
H E W L E T - P A C K A R D

JOURNAL
O c t o b e r 1 9 9 5

H E W L E T T
P A C K A R D © Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL O c t o b e r 1 9 9 5 V o l u m e 4 6 â € ¢ N u m b e r 5

Articles

j HP PE/So l idDes igner : Dynamic Mode l ing fo r Th ree -D imens iona l Compute r -A ided Des ign , by
Klaus-Peter Fahlbusch and Thomas D. Roser

j / I User In te rac t ion in HP PE/So l idDes igner , by Ber tho ld Hug , Gerhard J .Wa lz , and Markus K i ih l

/ Â ¿ J . a n d i n B l e n d i n g A l g o r i t h m s , b y S t e f a n F r e i t a g a n d K a r s t e n O p i t z

*â€¢") Schild, Gerhard Exchange with HP PE/SolidDesigner, by Peter J. Schild, Wolfgang Klemm, Gerhard
J. Walz, and Hermann J. Ruess

K I P rov id i ng CAD Ob jec t Managemen t Se rv i ces t h rough a Base C lass L i b ra r y , by C laus B rod and
Max R. Kubl in

H H Except ion Handl ing and Development Suppor t

Freeform Sur face Model ing , by Michae l Metzger and Sab ine E/smann

J Common L isp as an Embedded Extens ion Language, by Jens K i l ian and Heinz-Peter Arndt

/ / I B o o l e a n S e t O p e r a t i o n s w i t h S o l i d M o d e l s , b y P e t e r H . E r n s t

I > ! Fighting Inaccuracies: Using Perturbation to Make Boolean Operations Robust

Executive Robin Steve Beitler â€¢ Managing Editor, Charles I Leath â€¢ Senior Editor, Richard P Dolan â€¢ Assistant Editor, Robin Everest â€¢
Publ icat ion Production Manager Susan E Wright â€¢ I l lustrat ion, RenÃ©e D Pighini â€¢ Typography/Layout, John Nicoara

Advisory Beecher, Rajeev Sadya!. Integrated Circuit Business Division, Fon Collins, Colorado â€¢ Thomas Beecher, Open Systems Software Division, Chelmsford,
Massachusettes Rajesh Steven Srittenham, Disk Memory Division, Boise, Idaho Â» William W, Brown, Integrated Circuit Business Division, Santa Clara, California Â» Rajesh
Desai, Commercial Systems Division, Cupert ino. Cali forniaÂ» Kevin G. Ewert, Integrated Systems Division, Sunnyvale, Cali fornia* Bernhard Fischer, Boblingen Medical
Division, Boblingen, Germany* Douglas Gennetten. Greeley Hardcopy Division, Greeley, ColoradoÂ» Gary Gordon, HP Laboratories, Palo Alto, CaliforniaÂ» MarkGorzynski.
InkJet Technology Test Unit, Corvall is, Oregon Â» Man J Marline, Systems Technology Division, Rosevi/ le, California â€¢ Kiyoyasu Hiwada. Hachioji Semiconductor Test
Division, Optical Japan Â» Bryan Hoog, Lake Stevens Instrument Division, Everett. Washington Â» C. Steven Joiner, Optical Communication Division. San Jose. California
â€¢ Roger Forrest Jungerman. Microwave Technology Division. Sania Rosa, California Â» Forrest Kellert, Microwave Technology Division, Santa Rosa, California â€¢ Ruby B. Lee,
Networked Systems Group, Cupertino. California Â» Alfred Maute, Waidbronn Analytical Division. Walobronn, GermanyÂ» Andrew McLean, Enterprise Messaging Operation,
Pinewood, EnglandÂ» Dona L Mil ler. Worldwide Customer Support Division, Mountain View. Cal i forniaÂ» Mitchel l Mlinar, HP-EEsof Division, Westlake Vi l lage. Cal i fornia
â€¢ Michael Printer Moore, VXI Systems Division, Loveland. Colorado â€¢ Shelley I Moore, San Diego Printer Division. San Diego, California Â» M Shahid Mujtaba, HP Laboratories.
Palo A/to, Measurements Â» Steven J- Narciso, VXI Systems Division. Loveland. Colorado Â» Danny J Oldfield, Electronic Measurements Division. Colorado Springs. Colorado
Â» Garry Phua, Software Technology Division. Hosevil le. California Â» Han Tian Phua, Asia Peripherals Division. Singapore Â» Ken Poulion, HP Laboratories. Palo Alto.
CaliforniaÂ» Giinter Riebesell, BÃ²blingen Instruments Division, Boblingen. GermanyÂ» Marc Sabatella, Software Engineering Systems Division, Fort Coll ins. Colorado
Â» Michael Laboratories Bristol, Integrated Circuit Business Division. Corvallis, OregonÂ» Philip Stenton, HP Laboratories Bristol, Bristol. EnglandÂ» Stephen R. Undy, Systems
Technology Koichi Fort Coff ins, ColoradoÂ» Jim Wil l i ts, Network and System Management Division, Fort Col l ins, ColoradoÂ» Koichi Yanagawa, Kobe Instrument Division.
Kobe. Japan Â» Dennis C York. Corvallis Division. Corvallis. Oregon Â» Barbara Zimmer, Corporate Engineering. Palo Alto, California

e H e w l e t t - P a c k a r d C o m p a n y 1 9 9 5 P r i n t e d i n U . S . A . T h e H e w l e t t - P a c k a r d J o u r n a l i s p r i n t e d o n r e c y c l e d p a p e r .

October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

: A Microwave Receiver for Wide-Bandwidth Signals, by Robert J. Armantrout

Firmware Design for Wide-Bandwidth IF Support and Improved Measurement Speed

F The HP 89400 Series Vector Signal Analyzers

} An IF Modu le fo r Wide-Bandwid th S igna ls , by Rober t J . Armant rou t , Ter rence R. Noe,
rn.r :~t~nhor c Cf-oM/art ant\ I pnnard M. Weber Christopher E. Stewart, and Leonard M. Weber

The Log J Average for Measur ing Pr inter Throughput, by John J. Cassidy, J

Departments

4 In this Issue
5 C o v e r
5 What's Ahead

107 Authors

. e t t - P a c k a r d J o u r n a l i s a v a i l s o n l i n e v i a t h e W o r l d - W i d e W e b (W W W) a n d c a n b e v i e w e d a n d p r i n t e d * i , h M o s a i c . T h e Â « f o r ,
l o c a t o r (U R L) f o r t h e H e w l e t t - P a c k a r d J o u r n a l i s h t t p : / / w w w . h p . c o m / h P I / J o u r n a l . h t m l .

P , e a s e J o u r n a l , , n o , i r i e s , . . h . i . s i o n s . a n d r e q u e s t s . ^ d i . o r . H e w l e t t - P a c k a r d J o u r n a l , 3 0 0 0 H a n o v e r S t r e e t P a l o A L o , C A 9 B

October 1995 Hewlett-Packard Journal 3

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
There 's a good chance that many of the mechanical par ts of the products you
use, such as your car or your of f ice pr in ter , began thei r ex is tence as sol id mod
els in systems 3D computer-aided design (CAD) system. 3D solid modeling systems
provide geometr ic models that can be t ranslated in to inst ruct ions for rapid par t
pro to typ ing, in jec t ion moldmaking, or numer ica l ly cont ro l led machine too l oper
at ion. Such systems, both commerc ia l ly avai lab le and manufacturer-propr ie tary,
are now undergoing rap id evolut ion, and mechanica l des igners are enjoy ing
unprecedented and rap id ly increas ing product iv i ty . However , most cur rent sys
tems doesn't still history-based, meaning that if the designer doesn't have Â¡n-depth
knowledge of the under ly ing so l id model ing technology or doesn ' t thoroughly

understand the h is tory of the des ign, even seemingly t r iv ia l changes made to the model may have unan
t ic ipated s ide ef fects. In contrast , HP Precis ion Engineer ing Sol idDesigner (PE/Sol idDesigner) is an ad
vanced explained ar modeling CAD system based on dynamic modeling technology. As explained in the ar
t i c le on to 6 , dynamic mode l ing removes any dependenc ies on h is to ry and e l im ina tes the need to
ant ic ipate fu ture changes, so that loca l geometry and topology changes can be made easi ly . When a
change Boolean op a tool body is created and then transformed to the appropriate posi t ion. A Boolean op
erat ion between the or ig ina l model and the tool body resul ts in the desi red change. The HP PE/Sol id
Designer user inter face (page 14) is designed to make the system easy to use for both experts and f i rst -
t ime or occas ional users . In terna l ly , ac t ion rout ines represent ing commands in teract w i th the user
in ter face ob jects through a "personal i ty" ; th is arch i tecture makes i t easy to change the user in ter face
wi thout changing the command syntax. To a computer , a 3D so l id model is a h igh ly complex data s t ruc
tu re . HP cha rac te r i s t i cs da ta s t ruc tu re manager (page 51) , wh ich has many o f t he cha rac te r i s t i cs o f
an ob ject -or iented database, suppor ts the data manipu la t ion requ i rements o f the so l id model ing pro
cess, packages the abi l i ty to s l ice the model into manageable packages that can be sent around the
wor ld, may example to subcontractors. Because HP business partners and customers may use other sol id
model ing systems instead of or in addi t ion to HP PE/Sol idDesigner, HP part ic ipates in internat ional data
e x c h a n g e M o d e l e f f o r t s , m o s t n o t a b l y S T E P , t h e S t a n d a r d f o r t h e E x c h a n g e o f P r o d u c t M o d e l
Data. sol id PE/Sol idDesigner can import and export both surface and sol id STEP data f i les. I t can also im
port wireframe data Graphics Exchange Standard) surface and wireframe data f i les, and can import data
f i les f rom on predecessor, the HP PE/ME303D CAD system. Data exchange is the subject of the ar t ic le on
page 35. provides sur faces are of ten needed in sol id model creat ion, and HP PE/Sol idDesigner provides
two methods for creat ing them: b lending, or edge rounding, and lof t ing. The ar t ic le on page 24 descr ibes
the many subt le t ies o f the sophis t ica ted a lgor i thm used for var iab le- rad ius b lend ing. Complex combina
tions of challenge. and concave edges are blended predictably and reliably â€” a diff icult design challenge.
The ar t ic le on page 61 te l ls how the product 's geometr ic kerne l implements lo f t ing us ing a s ing le-data
type geometr ic in ter face and a hybr id , mul t ip le-data- type in terna l implementat ion. The lo f t ing funct iona l
i ty features a c lever analy t ic sur face detect ion a lgor i thm. The Boolean operat ions used to ef fect model
modi f icat ions are implemented in the system's topology kernel , ca l led the "Boolean engine." The ar t ic le
on page 74 expla ins the Boolean engine's complex a lgor i thms in s imple terms. Much of HP PE/
Sol idDesigner is wr i t ten in the Common Lisp programming language, which is a lso inc luded in HP PE/
Sol idDesigner as an extension and customizat ion language for users (page 69).

The microwave s igna ls that r ide our a i rwaves today are l ike ly to have much wider bandwidths than
t h o s e o f a n d S p r e a d s p e c t r u m t e c h n i q u e s , i n c r e a s i n g l y u s e d i n r a d a r s y s t e m s a n d s a t e l l i t e a n d
ter res t r ia l communicat ions sys tems, t rade increased bandwidth for benef i ts such as increased no ise
immuni ty , lower power dens i ty , or increased secur i ty . The spect rum analyzers t rad i t iona l ly used to ana
lyze informat ion s ignals aren' t up to the job of extract ing a l l o f the informat ion f rom modern microwave
s ignals behavior . they don' t have the bandwidth and don' t reveal pulse, phase, or t ime-vary ing behavior .
The HP combines wide-bandwidth receiver is designed to f i l l this need. I t combines the attr ibutes of a
microwave rece iver , inc lud ing wider bandwidths and demodula t ion capabi l i ty , w i th the s t rengths o f a
microwave spect rum ana lyzer , wh ich inc lude low in terna l no ise , ampl i tude measurement accuracy , and
wide f requency tun ing wi th synthes izer accuracy and f ine reso lu t ion. The HP 70910A wide-bandwidth
receiver consists of two components: the HP 70910A RF module and the HP 70911A IF module. The IF

October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

module intermediate the funct ions usual ly associated with a microwave receiver, such as intermediate fre
quency options bandwidths from 10 to 100 MHz and pulse detection. It also offers options for FM demodula
t i o n , d i g i t a l I F o u t p u t , a n d I - Q o u t p u t (t h e t y p e o f m o d u l a t i o n u s e d i n d i g i t a l c o m m u n i c a t i o n s s y s
tems). 89410A I-Q option can be used with a dual-channel vector signal analyzer such as the HP 89410A to
extend configurations analyzer's bandwidth and frequency range. The two most common HP 70910A configurations
operate wide-band a frequency range of 100 hertz to 26.5 gigahertz. The design of the HP 70910A wide-band
w id th 80 . and tha t o f i t s RF modu le a re desc r ibed in the a r t i c le on page 80 . The IF modu le des ign ,
featur ing var iab le-bandwidth , synchronous f i l te rs wi th tapped-capac i tor , varactor - tuned resonators , is
described in the art ic le on page 89.

A color pages is typ ica l ly used for a var ie ty of documents, f rom s imple b lack text pages that take a few
seconds designer, how to color graphics pages that take several minutes. If you're the printer's designer, how
do you e f fec ts how many pages per minute i t w i l l p r in t so that you can judge the e f fec ts o f des ign
changes on a user 's percept ion of i ts speed? The designers of the HP DeskJet 1600C pr inter considered
the s imple average and the s imple weighted average, but re jected them in favor of the log weighted
average. The art ic le on page 104 tel ls why.

R.P. Dolan
Senior Editor

Cover
A solid SolidDesigner created and displayed using the HP Precision Engineering SolidDesigner 3D solid model
ing system.

What's Ahead
The December issue wi l l have ten ar t ic les on aspects of HP's implementat ion of the Open Sof tware
Foundat ion Distr ibuted Computing Environment (OSF DCE). There wi l l a lso be art ic les on the design of
the HP fo r 50 T fe ta l te lemet ry sys tem and the HP HSMS-2850 zero b ias d iode fo r rad io f requency
ident i f icat ion appl icat ions.

October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP PE/SolidDesigner: Dynamic
Modeling for Three-Dimensional
Computer-Aided Design
In most solid modeling CAD systems, knowledge of the history of the
design making necessary to avoid unanticipated side-effects when making
changes. With dynamic modeling, local geometry and topology changes
can be both independently of the model creation at any time, using both
direct and dimension-driven methods. The core components enabling
dynamic modifications are the tool body and the relation solver.

by Klaus-Peter Fahlbusch and Thomas D. Roser

HP Precision Engineering SolidDesigner (PE/SolidDesigner)
is a 3D solid modeling design system based on the ACISÂ®
Kernel (see "About Kernels" on next page). It provides the
geometric model needed by design workgroups in product
development environments. The system's dynamic modeling
technology gives the designer the freedom to incorporate
changes at any time and at any stage of product development,
without dependence on the history of the product design.

HP PE/SolidDesigner is a member of the HP Precision Engi
neering Systems (PE/Systems) product family. Today, HP
PE/Systems consists of:

â€¢ HP PE/SolidDesigner for solid modeling
â€¢ HP PE/ME10 for 2D design, drafting, and documentation
â€¢ HP PE/ME30 for 3D design
â€¢ HP PE/SurfaceStyler, an engineering styling application in

tegrated with HP PE/SolidDesigner
â€¢ HP PE/SheetAdvisor, a sheet-metal design-for-manufactur-

ability application
HP PE/WorkManager for product data and workflow
management

â€¢ HP PE/DDS-C for electrical system design
HP PE/Complementary Application Program (CAP), a joint
research and development and marketing program that pro
vides HP PE/Systems users with access to more than 200
leading applications from 70 companies.

HP PE/SolidDesigner
HP PE/SolidDesigner makes it easy for designers to move to
3D solid modeling. It supports the coexistence of surface
data with solid data and provides the ability to import and
modify surface and solid design data from a variety of CAD
systems. It also offers new modeling functionality and en
hanced ease of use.

Using improved IGES (Initial Graphics Exchange Standard)
import capability, both surface and wireframe data can be
imported. Surface data and solid data can also be imported
and exported using the STEP (Standard for the Exchange of
Product Model Data) format. Once imported, this data can
coexist with HP PE/SolidDesigner solid data. It can be
loaded, saved, positioned, caught to (see footnote on

page 15), managed as part and assembly structures, deleted,
and used to create solids. Attributes such as color can be
modified. If the set of surfaces is closed, HP PE/SolidDe
signer will create a solid from those surfaces automatically.
Other solid modeling systems, which are history-based, are
unable to import data and then modify it as if it had been
created within the system itself.

HP PE/SolidDesigner allows solid parts and assemblies to be
exported to ACIS-based systems using Version 1.5 of the
ACIS SAT file format. This feature provides a direct link to
other ACIS-based applications.

With HP PE/SolidDesigner, users can set part and layout
accuracy. Because users can model with parts of different
accuracy by forcing them to a common accuracy, they can
import and work on models from other CAD systems regard
less of their accuracy.

Dynamic modeling is the underlying methodology within HP
PE/SolidDesigner. This flexible, nonhistory-based, intuitive
design technique provides direct interaction with modeling
tools and designs, allowing the engineer to focus effectively
on the design task.

HP PE/SolidDesigner allows designers to work with user-de
fined features to capture design intent. Users can explicitly
group a variety of 3D elements such as faces and edges of a
part. These features then can be viewed, edited, renamed,
deleted, or used to drive changes to a design.

HP PE/SolidDesigner has variable radius blending, which
allows users to create, modify, and remove variable blends.
They can now create constant and variable blends during
one session. Another new feature, called shelling, provides a
quick way for users to create thin-walled parts from solids,
as in injection-molded parts, for example.

Also new in HP PE/SolidDesigner is mass property capabil
ity. The following properties can be calculated for parts and
assemblies: face area, volume, mass, center of gravity, iner
tia tensor, and boundary area. Tolerances can be supplied
and achieved accuracies are returned. HP PE/SolidDesigner
also which interference-checking capabili t ies, which

October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

allow detection of interference, face touching, and noninter
ference of assemblies and part combinations. The results
can be shown as text reports or in graphic format with color
coding for easy identification.

About Kernels. A kernel is the heart of a modeling system.
Currently, three kernels are used in various CAD systems.
These are Romulus from Shape Data. Parasolid, an exten
sion of Romulus, and the ACIS Kernel from Spatial Technol
ogy. The ACIS Kernel is rapidly becoming a de facto stan
dard, having been accepted to date by 25 other commercial
licensees, 50 academic institutions, and 12 strategic devel
opers. As of July 1995, companies that officially have com
mitted to using ACIS as theu" underlying technology include
MacNeal-Schwendler/Aries, Applicon, Autodesk, Bentley
Systems, CADCentre, Hewlett-Packard, Hitachi-Zosen Infor
mation Systems, Camax Manufacturing Technologies, Inter
graph, and Straessle.

About STEP. The STEP protocol for data exchange is the
product of a group of international organizations including
PDES/PDES Inc. USA, a joint venture with several member
companies, ESPRIT (European Strategic Program for Re
search and Development in Information Technology), Euro
pean data exchange technology centers such as CADDETC
(CADCAM Data Exchange Technical Centre) and GOSET,
and ProSTEP, the German industry project for establishing
STEP in the automotive industry.

HP has been active in STEP technology since 1989 through
projects such as CADEX (CAD Geometry Exchange), PRO-
DEX (Product Data Exchange), and ProSTEP. HP provides
STEP processors with its HP PE/SolidDesigner 3D solid
modeling software.

Dynamic Modeling

Currently, the most popular 3D CAD solutions are history-
based. When designing with these systems, dimensions and
parameters have to be specified at the outset. The model
can only be manipulated indirectly by modifying these di
mensions and parameters. The initial definitions have a major
influence on the ease or difficulty of carrying out subsequent
modifications, which can only be reliably implemented if all
the previous steps in the design process are known. Labori
ous manipulation may be necessary to make changes that,
intuitively, should be achievable in a single step.

Unless the history of the design is thoroughly understood,
any change made to a model may have unanticipated side-
effects. Relatively straightforward changes to the model
involve many convoluted steps. Future interpretation be
comes ever more difficult and the effects of further modifi
cations are unpredictable. Even when a single designer
takes a part from start to finish, the designer will usually
recreate the model from scratch many times as decisions
made earlier make further progress impossible.

Although history-based systems are appropriate for solving
family-of-parts problems, and are ideal for companies who
simply produce variations on a given design, they are inflex
ible when used during the conceptualization phase of a
project.

Dynamic Modeling
Dynamic modeling has been developed by HP to overcome
the many problems designers experience with history-based
CAD systems. In particular, it aims to remove any dependen
cies on history and the need to anticipate future changes.

The concept underlying dynamic modeling is to make opti
mal use of technologies without constraining the designer s
creativity and flexibility. In contrast to history-based sys
tems, dynamic modeling allows direct manipulation of
model elements in 3D space. With dynamic modeling, local
geometry and topology changes can be made independently
of the model creation at any time, using both direct and di
mension-driven methods. In the latter case, dimensions can
be specified at any stage in the design, not just at the outset.

The core components enabling dynamic modifications are
the tool body and the relation solver. To make a model modi
fication a tool body is created and then transformed to the
appropriate position. A Boolean operation between the orig
inal model and the tool body results in the desired model
modification.

HP PE/SolidDesigner is the only currently available CAD
solution that uses dynamic modeling. The remainder of this
article describes the underlying technology of dynamic mod
eling and compares it with other methods like parametric
model modification techniques.

State of the Art
Currently, solid modelers use two different approaches to
create the final geometrical model. CSG (constructive solid
geometry) modelers are based on volume set operations
with volume primitives such as cubes, cones, or cylinders.
This approach is characterized by a Boolean engine, which
implements the basic operators unite, subtract, and inter
sect. The sequence of all the Boolean operations, parame
ters, and positions of the primitives are kept in the CSG tree.

Modification of the solid later in the design process can be
done by using more primitives or by editing the CSG tree.
Local modifications of the model are not possible, since no
access to faces or edges is given. This cumbersome way to
modify solids requires the user to analyze the design before
hand and dissect it into the necessary primitives and opera-
lions. While anticipating design modifications and building
designs out of primitives is not typical in the mechanical
engineering design process, pure Boolean modelers have
proven useful when entering a final design for postprocess
ing, such as for finite-element analysis (FEM) or NC tool
path programming.

B-Rep (boundary representation) modelers represent the
solid by concatenating surfaces towards a closed volume.
Model creation is similar to CSG modeling, but the user can
work locally with surfaces, trim them against each other and
"glue" them together. Local geometry modifications are very
flexible and represent the way engineers think. For exam
ple, "I would like to blend this edge" is a natural way of
specifying a model change for a mechanical engineer, while
"I have to remove a volume that cuts away all material not
needed" is a very unnatural way of specifying the same task
during design.

1996 Hewlett-Packard .Jounwl
© Copr. 1949-1998 Hewlett-Packard Co.

As the development of B-Rep modelers continued, a new
class of operations emerged in the early 1980s from the re
search institutes and appeared in commercial implementa
tions. These operations are called local operations, or more
commonly, LOPs, in contrast to global operations like Bool
ean set operations. Typical representatives of this kind of mod
eler are all Romulus-kernel-based systems like HP PE/ME30.

The difference between modifications with Boolean opera
tions and modifications with LOPs lies in the amount of con
text analysis required. A Boolean operation always works on
the complete volume of the operands (global operation). A
LOP only analyzes the neighborhood of the operand and is
usually not able to perform topological changes. To perform
a model modification several constraints have to be met by
the model, two of which are illustrated in Figs. 1 and 2.

The example shown in Fig. 1 is a block with edge El to be
blended (rounded). If the radius chosen for the blend is
larger than the distance between the two edges El and E2,
the topology of the model would need to be changed or the
model would be corrupted.

Fig. 2 shows a block with a pocket on its left side. To move
or copy the pocket from the left top face to the right one
cannot be done using LOPs, because both top faces would
change their topology (i.e., add or remove faces or edges).
The left top face would lose the inner loop resulting from
the pocket while the right top face would add one.

These two restrictions are only examples of the complex set
of constraints on the use of LOPs. Removing these restric
tions one by one means evaluating more and more scenar
ios, thus adding to the complexity of the algorithms needed
for the operations. A new approach was necessary.

The Tool Body
The limitations illustrated above led to the question, why
can't Boolean set operations do the job? Boolean operations
would be able to handle all special cases and at the same
time would increase the stability of the algorithms. In the
late 1980s a lot of research and development was done using
this approach. Two directions were taken. The first was to
further develop the old-style CSG modeling systems to make

them easier to use. The second was to remove the limita
tions of LOPs in systems like HP PE/ME30 and all other
Romulus-kernel-based systems. HP took the latter approach
to develop the dynamic modeling capabilities of HP PE/-
SolidDesigner.

To enable model modifications with topology changes, Bool
ean operations were added to the LOP modification capabili
ties. The system generates a tool body and positions it ac
cording to the specifications of the modification. A Boolean
operation between the original model and the tool body re
sults in the desired model modification.

In this article, the term basic local operations (B-LOP) will
be used for the normal LOP, which cannot perform topology
changes, while the process of using the Boolean operation,
if necessary or more appropriate, will be referred to as an
intelligent local operation (I-LOP). Although the Boolean
operation does not need to be done in all cases, the term
I-LOP will be used to indicate that there can be a Boolean-
based part of the operation.

To use the Boolean set operations for I-LOPs the system
needs to create a tool body first. Two major approaches can
be distinguished:

. Analysis of the the geometry to be modified and generation
of an appropriate topological primitive (i.e., a basic volume
element such as a cube, prism, or other) whose faces will be
forced (tweaked) to build up the geometry of the tool body.

i Topological and geometrical creation of the tool body in
only one step by analyzing the geometrical and topological
neighborhood of the face to be moved.

The first approach is easier to implement if a utility function
(a set of B-LOPs) is available that performs the task of
tweaking a topologically similar object onto the required
geometry of the tool body. The tweaking function, however,
is tied to the restrictions of this utility function. The second
method is more flexible but requires more knowledge about
the internal structure of the CAD system's kernel.

We chose the first approach because HP PE/SolidDesigner
already provided a working internal utility function for
tweaking. The tool body generation for moving and tapering

Fig. 1. An example of the limitations of local operations (LOPs).
Edge 1 is to be blended (rounded). If the radius chosen is larger
than the distance between El and E2, the topology of the model
must be changed or the model will be corrupted.

Fig. in Another example of the limitations of LOPs. The pocket in
the left top face cannot be copied or moved to the right top face
using LOPs because both top faces would change topology by adding
or removing faces and edges.

8 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 3. The first step in the I-LOP (intelligent local operation)
approach for a stretch (move face) operation in HP PE/Solid-
Designer is the generation of the tool body, a four-sided prism
in this case.

faces (and for bosses and pockets) follows two steps, which
are carried out by the system automatically without any user
intervention. First, a 3D body is created that has the topol
ogy of the final tool body. The part to be modified is ana
lyzed to determine the topology of the 3D body that has to
be generated for the requested operation. Depending on the
number of edges in the peripheral loops of the face to be
modified this body is either a cylinder (one edge), a half
cylinder (two edges), or an n-sided prism, where n is the
number of peripheral loops. Second, the geometry of this
body is modified using basic local modifications. The result
is the final tool body to be used for the model modification.

Figs. 3 to 5 illustrate this approach in further detail, showing
the I-LOP approach for a stretch (move face) operation in
HP PE/SolidDesigner. The user wants to stretch the box in
Fig. 3, which means that the right face of the box will be
moved to the right. The only and outer loop of the face to be
moved contains four edges. Thus, the system creates a four-
sided prism in space at an arbitrary position.

As shown in Fig. 4, the system then forces the faces of the
prism onto the surfaces underneath the front, top, back, and
bottom faces of the box (B-LOP). The left face of the prism
will be forced onto the right face of the box and the right
face of the prism will be forced into its final position, speci
fied by the user.

The last step, shown in Fig. 5, is the Boolean set operation
(in this case a unite) of the tool body with the original 3D
part, resulting in the modified 3D part. Although the modifi
cation in this example could have been achieved by employ
ing a B-LOP operation, the use of the Boolean set operation
will allow topological changes like interference of the
stretched 3D part with some other section of the model.

The same approach works for faces with outer loops of n-
sided polygons. The curves describing the polygons are not
restricted to straight lines. All types of curves bounding the
face are valid, as long as the boundary of the face is convex.
In cases of convex/concave edges special care has to be
taken in tweaking the faces of the prism onto the geometry
of the adjacent elements of the original part. An approach
similar to the one described applies for tapering faces.

Fig. the The second step in stretching the box of Fig. 3 is to force the
faces of the tool body to the final geometry, using a B-LOP (basic
local operation).

There is a high risk of getting unpredictable results or self-
intersecting tool bodies when dealing with several faces that
are not related to each other. Although the example in Fig. 6
may look somewhat artificial, it is characteristic of many
possible situations. The user wants to move the two vertical
faces Fl and F2 farther to the right, and expects a result as
represented by the right part in Fig. 6. However, depending on
the sequence of selection, two different results can be obtained.

If F2 is selected before Fl, the I-LOP performs as expected
and the result is as shown at the right in Fig. 6. If Fl is se
lected first, however, Fl will be moved first. The tool body
belonging to F2 will then be subtracted from the body and
will interfere with the final position of Fl. This leads to the
unexpected result shown in the middle of Fig. 6.

The conclusion is that only single faces can be modified and
change topology during the modification. For multiple faces
the I-LOP is too risky. If multiple faces are to be modified at
once, basic local operations (B-LOPs) instead of Boolean
operations will be activated. No topology change is allowed,
of course. One major exception to this rule is the case of
bosses and pockets, which will be discussed later.

Although in most cases the I-LOP approach will be applied,
there are situations where self-intersecting tool bodies
would be created and therefore the B-LOP approach is

Fig. the The final step in stretching the box of Fig. 3 is to unite the
tool body and the original part, using a Boolean operation.

October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

preferred even in cases with only one face to be moved.
Fig. 7 shows such a situation. The user wants to rotate the
right face around an axis lying in the face itself. Another
likely situation would be aligning the right face with another
face of the model.

Using an I-LOP in the way described above, a self-intersect
ing tool body would be created without special care to dis
sect the tool body into two tool bodies, one to add to the
part and one to subtract from the part. In Fig. 7, the volume
to be added is colored green and the volume to be removed
is red. a HP PE/SolidDesigner detects a situation like this, a
B-LOP is used for the modification.

Geometry Selection and Automatic Feature
Recognition
The next step in terms of increased complexity is the han
dling of groups of faces, which are known as bosses or
pockets by mechanical engineers. These bosses and pockets
need to be moved or copied, allowing topology changes. Of
course the end user would appreciate it very much if these

Fig. 6. Modification of several un
related faces can lead to unantici
pated results. Here the user
wants to move faces Fl and F2 to
change the part at the left into
the part at the right. If F2 is se
lected before Fl the result is as
expected, but if Fl is selected
first the result is the part in the
middle.

features could be selected as a unit as opposed to the
cumbersome selection of faces sequentially.

First, the terms boss and pocket need to be further speci
fied. Bosses and pockets can be denned as a number of con
nected faces whose exterior boundary loops (the edges de
scribing the intersection of the tool body with the original
3D part) are internal loops of a face. This definition is not
easily conceivable and can be replaced by the more under
standable, yet not very exact definition, "a number of con
nected faces contained in one or two nonadjacent others."
This is easily conceivable by the end user and fits a lot of
cases. Figs. 8 and 9 illustrate the copying of a pocket to
which this definition applies.

For moving or copying bosses or pockets the system dis
sects the part along the edges that connect the boss or
pocket with the remaining part. Both the tool body (the for
mer boss or pocket) and the part to be modified now have
open volumes (missing faces, or "wounds"), which are
"healed" by the algorithm before further processing with the
tool body.

Figs. 8 and 9 show only simple pockets. The question re
mains of how to deal with more complicated situations like

Fig. axis Here the user wants to rotate the right face around an axis
lying in the face itself. This would create a self-intersecting tool
body if an I-LOP were used. HP PE/SolidDesigner detects such situa
tions and uses a B-LOP instead. Fig. 8. A part with a pocket to be copied to the right top face.

10 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 9. The part of Fig. 8 with two pockets, one copied. The system
recognizes simple and compound bosses and pockets.

countersunk holes or bosses inside pockets. Fig. 10 shows
the extension of the simple bosses and pockets. A boss or
pocket containing countersunk bosses or pockets will be
referred to as a compound boss or pocket. Any number of
nested bosses or pockets is allowed, as shown in Fig. 10.

Simple and compound bosses and pockets are recognized by
the system automatically, depending on the selection of the
user. If one face within the boss or pocket is selected, the
feature recognition algorithm identifies all other faces be
longing to the selected boss or pocket.

Fig. 1 1 shows a part with a countersunk pocket. If the user
selects one of the red faces in Fig. 11, the whole pocket is
selected. If the user selects one of the yellow faces a smaller
pocket will be recognized.

Feature recognition very much simplifies geometry selec
tion. Instead of many picks to sample the list of faces for a
move or copy operation, one single pick is enough. HP PE/
SolidDesigner recognizes the list of faces as a boss or
pocket and the subsequent modification can include topo-
logical changes.

Once the bosses or pockets are selected, various I-LOPs are
applied:
The "wound" in the top face of the part to be modified is
healed, resulting in a simple block and a tool body consist
ing of the two nested pockets (the colored faces).

Fig. 11. Part with a countersunk pocket.

' This compound tool body is split into the larger pocket
(colored red, nesting level 1) and a smaller pocket (yellow,
level 2).

> Both tool bodies are transferred to their final positions.
The larger tool body is subtracted from the block.

> The smaller tool body is subtracted from the result of the
preceding, leading to the desired modification of the part.

The additional complexity of working with compound pock
ets or bosses is mainly handled by the Boolean engine of
HP PE/SolidDesigner. Only a small part â€” the detection and
subdivision of compound bosses or pockets â€” is needed in
the I-LOP code itself.

Fig. 12 shows the result of tapering a compound pocket with
HP PE/SolidDesigner. (The front comer of the block has
been cut away to show the tapered pocket.) If there were a
need to change the topology by this operation, the Boolean
operation inside the I-LOP would take care of it.

These features in PE/SolidDesigner don't have anything to
do with the generation method of the model, as is the case
in history and feature-based modelers. The features are de
fined of for specific purposes; they are not part of
the model. The flexibility of defining features at any stage in
the design process is very much appreciated by most me
chanical engineers.

Fig. 10. 1 'mi with one compound pocket and a boss Inside a pocket.
Fig. corner Part with a tapered, countersunk pocket. The front corner
of I tic Mock tins been cut away to show the tapered pocket.

Oclolior 1995 Hewlett-Packard Journal 11

© Copr. 1949-1998 Hewlett-Packard Co.

3D Labels for Dimension-Driven Modifications
In the past, if a mechanical engineer or draftsman had to
adapt an existing design to new dimensions, the easiest way
was to mark the dimensions as "not true in scale," erase the
original value and put in the new value. The rest was left to
the people on the shop floor.

This concept of modifying labels was adapted by CAD sys
tems that use variational or parametric approaches in either
2D or 3D. The difference between the parametric and varia
tional approaches is minor in this respect. Both systems
require a completely constrained drawing or 3D model
which is generated with the help of user constraints and
system assumptions. New values of the dimensions cause a
recomputation of the whole model. Any dependencies that
the user might have specified are maintained even when the
model becomes modified later in the design process. The
design intent is captured in the model. While this approach
is most efficient for family-of-parts designs, it does not sup
port flexible modifications, which are needed in the typical
iterative design process.

HP PE/SolidDesigner's dynamic modeling capabilities sup
port the concept of 3D labels that can be attached to the

Fig. 13. Part of an HP DeskJet
printer printhead.

model at any time during the design process and can be
used as driving values. Tapering of the selected geometry
can be driven by angled labels, while the transformation of
the selected geometry can be defined by employing distance
labels. The user adds one or several 3D labels to the part,
selects the geometry to be modified, and specifies new di
mension values. Using the new values the system then per
forms the modification employing B-LOPs or I-LOPs. After
the modification all values of the labels are updated to the
current values of the geometry.

Fig. 13 shows the HP PE/SolidDesigner model of a part of
the printhead of an HP DeskJet printer. Figs. 14 through 18
illustrate the concept of 3D labels.

As indicated in Fig. 14, the first draft of the design contained
a 30-degree ramp that was to be used to aid manufacturing.
All edges of the area are blended to meet casting require
ments. Assume that later in the design process it turned out
that the ramp was not needed at all or a different angle was
needed. There are several ways to define the transformation
in space for the ramp to disappear (e.g., aligning the original
ramp face and the adjacent face below the ramp). If the user
is trying to define the axis of rotation for the ramp face,

Fig. Fig. Changing a dimension (the angle of the ramp) of the part of Fig. 15. The part of Fig. 13 with the new ramp angle (the ramp has
F i g . 1 3 . b e e n r e m o v e d) .

12 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 16. The part of Fig. 13 changed by I-LOPs without the
knowledge that there is a blended edge.

problems arise because the axis is a virtual one and cannot
be found in the model. Either a special method for axis defini
tion is needed or the user has to do the calculation by hand.

A third possibility is employing 3D labels. Using the 3D label
already defined to show the functional angle enables the
system to do all the necessary computation. A new value (in
this example 180 degrees) needs to be entered by the user.
The system derives the transformation that has to be applied
to the ramp face and the model becomes updated. (Fig. 15).

If the label had not been ready for use, it could have been
created to drive the modification. The labels are indepen
dent from the model creation and can be used temporarily.
If the model has been changed, the values of the dimensions
update automatically to their new values.

Relation Solver
Once the geometry to be modified is selected and new val
ues of the labels are entered, the system will start with the
unspecified transformation and six degrees of freedom
(three translational and three rotational). The solver will
derive the relations from the labels and reduce the number
of degrees of freedom sequentially one after the other until
all specified relationships are satisfied or an impossible con
figuration is encountered.

The system is only designed to solve relationships that can
be described by equations solvable by algebraic means. No
iterative solution is attempted.

Fig. as After suppressing the blend, the system makes the change as
shown here. The final step is to readd the blend as shown in Fig. 15.

The resulting transformation is dependent on the order in
which the user has selected the modification-driving labels.
Thus, the result of the modification is order dependent, es
pecially if rotational and translational transformations are
specified for the same modification.

Modifying Blended Faces
In Fig. 14, there are blends adjacent to the face to be moved. If
the system didn't know that there were blends in the neigh
borhood of this face and how to handle them, moving the face
might create a strange object like the one shown in Fig. 16.

To avoid this behavior, the system suppresses the blends in
a preprocessing step before doing the main operation (ro
tate the ramp face) and recreates them after performing the
main operation in a postprocessing step. Figs. 17 and 18
show the steps used by the system internally.

This concept adds to the flexibility of HP PE/SolidDesigner
tremendously, because it overcomes the limitation of the
B-LOPs that only modifications can be done that do not in
volve topological changes.

Summary
This paper shows the strengths of the dynamic modeling
techniques. Topology changes are possible in most cases.
Model modifications can be defined when they become re
quired within the design process. Design changes do not
have to be anticipated when starting the model creation. No
constraints within the model exist, and predictable results
avoid the trial-and-error approach of parametric and history-
based systems. Dynamic modeling's core component besides
the relation solver is the tool body, which is defined by the
system automatically for the Boolean operation during a
model modification. Although some limitations exist, most
design changes are possible in one or several steps.

Acknowledgments
We would like to thank all those who helped with the devel
opment of dynamic modeling, in particular the Mechanical
Design Division HP PE/SolidDesigner team, which was sup
ported by 3D/Eye of Ithaca, New York and D-cubed of
Cambridge, UK.

Fig. first HP PE/SolidDesigner avoids the behavior of Fig. 16 by first
suppressing the blend as shown here.

ACIS Inc. a U.S. registered trademark of Spatial Technology, Inc.

October 1995 Hewlett-Packard Journal 13
© Copr. 1949-1998 Hewlett-Packard Co.

User Interaction in HP
PE/SolidDesigner
The HP PE/SolidDesigner user interface is modeled after the successful,
easy-to-use, easy-to-learn interface of earlier HP CAD products. All
commands are coded as Common Lisp action routines. A user interface
builder helps command programmers by hiding details of the X Window
System and the OSF/Motifâ„¢ graphical user interface. Prototyping was
done using a specially developed Lisp-based interface to OSF/Motif called
HCLX.

by Berthoid Hug, Gerhard J.Walz, and Markus Kuhi

As the use of CAD systems has become more and more
widespread, two conflicting trends have emerged. On one
hand, the complexity of CAD systems has grown with their
increasing functionality. On the other hand, the typical CAD
system user is no longer a computer hobbyist. Designers
and detailers are busy enough maintaining expertise in their
own areas without having to be computer experts as well.
Therefore, CAD software must be easy to learn and easy to
use for first-time or occasional users without sacrificing
flexibility and effectiveness for more experienced users. The
conflict between the need for simple operation and the in
creasing functional complexity can lead not only to less user
satisfaction, but also to decreased productivity. As a result,
a simple and consistent user interface has been a long-stand
ing goal of HP CAD products.

The user interface of HP PE/SolidDesigner is based on the
successful user interface of HP PE/ME10 and PE/ME30. The
key components of this user interface are:

1 Ease of Use. The product is designed not only for experts,
but also for first-time or occasional users.

1 Menu Structure. A task-oriented, flat menu structure mini
mizes menu interaction and the length of cursor movements.
Macro Language. This allows the user to customize the
menu structure. User-defined functions can be set up to
increase productivity by using existing CAD operations and
measure/inquire tools for model interaction.
Online Help System. This provides all relevant information
to the user without using manuals.

The HP PE/SolidDesigner graphical user interface is based
on OSF/Motif and the X Window System, universally ac
cepted graphical user interface standards for applications
software running on workstation computers. The OSF/Motif
graphical user interface provides standards and tools to en
sure consistency in appearance and behavior.

The large functionality built into HP PE/SolidDesigner is
accessed by means of a command language with a defined
syntax, referred to as action routines. The user communi
cates with the command language via the graphical user

interface. All prompting, error checking, and graphical feed
back are controlled by means of the command language. All
CAD functionality is provided in this way, along with a user
interface builder for implementing the graphical user interface.

The action routines are implemented in Common Lisp,
which provides an easy and effective way of prototyping and
implementing user interactions. For the first interactive pro
totypes, HCLX, a Lisp-based OSF/Motif interface, was used.

During the development of HP PE/SolidDesigner, HP me
chanical engineers spend hundreds of days testing the prod
uct and providing feedback to tune its user interaction to
meet their needs. They mercilessly complained about any
awkward interactions. They made suggestions and drew
pictures of how they would optimize the system for their
particular tasks. As a result, commands were designed and
redesigned to reflect their needs. The user interface verifica
tion was also supported by many external customer visits.

User Interface Description
If the user is familiar with other OSF/Motif-based applica
tions, it's easy to feel comfortable with HP PE/SolidDesigner
quickly. The mouse, the keyboard, and the knob box or
spaceball are the tools for interaction.

When HP PE/SolidDesigner is started it looks like Fig. 1. The
different areas are:
Viewport (center of the screen). The viewport covers the
main portion of the user interface and consists of the graph
ics area and the viewport control buttons at the top. In the
graphics area of the viewport, the model is displayed and
the user interacts with the model. Several viewports can
exist, each with its own control buttons. Using more than
one viewport, the user can view a part simultaneously from
different sides and in different modes. Resizing and iconi-
fication of viewports are possible.
Utility Area (top row). In the utility area, the user finds util
ity tools that support the current task. They do not termi
nate, but rather interrupt and support the current command.
The help button at the right end gives access to the general
help menu.

14 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 1. Main screen of the HP PE/Solid Designer user interface.

â€¢ Main Menu (right side). The main menu buttons appear in
the right column below the application name. This is also
called the main task area. All the functionality is grouped
into task-oriented logical areas. By selecting a main task
button, the user opens a set of subtasks or a command
dialog menu with buttons for all stages in the modeling
sequence.

â€¢ Prompt Lines and General Entry Field (bottom left). The
two-line prompt area is used for general system feedback,
messages, or user guidance. The general entry field is used
for entering commands, general expressions, and the like.

Â» Global Control Buttons (bottom right). The buttons at the
bottom are always available. The select button is only active
when the system is prompting the user to select something.
The buttons and display fields inside the scrolled windows
display general system settings like the active workplane or
part, units, and catch information.t The other buttons are
commands that the user needs frequently. They are always
available.

tDepending on the current command, the catch setting indicates how a pick in the graphics
area (viewport! is processed to identify an element. For example, "catch vertex on current
workplane" means that if the user picks near the end of a straight line, the resulting pick point
will exactly match the endpoint of the line. The catch radius is customizable.

Command and Option Dialogs
Command dialog boxes (see Fig. 2) are accessed either from
the main task area or the utility area. The current command
dialog box is replaced by the new selected one. If the default
home position of the command dialog box is inside the
drawing area, the dialog box is closed upon completion of
the operation (this is typical for command dialogs from the
utility area). With this behavior the user always has optimal
use of the screen space.

Nevertheless, sometimes the user wants to have parallel ac
cess to different dialog menus at the same time (flat struc
ture). This can be achieved by pinning the command dialog to
the screen using the small icon in the upper left corner.
Pinned command dialog boxes are helpful whenever the
user is using several menus constantly. The user can keep as
many or as few dialog boxes open as desired and arrange
them on the screen to suit the present task. Fig. 2 shows two
pinned dialog boxes and one unpinned dialog box.

Activation of a command by a mouse click or by typing in a
command in the general entry field leads to the same behav
ior. The command button snaps into pressed mode. If there
exist a number of additional controls of the command, a

October 1995 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

C i r c u l a r)
â€¢Â»â€¢ Geometry Construct

Circle

C t r & R a d C o n c e n t r i c

F i x R a d i u s F i x C e n t e r

3 P o s D i a m e t e r

Straight
* G e o m e t r y C o n s t r u c t

Line

2 Pos

H o r i z o n t a l V e r t i c a l

Para l l e l to Perpend to

T a n & C e n T a n & 2 P o s A t a n A n g l e R e f A n g l e

T a n b y 2 T a n b y 3 T a n g e n t t o T a n b y 2

Poly Lines

Gener ic

Smooth

C o n c e n t r i c P o l y g o n R e c t a n g l e

Cen te r

D iameter

O K C a n c e l H e l p

Change Ci rc le

O K C a n e e !

Workp lane

Parallel

Inclined

L a s t W P

Modify

Posi t ion

Unshare

S e t t i n g s S l i d e O r i g i n

Create New

N a m e v / 2

P a r t o F a c e P t P t P t

P a r t o W P P t D i r

Norm to WP

O K C a n c e l H e l p

Fig. 2. Command dialog boxes
with pin icons in the upper left
corner. Two boxes are pinned to
the screen and one is not.

subdialog is attached at the bottom of the command dialog
box (see extrude box in Fig. 3). The command becomes in
teractive and a prompt asks for further input. The dialog box
gets a If border, a signal that this dialog box is active. If
the action is suspended by an interrupt action, the border
changes to red. Thus, the user never loses track of what is
active and what is not.

The subdialog provides options in the form of buttons, data
entry fields, and check boxes for further control of the com
mand. The system provides good defaults to minimize the
required user input. All options can be manipulated in any
appropriate order; the command supplies a parallel syntax.
All settings are displayed in the dialog box. Required data
fields are highlighted in yellow, meaning that the user must
define a value.

The help buttons of the command dialog boxes give access
to context-sensitive help.

Context-Sensitive Help
Help messages relating directly to the task the user is per
forming can be accessed immediately by pressing the help
button located in the currently active menu or dialog box.
The help information appears in its own dialog box, which
can be positioned anywhere on the screen and resized for
convenience (see Fig. 4).

Words used in help text are directly linked to other defini
tions or explanations. The user need not go back to indexes
to look up further words to aid in understanding the help
information.

Machine
Add Mate

E x t r u d e U n i t e

Remove Mater ia

Subtract

S t a m p I n t e r s e c t

Sect ion

Extrude

W o r k p l a n e i w l .

Distance

Reverse D i r

i K e e p W P

O K C a n c e l H e l p

Fig. a If a command has controls in addition to the basic ones, a
subdialog box is attached to the command dialog box. The extrude
command is an example of this behavior.

16 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In addition to the context-sensitive help, the help system
provides a task-based index with search facility, a command-
based index with search facility, an overview of HP PE/Solid-
Designer. information on HP PE/SolidDesigner's concepts,
filters, and displays of user-typed keywords, version infor
mation, and help on help. The help system can be used in a
standalone mode without running HP PE/SolidDesigner.

Task-Sensitive Tools and Feedback
Whenever the user has to enter a value for a command, the
system provides the appropriate tool for data entry. For in
stance, if the user has to enter a direction, the direction tool
(Fig. 5) pops up. The user can extract the information di
rectly out of the model with a minimum of effort by access
ing parts of the model such as edges and faces. The result is
displayed either textually or graphically as part of the
model.

These task-sensitive tools are implemented as subactions so
that all commands (action routines) have access to the same
tools. Using these tools guarantees consistent system behav
ior, for example in specifying directions.

Browsers
Browsers (see Fig. 6) display lists of files, workplanes,
parts, and assemblies, and allow selection of items for use in
commands without typing in names. Even complex assem
blies become easy to understand and manipulate when
browsers are used.

Customizing the User Interface
HP PE/SolidDesigner provides different facilities for chang
ing its user interface. The following customization capabili
ties exist:

â€¢ Flattening the Menu Structure. This facility is provided by
allowing the user to pin command boxes to the screen.
When the environment is saved, pinning and location infor
mation is stored for later access.

â€¢ Toolbox. The toolbox (Fig. 7) allows the user to build a cus
tom command dialog box. The user can put any command
into the toolbox, and can put the most-used commands to
gether in one area for easy access. The toolbox can be left
open like a command dialog box. If a command becomes
interactive, the original subdialogs are attached at the bot
tom of the toolbox dialog.

â€¢ Lisp. The user can write Lisp functions, which can contain
action routine calls. Thus, the user can combine Lisp with
CAD functionality to optimize the system for particular
needs.

â€¢ Key Button Bindings. HP PE/SolidDesigner commands or
Lisp functions can be accessed via X translations. Function
keys, mouse buttons, or any key sequence can be defined
for accessing any given functionality. This tool allows the
expert user to accelerate the use of the system.

â€¢ Record/Playback. The record/playback feature allows the
user to record a series of command picks to be used later to
duplicate the action, like a macro. The information is stored
in a file for playback. The file contains the command syntax,
so it can be used to support writing user-defined Lisp
functions.

Action Routines and Personality
This section describes the user interaction in HP PE/Solid
Designer in more detail. It explains the basic technology
underlying the concepts that were described in the preced
ing section. A simplified extrude example is used to clarify
the explanation.

Fig. 4. Context-sensitive help in
formation appears in its own dia
log box, which can be positioned
anywhere on the screen and re
sized for convenience.

October 1995 Hewlett-Packard Journal 1 7

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 5. When the user has to en
ter a value for a command, the
system provides the appropriate
tools for data entry. The result is
displayed either textually or
graphically as part of the model.

Fig. 8 is a simplified diagram of the action routine/personal
ity communication model of HP PE/SolidDesigner. The com
munication model is divided into three parts. On the left side
are the action routines and on the right side are the user
interface objects. Bidirectional communication between the
action routines and the user interface is the task of the per

sonality, which is shown in the middle of Fig. 8. This divi
sion into three separate components allows the implemen-
tor of an HP PE/SolidDesigner command to change the user
interface and its behavior without changing the command
syntax. It is also possible to switch off the user interface for
certain commands.

The action routine concept is used to implement the com
mand language of HP PE/SolidDesigner. A command is
coded as a state machine with several states and transitions
between these states. The term personality refers to the
information coded in the GUI update table shown in Fig. 8.

HP PE/SolidDesigner distinguishes three types of action
routines:
Terminate Actions. Terminate actions terminate every other
running action routine negatively (i.e., they cancel them).
At any time there can only be one active or suspended ter
minate action. All action routines that modify the solid
model must be defined as terminate actions.
Interrupt Actions. Interrupt actions interrupt the current
running action routine. When the interrupt action is fin
ished, the interrupted (suspended) action routine continues
from where it was interrupted. There is no limit on the
stacking of interrupt actions. Interrupt actions must not
modify the solid model. They are only allowed to inquire
about model data. A measure command is an example of an
interrupt action.

Part Browser
Assembly

Parts /Assem1*"
a l (A)

accdoor (P)
chassis (P)
tc_doskpd (P)

a2 (A)
carbase (P)
enc_cover (P)
outrigger (P)
r a d i i l ! (P)

a 3 (A)
outcover_2 (A)

outcover (P)
outeover.1 (P)
outcover.2 (P)

outtray (P)
papsled (P)
wingleft (P)
wingright (P)

Selection

A p p l y A s s y C l o s e H e l p

Fig. and Browsers make complex assemblies easy to understand and
manipulate.

18 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Viewport

S o l i d D e s i g n e r

Toolbox

T o o l b o x
R e c o r d e r C - l i n e V

R e s e t W P L b y f a c e

S t a r t M E 1 0 E x t r u d e

W P - B r o w s e r

C- l ine H Move face

P a r t / p l l

Workplane

Distance

To Part

Reverse Dir

Keep WP

O K C a n c e l H e l p

Fig. 7. The toolbox allows the user to build a custom command
dialog box containing often-used commands.

â€¢ Subactions. Subactions are used to implement frequently
used menus so that they can be reused in other action rou
tines. This avoids code duplication, allows better mainte
nance, and improves usability. Subactions can only be
called from within other action routines. This means that
the user cannot call a subaction directly. Some typical
examples of subactions are:

Select
' Measure axis, direction, point

r-j Color editor
0 Part positioning.

Basic Action Routine Structure
As mentioned above, the user interface in HP PE/SolidDe-
signer is Lisp-based. Therefore, the implementation of an HP
PE/SolidDesigner command using the action routine con
cept is a kind of Lisp programming. The following is a sche
matic representation of a terminate action:

(de fec t ion name

() L is t o f loca l var iab les (wi th or wi thout in i t ia l izat ion)

(ac t i on desc r i p t i on

(s t a t e n a m e (s t a t e _ f o r m)
(s tate_prompt)
he lp- index-symbol

(t r a n s i t i o n p a t t e r n (t r a n s i t i o n _ f o r m) p e r s - u p d a t e - s y m b o l n e x t _ s t a t e
)

. . . more t rans i t ions

. . . more s ta tes

) end o f ac t ion descr ip t ion

(l o ca l f unc t i ons

(l o c a l - f u n d

. . . more loca l func t ions

) end o f loca l func t ion de f in i t ions

The structure of an interrupt action or subaction is equiva
lent to that of the terminate action shown above except that
an interrupt action is defined using the keyword defection
and a subaction is defined using the keyword defsaction. The
second parameter of the action routine definition is the

Callbacks and Put Buffer

Fig. 8. In the HP PE/SolidDe
signer user interface communica
tion model, the action routines
representing the commands com
municate with the user interface
objects through the. personality.

October 1!W5 Hewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

name of the command that is coded through the action rou
tine. For an extrude command this would be extrude. Follow
ing the command name is a list of local action variables.
These variables can only be accessed from within this action
routine. Action routine local functions and each state and
transition form have access to them. They are used to store
user-entered command parameters and as variables to con
trol the execution of the command.

Next comes a description of the state machine. The states
are those defined by the railroad of the command plus inter
nal administrative states. The railroad of a command is a
structure used to describe the syntax of an HP PE/SolidDe-
signer command for the user. Fig. 9 shows the simplified
railroad of the extrude command (a few options have been
omitted for clarity). The railroad reflects the concept of par
allel can syntax. Each keyword (:part, :wp, distance) can
be given at any time and the command loops until the user
completes or cancels it.

A distinction is made between prompting and nonprompting
states. A prompting or prompt state requires the input of a
token (a keyword or parameter value) from the user. This
token is read from the input stream, which is filled either
interactively by the user (hitting an option button, entering a
number, selecting a part, etc.) or from a file (such as the
recorder file). As many tokens as desired can be entered
into the input buffer. Entered tokens are processed by the
action routine handler. Processing stops as soon as an error
occurs (such as an unknown keyword) or the input buffer
becomes empty. HP PE/SolidDesigner then becomes inter
active and requires more input from the user. A prompt state
with an empty input buffer displays the prompt coded in its

(:part) â€” Iselecl parti

(:wp) â€” Iselect workplanel

(distance) â€” llengthl

Fig. extrude Simplified railroad giving the high-level syntax of the extrude
command.

state. After the user has entered a token, the action routine
handler tries to match the input with one of the state transi
tions. If a match is found the action routine handler pro
cesses this transition and jumps to the next state. A non-
prompting state (administrative state) takes the result of its
state form to find a match with the coded transitions of this
state. If the action routine handler was not able to find a
match in the transitions and no "otherwise" transition was
coded, it signals an invalid input error.

Implementation of the extrude railroad leads to the state
machine shown in Fig. 10. As the extrude command starts,
the first state is Â¡nit. In this state the local variables are ini
tialized and filled with useful defaults such as the current
part and the current workplane with a valid profile. Since Â¡nit
is a nonprompting state and only one "otherwise" transition
is coded the action routine handler goes on to the next state,
top-prompt. This prompt state and the nonprompting dispatch
state top-opt are the central states of this example command.
The top-opt state takes the input of the previous state (top-
prompt or any extract or check state) and tries to match its
transitions. The states select-part and select-wp call on their
only "otherwise" transition, the select subaction, as their
transition form, with the specific select focus of part or

Legend:
Prompt State

Nonprompting
State

transition pattern transition form

Sta te -Name

(state form)
Fig. 10. State machine for the
extrude command.

20 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

workplane, respectively. These states prompt through the
select subaction. The extract states take the result of the
transition form (select subaction call) and process the result
of the select operation. The distance state has a special key
word an :lengtti â€” as its transition pattern. For this keyword an
input conversion is involved. The transition pattern will
match any entered number, whereupon a units converter
will be called automatically. A user can work in length units
of millimeters or inches, and the units converter converts
the length into the internal units (here mm). There are also
other converters such as the angle converter which converts
the user input (e.g., degrees) into internal units (here radians).

The extrude command loops until the user completes or
cancels the command, hi both cases the action routine han
dler jumps into the separated state end. Depending on a posi
tive (complete) or negative (cancel) termination of the com
mand, the software that actually performs the action will be
called with the parameters that were collected by the action
routine.

Personality
As explained earlier, the task of the personality is bidirec
tional communication between the action routine and the
user interface objects. The core of the personality is the GUI
update table shown in Fig. 8. This table stores all of the
actions to be performed when an action routine executes,
and it also receives data from the user. It guarantees that the
user interface is in sync with the action routine state when
ever HP PE/SolidDesigner requires data from the user.

The GUI update table is realized as a hash table with the
pers-update-symbol (see action routine representation, page 19)
as key and a Lisp form as entry. As soon as the action rou
tine handler finds a match in the transition pattern of the
current state it performs the transition form and triggers the
user interface update using the third parameter of the transi
tion definition as value. The action routine handler looks up
whether a Lisp form is coded for the pers-update-symbol and
evaluates it if found. The Lisp form can contain things like
set-toggle of a command option or update-toggle-data to show
the value the user has entered. This mechanism reflects the
state of the action routine and its values at any time in the
user interface.

There are special personality keywords for every action
routine:

' ' ac t ion_name_ENTRY
' ' ac t ion_name_EXIT
' ' (ac t ion_name ac t ion- in te r rup t -by- iac t ion)
' ' (ac t ion_name ac t ion-con t inue- f rom- iac t ion) .

' action_name_ENTRY is triggered as soon as the action routine
starts. Normally the Lisp form coded for this entry ensures
the display of the command options filled with all default
values. ' action_name_EXIT cleans up the user interface for this
command and removes the options from the screen. The
other two keys are triggered when the command is inter
rupted or when it resumes its work after an interrupt action.
In this case the coded Lisp form normally deactivates and
reactivates the command options, since they are not valid
for the interrupt action.

Delayed Update. A sequence of action routine calls (e.g., from
the recorder file) or the input of several tokens into the

input buffer should not cause constant updating of the user
interface. Delayed update means that the user interface will
not keep track of the action routine until the action routine
becomes interactive, that is. until it requires data input from
the user. At that time the user interface of the interactive
command will reflect its state and values exactly.

A completely parameterized action routine does not cause
any reaction on the user interface. If a command changes
any status information (e.g., current part), this information
will be updated. These updates bypass the GUI update table
using the event mechanism.

The delayed update mechanism is implemented using a per

sonality enti-y stack. Each trigger of a pers-update-symbol
through the action routine handler will not lead to a direct
execution of the Lisp form. All triggers are kept on the per
sonality entry stack until the action routine becomes inter
active. If an action routine doesn't require data from the
user, all entries between and including ' action_name_ENTRY
and ' action_name_EXIT are removed from the stack. As an ac
tion to becomes interactive all Lisp forms belonging to
the personality entries on the stack are performed until the
stack is empty. The user interface is again in sync with the
action routine state.

A problem came up with fully parameterized action routines
behind a command toggle. Normally the ' action_name_EXIT
trigger cleans up the command user interface, but with a
fully parameterized action routine no personality trigger
occurs. To solve this problem the system triggers two addi
tional personality entries which are called in either delayed
or undelayed update mode. These are ' action_name_PRE_ENTRY
and ' action_name_POST_EXIT. The release of the command
toggle is coded in ' action_name_POST_EXIT. The need for
' action_name_PRE_ENTRY is discussed below.

Personality Context. One requirement for the user interface of
HP PE/SolidDesigner was that a command should be call
able from other locations as well as from the default loca
tion. The motivation was the toolbox, which can be filled by
the user with often-used commands. The main requirement
was that a command's behavior in another context should
be equivalent to its behavior in the default context. A user
who calls the extrude command out of the toolbox expects
the extrude options in the toolbox and not those in the de
fault menu. The toolbox concept is based on the assumption
that a command context is specified by:

1 A calling button
1 A dialog shell, in which the calling button resides
1 A communication form where the command options are
shown

' A shell position where the command options are shown if
they are realized in a separate dialog shell.

All other things are command-specific and independent of
the context.

The default context of a command is coded in ' ac-
tion_name_PRE_ENTRY. Here the programmer of the com
mand's personality defines the context in which the com
mand should awake as the user types it in. This context can
be overridden when the command is called out of, for exam
ple, the toolbox. Context dependent calls of the command
personality have to check the current context settings

October 1995 Hcwlrll Packard Journal 21
© Copr. 1949-1998 Hewlett-Packard Co.

instead of having this behavior hardcoded in the default con
text. This concept also makes it possible to program a to
tally different personality for a command or to switch off the
user interface of a command.

Stacked Personality. The possibility of invoking the same
interrupt action several times makes it necessary to provide
a method of creating independent incarnations of the inter
rupt action user interface. This is done by separating the
building instructions of the command option user interface
into a Lisp function. As an interrupt action is called a second
time (or third, etc.) after an initial invocation, the widgets of
the latest command option block are renamed to save the
state and contents. Then a new incarnation of the option
block is created using the building instruction function.
When the most recent interrupt action terminates its execu
tion the user interface incarnation is destroyed and the wid
gets of the saved option block are renamed again to become
valid once more. One incamaLion of the option menu of a
command is always kept. All other necessary incarnations
are created and destroyed at run time.

User Interface Development Tools
To speed up the user interface development process a proto
typing tool was required that would allow modifications to
be made quickly. Since the command language of HP PE/So-
lidDesigner is Lisp-based and the commands are intended to
interact closely with the graphical user interface (GUI),
standard C/C++-based user interface builders could not be
used as prototyping tools. Such tools would have required
the standard editycompile/link/test cycle, which slows down
the prototyping process heavily. They also didn't offer Lisp
interfaces or facilities to change the GUI of the CAD system
at run time, a required feature.

In 1989 only a few Lisp interfaces to the X and OSF/Motif
toolkits were available. Because none of these had all of the
features we needed, we decided to produce our own. Called
HCLX, it is a Common Lisp interface to the XI 1 Xlib, the X
toolkit intrinsics, and OSF/Motif widgets (Fig. 11). It pro
vides Lisp functions for all the functions available in libXll,
libXt and libXm, as well as all the constants and resources in
the XI 1 .h files. It provides functions to create, access, and
modify all the structures used by the X toolkit and Xlib. Wid
get class variables are also defined, and Common Lisp func
tions can be used as callback routines in widgets and as
functions for translations.

Although it is possible to do all X and OSF/Motif-related
coding in HCLX, experience during the development process
showed that certain low-level X programming should be
done in C++. This includes such things as initialization,
color maps, and the color button.

Color Maps. The use of a graphics library like HP StarBase
and the demand for high-quality shaded solid models imply
the need for a private color map within the graphics win
dows of HP PE/SolidDesigner. When the graphics window or
its top-level shell window is focused, the graphics color map
is installed (copied into the display hardware) by the X win
dow manager. On displays that support only one color map
in hardware (most of the low-end and old displays), every
thing on the entire screen is displayed using the installed
color map. When a private color map is installed, all win
dows using the default color map take random colors. As

C/C++

User Interface Builder

C/C++

Fig. 11. Tools used to develop HP PE/SolidDesigner's user interface.
HCLX X a specially created Common Lisp interface to Xlib, the X
toolkit, and OSF/Motif widgets.

soon as a window using the default color map gains the
focus, the default color map is reinstalled, and the graphics
windows with their private color map will have random col
ors. As the current color map switches back and forth from
default to private, the user sees color flashing. To avoid this
for the user interface of HP PE/SolidDesigner, a private
color map is used for the user interface windows that has
the same entries as the color map used for graphics. Along
with the color map, a color converter is installed that for a
given X or OSF/Motif color specification tries to find the
best matching color within the color map.

Color Button. For the light settings commands, a color editor
is required to give the user feedback on the colors used in
the graphics windows. Therefore, a color button widget was
inherited from OSF/Motif's drawn button. The color button
has a small StarBase window in which colors are rendered
in the same way as in the graphics windows.

User Interface Builder
HP PE/SolidDesigner's user interface builder was created
using HCLX. During the prototyping phase for the user inter
face it became obvious that it is too expensive to train every
application engineer in the basics of the X Window System
and OSF/Motif. The user interface builder hides X and OSF/
Motif details from the application engineer and offers facili
ties to create a subset of the OSF/Motif widgets.

Unique Naming. OSF/Motif widget creation procedures re
turn a unique ID for a widget, which must be used whenever
a widget is modified or referenced by some other procedure.
The user interface builder changes this. Widgets are identi
fied by unique names. These names can be specified or
created automatically. The user interface builder ensures
the uniqueness of the names.

Properties. For every widget only a small subset of its origi
nal resources are made available. To distinguish these re
sources from the full set of resources, they are called prop
erties. A user interface builder property consists of a name
and a corresponding value. The name is derived from the
original OSF/Motif resource name by removing the prefix
XmN. For example, XmNforeground becomes foreground. Some of
the widget's callbacks are offered as properties. Callback
properties have as a value a Lisp form, which will be evalu
ated when the callback is triggered. The user interface

22 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Machine
Add Mater ia l

Extrude

Reflect

Remove

* D i a l o g E x a m p l e #
Group Title

C o m m a n d 1 C o m m a n d 2

Command 1 Options

F i l e n a m e f t m p / f o o . r e c

Punch

Stamp

Sect ion

Subt ract

Intersect

C a n c e l H e l p

Line Style

Fig. 12. Command dialog box created with a call to create-right-menu-
dialog.

builder ensures that Lisp errors within these forms are
trapped and handled gracefully. After a property has been
specified for a widget, its value can be queried and the user
interface builder will return the Lisp form that was used for
the specification. This means that specifying red or #FFOOOO as
a value for the property background will result in a return of
red or #FFOOOO and not just a pixel value as in OSF/Motif.

User Interface Builder Action Routines. All user interface
builder commands are offered as action routines. They
make heavy use of the property decoders to detect input
errors such as wrong property names or values. There are
user interface builder commands to create widgets, modify
and query widget properties, display, hide, and position wid
gets, and access the graphics widgets.

User Interface Convenience Functions
The user interface convenience function level is located on
top of the the user interface builder level (see Fig. 11). While
all the user interface builder functions are closely related to
OSF/Motif, the user interface convenience functions are
more abstract and not related to any window system. This
level allows the programmer of a new command a fast and
easy-to-use implementation of the command's user inter
face. The functions guarantee that the new command fits the
look and feel of HP PE/SolidDesigner's user interface.

The function create-right-menu-dialog is used to create standard
HP PE/SolidDesigner menus which generally appear on the
right side of the user interface. The base of every right-menu
dialog is a dialog shell. This allows moving and positioning
these menus anywhere on the screen. A right-menu dialog
can be constructed top-down with various elements. Only its
width is limited to the size of two standard buttons. Fig. 12
shows a typical HP PE/SolidDesigner command dialog con
structed with a call to create-right-menu-dialog.

With the function create-options-block, typical HP PE/SolidDe
signer user interface objects for command options can be
created. An option block can never be without a parent wid
get. This means that the function create-options-block doesn't

Subtitle

Toggle 1 Toggle 2

* O p t i O p t 2 O p t 3

Left Toggle

X 42.0815

Wide Toggle

Fig. with Some heterogeneous option types that can be created with
create-options-block.

create a dialog shell as a basis, but a form widget, which is
realized in a parent widget (generally an empty form widget,
also called a communication form in this article). Fig. 13
shows some of the possibilities out of which a heteroge
neous option block can be constructed. Each option block
has an optional title, a main part underneath the optional
title, and an optional suboption form, an empty form widget
below the main part as a placeholder for suboption blocks.

The function create-dialog-shell creates an empty HP PE/Solid
Designer standard dialog shell in any size. Possible elements
are pin, title, close, OK, cancel, and help buttons. The empty
main form can be filled with any user interface objects,
which can be created using standard user interface builder
calls. This function is used to create nonstandard menus
such as browsers, the color editor, and so on.

Conclusion
The effort put into the development of HP PE/SolidDesign
er's user interface was a good investment. The user interface
is one of our key competitive differentiators. Customers like
the clear structure, ease of use, and ease of learning. The
Lisp-based implementation allows broad customization pos
sibilities. The powerful concepts of HP PE/SolidDesigner's
user interface and its technology provide a firm foundation
for future developments.

OSF/Motif is a trademark of the Open Software Foundation in the U.S.A. and other countries.

October 1995 Hewlett-Packard Journal 23
© Copr. 1949-1998 Hewlett-Packard Co.

Enhancements in Blending Algorithms
This article describes a rounding operation for a 3D CAD boundary
representation (B-Rep) solid model. Complex combinations of convex and
concave edges are handled predictably and reliably. At vertices the
surfaces are smoothly connected by one or more surface patches. An
algorithm for the creation of blending surfaces and their integration into
the model is outlined. The sequence of topological modifications applied
to the case model is illustrated by examples including some special case
handling.

by Stefan Freitag and Karsten Opitz

Apart from the basic Boolean operations, a modern solid
modeling CAD system needs to provide easy-to-use facilities
for local modifications of the primary model. One of the
most important examples is the blending or rounding of
edges, in which a sharp edge of the model is replaced by a
surface that smoothly joins the two adjacent faces (see
Fig. 1).

Blending surfaces serve several purposes in mechanical
designs, including dissipating stress concentrations and en
hancing fluid flow properties. In addition, some machining
processes do not permit the manufacture of sharp edges.
Smooth transitions between surfaces are also often required
for aesthetic reasons. Besides functional requirements, edge
blending is conceptually quite a simple operation, which
makes it very popular among designers using CAD systems.

A common characteristic of almost all applications is that
the smoothness of the blend is more important than its
exact shape. For the user this means that it should be pos
sible to create a blend by specifying only a few parameters.
It is then the system's task to fill the remaining degrees of
freedom in a meaningful manner.

From an algorithmic point of view, blending one or more
edges of a solid model simultaneously falls into two sub-
tasks. The first is to create a surface that provides the transi
tion between the adjacent surfaces defining the edge.
Secondly, the surfaces need to be trimmed properly and
integrated into the body such that a valid solid model is

maintained. While the first step is a purely geometric prob
lem, the second one involves both geometric and topological
operations.

The blending module in HP PE/SolidDesigner was designed
with the goal of allowing blending of a wide variety of com
plex edge combinations in a robust manner. This is accom
plished through the use of freeform geometry as blending
surfaces, along with quite involved geometric and topologi
cal considerations in several phases of the algorithm.

The lack of freeform surfaces was the primary reason for
most of the restrictions concerning edge blending in HP
PE/SolidDesigner's predecessor, the HP PE/ME30 3D
modeling system. HP PE/ME30's kernel, the Romulus
geometric modeler, does in fact provide more complex
surfaces, 1 but these enhanced blends were never imple
mented in the product.

The current capabilities of HP PE/SolidDesigner's blending
algorithm go far beyond HP PE/ME30 with respect to the
topological situations that can be handled reliably. More
over, the architecture of the algorithm allows the inclusion
of future enhancements in a consistent manner.

It is the aim of this paper to illustrate the basic blending
algorithm and to provide the reader with examples that
demonstrate the complexity of the geometric and topologi
cal problems that must be solved to integrate one or more
blend surfaces into a solid model. More information on this

Fig. 1. (a) A solid model
with sharp edges, (b) Edges
rounded by blending.

24 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

subject can also be found in Woodwark2 and the excellent
survey of Yida.:i

HP PE/SolidDesigner's underlying philosophy allows flexible
modifications of the solid model in every stage of the model
ing process. In the context of edge blending this means that
it should always be possible to remove or modify- an existing
blend surface without regard to how it was created.

In the next section, the second section of this article, we
introduce some terminology commonly used in solid model
ing, in particular in the blending context. The third section
describes the use model of edge blending in HP PE/SolidDe-
signer. An overview of the algorithm is given in the fourth
section, followed by a more detailed discussion of its major
steps. Finally, in the last section, we discuss some perfor
mance and stability issues.

Blending Module of the HP PE/SolidDesigner Kernel
Currently, the blending operation in the HP PE/SolidDe
signer kernel implements what is commonly known as the
rolling ball blend. This type of blend can easily be visualized
as a ball moving along the edge and touching the adjacent
surfaces (the primary surfaces) simultaneously. The touch
ing loci are curves that define the boundaries of the blend
surface. Depending on whether the radius of the ball is con
stant or varies while it is moving, we speak of constant-

radius or variable-radius blends.

The geometry module of HP PE/SolidDesigner's kernel sup
ports a number of different surface types (Fig. 2). These
include the natural quadrics (planes, spheres, cylinders, and
cones), toruses, and NURBS (nonuniform rational B-spline)
freeform surfaces. All of the surface types are represented
parametrically. The object-oriented design of the kernel
allows the use of generic algorithms for general surfaces as
well as special-case solutions for particular surface types.

Most algorithms such as surface/surface intersections or
silhouette calculations behave considerably more stably and
perform more efficiently when dealing with nonfreeform or
analytic surfaces. Consequently, the blend algorithm tries to
employ analytic surfaces whenever possible. This necessi
tates several case distinctions during the process of blend
creation, which will be pointed out later.

Depending on the local geometry, that is, the convexity of
the edge, blending an edge may involve adding or removing
material. These operations are sometimes distinguished as

filleting or rounding, respectively. In this article we will
refer to both cases as blends.

If several edges to be blended meet at a common vertex, the
blending surfaces should be joined in a smooth manner. \Ye
call these transitions vertex regions because they replace a
vertex by a set of surfaces. In some special cases, a vertex
region can be defined by a single analytic surface like a
sphere or a torus. In general, however, they are defined by
up to six tangentially connected B-spline freeform surfaces.

HP PE/SolidDesigner belongs to the class of B-Rep (bound
ary representation) modelers, in which the solid model is
represented internally as a set of vertices, edges, and faces.
In addition, the representation contains information about
how these entities are related to each other â€” that is, the
topology of the model. B-Rep modelers usually employ a
restricted set of operations to perform topological manipula
tions of the model. The application of these Euler operators

ensures the topological integrity of the model.

Integrating one or more blend faces into a solid involves
quite a number of topological modifications and different
Euler operators. We will not discuss the underlying concepts
in detail here, but refer the reader to the standard sources.4'5'6
For our purposes, it suffices to know that the blend algo
rithm employs these basic operators (for example, ADEV,
ADED, of KE) to create the new topological representation of
the blended body.

The blend module also takes advantage of basic functional
ity provided by the geometry module of HP PE/SolidDesign
er's kernel. Examples are closest-point calculations with
respect to a curve or a surface. We call these operations
relaxing a point on a curve or surface. This applies to
curves or surfaces of any type. For instance, it is often nec
essary to relax an arbitrary point on the intersection curve
of two surfaces. Since these operations are part of the ker
nel's generic functionality, we will not go into the details of
their implementation.

Using the Blend Command
Like all of HP PE/SolidDesigner's commands, the user inter
face for the blend command is designed to be easy to use
and require as little input as possible from the user. This is
greatly facilitated by some general mechanisms used
throughout HP PE/SolidDesigner's user interface such as the
selection methods and the labeling feedback.

Fig. 2. Detail from Fig.l showing
cliÃ­Ã¯cTcril types of surfaces em
ployed liy the blending algorithm-

October 1995 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

The blend command distinguishes two modes: the defini

tion mode and the preview mode. In definition mode, single
or multiple edges can be selected and assigned a radius (of
the rolling ball). Variable-radius blends are specified by start
and end radii to be assigned to the end vertices of the edge.
Since the choice of the start and end vertices is arbitrary,
the vertices of the currently selected edge are marked with
labels. The radius of the rolling ball varies linearly between
the two end vertices of the edge.

An important feature of the blend command is its ability to
handle both types of blends simultaneously. This gives the
user the ability to specify an arbitrary combination of con
stant and variable radius blends, each with possibly differ
ent radii, in a single blend session.

The blend command uses straightforward radius defaulting.
For example, the constant radius of the active edge carries
over to all subsequently selected edges unless the user
chooses a new radius explicitly.

While processing the selected edges, the algorithm decides
about the inclusion of a vertex region to provide a smooth
transition between the blend surfaces. A vertex region will
be created if all edges adjacent to a particular vertex are to
be blended in the same session. In other words, a vertex
region can easily be suppressed by blending adjacent edges
one after another.

In preview mode, the blend faces are shown using a preview
color. Modification of the radius or the edge information is
not possible in this mode. However, upon returning to the
definition mode, the user can specify further edges to be
blended, modify the blend radius assigned to an edge, or
remove an edge from the list.

There are two ways to terminate every command in HP
PE/SolidDesigner. Canceling the blend command causes the
blends to be discarded, while completing it makes the
blends "real."

For convenience, the blend menu contains a small number
of options:

â€¢ The part checker usually run on the blended part can be
switched off to provide a faster, although possibly invalid
result.

â€¢ The labels attached to edges and faces, which might be an
noying if a large number of edges are selected, can be
turned off.

â€¢ A chain option allows the user to select all edges connected
tangentially to a given edge by a single pick.

Because of the complexity of the operation, blending one or
multiple edges sometimes fails. While some problems are
easily detected, others are caused by topological or geomet
rical restrictions rooted at a relatively low level. A typical
example for the first kind of problem is the case where the
blend radius is chosen too large, hi any case, a failure is re
ported to the user by displaying an error message and high
lighting the edge that is causing the problem.

How the Blending Algorithm Works
As noted above, the rolling ball blend provides us with a
very intuitive way to define a blend surface. While moving
along the edge, the ball sweeps out a certain volume. The
blend surface is simply a part of the surface bounding this

volume. In mathematics, surfaces that are swept out by fam
ilies of moving spheres are called canal surfaces.7 The cylin
der and the torus are the most obvious examples.

A number of blending problems can be handled by inserting
surfaces of these types. We will refer to these cases as ana

lytic blends. In other than the simple cases, however, the
explicit representation of a canal surface takes on quite a
complicated form. Therefore, an approximation of the ideal
blending surfaces by freeform blends is constructed. In par
ticular, we use C '-continuous B-spline surfaces.

The general algorithm is divided into a number of smaller
modules. Each of these modules typically scans over all
edges to be blended and performs a certain task. However,
care is taken that the result is symmetric, that is, it does not
depend on the order in which the edges are operated on.

The task of the first module is to filter out all cases where an
analytic solution exists and flag the corresponding edges
accordingly. In the second step, the touching curves of the
ball with the primary surfaces are calculated. While this is
straightforward for analytic blends, the boundaries of free-
form blends must be computed numerically. This is accom
plished by a marching algorithm.

Having calculated the boundaries of the blend surface, we
determine their intersection points with other edges. It is
often necessary to remove edges from the model to find
useful intersection points. This is the first step that possibly
involves topological modifications of the original body.

Other major changes to the model are done in the next two
modules, which represent the blend face topologically. The
first module performs the zipping of the original edge, that
is, it replaces this edge by two new ones connected to the
same end vertices. Secondly, the appropriate topology at the
end vertices is inserted.

From a topological point of view, the model containing the
primary blends is now complete. However, several topologi
cal entities are still without geometry. The surfaces corre
sponding to the blend faces, for instance, are not yet de
fined. These are computed in the next module based on the
already available boundary data.

Furthermore, the surfaces need to be trimmed at the end
vertices of the original edges. The trimming curves of the
surface are, in general, computed by intersecting them with
adjacent surfaces. However, it might also be necessary to
intersect two adjacent blend surfaces created in the same
session. The intersection curves are then "hung" under the
corresponding edges.

Finally, the last major module performs the inclusion of ver
tex regions, both topologically and geometrically. These
steps will be described in more detail later.

Analytic or Freeform Blends
It is not difficult to list all cases where a cylindrical or toro-
dial surface fits as a blend between the two primary sur
faces. The simplest case is the one in which two intersecting
planes blended by a cylindrical surface. A torus can be used
when blending the edge between a conical and a planar sur
face as shown in Fig. 3. In a first pass over all involved
edges, the algorithm tries to match one of the cases where

26 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 3. A torus provides a smooth blending of the edge between
a conical surface and a planar surface.

such a solution exists. The corresponding edges are then
flagged as analytic.

The decision about when to employ analytic or freeform
blends, however, is also dependent on other, more global
factors. For example, suppose that three cylindrical blends
with different radii meet at a common vertex (Fig. 4). This
necessitates the inclusion of a freeform vertex region. De
pending on the numerical tolerance used in the system, this
might lead to very expensive B-spline surfaces in terms of
data generated (the B-spline boundaries of the vertex region
must lie â€” within some tolerance â€” on the adjacent cylin
ders). Therefore, it is often necessary to use freeform blends
rather than analytic ones at a subset of the edges for the
benefit of reducing overall data size. The corresponding
checks are done in a second pass over the edges.

As a side-effect of switching from an analytic to a freeform
blend for a particular edge, other edges adjacent to this one
might be affected. This is also taken care of in the second
pass.

The results of these operations are flags attached to all in
volved edges and their end vertices which provide informa
tion to all following modules about the types of surfaces to
be used.

Blend Boundary Creation
The task of the second module is to compute the blend
boundaries and tangency information along these curves.
This information will be used later for the construction of
the blend surfaces. The calculation of the boundaries for
cylindrical and torodial blends is a straightforward exercise
in analytic geometry and will not be described here. More

involved and computationally more expensive is the general
case, which will be the main topic of this section.

A major advantage of the rolling-ball blend is that its defini
tion can be put into mathematical terms quite precisely. Sup
pose a ball with radius r moves along the edge between the
primary surfaces. The curves where the ball touches the
surfaces will be the boundaries of the blend surface to be
inserted. The center of the ball moves along a third curve,
the spine of the canal surface. If the radius of the ball
changes while rolling, the curves touching the surfaces will
define a variable-radius blend surface. In HP PE/SolidDe-
signer a general B-spline curve is used to define the radius
function.

The spine lies entirely on a surface with constant distance r
from the original surface. This is called the offset surface.

This applies to both primary surfaces. Therefore, we can
calculate the spine as the intersection curve of the two off
set surfaces (Fig. 5).

Computing surface/surface intersections is a ubiquitous
problem in solid modeling and many algorithms have been
devised for its solution. Very popular are the marching algo
rithms, which trace out the intersection curve starting from
a given point in its interior. In our blending algorithm, we get
such a starting point by taking the midpoint of the original
edge and relaxing it onto the spine. The entire curve is then
computed by marching the intersection of the two surfaces
in both directions. The marching stops when the curve
leaves a certain 3D box provided by the calling routine. The
boxes are chosen such that the resulting blend surfaces are
large enough to fit into the model.

The particular strategy we employ for the marching is to
reformulate the problem as one of solving a differential
equation in several unknowns. The solution is then com
puted by a modified Euler method.

Fig. 4. Three cylindrical blends with different radii connected
by a freeform vertex region.

Fig. 5. The center of the rolling ball moves on the intersection
curve between the two offset surfaces.

October lil!)5 I Icvvlcil-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

A common problem in marching algorithms is the choice of
an appropriate step size. Choosing the step size too big
might lead the algorithm astray. On the other hand, very
small steps usually guarantee convergence of the method
but might generate too much data. Therefore, we use an
adaptive technique based upon the curvature of the intersec
tion curve: a small curvature indicates that the intersection
curve behaves almost like a straight line. This means that we
can proceed with a large step. On the other hand, if the
curve bends sharply, that is, its curvature is large, we use
very small steps to capture all of its turns.

The result of these computations is a set of isolated points
lying exactly on both offset surfaces and thus on the spine.
Conceptually, the corresponding points on the blend bound
aries can be determined by projecting these points onto the
original surfaces (Fig. 6). In fact, for parametric surfaces
this operation is trivial because the offset surface inherits its
parameterization from the underlying surface. This means
that we simply have to evaluate the primary surfaces at the
parameter values of the points on the spine.

The blend boundaries are now created by constructing cu
bic Hermitian segments between the given points. However,
we still have to check whether the entire segment lies on the
surface, within a given tolerance. In cases where it doesn't,
we use a fast bisection method for "pulling" the curve seg
ment onto the surface.

While the intersection curve â€” and thus the blend bound
aries â€” are traced out, we also collect tangential information
along the boundaries. This information is used in the surface
creation step to construct smooth transitions between the
primary surfaces and the blend surface. The same bisection
and representation techniques as for the boundary curves
are used for these cross-tangent curves.

Before we conclude this section, we still have to address the
question of singularities, which are critical for every march
ing algorithm. In our context, we have to deal with two
types of singularities: those of the surfaces to be marched
and those of their intersection.

The first problem is illustrated in Fig. 7. While a small offset
leads to well-behaved curves, larger distances result in off
set curves with cusps or self-intersections. Analogously, we
might have degenerate offsets of the primary surfaces if the
distance (radius of the blend) is chosen too large. For too
large a radius, a rolling ball blend is not possible. When such
a situation is detected the marching stops, the entire blend
algorithm stops, and the user is advised to try the operation
again with a smaller radius.

The second type of singularity occurs if the primary surfaces
and consequently their offsets possess a common tangent
plane (Fig. 8). These tangential intersections typically
create the biggest problems for marching algorithms.
Loosely speaking, it is very difficult to find where to go at
these points. However, a rolling ball blend is still well-de
fined. The touching curves of the ball are identical with the
original edge, and the blend surface degenerates to one with
zero width. HP/PE SolidDesigner's kernel enforces the rule
that these extraordinary points may only occur at the end-
points of an edge. This considerably eases the task for the
blending algorithm. It is quite simple to check whether the
intersection curve degenerates at its endpoints. This infor
mation is provided to the routine that performs the march
ing. Since the algorithm starts at the midpoint of the inter
section curve, the occurrence of a singular point of this type
indicates that we have reached one of the endpoints of the
edge.

In a final step, the segments of the boundaries and the cross-
tangent curves are merged into C ^continuous B-sp lines. The
overall result of this module consists of four ^-continuous
curves with a common parameterization describing the
boundary curves and tangency information of the blend
surface.

Trimming the Blend Boundaries
After creating the blend boundaries we need to integrate the
boundaries into the body. Most important, we have to find
the position where the boundaries are to be trimmed. Fig. 9
shows a particularly simple example.

The six points shown in blue can be calculated by intersect
ing the blend boundaries with the adjacent edges at the end

Fig. 6. The blend boundaries (red) are created by mapping the
spine (black) onto the primary surfaces.

Fig. 7. When the blend radius is chosen too big, the blend boundary
will have a cusp (red curve) or even be self-intersecting (black
curve).

28 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. edge, If the primary surfaces have the same normal along the edge,
the blend surface (blue) degenerates.

vertices. However, usually the set of edges to be blended
with possibly different radii is not limited to one edge but
may contain several edges or even all of them. This means
that while the boundaries of a given blend face are being
trimmed they must be intersected with other blend bound
aries created in the same session (red points).

Intersecting a blend boundary with an existing edge of the
solid model may have three results:
One intersection point found. This is the general case.
No intersection found. The edge is too short to be inter
sected by the blend boundary. In this case the edge will be
removed from the model. The edge newly attached to the
vertex will now be intersected by the blend boundary. Re
peating this procedure guarantees the existence of at least
one intersection point.
Multiple intersection points found. Such a situation might
occur, for instance, if the adjacent edge is part of a B-spline
curve "wiggling" around the blend boundary. In this case,
the most valuable intersection point has to be chosen. A
valuable point in this context is the one that produces the
most predictable and expected result.

Fig. a Selecting the correct intersection point between a
blend boundary and an adjacent edge also depends on the
local surrounding geometry.

In fact, very often there are several possible solutions and
all of them result in a valid solid model. Several different
criteria are used to select the best intersection point. Fig. 10
shows two examples. The remaining intersection points are
ignored.

Creating the Topology of the Blend Face
Having computed the trimming points of the blend bound
aries, we build up the topology of the blend face. The first
step is similar to opening a zipper: the original edge of the
body is replaced by two new ones connected to the same
vertices. The new face is then extended at its end vertices.
More precisely, four new edges â€” two at each end â€” are
added. In addition, the adjacent edges are split at the four
trimming points (Fig. 11).

Blend Surface Creation
Now the face is ready for the inclusion of the blend surface.
There are two possibilities. In the first case, analytic sur
faces are inserted based on the decision made in the first
module. Possible surface types are cylinders, cones, and
toruses only (Fig. 12). In all other cases a freeform surface
is created. We use C'-continuous B-spline surfaces. This
surface is defined by the blend boundaries created by the
marching algorithm, the tangency information along these
boundaries represented by cross tangent curves, and the
fact that, the blend surface should have circular cross sec
tions. Using this knowledge the surface can be created very
easily. The circular cross section is approximated by a single
cubic B-spline segment. Although not precise, this approxi
mation is sufficiently good for practical purposes. In fact,

Fig. 9. The- blend boundaries are trimmed at. points where they
intersect adjacent edges (blue) or another blend boundary (red). Fig. 11. Creating the topology of a blond face.

October 199ÃJ I lewlel I l':u-|<;inl Journal 29

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 12. A model containing only analytic blend surfaces:
cylinder, cones, and toruses.

given the input data for the cross section â€” boundary points
and tangent directions â€” we use an optimal approximation
based on a method described by Dokken.8 The boundary
curve to and parameterization transfer directly to
the surface (Fig. 13).

Trimming the Blend Surfaces
The last step in integrating the blend surface into the solid
model is to trim it at the ends. The goal is to keep the trim
area as simple as possible.

Unfortunately, the authors of many edge-blend algorithms
assume that they are dealing with a trimmed-face surface
model and they offer no suggestion about what to do at the
ends of the edge to be blended. The topological and geomet
rical issues are quite complex, especially when multiple
edges meet at a common vertex.

The simplest type of termination issue arises when there is
only one edge to be blended. Both boundaries must be
joined at the ends of the blend face. The easiest way to do
this is to intersect the blend face with all edges and faces
connected to its end (Fig. 14). Intersecting the blend face
with these edges creates intersection points which are to be
connected to form the boundary of the blend face.

The intersection points are calculated by curve/surface in
tersections between the blend surface and the curves of the
edges at the end of the blend face. In general, a curve/sur
face intersection will result in multiple intersection points,
hi this case, the one chosen is the one closest to the vertex
of the edge to be blended at this end.

If there is no intersection point of the blend face and an
edge this edge is removed from the model using the Euler
operator KEV. If this edge is the last one of its face, the face is
removed using the Euier operator KBFV. Removing an edge
means disconnecting it from its vertices and filling the gap
by connecting other edges to these vertices. The newly con
nected edges have to be intersected with the blend face, too.
However, if one of these edges is also to be blended, an in
tersection between its blend boundaries and the blend face
is calculated. The intersection points are then connected by
intersection tracks of the blend surface and the adjacent
ones. In general, the result of this surface/surface intersec
tion do is a set of intersection tracks. Tracks that do
not contain the intersection points described above are fil
tered because they are not needed. The remaining tracks are
sorted by the distance between two intersection points. The
shortest arc is the one chosen because it minimizes the trim
area at this end.

Fig. the Creating the geometry of a freeform blend surface: the
control polygon of the blend boundaries (left) and the resulting
blend surface (right).

Fig. 14. Trimming a blend surface involves a number of curve/
surface intersections (red points) and surface/surface inter
sections (blue curves). Note how the faces marked dark red
are "eaten up" by the blend face.

30 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 15. \\Tien more than two edges to be blended meet at a
common vertex, a vertex region is inserted to connect the blends
smoothly.

Vertex Regions
A totally different situation occurs when more than two
edges meet at a common vertex. In this case a set of addi
tional faces and surfaces must be created to build a transi
tion patch that smoothly connects all of the blend faces
meeting there. This set of faces is called a vertex region
(Fig. 15).

In some special cases a vertex region has only one face,
which is an analytic surface (sphere or torus). In general,
however, a vertex region will contain three or more faces. In
HP PE/SolidDesigner the number of faces in a vertex region
is currently limited to six.

Topology of Freeform Vertex Regions. At a vertex where five
edges to be blended meet each other, the topology shown in
Fig. 16a arises after extending the blend faces as described
above. The blending algorithm transforms this topological
situation by integrating five faces, each having four edges,
as shown in Fig. 16b. Transforming the topology requires the
use of the Euler operators KEV, ADEV, and ADED to kill an edge,
add an edge, and add a whole face. Fig. 17 shows the se
quence of Euler operators.

Topology of Analytic Vertex Regions. When a sphere or torus
fits a vertex region the topology is changed in another way.
Instead of the "star" where the blend faces meet, a single
face will be created using KEV and ADED, as shown in Fig. 18.
Fig. 19 illustrates the algorithm, showing the transformation
step by step.

Geometry of Freeform Vertex Regions. After creating the topol
ogy of a vertex region, the corresponding geometry must be
constructed and integrated. To provide a smooth transition,

Fig. 16. (a) Topology of a vortex region where five faces meet
after extending the edges, (b) Topology created for the repre
sentation of the vertex region.

Fig. 17. Sequence of Euler operators used to transform the topology
of Fig. 16a to the one of Fig. 16b .

the surfaces must satisfy two constraints. First, their bound
aries must match the ones of the adjacent surfaces. Sec
ondly, the vertex regions and the blend surfaces should pos
sess the same tangent planes along their common
boundaries. The construction of vertex regions satisfying
those constraints is a classical problem in geometric model
ing.9 Among the many solutions, we mention the one pro
posed by Charrot and Gregory.10 They fill a vertex region by
a procedurally defined surface, that is, a surface that does
not have an analytic mathematical representation but rather
is defined by a method of generating it. Since the geometry
kernel of HP PE/SolidDesigner does not support this type of
surface, we employ an algorithm that generates a set of four-
sided B-spline surfaces. More precisely, for filling an n-sided
hole, we use n B-spline surfaces of polynomial degree 6 in
both parameter directions.

Geometry of Analytic Vertex Regions. From the geometrical
point of view analytic vertex regions are quite easy to com
pute because only one surface is needed and the surface
type will be either a sphere or a torus.

Transition Curves. When large radii are combined with very
small radii, a vertex region can look very strange, deformed,
or even self-intersecting, like the left solid in Fig. 20. In such
cases, instead of a three-sided vertex region, a four-sided
one is used, giving a result like the right solid in Fig. 20. In
general, an (n+l)-sided region is used instead of an n-sided
region. This is done by introducing a transition curve be
tween two boundaries sharing the same face. The transition
curve is used whenever an intersection of two boundaries is

Fig. face When part of a sphere fits as a vertex region, a single face
is created.

() r i i i l> i>r 1995 Hewle t t -Packard Journa l 31

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 19. Sequence of Euler operators used to create the face
of Fig. 18.

"behind" the direct connection of its neighboring intersec
tion points.

Geometrically, the transition curve is a B-spline curve de
fined at its endpoints by tangency conditions to both bound
aries and in between by a tangency condition to the corre
sponding face. This curve is created using an adaptive
curvature-controlled bisection algorithm similar to the one
used to create the blend boundaries. The endpoints of the
transition curves are constructed such that the cross section
of the resulting blend surface is an isoparametric of this
surface. In certain cases it is also necessary to insert a tran
sition curve to smoothly connect two nonintersecting adja
cent blend boundaries. Fig. 21 shows an example.

Special Cases
A reliable blending algorithm must be able to handle various
topological and geometrical special cases predictably. Four
major special cases are tangential intersections, apex cre
ation, a singularity at the end of a blend surface, and closed
curves.

Tangential Intersections. Real-life solid models often contain
edges connected tangentially at a vertex to another edge.
Blending these edges will result in very complex and time-
consuming surface/surface intersections in the process of
trimming the blend faces at the common vertex, especially
when their radii differ only slightly.

Fig. is A transition curve (lower edge of the vertex region) is
also inserted when two adjacent blend boundaries around a vertex
region don't intersect.

If two boundaries are tangential to others, the intersection
point calculation is numerically very unreliable and expen
sive. In addition, both blend surfaces share a common re
gion of partial coincidence, so the intersection track calcula
tion is even more expensive than the intersection point
calculation.

To avoid these problems, two edges to be blended are han
dled in a totally different way. No curve/surface or surface/
surface intersections need to be calculated. Rather, an addi
tional face is created that smoothly connects the two
surfaces (Fig. 22).

Apex Creation. If an edge to be blended is concave, material
is added to the solid model. This means that other edges
become longer and faces become larger, and sometimes a
singular point moves into a face. HP PE/SolidDesigner re
quires a topological entity, a vertex, right at the apex in this
case. Therefore, after creating the blend face the required
vertex is added (Fig. 23).

Singularity at the End of a Blend Surface. Sometimes at an end-
point of the edge to be blended the surface normals of the
adjacent surfaces are equal â€” for example, two cylinders
with the same radius intersected orthogonally (Fig. 24). In
this case both boundaries of the blend surface meet at a
common point where both surface normals are equal. There

Fig. 20. When the vertex region would be too badly deformed,
an additional transition curve is inserted to provide a smoother
transition.

Fig. blends Additional faces (red) are inserted where adjacent blends
are tangentially connected.

32 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 23. When material is added by blending an edge, an apex
might move from the boundary to the interior of a face.

is no need to execute the trimming part of the blend algo
rithm because the solid is already closed at that end.

However, from the geometrical point of view, the blend sur
face is degenerate. One side or in this case both sides of the
blend surface are degenerate isoparametric boundaries. This
means that evaluating any parameter space point at this
surface boundary results in the same object space point.
This object space point is the position where both blend
boundaries meet and the adjacent surfaces have the same
surface normal.

Data Size and Performance versus Accuracy
The size of the data structures that represent freeform ge
ometry mainly depends on the number of control points
defining the curve or surface. In practice, curves can have
hundreds of control points and surfaces many more. As an
example, let's consider a medium-size surface with 500 con
trol points with three coordinates each. In double-precision
format, such a surface requires 3 x 8 x 500 bytes or approxi
mately 12K bytes of memory. In fact, a real-life model may
contain many freeform surfaces. It is therefore quite impor
tant to reduce both the number of such surfaces and the
number of control points used to represent them.

Fig. the Another example of two adjacent surfaces that have the
same normal at an endpoini ufan edge to be blended. The trimming
part of the algorithm is not needed.

The size of a freeform blend surface is basically determined
by the complexity of its boundaries. Boundaries with n con
trol points lead to surfaces with 4n control points. Conse
quently, it is critical to generate approximations of the "true"
blend boundaries with a minimal amount of data. On the
other hand, the creation of the blend boundaries is one of
the major factors determining the algorithm's overall perfor
mance. Finding an acceptable compromise between the con
flicting requirements of speed and quality of the solution is
an important design decision in the algorithm.

The same applies to the surfaces used for filling the vertex
regions. The size of such a surface is quadratically depen
dent on the size of its boundary curves. Let's again consider
an example. Assume that the boundary curves of a three-
sided vertex region are general intersection curves between
the primary blend surfaces and planes. It is not uncommon
for approximations of those curves to contain 50 control
points (HP PE/SolidDesigner works with an accuracy of up
to 10 ~~ 6). This would lead to a vertex region of 3 x 25 x 25 =
1875 control points (three surface patches of 25 x 25 control
points each), requiring 3 x 8 x 1875 bytes or approximately
44K bytes of data. Clearly, this is unacceptable for nontrivial
models.

There are several possibilities for reducing the amount of
data. The most critical factor is the approximation tolerance
used in the system. For example, reducing the accuracy
from 10 ~6 to 10 ~3 typically reduces the size of freeform
data structures by a factor of ten. Not only are the geometric
calculations speeded up considerably when using a lower
accuracy but also the overall performance of the system is
improved because of the reduced demand for memory man
agement. HP PE/SolidDesigner offers the user the ability to
select the accuracy in a range of 10 ~2 to 10 ~G. This allows
the user to choose between high-precision modeling and a
faster but less precise approach.

Secondly, the handling of special cases can reduce the
amount of data significantly. Let's again take a look at free-
form vertex regions. If the primary blend surfaces are
created such that the boundaries of the vertex regions are
isoparametric curves of the primary blends (the procedure
for doing this is beyond the scope of this article), the 50 con
trol points can be reduced to 4. The vertex region will then
contain 3x7x7= 147 control points (the additional control
points along the boundaries â€” seven rather than four â€” are
the result of the mathematical construction), for a total of
approximately 3.5K bytes.

Another example is the trimming of a blend face. In this step
a number of surface/surface intersections must be calcu
lated. In general, an intersection of two surfaces will result
in not only one curve, but several intersection points,
curves, or even surfaces. However, in the blending context
there is important knowledge about the blend surface and
the face it intersects. At least one and in some cases two
points on the intersection track are known from the preced
ing curve/surface intersections. Providing these points as
"seeds" to the intersection routines increases both the speed
and the reliability significantly. In addition, boxes in the

October 1995 Hewlett-Packard Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

parameter space of the surface are used to limit the calcula
tion of intersection information to regions that are of in
terest.

From these examples we see that the good overall perfor
mance of the algorithm is mainly guaranteed by appropriate
special case handling at critical points. In fact, a large por
tion of the code in the blending module was developed to
deal with these situations.

Acknowledgments
The development and implementation of the blending algo
rithm in its early versions was largely conducted by our for
mer colleagues Hermann Kellermann and Steve Hull. A part
of the code was developed at SI/Sintef in Oslo, Norway.

References
1. A. Rockwood and J. Owen, "Blending Surfaces in Solid Modeling,"
in Geometric Modeling: Algorithms and New Trends, G. Farin, ed.,
SIAM, 1987, pp. 367-384.
2. J.R. Woodwark, "Blends in Geometric Modeling," in The Mathe

matics of Surfaces H, R.R. Martin, ed., Oxford University Press,
1987, pp. 255-297.

3. J. methods R.R. Martin, and T. Varady, "A survey of blending methods
that 5, parametric surfaces," Computer-Aided Design, Vol. 5, no. 5,
1994, pp. 341-365.
4. B. Baumgart, Geometric Modeling for Computer Vision, PhD
Thesis, Stanford University, 1974.
5. 1. Braid, R.C. Hillyard, and LA. Stroud, "Stepwise Construction of
Polyhedra in Geometric Modeling," in Mathematical Methods in

Computer Graphics and Design, K.W. Brodlie, ed., Academic Press,
London, 1980, pp. 123-141.
6. M. Sci An Introduction to Solid Modeling, Computer Sci
ence Press, Rockville, 1988.
7. W. Boehm and H. Prautzsch, Geometric Concepts for Geometric

Design, AK Peters, Willesley, 1994.
8. T. Dokken, M. Daehlen, T. Lyche, and M. Morken, "Good approxi
mation of circles by curvature continuous Bezier curves," Comput

er-Aided Geometric Design, Vol. 7, 1990, pp. 30-41 .
9. J. Hoschek and D. Lasser, Fundamentals of Computer-Aided

Geometric Design, AK Peters, Willesley, 1993.
10. J.A. Gregory, "N-sided surface patches," in Trie Mathematics of

Surfaces, J.A. Gregory, ed., Clarendon Press, 1986, pp. 217-232.

34 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Open Data Exchange with
HP PE/SolidDesigner
Surface and solid data can be imported from HP PE/ME30 and exchanged
with systems supporting the IGES, STEP, and ACIS formats. Imported data
coexists with and can be manipulated like native data.

by Peter J. Schild, Wolfgang Klemm, Gerhard J. Walz, and Hermann J. Ruess

HP PE/SolidDesigner supports the coexistence of surface
data with solid data and provides the ability to import and
modify surface and solid design data from a variety of CAD
systems. Backward compatibility with HP PE/ME30 pre
serves the investment of existing HP customers. Using im
proved IGES (Initial Graphics Exchange Standard) import
capability, both surface and wireframe data can be im
ported. Surface data and solid data can also be imported and
exported using the STEP (Standard for the Exchange of
Product Model Data) format. Once imported, this data can
coexist with HP PE/SolidDesigner solid data. It can be
loaded, saved, positioned, attached to, managed as part and
assembly structures, deleted, and used to create solids. At
tributes such as color can be modified. If the set of surfaces
is closed, HP PE/SolidDesigner will create a solid from
those surfaces automatically.

HP PE/SolidDesigner 3.0 also allows solid parts and assem
blies to be exported to ACIS-based systems using Version
1.5 of the ACISÂ® SAT file format. This feature provides a
direct link to other ACIS-based applications.

From PE/ME30 to PE/SolidDesigner

HP PE/ME30 is a 3D computer-aided design (CAD) system
based on the Romulus kernel, t To preserve the investment
of existing customers it was required that the transition
from HP PE/ME30 to HP PE/SolidDesigner be as smooth as
possible. Therefore, an HP PE/ME30 file import processor is
a integral component of HP PE/SolidDesiger.

In HP PE/ME30, 3D objects are built from analytic surfaces
like cylinders, cones, spheres, planes, and toruses. The inter
sections of these surfaces can be represented as explicit
analytic curves such as straight lines, circles, and ellipses, or
implicitly by describing the surfaces involved and providing
an approximation of the intersecting arc. Parabolic and hy
perbolic intersections are represented implicitly.

HP PE/ME30 Native File Organization
HP PE/ME30 supports the Romulus textual transmit format.
The transmit file is not intended to be read by humans but
the general structure can be examined. The file contains
only printable characters, and real values are represented as

t A kernel CAD the heart of a modeling system. Currently, three kernels are used in various CAD
systems. These are Romulus from Shape Data, Parasolid, an extension of Romulus, and the
ACIS Kernel from Spatial Technology.

text six The full format of a transmit file consists of six
different sections. These will be described using the exam
ple of a single cylinder positioned at the origin of HP
PE/ME30's coordinate system with base circle radius 10 and
height 20.

The first section, the header section, describes the environ
ment, the machine type, the user login of the file creator,
and the time and date when the model was created.

@ * A O S
@* Mach ine type HP-UX
@* Transmit ted by user_xyz on 27-May-94 at 13-06

The second section contains index and counting information
related to the schema described in the third section. The
schema defines the data structures used to represent the
objects. It consists of a collection of record definitions. The
following is an example of a record definition:

S H 2 F S 3 - 1 B K 3 1

t_

One record def in i t ion

Property def ini t ion 1
- Property def ini t ion 2

Number o f proper ty def in i t ions
- Name of record def in i t ion

The following is an example of a property definition:

F S 3 - 1 - Â « O n e p r o p e r t y d e f i n i t i o n

- Length f ie ld : I f - 1 : var iab le length
"Type f ie ld
" ID name

In the second section of the transmit file the number of
record types, the numbers of record instances and property
instances, the name of the schema, and its version and up
date number are supplied. The record instances and prop
erty instances contain the concrete data describing the
model. The semantics and the sequence of data entities have
to conform to the format specified by the corresponding
record definition and property definition entities.

The information in the cylinder example file says that 1 1
instances of record definitions are supplied to describe the
schema for the instance of the cylinder. For the actual ob
ject, 23 record instances built out of 115 property instances
are used.

October 1995 Hewlett-Packard Journal 35
© Copr. 1949-1998 Hewlett-Packard Co.

I
11
23115
R O M D S C H M A 7 4
16

The third section, the schema section, contains the defini
tion of the data structures used to represent the model. This
section consists of the subset of record definitions from the
HP PE/ME30 internal data structure schema that are needed
to represent the model. The schema sections of files repre
senting different models will be different. The schema sec
tion for the example cylinder is:

B Y 1 9 U P 4 - 1 S E 3 - 1 T X 5 - 3 6 F l 4 - 6 C l 4 - 1 2 P I 4 - 8
G l 4 - 1 S I 4 - 3 T l 4 - 3

R A 2 1 R N 2 1 Z l 4 - 2 F N 1 1 C N 1 1 P N 1 1 T N 1 1
S N 1 1 Z N 1 1 N M 1 1
S H 2 F S 3 - 1 B K 3 1

F A 8 U P 4 - 1 A K 3 - 1 R V 1 1 S F 3 1 S X 2 1 V R 3 - 1
H A 2 - 3 S L 3 1

V R 4 P T 3 1 B E 3 1 B V 3 1 F E 3 1

E D 2 C U 3 1 R V 1 1

C U 3 U P 4 - 1 A K 3 - 1 T R 3 1

T R 6 U P 4 - 1 A K 3 - 1 B K 3 1 E Q 2 - 7 T S 3 2 T Y 1 1

P T 4 U P 4 - 1 A K 3 - 1 C O 2 - 3 G P 3 1

G P 5 U P 4 - 1 A K 3 - 1 B K 3 1 C O 2 - 3 P X 3 1

S F 7 U P - 1 S D 3 - 3 A K 3 - 1 B K 3 1 E Q 2 - 7 S U 3 - 5 T Y 1 1

U A 3 O W 3 1 C L 1 1 I I 1 * 1

The fourth section contains, for each record type defined in
the schema section, the number of data objects used for the
transmission of the model. The sequence of numbers is iden
tical to the sequence of record definitions used in the
schema section. In the cylinder example, the object consists
of one body built of one shell built of three faces. Four ver
tices, four coedges, two curve geometries, two edges, two
points with two geometric point definitions, three surfaces,
and one attribute are needed to represent the cylinder ob
ject. The file contents are:

1 1 3 4 4 2 2 2 2 3 1

The fifth section, the data section, contains the data struc
ture instances. The contents of all records needed to repre
sent the object are found in this section. To every record an
integer record label is assigned. This number will be used in
other record instances to point to the instance. In general
the instances in the file appear in the order in which they
are referenced by other entities. The data of an entity in
stance is not split. If forward references are contained in the
instance definition the next instances can be found in ex
actly the same sequence as referenced. Because this rule
applies recursively, newly referenced entities can be found
first en the physical file sequence. If all references of an en
tity are resolved completely the next reference of the next
higher level will be resolved. For the cylinder, the data
section is:

1
1 1 25 Color 1 2 O 3 3 FO 4 F1 5 F2 2 14 EO 15 E1 2 18 PO 19 PI 0 0 0 0.000001
0 . 0 0 0 0 0 0 0 0 0 0 1 0 3 3 2 0 0 0 0 2 5 1 1 1 1 6 7 7 7 2 1 5 2 0 1 3 0 0 0 2 2 0 1 6 0 2 2 2
0 0 0 0 6 0 0 0 0 0 - 1 0 1 6 1 8 1 0 6 1 0 1 8 0 0 0 2 0 2 0 0 0 0 3 0 1 0 0 1 8 1 0 1 4
0 1 4 0 0 1 6 1 6 0 0 0 7 0 0 0 0 0 - 1 1 0 0 0 2 4 0 0 1 2 3 0 1 7 0 2 2 3 0 0 0 0 6
0 0 2 0 0 0 - 1 0 1 7 1 9 1 1 7 1 1 1 9 0 0 0 2 1 2 1 0 0 0 3 0 1 0 2 0 1 9 1 1 1 5 1 1 5 0
0 1 7 1 7 0 0 0 7 0 0 2 0 0 0 - 1 1 0 0 0 2 5 0 0 0 2 4 0 2 8 9 0 2 2 4 0 0 0 0 7 0 0
0 0 0 1 1 0 0 2 8 1 8 1 2 8 1 2 1 2 1 4 1 9 1 9 1 3 9 1 3 1 3 1 5 0

The sixth and last section contains, for each top-level object
transmitted in the file, the corresponding root entity and its
name. In the cylinder example only one object is trans
mitted. HP PE/ME30 supports user-named objects, but in
this example an HP PE/ME30 default name, BO, has been
used for the cylinder.

1
BO

Analyzing the Transmit File
Because the information content of an HP PE/ME30 file can
not be understood by simply looking at the file, several in
ternal analysis tools are used to extract the information.
Statistics showing the number of different curve and surface
types give a first hint of the complexity of the file. A graphi
cal presentation of the data instances of a file can be
generated.

I _ B Y I J J A l - >
I _ S H l - >
I _ F A I _ S F

I _ V R I _ P T i _ G P
L E D L C U L T R

I _ F A L S F
I _ V R I _ P T t _ G P

L E D ! _ C U I _ T R
I _ F A I _ S F

L V R l - >
L E D l - >

I _ V R l - >
L E D l - >

This reference structure can be read easily. The (cylinder)
object in the file is a body (BY) which consists of a shell (SH)
and three faces (FA). Shell and faces share the same hierar
chy level. Each face consists of a reference to a surface (SF)
and a start vertex (VR). Each start vertex is based on a geo
metric definition of a point (PT) and serves as the anchor
vertex of an edge loop. A loop is not represented explicitly
in the HP PE/ME30 exchange file. The implicit connection
is done by a reference from a start vertex to the next and
previous vertices in the loop. The edge (ED) entity repre
sents the topological direction of the edge with respect to
the loop. The curve (CU) entity is an intermediate instance
on the way to the curve's geometry (TR).

If complete information from the data section is needed a
translation tool is available that maps the data section to a
format much more useful for human readers. The following
extract describes how one of the faces and the correspond
ing surface component of the cylinder example are repre
sented. The mapping from the data section to the readable
format is also supplied.

36 October 1H95 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

For this component from the data section:

 5 000 24 028902 24 0000700

0 0 0 1 1 0 0 2

the corresponding translated part is:

5 = FA (Face owning (anchor) ver tex) , the propert ies are :
UP is EMPTY
AK is EMPTY
R V : I N T E G E R = 0

POINTER = 24
R E A L = 0
POINTER = 8
POINTER = 9

SF
SX
VR
VR
HA is EMPTY
S L : P O I N T E R = 2

. . . L ist of permanent universal at t r ibutes

. . . Backpointer f rom element of feature

. . . Sense e f face, edge geometry

. . . Surface of face

. . . Hatching pi tch

. . .Anchor o f face

. . . Anchor of face

. . . Hatch direct ion

. . .Shel l o f face

24 = SF (Surface of face), the propert ies are :
U P i s E M P T Y . . . L i s t o f p e r m a n e n t u n i v e r s a l a t t r i b u t e s
S O i s E M P T Y . . . S u r f a c e s u p p o r t i n g t h i s s u r f a c e

def in i t ion
A K i s E M P T Y . . . B a c k p o i n t e r f r o m e l e m e n t o f f e a t u r e
B K : P O I N T E R = 0 . . . B a c k p o i n t e r f r o m a s s e m b l y o r b o d y t o

token
. . . Geometry def ini t ion
. . . Geometry def ini t ion
. . . Geometry def ini t ion
. . . Geometry def ini t ion
. . . Geometry def ini t ion
. . . Geometry def ini t ion
. . . Geometry def ini t ion
. . . Surface supported by th is suface

CYLINDER) . . . Geometry type

Import Module
The HP PE/ME30 to HP PE/SolidDesigner import inter
face is linked directly to the HP PE/SolidDesigner code. In
IIP PE/SolidDesigner's user interface it simply adds a button
to the external filing menu. If a file name is specified, the
processor is activated. Internally, several C++ classes are
added to HP PE/SolidDesigner to represent the schema and
instance entities of the HP PE/ME30 file. For every sup
ported HP PE/ME30 record definition entity a class derived
from a generic record instance object is defined. The most
important member function of each of these classes is the
convert function. This function performs the mapping of the
HP PE/ME30 file object to the corresponding HP PE/Solid
Designer entity.

The three main components of the HP PE/ME30 to HP
PE/SolidDesigner processor are a lookup table, a schema
manager, and a set of classes to represent the supported HP
PE/ME30 file entities.

The lookup table is part of the interface to an HP PE/ME30
file. The main task of this table is to manage the mapping of
HP PE/ME30 file entities to already created corresponding
HP PE/SolidDesigner entities. A lookup table is generated
for every open HP PE/ME30 file.

A schema manager is initialized if a new HP PE/ME30 file is
opened. It contains the schema section information found in
the newly opened file. For every open file a corresponding
schema manager is available to control the interpretation of
Hie enlilies of the file.

The record instance class builds the third basic data struc
ture of the processor. Record instances are generic contain
ers to store all of the data objects that can be expressed by
valid record definitions. The constructor of the record in
stance class calculates the entity type from the reference
number and then allocates memory and reads in the proper
ties from the file corresponding to the property definitions
of the schema. For even,' supported HP PE/ME30 entity a
separate C++ class is derived from the record instance
class, but the generic constructor is used for all subtypes.
The main differentiator between the classes is the convert
function.

Conversion Process
The convert function of the record instance class itself is
not called by the conversion process. Rather, every derived
class implements its specific conversion function (in this
sense the convert function is purely virtual in C++). The
individual conversion function converts itself to an HP PE/
SolidDesigner entity.

Conversion and the creation of new derived instances of the
record definition class constitute a recursive process. If dur
ing an active conversion an unresolved (not already con
verted) reference is found the corresponding HP PE/ME30
file entities can be found as the next entities in the physical
file (see the description of the data section). The conversion
module then creates a new derived instance of the record
instance class and forces the translation of this entity to a
HP PE/SolidDesigner entity that can be used to complete the
conversion of the current entity. The algorithm is as follows:

A reference to an HP PE/ME30 f i le ent i ty is found:

A l ready "conver ted"? (lookup tab le search)
YES: Use the ava i lab le convers ion resu l t
NO: Crea te the new der i ved c lass o f reco rd ins tance

Cal l the conver t funct ion
At tach the convers ion resu l t to the lookup tab le
Delete the ins tance to f ree the memory used
Use the newly genera ted convers ion resu l t to cont inue the

convers ion.

Nonanalytic Intersection Curves
The conversion for intersection curves is not done on the
fly, but by a postprocessor after the rest of a body is con
verted completely. The convert routine for an intersection
track simply collects the two intersecting surfaces and all
available additional information found in the file to repre
sent the intersection. The completion of the intersection
curves is done by the convert function for HP PE/ME30 bod
ies. After a first intermediate topology of the new HP PE/
SolidDesigner body is calculated and all analytic surfaces
and analytic curves are attached to the created body, the
calculation of the intersections begins.

The topology of the intersection between two surfaces in
HP PE/SolidDesigner is not always the same as in HP
PE/ME30 because different constraints on topology and ge
ometry exist in the two modelers. For instance, it may be
necessary to represent the single segment found in HP
PE/ME30 as a sequence of different curves. In such cases
the original topology has to be modified and some edges
may be split. To find the appropriate intersection in IIP

October !!)!)"> Hewli'tt-I'ackard. Journal 37

© Copr. 1949-1998 Hewlett-Packard Co.

PE/SolidDesigner is mainly a selection process. In many
cases two surfaces intersect at not only one but several dis
tinct sections.

Consider the intersection of a cylinder with a torus in the
case of perpendicular axes. Four possible intersection
curves may be part of the model (see Fig. 1). In the
HP PE/ME30 file additional help points are supplied to allow
the correct selection. The direction of the intersection curve
(the tangent to the curve) is not guaranteed to be the same
in HP PE/SolidDesigner as in HP PE/ME30. Therefore the
correct fit to the model is calculated and the resulting direc
tion is reflected in the topology of the imported model.

Quality and Performance
To test the quality of the HP PE/ME30 import processor a
large HP PE/ME30 test library has been compiled. It now
contains more than 2300 examples of parts and assemblies.
All of the test cases used during HP PE/ME30 development
and support are included along with new user models con
sisting of recently acquired data from internal and external
HP PE/ME30 users. An additional test matrix subtree was
developed by creating base parts with critical features. In
particular, all possible surface-to-surface intersections and
various special cases have been generated.

The regression test procedure is to import HP PE/ME30
models from the test library part by part and perform the
HP PE/SolidDesigner body checker operation on each. The
loading time and the body checker result are collected in a
reports file. A reports file can be analyzed by a shell script to
supply a statistical summary of the current quality of the
HP PE/ME30 interface. Because of the large amount of test
data a complete test takes a long time. Therefore, an inter
mediate test is available. The complete test performs the
basic load and check test on all currently available test mod
els of the library directory. The intermediate test examines
the reports file of the latest complete test and repeats all
reported problems. It also repeats a random selection of the
successful tests. At this time over 99% of the complete test
conversions are classified as successful.

The performance of the import process for HP PE/ME30
files is mainly dependent on three variables: the size of the
schema, the number of entities, and the number of intersec
tions that have to be calculated:

Fig. 1. Intersection of a torus and a cylinder.

Load Time = Size x kl + Entities x k2 + Intersections x k3,

where kl < k2 < < k3. The size of the schema section does
not vary very much between different files and is normally
relatively small compared to the size of the data section. The
number of entities and the file size are strongly related. The
calculation and selection of the nonanalytic intersection
curves fitting the model is a relatively expensive component
of the processor because a completely new representation
of the data structure has to be generated.

Data Exchange Using IGES

An important task in computer-aided design is the transfer
of the completed model to downstream applications and
other CAD applications. These applications vary from finite
element analysis and numerically controlled (NC) manufac
turing to visualization and simulation. HP PE/SolidDesigner
currently uses IGES 5.1 (Initial Graphics Exchange Specifi
cation) for file-based data exchange.

Because of the broad variety of receiving systems an IGES
interface must be flexible so that the contents of the output
file match the capabilities of the receiving system. It must be
possible to transfer whole assemblies keeping the informa
tion on the parts tree, or only specific parts of a model, or
even single curves or surfaces. This is achieved by a mixture
of configuration and selection mechanisms.

An analysis of the IGES translators of many different sys
tems showed that it is possible to classify them in four main
categories:
Wireframe Systems. These systems are only capable of im
porting curve geometry. This is typical for older CAD sys
tems or 2D systems with limited 3D capabilities.
Surface Systems Using Untrimmed Surfaces. These systems
are capable of importing untrimmed surfaces and indepen
dent curve geometry. This is typical for low-end NC systems
that need a lot of interaction to create tool paths and define
areas.
Surface Systems Using Parametrically Trimmed Surfaces.
These systems are able to handle trimmed surfaces. Trim
ming is performed in the parametric domain of the surfaces.
Periodic surfaces are often not handled or are incorrectly
handled. Each surface is handled independently. This is typ
ical for surface modelers and sophisticated NC systems.
Topological Surface Systems and Solid Modelers. These
systems are able to handle trimmed surfaces using 3D
curves as trimming curves. They are able to handle periodic
surfaces, nonplanar topology, and surface singularities. Con
nection between adjacent trimmed surfaces is maintained
and the normal to the trimmed surface is important for in
side/outside decisions. This is typical for advanced surface
and solid modelers.

HP PE/SolidDesigner's IGES interface is designed to work in
four output modes: wireframe, untrimmed, trimmed para
metric, and trimmed. Each output mode represents one of
the categories of receiving IGES translators. This has the
advantage of giving as much information about the solid
model as possible to high-end systems (trimmed, trimmed
parametric), without burdening low-end interfaces with too
much information. For some modes (trimmed parametric)
more configuration parameters allow fine tuning to specific

38 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

systems to maximize the transfer rate. Each mode has a
specific entity mapping that describes which IGES entities
are used to describe the model (see Tables I. II. and III).
Users can specify additional product related data and arbi
tran- comments for the start and global sections of the IGES
file directly \ia the IGES output dialog box. Specific configu
rations can be saved and loaded so that the configuration
has to be determined only once for each receiving system.
Fig. 2 shows the IGES dialog menu.

To allow maximal flexibility in what is translated, the user is
allowed to select assemblies, parts, faces, and edges and
arbitrary combinations. All selected items are highlighted
and the user can use dynamic \iewing during the selection
process. If the user selects assemblies, the part tree is repre
sented with IGES entities 308 and 408 (subfigure definition
and instance). Shared parts are represented by shared geom
etry in the IGES file.

I G E S S e t t i n g s

Table I
Curve Mapping

O u t p u t M o d e

Tr immed Parametr ic

Wiref rame

Â» Trimmed

Unt r immed

Accurac1

r immed Parametr ic Swi tches

C i Ã ³ s e P a r a m , S p a c e N o n n a i u r t * A r c

P -Curves as Lines

P C V A c c u r , o , o o j f

â€¢ Global

* H P - U X

A u t h o r

Coord ina te Sys tem

Output F i le Format

Global Sect ion

HP PE/Sol idDesigner

Straight

Circle

B-spline

Intersection curve

Parameter curve

IGES 3D Entity

L i n e (1 1 0)

Circular arc (100)
with transformation

Rational B-spline
curve (126)

Rational B-spline (126)

Rational B-spline (126)
or line (110)

Trimmed Mode
The trimmed mode is the closest description of the internal
B-Rep (boundary representation) data structure of HP PE/
SolidDesigner. It uses the IGES bounded surface entities 143
and 141 as the top element of the model description. Each
selected face of the part maps to one bounded surface (en
tity 143) containing several boundaries (entity 141). Trim
ming of the surfaces is performed by 3D model space
curves. To fulfill the requirements of the IGES specification
of entities 141 and 143 some minor topological and geomet
rical changes of the HP PE/SolidDesigner internal model
have to be made. Vertex loops are removed, propedges on
toruses are removed, and intersection curves are replaced
by B-spline approximations.

Because the IGES bounded surface entity 143 does not have
any information about topological face normals, the sur
faces are oriented so that all geometrical normals point to
the outside of the part (Fig. 3). Thus, enough information is
put into the IGES file that a receiving system can rebuild a
solid model from a complete surface model.

Untrimmed Mode
The untrimmed mode contains basically the same informa
tion as the trimmed mode. For each face the untrimmed
surface plus all trimming curves are translated. But instead
of explicitly trimmming the surfaces with the appropriate
entities, surface and trimming curves are only logically
grouped together. This usually requires manual trimming in
the receiving system, and is only suited for some special
applications.

Organ isa t ion

Send ing P ID

Rece ive P ID

Star t Sect ion

Conf ig

C o n f i g N a m e < j e f a u l t . c f a

Save Conf ig
Fig. 3. (left) Solid model, (right) Surface model with normals.

Fig. 2. HI1 I'K/SolidDcsiMMci- KiKS output dialog menu.

October 19!)5 Hewlett-Packard Journal 39
© Copr. 1949-1998 Hewlett-Packard Co.

HP PE/SolidDesigner

Plane

Cylinder

Sphere
Torus
Cone
Spun B-spline

B-spline surface

Parallel swept B-spline

T a b l e I I
S u r f a c e M a p p i n g

IGES 3D Ent i ty
(t r i m m e d a n d u n t r i m m e d)

Plane (108)

Surface of revolution (120)

Surfare of revolution (120)

B-spline surface (128)

Ruled surface (118)

IGES 3D Ent i ty
(t r i m m e d p a r a m e t r i c)

Ruled surface (118)

Ruled surface (118)

Surface of revolution

B-spline surface (128)

Ruled surface (118)

Trimmed Parametric Mode
The trimmed parametric mode uses the IGES trimmed para
metric surface entity (144) and the curve on parametric sur
face entity (142) as representations of a trimmed surface.
These entities have been established in the IGES standard
for a longer time than entities 143 and 141 or the trimmed
mode. For this reason they are more commonly used. The
main difference from the trimmed mode is that the trimming
is performed in the parametric domain of the surfaces. Each
surface must have a parametric description that maps a
point from the parameter domain D (a rectangular portion
of 2D space) to 3D model space:

S(u,v) = (X(u,v), Y(u,v), Z(u,v)) for each (u,v) in D.

D = (all (u,v) with umin < u < umax, vmin < v < vmax).

The following conditions apply to D:
There is a continuous normal vector in D.
There is a one-to-one mapping from D to 3D space.
There are no singular points in D.

Furthermore, trimming curves in 2D space must form closed
loops, and there must be exactly one outer boundary loop
and optionally several inner boundary loops (holes). Fig. 4
illustrates parameter space trimming.

These restrictions make it clear that there will be two prob
lem areas when converting HP PE/SolidDesigner parts to a
parametric trimmed surface model: periodic surfaces and
surface singularities.

On full periodic surfaces like cylinders, HP PE/SolidDe
signer usually creates cylindrical topology. There will not

necessarily be exactly one outer loop. Furthermore, 3D
edges can run over the surface seam (the start of the period)
without restriction. This leads to the situation that one edge
may have more than one parametric curve (p-curve) associ
ated with it. Also the p-curve loops may not be closed even
if the respective 3D loop is closed. Fig. 5 illustrates this
situation.

HP PE/SolidDesigner avoids this problem by splitting peri
odic surfaces along the seam and its antiseam. The seam
and antiseam are the isoparametric curves along the param
eters Ujnin and umin+Uperjod/2. Thus, one face may result in

) ^

Parameter Space

Fig. 4. Trimming in parameter space (p-space).

40 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

D O C
" m m

KJperiod

Fig. 5. (Ylinder topology in 3D and p-space.

two or four parametric-ally trimmed surfaces (u- and v-
parametric surfaces (toruses)) in the IGES model. Fig. 6
illustrates this situation.

Another problem with parametric trimmed surfaces are sur
face singularities. Singular points are points where the sur
face derivatives and normal are not well-defined. For such
points there is not always a one-to-one mapping from 2D
parameter space to 3D model space. This means there is an
infinite set of (u,v) points in parameter space that result in
the same 3D model space point. Such singularities are easily
created by rotating profiles around an axis where the profile
touches the axis. Examples are cones, spheres, degenerated
toruses, triangular spline patches, and so on (see Fig. 7).

HP PE/SolidDesigner is designed to handle singularities as a
valid component of a model. They are marked with a vertex
if they are part of a regular loop or with a special vertex
loop if they are isolated from the remaining loops. However,
it is not possible to express singularities in trimmed para
metric surfaces legally in IGES.

To resolve this issue we reduce the singularity problem to
the problem of the valid representation of triangular sur
faces. The splitting algorithm just described is applied so
that all singularities are part of a regular loop. Thus, we are
always faced with the situation illustrated in Fig. 8.

Each singularity of a face is touched by two edges, one en
tering and one leaving the singular vertex. Knowing how

" m i n " m m " m m
â € ¢ " â € ¢ " p e r i o d / ? ^ " p e r i o d

Fig. 6. Periodic surfaces in 3D and p-space after splitting.

triangular surfaces are handled in potential receiving sys
tems, we offer four ways to export this kind of geometry.
These are the four possible combinations of closed or open
parameter loops and avoiding or using singularities.

Some systems do not need closed p-space loops, while
others strictly expect them. If the closed option is chosen,
the endings of the p-curves are simply connected with a
straight line.

Geometrical algorithms usually become unstable near singu
larities. Some systems are not prepared to handle this situa
tion and will fail. To avoid this, it is possible to shorten the
parameter curves when entering or leaving a singular vertex
and connect them at a numerically safe distance. This dis
tance is measured in 3D space and is also configurable. It
usually varies between 0.1 and 0.001. This will result in a
surface where the region around the singularity is cut out.
Fig. 9 illustrates the four possible singularity representa
tions.

Wireframe Mode
For the wireframe mode HP PE/SolidDesigner also avoids
the cylindrical topology, because in some cases information
about shape would be lost (e.g., a full surface of revolution).
After applying the face splitting algorithm all edges of the
selected faces and parts are translated. No surface informa
tion is contained in the resulting IGES file.

Fig. 7. Kx:iiii|)li>.s ofsiiifiicc

sin^iihirilics in pann

space.

October 1995 Hewlett-Packard Journal 41
© Copr. 1949-1998 Hewlett-Packard Co.

V I v
Singularity

Singularity
Parameter

Fig. 8. Triangular surface situation.

Extracting Solid Information from Surface Models
IGES surface data from solid modelers often contains all
surfaces of a closed volume or a connected face set. How
ever, the connectivity between adjacent faces is lost. If the
surface model fullfills some specific requirements it is pos
sible for the receiving system to recompute this missing
information. The following describes these requirements
and shows how connectivity between faces can be reestab
lished. This method can be used to create a solid model
from HP PE/SolidDesigner IGES output.

Automatic comparison of all boundary curves on coinci
dence or reverse coincidence would be a very time-consum
ing and numerically unstable task. However, it is common
for the endpoints of the trimming curves of adjacent faces to
be coincident within a very small accuracy. This makes it
possible to identify trimming curves that share common
start points and endpoints. If the two faces of these trim
ming curves have the same orientation one can try to con
nect the faces to a face set. For this task one must try to find
a geometry for a common edge that fulfills the following
accuracy constraints (see Fig. 10):

â€¢ The curve is close enough to surface 1.
â€¢ The curve is close enough to surface 2.
â€¢ The curve is close enough to curve 1.
â€¢ The curve is close enough to curve 2.

The first candidates for such a curve are the original trim
ming curves, curve 1 and curve 2. If either satisfies all four

requirements it is incorporated into both face descriptions
and the connection is established. If neither curve can be
used, one can try a combination of the two, or reduce the
receiving system's accuracy.

This if fails if the face orientation is inconsistent or if
adjacent faces do not share common start points and end-
points.

Importing IGES Wireframe Data
IGES wireframe data can be easily imported into HP PE/-
SolidDesigner, since HP PE/SolidDesigner's kernel supports
wire bodies. The modified wire data can be saved in HP
PE/SolidDesigner's data format. Possible uses for this capa
bility include migration from old-line systems to HP PE/Sol
idDesigner, interaction with different sources and suppliers,
and communication with manufacturers.

In HP PE/SolidDesigner a wire is defined as a set of edges
connected by common vertices. A body consisting only of
wires is called a wire body. IGES 3D curve data is used to
generate the edges of a wire body. This includes lines,
circles, B-splines, polylines, and composite lines. IGES sur
face data such as trimming curves of trimmed surfaces are
also used to generate edges. To simplify later solid model
generation the axis and generatrix of a surface of revolution
are also transformed into edges for the wire body. Since
only edges have to be generated for a wire body, there are
no accuracy problems as described above for IGES surface
importation. On the other hand, information on B-spline
surfaces is lost.

Wire data imported from an IGES file is collected into an
assembly. The assembly gets the name of the IGES file. Any
substructure of the IGES file like grouping in levels is trans
formed into parts within the assembly. Thus, hierarchical
information contained in the IGES files is maintained within
HP PE/SolidDesigner. The generated parts can be handled
like any other part in HP PE/SolidDesigner. To distinguish

Use Singularity Avoid Singularity

Open
p-space

Fig. 9. Four possible singularity
representations.

42 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 10. Finding a common edge for adjacent faces.

wire parts, they can be colored. The options of HP PE/Solid-
Designer's show menu work for the parts as well as the set
tings of the part container. A wire part can become the ac
tive part. The edges and vertices of a wire part are
displayable, all browsers work with wire parts, and wire
parts can be moved or become members of an assembly.

To build a solid model from a wire body, the edges and ver
tices of the wire body can be used to position a workplane.
Then edges of the wire body can be selected and projected
onto the workplane. The resulting profile can then be used
to create a solid, for example by measuring an edge length
needed for an extrude operation.

Fig. 1 1 shows an example of an IGES wireframe model with
four parts and the resulting solid model. Automatic genera
tion of solids from wires could be implemented but freeform
surface information would probably be lost. The real benefit
of wireframe import is for reference purposes.

STEP-Based Product Data Exchange

Manufacturing industries use a variety of national and indus
trial standards for product data exchange. These include
IGES for drawing and surface exchange (international),
VDA-FS for surface exchange (mainly the European automo-
tive industry), and SET for drawing and surface exchange
(France and the European Airbus industry). This variety of
different incompatible standards causes a lot of rework and
waste of valuable product development time which cannot
be afforded if companies are to survive in the competitive
marketplaces of tomorrow. Today's standards, originated in

the early 1980s, are no longer satisfactory for product data
description and exchange. Standards like IGES or \~DA-FS.
which are limited to surface or engineering drawing ex
change, do not adequately handle other explicit product
data categories such as product structure or assemblies or
geometric solid models.

Industry trends today are characterized by internationaliza
tion of manufacturing plants which are spread over the con
tinents of the globe, and by lean production in which many
parts are subcontracted or bought from local or interna
tional suppliers. National standards and incompatibilities
between existing standards are obstacles to these trends
and will have to be replaced by international standards.

Large companies in the aerospace and automotive industries
in the U.S.A. and Europe have now taken the offensive to
wards the implementation and use of STEP (Standard for
the Exchange of Product Model Data) as an international
standard for product data exchange and access, starting in
1994. Companies such as BMW, Boeing, Bosch, General
Motors, General Electric, Daimler-Benz, Pratt&Whitney,
Rolls Royce, Siemens, and Volkswagen have been using
STEP prototype implementations in pilot projects with
promising results.

Ultimately, STEP is expected to meet the following require
ments for an international product data exchange standard:
Provides computer interpretable and standardized neutral
product model data. Neutral implies compatibility with any
CAD or CIM system that best fits the design or manufactur
ing task.
Implements the master model concept for product data. The
entire set of product data for a product with many single
parts is kept in one logical master model which makes it
possible to regenerate the product as a whole at a new man
ufacturing site. This means that product assemblies, includ
ing administrative data and bills of material, are handled.
Provides completeness, conciseness, and consistency. This
requires special data checking and validation mechanisms.
Provides exchangeable product data without loss. The prod
uct data must be exchangeable from one CAD or CIM sys
tem to another without loss of data.

Fig. 11. Imported wire-body
HIM! i lie solid model constructed
by HP PE/SolidDesigner.

October 1995 Ilewlelt-Parkard Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

' Provides long-term neutral data storage and interpretability.
Product data is an important asset of a manufacturing com
pany. The product data should be retrievable and interpret
able by any CAD or CIM system after a long period of time,
say 10 years or more. This is a significant challenge.

These requirements cannot be satisfied immediately. The
STEP program also has shorter-term priorities for standard
izing specific subsets of the product data. These include:
The complete 3D geometric shape in the form of a 3D
boundary representation solid model (B-Rep solids)
Surface model and wireframe model data
Product structure and configuration data.

Another priority is product documentation. An important
goal is consistency of the engineering drawing with the 3D
product geometry.

STEP Overview
STEP, the Standard for the Exchange of Product Model
Data, is the ISO 10303 standard. It covers all product data
categories that are relevant for the product life cycle in in
dustrial use. STEP describes product data in a computer
interpretable data description language called E.rpress. The
STEP and is organized in logically distinct sections and is
grouped into separate parts numbered 10303-xxx (see Fig. 12).

The resource parts of the standard describe the fundamental
data and product categories and are grouped in the Ix, 2x,
3x, and 4x series. The Express data description language is
defined in part 11. All other product description parts use
the Express language to specify the product data character
istics in the form of entities and attributes. In addition to the
product description parts there are implementation re
sources which are given in part 21, the STEP product data
encoding scheme (the STEP file), and part 22, the Standard
Data Access Interface (SDAI), which provides a procedural
method for accessing the product data. There are different
language bindings for part 22, such as C or C++ program
ming languages. The 3x series parts specify conformance
requirements for STEP implementations.

Examples of STEP-standard resource parts are the funda
mentals of product description and support (part 41), the
geometrical shape (part 42), the product structure (part 44),
material (part 45), the product presentation (part 46), toler
ances (part 47), and form features (part 48). The application-
specific resources are grouped in the Ixx series. Examples
are drafting resources (part 101), electrical (part 103), finite
element analysis (part 104), and kinematics (part 105). On
top of the resource parts and application resources are the

#1 Overview and Fundamental Principles

Application Protocols

#202
Associat ive

Drafting # 2 0 3 # 2 0 4

#31
Testing

Concepts

Descript ion
Methods

Integrated Resources

#41
Product

Definition

#44
Product

Structure

#47
Tolerance

Application Resources

#103
Electrical

#104 Finite-
Element
Analysis

#105
Kinematics

Generic Resources

#42
Geometry and

Topology

#45
Mater ia ls

#48
Form Features

#43
Representation

#46
Presentation

#49
Processes

Implementat ion Methods

#22 Standard
D a t a A c c e s s D a t a b a s e Knowledge

P h y s i c a l F i l e I n t e r f a c e
(SDAI)

#33
A b s t r a c t C o n f o r -

T e s t m a n c e
S u i t e s T e s t ' " 9

#34
Abstract

Test
Methods

Fig. Product ArcliihTture of ISO 10303, Standard for the Exchange of Product Model Data (STEP).

44 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

application protocols (AP) which use the underlying re
sources in a specific application context, such as mechani
cal design for discrete part manufacturing, and interpret the
resource entities in the application-specific context. STEP
implementations for CAD or other computer-aided systems
are based on application protocols. Application protocols
are under definition for application areas like basic drafting,
associative drafting, mechanical design, electrical design,
shipbuilding, piping, architecture, and others. Here, we high
light just two examples, AP20-3 and AP214.

AP203: Configuration-Controlled 3D Design. AP203 was devel
oped under the leadership of PDES Inc. It covers the major
requirements for U.S.-based industries such as the aero
space industry for government and industrial manufacturing
contracts. The product data covered in AP203 includes geo
metric shape (B-Rep solid models, surface models, wire
frame models), product structure, and configuration man
agement. AP203 is the underlying STEP specification for
many CAD and CIM system implementations.

AP214: Core Data for Automotive Mechanical Design. AP214 has
been developed by the automotive industry and covers prod
uct data categories relevant for the design and manufactur
ing of automotive parts and products. AP214, initiated in
Germany and internationally supported, is still under final-
ization in parallel with its industrial implementation in CAD
and CIM systems. The implementations have been coordi
nated and harmonized in the European ProSTEP consortium
and the implementation is focused initially on the geometri
cal product descriptions (solid models, surface models) and
product structure. However, all other kinds of product data
categories relevant for mechanical design in the automotive
industry (e.g., form features, materials, tolerances) are
within the scope of AP214 and are going through the stan
dardization process.

Initial Release
The initial release of STEP parts focuses on the most ur
gently needed kernel definitions of the standard, which
cover the geometrical shape description, including all topo-
logical information, the product structure, and the configu
ration management data. Basic product documentation in
the form of low-level engineering drawings is also covered.
The parts included in the initial release are parts 1, 11,21,
31, 41, 42, 43, 44, 46, 101, 201, and 203. The first two applica
tion protocols to become standards are AP201: Explicit
Drafting and AP203: Configuration-Controlled 3D Design.

Upcoming releases of STEP will cover the next priorities in
the area of drafting, such as AP202: Associative Drafting,
materials, tolerances, form features, and parametrics, and
other application protocols such as AP204: Mechanical De
sign Using B-Rep Solid Models and AP214: Core Data for
Automotive Mechanical Design.

HP Involvement in STEP
HP has been working on the standardization of product
model data since 1989 and has focused on the emerging in
ternational standard STEP for 3D product data. The product
data focus has been on 3D kernel design data, completeness
of topology and geometry, B-Rep solid models, and product
structure and assemblies, as well as on associative drafting
documentation. HP is an active member in organizations

that have an impact on the ISO STEP standard, and contrib
utes to STEP through national standards organizations in
the U.S.A (e.g.. N 1ST. ANSI i and Europe (e.g.. DIN in Ger
many). Of particular interest are the organizations PDES
Inc.. PRODEX. and ProSTEP.

PDES Inc. HP has concentrated on three major areas of
PDES Inc. s STEP activities: mechanical design of 3D prod
uct data, associative drafting for CAD data, and electronic
data definition and exchange.

The mechanical design initiative of the U.S. aerospace and
aircraft industries, the automotive industry, and the com
puter industry resulted in STEP application protocol 203.
HP, a PDES Inc. member in the U.S.A. and an ESPRIT CA-
DEX member in Europe, contributed to the 3D geometric-
design definition of AP203 in a joint effort of PDES Inc. and
CADEX. The AP203 3D geometries cover solid models, sur
face models, and wireframe models and are shared by other
application protocols, thereby promoting interoperability
between different application areas.

HP has also been actively supporting the U.S. initiative to
define a good-quality standard for associative drafting docu
mentation in STEP. Associative drafting, covered by AP202,
is considered an integral portion of the product data for con
tractual, archival, and manufacturing reasons. For example,
government contracts and ISO 9000 require that product
data be thoroughly documented. This includes engineering
drawing data of a product in addition to the 3D product data
and the configuration data. Electronic design and printed
circuit board design data are also covered in STEP.

PRODEX. In 1992 participants in the ESPRIT CADEX project
demonstrated publicly the first B-Rep solid model transfer
via STEP for mechanical parts in Europe. To develop this
new technology the PRODEX project was founded in 1992
with the goal of developing STEP data exchange for CAD
design, finite element analysis, and robot simulation sys
tems. Twelve European companies joined the project. So far,
the project's achievements include the definition of a STEP
implementation architecture, the development of a STEP
toolkit, and the development of STEP preprocessors and
postprocessors.

Product data exchange between the different vendors is
ongoing and shows very promising results for CAD-to-CAD
data exchange, CAD-to-finite-element-system exchange, and
CAD-to-robot-simulation-system exchange. The STEP stan
dard has been further fostered by a joint effort with the
ProSTEP project to develop AP214, in cooperation with the
U.S., European, and Japanese automotive industries.

ProSTEP. ProSTEP is an automotive industry initiative for a
highway-like STEP product model data exchange. In 1992
the GemÃ­an companies Bosch, BMW, Mercedes-Benz, Opel
(GM), Volkswagen, and Siemens launched an initiative to
bring the major CAD vendors together with the goal of im
plementing the first harmonized set of STEP product data
exchange processors (product data translators) for indus
trial use in the automotive industry. The approach taken was
to compile the user requirements, to build on the results and
experiences of the ESPRIT CADEX project, and to launch at
the ISO level a STEP application protocol, AP214, which
covers the core data for automotive mechanical design.

Oriolx'i- 1995 Hewlett-Packard Journal 45
© Copr. 1949-1998 Hewlett-Packard Co.

The following CAD/CIM systems are involved in the project
and have STEP data exchange processors either available or
under development: Alias, AutoCAD, CADDS/CV-Core, CA-
TIA, EUCLID3, HP PE/SolidDesigner, EMS-Power Pack,
I-DEAS Master Series, SIGRAPH STEPIntegrator, SYRKO,
Tebis, ROBCAD, and others.

The initial focus in ProSTEP for STEP products is on design
data exchange for 3D geometry: B-Rep solid models, surface
models, and wireframe models. For migration from legacy
systems, wireframe data needs to be supported, at least for
data import. Communication with applications like numeri
cal control (NC) programming systems today typically re
quires surface model data, although in the future more solid
model data will be used. Initially, the HP emphasis is on bi
directional product model exchange (input and output) of
3D B-Rep and surface models.

STEP Tools Architecture
In STEP implementation projects, standardization has been
extended beyond the product data to the STEP implementa
tion tools. The CADEX, PDES Inc, PRODEX, and ProSTEP
projects have all taken this approach.

A standardized STEP tool architecture provides the follow
ing benefits. These include shareability of tools between
different implementors, shortened development time for
STEP processor implementations (software development
productivity gain), increased likelihood of compatibility be
tween STEP implementations (differences in STEP defini
tion interpretations are minimized), parallel development of
tools (concurrent engineering), extendability of tools to
track new standardization trends, increased flexibility (new
STEP models require fewer code changes), and centralized
maintenance of tools.

Fig. 13 shows the PRODEX STEP tools architecture. The
functional blocks of a STEP toolkit or STEP development
set are:
STEP Standard Data Access Interface (SDAI),
STEP Express compiler

STEP file scanner/parser
STEP file formatter
STEP data checker
STEP conversion tool.

The main interface to the STEP application is the STEP
Standard Data Access Interface, which provides a computer
programming language for dynamic access to the STEP
data. Application-specific mapping and conversions are im
plemented on top of this interface.

The Express compiler conveys the product data descrip
tions contained in an Express schema (the metadata of the
data model) to the toolkit. It contains an Express file reader
and compiles the file contents to the internal representation
of the data model. The SDAI is the recipient of the product
data metamodel and uses the metamodel as a reference for
the product instance data, which is imported through the
STEP file scanner/parser.

The STEP file scanner/parser reads (scans and parses) the
STEP instance data contained in a STEP data file and uses
the currently valid metamodel for checking the syntax of the
imported instance data.

The STEP file formatter formats the data to a part-21 -confor
mant STEP file which is read from the SDAI by using the
current valid metadata (e.g., a specific application protocol
such as AP203).

The STEP data checker is a validation tool that checks the
instance data currently in the SDAI based on the corre
sponding metadata model, which is also contained in the
SDAI. The checking covers consistency checks like refer
ences between entities (e.g., existence dependency), and
rule checking, which is covered in the metamodel. The
checking is optionally applicable to the data in the SDAI. It
is very helpful during the development of processors, for
checking new metadata models, or for checking the first
data imported from a new system.

Appl icat ions)

rr
Finite-Element

rr
Visualization

Robotic
Simulation

rr TT
STEP Standard Data Access Interface (SDAI)

STEP Tools

External Data

Express
Mode l

STEP File Exchange with Other Systems

Fig. 13. PRODEX STEP tools
architecture.

46 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

The STEP conversion tool is a pool of conversion functions
(a libran*) that includes all kinds of geometrical, topological.
and other model conversions. The focus is on geometrical
conversions which are heavily used for data exchange be
tween systems with different geometric modeling concepts.
For example, one CAD system might use rational polyno
mial representations for its inherent geometric representa
tion of curves and surfaces (e.g., NURBS, nonuniform ratio
nal B-splines). while the other might use nonrational
representations (e.g.. NUBS). In this case an approximation
to the nonrational representation has to be applied, at the
price of increasing the amount of data. For another exam
ple, a surface modeling system might export trimmed sur
face data with curve representations in 2D parameter space,
whereas the receiving system might handle only 3D space
curves. In this case the 2D parameter curves have to be eval
uated and converted to 3D trimming curves in 3D space.

By using a STEP toolkit the requirements for the implemen
tation of a STEP processor might be reduced to just the na
tive data interface to the STEP tools, which consists of the
data output to the SDAI (for the STEP preprocessor) and the
data imported from the SDAI (for the STEP postprocessor).

The main task in linking a CAD system to the toolkit con
sists of defining and implementing the mapping between the
system internal representation and the standardized entity
representation in the schema of the standard (e.g., an appli
cation protocol).

HP PE/SolidDesigner STEP Implementation
The target application protocols for HP PE/SolidDesigner
are initially AP203 and AP214, in which both solid and sur
face models are supported. In addition to the HP PE/Solid
Designer internal data models, the solid and surface models
of other CAD systems are of major interest. With the intro
duction of STEP, B-Rep solid model data exchange comes
into industrial use, representing a new technology shift.
HP PE/SolidDesigner has its focus on solid models and is
best suited for STEP-based bidirectional solid model ex
change. However, surface models are also supported.

In addition to the geometric specifications, product informa
tion In configuration are covered in the implementation. In

this article, the geometric and topological mappings are dis
cussed. The assembly, product structure, and administration
mappings are not covered.

STEP Preprocessor (STEP Output)
The preprocessor exports the HP PE/SolidDesigner model
data in a STEP file. The preprocessor takes care of the map
ping of the HP PE/SolidDesigner model to the STEP model.

The internal geometrical and topological model of HP
PE/SolidDesigner is in many respects similar to the STEP
resources of part 42 of the STEP standard. Hence the map
ping is often straightforward. On the other hand, there are
data structure elements that are not mapped to the STEP
model.

HP PE/SolidDesigner uses the following geometric 3D
elements:

1 Analytics: 3D surfaces such as planes, cones, cylinders,
spheres, and toruses, and 3D curves such as lines, arcs,
circles, and B-splines

1 Nonanalytics: typically 3D elements such as B-spline curves
and surfaces, and linear and rotational swept surfaces.

The topology used for the exchange of solid models is based
on the manifold topology of STEP part 42. The elements
used are manifold solid boundary representations, closed
shells, faces, loops, edges, and vertices. The link between
the topology and the geometry is given by references from
faces to surfaces and from edges to curves. The geometrical
points are referenced by vertices.

The HP PE/SolidDesigner STEP surface models are also
based on topological representations. Special elements are
used for surface models, such as shell-based surface models
and closed and open shells. The other underlying topolocial
elements are the same as in the solid models. The geometric
representations of the surfaces are typically the same as in
the solid model representations.

STEP Postprocessor (STEP Input)
The HP PE/SolidDesigner postprocessor supports the im
port of B-Rep solid models and surface models along with
the necessary product structure data. The postprocessor is

Advanced B-Rep Faceted B-Rep

Fig. 14. Data exchange eye Ics
between different CAD systems,
including robot simulation sys
tems, in the ProSTEP project.

October 1995 Hewlett-Packard Journal 47

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 15. Golf club solid B-Rep model imported into HP PE/Solid-
Designer from CATIA (CAP-Debis).

capable of covering at least the functionality of the prepro
cessor so that it is possible to store and retrieve HP PE/Sol-
idDesigner data in a STEP file representation (this is called
the short cycle test).

The STEP postprocessor imports STEP files from other sys
tems based on specifically supported application protocols.
Postprocessing is one of the most difficult tasks in data ex
change, especially when the data imported comes from a
system that is very different from the receiving system. Po
tential problems arise in postprocessing if the sending and
receiving systems have different accuracies, use different
modeling techniques to generate the data, have different or
missing surface connectivity, use different algorithms or
criteria to determine surface intersections or connectivity,
or use different model representations for similar model
characteristics.

When surface models are imported, it cannot be guaranteed
that they can be migrated to solid models even with user
interaction. However, in special cases imported surface
models can be migrated to solid models without problems.

In many cases imported surfaces provide boundary condi
tions for the solid model. In most cases the data can be used
as reference geometry to check interference or provide di
mensions for the solid models. For example, an imported
surface set might represent the surrounding boundary geom
etry within which the final mechanical part has to fit without
interference.

Importing surface models into HP PE/SolidDesigner is con
sidered important and critical since many other CAD sys
tems, especially legacy systems, often support only surfaces
or wireframe models, not solid models. Therefore, the post
processing of STEP surface models needs to cover a
broader scope than the preprocessing. Sometimes, different
surface representations are used in different application
protocols, such as AP203 and AP214. Hence, different exter
nal representations may need to be mapped to one internal
representation in HP PE/SolidDesigner.

In the initial implementation of the HP PE/SolidDesigner
postprocessor, topology bounded surface models are sup
ported. These provide the most sophisticated description of
the connectivity of the individual surfaces used in a solid
model. Geometrically bounded surface models are sup
ported as a second priority.

The Accuracy Problem
When importing CAD data from other systems the accuracy
of the data plays a key role and determines whether a co
herent and consistent CAD model can be regenerated to
represent the same kind of model in the receiving system, t

Let's define the term accuracy. There are different accuracy
or resolution values that must be considered in geometric
modeling and CAD systems. For 3D space, a minimum linear
distance value (a length resolution value) can be defined,
which is the absolute distance between two geometric
points that are considered to coincide in the CAD internal
algorithms; this represents the zero distance. We'll call this
value the linear accuracy. A typical value could be
10 ~6 mm which is highly accurate for many mechanical

t Often, CAD surface models are not consistent because the generating system lacks
checking mechanisms or does not track connectivity. Very often, consistency and accuracy
are the responsibilities of the user of the system rather than under system control.

Fig. II Clamp solid B-Rep model imported from Unigraphics II
(EDS).

Fig. 17. Wheel solid model imported from SIGRAPH-3D (Siemens-
Nixdorf).

48 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 18. B-Rep model imported from Unigraphics (EDS).

design applications. A similar value can be specified for an

gular accuracy, parametric accuracy, and so on. The dis
cussion here is limited to linear accuracy.

If the sending system uses a higher linear accuracy (more
precise data) than the receiving system, distinct geometric
points will be detected to coincide in the receiving system.
This might result in a change in the topology (which might
cause further inconsistencies) or the geometry. If the send
ing system uses a lower linear accuracy (less precise data),
the receiving system might complain that the topology is not
correct or the geometry and the topology are inconsistent.

To prevent or at least minimize these kinds of accuracy
problems it should be possible to adjust the accuracy in the
receiving system to the accuracy values of the data to be
imported. For example, if the sending system uses a differ
ent accuracy for the model generation process, say a linear
accuracy of 10 ~2 mm, then the receiving system should ad
just its internal algorithms to the same accuracy.

Experience with HP PE/SolidDesigner has shown that this
kind of adjustable accuracy helps regenerate CAD models
that were generated in different systems with different accu
racies. Also, for data models composed of components with
different accuracies, the components can be brought together
on the assembly level to form a complete product model.

In the STEP implementation of AP214 an adjustable linear
accuracy value is conveyed in the STEP file to tell the re
ceiving system the appropriate accuracy value for postpro
cessing.

User Features
The user can select via the HP PE/SolidDesigner graphical
user put the objects (e.g., several B-Rep bodies) to put
into a STEP file. For example, the user decides whether to
send the data in a B-Rep solid model or a surface model rep
resentation. The user can choose some configuration param
eters that help tailor the model data set for best communica
tion to a specific target application. However, all data must
comply with the STEP standard.

When importing (postprocessing) a STEP file the user can
define some parameters that ease the processing of data.
For example, the user might set the accuracy value before

importing a data set that was designed with a specified ac
curacy, or might choose to convert the imported data to a
different representation.

STEP Model Exchange Trials
Various STEP file exchanges have been performed within
the last 12 months, not always with satisfying results. This
has resulted in more development work by the exchange
partners. This process of harmonizing the STEP preproces
sors and postprocessors of different CAD vendors is consid
ered to be of vital importance for the acceptance of the
STEP standard and its application protocols. Within the
ProSTEP project this process has worked particularly well.
Other work has been done with, for example, AP203 imple-
mentors together with PDES Inc.

At this time, solid model data exchange can be said to be
working very well, especially compared with what was pos
sible with existing standards. STEP-based surface model
exchange has also reached a level that was not possible with
existing standards like IGES or VDA-FS, especially with re
spect to topological coherence, which is easily conveyed
with STEP between many CAD systems. Of course, the wide
variety of surface models, with the resulting accuracy and
connectivity problems, will need to be addressed by the dif
ferent CAD system vendors to optimize data transfer via
STEP. In the meantime, STEP file exchange has matured to
the point where STEP products are offered by various CAD
vendors and system integrators.

Within the ProSTEP project one of the broadest ranges of
STEP-based data exchange trials have been performed
between HP PE/SolidDesigner and other CAD systems
(see Fig. 14). Solid model industrial part data has been
exchanged, for example, with CATIA (CAP Debis and
Dassault/IBM), Unigraphics II (EDS), SIGRAPH Design and
STEP Viewer (Siemens-Nixdorf), and others. Some of the
successful results are shown in Figs. 15, 16, 17, and 18.
Surface model industrial part data has been exchanged with
CATIA, EUCLID, SYRKO (Mercedes-Benz corporate design
system), and others. Some of the successful results are
shown in Figs. 19 and 20.

Next STEPs
Future releases of the STEP standard covering product data
categories such as materials, tolerances, form features, man
ufacturing process data, and others are expected in the next
few months. The expected release of AP202, associative
drafting, will allow documentation of the product data in
engineering drawings. Work is ongoing towards the parame
terization of product features, which needs further develop
ment in the STEP standard.

The expected finalization of AP214 will make it possible to
convey the product data categories in STEP files and will
help to reduce design and manufacturing development
cycles for simple as well as complex products. This process
will be supported by further extensive use of data communi
cation networks in the various countries. The migration
from existing standards is aided by several product offerings
of IGES-to-STEP and VDA-FS-to-STEP data converters.

October 1995 Hewlett-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 19. Surface model imported from SYRKO (Mercedes-Benz
corporate design system).

The STEP implementation technology based on the STEP
Standard Data Access Interface will be broadened and used
in database access implementations to allow concurrent
access by product design and manufacturing development.

Fig. 20. Headlight reflector surface model imported from EUCLID
(Matra Datavision).

However, for industrial use, the database technology and the
STEP data access technology need to be extended and inte
grated. This process is expected to take several years.

ACIS Inc. a U.S. registered trademark of Spatial Technology, Inc.

50 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Providing CAD Object Management
Services through a Base Class Library
HP PE/SolidDesigner's data structure manager makes it possible to save a
complex 3D solid model and load it from file systems and databases.
Using of concepts of transactions and bulletin boards, it keeps track of
changes to a model, implements an undo operation, and notifies external
applications of changes.

by Claus Brod and Max R. Kublin

A solid 3D model is a highly complex data structure consist
ing of a large number of objects. The modeling process re
quires flexible, fast, reliable, and generic means for manipu
lating this structure. It must be possible to save the data
structure to and load it from file systems and databases.
Furthermore, application suppliers need versatile interfaces
for communication between the modeling kernel and the
applications.

This article describes how the requirements of the solid
modeling process translate into requirements for a CAD
object manager, and how HP PE/SolidDesigner's data struc
ture manager (DSM) is designed to meet these needs.

Besides data abstractions and powerful tools for debugging
networks of data, DSM provides a basic data object, the en
tity. An entity's functionality is used by the entity manager
to file, copy, and scan nets of entities. The cluster manager
module adds capabilities for building subnets within the
whole data structure {clusters) and manipulating them. This
makes it possible to slice the model into manageable pack
ages that can be sent around the world to subcontractors for
distributed modeling. The state manager implements a
transaction mechanism, which allows the user to browse
through the modeling steps and undo changes to the model
at any time.

The DSM compares quite nicely with today's object-oriented
databases and implements most of their features without the
overhead that is often associated with them.

Requirements for a CAD Object Manager
A CAD object manager provides the data infrastructure for
the CAD system. It is used by the other components to build
and change the model. At the same time, it is a base class
library for internal and external programmers. It must fulfill
many different user requirements.

It must be able to handle extremely large and complex data
structures. When there is a choice of algorithms, the algo
rithm with the best behavior for large data sets must be se
lected.

A typical modeling operation changes many individual ob
jects and the structure of the model. Each such change in
volves the object manager, so its operations will be called
very often. Their overhead must be kept at a minimum to

prevent the object manager from becoming the performance
bottleneck of the system.

Because of the large number of objects, it is also essential
that the object manager add only marginal overhead in
terms of additional memory to each object.

hi a CAD model, many kinds of connections between ob
jects are needed. The object manager should allow and sup
port not only the types of connections that the core product
needs, but also any other kind of connection that third-party
applications or future modules may require.

CAD programs are large projects which are developed over
several years and evolve with the customers' needs. Not all
of these needs can be anticipated in the original design.
Therefore, the object manager must be flexible enough to
allow later extensions, both unlimited new connectivity and
completely new kinds of objects. The latter requirement is
also essential for third-party applications.

The core solid modeler and its applications operate on the
same model. The object manager must offer both sides a
view of the model and inform external applications about
changes in a generic way. Therefore, the object manager
must offer communication mechanisms and interfaces to
applications.

The object manager's services are used when building a new
type of object and dealing with it. The developer of such a
new object will appreciate every kind of support that the
object manager can provide, such as debugging tools, handy
utilities for frequent tasks, or a library of commonly needed
basic data structures, such as lists, tables, stacks and nets.

Finally, the object manager must provide generic mecha
nisms to store objects and whole models to a file system or
database and to load models from there, that is, it has to
make the objects persistent.

The design and the use model of HP PE/SolidDesigner add
some special requirements to those just described. To sup
port later extensions and the general concept of openness, it
is essential that existing object schemes be able to evolve
while remaining fully compatible with old data. Further
more, the object manager, or data structure manager (DSM)
in HP PE/SolidDesigner terminology, must support a
transaction concept. Transactions must be freely definable

October 1995 Hewlett-Packard Journal 5 1
© Copr. 1949-1998 Hewlett-Packard Co.

to allow modeling steps that the user perceives as natural.
The data structure manager must record all changes to the
model in a transaction to be able to roll them back in an
undo operation.

The DSM must help to ensure model consistency even if
errors occur internally or in external applications. The trans
action mechanism can be used to this end.

Concurrent engineering is becoming more and more impor
tant in computer-aided design. Files have to be exchanged.
Parts of the model are developed independently and assem
bled later. The data structure manager must support assem
blies of parts and the exchange of parts.

Design Principles
HP PE/SolidDesigner's data structure manager was designed
with both the above list of requirements and some architec
tural principles in mind.

One of HP PE/SolidDesigner's key principles is to offer a
highly dynamic system with very few static restrictions. The
DSM has to support not only today's models, but also future
models, so there should be no fixed limits on the size or
number of objects. Additionally, the DSM must offer mecha
nisms to define new objects and object types at run time.
This is especially important for external applications.

Each object should only know about its direct neighbors,
not about the overall structure of the model. Special data
managers are used to collect the local knowledge and form
a global picture. This reduces interdependÃ¨ncies between
objects which would make later extensions a daunting and
dangerous task.

The sequence in which DSM's algorithms traverse the model
is not fixed. Since the objects cannot and do not rely on
fixed sequences, DSM can also employ parallel algorithms if
they are needed and are supported by the hardware and
operating system.

Problems in the data structure or in object behavior must be
detected as early as possible. In its debug version, DSM
checks the consistency of the model thoroughly and offers
advanced debugging mechanisms to support the program
mer. In the version shipped to the customer (the production
version), DSM still employs robust algorithms, but relin
quishes debug messages and the more elaborate tests for
optimum performance.

Basic Data Abstractions
One way to look at the data structure manager is as a pro
grammer's toolbox. As such, it provides all common building
block classes:

â€¢ Dynamic arrays
â€¢ Lists including ring lists
â€¢ Stacks
â€¢ Hash tables
Â« Dictionaries such as string tables and address translation

tables
â€¢ Bit sets
â€¢ Vectors, matrices, and transformations
â€¢ Events
â€¢ General networks of objects.

These building blocks can be combined to form real-world
programming objects. They share basic functionality to stan
dardize their manipulation, such as functions to load and
store them, or to scan the data structure and apply a method
to each of its elements.

The most important data structure in HP PE/SolidDesigner
is the general network. DSM provides net node objects and a
net manager class. Each node maintains a list of neighbors
in the net. To obtain information about the network as a
whole, the net manager visits each individual node, calls its
local scan function to retrieve a list of neighbors, and pro
ceeds with the neighbors until all nodes in the net have been
visited.

DSM Object Management
The core of DSM is formed by the definition of a generic
object, or entity, and manager classes that deal with various
aspects of entity administration, delivering higher-level ser
vices. In the following, we will outline the DSM entity ser
vices, beginning with the definition of an entity.

Entities are nodes in a complex network. As such, they use
the network functionality described earlier. Additionally,
specific entity functions deliver the basic services for trans
action handling, filing, object copying, run-time type infor
mation, and others.

To benefit from the DSM services, a programmer simply
derives a new object from the entity base classes and fills in
a few obligatory functions. Almost every object in an HP PE/
SolidDesigner model is an entity.

Entities provide a method for inquiring their type at run
time. The type can be used to check if certain operations are
legal or necessary for a given entity. Object-oriented soft
ware should try to minimize these cases, but it cannot com
pletely do without them. An HP PE/SolidDesigner model is
an inhomogeneous network of entities. When scanning the
net, one finds all kinds of entities. The algorithm that in
spects the net often applies to specific types of entities and
ignores others. But to ignore entities that we are not inter
ested in, we must be able to check each entity's type.

In an ideal world, type checks could be avoided by using
virtual functions. However, to provide these in the base
class, it would be necessary to anticipate the functionality of
derived classes before they have been created, including
those that come from third parties as add-ons to the
product.

Run-time type information has been under discussion for a
long time in the C++ community, and is only now becoming
part of the standard. Therefore, we had to develop our own
run-time type system with the following features:
No memory overhead for the individual object
Very fast type check
Checks for both identical and derived types
Registration of new entity types at run time.

A pure entity is a very useful thing, but certain types of enti
ties are needed so often that we implemented not only one
base class, but also a set of standard entities which offer
certain additional functionality.

52 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Standard Entity Types
The three most important standard entities are attributes,
relations, and refcount entities. Attributes are attached to
other entities and maintain bidirectional links to them auto
matically, so they save the user a lot of housekeeping work.
For any given type of attribute, only one instance can be
attached to an entity. A typical example is the face color
attribute. If a face already has been marked as green by a
color attribute, attaching another color attribute, say red.
will automatically delete the old attribute.

Relations are like attributes, but without the "one instance
of each type" restriction. One of the many applications is for
annotation texts.

Attributes and relations often are the entity types of choice
for a third-party module. They can be attached to entities in
the HP/PE SolidDesigner core, and even though the core
doesn't have the faintest idea what their purpose is, the con
nectivity will be maintained correctly through all kinds of
entity and entity manager operations. We also use this tech
nique in HP/PE SolidDesigner itself. The 3D graphics mod
ule, for example, calculates the graphical representation for
the kernel model and then attaches the result to the kernel
model as attributes.

Refcount entities maintain a reference counter. Other enti
ties that have a reference or pointer to a refcount entity
"acquire" it. Only after the last owner of a refcount entity is
deleted is the refcount entity destroyed. (You can think of
refcount entities as the equivalent of a hard link in a file sys
tem.) Refcount entities can be used to share entities in the
entity network to improve memory utilization and perfor
mance. We use this type of entity extensively for HP/PE
SolidDesigner's geometry.

Nearly all objects in HP PE/SolidDesigner are entities, de
rived from a common base class. Currently, there are more
than 600 different entity types in HP PE/SolidDesigner.
Being derived from a common base class, they inherit a set
of generic functions which can be applied to any of these
600 different entity types. The most important of these func
tions are create, delete, copy, store, load, and scan.

HP PE/SolidDesigner allows loading third-party modules at
run time. Completely new entity classes can be integrated
into the system dynamically. Thus, third-party applications
can implement their own entity classes. Entities in external
modules are not restricted in any way compared to entities
in the HP PE/SolidDesigner kernel. External entities inte
grate seamlessly into the existing entity network and share
all the entity services provided by DSM.

The Entity Manager

In HP PE/SolidDesigner, entities can have any type of con
nection to other entities. A 3D body, for example, is a very
complex network consisting of dozens of entity types. In the
entity network of a body, there are substructures such as
lists, ring lists, and trees of entities.

An assembly in HP PE/SolidDesigner is a network of other
assemblies or subassemblies and 3D solids (parts). This
creates another level of structure, in this case a directed,
acyclic graph of entity networks.

Suppose we want to copy a part. To do that, we (1) find all
entities that belong to the part, (2) copy each single entity.
and (3) fix up any pointers in the copied entities. Fig. 1
shows what happens to two entities El and E2 that have
pointers to each other. First, the entities are copied. In a
separate step, the connectivity is fixed. This must be a sepa
rate step because when Elc is created (assuming that El is
copied first), we do not know yet where (at which address)
the copy E2c of E2 will be.

Copying a network of entities in HP PE/SolidDesigner is a
recurring, nontrivial task. One has to be aware that we deal
with dynamic and inhomogeneous networks with entities in
them that we might never have seen before because they
have been added to the system by a third-party module.

For copying and other entity network services, HP PE/Solid
Designer uses manager classes. The entity manager class is
an example of a manager class.

Copying an Entity Network
How does an entity manager implement the three steps in
copying a part? Step 1 (see Fig. 1) is to find all entities that
belong to the part or network. The entity manager only
knows that it deals with an inhomogeneous network of arbi
trary entities (potentially of unknown type). To find all the
entities in a network, the entity manager needs some infor
mation about the structure of the network. It collects this
information by asking each entity about its direct neighbors
in the structure. Suppose the entity manager starts with en
tity El. El will tell it, "My neighbor is E2." The entity man
ager will then ask E2 the same question, and the answer will
be, "My neighbor is El." Then â€” oops, we had better stop
here or we will fall into an endless loop! So we see that the
entity manager also has to remember which entities in the
network it already has visited.

How can the entity manager ask an entity a question, and
how can the entity give an answer? The entity manager calls
a function (method) called scan. Each entity class in
HP PE/SolidDesigner provides such a function. We also
call this function a local scanner. The philosophy behind
this is that each entity has a local context, that is, it knows
its direct neighbors since it has pointers to them. The entity
manager uses this local knowledge of the entities to move
forward in a network of entities from one entity to the other,
at the same time making sure that each entity will be visited

(a) (b) (0

Fig. 1. Steps in copying two entities that have pointers to each other,
(a) Before copying, (b) After copying, (c) After pointer conversion.

October 1995 Hewlett-Packard Journal 53

© Copr. 1949-1998 Hewlett-Packard Co.

only once. This we call global scanning, and it is imple
mented in the entity manager's scan function.

The restriction that each entity in the network is only visited
once becomes really important only if a certain operation
has to be executed on each entity. Therefore, the entity man
ager's scan function not only receives a start node (the entry
point into the network), but also a task function, which is
called for each node that is visited in the network.

With the knowledge gained from scanning the network, we
can move to step 2, copying each entity. The task function
that is passed as a parameter to the entity manager's scan
method solves this part of the problem by calling the copy

method of each entity. This is another method that every
entity in the system provides.

While in step 2, we have to make provisions for the next
step. We record in a table where each entity has been copied
to. For each entity, the task function creates an entry of the
form [old entity address, address of the copy] in this table.
Actually, this table is a hash table that can be accessed using
the old entity address as the key. Address translation tables
like this are used in many other places in HP PE/SolidDe-
signer, so DSM offers a special pointer dictionary class for
this purpose.

After step 2, we have a copy of each entity and we have built
an address translation dictionary. Now we're ready for step
3. For each entity in our dictionary, or more precisely for
each entity recorded in the right side of a dictionary entry,
we call another method, convert pointers. By calling the
convert pointers method, we request that the entity convert
all the pointers it has local knowledge of. In the case of the
entity Elc (the copy of El), for example, this means, "I have
an old pointer to E2, and I need to know where the copy of
E2 (E2c) is." This question can be answered using the ad
dress translation dictionary built in step 2 since it has an
entry of the form [E2, E2c] in it. After we have called the
convert pointers method for .each copied entity, we are fin
ished. We have copied a network of entities without know
ing any of these entities!

So far, so good. Now we know how to copy a network of
entities in main memory. At some point, the entities will
have to wander from main memory to permanent storage.
Therefore, let us examine next how we store and load a net
work of entities into and from a file.

Storing and Loading an Entity Network
Storing and loading, like copying, are operations on a net
work of entities. Therefore, the entity manager provides
these functions. Storing a network of entities works like
this:
(1) Open a file.
(2) Find all entities that belong to the network.
(3) For each entity:

(a) write an entity header
(b) store the entity
(c) write an entity trailer.

(4) Close the file.

Besides opening and closing the file, storing essentially
means writing each entity in the network into a file. This
sounds simple enough. To solve the problem, we can even
use existing functionality. The entity manager's scan method
will help us find all entities in a network, just as it did for
copying.

All we have to do is to provide a new task function which
executes step 3 for each entity. In 3a and 3c we write admin
istrative information that we will need for loading. For 3b
we need a way to store an entity generic-ally. Of course, we
want not only to store, but also to load entities. Therefore,
each entity has a store method and a load method. The store
method is an ordinary member function of the object. The
load method, however, is a static member function since it
creates the object out of the blue (well, actually, from the
information in the file) and then returns it.

When everything is stored, the file contains entities in a
form that is equivalent to the situation in step 2 in the entity
copy operation. All pointers between entities are invalid,
and they have to be fixed when the file is loaded again.

Loading a file is also a task for the entity manager, since it
deals with a whole network of entities. Loading works as
follows:
(1) Open the file.
(2) While not at the end of the file:

(a) read the entity header
(b) call the entity's load method (a new entity is

created in main memory)
(c) enter the entity information into a dictionary
(d) read the entity trailer.

(3) Close the file.
(4) For each entity in the dictionary, call the convert point
ers method.

Reading the Entity Header. The entity header contains two
important data items: the entity type and a virtual address.
The entity manager uses the entity type to decide which of
the 600 or more different load functions is to be called.
When storing an entity, the object exists and its store
method can be called. When loading entities, a different ap
proach must be taken. The entity manager maintains an en
tity type table which can be added to dynamically. For each
entity, the table contains, among other things, a load
function.

Note that an entity type translates into a class in C++. All
objects of a class have the same type (for example, face).

The second data item in the header is the virtual entity ad

dress. The virtual address is a unique entity ID which is used
to represent pointers between entities in the file. When stor
ing an entity, the entity does not know where a neighbor
entity that it points to will be placed when the file is loaded
again. Therefore, all pointers between entities in the file are
virtual pointers and have to be converted after loading the
file.

Calling the Load Method. The entity manager detects the type
of the entity from the entity header. It will then call the right

54 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Exception Handling and Development Support

DSM has didn't roots in the late eighties â€” the early days of C++. Compilers didn't
support exception handling then. Conventional error handling by passing error
codes large the return stack is a prohibitively code-intensive approach in a large
software project with many nested procedural levels such as HP PE/SolidDesigner.
Therefore, we had to implement our own exception handling mechanism which is
very similar to what has been implemented in today's C++ compilers.

HP PE/SolidDesigner's code is divided into code modules. Each module has its
own module information object containing module-specific error codes and mes
sages. In case of an error condition inside a module, the code triggers the excep
tion mechanism by throwing a pointer to the module information object.

Code that wants to catch an exception inspects the module information object
returned by the exception mechanism and acts accordingly. If it has already allo
cated be they are cleaned up and returned. The exception can then be
ignored (and suppressed], or it can be escalated to the next code level.

The listing below shows a code example for this. You may notice the similarities
to the exception handling mechanism introduced with C++ 3.0. Now that the
throw/catch mechanism is finally available in many C++ compilers on various
platforms, we will be able to adopt Â¡t with only a few changes in the code.

Â¡nt process_f i le(const char *const (name)

{
int words = 0;
FILE Â«file = 0;

TRY
f i le = open_f i le (fnamel ;
wo rds = coun t_words (f i l e) ;
c lose_f i le | f i le) ;
f i le = 0;

RECOVER
i f (f i l e) { / / c l e a n u p r e s o u r c e s

c l o s e j i l e (f i l e) ;
f i le = 0;

/ / hand le spec i f i c excep t ions
i f (dsm_except ion_code == F2_CORE:: in fo_pt r | {

sw i tch(F2_CORE: :e r rno) {
case F2_CORE::BREAK_RECEIVED:

/ / We won ' t esca la te t h i s " so f t " excep t i on .
handle_break() ;
break;

case F2_CORE::MEM_OVL:
/ / F ree memory b locks a l loca ted here , then esca la te the p rob lem.
f r ee_my_meml) ;
E S C A P E (d s m _ e x c e p t i o n _ c o d e) ; / / " t h r o w " i n C + + 3 . 0
break;

defaul t ;
break;

/ / Use r has cance l l ed p rocess ing

/ / O u t o f m e m o r y

} e l s e {
// Pass up all other exceptions.
ESCAPEIdsm_exception_codel;

}

E N D J B Y

return words;

D e v e l o p m e n t S u p p o r t

To find precondi proactively, DSM stresses the importance of checking precondi
tions, macros and postconditions. It offers convenient assertion macros and a
context dependent run-time debugging system which uses debug module objects.

These debug module objects hold their current debug level which can be checked
using macros and set during run time. A debug module is associated with a cer
tain code area. This allows fine-grained control for debug checks and messages.
We think this control is important for the acceptance of a debug system; the pro
grammer will ignore debug messages Â¡f there are too many, and won't find the
system useful if it doesn't deliver enough detail where needed.

Macros are provided to reduce typing and #ifdef constructs:

boo l compare l cons t cha r *s1 , cons t cha r *s2)

M E _ M O D U L E _ S T O P W A T C H (" c o m p a r e " , f o o) ;

Â¡f (DEBUG_LEVEL(foo) >= DEBUG.CALLS) {
fp r in t f (DEBUG_STREAM() , " compare ca l led ") ;

}

DSM_ASSERT(s1 && s2) ;

/ / Now ca l cu la te t he resu l t

DSM_ASSERT(some_cond i t i on) ;
return TRUE;

/ / f o r r un - t ime p ro f i l i ng

/ / t r a c e p r o g r a m f l o w

/ / c h e c k p r e c o n d i t i o n

/ / c h e c k p o s t - c o n d i t i o n

DSM also defines special debug modules to switch on sophisticated debugging
tools. objects are tools to find memory leaks, to calculate checksums for objects
(allowing us to detect illegal changes), and to create run-time profiles for the
code.

In a software package as large as HP PE/SolidDesigner, the common UNIX profil
ing tools were not applicable. Therefore, we had to build our own set of versatile,
efficient and highly precise utilities. You can define a stopwatch tot any function
that might need profiling, and you start and stop the stopwatch using the debug
module call The results can be analyzed, producing a hierarchical call
graph that shows what portion of the run time was spent In the individual func
tions. We can also find out the amount of memory allocated for a function at run
time using these tools.

load function, using the information in its type table. This
transfers the control to the entity's load method which is
responsible for creating a new entity from the data in the
file. The new entity is returned to the entity manager. Creat
ing an entity from a given type implements a virtual
constructor function, which is missing as a language ele
ment in C++.

Entering the New Entity into a Dictionary. Here we create an
entry in a dictionary that contains the virtual entity address

in the file and the new real address in main memory. These
values will be used in pointer conversion.

Reading the Entity Trailer. When the entity is loaded, the entity
manager resumes control by reading the entity trailer. This
might appear to be an artificial overhead operation, but it
makes sense when we consider the dynamic nature of the
system. We mentioned earlier that new entity types can be
created and registered dynamically, for example by a third-
party module. When storing an entity network, these entities

October 1995 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

are also stored. A user might try to load such a file into an
HP PE/SolidDesigner system that does not know about
these entities because the third-party module has not been
installed. When the entity manager loads such a file, it will
encounter entity headers of entity types for which a load
function has not been announced. Here's where the entity
trailer helps. The entity manager simply skips all following
data in the file until it finds the entity trailer. Thus, HP PE/
SolidDesigner ignores unknown entities in a file, but it can
still load the rest of the file.

Converting Pointers. After loading, all pointers between enti
ties are virtual and have to be converted into real memory
addresses. For each entity in the dictionary, that is, for each
entity that has been loaded, its convert pointers method is
called. We have already discussed this method for copying
networks of entities. Each entity knows its pointers to other
entities, and it asks the entity manager, "Now I have a virtual
pointer to entity El, so please tell me where El is in main
memory." For each pointer, the entity calls the entity manag
er's convert pointer service function. This function is passed
a virtual entity address and returns the real memory address
of the loaded entity. The dictionary built while loading the
file contains the necessary information.

When all entities have been converted, we have written a
network of entities into a file and loaded it from there with
out knowing any of the entities in detail. The analogy to the
copy operation does not come by chance, but is the result of
careful design. For copying or storing and loading entity
networks, DSM employs the same functionality wherever
possible. In theory, we could have built the copy operation
completely on a store and a subsequent load operation.

Entity Revisions
As the CAD system evolves, the need arises for changes in
entity layout, either by adding a new data field or by chang
ing the meaning of an existing one. In object database terms,
this is known as the schema evolution problem. The load
function of a DSM entity can check the revision of the entity
in the file before actually loading the contents of the entity.
Depending on the entity revision, the load function will then
know what data fields are to be expected in the input. This
means that the load function is prepared for any revision of
the entity. The same holds true for the store function, which
can write different revisions of an entity depending on the
given storage revision.

This feature ensures upward compatibility of HP PE/
SolidDesigner files. All new versions automatically know
about the old object revisions, and no converters are neces
sary. In database language, our object database can be inho-
mogeneous with respect to entity revisions. From a pure
DSM point of view, even downward compatibility is pos
sible, since you can set the storage revision to a previous
level and then save a model, as long as the new revision did
not introduce new entities that are essential for the overall
consistency of the model in the new scheme.

The Cluster Manager

From the entity manager's point of view, the current HP PE/
SolidDesigner data model is one coherent network of enti
ties. Each and every entity will be reached when the entity

manager's global scan method is used. The user's point of
view, however, is different. The user works with well-
defined objects such as parts, workplanes, assemblies, work-
plane sets, layouts and so on, which can be arranged in a
hierarchy. An assembly is like a directory in a file system,
and a part is like a regular file. Assemblies can have sub-
assemblies just as directories can have subdirectories, and
parts and assemblies can be shared just as directories and
files can be linked in a file system.

The cluster manager closes this gap between the entity
world and the user's perception. It creates facilities to define
a cluster of entities â€” for example, all entities that belong to
a part. There is no hard-coded knowledge about cluster
structures in the cluster manager, however. Instead, the enti
ties in the network themselves define what the cluster is.
Because of this flexibility, the cluster manager can offer its
services for any kind of entity network.

The following algorithm collects all entities belonging to a
given cluster X:
(1) Start with a representative of the cluster and look for all
direct neighbor entities.
(2) Ask each entity found during the scanning process to
which cluster it belongs.

(a) If the entity's answer is "I belong to cluster X,"
continue the search with the entity's neighbors.

(b) If the entity answers "I belong to cluster Y," the
global search has arrived at a cluster boundary.
The entity is excluded and the search will not be
continued from this point.

The entity manager's scan method helps with (1), and the
cluster manager provides a task function for (2). The task
function's return value controls how the entity manager nav
igates through the network of entities. It is the entity manag
er's job to find the neighbors for each entity and to ensure
that nodes are visited at most once.

There are implications for the topology of a cluster: it must
be possible to reach any entity in the cluster using a path
that is completely within the cluster. Figs. 2 and 3 show ex
amples of correct and malformed clusters.

How can an entity tell to which cluster it belongs? Actually,
this is asking too much of a mere entity. What we can expect
from an entity, however, is that it can point us in the direc
tion of another entity that is one step closer to the represen
tative of the cluster. Each entity has a local master method
for this purpose.

In most cases, the entity chooses one of its neighbors as its
local master, but this is not obligatory. By following the
trace laid out by the individual local master functions, we
will eventually find the main representative of the cluster
(which is special in that it points to itself when asked for its
local master). We call this special entity the cluster master.

Note that this is another case in which we build global
knowledge from local knowledge at the individual entities.
This is how we can define a cluster structure in a complex
network. The highlights of this method are:

â€¢ The entity manager's global scanning services are used.
â€¢ The entities need local context only.
â€¢ Only one additional method, local master, is needed for

each entity.

56 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Clus te r Mas te r

Cluster
Boundary

â€¢ Entity
â€” ^ Pointer to an Enti ty

Fig. 2. A correct cluster.

The approach is fully object-oriented. The objects them
selves determine the size, structure, and shape of the clus
ter. Completely new entities can be integrated into the clus
ter in the future, and completely new clusters can be built.

The cluster manager offers services for storing, loading, and
copying clusters. It implements these by using the entity
manager's basic services. The entity manager is controlled
by cluster manager task functions, which determine the
(cluster) scope of each operation.

The cluster manager services can be used to handle an indi
vidual part or a workplane. The cluster manager also sup
ports hierarchical structures such as assemblies and work-
plane sets.

Fig. 4 shows two types of screwdrivers. They share the
shaft; only the blades are different. The parts browser shows
the part hierarchy. The notation "(P :2)" indicates a shared
part and the backward arrow "<-" indicates the active part

Error
Isolated subnet not
reachable from
cluster master
Would be OK if
X were master

Error
No path to entity Y inside
the cluster boundary â€”

The DSM user
intended this to be
the cluster boundary.

Fig. 3. An illegal cluster.

(which is also highlighted in green). The shaft part is con
tained in both assemblies. When using standard parts, we
will in fact by default have many instances of the same part
(or even whole assemblies) in multiple assemblies. If we
now change something in the shared pail (in this case the
shaft), we expect the changes to be reflected in both assem
blies, since both assemblies have a reference to the same
part. This we call sharing parts and assemblies. Work-
planes can also be shared by using them in different work-
plane sets.

In the base version, HP PE/SolidDesigner stores the model
data to files in the regular file system. To ensure that the
sharing is preserved when storing and loading models, the
following rules apply:
Every object that can be shared in HP PE/SolidDesigner has
its own file in the file system.

Fig. 4. Two assemblies with
shared parts.

October 1995 Hewlett-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ For a shared object, exactly one file exists, regardless of
how many owners the object has. This makes sure that
whenever the shared object changes, all instances will be
changed as well.

â€¢ When storing an assembly, all objects below the assembly
have to be stored as well. This ensures that the data in the
file system is complete, so that another HP PE/Solid-
Designer system can pick it up immediately.

â€¢ A file contains exactly those entities that correspond to one
cluster.

Suppose we want to store the screwdriver assembly. We
expect that three files will be created: one for the assembly,
one for the blade, and one for the shaft. The cluster manager
will do this for us; we just tell it to store the screwdriver
assembly. It will find the parts and any subassemblies of the
assembly on its own. Since the cluster manager must work
with an arbitrary network, it needs another entity method.
scan child clusters, to build on. This method is implemented
by those (few) entities that take over the role of a cluster
master. The scan method of each entity would not help us
here since it just gives us access to all direct neighbors with
out helping us determine a direction.

The cluster manager uses the scan child clusters method to
find the children of a cluster in a generic way. Applying the
method recursively, all objects within the assembly can be
found. It is possible that a child will be reached more than
once (for instance, a standard screw within a motor assem
bly). The cluster manager keeps track of the clusters that
have already been visited to prevent a cluster from being
stored twice.

Given these methods, we can describe how an assembly
(actually, any kind of cluster structure) is stored:

â€¢ Start with the given cluster and find all children recursively.
â€¢ For each child cluster, use the entity manager's store

method to store the entities of the cluster into a separate
file. The entity manager is controlled by a cluster manager
task function that makes sure that only those entities be
longing to the cluster are stored. A special store pointer
function is responsible for storing pointers to entities.

The store pointer function deserves a discussion of its own.
When storing clusters into several separate files, we will
encounter pointers that point from one cluster (file) to an
other. In the case of the screwdriver assembly, we will have
at least two pointers to the external clusters representing
the blade and the shaft. Since the entity manager's store
function by default stores all entities in the network into one
file, the problem doesn't arise there. By providing a special
store pointer function, the cluster manager extends the en
tity manager so that pointers are classified as external

(pointing to another file) or internal when they are stored.

When loading an assembly, the cluster managers goes
through the following procedure:
(1) Open the file.
(2) Use the entity manager's load method (with the special
load pointers function) to load all entities in the file.
(3) Close the file.
(4) While there are external references to other clusters
left, open the corresponding file and proceed with (2).

An external reference is a pointer to an entity in a different
cluster. To make sure that external pointers are unambigu
ous, we developed a scheme for unique entity IDs. An entity
is assigned such an ID when it is created, and it keeps it as
long as it exists. External pointers refer to these unique IDs.

The algorithm above is analogous to linking relocatable ob
ject files in the HP-UX operating system. When loading the
file into HP PE/SolidDesigner, it is the special load pointer
method's job to detect external references. In step (4), the
cluster manager behaves quite similarly to an object file
linker. Where the linker needs one or more libraries, which
it searches for objects to satisfy open references, the cluster
manager uses the UNIXÂ® file system or a database as its
library.

The State Manager

The state manager introduces a notion of transaction han
dling into HP PE/SolidDesigner. Model changes can be
grouped together to form a single transaction. In database
technology, a transaction has the following properties:

> Atomicity. The transaction is atomic. It must either be
closed completely or undone.

' Consistency. Transactions transform a given consistent
state of the model into a new state which again must be
consistent in itself.

1 Isolation. Transactions do not influence each other.
1 Durability. The changes made by a transaction cannot be

cancelled by the system except by special undo transac
tions.

Transactions in HP PE/SolidDesigner have these properties.
They are not only used for ensuring data integrity, however.
Their main purposes in HP PE/SolidDesigner are to notify
kernel applications about changes in the model at defined
intervals (when a transaction is completed) and to allow
interactive undo operations.

The general model of an HP PE/SolidDesigner transaction is
shown in Fig. 5. A transaction T12 transforms a given con
sistent model state SI into a new consistent state S2. A roll
back to SI is possible. As Fig. 5 shows, it is also possible to
roll forward, that is, move towards the modeling "future"
after an undo operation.

Bulletin Board
DSM introduces a special mechanism to record changes to
the model, which is the bulletin board. Information about all
changes within a transaction are collected in one bulletin

Transac t i on T ransac t i on

T 1 2 T 2 3

Rol lback (Undo)

Ro l l Fo rward

Fig. 5. HP PE/SolidDesigner transaction model. A transaction
transforms one state into another. A transaction can be rolled
back or rolled forward.

58 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

board. In other words, the bulletin board describes the
transaction completely, so that we sometimes use "bulletin
board" and "transaction" interchangeably.

A bulletin board is a collection of individual bulletins. A
bulletin describes a change of state of a model entity, that is,
it contains delta information. At the beginning of a transac
tion, the bulletin board is empty. Each change to an entity
creates a bulletin describing the change, so at the end of the
transaction, the bulletin board contains all of the changes
that happened during the transaction.

When a transaction completes, a special event, the transac

tion end event, is triggered. Update handlers subscribe to
this event. When they are called, they receive as a parameter
a pointer to the bulletin board created in the transaction.
They can then inspect the contents of the bulletin board to
look for changes that they have to act upon. The 3D graph
ics module, for example, which, slightly simplifying things,
is just an update handler, checks for the creation or changes
of 3D bodies. It then creates a faceted graphics model from
the change information that is suitable for sending to a
graphics library. Since it only deals with the delta informa
tion, the 3D graphics handler will in general complete its job
more quickly than if it regenerated the whole graphics
model after each transaction.

An update handler may also choose to ignore the bulletin
board information. It will then use the transaction end event
as a regular opportunity for cleanup tasks or to rescan the
model. Most update handlers, however, use the information
in the bulletin board to optimize their work.

Changes
The DSM's state manager module uses basic entity services
to create bulletin board information. To provide systemwide
transaction handling and the undo mechanism, each entity
has to follow a few simple conventions. The most important
of these conventions is that before any kind of change to
itself, an entity has to announce the change. It does so by
calling a special log change method, which is provided by
the entity base classes.

The log change method does a lot of things. First, it creates
a bulletin in the bulletin board. The log change method is
passed a change type from the caller which it also records in
the bulletin. Using the change type, the changes are classi
fied, and update handlers can ignore changes of types they
are not interested in. They can also ignore changes to cer
tain entity types. Using these two restriction types, update
handlers can narrow down the search to a few bulletins
even if the transaction is very large.

After building the bulletin, the state manager uses the enti
ty's generic copy method to create a backup copy of the
entity. Note that the entity is still in the original state since
the log change method has to be called before any change
takes place. (To ensure that the convention is followed, we
have built extensive debugging tools that detect changes
that are not announced properly.)

Pointers to both the entity in its current state and the
backup copy of the entity are maintained in the bulletin
board. This gives the update handlers a chance to compare
the data in an entity before and after the change, making it

possible for an update handler to trigger on changes to indi
vidual data items in the entity.

So far. we have only discussed changes to an entity. The
bulletin board also records creation and deletion informa
tion for entities. The entity base classes, together with the
state manager, take care of this.

hi an undo operation, all changes to entities are reversed.
An entity that has been reported as deleted will be recre
ated, and new entities will be marked as deleted. (They will
continue to exist in the system so that it is possible to roll
forward again.) If an entity has changes during a transac
tion, its backup copy will be used to restore the original
state. Again, we use the generic copy function in the entity
base classes for this purpose.

Relation to Action Routines
The action routines (see article, page 14) define when a
transaction starts and ends. When the user selects an opera
tion in the user interface, an action routine will be triggered
that guides the user through the selection and specification
process. A transaction is started at the beginning of such an
action routine. After each significant model change, the ac
tion routine completes the transaction, thus triggering the
transaction end event and giving update handlers a chance
to react to the changes.

When an action routine terminates without error, all transac
tions generated within the action routine are usually merged
into one large transaction. Thus, the user can undo the ef
fect of the action routine in one step. If an error occurs
within an action routine, all changes in the action routine
will be undone using the generic rollback mechanism and
the information in the bulletin boards.

Some action routines also implement minisessions. After
collecting all the options and values, the operation itself can
be triggered and its effect previewed. If the effect is not
what the user thought it should be, it can be undone within
the action routine. The minisession will then use the roll
back mechanism internally. The user changes parameters,
triggers the operation again, and finally accepts the outcome
when it fits the expectations. An example of this in HP PE/
SolidDesigner is the blend action routine.

In general, however, operations can be undone using the
interactive undo mechanism. At any point, the user can
choose to roll back to a previous state. For this purpose,
HP PE/SolidDesigner keeps the last n states (or bulletin
boards) in memory where n is a user-configurable value. The
user can also move forward again along the line of states
that was created in the modeling session.

Fig. 6 shows HP PE/SolidDesigner's user interface for undo
operations.

As discussed earlier, HP PE/SolidDesigner's transaction
mechanism also offers an interface to external applications,
that is, the transaction end event. Third-party applications
subscribe to the event, and from then on, they can monitor
all changes to the model. One example of an "external" ap
plication is the 3D graphics module. Parts browsers, which
also have to react to changes of the model, are another ex
ample. Finite-element generators can also hook into the

October 1995 Hewlett-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

Undo
*â€¢ Backward [I

F o r w a r d j l

Expand

History

Max Back Ã­?

Max Forward 11

S t e p s 3 0

O K C a n c e l H e l p

Fig. 6. User interface for undo operations.

transaction end event to keep track of the model. Another
possible external application is one that provides the cur
rent volume properties of given bodies. (HP PE/SolidDe-
signer provides volume calculations, but they have to be
triggered explicitly from the user interface.) The bulletin
board is the door-opener for external applications, making it
one of the most important interfaces within HP PE/Solid-
Designer.

Conclusion
This article can only give a very high-level overview of what
DSM is all about. Much of what really makes DSM usable,
effective, and efficient is beyond the scope of this discus
sion. We are confident that the data structure manager is a

strong and robust building block for any kind of application
that has to deal with complex data networks. We have found
that DSM deals with a lot of problems that are typical for
object databases:

â€¢ Data abstraction (through a set of base classes)
â€¢ Object persistence (storing and loading objects)
â€¢ Object schema evolution (changes in object layouts)
â€¢ Object clustering (bundling low-level objects to user-level
objects such as parts and assemblies)

â€¢ Exchange of clustered objects, fully maintaining connectiv
ity through unique object IDs)

â€¢ Transaction concept with undo.

By solving all of these problems, DSM enables HP PE/
SolidDesigner to support typical modeling operations on
user-level objects (parts, workplanes, etc.). In other words,
it makes HP PE/SolidDesigner speak in terms that the user
can easily understand. The support for object exchange is
the basis for modeling workflow solutions. Apart from this,
the data structure manager can serve as a general frame
work for any kind of object-oriented application.

Acknowledgments
The data structure manager was initially designed and devel
oped by Peter Ernst. He is still our sparring partner for dis
cussing new ideas and the general direction of development
for DSM.

HP-UX 9. and 10.0 for HP 9000 Series 700 and 800 computers are X/Open Company UNIX 93
branded products.
UNIXÂ® is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open is a registered trademark and the X device is a trademark of X/Open Company
Limited in the UK and other countries.

60 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Freeform Surface Modeling
There are two methods for creating freeform surfaces in HP
PE/SolidDesigner: blending and lofting. This article describes the basics of
lofting. The geometry engine, which implements the lofting functionality,
uses a interface, implementation for its geometric interface, but
takes a multiple-data-type, hybrid approach internally.

by Michael Metzger and Sabine Eismann

HP PE/SolidDesigner's kernel functionality consists of sev
eral modules that communicate through well-defined inter
faces, supported by logical class definitions and hierarchies.
In Fig. 1, for example, the geometric data interface for the
topology engine (the Boolean engine, see article, page 74)
consists of three basic elements (points, curves, and sur
faces) and the corresponding utility functions like intersec
tions. This technique makes it easy to add new functionality.
For example, introducing new geometry data types is just a
matter of delivering all member functions of the geometric
interface for the new geometry type.

The implementation of such a concept looks simple, but
reality has shown that it takes a lot of effort to keep the in
terface clean and to avoid copying and converting data. This
is especially true for data having connections on both sides
of the interface, such as pieces of a curve or curves on a
surface.

The Geometry Engine
In designing a completely new implementation of the geo
metric kernel for a solid modeler one has a chance to avoid
the problems of older implementations. What are the real
problems of existing implementations? There are two funda
mental approaches: NURBS libraries and hybrid methods.

NURBS libraries have only one data type: NURBS, or non-
uniform rational B-splines. This data type can represent all
analytics (like planes, cylinders, spheres, etc.) exactly. This
means that complex freeform surfaces as well as simple
analytics are represented with one single data structure. The
geometrical problems only have to be solved for this single
type. This sounds promising, but it turns out that the algo
rithmic stability does not satisfy the requirements of HP

Topology
Engine

Geometric Interface

Geometry
Engine

Fig. 1. The IIP I'K/SolidDesigiicr topology and geometry engines
communicate through a well-defined geometric interface.

Library Encapsulator

Analytic Geometry Package (AGP)

B-Spline/NURBS Library (SISL)

Fig. 2. HP PE/SolidDesigner geometry engine.

Fig. 3. (A lulled surface, (b) Lolling original rd in ship design

October 1095 Hewletl-Parkard Journal 61

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4. Specifying the tangent profile, a kind of vector field
along a curve, influences the shape of a surface.

PE/SolidDesigner. In addition, the performance is poor, es
pecially when analytic surfaces (represented as NURBS) are
intersected.

Hybrid methods are used in the HP PE/ME30 kernel (Romu
lus). All possible geometry data types are available, and
clever special case handling results in high performance.
The disadvantage is that the introduction of a new data type
is an enormous effort. In addition, the Romulus kernel
doesn't distinguish cleanly enough between geometry and
topology, so building new functionality on this kernel can be
very cumbersome and error-prone.

In HP PE/SolidDesigner we tried to combine the advantages
of both approaches. The advantage of a NURBS library (one
data type) is realized in the class hierarchy of HP PE/Solid
Designer: the geometric interface knows only points, curves,
and surfaces. For the internal geometry structure the hybrid
method was chosen. Data types include analytic types
(plane, sphere, cylinder, cone, torus), semianalytic types
(parallel swept B-spline, spun B-spline), B-splines, and
NURBS as an extension of B-splines.

Fig. 5. Multiply connected curves.

As shown in Fig. 2, HP PE/SolidDesigner's geometry engine
consists of three parts: the library encapsulator, the analytic
geometry package (AGP), and the B-spline/NURBS library
(SISL).

The library encapsulator delivers many convenience func
tions for the geometric interface and ensures its integrity. All
functions dealing with geometry have to pass through the
geometric interface. The only exception is a small part of
the blending algorithm, which for performance reasons by
passes the library encapsulator and calls SISL directly.

The AGP was developed by DCUBED Ltd. of Cambridge,
England and SISL was developed by the Senter for Industrie-
forskning of Oslo, Norway.

Freeform Surface Modeling
There are two methods for creating freeform surfaces in HP
PE/SolidDesigner: blending and lofting. The remainder of
this article describes the basics of lofting.

Lofting means the (exact) interpolation of a set of points or
curves by a smooth curve or surface. Fig. 3 shows examples
of lofting. Lofting originated in ship design and was used a
long time before computers were invented.

The mathematical solution of this problem leads to the defi
nition of splines. There are many spline types, each having
its specific advantages and disadvantages. The most com
mon spline types are BÃ©zier splines, B-splines, and NURBS.

For CAD applications the most general splines are NURBS,
since they can represent analytics exactly. This can be im
portant when it comes to intersections of splines and ana
lytic to B-splines are NURBS with all weights equal to
1. They are more stable and faster in intersections but can
not represent analytics (except the plane) exactly. B-splines
are made up of a sequence of BÃ©zier pieces, connected ac
cording to their continuity at the transition points. We won't
go into detail concerning spline mathematics here since
there is abundant literature on this topic.1-2

In addition to the pure interpolation of points and curves,
lofting allows the definition of tangent profiles at each 3D

62 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

. , 4 / W 3
Face

Fig. points Reparameterizing surfaces by specifying matching points
on different input curves.

curve. A tangent profile is a kind of vector field along the
given curve, as shown in Fig. 4. Both the directions and the
lengths of the tangents influence the shape of the surface.

In practical applications the user normally wants to interpo
late not only a series of single curves but also a series of
multiply connected curves, as shown in Fig. 5. For this pur
pose HP PE/SolidDesigner connects the incoming profiles to
a single B-spline curve. It is not required that a profile be
smooth; it only needs to be CÂ° continuous (closed). The CÂ°
locations in the profiles later correspond to edges in the
complete model.

In addition to tangent profiles, the parameterization of the
input curves is another important factor determining the
shape of the lofted surface. In HP PE/SolidDesigner, para
meterization can be influenced by splitting the input curves
at arbitrary points (match points) and defining different
length ratios in the subsequent profiles (Fig. 6). Within a
curve segment, HP PE/SolidDesigner tries to create a para
meterization according to the chord length of the curve
(chorclal parameterization).

Fig. 8. Topological elements: vertex, edge, loop, face.

It is also possible to create closed (periodic) surfaces using
lofting, hi this case the first and last profiles are identical
(Fig- T).

Topology
Before explaining how topology is attached to the loft geom
etry, some definitions are needed (see Fig. 8):

â€¢ A vertex lies on a 3D point and can be \iewed as the corner
of a face.

â€¢ An edge is a bounded portion of a space curve. The bounds
are given by two vertices.

â€¢ A loop represents a connected portion of the boundary of a
face and consists of a sequence of edges.

â€¢ A face is a bounded portion of a geometric surface in space.
The boundary is represented by one or more loops of edges.

Given a B-spline surface obtained from the spline library
using the profile interpolation method, topology has to be
built on this surface to get a loft body. As a boundary for the
face, a loop consisting of four edges is created (Fig. 9). The
edges lie on the first and last interpolation curves (el and
e3) and on the left and right boundaries of the B-spline sur
face (e2 and e4).

The interpolation profiles don't have to consist of only one
curve per profile. For more complex shapes different curves
can be combined in a profile. It is necessary to generate a
face for each matching set of curves. One way to do this is
to use lofting to create a B-spline surface for each matching
set and then build the appropriate faces on these surfaces.
Because there is no exact specification of how the left and
right boundaries of these B-spline surfaces should look
there may be gaps between the faces (Fig. 10a). This would

Fig. 7. Closed (periodic) surface created using lolling. Fig. a Building topology on a B-spline surface by creating a
IxiiiiKhiry consisting of four edges.

October 1985 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

lead to an illegal body, since all neighboring faces in a body
have to share a common edge. When there are gaps between
the faces no common edge can be found and it isn't possible
to generate a valid body.

To eliminate gaps, the curves in one profile are joined tem
porarily and only one loft surface is generated. This B-spline
surface then is split into appropriate parts at the start and
end points of the interpolation curves. The faces are then
built on the split surfaces. This ensures that there is no gap
between the faces.

To match the correct curves or the correct portions of the
curves it is necessary that all curves in a matching set have
the same parameter interval. This is ensured by reparame-
terizing all curves belonging to the same matching set to the
same a pa ramete r in te rva l . Af te r th i s a l l cu rves o f a
profile are joined and the joined curves then automatically
have the same parameter interval.

A valid solid body must describe a closed volume. For this
reason only closed interpolation profiles are used. From
these the lofting facility will generate faces forming a tube,
which still has two open ends (Fig. 11). For each of the two

Fig. 11. Lofting generates a tube. Endfaces are added to make a
solid body.

ends a planar face is added. Theoretically these top and bot
tom faces can lie on any type of surface as long as the first
and last interpolation profiles lie on the respective surfaces.

Lofting in HP PE/SolidDesigner
The spline library allows arbitrary 3D curves in space as
interpolation profiles for lofting. To simplify the input pro
cess for the user, only planar profiles are allowed in the cur
rent release. These planar profiles can easily be generated in
a workplane using 2D creation methods. All workplanes
containing the profiles are gathered in a workplane set. The
user specifies which set of curves should match in lofting.
Different matching specifications will produce different loft
results (Fig. 12).

Because the spline library only accepts B-spline curves as
interpolation curves the analytic curves in the profiles have
to be approximated by B-splines. Another reason for this is
the above-mentioned joining of curves in a profile to obtain
only one B-spline surface.

Fig. 10. (a) Illegal body with gaps between faces, (b) The system
generates a common edge to eliminate gaps.

Fig. of Changing loft results by specifying different sets of
matching curves.

64 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 13. Adding tangent conditions to change the shape of a body,
(a) By defining a tangent direction to one or more vertices in the
profile, (b) By specifying a constant direction for the entire profile,
(c) By is an angle at one point of the profile. This angle is
kept constant along the entire profile.

Another possibility for influencing the shape of the loft body
is to add tangent conditions, hi HP PE/SolidDesigner there
are three different methods for doing this (Fig. 13):

â€¢ Define a tangent direction to one or more vertices in the
profile.

â€¢ Specify a constant direction for the entire profile.
â€¢ Specify an angle at one point of the profile. This angle is

kept constant along the entire profile.

For topology creation, especially face generation, the curves
underneath the bounding edges of the faces have to be de
termined. Because the lofting algorithms only generate one
B-spline surface, to get a properly connected tube this sur
face has to be split somehow. Because the single curves on
the profiles have already been reparameterized to the same
parameter interval for correct matching, this knowledge can
be used to split the B-spline surface correctly. The bound
aries of the split surface all lie on isoparametric curves of
the loft surface. An isoparametric curve is a curve on a sur
face that has a constant u or v parameter value, hi our case
the loft direction is the v-parameter direction of the surface.
This means that the left and right boundary curves of the
faces are v-isoparametric curves. Splitting the surface along

Fig. solid HP PE/SolidDesigner checks for various properties that solid bodies shouldn't have, (a) Self-intersecting body, (b) Vanishing
noniials or derivatives, (e) Intersection with the top or bottom face, (d) Change of convexity at an edge.

October 1995 Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

the v-parameter values of the start points and endpoints of
the interpolation curves will result in the desired subsur
faces. The edges created on these v-isoparametric curves
are always common to two neighboring faces.

Analytic Surface Type Detection
From a mathematical point of view the interpolation task
that constitutes lofting is finished when the B-spline surface
is created. From a CAD user's point of view the work is only
partially finished. The reason is that it very often happens
that a lofted body contains B-spline surfaces that represent
analytical surfaces, mostly planes and cylinders. A CAD user
wants to recognize these analytics in later processes for
easier control in manufacturing. Data size, intersection per
formance, and stability are much better when dealing with
analytics rather than approximated geometry. For these rea
sons a in analytic detection algorithm is implemented in
HP PE/SolidDesigner which replaces the B-spline strips by
analytics after the B-spline creation and before the final
topology is built.

The algorithm is based on the geometry of the input profiles.
If curves of the same type are matched the basic definitions
of these curves are compared (for example, the center of a
circle, its radius, its starting point, etc.). Then, starting from
the first two profiles, a corresponding analytic surface is
built. In the next steps the other curves along the profiles (in
the loft direction) are examined to see whether they fit this
surface. If they do, the corresponding B-spline strip is ex
changed and the neighboring topological information is
adopted. This is done for each curve in the profile loop.
Since the algorithm is based on the profiles and not on the
lofted B-spline surface it is extremely fast and takes less
than 1% of the time required for the lofting operation.

Special Cases
Lofting is a powerful tool for creating freeform surfaces in
HP PE/SolidDesigner. On the other hand, there is a danger
of creating surfaces that are not manufacturable or that
have properties that can cause problems in later operations.
For this reason, HP PE/SolidDesigner applies extra checks
to ensure that the result of lofting is a clean body. These

Fig. 16. Spring created using the workplane inclined command.

checks take extra time, normally more than the creation of
the surface itself. HP PE/SolidDesigner therefore offers a
button on the user interface to switch off these checks. It
makes sense to switch the tests off in the surface design
phase. For the final acceptance, however, it is recommended
that the tests be run, since a corrupt model cannot be re
paired later.

In the following examples we show the various properties a
solid model shouldn't have. HP PE/SolidDesigner checks all
of them and rejects the lofting operation if at least one of
them appears. In the preview mode, the user can examine
the object to find the root cause for the problem. The forbid
den properties are:
A self-intersecting body (Fig. 14a)
Vanishing normals or derivatives (Fig. 14b)
Intersection with the top or bottom face (Fig. 14c)
Change of convexity at an edge (Fig. 14d). This test is al
ways done and ensures that the specific edge can be
blended later. HP PE/SolidDesigner will insert a topological
vertex at the place where the convexity changes.

Practical Experience with Lofting
The most critical point in using lofting is the proper defini
tion of the profiles and the workplanes. It turns out that in
many real-life applications the profiles do not vary at all
(e.g., helical constructions) or only a little. HP PE/SolidDe
signer supports these surface classes by offering special

Fig. com Drill created using a special HP PE/SolidDesigner com
mand given define a set of parallel workplanes, each turned by a given
angle around an axis orthogonal to the base workplane.

Fig. 17. Positioning too many profiles over too short a distance
results in a wavy surface.

66 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

commands to create series of workplanes in the 3D space.
These commands let the user define a set of parallel work-
planes, each turned by a given angle around an axis orthogo
nal to the base workplane. Objects like drills can be created
very easily (Fig. 15).

Using the "workplane inclined" command defines a set of
workplanes at an angle to the base workplane. This is a way
to create springs and other helical shapes (Fig. 16).

These special commands do not help in all situations. Some
times the complete workplane set has to be defined by hand.
Here it is important to know some basic behavior of the loft
ing algorithm to avoid subsequent problems with the Bool
ean topology engine. Often lofting is not used to create a
completely new body but to cut off some existing geometry
(loft remove) or to fill gaps (loft add). The most important
property of lofting the user must keep in mind is that the
surface starts oscillating if too many conditions (profiles,
tangency conditions) are specified on too short a distance.

The temÃ­ "short" means short relative to the total object
size. Positioning ten profiles over a distance of 100 millime
ters causes no problems. Doing the same over a distance of
one millimeter creates an awful surface. The same is true for
the complexity of the profiles and the way the profiles
change from one workplane set to another (Fig. 17).

Fig. 18. (a) In creating a helical shape connected to a cylindrical
shaft, if the helix base profile touches the cylinder a nonmanufac-
turable part, results since I he freeform helix oscillates around the
cylinder surface, (b) If the helix base profile cuts into the cylinder
a little the oscillating surface lies completely inside the cylinder
and the result. -Â¡ilimi uf i lie two bodies will yield the exported result. Fig. 19. (a) Sweeping, (b) Skinning, (c) Cupping.

October 1995 Ilowlcll-Parkard Journal 67
© Copr. 1949-1998 Hewlett-Packard Co.

For this reason, one should never try to approximate other
geometry using lofting in combination with a Boolean opera
tion. It is much safer to create the loft tool body a little big
ger to get clear intersections later. The example of Fig. 18
illustrates this. The task is to create a helical shape con
nected to a cylindrical shaft. The "workplane inclined" com
mand is used to position the profiles for the loft. If the base
profile touches the cylinder the unification of the lofted body
and the cylinder will result in a nonmanufacturable part since
the freeform helix oscillates around the cylinder surface
(Fig. 18a).

However, if the profile cuts in a little the oscillating surface
will of completely inside the cylinder and the unification of
both bodies will yield the expected result, as shown in
Fig. 18b.

Summary
Lofting in HP PE/SolidDesigner is a powerful tool that en
ables the CAD user to create various freeform shapes within
a solid model. The main task being solved by the user is the
optimal selection of the profiles and clever positioning of
the workplanes in the 3D space. With a little experience to

gain familiarity with the behavior of the surface interpola
tion algorithms, many design tasks can be done in a short
time. However, some tasks are cumbersome or nearly im
possible using lofting, but are easily done using other HP
PE/SolidDesigner capabilities. In electromechanical and
mechanical engineering these tasks include mainly skinning,
capping, and sweeping. Sweeping (Fig. 19a) is related to
lofting since it means creating a surface by sweeping a pro
file along an arbitrary 3D curve. Skinning (Fig. 19b) is the
task of defining a smooth surface through a net of 3D
curves. Capping (Fig. 19c) means the replacement of a
closed loop on a body by some smooth, tangentially con
nected surface; it is a subclass of skinning. Although these
functionalities are the classical domain of surface modeling
systems the open architecture of HP PE/SolidDesigner
readily accommodates their implementation.

References
1. 1. G. Farm, Curves and Surfaces for Computer-Aided Geometric
Design, Academic Press, 1988.
2. C. deBoor, A Practical Guide to Splines, Applied Mathematical
Sciences no. 27, Springer, 1978.

68 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

Common Lisp as an Embedded
Extension Language
A large Common of HP PE/SolidDesigner's user interface is written in Common
Lisp. Common Lisp is also used as a user-accessible extension language.

by Jens Kilian and Heinz-Peter Arndt

Ã­

HP's PE/ME10 and PE/ME30 CAD systems contain an exten
sion language based on the macro expansion paradigm. The
user's input (commands and data) is separated into single
tokens, each of which denotes a command, function, vari
able, macro name, number, string, operator, or other syntac
tic element. Commands, functions, and arithmetical expres
sions are evaluated by the language interpreter. Each macro
name is associated with a macro definition, which is another
token sequence (either predefined by the system or defined
by the user). When the language interpreter encounters a
macro name, it substitutes the corresponding token se
quence (this process is called expanding the macro) and
continues with the first token of the expansion.

Macro expansion languages are easy to implement and have
been used in many applications where one would hardly
expect to find an embedded language. For example, the TgX
typesetting system contains a macro interpreter.

The HP PE/ME10 and PE/ME30 macro language includes
powerful control constructs (such as IF/THEN/ELSE and LOOP/
EXIT_IF/END_LOOP), local variables, and a mechanism for pass
ing parameters to a macro when it is being expanded. These
constructs make it possible to solve general programming
problems. Because the HP PE/ME10 and PE/ME30 macro
language is interpreted, programs can be developed in an
interactive fashion and modifications can immediately be
tried out. However, the resulting program is slower than a
program written in a compiled language like C. HP PE/ME10
and PE/ME30 macros can be compiled to an intermediate
form which executes faster than the pure interpreted ver
sion, but which is still slower than an equivalent C program.

One disadvantage of the HP PE/ME10 and PE/ME30 macro
language is that it is nonstandard. No other application uses
the same language, and programs written in it have to be
ported when the user switches to another CAD system.

Common Lisp
Common Lisp was chosen as an extension language for HP
PE/SolidDesigner because it is nonproprietary and widely
used.

Surprising as it may be, Lisp is the second oldest high-level
programming language still in common use. The only older
one is FORTRAN. Lisp is to researchers in artificial intelli
gence what FORTRAN is to scientists and engineers.

Lisp was invented by John McCarthy in 1956 during the
Dartmouth Summer Research Project on Artificial Intelli
gence. The first commonly used dialect was Lisp 1.5, but

unlike FORTRAN (or any other imperative language) Lisp is
so easy to modify and extend that over time it acquired
countless different dialects. For a long time, most Lisp sys
tems belonged to one of two major families, Interlisp and
Maclisp, but still differed in details. In 1981, discussions
about a common Lisp language were begun. The goal was to
define a core language to be used as a base for future Lisp
systems. In 1984, the release of Common Lisp: The Language1
provided a first reference for the new language. An ANSI
Technical Committee (X3J13) began to work on a formal
standardization in 1985 and delivered a draft standard for
Common Lisp in April 1992. This draft standard includes
object-oriented programming features (the Common Lisp
Object System, or CLOS). For a more detailed account on
the evolution of Lisp, see McCarthy2 and Steele and
Gabriel.3

HCL, the implementation of Common Lisp used in HP PE/
SolidDesigner, is derived from Austin Kyoto Common Lisp
(itself descended from Kyoto Common Lisp). It corresponds
to the version of the language described in reference 1, but
already incorporates some of the extensions from reference
4 and the draft standard.

Applications of Extension Languages
Adding extension languages to large application programs
has become a standard practice. It provides many advan
tages, some of which may be not as obvious as others. For
the normal user of a system, an embedded programming
language makes it possible to automate repetitive or tedious
tasks. An inexperienced user can set it up as a simple re
cord/playback mechanism, while "power users" can use it to
create additional functionality. If the extension language has
ties to the application's user interface, user-defined function
ality can be integrated as if it were part of the original
application.

If the application provides an API for adding extensions on a
lower level, the extension language can itself be extended.
This enables makers of value-added software to integrate
their products seamlessly into the main application. As an
example, the HP PE/SheetAdvisor application has been im
plemented within HP PE/ME30, offering a user interface
consistent with the rest of the program.

As a final step, portions of the application can themselves be
implemented in the embedded language. An example would
be I he popular GNU Emacs text editor, a large part of which
is written in its embedded Lisp dialect.

October 1995 Hewlett-Packard Journal 69
© Copr. 1949-1998 Hewlett-Packard Co.

A large part of HP PE/SolidDesigner, too, is written in its
own extension language â€” about 30 percent at the time of
writing. Most of this 30 percent is in HP PE/SolidDesigner's
user interface.

Lisp in HP PE/SolidDesigner
Fig. 1 shows the major components of HP PE/SolidDesigner.
The Lisp subsystem is at the very core, together with the
Frame (operating system interface) and DSM (data structure
manager, see article, page 51) modules. All other compo
nents including Frame and DSM are embedded into the Lisp
subsystem. This indicates that each component provides an
interface through which its operations can be accessed by
Lisp programs.

The introduction of new functionality into HP PE/SolidDe
signer is usually done in the following steps:

â€¢ Implement new data structures and operations in C++
â€¢ Add Lisp primitives (C++ functions callable from Lisp) for

accessing the new operations
â€¢ Add action routines to implement new user-visible com

mands, using the Lisp interface to carry out the actual
operations

â€¢ Add menus, dialog boxes, or other graphical user interface
objects to access the new commands.

As long as the Lisp interface â€” the primitive functions â€” is
agreed to in advance, this process can be parallelized. A
user interface specialist can work on the action routines and
menus, calling dummy versions of the interface functions.

The article on page 14 describes, from a user interface de
veloper's perspective, how action routines are written and
how menus and dialogs are created. The mechanisms used
there are not part of the Common Lisp standard but are ex
tensions provided by the HCL dialect.

Fig. 1. HP PE/SolidDesigner system architecture. HCL is the
Common Lisp subsystem. All components including Frame
(operating system interface) and DSM (data structure man
ager) have interfaces to Lisp. K2 is the solid modeling kernel.
PPG is the planar profile generator.

70 October 1995 Hewlett-Packard Journal

Action Routines
Action routines implement the commands that a user types
or issues via user interface elements to HP PE/SolidDe
signer. Commands are identified by their names, which are
Lisp symbols evaluated in a special manner (similar to the
SYMBOL-MACROLET facility in the Common Lisp Object Sys
tem). Each action routine is actually an interpreter for a
small language, similar in syntax to the command language
used in HP PE/ME10 and PE/ME30. Like HP PE/ME10 and
PE/ME30 commands, action routines can be described by
their syntax diagrams. Fig. 2 contains the syntax diagram for
a simplified version of HP PE/SolidDesigner's exit com
mand. Below the syntax diagram is a state transition graph
which shows how the command will be processed.

The definition of an action routine corresponds closely to its
syntax diagram. The defining Lisp expression, when evalu
ated, generates a normal Lisp function that will traverse the
transition graph of the state machine when the action rou
tine is run. For example, the following is an action routine
corresponding to the syntax diagram of Fig. 2:

(de fec t ion s imp le_ex i t

(f l a g) ; l o c a l v a r i a b l e

(; state descr ipt ions

(start nil
"Terminate PE/Sol idDes igner?"
nil

(: y e s (s e t q f l a g t) a n s w e r - y e s e n d)
(: n o (s e t q f l a g n i l) a n s w e r - n o e n d)
(otherwise (d isp lay_error "Enter e i ther :YES or :NO." | n i l s tar t))

(end (do-it)
nil
nil))

(; local funct ions

(do-it ()
(when f lag

(quit)))))

As can be seen in this example, an action routine can have
local variables and functions. Local variables serve to carry
information from state to state. Local functions can reduce
the amount of code present in the state descriptions, en
hancing readability.

When HCL translates this action routine definition, it pro
duces a Lisp function which, when run, traverses the state
transition graph shown in Fig. 2b. If a state description con
tains a prompt string, as in the start state in the example, the
translator automatically adds code for issuing the prompt
and reading user input. Effectively, the translator converts
the simple syntax diagram into the more detailed form.

For the example action routine, the translator produces a
Lisp function definition much like the following:

 Dec la ra t ions o f some ex te rna l func t ions , fo r more e f f i c ien t ca l l ing

(p roc la im ' (f unc t i on ge t -pa ramete r (t t) t))
(proc la im ' (funct ion match-otherwise (t) t))
(proc la im ' (funct ion t r igger -ac t ion-s ta te- t rans i t ion-event (t Sopt iona l t)

t))

© Copr. 1949-1998 Hewlett-Packard Co.

(a)

o the r i npu t
i s s u e e r r o r m e s s a g e

(b)

Fig. 2. (a) Simplified syntax of the exit command, (b) State
transition diagram for the exit command.

 T rans fo rmed ac t i on rou t i ne

(defun s imple_ex i t (&rest argument- l is t &aux input)

(l e t (f l a g) l o c a l v a r i a b l e

(l a b e l s ((d o - i t () l o c a l f u n c t i o n
(when f lag
(quit))))

(block ni l
(tagbody

 l abe l f o r s ta te " s ta r t "
1

 p romp t i ng i n s t a te " s ta r t "
(setq input (get -parameter argument- l is t "Terminate HP PE/Sol id
Designer?"))

 pa t te rn ma tch ing i n s ta te " s ta r t "
(cond ((equal input :yes)

(s e t q f l a g t) a c t i o n t a k e n
(t r i gger -ac t ion -s ta te - t rans i t i on -even t ' answer -yes)

(g o 0 Â » t r a n s i t i o n t o " e n d " s t a t e

((equal input :no)

(se tq f lag n i l) ac t ion taken
(t r i gger -ac t ion -s ta te - t rans i t i on -even t ' answer -no)

(g o 0)) t r a n s i t i o n t o " e n d " s t a t e

((match-o therwise input)

(d isplay_error "Enter ei ther :YES or :NO.")

(g o 1))) t r a n s i t i o n t o " s t a r t " s t a t e

 l a b e l f o r s t a t e " e n d "

 i n i t i a l ac t i on fo r s ta te "end"
(do-it)

 ex i t f rom ac t i on rou t i ne
(return))))))

Transitions in the state machine are transformed into goto
statements within the function's body. The conditional con
struct cond represents decisions, like the three-way branch
in state start. Before each state transition, the code can trig
ger an external event to enable graphical feedback in menus
or dialogs.

The actual translation is somewhat more complicated be
cause errors and other exceptional events must be taken
into account. The translator also adds code to support de
bugging and profiling of an action routine. This code is
stripped out when building a production version of HP PE/
SolidDesigner.

Compiling Lisp Programs
It has often been said that Lisp is inherently slow and cannot
be applied to application programming (one common joke is
that the language's name is an acronym for "Large and In
credibly Slow Programs"). This is not true. Even very early
versions of Lisp had compilers.3 Lisp systems have even
beaten FORTRAN running on the same machine in terms of
numerical performance.

In HCL, the Lisp compiler takes a Common Lisp program
and translates it into an intermediate C++ program, which is
then compiled by the same C++ compiler that is used to
translate the nonLisp components of HP PE/SolidDesigner.
This approach has several advantages:

> The Lisp compiler can be kept small and simple (only 12,500
noncomment lines of code, less than 5% of the total amount
of Lisp code)

â€¢ The Lisp compiler does not need to be retargeted when
porting to a different machine architecture

â€¢ The Lisp compiler does not need to fully optimize the gener
ated code; this task can be left to the C++ compiler

â€¢ The generated code is fully call and link compatible with the
rest of the system

â€¢ The generated code can be converted to a shared library
and dynamically loaded into a running HP PE/Solid
Designer.

The Lisp compiler is itself written in Lisp. Bootstrapping a
new compiler version is easy because an interpreter is
available.

The calling conventions for compiled Lisp functions are
such that interpreted and compiled functions can transpar
ently call each other. This allows keeping most of the Lisp
code in compiled form, even when using the interpreter to
develop new programs.

Continuing the above example, here is the C++ code that the
Lisp compiler produces for the simplified translated action
routine (reformatted for better readability):

/ / Header f i le dec lar ing s tandard L isp data s t ruc tures and funct ions
/ / (for example, LOBJP is the type of a gener ic pointer- to-L isp-object)

l i n c l ude <cmp inc lude .h>

/ / Dec larat ions for the compi led code (normal ly wr i t ten to a separate f i le ,
/ / i nc luded here fo r c la r i t y)

static void LI (...);
s tat ic void L2ILOBJP*);

s tat ic char *Cstar t ;

static int Csize;
stat ic LOBJP Cdata;
s ta t ic LOBJP W[14) ;

/ / Funct ions def ined in th is f i le

/ / Data for communicat ion wi th the L isp
/ / l o a d e r

/ / Run-t ime L isp objects

October 1995 Hewlett-Packard Journal 71
© Copr. 1949-1998 Hewlett-Packard Co.

s t a t i c v o i d L n k T 1 3 () ; / / L i n k s t o e x t e r n a l L i s p f u n c t i o n s
s ta t i c vo id (*Lnk13) (| = LnkT13 ; / / (see be low fo r an exp lana t ion)
stat ic void LnkT1 1();
stat ic void (*Lnk11)() = LnkT11;
s ta t i c LOBJPLnkTLMO(LOBJP) ;
stat ic LOBJP (*LnkLI10)(LOBJP) = LnkTLIIO;
stat ic LOBJP LnkTLI9(int narg, . . .) ;
stat ic LOBJP (*LnkLI9)(int narg, . . .) = LnkTLIS;
stat ic LOBJP LnkTLI8(LOBJP , LOBJP) ;
stat ic LOBJP (*LnkLI8)(LOBJP , LOBJP) = LnkTLIS;

/ / In i t ia l izat ion funct ion, ca l led immediate ly a f ter the f i le is loaded

vo id example_in i t ia l ize(char *s tar t , in t s ize, LOBJP data)
{

/ / Reserve space on the L isp s tack

r eg i s t e r LOBJP base=vs_ top ;
r eg i s te r LOBJP sup=base+0 ;
vs_top=sup;
vs_check ;

/ / Store data suppl ied by the loader , inc lud ing L isp ob jects
/ / tha t were ex t rac ted f rom the o r ig ina l source code and tha t
/ / wi l l be needed at run- t ime (e.g. , s t r ings and symbols) .

Cstar t=star t ;
Csize=size;
Cdata=data;
se t_W_data(VV,14,data ,s tar t ,s ize) ;

/ /L ink the compi led func t ion "L I " to the L isp symbol s to red in VV[6] ,
/ / w h i c h i s " S I M P L E _ E X I T " .

MFnew(VV[6] , (void(*) ())L1,data) ; / /

/ /Res to re L i sp s tack

vs_ top=vs_base_mod=base ;
}

/ / Compi led func t ion SIMPLE_EXIT

static void L1(...)
{

reg is te r LOBJP*base=vs_base; / / Reserve space on the L isp s tack
reg is te r LOBJP*sup=base+3;
vs_check ;

{ L O B J P V I ; / / F e t c h A R G U M E N T - L I S T f r o m t h e L i s p
/ / s tack

vs_top[0]=Cni l ;
{ LOBJP *p=vs_top;

f o r (

/ / Set up var iables INPUT and FLAG

V1=(base[0](;
vs_top=sup;
{ LOBJP V2;

V2= Cnil;
base[1]=Cni l ;

T 3 : ; / / L a b e l " 1 " Â ¡ n T A G B O D Y
V2=(* (LnkLI8)) ((V1) ,VV[0]) ; / / (GET-PARAMETER ARGUMENT-LIST
Â ¡ f (! (e q u a l ((V 2) , V V [1]))) { / / F i r s t c l a u s e o f C O N D c o n s t r u c t

goto T8;
}
b a s e [1] = C t / / (S E T Q F L A G T)
(v o i d) ((* (L n k L I 9)) (1 , V V [2])) ' A N S W E R - Y E S)
g o t o T 4 ; / / (G O O)

T8:;
Â¡f(!(equal((V2),W[3]))){

gotoT14;
}
base[1]=Cni l ;
(void)((*(LnkLI9))(1,VV[4]));
goto T4;

T14:;
if(((*(LnkLMO))((V2)))==Cnil){

goto T4;
}
base[2]=VV[5] ;
vs_top=(vs_base=base+2)+1;
(void) (*Lnk1 1)();
vs_top=sup;
goto T3;

T4:;
vs_base=vs_top;
L2(base);
vs_top=sup;
base[2]= Cnil;
vs_top=(vs_base=base+2)+1;
return;

/ / Second c lause o f COND const ruc t

/ /(SETQ FLAG NIL)
// (TRIGGER-.. .-EVENT 'ANSWER-NO)
/ / (GOO)
/ / Th i rd c lause o f COND const ruc t

/ / (DISPLAY-ERROR". . . "

/ / (G 0 1)
/ / Label "0" in TAGBODY
/ /Cal l (DO-IT) , passing a pointer to
/ / the lex ica l var iables of SIMPLE_EXIT

/ / Return f rom SIMPLE_EXIT

/ / Compi led local funct ion DO-IT

stat ic void L2(LOBJP*baseO)

reg is ter LOBJP*base=vs_base; / / Reserve space on the L isp s tack
reg is ter LOBJP*sup=base+1;
vs_check;
vs_top=sup;
i f ((b a s e O [1]) = = C n i l) { / / C o n d i t i o n : l e x i c a l v a r i a b l e F L A G

goto T26;

vs_base=vs_top;
(void)(*Lnk13)() ;
return;

T26:;
base[OJ= Cnil;
vs_top=(vs_base=base+0)+1;
return;

/ / (QUIT)

/ /Re tu rn f rom DO- IT

/ / L inks to externa l funct ions. These funct ions are ca l led ind i rect ly , v ia
/ / C++ funct ion po in ters . A t the f i rs t ca l l , the cor responding compi led
/ / funct ion is looked up and stored in the funct ion pointer , thus avoid ing
/ / the L isp ca l l ing overhead on subsequent ca l ls .

s tat ic vo id LnkT13()
{ / / QUIT; ca l led v ia normal L isp ca l l ing convent ions

ca lLor_ l ink (VV[13] , (in t *)&Lnk13) ;
}

stat ic void LnkT11()
{ / / DISPLAY-ERROR; cal led v ia normal L isp cal l ing convent ions

ca lLor_ l ink (VV[11] , (in t *)&Lnk11) ;

72 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

static LOBJP LnkTLIIOILOBJP argO)
{// MATCH-OTHERWISE; declared to take exactly one parameter, which
// can be passed without using the Usp stack.

return(LOBJP)call_fproc(W[10],(int*)&LnkLMO,1,argO);

static LOBJP LnkTLI9(int narg, ...)
{//TRIGGER-ACTION-STATE-TRANSITION-EVENT; declared to take one
//fixed and one optional parameter, which can be passed without using
//the Lisp stack.

va j i s tap ;
va_start(ap, narg);
LOBJP result=(LOBJP)call_vproc(W[9],(int*)&LnkLI9,narg,ap);
va_end(ap);
return result;

}

static LOBJP LnkTLI8(LOBJP argO, LOBJP argl)
{ //GET-PARAMETER; declared to take exactly two parameters, which

// can be passed without using the Lisp stack.

return(LOBJP)callJproc(W[8],(int*)&LnkLI8,2,argO,argl);
}

This example illustrates several important properties of
compiled Lisp code. First, the C++ code still has to access
Lisp data present in the original program; for example, it has
to attach a compiled function to a Lisp symbol naming that
function. Second, parameter passing for Lisp functions is
usually done via a separate stack, but the overhead for this
can be avoided by declaring external functions. In a similar
way (not shown here), the overhead of using Lisp data struc
tures for arithmetic can be avoided by introducing type dec
larations (which are not compulsory as in C++). Third, some
Lisp constructs (e.g., lexical nesting of function definitions)
have no direct C++ equivalent.

Compiling a Lisp program can have quite a dramatic impact
on its performance. HP PE/SolidDesigner takes about one
half to two minutes to start on an HP 9000 Series 700 work
station. If all the Lisp files are loaded in uncompiled form,
start time increases to between one half and one hour.

Conclusion
A large part of HP PE/SolidDesigner is written in Common
Lisp. To the developers, this approach offered a very flex
ible, interactive mode of programming. The finished pro
grams can be compiled to eliminate the speed penalty for
end users.

Common Lisp is also used as a user-accessible extension
language for HP PE/SolidDesigner. It is a standardized, open
programming language, not a proprietary one as in HP
PE/ME10 and PE/ME30, and the developers of HP PE/Solid
Designer believe that this will prove to be an immense
advantage.

References
1. G.L. Steele, Jr., S.E. Fahlman, R.P. Gabriel, D.A Moon, and
D.L. Weinreb, Common Lisp: The Language, Digital Press, 1984.
2. J. of "History of LISP," in R.L. Wexelblat, ed, History of

Programming Languages, ACM Monograph Series, Academic
Press, 1981. (Final published version of the Proceedings of the ACM

SIGPLAN History of Programming Languages Conference, Los
Angeles, California, June 1978.)
3. G.L. Steele, Jr. and R.P. Gabriel, "The Evolution of Lisp," Proceed

ings of the Second ACM SIGPLAN History of Programming Lan

guages Conference, Cambridge, Massachusetts, April 1993.
pp. 231-270.
4. G.L. Steele, Jr., S.E. Fahlman, R.P. Gabriel, D.A Moon,
D.L. Weinreb, D.G. Bobrow, L.G. DeMichiel, S.E. Keene, G.Kiczales,
C. Perdue, K.M. Pitman, R.C. Waters, and J.L. White, Common Lisp:

The Language, Second Edition, Digital Press, 1990.

October 1995 Hewlett-Packard Journal 73
© Copr. 1949-1998 Hewlett-Packard Co.

Boolean Set Operations with Solid
Models
The Boolean engine of HP PE/SolidDesigner applies standard and
nonstandard Boolean set operations to solid models to perform an
impressive variety of machining operations. Parallel calculation boosts
performance, especially with multiprocessor hardware.

by Peter H. Ernst

Machining operations like punch, bore, and others play an
important role in the function set of contemporary CAD sys
tems. In HP PE/SolidDesigner, the impressive variety of ma
chining commands are driven by a single topology engine,
often referred to as the Boolean engine.

It might seem that the algorithm used by the Boolean engine
would be extremely complex and esoteric, and this is indeed
true in some respects. The underlying principles, however,
are simple. l Most of this article demonstrates this by taking
a fairly intuitive look at the internal machinery. This will
provide a road map for the second, more technical part of
the article, in which some key algorithms are explained in
greater depth. Finally, some unusual applications of the
Boolean engine are briefly mentioned.

Different Flavors of Solids
Before exploring the internals of the Boolean engine, let's
take a look at the objects that it works on. These objects are
called solids, or simply bodies. Solids, in our terms, are
mathematical boundary representation (B-Rep) models of
geometric objects. Fig. 1 shows a B-Rep model of a cylinder.

Usually several categories of solids are distinguished based
on their manifold characteristics. For our purposes we just
need to know that manifold solids represent real objects

Fig. 2. A screwdriver representing the class of manufacturable
bodies.

and nonmanifold solids are impossible in some way. Man
ifold bodies are of general interest, since they can be manu
factured. Fig. 2 shows a screwdriver representing the class
of manufacturable bodies.

The class of nonmanifold bodies is the realm of the impossi
ble bodies. These bodies cannot be manufactured because
the material thickness goes to zero (that the thickness goes
to zero is a consequence, not a cause of the nonmanifold-
ness). Nevertheless, they have have some importance as
conceptual abstractions or simplifications of real (manifold)
solids. Nonmanifold solids sometimes are (conveniently)
generated as an intermediate step in the design process.
They are also important to various simulation applications,
and sometimes to finite-element analysis and NC machining.
Fig. 3 shows a selection of nonmanifold bodies. To the left is

Fig. 1. A boundary representation (B-Rep) model of a cylinder.

Fig. zero Bodies that are nonmanufacturable because of (left) zero
thickness in general, (center) zero thickness at edges, and (right)
zero thickness at vertices.

74 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

a sheet, which has zero thickness in general. The middle
solid is edge nonmanifold, having zero thickness at edges,
and the right solid is vertex nonmanifold, having zero thick
ness at vertices.

The Boolean engine in its different guises is used to change
bodies by the rules of Boolean set operations. In other
words, it is able to combine two volumes using one of the
three The operators: subtract, unite, or intersect. The
operation is performed on solids in the same way as on the
sets of mathematical set theory. The effects of the standard
operations on sets and volumes are illustrated in Fig. 4. The
two bodies at the top of the picture are combined in three
ways, using the three standard Boolean operations. The re
sult of each Boolean operation is shown at the bottom.

An Intuitive Approach to the Boolean Engine
Now that we are equipped with the right background, we
can explore the various stages of the Boolean algorithms. To
do this we will use a thought experiment (such experiments
are widely acknowledged as safe and cheap). To perform
this experiment we only need some paint, a sharp knife, and
some imagination.

Coloring. In the first stage both solids participating in the
Boolean operation are filled with different colors, let's say
yellow for one and blue for the other. Fig. 5 shows two bod
ies that have been set up for a Boolean operation and col
ored according to our rule. Let's assume that, unlike real
solids, they can permeate each other without problems.
Since the Boolean operation hasn't been performed yet the
picture still shows two disjoint solids that just happen to
overlap. To show what's going on inside the bodies, the yel
low body has been made transparent.

Now we mark the lines where the two bodies permeate each
other, let's say with red color. The red lines in Fig. 6 are
called the intersection graph. The two solids are still dis
joint.

Fig. 5. Two disjoint solids that happen to overlap.

Making Soap Bubbles â€” Cellular Bodies. In the second stage
we knit both solids together using the intersection graph. A
structure very similar to those formed by soap bubbles is
created, as shown in Fig. 7. The two solids now hang to
gether at the intersection graph. In the space where both
bodies overlap a green color can be seen. This is the mixture
of yellow and blue. To get a better vision of the geometric
situation some faces have been made transparent.

Fig. 4. Results of applying the standard Boolean set operations
to two solid bodies. Fig. 6. Intersection graph (red).

October 1995 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 7. Result of knitting the two bodies together at the intersection
graph. Choosing a Boolean operation is now equivalent to deciding
which colors to keep and which to delete.

Getting Rid of the Wrong Colors. In the third and last stage of
our imaginary process not much is left to do. Up to now we
have not said which kind of Boolean operation (union, sub
traction, or intersection) we wanted. Now is the time to
decide.

To get the desired result we simply pick the appropriate
color and get rid of all volumes of a different color than the
one we picked. Initially we chose two colors â€” blue and yel
low â€” so we will find three colors in our soap bubble cluster:
blue, yellow, and green. In regions where blue and yellow
volumes overlap we get green. The table below shows which
colors will be kept or deleted from the body depending on
the particular type of Boolean operation we choose.

Union
Subtraction
Intersection

Keep
blue and yellow
yellow
green

Delete
green
green and blue
blue and yellow

Easy, isn't it? Pat yourself on the back (and clean up the
mess of paint and chipped-off pieces).

Technical Talk: The Boolean Algorithm
In the preceding example we only had to mark the lines
where the color changes to obtain the intersection graph.
The Boolean engine algorithm that does this is a bit more
complex. To understand it we must again look at the mathe
matical representation of a solid. In Fig. 1 we have seen the
general data structure layout of a cylinder. That sketch,
however, lacks any explicit references to geometry. In HP
PE/SolidDesigner's B-Rep structure, three base classes of
geometries are used: points, curves, and surfaces. The last
two have several subclasses. For example, a curve can be a

76 October 1995 Hewlett-Packard Journal

straight line, circle, ellipse, or spline. In the following discus
sion the geometric subclasses are used for illustration pur
poses, but the Boolean algorithm itself does not depend on
any specific geometry types, since it is implemented in a
generic way.

Each geometry class has a corresponding topological carrier
that puts it into perspective in the context of a solid model.
The table below shows this relationship:

Topology Geometry

V e r t e x * - P o i n t
E d g e Â « - C u r v e
F a c e Â « - S u r f a c e

The topological entities face and edge arc smart carriers
because they not only hold their geometries, but also bound

or trim them. To understand what this means we must real
ize that most geometries are of infinite extent, and even if
they are finite only a small segment might be of interest.

Fig. 8 exemplifies the relationship between topology and
geometry. Looking at the cylinder (sf3), notice that only a
segment of the otherwise infinite cylindrical surface is used.
This segment is called a face (fa3). Likewise, only two circu
lar regions of the otherwise infinite planes sf 1 and sf3 are
used to close the cylinder. The circular regions are face fal
and face fa2. (Note: The top and bottom faces of the cylin
der have been lifted off a bit for better demonstration. The
double yellow edges coincide in reality.)

The concept of trimmed surfaces is essential for the next
section, because it introduces some unexpected complica
tions when constructing the intersection graph.

Constructing the Intersection Graph. Earlier we simply used an
excellent pattern recognizer called the human brain to find
the lines where the color changes. Teaching this ability to a
computer involves a considerable amount of mathematics.

Fig. 9 shows the construction of one segment of an intersec
tion graph (a graph edge). The drawing shows two intersect
ing surfaces sfl and sf2 carrying two faces fal and fa2. To
construct the graph edge (the piece of the intersection track
inside both faces) the following steps are required:

The two unbounded surfaces sfl and sf2 are intersected,
giving the intersection track (track).

sf l (Plane sf2 (Plane)

Fig. 8. An example of the relationship between topology and
geometry. Faces and edges bound or trim their geometries, which
consist of infinite curves and surfaces.

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 9. Construction of one segment of an intersection graph
(a graph edge).

The edges of fal are intersected with surface sf2 to yield the
edge/surface intersection points il and 12. Similarly, the
edges of fa2 are intersected with sf 1 giving the intersection
points i3 and i4.
The intersection points are ordered along the track.
The ordered points are examined for their approach values.

The approach values simply tell if a face is entered or left
when passing a particular point. This information can be
used to deduce the containment of a segment of the inter
section graph with respect to its generating faces. The
approach and containment values for the intersection points
in the previous drawing are:

P o i n t C o n t a i n m e n t w i t h r e s p e c t t o :
A p p r o a c h f a l f a 2

o u t s i d e o u t s i d e

i n s i d e o u t s i d e

i n s i d e i n s i d e

The number of required intersections grows rapidly (qua-
dratically) with the complexity (number of faces) of the
solids. Fortunately the different face/face intersections can
be easily performed in parallel. The algorithm is structured
such that it can create a cascade of threads (a sort of sub-
process). For each pair of faces a subprocess is launched
that splits itself to calculate the surface/surface intersec
tions the the edge/surface intersections in parallel. With the
availability of multiprocessor hardware the advantages of
this algorithmic structure are seen as increased perfor
mance of the Boolean operations.

Imprinting and Coloring. In the intuitive approach, coloring
the faces, that is, determining which pieces are inside or
outside, was no problem because it could easily be seen. On
the machine level other means are required.

Intersection tracks split surfaces and faces into left and
right halves. Additionally, surfaces split space into halves
called half spaces. We can classify each piece of the split
face to a half space with respect to the other surface. This
procedure is demonstrated in Fig. 10.

Classification is done with respect to the surface normals
(colored arrows) of both surfaces (sf 1 and sf2) and the
intersection track.

Unusual Boolean Applications
It is easy to see that the Boolean engine is driving most ma
chining operations. Here are some applications in which it is
not so obvious.

Partial Booleans. Regular Boolean operations attempt to cal
culate all intersection tracks between bodies. In contrast,
partial Boolean operations calculate only one intersection
track. Which one depends on the particular application. One
example of a partial Boolean operation in HP PE/SolidDe-
signer is wrapped into the extrude-to-part command. It fires
a profile defined in a workplane onto a body as shown in
Fig. 11. The picture shows a body and a profile set up for the

outside

outside

inside

outside

The segments of the intersection graph inside both faces are
used to create the graph edge(s) of a particular intersection.
In this example only the segment bounded by i2 and i3 ful
fills this condition.

Parallelism. The complete intersection graph of two bodies is
obtained by pairwise intersection of faces selected from
both solids. The number of required face/face intersections
depends on the number of faces in both solids:

i = nm,

where i is the number of intersections, n is the number of
faces in one body, and m is the number of faces in the other
body.

Ins ide
sf1

Fig. (inside Surfaces split space into halves called half spaces (inside
and outside along surface normals). Each piece of a split surface
can be the as belonging to a half space with respect to the
other surface.

October 1995 Hewlett-Packard Journal 77

© Copr. 1949-1998 Hewlett-Packard Co.

Fighting Inaccuracies: Using Perturbation to Make Boolean Operations Robust

The robustness of Boolean operations between solids is crucial for the usability of
a solid is like HP PE/SolidDesigner. Unfortunately, geometric modeling is
like shoveling sand. With every shovel you pick up a bit of dirt. The numerically
imperfect nature of geometric algorithms can challenge HP PE/SolidDesigner's
Boolean engine with contradictions and inconsistencies. The Boolean engine uses
a perturbation method1 -2 to push the frontier of robustness. This article explains
the notion of model consistency and demonstrates what can go wrong inside a
Boolean operation and what can be done to come up with a correct result anyway.

C o n s i s t e n c y o f a S o l i d

Looking at a solid we usually believe that it is mathematically correct, that is, that
the edges are exactly on their adjacent faces and the edges meet exactly at their
common vertices. In reality, however, the limited floating-point accuracy of a
computer introduces errors. On the microscopic level there are gaps and holes
everywhere (see Fig. 1).

The tolerable amount of erroi is specified by the modeling resolution. The system
will ignore gaps and holes smaller than the resolution. However, some geometric
algorithms, such as the various intersection calculations, tend to magnify errors in

certain geometric configurations. This means that given an input where all errors
are within limits, the result can be inconsistent in the context of the solid and
prohibit the successful completion of the requested Boolean operation.

S o l v i n g t h e N u m e r i c a l P u z z l e

One area in the Boolean operation that is particularly vulnerable to numerical
inconsistencies is the intersection graph construction. The graph construction
assumes that all intersections of curves defined on one of two intersecting sur
faces than also on the intersection track (here the term on means closer than the
resolution). This is no problem if the surfaces are reasonably orthogonal. However,
for intersections between tangential or almost tangential surfaces, a small error in
the orthogonal direction of a surface implies a larger error in the direction of the
surface, and this assumption becomes false.

Fig. and sfl a shallow intersection between the two surfaces sfl and sf2 and the
intersection with sf2 of a curve (cv) contained in sfl . The curve/surface intersec
tion point (small colored triangle) has, because of the small distance (epsilon)
between cv and its containing surface sf 1 , moved farther away from the surface/sur
face permits. track (colored line) than the resolution permits. The smaller the angle
|3 the larger the distance d from the intersection track and hence the larger the
inconsistency.

Fig. faces exactly solid models edges seem to be exactly on their adjacent faces and meet exactly
a t the i r a ver t i ces . In rea l i t y , because o f the l im i ted f loa t ing-po in t accuracy o f a
computer, on the microscopic level there are gaps and holes everywhere.

Fig. sf2 the shallow intersection between the two surfaces sfl and sf2 and the
intersection with sf2 of a curve (cv) contained in sfl.

Fig. 11. A body and a profile set up for an extrude-to-part
operation. To the right is the result of the operation.

extrude-to-part operation. Only the intersection graph where
the extruded profile hits the body is used to build the result.
To the right is the result of the operation.

Usually the extruded profile would exit the body at the bot
tom, producing a second intersection graph.

Reflection of Solids. Another unusual Boolean application is
the reflection of solids at a plane. Fig. 12 shows a body with
a green reflection plane set up. At the right is the result of
the reflect operation.

This operation can be simulated with regular Boolean opera
tions by copying, mirroring, and uniting the left body. How
ever, this would burden the Boolean engine with difficult
tangential intersections. Instead, the reflect command inter
sects the left body with the reflection plane to obtain an
intersection graph which can be used to glue the left body

78 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fortunately, there is a method called perturbation than can come to the rescue in
situations like this. It solves the inconsistency by moving the curve/surface inter
section point along the curve until it is closer than the resolution to the surface/
surface intersection track. In Fig. 2 the point will be moved to the left. When the
intersection point is moved, a new error is introduced because the point is moved
away it sf2. However, the overall error is reduced so that it no longer exceeds
the resolution.

The perturbation method can be applied to similar situations in which even the
number result intersections has to be corrected. The difference in number is a result
the freedom algorithms have below the resolution. They may return anything in
the range of the resolution.

Two Curve /Su r face In te rsec t i on Po in t s w i th One Sur face /Su r face In te r
section Track. Fig. 3 shows a geometric configuration in which the intersection
between sfl and sf2 yields one intersection track (colored line) but the intersec
tion of (colored curve contained Â¡n sf1 with sf2 gives two intersection points (colored
triangles) which are farther than the resolution away from the track. The perturba
tion algorithm moves both points inwards (horizontal arrows) and contracts them

into a single point (black triangle] which is closer than the resolution to the inter
section track (colored line).

Two Su r face /Su r face In te rsec t i on T racks w i th One Curve /Su r face In te r
section Point Fig. 4 shows a geometric configuration in which the intersection
between sf 1 and sf2 yields two intersection tracks (colored lines) but the intersec
tion of (colored curve contained Â¡n sf 1 with sf2 gives one intersection point (colored
triangle) which is farther than the resolution away from the tracks. The perturba
t ion moves spl i ts the single intersection into two and moves them outwards
(horizontal arrows) until both are closer than the resolution to an intersection track
(colored line).

References
1 . H. technique and E. Mucke. "Simulat ion of simplici ty: A technique to cope with degener
ate cases in geometric algorithms," Proceedings of the 4th ACM Symposium on Computational
Geometry. June 1988, pp. 118-133.
2. C. perturbation theorem," "A geometric consistency theorem for a symbolic perturbation theorem," ibid.
pp. 134-142.

Fig. between yields geometric configuration in which the intersection between sfl and sf2 yields
one intersection track (colored line) but the intersection of the curve contained in sfl
w i th s f2 the two in tersect ion po in ts (co lored t r iang les) which are far ther than the
resolut ion away from the track.

Fig. between yields geometric configuration in which the intersection between sfl and s(2 yields
two intersection tracks (colored l ines) but the intersection of the curve contained in sfl
wi th sf2 resolu one intersect ion point (colored tr iangle) which is farther than the resolu
t ion away from the t racks.

Fig. 12. A body with a green reflection plane set up and, at right,
the result of the reflect operation.

and its mirrored copy together. The intersection with the
mirror plane is nicely orthogonal and relatively easy to per
form compared to the tangential intersections.

Acknowledgments
The development of the Boolean algorithms involved many
people. Special thanks to former kernel development team
members Hermann Kellerman and Steve Hull and project
manager Ernst Gschwind.

Reference
1. M. Mantyla, An Introduction to Solid Modeling, Computer
Science Press.

October 1995 Hewlett-Packard Journal 79
© Copr. 1949-1998 Hewlett-Packard Co.

A Microwave Receiver for Wide
Bandwidth Signals
The HP 71910A wide-bandwidth receiver extends modular spectrum
analyzer operation for more effective measurements on modern
communications and radar signals.

by Robert J. Armantrout

The microwave spectrum analyzer is an invaluable instru
ment for making measurements on signals with frequencies
ranging from 100 Hz to 110 GHz with a variety of modulation
formats. The spectrum analyzer is primarily a tool for the
frequency domain. The measurements for which it excels
are those in which the signal parameters of interest are
accessible in this domain.

For the most part, these measurements are made in a test
environment, in which the signals usually originate from a
signal source or from the device under test and where a
physical connection is made to the spectrum analyzer with
coaxial cable. In this environment, there is usually a high
degree of knowledge about the signals present and the num
ber of signals that must be characterized. Also, there is often
some control over the power level of the signals present.
The spectrum analyzer is normally used in swept mode. The
emphasis is on the fundamental signal parameters, not on
the information content present in the modulation.

Microwave spectrum analyzers are also used in the opera
tional environment. In contrast to the test environment, the
signal or signals of interest in the operational environment
usually come out of the air rather than from a device under
test. This means that the spectrum analyzer is connected to
an antenna rather than to a device under test. Another con
trast to the test environment is the number of signals pres
ent at the input to the antenna. Depending on the frequency
coverage of the antenna or antennas used, the number of
signals present can number in the hundreds or even thou
sands. In the operational environment the emphasis is on

searching for signals of interest and extracting the informa
tion content of those signals. The information can have
many forms including voice, video, or data. To extract this
information, it is necessary to tune to the signal of interest
with a bandwidth comparable to the signal's bandwidth and
apply the correct demodulation.

Although the spectrum analyzer plays a major role in signal
searching, it has not gained acceptance outside this role
because of the limitations discussed below. Rather than the
spectrum analyzer, a microwave receiver is normally used to
perform the down-conversion and demodulation of wide-
bandwidth microwave signals.

Bandwidth Limitations. One of the most predominant trends
in modern microwave signals is the move toward wider
bandwidths. This trend has been growing since the
mid-1970s as satellite communications developed and radars
began employing a form of spread spectrum known as chirp.

The trend continues to be evident in all areas of satellite and
terrestrial microwave communications. Signal bandwidths
of 30 MHz or more are typical. Furthermore, various forms
of spread spectrum, such as frequency hopping or direct
sequence, whether used for multipath mitigation, noise im
munity, lower power density, or increased security, have led
to increased bandwidths for otherwise narrowband signals.

For such signals, the bandwidth that is adequate for spec
trum display or parametric measurements may not be suffi
cient to preserve the information content of the signal for
demodulation.

Fig. 1. (left) HP 71910A receiver,
(right) HP 71910A Option Oil
(a display module like the one at
right may be added).

80 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Frequency-Domain Limitations. In addition to having wider
bandwidth, many modem microwave signals employ more
complex modulation formats such as PSK (phase-shift key
ing) and QAM (quadrature amplitude modulation). Paramet
ric measurements made in the frequency domain are not
adequate to characterize these complex signals fully. Mod
ern microwave signals can also have characteristics that
vary during the sweep of a conventional microwave spec
trum analyzer, making accurate characterization difficult.
Finally, pulsed, bursted, gated, and time division multiplexed
signals all have characteristics and information that are dif
ficult if not impossible to extract in the frequency domain.

Amplitude-only Limitations. Because the traditional spectrum
analyzer employs an envelope detector, it provides only sca
lar information, and phase information is lost. Since much of
the information in modern complex signals is conveyed
with phase shifts or variations, this limitation is signifi
cant.

Solutions
All three of the spectrum analyzer limitations mentioned
above have been recognized and have led to the develop
ment of new types of instruments such as modulation-
domain analyzers1 and vector signal analyzers.2 Although
these instruments can aid greatly in the analysis of a com
plex signal, they do not operate at microwave frequencies
and are not well-suited for direct connection to an antenna
as required in an operational environment.

The HP 71910A wide-bandwidth receiver (Fig. 1) combines
the attributes of a microwave receiver with the strengths of
a microwave spectrum analyzer. The spectrum analyzer
strengths include wide frequency coverage, synthesized
1-Hz tuning, excellent phase noise, and amplitude accuracy.
The microwave receiver attributes include wider IF band-
widths and demodulation.

The HP 71910A provides easy interfacing to vector signal
analyzers and modulation-domain analyzers and extends the
measurement capability of these instruments into the micro
wave frequency range. Finally, the HP 719 10A provides
standard connection to commercial communications de
modulator products.

provides microwave receiver operation only. The rest
of this article will focus on the HP 71910A Option Oil
configuration.

Receiver Hardware
A block diagram of the HP 71910A Option Oil is shown in
Fig. 2.The optional preamp module provides improved sensi
tivity and includes an internal bypass switch. The HP
70900B LO module provides the local oscillator and
300-MHz reference signals to the HP 70910A RF module. The
HP 70900B also provides the firmware control of the mod
ules that make up the HP 71910A. For operation as a spec
trum analyzer or a receiver, the HP 71910A modules are
slaves to the HP 70900B. The HP 70910A RF module pro
vides microwave preselection and frequency conversion to a
321.4-MHz IF output, which provides the input to the HP
70911 A module.

RF Module. The HP 70910A RF module was developed to
provide wide bandwidths in the front end of the receiver.
Aspects of the design important for microwave receiver
operation include:
Increased-bandwidth YTF (YIG-tuned filter) preselector
Preselector bypass
Mixer microcircuit for improved sensitivity
Programmable gain at 321.4-MHz IF output.

The partial block diagram of the HP 70910A RF module in
Fig. 3 shows four signal paths. The first is the low-band
path, which is used for frequencies up to 2.9 GHz. There are
two microwave paths, preselected or bypassed, which can
operate from 2.7 GHz to 26.5 GHz. Finally, there is an IF
input for use with external mixers covering from 26.5 GHz
to 110 GHz (millimeter-wave frequencies).

The minimum bandwidth of the microwave preselector in
previous spectrum analyzer designs ranged from 25 to
30 MHz. The design goal of the HP 70910A was to improve
the minimum bandwidth of the YTF to at least 36 MHz. This
was accomplished by modifying the doping profile of the
YIG spheres used in the YTF. A YTF bypass path is included
to allow unpreselected operation when appropriate. When in
bypass, the bandwidth of the microwave path is much wider
than the bandwidth of the preselector. In addition, the group

Description
The HP 71910A is an MMS (Modular Measurement System)
product which includes a new IF module, the HP 709 11 A,
and a new revision of system firmware. The firmware revi
sion permits operation of the HP 7091 1A with an existing
microwave spectrum analyzer, the HP 71209A Option 001,
and provides improved performance for signal searching
(see the firmware description on page 84). The HP 7091 1A,
which is described on page 89, provides the functions usu
ally associated with a microwave receiver, including IF
bandwidths from 10 to 100 MHz and pulse detection. The HP
70911 A also offers options for FM demodulation, 70-MHz IF
output, and 70-MHz channel filters. Another feature not
found in other microwave receivers is the I-Q output option.

The two most common configurations of the HP 71910A
operate over the frequency range of 100 Hz to 26.5 GHz. The
standard HP 71910A (Fig. 1, left) provides both microwave
spectrum analyzer and microwave receiver operation. An
alternate configuration, Option Oil (Fig. 1, right),

1 0 0 H z t o R F
26.5 GHz

HP 70620B
Preamp
Module

(Optional)

RF

HP 70910A
RF Module

HP70911A
IF Module

3 0 0 M H z

HP 70900B
LO Module

F M I
,-Q
7 0 M H z j

Wideband
Video

Optional

Narrowband
Video

Fig. 2. A simplified block diagram of the main components of
the HP 71910 Option Oil receiver.

October 1995 Hewlett-Packard Journal 81
© Copr. 1949-1998 Hewlett-Packard Co.

100-Hz-to-2.9-GHzPath

2.9 GHz 3.6 GHz

321 .4MHz

321.4 MHz IF
Out (to HP
70911AIF
Module}

- 2.7-GHz-to-26.5-GHz Path -
Fig. 3. A partial block diagram of
the HP 709 10A RF module.

delay performance is improved when the preselector is by
passed.

The preamp-mixer microcircuit following the preselector
improves sensitivity in two ways. First, the preamp compen
sates for the loss of the YTF while retaining acceptable in-
termodulation performance. Second, the mixer design takes
advantage of a special diode configuration to minimize con
version loss in the harmonic-mixing bands.

The final 321.4-MHz block is the programmable-gain ampli
fier. The purpose of this amplifier is to maintain a constant
gain from the RF input to the 321.4-MHz IF output as a func
tion of frequency. The gain is set based on lookup table val
ues determined during final test.

IF Module. The design goals for the HP 70911A IF module
included:

â€¢ 100-MHz bandwidth variable in 10% steps
â€¢ 70-dB gain in accurate 10-dB steps
â€¢ Pulse detector for 10-ns pulses
â€¢ 70-MHz IF output
â€¢: FM demodulator.

Variable bandwidths and accurate gain are standard in spec
trum analyzers, but typically at center frequencies of 3 MHz
or 21.4 MHz. In the HP 7091 1A all variable gains and
bandwidths are centered at 321.4 MHz. The higher center
frequency and the higher fractional bandwidth presented
significant design challenges.

An envelope detector for AM and pulse detection is also
standard in spectrum analyzers, but in the HP 70911 A de
sign we had to accept a 321.4-MHz input and have band
width consistent with recovering 10-ns wide pulses.

Wide-bandwidth FM signals are common in both satellite
and terrestrial microwave communications. For this reason,
wideband FM demodulation, not found in spectrum analyz
ers, was an important design goal in the HP 709 11 A.

Within the communications industry, 70 MHz is a standard
IF frequency. Most commercial communication demodula
tors accept 70-MHz inputs. For this reason, a 70-MHz IF out
put was considered essential for interfacing to demodula
tors for formats other than wideband AM or FM.

321.4
M H z Var iable

Gain and
Bandwidth

Calibration
Attenuator
and Linear

Detector

Option
Control

3 2 1 . 4 M H z

FM
Discriminator

I-Q
Down-Converter

Wideband Video Output

70-MHz
Output

FM Output

I Output

Q Output
Fig. 4. The major functional blocks
that make up the HP 70911 A IF
module.

82 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4 shows the major functional blocks that make up the
HP 7091 1A. The variable gain and bandwidth block includes
a bandpass filter with bandwidth that varies from 10 to
100 MHz with DAC control. The filter is a five-pole synchro
nously tuned design. The gain consists of seven stages of
step gains interspersed with the poles of the filter.

The calibration attenuator and linear detector block in
cludes a precision attenuator with 15-dB range and an enve
lope detector with 100-MHz bandwidth. The detector is fol
lowed by video gain and level control.

Several optional functions can be added for expanded re
ceiver capability. These plug into an option card cage and
are controlled over a common internal bus.

FM Discriminator. This block includes a delay line discrimina
tor with excellent linearity and a maximum bandwidth of
40 MHz. Two sensitivity positions, 10 MHz/V and 40 MHz/V,
can be selected.

70-MHz Down-Converter. This block consists of a down-con
version path and a fractional-N synthesized local oscillator.
The tuning range of the LO provides, with a change of out
put filter, 140-MHz and 160-MHz IF outputs.

Channel Filters. The standard IF bandwidths are of the syn
chronously tuned class and provide very good response for
pulses but lack the shape factor desired for communication
signals. The channel filters provide a selection of five six-
pole Chebyshev filters centered at 70 MHz for use as prefil-
ters for the communication demodulators.

I-Q Down-Converter. This block provides I and Q baseband
outputs with a 50-MHz bandwidth for each output. The local
oscillator for the down-conversion is synthesized and the
design is the same as that used for the 70-MHz output.

A more detailed discussion of the design and implementa
tion of the HP 7091 1A is given on page 89.

Receiver Bandwidth Improvements
The increase in bandwidth for the HP 71910A is dependent
on the frequency band selected. The receiver bandwidth,
which depends on the bandwidth of both the RF and the IF
modules, ranges from 36 MHz to 100 MHz. The RF band
width of the low-band path is set to 48 MHz minimum by the
bandpass filter in the 3.6-GHz second IF. In the preselected
microwave path, the bandwidth of the RF module ranges
from 36 MHz to 60 MHz over the 2.7-GHz-to-26.5-GHz fre
quency range. However, when the preselector is bypassed
the bandwidth of the microwave path approaches 200 MHz.
Finally, when using external mixers for frequencies above
26.5 GHz, the bandwidth of the RF path will be set by the
mixers, but is at least 200 MHz. The resulting receiver band
width for each path is summarized in Table I.

T a b l e I
H P 7 1 9 1 O A R e c e i v e r B a n d w i d t h s

Receiver Operation
To simplify the HP 71910As operation as a microwave re
ceiver, a personality downloadable program was created.
This program, which is loaded into the HP 70900B LO mod
ule, presents the user with the display shown in Fig 5. This
screen provides information to assist the user in establishing
the correct gain through the receiver when other processors,
instruments, or demodulators are connected at the outputs.
The RF/IF Gain annotation shows the total gain from the RF
input to the 70-MHz IF output. It accounts for fixed or vari
able gain and attenuation in both the RF and the IF modules.

In addition to calculating and displaying gain through the
receiver, the receiver personality extends the gain resolution
available to the user. In normal spectrum analyzer opera
tion, the IF gain resolution is 10 dB. However, for the HP
7091 1A IF module, the personality combines the 10-dB reso
lution of the step gains with the 1-dB resolution of the inter
nal calibration attenuator to provide 1-dB gain setting reso
lution over a 70-dB range.

The receiver personality also provides control of the op
tional receiver functions such as FM, I-Q, and channel filter
ing. This partitioning from the basic firmware control of the
HP 70911 A was made to allow for adding options in the
future without the need for a firmware revision.

In addition to providing an interface for manual control, the
receiver personality card also provides a programming inter
face for automatic operation. After the receiver personality
is loaded and initialized, control extensions appear as
additional programming commands not present in the basic
firmware.

Microwave Vector Signal Analysis
As mentioned earlier, vector signal analyzers have baseband
processing capabilities which when used with RF or micro
wave down-converters permit a more complete character
ization of wide-bandwidth signals.

The I-Q down-conversion option of the HP 71910A was
designed specifically for use with other HP digitizers and
oscilloscopes. This option can also be used with a dual-

R e c e i v e r M a d e I D Â £

Freq

BU

C a i n

D e i . n o

Mise

Help
On O f f

Ret urn
U 5 / f l

F r e q : 5 . 0 1 9 3 7 5 G H z
IF w. MH?

R F / I F C a i n : 1 0 d B
I F C a i n : J B d B
R F R H e n : I B d B

S i g L v l l a v g) : - 3 3 . 7 8 d B .

D e * o d ; F M N 6 O f f s e t : ? B H 8

M l

PULSf.

F U N B

FM UB

]Q

f i u p l v s T i n g

Fig. 5. The user interface screen provided by the HP 71910A
rcrrivpr personality. The shaded area above is the time-domain
display of an FM signal.

October 1995 Hewlett-Packard Journal 83
© Copr. 1949-1998 Hewlett-Packard Co.

channel vector signal analyzer such as the HP 89410A to
extend both the measurement bandwidth and the frequency
range of vector signal analysis. This configuration is shown
in Fig 6. A special processing mode and careful attention to
calibration are required for this configuration. The HP 89410A
and vector signal analysis are briefly described on page 87.

Applications
Although much of the early definition work on the HP
71910A focused on radar applications, the attention in later
phases of the design shifted to microwave communications.
For example, in satellite communications, which requires
extensive prelaunch testing, postlaunch qualification, and
periodic quality monitoring of live traffic after commission
ing, the HP 71910A has much to offer.

The large investment necessary to launch a modern commu
nications satellite makes it imperative to test the satellite
and the satellite payloads thoroughly during development
and manufacturing and just before launching (called high-bay
testing). The number of tests required to fully characterize
performance combined with aggressive launch schedules
make testing throughput a major consideration.

One of the most time-intensive measurements is spurious
testing. This is because of the complexity of satellites and
the nature of the measurements taken using the typical
spectrum analyzer approach. Sweeping a spectrum analyzer
over the full transponder band with the narrow resolution
bandwidth necessary for spurious testing leads to very slow
sweep times and therefore very long measurement times.

Fortunately, vector signal analyzers such as the HP 894 10A
have much faster sweep times for the resolution bandwidths
of 1 kHz or less, which are used for spurious (spur) test
ing. By connecting the I-Q outputs of the HP 7191ÃœA to the
two input channels of the HP 894 10A as shown in Fig. 6, it is
possible to perform rapid spur search over a 20-MHz span.
Repeating this process by step tuning the HP 71910A over all
the satellite bands provides nearly a xlO improvement in
spur search speed over sweeping the spectrum analyzer
with the same bandwidth over the same frequency range.

Once it satellite is commissioned and carrying live traffic, it
is important to maintain the quality of the signals since fail
ure to do so can lead to reduced revenues. One important
measurement is the total power of the down link. The total

Firmware Design for Wide-Bandwidth IF Support and Improved Measurement Speed

The addition of a wideband linear IF module to a Modular Measurement System
(MMS) spectrum analyzer presented two main challenges to the firmware: provid
ing sufficient operational speed and adding new features and operations. The
concern over operational speed was heightened by the fact that many of the
applications targeted by this product required speed similar to that obtained by
instruments that did not have to account for either software calibration or
modularity.

Operational Speed
The challenges associated with operational speed involved finding a way to apply
calibration in near real time and efficient handling of incoming data and temporary
variables.

Calibrated Operation. To obtain calibrated data from an MMS spectrum ana
lyzer, the trace data point obtained from the ADC must be corrected using the
appropriate calibration data. This needs to be done as close to real time as pos
sible correc the lag between the incoming raw data and the completion of the correc
tion retrace will quickly become the dominant factor in the retrace dead time.

The particular calibration data that must be applied and the algorithms that must
be used the apply it are dependent upon the currently active signal 'path of the
instrument. This can change as the user selects different IF bandwidths, different
ADCs, be so on. This situation is complicated further by the desire to be able to
do trace math (such as calculating the difference of the active trace and a base
line needs as the data is received. Finally, the trace data needs to be sent to the
remote display (if one is active) as the processing is completed. All of these com
plications exist even without a linear IF module.

If a conventional program is used to apply the per-point calibration, the time to
perform the necessary number of conditional tests would overwhelm the actual
calculation times. An alternative approach has been used since the beginning by
the MMS each analyzers. Instead of performing the conditional tests for each
data perform an efficient state machine constructs a program to perform the neces
sary done for the current instrument state. This is done by properly combin
ing machine code program fragments. The construction of this program (known as
the RAM program) is properly synchronized with the appropriate state changes
and trace operations.

During table execution of the RAM program, calibration and interpolation table
addresses and calibration constants are stored in the CPU registers whenever
possible. A preloaded register set is prepared at the same time that the RAM
program is constructed. If the RAM program catches up with the incoming data
stream, the process running the RAM program can swap out to allow other opera
tions to occur. By keeping all the necessary data in the CPU registers, this swap
ping occurs quickly.

To account for a linear IF module, various additions to the RAM program were
required. Previously, all IF modules supported by the system were log IF modules.
Since section, data calibration occurs after the signal has traversed the IF section, it
made sense to keep almost all of the correction factors in dB. This has the addi
tional apply of allowing simple addition and subtraction to be used to apply
the calibration data. Further simplification is achieved by storing the correction
factors as 16-bit, fixed-point values. A scaling factor of 100 is used. For example,
a value of 10.34 dB would be stored as 1034.

With incoming addition of a linear IF module, the assumption of logged incoming data
was no longer valid. The main alternatives were either to rework the RAM pro
gram to be able to handle linear data (including the need to do multiplication and
division instead of simply addition and subtraction) or to translate the incoming
linear at to log data (preinterpolation). The latter approach is much quicker at
performing the calculations, but it also has the potential for a loss of accuracy.
However, with the ADCs currently supported by the MMS spectrum analyzer, both
the accuracy and the range are limited by the ADC, not by an initial interpolation.
Thus, the preinterpolation approach was taken.

Later experimentation showed that, with the reference level set properly, a
38.5-dB range could be achieved with the required accuracy. This was sufficient
for the intended use of the product. When a display of linear voltage or power is
desired, a table lookup and postinterpolation is performed toward the end of the
RAM program.

Hardware Caches. At fast (short) sweep times, even the RAM program, running
on a 20-MHz MC68020, is not fast enough to keep up with the incoming data
stream. At this point, the data is buffered for the RAM program to process when
it can. in the fastest sweep times, the data acquisition loop is actually locked in

84 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

power may come from one wideband carrier or it may be
the sum of hundreds of narrowband carriers. In either case,
the instantaneous power over the full transponder band
width is desired. Using swept spectrum analyzer techniques
for this measurement can limit speed and degrade accuracy.
However, when the channel filters option of the HP 71910A
is used with the HP 70100A power meter module, a single
accurate power measurement of the full transponder band
width, or individual measurements of carriers with specified
standard bandwidths, can be performed (see Fig. 7).

Terrestrial microwave communications is an application that
involves wide-bandwidth signals with complex modulation
schemes. For monitoring microwave link performance, the
HP 71910A offers an optional 70-MHz IF output for connec
tion to products that can demodulate these complex modu
lations. This feature might be used for assessing the BER
(bit error rate) performance of the communications link.
The BER performance of the HP 71910A was characterized
during development. The results of those measurements are
shown in Fig 8.

20MHz

HP 7191 OA Wide-
Bandwidth Receiver

Fig. 6. The HP 71910A configured with the HP 89410A vector
signal analyzer.

Other aspects of link performance are often assessed using
a constellation display. The I-Q output option of the HP
71910A can be used to display the signal constellation on an
oscilloscope (see Fig. 9).

Although swept spectrum analyzers have been used for
characterization of radar signals for many years, the trend
toward narrow pulses and intrapulse modulations have limited
their usefulness primarily to spectrum displays. By connecting
the HP 71910A outputs to high-speed oscilloscopes it is pos
sible to extract much more information about the radar.

the MC68020 instruction cache to minimize memory accesses for this time-critical
operation.

Software Caches. In addition to the hardware cache built into the MC68020,
the MMS appropri analyzer firmware makes use of software caches as appropri
ate. Because of the modular nature of the instrument, a change of state can
impose a heavy calculation burden. This burden must be borne by an affordable
CPU.

Detailed timing and analysis of the operation of the instrument revealed several
intensive calculations that could be identified by a minimal number of internal
state ap These variables are used as tags for software caches. This ap
proach saves 60 ms or more for some common state change operations. Use of
these caches was integrated with the RAM program so that a register could ac
cess the cache data directly, avoiding costly data copying.

Further performance improvements were realized by recognizing situations in
which a before might need to be redone because of further user inputs before
a data calculation is performed. In such cases, if it is possible, calculation is
delayed.

A d d i t i o n a l A d a p t a t i o n s f o r a W i d e b a n d L i n e a r I F

Adding more features and operations to the MMS spectrum analyzer involved
advertising the capabilities of the IF module to the analyzer and preselector cen
tering.

Configuration Support. In addition to the changes to the RAM program, the
main for routing algorithms had to be enhanced to account for the linear IF
module. to the MMS spectrum analyzer, all modules advertise their capabilities to
the control module via an ASCII capability string. This machine readable string is
effectively a logical block diagram of the module, including all inputs, outputs, and
switching capabilities. Some of the elements of this model are named so that the
control module can properly manipulate the hardware via a standardized command
language.

The addition of support for a linear IF module required minimal additions to the
capability string language. Most of the components of the module had already
been modeled. Support for an additional value to an existing option flag was the
only thing required.

Preselector Centering. The wideband IF module presented an additional
difficulty with preselected systems. With a narrowband IF, the tuning of the
preselector is done via peaking. In peaking a test signal is injected into the system
and the preselector hardware is tuned to provide a maximum response. This
approach does not work for a wideband IF module, since the peak of the passband
may not IF near the center. Hence, using preselector peaking with a wideband IF
module could easily result in a substantially reduced available signal bandwidth.

The proper approach for adjusting a preselector to work with a wideband IF mod
ule is to center the filter based upon a user-configurable signal delta value (typi
cally sketches dB). Centering occurs in three main stages. First, a coarse search sketches
the shape of the curve and identifies where to search for the peak value. Next, a
fine similar identifies the actual peak. Both of these steps are similar to what
occurs final preselector peaking, except that coarse values are saved. The final
step involves fine searches in the areas of the curve that correspond to the user-
specified delta from the peak value. In all searches, an appropriate amount of
overlap is used since the curve might not be locally monotonic.

The initial implementation worked correctly, but test users sometimes complained
that The preselector still wasn't being centered correctly. The typical situation
was that a user had a band-limited signal path that had not been previously con
nected the a narrowband spectrum analyzer. Thus, the user was not aware that the
signal path was the problem.

The solution to this situation is to display the centering graphically as it occurs.
All of the coarse and fine points are plotted so that the user can see what is
happening. In addition, the user can examine and change the selected centering
setting.

C o n c l u s i o n
By using the techniques described above, we were able to add support for a
wideband linear IF module into the MMS spectrum analyzer family and achieve
speed functionality matches or even exceeds that of instruments with less functionality
and configurability.

Thomas A. Rice
Development Engineer
Microwave Instruments Division

October 1995 Hewlett-Packard Journal 85

© Copr. 1949-1998 Hewlett-Packard Co.

HP 71910A Wide-
Bandwidth Receiver

H P 7 0 1 0 0 A /
M M S P o w e r /

Meterâ€”7

Channel Filter Option

7 0 M H z

Chebyshev
Filters

7 0 M H z

Fig. 7. The HP 71910A channel
filters configured with an
HP 70100A power meter to
measure transponder bandwidth.

Test System Baseline
HP 7191 OA at 4 GHz

l'W", .2.'Â«", STOP

1 5 2 0 2 5 3 0 3 5

(Energy/Bio/Noise Power Spectral Density
40

-Â¥" ;; >

Fig. for Results of a 64 QAM 150-Mbit/s bit error rate (HER) test for
the HP 71910A.

Fig. 9. A 16-QAM constellation plot from an HP 54600A oscillo
scope, captured using the I-Q option of the HP 71910A.

86 October 1995 Hewlett-Packard Journal

i © Copr. 1949-1998 Hewlett-Packard Co.

The HP 89400 Series Vector Signal Analyzers

The HP 89400 Series vector signal analyzers are designed specifically for today's
complex signals. They provide insight into a signal's time-domain, frequency-
domain, and modulation-domain characteristics. The HP 89440A and HP 89441 A
analyzers are limited in frequency coverage to 1.8 GHz and 2 65 GHz respectively.
Both information limited to a 7-MHz information bandwidth, where the information band
width is the widest-bandwidth signal that can be analyzed without any loss of
information. The HP 71910A microwave spectrum analyzer and HP 89410A vector
signal analyzer can be used together to obtain frequency coverage to microwave
frequencies and information bandwidths to 20 MHz.

By itself, the HP 8941 OA Â¡s considered to be a two-channel baseband analyzer.
Each operating channel incorporates an anti-alias filter, an ADC operating at a
25.6-MHz sample rate, and dedicated hardware to perform digital signal process
ing. Normally, these channels are used independently. However, when used with a
quadrature down-converter, such as the HP 7091 1 A Option 004, the in-phase (I)
and quadrature-phase (Q) signals from the down-converter are each connected to
an input channel on the vector signal analyzer where they are digitized and then
recombined into a single complex signal of the form l+jd. Fig. 1 shows an example
of the measurements obtained when the HP89410Aand HP 70911 A are used
together. Although the I and Q signals are each limited to 10-MHz bandwidth by
the analyzer's anti-alias filters, the combined complex signal has a bandwidth of
20 MHz.

Complex Signals
In any system where the I and Q signals are analog, the accuracy of the system
and its the range will be limited by the orthogonality of the signals and by the
match mea the I and Q signal paths. Calibration routines can be used to mea
sure and improve system performance (see Fig. 2). The system errors observed
during elec are reduced using both hardware adjustments (performed elec
tronically) and digital signal processing techniques. Table I lists the system errors
and the action taken to reduce the effects of the errors.

A program has been developed that performs the system calibration and provides
some with of instrument control. This program Â¡s compatible with the HP 8941 OA's
HP Instrument BASIC Option IC2, eliminating the need for an external controller.

Bibliography
1 . Extending Vector Signal Analysis to 26. 5 GHi with 20-MHz Information Bandwidth,
Publication Number 5964-3586E, Hewlett-Packard, 1995.

TRflCE fl: Ch1+jCh2 Spectrun

I -Eye

200
n

/ d i v

A
Start : -1 syiÂ·i S t o p : ! s y i Â · i

Fig. 1. The upper trace shows the spectrum of a QPSK signal operating a! 10 MBits/s. The
lower trace is the eye diagram obtained using the HP 89410A's optional digital demodulator.

TRACE A: D1 Spect rum
A Offset

LogMag

IQdB/d iv

-53.638 dB

Center: 0 Hz

T R A C E B : C h H j C h 2 S p e c t r u m
B O f f s e t 4 0 0 0 0 0 0 H z

Span: 20 MHz

-57 .84 dB

- 6
dBm

LogMag

tOdB/d iv

- 1 0 6
dBm

Center: 0 Hz Span: 20 MHz

Fig. signals calibra upper trace shows the spectrum computed using the I-Q signals without calibra
tion Only lower trace is the same spectrum after calibration. Only the largest component
should be present. After calibration the spectral line (center) caused by residual dc on I and
Q Â¡s substantially reduced. The large spectral component has an image to the right of the
center. This image, which has also been reduced in amplitude, is caused by channel
m i s m a t c h . /

Table I
Summary of Analyzer System Errors

and Methods to Reduce Them

Method Used to Reduce Error
Vector Signal

by Robert T. Cutler
Development Engineer
Lake Stevens Instrument Division

October 1995 Hewlett-Packard Journal 87
© Copr. 1949-1998 Hewlett-Packard Co.

Screen

Heasur e

Mark
r J set jffiQi cl) Ã­ 7,] 06 na

page

1 of ?
M9Jn limebase; 10.0 ns/div

Trigger Level: -208,888

(a) (b)

Fig. high-speed Connecting the outputs of the HP 71910A to an HP 70703A high-speed oscilloscope enables the capture and display of much
information from a radar signal, (a) A narrow 20-ns pulse, (b) An FM chirp.

Fig. 10a shows a narrow pulse produced by using the video
output of the HP 70910A, and Fig. lOb shows an intrapulse
chirp produced by using the FM output of the microwave
receiver.

A c k n o w l e d g m e n t s

The author would especially like to thank John Fisher for
his initial management of the project and for his support and
guidance throughout. Others who made significant contribu
tions to the project include: Ed Barich for project manage
ment and preamp-mixer microcircuit design on the HP
70910A, Mark Coomes for project management and design
of the system firmware, Bill Walkowski for his efforts on

market research and product definition, and Nancy McNeil
who developed the receiver personality downloadable pro
gram. Finally, the author would like to thank the entire
management team for their patience and support during
development.

R e f e r e n c e s
1. M. Behav "Characterization of Time Varying Frequency Behav
ior Using Continuous Measurement Technology," Hewlett-Packard

Journal, Vol. 40, no. 1, February 1989, pp. 6-12.
2. K. Measure et al., "Vector Signal Analyzers for Difficult Measure
ments on Time-Varying and Complex Modulated Signals," Hewlett-

Packard Journal, Vol. 44, no. 6, December 1993, pp. 6-30.

88 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

An IF Module for Wide-Bandwidth
Signals
The HP 7091 1 A IF module provides the HP 71 91 OA receiver with wideband
demodulation and variable bandwidths up to 100 MHz, while maintaining
the gain accuracy of a spectrum analyzer.

by Robert J. Armantrout, Terrence R. Noe, Christopher E. Stewart, and Leonard M. Weber

The HP 7091 1A IF module provides much of the new func
tionality present in the HP 71910A microwave receiver.
From the start, the primary design goal of the HP 7091 1A
was to overcome the 3-MHz IF bandwidth limitation of exist
ing Modular Measurement System (MMS) spectrum analyz
ers. At a minimum, we wanted a tenfold increase in band
width, but really hoped to achieve 100 MHz. Although
bandwidth was the major design focus, several other goals
were also important, including:

1 Accurate gain
1 Variable bandwidths
1 Pulse detection
1 Direct connection to demodulators
1 FM demodulation
1 I-Q down-conversion.

Of these goals only the first three are usually considered in
spectrum analyzer IF design. The others were based on the
need to better address the more complex signals employed
in modern communication and radar systems.

Given the range of bandwidths required, previous spectrum
analyzer IF design work has concentrated on center fre
quencies of 3 or 21.4 MHz. Obtaining the accuracy and sta
bility of both gain and bandwidth required even at these IF
frequencies has always been challenging. While there are a
number of well-understood design alternatives and ap
proaches available for 21.4-MHz and 3-MHz IFs, they did not
exist for the 321.4-MHz center frequency chosen for the HP
7091 1A. Because of this some degradation of accuracy and
stability was anticipated, and the design team was anxious
to minimize any such degradation.

Fortunately, advances in both components and fabrication
techniques were underway that were applicable to the
needs of the project. The increasing availability of wide-
bandwidth RF components in surface mount packages and
the growing internal repertoire of surface mount manufac
turing expertise suggested that the performance goals could
be achieved without the need for internal microcircuit
developments.

The resulting design makes extensive use of surface mount
technology to achieve the goal of 100-MHz bandwidth at the
321.4-MHz center frequency while maintaining the excellent
gain accuracy and stability expected of spectrum analyzers.
In addition, optional down-conversion and demodulation

features extend the utility for wide-bandwidth signals with
complex modulations.

Fig. 1 shows the major internal functional blocks that make
up the HP 70911 A. A detailed discussion of the design con
siderations for these blocks is given below. Note that the
module is partitioned into standard and option sections. An
option cardcage, similar to that offered in the HP 859xE
Series spectrum analyzers, provides a standard interface for
all options.

Variable-Bandwidth Design
The following discussion is divided into three parts. The first
part gives some background about the design of variable-
bandwidth filters. The second part describes an alternative
design that was considered and proven for 1-MHz-to-
10-Mllz bandwidths, but not included in the final product
release. The final part discusses the design of the 10-MHz-
t o-100-MHz bandwidths of the HP 709 11 A.

Background. To serve as background material for describing
variable-bandwidth filter design, the design approach used
in the HP 70903A IF module is described here. The HP
70903A was the predecessor of the HP 70911A and used the
synchronously tuned class of filters.

Synchronously tuned filters consist of several poles with the
same center frequency and Q with buffering between the
stages. There are several advantages to using this particular
topology, foremost being the excellent pulse response of
these filters. This response allows for fast sweep speeds on
a spectrum analyzer. Since we are trying to create a continu
ously is bandwidth over a large adjustment range, it is
also important to have a filter that can be easily adjusted.
Synchronously tuned filters are easy to tune and are tolerant
of a slight misalignment in different stages. Also, unlike
other bandpass topologies, the Q of each stage is less than
the final required filter Q.

To make these stages variable-bandwidth, a series resis
tance is added to reduce the Q of each of the individual
stages. The individual stages look like the circuit in Fig. 2.
The bandwidth of this circuit is given by the following
equation:

t Here Q is filter quality factor, not quadrature as in I-Q modulation.

Orlobri l!P!i:, Hnvlrtl Packard Journal 89
© Copr. 1949-1998 Hewlett-Packard Co.

321.4
M H z
Input

Step Gains
O t o 4 0 d B

IF Bandwidths
10 to 100 MHz

5 Poles

Step Gains
OtoSOdB

Option
Control

Calibration
Attenuator
O t o l S d B

Option
Section

321.4
M H z

Envelope
Detector

Video Band-
widths 10 kHz

to 100 MHz

Video
Output

70-MHz Output

Fig. 1. Block diagram of the HP 7091 1A IF module.

where Rp is the equivalent parallel resistance across the
tank circuit and Rs is the series Q-reducing resistance. By
adjusting Rs, the bandwidth can be adjusted continuously.
Rp is the combination of the input impedance of the buffer
stage and the equivalent parallel resistance of the tank
circuit.

By cascading several of these individual stages, a synchro
nously tuned filter with the desired bandwidth can be
created. The equation for the bandwidth of an n-stage syn
chronously tuned niter is:

BWtotal = BWS 2 Â ¿ -

The typical HP spectrum analyzer has four or five stages in a
synchronously tuned filter, which results in individual stage
bandwidths of 2.3 to 2.6 times the overall filter bandwidth.

To implement a continuously variable synchronously tuned
filter, the series resistance is created by using p-i-n diodes as
variable resistors. The p-i-n diodes used are optimized as
current-controlled RF resistors. The RF resistance varies
with forward bias current according to the following rela
tionship:

Ampli f ier Ampl i f ier

where a and b are constants and I is the forward bias cur
rent in the diode.

This resistance characteristic holds for frequencies above
the low-frequency limit, which is set by the minority carrier
lifetime of the p-i-n device. Below that frequency the devices
behave like ordinary p-n junction devices and rectify the
signal. This results in distortion effects that can limit the
dynamic range of the filter. The recommended operating
frequency is ten times the low-frequency limit, which is
given by the following equation:

f min = 2 nr

where T is the carrier lifetime. To minimize the distortion
effects from rectification, often several p-i-n diodes are used
in series to minimize the signal voltage across each individ
ual diode (see Fig. 3).

This topology depends on a low impedance driving the p-i-n
diodes and a high impedance buffering the tank circuit.
Typically an FET buffer amplifier is used as the amplifier at
the output of each stage because of its high input imped
ance. Care must be taken in the design of this amplifier to
avoid distortion problems caused by the large signal voltage
across the tank circuit. Keeping the nonlinear junction
capacitance of the FET buffer amplifier small compared to

Ampli f ier

Fig. 2. RLC tank circuit with a series resistance (Rs) for adjustment.
This filter. represents one stage of a synchronously tuned filter.

Fig. 3. RLC tank circuit with p-i-n diodes in place of a series
resistance.

90 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

the capacitance of the overall tank circuit minimizes these
distortion effects.

Adjusting the current in the p-i-n diodes can provide contin
uously variable bandwidths over a large range. Usually a
digital-to-analog converter (DAC) is used to control the cur
rent in the p-i-n diodes and allow for setting different band-
widths.

This method of varying the bandwidth of the filters works
very well with one slight problem. The series resistance in
combination with the parallel resistance across the tank
circuit creates a voltage divider. Varying the series imped
ance into the tank circuit not only changes the filter band
width, but also changes the loss through the filter as well.
This amplitude change is an undesirable side effect. Several
methods have been used to compensate for this change in
amplitude.

One of the methods that has been patented by Hewlett-
Packard uses feed-forward compensation (see Fig. 4). This
method has several advantages over previous schemes that
rely on feedback for amplitude compensation. The idea is to
sum the proper signal at the output node to offset the drop
across the series resistance element.

By summing a properly scaled version of the input signal
back into the output node with a compensation resistor Rc,
the voltage drop across Rs can be canceled. By setting
K = 1+Rc/Rp, the voltage at the output node is always equal
to Vjn, independent of Rs.

Since Rp is determined by the Q of the tank circuit and the
input impedance of the FET buffer amplifier, it does not
vary with bandwidth. Thus Rc can be adjusted for each pole
of the filter to compensate for amplitude variations. Varia
tions in Rp over temperature can be compensated by using a
thermistor in the Rc circuit to cancel their effect.

Summing a scaled version of V^ into the output node with
out introducing significant amounts of noise and distortion
is accomplished in some HP IF circuits with a transformer
circuit. By adding a primary winding to the tank inductor a
transformer is created with a one-to-four turns ratio (Fig. 5).
This sets the value of K to be four and determines the value
of Rc for a given Rp as: Rc = 3Rp. Using a transformer with a
one-to-four turns ratio yields an impedance transformation
of 1 to 16. Thus, a resistor on the primary side of the trans
former looks like 16 times the resistance from the secondary
side. Feeding the primary side of the circuit from VÂ¡n
through a compensation resistor requires a resistance of:

Rc = 3Rp/16-

Cascading several of these stages together implements a
synchronously tuned filter that has a continuously variable
bandwidth and no change in amplitude.

i l if ier

Fig. circuit. Topology for a feed-forward amplitude compensation circuit.

Fig. 5. Feed-forward amplitude compensated RLC tank circuit.

The HP 70903A uses four of the stages shown in Fig. 5 to
implement bandpass filters with bandwidths adjustable from
100 kHz to 3 MHz at a center frequency of 21.4 MHz.

Design for 1-MHz-to-10-MHz Bandwidths. In the HP 70911AIF
module we originally wanted to have continuously variable
bandwidths down to 1 MHz at a center frequency of 321.4
MHz. This required an overall Q of 321.4. Even with several
cascaded stages in a synchronously tuned configuration, the
individual poles still required a loaded Q greater than 120.
To achieve a loaded Q this high requires a device that be
haves as a resonant circuit with a much higher unloaded Q.
At a center frequency of 321.4 MHz there are very few
choices of resonators that can achieve a Q this high. Given
the size constraints of fitting on a PC board inside an MMS
module, the possible solutions to this design problem were
limited.

Some of the traditional choices for high-Q resonators in this
frequency range include helical resonators and transmission
line resonators. The size of either of these choices was the
biggest obstacle to their use in the HP 70911 A module.
A new resonator technology was found that met all of the
constraints. This resonator is a quarter-wavelength shorted
coaxial transmission line formed from a high-dielectric-
constant ceramic material. The dielectric constant of the
ceramic is approximately 90.5, which yields a length of less
than 1 inch at 321.4 MHz for a quarter-wavelength resonator.
The coaxial resonators are formed with a square outer con
ductor 0.238 inch on a side and a circular inner conductor of
0.095-inch diameter. These dimensions are small enough to
mount four of these resonators on a single printed circuit
board with the appropriate circuitry to create a four-pole
synchronously tuned filter. The unloaded Q of these ceramic
coaxial resonators at 321.4 MHz is around 220.

A shorted transmission line (TiJ behaves like a parallel RLC
resonant circuit at a center frequency corresponding to a
quarter wavelength of line. An equivalent RLC lumped-ele
ment model for this circuit can be calculated by matching
the slope of the reactance change with the frequency of the
transmission line circuit at resonance to an equivalent RLC
circuit (Fig. 6). The equivalent parallel resistance can be
calculated from the Q of the resonator.

To implement a synchronously tuned filter all of the stages
need to be aligned to exactly the same center frequency. By
adding an adjustable capacitance in parallel with the
shorted transmission line the stages can be pulled into align
ment with the center frequency. This requires that the
resonant frequency of the resonator be higher than the final
required center frequency because the added parallel capac
itance will lower the resonant frequency.

October 1995 Hewlett-Packard Journal 91
© Copr. 1949-1998 Hewlett-Packard Co.

c =
Resonator

T L â € ¢ X / 4 T 1
I

4 Z n Q

Fig. 6. Equivalent circuit for a ceramic resonator.

The resonator chosen for the HP 70911 A investigation was
cut to a length that corresponded to approximately 360 MHz
so that it could be pulled into alignment at 321.4 MHz. Using
varactor diodes for the parallel capacitance allows the align
ment of all of the center frequencies using a DAC under
automated computer control.

For a square transmission line with a round center conduc
tor the characteristic impedance of the line can he approxi
mated by the following formula: 1

Z,, ^ l n [l . 079 j] ohms

where w is the width of the square transmission line, d is the
diameter of the coaxial element center conductor, and er is
the relative permittivity of the dielectric.

From the dimensions given above for coaxial resonators, ZQ
is calculated to be approximately 6.3 ohms. Using the formu
las given for R, L, and C in Fig. 6, the equivalent circuit of
the resonator looks like Fig. 7.

To implement a four-pole synchronously tuned filter, the
final Q of each stage needs to be 140 to meet the final de
sired bandwidth of 1 MHz. This implies a total parallel equiv
alent resistance of 1004 ohms. Since the resonator parallel
resistance is only 1765 ohms, the total impedance of the
circuit that buffers each stage must be greater than 2327
ohms. It is a challenging design task to generate a buffer
stage with that high an impedance at a frequency of
321.4 MHz. To attain a maximum bandwidth of 10 MHz the
equivalent parallel resistance needs to be 100.4 ohms.

The circuit topology used for the 10-MHz to 100-MHz band-
widths, which is discussed in the next section, worked well
at the lower Q levels, but was unable to provide the high
impedance necessary for the minimum bandwidth of 1 MHz.
To attain the high impedance needed, a GaAs FET buffer
stage is used across the resonator (see Fig. 8). The driver
stage is a common-base configuration so the output imped
ance level can be set high enough to be stepped up by a
tapped-capacitor transformer circuit, which is similar to the
10-MHz-to-lOO-MHz bandwidth circuit. The varactor diodes
used to vary the capacitive taps have a tuning range of ap
proximately 10 to 1.

1 7 6 5 O h m s 3 . 5 5 n H 5 5 , p F

F E T B u f f e r

Fig. 8. Resonator with circuitry for bandwidth and center frequency
tuning.

For a tapped-capacitor transformer the effective turns ratio
is given by: N = CyC(+ 1. The impedance ratio varies with
N2. This impedance ratio provides the required bandwidth
range but there is a drawback. The tapped-capacitor trans
former also steps up the signal voltage at the input of the
FET amplifier. This leads to distortion problems. The solu
tion was to step the voltage back down with a fixed-ratio
tapped-capacitor transformer (see Fig. 9). This keeps the
voltage at the FET down to a level that keeps the distortion
within allowable limits.

Varying Q and Cj, can set the desired bandwidth from
2.3 MHz to 23 MHz for each pole. Cc is used to adjust the
center frequency to 321.4 MHz for each pole. Since the effec
tive capacitance across the resonator changes as the tap
capacitors are varied, the center frequency needs to be re
adjusted as the bandwidth is varied. This is accomplished
with varactor diodes driven by DACs and a lookup table
containing the appropriate voltage settings for each band
width in 10% increments over the entire range of band-
widths. Cascading four of these stages as a synchronously
tuned bandpass filter yields an overall bandwidth of 1 MHz
to 10 MHz.

Design for 10 MHz-to-100-MHz Bandwidths. The dynamic range
limitations of the resolution bandwidth filter design ap
proaches described above meant that they would not work
for the HP 709 11A. A different approach was needed. A syn
chronous type of filter was still desired because synchro
nous filters have low group delay variation. This is a require
ment for good pulse fidelity, which was one of the goals for
the HP 709 11 A. A five-resonator synchronous filter was cho
sen for the shape factor requirements and the range of band
width desired. These are two conflicting requirements
because, unlike other filter types, increasing the number of
resonators in a synchronous filter decreases the required Q
of the individual resonators. For the required maximum

FET Buffer

Fig. circuit. Circuit values for the ceramic resonator's equivalent circuit.
Fig. 9. 1-MHz-to- 10-MHz bandwidth filter stage.

92 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

bandwidth of 100 MHz at a resonant frequency of 321.4 MHz.
the fractional bandwidth of the composite filter is over 3096,
and with five resonators, each tank would have a fractional
bandwidth of over 80% of its center frequency.

A variable resonator with low insertion loss and low distor
tion was needed. Existing variable-bandwidth filters
changed the Q of the resonator by varying its load resis
tance. For a five-resonator synchronous filter

Qsection â€” Qoverall x Â»2 ' â€” 1.

For the 10-MHz bandwidth.

Qsection = (321.4/10) X > 2 > > - 1 = 12.39,

and for the 100-MHz bandwidth,

Qso(,km = (321.4/100) x ,21/5- 1 = 1.24.

For a single resonator, the bandwidth would be 26 MHz for
the composite filter to have a 10-MHz bandwidth and 260
MHz for a 100-MHz setting. That means that a parallel reso
nator with an impedance of about 35 ohms at resonance
would need to see a parallel resistance of between 45 and
450 ohms.

One of the ways the Q was changed in previous variable-
bandwidth filters was to change the loading on the resona
tor with p-i-n diodes. A current source drove a series of p-i-n
diodes connected to the top node of the resonator, which
was connected to a high-impedance amplifier.

This is a good solution since p-i-n diodes act like inexpen
s i v e i n c o n t r o l l a b l e R F r e s i s t o r s . D i s t o r t i o n i n
p-i-n diodes can be reduced by putting a lot of them in series
and using the same bias current. This method was tried but
there was a problem. For the narrow bandwidths, a large RF
voltage is present at the top node of the resonator. When
this voltage is applied to the gate of a FET or the base of a
bipolar junction transistor, the junction capacitance is var
ied by the RF voltage, causing distortion. At 21.4-MHz or
3-MIIz center frequencies where this scheme has been used,
the change in impedance because of this parasitic varactor
is not significant. At 321.4 MHz the degradation in the third-
order intercept is too great given the aggressive goals of the
HP 7091 1A.

It seemed wise at 321.4 MHz to avoid high impedances, high
RF voltages, and noise-figure-degrading p-i-n diodes. Trans
forming our characteristic impedance of 50 ohms up and
then down using reactive transformations would allow us to
avoid high-impedance amplifiers and p-i-n diodes. A capaci-
tive transformer could be implemented with varactors to
give us the desired continuous bandwidth variation. How
ever, reference texts suggest that capacitive transformers
should be used in cases where the resonators are only oper
ated up to 20% bandwidth. In the HP 7091 1 A, the resonators
need to operate up to 81% bandwidth. It seemed like there
was little hope of getting this scheme to work, but it, was
tried anyway.

With this topology the only place that there would be high
RF voltages is at the top node of the resonator. Since there
were going to be varactors at that node, there was concern
about distortion. This was solved by putting the varactor
diodes in a back-to-back configuration so that there would

Fig. 10. Resonator for 10-MHz-to-lOO-MHz bandwidth. The
variable capacitors are varactor diodes.

be some cancellation of the effect of the RF voltage (see
Fig. in In this circuit, when the upper varactor increases in
capacitance because of a positive swing of the RF voltage,
the lower varactor decreases its capacitance, canceling out
the change. Thus, the distortion problem was minimized.

The main effect of trying for over 80% bandwidth with ca-
pacitive taps is a nonideal filter shape (Fig. 11). At the wider
bandwidth settings the upper tap capacitors are much larger
than the lower tap capacitors. The circuit resembles a high-
pass filter and doesn't have the ideal resonator rejection
above resonance. This can be compensated by adding series
inductors that will resonate with the upper tap capacitors
(Fig. 12). The bandwidth of these outer resonators is high
enough for the maximum bandwidth desired. As the main
resonator bandwidth is decreased the outer resonator shifts
up in frequency because the upper tap capacitance1 de
creases. This shift does not cause trouble since the outer
resonator has a bandwidth that is high regardless of the tap
setting because of its 50-ohm loading on one port and vari
able loading on the other port.

The main resonator impedance was chosen to be 35 ohms at
resonance so that for the widest bandwidths the Q-reducing
resistance required was greater than 25 ohms (50 ohms at
the input in parallel with 50 ohms at the output). Once that

-10 .0

71.4 571.4

Tapped
Ideal
With Series L

Fig. 11. The iinniileal filler shape lluÃ¯t results from iisinM eapacitanee

In ;ie|lieve uve]' .SI)";, kilnhvidth.

October l!l!irÂ¡ Hewlett I'arkmil Journal 93
© Copr. 1949-1998 Hewlett-Packard Co.

Fig. that Resonator compensated by adding series inductors that
will resonate with the upper tap capacitors.

was decided, the values for L and C were easy to calculate.
One of the complications of using the tapped capacitors is
that the equivalent capacitance in shunt with the tank induc
tor changes with the bandwidth. This problem is solved by
using DACs to control the voltages of all the varactors. A lot
of calibration ROM space is required to support this circuit
topology. All five resonator circuits have the lower and up
per tap varactors ganged together (see Fig. 13). The shunt
tank capacitors are connected to separate DAC outputs al
lowing independent control of the center frequency of each
resonator.

The resonator circuit shown in Fig. 13 is used in the HP
709 11 A. The insertion loss for this circuit is less than 6 dB
for the 26-MHz setting and about 1 dB at 260-MHz band
width. The third-order intercept point is about +29 dBm re
ferred to the output for all settings. Group delay variation is

less than half a nanosecond in wide mode and about 3 ns for
the narrow-bandwidth setting.

Accurate Gain
The gain accuracy of the HP 7091 1A IF module depends on
the gain of the seven step gains and the five filter poles and
the accuracy of the calibration attenuator. How gain accu
racy is achieved in each of these elements is discussed
below.

Calibration Attenuator. The calibration attenuator is used dur
ing self-calibration of the HP 71910A receiver. The customer
performs receiver self-calibration periodically to ensure that
the receiver meets all of its specifications. This procedure
measures and corrects several aspects of receiver perfor
mance. Among other things, it measures the gain of the step
gain and attenuator stages and measures and corrects dis
played linearity errors in the linear detector.

Since the calibration attenuator is used as a reference stan
dard against which other parts of the receiver are measured,
it is essential that the attenuator yield accurate and stable
gain over the receiver's specified 0-to-55Â°C operating tem
perature range. Over this range, and over the attenuator's
O-dB-to-13-dB attenuation range, accuracy is guaranteed
within 0.3 dB at 321.4 MHz.

At these frequencies, variable attenuators are traditionally
designed using semiconductors with bias dependent resis
tivity. Examples would be p-i-n diodes with a current depen
dent resistance or GaAs FETs with a resistance that depends
on gate voltage. Unfortunately, these types of attenuators do
not demonstrate the required temperature stability. For this
reason, the calibration attenuator was designed as a series

2 2 0 0 p f 1 7 . 5 n H

â€”

*DAC Inputs
' U p p e r T a p * L o w e r T a p

Fig. the Circuitry for one pole of the IF bandwidth filter showing the upper and lower tap varactors ganged together.

94 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

8 d B 4dB 2dB

VAâ€” o

0 . 2 5 d B 0 . 1 2 d B 0.06 dB 0 . 0 3 d B

of fixed switchable attenuator sections (Fig. 14). The 1-dB
through 8-dB attenuator stages are pi attenuators made with
surface mount thick-film resistors. The 0.25-dB through
0.03-dB attenuator stages could not be designed as pi attenu
ators because the resistance values required for these very
low attenuation values would not be achievable at 321.4
MHz.

Instead of trying to figure out a way to build a 0.03-dB atten
uator, we built a 6-dB tee attenuator with an attenuation we
could vary slightly. This was done by changing the resis
tance of the shunt element of the 6-dB attenuator. By switch
ing around small resistors in series with much larger ones,
very small attenuation steps can be realized. Changing only
the shunt element in this attenuator does cause the attenua
tor's return loss to vary across its 0.5-dB attenuation range,
but this effect is small enough to be acceptable.

With standard 1% tolerance resistors, the attenuation accu
racy of this circuit will not be exact enough without align
ment. During alignment of the HP 7091 1A, each 1-dB calibra
tion attenuator step is measured and corrected to the
desired value by turning on the appropriate combination of
small attenuator steps. This alignment data is then stored in
EEPROM.

Step Gains. The purpose of step gains is to substitute a
known fixed gain ahead of the detector to enable accurate
measurement of low-level signals. The ideal step gain has a
0-dB gain state and a 10-dB gain state. The implementation
in the HP 7091 1A is shown in Fig. 15. The 0-dB (bypass) path
actually has approximately 2 dB of loss, while the 10-dB
(gain) path has approximately an 8-dB gain. The goal of the
circuit is to make the gain difference between the 0-dB and
10-dB states exactly 10 dB. The variable attenuator in the
gain path allows the gain to be trimmed to achieve this accu
rate gain difference. During alignment the DAC values re
quired to trim the gain are determined for each of the step
gains from measurements made at 0, 25, and 55Â°C. These
DAC values are stored in EEPROM tables which are con
sulted by the module firmware during operation. As men-
lionod above, the calibration attenuator is used during cali
bration to measure the actual gain step value. In addition,
because the calibration attenuator is accurate to within

Fig. 14. The calibration attenuator
is designed as a series of switch-
able attenuator sections.

0.3 dB, it can be used in conjunction with the step gain to
provide accurate 1-dB gain steps over most of the 70-dB gain
range.

Filter Pole Gain. As discussed above, bandwidth variation is
obtained with a controlled variation of the Q of the filter
pole. Because of this, the gain of the filter pole also varies
with bandwidth. It is necessary to compensate for this gain
variation if the module gain is to be accurate for all band-
widths. Since bandwidths are in 10% steps (10, 11, 12.1, ...),
there are a finite number of bandwidths for which gain com
pensation is required. Associated with each filter pole is a
programmable gain block (see Fig. 16). This gain block is
used to provide the necessary gain compensation. The DAC
values for this compensation are determined during align
ment and stored in EEPROM tables, which are consulted by
the firmware each time the bandwidth is changed.

In addition to controlling the nominal gain of the filter pole
these programmable gain blocks also play a role in tempera
ture compensation of the overall gain of the module. Gain
drift with temperature is most troublesome during warmup.
For this reason, the temperature of the module is monitored
during warmup and the temperature value is used to adjust
the gain to keep the output levels relatively constant. The
warmup period is defined as the first hour after the module

OdB

Ã³
â€¢4
Q

1 0 d B k '
D A C C o n t r o l

Fig. 15. A block dirÃ­an! of the step gains in the Hi' 709 11 A.

October 1995 Hewlett-Packard .Journal 95
© Copr. 1949-1998 Hewlett-Packard Co.

DAC Control

Fig. 16. A representation of a programmable gain block.

is powered on. During this period the temperature is mea
sured once per minute and the rate of change is used to de
termine the size of the gain adjustment required. After the
warmup period, the gain is stable for small changes in tem
perature so this compensation mechanism is disabled.

The module firmware orchestrates gain changes based on
sampling a temperature sensor voltage with an ADC. The
ADC values are used to calculate the gain change based on
the following equation:

(V l - V n) G p

V 5 5 - V n

where Vt is the voltage representation for the current tem
perature, Vn and Vr,5 represent the voltage values for 25 and
55Â°C respectively, and Gp is the peak gain change between
25 and 55Â°C for each bandwidth. Gp is determined during
alignment.

The gain change calculated is used to index into an
EEPROM table to determine the DAC value necessary to
achieve the desired gain. The DAC-value-versus-gain rela
tionship is determined and stored during factory alignment.

Pulse Detection
The linear detector allows the receiver's user to recover AM
and pulse modulation from the input signal. It strips the car
rier from the input signal and leaves only the envelope
(Fig. 17). The resulting envelope information can then be
displayed on an oscilloscope, allowing the user to analyze
the modulation or transient characteristics of the input
signal.

The key performance specifications for the detector are
bandwidth, dynamic range, and pulse fidelity. We would like
the detector bandwidth to be much wider than the IF mod
ule's bandpass filters so that it does not limit the IF module's

bandwidth. The bandpass filters have a maximum band
width of 100 MHz, which is equivalent to 50 MHz after detec
tion. The detector is guaranteed to have at least twice this
bandwidth, or 100 MHz. Dynamic range is a measure of the
linearity of the detector. This is measured by changing the
input RF voltage in 1-dB steps and measuring the resulting
change in the dc output voltage. Ideally, it should also
change by 1 dB. Our specification guarantees that over a
26-dB range, this change will be accurate within 3%.

Previous linear detectors in HP spectrum analyzers have
achieved this performance, but at much lower IF frequen
cies of 10.7 or 21.4 MHz. Achieving this performance at
321.4 MHz was the most challenging aspect of this design.
A schematic of this circuit is shown in Fig. 18. Q 1 is a
common-base buffer stage that drives Q2, which is the de
tector transistor. Q2 and CR1 each act as half-wave rectifi
ers. Positive half cycles of Ql's output current flow through
CR1 to ground. Negative half cycles flow through Q2's emit
ter and collector and develop a voltage across Rl, the load
resistor.

The fundamental linearity problem is that the input imped
ance of Q2 varies dramatically with signal level. With no
input signal, Q2 is biased at 120 uA. This yields a dc resis
tance looking into the emitter of 217 ohms. At full-scale out
put, the dc emitter current is 10 mA, reducing the resistance
to 2.6 ohms. This load resistance is in parallel with several
parasitic loads (Fig. 19). Among these parasitic loads are
Ql's output capacitance, Ql's collector bias network, the
parasitic capacitance of the printed circuit board, and the
capacitance of Q2's base-emitter junction. At high signal
levels, Q2's input resistance is low, and essentially all of Ql's
output current is delivered to the desired load. At low signal
levels, Q2's input resistance is high, and the parasitic ele
ments tend to shunt current away from the desired load.
This variable current shunting degrades the linearity, so
good linearity requires that these parasitic elements load the
circuit as little as possible.

(a) [bl

Fig. linear (a) Inpul lo the linear detector, (b) Output from the linear
detector after the carrier is stripped off.

Fig. 18. Linear detector circuit.

96 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

r

I
01

Ã T
â€” Cboard

Fig. 19. Linear detector equivalent circuit.

Ql's output capacitance is minimized by using a common
base configuration. Also, a microwave transistor is used
because of its low capacitance. The load impedance of the
collector bias network is maximized by careful design of the
bias network. The printed circuit board layout is also
carefully designed to make nodal capacitance as small as
possible without sacrificing manufacturability.

The selection of the right transistor for Q2 was perhaps the
most critical component of the design. We needed to use a
microwave transistor to get the low junction capacitance we
wanted. We needed two things from this transistor: a low
base-emitter capacitance and, if possible, a capacitance that
decreases linearly with decreasing collector current. We
wanted this relationship between capacitance and current
because if capacitance decreases linearly with current, then
that capacitance will not degrade the detector's linearity.
This is because the junction's capacitive reactance will in
crease as its resistance increases, and the fraction of current
"stolen" by the capacitor will not vary with signal level.
Since this shunting effect is independent of signal level, it
will not degrade linearity.

It rarely happens, but sometimes semiconductor physics
dec-ides to give you just what you'd like. This is one of those
cases. To a first-order approximation the base-emitter ca
pacitance of a bipolar transistor is linearly proportional to
bias current, at least at moderate current levels. Even better,
we could easily extract this information from a transistor's
data sheet curves. Low base-emitter capacitance is roughly
equivalent to high fr (transition frequency). A capacitance
proportional to bias current will reveal itself as a curve of fp
that is flat versus bias current. Theory suggests, and experi
ment demonstrated, that the best detector transistors are
1 1 lose that have a high and relatively constant fr-over their
entire operating current range. Unfortunately, most micro
wave transistor data sheets do not give fr curves over the

100:1 range of bias currents that we wanted. Fortunately for
us, we have a lot of data books and found some microwave
transistors that met our needs. As expected, the transistors
with the best f 7 curves yielded the most linear detectors.
Typical linearity error for the detector we selected is shown
in Fig. 20.

The detector's output current flows across Rl. generating a
1-volt drop at the maximum input level. Since the other end
of Rl is tied to the 8-volt supply, it is necessary to use a dif
ferential amplifier to reference the signal to ground. A sim
pler approach would have been to tie Rl to ground instead
of +8 volts and to tie CRl's cathode to -8 volts. This would
have eliminated the need for a differential amplifier. But this
would have made it difficult to achieve good pulse fidelity.

Achieving good pulse performance can be hard even with
nominally linear circuits, but it is particularly difficult to do
with inherently nonlinear ones like detectors. These circuits
can exhibit overshoot, droop, or both on any time scale
(microseconds to seconds) if their bias networks are not
designed correctly. If the bias networks exhibit significant
impedance at virtually any frequency below hundreds of
MHz, the bias voltages in the detector can vary with the
input signal, causing imperfections in the detector transient
response. For this reason it seemed risky to try to build a
good enough bypass network that could have presented
CRTs cathode with uniformly low impedance across a broad
frequency range. Rather than accept this risk, we chose to
ground CRTs cathode and accept the complexity of a differ
ential amplifier to recover the detected voltage.

The differential amplifier is integrated with a low-pass filter
that removes the 321.4-MHz component from the half-wave
rectified voltage across Rl. This is an elliptic low-pass filter
with a 200-MHz corner frequency. Even though elliptic filters
have notoriously poor pulse response, we can use one here.
We can do this because of the bandwidth limitation imposed
on the input signal by the IF module's bandpass filters. The
elliptic filter's bandwidth is four times higher than the effec
tive postdetection bandwidth of the IF module's resolution
bandwidth filters. Since these filters prevent the higher-
frequency components from reaching the elliptic filter, only
very low levels of ringing are observed in the detected out
put. We were able to demonstrate this by simulating the
pulse response of the resolution bandwidth filters cascaded
with an elliptic detector filter. As a result, we avoided the

20.00 T

12.00

-4 .00

-12.00

-20.00
-42.00 -32.00 - 2 2 . 0 0 - 1 2 . 0 0

Inpu t Power (dB)

-2 .00 R.D

Fig. 20. I letector

October 1995 Hewlett-Packard Journal 97
© Copr. 1949-1998 Hewlett-Packard Co.

need for a more complex full-wave rectifier with its inherent
carrier suppression.

Standard IF Outputs
For direct connection to commercial demodulators a
70-MHz or 140-MHz IF output is required. The HP 7091 1A
offers either or both of these outputs as options.

A simplified block diagram for these options is shown in
Fig. 21. Both down-converters use the 321.4-MHz local oscil
lator circuits (described later). This design has a VCO tuning
range sufficient for both down-converters. The LO frequency
for the 70-MHz down-converter is 391.4 MHz and the LO
frequency for the 140-MHz down-converter is 461.4 MHz.
These LO signals are applied to a mixer which has some
buffering in front of it and is followed by an optional filter
and an amplifier. Image rejection filtering is not part of the
design since it is assumed thai, the vanable-bandwidth filters
are in the upstream path. The output filter is used to confine
the output bandwidth to a specified amount.

The same basic design is used for both down-converters.
The key difference is that in the 140-MHz design a pad fol
lows the mixer, whereas in the 70-MHz design there is a
diplexer at the mixer output, which provides a good out-of-
band impedance match. The 70-MHz design has also been
made available as a special option for the HP 859XE Series
spectrum analyzers.

Channel Filters
The channel filters option provides an electronically switch-
able bank of five bandpass filters and variable gain that can
be used at 70-MHz, 140-MHz, or 160-MHz center frequencies.

The input of the board goes to each filter cell through a
series of GaAs switches and well-isolated stripline 50-ohm
printed circuit board traces. The cells are large enough for a
standard-size printed circuit board-mounted filter. The ma
chined aluminum shield has pockets on the bottom to keep
the signal pins of the filter isolated from each other. There is
also a through path available for bypassing the filters. After
the switching network, there is a p-i-n diode attenuator that
allows continuous electronic amplitude control. Next, there
is a high-dynamic-range, wide-bandwidth amplifier. The am
plifier also provides temperature compensation for the gain
of the board. The compensation is done by using a thermistor

to vary the current in a p-i-n diode which varies the emitter
degeneration impedance with temperature.

The excellent isolation, wide bandwidth, and variable gain
make the channel filters a flexible option for any of the
standard IF outputs.

FM Outputs
The FM discriminator generates an output voltage that is
linearly proportional to the frequency of the input signal. It
is used to demodulate wideband frequency modulated sig
nals such as those found in satellite television links or chirp
radars.

The key performance specification for the FM discriminator
is linearity. Ideally, the frequency-input-to-voltage-output
transfer function should be a straight line. Our goal was to
make the maximum error from a straight line less than 1% of
the full-scale output across the 40-MHz deviation range of
the demodulator. The techniques used in this design were
driven primarily by that goal.

Many different types of circuits have been designed to do
FM demodulation. There are Foster-Seely discriminators,
ratio detectors, phase-locked and frequency-locked demodu
lators, and slope detectors. Digital techniques, which count
the zero crossings of the input signal and extract the fre
quency information mathematically, offer the promise of
the highest linearity. These techniques are used in the
HP 5371A,2 the HP 53301A, and other modulation-domain
analyzers from Hewlett-Packard. Although they achieve ex
cellent linearity, these products are large and expensive and
certainly would not fit on a single 4-inch-by- 7-inch card in
the HP 70911 A. For these reasons, it was necessary to pur
sue a different approach.

Two analog demodulators seemed to offer the best potential
for high linearity across a broad band: a pulse count demod
ulator and a time-delay discriminator. A pulse count demod
ulator (Fig. 22) generates a fixed-length output pulse at
every zero crossing of the input signal. Since higher-fre
quency signals have more zero crossings, the output pulses
occur more frequently. As a result, the dc average value of
the output pulse train is higher for higher-frequency inputs.
The low-pass filter placed after the pulse generator filters

321 .4MHz

3 0 0 M H z

7 0 M H z

3 2 1 . 4 M H z

3 0 0 M H z

Bandpass
Filter 1 4 0 M H z

461 .4MHz Fig. 21. Simplified block diagram of the
output options for direct connection to
commercial demodulators, (a) 70-MHz
IF output, (b) 140-MHz IF output.

98 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

FM Out

Fig. 22. Pulse count discriminator.

out the carrier frequency component of the pulse train, leav
ing a dc value linearly proportional to the input frequency.
This linear conversion of input frequency to output voltage
is just what we needed to build a linear discriminator.

This type of demodulator can be implemented very simply
and inexpensively by using a retriggerable one-shot timer to
generate the output pulses. It does, however, have disadvan
tages in our application. For one, very narrow pulses would
be required to make this work at 321.4 MHz. Also, these sim
ple one-shot timers tend to have noisy outputs because of
variations in the width of the output pulse.

A time-delay discriminator works by converting the input
signal's frequency modulation into phase modulation
(Fig. 23). A delay line delays the input signal by a fixed
amount of time. A phase detector on the delay line output
compares the phase of the input signal against the phase of
the time-delayed version of the input. Since the phase of a
high-frequency signal changes more rapidly than the phase
of a low-frequency signal, the phase difference between the
two inputs to the phase detector will increase linearly with
frequency. The output voltage of the phase detector is pro
portional to this phase difference and thus, proportional to
the frequency of the input signal. Typically, the length of the
delay line is chosen so that the signal will be delayed 90 de
grees at the center frequency of the discriminator. This gives
zero volts dc output at the center frequency and centers the
output in the middle of the phase detector's transfer func
tion. This inherently linear conversion of frequency to phase
seemed to make this type of circuit a logical candidate for
our application.

However, this type of discriminator posed two potential dis
advantages for our application. First, this discriminator is
inherently limited in the maximum frequency deviation and
the maximum modulation rate it can handle. Typical phase
detectors only behave well when the phase difference be
tween the inputs varies by less than 180 degrees. Because
phase difference is proportional to input frequency, the max
imum frequency deviation the discriminator can handle is
limited. Also, the sensitivity inherently rolls off at high mod
ulation rates. In other words, as the input frequency starts to
vary more quickly, the level of the demodulated output will

Time Delay

A A
Splitter

F M O u t

start to drop. The longer the delay une. the lower the modu
lation rate at which this will occur. In our case, we need to
demodulate broad frequency deviations and as a result the
maximum delay line length is limited by deviation require
ments and not modulation rate needs.

The second disadvantage of the time-delay discriminator is
based on phase detector characteristics. Our high IF of
321.4 MHz would suggest using a double-balanced mixer as
a phase detector. Conventional double-balanced mixers are
designed to work with a sinusoidal RF port drive. The result
is that the mixer output voltage varies sinusoidally with the
phase difference between the LO and the RF waveforms
(Fig. 24). Therefore, it is only linear if the phase difference
between the input signals does not vary much from 90
degrees. Since we wanted good linearity, that meant a short
delay line. Unfortunately, the shorter the delay line, the
lower the sensitivity of the discriminator. Short delay Unes
mean low phase shifts and therefore low output voltages.
For good signal-to-noise ratio, we wanted to maximize the
time delay.

A double-balanced mixer has a sinusoidal transfer function
because its RF input voltage is sinusoidal. Ideally, if its in
puts are square waves, the transfer function would be linear
over a 180-degree range. However, generating very fast
square waves is hard, and the mixer would need a very
broadband de-coupled IF to work well. Fortunately, there is
a type of double-balanced mixer that meets these require
ments: the exclusive-OR gate. An ideal double-balanced
mixer generates its IF by inverting the RF waveform when
ever the amplitude of the LO crosses zero (Fig. 25). This is
exactly what a digital exclusive-OR gate does with logic-level
inputs. Thus, with this characteristic an exclusive-OR gate
can be used as a double-balanced mixer.

Because of our high IF and broad frequency range, we
needed to use very fast logic circuitry if we wanted this to
work. Motorola's ECLinPS Lite family of emitter-coupled
logic turned out to be perfect for our application. These
logic gates come individually packaged in eight-pin small-
outline ICs and feature rise times under 300 picoseconds.
The fast, square pulses generated by this logic are perfect
for making a very linear phase detector.

When logic gates are as small and fast as these, it's only nat
ural to use them wherever you can. In the end almost all the
functions on the board including limiting amplifiers, mixers,

Output
Voltage

90 180

Fig. 23. Time-delay discriminator. Fig. 24. Transfer function for a double-balanced mixer.

October 1995 Hcwlet I -Packard Journal 99

© Copr. 1949-1998 Hewlett-Packard Co.

Output
Voltag

Input
Phase

90 180

Fig. 25. Exclusive-OR transfer function.

and phase detectors were implemented using these RF logic
gates. Because of the nature of FM modulation and demodu
lation, logic parts work well in frequency modulation
applications.

Fig. 26 shows a block diagram of the FM discriminator. The
321.4-MHz input is applied to a limiting amplifier. The limit
ing amplifier is a high-gain stage that turns the incoming FM
sine wave into a constant-level frequency modulated square
wave. Given that our signal processing is done with logic-
parts, we obviously needed something like this to convert
the input into ECL levels.

An ideal FM demodulator is insensitive to amplitude modu
lation of the input signal. The output voltage should not
change at all when the input amplitude varies. Limiting am
plifiers are used to achieve this. They have high gain and
clip the level of the output signal at a predefined level. Our
limiting amplifiers are implemented with ECL line receivers,
which are differential-input high-gain amplifiers with ECL-
level outputs. Their high gain and hard limiting allow the FM
demodulator to work properly with inputs as low as -:i() dBin.

The output of the limiting amplifier is a square wave with a
nominal center frequency of 321.4 MHz. This is mixed
against a 250-MHz LO to a lower frequency of 71.4 MHz,
where the actual demodulation takes place. Originally, the

intent was to do the demodulation at 321.4 MHz. As we bet
ter understood the problems we faced in trying to achieve
good FM linearity, it became clear that using a lower fre
quency would produce better results. At a lower frequency,
the period of the IF is longer. The rise time of the parts used
does not change, so overall the square waves are "squarer."
Our analysis of the time-delay discriminator showed that it
was perfectly linear, but this is true only if the square waves
are perfect.

The use of small surface mount logic parts enabled us to
design compact LO generation and frequency conversion
circuitry. The 250-MHz LO is derived from the 300-MHz ref
erence frequency available in the HP 709 11 A. The 300-MHz
signal is converted to ECL levels by a limiting amplifier. The
300-MHz reference clocks a prescaler, which divides the
input frequency by six to produce ft 50-MHz output. The
300-MHz and 50-MHz ECL square waves are then applied to
the inputs of an ECL exclusive-OR gate. This gate performs
as a double-balanced mixer, producing 250-MHz and
350-MHz outputs. The 250-MHz output is selected by a band
pass filter. This filter is ac coupled, so a limiting amplifier is
placed on the output to convert the 250-MHz LO back to
ECL levels.

The 250-MHz LO and the 321.4-MHz hard-limited input signal
are then applied to another exclusive-OR gate. This gate is
also used as a double-balanced mixer, producing outputs at
71.4 MHz and 571.4 MHz. The 71.4-Hz output is selected with
a low-pass filter. The entire LO synthesis and frequency con
version circuitry occupies only 3 in-.

The use of exclusive-OR gates and square waves, as opposed
to traditional diode mixers and sine waves, has a surprising
consequence. As noted earlier, a traditional diode mixer has
a sinusoidal phase-to-voltage transfer characteristic. As a
result, the IF out of an ideal diode ring mixer with sinusoidal
inputs is another sine wave. In contrast, the logic level mixers
we use here have a triangular transfer function. As a result,
the IF output of these mixers is a triangular, rather than a
sinusoidal waveform. In our case, we don't care whether it's
sinusoidal or triangular, because we immediately convert
the IF to a square wave with another limiting amplifier.

Time Delay

321 .4-MHz
IF Input

Differential
Ampli f ier

Limiting
A m p l i f i e r u _ ^ ^ ^ h _ _ 5 O M H z

Fig. 26. FM discriminator block diagram.

100 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The 71.4-MHz IF is next applied to the discriminator cir
cuitry. The IF is applied to a special ECL cable driver 1C
which produces ECL-type outputs that have a larger than
usual voltage swing. This large voltage swing allows us to
place a series 50-ohm resistor on the output, cutting the sig
nal amplitude in half. The resistor increases the output im
pedance of the gate to around 50 ohms, which turns out to
be crucial to achieving good discriminator linearity.

The outputs of the cable driver follow two different paths.
One output goes directly to the input of the phase detector.
The other output goes to a delay Une. This delay line is a
19-in-long 50-ohm stripline trace embedded in the middle of
the printed circuit board. Numerous bends and turns
squeeze it into a l-in-by-3-in area The board, made out of
HP FR4, has a dielectric constant of about 4.5, yielding a
3.5-ns delay. This delay produces a 90-degree phase shift at
the center frequency of 71.4 MHz.

The delayed and undelayed signals now meet at the phase
detector, which is another exclusive-OR gate. The square
waves are applied to the high-impedance input of the phase
detector through a 50-ohm matching pad. The attenuation
value of this pad is critical to good discriminator linearity.
As mentioned earlier, good square waves are critical for
good FM linearity. The attenuation value chosen strikes a
balance between two "desquaring" mechanisms.

If the attenuation value is small, the delay line output will
not be isolated from the 1-pF input capacitance of the phase
detector. This capacitor degrades the return loss of the
delay line's load. When a pulse emerges from the delay line
output and hits a poor impedance match, some of the pulse's
energy is reflected back into the delay line. It then travels
backwards through the line to emerge at the delay line input
3.5-ns later. When the pulse reemerges here, it hits the out
put of the cable driver. This incident voltage disturbs the
bias of the cable driver output transistors, and as a result
causes disturbances in the shape of the new square wave
that the cable driver is trying to generate. The degraded
shape of the square wave degrades the FM discriminator's
linearity. As it turns out, this effect is worst when the re
flected pulse arrives at the cable driver at the edge of a new
pulse. Unfortunately, this inherently occurs at the frequency
where the delay line has 90 degrees of phase shift â€” right in
the center of the passband. This effect is seen as the linear
ity ripple in the center of the passband (Fig. 27).

0.50

0.30

3 0 . 1 0 -

-0 .10

-0.30

- 0 . 5 0 - I 1 1 1 1 1 1 1 1 1 1
3 0 1 . 4 3 2 1 . 4 3 4 1 . 4

Input Frequency (MHz)

Fig. full 1 li.scrinniiiiinr liniÂ·iirily rrmi' (|nT<-rni nl' full sr;ilr).

The way to minimize this problem is to use a matching pad
to isolate the delay une from the capacitance of the phase
detector's input. The attenuation can only be so large be
cause excessive attenuation introduces other problems. The
attenuator reduces the voltage swing to less than ECL lev
els. As a result, the phase detector must provide gain to pro
duce ECL levels at its output. Unlike the ECL une receivers,
these exclusive-OR gates have a relatively low gain of 12 dB.
So, with low-lex-el inputs, the output pulses of the phase
detector start to look less square. This manifests itself as the
broad, slow droop in the linearity curve. In the end, an atten
uation value of 4 dB was chosen as a reasonable compro
mise between these two linearity degrading mechanisms.

In the frequency domain, the phase detector can be thought
of as producing a dc voltage proportional to the phase differ
ence between its outputs. Looking at it in the time domain is
also interesting. The two inputs to the phase detector are
square waves with a fixed time delay of 3.5 ns between
them. As a result, the phase detector produces output pulses
of fixed 3.5-ns width. As the input frequency changes, these
pulses occur more frequently, but the pulse width remains
the same. This is also exactly how the pulse count demodu
lator works! So as it turns out, by using a linear phase detec
tor our time delay discriminator turns out to be equivalent to
a pulse count demodulator. It works as well as it does be
cause using a delay line to fix the output pulse width is more
stable than the RC time constant of a simpler implementa
tion.

The phase detector outputs are applied to low-pass filters to
remove the ac component of the pulse train. These filters
have a 12-MHz bandwidth that sets the maximum frequency
modulation rate the discriminator can respond to. Since the
phase detector has differential outputs, a differential ampli
fier re used after the filters. The differential amplifier re
moves the dc offset inherent in the ECL level output of the
phase detector. Further gain after the differential amplifier
is used to give a 1-volt swing for a 40-MHz change in input
frequency. The maximum frequency deviation the FM dis
criminator can handle is limited by the drive capability of
t l i is I t rather than the discriminator circuitry i tself . I t
has been verified experimentally that the discriminator will
respond to as much as 100 MHz of deviation with essentially
nondegraded linearity. A switchable amplifier provides a
higher-sensitivity setting, giving a 1-volt swing for a 10-MHz
frequency change.

I-Q Outputs
The I-Q down-converter (Fig. 28) recovers the in-phase and
quadrature components of the input signal. The IF input,
with a nominal center frequency of 321.4 MHz, is mixed
against a 321.4-MHz local oscillator. This creates an IF with
a nominal center frequency of zero hertz, or dc. The output
bandwidth extends from -50 MHz to -I- 50 MHz.

The input signal is split into two paths. Each of these paths
goes to the RF port of a mixer. The 321.4-MHz LO is applied
to the LO ports of both mixers. The LO input to one of these
mixers is shifted by 90 degrees. The IF outputs are low-pass
filtered to remove the image frequency, then amplified and
sent to the front panel of the HP 7091 1A.

Oclnlin I! i! i:, I Irwlrll-I'ackarcl, Journal 101

© Copr. 1949-1998 Hewlett-Packard Co.

321 .4-W
IF In

321.4-MHz LO. The 321.4-MHz LO produces a synthesized sig
nal that is locked to the 300-MHz reference signal and level
stabilized (Fig. 29). The LO has a VCO that runs at twice the
output frequency (642.8 MHz). The reason for running at this
frequency is based on the availability of a 600-MHz-to-
1 000-MHz VCO design that has proven to have good phase
noise and has been in use for some time. The VCO output is
buffered and split into two paths: the main signal path and
the phase-locked loop path. The phase-locked loop path
goes to the splitter to a pad-amplifier-pad combination to
maintain reverse isolation from the prescaler. The prescaler
divides the 642.8-MHz signal by 32, 33, 36 or 37. The divide
number is controlled by an HP synthesizer 1C that imple
ments the fractional-N division. The output of the synthe
sizer 1C is equal to 300 MHz/160 = 1.875 MHz when the VCO
is phase-locked. This signal goes to one input of a phase
detector. The phase detector output is low-pass filtered,
summed, and fed to an integrator and loop filter. This is
where the synthesizer IC's noise is filtered. The noise comes
from the method of fractional-N synthesis used in the 1C.
This noise is designed to be well outside the few kilohertz of
bandwidth of the phase-locked loop where it is easy to filter.

The main signal path goes from the splitter to a divide-by-
two 1C. This is an ECL part that is biased in the middle of its
threshold to allow for ac coupling of the 642.8-MHz VCO
signal. The output of the divider is 321.4 MHz which is then
input to an amplifier and resistive splitter. The splitter out
puts are fed to the last gain stages of the board. These ampli
fiers are run well into compression to get a constant output
power. The amplifier outputs are combined with a 3-dB split
ter/combiner and then aggressively low-pass filtered to re
ject the harmonics produced by the limiting action.

Fig. 28. 1-Q demodulator block
diagram.

I-Q Down-Converter. Two key performance specifications for
an I-Q demodulator are amplitude balance and phase bal
ance. Amplitude imbalance is the gain difference between
the I and Q output ports. Ideally this gain difference should
be zero across the 100-MHz input bandwidth of the demodu
lator. Phase imbalance is a measure of the error in the phase
shift between the I and Q outputs. Ideally this phase shift
should be 90 degrees across the input bandwidth.

The amplitude and phase balance of the demodulator are
both factory adjusted for best performance. Variable p-i-n
diode attenuators in the I and Q RF paths allow the gain of
the two channels to be adjusted independently. The 90-de-
gree phase shifter on the LO is also adjustable and is used to
align quadrature. These adjustments allow us to align the
channels very closely. The mixers used are purchased as a
matched set, with specified gain and phase matching across
our passband.

The difficult part was maintaining this balance across the
entire 100-MHz input bandwidth of the demodulator. If the
frequency responses of the two channels differ even slightly,
amplitude and phase balance will be degraded. For this rea
son, we tried to make the two channels as symmetrical as
possible and as flat as possible. The printed circuit board
layout of the RF paths for both channels is identical so that
any board parasitics will be the same for both channels. The
IF circuitry was designed to be as broadband as possible.
For example, the IF low-pass filters have a corner frequency
of 175 MHz, even though they only need to pass frequencies
as high as 50 MHz. The corner frequency was placed this
high to minimize the filter's phase shift in the 50-MHz pass-
band. Our IF amplifiers are fast op amps that provide over

Combiner

321 .4MHz

Fract ional -N
Synthesizer

1C

Prescaler
^32. 33 , 36

37

Fig. 29. Block diagram of the 321.4-MHz LO.

102 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

08

D.4

0.0

-0 .4

-O.Ã

0.500-

(a)

2 7 1 . 4 3 2 1 . 4 3 7 1 . 4

Input Frequency (MHz)

Fig. 30. (a) I-Q quadrature phase error, (b) I-Q amplitude imbalance.

200 MHz of bandwidth. These op amps are also used to
minimize the phase shift in the 50-MHz passband. If these
parts be significant phase shift, then there are likely to be
significant phase shift differences between the two chan
nels, and phase balance will be degraded. Representative
performance for the I-Q demodulator is shown in Fig. 30.

To achieve the best phase balance across our bandwidth, an
adjustable all-pass filter is used on the I-channel output. The
phase is versus frequency of this circuit is adjustable. It is
used to compensate for mismatches between the channels
in phase shift as a function of output frequency.

Acknowledgments
The authors would like to thank John Fisher for his support
and guidance on this project. Others who made significant

0 . 1 0 0 -

- 0 1 0 0

-0.300

-0 .500
271.4

(b)
321.4

Input Frequency (MHz)

371.4

contributions to this project include Greg Quintana for con
troller and firmware design, Bill Walkowski for market re
search and product definition, and Gil Strand for alignment
methodology and production test development. The authors
would also like to thank the entire management team for
their support during development.

References
1 . H. a "An Accurate Approximation of the Impedance of a
Circular Cylinder, Concentric with an External Square Tube," IEEE

Tniiisurliuiix on Min-i,in:r, 'Â¡'Â¡i, n, â€¢>/ mal Tic/miques, Vol. MTT-31,
Oct 1993, pp. 841-844.
'2. llcirliil -I'nckaiil Jniiriinl. February 1989, Vol. 40, no. 1, pp. 6-41.

October 1995 Hewldl-I'ackanl Journal 103

© Copr. 1949-1998 Hewlett-Packard Co.

The Log Weighted Average for
Measuring Printer Throughput
The log weighted average balances the different time scales of various
plots in a test suite. It prevents an overemphasis on plots that take a long
time to print and allows adjustments according to the expected user
profile weighting. It is based on percentage changes rather than absolute
plot times.

by John J. Cassidy, Jr.

The HP DeskJet 1600C printer is designed to be used for a
variety of documents, from simple memos to complex color
graphics. One of the main characteristics on which the
printer will be judged is throughput. We needed a way to
measure throughput across a wide range of plots that would
reflect a user's subjective perception of the product.

The two most common metrics â€” simple average and simple
weighted average â€” had serious problems when applied to
the disparate plots in our test suite. A simple and common
mathematical technique was used to overcome these prob
lems, resulting in a metric called the log weighted average.

This paper explains how to calculate the log weighted aver
age, and why it is a good metric.

The Problem
We use a standard set of plots to measure the speed of the
HP DeskJet 1600C printer. For the sake of this paper, I sim
plify the test suite down to four plots â€” we actually use 15.
The actual timings have also been simplified and are not
accurate for any version of the printer under development.
The four plots are (1) text page, a normal letter or memo,
(2) business graphic, some text with an embedded multi
color bar chart, (3) spreadsheet with color highlighting of
some of the numbers, and (4) scanned image, a complex,
full-page, 24-bit color picture.

For a given version of the HP DeskJet 1600C printer, call it
version 3.0, let's say the time to process and print each of
these pages is as follows:

Text page
Business graphic
Spreadsheet
Scanned image

10 seconds
20 seconds
45 seconds
10 minutes (600 seconds)

There are various things we can do to the printer to change
the speed of each of these plots. Often a change will speed
up one plot while slowing down another. What we need to
do is compare alternative possible version 3.1s and see
which one is faster overall.

Simple Average
The simple average is calculated by adding up the time for
each of the plots and dividing by the number of plots. The
formula for this is:

Simple Average = 2TÂ¡/n,

where n is the number of plots and TÂ¡ is the time to process
plot number i.

For version 3.0 above, the sum of the four times is 675 sec
onds which divided by four gives a simple average of 169
seconds (rounding from 168.75).

The problem with the simple average is that it gives equal
importance to each of the seconds spent on each of the
plots. If a version 3. la saved five seconds on the scanned
image, this plot would go down from 600 seconds to 595
seconds and the user would barely notice. But if a version
3.1b saved 5 seconds from the text plot, this plot would go
from 10 seconds to 5 seconds, twice as fast! The user would
be very, very happy with the text speed.

The simple average tells me that these two changes are of
equal value. So if I am using this metric, I'll go for the easy
change of speeding up the scanned image by a little bit (less
than 1% faster), instead of the much more difficult and more
useful speedup of the text page (50% faster).

Simple Weighted Average
A common way to improve the simple average is to make
use of the fact that we know how often the user is going to
print each type of plot (at least we make good guesses). We
know, for example, that someone in our target market will
print a lot more simple text pages than complex scanned
graphic pages.

The simple weighted average applies a weight to each of the
plots, corresponding to the proportion of time the user will
be printing that type of plot. In mathematical terms:

104 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Simple Weighted Average =

where \VÂ¡ is the weight for plot i. If the WÂ¡ add up to 1.0. the
denominator can be ignored.

For the HP DeskJet 1600C printer, let's say half of the plots
will be like the text page, one-fifth like the business graphic,
one-fifth like the spreadsheet, and one-tenth like the
scanned image. This gives the following calculation:

Plot

Text Page
Business Graphic-
Spreadsheet
Scanned Image

Sum

Time (s) Weigh t TÂ¡WÂ¡ (s)

10
20
45

600

0.5
0.2
0.2
0.1

1.0

B
4
9

60

78

The simple weighted average is 78 seconds.

This method of calculation is much better than the simple
average. It takes into account our knowledge of the target
market, and any average we come up with needs to be able
to do this.

But there are still problems with this average. Say that ver
sion 3. la speeds up the scanned image by 5% (down to 570
seconds), and version 3.1b speeds up the text page by 50%
(down to 5 seconds).

We know from our own experience that speeding something
up from 10 minutes to 9.5 minutes is not very significant. On
the other hand, the 3. Ib version, which makes the most fre
quent task go twice as fast, would represent a very notice
able improvement. However, the simple weighted average
rates the two versions very similarly, with the 3. la winning
(at 75 s) over the 3.1b version (at 75.5 s).

Our subjective experience of time is such that we tend to
notice changes not in absolute seconds, but in percentages
of time. A one-percent speedup of any of the categories
would be impossible to detect without a stopwatch, but a
twenty-five percent speedup would be dramatic for any plot.

Criteria for a Good Average
A good averaging technique would have the following char
acteristics:
It is based on percentage changes. For a short task, a small
speedup is significant. For a long task like the scanned
image, it takes a big speedup to make a difference. A good
average would not focus on how many seconds were saved,
but on what percentage of the task was saved.
It reflects user profile weighting. For the HP DeskJet 1600C
printer we need to emphasize text speed, since that is the
center of our market. But for another printer aimed at an
other market, the spreadsheet or the scanned image might
be most important. The average has to allow tailoring.
It is invariant under a many-for-one substitution. If instead
of one text page weighted at 0.5, we substituted five text
pages each weighted at 0. 1 into the calculation (to avoid
dependence on the quirks of a single document), and if each
of the five text pages took the same time as the original one
(10 s) to print, the average should not change.

Log Weighted Average
The log weighted average fulfills the above criteria Its gen
eral principle is to use a standard mathematical technique
(logarithms) for keeping large and small numbers on the
same scale.

The formula for the log weighted average is:

Z(lnT,)W - \
Log Weighted Average = exp

where hi is the natural logarithm (log to the base e), and exp
is the exponent function, e to the x. As before, if the sum of
the weights is 1.0,

Log Weighted Average = exp(Z(lnTÂ¡)WÂ¡).

For our example, the calculation would be:

P l o t T Â ¡ (s) l n T Â ¡ W e i g h t

Sum 3.15

Log Weighted Average = e:i = 23.4s.

One of the first things you notice about the log weighted
average (aside from the fact that it took an extra step to do
the calculation) is that the result of 23 seconds is shorter
than the results of the other two calculations. The simple
average gave 169 seconds, and the simple weighted average
gave 78 seconds. This is because the more sophisticated
averages do a progressively better job of moderating the
influence of the very long 10-minute scanned image plot.
Also, this example was artificially constructed with a wide-
variation in plot times. Often we deal with plots that are
more similar than these. If the plots were very similar and
every plot in the test suite had exactly the same timing, say
30 seconds, then it wouldn't matter which method you used.
All three methods would give the same average: 30 seconds.

Rule of Thumb
The biggest drawback of the log weighted average is that it
is less intuitive than the other two methods. There is some
thing if counterintui t ive about using logari thms if
you aren't a professional mathematician. They tend to throw
off our mental approximations of what is reasonable.

However, there is a relatively simple rule of thumb to help
us know what to expect when doing comparisons: A small
percentage change in one component is equivalent to the
same percentage change in another component, multiplied
by the ratio between their weights.

In our example, this means that a small change in the text
page (with a weight of 0.5) would be five times as important
as a change in the scanned image (with a weight of 0.1), and
two and a half times as important as a change in the spread
sheet or business graphic (with a weight of 0.2). Thus, we
would expect a 1% change in the text page to be equivalent

October 1995 Hewlett-Packard Journal 105

© Copr. 1949-1998 Hewlett-Packard Co.

to a 5% change in the scanned image or a 2.5% change in the
other two plots.

This approximation is very close. A 1% speedup in the text
page, from 10 s to 9.9 s, reduces the overall log weighted
average from 23.4 to 23.3 seconds. The equivalent change
required for one of the other plots to get the average down
to 23.3 is shown in Table I.

T a b l e I
E q u i v a l e n t S p e e d u p s (S m a l l D e l t a s)

T e x t p a g e 1 0 s - ^ 9 . 9 s = 1 . 0 0 % f a s t e r

Business Graphic 20 s -Â» 19.5 s = 2.48% faster

S p r e a d s h e e t 4 5 s - Â » 4 3 . 9 s = 2 . 4 8 % f a s t e r

S c a n n e d i m a g e 6 0 0 s - 5 7 1 s = 4 . 9 0 % f a s t e r

As changes get bigger, the rule of thumb becomes less accu
rate. If you make a big change in one of the components,
like speeding up the scanned image by 40%, you stray farther
from the expected equivalent speedups of 20% (half as
much) for the spreadsheet and business graphic, or 8% (one
fifth as much) for the text page. This change brings the log
weighted average down to 22.2 seconds. Table II shows the
equivalent speedups for larger changes.

T a b l e I I
E q u i v a l e n t S p e e d u p s (L a r g e r D e l t a s)

T e x t p a g e 1 0 s - Â » 9 . 0 3 s = 9 . 7 % f a s t e r

Business Graphic 20 s -Â» 15.5 s = 22.5% faster

S p r e a d s h e e t 4 5 s - Â » 3 4 . 9 s = 2 2 . 5 % f a s t e r

Scanned image 600 s -Â» 360 s = 40.0% faster

The Exact Rule
Exact calculation of equivalent speedups for any situation
using the log weighted average can be done using the fol
lowing rule: Multiplying the time for component A by a
factor r is equivalent to multiplying component B by r
raised to the power WA/WB, the ratio of the weights of the
two components.

For example, if we multiply the text page time by 1.2 (slow
ing it down by two seconds), that would raise the log
weighted average from 23.4 seconds to 25.6 seconds. To get
an equivalent change by altering the scanned image time, we
would have to multiply it by 1.2 to the fifth power (the ratio
of the text page weight to the scanned image weight is five),
or 600x1. 25 = 1493. Thus, by changing the scanned image
time to 1493 seconds, we could also raise the average from
23.4 to 25.6 seconds.

For very large changes in any of the components, the log
weighted average gives results that can conflict with intu
ition. For example, speeding up the text page from ten sec
onds to one second would improve the average dramatically.
Such a speedup is wildly improbable for the HP DeskJet

1600C printer, but can be anticipated for some comparable
printer to be developed in our lifetime.

To get an equivalent improvement in the average by only
changing the scanned image, we would have to print it in
600x0. 15 = 0.006 second (which probably violates some laws
of physics). You can use the exact rule to verify that the
same sort of numerical blowup results when you try to com
pare any two printers that are greatly dissimilar. This is not
a particular problem for us. Greatly dissimilar printers also
have dissimilar weighting profiles, and we don't know any
way to compare them well.

Usefulness of the Log Weighted Average
The log weighted average is designed around a user's subjec
tive perception of printer speed. It assumes the common
situation in which a user is working at a computer, sends
something to the printer, and somehow notices how long it
takes to come out. There is also an assumption that if some
thing takes twice as long, the user is unhappy and if some
thing takes half as long, the user is happy, and the unhappi-
ness in the first situation is roughly equivalent in intensity to
the happiness in the second situation.

There are some situations for which this isn't true and the
log weighted average is the wrong average to use. For exam
ple, you could have a printer in continuous use with no stop
ping except to add paper and change pens. This might be at
a real estate office producing a large number of personalized
letters and envelopes each day and a smaller number of
scanned house photos. For a customer like this, the subjec
tive perception of speed is not important. Two seconds
saved on a text page is no more important than two seconds
saved on a scanned image. The simple weighted average
would be the correct average to use here.

Our success with this technique resulted from regular appli
cation. On the HP DeskJet 1600C project, we timed the
15-plot test suite twice a month. This helped us quickly iden
tify and resolve issues that might otherwise have caused
problems.

Conclusion
The log weighted average does a good job of balancing the
different time scales of various plots in a test suite. It pre
vents an overemphasis on plots that take a long time to
print, and allows adjustments according to the expected
user profile.

The main cost of the log weighted average is that it is less
intuitive than other methods. The rule of thumb and the
exact rule are good guides as to how the average will react.

The log weighted average has limits, but for comparing two
reasonably similar printers in a normal home or office envi
ronment, it gives extremely helpful results.

Acknowledgment
Thanks to Jeff Best of the San Diego Printer Division for his
comments and discussion.

106 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Authors
October 1995

6 D y n a m i c M o d e l i n g

Klaus-Peter Fahlbusch

Â£ K laus -Pe te r Fah lbusch has
â€¢ been an R&D engineer at

H P ' s M e c h a n i c a l D e s i g n
D i v i s i o n s i n c e 1 9 8 9 , w h e n
h e f i r s t j o i n e d H P . H e a t
t e n d e d t h e T e c h n i c a l U n i v e r -

h s i t y o f D a r m s t a d t , r e c e i v i n g
T a D i p l o m I n g e n i e u r i n 1 9 8 4
I a n d a P h D d e g r e e i n 1 9 9 0 ,

b o t h i n m e c h a n i c a l e n g i n e e r i n g W h i l e a t t h e U n i v e r
s i t y , h e d i d r e s e a r c h i n m e c h a n i c a l C A D s y s t e m s a n d
t u t o r e d m e c h a n i c a l e n g i n e e r i n g . P r e s e n t l y t h e p r o j e c t
l e a d f o r t h e d y n a m i c m o d e l i n g m o d u l e o f H P P E /
S o l i d D e s i g n e r , h e p r e v i o u s l y w o r k e d o n v a r i o u s a s
p e c t s o f t h e p r o j e c t , i n c l u d i n g t h e p l a n a r p r o f i l e g e n
e r a t o r , t h e g r a p h i c s s o f t w a r e , t h e p a r t a n d w o r k p l a n e
s o f t w a r e , 3 D l a b e l i n g , b l e n d m o d i f i c a t i o n a n d r e
m o v a l , d y n a m i c m o d e l i n g , a n d V A R i n t e r f a c e s . H e i s
a m e m b e r o f t h e G e r m a n s o c i e t y o f e n g i n e e r s c a l l e d
V D I a n d h a s p u b l i s h e d t w o a r t i c l e s a b o u t t h e d e s i g n
a n d u s e o f C A D s y s t e m s . K l a u s - P e t e r w a s b o r n i n
D a r m s t a d t , G e r m a n y a n d s e r v e d i n t h e G e r m a n m i l i
t a r y f r om 1978 to 1979 . He en joys pho tog raphy ,
t hea te r , and ope ra .

T h o m a s D . R o s e r

A p r o d u c t m a r k e t i n g e n g i
n e e r a t t h e M e c h a n i c a l D e
s i gn D i v i s i on , Thomas Rose r
i s r e s p o n s i b l e f o r t h e d e f i n i
t i on , s t r uc tu re , and p r i c i ng o f
n e w p r o d u c t s , i n c l u d i n g H P
PE /So l i dDes igne r . He j o i ned
HP i n 1992 . He has managed

/ Ã ­ ' â € ¢ p r o j e c t s , d o n e m a r k e t r e
s e a r c h , a n d w o r k e d o n t h e i n t r o d u c t i o n o f H P P E /
S o l i d D e s i g n e r . H e w a s a w a r d e d a D i p l o m I n g e n i e u r
i n 1 9 8 7 a n d a P h D d e g r e e i n 1 9 9 2 , b o t h i n m e c h a n i
c a l e n g i n e e r i n g f r o m t h e U n i v e r s i t y o f S t u t t g a r t .

W h i l e a t t h e U n i v e r s i t y , h e r e s e a r c h e d C A D s y s t e m s
a n d t u t o r e d m e c h a n i c a l e n g i n e e r s , a n d p a r t i c i p a t e d
a s a n e x c h a n g e s t u d e n t i n t h e U . S . A . a t t h e
U n i v e r s i t y o f W i s c o n s i n . H e h a s a u t h o r e d f i v e p a p e r s
a b o u t o b j e c t - o r i e n t e d a n d k n o w l e d g e - b a s e d d e s i g n
s y s t e m s a n d i s a m e m b e r o f V D I , a G e r m a n s o c i e t y o f
e n g i n e e r s . T h o m a s w a s b o r n i n S t u t t g a r t , G e r m a n y
a n d s e r v e d i n t h e m i l i t a r y f r o m 1 9 8 0 t o 1 9 8 1 . H e i s
ma r r i ed , has one ch i l d , en j oys r unn ing and b i k i ng ,
a n d p l a y s v i o l i n w i t h a s y m p h o n y o r c h e s t r a .

1 4 U s e r I n t e r f a c e

Berthold Hug

B o r n i n G e n g e n b a c h , B a d e n -
W u r t t e m b e r g , G e r m a n y ,
B e r t h o l d H u g r e c e i v e d h i s
m e c h a n i c a l e n g i n e e r i n g d i
p l o m a f r o m t h e F u r t w a n g e n
Eng inee r i ng Schoo l i n 1980 .
H e t h e n j o i n e d t h e H P M e
c h a n i c a l D e s i g n D i v i s i o n a n d
i s p resen t l y r espons ib l e f o r

t e c h n i c a l m a r k e t i n g o f t h e H P P E / S o l i d D e s i g n e r p r o d
uc t . He i s a l so respons ib l e f o r PE /So l i dDes igne r ' s
s y s t e m a r c h i t e c t u r e w i t h f o c u s o n t h e u s e m o d e l a n d
u s e r i n t e r f a c e . P r e v i o u s l y , h e w a s t h e p r o j e c t l e a d f o r
s e v e r a l C A D / C A M s o f t w a r e p r o j e c t s i n c l u d i n g t h e
d e v e l o p m e n t o f H P P E / S o l i d D e s i g n e r ' s u s e r i n t e r f a c e .
B e r t h o l d i s m a r r i e d a n d h a s t w o c h i l d r e n . H e l i k e s t o
p l ay t enn i s , c l a r i ne t , and saxophone .

Gerhard J .Walz

W i t h H P s i n c e 1 9 8 9 a t t h e
M e c h a n i c a l D e s i g n D i v i s i o n ,
G e r h a r d W a l z i s r e s p o n s i b l e
f o r t h e t r a n s f e r o f d a t a f r o m
t h e H P P E / S o l i d D e s i g n e r
p r o d u c t t o H P P E / M E 1 0 a n d
t o A C I S - b a s e d C A D s y s t e m s .
Fo r t he HP PE /So l i dDes igne r
p r o j e c t , h e h a s w o r k e d o n

L i s p i n t e r f a c e s , i n t e g r a t i o n o f M o t i f a n d S t a r b a s e ,
a n d I G E S w i r e i m p o r t . B e f o r e j o i n i n g H P , h e w o r k e d a t
t h e K a t h a r i n e n H o s p i t a l i n S t u t t g a r t , d e v e l o p i n g a n d
m a i n t a i n i n g i n t e r f a c e s t o a n a l y t i c a l l a b o r a t o r y i n s t r u
m e n t s . G e r h a r d w a s b o r n i n B a l i n g e n , B a d e n -
WÃ¼r t temberg , Germany and rece ived a D ip lom In fo r -
m a t i k e r d e g r e e f r o m t h e U n i v e r s i t y o f S t u t t g a r t i n
1 9 8 7 . A s a s t u d e n t , h e w o r k e d a t H P ' s B o b l i n g e n
I n s t r u m e n t s D i v i s i o n w h e r e h e w r o t e h i s t h e s i s o n
use r i n te r face de f i n i t i on fo r a d ig i t a l 1C tes t sys tem.
H e a l s o w o r k e d a t t h e C o l o r a d o S p r i n g s D i v i s i o n a s
a n e x c h a n g e s t u d e n t . I n h i s f r e e t i m e , h e p l a y s b a s
s o o n i n t h e c o n c e r t b a n d a t t h e U n i v e r s i t y o f H o h e n -
h e i m , S t u t t g a r t a n d i n v a r i o u s w o o d w i n d e n s e m b l e s .
H i s o the r mus i ca l i n te res t s i nc l ude j azz , G rego r i an
c h a n t , a n d o v e r t o n e m u s i c . H e a l s o s p e n d s t i m e
b i k i ng , h i k i ng , and t r ave l i ng

M a r k u s K u r i l

R & D e n g i n e e r M a r k u s K i i h l
r e c e i v e d a D i p l o m I n f o r m a -
t i k e r d e g r e e f r o m t h e U n i v e r
s i t y o f E r l a n g e n - N i i r n b e r g i n
1 9 9 1 . A f t e r h i s g r a d u a t i o n ,
h e j o i n e d t h e H P M e c h a n i c a l
D e s i g n D i v i s i o n , w h e r e h e i s
c u r r e n t l y R & D p r o j e c t l e a d e r
f o r t h e V A R d e v e l o p m e n t

t o o l k i t f o r t h e H P P E / S o l i d D e s i g n e r p r o d u c t . H e i s
a l s o r e s p o n s i b l e f o r u s e r i n t e r f a c e e n h a n c e m e n t s .
H i s p r e v i o u s c o n t r i b u t i o n s i n c l u d e d e v e l o p m e n t o f
t h e p r o d u c t ' s u s e r i n t e r f a c e c o n v e n i e n c e f u n c t i o n s ,
t h e a c t i o n r o u t i n e / p e r s o n a l i t y / u s e r i n t e r f a c e c o m m u
n i c a t i o n m o d e l a n d v a r i o u s a c t i o n r o u t i n e s a n d p e r
s o n a l i t y f e a t u r e s , a n d s p e c i a l u s e r i n t e r f a c e s l i k e
b r o w s e r s a n d t h e c o l o r e d i t o r . H e a l s o i n t e g r a t e d
d y n a m i c i n p u t d e v i c e s s u c h a s t h e k n o b b o x a n d t h e
s p a c e b a l l , i n c l u d i n g d y n a m i c v i e w i n g u s i n g t h e
m o u s e , a n d d e v e l o p e d a n d p r e s e n t e d a t r a i n i n g
c o u r s e o n u s e r i n t e r f a c e d e s i g n f o r i n t e r n a l a n d e x
t e r n a l c u s t o m e r s . B o r n i n B a d O e y n h a u s e n , N o r t h
R h i n e - W e s t p h a l i a , G e r m a n y , M a r k u s e n j o y s s q u a s h ,
t enn i s , b i k i ng , mo to r cyc l i ng , t r ave l i ng , and danc ing .

October 1 !)!)!> Hewlett-Packard Journal 107

© Copr. 1949-1998 Hewlett-Packard Co.

t

2 4 B l e n d i n g A l g o r i t h m s

Stefan Fre Â¡ tag

S te fan F re i t ag j o i ned HP i n
1 9 9 1 a s a n R & D e n g i n e e r a t
t h e M e c h a n i c a l D e s i g n D i v i
s i o n . H i s c u r r e n t r e s p o n s i b i
l i t i e s i n v o l v e p a r a m e t r i c
m o d e l i n g u s i n g a c o n s t r a i n t
s o l v e r . H i s p r e v i o u s c o n t r i b u
t i o n s i n c l u d e s e r v i n g a s p r o j
ec t l ead f o r t he HP PE /

S o l i d D e s i g n e r v a r i a b l e - r a d i u s b l e n d p r o j e c t a n d
d e v e l o p i n g t h e l i n k b e t w e e n H P P E / M E 3 0 a n d P E /
S o l i d D e s i g n e r . H e h a s a l s o w o r k e d o n k e r n e l d e v e l
o p m e n t , b l e n d a n d c h a m f e r f u n c t i o n a l i t y , a n d a
s h e e t - m e t a l p r o d u c t . H i s w o r k h a s r e s u l t e d i n a p a t
e n t o n a r n e t h o d f o r b l e n d i n g t h e e d g e s u f g e o m e t r i c
o b j e c t s u s i n g C A D s y s t e m s . S t e f a n w a s b o r n i n
M i n d e n , G e r m a n y a n d r e c e i v e d a M a s t e r ' s d e g r e e i n
c o m p u t e r s c i e n c e f r o m t h e T e c h n i c a l U n i v e r s i t y o f
Be r l i n i n 1 990 . H i s spec ia l a reas o f s t udy we re d i g i t a l
Â ¡mage p rocess ing and compu te r v i s i on . He en joys
p l a y i n g s a x o p h o n e a n d l i s t e n i n g t o j a z z , e s p e c i a l l y
t h e " c o o l j a z z " s t y l e d e v e l o p e d b y M i l e s D a v i s i n t h e
1 9 5 0 s .

K a r s t e n O p i t z

K a r s t e n O p i t z h a s b e e n a n
R & D e n g i n e e r a t t h e M e
c h a n i c a l D e s i g n D i v i s i o n
s i n c e 1 9 9 3 . H e h a s a n M S
d e g r e e i n c o m p u t e r s c i e n c e
f r o m t h e T e c h n i c a l U n i v e r
s i t y o f B r a u n s c h w e i g ,
Ge rmany (1989) and a PhD in
c o m p u t e r s c i e n c e f r o m

A r i zona S ta te Un i ve r s i t y (1 992) , whe re h i s a rea o f
s p e c i a l i z a t i o n w a s c o m p u t e r - a i d e d g e o m e t r i c d e s i g n .
H e w a s r e s p o n s i b l e f o r s o f t w a r e d e v e l o p m e n t f o r H P
P E / S o l i d D e s i g n e r , f o c u s i n g o n t h e g e n e r a l k e r n e l a n d
b l e n d f u n c t i o n a l i t i e s . C u r r e n t l y , h e i s t h e p r o j e c t
l e a d e r f o r b l e n d a n d c h a m f e r f u n c t i o n a l i t y . K a r s t e n
h a s p r o f e s s i o n a l i n t e r e s t s i n g e o m e t r i c a n d s o l i d
m o d e l i n g a n d h i s p u b l i c a t i o n s i n c l u d e s i x p a p e r s o n
c o m p u t e r - a i d e d g e o m e t r i c d e s i g n . B e f o r e j o i n i n g H P ,
h e c o n d u c t e d r e s e a r c h o n s c i e n t i f i c v i s u a l i z a t i o n a t
G e s e l l s c h a f t f u r M a t h e m a t i k u n d D a t e n v e r a r b e i t u n g ,
i n B o n n . H e w a s b o r n i n C l o p p e n b u r g , G e r m a n y a n d
i s a m e m b e r o f t h e A C M a n d t h e S I A M .

35 n n x r - , O p e n D a t a E x c h a n g e

P e t e r J . S c h i l d

Pe te r Sch i l d i s cu r ren t l y
w o r k i n g a s t e c h n i c a l c o o r d i
n a t o r f o r t h e d a t a b a s e i n t e
g r a t i o n p r o d u c t f o r H P
P E / S o l i d D e s i g n e r (P E / W o r k -
M a n a g e r f o r P E / S o l i d -
D e s i g n e r) a t t h e M e c h a n i c a l

I H B & D e s i g n D i v i s i o n . H e j o i n e d
- ^ H P a s a n R & D e n g i n e e r i n

1 9 9 1 . H e t o o k o v e r r e s p o n s i b i l i t y f o r t h e d e v e l o p m e n t
o f t h e i n t e r f a c e b e t w e e n H P P E / S o l i d D e s i g n e r a n d
P E / M E 3 0 a n d d e v e l o p e d t h e f i r s t S T E P i n t e r f a c e f o r

P E / S o l i d D e s i g n e r . H e w a s a l s o r e s p o n s i b l e f o r i n
f l uenc ing t he t echn i ca l s t anda rd i za t i on o f STEP i n t he
i n t e r n a t i o n a l s t a n d a r d i z a t i o n f r a m e w o r k . H e p a r t i c i
pa ted as t echn i ca l r ep resen ta t i ve o f HP i n t he ESPRIT
p r o j e c t s C A D E X a n d P R O D E X , f u n d e d b y t h e E u r o
p e a n C o m m u n i t y . P e t e r w a s b o r n i n W e i l i m S c h o e n -
b u c h , B a d e n - W u r t t e m b e r g , G e r m a n y . H e s t u d i e d
p s y c h o l o g y a n d c o m p u t e r s c i e n c e a t t h e U n i v e r s i t i e s
o f T u b i n g e n a n d K a r l s r u h e a n d r e c e i v e d h i s D i p l o m
I n f o r m a t i k e r d e g r e e f r o m t h e U n i v e r s i t y o f K a r l s r u h e
in 1 991 . Peter en joys b ik ing , t rave l ing , cook ing, and
ski ing.

W o l f g a n g K l e m m

| W o l f g a n g K l e m m h a s b e e n a
s o f t w a r e e n g i n e e r a t t h e
M e c h a n i c a l D e s i g n D i v i s i o n
s i n c e 1 9 9 1 H e i s c u r r e n t l y
r e s p o n s i b l e f o r t h e a u t o
m a t i c a n d i n t e r a c t i v e c o n
v e r s i o n o f s u r f a c e m o d e l s t o
so l i d mode l s . H i s p rev ious
c o n t r i b u t i o n s i n c l u d e d a t a

e x c h a n g e u s i n g I G E S a n d o t h e r d a t a e x c h a n g e i n t e r
f a c e s f o r t h e H P P E / S o l i d D e s i g n e r p r o d u c t . W o l f g a n g
w a s b o r n i n P f o r z h e i m , G e r m a n y a n d r e c e i v e d a
D i p l o m I n f o r m a t i k e r d e g r e e f r o m t h e T e c h n i c a l
Un i ve rs i t y o f Ka r l s ruhe i n 1989 . H i s hobb ies i nc l ude
hang g l i d i ng , s k i i ng , and as t r onomy .

G e r h a r d J . W a l z

A u t h o r ' s b i o g r a p h y a p p e a r s e l s e w h e r e i n t h i s s e c t i o n .

H e r m a n n J . R u e s s

H e r m a n n R u e s s w a s b o r n i n
O b e r t e u r i n g e n , G e r m a n y a n d
w a s a w a r d e d a D i p l o m I n g e -
n i e u r i n e l e c t r i c a l e n g i n e e r
i n g f r o m t h e U n i v e r s i t y o f
S t u t t g a r t i n 1 9 7 9 . A f t e r
g radua t i ng , he j o i ned HP 's
B o b l i n g e n C o m p u t e r D i v i
s i o n , d e v e l o p i n g s o f t w a r e -

s u p p o r t e d i n t e r a c t i v e d i s p l a y h a r d w a r e f o r C A D
a p p l i c a t i o n s . T h i s w a s a c o o p e r a t i v e p r o j e c t w i t h H P
L a b o r a t o r i e s t h a t d e v e l o p e d a h i g h - r e s o l u t i o n l a s e r -
a d d r e s s e d l i q u i d c r y s t a l d i s p l a y t e c h n o l o g y . L a t e r h e
w a s r e s p o n s i b l e f o r d e v e l o p m e n t o f o n e o f t h e f i r s t
H P C A D s y s t e m s , H P D r a f t . S u b s e q u e n t l y , w i t h t h e
M e c h a n i c a l D e s i g n D i v i s i o n , h e w a s r e s p o n s i b l e f o r
2 D l i n k s o f t w a r e a n d d e v e l o p e d t h e M o d e l I n t e r f a c e ,
t h e s t a n d a r d d a t a i n t e r c h a n g e f o r m a t o f H P P E / M E 1 0
a n d P E / M E 3 0 , w h i c h l i n k s o t h e r a p p l i c a t i o n s t o
P E / M E 1 0 a n d P E / M E 3 0 , i n c l u d i n g H P P E / S o l i d
D e s i g n e r . H e n o w s e r v e s a s a c o n s u l t a n t f o r i n t e r n a
t i o n a l l y s t a n d a r d i z e d p r o d u c t d a t a e x c h a n g e . H e r e p
resen ts HP in the i n te rna t i ona l PRODEX and ProSTEP
p r o j e c t s a n d c o o r d i n a t e s S T E P d a t a e x c h a n g e w i t h
o t h e r v e n d o r s a n d w i t h P D E S I n c . H e h e l p e d c o o r d i
n a t e t h e d e v e l o p m e n t o f t h e H P P E / S o l i d D e s i g n e r
S T E P i n t e r f a c e i n c o o p e r a t i o n w i t h o t h e r m a j o r C A D
v e n d o r s . H e i s p r o f e s s i o n a l l y i n t e r e s t e d i n c o m p u t e r -
a i d e d t e c h n o l o g y f o r e n g i n e e r s a n d i n p r o d u c t d a t a
i n t e g r a t i o n a n d h a s a u t h o r e d p a p e r s o n o p e n s y s t e m s
f o r C A D d a t a e x c h a n g e . H e i s a m e m b e r o f V D I a n d
V D E , t w o G e r m a n o r g a n i z a t i o n s f o r e n g i n e e r s , a n d
s e r v e d t w o y e a r s i n t h e c i v i l s e r v i c e . H e r m a n n i s m a r
r i ed , has t h ree ch i l d ren , and has he lped o rgan i ze an

a s s o c i a t i o n t h a t s p o n s o r s y o u t h a c t i v i t i e s . H e ' s a d d
i n g a s o l a r h e a t i n g s y s t e m t o h i s h o m e a n d w h e n h e
has f r ee t ime en joys spo r t s such as t enn i s , vo l l eyba l l ,
b i k ing , and h i k ing .

5 1 D a t a S t r u c t u r e M a n a g e r

C l a u s B r o d

C laus B rod was bo rn i n
W e r t h e i m , B a d e n - W u r t t e m
be rg , Ge rmany . He rece i ved
a D i p l o m I n f o r m a t i k e r d e
g r e e f r o m t h e U n i v e r s i t y o f
Er langen-NÃ¼rnberg in 1991.
F o l l o w i n g h i s g r a d u a t i o n , h e
j o i n e d H P a s a s o f t w a r e d e
v e l o p m e n t e n g i n e e r a t t h e

M e c h a n i c a l D e s i g n D i v i s i o n a n d h a s w o r k e d o n s e v
e ra l r e l eases o f t he HP PE /So l i dDes igne r p roduc t . H i s
c u r r e n t r e s p o n s i b i l i t i e s f o r t h e p r o d u c t i n c l u d e g r a p h
i c s , g l oba l i za t i on , po r t i ng ac t i v i t i e s , t he on l i ne he lp
se r ve r , and t he da ta s t r uc tu re manage r . Be fo re j o i n i ng
H P , h e w a s a f r e e l a n c e p r o g r a m m e r a n d t e c h n i c a l
w r i t e r . H i s p r o f e s s i o n a l i n t e r e s t s i n c l u d e 3 D g r a p h i c s ,
s t o r a g e m e d i a , a n d a b s t r a c t c o m p u t e r g a m e s . H e ' s
p u b l i s h e d n u m e r o u s a r t i c l e s i n G e r m a n c o m p u t e r
m a g a z i n e s a n d h a s w r i t t e n a b o o k a b o u t f l o p p y a n d
h a r d d i s k p r o g r a m m i n g c a l l e d S c h e i b e n k l e i s t e r . C l a u s
e n j o y s s h o p p i n g a t f l e a m a r k e t s a n d g a r a g e s a l e s ,
h o p i n g t o a d d t o h i s c o l l e c t i o n o f c o m i c b o o k s a n d o l d
c o m p u t e r s . H e p l a y s v o l l e y b a l l a n d i s a m e m b e r o f
D . O . N . A . L . D . , a G e r m a n o r g a n i z a t i o n o f n o n c o m m e r
c i a l T r u e D o n a l d i s m f o l l o w e r s .

Max R. Kuhl in

A s o f t w a r e d e v e l o p m e n t
e n g i n e e r w i t h t h e M e c h a n i
c a l D e s i g n D i v i s i o n , M a x
K u b l i n j o i n e d t h e B o b l i n g e n
Eng inee r i ng Ope ra t i on i n
1987 , a f t e r r ece i v i ng h i s
c o m p u t e r s c i e n c e d i p l o m a
f r o m t h e F u r t w a n g e n E n g i
n e e r i n g S c h o o l . S i n c e j o i n

i n g H P , h e h a s c o n t r i b u t e d t o t h e d e v e l o p m e n t o f
t h r e e C A D s o f t w a r e p r o d u c t s : H P P E / M E 1 0 ,
P E / M E 3 0 , a n d P E / S o l i d D e s i g n e r . H e h a s w o r k e d
m a i n l y o n l o w - l e v e l c o d i n g , o p e r a t i n g s y s t e m i n t e r
f a c e s , d a t a s t r u c t u r e s , m e m o r y m a n a g e m e n t , g r a p h
i c s , a n d c o m m a n d d e c o d i n g . H e i s c u r r e n t l y r e s p o n s i
b l e f o r t h e g e n e r a l s y s t e m a r c h i t e c t u r e o f t h e
d i v i s i on ' s p roduc t s . Fo r HP PE /So l i dDes igne r he was
r e s p o n s i b l e f o r t h e d a t a s t r u c t u r e m a n a g e r a n d p r o
p r i e t a r y f i l i n g s u b s y s t e m . H i s p r o f e s s i o n a l i n t e r e s t s
i nc l ude ob jec t - o r i en ted ana l ys i s and des ign , C++ ,
c o m p i l e r s , p e r f o r m a n c e t u n i n g , o p e r a t i n g s y s t e m s ,
p a r a l l e l p r o c e s s e s , a n d f a u l t - t o l e r a n t s y s t e m s . B o r n
in Kon igscha f fhausen , Baden-WÃ¼r t temberg ,
G e r m a n y , M a x i s m a r r i e d a n d e n j o y s b i k i n g , h i k i n g ,
p h o t o g r a p h y , a n d b u i l d i n g T i f f a n y - s t y l e l a m p s a n d

108 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

61 Freeform Sur face Model ing

Michael Metzger
Michael Metzger completed
work for his PhD degree at
the Institute of Applied
Mathematics at the Univer
sity of Kalsruhe and joined
the HP Mechanical Design
Division in 1989. Since join
ing HP, he has contributed to
theHPPE/MEIOandPE/

SolidDesigner products. For PE/ME10, he was re
sponsible for the basic math and hatching algorithms,
worked on the 20 hidden line module, and was the
project lead for B-spline integration. For PE/
SolidDesigner, he was responsible for the B-spline
library (SISLI and for special tasks involving the prod
uct's geometric kernel, including variable accuracy
and partial coincidences. He was also the project
leader for spline-related issues with external partner
SINTET SI. Michael is currently the project leader for
the 3D/2D integration process and is R&D council
chairman for the division. He has published a paper
on FORTRAN-SC, a FORTRAN extension for scientific
computation. Born in Karlsruhe, Germany, Michael is
married, has five boys, and enjoys hiking, taking pho
tographs, and summers in Scandinavia.

Sabine Eismann
Sabine Eismann was born in
Freiburg im Breisgau, Ger
many and received her Di-
plom Informatiker degree in
1986 from the Furtwangen
Engineering School. Since
joining the Mechanical De
sign Division in 1986, she
has worked on the develop

ment of HP PE/ME30. She has also contributed to the
development of the HP PE/SolidDesigner product
She worked on 2D functionality including topology
checking for profiles, equidistance. and overdraw.
She also worked on the machining and lofting func
tionality of the PE/SolidDesigner kernel and on HP
PE/SheetAdvisor. She is currently responsible for
freeform modeling and machining functionality.
Sabine is married and enjoys ballroom dancing and
hiking.

6 9 E m b e d d e d L i s p

Jens Kilian
Jens Kilian received a
Diplom Informatiker degree
in 1991 from the Technical
University of Darmstadt,
Germany. He joined HP in
1992 as a software develop
ment engineer at the
Mechanical Design Division
and has contributed to the

development of the HP PE/SolidDesigner product. He
has worked on licensing, installation procedures, the
file system user interface, and the Lisp subsystem.
He continues to be responsible for maintaining the

Lisp subsystem and the file system user interface
He's also responsible for customization. Jens is pro
fessionally interested in programming languages and
computer graphics and is a member of the ACM. He
was bom in Fulda, Hessen, Germany and served in
the German army from 1984 to 1985. His hobbies
include listening to music, reading books, and watch
ing movies He also likes traveling, walking, and
biking.

Heinz-Peter Arndt

With HP since 1 983. Heinz-
Peter Arndt is a software
development engineer at the
Mechanical Design Division.
For the HP PE/SolidDesigner
product he worked on the
Lisp subsystem, the operat
ing system interface, and
action routines. He has also

worked on HP PE/ME1 0 kernel development and is
currently responsible for porting PE/SolidDesigner to
SGI and Sun platforms and maintaining the Lisp sub
system, the operating system interface, and the pro
gramming environment. He was born in Stuttgart,
Germany, studied computer science at the University
of Stuttgart and received his degree in 1983. Heinz is
professionally interested in artificial intelligence,
object-oriented programming languages, and compil
ers. He is married, has two children, and enjoys
spending time with his family. His other pastimes
include reading, traveling, tennis, and biking.

74 Boo lean Opera t i ons

Peter H. Ernst
^ ^ ^ ^ A s y s t e m s a r c h i t e c t a t t h e

Ã ¡ / ^ " Z T . M e c h a n i c a l D e s i g n D i v i s i o n ,
Peter Ernst is responsible for
topological algorithms and
overall system architecture.
He began his HP career in
1986attheBoblingenEngi-

H -^K neering Operation. He is
â€¢^^ professionally interested in

solid modeling and his accomplishments include en
hancing the HP PE/ME30 kernel and designing and
implementing the K2 kernel of HP PE/SolidDesigner.
He was also responsible for PE/SolidDesigner's sys
tem architecture and for new Boolean operations.
Before joining HP, he developed single-mode semi
conductor lasers at Siemens and real-time process
control software at an engineering firm. His work has
resulted in a pending patent related to methods of
performing Boolean operations. Peter was born in
Munich, Germany and served a year and a half in the
German infantry. He graduated in 1984 from the
Ludwig-Maximilian University of Munich, with a
Diploma in physics, specializing in laser spectros-
copy. He is married and enjoys biking.

8 0 W i d e - B a n d w i t h R e c e i v e r

Rober t J . Armant rout

A project manager for RF
receiver development. Bob
Armantrout works at the
Santa Rosa Systems Divi
sion. He joined HP in the
Baltimore field office in
1977. where he worked as a
field engineer for microwave
instruments. In 1980, he

moved to the Santa Rosa site where he became a
product marketing engineer for the HP 70000 Modu
lar Measurement System (MMS). He then moved to
R&D as a development engineer for ATE software,
and later, became project manager for the HP 85865A
signal monitoring software. He was the project man
ager for the HP 7091 1 A IF module and for the HP
71 91 OA wide-bandwidth receiver. Before coming to
HP, he designed radar receivers at Westinghouse
Aerospace in Baltimore, Maryland. Bob graduated
from the University of Michigan with a BSEE degree
in 1976, with emphasis on circuit design and commu
nications. He is professionally interested in RF and
microwave communications and is a member of the
IEEE. Born in Battle Creek, Michigan, he served four
years in the U.S. Air Force. He is married and his hob
bies include reading, racquetball, golf, and skiing.

8 9 W i d e - B a n d w i d t h I F M o d u l e

Robert J. Armantrout
Author's biography appears elsewhere in this section.

Terrence R. Noe
Terry Noe was born in
Lafayette, Indiana. He was
awarded a BSEE degree
from Virginia Polytechnic
Institute in 1985 and an
MSEE degree from Stanford
University in 1 989. He joined
the HP Stanford Park Divi
sion in 1985. As a produc

tion engineer, he worked on microwave signal gener
ators such as the HP 8673 and on HP Modular
Measurement System (MMSI spectrum analyzers. As
an R&D engineer, he worked on the HP 8371 0 series
signal generators. He also worked on the HP 7091 1 A
IF module and designed the boards for the FM dis
criminator, I-Q video, linear detector, and video filter.
He is currently designing a 3-GHz preselected down-
converter. His work has resulted in a patent. Terry is a
member of the IEEE and is interested in RF and micro
wave circuit design. He is married and is the father of
triplets. When he has time, he enjoys outdoor activi
ties such as windsurfing, bicycling, and backpacking.

October III!)-") Hewlett-Packard Journal 109

© Copr. 1949-1998 Hewlett-Packard Co.

C h r i s t o p h e r E . S t e w a r t

C h r i s S t e w a r t j o i n e d t h e
S i g n a l A n a l y s i s D i v i s i o n i n
1 985 . He has worked fo r the
S a n t a R o s a S y s t e m s D i v i
s i on s i nce i t s c rea t i on i n
1 9 9 2 . A s a m a n u f a c t u r i n g
d e v e l o p m e n t e n g i n e e r , h e
w o r k e d o n t h e H P 7 0 9 0 2 A

B i a n d H P 7 0 9 0 3 A I F m o d u l e s .
A s a n R & D d e v e l o p m e n t e n g i n e e r , h e w o r k e d o n t h e
H P 7 0 1 1 0 A D M M m o d u l e , t h e H P 7 0 9 0 0 B L O m o d u l e ,
t h e t r a c k i n g g e n e r a t o r f o r t h e H P 8 5 7 8 A , a n d t h e H P
7 0 9 1 1 A I F m o d u l e . H e d e s i g n e d t h e 1 - M H z - t o -
1 0 - M H z v a r i a b l e - b a n d w i d t h f i l t e r a s a n i n v e s t i g a t i o n
f o r t he HP 7091 1 A IF modu le and wo rked on t he
c h a n n e l f i l t e r b o a r d a n d t h e p o w e r s u p p l y b o a r d . H e
c u r r e n t l y h a s s y s t e m d e s i g n r e s p o n s i b i l i t y o n a r e
c e i v e r p r o j e c t , a s w e l l a s t h e d e s i g n o f t h e d o w n - c o n
v e r t e r a n d f i r s t L O b o a r d s . H e i s i n t e r e s t e d i n s y s t e m
d e s i g n o f R F a n d m i c r o w a v e c o m m u n i c a t i o n p r o d
u c t s , a s w e l l a s a n a l o g , R F , a n d m i c r o w a v e c i r c u i t
d e s i g n . H e h a s a u t h o r e d t w o H P p a p e r s o n c l o c k d i t h
e r ing and spec t rum ana lyze r l i nea r i t y . He Â¡s a member
o f t h e A R R L a n d b e f o r e c o m i n g t o H P , h e w a s a c o m
m e r c i a l r a d i o e n g i n e e r f o r W N C I r a d i o i n C o l u m b u s ,
O h i o . H e w a s a l s o t h e c h i e f e n g i n e e r f o r W A T H /
W X T Q r a d i o i n A t h e n s , O h i o . H e e a r n e d h i s B S E E
d e g r e e f r o m O h i o S t a t e U n i v e r s i t y i n 1 9 8 4 . H e e n j o y s
v o l u n t e e r i n g h i s t i m e t e a c h i n g a n i n t e r a c t i v e e l e c
t r o n i c s c l a s s a t a l o c a l h i g h s c h o o l . H i s h o b b i e s , i n
a d d i t i o n t o a m a t e u r r a d i o , i n c l u d e s c u b a d i v i n g ,
w h i t e - w a t e r r a f t i n g , b a c k p a c k i n g , s k i i n g , m o u n t a i n
b i k i n g , s o n g w r i t i n g , a n d f o l k g u i t a r .

L e o n a r d M . W e b e r

- â € ” ^ ^ ^ I L e o n a r d W e b e r j o i n e d t h e
I H P S i g n a l A n a l y s i s D i v i s i o n

H H i n 1 9 8 6 a f t e r r e c e i v i n g a B S
I d e g r e e i n e l e c t r o n i c e n g i -

â € ” - - ^ r * I n e e r i n g f r o m t h e C a l i f o r n i a
y ^ ^ l ^ H | P o l y t e c h n i c S t a t e U n i v e r s i t y

at San Luis Obispo, and Â¡s
n o w w i t h t h e S a n t a R o s a
S y s t e m s D i v i s i o n . S i n c e j o i n

i n g H P , h e h a s w o r k e d o n t h e H P 7 0 9 0 0 B l o c a l o s c i l l a
t o r a n d t h e H P 7 0 9 0 9 A f r o n t e n d m o d u l e . H e h a s a l s o
w o r k e d o n t h e H P 7 0 9 1 1 A I F m o d u l e a n d w a s r e s p o n
s i b l e f o r t he des i gn o f seve ra l o f t he boa rds i nc l ud i ng
t h e r e s o l u t i o n b a n d w i d t h / s t e p - g a i n , 3 2 1 . 4 - M H z L O ,
b a n d p a s s f i l t e r , a n d s y n t h e s i z e d d o w n - c o n v e r t e r
boards . He Â¡s cur ren t l y respons ib le fo r the 10-MHz-
t o - 1 0 0 0 - M H z p r e s e l e c t o r a n d t h e 1 2 0 0 - M H z s y n t h e
s ized I n He Â¡s in te res ted in RF des ign and h is work
has resu l ted Â¡n a pa ten t app l i ca t ion fo r a var iab le -
bandwid th f i l t e r . Leonard Â¡s mar r ied and en joys
moun ta in b i k i ng and snow sk i i ng . He Â ¡s a l so i n te r
es ted i n d rone a i r c ra f t .

1 0 4 L o g W e i g h t e d A v e r a g e

J o h n J . C a s s i d y , J r .

Born Â¡n Port Hueneme,
Ca l i f o rn ia , Jack Cass idy
r e c e i v e d a B A d e g r e e i n
m a t h e m a t i c s f r o m C o r n e l l
Univers i ty Â¡n 1971. He jo ined
HP i n 1987 a t t he San D iego
D i v i s i o n a n d i s n o w w i t h t h e
San D iego P r in te r D iv i s ion .
H e h a s w o r k e d o n S t a r s h i p

r e u s a b l e H P - G L / 2 a n d t h e H P D e s i g n J e t p l o t t e r a n d
s e r v e d a s p r o j e c t m a n a g e r f o r t h e H P D e s i g n J e t 6 0 0
f i r m w a i e a n d f o i s e v e r a l c o n n e c t i v i t y p r o j e c t s . H e
w a s t h e f i r m w a r e m a n a g e r f o r t h e H P D e s k J e t 1 6 0 0 C
p r i n t e r . J a c k i s n a m e d a s a n i n v e n t o r i n a p a t e n t t h a t
addresses techn iques fo r us ing less memory Â¡n
g raph i cs p r i n te r d i sp lay l i s t s . Be fo re j o i n i ng HP , he
w a s a n i n d e p e n d e n t s o f t w a r e d e v e l o p e r , a n d b e f o r e
t h a t , w a s w i t h S - C u b e d C o r p o r a t i o n , w h e r e h e p r o
g r a m m e d N A S A s p a c e c r a f t s i m u l a t i o n s t h a t d e a l t
w i t h e l e c t r i c a l c h a r g e a c c u m u l a t i o n . H e h a s w r i t t e n
v a r i o u s s o f t w a r e p a c k a g e s , a u t h o r e d a p a p e r o n s o f t
w a r e r e u s e , c o a u t h o r e d a p a p e r o n s p a c e c r a f t c h a r g
i n g , p r o d u c e d a n d d i r e c t e d a c o m p u t e r a n i m a t e d f i l m ,
a u t h o r e d a u s e r ' s m a n u a l , a n d w r i t t e n v a r i o u s l i t e r a r y
shor t s tor ies . He Â¡s pro fess iona l ly in teres ted Â¡n sof t
w a r e r e u s e a n d t e s t i n g . J a c k i s m a r r i e d t o m y s t e r y
w r i t e r J a n i c e S t e i n b e r g . I n h i s f r e e t i m e , h e l i k e s t o
p l a y p o k e r a n d b a c k g a m m o n , h a s w r i t t e n a b o o k ,
W i n n i n g a t P o k e r a n d G a m e s o f C h a n c e , a n d w a s
o n c e a w i n n e r o n a T V g a m e s h o w .

110 October 199o Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

K A R E N L E W I S
HP Archives - Palo Alto
3000 Hanover Street
M/S Â£08R
Palo Alto, CA 94304-1181

O c t o b e r 1 9 9 5 V o l u m e 4 6 â € ¢ N u m b e r 5

Techn ica l I n fo rmat ion f rom the Labora to r i es o f
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y , P . O . B o x 5 1 8 2 7
P a l o A l t o , C a l i f o r n i a , 9 4 3 0 3 - 0 7 2 4 U . S . A .

H E W L E T T 3
P A C K A R D

5964-1 641 E

© Copr. 1949-1998 Hewlett-Packard Co.

	HP PE/SolidDesigner: Dynamic Modeling for Three-Dimensional Computer-Aided Design
	User Interaction in HP PE/SolidDesigner
	Enhancements in Blending Algorithms
	Open Data Exchange with HP PE/SolidDesigner
	Providing CAD Object Management Services through a Base Class Library
	Exception Handling and Development Support
	Freeform Surface Modeling
	Common Lisp as an Embedded Extension Language
	Boolean Set Operations with Solid Models
	A Microwave Receiver for Wide-Bandwidth Signals
	Firmware Design for Wide-Bandwidth IF Support and Improved Measurement Speed
	The HP 89400 Series Vector Signal Analyzers
	An IF Module for Wide-Bandwidth Signals
	The Log Weighted Average for Measuring Printer Throughput

