w h i c h  l i n k s  o t h e r  a p p l i c a t i o n s  t o  
P E / M E 1 0  a n d  P E / M E 3 0 ,  i n c l u d i n g  H P  P E / S o l i d  
D e s i g n e r .  H e  n o w  s e r v e s  a s  a  c o n s u l t a n t  f o r  i n t e r n a  
t i o n a l l y  s t a n d a r d i z e d  p r o d u c t  d a t a  e x c h a n g e .  H e  r e p  
resen ts  HP in  the  i n te rna t i ona l  PRODEX and  ProSTEP 
p r o j e c t s  a n d  c o o r d i n a t e s  S T E P  d a t a  e x c h a n g e  w i t h  
o t h e r  v e n d o r s  a n d  w i t h  P D E S  I n c .  H e  h e l p e d  c o o r d i  
n a t e  t h e  d e v e l o p m e n t  o f  t h e  H P  P E / S o l i d D e s i g n e r  
S T E P  i n t e r f a c e  i n  c o o p e r a t i o n  w i t h  o t h e r  m a j o r  C A D  
v e n d o r s .  H e  i s  p r o f e s s i o n a l l y  i n t e r e s t e d  i n  c o m p u t e r -  
a i d e d  t e c h n o l o g y  f o r  e n g i n e e r s  a n d  i n  p r o d u c t  d a t a  
i n t e g r a t i o n  a n d  h a s  a u t h o r e d  p a p e r s  o n  o p e n  s y s t e m s  
f o r  C A D  d a t a  e x c h a n g e .  H e  i s  a  m e m b e r  o f  V D I  a n d  
V D E ,  t w o  G e r m a n  o r g a n i z a t i o n s  f o r  e n g i n e e r s ,  a n d  
s e r v e d  t w o  y e a r s  i n  t h e  c i v i l  s e r v i c e .  H e r m a n n  i s  m a r  
r i ed ,  has  t h ree  ch i l d ren ,  and  has  he lped  o rgan i ze  an  

a s s o c i a t i o n  t h a t  s p o n s o r s  y o u t h  a c t i v i t i e s .  H e ' s  a d d  
i n g  a  s o l a r  h e a t i n g  s y s t e m  t o  h i s  h o m e  a n d  w h e n  h e  
has  f r ee  t ime  en joys  spo r t s  such  as  t enn i s ,  vo l l eyba l l ,  
b i k ing ,  and  h i k ing .  

5 1  D a t a  S t r u c t u r e  M a n a g e r  

C l a u s  B r o d  

C laus  B rod  was  bo rn  i n  
W e r t h e i m ,  B a d e n - W u r t t e m  
be rg ,  Ge rmany .  He  rece i ved  
a  D i p l o m  I n f o r m a t i k e r  d e  
g r e e  f r o m  t h e  U n i v e r s i t y  o f  
Er langen-NÃ¼rnberg in 1991. 
F o l l o w i n g  h i s  g r a d u a t i o n ,  h e  
j o i n e d  H P  a s  a  s o f t w a r e  d e  
v e l o p m e n t  e n g i n e e r  a t  t h e  

M e c h a n i c a l  D e s i g n  D i v i s i o n  a n d  h a s  w o r k e d  o n  s e v  
e ra l  r e l eases  o f  t he  HP  PE /So l i dDes igne r  p roduc t .  H i s  
c u r r e n t  r e s p o n s i b i l i t i e s  f o r  t h e  p r o d u c t  i n c l u d e  g r a p h  
i c s ,  g l oba l i za t i on ,  po r t i ng  ac t i v i t i e s ,  t he  on l i ne  he lp  
se r ve r ,  and  t he  da ta  s t r uc tu re  manage r .  Be fo re  j o i n i ng  
H P ,  h e  w a s  a  f r e e l a n c e  p r o g r a m m e r  a n d  t e c h n i c a l  
w r i t e r .  H i s  p r o f e s s i o n a l  i n t e r e s t s  i n c l u d e  3 D  g r a p h i c s ,  
s t o r a g e  m e d i a ,  a n d  a b s t r a c t  c o m p u t e r  g a m e s .  H e ' s  
p u b l i s h e d  n u m e r o u s  a r t i c l e s  i n  G e r m a n  c o m p u t e r  
m a g a z i n e s  a n d  h a s  w r i t t e n  a  b o o k  a b o u t  f l o p p y  a n d  
h a r d  d i s k  p r o g r a m m i n g  c a l l e d  S c h e i b e n k l e i s t e r .  C l a u s  
e n j o y s  s h o p p i n g  a t  f l e a  m a r k e t s  a n d  g a r a g e  s a l e s ,  
h o p i n g  t o  a d d  t o  h i s  c o l l e c t i o n  o f  c o m i c  b o o k s  a n d  o l d  
c o m p u t e r s .  H e  p l a y s  v o l l e y b a l l  a n d  i s  a  m e m b e r  o f  
D . O . N . A . L . D . ,  a  G e r m a n  o r g a n i z a t i o n  o f  n o n c o m m e r  
c i a l  T r u e  D o n a l d i s m  f o l l o w e r s .  

Max R.  Kuhl in  

A  s o f t w a r e  d e v e l o p m e n t  
e n g i n e e r  w i t h  t h e  M e c h a n i  
c a l  D e s i g n  D i v i s i o n ,  M a x  
K u b l i n  j o i n e d  t h e  B o b l i n g e n  
Eng inee r i ng  Ope ra t i on  i n  
1987 ,  a f t e r  r ece i v i ng  h i s  
c o m p u t e r  s c i e n c e  d i p l o m a  
f r o m  t h e  F u r t w a n g e n  E n g i  
n e e r i n g  S c h o o l .  S i n c e  j o i n  

i n g  H P ,  h e  h a s  c o n t r i b u t e d  t o  t h e  d e v e l o p m e n t  o f  
t h r e e  C A D  s o f t w a r e  p r o d u c t s :  H P  P E / M E 1 0 ,  
P E / M E 3 0 ,  a n d  P E / S o l i d D e s i g n e r .  H e  h a s  w o r k e d  
m a i n l y  o n  l o w - l e v e l  c o d i n g ,  o p e r a t i n g  s y s t e m  i n t e r  
f a c e s ,  d a t a  s t r u c t u r e s ,  m e m o r y  m a n a g e m e n t ,  g r a p h  
i c s ,  a n d  c o m m a n d  d e c o d i n g .  H e  i s  c u r r e n t l y  r e s p o n s i  
b l e  f o r  t h e  g e n e r a l  s y s t e m  a r c h i t e c t u r e  o f  t h e  
d i v i s i on ' s  p roduc t s .  Fo r  HP  PE /So l i dDes igne r  he  was  
r e s p o n s i b l e  f o r  t h e  d a t a  s t r u c t u r e  m a n a g e r  a n d  p r o  
p r i e t a r y  f i l i n g  s u b s y s t e m .  H i s  p r o f e s s i o n a l  i n t e r e s t s  
i nc l ude  ob jec t - o r i en ted  ana l ys i s  and  des ign ,  C++ ,  
c o m p i l e r s ,  p e r f o r m a n c e  t u n i n g ,  o p e r a t i n g  s y s t e m s ,  
p a r a l l e l  p r o c e s s e s ,  a n d  f a u l t - t o l e r a n t  s y s t e m s .  B o r n  
in  Kon igscha f fhausen ,  Baden-WÃ¼r t temberg ,  
G e r m a n y ,  M a x  i s  m a r r i e d  a n d  e n j o y s  b i k i n g ,  h i k i n g ,  
p h o t o g r a p h y ,  a n d  b u i l d i n g  T i f f a n y - s t y l e  l a m p s  a n d  
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Michael Metzger 
Michael Metzger completed 
work for his PhD degree at 
the Institute of Applied 
Mathematics at the Univer 
sity of Kalsruhe and joined 
the HP Mechanical Design 
Division in 1989. Since join 
ing HP, he has contributed to 
theHPPE/MEIOandPE/ 

SolidDesigner products. For PE/ME10, he was re 
sponsible for the basic math and hatching algorithms, 
worked on the 20 hidden line module, and was the 
project lead for B-spline integration. For PE/ 
SolidDesigner, he was responsible for the B-spline 
library (SISLI and for special tasks involving the prod 
uct's geometric kernel, including variable accuracy 
and partial coincidences. He was also the project 
leader for spline-related issues with external partner 
SINTET SI. Michael is currently the project leader for 
the 3D/2D integration process and is R&D council 
chairman for the division. He has published a paper 
on FORTRAN-SC, a FORTRAN extension for scientific 
computation. Born in Karlsruhe, Germany, Michael is 
married, has five boys, and enjoys hiking, taking pho 
tographs, and summers in Scandinavia. 

Sabine Eismann 
Sabine Eismann was born in 
Freiburg im Breisgau, Ger 
many and received her Di- 
plom Informatiker degree in 
1986 from the Furtwangen 
Engineering School. Since 
joining the Mechanical De 
sign Division in 1986, she 
has worked on the develop 

ment of HP PE/ME30. She has also contributed to the 
development of the HP PE/SolidDesigner product 
She worked on 2D functionality including topology 
checking for profiles, equidistance. and overdraw. 
She also worked on the machining and lofting func 
tionality of the PE/SolidDesigner kernel and on HP 
PE/SheetAdvisor. She is currently responsible for 
freeform modeling and machining functionality. 
Sabine is married and enjoys ballroom dancing and 
hiking. 

6 9  E m b e d d e d  L i s p  

Jens Kilian 
Jens Kilian received a 
Diplom Informatiker degree 
in 1991 from the Technical 
University of Darmstadt, 
Germany. He joined HP in 
1992 as a software develop 
ment engineer at the 
Mechanical Design Division 
and has contributed to the 

development of the HP PE/SolidDesigner product. He 
has worked on licensing, installation procedures, the 
file system user interface, and the Lisp subsystem. 
He continues to be responsible for maintaining the 

Lisp subsystem and the file system user interface 
He's also responsible for customization. Jens is pro 
fessionally interested in programming languages and 
computer graphics and is a member of the ACM. He 
was bom in Fulda, Hessen, Germany and served in 
the German army from 1984 to 1985. His hobbies 
include listening to music, reading books, and watch 
ing movies He also likes traveling, walking, and 
biking. 

Heinz-Peter  Arndt  

With HP since 1 983. Heinz- 
Peter Arndt is a software 
development engineer at the 
Mechanical Design Division. 
For the HP PE/SolidDesigner 
product he worked on the 
Lisp subsystem, the operat 
ing system interface, and 
action routines. He has also 

worked on HP PE/ME1 0 kernel development and is 
currently responsible for porting PE/SolidDesigner to 
SGI and Sun platforms and maintaining the Lisp sub 
system, the operating system interface, and the pro 
gramming environment. He was born in Stuttgart, 
Germany, studied computer science at the University 
of Stuttgart and received his degree in 1983. Heinz is 
professionally interested in artificial intelligence, 
object-oriented programming languages, and compil 
ers. He is married, has two children, and enjoys 
spending time with his family. His other pastimes 
include reading, traveling, tennis, and biking. 

74  Boo lean  Opera t i ons  

Peter H. Ernst 
^ ^ ^ ^  A  s y s t e m s  a r c h i t e c t  a t  t h e  

Ã ¡ / ^  " Z T .  M e c h a n i c a l  D e s i g n  D i v i s i o n ,  
Peter Ernst is responsible for 
topological algorithms and 
overall system architecture. 
He began his HP career in 
1986attheBoblingenEngi- 

H -^K neering Operation. He is 
â€¢^^ professionally interested in 

solid modeling and his accomplishments include en 
hancing the HP PE/ME30 kernel and designing and 
implementing the K2 kernel of HP PE/SolidDesigner. 
He was also responsible for PE/SolidDesigner's sys 
tem architecture and for new Boolean operations. 
Before joining HP, he developed single-mode semi 
conductor lasers at Siemens and real-time process 
control software at an engineering firm. His work has 
resulted in a pending patent related to methods of 
performing Boolean operations. Peter was born in 
Munich, Germany and served a year and a half in the 
German infantry. He graduated in 1984 from the 
Ludwig-Maximilian University of Munich, with a 
Diploma in physics, specializing in laser spectros- 
copy. He is married and enjoys biking. 

8 0  W i d e - B a n d w i t h  R e c e i v e r  

Rober t  J .  Armant rout  

A project manager for RF 
receiver development. Bob 
Armantrout works at the 
Santa Rosa Systems Divi 
sion. He joined HP in the 
Baltimore field office in 
1977. where he worked as a 
field engineer for microwave 
instruments. In 1980, he 

moved to the Santa Rosa site where he became a 
product marketing engineer for the HP 70000 Modu 
lar Measurement System (MMS). He then moved to 
R&D as a development engineer for ATE software, 
and later, became project manager for the HP 85865A 
signal monitoring software. He was the project man 
ager for the HP 7091 1 A IF module and for the HP 
71 91 OA wide-bandwidth receiver. Before coming to 
HP, he designed radar receivers at Westinghouse 
Aerospace in Baltimore, Maryland. Bob graduated 
from the University of Michigan with a BSEE degree 
in 1976, with emphasis on circuit design and commu 
nications. He is professionally interested in RF and 
microwave communications and is a member of the 
IEEE. Born in Battle Creek, Michigan, he served four 
years in the U.S. Air Force. He is married and his hob 
bies include reading, racquetball, golf, and skiing. 

8 9  W i d e - B a n d w i d t h  I F  M o d u l e  

Robert J. Armantrout 
Author's biography appears elsewhere in this section. 

Terrence R. Noe 
Terry Noe was born in 
Lafayette, Indiana. He was 
awarded a BSEE degree 
from Virginia Polytechnic 
Institute in 1985 and an 
MSEE degree from Stanford 
University in 1 989. He joined 
the HP Stanford Park Divi 
sion in 1985. As a produc 

tion engineer, he worked on microwave signal gener 
ators such as the HP 8673 and on HP Modular 
Measurement System (MMSI spectrum analyzers. As 
an R&D engineer, he worked on the HP 8371 0 series 
signal generators. He also worked on the HP 7091 1 A 
IF module and designed the boards for the FM dis 
criminator, I-Q video, linear detector, and video filter. 
He is currently designing a 3-GHz preselected down- 
converter. His work has resulted in a patent. Terry is a 
member of the IEEE and is interested in RF and micro 
wave circuit design. He is married and is the father of 
triplets. When he has time, he enjoys outdoor activi 
ties such as windsurfing, bicycling, and backpacking. 
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C h r i s t o p h e r  E .  S t e w a r t  

C h r i s  S t e w a r t  j o i n e d  t h e  
S i g n a l  A n a l y s i s  D i v i s i o n  i n  
1  985 .  He  has  worked  fo r  the  
S a n t a  R o s a  S y s t e m s  D i v i  
s i on  s i nce  i t s  c rea t i on  i n  
1 9 9 2 .  A s  a  m a n u f a c t u r i n g  
d e v e l o p m e n t  e n g i n e e r ,  h e  
w o r k e d  o n  t h e  H P  7 0 9 0 2 A  

B i  a n d  H P  7 0 9 0 3 A  I F  m o d u l e s .  
A s  a n  R & D  d e v e l o p m e n t  e n g i n e e r ,  h e  w o r k e d  o n  t h e  
H P  7 0 1  1  0 A  D M M  m o d u l e ,  t h e  H P  7 0 9 0 0 B  L O  m o d u l e ,  
t h e  t r a c k i n g  g e n e r a t o r  f o r  t h e  H P  8 5 7 8 A ,  a n d  t h e  H P  
7 0 9 1 1  A  I F  m o d u l e .  H e  d e s i g n e d  t h e  1 - M H z - t o -  
1  0 - M H z  v a r i a b l e - b a n d w i d t h  f i l t e r  a s  a n  i n v e s t i g a t i o n  
f o r  t he  HP  7091  1  A  IF  modu le  and  wo rked  on  t he  
c h a n n e l  f i l t e r  b o a r d  a n d  t h e  p o w e r  s u p p l y  b o a r d .  H e  
c u r r e n t l y  h a s  s y s t e m  d e s i g n  r e s p o n s i b i l i t y  o n  a  r e  
c e i v e r  p r o j e c t ,  a s  w e l l  a s  t h e  d e s i g n  o f  t h e  d o w n - c o n  
v e r t e r  a n d  f i r s t  L O  b o a r d s .  H e  i s  i n t e r e s t e d  i n  s y s t e m  
d e s i g n  o f  R F  a n d  m i c r o w a v e  c o m m u n i c a t i o n  p r o d  
u c t s ,  a s  w e l l  a s  a n a l o g ,  R F ,  a n d  m i c r o w a v e  c i r c u i t  
d e s i g n .  H e  h a s  a u t h o r e d  t w o  H P  p a p e r s  o n  c l o c k  d i t h  
e r ing  and  spec t rum ana lyze r  l i nea r i t y .  He  Â¡s  a  member  
o f  t h e  A R R L  a n d  b e f o r e  c o m i n g  t o  H P ,  h e  w a s  a  c o m  
m e r c i a l  r a d i o  e n g i n e e r  f o r  W N C I  r a d i o  i n  C o l u m b u s ,  
O h i o .  H e  w a s  a l s o  t h e  c h i e f  e n g i n e e r  f o r  W A T H /  
W X T Q  r a d i o  i n  A t h e n s ,  O h i o .  H e  e a r n e d  h i s  B S E E  
d e g r e e  f r o m  O h i o  S t a t e  U n i v e r s i t y  i n  1 9 8 4 .  H e  e n j o y s  
v o l u n t e e r i n g  h i s  t i m e  t e a c h i n g  a n  i n t e r a c t i v e  e l e c  
t r o n i c s  c l a s s  a t  a  l o c a l  h i g h  s c h o o l .  H i s  h o b b i e s ,  i n  
a d d i t i o n  t o  a m a t e u r  r a d i o ,  i n c l u d e  s c u b a  d i v i n g ,  
w h i t e - w a t e r  r a f t i n g ,  b a c k p a c k i n g ,  s k i i n g ,  m o u n t a i n  
b i k i n g ,  s o n g  w r i t i n g ,  a n d  f o l k  g u i t a r .  

L e o n a r d  M .  W e b e r  

- â € ”  ^ ^ ^  I  L e o n a r d  W e b e r  j o i n e d  t h e  
I  H P  S i g n a l  A n a l y s i s  D i v i s i o n  

H H  i n  1 9 8 6  a f t e r  r e c e i v i n g  a  B S  
I  d e g r e e  i n  e l e c t r o n i c  e n g i -  

â € ” -  - ^ r  *  I  n e e r i n g  f r o m  t h e  C a l i f o r n i a  
y ^ ^ l ^ H  |  P o l y t e c h n i c  S t a t e  U n i v e r s i t y  

at San Luis Obispo, and Â¡s 
n o w  w i t h  t h e  S a n t a  R o s a  
S y s t e m s  D i v i s i o n .  S i n c e  j o i n  

i n g  H P ,  h e  h a s  w o r k e d  o n  t h e  H P  7 0 9 0 0 B  l o c a l  o s c i l l a  
t o r  a n d  t h e  H P  7 0 9 0 9 A  f r o n t  e n d  m o d u l e .  H e  h a s  a l s o  
w o r k e d  o n  t h e  H P  7 0 9 1  1  A  I F  m o d u l e  a n d  w a s  r e s p o n  
s i b l e  f o r  t he  des i gn  o f  seve ra l  o f  t he  boa rds  i nc l ud i ng  
t h e  r e s o l u t i o n  b a n d w i d t h / s t e p - g a i n ,  3 2 1 . 4 - M H z  L O ,  
b a n d p a s s  f i l t e r ,  a n d  s y n t h e s i z e d  d o w n - c o n v e r t e r  
boards .  He Â¡s  cur ren t l y  respons ib le  fo r  the  10-MHz-  
t o - 1  0 0 0 - M H z  p r e s e l e c t o r  a n d  t h e  1 2 0 0 - M H z  s y n t h e  
s ized  I  n  He Â¡s  in te res ted  in  RF des ign  and  h is  work  
has  resu l ted  Â¡n  a  pa ten t  app l i ca t ion  fo r  a  var iab le -  
bandwid th  f i l t e r .  Leonard  Â¡s  mar r ied  and  en joys  
moun ta in  b i k i ng  and  snow sk i i ng .  He  Â ¡s  a l so  i n te r  
es ted  i n  d rone  a i r c ra f t .  

1 0 4  L o g  W e i g h t e d  A v e r a g e  

J o h n  J .  C a s s i d y ,  J r .  

Born Â¡n Port Hueneme, 
Ca l i f o rn ia ,  Jack  Cass idy  
r e c e i v e d  a  B A  d e g r e e  i n  
m a t h e m a t i c s  f r o m  C o r n e l l  
Univers i ty  Â¡n 1971.  He jo ined 
HP  i n  1987  a t  t he  San  D iego  
D i v i s i o n  a n d  i s  n o w  w i t h  t h e  
San  D iego  P r in te r  D iv i s ion .  
H e  h a s  w o r k e d  o n  S t a r s h i p  

r e u s a b l e  H P - G L / 2  a n d  t h e  H P  D e s i g n J e t  p l o t t e r  a n d  
s e r v e d  a s  p r o j e c t  m a n a g e r  f o r  t h e  H P  D e s i g n J e t  6 0 0  
f i r m w a i e  a n d  f o i  s e v e r a l  c o n n e c t i v i t y  p r o j e c t s .  H e  
w a s  t h e  f i r m w a r e  m a n a g e r  f o r  t h e  H P  D e s k J e t  1  6 0 0 C  
p r i n t e r .  J a c k  i s  n a m e d  a s  a n  i n v e n t o r  i n  a  p a t e n t  t h a t  
addresses  techn iques  fo r  us ing  less  memory  Â¡n  
g raph i cs  p r i n te r  d i sp lay  l i s t s .  Be fo re  j o i n i ng  HP ,  he  
w a s  a n  i n d e p e n d e n t  s o f t w a r e  d e v e l o p e r ,  a n d  b e f o r e  
t h a t ,  w a s  w i t h  S - C u b e d  C o r p o r a t i o n ,  w h e r e  h e  p r o  
g r a m m e d  N A S A  s p a c e c r a f t  s i m u l a t i o n s  t h a t  d e a l t  
w i t h  e l e c t r i c a l  c h a r g e  a c c u m u l a t i o n .  H e  h a s  w r i t t e n  
v a r i o u s  s o f t w a r e  p a c k a g e s ,  a u t h o r e d  a  p a p e r  o n  s o f t  
w a r e  r e u s e ,  c o a u t h o r e d  a  p a p e r  o n  s p a c e c r a f t  c h a r g  
i n g ,  p r o d u c e d  a n d  d i r e c t e d  a  c o m p u t e r  a n i m a t e d  f i l m ,  
a u t h o r e d  a  u s e r ' s  m a n u a l ,  a n d  w r i t t e n  v a r i o u s  l i t e r a r y  
shor t  s tor ies .  He Â¡s  pro fess iona l ly  in teres ted Â¡n sof t  
w a r e  r e u s e  a n d  t e s t i n g .  J a c k  i s  m a r r i e d  t o  m y s t e r y  
w r i t e r  J a n i c e  S t e i n b e r g .  I n  h i s  f r e e  t i m e ,  h e  l i k e s  t o  
p l a y  p o k e r  a n d  b a c k g a m m o n ,  h a s  w r i t t e n  a  b o o k ,  
W i n n i n g  a t  P o k e r  a n d  G a m e s  o f  C h a n c e ,  a n d  w a s  
o n c e  a  w i n n e r  o n  a  T V  g a m e  s h o w .  
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