WLETT-PAC

JOURNAL

October 1995

Last Fit Redraw Window Center Dynamic

% e

A xciaro

HEWLETT-PACKARD

J October 1995 Volume 46 « Number 5

Articles

6 HP PE/SclidDesigner: Dynamic Modeling for Three-Dimensional Computer-Aided Design, by
Klaus-Peter Fahlbusch and Thomas D. Roser

1 4 User Interaction in HP PE/SolidDesigner, by Berthold Hug, Gerhard J Walz, and Markus Kiih/

7A_ Enhancements in Blending Algorithms, by Stefan Freitag and Karsten Opitz

—

3 5 Open Data Exchange with HP PE/SolidDesigner, by Peter J. Schild, Wolfgang Klemm, Gerhard
J. Walz, and Hermann J. Ruess

5 1 Providing CAD Object Management Services through a Base Class Library, by Claus Brod and
Max R. Kublin

5 5 Exception Handling and Development Support

6 1 Freeform Surface Modeling, by Michael Metzger and Sabine Eismann
69 Common Lisp as an Embedded Extension Language, by Jens Kilian and Heinz-Peter Arndt

7 4 Boolean Set Operations with Solid Models, by Peter H. Ernst

7 8 Fighting Inaccuracies: Using Perturbation to Make Boolean Operations Robust

Executive Editor, Sieve Heitler « Managing Editor Char |.zatn « Senior Editor. Hchard P Dolan » Assistant Editor. Hobin Lverest «
Publication Production Manager 1 £ Wrioht « Mustration. Renac jun: = Typography/Layout Jonn Wicoas

Advisory Board Rajeev Badyal, intsgrar it Busingss Qv F s, Colprads » Thamas Be

2 October 1995 Hewlert-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A Microwave Receiver for Wide-Bandwidth Signals, by Robert J. A
Firmware Design for Wide-Bandwidth IF Support and Improved Measurement Speed

The HP 89400 Series Vector Signal Analyzers

-

An IF Module for Wide-Bandwidth Signals, by Robert J. Armantrout, Terrence R. Noe
Christopher E. Stewart, and Leonard M. Weber

The Log Weighted Average for Measuring Printer Throughput, by John J. Cassidy, Jr

4 |n this Issue
5 Cover
5 What's Ahead

107 Authors

y, CA 94304 U.S.A

October 1995 Hewlett-Packard Journal 3

© Copr. 1949-1998 Hewlett-Packard Co.

T

In this Issue

There's a good chance that many of the mechanical parts of the products you
use, such as your car or your office printer, began their existence as solid mod-
els in a 3D computer-aided design (CAD) system. 3D solid modeling systems
provide geometric models that can be translated into instructions for rapid part
prototyping, injection moldmaking, or numerically contralled machine tool oper-
ation. Such systems, both commercially available and manufacturer-proprietary,
are now undergoing rapid evolution, and mechanical designers are enjoying
unprecedented and rapidly increasing productivity, However, most current sys-
tems are still history-based, meaning that if the designer doesn't have in-depth
knowledge of the underlying solid modeling technology or doesn't thoroughly
understand the history of the design, even seemingly trivial changes made to the model may have unan-
ticipated side effects. In contrast, HP Precision Engineering SolidDesigner (PE/SolidDesigner) is an ad-
vanced 3D solid modeling CAD system based on dynamic modeling technology. As explained in the ar-
ticle on page 6, dynamic modeling removes any dependencies on history and eliminates the need to
anticipate future changes, so that local geometry and topology changes can be made easily. When a
change is made, a tool body is created and then transformed to the appropriate position. A Boolean op-
eration between the original model and the tool body results in the desired change. The HP PE/Solid-
Designer user interface (page 14) is designed to make the system easy to use for both experts and first-
time or occasional users. Internally, action routines representing commands interact with the user
interface objects through a “personality”; this architecture makes it easy to change the user interface
without changing the command syntax. To a computer, a 3D solid model is a highly complex data struc-
ture, HP PE/SolidDesigner’s data structure manager (page 51), which has many of the characteristics of
an object-oriented database, supports the data manipulation requirements of the solid madeling pro-
cess, including the ability to slice the model into manageable packages that can be sent around the
world, for example to subcontractors. Because HP business partners and customers may use other solid
modeling systems instead of or in addition to HP PE/SolidDesigner, HP participates in international data
exchange standardization efforts, most notably STEP, the Standard for the Exchange of Product Model
Data. HP PE/SolidDesigner can import and export both surface and solid STEP data files. It can also im-
port IGES (Initial Graphics Exchange Standard) surface and wireframe data files, and can import data
files from its predecessor, the HP PE/ME30 3D CAD system. Data exchange is the subject of the article on
page 35. Freeform surfaces are often needed in solid model creation, and HP PE/SolidDesigner provides
two methods for creating them: blending, or edge rounding, and lofting. The article on page 24 describes
the many subtleties of the sophisticated algorithm used for variable-radius blending. Complex combina-
tions of convex and concave edges are blended predictably and reliably—a difficult design challenge.
The article on page 61 tells how the product’s geometric kernel implements lofting using a single-data-
type geometric interface and a hybrid, multiple-data-type internal implementation. The lofting functional-
ity features a clever analytic surface detection algorithm. The Boolean operations used to effect model
modifications are implemented in the system'’s topology kernel, called the “Boolean engine.” The article
on page 74 explains the Boolean engine's complex algorithms in simple terms. Much of HP PE/
SolidDesigner is written in the Common Lisp programming language, which is also included in HP PE/
SolidDesigner as an extension and customization language for users (page 69).

The microwave signals that ride our airwaves today are likely to have much wider bandwidths than
those of yesterday. Spread spectrum techniques, increasingly used in radar systems and satellite and
terrestrial communications systems, trade increased bandwidth for benefits such as increased noise
immunity, lower power density, or increased security. The spectrum analyzers traditionally used to ana-
lyze microwave signals aren’t up to the job of extracting all of the information from modern microwave
signals because they don't have the bandwidth and don't reveal pulse, phase, or time-varying behavior.
The HP 70910A wide-bandwidth receiver is designed to fill this need. It combines the atiributes of a
microwave receiver, including wider bandwidths and demodulation capability, with the strengths of a
microwave spectrum analyzer, which include low internal noise, amplitude measurement accuracy, and
wide frequency tuning with synthesizer accuracy and fine resolution. The HP 70910A wide-bandwidth
receiver consists of two components: the HP 70910A RF module and the HP 70911A IF module. The IF

4 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

module provides the functions usually associated with a microwave receiver, such as intermediate fre-
quency (IF) bandwidths from 10 to 100 MHz and pulse detection. it also offers options for FM demodula-
tion, 70-megahertz IF output, and |-Q output (the type of modulation used in digital communications sys-
tems). The |-Q option can be used with a dual-channel vector signal analyzer such as the HP 83410A to
extend the analyzer's bandwidth and frequency range. The two mast common HP 70810A configurations
operate over a frequency range of 100 hertz to 26.5 gigahertz. The design of the HP 70910A wide-band-
width receiver and that of its RF module are described in the article on page 80. The IF module design,
featuring variable-bandwidth, synchronous filters with tapped-capacitor, varactor-tuned resonators, is
described in the article on page 89.

A color printer is typically used for a variety of documents, from simple black text pages that take a few
seconds to print to color graphics pages that take several minutes. If you're the printer's designer, how
do you measure how many pages per minute it will print so that you can judge the effects of design
changes on a user’s perception of its speed? The designers of the HP DeskJet 1600C printer considered
the simple average and the simple weighted average, but rejected them in favor of the log weighted
average. The article on page 104 tells why.

R.P. Dolan
Senior Editor

Cover

A solid model created and displayed using the HP Precision Engineering SolidDesigner 3D solid model-
ing system.

What'’s Ahead

The December issue will have ten articles on aspects of HP's implementation of the Open Software
Foundation Distributed Computing Environment (OSF DCE). There will also be articles on the design of
the HP Series 50 T fetal telemetry system and the HP HSMS-2850 zero bias diode for radio frequency
identification applications.

Oetober 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

5

.

HP PE/SolidDesigner: Dynamic
Modeling for Three-Dimensional
Computer-Aided Design

In most solid modeling CAD systems, knowledge of the history of the
design is necessary to avoid unanticipated side-effects when making
changes. With dynamic modeling, local geometry and topology changes
can be made independently of the model creation at any time, using both
direct and dimension-driven methods. The core components enabling
dynamic modifications are the tool body and the relation solver.

by Klaus-Peter Fahlbusch and Thomas D. Roser

[P Precision Engineering SolidDesigner (PE/SolidDesigner)
is a 3D solid modeling design system based on the ACIS®
Kernel (see "About Kernels” on next page). It provides the
geonietric model needed by design workgroups in product
development environments. The system’s dynamic modeling
technology gives the designer the freedom to incorporate
changes at any time and at any stage of product development,
without dependence on the history of the product design.

HP PE/SolidDesigner is a member of the HP Precision Engi-
neering Systems (PE/Systems) product family. Today, HP
PE/Systems consists of:

HP PE/SelidDesigner for solid modeling

HP PE/ME10 for 2D design, drafting, and documentation
HP PE/ME3(for 3D design

HP PE/SurfaceStyler, an engineering styling application in-
tegrated with HP PE/SolidDesigner

HP PE/SheetAdvisor, a sheet-metal design-for-manufactur-
ability application

» HP PE/WorkManager for product data and workflow

®

management

HP PE/DDS-C for electrical system design

HP PE/Complementary Application Program (CAP), a joint
research and development and marketing program that pro-
vides HP PE/Systems users with access to more than 200
leading applications from 70 companies.

HP PE/SolidDesigner

HP PE/SelidDesigner makes it easy for designers to move to
3D solid modeling. It supports the coexistence of surface
data with solid data and provides the ability to import and
modify surface and solid design data from a variety of CAD
systems. It also offers new modeling functionality and en-
hanced ease of use.

Using improved IGES (Initial Graphics Exchange Standard)
import capability, both surface and wireframe data can be
imported. Surface data and solid data can also be imported

and exported using the STEP (Standard for the Exchange of

Product Model Data) format. Once imported, this data can
coexist with HP PE/SolidDesigner solid data. It can be
loaded, saved, positioned, caught to (see footmote on

6 October 1995 Hewlett-Packard Joumal

page 15), managed as part and assembly structures, deleted,
and used to create solids, Attributes such as color can be
modified. If the set of surfaces is elosed, HP PE/SolidDe-
signer will create a solid from those surfaces automatically.
Other solid modeling systems, which are history-based, are
unable to import data and then modify it as if it had been
created within the system itself.

HP PE/SolidDesigner allows solid parts and assemblies to be
exported to ACIS-based systems using Version 1.5 of the
ACIS SAT file format. This feature provides a direct ink to
other ACIS-based applications.

With HP PE/SolidDesigner, users can set part and layout
accuracy. Because users can model with parts of different
accuracy by foreing them to a common accuracy, they can
import and work on models from other CAD systems regard-
less of their accuracy.

Dynamic modeling is the underlying methodology within HP
PE/SolidDesigner. This flexible, nonhistory-based, intuitive
design technique provides direct interaction with modeling
tools and designs, allowing the engineer to focus effectively
on the design task.

HP PE/SolidDesigner allows designers to work with user-de-
fined features to capture design intent. Users can explicitly
group a variety of 3D elements such as faces and edges of a
part. These features then can be viewed, edited, renamed,
deleted, or used to drive changes to a design.

HP PE/SolidDesigner has variable radius blending, which
allows users to create, modify, and remove variable blends.
They can now create constant and variable blends during
one session. Another new feature, called shelling, provides a
quick way for users to create thin-walled parts from solids,
as in injection-molded parts, for example.

Also new in HP PE/SolidDesigner is mass property capabil-
ity. The following properties can be calculated for parts and
assemblies: face area, volume, mass, center of gravity, iner-
tia tensor. and boundary area. Tolerances can be supplied

and achieved accuracies are returned. HP PE/SolidDesigner
also incorporates interference-checking capabilities, which

© Copr. 1949-1998 Hewlett-Packard Co.

allow detection of interference, face touching, and noninter-
ference of assemblies and part combinations. The results
can be shown as text reports or in graphic format with color
coding for easy identification.

About Kernels. A kernel is the heart of a modeling system
Currently, three kemels are used in various CAD systems
These are Romulus from Shape Data, Parasolid, an exten-
sion of Romulus, and the ACIS Kernel from Spatial Technol-
ogy. The ACIS Kernel is rapidly becoming a de facto stan-
dard, having been accepted to date by 25 other commercial
licensees, 50 academic institutions, and 12 strategic devel-
opers. As of July 1995, companies that officially have com-
mitted to using ACIS as their underlying technology include
MacNeal-Schwendler/Aries, Applicon, Autodesk, Bentley
Systems, CADCentre, Hewlett-Packard, Hitachi-Zosen Infor-
mation Systems, Camax Manufacturing Technologies, Inter-
graph, and Straessle.

About STEP. The STEP protocol for data exchange is the
product of a group of international organizations including
PDES/PDES Inc. USA, a joint venture with several member
companies, ESPRIT (European Strategic Program for Re-
search and Development in Information Technology), Euro-
pean data exchange technology centers such as CADDETC
(CADCAM Data Exchange Technical Centre) and GOSET,
and ProSTEP, the German industry project for establishing
STEP in the antomotive industry.

HP has been active in STEP technology since 1989 through
projects such as CADEX (CAD Geometry Exchange), PRO-
DEX (Product Data Exchange), and ProSTEP. HP provides
STEP processors with its HP PE/SolidDesigner 3D solid
modeling software.

Dynamic Modeling

Currently, the most popular 3D CAD solutions are history-
based. When designing with these systems, dimensions and
parameters have to be specified at the outset. The model
can only be manipulated indirectly by modifying these di-
mensions and parameters. The initial definitions have a major
influence on the ease or difficulty of carrying out subsequent
modifications, which can only be reliably implemented if all
the previous steps in the design process are known. Labori-
ous manipulation may be necessary to make changes that,
intuitively, should be achievable in a single step.

Unless the history of the design is thoroughly understood,
any change made to a model may have unanticipated side-
effects. Relatively straightforward changes to the model
involve many convoluted steps. Future interpretation be-
comes ever more difficult and the effects of further modifi-
cations are unpredictable. Even when a single designer
takes a part from start to finish, the designer will usually
recreate the model from seratch many times as decisions
made earlier make further progress impossible.

Although history-based systems are appropriate for solving
family-of-parts problems, and are ideal for companies who
simply produce variations on a given design, they are inflex-
ible when used during the conceptualization phase of a
project.

Dynamic Modeling

Dynamic modeling has been developed by HP to overcome
the many problems designers experience with history-based
CAD systems. In particular, it aims to remove any dependen-
cies on history and the need to anticipate future changes.

The concept underlying dynamic modeling is to make opti-
mal use of technologies without constraining the designer's
creativity and flexibility. In contrast to history-based sys-
tems, dynamic modeling allows direct manipulation of
model elements in 3D space. With dynamic modeling. local
geomeiry and topology changes can be made independently
of the model creation at any time, using both direct and di-
mension-driven methods. In the latter case, dimensions can
be specified at any stage in the design, not just at the outset.

The core components enabling dynamic modifications are
the tool body and the relation solver. To make a model maodi-
fication a tool body is created and then transformed to the
appropriate position. A Boolean operation between the orig-
inal model and the tool body results in the desired model
modification.

HP PE/SolidDesigner is the only currently available CAD
solution that uses dynamic modeling. The remainder of this
article deseribes the underlying technology of dynamic mod-
eling and compares it with other methods like parametric
model modification techniques.

State of the Art

Currently, solid modelers use two different approaches to
create the final geometrical model. CSG (constructive solid
geometry) modelers are based on volume set operations
with volume primitives such as cubes, cones, or cylinders.
This approach is characterized by a Boolean engine, which
implements the basic operators unite, subtraet, and inter-
sect. The sequence of all the Boolean operations, parame-
ters, and positions of the primitives are kept in the CSG free.
Modification of the solid later in the design process can be
done by using more primitives or by editing the CSG tree.
Local modifications of the model are not possible, since no
access to faces or edges is given. This cumbersome way to
modify solids requires the user to analyze the design before-
hand and dissect it into the necessary primitives and opera-
tions. While anticipating design modifications and building
designs out of primitives is not typical in the mechanical
engineering design process, pure Boolean modelers have
proven useful when entering a final design for postprocess-
ing, such as for finite-element analysis (FEM) or NC tool
path programming.

B-Rep (boundary representation) modelers represent the
solid by concatenating surfaces towards a closed volume,
Maodel creation is similar to CSG modeling, but the user can
work locally with surfaces, trim them against each other and
“glue” them together. Local geometry modifications are very
flexible and represent the way engineers think. For exam-
ple, “I would like to blend this edge” is a natural way of
specifying a model change for a mechanical engineer, while
“I have to remove a volume that cuts away all material not
needed” is a very unnatural way of specifying the same task
during design.

October 1996 Hewlett-Packard Jourmal 7

© Copr. 1949-1998 Hewlett-Packard Co.

As the development of B-Rep modelers continued. a new
class of operations emerged in the early 1980s from the re
search institutes and appeared in commereial implementa-
tions. These operations are called local operations, or more
commonly, LOPs, in contrast to global operations like Bool-
ean set operations. Typical representatives of this kind of mod-
eler are all Romulus-kernel-based systems like HP PE/MES30,

The difference between modifications with Boolean opera-
tions and modifications with LOPs lies in the amount of con-
text analysis required. A Boolean operation always works on
the complete volume of the operands (global operation). A
LOP only analyzes the neighborhood of the operand and is
usually not able to perform topological changes. To perform
a model modification several constraints have to be met by
the model, two of which are illustrated in Figs. 1 and 2.

The example shown in Fig. 1 is a block with edge E1 to be
blended (rounded). If the radius chosen for the blend is
larger than the distance between the two edges E1 and E2,
the topology of the model would need to be changed or the
model would be corrupted.

Fig. 2 shows a block with a pocket on its left side. To move
or copy the pocket from the left top face to the right one
cannot be done using LOPs, because both top faces would
change their topology (i.e., add or remove faces or edges).
The left top face would lose the inner loop resulting from
the pocket while the right top face would add one.

These two restrictions are only examples of the complex set
of constraints on the use of LOPs. Removing these restric-
tions one by one means evaluating more and more scenar-
ios, thus adding to the complexity of the algorithms needed
for the operations. A new approach was necessary.

The Tool Body

The limitations illustrated above led to the question, why
can't Boolean set operations do the job? Boolean operations
would be able to handle all special cases and at the same
time would increase the stability of the algorithms. In the
late 1980s a lot of research and development was done using
this approach. Two directions were taken. The first was to
further develop the old-style CSG modeling systems to make

last fit redraw window center dynamic

xample of the limitations of

Fig. 1. An e

ded (rounded)

tween El and E2

8 Oetober 1995 Hewlett-Packard Joumal

them easier to use. The second was to remove the limita
tions of LOPs in systems like HP PE/ME30 and all other
Romulus-kernel-based systems. HP took the latter approach
to develop the dynamic modeling capabilities of HP PE/-
SolidDesigner.

To enable model modifications with topology changes, Bool-
ean operations were added to the LOP modification capabili-
ties. The system generates a fool body and positions it ac-
cording to the specifications of the modification. A Boolean
operation between the original model and the tool body re-
sults in the desired model modification.

In this article, the term basic local operations (B-LOP) will
be used for the normal LOP, which cannot perform topology
changes, while the process of using the Boolean operation,
if necessary or more appropriate, will be referred to as an
intelligent local operation (1-LOP). Although the Boolean
operation does not need to be done in all cases, the term
I-LOP will be used to indicate that there can be a Boolean-
based part of the operation.

To use the Boolean set operations for -LOPs the system
needs to create a tool body first. Two major approaches can
be distinguished;

Analysis of the the geometry to be modified and generation
of an appropriate topological primitive (i.e., a basic volume
element such as a cube, prism, or other) whose faces will be
forced (tweaked) to build up the geometry of the tool body.
Topological and geometrical creation of the tool body in
only one step by analyzing the geometrical and topological
neighborhood of the face 1o be moved.

°

The first approach is easier to implement if a utility function
(a set of B-LOPs} is available that performs the task of
tweaking a topologically similar object onto the required
geometry of the tool body. The tweaking function, however,
is tied to the restrictions of this utility function. The second
method is more flexible but requires more knowledge about
the internal structure of the CAD system’s kernel.

We chose the first approach because HP PE/SolidDesigner
already provided a working internal utility function for
tweaking. The tool body generation for moving and tapering

last fit redraw window center dynamic

Fig. 2. Another example of the limitations o

f LOPs. Tt
left top face cannot be copied or moved to the 1
1sing LOPs b

or removing faces and edges

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 3

faces (and for bosses and pockets) follows two steps, which

are carried out by the system automatically without any user

intervention. First, a 3D body is created that has the topol-
ogy of the final tool body. The part to be modified is ana-
lvzed to determine the topology of the 3D body that has to
be generated for the requested operation. Depending on the
number of edges in the peripheral loops of the face to be
modified this body is either a cylinder (one edge), a half
cylinder (two edges). or an n-sided prism, where n is the
number of peripheral loops. Second, the geometry of this
body is modified using basic local modifications. The result
is the final tool body to be used for the model modification.

Figs. 3 to 5 illusirate this approach in further detail, showing
the I-LOP approach for a stretch (move face) operation in
HP PE/SolidDesigner. The user wants to stretch the box in
Fig. 3, which means that the right face of the box will be
moved to the right. The only and outer loop of the face to be
moved contains four edges. Thus, the system creates a four-

sided prism in space at an arbitrary position.

As shown in Fig. 4, the system then forces the faces of the
prism onto the surfaces underneath the front, top, back, and
bottom faces of the box (B-LOP). The left face of the prism
will be forced onto the right face of the box and the right
face of the prism will be forced into its final position, speci
fied by the user.

The last step shown in Fig. 5, is the Boolean set aperation
(in this case a unite) of the tool body with the original 3D
Although the modifi-
cation in this example could have been achieved by employ

part, resulting in the modified 3D part

ing a B-LOP operation, the use of the Boolean set operation
will allow topological changes like interference of the

stretehed 3D part with some other section of the model

The same approach works for faces with outer loops of n-

sided polygons. The curves describing the polygons are not
restricted to straight lines. All types of curves bounding the
face are valid, as long as the boundary of the face is convex

» edges special care has to be

|||"'."-nl"ﬁHllf'“[l‘.l'f\""‘lll".
taken in tweaking the faces of the prism onto the geometry
of the adjacent elements of the original part. An approach

similar to the one described applies for tapering faces

Fig. 4 T I I re g the x of Fig

There is a high risk of getting unpredictable results or self-
intersecting tool bodies when dealing with several faces that
are not related 1o each other. Although the example in Fig. 6
may look somewhat artificial, it is characteristic of many
possible situations, The user wants to move the two vertical
faces F1 and F2 farther to the right, and expects a result as

the sequence of selection, two different resulfs can be obtained.

If F2 is selected before F1, the LLOP performs as expected
and the result is as shown at the right in Fig. 6. If F1 is se-

lected first, however, F1 will be moved first. The tool body
belonging to F2 will then be subtracted from the body and
will interfere with the final position of F1. This leads to the
unexpected result shown in the middle of Fig. 6

The coneclusion is that only single faces can be modified and
change topology during the modification. For multiple faces
the I-LOP is too risky. If multiple faces are 1o be modified at
once, basic local 'J|Il'i':l[i”|l‘1 (B-LOPs) instead of Boolean
operations will be activated. No topology change is allowed,
of course. One major exception to this rule is the case of

bosses and pockets, which will be discussed later

Although in most cases the -LOP approach will be applied,
there are situations where sell-intersecting tool bodies

would be created and therefore the B-LOP approach is

October 18095 Hewlet-Packard Joumal 9

© Copr. 1949-1998 Hewlett-Packard Co.

preferred even in cases with only one face to be moved.

Fig. 7 shows such a situation. The user wants to rotate the
right face around an axis lying in the face itself. Another
likely situation would be aligning the right face with another
face of the model

Using an I-LOP in the way deseribed above, a self-intersect
ing tool body would be created without special care to dis-
sect the tool body into two tool bodies, one to add to the
part and one to subtract from the part. In Fig. 7, the volume
to be added is colored green and the volume to be removed
is red. If HP PE/SolidDesigner detects a situation like this, a
B-LOP is used for the modification.

Geometry Selection and Automatic Feature
Recognition

The next step in terms of increased complexity is the han-
dling of groups of faces, which are known as bosses o
pockets by mechanical engineers. These bosses and pockets
need to be moved or copied, allowing topology changes. Of
course the end user would appreciate it very much if these

vporte' [last | fit | redraw window center |dynamic|

10 October 1995 Hewlett-Packard Journal

features could be selected as a unit as opposed to the

cumbersome selection of faces sequentially

First, the terms boss and pocket need to be further speci
fied. Bosses and pockets can be defined as a number of con
nected faces whose exterior boundary loops (the edges de
scribing the intersection of the tool body with the original
3D part) are internal loops of a face. This definition is not
easily conceivable and can be replaced by the more under-
standable, yvet not very exact definition, “a number of con-
nected faces contained in one or two nonadjacent others.”
This is easily conceivable by the end user and fits a lot of
cases. Figs. 8§ and 9 illustrate the copying of a pocket to
which this definition applies.

For moving or copying bosses or pockets the system dis
sects the part along the edges that connect the boss or
pocket with the remaining part. Both the tool body (the for
mer boss or pocket) and the part to be modified now have
open volumes (missing faces, or “wounds”), which are

tool bady.

Figs. 5 and 9 show only simple pockets. The question re-

mains of how to deal with more complicated situations like

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 9 1 f Fig

countersunk holes or bosses inside pockets. Fig. 10 shows
the extension of the simple bosses and pockets. A boss o1
pocket containing countersunk bosses or pockets will be
referred to as a compound boss or pocket. Any number of

nested bosses or pockets is allowed, as shown in Fig. 10.

Simple and compound bosses and pockets are recognized by
the system aut i]l'lél[]t'(t]]}_ 1it"|ii'}1!ill!.,'al on the selection of the
user. If one face within the hoss or il ket is selected, the
feature recognition algorithm identifies all other faces be-

longing to the selected boss or pocket.

Fig. 11 shows a part with a countersunk pocket. If the user
selects one of the red faces in Fig. 11, the whole pocket is
selected. If the user selects one of the vellow faces a smaller

pocket will be recognized.

Feature recognition very much simplifies geometry selec
tion. Instead of many picks to sample the list of faces for a
move or copy operation, one single pick is enough. HP PE/
SolidDesigner recognizes the list of faces as a boss o1
pocket and the subsequent modification can include topo

logical changes.

Once the bosses or pockets are selected, various I-LOPs are
1|l|||5j|'!1'
The *“wound” in the top face of the part to be modified is

healed, resulting in a simple block and a tool body consist

ing of the two nested pockets (the colored faces)

Fig. 11

This compound tool body is split into the larger pocket
(colored red, nesting level 1) and a smaller pocket (vellow,
level 2

Both tool bodies are transferred to their final positions
The larger tool body is subtracted from the block.

The smaller tool body is subtracted from the result of the

preceding, leading to the desired modification of the part.

The additional complexity of working with compound pock

ets or bosses is mainly handled by the Boolean engine of

HP PE/SolidDesigner. Only a small part—the detection and
subdivision of compound bosses or pockets—is needed in

the I-LOP code itself.

Fig. 12 shows the result of tapering a compound pocket with
HP PE/SolidDesigner. (The front corner of the block has
heen cut away to show the tapered pocket.) If there were a
need to change the topology by this operation, the Boolean

operation inside the [-LOP would take care of it.

These features in PE/SolidDesigner don't have anything to
do with the generation method of the model, as is the case
in history and feature-based modelers. The features are de
fined temporarily for specific purposes; they are not part of
the model. The flexibility of defining features at any stage in
the design process is very much appreciated by most me

chanical engineers

Oetaber 1995 Hewlet-Packard Jourmal 11

© Copr. 1949-1998 Hewlett-Packard Co.

3D Labels for Dimension-Driven Modifications

In the past, if a mechanical engineer or draftsman had to
adapt an existing design to new dimensions, the easiest way
was to mark the dimensions as “not true in scale,” erase the
original value and put in the new value. The rest was lefi to
the people on the shop floor.

This concept of modifying labels was adapted by CAD sys-
tems that use variational or parametric approaches in either
2D or 3D. The difference between the parametric and varia-
tional approaches is minor in this respect. Both systems
require a completely constrained drawing or 3D model
which is generated with the help of user constraints and
system assumptions, New values of the dimensions cause a
recomputation of the whole model. Any dependencies that
the user might have specified are maintained even when the
model becomes modified later in the design process, The
design intent is captured in the model. While this approach
is most efficient for family-of-parts designs, it does not sup-
port flexible modifications, which are needed in the typical

iterative design process.

HP PE/SolidDesigner’s dyvnamic modeling capabilities sup-
port the concept of 3D labels that can be attached to the

model at any time during the design process and can be
used as driving values. Tapering of the selected geometry
can be driven by angled labels, while the transformation of
the selected geomeiry can be delined by employing distance
labels. The user adds one or several 31 labels to the part,
selects the geomeltry to be modified, and specifies new di-
mension values. Using the new values the system then per-
forms the modification employing B-LOPs or I-LOPs. After
the modification all values of the labels are updated to the
current values of the geometry.

Fig. 13 shows the HP PE/SolidDesigner model of a part of
the printhead of an HP DeskJet printer. Figs. 14 through 18
illustrate the e« meept of 3D labels.

As indicated in Fig. 14, the first draft of the design contained
a 30-degree ramp that was to be used to aid manufacturing.
All edges of the area are blended to meet casting require-
ments. Assume that later in the design process it turned out
that the ramp was not needed at all or a different angle was
needed. There are several ways to define the transformation
in space for the ramp to disappear (e.g., aligning the original
ramp face and the adjacent face below the ramp). If the user
is trying to define the axis of rotation for the ramp face,

195 Hewlett-

© Copr. 1949-1998 Hewlett-Packard Co.

last t redraw window center dynami

Fig. 16. The part of Fig. 13 changed by I-LOPs without the
knowledge that there is a blended ed

problems arise because the axis is a virtual one and cannot
be found in the model. Either a special method for axis defini-
tion is needed or the user has to do the calculation by hand.

A third possibility is employing 3D labels. Using the 3D label
already defined to show the functional angle enables the
system to do all the necessary computation. A new value (in
this example 180 degrees) needs to be entered by the user.
The system derives the transformation that has to be applied
to the ramp face and the model becomes updated. (Fig. 15).

If the label had not been ready for use, it could have been
created to drive the modification. The labels are indepen-
dent from the model creation and can be used temporarily.
If the model has been changed, the values of the dimensions
update automatically to their new values.

Relation Solver

Once the geometry to be modified is selected and new val-
ues of the labels are entered, the system will start with the
unspecified transformation and six degrees of freedom
(three translational and three rotational). The solver will
derive the relations from the labels and reduce the number
of degrees of freedom sequentially one after the other until
all specified relationships are satisfied or an impossible con-
figuration is encountered.

The system is only designed to solve relationships that can
be described by equations solvable by algebraic means. No
iterative solution is attempted.

last fit

redraw window center dynamic

Fig. 17. HP PE/SolidDesigner avaids the behavior of Fig. 16 by first
suppressing the blend as shown here.

fast it redraw window center dynamic

ig. 15

SVSLem makes the change as
=

Fig, 18. After suppressing the

shown here, The final step is to readd the

blend as shown in F

The resulting transformation is dependent on the order in
which the user has selected the modification-driving labels.
Thus, the result of the modification is order dependent, es-
pecially if rotational and translational fransformations are
specified for the same modification.

Modifying Blended Faces

In Fig. 14, there are blends adjacent to the face to be moved. If
the system didn’t know that there were blends in the neigh-
borhood of this face and how to handle them, moving the face
might create a strange object like the one shown in Fig. 16.

To avoid this behavior, the system suppresses the blends in
a preprocessing step before doing the main operation (ro-
tate the ramp face) and recreates them after performing the
main operation in a postprocessing step. Figs. 17 and 18
show the steps used by the system internally.

This concept adds to the flexibility of HP PE/SolidDesigner
tremendously, because it overcomes the limitation of the
B-LOPs that only modifications can be done that do not in-
volve topological changes.

Summary

This paper shows the strengths of the dynamic modeling
techniques. Topology changes are possible in most cases.
Model modifications can be defined when they become re-
quired within the design process, Design changes do not
have to be anticipated when starting the model creation. No
constraints within the model exist, and predictable results
avoid the trial-and-error approach of parametric and history-
based systems. Dynamic modeling’s core component besides
the relation solver is the tool body, which is defined by the
system automatically for the Boolean operation during a
model modification. Although some limitations exist, mosi
design changes are possible in one or several steps.

Acknowledgments

We would like to thank all those who helped with the devel-
opment of dynamic modeling, in particular the Mechanical
Design Division HP PE/SolidDesigner team, which was sup-
ported by 3D/Eye of Ithaca, New York and D-cubed of
Cambridge, UK.

ACIS s a US, registered trademark of Spatial Techinology, Int

Oetober 19895 Hewlett-Packard Jowrnal 13

© Copr. 1949-1998 Hewlett-Packard Co.

User Interaction in HP

PE/SolidDesigner

The HP PE/SolidDesigner user interface is modeled after the successful,
easy-to-use, easy-to-learn interface of earlier HP CAD products. All
commands are coded as Common Lisp action routines. A user interface
builder helps command programmers by hiding details of the X Window
System and the OSF/Motif™ graphical user interface. Prototyping was
done using a specially developed Lisp-based interface to OSF/Motif called

HCLX.

by Berthold Hug, Gerhard J.Waiz, and Markus Kiihi

As the use of CAD systems has become more and more
widespread, two conflicting trends have emerged. On one
hand, the complexity of CAD systems has grown with their
increasing funetionality. On the other hand, the typical CAD
system user is no longer a computer hobhyist. Designers
and detailers are busy enough maintaining expertise in their
own areas without having to be computer experts as well,
Therefore, CAD software must be easy to learn and easy to
use for first-time or occasional users without sacrificing
flexibility and effectiveness for more experienced users. The
conflict between the need for simple operation and the in-
creasing functional complexity can lead not only to less user
satisfaction, but also to decreased productivity. As a result,
a simple and consistent user interface has been a long-stand-
ing goal of HP CAD products.

The user interface of HP PE/SolidDesigner is based on the
successful user interface of HP PE/ME10 and PE/ME30, The
key components of this user interface are:

Ease of Use. The product is designed not only for experts,
but also for first-time or occasional users.

Menu Structure. A task-oriented, flat menu structure mini-
mizes menu interaction and the length of cursor movements.
Macro Language. This allows the user to customize the
menu structure. User-defined functions can be set up to
increase productivity by using existing CAD operations and
measure/inquire tools for model interaction.

Online Help System. This provides all relevant information
to the user without using manuals.

The HP PE/SolidDesigner graphical user interface is based
on OSF/Motif and the X Window System, universally ac-
cepted graphical user interface standards for applications
software running on workstation computers. The OSF/Motif
graphical user interface provides standards and tools to en-
sure consistency in appearance and behavior.

The large functionality built into HP PE/SolidDesigner is
accessed by means of a command language with a defined
syntax, referred to as action routines. The user communi-
cates with the command language via the graphical user

14

October 19095 Hewlen-Packard Journal

mterface. All prompting, error checking, and graphical feed-
back are controlled by means of the command langnage. All
CAD functionality is provided in this way, along with a user
interface builder for implementing the graphical user interface,

The action routines are implemented in Common Lisp,
which provides an easy and effective way of prototyping and
implementing user interactions. For the first interactive pro-
totypes, HCLX, a Lisp-based OSF/Motif interface, was used.

During the development of HP PE/SolidDesigner, HP me-
chanical engineers spend hundreds of days testing the prod-
uct and providing feedback to tune its user interaction to
meet their needs. They mercilessly complained about any
awkward interactions. They made suggestions and drew
pictures of how they would optimize the system for their
particular tasks. As a result, commands were designed and
redesigned to reflect their needs. The user interface verifica-
tion was also supported by many external customer visits,

User Interface Description

If the user is familiar with other OSF/Motif-hased applica-
tions, it's easy to feel comfortable with HP PE/SolidDesigner
quickly. The mouse, the keyboard, and the knob box or
spaceball are the tools for interaction.

When HP PE/SolidDesigner is started it looks like Fig. 1. The
different areas are:

Viewport (center of the screen). The viewport covers the
main portion of the user interface and consists of the graph-
ics area and the viewport control buttons at the top, In the
graphics area of the viewport, the model is displayed and
the user interacts with the model, Several viewports can
exist, each with its own control buttons. Using more than
one viewport, the user can view a part simultaneously from
different sides and in different modes. Resizing and iconi-
fication of viewports are possible.

Utility Area (fop row). In the utility area, the user finds util-
ity tools that support the current task. They do not termi-
nate, but rather interrupt and support the current command.
The help button at the right end gives access to the general
help menu.

© Copr. 1949-1998 Hewlett-Packard Co.

Click a command.

Last | Fit | Redraw [Window|Center|Dynamic (CreatezD .I-;n.ﬁly?l)
:-\’J-orluph.nt. W‘P Set
[Part & Assy |Modily 3D
Machine Freeform

;li','m-n

Machine

Add Material

Labeling

Bxrude Unite
Tum Reflect
Remove Material
Min Bore
Funch Shell
Stamp Subtrast
Section

Intersect

% | Ganeel | Help

Active WP 1] “|Ir |

ActivePart 1| | | [Detete 2D [Delete 3D

[[cancoAn [unde ok

~ [canent

Fig. 1. Main screen of the HP PE/Solid Designer user interfac

Main Menu (right side). The main menu buttons appear in
the right column below the application name. This is also
called the main task area. All the functionality is grouped
into task-oriented logical areas. By selecting a main task
button, the user opens a set of subtasks or a command
dialog menu with buttons for all stages in the modeling
sequence,

Prompt Lines and General Entry Field (bottom left). The
two-line prompt area is used for general system feedback,
messages, or user guidance. The general entry field is used
for entering commands, general expressions, and the like
(;lobal Control Buttons (bottom right). The buttons at the

bottom are always available. The select button is only active

when the system is prompting the user to select something

The buttons and display fields inside the scrolled windows

display general system settings like the active workplane or

part, units, and catch information.t The other buttons are
commands that the user needs frequently. They are always

available

Command and Option Dialogs

Command dialog boxes (see Fig. 2) are accessed either from
the main task area or the utility area. The current command
dialog box is replaced by the new selected one. If the default
home position of the command dialog box is inside the
drawing area, the dialog box is closed upon completion of
the operation (this is typical for command dialogs from the
utility area). With this behavior the user always has optimal

nse of the screen space

Nevertheless, sometimes the user wants to have parallel ac
cess to different dialog menus at the same time (flat struc-
ture). This can be achieved by pinning the command dialog (o
the screen using the small icon in the upper left corner.
Pinned command dialog boxes are helpful whenever the
user is using several menus constantly. The user can keep as
many or as few dialog boxes open as desired and arrange
them on the sereen to suit the present task. Fig. 2 shows two
pinned dialog boxes and one unpinned dialog box.
Activation of a command by a mouse click or by typing in a
command in the general entry field leads to the same behay

ior. The conmumand button snaps into pressed mode, If there

exist a number of additional controls of the command, a

October 1995 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

4
+ Geometry
Circle

Circular

Ctr & Rad Concentric 2 Pos

Fix Radius Fix Center
3 Pos Diameter

Tan& Cen Tan &2 Pos

Tanby 2

Tan by 3
Arc

Construct | ¢+ Geometry

Horizontal
Parallel to
At an Angle

Tangent to

=
Construct

Line New

Copy
Vertical Shars
Perpend to

Ref Angle Position

Tanby2 Unshare

PO*Y Lines Settings

Workplane

Create

-

Parallel

Inclined

Last WP

Modify

Name
Owner

Slide Origin

Generic Concentric Polygon Rectangle

Smooth Center O Cancel Help

3 Pos Diameter

Change Circle

Radius

OK Cancel | Help

subdialog is attached at the bottom of the command dialog
box (see extrude box in Fig. 3). The command becomes in-
teractive and a prompt asks for further input. The dialog box
gets a yellow border, a signal that this dialog box is active. If
the action is suspended by an interrupt action, the border
changes to red. Thus, the user never loses track of what is
active and what is not.

The subdialog provides options in the form of buttons, data
entry fields, and check boxes for further control of the com-
mand. The system provides good defaults to minimize the
required user input. All options can be manipulated in any
appropriate order; the command supplies a parallel syntax.
All settings are displayed in the dialog box. Required data
fields are highlighted in yellow, meaning that the user must
define a value,

The help buttons of the command dialog boxes give access
to context-sensitive help.

Context-Sensitive Help

Help messages relating directly to the task the user is per-
forming can be accessed immediately by pressing the help
bution located in the currently active menu or dialog box.
The help information appears in its own dialog box, which
can be positioned anywhere on the screen and resized for
convenience (see Fig. 4).

Words used in help text are directly linked to other defini-
tions or explanations. The user need not go back to indexes
to look up further words to aid in understanding the help
information.

16

October 1985 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-

| Norm to WP

Create New

Name w2

T owmer f) .'

Parto Face PtPtPt

Par to WP Pt Dir

oy 3¢

Fig. 2. Command dialog boxes
with pinicons in the upper left
Help corner. Two boxes are pinned to

the sereen and one is not

Machine
Add Material

i 3

Extrude Unite

Turn Reflect
Hemove Material
IMill Bore
Punch Subtract
Stamp Intersect
Section
Extrude
Part ip1

Workplane iwi]

To Part

Reverse Dir

B Keep WP

0K Cancel

Help

ntrols in addition to the basic ones. a
o the
this 1

imand dialog box. The extrude

Packard Co.

In addition t the help system

wdex with search facility, a command
an overview of HP PE/Solid-

Designer, information on HP PE/SolidDesigner's concepts,

provides a task-based i1

based index with search fac

filters, and displ

user has to enter a direction, the direction tool
Fig. 5) pops up. The user can extract the information di-
rectly out of the model with a minimum of effort by access-
ing parts of the model such as edges and faces. The result is
displayed either textually or graphically as part of the

model,

These task-sensitive tools are implemented as subactions so
that all commands (action routines) have access to the same
tools. Using these tools guarantees consistent system behav-
ior, for example in specifying directions.

Browsers

Browsers (see Fig. 6) display lists of files, workplanes,
parts, and assemblies, and allow selection of items for use in
commands without typing in names. Even complex assem-
blies become easy to understand and manipulate when
browsers are used.

Customizing the User Interface

HP PE/SolidDesigner provides different facilities for chang-
ing its user interface, The following customization capabili-
ties exist:

Estamgsie: Croathng o oft (FM)|

Example: Creating a loft (FM)

In this example, you will create a loft (leftl) using

the workplanes and profiles shemsn.

After creating the workplanes ond profiles:

Hack L Commandy

allowing the 1 to the screen.

When the envir

and location infor-

marnon 1s stored 1

Toolbox. The to

of 1
Lisp. The
action r
CAD functionality to optimize the system for particular
needs

Key Button Bindings. HP PE/SolidDesigner commands or
Lisp functions can be accessed via X translations. Function
keys, mouse buttons, or any key sequence can be defined
for accessing any given functionality. This tool allows the
expert user to accelerate the use of the system.
Record/Playback. The record/playback feature allows the
user to record a series of command picks to be used later to
duplicate the action, like a macro, The information is stored
in a file for playback. The file contains the command syntax,
so it can be used to support writing user-defined Lisp

functions.

Action Routines and Personality

This section describes the user interaction in HP PE/Solid-
Designer in more detail. It explains the basic technology
underlying the concepts that were described in the preced-
ing section. A simplified extrude example is used to clarify
the explanation.

Freeform

Lol Tools
Create ML Tweak ML
Fotate ML
Inseit WP Remove WP
Add Tan

Add Material

Remove Tan

Loft Add
Part Nest_parg
wr se [Fig. 4. Context-sensitive help in
Praview & Chech Part formation appears in its own dia
log box, which ean be positioned
= Keep Set Closed
anywhere on the screen and re
OK Cancrl Help i z
sized for convenience
October 1995 Hewlett-Packard Journal 17

© Copr. 1949-1998 Hewlett-Packard Co.

™

Measure "

Point 2D Direetion 3D
Point 3D Axis 3D
Vector 3D Angle
Distance

kMass Properties
Part & Assy Face

Direction 3D Output

" Direction3D &

X YW Z

Ref' WP

X =Y

UiV w=U

Vp Dir

-Vp Dir

Face Normal -Face Normal

Two Points

Edge Tangent Surface Auxis

Accepl

Fig. 8§ is a simplified diagram of the action routine/personal-

ity communication model of HP PE/SolidDesigner. The com-
munication model is divided into three parts. On the left side
are the action routines and on the right side are the user
interface objects. Bidirectional communication between the
action routines and the user interface is the task of the pes-
sonality, which is shown in the middle of Fig. 8. This divi-
sion into three separate components allows the implemen-
tor of an HP PE/SolidDesigner command to change the user
interface and its behavior without changing the command
syntax. It is also possible to switch off the user interface for

certain commands.

The action routine concept is used to implement the com-
mand language of HP PE/SolidDesigner. A command is
coded as a state machine with several states and transitions
between these states. The term personality refers to the
information coded in the GUI update table shown in Fig. 8.

HP PE/SolidDesigner distinguishes three types of action

routines:

Terminate Actions. Terminate actions terminate every other
running action routine negatively (i.e., they cancel them).
At any time there can only be one acitive or suspended ter-
minate action. All action routines that modify the solid
model must be defined as terminate actions.

Interrupt Actions. Interrupt actions interrupt the current
running action routine. When the interrupt action is fin-
ished, the interrupted (suspended) action routine continues
from where it was interrupted. There is no limit on the

stacking of interrupt actions. Interrupt actions must not

modify the solid model. They are only allowed to inquire
about model data. A measure command is an example of an

interrupt action.

18 October 1995 Hewlert-Packard Jourmal

Fig. 6. Brows
manipulate

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 5. When the user has to on
ter a value for a command, the

svsterm provides the appropriate

toals for data v, The resull is
displayed either textually or

graphically as part of the model

Part Browser
Assembly
i

Parts / Assemblies

al (A)
acedoor (P)
chassis (P)
tc_doskpd (P)
a2 (A)
carbase (P)
enc_cover (P)
outrigger (P)
radiili1 (P)
a3 (A)
outcover 2 (A)
outcover (P)
outcover.1 (P)
outcover2 (P)
outiray (P)
papsled (P)
wingleft (P)
wingright (P)

Selection

Apply Assy Close

ers make complex assemblies easy to understand and

SolidDesigner

Viewport Toolbox Measure WP-Browser
i g Toolbox
Recorder C-line V
AReset WPL by face
Start ME10 BExtrude
C-line H Move face
Bxtrude
Part Ip1
Workplane /wi:
+ Distance

To Part

Reverse Dir

W Keep WP

OK Cancel @ Help

Fig. 7. The toolbox allows the user to build a custom command

dialog box containing often-used commanids.

Subactions. Subactions are used to implement frequently
used menus so that they can be reused in other action rou-
tines. This avoids code duplication, allows better mainte-
nance, and improves usability. Subactions can only be
called from within other action routines. This means that
the user cannot call a subaction directly. Some typical
examples of subactions are:

Select

Measure axis, direction, point

Color editor

art positioning,

Callbacks and Put Buffer

GUI Update Table

Parsonality
Index

‘I

Prompt, Ukar
Enter Interface
Input, Builder

Mouse
Picks

._

Basic Action Routine Structure

As mentioned above, the user interface in HP PE/SolidDe-
signer is Lisp-based. Therefore, the implementation of an HP
PE/SolidDesigner command using the action routine con-
cept is a kind of Lisp programming. The following is a sche-
matic representation of a terminate action:

. action description

| statename (state_form)
(state_prompt)
help-index-symbel
(transitionpattern {transition_form) pers-update-symbol next_state

.. ;; more transitions

.., mare states
) ;; end of action description
{;: local functions

(local-fun ()

)
... »more local functions
) ;; end of local function definitions

)

The structure of an interrupt action or subaction is equiva-
lent to that of the terminate action shown above except that
an interrupt action is defined using the keyword defiaction
and a subaction is defined using the keyword defsaction. The
second parameter of the action routine definition is the

Fig. 8. In the HP PE/SolidDe-
signer user interface communica
tion model, the action routines
representing the commands com-
municate with the user interface
objects through the personality

Oetober 1995 Hewleit-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

name of the command that is coded through the action rou-
tine. For an extrude command this would be extrude. Follow-
ing the command name is a list of local action variables.
These variables can only be accessed from within this action
routine. Action routine local functions and each state and
transition form have access to them. They are used to store
user-entered command parameters and as variables to con-
trol the execution of the command.

Next comes a description of the state machine. The states
are those defined by the railroad of the command plus inter-
nal administrative states. The railroad of a command is a
structure used to deseribe the syntax of an HP PE/SolidDe-
signer command for the user. Fig. 9 shows the simplified
railroad of the extrude command (a few options have been
omitted for clarity). The railroad reflects the concept of par-
allel command syntax. Each keyword (:part, .wp, :distance) can
be given af any time and the command loops until the user
completes or cancels if.

A distinction is made between prompting and nonprompting
states. A prompting or prompt state requires the input of a
token (a keyword or parameter value) from the user. This
token is read from the input stream, which is filled either
interactively by the user (hitting an option button, eniering a
number, selecting a part, etc.) or from a file (such as the
recorder file). As many tokens as desired can be entered
into the input buffer. Entered tokens are processed by the
action routine handler. Processing stops as soon as an error
oceurs (such as an unknown keyword) or the input buffer
becomes empty. HP PE/SolidDesigner then becomes inter-
active and requires more input from the user. A prompt state
with an empty input buffer displays the prompt coded in its

8 (cxtude) B QR part) — scioctporl S RS
|
LR (vir)—isolct workplanel B
L (:distance) — llengthl

Fig. 9. Simplified railroad giving the high-level syntax of the extrude
command.

state, After the user has entered a token, the action routine
handler tries to match the input with one of the state transi-
tions. If a match is found the action routine handler pro-
cesses this transition and jumps to the next state. A non-
prompting state (administrative state) takes the result of its
state form to find a match with the coded transitions of this
state. If the action routine handler was not able to find a
match in the transitions and no “otherwise” transition was
coded, it signals an invalid input error.

Implementation of the extrude railroad leads to the state
machine shown in Fig. 10. As the extrude command starts,
the first state is init. In this state the local variables are ini-
tialized and filled with useful defaults such as the current
part and the current workplane with a valid profile. Since init
is a nonprompting state and only one “otherwise” transition
is coded the action routine handler goes on to the next state,
top-prompt. This prompt state and the nonprompting dispatch
state top-opt are the central states of this example command.
The top-opt state takes the input of the previous state (top-
prompt or any extract or check state) and tries to mateh its
transitions. The states select-part and select-wp call on their
only “otherwise” transition, the select subaction, as their
transition form, with the specific select focus of part or

init end
{init} |doer)
otherwise
otherwise
otherwise ')]
= h $0pprompl otherwise
part otherwise | ‘part
distance v :distance
__p > toyont +——— 2
| dista
| ‘ — P {last_stata_input) 7ﬂ|
‘part ‘part
:distance wp
W |
| selact-part salgct-wp distance
|
otherwise | select subaction | otherwise | select subaction | Adength | I "
.error |display_error. . .|
A 4 v ¥ |
extract-part extract-wp chk-distance
~——— |extract-part} (extract-wp) (chk-distance}
Legend: A
Prompt State
transition pattern | transition form
|
Naonprompting v
State
State-Name) -
Fig. 10, State machine for the
{state form) extrude command.

20

Ocetober 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

workplane, respectively. These states prompi through the
select subaction. The extract states take the result of the
transition form (select subaction call) and process the result
of the select operation. The distance state has a special key-
word—:length—as iis transition patiern. For this keyword an
input conversion is involved. The transition pattern will
match any entered number, whereupon a units converter
will be called automatically. A user can work in length units
of millimeters or inches, and the units converter converis
the length into the internal units (here mm). There are also
other converters such as the angle converter which converts
the user input (e.g., degrees) into internal units (here radians).

The extrude command loops until the user compleies or
cancels the command. In both cases the action routine han-
dler jumps into the separated state end. Depending on a posi-
tive (complete) or negative (cancel) termination of the com-
mand, the software that actually performs the action will be
called with the parameters that were collected by the action
routine.

Personality

As explained earlier, the task of the personality is bidirec-
tional communication between the action routine and the
user interface objects. The core of the personality is the GUI
update fable shown in Fig. 8. This table stores all of the
actions to be performed when an action routine executes,
and it also receives data from the user. It guarantees that the
user interface is in sync with the action routine state when-
ever HP PE/SolidDesigner requires data from the user.

The GUI update table is realized as a hash table with the
pers-update-symbol (see action routine representation, page 19)
as key and a Lisp form as entry. As soon as the action rou-
tine handler finds a match in the transition pattern of the
current state it performs the transition form and triggers the
user interface update using the third parameter of the transi-
tion definition as value. The action routine handler looks up
whether a Lisp form is coded for the pers-update-symbol and
evaluates it if found. The Lisp form can contain things like
set-toggle of a command option or update-toggle-data to show
the value the user has entered. This mechanism reflects the
state of the action routine and its values at any time in the
user interface.

There are special personality keywords for every action
routine;

*action_name_ENTRY

“action_name_EXIT

"(action_name action-interrupt-by-iaction)

‘laction_name action-continue-from-iaction).

“action_name_ENTRY is triggered as soon as the action routine
starts, Normally the Lisp form coded for this entry ensures
the display of the command options filled with all default
values. * action_name_EXIT cleans up the user interface for this
command and removes the options from the screen. The
other two keys are triggered when the command is inter-
rupted or when it resumes its work after an interrupt action.
In this case the coded Lisp form normally deactivates and
reactivates the command options, since they are not valid
for the interrupt action.

Delayed Update. A sequence of action routine calls (e.g., from
the recorder file) or the input of several tokens into the

input buffer should not cause constant updating of the user
interface. Delayed update means that the user interface will
not keep track of the action routine until the action routine
becomes interactive, that is, until it requires data input from
the user. At that time the user interface of the interactive
command will reflect its state and values exactly.

A completely parameterized action routine does not cause
any reaction on the user interface. If a command changes
any status information (e.g., current part), this information
will be updated. These updates bypass the GUI update table
using the event mechanism.

The delayed update mechanism is implemented using a per-
sonality entry stack. Each trigger of a pers-update-symbol
through the action routine handler will not lead to a direct
execution of the Lisp form. All triggers are kept on the per-
sonality entry stack until the action routine becomes inter-
active. If an action routine doesn’t require data from the
user, all entries between and including * action_name_ENTRY
and * action_name_EXIT are removed from the stack. As an ac-
tion routine becomes interactive all Lisp forms belonging to
the personality entries on the stack are performed until the
stack is empty. The user interface is again in sync with the
action routine state.

A problem came up with fully parameterized action routines
behind a command toggle. Normally the * action_name_EXIT
trigger cleans up the command user interface, but with a
fully parameterized action routine no personality trigger
occurs. To solve this problem the system triggers two addi-
tional personality entries which are called in either delayed
or undelayed update mode. These are “action_name_PRE_ENTRY
and *action_name_POST_EXIT. The release of the command
toggle is coded in * action_name_POST_EXIT. The need for

“ action_name_PRE_ENTRY is discussed below.

Personality Context. One requirement for the user interface of
HP PE/SolidDesigner was that a command should be call-
able from other locations as well as from the default loca-
tion. The motivation was the toolbox, which can be filled by
the user with often-used commands, The main requirement
was that a command’s behavior in another context should
be equivalent to its behavior in the default context. A user
who calls the extrude command out of the toolbox expects
the extrude options in the toolbox and not those in the de-
fault menu. The toolbox concept is based on the assumption
that a command context is specified by:

A calling button

A dialog shell, in which the calling button resides

A communication form where the command options are
shown

A shell position where the command options are shown if
they are realized in a separate dialog shell.

All other things are command-specific and independent of
the context.

The default context of a command is coded in " ac-
tion_name_PRE_ENTRY. Here the programmer of the com-
mand’s personality defines the context in which the com-
mand should awake as the user types it in. This context can
be overridden when the command is called out of, for exam-
ple, the toolbox. Context dependent calls of the command
personality have to check the current context settings

21

October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

instead of having this behavior hardcoded in the default con-
text. This concept also makes it possible to program a to-
tally different personality for a command or to switch off the
user interface of a command.

Stacked Personality. The possibility of invoking the same
inferrupt action several times makes it necessary to provide
a method of ereating independent incarnations of the inter-
rupt action user interface. This is done by separating the
building instructions of the command option user interface
into a Lisp function. As an interrupt action is called a second
time (or third, ete.) after an initial invocation, the widgets of
the latest command option block are renamed to save the
state and contents. Then a new incarnation of the option
block is created using the building instruction function.
When the most recent interrupt action terminates its execu-
tion the user interface incarnation is destroyed and the wid-
gets of the saved option block are renamed again to become
valid once more. One incarnation of the option menu of a
command is always kept. All other necessary incarnations
are created and destroyed at run time.

User Interface Development Tools

To speed up the user interface development process a proto-
typing tool was required that would allow modifications to
be made quickly. Since the command language of HP PE/So-
lidDesigner is Lisp-based and the commands are intended to
interact closely with the graphical user interface (GUI),
standard C/C++-based user interface builders could not be
used as prototyping tools. Such tools would have required
the standard edit/compile/link/test cycle, which slows down
the prototyping process heavily. They also didn't offer Lisp
interfaces or facilities to change the GUI of the CAD system
at run time, a required feature.

In 1989 only a few Lisp interfaces to the X and OSF/Motif
toolkits were available. Because none of these had all of the
features we needed, we decided to produce our own. Called
HCLX, it is a Common Lisp interface to the X11 Xlib, the X
toolkit intrinsics, and OSF/Motif widgets (Fig. 11). It pro-
vides Lisp functions for all the functions available in libX11,
libXt and libXm, as well as all the constants and resources in
the X11 .hfiles. It provides functions to create, access, and
modify all the structures used by the X toolkit and Xlib. Wid-
get class variables are also defined, and Common Lisp func-
tions can be used as callback routines in widgets and as
functions for translations.

Although it is possible to do all X and OSF/Motifrelated
coding in HCLX, experience during the development process
showed that certain low-level X programming should be
done in C++. This includes such things as initialization,
color maps, and the color button.

Color Maps. The use of a graphics library like HP StarBase
and the demand for high-quality shaded solid models imply
the need for a private color map within the graphics win-
dows of HP PE/SolidDesigner. When the graphics window or
its top-level shell window is focused, the graphics color map
is installed (copied into the display hardware) by the X win-
dow manager. On displays that support only one color map
in hardware (most of the low-end and old displays), every-
thing on the entire screen is displayed using the installed
color map. When a private color map is installed, all win-
dows using the default color map take random colors. As

22 October 1995 Hewlett-Packard Journal

C/C++ Lisp

User Imerface Conversion Functions

User Interface Builder

X Toolkit

C/C++ Lisp

Fig. 11. Tools used to develop HP PE/SolidDesigner’s nser interface
HCLX is a specially created Common Lisp interface to Xlib, the X
toolkit, and OSF/Motifl widgets.

soon as a window using the default color map gains the
focus, the default color map is reinstalled, and the graphics
windows with their private color map will have random col-
ors. As the current color map switches back and forth from
default to private, the user sees color flashing. To avoid this
for the user interface of HP PE/SolidDesigner, a private
color map is used for the user interface windows that has
the same entries as the color map used for graphics. Along
with the color map, a color converter is installed that for a
given X or OSF/Motif color specification tries to find the
best matching color within the color map.

Color Button. For the light settings commands, a color editor
is required to give the user feedback on the colors used in
the graphics windows. Therefore, a color button widget was
inherited from OSF/Motif’s drawn button. The color button
has a small StarBase window in which colors are rendered
in the same way as in the graphics windows.

User Interface Builder

HP PE/SolidDesigner’s user interface builder was created
using HCLX. During the prototyping phase for the user inter-
face it became obvious that it is too expensive to train every
application engineer in the basics of the X Window System
and OSF/Motif. The user interface builder hides X and OSF/
Motif details from the application engineer and offers facili-
ties to create a subset of the OSF/Motif widgets.

Unique Naming. OSF/Motif widget creation procedures re-
turn a unique ID for a widget, which must be used whenever
a widget is modified or referenced by some other procedure,
The user interface builder changes this. Widgets are identi-
fied by unique names. These names can be specified or
created automatically. The user interface builder ensures
the uniqueness of the names.

Properties. For every widget only a small subset of its origi-
nal resources are made available. To distinguish these re-
sources from the full set of resources, they are called prop-
erties. A user interface builder property consists of a name
and a corresponding value. The name is derived from the
ariginal OSF/Motif resource name by removing the prefix
XmN. For example, XmNforeground becomes foreground. Some of
the widget's callbacks are offered as properties. Callback
properties have as a value a Lisp form, which will be evalu-
ated when the callback is triggered. The user interface

© Copr. 1949-1998 Hewlett-Packard Co.

Machine - §

Add Material
Extrude Unite

Turn Reflect

Remove Material

Mill Bore
Punch Subtract
Stamp Intersect
Section
Lancel Help
Fig. 12. Command dialog box created with a call to create-right:menu-
dialog

builder ensures that Lisp errors within these forms are
trapped and handled gracefully. After a property has been
specified for a widget, its value can be queried and the user
interface builder will return the Lisp form that was used for
the specification. This means that specifying red or FF0000 as
a value for the property background will result in a return of
red or #FF0000 and not just a pixel value as in OSF/Motif,

User Interface Builder Action Routines. All user interface
builder commands are offered as action routines. They
make heavy use of the property decoders to detect input
errors such as wrong property names or values. There are
user interface builder commands to create widgets, modify
and query widget properties, display, hide, and position wid-
gets, and acecess the graphics widgets.

User Interface Convenience Functions

The user interface convenience function level is located on
top of the the user interface builder level (see Fig, 11). While
all the user interface builder functions are closely related to
OSF/Maotif, the user interface convenience functions are
more abstract and not related to any window system. This
level allows the programmer of a new command a fast and
easy-to-use implementation of the command’s user inter-
face. The functions guarantee that the new command fits the
look and feel of HP PE/SolidDesigner’s user interface.

The function create-right-menu-dialog is used to create standard
HP PE/SolidDesigner menus which generally appear on the
right side of the user interface. The base of every right-menu
dialog is a dialog shell, This allows moving and positioning
these menus anywhere on the sereen. A right-menu dialog
can be constructed top-down with various elements. Only its
width is limited to the size of two standard buttons. Fig. 12
shows a typical HP PE/SolidDesigner command dialog con-
structed with a call to create-right-menu-dialog.

With the function create-options-block, typical HP PE/SolidDe-
signer user interface objects for command options can be
created. An option block can never be without a parent wicd-
get, This means that the funetion create-options-block doesn’t

Dialog Example =
Group Title
Command 1 Command 2

Command 1 Options
Filename ftmpifoo.rec

Color

Subtitle
Toggle 1 Toggle 2
¢ Opt1 = Opt2 Opt3

Left Toggle

X 420815

Wide Toggle
1 23415167 8|8

Cancel

Compl. Help

Fig. 13, Some heterogeneous option types that can be ereated with
create-options-block.

create a dialog shell as a basis, but a form widget, which is
realized in a parent widget (generally an empty form widget,
also called a communication form in this article). Fig. 13
shows some of the possibilities out of which a heteroge-
neous option block can be constructed. Each option block
has an optional title, a main part underneath the optional
title, and an optional suboption form, an empty form widget
below the main part as a placeholder for suboption blocks.

The function ereate-dialog-shell creates an empty HP PE/Solid-
Designer standard dialog shell in any size. Possible elements
are pin, title, close, OK, cancel, and help buttons. The empty
main form can be filled with any user interface objects,
which can be created using standard user interface builder
calls. This function is used to create nonstandard menus
such as browsers, the color editor, and so on.

Conclusion

The effort put into the development of HP PE/SolidDesign-
er's user interface was a good investment. The user interface
is one of our key competitive differentiators. Customers like
the clear structure, ease of use, and ease of learning. The
Lisp-based implementation allows broad customization pos-
sibilities. The powerful concepts of HP PE/SolidDesigner's
user interface and its technology provide a firm foundation
for future developments.

October 1005 Hewlett-Packard Joumal 23

© Copr. 1949-1998 Hewlett-Packard Co.

Enhancements in Blending Algorithms

This article describes a rounding operation for a 3D CAD boundary
representation (B-Rep) solid model. Complex combinations of convex and
concave edges are handled predictably and reliably. At vertices the
surfaces are smoothly connected by one or more surface patches. An
algorithm for the creation of blending surfaces and their integration into
the model is outlined. The sequence of topological modifications applied
to the solid model is illustrated by examples including some special case

handling.

by Stefan Freitag and Karsten Opitz

Apart from the basic Boolean operations, a modern solid
modeling CAD system needs to provide easy-to-use facilities
for local modifications of the primary model. One of the
most important examples is the blending or rounding of
edges, in which a sharp edge of the model is replaced by a
surface that smoothly joins the two adjacent faces (see

Fig. 1).

Blending surfaces serve several purposes in mechanical
designs, including dissipating stress concentrations and en-
hancing fluid flow properties. In addition, some machining
processes do not permit the manufacture of sharp edges.
Smooth transitions between surfaces are also often required
for aesthetic reasons. Besides functional requirements, edge
blending is conceptually quite a simple operation, which
makes if very popular among designers using CAD systems.

A ecommon characteristic of almost all applications is that
the smoothness of the blend is more important than its
exact shape. For the user this means that it should be pos-
sible fo create a blend by specifying only a few parameters.
It is then the system’s task to fill the remaining degrees of
freedom in a meaningful manner.

From an algorithmic point of view, blending one or more
edges of a solid model simultaneously falls into two sub-
tasks. The first is to create a surface that provides the transi-
tion between the adjacent surfaces defining the edge.
Secondly, the surfaces need to be trimmed properly and
integrated into the body such that a valid solid model is

24 October 1995 Hewlett-Packard Journal

maintained. While the first step is a purely geometric prob-
lem, the second one involves both geometric and topological
operations.

The blending module in HP PE/SolidDesigner was designed
with the goal of allowing blending of a wide variety of com-
plex edge combinations in a robust manner. This is accom-
plished through the use of freeform geometry as blending
surfaces, along with quite involved geometric and topologi-
cal considerations in several phases of the algorithm.

The lack of freeform surfaces was the primary reason for
most of the restrictions concerning edge blending in HP
PE/SolidDesigner's predecessor, the HP PE/ME30 3D
modeling system. HP PE/ME30’s kernel, the Romulus
geometric modeler, does in fact provide more complex
surfaces,! but these enhanced blends were never imple-
mented in the product.

The current capabilities of HP PE/SolidDesigner’s blending
algorithm go far beyond 1P PE/ME30 with respect to the
topological situations that can be handled reliably. More-
over, the architecture of the algorithm allows the inclusion
of future enhancements in a consistent manner.

It is the aim of this paper to illustrate the basic blending
algorithm and to provide the reader with examples that
demonstrate the complexity of the geometric and topologi-
cal problems that must be solved to integrate one or more
blend surfaces into a solid model. More information on this

Fig. 1. (a} A solid model
with sharp edges

(b) Edges

rounded by blending

© Copr. 1949-1998 Hewlett-Packard Co.

subject can also be found in Woodwark” and the excellent
survey of Vida.?

HP PE/SolidDesigner’s underlying philosophy allows flexible
modifications of the solid model in every stage of the model-
ing process. In the context of edge blending this means that
it should always be possible to remove or modify an existing
blend surface without regard to how it was created.

In the next section, the second section of this article, we
introduce some terminology commonly used in solid model-
ing, in particular in the blending context. The third section
describes the use model of edge blending in HP PE/SolidDe-
signer. An overview of the algorithm is given in the fourth
section, followed by a more detailed discussion of its major
steps. Finally, in the last section, we discuss some perfor-
mance and stability issues.

Blending Module of the HP PE/SolidDesigner Kernel
Currently, the blending operation in the HP PE/SolidDe-
signer kernel implements what is commonly known as the
rolling ball blend. This type of blend can easily be visualized
as a ball moving along the edge and touching the adjacent
surfaces (the primary surfaces) simultaneously. The touch-
ing loei are curves that define the boundaries of the blend
surface. Depending on whether the radius of the ball is con-
stant or varies while it is moving, we speak of constant-
radius or variable-radius blends,

The geometry module of HP PE/SolidDesigner's kernel sup-
ports a number of different surface types (Fig. 2). These
include the natural gquadrics (planes, spheres, cylinders, and
cones), toruses, and NURBS (nonuniform rational B-spline)
freeform surfaces. All of the surface types are represented
parametrically. The object-oriented design of the kernel
allows the use of generic algorithms for general surfaces as
well as special-case solutions for particular surface types.

Most algorithims such as surface/surface intersections or
silhouette caleulations behave considerably more stably and
perform more efficiently when dealing with nonfreeform or
analytic surfaces. Consequently, the blend algorithm tries to
employ analytic surfaces whenever possible. This necessi-
tates several case distinctions during the process of blend
creation, which will be pointed out later.

Depending on the local geometry, that is, the convexity of
the edge, blending an edge may involve adding or removing
material. These operations are sometimes distinguished as

(&)

filleting or rounding, respectively. In this article we will

refer to both cases as blends.

If several edges to be blended meet at a common vertex. the
blending surfaces should be joined in a smooth manner, We
call these transitions verfer regions because they replace a
vertex by a set of surfaces. In some special cases, a vertex
region can be defined by a single analytic surface like a
sphere or a torus. In general, however, they are defined by
up to six tangentially connected B-spline freeform surfaces.

HP PE/SolidDesigner belongs to the class of B-Rep (bound-
ary representation) modelers, in which the solid model is
represented internally as a set of vertices, edges, and faces.
In addition, the representation contains information about
how these entities are related to each other—that is, the
topology of the model. B-Rep modelers usually employ a
restricted set of operations to perform topological manipula-
tions of the model. The application of these Euler operators
ensures the topological integrity of the model.

Integrating one or more blend faces into a solid involves
quite a number of topological modifications and different
Euler operators. We will not discuss the underlying concepts
in detail here, but refer the reader to the standard sources, 5.0
For our purposes, it suffices to know that the blend algo-
rithm employs these basie operators (for example, ADEV.,
ADED, KEV, KE) to create the new topological representation of
the blended body.

The blend module also takes advantage of basic functional-
ity provided by the geomeiry module of HF PE/SolidDesign-
er's kernel. Examples are closest-point calculations with
respect 1o a curve or a surface. We call these operations
relaxing a point on a curve or surface. This applies (o
curves or surfaces of any type. For instance, it is often nec-
essary to relax an arbitrary point on the intersection curve
of two surfaces. Since these operations are part of the ker-
nel’s generic functionality, we will not go into the details of
their implementation.

Using the Blend Command

Like all of HP PE/SolidDesigner's commands, the user inter-
face for the blend command is designed to be easy (o use
and require as little input as possible from the user, This is
greatly facilitated by some general mechanisms used
throughout HP PE/SolidDesigner's user interface such as the
selection methods and the labeling feedback.

Fig, 2. Detail from Fig, 1 showing
different types of surfaces em-
ployed by the Blending algorithm

October 1095 Hewlett-Packard Journal -~ 25

© Copr. 1949-1998 Hewlett-Packard Co.

The blend command distinguishes two modes: the defini-
tion mode and the preview mode. In definition moce, single
or multiple edges can be selected and assigned a radius (of
the rolling ball). Variable-radius blends are specified by start
and end radii to be assigned to the end vertices of the edge.
Since the choice of the start and end vertices is arbitrary,
the vertices of the currently selected edge are marked with
labels. The radius of the rolling ball varies linearly between
the two end vertices of the edge.

An important feature of the blend command is its ability to
handle both types of blends simultaneously. This gives the
user the ability to specify an arbitrary combination of con-
stant and variable radius blends, each with possibly differ-
ent radii, in a single blend session.

The blend command uses straightforward radius defaulting.
For example, the constant radius of the active edge carries
over to all subsequently selected edges unless the user
chooses a new radius explicitly.

While processing the selected edges, the algorithm decides
about the inclusion of a vertex region to provide a smooth
transition between the blend surfaces. A vertex region will
be created if all edges adjacent to a particular vertex are to
be blended in the same session. In other words, a vertex
region can easily be suppressed by blending adjacent edges
one after another.

In preview mode, the blend faces are shown using a preview

color. Modification of the radius or the edge information is
not possible in this mode. However, upon returning to the
definition mode, the user can specify further edges to be
blended, modify the blend radius assigned to an edge, or
remove an edge from the list.

There are two ways to terminate every command in HP
PE/SolidDesigner. Canceling the blend command causes the
blends to be discarded, while completing it makes the
blends “real.”

For convenience, the blend menu contains a small number
of options:

The part checker usually run on the blended part can be
switched off to provide a faster, although possibly invalid
result.

The labels attached to edges and faces, which might be an-
noying if a large number of edges are selected, can be
turned off.

A chain option allows the user to select all edges connected
tangentially to a given edge by a single pick.

Because of the complexity of the operation, blending one or
multiple edges sometimes fails. While some problems are
easily detected, others are caused by topological or geomet-
rical restrictions rooted at a relatively low level. A typical
example for the first kind of problem is the case where the
blend radius is chosen too large. In any case, a failure is re-
ported to the user by displaying an error message and high-
lighting the edge that is causing the problem.

How the Blending Algorithm Works

As noted above, the rolling ball blend provides us with a
very intuitive way to define a blend surface. While moving
along the edge, the ball sweeps out a certain volume, The
blend surface is simply a part of the surface bounding this

26 October 1995 Hewlett-Packard Journal

volume. In mathematics, surfaces that are swept out by fam-
ilies of moving spheres are called canal surfaces.” The cylin-
der and the torus are the most obvious examples.

A number of blending problems can be handled by inserting
surfaces of these types. We will refer to these cases as ana-
lytic blends. In other than the simple cases, however, the
explicit representation of a canal surface takes on quite a
complicated form. Therefore, an approximation of the ideal
blending surfaces by freeform blends is constructed. In par-
ticular, we use Cl-continuous B-spline surfaces.

The general algorithm is divided into a number of smaller
modules. Each of these modules typically scans over all
edges to be blended and performs a certain task. However,
care is taken that the result is symmetrie, that is, it does not
depend on the order in which the edges are operated on.

The task of the first module is to filter out all cases where an
analytic solution exists and flag the corresponding edges
accordingly. In the second step, the touching curves of the
ball with the primary surfaces are calculated. While this is
straightforward for analytic blends, the boundaries of free-
form blends must be computed numerically. This is accom-
plished by a marching algorithm.

Having calculated the boundaries of the blend surface, we
determine their intersection points with other edges, It is
often necessary to remove edges from the model to find
useful intersection points. This is the first step that possibly
involves topological modifications of the original body.

Other major changes to the model are done in the next two
modules, which represent the blend face topologically. The
first module performs the 2ipping of the original edge, that
is, it replaces this edge by two new ones connected to the
same end vertices. Secondly, the appropriate topology at the
end vertices is inserted.

From a topological point of view, the model containing the
primary blends is now complete. However, several topologi-
cal entities are still without geometry. The surfaces corre-
sponding to the blend faces, for instance, are not yet de-
fined. These are computed in the next module based on the
already available boundary data.

Furthermore, the surfaces need to be trimmed at the end
vertices of the original edges. The trimming curves of the
surface are, in general, computed by intersecting them with
adjacent surfaces. However, it might also be necessary to
intersect two adjacent blend surfaces created in the same
session. The intersection curves are then “hung” under the
corresponding edges.

Finally, the last major module performs the inclusion of ver-
tex regions, both topologically and geometrically. These
steps will be described in more detail later.

Analytic or Freeform Blends

It is not difficult to list all cases where a cylindrical or toro-
dial surface fits as a blend between the two primary sur-
faces. The simplest case is the one in which two intersecting
planes blended by a cylindrical surface. A torus can be used
when blending the edge between a conical and a planar sur-
face as shown in Fig. 3. In a first pass over all involved
edges, the algorithm tries to match one of the cases where

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 3.

such a solution exists. The corresponding edges are then
flagged as analytic.

The decision about when to employ analytic or freeform
blends, however, is also dependent on other, more global
factors. For example, suppose that three cylindrical blends
with different radii meef at a common vertex (Fig. 4). This
necessitates the inclusion of a freeform vertex region. De-
pending on the numerical tolerance used in the system, this
might lead to very expensive B-spline surfaces in terms of
data generated (the B-spline boundaries of the vertex region
must lie—within some tolerance—on the adjacent eylin-
ders). Therefore, it is often necessary to use freeform blends
rather than analytic ones at a subset of the edges for the
benefit of reducing overall data size. The corresponding
checks are done in a second pass over the edges.

As a side-effect of switching from an analytic to a freeform
blend for a particular edge, other edges adjacent to this one
might be affected. This is also taken care of in the second
pass.

The results of these operations are flags attached to all in-
volved edges and their end vertices which provide informa-
tion to all following modules about the types of surfaces to
be used.

Blend Boundary Creation

The task of the second module is to compute the blend
boundaries and tangency information along these curves.
This information will be used later for the construction of
the blend surfaces. The calculation of the boundaries for
cylindrical and torodial blends is a straightforward exercise
in analytic geometry and will not be deseribed here, More

Fig. 4. Three cylindrical blends with different radii connected
by a freeform

vertex region

involved and computationally more expensive is the general

case, which will be the main topic of this section

| blend is that its defini-

ernatical terms quite precisely. Sup-

A major advantage of the rolling-b:

tion can be put into matl

pose a ball with r wes along the edge between the

primary suriaces curves where uches the

surfaces will be the boundaries ol 0 D¢
nserted. The center of the ball moves along cun
spine of the canal surface. If the radius of the bal
changes while rolling, the curves touching the surfaces will
define a variable-radius blend surface. In HP PE/SolidDe-

signer a general B-spline curve is used to define the radius

funetion.

The spine lies entirely on a surface with constant distance r
from the original surface. This is called the offset surface.
This applies to both primary surfaces. Therefore, we can
calculate the spine as the intersection curve of the two off-
set surfaces (Fig. 5).

Computing surface/surface intersections is a ubiquitous
problem in solid modeling and many algorithms have been
devised for its solution, Very popular are the marching algo-
rithms, which trace out the intersection curve starting from
a given point in its interior. In our blending algorithm, we get
such a starting point by taking the midpoint of the original
edge and relaxing it onto the spine, The entire curve is then
computed by marching the intersection of the two surfaces
in both directions. The marching stops when the curve
leaves a certain 3D box provided by the calling routine. The
boxes are chosen such that the resulting blend surfaces are
large enough to fit into the model.

The particular strategy we employ for the marching is to
reformulate the problem as one of solving a differential
equation in several unknowns. The solution is then com-
puted by a modified Euler method.

s on the intersection

The center of the rolling ball move

Fig. 5.

curve between the two offset surfaces.

October 1995 Hewlet-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

A common problem in marching algorithms is the choice of
an appropriate step size. Choosing the step size too big
might lead the algorithm astray. On the other hand, very
small steps usually guarantee convergence of the method
but might generate too much data. Therefore, we use an
adaptive technique based upon the curvature of the intersec-
tion curve: a small curvature indicates that the intersection
curve behaves almost like a straight line. This means that we
can proceed with a large step. On the other hand, if the
curve bends sharply, that is, its curvature is large, we use
very small steps to capture all of its turns.

The result of these computations is a set of isolated points
lying exactly on both offset surfaces and thus on the spine.
Conceptually, the corresponding points on the blend bound-
aries can be determined by projecting these points onto the
original surfaces (Fig. 6). In fact, for parametric surfaces
this operation is trivial because the offset surface inherits its
parameterization from the underlying surface, This means
that we simply have to evaluate the primary surfaces at the
parameter values of the points on the spine.

The blend boundaries are now created by constructing cu-
bic Hermitian segments between the given points. However,
we still have to check whether the entire segment lies on the
surface, within a given tolerance. In cases where it doesn't,
we use a fast bisection method for “pulling” the curve seg-
ment onto the surface,

While the intersection curve—and thus the blend bound-
aries—are traced out, we also collect tangential information
along the boundaries. This information is used in the surface
creation step to construct smooth transitions between the
primary surfaces and the blend surface. The same bisection
and representation techniques as for the boundary curves
are used for these cross-tangent curves.

Before we conclude this section, we still have to address the
question of singularities, which are critical for every march.
ing algorithm. In our context, we have to deal with two
types of singularities: those of the surfaces to be marched
and those of their intersection.

Fig. 6. The blend boundaries (red) are created by mapping the
spine (black) onto the primary surfaces

28 October 1995 Hewlett-Packard Journal

The first problem is illustrated in Fig. 7. While a small offset
leads to well-behaved curves, larger distances result in off-
set curves with cusps or self-intersections. Analogously, we
might have degeneraie offsets of the primary surfaces if the
distance (radius of the blend) is chosen too large. For too
large a radius, a rolling ball blend is not possible. When such
a situation is detected the marching stops, the entire blend
algorithm stops, and the user is advised to try the operation
again with a smaller radius.

The second type of singularity oceurs if the primary surfaces
and consequently their offsets possess a common tangent
plane (Fig. 8). These tangential intersections typically
create the biggest problems for marching algorithms.
Loosely speaking, it is very difficult to find where to go at
these points. However, a rolling ball blend is still well-de-
fined. The touching curves of the ball are identical with the
original edge, and the blend surface degenerates to one with
zero width. HP/PE SolidDesigner's kernel enforces the rule
that these extraordinary points may only occur at the end-
points of an edge. This considerably eases the task for the
blending algorithm. It is quite simple to check whether the
intersection curve degenerates at its endpoints. This infor-
mation is provided to the routine that performs the march-
ing. Since the algorithm starts at the midpoint of the inter-
section curve, the oceurrence of a singular point of this type
indicates that we have reached one of the endpoints of the
edge.

In a final step, the segments of the boundaries and the cross-
tangent curves are merged into Cl-continnous B-splines. The
overall result of this module consists of four Cl-continuous
curves with a common parameterization describing the
boundary curves and tangency information of the blend
surface.

Trimming the Blend Boundaries

After creating the blend boundaries we need to integrate the
boundaries into the body. Most important, we have to find
the position where the boundaries are to be trimmed. Fig. 9
shows a particularly simple example,

The six points shown in blue can be calculated by intersect-
ing the blend boundaries with the adjacent edges at the end

Fig. 7. When the blend radius is chosen too big, the blend boundary
will have a cusp (red curve) or even be self-intersecting (black
curve)

© Copr. 1949-1998 Hewlett-Packard Co.

urfaces have Lhe same normal along the e

Fig. 8. I the primary
the blend surface (blue) degenerates

vertices. However, usually the set of edges to be blended
with possibly different radii is not limited to one edge but
may contain several edges or even all of them. This means
that while the boundaries of a given blend face are being
trimmed they must be intersected with other blend bound-
aries created in the same session (red points).

Intersecting a blend boundary with an existing edge of the
solid model may have three results:

One intersection point found. This is the general case.

No intersection found. The edge is too short to be inter-
sected by the blend boundary. In this case the edge will be
removed from the model. The edge newly attached to the
vertex will now be intersected by the blend boundary. Re-
peating this procedure guarantees the exisience of al least
one intersection point.

Multiple intersection points found. Such a situation might
occur, for instance, if the adjacent edge is part of a B-spline
curve “wiggling” around the blend boundary. In this case,
the most valuable intersection point has to be chosen. A
valuable point in this context is the one that produces the
most predictable and expected result.

®

Fig. 9. The blend boundaries are trimmed at points where they
intersect adjacent edges (blue) or another blend boundary (red)

Fig. 10. Selecting the correct intersection point between a
blend boundary and an adjacent edge also depends on the

local surrounding geometry.

In fact, very often there are several possible solutions and
all of them result in a valid solid model. Several different
criteria are used to select the best intersection point. Fig. 10
shows two examples, The remaining intersection points are
ignored.

Creating the Topology of the Blend Face

Having computed the trimming points of the blend bound-
aries, we build up the topology of the blend face. The first
step is similar to opening a zipper: the original edge of the
body is replaced by two new ones connected to the same
vertices. The new face is then extended at its end vertices.
More precisely, four new edges—itwo at each end—are
added. In addition, the adjacent edges are split at the four
trimming points (Fig. 11).

Blend Surface Creation

Now the face is ready for the inclusion of the blend surface.
There are two possibilities. In the first case, analytic sur-
faces are inserted based on the decision made in the first
module. Possible surface types are cylinders, cones, and
toruses only (Fig. 12). In all other cases a freeform surface
is created. We use Cl-continuous B-spline surfaces. This
surface is defined by the blend boundaries created by the
marching algorithm, the tangency information along these
boundaries represented by cross tangent curves, and the
fact that the blend surface should have circular cross sec-
tions. Using this knowledge the surface can be created very
easily. The circular cross section is approximated by a single
cubic B-spline segment. Although not precise, this approxi-
mation is sufficiently good for practical purposes. In fact,

Mg, 11, Creating the topology of a blend face

October 195 Hewlett-Packard Jowrmal 29

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 12. A model containing only analytic blend surfaces:
eylinder, cones, and toruses,

given the input data for the cross section—boundary points
and tangent directions—we use an optimal approximation
based on a method described by Dokken.® The boundary
curve information and parameterization transfer directly to
the surface (Fig. 13).

Trimming the Blend Surfaces

The last step in integrating the blend surface into the solid
maodel is to trim it at the ends. The goal is to keep the trim
area as simple as possible.

Unfortunately, the authors of many edge-blend algorithms
assume that they are dealing with a trimmed-face surface
model and they offer no suggestion about what to do at the
ends of the edge to be blended. The topological and geomet-
rical issues are quite complex, especially when multiple
edges meet at a common vertex.

Fig. 13. Creating the geometry of a freeform blend surface: the
control polygon of the blend boundaries (left) and the resulting
blend surface (right).

30 October 1995 Hewlett-Packard Journal

The simplest type of termination issue arises when there is
only one edge to be blended. Both boundaries must be
joined at the ends of the blend face. The easiest way to do
this is to intersect the blend face with all edges and faces
connected to its end (Fig.14). Intersecting the blend face
with these edges creates intersection points which are to be
connected to form the boundary of the blend face.

The intersection points are calculated by eurve/surface in-
tersections between the blend surface and the curves of the
edges at the end of the blend face. In general, a curve/sur-
face intersection will result in multiple intersection points.
In this case, the one chosen is the one closest to the vertex
of the edge to be blended at this end.

If there is no intersection point of the blend face and an
edge this edge is removed from the model using the Euler
operator KEV. If this edge is the last one of its face, the face is
removed using the Euler operator KBFY. Removing an edge
means disconnecting it from its vertices and filling the gap
by connecting other edges to these vertices. The newly con-
nected edges have to be intersected with the blend face, too.
However, if one of these edges is also to be blended, an in-
tersection between its blend boundaries and the blend face
is calculated, The intersection points are then connected by
intersection tracks of the blend surface and the adjacent
ones. In general, the result of this surface/surface intersec-
tion calculation is a set of intersection tracks. Tracks that do
not contain the intersection poinis described above are fil-
tered because they are not needed. The remaining tracks are
sorted by the distance between two intersection points. The
shortest arc is the one chosen because it minimizes the trim
area at this end.

Fig. 14. Trilnming a blend surface involves a number of curve
surface intersections (red points) and surface/surface inter-
sections (blue curves). Note how the faces marked dark red
are “eaten up” by the blend face.

© Copr. 1949-1998 Hewlett-Packard Co.

Vertex Regions

A totally different situation occurs when more than two
edges meet at a common vertex. In this case a set of addi-
tional faces and surfaces must be created to build a transi-
tion patch that smoothly connects all of the blend faces
meeting there. This set of faces is called a vertex region
(Fig. 15).

In some special cases a vertex region has only one face,
which is an analytic surface (sphere or torus). In general,
however, a vertex region will contain three or more faces. In
HP PE/SolidDesigner the number of faces in a vertex region
is currently limited to six.

Topology of Freeform Vertex Regions. Al a veriex where five
edges to be blended meet each other, the topology shown in
Fig. 16a arises after extending the blend faces as described
above. The blending algorithm transforms this topological
situation by integrafing five faces, each having four edges,
as shown in Fig. 16b. Transforming the topology requires the
use of the Euler operators KEV, ADEV, and ADED to kill an edge,
add an edge, and add a whole face. Fig. 17 shows the se-
quence of Euler operators.

Topology of Analytic Vertex Regions. When a sphere or torus
fits a vertex region the topology is changed in another way.
Instead of the "star” where the blend faces meet, a single
face will be created using KEV and ADED, as shown in Fig. 18,
Fig. 19 illustrates the algorithm, showing the transformation
step by step.

Geometry of Freeform Vertex Regions. After creating the topol-
ogy of a vertex region, the corresponding geometry must be
constructed and integrated. To provide a smooth transition,

(a) (b)

Fig. 16. (a) Topology ol a vertex region where five faces meet
ifter extending the edges. (b) Topology created for the repre
sentation af the vertex regiorn,

Fig. 17. Sequence of Euler operators used to transform the topology
of Fig. 16a to the one of Fig. 16b .

the surfaces must satisfy two constraints. First, their bound-
aries must match the ones of the adjacent surfaces. Sec-
ondly, the vertex regions and the blend surfaces should pos-
sess the same tangent planes along their common
boundaries. The construction of vertex regions satisfying
those constraints is a classical problem in geometric model-
ing." Among the many solutions, we mention the one pro-
posed by Charrot and Gregory.1? They fill a vertex region by
a procedurally defined surface, that is, a surface that does
not have an analytic mathematical representation but rather
is defined by a method of generating it. Since the geometry
kernel of HP PE/SolidDesigner does not support this type of
surface, we employ an algorithm that generates a set of four-
sided B-spline surfaces. More precisely, for filling an n-sided
hole, we use n B-spline surfaces of polynomial degree 6 in
both parameter directions.

Geometry of Analytic Vertex Regions. From the geometrical
point of view analytic vertex regions are quite easy to corm-
pute because only one surface is needed and the surface
type will be either a sphere or a torus.

Transition Curves. When large radii are combined with very
small radii, a vertex region can look very strange, deformed,
or even self-intersecting, like the left solid in Fig. 20. In such
cases, instead of a three-sided vertex region, a four-sided
one is used, giving a result like the right solid in Fig. 20. In
general, an (n+1)-sided region is used instead of an n-sided
region. This is done by introducing a transition curve be-
tween two boundaries sharing the same face. The transition
curve is used whenever an intersection of two boundaries is

(a) (h)

Fig. 18. When part of a sphere [its as a vertex region, a single face
15 created

Oetober 1995 Hewlett-Packard Journal -~ 31

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 19. Sequence of Euler operators used to create the face
of Fig. 18.

“behind” the direct connection of its neighboring inlersec-
tion points.

Geometrically, the transition curve is a B-spline curve de-
fined at its endpoints by tangency conditions to both bound-
aries and in between by a tangency condition to the corre-
sponding face. This curve is created using an adaptive
curvature-controlled bisection algorithm similar to the one
used to create the blend boundaries. The endpoints of the
transition curves are constructed such that the cross section
of the resulting blend surface is an isoparametric of this
surface. In certain cases it is also necessary to insert a tran-
sition curve to smoothly connect two nonintersecting adja-
cent blend boundaries. Fig. 21 shows an example.

Special Cases

A reliable blending algorithm must be able to handle various
topological and geometrical special cases predictably. Four
major special cases are tangential intersections, apex cre-
ation, a singularity at the end of a blend surface, and closed
curves.

Tangential Intersections. Real-life solid models often contain
edges connected tangentially at a vertex to another edge.
Blending these edges will result in very complex and time-
consuming surface/surface intersections in the process of
trimming the blend faces at the common vertex, especially
when their radii differ only slightly.

Fig. 20. When the vertex region would be too badly deformed,
in additional transition curve is inserted to provide a smoother
Iransition.

32 October 1995 Hewlett-Packard Journal

Flg 21. A transition curve (lower edge of the vertex region) is

inserted when two adjacent blend boundarics around a vertex

region don’t intersect

If two boundaries are tangential to others, the intersection
point caleulation is numerically very unreliable and expen-
sive. In addition, both blend surfaces share a common re-
gion of partial coincidence, so the intersection track calcula-
tion is even more expensive than the intersection point
calculation.

To avoid these problems, two edges to be blended are han-
dled in a totally different way. No curve/surface or surface/
surface intersections need to be calculated. Rather, an addi-
tional face is created that smoothly connects the two
surfaces (Fig. 22).

Apex Creation. If an edge to be blended is concave, material
is added to the solid model. This means that other edges
become longer and faces become larger, and sometimes a
singular point moves into a face. HP PE/SolidDesigner re-
quires a topological entity, a vertex, right at the apex in this
case. Therefore, after creating the blend face the required
vertex is added (Fig. 23).

Singularity at the End of a Blend Surface. Sometimes af an end-
point of the edge to be blended the surface normals of the
adjacent surfaces are equal—for example, two cylinders
with the same radius intersected orthogonally (Fig. 24). In
this case both boundaries of the blend surface meet at a
common point where both surface normals are equal. There

Fig. 22, Additional faces (red) are inserted where adjacent blends
are langentially connected.

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 23. When material is added by blending an edge, an apex
might move from the boundary to the interior of a face

is no need to execute the trimming part of the blend algo-
rithm because the solid is already closed at that end.

However, from the geometrical point of view, the blend sur-
face is degenerate. One side or in this case both sides of the
blend surface are degenerate isoparametric boundaries. This
means that evaluating any parameter space point at this
surface boundary resulis in the same object space point.
This object space point is the position where both blend
boundaries meet and the adjacent surfaces have the same
surface normal,

Data Size and Performance versus Accuracy

The size of the data structures that represent freeform ge-
ometry mainly depends on the number of control points
defining the curve or surface. In practice, curves can have
hundreds of confrol points and surfaces many more. As an
example, let’s consider a medium-size surface with 500 con-
trol points with three coordinates each. In double-precision
format, such a surface requires 3 =« 8 x 500 bytes or approxi-
mately 12K bytes of memory. In fact, a real-life model may
contain many freeform surfaces. It is therefore quite impor-
tant to reduce hoth the number of such surfaces and the
number of control points used to represent them.

Fig. 24. Another example of two adjacent surfaces that have the
same normal atan endpoint of an edge to be blended. The trimming
part of the algarithm is not needed,

The size of a freeform blend surface is basically determined
by the complexity of its boundaries. Boundaries with n con-
trol points lead to surfaces with 4n control points. Conse-
quently, it is critical to generate approximations of the “true”
blend boundaries with a minimal amount of data. On the
other hand. the creation of the blend boundaries is one of
the major factors determining the algorithm’s overall perfor-
mance. Finding an acceptable compromise between the con-
flicting requirements of speed and quality of the solution is
an important design decision in the algorithm.

The same applies to the surfaces used for filling the vertex
regions. The size of such a surface is quadratically depen-
dent on the size of its boundary curves. Let's again consider
an example. Assume that the boundary curves of a three-
sided vertex region are general intersection curves between
the primary blend surfaces and planes. It is not uncommon
for approximations of those curves to contain 50 control
points (HP PE/SolidDesigner works with an accuracy of up
to 10~ 9). This would lead to a vertex region of 3 x 25 x 25 =
1875 control peints (three surface patches of 25 x 25 control
points each), requiring 3 x 8 x 1875 bytes or approximately
44K bytes of data. Clearly, this is unacceptable for nontrivial
models,

There are several possibilities for reducing the amount of
data. The most critical factor is the approximation tolerance
used in the system. For example, reducing the accuracy
from 109 to 10~ ? typically reduces the size of freeform
data structures by a factor of ten. Not only are the geometric
calculations speeded up considerably when using a lower
accuracy but also the overall performance of the system is
improved because of the reduced demand for memory man-
agement. HP PE/SolidDesigner offers the user the ability to
select the accuracy in a range of 1072 to 105, This allows
the user to choose between high-precision modeling and a
faster but less precise approach.

Secondly, the handling of special cases can reduce the
amount of data significantly. Let's again take a look at free-
form vertex regions. If the primary blend surfaces are
created such that the boundaries of the vertex regions are
isoparametric curves of the primary blends (the procedure
for doing this is beyond the scope of this article), the 50 con-
trol points can be reduced to 4. The vertex region will then
contain 3 x 7 7 = 147 control points (the additional control
points along the boundaries—seven rather than four—are
the result of the mathematical construction), for a total of
approximately 3.5K bytes.

Another example is the trimming of a blend face. In this step
a number of surface/surface intersections must be calcu-
lated. In general, an intersection of two surfaces will result
in not only one curve, but several intersection points,
curves, or even surfaces, However, in the blending context
there is important knowledge about the blend surface and
the face it intersects. At least one and in some cases two
points on the intersection track are known from the preced-
ing curve/surface intersections. Providing these points as
“seeds” to the intersection routines increases both the speed
and the reliability significantly. In addition, boxes in the

Oetober 1995 Hewlett-Packard Journal - 33

© Copr. 1949-1998 Hewlett-Packard Co.

parameter space of the surface are used to limit the calcula-
tion of intersection information to regions that are of in-
terest.

From these examples we see that the good overall perfor-
mance of the algorithm is mainly guaranteed by appropriate
special case handling at critical points. In fact, a large por-
tion of the code in the blending module was developed to
deal with these situations.

Acknowledgments

The development and implementation of the blending algo-
rithm in its early versions was largely conducted by our for-
mer colleagues Hermann Kellermann and Steve Hull. A part
of the code was developed at SI/Sintef in Oslo, Norway.

References

1. A. Rockwood and J. Owen, “Blending Surfaces in Solid Modeling,"

in Greamelric Modeling: Algorithms and New Trends, G. Farin, ed.,
SIAM, 1987, pp. 36G7-384.

2_.LR. Woodwark, “Blends in Geometric Modeling,” in The Mathe-
maties of Surfaces 11, R.R. Martin, ed., Oxford University Press,
1987, pp. 255-297,

34 October 1995 Hewlett-Packard Journal

3., Vida, R.R. Martin, and T. Varady, “A survey of blending methods
that use parametric surfaces,” Computer-Aided Design, Vol. 5, no. 5,
1994, pp. 341-365.

4, B, Baumgart, Geometric Maodeting for Computer Vision, PhD
Thesis, Stanford University, 1974.

5. L. Braid, R.C. Hillyard, and LA. Stroud, *Stepwise Construction of
Polyhedra in Geometric Madeling,” in Mathematical Methods in
Computer Graphies and Degign, KW. Brodlie, ed., Academic Press,
London, 1980, pp. 123-141.

6. M. Mantyla, An Introduction to Solid Modeling, Computer Sci-
ence Press, Rockville, 1988,

7. W. Boehm and H. Prautzsch, Geowmetric Coneepts for Geomefric
Design, AK Peters, Willesley, 1994,

8. T. Dokken, M. Daehlen, T. Lyche, and M. Morken, "Good approxi-
mation of cireles by curvature continuous Bezier eurves,” Computf-
er-Aided Geometrie Design. Vol. 7, 1990, pp. 30-41.

9..J. Hoschek and D. Lasser, Fundamentals of Computer-Aided
Geomelric Design, AK Peters, Willesley, 1993,

10, JA. Gregory, “N-sided surface patches,” in The Mathemalics of
AL Gregory, ed,, Clarendon Press, 1986, pp. 217-232.

Surfuces,

© Copr. 1949-1998 Hewlett-Packard Co.

Open Data Exchange with
HP PE/SolidDesigner

coexists with and can be manipulated like native data.

be imported from HP PE/ME30 and exchanged

with systems supporting the IGES, STEP, and ACIS formats. Imported data

by Peter .J. Schild, Wolfgang Klemm, Gerhard .J. Walz, and Hermann J. Ruess

HP PE/SolidDesigner supports the coexistence of surface
data with solid data and provides the ability to import and
modify surface and solid design data from a variety of CAD
systems. Backward compatibility with HP PE/ME30 pre-
serves the investment of existing HP customers. Using im-
proved IGES (Initial Graphics Exchange Standard) import
capability, both surface and wireframe data can be im-
ported. Surface data and solid data can also be imported and
exporfed using the STEP (Standard for the Exchange of
Product Model Data) format. Once imported, this data can
coexist with HP PE/SolidDesigner solid data. It can be
loaded, saved, positioned, attached fo, managed as part and
assembly structures, deleted, and used to create solids. At-
tributes such as color can be modified. If the set of surfaces
is closed, HP PE/SolidDesigner will create a solid from
those surfaces automatically,

HP PE/SolidDesigner 3.0 also allows solid parts and assem-
blies to be exported to ACIS-based systems using Version
1.5 of the ACIS™ SAT file format. This feature provides a
direct link to other ACIS-based applications.

From PE/ME30 to PE/SolidDesigner

HP PE/ME30 is a 3D computer-aided design (CAD) system
based on the Romulus kernel.t To preserve the investment
of existing customers it was required that the transition
from HP PE/ME30 to HP PE/SolidDesigner be as smooth as
possible. Therefore, an HP PE/ME30 file import processor is
a integral component of HP PE/SolidDesiger.

In HP PE/ME30, 3D objects are built from analytic surfaces
like cylinders, cones, spheres, planes, and toruses. The inter-
sections of these surfaces can be represented as explicit
analytic curves such as straight lines, circles, and ellipses, or
implicitly by describing the surfaces involved and providing
an approximation of the intersecting arc. Parabolic and hy-
perbolic intersections are represented implicitly.

HP PE/ME30 Native File Organization

HP PE/ME30 supports the Romulus textual transmit format.
The transmit file is not intended to be read by humans but
the general structure can be examined. The file contains
only printable characters, and real values are represented as

T Ak

K

t of a modeling system. Currently, three kemels are used in vanous CAD

are Romulus fram Shape Data, Parasalid, an extension of Bomulus, and the
ACIS Kernet from Spatial Technology

text strings. The full format of a transmit file consisis of six
different sections. These will be described using the exam-
ple of a single cylinder positioned at the origin of HP
PE/ME30's coordinate system with base circle radius 10 and
height 20.

The first section, the header section, describes the environ-
ment, the machine type, the user login of the file creator,
and the time and date when the model was created.

@* A0S
@* Machine type HP-UX
@* Transmitted by user_xyz an 27-May-94 at 13-06

The second section contains index and counting information
related to the schema described in the third section. The
schema defines the data structures used to represent the
objects. It consists of a collection of record definitions. The
following is an example of a record definition:

SH2FS3-1BK 3 1 ——— Onerecord definition

T} [
\ o Property definition 1
Property definition 2
Number of property definitions
Name of record definition

The following is an example of a property definition:

FS 3-1 One property definition
A A
I t————————————— Length field: If —1: variable length
Type field
1D name

In the second section of the transmit file the number of
record types, the numbers of record instances and property
instances, the name of the schema, and its version and up-
date number are supplied. The record instances and prop-
erty instances contain the concrete daia describing the
maodel. The semantics and the sequence of data entities have
to conform to the format specified by the corresponding
record definition and property definition entities.

The information in the cylinder example file says that 11
instances of record definitions are supplied to describe the
schema for the instance of the evlinder. For the actual ob-

ject, 23 record instances built out of 115 property instances

are used.

Dctober 1995 Hewlett-Packard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

1

11

23115
ROMDSCHMA 7 4
16

The third section, the schema section, contains the defini-
tion of the data structures used to represent the model. This
section consists of the subset of record definitions from the
HP PE/ME30 internal data structure schema that are needed
to represent the model. The schema sections of files repre-
senting different models will be different. The schema sec-
tion for the example cylinder is:

BY 19UP4 —-1SE3 -1 X 5-36F 4 —-6Cl4—-12Pl 4 -8
Gl 4 —1 814 3714 -3

RA Z1RNZ212ZI14 —2ZFNTTCNTIPNT1TTN 11
SNTTZN1T1NMI

SH 2FS3-1BK11

FA 8UP4 —TAK 3 -TRVI1SF31S8X21VR3 —1

HA 2 -3 8L 31

VR4PT31BE3T1BV3TFESRT

ED2CU3 TRV

CU3UP4 —1AK3-1TR31
TREUP4—-1AK3 —1BK 31EQ2 -7T8S32 TY 11
PT4UP4-1AK3-1C02-3GP31

GP5UP4-1AK3 -1BK31C02 -3PX3)
SF7UP-1SD3 -3AK3 -1BK31EQ2-78SU3-5TY11
VA3OW31CL1ITIlT™

The fourth section contains, for each record type defined in
the schema section, the number of data objects used for the
fransmission of the model. The sequence of numbers is iden-
tical to the sequence of record definitions used in the
schema section. In the cylinder example, the object consists
of one body built of one shell built of three faces. Four ver-
tices, four coedges, two curve geometries, two edges, two
points with two geometric point definitions, three surfaces,
and one atiribute are needed to represeni the cylinder ob-
ject. The file contents are:

11344222231

The fifth section, the data section, contains the data struc-
ture instances. The contents of all records needed 1o repre-
sent the object are found in this section. To every record an
integer record label is assigned. This number will be used in
other record instances to point to the instance. In general
the instances in the file appear in the order in which they
are referenced by other entities. The data of an entity in-
stance is not split. If forward references are contained in the
instance definition the next instances can be found in ex-
actly the same sequence as referenced. Because this rule
applies recursively, newly referenced entities can be found
first in the physical file sequence. If all references ol an en-
tity are resolved completely the next reference of the next
higher level will be resolved. For the cylinder. the data
section is:

36 October 1995 Hewleti-Packard Journal

1

1125C0lor12033F04F15F2214E015E1218P0 13 P10000.000001
0.00000000001 0332000025111 167772152013000220160222
0000600000 —-1016181061018000202000030100181014
014001616000700000 —110002400123017022300006
002000 —101719117111900021210003010201911151150
017170007002000 -110002500024028902240000700
0001100281812812121419191391313150

The sixth and last section contains, for each top-level object
transmitted in the file, the corresponding root entity and its
name. In the cylinder example only one object is frans-
mitted. HP PE/ME30 supports user-named objects, but in
this example an HP PE/ME30 default name, B0, has been
used for the eylinder.

1
B0

Analyzing the Transmit File

Because the information content of an HP PE/MEZ0 file can-
not be understood by simply looking at the file, several in-
ternal analysis tools are used to extract the information.
Statistics showing the number of different curve and surface
types give a first hint of the complexity of the file. A graphi-
cal presentation of the data instances of a file can be
generated.

ILBY | UA__ |-

LSH |-
|LFA_ | SF
| VR | PT__ | GP___
I_ED__ | CY__ | TR
| FA__ I SF_
VR | PT__ | GP___
LED - el TR
|_FA | SF
I_VR___ |-
I_ED___ =
VR =
ILEB___I—>

This reference structure can be read easily. The (eylinder)
object in the file is a body (BY) which consists of a shell (SH)
and three faces (FA). Shell and faces share the same hierar-
chy level. Each face consists of a reference to a surface (SF)
and a start vertex (VR). Each start vertex is based on a geo-
metric definition of a point (PT) and serves as the anchor
vertex of an edge loop. A loop is not represented explicitly
in the IP PE/ME30 exchange file. The implicit connection
is done by a reference from a start vertex to the next and
previous vertices in the loop. The edge (ED) entity repre-
sents the topological direction of the edge with respect to
the loop. The curve (CU) entity is an infermediate instance
on the way to the curve’s geometry (TR).

If complete information from the data section is needed a
translation tool is available that maps the data section to a
format much more useful for human readers. The following
extract describes how one of the faces and the correspond-
ing surface component of the cylinder example are repre-
sented. The mapping from the data section to the readable
format is also supplied.

© Copr. 1949-1998 Hewlett-Packard Co.

For this component from the data section:

e 300024028902240000700
0o0011002..

the corresponding translated part is:

5= FA (Face owning (anchor) vestex), the properties are
UP is EMPTY List of permanent universal attributes
AK is EMPTY .. Backpointer from element of feature
RV: INTEGER=0 Sense of face, edge geometry
SF: POINTER=24 .. Surface of face

SX: REAL =0 - Hatching pitch
1 VR: POINTER=8 .. Arichar of face
2 VR: POINTER=9 .. Anchor of face
HA is EMPTY .. Hatch direction

SL: POINTER=2 .. Shell of face

24 = SF (Surface of face), the properties are

UP s EMPTY .. List of permanent universal attributes

SD is EMPTY .. Surface supporting this surface
definition

AK is EMPTY ... Backpointer from element of feature

BK: POINTER=0 ... Backpointer from assembly or body to

token

1 EQ: REAL =0 .. Geometry definition
2 EQ: REAL =0 .. Geometry definition
3. EQ - REAL = ... Geometry definition
4 EQ: REAL =0 .. Geometry definition
5 E0: REAL = .. Geometry definition
6 EQ: REAL =1 .. Geometrydefinition
7 EQ: REAL =10 . Geometry definition
SU is EMPTY ... Surface supported by this suface

TY: INTEGER =2 (CYLINDER) .. Geometry type

Import Module

The HP PE/ME30 to HP PE/SolidDesigner import inter-
face is linked directly to the HP PE/SolidDesigner code. In
P PE/SolidDesigner’s user interface it simply adds a button
to the external filing menu. If a file name is specified, the
processor is activated. Internally, several C++ classes are
added to HP PE/SolidDesigner to represent the schema and
instance entities of the HP PE/ME30 file. For every sup-
ported HP PE/ME30 record definition entity a class derived
from a generic record instance object is defined. The most
important member function of each of these classes is the
convert function. This function performs the mapping of the
HP PE/MESD file object to the corresponding HP PE/Solid-
Designer entity.

The three main components of the HP PE/MES0 to HP
PE/SolidDesigner processor are a lookup table, a schema
manager, and a set of classes to represent the supported HP
PE/MES0 file entities.

The lookup table is part of the interface to an HP PE/MES0
file. The main task of this table is to manage the mapping of
HP PE/MES0 file entities to already created corresponding
HP PE/SolidDesigner entities. A lookup table is generated
for every open HP PE/ME30 file.

A schema manager is initialized if a new HP PE/ME30 file is
opened. It contains the schema section information found in
the newly opened file. For every open file a corresponding
schema manager is available to control the interpretation of
the entities of the file.

The record instance class builds the third basic data strue-
ture of the processor. Record instances are generic contain-
ers to store all of the data objects that can be expressed by
valid record definitions. The constructor of the record in-
stance class calculates the entity type from the reference
number and then allocates memory and reads in the proper-
ties from the file corresponding to the property definitions
of the schema. For every supporied HP PE/ME30 entity a
separate C++ class is derived [rom the record instance
class, but the generic constructor is used for all subtypes.
The main differentiator between the classes is the convert
function.

Conversion Process

The convert function of the record instance class itself is
not called by the conversion process. Rather, every derived
class implements its specific conversion function (in this
sense the convert function is purely virtual in C++). The
individual conversion function converts itself to an HP PE/
SolidDesigner entity.

Conversion and the creation of new derived instances of the
record definition class constitute a recursive process. If dur-
ing an active conversion an unresolved (not already con-
verted) reference is found the corresponding HP PE/MES0
file entities can be found as the next entities in the physical
file (see the description of the data section). The conversion
module then creates a new derived instance of the record
instance class and forces the translation of this entity to a
HP PE/SolidDesigner entity that can be used to complete the
conversion of the current entity. The algorithm is as follows:

A reference to an HP PE/ME30 file entity is found:

Already “converted”? (lookup table search)

YES: Use the available conversion resuit

NO: Create the new derived class of record instance
Call the convert function
Attach the conversion result to the lookup table
Delete the instance to free the memory used
Use the newly generated conversion result to continue the

conversion,

Nonanalytic Intersection Curves

The conversion for intersection curves is not done on the
fly, but by a postprocessor after the rest of a body is con-
verted completely. The convert routine for an intersection
track simply collects the two intersecting surfaces and all
available additional information found in the file to repre-
sent the intersection. The completion of the intersection
curves is done by the convert function for HP PE/ME30 bod-
ies. After a first intermediate topology of the new HP PE/-
SolidDesigner body is calculated and all analytic surfaces
and analytic curves are attached to the created body, the
caleulation of the intersections begins,

The topology of the intersection between two surfaces in
HP PE/SolidDesigner is not always the same as in HP
PE/MES0 because different constraints on topology and ge-
ometry exist in the two modelers, For instance, it may be
necessary to represent the single segment found in HP
PE/ME30 as a sequence of different curves. In such cases
the original topology has to be modified and some edges
may be split. To find the appropriate intersection in HP

October 19695 Hewlett-Packard Journal 37

© Copr. 1949-1998 Hewlett-Packard Co.

PE/SolidDesigner is mainly a selection process. In many
cases two surfaces intersect at not only one but several dis-
tinct sections.

Consider the intersection of a cylinder with a torus in the
case of perpendicular axes. Four possible intersection
curves may be part of the model (see Fig. 1). In the

HP PE/MES0 file additional help points are supplied to allow
the correct selection. The direction of the intersection curve
(the tangent to the curve) is not guaranteed to be the same
in HP PE/SolidDesigner as in HP PE/ME30. Therefore the
correct fit to the model is calculated and the resulting direc-
tion is reflected in the topology of the imported model.

Quality and Performance

To test the quality of the HP PE/MES30 import processor a
large HP PE/ME30 test library has been compiled. It now
contains more than 2300 examples of parts and assemblies.
All of the test cases used during HP PE/ME30 development
and support are included along with new user models con-
sisting of recently acquired data from internal and external
HP PE/ME30 users. An additional test matrix subtree was
developed by creating base parts with critical features. In
particular, all possible surface-to-surface intersections and
various special cases have been generated.

The regression test procedure is to import HP PE/ME30
models from the test library part by part and perform the
HP PE/SolidDesigner body checker operation on each. The
loading time and the body checker result are collected in a
reports file. A reports file can be analyzed by a shell script to
supply a statistical summary of the current quality of the

HP PE/ME30 interface. Because of the large amount of test
data a complete test takes a long time. Therefore, an inter-
mediate test is available. The complete test performs the
basic load and check test on all currently available test mod-
els of the library directory. The intermediate test examines
the reports file of the latest complete test and repeats all
reported problems. It also repeats a random selection of the
successful tests. At this time over 99% of the complete test
conversions are classified as successful.

The performance of the import process for HP PE/ME30
files is mainly dependent on three variables: the size of the
schema, the number of entities, and the number of intersec-
tions that have to be calculated:

Fig. 1. Intersection of a torus and a cylinder.

38

October 1995 Hewlett-Packard Journal

Load Time = Size x kl + Entities x k2 + Intersections x k3,

where kl < k2 < < k3. The size of the schema section does
not vary very much hetween different files and is normally
relatively small compared to the size of the data section. The
number of entities and the file size are strongly related. The
calculation and selection of the nonanalytic intersection
curves fifting the model is a relatively expensive component
of the processor because a completely new representation
of the data structure has to be generated,

Data Exchange Using IGES

An important task in computer-aided design is the transfer
of the completed model to downstream applications and
other CAD applications. These applications vary from finite
element analysis and numerically controlled (NC) manufac-
turing to visnalization and simulation. HP PE/SolidDesigner
currently uses IGES 5.1 (Initial Graphics Exchange Specifi-
cation) for file-based data exchange,

Because of the broad variety of receiving systems an [GES
interface must be flexible so that the contents of the output
file match the capabilities of the receiving system. It must be
possible to transfer whole assemblies keeping the informa-
tion on the parts tree, or only specilic parts of a model, or
even single curves or surfaces. This is achieved by a mixture
ol configuration and selection mechanisms.

An analysis of the IGES translators of many different sys-
tems showed that it is possible to classify them in four main
categories:

Wireframe Systems. These systems are only capable of im-
porting curve geometry. This is typical for older CAD sys-
tems or 2D systems with limited 3D capabilities,

Surface Systems Using Untrimmed Surfaces. These systems
are capable of importing untrimmed surfaces and indepen-
dent curve geometry. This is typical for low-end NC systems
that need a lot of interaction to create tool paths and define
areas.

Surface Systems Using Parametrically Trimmed Surfaces.
These systems are able to handle trimmed surfaces. Trim-
ming is performed in the parametric domain of the surfaces.
Periodic surfaces are often not handled or are incorrectly
handled. Each surface is handled independently. This is typ-
ical for surface modelers and sophisticated NC systems.
Topological Surface Systems and Solid Modelers. These
systems are able to handle trimmed surfaces using 3D
curves as trimming curves. They are able to handle periodic
surfaces, nonplanar topology, and surface singularities. Con-
nection between adjacent trimmed surfaces is maintained
and the normal to the trimmed surface is important for in-
side/outside decisions. This is typical for advanced surface
and solid modelers.

HP PE/SolidDesigner’s IGES interface is designed to work in
four output modes: wireframe, untrimmed, trimmed para-
metric, and trimmed. Each output mode represents one of
the categories of receiving IGES translators. This has the
advantage of giving as much information about the solid
model as possible to high-end systems (trimmed., trimmed
parametric), without burdening low-end interfaces with too
much information. For some modes (frimmed parametric)
more configuration parameters allow fine tuning to specific

© Copr. 1949-1998 Hewlett-Packard Co.

systems to maximize the transfer rate. Each mode has a
specific entity mapping that describes which IGES entities
are used to describe the model (see Tables 1. II, and III).
Users can specify additional product related data and arbi-
trary comments for the start and global sections of the IGES
file directly via the IGES output dialog box. Specific configu-
rations can be saved and loaded so that the configuration
has to be determined onlv once for each receiving system

Fig. 2 shows the IGES dialog menu

To allow maximal fiexibility in what is translated, the user is
allowed to select assemblies, parts, faces, and edges and
arbitrary combinations. All selected items are highlighted
and the user can use dynamic viewing during the selection
process. If the user selects assemblies, the part tree is repre-
sented with IGES entities 308 and 408 (subfigure definition

and instance). Shared parts are represented by shared geom-

etry in the IGES file.

IGES Settings
Output Mode

Trimmed Trimmed Parametric

Untrimmed Wireframe

Accuracy 0,001

Trimmed Parametric Switches

nalize

Coordinate System

+ Global Local

Output File Format
DOS

Global Section
Author

Organisation
Sending PID
Receive PID

Start Section

Config File
Config Name

default.cfg

Save Config

Fig, 2. HP PESolidDesigner 1GES output dialog menu

Table |
Curve Mapping
HP PE/SolidDesigner IGES 3D Entity
Straight Line (110

Circular arc (100)
with transformation

Circle

Rational B-spline
curve (126)

B-spline

Intersection curve Rational B-spline (126)

Parameter curve Rational B-spline (126)

or line (110)

Trimmed Mode

The trimmed mode is the closest description of the internal
B-Rep (boundary representation) data structure of HP PE/
SolidDesigner. It uses the IGES bounded surface entities 143
and 141 as the top element of the model description. Each
selected face of the part maps to one bounded surface (en-
tity 143) containing several boundaries (entity 141). Trim-
ming of the surfaces is performed by 3D model space
curves. To fulfill the requirements of the IGES specification
of entities 141 and 143 some minor topological and geomet-
rical changes of the HP PE/SolidDesigner internal model
have to be made. Vertex loops are removed, propedges on
toruses are removed, and intersection curves are replaced
by B-spline approximations.

Because the IGES bounded surface entity 143 does not have
any information about topological face normals, the sur-
faces are oriented so that all geometrical normals point to
the outside of the part (Fig. 3). Thus, enough information is
put into the IGES file that a receiving system can rebuild a
solid model from a complete surface model.

Untrimmed Mode

The untrimmed mode contains basically the same informa-
tion as the trimmed mode. For each face the untrimmed
surface plus all trimming curves are translated. But instead
of explicitly trimmming the surfaces with the appropriate
entities, surface and trimming curves are only logically
grouped together. This usunally requires manual trimming in
the receiving system, and is only suited for some special
applications

Solid model. (right) Surface model with normals

Fig. 3. (left)

Ootober 1905 Hewlett-Packard Joumal 39

© Copr. 1949-1998 Hewlett-Packard Co.

o

Table Il
Surface Mapping

IGES 3D Entity
{trimmed and untrimmed)

HP PE/SolidDesigner

Plane Plane (108)

Cylinder

Sphere

Torus

Cone

Spun B-spline

B-spline surface

Parallel swept B-spline

Trimmed Parameiric Mode

The frimmed parametric mode uses the IGES trimmed para-
metric surface entity (144) and the curve on parametric sur-
face entity (142) as representations of a trimmed swrface.
These entities have been established in the IGES standard
for a longer time than entities 143 and 141 or the trimmed
mode. For this reason they are more commonly used. The
main difference from the trrimmed mode is that the trimming
is performed in the parametric domain of the surfaces. Each
surface must have a parametric description that maps a
point from the parameter domain D (a rectangular portion
of 2D space) to 3D model space:

S(u,wv) = (X(uwv), Y(u,v), Z(u,v)) foreach (u,v)in D.
D = {all (u,v) with Upin = U = Upaw, Vinin = V' S Vimax)-

The following conditions apply to D:

There is a continuous normal vector in D,

There is a one-to-one mapping from D to 3D space.
There are no singular points in D.

Furthermore, trimming curves in 2D space must form closed
loops, and there must be exactly one outer boundary loop
and optionally several inner boundary loops (holes). Fig. 4
illustrates parameter space trimming.

These restrictions make it clear that there will be two prob-
lem areas when converting HP PE/SolidDesigner parts to a
parametric trimmed surface model: periodic surfaces and
surface singularities.

On full periodic surfaces like cylinders, HP PE/SolidDe-
signer usually creates cylindrical topology. There will not

Surface of revolution (120)

Surface of revolution (120)

B-spline surface (128)

Ruled surface (118)

IGES 3D Entity
{trimmed parametric)

Ruled surface (118)
Ruled surface (118)

Surface of revolution

B-spline surface (128)

Ruled surface (118)

necessarily be exactly one outer loop. Furthermore, 3D
edges can run over the surface seam (the start of the period)
without restriction. This leads to the situnation that one edge
may have more than one parametric curve (p-curve) associ-
ated with it. Also the p-curve loops may not be closed even
if the respective 3D loop is closed. Fig. 5 illustrates this
situation.

HP PE/SolidDesigner avoids this problem by splitting peri-
odic surfaces along the seam and its antiseam. The seam
and antiseam are the isoparametric curves along the param-
eters Uy and Upyip+Uperod/2. Thus, one face may result in

y
3D Model Space
v
;) ! :
Parameter Space

Fig. 4. Trimming in parameter space (p-space)

Table lli
Model Mapping
Trimmed
Entity Trimmed Parametric Untrimmed Wireframe
Parts and Assemblies 308+408 308+408 308+408 308+408
Faces Entity 143 Entity 144 Entity 402
Loops Entity 141 Entity 142 Entity 102

Edge+Base Curve Curve Entity
Surface
Entity

Base Surface

40

October 1995 Hewlett-Packard Jourmnal

Curve Entity

Surface
Entity

Curve Entity Curve Entity

Surface None
Entity

© Copr. 1949-1998 Hewlett-Packard Co.

Umun Upin
"“p!ﬂbﬂ

Fig. 5. Cylinder topology in 3D and p-space

two or four parametrically trimmed surfaces (u- and v-
parametric surfaces (toruses)) in the IGES model. Fig. 6
illustrates this situation.

Another problem with parametric trimmed surfaces are sur-
face singularities. Singular points are points where the sur-
face derivatives and normal are not well-defined. For such
points there is not always a one-to-one mapping from 2D
parameter space to 3D model space. This means there is an
infinite set of (u,v) points in parameter space that result in
the same 3D model space point. Such singularities are easily
created by rotating profiles around an axis where the profile
touches the axis. Examples are cones, spheres, degenerated
toruses, triangular spline patches, and so on (see Fig. 7).

HP PE/SolidDesigner is designed to handle singularities as a
valid component of a model, They are marked with a vertex
if they are part of a regular loop or with a special vertex
loop if they are isolated from the remaining loops. However,
it is not possible to express singularities in trimmed para-
metric surfaces legally in IGES.

To resolve this issue we reduce the singularity problem to
the problem of the valid representation of triangular sur-
faces. The splifting algorithm just described is applied so
that all singularities are part of a regular loop. Thus, we are
always faced with the situation illustrated in Fig, 8.

Each singularity of a face is touched by two edges, one en-
tering and one leaving the singular vertex. Knowing how

Ly . : z
Umen Bpmin Ymin
+Higeriod/2 +Upariod
Fig. 6. Periodic surfaces in 3D and p-space after splitting

triangular surfaces are handled in potential receiving sys-
tems, we offer four ways to export this kind of geometry.
These are the four possible combinations of closed or open
parameter loops and avoiding or using singularities,

Some systems do not need closed p-space loops, while
others strictly expect them. If the closed option is chosen,
the endings of the p-curves are simply connected with a
straight line.

Geometrical algorithims usually become unstable near singu-
larities. Some systems are not prepared to handle this situa-
tion and will fail. To avoid this, it is possible to shorten the
parameter curves when entering or leaving a singular vertex
and connect them at a numerically safe distance. This dis-
tance is measured in 30 space and is also configurable. It
usually varies between (0.1 and 0.001. This will result in a
surface where the region around the singularity is cut out.
Fig. 9 illustrates the four possible singularity representa-
tions.

Wireframe Mode

For the wireframe mode TP PE/SolidDesigner also avoids
the eylindrical topology, because in some cases information
about shape would be lost (e.g., a full surface of revolution),
After applying the face splitting algorithm all edges of the
selected faces and parts are translated. No surface informa-
tion is contained in the resulting IGES file.

o 1
B Y
o [
(\ b i
-g -
v v
i
= ! Fig. 7. Examples of surface
L singularities in parameter
u u " Space

Cretober RS Hewlen-Packard Journal - 41

© Copr. 1949-1998 Hewlett-Packard Co.

— —, Singularity

el i] F :
2 Singularity = __I\‘__-T Parameter
pel /'I
e2 /
Problem
Area

— -

pe2

Fig. 8. Trinngular surface situation,

Extracting Solid Information from Surface Models
IGES surface data from solid modelers often contains all
surfaces of a closed volume or a connected face set. How-
ever, the connectivity between adjacent faces is lost. If the
surface model fullfills some specitic requirements it is pos-
sible for the receiving system to recompute this missing
information. The following describes these requirements
and shows how connectivity between faces can be reestab-
lished, This method can be used to create a solid model
from HP PE/SolidDesigner IGES output.

Automatic comparison of all boundary curves on coinci-
dence or reverse coincidence would be a very time-consum-
ing and numerically unstable task. However, it is common
for the endpoints of the trimming curves of adjacent faces (o
be coincident within a very small accuracy. This makes it
possible to identify trimming curves that share common
start points and endpoints. If the two faces of these trim-
ming curves have the same orientation one can try to con-
nect the faces to a face set. For this task one must try to find
a geometry for a common edge that fulfills the [ollowing
accuracy constraints (see Fig. 10):

The curve is close enough to surface 1.

The curve is close enough to surface 2.

The curve is close enough to curve 1.

The curve is close enough to curve 2.

The first candidates for such a curve are the original trim-
ming curves, curve 1 and curve 2. If either satisfies all four

requirements it is incorporated into both face descriptions
and the connection is established. If neither curve can be
used, one can try a combination of the two, or reduce the
receiving system'’s accuracy.

This method fails if the face orientation is inconsistent or if
adjacent faces do not share common start points and end-
points.

Importing IGES Wireframe Data

IGES wireframe data can be easily imported into HP PE/-
SolidDesigner, since HP PE/SolidDesigner’s kernel supports
wire bodies. The modified wire data can be saved in HP
PE/SolidDesigner’s data format. Possible uses for this capa-
bility include migration from old-line systems to HP PE/Sol-
idDesigner, interaction with different sources and suppliers,
and communication with manufacturers.

In HP PE/SolidDesigner a wire is defined as a set of edges
connected by common vertices. A body consisting only of
wires is called a wire body. IGES 3D curve data is used to
generate the edges of a wire body. This includes lines,
circles, B-splines, polylines, and composite lines. [GES sur-
face data such as trimming curves of trimmed surfaces are
also used to generate edges. To simplify later solid model
generation the axis and generatrix of a surface of revolution
are also transformed into edges for the wire body. Since
only edges have to be generated for a wire body, there are
no accuracy problems as described above for IGES surface
importation. On the other hand, information on B-spline
surfaces is lost.

Wire data imported from an IGES file is collected into an
assembly. The assembly gets the name of the IGES file. Any
substructure of the IGES file like grouping in levels is frans-
formed into parts within the assembly. Thus, hierarchical
information contained in the IGES files is maintained within
HP PE/SolidDesigner. The generated parts can be handled
like any other part in HP PE/SolidDesigner. To distinguish

Use Singularity Avoid Singularity
v v
) B epsilon
< 5 Open
. / p-space
L
™
RS
LY
u u
v v
- - i
epsilon
S e
[
[
.4 »,
i \\.\ Closed
Vi b p-space
Fig. 9. Four possible singularity
u u representations

42 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

N L
.‘/'./- ‘_/"
Fig. 10.
wire parts, they can be colored. The options of HP PE/Solid-

Designer’s show menu work for the parts as well as the set-
tings of the part container. A wire part can become the ac-
tive part. The edges and vertices of a wire part are
displayable, all browsers work with wire parts, and wire
parts can be moved or become members of an assembly.

To build a solid mode! from a wire body, the edges and ver-
tices of the wire body can be used to position a workplane.
Then edges of the wire body can be selected and projected
onto the workplane. The resulting profile can then be used
to create a solid, for example by measuring an edge length
needed for an extrude operation.

Fig. 11 shows an example of an [GES wireframe model with
four parts and the resulting solid model. Automatic genera-
tion of solids from wires could be implemented but freeform
surface information would probably be lost, The real benefit
of wireframe import is for reference purposes.

Manufacturing industries use a variety of national and indus-
trial standards for product data exchange, These include
IGES for drawing and surface exchange (international),
VDA-FS for surface exchange (mainly the European automo-
tive industry), and SET for drawing and surface exchange
(France and the European Airbus industry). This variety of
different incompatible standards causes a lot of rework and
waste of valuable product development time which cannot
be afforded if companies are to survive in the competitive
marketplaces of tomorrow. Today's standards, originated in

"

®

the early 1980s, are no longer satisfactory for product data
description and exchange. Standards like IGES or VDA-FS
which are limited to surface or engineering drawing ex-
change, do not adequately handle other explicit product

data categories such as product structure or assemblies or
geometric solid models
Industry trends today are characterized by international
1 are spread over the cor
] globe I by lean production in which m

paris are subcontracted oz 'r:..:j-_'_!:_i from local or interna

tional suppliers. National standards and incompatibilities
between existing standards are obstacles to these trends

and will have to be replaced by international standards.

Large companies in the aerospace and automotive industries
in the U.S.A. and Europe have now taken the offensive to-
wards the implementation and use of STEP (Standard for
the Exchange of Product Model Data) as an international
standard for produet data exchange and access, starting in
1994, Companies such as BMW, Boeing, Bosch, General
Motors, General Electric, Daimler-Benz, Pratt&Whitney,
Rolls Royce, Siemens, and Volkswagen have been using
STEP prototype implementations in pilot projects with
promising results.

Ultimately, STEP is expected to meet the [ollowing require-
ments for an international product data exchange standard:
Provides computer interpretable and standardized neutral
product model data. Neutral implies compatibility with any
CAD or CIM system that best fits the design or manufactur-
ing task.

Implements the master model concept for product data. The
entire set of product data for a product with many single
parts is kept in one logical master model which makes it
possible to regenerate the product as a whole at a new man-
ufacturing site. This means that product assemblies, includ-
ing administrative data and bills of material, are handled.
Provides completeness, conciseness, and consistency. This
requires special data checking and validation mechanisms.
Provides exchangeable product data without loss. The prod
uct data must be exchangeable from one CAD or CIM svs
tem to another without loss of data.

Fig. 11. [mported wi

by HP PE/SolidDesigner

COetober 1995 Hewlett-Packard Journal - 43

© Copr. 1949-1998 Hewlett-Packard Co.

s Provides long-term neutral data storage and interpretability.
Product data is an important asset of a manufacturing com-
pany. The product data should be retrievable and interpret-
able by any CAD or CIM system after a long period of time,
say 10 years or more. This is a significant challenge.

These requirements cannot be satisfied immediately. The
STEP program also has shorter-term priorities for standard-
izing specific subseis of the product data. These include:

* The complete 3D geometric shape in the form of a 3D
boundary representation solid model (B-Rep solids)

« Surface model and wireframe model data

¢ Product structure and configuration data.

Another priority is product documentation. An important
goal is consistency of the engineering drawing with the 5D
product geometry,

STEP Overview

STEP, the Standard for the Exchange of Product Model
Data, is the [SO 10303 standard. It covers all product data
categories that are relevant for the product life cyele in in-
dustrial use. STEP describes product data in a computer
interpretable data description language called Elvpress. The
STEP standard is organized in logically distinet sections and is
grouped into separate parts numbered 10303-x0xx (see Fig. 12).

The resource parts of the standard describe the fundamental
data and product categories and are grouped in the 1x, 2x,
ax, and 4x series, The Express data description language is
defined in part 11. All other product deseription parts use
the Express language to specify the product data character-
istics in the form of entities and attributes. In addition to the
product description parts there are implementation re-
sources which are given in part 21, the STEP product data
encoding scheme (the STEP file), and part 22, the Standard
Data Access Interface (SDAID), which provides a procedural
method for accessing the product data. There are different
language bindings for part 22, such as C or C++ program-
ming langnages. The 3x series parts specify conformance
requirements for STEP implementations.

Examples of STEP-standard resource parts are the funda-
mentals of product description and support (part 41), the
geometrical shape (part 42), the product structure (part 44),
material (part 45), the product presentation (part 46), toler-
ances (part 47), and form features (part 48). The application-
specific resources are grouped in the 1xx series, Examples
are drafting resources (part 101), electrical (part 103), finite
element analysis (part 104), and kinematics (part 105). On
top of the resource parts and application resources are the

#1 Dverview and Fundamental Principles

Application Protocols

Explicit
Drafting

#201 #a02
Associative
Dratting

L&
Testing
Concepts

Integrated Resources

Drafting

Description
Methods

#4
Product
Definition

444
Product
Structure

847

Tolerance

#in #103
Electrical

Generic Resources
Geometry and

Topology

Materials

Form Features

#32

Application Resources Test

Lab
Require-
ments

#104 Finite- ”10;5
Element

2 Kinematics
Analysis

#33

Abstract | Confor-
Test mance

Suites Testing

a42 #43

Representation

#45 #46
Presentation
#34
Abstract
Test
Methods

#48 #49
Processes

Physical File

Implementation Methods

#22 Standard
& Data Access
Interface

(SDAI)

Knowledge
Base
(Future)

Datahase
{Future)

Fig. 12. Architecture of ISO 10303, Standard [or the Exchange of Product Model Data (STEP).

44 October 18995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

application protocols (AP) which use the underlying re-
sources in a specific application context, such as mechani-
cal design for discrete part manufacturing, and interpret the
resource enfities in the application-specific context. STEP
implementations for CAD or other computer-aided systems
are based on application protocols. Application protocols
are under definition for application areas like basic drafting,
associative drafting, mechanieal design, electrical design,
shipbuilding, piping, architecture, and others. Here, we high-
light just two examples, AP203 and AP214.

AP203: Configuration-Controlled 3D Design. AP203 was devel-
oped under the leadership of PDES Inc. It covers the major
requirements for U.S.-based industries such as the aero-
space industry for government and industrial manufacturing
contracts. The product data covered in AP203 includes geo-
metric shape (B-Rep solid models, surface models, wire-
frame models), product structure, and configuration man-
agement. AP203 is the underlying STEP specification for
many CAD and CIM system implementations,

AP214: Core Data for Automotive Mechanical Design. AP214 has
been developed by the automotive industry and covers prod-
uct data categories relevant for the design and manufactur-
ing of automotive parts and products. AP214, initiated in
Germany and internationally supported, is still under final-
ization in parallel with its industrial implementation in CAD
and CIM systems. The implementations have been coordi-
nated and harmonized in the European ProSTEP consortium
and the implementation is focused initially on the geometri-
cal product descriptions (solid models, surface models) and
product structure. However, all other kinds of product data
categories relevant for mechanical design in the automotive
industry (e.g., form features, materials, tolerances) are
within the scope of AP214 and are going through the stan-
dardization process.

Initial Release

The initial release of STEP parts focuses on the most ur-
gently needed kernel definitions of the standard, which
cover the geometrical shape description, including all topo-
logical information, the product structure, and the configu-
ration management data. Basic product documentation in
the form of low-level engineering drawings is also covered.
The parts included in the initial release are parts 1, 11, 21,
31, 41, 42, 43, 44, 46, 101, 201, and 203. The first two applica-
tion protocols to become standards are AP201: Explicit
Drafting and AP203: Configuration-Controlled 3D Design.

Upcoming releases of STEP will cover the next priorities in
the area of drafting, such as AP202; Associative Drafting,
materials, tolerances, form features, and parametrices, and
other application protocols such as AP204: Mechanical De-
sign Using B-Rep Solid Models and AP214: Core Data for
Automotive Mechanical Design.

HP Involvement in STEP

HP has been working on the standardization of product
model data since 1959 and has focused on the emerging in-
ternational standard STEP for 3D product data. The product
data focus has been on 3D kernel design data, completeness
of topology and geometry, B-Rep solid models, and product
structure and assemblies, as well as on associative drafting
documentation, HI is an active member in organizations

that have an impact on the IS0 STEP standard, and contrib-
utes to STEP through national standards organizations in
the U.S.A. (e.g.. NIST. ANSI) and Europe (e.g.. DIN in Ger-
many). Of particular interest are the organizations PDES
Inc., PRODEX. and ProSTEP.

PDES Inc. HP has concentrated on three major areas of
PDES Inc.'s STEP activities: mechanical design of 3D prod-
uct data, associative drafting for CAD data, and electronic
data definition and exchange.

The mechanical design initiative of the 1.S. aerospace and
aircraft industries. the automotive industry, and the com-
puter industry resulted in STEP application protocol 203,
HP, a PDES Inc. member in the U.S.A. and an ESPRIT CA-
DEX member in Europe, contributed to the 3D geometric
design definition of AP203 in a joint effort of PDES Ine. and
CADEX, The AP203 3D geometries cover solid models, sur-
face models, and wireframe models and are shared by other
application protocols, thereby promoting interoperability
between different application areas.

HP has also been actively supporting the U.S. initiative to
define a good-quality standard for associative drafting docu-
mentation in STER. Associative drafting, covered by AP202,
is considered an integral portion of the produet data for con-
tractual, archival, and manufacturing reasons. For example,
government contracts and IS0 9000 require that product
data be thoroughly documented. This includes engineering
drawing data of a product in addition to the 3D product data
and the configuration data. Electronic design and printed
circuit board design data are also covered in STEP.

PRODEX. In 1992 participants in the ESPRIT CADEX project
demonstrated publicly the first B-Rep solid model transfer
via STEP for mechanical parts in Europe. To develop this
new technology the PRODEX project was founded in 1992
with the goal of developing STEP daia exchange for CAD
design, finite element analysis, and robot simulation sys-
tems. Twelve European companies joined the project. So far,
the project’s achievements include the definition of a STEP
implementation architecture, the development of a STEP
toolkit, and the development of STEP preprocessors and
POSLProcessors.

Product data exchange between the different vendors is
ongoing and shows very promising results for CAD-to-CAD
data exchange, CAD-{o-finite-element-system exchange, and
CAD-to-robot-simulation-system exchange. The STEP stan-
dard has been further fostered by a joint effort with the
ProSTEP project to develop AP214, in cooperation with the
LS., European, and Japanese automotive industries,

ProSTEP. ProSTEP is an automotive industry initiative for a
highway-like STEP product model data exchange. In 1992
the German companies Bosch, BMW, Mercedes-Benz, Opel
(GM). Volkswagen, and Siemens launched an initiative to
bring the major CAD vendors together with the goal of im-
plementing the first harmonized set of STEP product data
exchange processors (product data translators) for indus-
trial use in the automotive industry. The approach taken was
to compile the user requirements, to build on the results and
experiences of the ESPRIT CADEX project, and to launch at
the ISO level a STEP application protocol, AP214, which
covers the core data for automotive mechanical design.

October 1995 Hewlett-Packard Joumal - 45

© Copr. 1949-1998 Hewlett-Packard Co.

The following CAD/CIM systems are involved in the project
and have STEP data exchange processors either available or
under development; Alias, AutoCAD, CADDS/CV-Core, CA-
TIA, EUCLID3, HP PE/SolidDesigner, EMS-Power Pack,
I-DEAS Master Series, SIGRAPH STEPIntegrator, SYRKO,
Tebis, ROBCAD, and others.

The initial focus in ProSTEP for STEP products is on design
data exchange for 3D geometry: B-Rep solid models, surface
models, and wireframe models. For migration from legacy
systems, wireframe data needs to be supported, at least for
data import, Communication with applications like numeri-
cal control (NC) programming systems today typically re-
quires surface model data. although in the future more solid
model data will be used. Initially, the HP emphasis is on bi-
directional product model exchange (input and output) of
3D B-Rep and surface models.

STEP Tools Architecture

In STEP implementation projects, standardization has been
extended beyond the product dafa to the STEP implementa-
tion tools. The CADEX, PDES Ine, PRODEX, and ProSTEP
projects have all taken this approach.

A standardized STEP tool architecture provides the follow-
ing benefits. These include shareability of tools between
different implementors, shortened development time for
STEP processor implementations (software development
productivity gain), increased likelihood of compatibility be-
tween STEP implementations (differences in STEP defini-
tion interpretations are minimized), parallel development of
tools (concurrent engineering), extendability of tools to
track new standardization trends, inereased flexibility (new
STEP models require fewer code changes), and centralized
maintenance of tools.

“ig. 13 shows the PRODEX STEP tools architecture. The
functional blocks of a STEP toolkit or STEP development
set are:

« STEP Standard Data Access Interface (SDAI),
» STEP Express compiler

Finite-Element

Applications Design

v v v
STEP Standard Data Access Interface (SDAI)

STEP Tools
Metadata

4 ¢
; |
Express
Compiler

External Data

Scanner/
Parser

Express
Model

46 October 1995 Hewlett-Packard Journal

Visualization

® ©

STEP File Exchange with Other Systems

» STEP file scanner/parser
« STEP file formatter

« STEP data checker

+ STEP conversion tool.

The main interface to the STEP application is the STEP
Standard Data Access Interface, which provides a computer
programming language for dynamic access to the STEP
data. Application-specific mapping and conversions are im-
plemented on top of this interface.

The Express compiler conveys the product data descrip-
tions contained in an Express schema (the metadata of the
data model) to the toolkit. It contains an Express file reader
and compiles the file contents to the internal representation
of the data model. The SDAI is the recipient of the product
data metamodel and uses the metamodel as a reference for
the product instance data, which is imported through the
STEP file scanner/parser.

The STEP file scanner/parser reads (scans and parses) the
STEP instance data contained in a STEP data file and uses
the currently valid metamodel for checking the syntax of the
imported instance data.

The STEP file formatter formats the data to a part-21-confor-
mant STEP file which is read from the SDAI by using the
current valid metadata (e.g., a specific application protocol
such as AP203).

The STEP data checker is a validation tool that checks the
instance data currently in the SDAI based on the corre-
sponding metadata model, which is also contained in the
SDAL The checking covers consistency checks like refer-
ences between entities (e.g., existence dependency), and
rule checking, which is covered in the metamodel. The
checking is optionally applicable to the data in the SDAL It
is very helpful during the development of processors, for
checking new metadata models, or for checking the first
data imported from a new system.

Rohotic
Simulation

Product Data

Model

Conversion

Fig. 13. PRODEX STEP tools
architecture,

© Copr. 1949-1998 Hewlett-Packard Co.

The STEP conversion tool is a pool of conversion functions
(a library) that includes all kinds of geometrical, topological,
and other model conversions. The focus is on geometrical
conversions which are heavily used for data exchange be-
tween systems with different geometric modeling concepis.
For example, one CAD system might use rational polyno-
mial representations for its inherent geometric representa-
tion of curves and surfaces (e.g., NURBS, nonuniform ratio-
nal B-splines), while the other might use nonrational
representations {(e.g.. NUBS). In this case an approximation
to the nonrational representation has to be applied, at the
price of increasing the amount of data. For another exam-
ple, a surface modeling system might expori trimmed sur-
face data with curve representations in 2D parameter space,
whereas the receiving system might handle only 3D space
curves. In this case the 2D parameter curves have to be eval-
nated and converted to 3D trimming curves in 3D space.

By using a STEP toolkit the requirements for the implemen-
tation of a STEP processor might be reduced to just the na-
tive data interface to the STEP tools, which consists of the
data output to the SDAI (for the STEP preprocessor) and the
data imported from the SDAT (for the STEP postprocessor).

The main task in linking a CAD system to the toolkit con-
sists of defining and implementing the mapping between the
system internal representation and the standardized entity
representation in the schema of the standard (e.g., an appli-
cation protocol).

HP PE/SolidDesigner STEP Implementation

The target application protocols for HP PE/SolidDesigner
are initially AP203 and AP214, in which both solid and sur-
face models are supported. In addition to the HP PE/Solid-
Designer internal data models, the solid and surface models
of other CAD systems are of major interest. With the intro-
duction of STEP, B-Rep solid model data exchange comes
into industrial use, representing a new technology shift.
HP PE/SelidDesigner has its focus on solid models and is
best suited for STEP-based bidirectional solid model ex-
change. However, surface models are also supported.

In addition to the geometric specifications, product informa-
tion and configuration are covered in the implementation. In

Advanced B-Rep

HP PE/

EDS/ SolidDesigner

Unigraphics

L]

Faceted B-Rep

this article, the geomeiric and topological mappings are dis-
cussed. The assembly, product structure, and administration
mappings are not covered.

STEP Preprocessor (STEP Output)

The preprocessor exports the HP PE/SolidDesigner model
data in a STEP file. The preprocessor takes care of the map-
ping of the HP PE/SolidDesigner model to the STEP model.

The internal geometrical and topological model of HP
PE/SolidDesigner is in many respects similar to the STEP
resources of part 42 of the STEP standard. Hence the map-
ping is often straightforward. On the other hand, there are
data structure elements that are not mapped to the STEP
model

HP PE/SolidDesigner uses the following geometric 3D
elements:

Analytics: 3D surfaces such as planes, cones, cylinders,
spheres, and toruses, and 3D curves such as lines, arcs,
circles, and B-splines

Nonanalytics: typically 3D elements such as B-spline curves
and surfaces, and linear and rotational swept surfaces.

The topology used for the exchange of solid models is based
on the manifold topology of STEP part 42. The elements
used are manifold solid boundary representations, closed
shells, faces, loops, edges, and vertices. The link between
the topology and the geometry is given by references from
faces to surfaces and from edges to curves. The geometrical
points are referenced by vertices.

The HP PE/SolidDesigner STEP surface models are also
based on topological representations. Special elements are
used for surface models, such as shell-based surface models
and closed and open shells. The other underlying topolocial
elements are the same as in the solid models. The geometric
representations of the surfaces are typically the same as in
the solid model representations.

STEP Postprocessor (STEP Input)

The HP PE/SolidDesigner postprocessor supports the im-
port of B-Rep solid models and surface models along with
the necessary product structure data. The postprocessor is

ROBCAD

Fig. 14. Data exchange cycles
between different CAD systems,
inchuding robot simulation sys-
tems, in the ProSTEP project.

October 1005 Hewlott-Packard Journal - 47

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 15. Golf «

Designer from | A (CAP-Debis)

capable of covering at least the functionality of the prepro-
cessor so that it is possible to store and retrieve HP PE/Sol-
idDesigner data in a STEP file representation (this is called

the short cycle lest).

The STEP postprocessor imports STEP files from other sys-
tems based on specifically supported application protocols.
Postprocessing is one of the most difficult tasks in data ex-
change, especially when the data imported comes from a
system that is very different from the receiving system. Po-
tential problems arise in postprocessing if the sending and
receiving systems have different accuracies, use different
modeling techniques to generate the data, have different or
missing surface connectivity, use different algorithms or
criteria to determine surface intersections or connectivity,
or use different model representations for similar model
characteristics.

When surface models are imported, it cannot be guaranteed
that they can be migrated to solid models even with user
interaction, However, in special cases imported surface
models can be migrated to solid models without problems.

48 October 1995 Hewlett-Packard Joumal

In many cases imported surfaces provide boundary condi-
tions for the solid model. In most cases the data can be used
as reference geometry to check interference or provide di-
mensions for the solid models. For example, an imported
surface set might represent the surrounding boundary geom-
etry within which the final mechanical part has to fit without
interference.

Importing surface models into HP PE/SolidDesigner is con-
sidered important and ecritical since many other CAD sys-
tems, especially legacy systems, often support only surfaces
or wireframe models, not solid models. Therefore, the post-
processing of STEP surface models needs to cover a
broader scope than the preprocessing. Sometimes, different
surface representations are used in different application
protocols, such as AP203 and AP214. Hence, different exter-
nal representations may need to be mapped to one internal

In the initial implementation of the HP PE/SolidDesigner
postprocessor, topology bounded surface models are sup
ported. These provide the most sophisticated description of
the connectivity of the individual surfaces used in a solid
model. Geometrically bounded surface models are sup
ported as a second priority.

The Accuracy Problem

When importing CAD data from other systems the accuracy
of the data plays a key role and determines whether a co-
herent and consistent CAD model can be regenerated to
represent the same kind of model in the receiving system. |
Let's define the term accuracy. There are different accuracy
or resolution values that must be considered in geometric
modeling and CAD systems. For 3D space, a minimum linear

distance value (a length resolution value) can be defined,
which is the absolute distance between two geometric
points that are considered to coincide in the CAD internal
algorithms; this represents the zero distance. We'll call this
value the linear accuracy. A typical value could be

10~ 5% mm which is highly accurate for many mechanical

17. Wheel solid model imported from SIGRAPH-3D (Siemens

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 18. B-Rep model imported from Unigraphies (KDS

design applications. A similar value can be specified for an-
gular accuracy, parametric accuracy, and so on. The dis-
cussion here is limited to linear accuracy.

If the sending system uses a higher linear accuracy (more
precise data) than the receiving system, distinet geometric
points will be detected to coincide in the receiving system.
This might result in a change in the topology (which might
cause further inconsistencies) or the geometry. If the send-
ing system uses a lower linear accuracy (less precise data),
the receiving system might complain that the topology is not
correct or the geometry and the topology are inconsistent.

To prevent or at least minimize these kinds of accuracy
problems it should be possible to adjust the accuracy in the
receiving system to the accuracy values of the data to be
imported. For example, if the sending system uses a differ-
ent accuracy for the model generation process, say a linear
accuracy of 10 2 mm, then the receiving system should ad
just its internal algorithms to the same accuracy.

Experience with HP PE/SolidDesigner has shown thai this
kind of adjustable accuracy helps regenerate CAD models
that were generated in different systems with different accu-
racies, Also, for data models composed of components with
different accuracies, the components can be brought together
on the assembly level to form a complete product model

In the STEP implementation of AP214 an adjustable linear
accuracy value is conveved in the STEP file to tell the re-
ceiving system the appropriate accuracy value for postpro

cessimg.

User Features

The user can select via the HP PE/SolidDesigner graphical
user interface the objects (e.g., several B-Rep bodies) to put
into a STEP file. For example, the user decides whether to
send the data in a B-Rep solid model or a surface model rep-
resentation, The user can choose some configuration param-
eters that help tailor the model data set for best communica-
tion to a specific target application. However, all data must
comply with the STEP standard.

When importing (postprocessing) a STEP file the user ¢an
define some parameters that ease the processing of data.
For example, the user might set the acceuracy value before

different

repr entalior
represenialion

STEP Model Exchange Trials

<1 le exchanges have been performed within

portance for the acceptance of ths
application protocols. Within the

ticularly well

ProST project this process has wor ke

Other work has been done with, for example, AP203 imple-

mentors together with PDES Ing

At this time, solid model data exchange can be said to be
working very well, especially compared with what was pos-
sible with existing standards. STEP-based surface model
exchange has also reached a level that was not pe ssible with
existing standards like IGES or VDA-FS, especially with re-
spect to topological coherence, which is easily conveyed
with STEP between many CAD systems. Of course, the wide
variety of surface models, with the resulting accuracy and
connectivity problems, will need to be addressed by the dif-
ferent CAD system vendors to optimize data transfer via
STEP. In the meantime, STEP file exchange has matured to
the point where STEP products are offered by various CAD
vendors and system integrators.

Within the ProSTEP project one of the broadest ranges of
STEP-based data exchange trials have been performed
between HP PE/SolidDesigner and other CAD systems
(see Fig. 14). Solid model industrial part data has been
exchanged, for example, with CATIA (CAP Debis and
Dassault/IBM), Unigraphics II (EDS), SIGRAPH Design and
STEP Viewer (Siemens-Nixdorl), and others. Some of the
successful results are shown in Figs, 15, 16, 17, and 18.
Surface model industrial part data has been exchanged with
CATIA, EUCLID, SYRKO (Mercedes-Benz corporate design
system), and others. Some of the successful results are
shown in Figs. 19 and 20.

Next STEPs

Future releases of the STEP standard covering product data
categories such as materials, tolerances, form features, man-
ufacturing process data, and others are expected in the next
few months. The expected release of AP202, associative
drafting, will allow decumentation of the product data in
engineering drawings. Work is ongoing towards the parame
terization of product features, which needs further develop
ment in the STEP standard.

The expected finalization of AP214 will make it possible to
convey the product data categories in STEP files and will
help to reduce design and manufacturing development
cyeles for simple as well as complex products, This process
will be supported by further extensive use of data communi
cation networks in the various countries. The migration
from existing standards is aided by several product offerings
of IGES-10-STEP and VDA-FS-10-STEP data converters.

October 1995 Hewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 19. Surface model imported from SYRKO (Merced

orporate design system)

The STEP implementation technology based on the STEP
Standard Data Access Interface will be broadened and used
in database access implementations to allow concurrent
access by product design and manufacturing development.

50 October 1995 Hewlett-Packard Journal

Fig. 20. Headlight reflector surface model imp

(Matra Datavision)

However, for industrial use, the database technology and the
STEP data access technology need to be extended and inte-
grated. This process is expected to take several years.

© Copr. 1949-1998 Hewlett-Packard Co.

Providing CAD Object Management
Services through a Base Class Library

HP PE/SolidDesigner’s data structure manager makes it possible to save a
complex 3D solid mode! and load it from file systems and databases
Using the concepts of transactions and bulletin boards, it keeps track of
changes to a model, implements an undo operation, and notifies external

applications of changes.

by Claus Brod and Max R. Kublin

A solid 3D model is a highly complex data structure consist-
ing of a large number of objects. The modeling process re-
quires flexible, fast, reliable, and generic means for manipu-
lating this structure. It must be possible to save the data
structure to and load it from file systems and databases.
Furthermore, application suppliers need versatile interfaces
for communication between the modeling kernel and the
applications.

This article describes how the requirements of the solid
modeling process translate into requirements for a CAD
object manager, and how HP PE/SolidDesigner's data struc-
ture manager (DSM) is designed to meet these needs.

Besides data abstractions and powerful tools for debugging
networks of data, DSM provides a basic data object, the en-
tity. An entity's functionality is used by the entity manager
to file, copy, and scan nets of entities. The cluster manager
module adds capabilities for building subnets within the
whole data structure (elusters) and manipulating them. This
makes it possible to slice the model into manageable pack-
ages that can be sent around the world to subcontractors for
distributed modeling, The state manager implements a
transaction mechanism, which allows the user to browse
through the modeling steps and undo changes to the model
at any time.

The DSM compares quite nicely with today's object-oriented
databases and implements most of their features without the
overhead that is often associated with them.

Requirements for a CAD Object Manager

A CAD object manager provides the data infrastructure for
the CAD system. [t is used by the other components to build
and change the model. At the same time, it is a base class
library for internal and external programmers, It must fulfill
many different user requirements.

It must be able to handle extremely large and complex data
structures. When there is a choice of algorithms, the algo-
rithm with the best behavior for large data sets must be se-
lected.

A typical modeling operation changes many individual ob-
jects and the structure of the model. Each such change in-
volves the object manager, so its operations will be called
very often. Their overhead must be kept at a minimum to

prevent the object manager from becoming the performance
bottleneck of the system.

Because of the large number of objects, it is also essential
that the object manager add only marginal overhead in
terms of additional memory to each object.

In a CAD model, many kinds of connections between ob-
jects are needed. The object manager should allow and sup-
port not only the types of connections that the core product
needs, but also any other kind of connection that third-party
applications or future modules may require.

CAD programs are large projects which are developed over
several vears and evolve with the customers' needs. Not all
of these needs can be anticipated in the original design.
Therefore, the object manager must be flexible enough to
allow later extensions, both unlimited new connectivity and
completely new kinds of objects. The latter requirement is
also essential for third-party applications.

The core solid modeler and its applications operate on the
same model. The object manager must offer both sides a
view of the model and inform external applications about
changes in a generic way. Therefore, the object manager
must offer communication mechanisms and interfaces to
applications.

The object manager’s services are used when building a new
type of object and dealing with it. The developer of such a
new object will appreciate every kind of support that the
object manager can provide, such as debugging tools, handy
utilities for frequent tasks, or a library of commonly needed
basic data structures, such as lists, tables, stacks and nets.

Finally, the object manager must provide generic mecha-
nisms to store objects and whole models to a file system or
database and to load models from there, that is, it has to
make the objects persistent,

The design and the use model of HP PE/SolidDesigner add
some special requirements to those just described. To sup-
port later extensions and the general concept of openness, it
is essential that existing object schemes be able to evolve
while remaining fully compatible with old data. Further-
more, the object manager, or data structure manager (DSM)
in HP PE/SolidDesigner terminology, must support a
transaction concept. Transactions must be freely definable

October 1995 Hewlett-Packard Journal 51

© Copr. 1949-1998 Hewlett-Packard Co.

to allow modeling steps that the user perceives as natural.
The data structure manager must record all changes Lo the
model in a transaction to be able to roll them back in an
undo operation.

The DSM must help to ensure model consistency even if
errors occur internally or in external applications. The trans-
action mechanism can be used to this end.

Concurrent engineering is becoring more and more impor-
tant in computer-aided design. Files have to be exchanged.
Parts of the model are developed independently and assem-
bled later. The dala structure manager must support assemn-
blies of parts and the exchange of parts.

Design Principles

HP PE/SelidDesigner’s data structure manager was designed
with both the above list of requirements and some architec-
tural prineciples in mind.

One of HP PE/SolidDesigner’s key principles is to offer a
highly dynamic system with very few static restrictions. The
DSM has to support not only today’s models, but also future
maodels, so there should be no fixed limits on the size or
number of objects. Additionally, the DSM must offer mecha-
nisms to define new objects and object types at run time.
This is especially important for external applications.

Each object should only know about its direct neighbors,
not about the overall structure of the model. Special data
managers are used to collect the local knowledge and form
a global picture. This reduces interdependencies between
objects which would make later extensions a daunting and
dangerous task.

The sequence in which DSM's algorithms traverse the model
is not fixed. Since the objects cannot and do not rely on
fixed sequences, DSM can also employ parallel algorithms if
they are needed and are supported by the hardware and
operating system.

Problems in the data structure or in object behavior must be
detected as early as possible. In its debug version, DSM
checks the consisteney of the model thoroughly and offers
advanced debugging mechanisms to support the program-
mer. In the version shipped to the customer (the production
version), DSM still employs robust algorithms, but relin-
quishes debug messages and the more elaborate tests for
optimum performance.

Basic Data Abstractions

One way to look at the data structure manager is as a pro-
grammer’s toolbox. As such, it provides all common building
block classes:

Dynamic arrays

Lists including ring lists

Stacks

Hash tables

Dictionaries such as string tables and address translation
tables

Bit sets

Vectors, matrices, and transformations

Events

General networks of objects.

52 October 1995 Hewleti-Packard Journal

These building blocks can be combined to form real-world
programming objects. They share basic functionality to stan-
dardize their manipulation, such as functions to load and
store them, or to scan the data structure and apply a method
to each of its elements.

The most important data structure in HP PE/SolidDesigner
is the general network. DSM provides net node objects and a
net manager class. Each node maintains a list of neighbors
in the net. To obtain information about the network as a
whole, the nel manager visits each individual node, calls its
local sean function to retrieve a list of neighbors, and pro-
ceeds with the neighbors until all nodes in the net have been
visited.

DSM Object Management

The core of DSM is formed by the definition of a generic
object, or enfity, and manager classes that deal with various
aspects of entity administration, delivering higher-level ser-
vices, In the following, we will outline the DSM entity ser-
vices, beginning with the definition of an entity.

“ntities are nodes in a complex network. As such, they use
the network functionality described earlier. Additionally,
specific entity functions deliver the basic services for trans-
action handling, filing, object copying, run-time type infor-
mation, and others,

To benefit from the DSM services, a programmer simply
derives a new object from the entity base classes and fills in
a few obligatory funetions. Almost every object in an HP PE/
SolidDesigner model is an entity.

Entities provide a method for inquiring their type at run
time. The type can be used to check if certain operations are
legal or necessary for a given entity. Object-oriented soft-
ware should try to minimize these cases, but it cannot com-
pletely do without them. An HP PE/SolidDesigner model is
an inhomogeneous network of entities. When scanning the
net, one finds all kinds of entities. The algorithm that in-
spects the net often applies to specific types of entities and
ignores others. But to ignore entifies that we are not inter-
ested in, we must be able to check each entity’s type.

In an ideal world, type checks could be avoided by using
virtual functions. However, to provide these in the base
class, it would be necessary to anticipate the functionality of
derived classes before they have been created, including
those that come from third parties as add-ons to the
product.

Run-time type information has been under discussion for a
long time in the C++ community, and is only now becoming
part of the standard. Therefore, we had to develop our own
run-time type system with the following features:

No memory overhead for the individual object

Very fast type check

Checks for both identical and derived types

Registration of new entity types at run time.

A pure entity is a very useful thing, but certain types of enti-
ties are needed so often that we implemented not only one
base class, but also a set of standard entities which offer
certain additional functionality.

© Copr. 1949-1998 Hewlett-Packard Co.

Standard Entity Types

The three most important standard entities are attributes,
relations, and refcount entities. Attributes are atiached to
other entities and maintain bidirectional links to them auto-
matically, so they save the user a lot of housekeeping work.
For any given type of attribute, only one instance can be
attached to an entity. A typical example is the face color
attribute. If a face already has been marked as green by a
color attribute, attaching another color atiribute, say red,
will automatically delete the old atiribute.

Relations are like attributes, but without the “one instance
of each type” restriction. One of the many applications is for
annotation texis.

Attributes and relations often are the entity types of choice
for a third-party module. They can be attached to entities in
the HP/PE SolidDesigner core, and even though the core
doesn’t have the faintest idea what their purpose is, the con-
nectivity will be maintained correctly through all kinds of
entity and entity manager operations. We also use this tech-
nique in HP/PE SolidDesigner itself. The 3D graphics mod-
ule, for example, calculates the graphical representation for
the kernel model and then attaches the result to the kernel
model as attributes.

Refeount entities maintain a reference counter. Other enti-
ties that have a reference or pointer to a refcount entity
“acquire” it. Only after the last owner of a refcount entity is
deleted is the refcount entity destroyed. (You can think of
refcount entities as the equivalent of a hard link in a file sys-
tem.) Refcount entities can be used to share entities in the
entity network to improve memory utilization and perfor-
mance. We use this type of entity extensively for HP/PE
SolidDesigner’s geometry.

Nearly all objects in HP PE/SolidDesigner are entities, de-
rived from a common base class. Currently, there are more
than 600 different entity types in HP PE/SolidDesigner.
Being derived from a common base class, they inherit a set
of generic functions which can be applied to any of these
600 different entity types. The most important of these func-
tions are create, delete, copy, store, load, and scan.

HP PE/SolidDesigner allows loading third-party modules at
run time. Completely new entity classes can be integrated
into the system dynamically. Thus, third-party applications
can implement their own entity classes. Entities in external
modules are not restricted in any way compared to entities
in the HP PE/SolidDesigner kernel. External entities inte-
grate seamlessly into the existing entity network and share
all the entity services provided by DSM.

The Entity Manager

In HP PE/SolidDesigner, entities can have any type of con-
nection to other entities. A 3D body, for example, is a very
complex network consisting of dozens of entity types, In the
entity network of a body, there are substructures such as
lists, ring lists, and trees of entities,

An assembly in HP PE/SolidDesigner is a network of other
assemblies or subassemblies and 3D solids (parts). This
creates another level of structure, in this case a directed,
acyclic graph of entity networks.

Suppose we want to copy a part. To do that, we (1) find all
entities that belong to the part, (2) copy each single entity,
and (3) fix up any pointers in the copied entities. Fig. 1
shows what happens to two entities E1 and E2 that have
pointers to each other. First, the entities are copied. In a
separate step, the connectivity is fixed. This must be a sepa-
rate step because when Elc is created (assuming that E1 is
copied first), we do not know yet where (at which address)
the copy E2c of E2Z will be.

Copying a network of entities in HP PE/SolidDesigner is a
recurring, nontrivial task. One has to be aware that we deal
with dynamic and inhomogeneous networks with entities in
them that we might never have seen before because they
have been added to the system by a third-party module.

For copying and other entity network services, HP PE/Solid-
Designer uses manager classes. The entity manager class is
an example of a manager class.

Copying an Entity Network

How does an entity manager implement the three steps in
copying a part? Step 1 (see Fig. 1) is to find all entities that
belong to the part or network. The entity manager only
knows that it deals with an inhomogeneous network of arbi-
trary entities (potentially of unknown type). To find all the
entities in a network, the entity manager needs some infor-
mation about the structure of the network. It collects this
information by asking each entity about its direct neighbors
in the structure. Suppose the entity manager starts with en-
tity E1, E1 will tell it, “My neighbor is E2." The entity man-
ager will then ask E2 the same question, and the answer will
be, “My neighbor is E1.” Then—oops, we had better stop
here or we will fall into an endless loop! So we see that the
entity manager also has to remember which entities in the
network it already has visited.

How can the entity manager ask an entity a question, and
how can the entity give an answer? The entity manager calls
a function (method) called scan. Each entity class in

HP PE/SolidDesigner provides such a function. We also
call this function a local scanner. The philosophy behind
this is that each entity has a local context, that is, it knows
its direct neighbors since it has pointers to them. The entity
manager uses this local knowledge of the entities to move
forward in a network of entities from one entity to the other,
at the same time making sure that each entity will be visited

Fig. 1. Steps in copying two entities that have pointers to each other.
(a) Before copying. (b) After copying. (¢) After pointer conversion,

October 1995 Hewlett-Packard Jonmal 53

© Copr. 1949-1998 Hewlett-Packard Co.

only once. This we call global scanning, and it is imple-
mented in the entity manager’s scan function.,

The restriction that each entity in the network is only visited
once becomes really important only if a certain operation
has to be executed on each entity. Therefore, the entity man-
ager’s scan function not only receives a start node (the entry
point into the network), but also a task function, which is
called for each node that is visited in the network.

With the knowledge gained from scanning the network, we
can move to step 2, copying each entity. The task function
that is passed as a parameter (o the entity manager’s scan
method solves this part of the problem by calling the copy
method of each entity. This is another method that every
entity in the system provides.

While in step 2, we have to make provisions for the next
step. We record in a table where each entity has been copied
to. For each entity, the task function creates an entry of the
form [old entity address, address of the copy] in this table.
Actually, this table is a hash table that can be accessed using
the old entity address as the key. Address translation tables
like this are used in many other places in HP PE/SolidDe-
signer, so DSM offers a special pointer dictionary class for
this purpose.

After step 2, we have a copy of each entity and we have built
an address franslation dictionary. Now we're ready for step
3. For each entity in our dictionary, or more precisely for
each entity recorded in the right side of a dictionary eniry,
we call another method, convert pointers. By calling the
convert pointers method, we request that the entity convert
all the pointers it has local knowledge of. In the case of the
entity Elc (the copy of E1), for example, this means, “I have
an old pointer to E2, and I need to know where the copy of
E2 (E2¢) is.” This question can be answered using the ad-
dress translation dictionary built in step 2 since it has an
entry of the form [E2, E2¢] in it. After we have called the
convert pointers method for each copied entity, we are fin-
ished. We have copied a network of entities without know-
ing any of these entities!

So far, so good. Now we know how to copy a network of
entifies in main memory. At some point, the entities will
have to wander from main memory to permanent storage.
Therefore, let us examine next how we store and load a net-
work of entities into and from a file.

Storing and Loading an Entity Network
Storing and loading, like copying, are operations on a net-
work of entities. Therefore, the entity manager provides
these functions. Storing a network of entities works like
this:
(1) Open a file.
(2) Find all entities that belong to the network.
(3) For each entity:

(a) write an entity header

(b) store the entity

(c) write an entity trailer.
(4) Close the file.

54 October 1995 Hewlett-Packard Joumnal

Besides opening and closing the file, storing essentially
means writing each entity in the network into a file. This
sounds simple enough. To solve the problem, we can even
use existing functionality. The entity manager’s scan method
will help us find all entities in a network, just as it did for
copying.

All we have to do is to provide a new task function which
executes step 3 for each entity. In 3a and 3¢ we write admin-
istrative information that we will need for loading. For 3b
we need a way to store an entity generically. Of course, we
want not only to store, but also to load entities. Therefore,
each entity has a store method and a load method. The store
method is an ordinary member function of the object. The
load method, however, is a static member function since it
creates the object out of the blue (well, actually, from the
information in the file) and then returns it,

When everything is stored, the file contains entities in a
form that is equivalent to the situation in step 2 in the entity
copy operation. All pointers between entities are invalid,
and they have to be fixed when the file is loaded again.

Loading a file is also a task for the entily manager, since it
deals with a whole network of entities. Loading works as
follows:
(1) Open the file.
(2) While not at the end of the file:

(a) read the entity header

(b) call the entity's load method (a new entity is

created in main memory)

(c) enter the entity information into a dictionary

(d) read the entity trailer.
(3) Close the file.
(4) For each entity in the dictionary, call the convert point-
ers method,

Reading the Entity Header. The entity header contains two
important data items: the entity type and a virtual address.
The entity manager uses the entity type to decide which of
the 600 or more different load functions is to be called.
When storing an entity, the object exists and its store
method can be called. When loading entities, a different ap-
proach must be taken. The entity manager maintains an en-
tity type table which can be added to dynamically. For each
entity, the table contains, among other things, a load
function.

Note that an entity type translates into a class in C++. All
objects of a class have the same type (for example, face).

The second data item in the header is the virtual entity ad-
dress. The virtual address is a unique entity 1D which is used
to represent pointers between entities in the file. When stor-
ing an entity, the entity does not know where a neighbor
entity that it points to will be placed when the file is loaded
again. Therefore, all pointers between entities in the file are
virtual pointers and have to be converted after loading the
file.

Calling the Load Method. The entity manager detects the type
of the entity from the entity header. It will then call the right

© Copr. 1949-1998 Hewlett-Packard Co.

Exception Handling and Development Support

of an

tion mechanism by throwing a pa

Code that wants to catch an exception inspects the module information object
returned by the e ion mechanism and acts accordingly, If it has already allo-
cated resourcas, they are cleaned up and returned. The exception can then be
ignored (and suppressed), or it can be escalated 1o the next code level

The listing below shows a code example for this. You may notice the similarities
to the exception handling mechanism introduced with C++ 3.0. Now that the
throw/catch mechanisi is finally available in many C++ compilers on various
platforms, we will be able to adopt it with anly a few changes in the code

int process_file(const char *const frame)
{

intwords=0;

FLE *file =D;

TRY
file = open_filelframe);
words = count_wardsifile);
close_fileffilel;
file<=0;
RECOVER
i {file) {
close_filelfile);
file=10;
1

[/ clean up resources

I/ handle specific exceptions
if {dsm_exception_code == F2_CORE:info_ptr}{
switch{F2_CORE:errno) {
case FZ_CORE:BREAK_RECEIVED
I/ We wan't escalate this “soft” exception
handie_break(),
break;
case F2_CORE:MEM_OVL: /f Dut of memory
// Free memory blocks allocated here, then escalate the problam.
free_my_memi);
ESCAPE(dsm_exception_code;
braak;
default
break;
}

/f User has cancelled processing

) “throw™ in C++ 3.0

load function, using the information in its type table. This
transfers the control to the entity’s load method which is
responsible for creating a new entity from the data in the
file. The new entity is returned to the entity manager. Creat-
ing an entity from a given type implementis a virtual
constructor function, which is missing as a language ele-
ment in C++.

Entering the New Entity into a Dictionary. Here we create an
entry in a dictionary that contains the virtual entity address

Pass up all other exceptions

ESCAPEdsm_exception_code)

Development Support
To find probt or
tions, invanants, and postcon
context dependent run-time debugging sys

tively, DSM s

1 WIICH Uses

These debug module objeets hold their current debug level which can be checked
using macros and set during run time. A debug medule is associated with a cer
tain code area. This allows fine-grained contro! for debug checks and messages
We think this control is impartant for the acceptance of a debug system; the pro-
grammer will ignore debug messages if there are too many, and won't find the
system useful if it doesn’t deliver enough detail where needed.

Macros are provided to reduce typing and #itdef constructs

bool comparelconst char *s1, const char *s2)
{

ME_MODULE_STOPWATCH("campare”, fool, J{ for run-time profiling

Jf trace program flow
if (DEBUG_LEVEL{foo) >= DEBUG_CALLS) {
fprintf{DEBUG_STREAM(), “compare called”);
1

DSM_ASSERT(s1 && s2); /I check precondition

I/ Now calculate the result

DSM_ASSERT(some_conditian): I/ check post-canditian
return TRUE;

}

DSM also defines spacial debug modules to switch on sophisticated debugging
tonls. There are tools to find memory leaks, to calculate checksums for objects
(allowing us to detect lllegal changes), and to create run-time profiles for the

code

In a software package as large as HP PE/SolidDesigner, the common UNIX profil-
ing tools were nat applicable. Therefore, we had to build our own set of versatile,
efficient and highly precise utilities. You can dafine a stopwatch for any function
that might need profiling, and you start and stop the stopwatch using the debug
module mechanism. The results can be analyzed, producing a hierarchical call
graph that shows what portion of the run time was spent in the individual func-
tions. We can also find out the amaunt of memory allocated for & function at run
time using these tools

in the file and the new real address in main memory. These
values will be used in pointer conversion.

Reading the Entity Trailer. When the entity is loaded, the entity
manager resumes control by reading the entity trailer. This
might appear to be an artificial overhead operation, but it
makes sense when we consider the dynamic nature of the
system. We mentioned earlier that new entity types can be
created and registered dynamically, for example by a third-
party module, When storing an entity network, these entities

Oetober 1995 Hewlet-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

are also stored. A user might try to load such a file into an
HP PE/SolidDesigner system that does not know about
these entities because the third-party module has not been
installed. When the entity manager loads such a file, it will
encounter entity headers of entity types for which a load
function has not been announced. Here's where the entity
trailer helps. The entity manager simply skips all following
data in the file until it finds the entity trailer. Thus, HP PE/
SolidDesigner ignores unknown entities in a file, but it can
still load the rest of the file.

Converting Pointers. After loading, all pointers between enti-
ties are virtual and have to be converted into real memory
addresses. For each entity in the dictionary. that is, for each
entity that has been loaded, its convert pointers method is
called. We have already discussed this method for copying
networks of entities. Each entity knows ifs pointers to other
entities, and it asks the entity manager, “Now [have a virtual
pointer (o entity E1, so please tell me where El is in main
memory.” For each pointer. the entity calls the entity manag-
er'’s convert pointer service function. This function is passed
a virtual entity address and returns the real memory address
of the loaded entity. The dictionary built while loading the
file contains the necessary information.

When all entities have been converted, we have written a
network of entities into a file and loaded it from there with-
out knowing any of the entities in detail. The analogy to the
copy operation does not come by chance, but is the resuli of
careful design. For copying or storing and loading entity
networks, DSM employs the same functionality wherever
possible. In theory, we could have built the copy operation
completely on a store and a subsequent load operation.

Entity Revisions

As the CAD system evolves, the need arises for changes in
entity layout, either by adding a new data field or by chang-
ing the meaning of an existing one. In object database terms,
this is known as the schema evolution problem. The load
[unction of a DSM entity can check the revision of the entity
in the file before actually loading the contents of the entity.
Depending on the entity revision, the load function will then
know what data fields are to be expected in the input. This
means that the load function is prepared for any revision of
the entity. The same holds true for the store function, which
can write different revisions of an entity depending on the
given storage revision.

This feature ensures upward compatibility of HP PE/
SolidDesigner files. All new versions automatically know
about the old object revisions, and no converters are neces-
sary. In database language, our object database can be inho-
mogeneous with respect to entity revisions. From a pure
DSM point of view, even downward compatibility is pos-
sible, since you can set the storage revision to a previous
level and then save a model, as long as the new revision did
not introduce new entities that are essential for the overall
consistency of the model in the new scheme.

The Cluster Manager
From the entity manager’s point of view, the current HP PE/

SolidDesigner data model is one coherent network of enti-
ties. Each and every entity will be reached when the entity

56

October 1985 Hewlett-Packard Jowrmnal

-

[

manager’s global scan method is used. The user’s point of
view, however, is different. The user works with well-
defined objects such as parts, workplanes, assemblies, work-
plane sets, layouts and so on, which can be arranged in a
hierarchy. An assembly is like a directory in a file system,
and a part is like a regular file. Assemblies can have sub-
assemblies jusi as directories can have subdirectories, and
parts and assemblies can be shared just as directories and
files can be linked in a file system.

The cluster manager closes this gap between the entity
world and the user’s perception. It creates facilities to define
a cluster of entities—for example, all entities that belong to
a part. There is no hard-coded knowledge about cluster
structures in the cluster manager, however. Instead, the enti-
ties in the network themselves define what the cluster is.
Because of this flexibility, the cluster manager can offer its
serviees for any kind of entity network.

The following algorithm collects all entities belonging to a
given cluster X:
(1) Start with a representative of the cluster and look for all
direct neighbor entities.
(2) Ask each enfity found during the scanning process to
which cluster it belongs.
(a) If the entity's answer is “I1 belong to cluster X.,”
continue the search with the entity’s neighbors.
(b) If the entity answers “I belong to cluster Y,” the
global search has arrived at a cluster boundary.
The entity is excluded and the search will not be
continued from this point.

The entity manager’s scan method helps with (1), and the
cluster manager provides a task function for (2). The task
function’s return value controls how the entity manager nav-
igates through the network of entities. It is the entity manag-
er’s job to find the neighbors for each entity and to ensure
that nodes are visited at most once.

There are implications for the topology of a cluster: it must
be possible to reach any entity in the cluster using a path
that is completely within the cluster. Figs. 2 and 3 show ex-
amples of correct and malformed clusters.

How can an entity tell to which cluster it belongs? Actually,
this is asking too much of a mere entity. What we can expect
from an entity, however, is that it can point us in the direc-
tion of another entity that is one step closer to the represen-
tative of the cluster. Each entity has a local masier method
for this purpose,

In most cases, the entity chooses one of its neighbors as its
local master, but this is not obligatory. By following the
trace laid out by the individual local master functions, we
will eventually find the main representative of the cluster
{which is special in that it points to itself when asked for its
local master). We call this special entity the cluster master.

Note that this is another case in which we build global
knowledge from local knowledge at the individual entities.
This is how we can define a cluster structure in a complex
network. The highlights of this method are:

The entity manager's global scanning services are used.
The entities need local context only.

Only one additional method, local master, is needed for
each entity.

© Copr. 1949-1998 Hewlett-Packard Co.

Pointer to an Entity

Fig. 2.

The approach is fully object-oriented, The objects them

selves determine the size, structure, an

ter. Completely new entities can be int

ter in the future, and

The cluster manager offers services for

manager's basic services. The entity 1

cluster) scope of each operation

vidual part or a workplane. The cluster

plane sets.

Fig. 4 shows two types of screwdrivers

shaft; only the blades are different. The

the part hierarchy. The notation “(P :2)

part and the backward arrow “<-" indit

7 clusters. It i!lijll!'!-.|r'!.’- these Dy

(shape ol the clus

wrated into the clus-

» 1 ¥ y ..
storing, loading, and

using the entity

rer 1s controlled

bv eluster manager task functions, which determine the

The cluster manager services can be used to handle an indi-

manager also sup-

ports hierarchical structures such as assemblies and work

T ||l'_\ share the
s parts browser shows
" indicates a shared

ates the active part

Fig. 3.

(which is also highlighted in green). The shaft part is con

tained in both assemblies. When using standard parts, we

will in fact by «

part. This we call sharing part:

ne seis

it have

» 4 referencs

185

many mmstances ol the same

e assemblies) in multiple assemblies. If we

n s case

to the same
ies. Work

lanes can also be shared by using them in different work-

In the base version, HP PE/SolidDesigner stores the model

data to files in the regular file system. To ensure that the

sharing is preserved when storing and loading models, the

following rules apply

Every object that can be shared in HP PE/SolidDesigner has

its own file in the file syst

Part Browser

Assembly

£

Parts | Assemblies
phillips (A)

ph-blade (P)
shaft (P :2)

screwdriver (A)

blade (P) <-
shaft (P :2)

Selection

Apply

Assy Close

© Copr. 1949-1998 Hewlett-Packard Co.

Help

in both assem

=1

« For a shared object, exactly one file exists, regardless of
how many owners the object has. This makes sure that
whenever the shared object changes, all instances will be
changed as well.

When storing an assembly, all objects below the assembly
have to be stored as well. This ensures that the data in the
file system is complete, so that another HP PE/Solid-
Designer system can pick it up immediately,

A file contains exactly those entities that correspond to one
cluster.

[]

Suppose we want to store the serewdriver assembly. We
expect that three files will be created: one for the assembly,
one for the blade, and one for the shaft. The cluster manager
will do this for us; we just tell it to store the screwdriver
assembly. It will find the parts and any subassemblies of the
assembly on its own. Since the cluster manager must work
with an arbitrary network, it needs another entity method,
sean child clusters, to build on, This method is implemented
by those (few) entities that take over the role of a cluster
master. The scan method of each entity would not help us
here since il just gives us access to all direct neighbors with-
out helping us determine a direction.

The cluster manager uses the scan child clusters method to
find the children of a cluster in a generic way. Applying the
method recursively, all objects within the assembly can be
found. It is possible that a child will be reached more than
once (for instance, a standard screw within a motor assem-
bly). The cluster manager keeps track of the clusters that
have already been visited to prevent a cluster from being
stored twice,

Given these methods, we can describe how an assembly
(actually, any kind of cluster structure) is stored:

Start with the given cluster and find all children recursively,
For each child cluster, use the entity manager’s store
method to store the entities of the cluster into a separate
file. The entity manager is controlled by a cluster manager
task function that makes sure that only those entities be-
longing to the cluster are stored. A special store pointer
funection is responsible for storing pointers to entities.

The store pointer function deserves a discussion of its own.
When storing clusters into several separate files, we will
encounter pointers that point from one cluster (file) to an-
other. In the case of the screwdriver assembly, we will have
al least two poinfers to the external clusters representing
the blade and the shaft. Since the entity manager’s store
function by default stores all entities in the network inio one
file, the problem doesn't arise there. By providing a special
store pointer function, the cluster manager extends the en-
tity manager so that pointers ave classified as external
(pointing to another file) or internal when they are stored.

When loading an assembly, the cluster managers goes
through the following procedure:

(1) Open the file.

(2) Use the entity manager’s load method (with the special
load pointers function) to load all entities in the file.

(3) Close the file.

(4) While there are external references to other clusters
left, open the corresponding file and proceed with (2).

58 October 1995 Hewlert-Packard Jowrmnal

An external reference is a pointer 1o an entity in a different
cluster. To make sure that external pointers are unambigu-
ous, we developed a scheme for unique entity [Ds. An entity
is assigned such an 1D when it is created, and it keeps it as
long as it exists, External pointers refer to these unique IDs,

The algorithm above is analogous to linking relocatable ob-

Ject files in the HP-UX* operating system. When loading the

file into HP PE/SolidDesigner, it is the special load pointer
method’s job to detect external references. In step (4). the
cluster manager behaves quite similarly to an object file
linker. Where the linker needs one or more libraries, which
it searches for objects to satistfy open references, the cluster
manager uses the UNIX™ file system or a database as its
library.

The State Manager

The state manager introduces a notion of transaction han-
dling into HP PE/SolidDesigner. Model changes can be
grouped together to form a single fOransaction. In database
technology, a transaction has the following properties:
Atomicity. The transaction is atomic. It must either be
closed completely or undone.

Consistency. Transactions transform a given consistent
state of the model into a new state which again must be
consistent in itsell.

Isolation. Transactions do not influence each other.
Durabilify. The changes made by a transaction cannot be
cancelled by the system except by special undo transac-
tions.

Transactions in HP PE/SolidDesigner have these properties.
They are not only used for ensuring data integrity, however.
Their main purposes in HP PE/SolidDesigner are to notify
kernel applications about changes in the model at defined
intervals (when a transaction is completed) and to allow
interactive undo operations.

The general model of an HP PE/SolidDesigner transaction is
shown in Fig. 5. A transaction T12 transforms a given con-
sistent model state S1 into a new consistent state 82. A roll-
back to 51 is possible. As Fig. 5 shows, it is also possible to
roll forward, that is, move towards the modeling “future”
after an undo operation.

Bulletin Board

DSM infroduces a special mechanism to record changes to
the model, which is the bulletin board, Information about all
changes within a transaction are collected in one bulletin

Transaction Transaction
Ti2 T23
Rollback (Undo}
Roll Farward

Fig. 5. HP PE/SolidDesigner transaction model, A transaction
transforms one state into another. A transaction can be rolled

back or rolled forward.

© Copr. 1949-1998 Hewlett-Packard Co.

board. In other words, the bulletin board describes the
transaction completely, so that we sometimes use “bulletin
board” and “transaction” interchangeably.

A bulletin board is a collection of individual bulletins. A
bulletin describes a change of state of a model entity, that is,
it contains delta information. At the beginning of a transac-
tion, the bulletin board is empty. Each change to an entity
creates a bulletin describing the change, so at the end of the
transaction, the bulletin board contains all of the changes
that happened during the transaction.

When a transaction completes, a special event, the fransac-
tion end event, is triggered. Update handlers subscribe 1o
this event. When they are called, they receive as a parameter
a pointer to the bulletin board created in the transaction.
They can then inspect the contents of the bulletin board to
look for changes that they have to act upon. The 3D graph-
ics module, for example, which, slightly simplifying things,
is just an update handler, checks for the creation or changes
of 3D bodies. It then creates a faceted graphics model from
the change information that is suitable for sending to a
graphics library. Since it only deals with the delta informa-
tion, the 3D graphics handler will in general complete its job
more quickly than if it regenerated the whole graphics
model after each transaction.

An update handler may also choose to ignore the bulletin
board information. It will then use the fransaction end event
as a regular opportunity for cleanup tasks or to rescan the
model. Most update handlers, however, use the information
in the bulletin board to optimize their work.

Changes

The DSM's state manager module uses basic entity services
to create bulletin board information. To provide systemwide
transaction handling and the undo mechanism, each entity
has to follow a few simple conventions. The most important
of these conventions is that before any kind of change to
itself, an entity has to announce the change, It does so by
calling a special log change method, which is provided by
the entity base classes.

The log change method does a lot of things. First, it creates
a bulletin in the bulletin board. The log change method is
passed a change type from the caller which it also records in
the bulletin. Using the change type, the changes are classi-
fied, and update handlers can ignore changes of types they
are not interested in. They can also ignore changes to cer-
tain entity types. Using these two restriction types, update
handlers can narrow down the search to a few bulletins
even if the transaction is very large.

After building the bulletin, the state manager uses the enti-
ty's generic copy method to create a backup copy of the
entity. Note that the entity is still in the original state since
the log change method has to be called before any change
takes place. (To ensure that the convention is followed, we
have built extensive debugging tools that detect changes
that are not announced properly.)

Pointers to both the entity in its current state and the
backup copy of the entity are maintained in the bulletin
board. This gives the update handlers a chance to compare
the data in an entity before and afier the change, making it

possible for an update handler to trigger on changes to indi-
vidual data items in the entity.

So far, we have only discussed changes to an entity. The
bulletin board also records creation and deletion informa-
tion for entities. The entity base classes, together with the
state manager, take care of this,

In an undo operation, all changes to entities are reversed.
An entity that has been reported as deleted will be recre-
ated, and new entities will be marked as deleted. (They will
continue to exist in the svstem so that it is possible to roll
forward again.) If an entity has changes during a transac-
tion, its backup copy will be used to restore the original
state. Again, we use the generic copy function in the entity
base classes for this purpose.

Relation to Action Routines

The action routines (see article, page 14) define when a
transaction starts and ends. When the user selects an opera-
tion in the user interface, an action routine will be triggered
that guides the user through the selection and specification
process. A transaction is started at the beginning of such an
action routine. After each significant model change, the ac-
tion routine completes the transaction, thus triggering the
transaction end event and giving update handlers a chance
to react to the changes.

When an action routine terminates without error, all fransac-
tions generated within the action routine are usually merged
into one large transaction, Thus, the user can undo the ef-
fect of the action routine in one step. If an error occurs
within an action routine, all changes in the action routine
will be undone using the generic rollback mechanism and
the information in the bulletin boards.

Some action routines also implement minisessions. After
collecting all the options and values, the operation itself can
be triggered and its effect previewed. If the effect is not
what the user thought it should be, it can be undone within
the action routine, The minisession will then use the roll-
back mechanism internally. The user changes parameters,
triggers the operation again, and finally accepts the outcome
when it fits the expectations, An example of this in HP PE/
SolidDesigner is the blend action routine.

In general, however, operations can be undone using the
interactive undo mechanism. At any point, the user can
choose to roll back to a previous state. For this purpose,

HP PE/SolidDesigner keeps the last n states (or bulletin
boards) in memory where n is a user-configurable value. The
user can also move forward again along the line of states
that was created in the modeling session.

Fig. 6 shows HP PE/SolidDesigner’s user interface for undo
operations,

As discussed earlier, HP PE/SolidDesigner’s transaction
mechanism also offers an interface to external applications,
that is, the transaction end event. Third-party applications
subscribe to the event, and from then on, they ean monitor
all changes to the model. One example of an “external” ap-
plication is the 3D graphics module. Parts browsers, which
also have to react to changes of the model, are another ex-
ample. Finite-element generators can also hook into the

Oetober 1995 Hewlett-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

i

+ Backward
Forward

Next B Expand

History

Max Back 7

Max Forward |1
Limit

= Steps 30

OK

_ Cancel = Help

Fig. 6. User interface for undo operations

transaction end event to keep track of the model. Another
possible external application is one that provides the cur-
rent volume properties of given hodies. (HP PE/SolidDe-
signer provides volume caleulations, but they have to be
triggered explicitly from the user interface.) The bulletin
board is the door-opener for external applications, making it
one of the most important interfaces within HP PE/Solid-
Designer.

Conclusion

This article can only give a very high-level overview of what
DSM is all about. Much of what really makes DSM usable,
effective, and efficient is beyond the scope of this discus-
sion. We are confident that the data structure manager is a

60

October 1895 Hewlett-Packard Journal

strong and robust building block for any kind of application
that has to deal with complex data networks. We have found
that DSM deals with a lot of problems that are typical for
object databases:

Data abstraction (through a set of base classes)

* Object persistence (storing and loading objects)
» Object schema evolution (changes in object layouts)
» Object clustering (bundling low-level objects to user-level

objects such as parts and assemblies)
Exchange of clustered objects, fully maintaining connectiv-
ity through unique object 1Ds)

* Transaction concept with undo.

By solving all of these problems. DSM enables HP PE/
SolidDesigner to support typical modeling operations on
user-level objects (parts, workplanes, ete.). In other words,
it makes HP PE/SolidDesigner speak in terms that the user
can easily inderstand. The support for object exchange is
the basis for modeling workflow solutions. Apart from this,
the data structure manager can serve as a general frame-
work for any kind of object-oriented application.

Acknowledgments

The data structure manager was initially designed and devel-
oped by Peter Ernst. He is still our sparring partner for dis-
cussing new ideas and the general direction of development
for DSM.

JOpen Company UNIX 93

9% and 10.0 for HP 8000 Senes 700 and BOO compute

praducts

tragemark of

K/Opan™ is & registered trademark and the X device is 8 Jnen Company

Limited in the UK and other countrigs

© Copr. 1949-1998 Hewlett-Packard Co.

Freeform Surface Modeling

by Michael Metzger and Sabine Eismann

HP PE/SolidDesigner’s kernel functionality consists of sev
eral modules that communicate through well-defined inter
faces, ‘-ilg‘]usl'l{‘|| |l_'\ |<|'_',I\";|| class definitions and hierarchies
In Fig. 1, for example, the geometric data interface for the
topology engine (the Boolean engine, see article, page 74)
consists of three basic elements (points, curves, and su

faces) and the corresponding utility funetions like intersec-

=) : :] Fig. 2. HI
tions. This technique makes it easy to add new functionality

For example, introducing new geometry data types is just a
matter of delivering all member functions of the geometric

interface for the new geomefry type

The implementation of such a concept looks simple, but
reality has shown that it takes a lot of effort to keep the in
terface clean and to avoid copying and converting data. This
is especially true for data having connections on both sides
of the interface, such as pieces of a curve or curves on a

surface

The Geometry Engine

In designing a completely new implementation of the geo
metric kernel for a solid modeler one has a chance to avoid
the problems of older implementations. What are the real
problems ol existing implementations? There are two funda

mental approaches: NURBS libraries and hybrid methods,

NURBS libraries have only one data type: NURBS, or non

uniform rational B-splines. This data type can represent all
analytics (like planes, eylinders, spheres, etc.) exactly. This
means that complex freeform surfaces as well as simple
analyties are represented with one single dafa structure. The

geometrical problems only have to be solved [or this single

type. This sounds promising, but it turns out that the algo

rithmie stability does not satisfy the requirements of HP

Geometric Interface

Fig. 1. Th [P PE/SolidDesigner topolog il geomel i1 (h)

Fig. 3. (a) A lolted surface. (b)) Lofting originated in ship design

Oetober 195 Hewlet-Packard Joumal 6l

© Copr. 1949-1998 Hewlett-Packard Co.

Lofting Direction

Lofting Direction

cifving the tangent

ifluences the 1 surtace,
PE/SolidDesigner. In addition, the performance is poor, es-
pecially when analytic surfaces (represented as NURBS) are

intersected.

Hybrid methods are used in the HP PE/ME30 kernel (Romu-
lus). All possible geometry data types are available, and
clever special case handling results in high performance.
The disadvantage is that the introduction of a new data type
is an enormous effort. In addition, the Romulus kernel
doesn’t distinguish cleanly enough between geometry and
topology, so building new functionality on this kernel can be
very cumbersome and error-prone.

In HP PE/SolidDesigner we tried to combine the advantages
of both approaches. The advantage of a NURBS library (one
data type) is realized in the class hierarchy of HP PE/Solid-

Designer: the geometric interface knows only points, curves,

and surfaces. For the internal geometry structure the hybrid
method was chosen. Data types include analytic types
(plane, sphere, cylinder, cone, torus), semianalytic types
(parallel swept B-spline, spun B-spline), B-splines, and
NURBS as an extension of B-splines.

62 October 1995 Hewlett-Packard Journal

Fig. 5. Multiply connected curves

As shown in Fig. 2, HP PE/SolidDesigner’s geometry engine
consists of three parts: the library encapsulator, the analytic
geometry package (AGP), and the B-spline/NURBS library
(SISL).

The library encapsulator delivers many convenience func-
tions for the geometric interface and ensures its integrity. All
functions dealing with geometry have to pass through the
geometric interface. The only exception is a small part of
the blending algorithm, which for performance reasons by-
passes the library encapsulator and calls SISL directly.

The AGP was developed by DCUBED Ltd. of Cambridge,
England and SISL was developed by the Senter for Industrie-
forskning of Oslo, Norway.

Freeform Surface Modeling

There are two methods for creating freeform surfaces in HP
PE/SolidDesigner: blending and lofting. The remainder of
this article describes the basics of lofting.

Lofting means the (exact) interpolation of a set of points or
curves by a smooth curve or surface. Fig. 3 shows examples
of lofting. Lofting originated in ship design and was used a
long time before computers were invented.

The mathematical solution of this problem leads to the defi-
nition of splines. There are many spline types, each having
its specific advantages and disadvantages. The most com
mon spline types are Bézier splines, B-splines, and NURBS,

For CAD applications the most general splines are NURBS,
since they can represent analytics exactly. This can be im-
portant when it comes to intersections of splines and ana
Iytic surfaces. B-splines are NURBS with all weights equal to
1. They are more stable and faster in intersections but can
not represent analytics (except the plane) exactly. B-splines
are made up of a sequence of Bézier pieces, connected ac-
cording to their continuity at the transition points, We won't
go into detail concerning spline mathematics here since
there is abundant literature on this topic.2

In addition to the pure interpolation of points and curves,
lofting allows the definition of tangent profiles at each 3D

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 6. [

. A tangent profl

cCurvi f vector field along the

given curve, as shown in Fig. 4. Both the directions and the

lengths of the tangents influence the shape of the surface

[n practical applications the user normally wants to interpo-

only a series of single curves but also a series of
multiply connected curves, as shown in Fig. 5. For this pur

pose HP PE/SolidDesigner connects the incoming profiles to

1S not req

B-spline curve. It ired that a profile be
The €0

arer « |-.|_I'.--.||||!:|| 10 edres in the

smootl (closed

it only needs to be CY continuous

locations in the _|:r'nl:.3|-k

complete model

In addition to tangent profiles, the parameterization of the
input curves is another important factor determining the
shape of the lofted surface, In HP PE/SolidDesigner, para
meterization can be influenced by splitting the input curves
at arbitrary points (match points) and defining different

Fig. 6)

curve segment, HP PE/SolidDesigner tries to create a para

length ratios in the subsequent profiles Vithin a

meterization according 1o the chord |f'||l_[||'. of the curve

(chordal parameterization).

Fig. 7. Cl

vxd

4 Ve X VX
Edge -
. L
3 - -
el ed L
i £
vx1 a xZ
i 8
111p¢ﬂ|.4\
1 o N v is attache g
I < [i1 f1ons ar (el Sé)
A es 1) po 1 n be vi l as tl 1
if

An edge is a bounded portion of a space curve bounds

are given ||_‘\' two vertices

A loop rey

resents a connected portion of the boundary of a

face and consists of a sequence of edgoes

A face i1s a "a geometric surface in space.

The boundary is represented by one or more loops of edges

Given a B-spline surface obtained from the spline lib
using the profile intery n method, topology has to be

built on this surface to get a loft body, As a boundary for the
face, a loop consisting of four edges is created (Fig. 9). The
edges lie on the first and last interpolation curves (el and
e3) and on the left and right boundaries of the B-spline sui
face (e2 and e4)

The interpolation profiles don't have to consist of only one
curve per profile. For more complex shapes different curves
can be combined in a profile [t is necessary to generate a
face for each matching set of curves. One way to do this is
to use lofting to create a B-spline surface for each matching
set and then build the appropriate faces on these surfaces
Because there is no exact specification of how the left and
right boundaries of these B-spline surfaces should look

there may be gaps between the faces (Fig, 10a). This would

Interpolation Curves

© Copr. 1949-1998 Hewlett-Packard Co.

lead to an illegal body, since all ne |:_':'|ill-||5I_'.. faces in a body

to share a common edge. When there are g;

Top Face

the faces no common edge can be found and it isn’t possible

to generate a valid body.

To eliminate gaps, the curves in one profile are joined tem
porarily and only one loft surface is generated. This B-spline
surface then is split into appropriate parts at the start and
end points of the interpolation curves. The faces are then
built on the split surfaces. This ensures that there is no gap

between the faces.

To match the correct curves or the correct portions of the
curves it is necessary that all curves in a matching set have
the same parameter interval. This is ensured by reparame- . Bottom Face
terizing all curves belonging to the same matching set to the
same (arbitrary) parameter interval. After this all curves of a
profile are joined and the joined curves then automatically
have the same parameter interval.

A valid solid body must describe a closed volume. For this

reason only closed interpolation profiles are used. From

these the lofting facility will generate faces forming a tube, ends a planar face is added. Theoretically these top and bot
which still has two open ends (Fig. 11). For each of the two tom faces can lie on any type of surface as long as the first
and last interpolation profiles lie on the respective surfaces.

Lofting in HP PE/SolidDesigner

The spline library allows arbitrary 3D curves in space as
interpolation profiles for lofting. To simplify the input pro-
cess for the user, only planar profiles are allowed in the cur-
rent release. These planar profiles can easily be generated in
a workplane using 2D creation methods. All workplanes
containing the profiles are gathered in a workplane sel. The
user specifies which set of curves should match in lofting.
Different matching specifications will produce different lofi
results (Fig. 12).

A

\‘ Because the spline library only accepts B-spline curves as
Gap Between Faces interpolation curves the analytic curves in the profiles have

to be approximated by B-splines. Another reason for this is
the above-mentioned joining of curves in a profile to obtain
only one B-spline surface.

Common Edge

Matching Set Matching Set

64

© Copr. 1949-1998 Hewlett-Packard Co.

Tangent at Vertex Constant Direction Constant Angle

mterval 1or correct ma

be used to split the B-spline surfac he bound-

s Of the Syt surface all lie on -.—.-al,u.'.f.l'u.laur tric curves of

the loft surface. An isoparametric curve Is a curve on a sur-

face that has a constant u or v parameter value. In our case
ng aconstant-airectondor the entre proi the loft direction is the v-parameter direction of the surface.
This means that the left and right boundary curves of the

faces are v-isoparametric curves. Splitting the surface along

(&)

Cut through Top Face

Change of Convexity
Point Needed for
Blend

() (d}

Owtober 1995 Hewlett-Packard Journal G5

© Copr. 1949-1998 Hewlett-Packard Co.

the v-parameter values of the start points and endpoints of
the it |'Iu:|;:fic|;| curves will result in the desired subsur
faces. The edges created on these v-isoparametric curves

are always cominon to two neighboring faces.

Analytic Surface Type Detection

From a mathematical point of view the interpolation task
that constitutes lofting is finished when the B-spline surface
is ereated. From a CAD user’s point of view the work is only
partially finished. The reason is that it very often happens
that a lofted body contains B-spline surfaces that represent
analytical surfaces, mostly planes and cylinders. A CAD user
wants to recognize these analytics in later processes for
easier control in manufacturing. Data size, intersection per
formance, and stability are much better when dealing with
analytics rather than approximated geometry. For these rea
sons a clever analytic detection algorithm is implemented in
HP PE/SolidDesigner which replaces the B-spline strips by
analytics after the B-spline creation and before the final
topology is built.

The algorithm is based on the geometry of the input profiles.
If curves of the same type are matched the basic definitions
of these curves are compared (for example, the center of a
cirele, its radius, its starting point, etc.). Then, starting from
the first two profiles, a corresponding analytic surface is
built. In the next steps the other curves along the profiles (in
the loft direction) are examined to see whether they fit this
surface. If they do, the corresponding B-spline strip is ex-
changed and the neighboring topological information is
adopted. This is done for each curve in the profile loop,
Since the algorithm is based on the profiles and not on the
lofted B-spline surface it is extremely fast and takes less
than 1% of the time required for the lofting operation.

Special Cases

Lofting is a powerful tool for ereating freeform surfaces in
HP PE/SolidDesigner. On the other hand, there is a danger
of creating surfaces that are not manufacturable or that

have properties that can cause problems in later operations.
For this reason, [P PE/SolidDesigner applies extra checks
to ensure that the result of lofting is a clean body. These

66 October 1995 Hewlett-P;

Fig. 16. Spring created using the warkplane inclined command

checks take extra time, normally more than the creation of
the surface itself. HP PE/SolidDesigner therefore offers a
button on the user interface to switch off these checks. It
makes sense to switch the tests off in the surface design
phase. For the final acceptance, however, it is recommended
that the tests be run, since a corrupt model cannot be re-

paired later.

In the following examples we show the various properties a
solid model shouldn't have. HP PE/SolidDesigner checks all
of them and rejects the lofting operation if at least one of
them appears. In the preview mode, the user can examine
the object to find the root cause for the problem. The forbid-
den properties are:

A self-intersecting body (Fig. 14a)

Vanishing normals or derivatives (Fig. 14b)

Intersection with the top or bottom face (Fig. 14¢)

Change of convexity at an edge (Fig. 14d), This test is al-
ways done and ensures that the specific edge can be
blended later. HP PE/SolidDesigner will insert a topological
vertex at the place where the convexily changes.

Practical Experience with Lofting

The most critical point in using lofting is the proper defini-
tion of the profiles and the workplanes. It turns out that in
many real-life applications the profiles do not vary at all
(e.g., helical constructions) or only a little. HHP PE/SolidDe-
signer supports these surface classes by offering special

Bad Tangent Condition

© Copr. 1949-1998 Hewlett-Packard Co.

. = 10 [
Suriace y many conditions jare

tangeney conditions) are specified on too short a distance

Viewing from
this Direction

Viewing from
this Direction
with Zoom

(b}

© Copr. 1949-1998 Hewlett-Packard Co.

For this reason, one should never try to approximate other
geometry using lofting in combination with a Boolean opera-
tion. It is much safer to create the loft tool body a little big-
ger to get clear intersections later. The example of Fig. 18
illustrates this. The task is to create a helical shape con-
nected to a eylindrical shaft. The “workplane inclined” com-
mand is used 1o position the profiles for the loft. If the base
profile touches the eylinder the unification of the lofted body
and the eylinder will result in a nonmanufacturable part since
the freeform helix oscillates around the eylinder surface

(Fig. 18a).

However, if the profile cuts in a little the oscillating surface
will lie completely inside the eylinder and the unification of
both bodies will yield the expected result, as shown in

Fig. 18b.

Summary

Lofting in HP PE/SolidDesigner is a powerful tool that en-
ables the CAD user to create various freeform shapes within
a solid model. The main task being solved by the user is the
optimal selection of the profiles and clever positioning of
the workplanes in the 3D space. With a little experience to

68 October 1995 Hewlett-Packard Journal

gain familiarity with the behavior of the surface interpola-
tion algorithms, many design tasks can be done in a short
time. However, some tasks are cumbersome or nearly im-
possible using lofting, but are easily done using other HP
PE/SolidDesigner capabilities. In electromechanical and
mechanical engineering these tasks include mainly skinning,
capping, and sweeping. Sweeping (Fig. 19a) is related to
lofting since it means creating a surface by sweeping a pro-
file along an arbitrary 3D curve. Skinning (Fig. 19b) is the
task of defining a smooth surface through a net of 3D
curves, Capping (Fig. 19¢) means the replacement of a
closed loop on a body by some smooth, tangentially con-
nected surface; it is a subelass of skinning. Although these
functionalities are the classical domain of surface modeling
systems the open architecture of HP PE/SolidDesigner
readily accommodates their implementation.

References

1. 1. G. Farin, Curves and Surfaces for Compuler-Aided Geomelvie
Design, Academic Press, 1988,

2. C.deBoor, A Practical Guide to Splines, Applied Mathematical
Seiences no. 27, Springer, 1978.

© Copr. 1949-1998 Hewlett-Packard Co.

Common Lisp as an Embedded
Extension Language

by Jens Kilian and Heinz-Peter Arndt

HP’s PE'ME10 and PE/ME30 CAD systems contain an exten-
sion language based on the macro expansion paradigm. The
user’s input (commands and data) is separated into single

tokens, each of which denotes a command, function, vari-

able, macro name, number, string, operator, or other syntac-
tic element. Commands, functions, and arithmetical expres-
sions are evaluated by the language interpreter. Each macro

name is associated with a macro definition, which is another

token sequence (either predefined by the system or defined
by the user). When the language interpreter encounters a
macro name, it substitutes the corresponding token se-
quence (this process is called erpanding the macro) and
continues with the first token of the expansion.

Macro expansion languages are easy to implement and have
been used in many applications where one would hardly
expect to find an embedded language, For example, the TEX
typesetting system contains a macro interpreter,

The HP PE/MEL0 and PE/ME30 macro language includes
powerful control constructs (such as IFTHEN/ELSE and LOOP/
EXIT_IF/END_LOOP), local variables, and a mechanism for pass-
ing parameters 1o a macro when it is being expanded. These
constructs make it possible to solve general programming
problems. Because the HP PE/MELD and PE/MES0 macro
language is interpreted, programs can be developed in an
interactive fashion and modifications can immediately be
tried out. However, the resulting program is slower than a
program written in a compiled language like C. TP PE/ME1L0
and PE/ME30 macros can be compiled to an intermediate
form which executes faster than the pure interpreted ver-
sion, but which is still slower than an equivalent C program.

One disadvantage of the HP PE/MEI0 and PE/ME30 macro
language is that it is nonstandard. No other application uses
the same language, and programs written in it have to be
ported when the user switches to another CAD system.

Common Lisp

Common Lisp was chosen as an extension language for HP
PE/SolidDesigner because it is nonproprietary and widely
nsed.

Surprising as it may be, Lisp is the second oldest high-level
programming language still in common use. The only older
one is FORTRAN. Lisp is to researchers in artificial intelli-
gence what FORTRAN is to scientists and engineers.

Lisp was invented by John MeCarthy in 1956 during the

Dartmouth Summer Research Project on Artificial Intelli-
gence. The first commonly used dialect was Lisp 1.5, but

~ Cammnn
U

unlike FORTRAN (or any other imperative language) Lisp is
so easy to modify and extend that over time it acquired
countless different dialects. For a long time, most Lisp sys-
tems belonged to one of two major families, Interlisp and
MacLisp, but still differed in details. In 1951, discussions
about a common Lisp language were begun. The goal was to
define a core language to be used as a base for future Lisp
systems. In 1984, the release of Common Lisp: The Language!
provided a first reference for the new language. An ANSI
Technical Committee (X3J13) began to work on a formal
standardization in 1985 and delivered a draft standard for
Common Lisp in April 1892, This draft standard includes
object-oriented programming features (the Common Lisp
Object System, or CLOS). For a more detailed account on
the evolution of Lisp, see McCarthy” and Steele and
Gabriel.?

HCL, the implementation of Common Lisp used in HP PE/
SolidDesigner, is derived from Austin Kyoto Common Lisp
(itself descended from Kyoto Common Lisp). It corresponds
to the version of the language described in reference 1, but
already incorporates some of the extensions from reference
4 and the draflt standard.

Applications of Extension Languages

Adding extension languages to large application programs
has become a standard practice. It provides many advan-
tages, some of which may be not as obvious as others. For
the normal user of a system, an embedded programming
language makes it possible to automate repetitive or tedious
tasks. An inexperienced user can set it up as a simple re-
cord/playback mechanism, while
create additional funetionality. If the extension language has
ties to the application’s user interface, user-defined function-

u

power users” can use it to

ality can be integrated as if it were part of the original
application.

If the application provides an API for adding extensions on a
lower level, the extension language can itself be extended.
This enables makers of value-added software to integrate
their products seamlessly into the main application. As an
example, the HP PE/SheetAdvisor application has been im-
plemented within HP PE/ME30, offering a user interface
consistent with the rest of the program.

As a final step, portions of the application can themselves be
implemented in the embedded language. An example would
be the popular GNU Emacs text editor, a large part of which
is written in its embedded Lisp dialect.

Oetober 1905 Hewlett-Packard Journal 69

© Copr. 1949-1998 Hewlett-Packard Co.

A large part of HP PE/SolidDesigner, too, is written in its
own extension language—about 30 percent at the time of
writing. Most of this 30 percent is in HP PE/SolidDesigner’s
user interface.

Lisp in HP PE/SolidDesigner

Fig. 1 shows the major components of HP PE/SolidDesigner.
The Lisp subsystem is at the very core, together with the
Frame (operating system interface) and DSM (data structure
manager, see article, page 51) modules. All other compo-
nents including Frame and DSM are embedded into the Lisp
subsystem. This indicates that each component provides an
interface through which its gperations can be accessed by
Lisp programs.

The introduction of new functionality into HP PE/SolidDe-
signer is usually done in the following steps:

Implement new data structures and operations in C++
Add Lisp primitives (C++ functions callable from Lisp) for
accessing the new operations

Add action routines to implement new user-visible com-
mands, using the Lisp interface to carry out the actual
operations

Add menus, dialog boxes, or other graphical user interface
objects to access the new commands.

As long as the Lisp interface—the primitive functions—is
agreed to in advance, this process can be parallelized. A
user interface specialist can work on the action routines and
menus, calling dummy versions of the interface functions.

The article on page 14 describes, from a user interface de-
veloper's perspective, how action routines are written and
how menus and dialogs are created. The mechanisms used
there are not part of the Common Lisp standard but are ex-
tensions provided by the HCL dialect.

User Interface

Advanced
Blending

Advanced Local
Operations

Fig. 1. HP PE/SolidDesigner system architecture. HOL is the
Common Lisp subsystem. All components including Frame
(operating system interface) and DSM (data structure man-
ager) have interfaces to Lisp, K2 is the solid modeling kernel.
PP is the planar profile generator.

70

Oetober 15995 Hewlett-Packard Jourmal

Action Routines

Action routines implement the commands that a user types
or issues via user interface elements to HP PE/SolidDe-
signer. Commands are identified by their names, which are
Lisp symbols evaluated in a special manner (similar to the
SYMBOL-MACROLET facility in the Common Lisp Object Sys-
tem). Each action routine is actually an interpreter for a
small language, similar in syntax to the command language
used in HP PE/ME10 and PE/ME30. Like HP PE/ME10 and
PE/ME30 commands, action routines can be described by
their syntax diagrams. Fig. 2 contains the syntax diagram for
a simplified version of HP PE/SolidDesigner’s exit com-
mand. Below the syntax diagram is a state transition graph
which shows how the command will be processed.

The definition of an action routine corresponds closely to its
syntax diagram. The defining Lisp expression, when evalu-
ated. generates a normal Lisp function that will fraverse the
transition graph of the state machine when the action rou-
tine is run. For example, the following is an action routine
corresponding to the syntax diagram of Fig. 2:

(defaction simple_exit

(flag) ;local variable

(; state descriptions

(start nil
“Terminate PE/SolidDesigner?”
nil
(:yes (setqflagt) answer-yes end)
(:no (setqflag nil) answer-no end)

{otherwise (display_error "Enter either :YES or :N0O.”) nil start)}

(end (da-it)
nil
nil})

(; local functions

{do-it ()
(when flag
(quit}}}))

As can be seen in this example, an action routine can have
local variables and functions. Local variables serve to carry
information from state to state. Local functions can reduce
the amount of code present in the state descriptions, en-
hancing readability.

When HCL translates this action routine definition, it pro-
duces a Lisp function which, when run, traverses the state
transition graph shown in Fig. 2b, If a state description con-
tains a prompt siring, as in the start state in the example, the
translator automatically adds code for issuing the prompt
and reading user input. Effectively, the translator converts
the simple syntax diagram into the more detailed form.

For the example action routine, the translator produces a
Lisp function definition much like the following:

;» Declarations of some external functions, for more efficient calling

{proclaim ‘(function get-parameter (t1) 1))

{proclaim ‘(function match-otherwise (t) t))

{prociaim '(function trigger-action-state-transition-event (t &optional t)
t)

© Copr. 1949-1998 Hewlett-Packard Co.

sumple_exit 4 YES »

» NO >
lal
issue prompt
5 »
A
other input
ISSUE BrTor message
(b)

Fig. 2. (a) Simplified syntax of the exit command. (b) State
transition diagram for the exit command.

. Transfarmed action routine
(detun simple_exit (&rest argument-list &aux input)

(let (flag) .+ local variable

(labels ({do-it{) ;; local function
(when flag
{quit))))

{block nil
(tagbody

. label for state "start”
1

. prompting in state “start”
{setg input (get-parameter argument-list “Terminate HP PE/Solid
Designer?”))

;; pattern matching in state “start”
(cond (lequal input yes)

{setg flagt) ; action taken
(trigger-action-state-transition-event ‘answer-yes)

{go 0)) 5 transition to "end” state

{lequal input :no)

(setq flag nil) ;; action taken
{trigger-action-state-transition-event “answer-no)

{ga 0)) ; transition to "end” state

((match-otherwise input)
(display_error “Enter either :YES or :NO.")

{go 1))} transition to “start” state

* |label for state "end”
0

; initial action for state "end”
{do-it)

; exit from action routine
{return)))))

Transitions in the state machine are transformed into goto
statements within the function’s body. The conditional con-
struet cond represents decisions, like the three-way branch
in state start. Before each state transition, the code can trig-
ger an external event to enable graphical feedback in menus
or dialogs.

L]

L]

L

The actual translation is somewhat more complicated be-
cause errors and other exceptional events must be taken
into account. The translator also adds code to support de-
bugging and profiling of an action routine. This code is
stripped out when building a production version of HP PE/
SolidDesigner.

Compiling Lisp Programs

It has often been said that Lisp is inherently slow and cannot
be applied 1o application programming (one common joke is
that the language’s name is an acronym for “Large and In-
credibly Slow Programs”). This is not true. Even very early
versions of Lisp had compilers.? Lisp systems have even
beaten FORTRAN running on the same machine in terms of
numerical performance.

In HCL, the Lisp compiler takes a Common Lisp program
and translates it into an intermediate C++ program, which is
then compiled by the same C++ compiler that is used to
translate the nonLisp components of HP PE/SolidDesigner.
This approach has several advantages:

The Lisp compiler can be kept small and simple (only 12,500
noncomment lines of code, less than 5% of the total amount
of Lisp code)

The Lisp compiler does not need to be retargeted when
porting to a different machine architecture

The Lisp compiler does not need to fully optimize the gener-
ated code; this task can be left to the C++ compiler

The generated code is fully call and link compatible with the
rest of the system

The generated code can be converted to a shared library
and dynamically loaded into a running HP PE/Solid-
Designer.

The Lisp compiler is itself written in Lisp. Bootstrapping a
new compiler version is easy because an interpreter is
available.

The calling conventions for compiled Lisp funciions are
such that interpreted and compiled functions can transpar-
ently call each other. This allows keeping most of the Lisp
code in compiled form, even when using the interpreter to
develop new programs.

Continuing the above example, here is the C++ code that the
Lisp compiler produces for the simplified translated action
routine (reformatted for better readability):

// Header file declaring standard Lisp data structures and functions
I/ {for example, LOBJP is the type of a generic pointer-to-Lisp-object)

#include <cmpinclude.h>

// Declarations for the compiled code (normally written to a separate file,
// included here for clarity)

static void L1(...); /I Functions defined in this file

static void L2(LOBJP*);

/I Data for communication with the Lisp
i/ loader

static char “Cstart;

static int Csize,
static LOBJP Cdata;

static LOBJP VW[14]; /I Run-time Lisp objects

Oetober 1995 Hewlett-Packard Journal - 71

© Copr. 1949-1998 Hewlett-Packard Co.

static void LnkT13() /I Links to external Lisp functions
static void (*Lnk13){) = LnkT13, // (see below for an explanation)
static void LnkT11() ;

static void [*Lnk11){) = LnkT11;

static LOBJP LonkTLNO(LOBJP) ;

static LOBJP (*LnkLIT0)LOBJP) = LnkTLI0;

static LOBJP LnkTLIS{int narg, ...} ;

static LOBJP (*LnkLISMint narg, ...} = LnkTLIS;

static LOBJP LnkTLI8(LOBJP , LOBJP) ;

static LOBJP (*LnkLI8)(LOBJP , LOBJP | = LnkTLI8;

// Initialization function, called immediately after the file is loaded

void example_initializelchar *start, int size, LOBJP data)
{

/{ Reserve space on the Lisp stack

register LOBJP* base=vs_top;
register LOBJP* sup=base+0;
vs_lop=sup,

vs_check;

{/ Store data supplied by the loader, including Lisp objects
// that were extracted from the original source code and that
{/ will be needed at run-time (e.g., strings and symbaols).

Cstart=start;

Csize=size;

Cdata=data,
set_VV_data(VV,14,data, start,size);

/1 Link the compiled function "L1" to the Lisp symbal stored in VV[6],
{/ which is "SIMPLE_EXIT",

MFnew(VV[6],(void(*){))L1,datal);//
// Restare Lisp stack

vs_top=vs_base_mod=base;

1
// Compiled function SIMPLE_EXIT

static void L1{...)
{

register LOBJP*base=vs_hase; // Reserve space on the Lisp stack
register LOBJP sup=hase+3;
vs_check;

{LOBJP V1, // Fetch ARGUMENT-LIST from the Lisp

[/ stack
vs_top|0]=Cnil;
{ LOBJP *p=vs_top;
for(;p>vs_base;p--)p[-1l=MMcans(p|-1],p(0]);

}
Vi=(bhase[0]);
vs_top=sup;
{LOBJP VZ, // Set up variables INPUT and FLAG
V2= Cnil;
base[1]= Cnil;
T3 // Label “1" in TAGBODY
V2= (*(LnkLI8)N(V1),YV[0]); // (GET-PARAMETER ARGUMENT-LIST “...")
ifl!(equal{{V2), VWK // First clause of COND construct
goto T§;
}
base[1]= Ct // (SETQFLAGT)
(void{*(LnkLISN(1,VV[2])); // TRIGGER-.. -EVENT ‘ANSWER-YES)
goto T4; //1GO0)

72 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

18:; // Second clause of COND construct
ift{equall{V2) VVI3])N

goto T14;
}
base[1]= Cnil; /f {SETQ FLAG NIL)
(void)({*{LnkLI9))(1,VVI4])); // (TRIGGER-..-EVENT "ANSWER-NO)
goto T4; //{GO D)
T14:; {/ Third clause of COND construct
If({{F{LnkLITO)N{V2)))==Cnil){
goto T4,
}
base[2]= VV[5]; // IDISPLAY-ERROR “...")

vs_top={vs_base=hase+2}+1;
{void) (*Lnk11)();

vs_top=sup;
goto T3; GO 1)

T4:; // Label “0" in TAGBODY
vs_hase=vs_taop, // Call (DO-IT), passing a pointer to
L2(base); // the lexical variables of SIMPLE _EXIT
vs_top=sup;
basef2]= Cnil; /! Return from SIMPLE_EXIT
vs_top=(vs_hase=hase+2}+1;
return;

1

}

1

/f Compiled lecal function DO-IT

static void L2{LOBJP*hasel)
{
register LOBJP*base=vs_base; // Reserve space on the Lisp stack
register LOBJP*sup=base+1;
vs_theck;
vs_tap=sup;
if{{basel[1])==CnilK { Condition: lexical variable FLAG
goto T26;
}
vs_base=vs_top; A 1QuIT)
(void) (*Lnk13)();
return;
T26:;
hase[0]= Cnil; /f Return from DO-IT
vs_top=(vs_base=hase+0}+1;
return;

}

// Links to external functions. These functions are called indirectly, via
{f C++ function pointers. Atthe first call, the corresponding compiled
{/ function is looked up and stored in the function pointer, thus avoiding
/[the Lisp calling overhead on subsequent calls.

static void LnkT13 ()
{// QUIT; called via normal Lisp calling conventions

call_or_link{VV[13],(int *)&Lnk13);
}

static void LnkT11()
{// DISPLAY-ERROR; called via normal Lisp ealling conventions

call_or_link{VV[11],{int *)&Lnk11);
1

static LOBJP LnkTLNO{LOBJP argh)
{// MATCH-OTHERWISE; declared to take exactly one parameter, which
// can be passed without using the Lisp stack.

return{LOBJP)call_fprac(VV[10],(int*)&LnkL110,1,argD);

¥

static LOBJP LnkTLIS{int narg, ...)
TRIGGER-ACTION-STATE-TRANSITION-EVENT; declared to take one
| fixed and one optional parameter, which can be passed without using
[the Lisp stack

va_list ap;

va_startiap, narg);

LOBJP result={LOBJP)call_vproc{VV[9L{int*)&LnkLI3,narg,ap);
va_endlap);

return result;

}

static LOBJP LnkTLIB{LOBJP arg0, LOBJP argl)
{ // GET-PARAMETER; declared to take exactly two parameters, which
// can be passed without using the Lisp stack.

return(LOBJP)call_fproc(VV[8] {int*)&LnkLi8,2,arg0,arg1);
}

This example illustrates several important properties of
compiled Lisp code. First, the C++ code still has to access
Lisp data present in the original program; for example, it has
to attach a compiled function to a Lisp symbol naming that
function. Second, parameter passing for Lisp functions is
usually done via a separate stack, but the overhead for this
can be avoided by declaring external functions. In a similar
way (not shown here), the overhead of using Lisp data struc-
tures for arithmetic can be avoided by introducing type dec-
larations (which are not compulsory as in C++). Third, some
Lisp constructs (e.g., lexical nesting of function definitions)
have no direct C++ equivalent.

Compiling a Lisp program can have quite a dramatic impact
on its performance. HP PE/SolidDesigner takes about one
half to two minutes to start on an HP 8000 Series 700 work-
station. If all the Lisp files are loaded in uncompiled form,
start time increases to between one half and one hour.

Conclusion

A large part of HP PE/SolidDesigner is written in Common
Lisp. To the developers, this approach offered a very flex-
ible, interactive mode of programming. The finished pro-
grams can be compiled to eliminate the speed penalty for
end users.

Common Lisp is also used as a user-accessible extension
language for HP PE/SolidDesigner. It is a standardized, open
programming language, not a proprietary one as in HP
PE/ME10 and PE/ME30, and the developers of HP PE/Solid-
Designer believe that this will prove to be an immense
advantage.

References

1. G.L. Steele, Jr, S.E. Fahlman, R.P. Gabriel, D.A. Moon, and

D.L. Weinreb, Commaon Lisp: The Language, Digital Press, 1984,

2. J. McCarthy, “History of LISE," in R.L. Wexelblat, ed., History of
Programming Languages, ACM Monograph Series, Academic
Press, 1981, (Final published version of the Proceedings of the ACM
SIGPLAN History of Programming Languages Conference, Los
Angeles, California, June 1978.)

3. G.L. Steele, Jr. and R.P. Gabriel, *The Evolution of Lisp,"” Proceed-
ings of the Second ACM SIGPLAN History of Prograniming Lan-
guages Conference, Cambridge, Massachusetts, April 1993,

pp- 231-270.

4. G.L. Steele, Jr., 5.E. Fahlman, R.P. Gabriel, D.A. Moon,

D.L. Weinreh, D.G. Bobrow, L.G;. DeMichiel, S.E. Keene, G.Kiczales,
(. Perdue, K.M. Pitman, R.C. Waters, and .J.L. White, Cominon Lisp:
The Language, Second FEdition, Digital Press, 1990,

Ociober 1995 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

Boolean Set Operations with Solid

Models

The Boolean engine of HP PE/SolidDesigner applies standard and

nonstandard Boolean set fJ['JE'jFE:]?_if'J."I.’-i 08

impressive variety of machining operations. Parallel calculation

e i sy e ot W
DU!'.FE.' mance, especidily W

T
LTI TULE

by Peter H. Ernst

Machining operations like punch, bore, and others play an
important role in the function set of contemporary CAI sys-
tems. In HP PE/SolidDesigner, the impressive variety of ma-
chining commands are driven by a single topology engine,

often referred to as the Boolean engine.

[t might seem that the algorithm used by the Boolean engine
would be extremely complex and esoteric, and this is indeed
true in some respects. The underlying principles, however,
are simple.! Most of this article demonstrates this by taking
a fairly intuitive look at the internal machinery. This will
provide a road map for the second, more technical part of
the article, in which some key algorithms are explained in
greater depth. Finally, some unusual applications of the
Boolean engine are briefly mentioned.

Different Flavors of Solids

Before exploring the internals of the Boolean engine, let’s
take a look at the objects that it works on. These objects are
called solids, or simply bodies. Solids, in our terms, are
mathematical boundary representation (B-Rep) models of
geometric objects. Fig. 1 shows a B-Rep model of a eylinder.

Usually several categories of solids are distinguished based
on their manifold characteristics. For our purposes we just

need to know that manifold solids represent real objects

Face-1 Face-2

Loop-2
|
Coedge-2b ——— Coedge-2

i.ullrp—‘l Loop-3a Lmip-iih
|

Coedge-1 Coedge-2a

Edge-2

Edlile‘i

Vertex-1 Vertex-2

T4 October 1995 Hewlett-Packard Journal

0lid models to perform an
)00sts

of manufacturable

Fig. 2. A screwdriver representing the class

and nonmanifold solids are impossible in some way. Man-
ifold bodies are of general interest, since they can be manu-
factured. Fig. 2 shows a screwdriver representing the class

of manufacturable bodies.

The class of nonmanifold bodies is the realm of the impossi-
ble bodies. These bodies cannot be manufactured because
the material thickness goes to zero (that the thickness goes
to zero is a consequence, not a cause of the nonmanifold-
ness). Nevertheless, they have have some importance as
conceptual abstractions or simplifications of real (manifold)
solids. Nonmanifold solids sometimes are (conveniently)
generated as an intermediate step in the design process.
They are also important to various simulation applications,
and sometimes to finite-element analysis and NC machining.
Fig. 3 shows a selection of nonmanifold bodies. To the left is

© Copr. 1949-1998 Hewlett-Packard Co.

4 o £ iI il {
ways, using u ! St I'al D 1 5
sult of ead ool nel on is show he bo

An Intuitive Approach to the Boolean Engine

Now that we are equipped with the right background, we
can explore the various stages of the Boolean algorithms. To
do this we will use a thought experiment (such experiments
are widely acknowledged as safe and cheap). To perform
this experiment we only need some paint, a sharp knife, and

some imagination.

Coloring. In the first stage both solids participating in the

Boolean operation are filled with different colors, let's say Fig. 5. Two disjoint salids that en to overlar

vellow for one and blue for the other. 1_"!-_" 5 shows two bod-

les that have been set up for a Boolean operation and col- Making Soap Bubbles—Cellular Bodies. In the second stage
ored according to our rule. Let’s assume that, unlike real we knit both solids together using the intersection graph. A
solids, they can permeate each other without problems. structure very similar to those formed by soap babbles is
Since the Boolean operation hasn't been performed yet the created. as shown in Fig. 7. The two solids now hang to-
picture still shows two disjoint solids that just happen to gether at the intersection graph. In the space where both
overlap. To show what's going on inside the bodies, the yel- bodies overlap a green color can be seen. This is the mixture
low body has been made transparent of yellow and blue. To get a better vision of the geometric

Now we mark the lines where the two bodies permeate each situation some faces have been made transparent.

other, let's say with red color. The red lines in Fig. 6 are
called the intersection graph. The two solids are still dis-

Joint,

Intersection

Subtraction

li: Fig. 6. Intersection graph (rec)

Oetober 1995 Hewlett-Packard Journal]

© Copr. 1949-1998 Hewlett-Packard Co.

wo bodies together at the intersection

Fig. 7. Result of ki

graph, Choosing peration 1s now equivalent Lo deciding

olors t which to delete,

Getting Rid of the Wrong Colors. In the third and last stage of
our imaginary process not much is left to do. Up to now we
have not said which kind of Boolean operation (union, sub-
traction, or intersection) we wanted. Now is the time to

decide.

To get the desired result we simply pick the appropriate
color and get rid of all volumes of a different color than the
one we picked. Initially we chose two colors—blue and yel-
low—so we will find three colors in our soap bubble cluster:
blue, yellow, and green. In regions where blue and yellow
volumes overlap we get green. The table below shows which
colors will be kept or deleted from the body depending on
the particular type of Boolean operation we choose.

Keep Delete
Union blue and yvellow green
Subtraction yellow green and blue

Intersection green blue and yellow

Easy, isn't it? Pat yourself on the back (and clean up the
mess of paint and chipped-off pieces).

Technical Talk: The Boolean Algorithm

In the preceding example we only had to mark the lines
where the color changes to obtain the intersection graph.
The Boolean engine algorithm that does this is a bit more
complex. To understand it we must again look at the mathe-
matical representation of a solid. In Fig. 1 we have seen the
general data structure layout of a cylinder. That sketch,
however, lacks any explicit references to geometry. In HP
PE/SolidDesigner’'s B-Rep structure, three base classes of
geometries are used: points, curves, and surfaces. The last
two have several subclasses. For example, a curve can be a

76 October 1995 Hewlett-Packard Journal

straight line, circle, ellipse, or spline. In the following discus
sion the geometric subclasses are used for illustration pur-
poses, but the Boolean algorithm itself does not depend on
any specific geometry types, since it is implemented in a

deneric way.

Each geometry class has a corresponding topological carrier
that puts it into perspective in the context of a solid model.
The table below shows this relationship:

Topology Geometry
Vertex = Point
Edge — (‘urve
Face «— Surface

The topological entities face and edge are smart carriers
because they not only kold their geometries, but also bownd
or trim them. To understand what this means we must real-
ize thal most geometries are of infinite extent, and even if
they are finite only a small segment might be of interest.

Fig. 8 exemplifies the relationship between topology and
geomeltry. Looking at the eylinder (sf33), notice that only a
segment of the otherwise infinite evlindrical surface is used.
This segment is called a face (fa3). Likewise, only two circu
lar regions of the otherwise infinite planes sf1 and sf3 are
used to close the cylinder. The circular regions are face fal
and face fa2. (Note: The top and bottom faces of the cylin-
der have been lifted off a bit for better demonstration. The

double yellow edges coincide in reality.)

The concept of trimmed surfaces is essential for the next
section, because it introduces some unexpected complica-
tions when constructing the intersection graph.

Constructing the Intersection Graph. Earlier we simply used an
excellent pattern recognizer called the human brain to find
the lines where the color changes. Teaching this ability to a
computer involves a considerable amount of mathematics.

Fig. 9 shows the construction of one segment of an intersec-
tion graph (a graph edge). The drawing shows two intersect-
ing surfaces sfl and sf2 carrying two faces fal and fa2. To
construct the graph edge (the piece of the intersection track
inside both faces) the following steps are required:

The two unbounded surfaces sf1 and sf2 are intersected,
giving the intersection track (track).

sf3
fﬂ\ = (Cylinder) —— fa2

Y ¥
l sf1 (Plane si2 [Plane)
x x
Fig. 8. An example ! lonship between topology and
geometry. | ind edges bound m their geo 1 wi

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 9. Construction of one segment of an intersection graph
(a graph edge).

The edges of fal are intersected with surface sf2 to yield the
edge/surface intersection points il and i2. Similarly, the
edges of fa2 are intersected with sfl giving the intersection
points i3 and i4.

The intersection points are ordered along the track.

The ordered points are examined for their approach values.
The approach values simply tell if a face is entered or left
when passing a particular point. This information can be
used to deduce the containment of a segment of the inter-
section graph with respect to its generating faces. The
approach and containment values for the intersection points
in the previous drawing are:

Point Containment with respect to:
Approach fal fa2
outside outside
il entering fal
inside outside
i2 entering fa2
inside inside
i3 leaving fal
outside inside
i4 leaving fa2
outside outside

The segments of the intersection graph inside both faces are
used to create the graph edge(s) of a particular intersection.
In this example only the segment bounded by i2 and i3 ful-
fills this condition.

Parallelism. The complete intersection graph of two bodies is
obtained by pairwise intersection of faces selected from
both solids. The number of required face/face intersections
depends on the number of faces in both solids:

i=nm,

where i is the number of intersections, n is the number of
faces in one body, and m is the number of faces in the other
body.

The number of required intersections grows rapidly (qua-
dratically) with the complexity (number of faces) of the
solids. Fortunately the different face/face intersections can
be easily performed in parallel. The algorithm is structured
such that it can create a cascade of threads (a sort of sub-
process). For each pair of faces a subprocess is launched
that splits itself to calculate the surface/surface intersec-
tions and the edge/surface intersections in parallel. With the
availability of multiprocessor hardware the advantages of
this algorithmiec structure are seen as increased perfor-
mance of the Boolean operations.

Imprinting and Coloring. In the intuitive approach, coloring
the faces, that is, determining which pieces are inside or
outside, was no problem because it could easily be seen. On
the machine level other means are required.

Intersection tracks split surfaces and faces into left and
right halves, Additionally, surfaces split space into halves
called half spaces. We can classify each piece of the split
face to a half space with respect to the other surface. This
procedure is demonstrated in Fig. 10.

Classification is done with respect to the surface normals
(colored arrows) of both surfaces (sfl and sf2) and the
intersection track.

Unusual Boolean Applications

It is easy to see that the Boolean engine is driving most ma-
chining operations. Here are some applications in which it is
not so obvious.

Partial Booleans. Regular Boolean operations attempt to cal-
culate all intersection tracks between bodies. In contrast,
partial Boolean operations calculate only one intersection
track. Which one depends on the particular application. One
example of a partial Boolean operation in HP PE/SolidDe-
signer is wrapped into the extrude-to-part command. It fires
a profile defined in a workplane onto a body as shown in
Fig. 11. The picture shows a body and a profile set up for the

Inside
sf , st

Inside
5f2

Fig. 10. Surfaces split space into halves called hall spaces (inside
and outside along surface normals). Each piece of a split surface
can be classified as belonging to a half space with respect to the
other surface.

October 1995 Hewlett-Packard Journal 77

© Copr. 1949-1998 Hewlett-Packard Co.

Fighting Inaccuracies: Using Perturbation to Make Boolean Operations Robust

epsilon -~ 7 cv (7 sf2 P 4
. " cves : '
V. -
S sfish e

d-v—" : [

;) P " = st lon
= 4 sin i |
el 4 1

W

extrude-to-part operation. Only the intersection graph where
the extruded profile hits the body is used to build the result.
To the right is the result of the operation.

Usually the extruded profile would exit the body at the bot-
tom, producing a second intersection graph.

Reflection of Solids. Another unusual Boolean application is
the reflection of solids at a plane, Fig. 12 shows a body with
a green reflection plane set up. At the right is the result of
the reflect operation.

This operation can be simulated with regular Boolean opera-
tions by copying, mirroring, and uniting the left body. How-
ever, this would burden the Boolean engine with difficult
tangential intersections. Instead, the reflect command inter-
sects the left body with the reflection plane to obtain an
intersection graph which can be used to glue the left body

78 October 1995 Hewlett-Packard Jowrnal

© Copr. 1949-1998 Hewlett-Packard Co.

Two Curve/Surface Intersection Points with One Surface/Surface Inter-

section Track.

ev y sf2 v 4l
4 - i >
- >
epsilon
\d
3 sf1 isf2
" sf =

Two Surface/Surface Intersection Tracks with One Curve/Surface Inter-

section Point | Bame

References
sf2
ev sz i
s ' i
ey s 7 —
epsilon
7 st mis2 i
e L /
sf1 / 4

and its mirrored copy together. The intersection with the
mirror plane is nicely orthogonal and relatively easy to per-
form compared to the tangential intersections.

Acknowledgments

The development of the Boolean algorithms involved many
people. Special thanks to former kernel development team
members Hermann Kellerman and Steve Hull and project

manager Ernst Gschwind
Reference

1. M. Mantyla, An Introduction to Solid Modeling, Computer

sScience Press

Oetober 1995 Hewlet-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

A Microwave Receiver for Wide-

Bandwidth Signals

The HP 71910A wide-bandwidth receiver extends modular spectrum
analyzer operation for more effective measurements on modern

communications and radar signals.

by Robert J. Armantrout

The microwave spectrum analyzer is an invaluable instru

ment for making measurements on signals with frequencies

ranging from 100 Hz to 110 GHz with a variety of modulation
formats. The spectrum analyzer is primarily a tool for the
frequency domain, The measurements for which it excels
are those in which the signal parameters of interest are
accessible in this domain.

For the most part, these measurements are made in a test
environment, in which the signals usually originate from a
signal source or from the device under test and where a
physical connection is made to the spectrum analyzer with
coaxial cable. In this environment, there is usually a high
degree of knowledge about the signals present and the num-
ber of signals that must be characterized. Also, there is often
some control over the power level of the signals present.
The specirum analyzer is normally used in swept mode. The
emphasis is on the fundamental signal parameters, not on
the information content present in the modulation,

Microwave spectrum analyzers are also used in the opera-
tional environment. In contrast to the test environment, the
signal or signals of interest in the operational environment
usually come out of the air rather than [rom a device under

test. This means that the spectrum analyzer is connected to
an antenna rather than to a device under test. Another con-
trast to the test environment is the number of signals pres-
ent at the input to the antenna. Depending on the frequency
coverage of the antenna or antennas used, the number of
signals present can number in the hundreds or even thou-
sands. In the operational environment the emphasis is on

80 Oetober 1995 Hewlett-Packard Journal

searching for signals of interest and extracting the informa-
tion content of those signals. The information can have
many forms including voice, video, or data. To extract this
information, it is necessary 1o tune 1o the signal of interest
with a bandwidth comparable to the signal’s bandwidth and
apply the correct demodulation.

Although the spectriun analyzer plays a major role in signal
searching, it has not gained acceptance outside this role
because of the limitations discussed below. Rather than the
spectrum analyzer, a microwave receiver is normally used to
perform the down-conversion and demodulation of wide-
bandwidth microwave signals.

Bandwidth Limitations. One of the most predominant trends
in modern microwave signals is the move toward wider
bandwidths. This trend has been growing since the
mid-1970s as satellite communications developed and radars
began employving a form of spread spectrum known as chirp.

The trend continues to be evident in all areas of satellite and
terrestrial microwave communications. Signal bandwidths
of 30 MHz or more are typical. Furthermore, various forms
of spread spectrum, such as frequency hopping or direct
sequence, whether used for multipath mitigation, noise im-
munity, lower power density, or increased security, have led

to increased bandwidths Tor otherwise narrowband signals,

For such signals, the bandwidth that is adequate for spec-
trum display or parametric measurements may not be suffi-
cient to preserve the information content of the signal for
demodulation.

© Copr. 1949-1998 Hewlett-Packard Co.

Freguency-Domain Limitations. In addition to having wider
bandwidth, many modern microwave signals employ more
complex modulation formats such as PSK (phase-shift key-
ing) and QAM (quadrature amplitude modulation). Paramet-
ric measurements made in the frequency domain are not
adequate to characterize these complex signals fully. Mod-
ern microwave signals can also have characteristics that
vary during the sweep of a conventional microwave spec-
trum analyzer, making accurate characterization difficult.
Finally, pulsed, bursted, gated, and time division multiplexed
signals all have characteristics and information that are dif-
ficult if not impossible to extract in the frequency domain.

Amplitude-only Limitations. Because the traditional spectrum
analyzer employs an envelope detector, it provides only sca-
lar information, and phase information is lost. Since much of
the information in modern complex signals is conveyed
with phase shifts or variations, this limitation is signifi-
cant.

Solutions

All three of the spectrum analyzer limitations mentioned
above have been recognized and have led to the develop-
ment of new types of instruments such as modulation-
domain analyzers! and vector signal analyzers.” Although
these instruments can aid greatly in the analysis of a com-
plex signal, they do not operate ai microwave frequencies
and are not well-suited for direct connection fo an antenna
as required in an operational environment.

The HP 71910A wide-bandwidth receiver (Fig. 1) combines
the attributes of a microwave receiver with the strengths of
a microwave spectrum analyzer. The spectrum analyzer
strengths include wide frequency coverage, synthesized
1-Hz tuning, excellent phase noise, and amplitude accuracy.
The microwave receiver attributes include wider [F band-
widths and demodulation.

The HP 71910A provides easy interfacing to vector signal
analyzers and modulation-domain analyzers and extends the
measurement capability of these instruments into the micro-
wave frequency range. Finally, the HP 71910A provides
standard connection to commercial communications de-
modulator products.

Description

The HP T1910A is an MMS (Modular Measurement System)
product which includes a new IF module, the HP T0911A,
and a new revision of system firmware. The firmware revi-
sion permits operation of the HP 70911A with an existing
microwave spectrum analyzer, the HP 71209A Option 001,
and provides improved performance for signal searching
(see the firmware description on page 84). The HP T0911A,
which is described on page 89, provides the functions usu-
ally associated with a microwave receiver, including IF
bandwidths from 10 to 100 MHz and pulse detection. The HP
T0911A also offers options for FM demodulation, 70-MHz IF
output, and 70-MHz channel filters. Another feature not
found in other microwave receivers is the [-Q) output option.

The two most common configurations of the HP 71910A
operate over the frequency range of 100 Hz to 26.5 GHz. The
standard HP T1910A (Fig. 1, left) provides both microwave
spectrum analyzer and microwave receiver operation. An
alternate configuration, Option 011 (Fig. 1, right),

provides microwave receiver operation only. The rest
of this article will focus on the HP 71910A Option 011
configuration.

Receiver Hardware

A block diagram of the HP T1910A Option 011 is shown in
Fig. 2. The optional preamp module provides improved sensi-
tivity and includes an internal bypass switch. The HP
70900B LO module provides the local oscillator and
300-MHz reference signals to the HP 7T08910A RF module. The
HP 70900B also provides the firmware control of the mod-
ules that make up the HP T1910A. For operation as a spec-
trum analyzer or a receiver, the HP 71910A modules are
slaves to the HP 70900B. The HP 70910A RF module pro-
vides microwave preselection and frequency conversion o a
321.4-MHz IF output, which provides the input to the HP
7091 1A module.

RF Module. The HP 70910A RF module was developed to
provide wide bandwidths in the front end of the receiver.
Aspects of the design important for microwave receiver
operation include:

Increased-bandwidth YTF (YIG-tuned filter) preselector
Preselector bypass

Mixer microcircuit for improved sensitivity
Programmable gain at 321.4-MHz IF output.

The partial block diagram of the HP T0910A RF module in
Fig. 3 shows four signal paths. The first is the low-band
path, which is used for frequencies up to 2.9 GHz. There are
two microwave paths, preselected or bypassed, which can
operate from 2.7 GHz to 26.5 GHz. Finally, there is an [F
input for use with external mixers covering from 26.5 GHz
to 110 GHz (millimeter-wave frequencies).

The minimum bandwidth of the microwave preselector in
previous spectrum analyzer designs ranged from 25 to

30 MHz. The design goal of the HP TO910A was to improve
the minimum bandwidth of the YTF to at least 36 MHz. This
was accomplished by modifying the doping profile of the
YIG spheres used in the YTE. A YTF bypass path is included
to allow unpreselected operation when appropriate. When in
bypass, the bandwidth of the microwave path is much wider
than the bandwidth of the preselector. In addition, the group

HP 706208
100 Hzto RF Preamp
26.5 GHz Module

(Dptionnl)

kil) M
#eoaron [CIEIM WP T0s11A Sk Optional
RF Module IF Module SESSFRYTITE
¥ Widebhand
4 Video
L0 300 MH:
HP 709008 "
S Narrowband
Video

Fig. 2. A simplified block diagram of the main components of
the HP 71910 Option 011 receiver.

October 1995 Hewlett-Packard Journal 81

© Copr. 1949-1998 Hewlett-Packard Co.

l—————— 100-Hz-to-28-GHzPath ———————————~

2.9 GHz 3.6 GHz
. E m g |
| - 321.4 MHz
Bandwidth
HP 708008 | 48 MH
‘ L0 Module i (*_,?
@_ mmIn(IF S0 Programmahle
| lnpul Path) | Gain
310 6.6 GHz o) ’
0 to 65 dB O _'®_"iz1-: »
mi 321.4 MHz IF
< mm Mixer pMHz
—ANA~ Out (to HP
T0911A IF
5.dB Steps ‘ 8dB Madule)
|
|

L

| Bypass

Bandwidth
200 MHz

e 27-GHz-10-265-GHz Path

delay performance is improved when the preselector is by-
passed.

The preamp-mixer microcircuit following the preselector
improves sensitivity in two ways. First, the preamp compen-
sates for the loss of the YTF while retaining acceptable in-
termodulation performance. Second, the mixer design takes
advantage of a special diode configuration to minimize con-
version loss in the harmonic-mixing bands.

The final 321.4-MHz block is the programmable-gain ampli-
fier. The purpose of this amplifier is to maintain a constant
gain from the RF input to the 321.4-MHz IF output as a fune-
tion of frequency. The gain is set based on lookup table val-
ues determined during final test.

IF Module. The design goals for the HP 708911A [F module
included:

Bandwidth
>36 MHz q‘\) ’é 321.4 MHz

Fig. 3. A partial block diagram of
ﬂ'l the HP T0910A RF module.
Variable bandwidths and accurate gain are standard in spec-
trum analyzers, bui typically at center frequencies of 3 MHz
or 21.4 MHz. In the HP T0911A all variable gains and
bandwidths are centered at 321,4 MHz. The higher center
frequency and the higher fractional bandwidth presented
significant design challenges.

An envelope detector for AM and pulse detection is also
standard in spectrum analyzers, but in the HP 70911A de-
sign we had to accept a 321.4-MHz input and have band-
width consistent with recovering 10-ns wide pulses.
Wide-bandwidth FM signals are common in both satellite
and terrestrial microwave communications. For this reason,

wideband FM demodulation, not found in spectrum analyz-
ers, was an important design goal in the HP T0911A,

Within the communications industry, 70 MHz is a standard

= 100-MHz bandwidth variable in 10% steps
» T0-dB gain in accurate 10-dB steps

« Pulse detector for 10-ns pulses

» 70-MHz IF output

+ FM demodulator.

IF frequency. Most commercial communication demodula-
tors accept 70-MHz inputs. For this reason, a 70-MHz IF out-
put was considered essential for interfacing to demodula-
tors for formats other than wideband AM or FM.

Calibration -

Attenuator LU Viden))

and Linear “ % Wideband Video Output
Detector

| Option Cardcage

; 70-MHz
Down-Converier

3214
MHz

e
MHz

Variable
Gain and
Bandwidth

Standard
Control

70-MHz
= Output

Option

Controller Cantrol

FM Output

Discriminator

I-a
Down-Converter

© Copr. 1949-1998 Hewlett-Packard Co.

321.4 MHz | Dutput
Fig. 4. The major funetional blocks
that make up the HP 7T0911A IF

module.

Q Output

82 October 1095 Hewlett-Packard Journal

Fig. 4 shows the major functional blocks that make up the
HP 70911A. The variable gain and bandwidth block includes
a bandpass filter with bandwidth that varies from 10 to
100 MHz with DAC control. The filter is a five-pole svnchro-
nously tuned design. The gain consists of seven stages of
step gains interspersed with the poles of the filter.

The calibration attenuator and linear detector block in-

cludes a precision attenuator with 15-dB range and an enve-
lope detector with 100-MHz bandwidth. The detector is fol-

lowed by video gain and level control.

Several optional functions can be added for expanded re-
ceiver capability. These plug into an option card cage and
are controlled over a common internal bus.

FM Discriminator. This block includes a delay line discrimina-
tor with excellent linearity and a maximum bandwidth of

40 MHz. Two sensitivity positions, 10 MHz/V and 40 MHz/V,
can be selected.

70-MHz Down-Converter. This block consists of a down-con-
version path and a fractional-N synthesized local oscillator.
The tuning range of the LO provides, with a change of out-
put filter, 140-MHz and 160-MHz IF outputs.

Channel Filters. The standard IF bandwidths are of the syn-
chronously tuned class and provide very good response for
pulses but lack the shape factor desired for communication
signals. The channel filters provide a selection of five six-
pole Chebyshev filters centered at 70 MHz for use as prefil-
ters for the communication demodulators.

I-Q Down-Converter. This block provides I and @ baseband
outputs with a 50-MHz bandwidth for each output. The local
oscillator for the down-conversion is synthesized and the
design is the same as that used for the 7T0-MHz output.

A more detailed discussion of the design and implementa-
tion of the HP TO911A is given on page 89.

Receiver Bandwidth Improvements

The increase in bandwidth for the HP T1910A is dependent
on the frequency band selected. The receiver bandwidth,
which depends on the bandwidth of both the RF and the IF
modules, ranges from 36 MHz to 100 MHz. The RF band-
width of the low-band path is set to 48 MHz minimum by the
bandpass filter in the 3.6-GHz second IF. In the preselected
microwave path, the bandwidth of the RF module ranges
from 36 MHz to 60 MHz over the 2.7-GHz-t0-26.5-GHz fre-
quency range. However, when the preselector is bypassed
the bandwidth of the microwave path approaches 200 MHz.
Finally, when using external mixers for frequencies above
26.5 GHz, the bandwidth of the RF path will be set by the
mixers, but is at least 200 MHz. The resulting receiver band-
width for each path is summarized in Table 1.

Table |
HP 71910A Receiver Bandwidths
HP 70910A IF Output (MHz)

Signal Path 321 140 70
Low-Band 15 48 40
Preselected 36 1o 60 36 1o G0 3610 40
[Unpreselected 100 70 40

Receiver Operation

To simplify the HP T1910A's operation as a microwave re-
ceiver, a personality downloadable program was created.
This program, which is loaded into the HP 708008 LO mod-
ule, presents the user with the display shown in Fig 5. This
screen provides information to assist the user in establishing
the correct gain through the receiver when other processors,
instruments, or demodulators are connected at the outputs.
The RF/IF Gain annotation shows the total gain from the RF
input to the 70-MHz IF output. It accounts for fixed or var-
able gain and attenuation in both the RF and the IF modules.

In addition to calculating and displaying gain through the
receiver, the receiver personality extends the gain resolution
available to the user. In normal spectrum analyzer opera-
tion, the IF gain resolution is 10 dB. However, for the HP
TO911A IF module, the personality combines the 10-dB reso-
lution of the step gains with the 1-dB resolution of the inter-
nal calibration attenuator to provide 1-dB gain setting reso-
lution over a 70-dB range.

The receiver personality also provides control of the op-
tional receiver functions such as FM, I-Q, and channel filter-
ing. This partitioning from the basic firmware control of the
HP 70911A was made to allow for adding options in the
future without the need for a firmware revision.

In addition to providing an interface for manual control. the
receiver personality card also provides a programming inter-
face for automatic operation. After the receiver personality
is loaded and initialized, control extensions appear as
additional programming commands not present in the basic
firmware.

Microwave Vector Signal Analysis

As mentioned earlier, vector signal analyzers have baseband
processing capabilities which when used with RF or micro-
wave down-converters permit a more complete character-
ization of wide-bandwidth signals.

The 1-Q down-conversion option of the HP T1910A was
designed specifically for use with other HP digitizers and
oscilloscopes. This option can also be used with a dual-

I ||_'.’9.»__| Recaiver Wode [DELR
Fiea Freq:

E BMW 188 MH:

L

EF Riien

Fig. 5. The user interface screen provided by the HP T1910A
receiver personality. The shaded area above is the thmesdomain
display of an FM signal.

Octaber 1945 Hewlew-Packard Journal 53

© Copr. 1949-1998 Hewlett-Packard Co.

channel vector signal analyzer such as the HP 89410A to
extend both the measurement bandwidth and the frequency
range of vector signal analysis. This configuration is shown
in Fig 6. A special processing mode and careful attention to
calibration are required for this configuration. The 1P 89410A
and vector signal analysis are briefly described on page 87.

Applications

Although much of the early definition work on the HP
T1910A focused on radar applications, the attention in later
phases of the design shifted to microwave communications.
For example, in satellite conununications, which requires
extensive prelaunch testing, postlaunch qualification, and
periodie quality monitoring of live traffic after commission-
ing, the HP 71910A has much to offer.

The large investment necessary to launch a modern commu-
nications satellite makes it imperative to test the satellite
and the satellite payloads thoroughly during development
and manufacturing and just before launching (called high-bay
testing). The number of fests required to fully characterize
performance combined with aggressive launch schedules
make testing throughput a major consideration.

One of the most time-intensive measurements is spurious
testing. This is because of the complexity of satellites and
the nature of the measurements taken using the typical
spectrum analyzer approach. Sweeping a spectrum analyzer
over the full transponder band with the narrow resolution
bandwidth necessary for spurious testing leads to very slow
sweep times and therefore very long measurement times.

Fortunately, vector signal analyzers such as the HP 89410A
have much faster sweep times for the resolution bandwidths
of 1 kHz or less, which are used for spurious (spur) test-
ing. By connecting the I-Q outputs of the HP T1910A to the
two input channels of the HP 89410A as shown in Fig. 6, it is
possible to perform rapid spur search over a 20-MHz span.
Repeating this process by step tuning the HP 7T1910A over all
the satellite bands provides nearly a x10 improvement in
spur search speed over sweeping the speetriom analyzer
with the same bandwidth over the same frequency range.

Once a satellite is commissioned and carrying live traffie, it
is important to maintain the quality of the signals since fail-
ure to do so can lead to reduced revenues. One important

measurement is the total power of the down link. The total

Firmware Design for Wide-Bandwidth IF Support and Improved Measurement Speed

The addition of a wideband linear IF module to a Modular Measurement System
(MMS) spectrum analyzer presented two main challenges to the firmware: provid-
ing sufficient operational speed and adding new featuras and operations. The
concern over operational speed was heightened by the fact that many of the
applications targeted by this product required speed similar to that obtained by
instruments that did not have to account for either software calibration or
modularity.

Operational Speed

The challenges associated with operational spead invalved finding a way to apply
calibration in near real time and efficient handling of incoming data and temporary
variables.

Calibrated Operation. To obtzin calibrated data from an MMS spectrum ana-
lyzer, every trace data point obtained from the ADC must be corrected using the
appropriate calibration data. This needs to be done as close to real time as pos-
sible or the lag between the incaming raw data and the completion of the correc-
tion processing will quickly become the dominant factor in the retrace dead time,

The particular calibration data that must be applied and the algorithms that must
be used to apply it are dependent upon the currently active signal path of the
instrument. This can change as the user selects different IF bandwidths, differant
ADCs, and so on. This situation is complicated further by the desire to be able to
do trace math (such as calculating the difference of the active trace and a base-
line trace} as the data is received. Finally, the trace data needs to be sent to the
remote display (if one is active) as the processing is completed. All of these com-
plications exist even without a linear IF module.

If & conventional program is used to apply the per-point calibration, the time to
perform the necessary number of conditional tests would overwhelm the actual
calculation times. An alternative approach has been used since the beginning by
the MMS spectrum analyzers. Instead of performing the conditional tests for each
data point, an efficient state machine constructs a program to perform the neces-
sary calculations for the current instrument state. This is done by properly combin-
ing machine code program fragments. The construction of this program (known as
the RAM program) is properly synchronized with the appropriate state changeas
and trace operations

84 October 1995 Hewlett-Packard Journal

Ouring the execution of the RAM program, calibration and interpolation table
addresses and calibration constants are storad in the CPU registers whenever
possible. A preloaded register set is prepared at the same time that the RAM
program is constructed. If the RAM program catches up with the incoming data
stream, the process running the RAM program can swap out to allow other opera-
tions to occur By keeping all the necessary data in the CPU registers, this swap-
ping oceurs quickly.

To accaunt for a linear IF module, various additions to the RAM program were
required. Previously, all IF modules supported by the system were log IF modules,
Since all data calibration occurs after the signal has traversed the IF section, it
made sense to keep almost all of the correction factors in dB. This has the addi-
tional advantage of allowing simple addition and subtraction to be used to apply
the calibration data. Further simplification is achieved by storing the carrection
factors as 16-bit, fixed-point values. A scaling factor of 10015 used. For example,
a value of 10.34 dB would be stored as 1034

With the addition of & linear IF madule, the assumption of logged incoming data
was no longer valid. The main alternatives were either to rework the BAM pro-
gram to be able to handle linear data (including the need to do multiplication and
division instead of simply addition and subtraction) or to translate the incoming
linear data to log data (preinterpolation). The |atter approach is much guicker at
perfarming the calculations, but it also has the potential for a loss of accuracy.
However, with the ADCs currently supported by the MMS spectrum analyzer, both
the accuracy and the range are limited by the ADC, not by an initial interpolation.
Thus, the preinterpolation approach was taken.

Later experimentation showed that, with the reference |eve! set properly, a
38.5-dB range could be achieved with the required accuracy. This was sufficient
for the intended use of the product. When a display of linear voltage or power 15
desired, a table lookup and postinierpolation is performed toward the end of the
RAM program.

Hardware Caches, At fast{shart}sweep times, even the RAM program, running
on a 20-MHz MCBBO0Z0, is not fast enough to keep up with the incoming data
stream. At this point, the data is buffered for the RAM program to process when
itcan. At the fastest sweep times, the data acquisition loop is actually locked in

© Copr. 1949-1998 Hewlett-Packard Co.

power may come from one wideband carrier or it may be
the sum of hundreds of narrowband carriers. In either case,
the instantaneous power over the full transponder band-
width is desired. Using swept spectrum analyzer techniques
for this measurement can limit speed and degrade accuracy.
However, when the channel filters option of the HP 7T1910A
is used with the HP 70100A power meter module, a single
accurate power measurement of the full transponder band-
width, or individual measurements of carriers with specified
standard bandwidths, can be performed (see Fig. 7).

Terrestrial microwave communications is an application that
involves wide-bandwidth signals with complex modulation
schemes. For monitoring microwave link performance, the
HP 712104 offers an optional 70-MHz IF output for connec-
tion to products that can demodulate these complex modu-
lations. This feature might be used for assessing the BER
(bit error rate) performance of the communications link.
The BER performance of the HP T1910A was characterized
during development. The results of those measurements are
shown in Fig 8.

HP T1310A Wide- R /
v Bandwidth Receiver

HP 89410A Vector
Signal Analyzer

‘onfigured with the HP 88410A vector

Other aspects of link performance are often assessed using
a constellation display. The I-Q output option of the HP
71910A can be used to display the signal constellation on an
oscilloscope (see Fig. 9).

Although swept spectrum analyzers have been used for
characterization of radar signals for many years, the trend
toward narrow pulses and intrapulse modulations have limited
their usefulness primarily to spectrum displays. By connecting
the HP 7T1910A outputs to high-speed oscilloscopes it is pos-
sible to extract much more information about the radar.

the MCEROZ0 instruction cache to minimize memory accesses for this time-critical
operation,

Software Caches. In addition to the hardware cache built into the MCB8020,
the MMS spectrum analyzer firmware makes use of software caches as appropri-
ate. Because of the modular nature of the instrument, a change of state can
impose a heavy calculation burden, This burden must be borne by an affordable
CPU.

Detailed timing and analysis of the operation of the instrument revealed sevaral
intensive calculations that could be identified by a minimal number of internal
state variables, These variables are used as tags for software caches. This ap-
proach saves B0 ms ar more for some common state change operations. Use of
these caches was integrated with the RAM program so that a register could ac-
cess the cache data directly, avoiding costly data copying.

Further perfarmance improvemants were realized by recognizing situations in
which a calculation might need to be redone because of further user inputs before
a data acquisition is performed. In such cases, if it is possible, calculation is
delayed.

Additional Adaptations for a Wideband Linear IF

Adding more features and operatians to'the MMS spectrum analyzer involved
advertising the capabilities of the IF module to the analyzer and preselector cen-
tering

Configuration Support. In addition to the changes to the RAM proaram, the
main signal routing algarithms had to be enhanced to account for the linear IF
module. In the MMS spectrum analyzer, all modules advertise their capabilities to
the control module via an ASCI capability string. This machine readable string Is
effectively a logical block diagram of the module, including all inputs, outputs, and
switching capabilities. Some of the elements of this model are named so that the
control module can properly manipulate the hardware via a standardized command
language

The addition of support for a lingar IF module required minimal additions to the
capability string language. Most of the components of the module had already
bean modeled. Support for an additional value to an existing option flag was the
only thing required

Preselector Centering. The wideband IF module presented an additional
difficulty with preselected systems. With a narrowband IF, the tuning of the
preselector is done via peaking. In peaking a test signal is injected into the system
and the preselector hardware is tuned to provide a maximum response, This
approach does not work for a wideband IF module, since the peak of the passband
may not be near the center. Hence, using preselector peaking with @ wideband IF
module could easily result in a substantially reduced available signal bandwidth.

The proper approach for adjusting a preselector to work with a wideband [F mod-
ule is to center the filter based upon & user-configurable signal delta value (typi-
cally 6dB). Centering occurs in three main stages. First, a coarse search sketches
the shape of the curve and identifies where to search for the peak value. Next, a
fine search identifies the actual peak. Both of these steps are similar to what
occurs for preselector peaking, except that coarse values are saved. The final
step involves fine searches in the areas of the curve that correspond ta the user-
specified delta from the peak value. In all searches, an appropriate amount of
overlap is used since the curve might not be locally monotonic

The initial implementation worked correctly, but test users sometimes complained
that the preselector still wasn't being centered correctly. The typical situation
was that a user had a band-limited signal path that had not been previously con-
nected to a narrowband spectrum analyzer, Thus, the user was not aware that the
signal path was the problem.

The solution to this situation is to display the centering graphically as it occurs.
All of the coarse and fine points are plotted so that the user can see what s
happening. In addition, the user can examine and change the selected centering
setting.

Conclusion

By using the techniques described above, we were able to add support for a
wideband linear IF module into the MMS spectrum analyzer family and achieve
speed that matches or even exceeds that of instruments with less functionality
and configurability.

Thomas A Rice

Development Engineer
Microwave Instruments Division

October 1995 Hewlett-Packard Journal 85

© Copr. 1949-1998 Hewlett-Packard Co.

Channel Filter Option

HP 71910A Wide- | $9op
Bandwidth Re_ceiv_er O’p

Bl L& | L o O BN O
4 A i i : - 70 MHz
HP?U10N\/ ~
r

MMS Powe |
Meter — f":t_,
c’o =
Chebyshev g =
0 Filters | Fig. 7. The HP T1910A channel
B == [filters configured with an
| HP 70100A power meter to
— —_— — —— = measure transponder bandwidth.
4100y 2 100y :
1.00E+00 kT ' i
|! = Test System Baseline :
1.00E-01) * HP 71910A at 4 GHz
1.00E-02+ Q 'S 3 A3
£ 1.00E-03+ V*Q;_ '
= A -
§ 1.00E-04+ N s 4 1 i
i % L
S 1.00E-05+), : '
E A .
& 1.00E-06 -+ __ t i e %
1.00E-07 + \ . |]
1.00E-08 \"\ \-'\’ ' B R R
1.00E-09 - ; | 1 S | [
10 15 20 25 30 35 a0 1

(Energy/Bit)/Noise Power Spectral Density i A T WPT PPN TR USR] IR W TR SR "

Fig. 8. Results of a 64 QAM 150-Mbit/s bit error rate (BER) test far Fig. 9. A 16-QAM canstellation plot from an HP 546004 oscillo-
the HP T1910A scope, captured using the 1-Q option of the HP T1910A.

86 October 1995 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

The HP 89400 Series Vector Signal Analyzers

ing. Nermally, these channels are used independently. However, when used with a
quadrature down-converter, such as the HP 709114 Option 004, the in-phase (1)
and quadrature-phase (Q) signals from the down-converter are each connected to
an input channel on the vector signal analyzer where they are digitized and then
recambined into 2 single complex signal of the form +Q. Fig. 1 shows an example
of the measurements abtained when the HP 89410A and HP 70911A are used
together. Although the | and (signals are each limited to 10-MHz bandwidth by
the analyzer’s anti-alias filters, the combined complex signal has a bandwidth of
20 MHz

Complex Signals

In any system where the | and O signals are analog, the accuracy of the system
and its dynamic range will be limited by the orthogonality of the signals and by the
match between the | and Q signal paths. Calibration routines can be used to mea-
sure and improve system performance (see Fig. 2). The system errors observed
during calibration are reduced using both hardware adjustments (performed elec-
tronically) and digital signal processing techniques. Table | lists the system errors
and the action taken to reduce the effects of the errors

A program has been developed that performs the system calibration and provides
some level of instrument control. This program is compatible with the HP B9410A's
HP Instrument BASIC Option IC2, eliminating the need for an external controller

Bibliography
1. Extending Vector Signal Analysis tg 26.5 GHz with 20-MHz Information Bandwadth,
Publication Number 5964-3586E, Hewlett-Packard, 1995

TRACE A: Chl+JCh2 Spectrum

o
dBn
Loghug PR e
10 - - P
8 — e =P f N7 o
fdiy ,“ LII L.‘ “._.
J | |
=105
dBn |
Center: O Hz Span: 20 MHz
TRACE B: D2 OPSK Meas Tine
1
|-Eye
200
"
fdiv
Ly —
Start: -1 syp stop: | s¥m

Fig. 1. The upper trac

lower trace Is the aye diagram obtained using the HF B3410A's optional digital demodulator

TRACEA: D1 Spectrum

4000900 Hz -53.638 4B
)
LogMag
.]
I
10 dB/div il
| '
T JIC I
—? S S S S e el L_.._‘J:L_,_.' e rr—a
; | I
-110 t T T
dBm | | |
Center: 0 Hz Span: 20 MHz
TRACE B: Ch1+jChZ Spectrum
B Offset 4000 000 Hz -51.84 dB
" - -
dBm m]
|
LogMag |
|
10 dB/div
E | | 3
-106
dBm
Center: 0 Hz Span: 20 MHz

Fig. 2. The upper trace shows the spectrum computed using the -0 signals without calibra

tinn The lower trace |5 the same spectrum after calibration, Only the largest component

should be present. After calibration the

0 bstantially reduced. The large spectral component has an image to the right of the
center, This image, which has also been reduced in amplitude, is caused by channel
mismatch ’

Table |

Summary of Analyzer System Errors
and Methods to Reduce Them

Method Used to Reduce Error

Microwave Signal Vector Signal
Source of Error Analyzer Analyzer
I-Q Quadrature Hardware Adjust
I-0 DC Dffset Hardware Adjust
|-Q Gain Match Digital Signal Processing
1-0 Delay Match Digital Signal Processing

by Robert T Cutler
Development Engineer
Lake Stévens Instrument Divisian

Octoher 1995 Hewlett-Packard Joumal

© Copr. 1949-1998 Hewlett-Packard Co.

tral line {center] caused by residual de on | and

87

Channe | 4 ‘L"P ‘L'.. OELA
£k
Trlgger ' el pos
} e — 4 Ii-l
| ; ‘ "
Sereen |>
Hoasure e ; i
| !
Markers | . 1|

(a)

Fig. 10. Conneeting the outputs of the HP 719104
information from a radar signal. (a) A narrow 2(

Fig. 10a shows a narrow pulse produced by using the video
output of the HP 70910A, and Fig. 10b shows an intrapulse

chirp produced by using the FM output of the microwave
receiver.

Acknowledgments

The author would especially like to thank John Fisher for
his initial management of the project and for his support and
guidance throughout. Others who made significant contribu-
tions to the project include: Ed Barich for project manage-
ment and preamp-mixer microcircuit design on the HP
70910A, Mark Coomes for project management and design
of the system firmware, Bill Walkowski for his efforts on

88 October 1995 Hewletl-Packard Journal

SO PO VY T IO~

R Freq: 75.200BER HH:
il LOE NH:
Measur A L
Galn:
u Gain: o8
ivar ten: 18 df

-200. 8B4 nl

Trigger Level:

{h}

1 HP TOTO3A high-speed oscilloscope enables the capture and display of much

se. (b) An FM chirp.

market research and product definition, and Nancy MeNeil
who developed the receiver personality downloadable pro-
gram. Finally, the author would like to thank the entire
management team for their patience and support during
development.

References

1. M. Wechsler, “Characterization of Time Varying Frequency Behav-
ior Using Continuous Measurement Technology,” Hewleti-Packad
Jowrnal, Vol 40, no. 1, February 1989, pp. 6-12,

2. K. Burke, et al,, “Vector Signal Analyzers for Difficult Measure-
ments on Time-Varying and Complex Modulated Signals,” Hewleti-
Packard Jowrnal, Vol. 44, no. 6, December 1993, pp. 6-30.

© Copr. 1949-1998 Hewlett-Packard Co.

L

L]

.

®

An IF Module for Wide-Bandwidth
Signals

71910A rec

the HP

n and variabie banawid

spectrum analyzer

—
o
(9]

Jain accuracy of a

by Robert J. Armantrout, Terrence R. Noe, Christopher E. Stewart, and Leonard M. Weber

The HP 70911A IF module provides much of the new fune-
tionality present in the HP T1910A microwave receiver.
From the start, the primary design goal of the HP T0911A
was to overcome the 3-MHz [F bandwidth limitation of exist-
ing Modular Measurement System (MMS) spectrum analyz-
ers. At a minimum, we wanted a tenfold increase in band-
width, but really hoped to achieve 100 MHz. Although
bandwidth was the major design focus, several other goals
were also important, including:

Accurate gain

Variable bandwidths

Pulse detection

Direct connection to demodulators

FM demodulation

[-Q down-conversion,

Of these goals only the first three are usually considered in
spectrum analyzer IF design. The others were based on the
need to better address the more complex signals employed
in modern communication and radar systems.

(Given the range of bandwidths required, previous spectrum
analyzer IF design work has concentrated on center fre-
quencies of 3 or 21.4 MHz. Obtaining the accuracy and sta-
hility of both gain and bandwidth required even at these 11
frequencies has always been challenging. While there are a
number of welllunderstood design alternatives and ap-
proaches available for 21.4-MHz and 3-MHz IFs, they did not
exist for the 321.4-MHz center frequency chosen for the HP?
7091 1A, Because of this some degradation of accuracy and
stability was anticipated, and the design team was anxious
1o minimize any such degradation.

Fortunately, advances in both components and fabrication
techniques were underway that were applicable to the
needs of the project. The increasing availability of wide-
bandwidth RF components in surface mount packages and
the growing internal repertoire of surface mount manufac-
turing expertise suggested that the performance goals could
be achieved without the need for internal microcirenit
developments,

The resulting design makes extensive use of surface mount
technology to achieve the goal of 100-MHz bandwidth at the
321 4-MHz center frequency while maintaining the excellent
gain accuracy and stability expected ol spectrum analyzers.
In addition, optional down-conversion and demodulation

t Here O is filer quality factor, not quadrature a

features extend the utility for wide-bandwidth signals with
complex modulations.

Fig. 1 shows the major internal functional blocks that make
up the HP TO911A, A detailed discussion of the design con-
siderations for these blocks is given below. Note that the
module is partitioned into standard and option sections. An
option cardeage, similar to that offered in the HP 859xE
Series spectrum analyzers, provides a standard interface for
all options.

Variable-Bandwidth Design

The following discussion is divided into three parts. The first
part gives some background about the design of variable-
bandwidth filters. The second part describes an alternative
design that was considered and proven for 1-MHz-10-
10-MHz bandwidths, but not included in the final product
release. The final part discusses the design of the 10-MHz-
to-100-MHz bandwidths of the HP TO911A.

Background. To serve as background material for describing
variable-bandwidth filter design, the design approach used
in the HP T0903A IF module is described here. The HP
TOBOIA was the predecessor of the HP TO911A and used the
synchronously tuned class of filters.

Svnchronously tuned filters consist of several poles with the
same center frequency and QY with buffering between the
stages. There are several advantages to using this particular
topology, foremost being the excellent pulse response of
these filters. This response allows for fast sweep speeds on
a spectrum analyzer. Since we are trying to create a continu-
ously variable bandwidth over a large adjustment range, it is
also important to have a filter that can be easily adjusted.
Synchronously tuned filters are easy to tune and are tolerant
of a slight misalignment in different stages. Also, unlike
other bandpass topologies, the () of each stage is less than
the final required filter (.
To make these stages variable-bandwidth, a series resis-
tance is added (o reduce the @ of each of the individual
stages. The individual stages look like the circuit in Fig, 2.
The bandwidth of this cireuit is given by the following
equation:

BWage = (R +RpV/(2nCRRy,)

89

Oetober G Hewle-Packard Journial

© Copr. 1949-1998 Hewlett-Packard Co.

ana : IF Bandwidths Calibration
Pk ?:: fﬂaaligs 1010 100 MHz o9 %t:: ;‘;E‘ R Atenuator
Input 5 Poles 0t 15dB

Standard
Control

Option
Control

Fig. 1. Block diagram of the HP 7091 1A IF module.

where Ry, is the equivalent parallel resistance across the
tank circuit and Ry is the series Q-reducing resistance. By
adjusting R, the bandwidth can be adjusted continuously.
R}, is the combination of the input impedance of the buffer
stage and the equivalent parallel resistance of the tank
circuit.

By cascading several of these individual stages, a synchro-
nously tuned filter with the desired bandwidth can be
created. The equation for the bandwidth of an n-stage syn-
chronously tuned filter is:

1
meral e Bwsmge (2" - l)

The typical HP spectrum analyzer has four or five stages in a
synchronously tuned filter, which results in individual stage
bandwidths of 2.3 to 2.6 times the overall filter bandwidth.

To implement a continuously variable synchronously tuned
filter, the series resistance is created by using p-i-n diodes as
variable resistors. The p-i-n diodes used are optimized as
current-controlled RF resistors. The RF resistance varies
with forward bias current according to the following rela-
tionship:
R=al("b
Amplifier Amplifier

AN

i

1”_.1';:“__.

Fig. 2. RLC tank circuit with a series resistance (R) for adjustment.
This circuit represents one stage of a synchronously tuned filter.

90 October 1995 Hewlett-Packard Journal

Video Band-
widths 10 kHz
fo 100 MHz

Envelope

¢ Video
Detector Video Gain o 2

Output

10-MHz
Channel
Filters

T0-MHz
Down-
Convertar

140-MHz
Down-
Canvierter

Fm

Discriminator

—I-a
Down-
Converter

where a and b are constants and I is the forward bias cur-
rent in the diode.

This resistance characteristic holds for frequencies above
the low-frequency limit, which is set by the minority carrier
lifetime of the p-i-n device. Below that frequency the devices
behave like ordinary p-n junction devices and rectify the
signal. This results in distortion effects that can limit the
dynamic range of the filter. The recommended operating
frequency is ten times the low-frequency limit, which is
given by the following equation:

=
f|m'.1'| - 2
where 1 is the carrier lifetime. To minimize the distortion
effects from rectification, ofien several p-i-n diodes are used
in series to minimize the signal voltage across each individ-
ual diode (see Fig. 3).

T

This topology depends on a low impedance driving the p-i-n
diodes and a high impedance buffering the tank circuit.
Typically an FET buffer amplifier is used as the amplifier at
the output of each stage because of its high input imped-
ance, Care must be taken in the design of this amplifier to
avoid distortion problems caused by the large signal voltage
across the tank circuit. Keeping the nonlinear junction
capacitance of the FET buffer amplifier small compared to

FET
. wiﬁer

Amplifier

—’--N—H—H—H—o-
N —— — |
P-I-N Diodes

Cm= L

W—=-e
"HVWA-¢

Fig. 3. RLC tank circuit with p-i-n diodes in place of a series
resistance,

© Copr. 1949-1998 Hewlett-Packard Co.

the capacitance of the overall tank circuit minimizes these
distortion effects.

Adjusting the current in the p-i-n diodes can provide contin-
uously variable bandwidths over a large range. Usually a
digital-to-analog converter (DAC) is used to control the cur-
rent in the p-i-n diodes and allow for setting different band-
widths.

This method of varying the bandwidth of the filters works
very well with one slight problem. The series resistance in
combination with the parallel resistance across the tank
circuit creates a voltage divider. Varying the series imped-
ance into the tank circuit not only changes the filter band-
width, but also changes the loss through the filter as well.
This amplitude change is an undesirable side effect. Several
methods have been used to compensate for this change in
amplitude.

One of the methods that has been patented by Hewlefi-
Packard uses feed-forward compensation (see Fig. 4). This
method has several advantages over previous schemes that
rely on feedback for amplitude compensation. The idea is to
sum the proper signal at the output node to offset the drop
across the series resistance element.

By summing a properly scaled version of the input signal
back into the output node with a compensation resistor R,
the voltage drop across Rs can be canceled. By sefting

K = 1+R/Ry, the voltage at the output node is always equal
to Vin, independent of Re.

Since Ry, is determined by the Q of the tank circuit and the
input impedance of the FET buffer amplifier, it does not
vary with bandwidth. Thus R can be adjusted for each pole
of the filter to compensate for amplitude variations. Varia-
tions in Ry, over temperature can be compensated by using a
thermistor in the R, circuit to cancel their effect.

Summing a scaled version of Vj, into the output node with-
out introdueing significant amounts of noise and distortion
is accomplished in some HP IF circuits with a transformer
circuit, By adding a primary winding to the tank inductor a
transformer is created with a one-to-four turns ratio (Fig. 5).
This sets the value of K to be four and determines the value
of R, for a given Ry, as: R, = 3R}, Using a transformer with a
one-to-four turns ratio yields an impedance transformation
of 1 to 16. Thus, a resistor on the primary side of the trans-
former looks like 16 times the resistance from the secondary
side. Feeding the primary side of the circuit from Vi,
through a compensation resistor requires a resistance of:

R = 3R,/16.

Cascading several of these stages together implements a
synchronously tuned filter that has a continuously variable
bandwidth and no change in amplitude.

;+%" V':-cﬁ";
v.,.@ n,§ xx\ri,.é:
I 177

Fig. 4. Topology for a feed-forward amplitude compensation circuit,

Ili
|

Fig. 5. Feed-forward amplitude compensated RLC tank eircuit

The HP 70903A uses four of the stages shown in Fig. 5 to
implement bandpass filters with bandwidths adjustable from
100 kHz to 3 MHz at a center frequency of 21.4 MHz.

Design for 1-MHz-to-10-MHz Bandwidths. In the HP 70911A IF
module we originally wanted to have continuously variable
bandwidths down to 1 MHz at a center frequency of 321.4
MHz. This required an overall Q of 321.4. Even with several
cascaded stages in a synchronously tuned configuration, the
individual poles still required a loaded Q greater than 120,
To achieve a loaded Q this high requires a device that be-
haves as a resonant circuit with a much higher unloaded Q.
At a center frequency of 321.4 MHz there are very few
choices of resonators that can achieve a Q this high. Given
the size constraints of fitting on a PC board inside an MMS
module, the possible solutions to this design problem were
limited.

Some of the traditional choices for high-Q resonators in this
frequency range include helical resonators and transmission
line resonators. The size of either of these choices was the
biggest obstacle to their use in the HP 70911A module.

A new resonator technology was found that met all of the
constraints. This resonator is a quarter-wavelength shorted
coaxial transmission line formed from a high-dielectric-
constant ceramic material. The dielectric constant of the
ceramic is approximately 90.5, which yields a length of less
than I inch at 321.4 MHz for a quarter-wavelength resonator.
The coaxial resonators are formed with a square outer con-
ductor 0.238 inch on a side and a circular inner conductor of
0.095-inch diameter. These dimensions are small enough to
mount four of these resonators on a single printed circuit
board with the appropriate circuitry to create a four-pole
synchronously tuned filter. The unloaded Q) of these ceramic
coaxial resonators at 321.4 MHz is around 220,

A shorted transmission line (Ty) behaves like a parallel RLC
resonant circuit at a center frequency corresponding to a
quarter wavelength of line. An equivalent RLC lumped-ele-
ment model for this circuit can be calculated by matching
the slope of the reactance change with the frequency of the
transmission line circuit at resonance to an equivalent RLC
circuit (Fig. 6). The equivalent parallel resistance can be
calculated from the Q of the resonator.

To implement a synchronously tuned filter all of the stages
need to be aligned to exactly the same center frequency. By
adding an adjustable capacitance in parallel with the
shorted transmission line the stages can be pulled into align-
ment with the center frequency. This requires that the
resonant frequency of the resonator be higher than the final
required center frequency because the added parallel capac-
itance will lower the resonant frequency.

October 1995 Hewlett-Packard Journal 91

© Copr. 1949-1998 Hewlett-Packard Co.

Resonator @ 8loZo
A
g e > s lE co= L= o
adf,
» d 4z,0
= = R=—-

Fig. 6. Equivalent circuit for a ceramic resonator,

The resonator chosen for the HP 70911A investigation was
cut to a length that corresponded to approximately 360 MHz
s0 that it could be pulled into alignment at 321.4 MHz. Using
varactor diodes for the parallel capacitance allows the align-
ment of all of the center frequencies using a DAC under
automated computer control.

For a square transmission line with a round center conduc-
tor the characteristic impedance of the line can be approxi-
mated by the following formula:!

Zp = 6—2]n[l.(]T!lﬂl]ohms
vEr ¢
where w is the width of the square transmission line, d is the
diameter of the coaxial element center conductor, and €, is
the relative permittivity of the dielectric.

From the dimensions given above for coaxial resonators, Zy
is calculated to be approximately 6.3 ohms. Using the formu-
las given for R, L, and C in Fig. 6, the equivalent circuit of
the resonator looks like Fig. 7.

To implement a four-pole synchronously tuned filter, the
final Q of each stage needs to be 140 to meet the final de-
sired bandwidth of 1 MHz. This implies a total parallel equiv-
alent resistance of 1004 ohms. Since the resonator parallel
resistance is only 1765 ohms, the total impedance of the
circuit that buffers each stage must be greater than 2327
ohms. It is a challenging design task to generate a buffer
stage with that high an impedance at a frequency of

321.4 MHz. To attain a maximum bandwidth of 10 MHz the
equivalent parallel resistance needs to be 100.4 ohms,

The circuit topology used for the 10-MHz to 100-MHz band-
widths, which is discussed in the next section, worked well
at the lower Q levels, but was unable to provide the high
impedance necessary for the minimum bandwidth of 1 MHz.
To attain the high impedance needed, a GaAs FET buffer
stage is used across the resonator (see Fig. 8). The driver
stage is a common-base configuration so the output imped-
ance level can be set high enough to be stepped up by a
tapped-capacitor transformer circuit, which is similar to the
10-MHz-10-100-MHz bandwidih cireuit. The varactor diodes
used to vary the capacitive taps have a tuning range of ap-
proximately 10 to 1.

1765 Ohms §

Fig. 7. Circuit values for the ceramic resonator’s equivalent cireuit,

92 October 1995 Hewlett-Packard Journal

- -
Amplifier Ci o=
®

-
Gy ==

Fig. 8. Resonator with eircuitry for bandwidth and center frequency
tuning

For a tapped-capacitor transformer the effective turns ratio
is given by: N = C/C; + 1. The impedance ratio varies with
N2, This impedance ratio provides the required bandwidth
range but there is a drawback. The tapped-capacitor frans-
former also steps up the signal voltage at the input of the
FET amplifier. This leads to distortion problems. The solu-
tion was to step the voltage back down with a fixed-ratio
tapped-capacitor transformer (see Fig. 9). This keeps the
voltage at the FET down to a level that keeps the distortion
within allowable limits.

Varying C; and C}, can set the desired bandwidth from

2.3 MHz to 23 MHz for each pole. C,. is used to adjust the
center frequency to 321.4 MHz for each pole. Since the effec-
tive capacitance across the resonator changes as the tap
capacitors are varied, the center frequency needs to be re-
adjusted as the bandwidth is varied. This is accomplished
with varactor diodes driven by DACs and a lookup table
containing the appropriate voltage settings for each band-
width in 10% increments over the entire range of band-
widths. Cascading four of these stages as a synchronously
tuned bandpass filter yields an overall bandwidth of 1 MHz
to 10 MHz.

Design for 10-MHz-to-100-MHz Bandwidths. The dynamic range
limitations of the resolution bandwidth filter design ap-
proaches described above meant that they would not work
for the HP 7T0911A. A different approach was needed. A syn-
chronous type of filier was still desired because synchro-
nous filters have low group delay variation. This is a require-
ment for good pulse fidelity, which was one of the goals for
the HP 7T0911A. A five-resonator synchronous filter was cho-
sen for the shape factor requirements and the range of band-
width desired. These are two conflicting requirements
because, unlike other filter types, increasing the number of
resonators in a synchronous filter decreases the required Q
of the individual resonators. For the required maximum

s = 2
- -
Amplifier € == €. == = of
"
® 2 >~| ~ FET Buffer
' —— ———
Gl i S = G —

Fig. 9. 1-MHz-10-10-MHz bandwidth filter stage.

© Copr. 1949-1998 Hewlett-Packard Co.

bandwidth of 100 MHz at a resonant frequency of 321.4 MHz.
the fractional bandwidth of the composite filter is over 300,
and with five resonators, each tank would have a fractional
bandwidth of over 80% of its center frequency.

A variable resonator with low insertion loss and low distor-
tion was needed. Existing variable-bandwidth filters
changed the Q of the resonator by varving its load resis-
tance. For a five-resonator synchronous filter:

e 21/5
Qsection = Qoveran X v2 =k

For the 10-MHz bandwidth,

(321.4/10) x V215 _ 1 = 1239,

Qsection =
and for the 100-MHz bandwidth,

Quoction = (321.4/100) x y21/5 1 = 1.24.
For a single resonator, the bandwidth would be 26 MHz for
the composite filter to have a 10-MHz bandwidth and 260
MHz for a 100-MHz setting. That means that a parallel reso-
nator with an impedance of about 35 ohms at resonance
would need to see a parallel resistance of between 45 and
450 ohms.

One of the ways the () was changed in previous variable-
bandwidth filters was to change the loading on the resona-
tor with p-i-n diodes. A current source drove a series of p-i-n
diodes connected to the top node of the resonator, which
was connected to a high-impedance amplifier.

This is a good solution since p-i-n diodes act like inexpen-
sive electronically controllable RF resistors. Distortion in
p-i-n diodes can be reduced by putting a lot of them in series
and using the same bias current. This method was tried but
there was a problem. For the narrow bandwidths, a large RF
voltage is present at the top node of the resonator. When
this voltage is applied to the gate of a FET or the base of a
bipolar junction transistor, the junction capacitance is var-
ied by the RF voltage, causing distortion. At 21.4-MHz or
3-MHz center frequencies where this scheme has been used,
the change in impedance because of this parasitic varactor
is not significant. At 321.4 MHz the degradation in the third-
order intercept is too great given the aggressive goals of the
HP TO911A.

It seemed wise at 321.4 MHz to avoid high impedances, high
RF voltages, and noise-figure-degrading p-i-n diodes. Trans-
forming our characteristic impedance of 50 oluns up and
then down using reactive transformations would allow us to
avoid high-impedance amplifiers and p-i-n diodes. A capaci-
tive transformer could be implemented with varactors to
give us the desired continuous bandwidth variation. How-
ever, reference texts suggest that capacitive transformers
should be used in cases where the resonators are only oper-
ated up to 20% bandwidth. In the HP T0911A, the resonators
need to operate up to 81% bandwidth. It seemed like there
was little hope of getting this scheme to work, but it was
tried anyway.

With this topology the only place that there would be high
REF voltages is at the top node of the resonator. Sinee there
were going Lo be varactors at that node, there was concern
about distortion. This was solved by putting the varactor
dindes in a back-to-back configuration so that there would

* o
_1 LE v B A
@— VYV +—0
v T X v
v v

Fig. 10. Resonator for 10-MHz-10-100-MHz bandwidth. The
variable capacitors are varactor diodes

be some cancellation of the effect of the RF voltage (see
Fig. 10). In this circuit, when the upper varactor increases in
capacitance because of a positive swing of the RF voltage,
the lower varactor decreases ifs capacitance, canceling out
the change. Thus, the distortion problem was minimized.

The main effect of trying for over 80% bandwidth with ca-
pacitive taps is a nonideal filter shape (Fig. 11). At the wider
bandwidth settings the upper tap capacitors are much larger
than the lower tap capacitors. The circuit resembles a high-
pass filter and doesn't have the ideal resonator rejection
above resonance. This can be compensated by adding series
inductors that will resonate with the upper tap capacitors
(Fig. 12). The bandwidth of these outer resonators is high
enough for the maximum bandwidth desired. As the main
resonator bandwidth is decreased the outer resonator shifts
up in frequency because the upper tap capacitance de-
creases. This shift does not cause trouble sinee the outer
resonator has a bandwidth that is high regardless of the tap
setting because of its 50-ohm loading on one port and vari-
able loading on the other port.

The main resonator impedance was chosen to be 35 ohms at
resonance so that for the widest bandwidths the Q-reducing
resistance required was greater than 25 ohms (50 ohms at
the input in parallel with 50 ohms at the output). Once that

0.0 +
m
-
T
-100 __,,_/__;‘_ ¥ — TR T N T— —
R - 5714
na MHz
Tapped
Ideal
With Series L

Fig. 11. The nonideal filter shape that results from using capacitance
to achieve over 800 bandwidth.

October 1905 Hewlett-Packard Journal - 93

© Copr. 1949-1998 Hewlett-Packard Co.

L L
b T L
@M V VYV +mQ
v 7 T \v/
v v

Fig. 12. Resonator compensated by adding series inductors that
will resonate with the upper tap capacitors.

was decided, the values for L and C were easy to calculate.
One of the complicalions of using the tapped capacitors is
that the equivalent capacitance in shunt with the tank induc-
tor changes with the bandwidth. This problem is solved by
using DACs to control the voltages of all the varactors. A lot
of calibration ROM space is required to support this circuit
topology. All five resonator circuits have the lower and up-
per tap varactors ganged together (see Fig. 13). The shunt
tank capacitors are connected to separate DAC outputs al-
lowing independent control of the center frequency of each
resonator.

The resonator circuit shown in Fig. 13 is used in the HP
T0911A. The insertion loss for this circuit is less than 6 dB
for the 26-MHz setting and about 1 dB at 260-MHz band-
width. The third-order intercept point is about +29 dBm re-
ferred to the output for all settings. Group delay variation is

&
nng W == 29pF | Z2200pF
, |-
470 nH r
M .
¥y =
('K == |29pF | 470 nH
4 P o
2200 pF 17.5nH = ' L.
” —® mm a A
1kQ e
470 nH a § _‘
VY — | AypF -
T aronH =
m_g ol
o] |kn§ .
1k A =—|29pF
* Center Frequency
* DAC Inputs Adjust

* Upper Tap

less than half a nanosecond in wide mode and about 3 ns for
the narrow-bandwidth setting.

Accurate Gain

The gain accuracy of the HP 70911A IF module depends on
the gain of the seven step gains and the five filter poles and
the accuracy of the calibration attenuator. How gain accu-
racy is achieved in each of these elements is discussed
below.

Calibration Attenuator. The calibration attenuator is used dur-
ing self-calibration of the HP 71910A receiver. The customer
performs receiver self-calibration periodically to ensure that
the receiver meets all of its specifications. This procedure
measures and corrects several aspects of receiver perfor-
mance. Among other things, it measures the gain of the step
gain and attenuator stages and measures and corrects dis-
piayed linearity errors in the linear detector.

Since the calibration attenuator is used as a reference stan-
dard against which other parts of the receiver are measured,
it is essential that the attenuator yield accurate and stable
gain over the receiver’s specified 0-to-55°C operating tem-
perature range. Over this range, and over the attenuator’s
(-dB-to-13-dB attenuation range, accuracy is guaranteed
within 0.3 dB at 321.4 MHz.

At these frequencies, variable attenuators are traditionally
designed using semiconductors with bias dependent resis-
tivity. Examples would be p-i-n diodes with a current depen-
dent resistance or GaAs FETs with a resistance that depends
on gate voltage. Unfortunately, these types of attenuators do
not demonstrate the required temperature stability. For this
reason, the calibration attenuator was designed as a series

¥ == 23pF §1kn
470 nH
m™m
23pF ®
A == | 29pF
man A - | 4P
1750H 2200 pF
& ALL ® il
23pF
nanug
V = | BpF
> 17.5nH < 2200 pF
[M AAA—9—]|
1k o8
A = | BpF
®
* Lower Tap

Fig. 13. Circuitry for one pole of the IF bandwidth filter showing the upper and lower tap varactors ganged together.

94 October 1995 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A = =

P L P | o

$

8dB 4dB 2dB 1dB
—“WN—=0 o ——o — \MAO
@ W@ —® —8

SRS RERE

vV VV VV VYV

0.25dB 0.12dB 0.06 dB 0.03dB

of fixed switchable attenuator sections (Fig. 14). The 1B
through 8-dB attenuator stages are pi attenuators made with
surface mount thick-film resistors. The 0.25-dB through
0.03-dB attenuator stages could not be designed as pi attenu-
ators because the resistance values required for these very
low attenuation values would not be achievable at 321.4
Miz.

Instead of trying to figure out a way to build a 0.03-dB atten-
uator, we built a 6-dB tee attenuator with an attenuation we
could vary slightly. This was done by changing the resis-
tance of the shunt element of the 6-dB attenuator. By switch-
ing around small resisiors in series with much larger ones,
very small attenuation steps can be realized. Changing only
the shunt element in this attenuator does cause the attenua-
tor’s return loss to vary across its 0.5-dB attenuation range,
but this effect is small enough to be acceptable.

With standard 1% tolerance resistors, the attenuation aceu-
racy of this circuit will not be exact enough without align-
ment. During alignment of the HP 70911A, each 1-dB calibra-
tion attenuator step is measured and corrected to the
desired value by turning on the appropriate combination of
small attenuator steps. This alignment data is then stored in
EEPROM.

Step Gains. The purpose of step gains is to substitute a
known fixed gain ahead of the detector to enable accurate
measurement of low-level signals. The ideal step gain has a
0-dB gain state and a 10-dB gain state. The implementation
in the HP 70911A is shown in Fig. 15. The 0-dB (bypass) path
actually has approximately 2 dB of loss, while the 10-dB
(gain) path has approximately an 8-dB gain. The goal of the
circuit is to make the gain difference between the 0-dB and
10-dB states exactly 10 dB. The variable attenuator in the
gain path allows the gain to be trimmed to achieve this accu-
rate gain difference, During alignment the DAC values re-
quired to trim the gain are determined for each of the step
gains from measurements made at 0, 25, and 55°C. These
DAC values are stored in EEPROM tables which are con-
sulted by the module firmware during operation. As men-
tioned above, the calibration altenuator is used during cali-
bration to measure the actual gain step value. In addition,
because the calibration attenuator is accurate fo within

Fig. 14. The calibration attenuator
is designed as a series of switch-
able attenuator sections.

0.3 dB, it can be used in conjunction with the step gain to
provide accurate 1-dB gain steps over most of the 70-dB gain
range.

Filter Pole Gain. As discussed above, bandwidth variation is
obtained with a controlled variation of the Q of the filter
pole. Because of this, the gain of the filter pole also varies
with bandwidth. It is necessary to compensate for this gain
variation if the module gain is to be aceurate for all band-
widths. Since bandwidths are in 10% steps (10, 11, 12.1, ...),
there are a finite number of bandwidths for which gain com-
pensation is required, Associated with each filter pole is a
programmable gain block (see Fig. 16). This gain block is
used to provide the necessary gain compensation. The DAC
values for this compensation are determined during align-
ment and stored in EEPROM tables, which are consulted by
the firmware each time the bandwidth is changed.

In addition to controlling the nominal gain of the filter pole
these programmable gain blocks also play a role in tempera-
ture compensation of the overall gain of the module. Gain
drift with temperature is most troublesome during warmup.
For this reason, the temperature of the module is monitored
during warmup and the temperature value is used fo adjust
the gain to keep the output levels relatively constant. The
warmup period is defined as the first hour after the module

6 3
_H m__
° ¢

Fig. 15. A block diagram ol the step gains in the HP 70011 A,

October 1005 Hewlett-Packard Journal 95

© Copr. 1949-1998 Hewlett-Packard Co.

E

DAC Contral —

Fig. 16, A representation of a programmable gain bloek,

is powered on. During this period the temperature is mea-
sured once per minute and the rate of change is used to de-
termine the size of the gain adjustment required. After the
warmup period, the gain is stable for small changes in tem-
perature so this compensation mechanism is disabled.

The module firmware orchestrates gain changes based on
sampling a temperature sensor voltage with an ADC. The
ADC values are used to calculate the gain change based on
the following equation:

(Vy = Va)Gp

i V.’.ﬁ - Vu

where Vi is the voltage representation for the current tem-
perature, Vy, and Vas represent the voltage values for 25 and
55°C respectively, and Gy, is the peak gain change between
25 and 55°C for each bandwidth. Gy, is determined during
alignment.

The gain change calculated is used to index into an
EEPROM table to determine the DAC value necessary 1o
achieve the desired gain. The DAC-value-versus-gain rela-
tionship is determined and stored during factory alignment.

Pulse Detection

The linear detector allows the receiver’s user to recover AM
and pulse modulation from the input signal. It strips the car-
rier from the input signal and leaves only the envelope

(Fig. 17). The resulting envelope information can then be
displayed on an oscilloscope, allowing the user to analyze
the modulation or transient characteristics of the input
signil.

The key performance specifications for the detector are
bandwidth, dynamic range, and pulse fidelity. We would like
the detector bandwidth to be much wider than the IF mod-
ule’s bandpass filters so that it does not limit the [F module’s

(a) (b}

Fig. 17. (a) Input to the linear detector. (b) Output from the linear
detector after the carrier is stripped off

96 Cletober 1995 Hewlen-Packard Jomrmnal

bandwidth. The bandpass filters have a maximum band-
width of 100 MHz, which is equivalent to 50 MHz after detec-
tion. The detector is guaranteed to have at least twice this
bandwidth, or 100 MHz. Dynamic range is a measure of the
linearity of the detector. This is measured by changing the
input RF voltage in 1<B steps and measuring the resulting
change in the de output voltage, Ideally, it should also
change by 1 dB. Our specification guarantees that over a
26-dB range, this change will be acceurate within 3%.

Previous linear detectors in HP spectrum analyzers have
achieved this performance, but at much lower IF frequen-
cies of 10.7 or 21.4 MHz. Achieving this performance at
321.4 MHz was the most challenging aspect of this design.
A schematic of this cireuit is shown in Fig. 18. Q1 isa
common-base buffer stage that drives ()2, which is the de-
tector transistor. Q2 and CR1 each act as half-wave rectifi-
ers. Positive half cycles of Q1's output current flow through
CRI1 to ground. Negative hall cyeles flow through Q2's emit-
ter and collector and develop a voltage across R1, the load
resistor,

The fundamental linearity problem is that the input imped-
ance of Q2 varies dramatically with signal level. With no
input signal, Q2 is biased ar 120 uA. This yields a de resis-
tance looking into the emitter of 217 ohms. At full-scale out-
put, the de emitter current is 10 mA, reducing the resistance
to 2.6 ohms. This load resistance is in parallel with several
parasitic loads (Fig. 19). Among these parasitic loads are
(1's output capacitance, Q1's collector bias network, the
parasitic capacitance of the printed circuit board, and the
capacitance ol Q2% base-emitter junction. At high signal
levels, Q2 input resistance is low, and essentially all of Q1's
output current is delivered to the desired load. At low signal
levels, Q2% input resistance is high, and the parasitic ele-
ments tend to shunt current away from the desired load.
This variable current shunting degrades the linearity. so
good linearity requires that these parasitic elements load the
circuil as little as possible.

O

8V
o)
|
. N
100 R1 i
+BV | Differential
-
|

| Amplifier
Low-Pass | P
Filter

&
v

-5V

i: 7

Fig. 18. Linear detector cireuit,

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 19, Linear detector equivalent cireuit

Q1's output capacitance is minimized by using a common
base configuration. Also, a microwave transistor is used
because of its low capacitance. The load impedance of the
collector bias network is maximized by careful design of the
bias network. The printed circuit board layout is also
carefully designed to make nodal capacitance as small as
possible without sacrificing manufacturability.

The selection of the right transistor for Q2 was perhaps the
most critical component of the design. We needed 10 use a
microwave transistor to get the low junction capacitance we
wanted. We needed two things from this transistor: a low
base-emitter capacitance and, if possible, a capacitance that
decreases linearly with decreasing collector current. We
wanted this relationship between capacitance and current
because if capacitance decreases linearly with current, then
that capacitance will not degrade the detector's linearity.
This is because the junction’s capacitive reactance will in-
crease as its resistance increases, and the fraction of current
“stolen” by the capacitor will not vary with signal level.
Since this shunting effect is independent of signal level, it
will not degrade linearity.

It rarely happens, but sometimes semiconductor physies
decides to give you just what you'd like. This is one of those
cases. To a lirst-order approximation the base-emitter ca-
pacitance of a bipolar transistor is linearly proportional to
bias current, at least at moderate current levels. Even better,
we could easily extract this information from a transistor’s
data sheet curves. Low base-emitter capacitance is roughly
equivalent to high Iy (transition frequency). A capacitance
proportional to bias current will reveal itself as a curve of
that is at versus bias current, Theory suggests, and experi-
ment demonstrated, that the best detector transistors are
those that have a high and relatively constant [over their
entire operating current range. Unfortunately, mosi micro-
wave transistor data sheets do not give fr curves over the

100:1 range of bias currents that we wanted. Fortunately for
us. we have a lot of data books and found some microwave
transistors that met our needs. As expected, the transistors
with the best f7 curves yielded the most linear detectors.
Typical linearity error for the detector we selected is shown
in Fig. 20.

The detector's output current flows across R, generating a
I-volt drop at the maximum input level. Since the other end
of R1 is tied to the S-volt supply, it is necessary to use a dif-
ferential amplifier to reference the signal to ground. A sim-
pler approach would have been to tie R1 to ground instead
of +8 volts and to tie CR1's cathode to -8 volts. This would
have eliminated the need for a differential amplifier. But this
would have made it difficult to achieve good pulse fidelity.

Achieving good pulse performance can be hard even with
nominally linear circuits, but it is particularly difficult to do
with inherently nonlinear ones like detectors. These circuits
can exhibit overshoot. droop, or both on any time scale
(microseconds to seconds) if their bias networks are not
designed correctly. If the bias networks exhibit significant
impedance at virtnally any frequency below hundreds of
MHz, the bias voltages in the detector can vary with the
input signal. causing imperfections in the detector transient
response, For this reason it seemed risky to try to build a
good enough bypass network that could have presented
C'R1’s cathode with uniformly low impedance across a broad
{requency range. Rather than accept this risk. we chose to
ground CR1's cathode and aceept the complexity of a differ-
ential amplifier to recover the detected voltage.

The differential amplifier is integrated with a low-pass filter
that removes the 321.4-MHz component from the half-wave
rectified voltage across R1. This is an elliptic low-pass filter
with a 200-MHz corner frequency. Even though elliptic filters
have notoriously poor pulse response, we can use one here.
We can do this because of the bandwidth limitation imposed
on the input signal by the IF module's bandpass filters. The
elliptic filter's bandwidth is four times higher than the effec-
tive postdetection bandwidth of the IF module’s resolution
bandwidth filters. Since these filters prevent the higher-
frequency components from reaching the elliptic filter, only
very low levels of ringing are observed in the detected out-
put. We were able to demonstrate this by simulating the
pulse response of the resolution bandwidth filters cascaded
with an elliptic detector filler, As a result, we avoided the

2000
12.00 +
4.00 +

400 +

Error (%)

-12.00 +

~20.00 t 4 f

—A42.00 -32.00 ~22.00 ~12.00 ~2.00 8.0

Input Power (dB)

Fig. 20. Detector linearity error,

Octobier 1905 Hewlett-Packard Joienal 97

© Copr. 1949-1998 Hewlett-Packard Co.

need for a more complex full-wave rectifier with its inherent
carrier suppression.

Standard IF Outputs

For direct connection to commercial demodulators a
70-MHz or 140-MHz IF output is required. The HP T0911A
offers either or both of these outputs as options.

A simiplified block diagram for these options is shown in

Fig. 21. Both down-converters use the 321.4-MHz local oscil-
lator circuits (described later). This design has a VOO tuning
range sufficient for both down-converters. The LO frequency
for the 70-MHz down-converter is 391.4 MHz and the LO
frequency for the 140-MHz down-converter is 461.4 MHz.
These LO signals are applied to a mixer which has some
buffering in front of it and is followed by an optional filter
and an amplifier. Image rejection filtering is not part of the
design since it is assumed that the variable-bandwidth filters
are in the upstream path. The output filter is used to confine
the output bandwidth to a specified amount.

The same basic design is used for both down-converters.
The key difference is that in the 140-MHz design a pad fol-
lows the mixer, whereas in the 70-MHz design there is a
diplexer at the mixer output, which provides a good out-of-
band impedance match. The 70-MHz design has also been
made available as a special option for the HP 859XE Series
spectrum analyzers.

Channel Filters

The channel filters option provides an electronically switeh-
able bank of five bandpass filters and variable gain that can
be used at 70-MHz, 110-MlIlz, or 160-MIz center frequencies.

The input of the board goes to each filter cell through a
series of GaAs switches and well-isolated stripline 50-ohm
printed circuit board traces. The cells are large enough for a
standard-size printed cireunit board-mounted flter. The ma-
chined aluminum shield has pockets on the bottom to keep
the signal pins of the filter isolated from each other. There is
also a through path available for bypassing the filters. After
the switching network, there is a p-i-n diode attenuator that
allows continuous electronic amplitude control. Next, there
is a high-dynamic-range, wide-bandwidth amplifier. The am-
plifier also provides temperature compensation for the gain
of the board. The compensation is done by using a thermistor

321.4 MHz

i 391.4 MHz

300 MHz Fractional-N |

LD
(a)

- : Bandpass
3214 MH2 ~> v@ § > [geree

POTTTN Fractional-N 8 461.4 MHz

Lo
(b}

98 Octaber 1595 Hewlett-Packard Journal

to vary the current in a p-i-n diode which varies the emitter
degeneration impedance with temperature.

The excellent isolation, wide bandwidth, and variable gain
make the channel filters a flexible option for any of the
standard IF outputs.

FM Outputs

The FM discriminator generates an output voltage that is
linearly proportional to the frequency of the input signal. It
is used to demodulate wideband frequency modulated sig-
nals such as those found in satellite television links or chirp
radars.

The key performance specification for the FM discriminator
is linearity. Ideally, the frequency-input-to-voltage-output
transfer function should be a straight line. Our goal was to
make the maximum error from a straight line less than 1% of
the full-scale output across the 40-MHz deviation range of
the demodulator. The techniques used in this design were
driven primarily by that goal.

Many different types of circuits have been designed to do
FM demodulation. There are Foster-Seely discriminators,
ratio detectors, phase-locked and frequency-locked demodu-
lators, and slope detectors, Digital techniques, which count
the zero crossings of the input signal and extract the fre-
quency information mathematically, offer the promise of
the highest linearity. These techniques are used in the

HP 5371A,% the HP 53301A, and other modulation-domain
analyzers from Hewlett-Packard, Although they achieve ex-
cellent linearity, these products are large and expensive and
certainly would not fit on a single 4-inch-by-7-inch card in
the P TOY11A. For these reasons, it was necessary to pur-
sue a different approach.

Two analog demodulators seemed to offer the best potential
for high linearity across a broad band: a pulse count demod-
ulator and a time-delay discriminator. A pulse count demod-
ulator (Fig. 22) generates a fixed-length output pulse at
every zero crossing of the input signal. Since higher-fre-
quency signals have more zero crossings, the output pulses
occur more frequently. As a result, the de average value of
the output pulse train is higher for higher-frequency inputs.
The low-pass filter placed after the pulse generator filters

n
} '@ * » sa':l':ldtpa:“ = .", » 70 MHz

N

»’, » 140 MHz

Fig. 21. Simplified block diagram of the
outpit options for direct connection to

commercial demadulators. (a) T0-MHz

IF output. (b) 140-MHz IF output

© Copr. 1949-1998 Hewlett-Packard Co.

-

M O —el o
" i In

e T —t

Pulse
Generator

Fig. 22. Pulse count discriminator

out the carrier frequency component of the pulse train, leav-
ing a de value linearly proportional to the input frequency.
This linear conversion of input frequency to output voliage
is just what we needed to build a linear discriminator.

This type of demodulator can be implemented very simply
and inexpensively by using a retriggerable one-shot timer to
generate the output pulses. It does, however, have disadvan-
tages in our application. For one, very narrow pulses would
be required to make this work at 321.4 MHz. Also, these sim-
ple one-shot timers tend to have noisy outputs because of
variations in the width of the output pulse.

A time-delay discriminator works by converting the input
signal’s frequency modulation into phase modulation

(Fig. 25). A delay line delays the input signal by a fixed
amount of time. A phase detector on the delay line output
compares the phase of the input signal against the phase of
the time-delayed version of the input. Since the phase of a
high-frequency signal changes more rapidly than the phase
of a low-frequency signal, the phase difference between the
two inputs to the phase detector will increase linearly with
frequency. The output voltage of the phase detector is pro-
portional to this phase difference and thus, proportional 1o
the frequency of the input signal. Typically, the length of the
delay line is chosen so that the signal will be delayed 90 de-
grees at the center frequency of the discriminator. This gives
zero volts de output at the center frequency and centers the
output in the middle of the phase detector's transfer fune-
fion. This inherently linear conversion of frequency to phase
seemed to make this type of circuit a logical candidate for
our application.

However, this type of discriminator posed two potential dis-
advantages for our application. First, this discriminator is
inherently limited in the maximum frequency deviation and
the maximum modulation rate it can handle. Typical phase
detectors only behave well when the phase difference be-
tween the inputs varies by less than 150 degrees. Because
phase difference is proportional to input frequency, the max-
imum frequency deviation the discriminator can handle is
limited. Also, the sensitivity inherently rolls off at high mod-
ulation rates. In other words, as the input frequency starts to
vary more quickly, the level of the demodulated output will

Time Delay

Phase
Detector

IAVAE ;

Splitter

FM Qut

Fig. 23. Time-delay discriminator.

start to drop. The longer the delay line, the lower the modu-
lation rate at which this will occur. In our case, we need to
demodulate broad frequency deviations and as a result the
maximum delay line length is limited by deviation require-
ments and not modulation rate needs.

The second disadvantage of the time-delay discriminator is
based on phase detector characteristics. Our high IF of
321.4 MHz would suggest using a double-balanced mixer as
a phase detector. Conventional double-balanced mixers are
designed 1o work with a sinusoidal RF port drive. The result
is that the mixer output voltage varies sinusoidally with the
phase difference between the LO and the RF waveforms
(Fig. 24). Therefore, it is only linear if the phase difference
between the input signals does not vary much from 90
degrees. Since we wanted good linearity, that meant a short
delay line. Unfortunately, the shorter the delay line, the
lower the sensitivity of the discriminator. Short delay lines
mean low phase shifts and therefore low output voltages.
For good signal-to-noise ratio, we wanted to maximize the
time delay.

A double-balanced mixer has a sinusoidal transfer funetion
because its RF input voltage is sinusoidal. Ideally, if its in-
puts are square waves, the transfer function would be linear
over a 180-degree range. However, generating very fast
square waves is hard, and the mixer would need a very
broadband de-coupled IF to work well. Fortunately, there is
a type of double-balanced mixer that meets these require-
ments: the exclusive-0R gate. An ideal double-balanced
mixer generates its [F by inverting the RF waveform when-
ever the amplitude of the LO crosses zero (Fig. 25). This is
exactly what a digital exclusive-DR gate does with logic-level
inputs, Thus, with this characteristic an exclusive-0R gate
can be used as a double-balanced mixer.

Because of our high IF and broad frequency range, we
needed to use very fast logic circuitry if we wanted this to
work. Motorola’s ECLinPS Lite family of emitter-coupled
logic turned out to be perfect for our application. These
logic gates come individually packaged in eight-pin small-
outline ICs and feature rise times under 300 picoseconds.
The fast, square pulses generated by this logic are perfect
for making a very linear phase detector.

When logic gates are as small and fast as these, it's only nal-
ural to use them wherever you can. In the end almost all the
functions on the board including limiting amplifiers, mixers,

Dutput
Voltage
|
|
|
Input |
Phase |
0 90 180

Fig. 24. Transfer lunction for a double-balanced mixer.

October 1895 Howlett-Packard Jonmal 99

© Copr. 1949-1998 Hewlett-Packard Co.

Output
Voltage

Input
Phase

Fig. 25. Exclusive-0R transfer lunction

and phase detectors were implemented using these RF logic
gates, Because of the nature of FM modulation and demodu-
lation, logic parts work well in frequency modulation
applications.

Fig. 26 shows a block diagram of the FM discriminator. The
321.4-MIz input is applied to a limiting amplifier. The limit-
ing amplifier is a high-gain stage that turns the incoming FM
sine wave into a constant-level frequency modulated square
wave, Given that our signal processing is done with logic
parts, we obviously needed something like this to convert
the input into ECL levels.

An ideal FM demodulator is insensitive to amplitude modu-
lation of the input signal. The output voltage should not
change at all when the input amplitude varies, Limiting am-
plifiers are used to achieve this. They have high gain and
clip the level of the output signal at a predefined level. Our
limiting amplifiers are implemented with ECL line receivers,
which are differential-input high-gain amplifiers with ECL-
level outputs, Their high gain and hard limiting allow the FM
demodulator to work properly with inputs as low as —30 dBm.

The output of the limiting amplifier is a square wave with a
nominal center frequency of 321.4 MHz. This is mixed
against a 260-MHz LO to a lower frequency of 71.4 MHz,
where the actual demodulation takes place. Originally, the

Cable Driver —\\ § w0 g
(Limiting Amplifier) \

intent was to do the demodulation at 321.4 MHz. As we bet-
ter understood the problems we faced in trying to achieve
good FM linearity, it hecame clear that using a lower fre-
quency would produce betier results. At a lower frequency,
the period of the [F is longer. The rise time of the parts used
does not change, so overall the square waves are "squarer.”
Our analysis of the time-delay discriminator showed that it
was perfectly linear, but this is true only if the square waves
are perfect.

The use of small surface mount logic parts enabled us to
design compact LO generation and frequency conversion
circuitry. The 250-MHz LO is derived from the 300-MHz ref-
erence frequency available in the HP 70911A. The 300-MHz
signal is converted to ECL levels by a limiting amplifier. The
300-MHz reference clocks a prescaler, which divides the
input frequency by six to produce a 50-MHz cutput. The
300-MHz and 50-MHz ECL square waves are then applied 1o
the inputs of an ECL exclusive-0R gate. This gate performs
as a double-balanced mixer, producing 250-MHz and
350-MHz outputs. The 250-MHz output is selected by a band-
pass filter. This filter is ac coupled, so a limiting amplifier is
placed on the output to convert the 250-MHz LO back to
ECL levels.

The 250-MHz LO and the 321.4-MHz hard-limited input signal
are then applied to another exclusive-0R gate. This gate is
also used as a double-balanced mixer, producing outputs at
71.4 MHz and 571.4 MHz. The 71.4-Hz output is selected with
a low-pass filter. The entire LO synthesis and frequency con-
version circuitry occnpies only 3 in”,

The use of exclusive-0R gates and square waves, as opposed
to traditional diode mixers and sine waves, has a surprising
consequence. As noted earlier, a traditional diode mixer has
a sinusoidal phase-to-voltage transfer characteristic. As a
result, the IF out of an ideal diode ring mixer with sinusoicdal
inputs is another sine wave. In contrast, the logic level mixers
we use here have a triangular transfer function, As a result,
the IF output of these mixers is a triangular, rather than a
sinusoidal waveform. In our case, we don't care whether it's
sinusoidal or triangular, because we immediately convert
the IF to a square wave with another limiting amplifier.

Time Delay

Vi
\ A
71.4-MHz IF — \ BP"“IB
etector Filter 1
321.4-MHz \ \ Low-Pass —- =
IF Input —F Filter 7] ;Y —— >
Low-Pass
nLimiIt_iflilg BOMH: 7 Filter Differential
mplifier L0 Limiting Y Amplifier
300-MHz Amplifier vV,
b
Reference

250-MHz
@_ * 'f‘ Bandpass
Filter
Limiting
Amplifier H _ 50 MHz

Fig. 26. FM discriminator block diagram.

100

October 1995 Hewlett-Packard Jowrmnal

© Copr. 1949-1998 Hewlett-Packard Co.

The 71.4-MHz IF is next applied to the discriminator cir-
cuitry. The IF is applied to a special ECL cable driver IC
which produces ECL-ype outputs that have a larger than
usual voltage swing. This large voltage swing allows us to
place a series 50-ohm resistor on the output, cutting the sig-
nal amplitude in half. The resistor increases the output im-
pedance of the gate to around 50 ohms, which tums out to
be crucial to achieving good discriminator linearity.

The outputs of the cable driver follow two different paths.
One output goes directly to the input of the phase defector.
The other output goes to a delay line. This delay line is a
19-in-long 50-ohm stripline trace embedded in the middle of
the printed circuit board. Numerous bends and turns
squeeze it into a l-in-by-3-in area. The board, made out of
HP FR4. has a dielectric constant of about 4.5, yielding a
3.5-ns delay. This delay produces a 90-degree phase shift at
the center frequency of 71.4 MHz.

The delayed and undelayed signals now meet at the phase
detector, which is another exclusive-0R gate. The square
waves are applied to the high-impedance input of the phase
detector through a 50-ohm matching pad. The attenuation
value of this pad is critical to good discriminator linearity.
As mentioned earlier, good square waves are critical for
good FM linearity. The attenuation value chosen strikes a
balance between two "desquaring” mechanisms.

If the attenuation value is small, the delay line output will
not be isolated from the 1-pF input capacitance of the phase
detector. This capacitor degrades the return loss of the
delay line’s load. When a pulse emerges from the delay line
output and hits a poor impedance match, some of the pulse’s
energy is reflected back into the delay line. It then travels
backwards through the line to emerge at the delay line input
3.5-ns later. When the pulse reemerges hiere, it hits the out-
put of the cable driver. This incident voltage disturbs the
bias of the cable driver output transistors, and as a result
causes disturbances in the shape of the new square wave
that the cable driver is trying to generate. The degraded
shape of the square wave degrades the FM discriminator’s
linearity. As it turns out, this effect is worst when the re-
flected pulse arrives at the cable driver at the edge of a new
pulse. Unfortunately, this inherently oceurs at the [requency
where the delay line has 90 degrees of phase shift—right in
the center of the passband. This effect is seen as the linear-
ity ripple in the center of the passband (Fig. 27).

Error (%)

=} + . t 1

a4

~0.50 t t + 1

3014 na

Input Frequency (MHz)

Fig. 27. Discriminator linearity error (percent of full seale).

The way to minimize this problem is to use a matching pad
to isolate the delay line from the capacitance of the phase
detector’s input. The attenuation can only be so large be-
cause excessive attenuation introduces other problems. The
attenuator reduces the voltage swing to less than ECL lev-
els. As a result, the phase detector must provide gain to pro-
duce ECL levels at its ouiput. Unlike the ECL line receivers,
these exclusive-OR gates have a relatively low gain of 12 dB.
So, with low-level inputs, the output pulses of the phase
detector start to look less square. This manifests itself as the
broad, slow droop in the linearity curve. In the end. an atten-
uation value of 4 dB was chosen as a reasonable compro-
mise between these two linearity degrading mechanisms.

In the frequency domain, the phase detector can be thought
of as producing a de voltage proportional to the phase differ-
ence between its outputs. Looking at it in the time domain is
also interesting. The two inputs to the phase detector are
square waves with a fixed time delay of 3.5 ns between
theni. As a result, the phase detector produces output pulses
of fixed 3.5-ns width. As the input frequency changes, these
pulses occur more frequently, but the pulse width remains
the same. This is also exactly how the pulse count demodu-
lator works! So as it turns out, by using a linear phase detec-
tor our time delay discriminator turns out to be equivalent to
a pulse count demodulator. It works as well as it does be-
cause using a delay line to fix the output pulse width is more
stable than the RC time constant of a simpler implementa-
tion.

The phase detector outputs are applied to low-pass filters to
remove the ac component of the pulse train. These filters
have a 12-MHz bandwidth that sets the maximum frequency
modulation rate the discriminator can respond to. Since the
phase detector has differential outputs, a differential ampli-
fier is used after the filters. The differential amplifier re-
moves the de offset inherent in the ECL level output of the
phase detector. Further gain after the differential amplifier
is used to give a 1-volt swing for a 40-MHz change in input
frequency. The maximum frequency deviation the FM dis-
criminator can handle is limited by the drive capability of
this amplifier, rather than the diseriminator cireuitry itself. It
has been verified experimentally that the discriminator will
respond to as much as 100 MHz of deviation with essentially
nondegraded linearity. A switchable amplifier provides a
highersensitivity setting, giving a 1-volt swing for a 10-MHz
frequency change.

I-Q Outputs

The 1-Q down-converter (Fig. 28) recovers the in-phase and
quadrature components of the input signal. The IF input,
with a nominal center frequency of 321.4 MHz, is mixed
against a 321.4-MHz local oscillator. This creates an IF with
a nominal center frequency of zero hertz, or de. The output
bandwidth extends from — 50 MHz to + 50 MHz.

The input signal is split into two paths. Each of these paths
goes to the RF port of a mixer. The 321.4-MHz LO is applied
to the LO ports of both mixers. The LO input to one of these
mixers is shifted by 90 degrees. The IF outputs are low-pass
filtered to remove the image frequency, then amplified and
sent to the front panel of the HP 7091 1A,

October HHE Hewlet-Packard Journal 101

© Copr. 1949-1998 Hewlett-Packard Co.

$ 3 B P

®—o

o 321.4-MHz i ~

321.4-MHz L0
IFin Splitter &

321.4-MHz LO. The 321.4-MHz LO produces a synthesized sig-
nal that is locked to the 300-MHz reference signal and level
stabilized (Fig. 29). The LO has a VCO that runs at twice the
output frequency (642.8 MHz). The reason for running at this
frequency is based on the availability of a 600-MHz-to-
1000-MHz VCO design that has proven to have good phase
noise and has been in use for some time. The VCO output is
buffered and split into two paths: the main signal path and
the phase-locked loop path. The phase-locked loop path
goes from the splitter to a pad-amplifier-pad combination to
maintain reverse isolation from the prescaler. The prescaler
divides the 642.8-MIz signal by 32, 33, 36 or 37. The divide
number is controlled by an HP synthesizer IC that imple-
ments the fractional-N division. The output of the synthe-
sizer IC is equal to 300 MHz/160 = 1.875 MHz when the VCO
is phase-locked. This signal goes to one input of a phase
detector. The phase detector output is low-pass filtered,
summed, and fed to an integrator and loop filter. This is
where the synthesizer [C's noise is filtered. The noise comes
from the method of fractional-N synthesis used in the I1C.
This noise is designed to be well outside the few kilohertz of
bandwidth of the phase-locked loop where it is easy to filter.

The main signal path goes from the splitter to a divide-by-
two IC. This is an ECL part that is biased in the middle of its
threshold to allow for ac coupling of the 642.8-MHz VCO
signal. The output of the divider is 321.4 MHz which is then
input to an amplifier and resistive splitter. The splitter out-
puts are fed to the last gain stages of the board. These ampli-
fiers are run well into compression to get a constant output
power. The amplifier outpuis are combined with a 3-dB split-
ter/combiner and then aggressively low-pass filtered to re-
Jject the harmonics produced by the limiting action.

300-MHz
Reference

1.875 MHz 542.8 MHz

Prescaler Divider
=10 =16

|
h

Fractional-N
Synthesizer

Prescaler
32,33, 35,

IC 37

Fig. 29. Block diagram of the 321 4-MHz LO.

102 October 19495 Hewlett-Packard Journal

I L
> _‘L® > Low-Pass | M All-Pass o
Filter Filter e
i

ln,n ,g_l T Divider
|

Variable
All-Pass a®]
Filter lout

Fig. 28. -0} demodulator block
diagram.

I-Q Down-Converter. Two key performance specifications for
an [-Q demodulator are amplitude balance and phase bal-
ance. Amplitude imbalance is the gain difference between
the I and Q output ports, Ideally this gain difference should
be zero across the 100-MIHz input bandwidth of the demodu-
lator. Phase imbalance is a measure of the error in the phase
shift between the I and Q outputs. Ideally this phase shifi
should be 90 degrees across the input bandwidih.

The amplitude and phase balance of the demodulator are
both factory adjusted for best performance. Variable p-i-n
diode attenuators in the I and Q RF paths allow the gain of
the two channels to be adjusted independently. The H0-de-
gree phase shifter on the LO is also adjustable and is used to
align quadrature. These adjustments allow us to align the
channels very closely. The mixers used are purchased as a
matched set, with specified gain and phase matching across
our passbhand.

The difficult part was maintaining this balance across the
entire 100-MIz input bandwidth of the demodulator. If the
[requency responses of the two channels differ even slightly,
amplitude and phase balance will be degraded. For this rea-
son, we tried to make the two channels as synunetrical as
possible and as flal as possible. The printed circuit board
layout of the RF paths for both channels is identical so that
any board parasitics will be the same for both channels, The
IF circuitry was designed to be as broadband as possible.
For example, the IF low-pass filters have a corner frequency
of 175 MHz, even though they only need to pass frequencies
as high as 50 MHz. The corner frequency was placed this
high to minimize the filter's phase shift in the 50-MHz pass-
band. Our IF amplifiers are fast op amps that provide over

M'_ Cnmlhinsr

Low-Pass
Filter

321.4 MHz

© Copr. 1949-1998 Hewlett-Packard Co.

08+
- 04+
5
= 00—+ ‘_.___’W
]
S pat

08+

mas kil na
(a) Input Frequency (MHz)
Fig. 30. (1) 1-Q) quadrature phase error. (b) 1-Q amplitude imbalance.

200 MHz of bandwidth. These op amps are also used to
minimize the phase shift in the 50-MHz passband. If these
parts have significant phase shift, then there are likely to be
significant phase shift differences between the two chan-
nels, and phase balance will be degraded. Representative
performance for the I-Q demodulator is shown in Fig. 30.

To achieve the best phase balance across our bandwidth, an
adjustable all-pass filter is used on the I-channel output. The
phase shift versus frequency of this circuit is adjustable. It is
used to compensate for mismatches between the channels
in phase shift as a function of output frequency.

Acknowledgments
The authors would like to thank John Fisher for his support
and guidance on this project. Others who made significant

0500 +

0.300 +
0.100 +
B T ’/’,.._‘—L/\
—0.100 +
~.300
0500 ! : .
na 3214 nag
(b) Input Frequency (MHz)

contributions to this project include Greg Quintana for con-
troller and firmware design, Bill Walkowski for market re-
search and product definition, and Gil Strand for alignment
methodology and production test development. The authors
would also like to thank the entire management team for
their support during development.

References

1. H. Riblet, “An Accurate Approximation of the Impedance of a
Circular Cylinder, Concentric with an External Square Tube,” [EEE
Transactions on Microwave Theory and Technigues, Vol. MTT-31,
Oct 1993, pp. 841-844,

2. Hewlett-Packard Jowrnal, February 1989, Vol. 40, no. 1, pp. 6-41.

October 195 Hewlett-Packard Journal 103

© Copr. 1949-1998 Hewlett-Packard Co.

The Log Weighted Average for
Measuring Printer Throughput

The log weighted average balances the different time scales of various
plots in a test suite. It prevents an overemphasis on plots that take a long
time to print and allows adjustments according to the expected user
profile weighting. It is based on percentage changes rather than absolute

plot times.

by John .J. Cassidy, Jr.

The HP DeskJet 1600C printer is designed to be used for a
variety of documents, from simple memos to complex color
graphics. One of the main characteristics on which the
printer will be judged is throughput. We needed a way to
measure throughput across a wide range of plots that would
reflect a user's subjective perception of the product.

The two most common metrics—simple average and simple
weighted average—had serious problems when applied to
the disparate plots in our test suite. A simple and common
mathematical technigque was used to overcome these prob-
lems, resulting in a metric called the log weighted average.

This paper explains how to calculate the log weighted aver-
age, and why it is a good metric,

The Problem

We use a standard set of plots to measure the speed of the
HP DeskJet 1600C printer. For the sake of this paper, [sim-
plify the test suite down to four plots—we actually use 15.
The actual timings have also been simplified and are not
accurate for any version of the printer under development.
The four plots are (1) text page, a normal letier or memao,
(2) business graphic, some text with an embedded multi-
color bar chart, (3) spreadsheet with color highlighting of
some of the numbers, and (4) scanned image, a complex,
full-page, 24-bit color picture.

For a given version of the HP Deslclet 1600C printer, call it
version 3.0, let’s say the time to process and print each of
these pages is as follows:

10 seconds
20 seconds
45 seconds
10 minutes (600 seconds)

Text page
Business graphic
Spreadsheet
Scanned image

There are various things we can do to the printer to change
the speed of each of these plots. Often a change will speed
up one plot while slowing down another. What we need to
do is compare alternative possible version 3.1s and see
which one is faster overall.

104 October 1995 Hewlett-Packard Journal

Simple Average

The simple average is caleulated by adding up the time for
each of the plots and dividing by the number of plots. The
formula for this is:

Simple Average = 2T /n,

where n is the number of plots and T; is the time to process
plot number i.

For version 3.0 above, the sum of the four times is 675 sec-
onds which divided by four gives a simple average of 169
seconds (rounding from 168.75).

The problem with the simple average is that it gives equal
impaortance to each of the seconds spent on each of the
plots. Il a version 3.1a saved five seconds on the scanned
image, this plot would go down from 600 seconds to 595
seconds and the user would barely notice. But if a version
3.1b saved 5 seconds from the text plot, this plot would go
from 10 seconds to 5 seconds, twice as fast! The user would
be very, very happy with the text speed.

The simple average tells me that these two changes are of
equal value, So if | am using this meftric, I'll go for the easy
change of speeding up the scanned image by a little bit (less
than 1% faster), instead of the much more difficult and more
useful speedup of the text page (50% faster).

Simple Weighted Average

A common way to improve the simple average is to make
use of the fact that we know how often the user is going to
print each tyvpe of plot (at least we make good guesses). We
know, for example, that someone in our target market will
print a lot more simple text pages than complex scanned
graphic pages.

The simple weighted average applies a weight to each of the

plots, corresponding to the proportion of time the user will
be printing that type of plot. In mathematical terms:

© Copr. 1949-1998 Hewlett-Packard Co.

& ¥ EI-TE\“I'

Simple Weighted Average = ——,
W,

where W, is the weight for plot i. If the W; add up to 1.0, the

denominator can be ignored.

For the HP Desklet 1600C printer, let's say half of the plots
will be like the text page, one-fifth like the business graphic.
one-fifth like the spreadsheet, and one-tenth like the
scanned image. This gives the following calculation:

Plot Time (s) Weight T;W;(s)
Text Page 10 0.5 5
Business Graphic 20 0.2 4
Spreadsheet 45 02 9
Scanned Image 600 0.1 G0
Sum 1.0 75

The simple weighted average is 78 seconds.

This method of calculation is much better than the simple
average, It takes into account our knowledge of the target
market, and any average we come up with needs to be able
to do this.

But there are still problems with this average. Say that ver-
sion 3.1a speeds up the scanned image by 5% (down to 570
seconds), and version 3. 1b speeds up the text page by 50%
(down to 5 seconds).

We know from our own experience that speeding something
up from 10 minutes to 9.5 minutes is not very significant. On
the other hand, the 3.1b version, which makes the most fre-
quent task go twice as fast, would represent a very notice-
able improvement. However, the simple weighted average
rates the two versions very similarly, with the 3.1a winning
(at 75 s) over the 3.1b version (at 75.5 s).

Our subjective experience of time is such that we tend to
notice changes not in absolute seconds, but in percentages
of time, A one-percent speedup of any of the categories
would be impossible to detect without a stopwatch, but a
twenty-five percent speedup would be dramatic for any plot.

Criteria for a Good Average

A good averaging technique would have the following char-
acteristics:

It is based on percentage changes. For a short task, a small
speedup is significant. For a long task like the scanned
image, it takes a big speedup to make a difference. A good
average would not focus on how many seconds were saved,
but on what percentage of the task was saved.

It reflects user profile weighting. For the HP DeskJet 1600C
printer we need to emphasize text speed, since that is the
center of our market. But for another printer aimed at an-
other market, the spreadsheet or the scanned image might
be most important. The average has to allow tailoring.

It is invariant under a many-for-one substitution. If instead
of one text page weighted at 0.5, we substituted five text
pages each weighted at 0.1 into the caleulation (to avoid
dependence on the quirks of a single document), and if each
of the five text pages took the same time as the original one
(10) to print, the average should not change.

Log Weighted Average

The log weighted average fulfills the above criteria. Iis gen-
eral principle is to use a standard mathematical technigue
{logarithms) for keeping large and small numbers on the
same scale.

The formula for the log weighted average is:

o i & Z(InT)W
g Weighted Average = exp| —=——
- | =w,

where In is the natural logarithm (log to the base e). and exp
is the exponent function, e to the x. As before, if the sum of
the weights is 1.0,

Log Weighted Average = t‘xp(z{_hl'l‘ DWW).

For our example, the calculation would be:

Plot T;(s) InT; Weight (InT;))W;
Text Page 10 2.30 0.5 1.15
Business Graphic 20 3.00 0.2 0.60
Spreadsheet 45 3.81 0.2 0.76
Scanned Image GO0 6.40 0.1 0.64
Sum 3.15

Log Weighted Average = """ = 234s.

One of the first things you notice about the log weighted
average (aside from the fact that it took an extra step to do
the caleulation) is that the result of 23 seconds is shorter
than the results of the other two calculations. The simple
average gave 169 seconds, and the simple weighted average
gave 78 seconds. This is because the more sophisticated
averages do a progressively better job of moderating the
influence of the very long 10-minute scanned image plot.
Also, this example was artificially constructed with a wide
variation in plot times. Often we deal with plots that are
more similar than these. If the plots were very similar and
every plot in the test suite had exactly the same timing, say
30 seconds, then it wouldn’t matter which method you used.
All three methods would give the same average: 30 seconds,

Rule of Thumb

The biggest drawback of the log weighted average is that it
is less intuitive than the other two methods. There is some-
thing basically counterintuitive about using logarithms if
you aren’t a professional mathematician. They tend to throw
off our mental approximations of what is reasonable.

However, there is a relatively simple rule of thumb to help
us know what to expect when doing comparisons: A small
percentage change in one component is equivalent to the
same percentage change in another component, multiplied
by the ratio between theiv weights.

In our example, this means that a small change in the text
page (with a weight of 0.5) would be five times as important
as a change in the scanned image (with a weight of 0.1), and
two and a half times as important as a change in the spread-
sheet or business graphic (with a weight of 0.2). Thus, we
would expect a 1% change in the text page to be equivalent

105

October 1995 Hewlet-Packard Jourmal

© Copr. 1949-1998 Hewlett-Packard Co.

to a 5% change in the scanned image or a 2.5% change in the
other two plots.

This approximation is very close. A 1% speedup in the text
page, from 10 s to 9.9 s, reduces the overall log weighted
average from 23.4 to 23.3 seconds. The equivalent change
required for one of the other plots to get the average down
to 23.3 is shown in Table L.

Table |
Equivalent Speedups (Small Deltas)

Text page 0 s— 89 s = 1.00% faster
Business Graphic 20 s — 195 s = 248% faster
Spreadsheet 45 s — 439 s = 248% faster

4.90% faster

Scanned image 600 s —= 571 s =

As changes get bigger, the rule of thumb becomes less accu-
rate, If you make a big change in one of the components,
like speeding up the scanned image by 40%, you stray farther
from the expected equivalent speedups of 200 (half as
much) for the spreadsheet and business graphic, or 8% (one
fifth as much) for the text page. This change brings the log
weighted average down to 22.2 seconds. Table 11 shows the
equivalent speedups for larger changes.

Tablell
Equivalent Speedups (Larger Deltas)
Text page 10 s = 9.03s = H.7% faster
Business Graphic 20 s — 155 s = 225% faster
Spreadsheet 45 s — 349 s = 22.5% faster

600 s — 360 s = 40.0%

Scanned image faster

The Exact Rule

Exact calculation of equivalent speedups for any situation
using the log weighted average can be done using the fol-
lowing rule: Multiplying the tine for component A by a
Sactor v is equivalent lo multiplying component B by v
raised to the power Wa/Wy, the ratio of the weights of the
hwo components.

For example, if we multiply the text page time by 1.2 (slow-
ing it down by two seconds), that would raise the log
weighted average from 23.4 seconds 1o 25.6 seconds. To get
an equivalent change by altering the scanned image time, we
would have to multiply it by 1.2 to the fifth power (the ratio
of the text page weight to the scanned image weight is five),
or 600x1.27 = 1493, Thus, by changing the scanned image
time to 1493 seconds, we could also raise the average from
23.4 to 25.6 seconds.

For very large changes in any of the components, the log
weighted average gives results that can conflict with intu-
ition. For example, speeding up the text page from ten sec-
onds to one second would improve the average dramatically.
Such a speedup is wildly improbable for the TP DeskJet

106 October 1945 Hewlen-Packard Journal

1600C printer, but can be anticipated for some comparable
printer to be developed in our lifetime.

To get an equivalent improvement in the average by only
changing the scanned image, we would have to print it in
600x0.1% = 0,006 second (which probably violates some laws
of physics). You can use the exact rule to verify that the
same sort of numerical blowup results when you try to com-
pare any two printers that are greatly dissimilar. This is not
a particular problem for us. Greatly dissimilar printers also
have dissimilar weighting profiles, and we don’t know any
way to compare them well.

Usefulness of the Log Weighted Average

The log weighted average is designed around a user’s subjec-
tive perception of printer speed. It assumes the common
situation in which a user is working at a computer, sends
something to the printer, and somehow notices how long it
takes to come out. There is also an assumption that if some-
thing takes twice as long, the user is unhappy and if some-
thing takes half as long, the user is happy, and the unhappi-
ness in the first situation is roughly equivalent in infensity to
the happiness in the second situation.

There are some situations for which this isn’t true and the
log weighted average is the wrong average to use. For exam-
ple, you could have a printer in continuous use with no stop-
ping except to add paper and change pens. This might be at
a real estate office producing a large number of personalized
letters and envelopes each day and a smaller number of
scanned house photos. For a customer like this, the subjec-
tive perception of speed is not important. Two seconds
saved on a text page is no more important than two seconds
saved on a scanned image. The simple weighted average
would be the correct average (o use here,

Our success with this technique resulted from regular appli-
cation. On the HP Deskjet 1600C project, we timed the
I5-plot test suite twice a month. This helped us quickly iden-
tify and resolve issues that might otherwise have caused
problems.

Conclusion

The log weighted average does a good job of balancing the
different time scales of various plots in a test suite. It pre-
vents an overemphasis on plots that take a long time to
print, and allows adjustments according to the expected
user profile.

The main cost of the log weighted average is that it is less
intuitive than other methods. The rule of thumb and the
exact rule are good guides as to how the average will react.

The log weighted average has limits, but for comparing two
reasonably similar printers in a normal home or office envi-
ronment, it gives extremely helpful results.

Acknowledgment
Thanks to Jeff Best of the San Diego Printer Division for his
comments and discussion.

© Copr. 1949-1998 Hewlett-Packard Co.

i} Dynamic Modeling

Klaus-Peter Fahlbusch

Klaus-Peter Fahlbusch has
been an R&D engineer at
HP's Mecharnical Design
Division since 1989, when
he first jmned HE He at-
tended the Technical Univer-
y Sity of Darmstadt, receiving
% aDiplom Ingenieur in 1984
&% and a PhD degree in 1990,
brnh in mechanm‘:i engineering. While at the Univer-
sity, he did research in mechanical CAD systems and
tutored mechanical engineering. Presently the project
lead far the dynamic modeling module of HP PE/
SolidDesigner, he previously worked on varioug as
pects of the project, including the planar profile gen-
arator, the graphics softwara, the part and workplane
software, 30 labeling, blend modification and re-
moval, dynamic modeling, and VAR interfaces. He is
a member of the German society of engineers called
VDI and has published two articles about the design
and use of CAD systems. Klaus-Peter was bormn in
Darmstadt, Germany and served in the Gerrman mili-
tary from 14978 to 1879. He enjoys photography,
theater, and opera

Thomas D. Roser

A product marketing engl
neer at the Mechanical De-
sign Division, Thomas Raser
is responsible for the defini-
tion, structure. and pricing of
new products, meluding HP
PE/SolidDesigner. He joined
HP in 1992 He has managed
== / projects, done market re-
search, anrf er'kEr! on the introduction of HF PE/
SolidDesigner, He was awarded a Diplom Ingeniaur
in 1987 and a PhD degree in 1992, both in mechani-
vl engineering from the University of Stuttgart

While at the University, he researched CAD systems
and tutored mechanical engineers, and participated
as an exchange student in the U S.A. at the
University of Wisconsin. He has authored five papers
about object-oriented and knowledge-based design
systems and is @ member of VDI, a German society of
engineers Thomas was borm in Stuttgart, Germany
and served in the military from 1980 to 1981 He is
married, has one child, enjoys runming and biking,
and plays violin with a symphony orchestra

14 User Interface

Berthold Hug

Born in Gengenbach, Baden-
Wiirttemberq, Germany,
Berthold Hug received his

' mechanical engineering di-
ploma from the Furtwangen
| Engineering School in 1960
He then joined the HP Me-
chanical Design Division and
15 presently responsible for
technical marketing of the HP PE/SalidDesigner prod-
uct. He is also responsible for PE/SolidDesigner's
system architecture with focus on the use model and
usar interface. Previously, he was the project lead for
several CAD/CAM software projects including the
development of HP PE/SolidDesigner's user interface
Berthold 15 marnied and has two children: He likes to
play tennis, claringt, and saxophone

Gerhard J. Walz

With HP since 1984 at the
Mechanical Design Division,
Gerhard Walz is responsible
for the transfer of data from
the HP PE/SolidDesigner
praduct to HP PE/METD and
10 ACIS-based CAD systems.
For the HP PE/SolidDesigner
project, hie has worked on

© Copr. 1949-1998 Hewlett-Packard Co.

Lisp interfaces, integration of Motif and Starbase,
and IGES wire import. Before joining HF, he warked at
the Katharinen Hospital in Stuttgart, developing and
maintaining interfaces to analytical laboratory instru-
ments. Gerhard was born in Balingen, Baden-
Wiirttemberg, Garmany and received a Diplom Infor-
matiker degree from the University of Stuttgart in
1987 As a student, he worked at HP's Biblingen
Instruments Division where he wrote his thesis on
ser interface definition for a digital IC test system,
He also worked at the Colorado Springs Division as
an exchange student In his free time, he plays bas-
spon in the concert band at the University of Hohen-
heim, Stuttgart and in various woodwind ensembles.
His other musical interests include jazz, Gregorian
chant, and overtong music. He also spends time
biking, hiking, and traveling

Markus Kiihl

R&D engineer Markus Kihl

J recewed a Diplom informa-
tiker degree from the Univer-
sity of Erlangen-Niirberg in
1991, After hus graduation,
he joined the HP Mechanical
Design Division, where he is
currently R&D project leader
for the VAR development
toolkit for the HP PE/SolidDesigner product. He is
also responsible for user interface enhancements
His previous contributions include development of
the product’s user interface convenignce functions,
the action routing/personality/user interface commu-
nication model and various action routines and per-
sonality features, and special user interfaces like
browsers and the color editor. He also integrated
dynamic input devices such as the knob box and the
spaceball, including dynamic viewing using the
mouse, and developed and presented a traming
course on user interface design for internal and ex-
temal customers. Born in Bad Deynhausen, North
Rhine-Westphalia, Germany, Markus enjoys squash,
tennis, biking, motorcycling, traveling, and dancing,

107

October 1995 Hewlett-Packard Journal

24 Blending Algorithms

Stefan Freitag

Stefan Freitag joined HP in
1991 as an R&D engineer at
the Mechanical Design Divi-
sion. His current responsibi-
lities invalve parametric
modeling using a constraint
solver. His previous contribu-
tions include serving as proj-
ect lead for the HP PE/
SolidDesigner variable-radius blend project and
developing the link between HP PE/ME20 and PE/
SolidDesigner. He has also worked on kermnel devel-
opment, blend and chamfer functionality, and a
sheet-metal product. His work has resulted in a pat-
ent on a method for blending the edyes of geomerric
ohjects using CAD systems. Stefan was bom in
Minden, Germany and received a Master's dearee in
computer science from the Techrical University of
Berlin in 1890, His special areas of study were digital
image processing and computer vision, He gnjoys
playing saxophone and listening to jazz, especially
the "coal jazz” style developed by Miles Davis in the
1950

Karsten Opitz

Karsten Opitz has been an
R&D enginger at the Me-
chanical Design Division
since 1993. He has an MS
deqgree in camputer science
from the Technical Univer-
sity of Braunschweg,
Germany (1989) and a PhD in

" camputer science from
Arizona State University (1992), where his area of
specialization was computer-aided geometric design
He was responsible for software development for HP
PE/SalidDesigner, focusing on the ganeral kernel and
blend functionalities. Currently, he s the project
leader for blend and chamfer functionality. Karsten
has professional interests in geometric and solid
medeling and his publications include six papers on
computer-aided geomettic desian. Before joining HP,
he conducted research an scientific visualization at
Gesellschaft fiir Mathematik und Datenverarbeitung,
in Bonn. He was born in Cloppenburg, Garmany and
15 a member of the ACM and the SIAM

35 Open Data Exchange

Peter J. Schild

Peter Schild is currently
working as techmical coordi-
nator for the database inte-
gration product for HP
PE/SolidDesigner (PE/Work-
Manager for PE/Salid-
Designer) at the Mechanical
Design Division, He joined
2= HF as an R&D engineer in
1991 He took aver responsibility for the development
of the interface between HP PE/SalidDesigner and
PE/ME30 and developed the first STEP interface for

PE/SolidDesigner. He was alsa responsible for in-
fluencing the technical standardization of STEP in the
international standardization framewark, He partici-
pated as technical representative of HP in the ESPRIT
projects CADEX and PRODEX, funded by the Euro-
pean Community. Peter was born in Weil im Schoeen-
huch, Baden-Wirttemberg, Germany. He studied
psychology and computer science at the Universities
of Tiibingen and Karlsruhe and received his Diplom
Infarmatiker degree fram the University of Karlsruhe
in 1991. Peter enjoys biking, traveling, cooking, and
skiing

Wolfgang Klemm

Wolfgang Klemm has been a
software engineer at the
Mechanical Design Division
since 1991 He is currently
responsible for the auto
matic and interactive con-
version of surface models to
solid models, His previous
contributions include data
gxchange using |GES and other data exchange inter
faces for the HP PE/SolidDesigner praduct Wolfgang
was born in Plorzheim, Germany and received a
Dipiom Informatiker degree from the Technical
University of Karlsruhe in 1989. His hobbies include
hang gliding, skiing, and astranomy.

Gerhard J. Walz

Author’s biography appears elsewhere in this section

Hermann J. Ruess

Hermann Ruess was born in
Qbertauringan, Germany and
was awarded a Diplom Inge-
nieur in electrical enginger-
ing from the University of
Stuttgart in 1979. After
graduating, he joined HP's
Boblingen Computer Divi
sion, developing software-
supported interactive display hardware for CAD
applications. This was a cooperative project with HP
L.aboratories that developed a high-resolution laser
addressed liquid crystal display technology. Later he
was respansible for development of one of the first
HP CAD systems,; HP Draft. Subsequently, with the
Mechanical Design Division, he was responsible for
20 link software and developed the Model Interface,
the standard data interchange format of HP PE/MET0
and PE/ME30, which links other applications to
PE/MET0 and PE/ME30, including HP PE/Solid-
Designer. He now serves as a cansultant far intema-
tionally standardized product data exchange. He rep
resents HP in the international PRODEX and ProSTEP
projects and coordinates STEP data exchange with
other vendors and with PDES Inc. He helped coordi-
nate the development of the HP PE/SolidDesigner
STEP interface in cooperation with other major CAD
vendors. He is professianally interested in computar-
aided technoiogy for engineers and in product data
jntegration and has authored papers on open systems
for CAD data exchange. He is a member of VDI and
VDE, two German organizations for engineers, and
served two years in the civil service. Hermann is mar-
ried, has three children, and has helped organize an

association that spansors yauth activitias. He's add-
ing a solar heating systam ta his home and when he
has free time enjoys sports such as tenmis, volleyball,
biking, and hiking

51 Data Structure Manager

Claus Brod

Claus Brod was born in
Wertheim. Baden-Wirttem
berg, Germany, He received
a Diplom Informatiker de-
gree from the University of
Erlangen-Nimberg in 1991
Following his graduation, he
joined HP as a software de

D, WSS olopment engir
Mechanical Design Division and has worked on sey-
eral releases of the HP PE/SolidDesigner product. His
current responsibilities for the product include graph
its, globalization, porting activities, the onling help
server, and the data structure manager. Before joining
HP. he was a fregiance programmer and technical
writer His professional interasts include 20 graphics,
storage media, and abstract computer games. He's
published numerous articles in German computer
magazines and has written a book about floppy and
hard disk programming called Scheibenkleister Claus
enjoys shopping at flaa markets and garage sales,
hoping to add to his collection of comic books and old
computers. He plays volleyball and is a member of
DONALD, a German arganization of noncommer
cial True Danaldism followers

ar a5t Haa
gl ai ng

Max R. Kublin

A software development
engineer with the Mechani-
cal Design Division, Max
Kublin jeined the Bablingen
Engineering Operation in
1987, after receiving his
computer science diploma
fram the Furtwangen Engi-
neering School. Since join-
ing HFP, he has contributed to the development of
three CAD software products: HP PE/METD
PE/ME3D, and PE/SolidDesigner. He has worked
mainly on low-level coding, operating system inter-
faces, data structures, memaory management, graph-
ics, and command decoding, He is currently responsi-
ble for the general system architecture of the
division's products. For HP PE/SolidDesigner he was
responsible far the data structure manager and pro-
prietary filing subsystem. His professional interests
include object-oriented analysis and design, C++,
compilers, perfarmance tuning, operating systems,
parallel processes; and fault-tolerant systems. Bom
in Kiinigschaffhausen, Baden-Wirttemberg,
Germany, Max is marmed and enjoys biking, hiking.
photography, and building Tiffany-style lamps and
mirrars

108 October 1995 Hewlett-Packard Jowrmal

© Copr. 1949-1998 Hewlett-Packard Co.

61 Freeform Surface Modeling

Michael Metzger

SINTET SI. Michael is
the 3D/2D integration process and is B&D council
~hairman for the division. He has published a paper
an FORTRAN-SC, a FORTRAN extension for scientific
computation. Barn in Karlsruhe, G ny, Michael is
married, has five boys, and ¢ s hiking, taking pho-
tographs, and summers in Scandinavia

Sabine Eismann

Sabine Eismann was bom in
Freiburg im Breisgau, Ger
many and received her Di-
plom Informatiker degree in
1986 from the Furtwangen
Engineering School. Since
|oining the Mechanical De
sign Divisian in 1986, she
has worked on the develop-
ment af HP PE/ME30 She has also contributed to the
development of the HP PE/SolidDesigner product

ked on 20 functionality including topelogy
ng for profi 1ce, and overdraw

y worked on tf

18 mac

t/Shee lmj- sar, § currently responsible for
freeform modeling and machining functionality
Sabine 1s married and enjoys ballroom dancing and

hiking

69 Embedded Lisp

Jens Kilian

Jens Kilian received a
Diplom Int 2
in 1991 |HII”I the Te1 hrical
University of Darmstadt,
Germany, He joined HP in
1992 as a softwara develop-
ment engineer at the
Mechanical Design Divisior
and has contributed to the
I‘u\ulurl‘ nent of the HP PE/SolidDesigner product. He
on g rar9|nr| installation procedures, the
and the Lisp sub [
He continues to be |r-}‘.|:,-rlll‘1.!1|-.'. for maintaining the

Heinz-Peter Arndt

bLuI and Sun puaﬁu.ms and maint
system, the operating system infe

Germany, studie
of Stutfgart and re C
artificial intelligence

ning languages. and compil-
ers. He is married, ha children, and enjo
e with his family His other pasti
include readi ng. traveling, tennis, and biking

object-oriented prog

74 Boolean Operations

Peter H. Ernst

A systems architect at the
Mecharical Design Division,
Peter Ermst is responsible tor
topological algorithms and
overall system architecture
He began his HP career in
1886 at the Biiblingen Engi
earing Operation. He 15
professionally Intera
sulid modeling and his accomplishments include en
harcing the HP PE/ME30 kernel and designing and
Ing PE/SalidDesigner
isible for PE/SolidDesigner’s sys
temn architecture and for new Boolean operations
Betore joining HP, he developed single-mode semi-
conductor lasers at Siemens and real-time process
cantral soft rimg firm, His work has
= 1o methods of
15. Peter was born in
year and a half in the

ad in

ns

ware dat an e
resulted in @ pending paten
performing Boolean operatior
Munich, Germany and served a

German infantry. He gratuated in 1984 from the
Ludwig-Maximilian University of Munich, with a
Diploma in physics, specializing in laser spectros-
copy He is married and enjoys biking

© Copr. 1949-1998 Hewlett-Packard Co.

Robert J. Armantrout

5igna

ager for the
71910A wide-ba
HP. he designed
Agraspace in B
from the Univers
in 1978, with emphi

I Rﬂic £ coming to
5 at Westinghouse

d. Bob gradu
Michigan with a BSEE degres
is on circuit design and commu
ssionally intere in AF 2
munications and is @ member of the
IEEE. Borm in _1.1r, e Creek, Michigan, he served four
ars in the U.S. Air Force. He ismarmried and his hob
hies include reading, racquetball, goif, and skiing

Y&

89 Wide-Bandwidth IF Module

Robert J. Armantrout

Authar's biography appears elsewhere in this section

Terrence R. Noe

Terry Noe was barn in
Lafayette, Indiana. He was
award SEE degree
from Virginia Palytechnic
Institute in 1985 and an
MSEE degree from Stanford
University in 1989 He joined
Stanford Park Divi
As a produc
tion engineer, he worked on microwave signal gener
ators such as the HP 8673 and on HP Modular
Measurement System (MMS] spectrum analyzers. As
an R&D engineer, he worked on the HP 83710 series
signal generators. He also worked on the HP 709114
IF module and designed the boards for the FM dis-
criminator, |-0 video, [ingar detector, and video filter
He is currently designing a 3-GHz preselected dov
converter. His work has ed in a patent. Terry is a
r of the IEEE and is ed in RF and micro
ircuit design, He is marned and s the father of
3N e nas

1ys outdoor activi

1, and backpacking

ume,

ties \uLI‘ as windsutfing, bicyclin

October 1095 Hewlet-Packard Jourmal 109

Chnsiupher E. Stewart

Chris Stewart joined the
Signal Analysis Division in
1985, He has worked for the
Santa Hosa Systems Divi-
sion since its creation in
1992 As a manufacturing
development engineer, he
waorked on the HP 709024
and HP 709034 IF modules
As an R&D development engineer, he worked on the
HP 70110A DMM module, the HP 709008 LO module,
the tracking generator for the HP 8578A, and the HP
709114 IF module. He designed the 1-MHz-to-
10-MHz variable-bandwidth filter as an mvestigation
for the HP 709114 IF module and warked on the
channel filter board and the power supply board He
currently has system design responsibility on a re-
ceiver project, as well as the design of the down-con-
verter and first LO boards. He s interested in system
design of RF and microwave communication prod-
ucts, as well as analog, RF, and microwave circuit
design. He has authored two HP papers on clock dith-
ering and spectrum analyzer linearity, He is a mamber
of the ARAL and before caming to HE he was a com-
mercial radio engineer for WNCI radio in Columbus,
Ohio. He was also the chief engineer for WATH/
WXTQ radio in Athens, Ohio. He earned his BSEE
degree from Ohio State University in 1984. He enjoys
volunteering his time teaching an interactive elec-
tronics class at a local high school. His habbies, in
addition to amateur radio, include scuba diving,
white-water rafting, backpacking, skiing, mountain
biking, song writing, and folk guitar.

Leonard Weber joined the
HP Signal Analysis Division
i 1986 after receiving a BS
degree in electronic eng-
neering fram the California
Polytechnic State University
at San Luis Obispo, and Is
now with the Santa Rosa

tor-and the HP 70909A front end module. He has also

worked an the HP 709114 IF miodule and was respon-

sible for the design of several of the boards including
the resolution bandwidth/step-gain, 321 4-MHz LO,
handpass filter, and synthesized down-converter
boards. He is currently responsible for the 10:MHz-
10-1000-MHz preselector and the 1200-MHz synthe-
sizad |00 He is interested in RF design and his work
has resulted in a patent application for a variable-
handwidth filter. Leonard is marned and enjoys
mountain hiking and snow skiing. He is also inter-
ested in drone aircraft

; g Systems Division. Since join-
mg HP he has worked on the HP 709008 local oscilla-

104 Log Weighted Average

John J. Cassidy, Jr.

Born in Port Hugneme,
California, Jack Cassidy
received a BA degree in
mathematics from Cornell
University in 1971. He joined
HF in 1987 at the San Diego
Division and is now with the
San Diego Printer Division

| He has worked on Starship
reusable HP-GL/2 and the HP DesignJet plotter and
served as project manager for the HP DesignJet 600
firmware and for several connectivity projects. He
was the firmware manager for the HP DeskJet 1600C
printer Jack is named as an inventor in a patent that
addresses techniques Tor using less memory in
graphics printer display lists. Before joining HP he
was an independent software developer, and before
that, was with 5-Cubed Corporation, where he pro-
grammed NASA spacecraft simulations that dealt
with electrical charge accumulation. He has written
various software packages, authored a paper on soft-
ware reuse, coauthored a paper on spacecraft charg-
ing, produced and directed a computer animated film,
authored a user’s manual, and written various literary
short stories. He is professionally interested in soft-
ware reuse and testing. Jack (s married to mystety
writer Janice Steinberg. [n his free time, he likes 1o
play poker and backgamman, has written a baok,
Winning at Poker and Games of Chance, and was
once & winner on a TV game show.

110 October 1995 Hewlet-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

KAREN LEWIS

HP Archives - Palo Alto
3000 Hanover Street

M/S 20BR

Palo Alto, CA 94304-1181

OO0

JOURNAL D o

5964-1841E

© Copr. 1949-1998 Hewlett-Packard Co.

	HP PE/SolidDesigner: Dynamic Modeling for Three-Dimensional Computer-Aided Design
	User Interaction in HP PE/SolidDesigner
	Enhancements in Blending Algorithms
	Open Data Exchange with HP PE/SolidDesigner
	Providing CAD Object Management Services through a Base Class Library
	Exception Handling and Development Support
	Freeform Surface Modeling
	Common Lisp as an Embedded Extension Language
	Boolean Set Operations with Solid Models
	A Microwave Receiver for Wide-Bandwidth Signals
	Firmware Design for Wide-Bandwidth IF Support and Improved Measurement Speed
	The HP 89400 Series Vector Signal Analyzers
	An IF Module for Wide-Bandwidth Signals
	The Log Weighted Average for Measuring Printer Throughput

