
H E W L E T - P A C K A R D

JOURNAL
December 1994

Ã > C I H E W L E T T m i H M P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL D e c e m b e r 1 9 9 4 V o l u m e 4 5 â € ¢ N u m b e r 6

Articles

k Fast DDS-2 Dig i ta l Aud io Tape Dr ive , by Damon R. U jvarosy

I) DDS-2 Tape Au to l oade r : H igh -Capac i t y Da ta S to rage i n a 51 /4 - l nch Fo rm Fac to r ,
' b y S t e v e n A . D i m o n d

| A u t o l o a d e r C o n t r o l E l e c t r o n i c s

*â€¢") Autoloader Firmware Design

| Ne two rk Backup w i t h t he HP C1553A DOS Au to l oade r

) j A u t o m a t i c S t a t e T a b l e G e n e r a t i o n , b y M a r k J . S i m m s

Us ing Sta te Machines as a Des ign and Coding Too l , by Mark J . S imms

I An Even t -Based , Re ta rge tab le Debugger , byArun K . l yengar , Thaddeus S . Grzes i k ,
Valer ie J. Ho-Gibson, Tracy A. Hoover, and John R. Vasta

< y C o m p i l e r O p t i m i z a t i o n s a n d D e b u g g i n g

I A Sho r t P r ime r on Debugge r I n t e rna l s

Â ¿ L A W a v e l e t A n a l y s i s : T h e o r y a n d A p p l i c a t i o n s , b y D a n i e l T . L L e e a n d A k i o Y a m a m o t o

Approaches to Ver i fy ing Operat iona l Test Re lease Vectors , by Joy X iao Han

* ~ \ r \ O v e r v i e w o f t h e T e s t A c c e s s P o r t

Editor, Richard P. Dolan â€¢ Associate Editor. Charles L Leath â€¢ Publication Production Manager. Susan E. Wright â€¢
Il lustration. RenÃ©e D. Pighini â€¢ Typography/Layout, Cindy Rubin

Advisory Steven Thomas Beecher, Open Systems Software Division, Chelmsford. Massachusettes Â» Steven Brinenham. Disk Memory Division. Boise. Idaho â€¢ Wil l iam W.
Brown, J. Circui t Business Divis ion, Santa Clara. Cal i fornia â€¢ Frank J. Calvi l lo, Breeley Storage Divis ion. Gree/ey, Colorado â€¢ Harry Chou. Microwave Technology
Division. Santa Rosa. California â€¢ Derek I Dang, System Support Division, Mountain View. California â€¢ Rajesh Desai, Commercial Systems Division, Cupertino, California
â€¢ Kevin Fischer, Medical Integrated Systems Division, Sunnyvale. California Â» Bernhard Fischer, Boblingen Medical Division. Boblingen, Germany Â» Douglas Gennetten, Gree/ey
Hardcopy J. Greeley, Colorado â€¢ Gary Gordon, HP Laborator ies, Palo Alto. Cal i fornia* Matt J. Marl ine, Systems Technology Division, Rosevi/ le, Cal i fornia â€¢ Bryan
Hoog, Lake Santa Instrument Division. Everett, Washington Â» Roger L. Jungerman, Microwave Technology Division, Santa Fiosa. California â€¢ Pauls H, Kanarek, InkJet
Components Analytical Corvallis, Oregon â€¢ Ruby B. Lee, Networked Systems Group. Cupertino, California â€¢ Alfred Maute, Waldbronn Analytical Division, Waldbronn,
GermanyÂ» Moore. L I Worldwide Customer Support Div is ion, Mountain View, Cal i forniaÂ» Michael P. Moore. VXI Systems Divis ion, Lovetand, ColoradoÂ» Shel ley I
Moore, Systems Danny Printer Division, San Diego. California â€¢ Steven J Narciso, VXI Systems Division, Loveland, Colorado â€¢ Danny J. Oldfield. Colorado Springs Division,
Colorado Springs, Colorado Â» Garry Orsolini, Software Technology Division, Roseville, California Â» Han Tian Phua, Asia Peripherals Division. Singapore * Ken Poufton, HP
Laboratories, Division. Alto, California â€¢ GÃ¼nter Riebesell, Boblingen Instruments Division. Boblingen. Germany â€¢ Marc Sabatelia, Software Engineering Systems Division. Fort
Coll ins, Phil ip â€¢ Michael B. Saunders. Integrated Circuit Business Division. Corvall is. OregonÂ» Phil ip Stenton. HP Laboratories Bristol. Bristol. EnglandÂ» Beng-Hang
Tay, Systems Networks Operation. Singapore â€¢ Stephen R. Undy, Systems Technology Division, Fort Coll ins. Colorado Â«Jim Wil l i ts, Network and System Management
Division, Corvallis Collins, Colorado â€¢ Koichi Yanagawa, Kobe Instrument Division, Kobe, Japan â€¢ Dennis C. York, Corvallis Division, Corvallis, Oregon Â» Barbara Zimmer.
Corporate Engineering, Palo Alto, Cal i fornia

Â © H e w l e t t - P a c k a r d C o m p a n y 1 9 9 4 P r i n t e d i n U S A T h e H e w l e t t - P a c k a r d J o u r n a l i s p r i n t e d o n r e c y c l e d p a p e r

December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

60 E s t i m a t i n g t h e V a l u e o f I n s p e c t i o n s a n d E a r l y T e s t i n g f o r S o f t w a r e P r o j e c t s , b y L o u i s A . F r a n z
a n d J o n a t h a n C . S h i n

| C l o c k a n d a n d M e a s u r e m e n t I s s u e s i n P e n t i u m S y s t e m s , b y M i c h a e l K . W i l l i a m s a n d

70
Andreas M.R. Pfa f f

T o l e r a n c e M e c h a n i s m s i n C l o c k D i s t r i b u t i o n N e t w o r k s

Research Report

I E n t e r p r i s e M o d e l i n g a n d S i m u l a t i o n : C o m p l e x D y n a m i c B e h a v i o r o f a S i m p l e M o d e l o f
M a n u f a c t u r i n g , b y M . S h a h i d M u j t a b a

t j " j G l o s s a r y o f T e r m s a n d A b b r e v i a t i o n s

I E n t e r p r i s e M o d e l i n g a n d S i m u l a t i o n A p p l i c a t i o n s i n R e e n g i n e e r i n g

I E n t e r p r i s e M o d e l i n g a n d S i m u l a t i o n R e s e a r c h a t H P L a b o r a t o r i e s

K T h e S i m p l e M o d e l : S p o n s o r ' s P e r s p e c t i v e

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

7 7 A u t h o r s
1 1 3 1 9 9 4 I n d e x

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d
(H P) p e r s o n n e l . W h i l e t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f
m e r c h a n t a b i l i t y a n d f i t n e s s f o r a p a r t i c u l a r p u r p o s e a n d a l l o b l i g a t i o n s a n d l i a b i l i t i e s f o r d a m a g e s , i n c l u d i n g b u t n o t l i m i t e d t o i n d i r e c t , s p e c i a l , o r
c o n s e q u e n t i a l d a m a g e s , a t t o r n e y ' s a n d e x p e r t ' s f e e s , a n d c o u r t c o s t s , a r i s i n g o u t o f o r i n c o n n e c t i o n w i t h t h i s p u b l i c a t i o n .

S u b s c r i p t i o n s ; T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d a d d r e s s i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . P l e a s e a d d r e s s s u b s c r i p t i o n o r c h a n g e o f a d d r e s s r e q u e s t s o n p r i n t e d l e t t e r h e a d (o r
i nc lude the submi t t i ng ca rd) t o the HP headquar te rs o f f i ce i n you r coun t r y o r t o the HP address on the back cove r . When submi t t i ng a change o f add ress ,
p l e a s e n o t y o u r z i p o r p o s t a l c o d e a n d a c o p y o f y o u r o l d l a b e l . F r e e s u b s c r i p t i o n s m a y n o t b e a v a i l a b l e i n a l l c o u n t r i e s .

T h e H e w l e t t - P a c k a r d J o u r n a l i s a v a i l a b l e o n l i n e v i a t h e W o r l d - W i d e W e b (W W W) a n d c a n b e v i e w e d a n d p r i n t e d w i t h M o s a i c . T h e u n i f o r m r e s o u r c e
l o c a t o r (U R L) f o r t h e H e w l e t t - P a c k a r d J o u r n a l i s h t t p : / w w w . h p . c o m / h p j / J o u r n a l . h t m l .

S u b m i s s i o n s : w i t h a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h
H P - r e l a t e d c o n t a c t o r s o l u t i o n s t o t e c h n i c a l p r o b l e m s m a d e p o s s i b l e b y u s i n g H P e q u i p m e n t a r e a l s o c o n s i d e r e d f o r p u b l i c a t i o n . P l e a s e c o n t a c t t h e
E d i t o r b e f o r e a r t i c l e s s u c h a r t i c l e s - A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s
a n d m a y a r e l e t t e r s e x p e c t e d t o b e o f i n t e r e s t t o r e a d e r s . L e t t e r s s h o u l d b e b r i e f , a n d a r e s u b j e c t t o e d i t i n g b y H P .

Copyr igh t <& g ran ted Hewle t t -Packard Company . A l l r i gh ts rese rved . Perm iss ion to copy w i thou t fee a l l o r pa r t o f t h i s pub l i ca t i on i s he reby g ran ted p rov ided
that 1) advantage; Company are not made, used, d isplayed, or d is t r ibuted for commercia l advantage; 2) the Hewlet t -Packard Company copyr ight not ice and the t i t le
o f t h e s t a t i n g a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e a p p e a r s s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

P lease Jou rna l , i nqu i r i es , submiss ions , and reques ts t o : Ed i t o r , Hew le t t -Packa rd Jou rna l , 3000 Hanove r S t ree t , Pa lo A l t o , CA 94304 U .S .A .

December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
The Digi ta l Data Storage or DOS format for tape dr ives was developed in 1989 to
meet the need for h igh-capac i ty , compact tape backup for network servers and
s m a l l o r s y s t e m s . T h e D O S s t a n d a r d i s b a s e d o n t h e D i g i t a l A u d i o T a p e o r
DAT s tandard and has been extended as backup capac i ty requ i rements have
increased. DDS-2 dr ives have recent ly become avai lab le , and h igher-capaci ty
DDS-3 and DDS-4 speci f icat ions have al ready been approved. DDS-2 dr ives can
store gigabytes gigabytes of data on a single cartridge, or typically eight gigabytes
wi th 2- to-1 data compression. The HP C1533A DDS-2 tape dr ive can record a fu l l
DDS-2 car t r idge in just over two hours, running at a data t ransfer rate of 510
k i lobytes per second. This is a lmost an hour faster than typical DDS-2 dr ives. As

explained in the art ic le on page 6, achieving this performance required improvements in tape mater ial , tape
length, tape th ickness, read and wr i te heads, drum design, and l inear i ty measurement and adjustment .

For many systems, e ight g igabytes isn ' t enough, and i t isn ' t convenient for the typical user to change
car t r idges dur ing the backup, which must of ten be done at n ight . The HP C1553A DOS tape auto loader
was developed to meet th is need. As Steve Dimond te l ls us in the ar t ic le on page 12, the s ize constra ints
gave the designers thei r major chal lenge. The auto loader had to f i t in to a s tandard SVWnch per ipheral
enc losure (about 5 .75 inches wide) , incorporate the four- inch-wide HP C1533Atape dr ive, ho ld as many
tapes as g iv ing and be re l iab le and e rgonomic . "As many tapes as poss ib le " tu rns ou t to be s ix , g iv ing
the auto loader a typ ica l capaci ty o f 48 g igabytes wi th 2- to-1 data compress ion. Di f ferent s t ra teg ies for
using The capaci ty for network backup are discussed in the art ic le. The complex retry algor i thms required
for cont ro l l ing the auto loader are def ined in s ta te tab les, which are generated by an automat ic too l that
great ly companion readabi l i ty and maintainabi l i ty , as explained in the art ic le on page 21. In a companion
ar t ic le , ap page 27, f i rmware des igner Mark S imms shares wi th us h is exper ience us ing d i f fe rent ap
proaches each the implementat ion of state machines, explor ing the advantages and disadvantages of each
approach.

Debuggers are sof tware too ls that are used by sof tware developers for f ind ing bugs in programs and for
analyz ing programs. The debugger descr ibed in the ar t ic le on page 33 is ca l led HP DDE, which stands for
d is t r ibu ted debugging env i ronment , meaning that th is debugger can debug programs runn ing on remote
computers. I t 's an event-based debugger, which means that i t responds to user-speci f ied events that occur
dur ing several execut ion. I t consis ts of a main debugger that communicates wi th several modules cal led
managers , and handle dependenc ies on spec i f ic languages, ob ject code formats , target p la t forms, and
user in ter faces. This modular i ty has made i t easy to re target the debugger to many d i f ferent languages
and computer p lat forms, both HP and non-HP.

Most t ime-varying are famil iar with Fourier analysis, in which a t ime-varying vol tage is expressed as the
sum of a amplitudes. of sinusoidal basis functions of different frequencies and amplitudes. Wavelet analysis,
descr ibed in the ar t ic le on page 44, is s imi lar , but the basis funct ions, cal led wavelets, are not s inusoidal
and are processing in t ime and frequency. The propert ies of wavelets make them useful for processing
nonstat ionary s ignals such as a sum of g l id ing tones ora sum of three s ignals that s tar t a t d i f ferent
t imes. sof tware art ic le gives an overview of wavelet analysis and descr ibes a sof tware toolbox created by
HP Laborator ies Japan to a id in the development o f wavelet appl icat ions.

Tes t tha t i s a tes t -eng ineer te rm fo r a pa t te rn o f ones and zeros tha t an automat ic tes ter app l ies to the
inputs i t an in tegrated c i rcu i t or a pr in ted c i rcu i t assembly to make sure that i t works. Generat ing and
ver i fy ing test vectors is a nontr iv ia l process that 's carr ied out wi th the a id of specia l ized sof tware too ls
and can a t s ix months or so to comple te . As exp la ined in the ar t i c le on page 55, eng ineers a t one HP
laboratory have been able to reduce th is t ime to four months, thanks to f ive techniques that main ly ver i fy
that the tes t access por t is funct ion ing proper ly .

December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

It 's development that detecting and fixing software bugs early in the development cycle is much less costly
than deal ing wi th them late in the cyc le. Sof tware inspect ions are one means for ear ly bug detect ion.
One HP tes t ing labora tory has used data co l lec ted dur ing inspect ions and tes t ing to es t imate the va lue
(expressed as the return on investment) of inspect ions and ear ly test ing. Their resul ts show a return on
investment of 787% for inspect ions, compared to 229% for test ing. Detai ls are in the art ic le on page 60.

The la test generat ion of h igh-per formance microprocessor ch ips operates at c lock ra tes up to 150
megahertz Intel 's leaves l i t t le room for imprecision or uncertainty in the clock del ivery system. Using Intel 's
Pent iumâ„¢ chip as an example of th is new class of processors, the art ic le on page 68 shows that the
j i t ter essent ia l for the c lock del ivery system can be as low as 50 p icoseconds, making i t essent ia l to use
a low- j i t ter s ignal source such as the HP 8133A pulse generator when making measurements on such
systems. The HP 81 33A's j i t ter speci f icat ion of f ive picoseconds (rms) ensures that most of the measured
j i t ter comes f rom the c lock del ivery system and not f rom the s ignal source.

The report on page 80 presents some recent resul ts of an HP Laborator ies pro ject a imed at model ing
and s imulat ing a manufactur ing enterpr ise. The goal of th is ongoing research is to learn to predict the
l ike ly resul ts of changes us ing sound engineer ing pr inc ip les and techniques. The resul ts in th is repor t
are f rom s imulat ion exper iments us ing a model ca l led the S imple Model because of i ts s t ruc tura l s im
pl ici ty. unexpected i ts simplici ty, the model displayed complex dynamic behavior and produced unexpected
resu l ts . The author suggests that appl icat ion areas for enterpr ise model ing and s imulat ion inc lude est i
mat ing the ef fects o f incrementa l improvements, s tudy ing the impacts o f process changes, generat ing
enterpr ise behavior in format ion, and increas ing the chances for success of reengineer ing ef for ts .

P.P. Dolan
Editor

Cover
An exploded view of the inter ior of the HP C1 553A DOS tape autoloader, showing the C1 533A DDS-2 tape
dr ive (sh iny rectangle) and the smal l amount of space around i t that was avai lab le to the auto loader
designers. A lso shown is the s ix-car t r idge auto loader magazine in the f ront-panel door .

What's Ahead
Lightwave top ics wi l l dominate the February issue wi th twelve ar t ic les on new products , dev ices, and
techniques. We' l l a lso have an ar t ic le on a new sequencer arch i tec ture that great ly reduces the t ime
required the wri te tests for ser ial digi tal devices, and several art ic les on aspects of 1C design from the
1994 HP Design Technology Conference.

Pen t ium i s a U .S . t rademark o f I n te l Co rpo ra t i on .

December 1994 Hewlett-Packard Journal 5

© Copr. 1949-1998 Hewlett-Packard Co.

Fast DDS-2 Digital Audio Tape Drive
Running at a data transfer rate of 51 0 kbytes/s, the HP C1 533A tape drive
can record a full 4-Gbyte DDS-2 cartridge in just over two hours, almost
an hour less than typical DDS-2 drives. Its development required
improvements in tape material, length, and thickness, new read and write
heads, a new drum design, and new methods for linearity measurement
and adjustment.

by Damon R. Ujvarosy

Like all aspects of computing today, the face of mass storage
is changing rapidly. Only a few short years ago, gigabytes of
disk storage was the domain of large computer systems,
housed in computer rooms with dedicated staff to look after
the equipment. Personal computers that had more than 100
megabytes of disk storage were a rarity, and networks were
just coming of age. The individual computer user rarely con
sidered backup. Critical data was kept on large computer
systems and backup to tape was handled by the MIS depart
ment. The odd file on the PC that was important could be
saved on a diskette.

Times have changed rapidly. Individual PCs with several
hundred megabytes of disk storage are common. Network
servers for PCs and workstations have multiple gigabytes of
disk storage. The data on these disks is critical to the com
pany's business. High-performance, high-capacity backup
solutions that fit the needs of today's computer systems are
essential.

The same technologies that are propelling disk drive capac
ity and performance are also being applied to tape drives.
Tape drives that meet the backup needs of the individual PC
user are available using the DC2000 minicartridge â€” for ex
ample, the HP Colorado Memory Systems Jumbo 250 and
Jumbo 700 tape drives. However, the backup needs of the
network server are far greater. These larger backups also

require improved performance to complete the data backup
in a reasonable time.

The Digital Data Storage (DDS) format standard was devel
oped by HP and Sony in the late 1980s to establish a capacity
and performance point that would serve the emerging net
work server market as well as the more established small
multiuser systems market. The DDS format standard is
based on the Digital Audio Tape (DAT) standard, which uses
4-mm-wide tape. Tape drives that employ the DDS format
standard are therefore often referred to as DAT or 4-mm
tape drives.

In HP DAT drives, lossless data compression was added
later to the DDS format standard using an HP-developed
method called DCLZ,1 an implementation of a technique
known as Lempel-Ziv data compression.2 DCLZ effectively
doubled the capacity and performance of the tape drive, and
at the same time, longer tapes were added. Four gigabytes
could then be stored on a single DDS tape. Further exten
sions to the DDS format standard that will allow the DDS
format to serve the backup needs of network servers
through the end of the 1990s have been agreed to by the
DDS manufacturers group (see Fig. 1).

The HP C1533A DDS-2 tape drive (Fig. 2), introduced in
1993, stores eight gigabytes of data (typical capacity

DDS Format

Enab l i ng
T e c h n o l o g i e s

U n c o m p r e s s e d
C a p a c i t y
U n c o m p r e s s e d
Trans fe r Rate

U G B y t e s

183 kBytes /s

2.0 GBytes

183 kBytes/s

4.0 GBytes

360 kBytes/s
to 750 kBytes/s

Response
M a x i m u m
L i ke l i hood)

12.0 GBytes

500 kBytes/s
t o I . S M B y t e s ' s

â€¢ 24.0 GBytes

â€¢ 500 kBytes/s
to 3 MBy tes /s Fig. 1. Evolution of the DDS tape

format.

6 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

DDS-1

*;/ fifi fiÃ ̄â€¢"-" W

Fig. 2. The HP C1-533A DDS-2 tape drive has a native-mode data
transfer rate of 510 kbytes/s, 40% faster than other designs. It re
cords on high-capacity 4-Gbyte DDS-2 cartridges or on earlier DOS
media.

achieved using the DCLZ data compression standard) and
has a data transfer rate more than 2.5 times that previously
available on DDS tape drives. The HP C1533A not only reads
and writes tapes based on the DDS-2 format standard, but is
also able to read and write tapes based on the original DDS
format standard to provide compatibility with the large
installed base of DDS tape drives already in existence.

The DDS-2 format standard calls for the data to be written
on tracks that are nominally 9. 1 um wide as opposed to the
previous DDS format standard, which used a 13.6-nm track
width. The DDS-2 format standard also makes use of tapes
that are 120 m long rather than the previous 90-m and 60-m
tapes. These changes, defined by the DDS-2 format stan
dard, along with a data transfer rate increase to 510 kbytes/s
from 183 kbytes/s (the data transfer rate seen by the user is
effectively doubled to over 1 Mbyte/s by the use of data
compression) required numerous technical developments.

Media
The media used for DDS-2 are an enhancement of the exist
ing DDS 60-m and 90-m media. Physically, all three cartridges
look similar; they use the same cartridge shell and are all
designed to meet the same environmental and data reliabil
ity specifications. What differentiates them, apart from the
packaging, is the length of tape in the cartridge shell and the
signal characteristics or recording properties of the media.
The tape drive differentiates between the cartridge types by
the use of recognition holes in the cartridge shell.

The longer tape length is achieved by reducing the total
thickness of the tape so that the tape pack volume is the
same for 120 m as for 60 m and 90 m. Fig. 3 shows the rela
tive thicknesses of the three DDS media types and a simpli
fied view of the construction of the tape. To provide optimal
head-to-tape contact when switching between the different
tape thicknesses (the drive needs to read and write DDS-1
tapes as well as DDS-2 tapes) the stiffness of the tapes needs
to be matched as closely as possible. However, because the
relationship between tape thickness and stiffness is a cubed
law, use of the same base film material is not possible. A
new base film material, polyamide or PA, has been developed.
It has high stiffness, and by careful design of the heads and

Coating

Base
Fi lm

Back
Coating

3.0 um

DDS-1

2 5 u m
DDS-2

20 urn

9 0 m

9 f i m

3.81 mm

PET or PEN

M P

120m

6.5 um

3.81 mm

PA

M P +

Fig. 3. DDS tape types. MP = metal particle. PET = polyethylene
terathalate. PEN = polyethylene naphtalate. PA = polyamide.

drum, the ability to switch from one tape type to another
can be optimized.

The 120-m tape, at 6.5-um total thickness, offers the thinnest
media currently in use in the data recording industry. This
has necessitated improvements in the accuracy of the tape
guidance system within the tape mechanism and in the tape
motion tension control servo of the mechanism to prevent
media damage.

The use of thinner tracks reduces the overall system signal-
to-noise ratio and the tape was called upon to make a con
tribution to reducing the deficit. An increase of +3 dB over
the existing DDS media was needed. Existing 60-m and 90-m
media use metal particle (MP) coatings. To meet the addi
tional signal requirements an enhanced MP tape has been
developed and has been designated MP+. By using a combi
nation of magnetic particle size reduction, increased coer-
civity, increased remanence, and reduced surface roughness
of the media, the additional signal requirements were
achieved.

The higher head-to-tape speed of the HP C1533A DDS-2 tape
drive compared to previous DDS drives places additional
constraints on the media. Without efficient lubrication the
surface of the media is damaged reducing the life of the
media. There is also the possibility of the heads becoming
clogged with debris from the media. To reduce this effect
the lubrication has been modified for DDS-2.

Heads
The changes needed for DDS-2 also called for modifications
to the heads. A DDS tape drive has four heads mounted on a
rotating drum. Two heads are used for writing and two for
reading. The tape is wrapped around the drum over an angle
that is nominally 90 degrees (see Fig. 4) so that only one
head is in contact with the tape at any given time.

During a write, the first write head (designated the A write
head) contacts the tape and data is written with an azimuth
angle of +20 degrees. The first read head (designated the A

December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Direction of Rotation

B Write Head

A Read Head

Fig. 4. The DOS tape drive has four heads mounted on a rotating
drum. Only one head at a time is in contact with the media.

read head) contacts the tape next to verify the previously
written data. The second write head (designated the B write
head) contacts the tape next to write data with an azimuth
angle of -20 degrees. The second read head (designated the
B read head) contacts the tape next to verify the data pre
viously written by the B write head. During this process the
tape is moved forward to produce data on the tape as shown
in Fig. 5.

To accommodate the higher coercivity of the DDS-2 tape
media the write head was changed from a Sendustt-based
head to a metal-in-gap (MIG) style ferrite-based head (see
Fig. 6). The MIG head ensures that the magnetic coating on
the tape is fully saturated during the write process. Sendust
is still used in the head, but only for the gap metal and not as
the bulk material.

The read head required several changes to meet the needs of
the HP C1533A. The first was to change from a Sendust-
based head to a ferrite-based head. This was necessary to
maintain the nominal head life specification of 6000 hours.
Since the HP C1533A has a data transfer rate that is 2.87
times the previous generation of DDS tape drives, the head
is in contact with the tape media 2.87 times more during that
6000 hours. The ferrite-based head is harder than the Sen-
dust-based head and meets the life requirements.

The second change to the read head was to the width. The
nominal width of the read head for the DDS format standard
was 20.4 urn. A read head of this width on a 9.1-nm wide
DDS-2 track would allow too much adjacent track noise to

t Sendust is an alloy of 85% Fe, 6% Al, and 9% Si. It was developed at the University of Sendai,
Japan.

Data Wri t ten by the A Head

Data Writ ten by the B Head

20

9.1 urn

6Â° 22 '39V

Fig. 5. DDS-2 track format on tape.

Fig. 6. The HP C 1533 A tape drive has metal-in-gap ferrite-based
write heads.

be picked up, thereby reducing the signal-to-noise ratio below
an acceptable level. At first glance it would seem that a read
head width of 9.1 um (equal to the nominal written track
width) would be optimum (maximum on-track signal pickup
with minimal adjacent-track noise pickup). This would be
valid if the tracks were all perfectly straight. However, the
DDS-2 standard calls for the tracks to be straight within +2.5
um over the length of the track (called linearity) to allow for
mechanical tolerances in the tape drive. While a 9. 1-um-wide
read head would provide an excellent signal-to-noise ratio
on a perfectly straight DDS-2 written track, it would not be
able to read a worst-case DDS-2 written track that was writ
ten by a different drive (see Fig. 7). In this case, the read
head would have a large adjacent-track noise pickup with a
relatively small on-track signal pickup. Since the ability to
interchange tapes between tape drives was an important

DDS-2 Written
Track wi th Max imum

Deviation of 2.5 fim

Path of DDS-2
Read Head with

M a x i m u m
Deviation of

2.5 um Opposite
to the Write

9.1 um

Fig. 7. Effects of tape and drive nonlinearity when a track written
by one drive is read by a different drive.

8 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

consideration in the design of the HP C1533A tape drive, a
balance needed to be struck to achieve the optimum read
head width. A 12-um read head width was specified through
the use of computer modeling of the effect of adjacent-track
noise on signal-to-noise ratio. Experiments verified the
performance of the 12-um head.

Drum Design
The next major challenge came in the drum design. The
increase in the data transfer rate to 510 kbytes/s from 183
kbytes/s required an increase in the drum rotation speed, to
5737 r/min from 2000 r/min. The major issues to contend
with were drum bearing life, acoustic noise at the higher
rotation speed, and excessive air between the drum and the
tape. Excessive air would force the tape too far away from
the drum, resulting in reduced signal levels because of loss
of contact between the head and the tape.

A great deal of work has already gone into bearing life and
acoustic noise in high-rotation-rate spindle motors for disk
drives. The key to bearing life is the proper choice of lubri
cants. By using the same high-performance lubricants that
are found in disk drive spindle motors, we were quickly able
to meet the bearing life requirements of the HP C1533A tape
drive.

The acoustic noise generated by the drum is largely a func
tion of the control system. The control algorithm used in the
HP C1533A tape drive reduces the high-frequency content of
the control signals so that the acoustic noise of the HP
C1533A is comparable to previous-generation DBS tape
drives.

The problem of excess air between the drum and the tape
required the development of techniques to bleed away the
excess air to ensure that proper head-to-tape contact was
maintained. Several techniques were prototyped and carefully
measured by HP Laboratories for their impact on tape defor
mation. Among the techniques prototyped was a "window-
less" drum, in which there is a gap between the lower, sta
tionary section of the drum and the upper, rotating section of
the drum. The gap provides a path for the air to bleed away
and eliminates the need for a "window" around the head. A
second technique prototyped was a standard window style
drum with a small chamfer along the bottom edge of the
upper rotating section of the drum to provide the necessary
air bleed (see Fig. 8).

In the end, the window style drum using a chamfer on the
lower edge of the rotating section of the drum was found to
be the best solution, ensuring that the tape was not damaged
while providing an easily manufacturable solution to the
problem of excess air between the drum and the tape.

Linearity
As previously mentioned, the DDS-2 specification calls for a
maximum deviation from a straight line of Â±2.5 um for a
written track. This specification is referred to as linearity.
The linearity of the previous generation of DDS tape drives
was measured and found to have a mean value of 3.7 um and
a standard deviation of 0.74 um. To meet the DDS-2 specifi
cations, an intensive research activity was undertaken at HP
Laboratories. That research determined that the linearity
measurement and adjustment process would have to be
changed to meet the DDS-2 specifications consistently.

Previously, linearity was measured by writing a tape, physi
cally cutting out a section of that tape, developing the tape
using ferrofluids to be able to see the written tracks, and
then measuring the tracks under a microscope. This tech
nique suffers from two problems. First, the measurement
error associated with the technique was found to be up to
2 um. Second, the technique did not allow the linearity to be
measured in real time while adjustments to the guides were
being made on the production line.

The problem of measurement error was tackled by develop
ing an automated optical measurement system. Using optical
pattern recognition software, the system automatically finds
special written patterns on the tape. A precision coordinate
measurement system measures the track position relative to
the edge of the tape. The system is calibrated with a chrome
optical standard and a measurement accuracy of Â±0.15 um is
achieved.

This optical measurement system is used to measure the
absolute linearity of tapes. These tapes are then used as a
reference for a real-time measurement system in produc
tion. Special patterns written on the tape are used by the
tape drive under test to measure its own deviation along the
track relative to the tape in the drive. By subtracting out the
measured linearity deviation of the tape in software, an ac
curate real-time measurement of the linearity of the drive
under test is achieved. It is then possible for a production
operator to adjust the tape guides for minimum linearity
deviation as part of the standard production process. The
use of these linearity measurement and adjustment methods
has allowed HP to reduce the mean linearity deviation in
production to 1.4 um with a standard deviation of 0.33 um,
well within the DDS-2 specifications.

Performance
The network server market that the HP C1533A tape drive is
designed to serve requires high performance as well as high
capacity. The data transfer rate of 510 kbytes/s is an impor
tant factor in the performance of the HP C1533A tape drive
since it defines the maximum rate at which data (after com
pression) can be written to or read from the tape. The actual
performance the user will see in a system is a function of at
least of factors. Some of these factors are a function of

Upper Drum
(Rotating)

Window Sty l
Drum

Lower Drum
(Stationary)

Fig. 8. Two styles of drums with gaps to bleed off excess air between
the drum and the tape. In each case, four heads are spaced evenly
around I he drum, bul only the one nearest the observer is shown in
I his drawing. The diagonal line on the lower drum is the path of the
lower edge of the tape in this helical scan system.

December 1994 Hewlett-Packard Journal 9

© Copr. 1949-1998 Hewlett-Packard Co.

the tape drive, but many are dictated by the system using
the tape drive. The major performance factors, along with
the corresponding controlling functions, are listed below.

Performance Factor
Data transfer rate

Maximum data compression
ratio that maintains
maximum tape drive
transfer rate

Data compression ratio
Main buffer size
SCSI transfer rate

Data transfer size

Controlling Function
Tape drive if desired data

transfer rate is greater
than maximum tape drive
transfer rate

Computer system if desired
data transfer rate is less
than maximum tape drive
transfer rate

Tape drive

Data
Tape drive
Limited to the maximum SCSI

transfer rate that both the
tape drive and the computer
system can achieve

Computer system

The architecture of the HP C1533A controller is outlined in
Fig. 9.

An examination of the write process is instructive in under
standing the potential performance limiters. The following
are the major steps in the write process.

1. Computer system negotiates SCSI transfer rate with the
tape drive.

2. Computer system establishes transfer size.

3. Computer system transfers data to the tape drive.

4. Tape drive compresses the data through the data com
pression processor and moves the data into the main buffer.

68000
Microprocessor

I 1â€” I
SCSI

B u s
SCSI

Controller

Data
Compression

Processor

Format
Processor

DOS
â€¢ Format

Data
^â€¢M

128K-Byte
Data

Compression
Buffer

Fig. 9. Block diagram of the HP C1533A tape drive controller.

5. Format processor divides the data into DOS format stan
dard groups and adds access and indexing data to enable
high-speed search and retrieval and error correction fields
to maintain data integrity on reads.

6. DDS format data is written onto the tape.

To achieve maximum performance, it is essential that DDS
format data is available to write onto the tape at all times. If
no data is available, the tape drive will have to stop writing
data and wait until data is available before restarting the
write process. The tape will also have to be repositioned
before the next write can begin. The format processor must
of course have the ability to take the data from the main
buffer, convert the data into the DDS format and compute
the error correction values in real time or the tape drive will
never achieve its full performance.

The main buffer performs a speed matching function, giving
the data compression processor the necessary freedom to
output data at a varying rate while keeping the tape drive
streaming. Modeling demonstrated that a buffer size of 1M
bytes is sufficient to maintain the performance of the HP
C1533A tape drive in most applications.

The maximum speed at which the data compression proces
sor can take uncompressed input data and output it as com
pressed data is another factor in the performance picture.
The more compressible the data, the faster the data compres
sion processor needs to be to maintain an output rate that is
fast enough to keep the tape drive streaming. An average
compression ratio of 2 to 1 is the accepted industry norm for
typical computer data. However, within a large backup, the
compression ratio of individual files will vary tremendously.
By studying a large number of backups, we were able to es
tablish that the data compression processor needs to be capa
ble of about 4-to-l compression at full output rate to maintain
an overall 2-to-l compression rate. We therefore designed
the data compression processor for the HP C1533A to meet
this requirement.

The last major piece in the performance picture has to do
with the ability of the computer system to move data to the
tape drive. To get the maximum performance from the tape
drive, it is important that the computer system provide the
data as fast as the tape drive needs it. The maximum rate at
which the data can then be transferred to the tape drive is
determined by the negotiated SCSI transfer rate and the
transfer size that the computer system establishes. The SCSI
transfer rate is the lower of the computer system and tape
drive maximum rates. If the computer system's maximum
SCSI transfer rate is less than the tape drive's maximum
SCSI transfer rate, the SCSI transfer rate used will be that of
the computer system. The slower the transfer rate, the less
time there is to cover any system overhead. Additionally, if
the computer system establishes a small transfer size, the
data transfer will occur in small increments. Since each
transfer has overhead associated with it, small transfer sizes
will have relatively more overhead which will likely reduce
the performance of the tape backup (see Fig. 10).

10 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

4 6 8 1 0 1 2
Transfer Size (kbytes)

14 16

Fig. at Maximum data transfer rate of the HP C1533A tape drive at
2:1 data compression ratio (variable mode, writing from memory on
an HP 9000 Model 720 computer).

Acknowledgments
I would like to acknowledge Hugh Rattray for mechanism
and media development management, Peter Steven for tape
path development, John Hardwick and Phil Connor for head
and drum development, Ian Russell for media development,
Simon Gittens for servo and data channel development man
agement, Rob Morling for data channel development, Ben
Willcocks for servo code development, Julian Potter for proto
type and tool development, Tom Conway for servo 1C devel
opment, Steve Krupa for controller development manage
ment, Tim Phipps, Andy Hana, Steve Langford, Pete Walsh,

and Dave Dewar for controller 1C development. Richard
Bickers. Paul Bartlett. Simon Rae. and Jon Buckingham for
controller firmware development. Pete Bramhall for tech
nology and standardization management. Chris Williams and
Simon Chandler for data channel modeling. Bryan Magain for
interchange test development. Richard Vincent for integra
tion management. Dave Tuckett. Simon Southwell, and Jon
Rushton for integration engineering, Greg Trezise and John
Rich for printed circuit board development. Gary Marriner
for project coordination. Mike Padfield. Malcolm Grimwood.
and Jonathan Lord for testing, Carl Tausig of HP Labs, Palo
Alto for linearity measurement tools. Albert Jeans of HP
Labs, Palo Alto for tape path modeling, and many others. I
would like to thank Ian Russell, Peter Steven, and Richard
Bickers for their help in preparing the material for this article.
I would also like to thank Jo Dursley for her efforts in typing
and editing the article.

References
1. M.J. Bianchi, et al, "Data Compression in a Half-Inch Reel-to-Reel
Tape 1989, Hewlett-Packard Journal, Vol. 40, no. 3, June 1989, pp.
26-31. This paper discusses the HP-DC algorithm, a precursor of the
DCLZ algorithm.
2. J. Data and A. Lempel, "A Universal Algorithm for Sequential Data
Compression," IEEE TRansactions on Information Theory, Vol.
IT-23, no. 3, May 1977, pp. 337-343.

December 1994 Hewlett-Packard Journal 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

DDS-2 Tape Autoloader: High-Capacity
Data Storage in a SVi-Inch Form Factor
The autoloader holds six 4-gigabyte cartridges. With data compression, it
can back up typically 48 Gbytes of data overnight or 8 Gbytes every day
for six days, unattended.

by Steven A. Dimond

The trend from centralized computing data centers to PCs
and client-server networks has led to increased local or
semilocal data storage and backup. As discussed in the pre
ceding article, DDS tape drives are designed to meet these
requirements. However, as network server disk capacities
increase above the capacity of a single DDS tape (8 giga
bytes for DDS-2, compressed), or if manipulation of the
backup tapes becomes a chore, then there is a requirement
for a larger storage device.

The type of person who carries out the backup has also
changed with these trends in computing. The centralized
data center had trained, full-time operators, whereas the
network administrator or workstation user may not be for
mally trained and will want to spend the minimum time and
effort completing the backup.

These requirements for storage capacity and ease of use have
led to a need for an automated, easy-to-use, large-capacity
tape device.

One way to add significant capacity at modest cost is to use
a changer mechanism (robot) to select a tape from a library
of tapes and put it into the tape drive. The changer mecha
nism may only double or quadruple the cost of the tape
drive unit, but the capacity can increase many times more
than this. There are tape libraries that have from 10 to 120
tapes and one or two built-in tape drives. The access times
to select a tape are acceptable for a backup or library type
application.

Given the emerging network requirements, there is an even
bigger need for a small device that fits the standard "5 '/4-inch"
peripheral slots. These are approximately 146 mm wide by
83 mm high by 203 mm deep (5.75 in by 3.25 in by 8 in). This
is enough volume to hold a smaller peripheral-size tape
drive and a changer mechanism.

These smaller devices that perform unattended backup are
typically called autoloaders. At HP's Computer Peripherals
Bristol division, we investigated this growing need. This
investigation led to the development of the HP C1553A
DDS-2 digital audio tape autoloader, Fig. 1.

The HP C1553A autoloader incorporates the HP C1533A
DDS-2 tape drive described in the article on page 6. It holds
six DDS-2 cartridges, each having a native capacity of four
gigabytes. With data compression, each cartridge can hold
typically eight gigabytes, giving the autoloader the ability to

Fig. 1. The HP C1553A DDS-2 digital audio tape autoloader contains
a DDS-2 tape drive and a cartridge changing mechanism that selects
one of six cartridges from a magazine and loads it into the drive.
Cartridges are changed automatically under software control.

back up typically 48 gigabytes without operator interven
tion. Two standalone versions are available: The HP 6400
Model 48AL for HP 9000 workstations and the HP SureStore-
Tape 1200e for Novell Netware and Windows NT systems.

Design Objectives
The basic definition for the HP C1553A autoloader was very
simple. It was to be a DDS tape autoloader, fit into a stan
dard 5!/4-inch peripheral enclosure, use a standard HP DDS
drive with minimum (or no) modifications, use the drive's
SCSI II interface, hold as many tapes as possible, and be
reliable and ergonomic.

During the investigation phase for this product there were
prototypes of similar products available. To keep the invest
ment low we considered procuring one of these designs.
However they fell short of some of the requirements, so the
decision was made to produce our own design.

Given the small size of the product and the desire to accom
modate as many tapes as possible, the interior space was at
a premium. Despite frequent questioning by the engineers,
the outside dimensions could not be increased if we were to
be sure of satisfying the maximum number of customers.
One possibility was to have a "power bulge" on the rear of

12 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

the unit, but this was rejected because it might obstruct
some customers' installations.

It was decided that the new HP C1533A DDS-2 tape drive
was to be fitted inside the autoloader. For reasons of manu
facturing simplicity and cost, the drive had to be used with
minimum modification. We were also aware that the auto
loader would be a platform for future DDS drives, so easy
integration was important for future generations as well.
The price of the autoloader could perhaps be only double
that of the DDS-2 drive for several times the capacity.

The SCSI II interface of the built-in drive can be used to
pass on control commands to the changer mechanism. Thus
the customer need only use one SCSI bus ID where some
libraries require two.

The more tapes the device can hold, the more attractive a
product it will be. Competing autoloaders with four car
tridges were known to be under development, so our goal
was to match this number or exceed it.

We saw the magazine holding the tapes as a simple storage
solution, that is, inexpensive and capable of being stored
like a video tape. This allows the user to treat a magazine as
a big single backup tape, rather than having to manipulate a
lot of single tapes.

For reliability and ease of use, use models and metrics were
developed. In the early stages of development, user tests
were conducted on possible design concepts.

Physical Architecture
The physical architecture is dominated by the lack of space.
Fitting the 3 '/2-inch C1533A tape drive into the volume al
lowed for the autoloader accounts for much of the difficulty.
The drive is placed at the rear of the autoloader volume be
cause it has its interface connections at the rear and the
tape loading at the front. There is just enough space for a
tape in front of the drive, but unfortunately no front-to-rear
room for a mechanism. However, removing the front panel
(bezel) of the drive, which is not required, created a vital
few extra millimeters.

The construction of the front of the DDS-2 drive is such that
the tape can overlap the drive when it is ejected, that is, the
tape can extend into the drive about 1 1 mm. This means that
a tape must be moved vertically above the drive to remove
it; it cannot move down through the drive mechanism. This
allows just over 10 mm from the front of any tape to the
autoloader front panel. This configuration also places the
drive at the rear bottom of the autoloader so that access to
other tapes is from above the drive.

This configuration does have some benefits. The drive con
nectors and option switches on the rear and bottom are di
rectly accessible at the exterior of the autoloader. Thermally
this is also the best arrangement because the drive base is
exposed to the exterior air. The drive base is an important
heat dissipation area just below the main controller printed
circuit assembly. Finally, for integration and repair we were
able to design the autoloader to accept the drive with a sim
ple bracket arrangement and a single connecting cable.

The changer mechanism, controller printed circuit assembly,
magazine, and door and front panel parts have to fit in the
rest of the available space. At this point we checked again

Autoloader Control Electronics

The autoloader control electronics were designed with the aim of linking the
mechanism and firmware elements with low-risk, proven technology at low cost.
The main shape printed circuit assembly is a through-hole design with a shape
to suit assembly space available. The space envelope for the printed circuit assembly
was derived directly from the mechanical CAD model because it was so tight.
Control of the mechanism is managed by a Hitachi H8/325 microcontroller with
on-board one-time-programmable (OTP) and RAM memories, nearly 90% of the
pins being available for I/O. Logic-level pulse width modulation signals generated
by the microcontroller control the dc motors and their integral gearboxes. Two-
level motor current sensing Â¡s used to detect mechanical jams or excessive motor
loading. The four motors and the picker solenoid are powered from the 1 2V supply
available in SVi-inch peripheral slots.

The state of the mechanism is determined by optical means. For each motion, a
mechanical part has a rib that is made to pass through slotted optical switches.
The rib has slots at datum positions in the motion that are detected by the opto-
switch. The width of each slot is calculated to reflect the mechanical tolerance of
the particular motion so that the firmware can guarantee a particular mechanical
position as long as the optical switch Â¡s open. An important philosophy here was
to position each slotted rib (comb) at the "point of action" (the farthest point from
the motor drive) so that backlash does not compromise the accuracy of the position
detection.

By using relatively large (and inexpensive) motor drive ICs operating well within
their thermal specifications and mounting the printed circuit assembly vertically for
optimum convection cooling, thermal problems were avoided. For the picking
action, an oversized solenoid Â¡s operated conservatively so that it does not get too
hot. fingers solenoid delivers a relatively large force for the picker fingers but for short
durations (less than two seconds).

The front-panel printed circuit assembly is connected to the main controller
printed circuit assembly by a flexible circuit. Mounted on the front-panel printed
circuit assembly are the three front-panel switches, the door open optoswitch,
three standard and the LCD. The LCD Â¡s a custom design procured with a standard
driver circuit on its flexible circuit, which Â¡s soldered to the front-panel printed circuit
assembly. All of these components were physically modeled in the HP ME30 CAD
system to integrate the electrical and mechanical designs.

An important design goal was ease of access to the printed circuit assembly since
the firmware is stored in an OTP device that must be replaced if firmware upgrades
are necessary. To this end the board is fully connectorized and fixed by a single
screw. needed, adjustments or calibrations to the printed circuit assembly are needed,
so complete printed circuit assemblies can be swapped in if necessary. The layout
of the printed circuit board Â¡s heavily influenced by the flexible circuit designs and
a lot of time in the early stages of the project was spent on the topography of the
flexible circuits, their routing, and the effect of the positions and direction of entry
on the printed circuit assembly layout. In particular, to keep the cost of the flexible
circuits as low as possible they were all designed as single-sided circuits. This
dictated pin ordering on the printed circuit assembly, which also needed to have
minimum layers to keep it low in cost. The final printed circuit assembly has just
four board including power and ground planes covering 90% of the board area.
There are four flexible circuits connecting the motions and the front-panel printed
circuit and Their physical layouts were modeled on the HP ME30 system and
also using paper mock-ups to check for control of their positions when moving, as
well as track layout.

Greg K. Trezise
Development Engineer
Computer Peripherals Bristol

whether we could exceed the form factor, and were again
asked to look inward rather than outward.

Ideas were tried in outline form to maximize the number of
cartridges with the simplest mechanism. It quickly became
clear that the size of the DDS cartridge imposed limitations

December 1994 Hewlett-Packard Journal 13

© Copr. 1949-1998 Hewlett-Packard Co.

that dictated the capacity and mechanism design. For exam
ple, even with minimal thicknesses in between, there is only
room for three cartridges above the drive. To achieve a ca
pacity of four with a simpler mechanism the cartridges
would have to move up and down in front of the drive, but
this violated the form factor.

Using only mockups and cartridges, we arrived at the possi
bility of rotating the column of three tapes above the drive.
This accommodated six cartridges and would make us the
market leader in capacity. There is just space, but how could
it be implemented? The vertical height of the components
had to be pared down to the minimum. For example, there is
1.5 mm between cartridges, 1 mm for a shelf in the maga
zine, and 0.5 mm clearance (all dimensions nominal). The
volume swept by the six tapes rotating is very large, taking
up about half the height of the autoloader and most of the
width, leaving only about 8 mm on each side. We decided
that the changer mechanism would have to occupy some of
the swept volume when the tapes were not rotating.

We used the HP ME30 mechanical CAD software to plan our
air space and implement the concept. At this point three
mechanical engineers developed the design, sharing the
same file system and conventions so that we could easily
load the subassemblies of our colleagues to check for
clashes and interfaces.

Autoloader Design
The autoloader can be broken into several physical sub-
assemblies, as follows:
Magazine
Mechanism motions â€” X, Y, Z, R
Front panel and user interface
Control electronics and motors
Mechanism firmware
Drive firmware, SCSI interface, and link to the mechanism.

Magazine. The magazine is made from polycarbonate plastic
moldings (see Fig. 2). It is simply a container for the six
cartridges, three on each end. The main molding is a box
structure into which some shelves are fixed.

The thin (1 mm) wall sections and usability features made
this an extremely challenging design. Required features
were retention of the cartridges and acceptance of the cor
rect orientation only. In other words, you can only put the
cartridges into the magazine in the correct way, and then
they stay in, even when you shake them by hand or apply
shock and vibration to the unit. The cartridges were not
designed with these features for autoloader use, so we had
to be creative. In addition there are regulatory requirements
(UL94-V2 flame resistance) and a need for reasonable robust
ness, that is, the cartridges should not be damaged if the
magazine is dropped on the floor. The magazine also has
areas for a label and indications to help ease of use. There is
a gear form along one side for automatic loading. The maga
zine is shaped so that it can only be inserted the correct way
into the autoloader.

A semitransparent polypropylene library case is supplied
with the magazine. This allows the user to store the maga
zine neatly with some protection. It is similar to the library
cases for commercial videotapes.

X Motion. Looking from the left side of the unit, the X motion
moves horizontally (front to back) in the autoloader (see
Fig. 3). This motion moves the cartridge horizontally. The

(continued on page 16)

(a)

Carousel and
Magaz ine

Door

Fig. like The six-cartridge magazine is designed to be handled like
one large tape cartridge.

Fig. Motions (a) Interior layout of the HP C1553A autoloader, (b) Motions
of the cartridge changing mechanism.

14 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Autoloader Firmware Design

When primary HP C1553A DDS-2 autoloader was designed, one of the primary goals
was to add the autoloader mechanism to a standard DOS drive with no hardware
modifications to the drive and minimum firmware modifications. The resulting
architecture allows the autoloader mechanism to be independent of drive hardware
and to be used with different drive products.

Originally, HP's DOS tape drive product line was not designed to be used with an
autoloader. However, the requirement for a low-cost autoloader mechanism was
realized and steps were taken to add an autoloader to the current product line.
This required three basic steps:

â€¢ Design of the drive/autoloader interface, both hardware and software, requiring
no hardware changes to the drive

â€¢ Addition of the loader command set to the drive firmware
â€¢ Design of the autoloader electronics and firmware to enable the required

communications with the drive.

Drive/Autoloader Interface
Since the drive had not been designed with the intention of interfacing to an
autoloader, there was very little hardware available to create an interface to the
autoloader mechanism. It was decided that a port that was used for debugging
purposes in manufacturing test could be used to communicate with the autoloader,
since it had no use outside the manufacturing line.

The port has four data lines and a single address line along with the required
handshake lines for the drive's 68000 processor. This allows a total of four regis
ters, 8-bit write-only and two read-only. It was decided that these should be 8-bit
registers accessed by two successive 4-bit operations. The four registers are the
drive status register, the autoloader status register, the drive autoloader command
register, and the autoloader drive report register.

Two registers are used as a command report mechanism to allow the drive to send
commands to the autoloader. This is the basis for the control of the autoloader.
When the it receives an SCSI command that requires autoloader operation, it
writes com appropriate single-byte command code into the drive autoloader com
mand completed as two four-bit writes. When the autoloader has completed the opera
tion it and the single-byte report in the autoloader drive report register and
asserts read. interrupt signal to the drive to indicate that the register should be read.

Commands that require parameters are preceded by a push parameter command
This is the single-byte command that has the top bit set. All other commands have the
top bit clear. This allows the remaining seven bits to be pushed onto a parameter
stack. be push parameter commands allow more than seven bits to be
pushed.

The autoloader status and drive status registers are used for handling the front
panel. stand the autoloader's front panel is completely different from the stand
alone the it is accessed via the autoloader processor. However, since the drive
processor has the responsibility for telling the autoloader what to do, the front-
panel switches are read and interpreted by the drive via the autoloader status
register. This allows maximum flexibility of operation and configuration.

To maximize the usability of the autoloader, it was decided to use a character-
based LCD display to give messages to the operator. Since most of the status
information comes from the drive, the drive status register is used to pass status
codes text the autoloader to display status messages on the display. The text for the
messages is stored in the autoloader processor ROM. While it would have been
more flexible to store the messages in the drive, there was insufficient space.

Drive Firmware Architecture
The changes required to the drive firmware to implement the drive/autoloader
interface relate to two distinct areas. The architecture of the firmware for the
autoloader is shown in Fig. 1.

First, a normal front-panel handling task within the firmware is replaced by a
new version, which communicates drive status to the autoloader. This receives
status information from both the SCSI task and the drive task on the drive. This
status being is passed over the drive/autoloader interface rather than being
displayed on the drive front panel. The SCSI task is changed to read the buttons
on the new front panel as well as the eject button on the drive. The drive eject
button is left active so that a tape can still be recovered from a drive in an auto
loader even if the autoloader hardware is not working.

Secondly, the SCSI task required the addition of the functionality to handle the
SCSI medium changer command set. This involved adding new functionality to the
task to interpret a new class of commands and pass them on to the autoloader

Autochanger

Display
Control

Mechan ism
Commands

and Reports
Mechanism

Control

Changer Commands
_ a n d R e p o r t s

Drive

Drive Commands
and Reports

Fig. 1. Autoloader firmware architecture.

ri HMI4 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

Cam Tracks

mechanism. Parsing the commands on the drive allows the drive to remain in
control of the whole autoloader and minimizes the risk of conflicting commands
going to parse drive and autoloader. It also avoids duplicating the software to parse
SCSI commands for both the drive and the autoloader.

Autoloader Firmware Architecture
The autoloader firmware consists of three distinct functions. These are communi
cating the the interface to the drive, handling the display, and controlling the
autoloader mechanism.

These three functions are implemented in three separate tasks running in a round-
robin fashion with a 1-ms time slice for each function. This made development of
the software easier and allowed the separate functions to be implemented with
minimal risk of interference with one another.

To save imple costs, the drive/autoloader interface registers are not imple
mented directly hardware latches. Instead, the I/O lines from the drive are wired directly
into the ports of the H8/325 microcontroller used to control the autoloader mecha
nism. imaginary H8 has a set of internal memory locations that mirror the imaginary
hardware registers. When the select line from the 68000 is asserted, indicating an
access to the drive/autoloader interface registers, this causes an interrupt to the
H8. The H8 reads its I/O lines and handshakes the data to or from the 68000. This
gives running appearance to the 68000 of slow hardware latches. The tasks running on
the H8 merely need to access the internal memory locations as if they were the
registers.

The drive status register is treated slightly differently from the other registers in
the drive/autoloader interface. Because the drive can send repeated status values
to this register faster than the display task on the H8 can read them, the values
are queued within the H8 to be 'read in sequence. This ensures that an important
status status is not lost behind a less important one. In addition, certain status
codes cause flags to be set within the H8 that determine whether the drive is in a
certain state. This allows tracking of the state of the drive.

Mark Simms
Development Engineer
Computer Peripherals Bristol

cartridge is gripped by metal fingers (mounted on a picker
arm) on an edge near where a human grips the cartridge.
The fingers are sprung shut, gripping a cartridge in case of a
power failure, and are opened by a solenoid. The fingers are
mounted on an arm, which pushes and pulls the cartridge.
The arm can pull a cartridge out of the magazine and push it
into the drive. The picker arm is moved by a belt, which is
driven by a dc gear motor.

The cartridge is not designed for manipulation by a mecha
nism, so the choice of features that were suitable for grip
ping and alignment was limited. The obvious edges were not
specified in the cartridge standard, and it took two years to
have some of these features added to the standard.

Y Motion. The Y motion moves the cartridge and picker arm
up and down. The picker arm is mounted on a platform that
is lifted or lowered by two cams. The picker arm runs on
a shaft, allowing the X motion. The shaft and the other X-
motion parts including the gear motor and belt are all
mounted on the platform. Connections are made to these
parts by a flexible circuit. The platform has three pins, one
on the left and two on the right, which project out the sides
(looking from the front of the unit) into cams, one on each
side of the unit. The pins run in tracks that resemble escala
tor shapes, that is, they have 50-degree slopes with horizontal
portions. The pins can only move vertically because they also
run in slots in metal plates. The cams with the shaped slots

Left Cam

Right Cam

Vert ical Slot
(Other Two not Visible)

View of Y Cams from Front Top Right

Y Motor Drives Right Cam 3 Pins {not Shown)
Go through Slots into

Cam Track

Lever Connects to
Drive Left Cam

View of Y Cams from Front Top Left

Fig. 4. Y-motion cam design, (a) View of the Y cams from the front
top right, (b) View of the Y cams from the front top left.

move backwards and forwards and drive the pins and the
platform up and down (see Fig. 4). Both cams are driven by
one dc gear motor. The one on the right has a molded rack
and is driven directly by a gear on the gear motor. The left
cam is connected by a lever across the bottom front of the
unit to the right cam, and is driven by the same Y gear
motor. This cam arrangement tolerates inaccurate position
ing of the Y gear motor and cams. The height of the cam
components themselves determines the height accuracy of
the platform, which early calculations showed is adequate.
The pins can be anywhere on the horizontal portions of the
cam tracks, which are about 5-mm long. The flat plate ar
rangement of the cams and tracks fits neatly into the unit on
either side of the platform. The left cam extends into the
magazine rotation area making extra use of the space when
the magazine is not rotating.

R Motion. The R motion is the rotation of the magazine. This is
achieved by a large disk in the top of the unit. The magazine
sits on top of the drive. The usual drive lid (top) is replaced
with one that has the front edge cut away to allow the car
tridge to be lifted straight up with the 11-mm overlap. The
rotating disk in the top of the unit has two moldings attached
to it that hang down on either side of the magazine, allowing
it to be located and turned around. Originally the rotating
disk in the top of the unit was going to be inside the unit.
However, because of the extreme vertical space problems,
the disk is actually part of the exterior surface of the unit.
The disk rotates 180 degrees and is driven by a dc gear motor
through a clutch. The clutch allows the disk to be driven into

16 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

an end stop for accuracy while preventing damage to the
gear motor, which was found in early prototypes. The clutch
is a custom design and drives a gear form on the disk.

Z Motion. The Z motion is the movement of the magazine in
and out of the autoloader. The magazine has a large rack
(gear form) on one side. This engages with a gear in the unit,
which is driven, through a custom clutch, by the Z de gear
motor. A microswitch (Z switch) activated by a rocker arm
indicates when a magazine has been inserted by the user.
The insert and eject mechanism (Z motion) is deliberately
designed to mimic the familiar home video recorder type of
action. User tests showed that this action was familiar and
intuitive. The action of the user is to push the magazine into
the autoloader through the door, which is sprung shut. The Z
switch detects the magazine and the Z gear motor starts.
When the magazine is pushed a little farther the gear engages
and pulls the magazine from the user. On entry the magazine
compresses a spring-loaded pusher arm, which is used on
ejection. The Z switch also detects when the magazine has
reached the fully home position, that is, fully into the unit. On
ejection the Z gear motor pushes the magazine out through
the opened door. As the gear disengages, the sprung pusher
completes the ejection. The magazine is caught by a small
sprung plastic part to ensure a consistent eject distance. The
distance is over 22 mm, which allows handicapped users to
grip and remove the magazine.

The lid assembly, which contains the R and Z motions, was
one of the later subassemblies designed and proved very
difficult to finalize. The physical space restrictions and the
desire to get the right feel for the user meant that several
iterations of design had to be prototyped and tested.

Front Panel. The front panel assembly provides the controls
(three buttons), displays, and door (see Fig. 5). A printed
circuit board mounted behind the front-panel plastic mold
ing has the display and switch components on it. Once again
space was at premium and the whole assembly had to be
thin to miss other mechanism parts. The layout was deter
mined by the user tests and the position of the door. The
door is central in the upper portion. The entry has a keying
feature so that the magazine cannot be inserted the wrong
way. Combined with the magazine features, this means that
the user is guided into correctly inserting the cartridges and
prevented from making mistakes. This means that the cor
rect orientation of the cartridge is ensured when it arrives
inside the autoloader. This is not always the case in other
autoloader systems, which have to check the orientation.

The door opens inwards and is sprung shut, but for maga
zine ejection the door must be opened by the unit to allow
the magazine to eject. The door is locked when a magazine
is inside the unit to prevent tampering or mjury to the user.
It is unlocked when there is no magazine inside to allow the
user to insert one. The door is pushed open and locked by
the movement of the left-hand cam. The cam travels are
extended to allow this operation. At the normal resting Y
height (bottom of travel in front of the tape drive), the cams
move farther to unlock the door, then farther to push open
the door. This allows the extra function with no extra gear
motor or mechanism. An optoswitch sensor detects whether
the door is open; its main purpose is for safety, so that the

Eject

Horizontal Version

Vert ical Version

Liquid Crystal Display
(L C D)

Operator Attention
Required Light â€”

Tape Act iv i ty L ight ~

Load Tape
Button â€”

J i
â€¢:

0
â€” Magazine

Present Light

_ S e l e c t
But ton

Eject Button

Fig. 5. Front panel layout.

unit can be stopped in case of a faulty lock. In this case, the
unit will display an error message, "Close Door," and wait.

The appearance and position of the front-panel displays and
controls were determined by the industrial designer within
the mechanical design limitations and were heavily influ
enced by the user test results. Early on, some mockups were
tested because there is potentially a lot of information that
could be displayed to the user, such as error messages and
many status messages, about 60 total. The most basic button
and the one that all users require is the Eject button. This
was made large and obvious, the shape making it look push-
able so that minimum or no text is needed for users to
choose it. The second button selects a starting tape, of the
ones loaded, and the final button starts a manual backup.
Alternatively, the unit can be controlled by SCSI commands
from the host computer.

The displays are grouped into two types: those giving overall
status that can be seen from a distance, such as idle, backing

December 1994 Hewlett-Packard Journal 17

© Copr. 1949-1998 Hewlett-Packard Co.

Network Backup with the HP C1553A DOS Autoloader

The four main applications for the HP 01 553A autoloader described in the
accompanying article are:

â€¢ Single large backup
â€¢ Centralized network backup
â€¢ Fully automated backup
â€¢ Near-line data storage.

The backup of a large amount of data in a single session is a clear application for
the autoloader. Today there are many servers with a disk capacity exceeding that
of a single DDS-2 cartridge, which is typically 8 gigabytes with 2:1 data compres
sion. manually system administrator with a single tape drive must either manually
insert incre tapes into the drive when doing full backups, or must settle for incre
mental full that only back up the data that has changed since the last full
backup. carried two options present some difficulties. Backups are typically carried
out at at when server use is lower, so tape changing is inconvenient at best. A
restore based on an incremental backup routine can be complicated since it will
involve using several unrelated tapes. The autoloader, with its six cartridges,
enables the system administrator to protect up to 48 gigabytes of data in one
single unattended session.

Most and clients. local area networks consist of several servers and many clients.
Centralized network backup involves backing up all servers and clients across the
network onto one high-capacity drive such as the autoloader. This is a cheaper
alternative to having a separate tape drive on each server. Other benefits include
having enhance one tape drive and one software package to administer and enhance
security by having all removable data in one location, which can be physically
secured. This is the same rationale that has been employed for centralizing net
work printing on one high-duty-cycle printer. For additional flexibility each of the
the autoloader's six cartridges can be configured to hold data from a specific
source. For example, each server can be backed up to its own cartridge and all
clients a one of the other cartridges. Alternatively, all servers and clients on a
segment of the network can be backed up to a specific cartridge. The exact choice
will depend on restore and disaster recovery considerations.

Fully automated backup relieves the busy system administrator from another task
previously taken for granted in the days of central mainframes: tape rotation.
Methods such as "grandfather-father-son" and "tower of Hanoi" were developed
to prevent overuse and wearout of media and to make available several differently
aged backing of data when restoring. These methods involve backing up to a
different cartridge every day. For the system administrator with a single tape drive
this means manually changing the tape in the drive every day. If for some reason
this does not happen most software packages will abort the backup, meaning that
the system is unprotected. More significant, when the time comes for a restore,
the system administrator must be on hand to retrieve the correct cartridge from
secure storage and manually load it into the drive. These tasks can now be auto
mated capacity. making use of the autoloader's multiple-cartridge capacity. A simple
routine with five data cartridges and a cleaning cartridge could be configured to
perform a full backup every weekday to a new tape. This weekly cycle could be
repeated over an extended period of time. A routine giving a longer file history
would followed performing a full backup on the first day of the week, followed by
daily incremental backups to the same tape. The magazine would then provide
five Using of protection for a server of up to five gigabytes. Using a tower of
Hanoi single scheme, sixteen weeks of protection can be achieved with a single
magazine. In all cases, the only manual intervention would be periodic magazine
rotation to a fireproof safe or offsite location. Restores no longer need to involve
the system administrator, either. With all of the cartridges available by random
access in the magazine, the backup software can give users the ability to restore
their administrator. files with overall access rights controlled by the system administrator.

Prolonged operation of tape drives without any tape head cleaning can result in a
media warning that causes the backup software to abort the backup. This need
not be capability case with the DDS-2 drive, which has a has a self-diagnostic capability
that senses the write error rate. When this increases beyond a conservative
threshold, the drive sends a message to the backup software, which can respond
with the in of a head cleaning cycle using the cleaning cartridge included in
the magazine. This will typically occur every twenty-five hours of use and ensures
a long intervention. of error-free operation without system administrator intervention.

up, or fault condition, and those giving further detailed infor
mation that is required when the user is near the unit, such as
"Insert Mag" or "Clean Me." A custom LCD was selected for
the detailed information, the custom icons and layout en
abling a lot of information to be conveyed at a glance with
out long text messages. Ten characters of text are available
to display messages (see Fig. 6). The printed icons beside
the three buttons and three LEDs were also developed and
tested for intuitive use by users and to avoid any text that
would require localization. The exception to this is that the
word "Eject" was required by the English speakers tested
because the universal eject icon, seen on almost every VCR

ID-Character
Display â€”

Tape Loaded
in Drive â€”

Lnad i na Data Compressed
Wri te Protect

Magazine Slots
Occupied

Tape Used
(Odometer)

Fig. 6. Liquid crystal display layout.

and cassette player, was not recognized! The word "Eject" is
acceptable internationally.

Control Electronics. This development effort is described in
"Autoloader Control Electronics" on page 13.

Mechanism and Drive Firmware. This development effort is
described in "Autoloader Firmware Design" on page 15.

Mechanical Design Methods
ME30, HP's 3D computer-aided design tool, was used by the
mechanical and manufacturing engineers. It was run on HP
9000 Series 700 workstations that had a common disk
mounted with directories structured and named like the
product subassemblies. The designers were responsible for
maintaining the latest revision of their parts in these shared
areas, and for providing a macro that would simply load all
the subassembly parts. The motors, the flexible circuits, and
the main components on the controller printed circuit as
sembly were all modeled. Thus the latest design was avail
able to the designers for cross-checking, and to the procure
ment and manufacturing engineers for process planning. HP
ME30 proved very valuable at speeding up the checking and
success of prototype assembly builds. Better visualization
allowed the designers to spot problems early, thereby avoid
ing embarrassing problems on prototype builds. On one oc
casion, we discovered that we were about to design a gear
motor assembly through the center of the H8 microprocessor!

18 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Near-line data storage is an evolving application for multiple storage devices
based on using intelligent data management software known as Hierarchical
Storage Management software. The size of hard disk mass storage on servers is
increasing all the time. Today's average network server has a disk capacity of 9
gigabytes and this is projected to rise to 40 gigabytes within the next five years.
The system administrator faces a constant challenge to ensure economic and
efficient use of disk space by users. The reason for not adding hard disk drive
capacity at will is cost Hard disks are a very expensive data storage medium, but
are necessary to ensure fast access to data; access time is of the order of 10
milliseconds. Magnetic tape, by contrast, has a cost per megabyte of data one-
hundredth that of hard disks, but the access time of a tape drive is on the order of
30 seconds. An analysis of the use pattern of files on a typical server shows that
some are files are accessed frequently, but that the majority are older files
used infrequently. Hierarchical Storage Management software tracks file access
and automatically migrates infrequently used files to a lower-cost storage me
dium. zero the file is stored on another device, a phantom file of zero size is
left file present. original directory. As far as the user is concerned the file Â¡s still present.
When software is required the Hierarchical Storage Management software retrieves
it automatically. The small delay in retrieving the file from the slower device Â¡s
acceptable on an occasional basis. All of the activity is transparent to the users,
who effectively see a virtually unlimited amount of disk space. The data migration
Â¡s triggered at typically 80% of disk capacity. The system administrator therefore
never with to be concerned about running out of disk space. The autoloader with
its six a can provide up to 48 gigabytes of near-line data storage at a
fraction of the equivalent hard disk storage cost.

P e r f o r m a n c e C o n s i d e r a t i o n s

The autoloader's large capacity Â¡s well-matched by the DDS-2 drive's high data
transfer rate. However, backup Â¡s a resource intensive operation that uses all of
the components of the computer and network, not just the tape drive. Careful
selection of all of the hardware Â¡s required to balance the throughput and ensure
that depend are no bottlenecks. The exact configuration will depend on the type of
backup being performed.

For server-based backup, the limiting component Â¡s typically the hard disk drive.
Backup spend randomly accessing all files on the hard disk. The disk can spend

more can seeking data than actually reading it The limitation can be reduced by
"spanning" the data to be read over several disks. While one or more disks are
seeking data one of the other disks can be reading data. This spanning can usually
be implemented in the operating system but is more commonly implemented Â¡n
hardware in the form of a redundant array of inexpensive disks (known as a RAID
disk all Here a dedicated controller card takes care of all the data input and
output for all of the disks and frees the operating system from that overhead. In
most cases an HP C1533A DDS-2 tape drive backing up data from a RAID disk array
with 510 disks will approach its maximum native transfer rate of 510 kilobytes per
second compression. is equivalent to 60 megabytes per minute with data compression.

For centralized network backup, the limiting component Â¡s typically the network.
Today's most popular network topology Â¡s Ethernet, operating at a bandwidth of 10
megabits per second. During backup all the data must travel across the network,
along in all of the disk access commands. This results in most cases in a transfer
rate can reduced half of the maximum the DDS-2 drive can achieve. This can be reduced
further if the amount of traffic on the network is high enough to result Â¡n packet
collisions, so backups should be run at night when traffic is low. To achieve higher
transfer rates over the network, faster topologies must be used. FDDI over fiber
optic cable and 100 Base-VG both operate at 100 megabits per second, ten times
faster more Ethernet. Implementation of these technologies is becoming more
widespread for reasons other than backup, such as multimedia and video. For
existing installations it Â¡s not necessary to recable the entire network. The majority
of data together will be from server to server, so these can be connected together
with backup dedicated high-speed backbone. This will result in a backup speed close to
the DDS-2 drive's maximum.

When increase intelligent data management software, an apparent increase in per
formance can be seen. This Â¡s because the infrequently accessed files, after hav
ing been backed up several times, are considered stable and are no longer backed
up. A full backup therefore involves fewer files and can be completed Â¡n a shorter
time. This performance gain Â¡s achieved with software without any changes to the
hardware.

Michael G. Bertagne
Technical Marketing Engineer
Mass Storage Europe

Although valuable, the latest HP mechanical CAD software
does not fully simulate all the mechanical motions. In this
respect it is less mature than EE CAD. So the traditional
design, build, test, redesign cycle is still the major way to
achieve reliability improvements in the design. Anything
that can be done to shorten this cycle, rapid prototyping for
example, can save weeks or months of time to market. The
3D models allowed us to use the latest fast prototyping meth
ods, including stereo lithography and CNC milling of parts.

Design Margin Analysis
Because of the desire to prove as much of the design as pos
sible before commitment to tooling, we adopted an unusual
approach to the mechanical tolerances. Typically designers
will approach key areas and perform a tolerance analysis.
They will add up the tolerances for the parts using data that
they hope is representative of the production parts. Because
of the lack of space, interdependency of all the subassem-
blies, and simply pressure of work on the designers, we de
cided to adopt another approach. A consultant from Cranfield
Institute of Technology, one of the leading teaching and con
sultancy groups in manufacturing technology in the UK, was
enlisted to help analyze the tolerances. We started from the
outside in, deciding on the key areas of functionality, then
building up spreadsheets of the systems with the tolerances.
Our procurement engineers provided capability study data
for the manufacturing processes of similar parts.

Starting out with simple arithmetic, we built this analysis
into a design margin index.1 The managers and designers
were then able to have a single number for the "goodness"
of the design in each of six key areas. This was obtained by
the root-sum-of-squares (RSS) method of calculating toler
ances.2 The squares of the tolerances are all added, and then
the square root of the sum gives the variance of the assem
bly. If we had simply taken worst-case tolerances the design
would not have worked because the worst-case numbers
were too large. The RSS method assumes that the parts have
a typical Gaussian distribution of sizes. Statistically, taking
the RSS only excludes 0.27% of the possible cases. This was
not considered completely satisfactory, so our goal was to
have 1.5 times the RSS figure as the minimum design crite
rion for each key area. A simple scoring method of compar
ing the actual RSS figure for the key area with the goal of
1.5RSS gave us the "goodness" figure. Because the key areas
are not independent, this allowed us to view the overall ca
pability of the design and prevented conflicts such as im
provements by a designer in one area increasing margin at
the expense of another key area.

The use of a consultant to check the design and the use of
the design margin index strengthened our execution of the
mechanical design, forcing us to change the design and
production processes of some parts.

December 1994 Hewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

A Change of Direction
As the design approached completion and we were ready to
start production prototypes in manufacturing, the division
reassessed the manufacturing strategy. It was clear that the
product would consume more resources than the division
was willing to commit. The increase in volumes of the
DDS-1 products and the launch of the DDS-2 drive at nearly
the same time would cause a bulge in resource requirements.
The decision was made to find a partner to manufacture the
autoloader mechanism, while HP supplied the DDS-2 drive.

BÃ¼ro-und DatenTechnik (BDT) GmBH was selected and
from November 1992 worked closely with us to take the
autoloader into manufacturing. BDT was selected for their
manufacturing expertise and quality in producing similar
products, including paper sheet feeders for printers and
another autoloader. The partnership has proved extremely
successful. Their engineers have looked critically at the de
sign and improved it. They have developed it and taken it
successfully into manufacturing. HP was able to redeploy
people on other projects, leaving only a core team to work
with BDT.

Applications
To ensure the availability of software solutions that fully
support the automation features of the HP C1553A, HP has
developed the LABS (Low-Admin Backup for Servers) stan
dard guidelines for software developers. The LABS guidelines
define a set of software attributes that virtually eliminate
human operator involvement in the backup process. The
HP SureStoreTape 1200e product is available as a bundle
with LABS software developed by Palindrome Corporation.
In addition, several other solutions are available for differ
ent operating systems, such as Cheyenne ARCSERVE and
Palindrome Backup Director for Novell networks, Arcada
Backup Exec for Windows NT, and Legato NetWorker for
UNIXÂ® systems and Novell.

The autoloader can work in two ways, depending on the
application software: random mode or sequential mode. In
random mode the software issues SCSI medium changer
commands to load a specific cartridge number. The software
therefore has complete control over the operation. In se
quential mode the user starts the backup from the chosen

cartridge, say cartridge 1, and the host writes until the tape
is full. The host then issues an SCSI unload command and
the autoloader replaces the cartridge with the next one auto
matically. This allows easier integration into older systems
that do not support the SCSI medium changer command set.

See page 18 for more about network backup applications.

Acknowledgments
The core team of designers deserves a lot of credit for achiev
ing so much with so little: a small volume in the product,
and a small team compared to the size of the job. Everyone
contributed a lot. Thanks to Ray Dixon and Phil Williams for
mechanical design, Mark Simms for mechanism firmware,
Nigel Evans for displays, and Kevin Jones for drive and SCSI
firmware. Bill Meikle, R&D project manager, guided us and
contributed many important ideas. Jim Dow did the industrial
design and he and Tom Cocklin, both from the HP Greeley
facility, heavily influenced the ergonomics. Jeff Blanchard
tried to break the prototypes to the best effect and guided us
toward a reliable design. Outside this team of designers was
the strength of our procurement and manufacturing engi
neers, especially Phil Catt, Dave Rush, and Roy Bradford,
who enabled us to turn prototypes around and also contrib
uted to the design. Dr. John AdiÃ© (design margin index) and
Dave Moseley from Cranfield Institute of Technology pro
vided an injection of ideas and analysis.

We must give a special mention to the BDT engineers and
production personnel who took our basic design, criticized
and improved it. They put in much hard effort and good faith
to get the product into manufacturing.

References
1. J. AdiÃ©, "Optimising the Design Process," Professional Engineer

ing, February 16, 1994.

2. J.R. Milner, "The Toleranced Design of the Model 520 Computer,"
Hewlett-Packard Journal, Vol. 35, no. 5, May 1984, pp. 10-11.

Windows is a U.S. trademark of Microsoft Corporation.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

20 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Automatic State Table Generation
The HP C1553A DOS tape autoloader requires a complex sequence of
simple are to carry out mechanical retries. These sequences are
defined in tables. Cadre's Teamwork was used for input and an automatic
tool was used to generate the tables to go in ROM.

by Mark J. Simms

The autoloader firmware for the HP C1553A digital audio
tape autoloader was written in the C programming language
to run on a Hitachi H8/325 processor. This processor is an
embedded system microcontroller with built in ROM, RAM,
I/O ports, timers, and serial ports. This allows a very low-
cost implementation of the autochanger controller in which
most of the functions can be carried out in a single chip.
However, the largest ROM size available on the H8 series of
processors was 32K bytes. This means that the complex
retry algorithms required for controlling such a mechanical
device needed to be implemented in as compact a manner
as possible.

Our laboratory has a large amount of experience in producing
table-driven systems. All of our products have had some form
of table-driven control structures in some part of their firm
ware. However, experience had shown that there can be
severe problems maintaining table-driven code because of
the difficulty of maintaining the tables. This derives from the
lack of readability of software written in C or assembly lan
guage A merely defines the contents of data structures. A
lot of documentation needs to be added to the source code
to explain the meaning of the entries. If this is not main
tained, then the declarations rapidly become unreadable.
This greatly increases both the time needed to implement
changes and the risk of errors.

The designers of the HP 9145A cartridge tape drive and the
HP 35470A DDS tape drive attempted to improve this situa
tion by defining state machine languages that can be trans
lated into C source code automatically. These languages
offered powerful constructs for defining the tables in terms
of state machines. The software would remain in one state
until an event was detected. Then a set of actions would be
carried out and a new state entered. This approach made the
table definition much more readable than the basic data
declarations and greatly alleviated the maintenance problems.
However, the state machine languages suffered from many
of the problems that are characteristic of "unstructured"
programming techniques. There was no observable flow in
the source code since transitions were permitted between
any two states. This made it very difficult to follow the flow
of the program and determine what sequence of actions had
occurred.

To aid in documenting these state machines, the Teamwork
structured analysis tool from Cadre Technologies was
adopted. This allowed the initial problem analysis to be car
ried out graphically. A state transition diagram was produced

to document the desired solution (see Fig. 1). This was then
implemented using the state machine language. However, as
the state machine language description was modified, the
diagram gradually became more and more out of date and
was updated periodically. This meant that while the diagram
could be used to gain an initial familiarity with the software,
it could never be guaranteed to be completely accurate.

With the HP C1553A autoloader, these problems became
more serious. The state tables were to be used very exten
sively for mechanical control. Also, there was a very strong
need to communicate the control algorithms to mechanical
engineers and the product test team. This required that good
accurate documentation be available to all within the divi
sion. It was felt that any manual system for maintaining such
documentation would prove unusable in real situations. As a
result, a decision was made to generate the state tables di
rectly from the Teamwork diagrams. This would ensure
that the diagrams were always accurate reflections of the
software.

Design Implications
Analysis of the HP C1553A motor control software showed
that the software divides into two major sections. The first
is a number of routines that handle the low-level control of
the mechanism. These routines control the motors and sole
noids, read sensors, and track the position of the mecha
nism. They track control information and map that onto the
control signals required to operate the motors in the correct
direction at the correct power level. They debounce input
readings and map them into mechanism position information.
These routines are implemented in C and use global variables
to interface with the rest of the software. The routines are
called in sequence to carry out all the necessary interfacing
to the mechanism.

The second section is the control sequencing. This contains
a number of state machines. Some of these are directly
linked to the individual mechanism parts. Others sequence
individual mechanism operations together in response to a
single command. These state machines interface with the
low-level routines by means of the control information and
mechanism position global variables.

Since several state machines are running concurrently with
the low-level routines, this concurrency must be reflected in
the software. Each state machine, when called, checks to
see if a transition needs to be made. If not, control is returned

December 1994 Hewlett-Packard Journal 21

© Copr. 1949-1998 Hewlett-Packard Co.

m c _ a c t i o n = " m c _ j a m m e d " I
m c _ a c t i o n = " m c _ f a i l e d ' V
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

m o t o r _ a c t i o n = " m o t o r _ a c t i o n _ p o w e r _ o n 7
m c _ s t a t u s = " n o _ e r r o r " ;
m c _ m a p _ s t a i u s = " t r u e " ;
m c _ m a p _ c a r t r i d g e _ h e Ã ­ g h t = " f a l s e "
m c . _ a c t i o n = " m c _ p o w e r _ o n _ Z "

2 r e c o v e r i n g Z p o s i t i o n

m c _ a c t i o n = " m c j a m m e d " I
m c _ a c t Ã ­ o n = " m c _ f a i l e d " /
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

r m c _ a c t i o n = " m c _ s u c c e s s " /
m c _ a c t i o n = " m c _ p o w e r _ o n _ Y "

3 c l o s i n g d o o r

(m c _ a c t i o n = " m c _ j a m m e d " I
m c _ a c t i o n = " m c _ f a i l e d ") & m c _ d o o r _ o p e n /
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

Ã m c _ a c t i o n = " m c _ s u c c e s s ' 7
me _a ctio n=" m c_ retrÃ ct_p ic k er"

recovering X posit ion

j m i i c _ a c t i o n = " m c _ s u c c e s s "

1 3 w a i t i n g f o r d r i v e

m c _ a c t i o n = " m c _ j a m m e d " l
m c _ a c t Ã ­ o n = " m c _ f a i l e d ' 7
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

m c _ a c t i o n = " m c _ j a m m e d " I
m c _ a c t i o n = " m c _ f a i l e d ' 7
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

m o t o r _ d r i v e _ s t a t u s _ v a l i d &
((m o t o r _ d r i v e _ s t a t u s _ l u r k i n g = " f a l s e " &

m o t o r _ d r i v e _ s t a t u s _ p r e s e n t = " f a l s e ") I
(m o t o r _ d r i v e _ s t a t u s _ l u r k i n g = " t r u e " &
m o t o r _ d r i v e _ s t a t u s _ p r e s e n t = " t r u e ")) /

m c _ a c t i o n = " m c _ r e c o v e r _ . c a r t r i d g e "

recover ing cartr idge
m c _ a c t i o n = " m c _ s u c c e s s

m c _ a c t i o n = " m c _ s u c c e s s "

m c _ X _ m o t i o n _ c a r t r i d g e _ p r e s e n t = " t r u e " &
t n o t o r _ d r i v e _ s t a t u s _ p r e s e n t = " t r u e ' 7
mo to r_d r i ve_s ta tus_ lu r k i tÂ»g= " t r ue " &
m c _ a c t i o n = " m c _ p u t _ c a r t r i d g e "

m c _ a c t i o n = " m c _ j a m m e d " l
m c _ a c t i o n = " m c _ f a i l e d ' 7
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r " I

1 6 c h e c k i n g c a r t r i d g e

1 4 p u t t i n g c a r t r i d g e b a c k

m c _ X _ m o t i o n _ _ c a r t r i d g e _ p r e s e n t = " t r u e " &
m o t o r _ d r i v e _ s t a t u s _ l u r k i n g = " f a l s E " &
m o t o r _ d r i v e _ s t a t u s _ p r e s e n t = " f a l s e ' 7
m c _ a c t i o n = " m c _ p l a t f o r m _ t o _ d r i v e "

m c _ a c t i o n = " m c _ j a m m e d " l
m c _ a c t i o n = " m c _ f a i l e d ' 7
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

m c _ X _ _ m o t i o n _ c a r t r i d g e _ p r e s e n t = " f a l s e " &
m o t o r _ d r i v e _ s t a t u s _ l u r k i n g = " f a l s e " &
m o t o r _ d r i v e _ s t a t u s _ p r e s e n t = " f a l s e ' 7
m c _ a c t i o n = " m c _ p l a t f o r m _ t o _ d r i v e "

m c _ a c t i o n = " m c _ s u c c e s s 7
m c _ a c t i o n = " m c _ p l a t f o r m _ t o _ d r i v e "

7 r e c o v e r i n g Y p o s i t i o n

Â® 1 J m c _ X _ m o t i o n _ c a r t r i d g G _ p r e s e n t = " f a l s e " &
m o t o r _ d r i v e _ s t a t u s _ l u r k i n g = " t r u e " &
m o t o r _ d r i v e _ s t a t u s _ p r e s e n t = " t r u e ' 7
m c _ a c t i o n = " m c _ p l a t f o r m _ t o _ d r i v e "

) m c _ a c t i o n = " m c _ s u c c e s s " &
m c _ c a r t r i d g e _ h e i g h t = " m c _ 2 5 _ h e i g h t ' 7
m c _ c a r t r i d g e _ h e i g h t = " m c _ 1 4 _ h e i g h t " ;
m c _ a c t i o n = " m c _ p l a t f o r m _ t o _ c a r t r i d g e "

m c _ a c t i o n = " m c _ j a m m e d " l
m c _ a c t i o n = " m c _ f a i l e d ' 7
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

m c _ a c
m o t o r
m c _ a c

t i o n = " m c _ s u c c e s s " &
_ d r i v e _ s t a t u s _ l u r k i n g = " f a l s e /
: t i o n = " m c _ u n l o a d _ c a r t r i d g e " _

m c _ a c t i o n = " m c _ s u c c e s s " &
/ m o t o r _ d r i v e _ s t a t u s _ l u r k i n g = " t r u e "

1 8 r e c o v e r c a r t r i d g e a t d r i v e

(m c _ a c t i o n = " m c _ s u c c e s s " I
mc_ac t i on="mc_ faÂ¡ lBd" I
m c _ a c t i o n = " m c _ j a m m e d ") &

m c _ X _ m o t i o n _ c a r t r i d g e _ p r e s e n t = " f a l s e "
m c _ R _ m o t i o n _ a t _ e n d = " t r u e ' 7
m c _ s t a t u s = " m c _ e r r o r "
m c _ m a p _ s t a t u s = " t r u e " ;
m c _ a c t i o n = " m c _ p o w e r _ o n _ R "

(m c _ a c t i o n = " m c _ s u c c e s s " I
m c _ a c t i o n = " m c _ f a i l e d " I
m c _ a c t i o n = " m c _ j a m m e d ") &

(m c _ R _ , m o t i o n _ a t e n d = " f a l s e " I
m c _ X _ m o t i o n _ c a r t r i d g e _ p r e s e n t = " t r u e ' 7

m c _ s t a t u s = " n o _ e r r o r "
m c _ m a p _ s t a t u s = " t r u e " ;
m c _ c a r t r i d g e _ s i d e = " m c _ 4 5 6 _ s i d e " ;
m c _ a c t i o n = " m c _ r o t a t e _ m a g a z i n e "

1 9 p o w e r o Ã ¯ t R

m c _ a c t i o n = " m c j a m m e d " !
m c _ a c t i o n = " m c _ f a i l e d ' 7
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

m c _ a c t i o n = " m c _ s u c c e s s ' 7
m c _ c a r t r i d g e _ h e i g h t = " m c _ 3 6 _ h e i g h t " ;
m c _ a c t i o n = " m c _ p l a t f o r m _ t o _ c a r t r i d g e "

1 0 g o i n g u p t o p u s h Â®
m c _ a c t i o n = " m c _ j a m m e d " l
m c _ a c t i o n = " m c _ f a i l e d ' 7
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

m c _ a c t i o n = " m c _ s u c c e s s 7
m c _ a c t i o n = " m c _ s e n s e _ c a :

1 1 p u s h i n g i n c a r t r i d g e

* m c _ a c t i o n = " m c _ s u c c e s s a
m c _ c a r t r i d g e _ h e i g h t = " m c _ 3 6 _ h e i g h t ' 7
m c _ c a r t r i d g e _ h e i g h t = " m c _ 2 5 _ h e i g h t " ;
m c _ a c t i o n = " m c _ p l a t f o r m _ t o _ c a r t r i d g e '

re t ract ing p icker a f ter

m c _ a c t i o n = " m c _ s u c c e s s " l
m c _ a c t i o n = " m c _ j a m m e d " l
m c _ a c t i o n = " m c _ f a i l e d ' 7

r m o t o r _ a c t i o n = " m o t o r _ s t a t u s _ j a m m e d "

Fig. 1. State transition diagram.

m c _ a c t i o n = " m c _ j a m m e d " l
m c _ a c t i o n = " m c j a i l e d ' 7
m o t o r _ a c t i o n = " m o t o r _ s t a t u s _ j a m m e d "

r m c _ a c t i o n = " m c _ s u c c e s s " &
m c _ c a r t r i d g e _ h e i g h t = " m c _ 1 4 _ h e i g h t ' 7
m c _ a c t i o n = ' m c _ p l a t f o r m j o _ d r i v e '

1 2 g o i n g b a c k d o w n

m c _ a c t i o n = " m c _ j a m m e d ' * l
m c _ a c t i o n = " m c j a i l e d 7
m c _ a c t i o n = " m c _ r e t r a c t _ p i c k e r "

F m c _ a c t i o n = " m c _ s u c c e s s ' 7
m c _ c a r t r i d g e _ s i d e = " m c _ 4 5 6 _ s i d e " ;
m c _ a c t i o n = " m c _ r o t a t e _ m a g a z i n e '

6 r e c o v e r i n g R p o s i t i o n k-
m c _ a c t i o n = " m c _ s u c c e s s ' 7
m o t o r _ a c t i o n = " m o t o r _ s t a t u s _ s u c c e s s "

22 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

immediately. If a transition is needed, that transition is exe
cuted and control is returned. This ensures that all the state
machines and low-level routines can be called in sequence,
thereby maintaining the required concurrency.

From this analysis, the following design criteria were derived
for the state machine implementation:

â€¢ The state machines must be able to respond to the values
of mechanism position variables and execute transitions
accordingly.

â€¢ The state machines must be able to set mechanism control
variables when a transition occurs.

â€¢ A timeout mechanism is required that can handle times up
to 30 s with a resolution of 1 ms.

â€¢ Each state machine must execute at most one transition
when executed.

â€¢ Each transition must be executed as a complete unit to
lessen the risk of data contention problems.

â€¢ The state machine implementation must use the minimum
space possible.

â€¢ The ability to store a history of trace information must be
provided for debugging purposes.

Interpreting Teamwork/RT
The Teamwork/RT product provides a graphical state
machine editor that has the following features:

â€¢ There is a set of states, each of which has a unique number
and a unique name.

â€¢ There is an initial state, indicated by a single initial transition.
â€¢ Transitions out of states may enter other states or may

indicate that the state machine has exited.
â€¢ Transition information indicates the condition under which

the transition occurs and may give actions that are to be
carried out on that transition.

â€¢ Each transition condition is a logical expression consisting
of a number of comparisons of variables with values.

â€¢ Each transition action is an assignment of a value to a
variable.

The full syntax of this state machine description is sup
ported by the code generator tools. This gives a fairly rich
design environment in which to work. It has the additional
advantage that if the diagram is correct according to the
Teamwork syntax checker, it should generate code correctly
and that code should compile.

To parse the state machine diagrams, a program was written
to access the Teamwork database. This retrieves the data
structures for a complete diagram, parses them, and gener
ates the required code table. The program connects to the
Teamwork database, retrieves the state transition diagram,
and follows the linked list of states. For each state, it identi
fies each transition that exits that state. For each transition,
it parses the associated text and generates the required data
structures for its condition, actions, and next state.

Finding the start and end states of a transition and finding
the transition information that is bound to a given transition
involves the concept of an instance number. Each item in a
Teamwork diagram is given a number to identify it. This
number is unique across all items in the given diagram,
whether an item is a text block, a transition, or a state.

The instance numbers of the initial and final states and the
text block associated with a given transition are stored in

that The entry in the l inked l ist of transit ions. The
state can be identified by searching through the linked list of
states to find the one with the same instance number as in
the transition entry. The text block holding the transition
information can be identified by searching through the linked
list of text blocks to find the one with the same instance
number.

To increase the performance of the code generator, an array
of pointers to text blocks and states is set up at the start of
the program. The list of text blocks is searched and the
entry in the array indexed by the instance number of a given
block of text is set to point at that block of text. The list of
states is searched and the entry in the array indexed by the
instance number of a given state is set to point to that state's
entry. This allows the start state, end state, and text block
associated with a given transition to be found by a single
table look-up each.

Parsing Transition Information
The transition information associated with a transition con
sists of an event or an event, a / character, and a semicolon-
separated list of actions.

The event is a logical expression consisting of a number of
comparisons. Comparisons are linked with logical OR opera
tions indicated by the I character and logical AND operations
indicated by the & character. The logical NOT operator, indi
cated by the - character, can be used to invert an expres
sion or comparison. Order of execution can be indicated by
the use of parentheses. Each comparison consists of either
just a variable or a variable, a comparator symbol, and a
constant value in double quotation marks. The comparators
can be equal =, greater than >, less than <, not equal â€”=, less
than or equal to <=, or greater than or equal to >=.

Each action consists of the name of a variable, an equals
sign =, and the value to be assigned to that variable in double
quotation marks.

This gives a text block of the form:

mc_t imed_out I
(m c j a m _ s e n s e &

mc_p i cke r_s ta te= "mc_p i cke r_open ") /
mc_X_mo t i on_d i r ec t i on= "mc_X_b rake " ;
m c _ a c t i o n = " m c _ j a m m e d "

This should be read as follows: If mc_timed_out is true, or both
mc_jam_sense is true and mc_picker_state is mc_picker_open, then
set mc_X_motion_direction to the constant value mc_X_brake and
set mc_action to the constant value mcjammed and transition
to the next state.

This text is parsed using a parser written using the yace and
lex tools provided with the HP-UX operating system, this
generates a reverse Polish form for the logical expression
along with the values required for the actions.

Generating the State Table
The major issue with the state table design was to implement
the full syntax supplied by the Teamwork/RT state transition
diagrams in as compact a form as possible. Performance
was not an issue. The maximum response time required of
the firmware was of the order of 3 ms. This was easily
achievable with the designs chosen.

December 1994 Hewlett-Packard Journal 23

© Copr. 1949-1998 Hewlett-Packard Co.

To produce a machine readable form of the transition
information, each part is taken in turn.

To reference variables, the H8 processor uses 16-bit address
ing. This can be truncated to 10 bits to limit the address space
to the 1024 bytes of RAM available on the processor. Since
there are over 3000 references to less than 50 variables, an
index table is far more efficient. In the transition information,
a six-bit index value is stored. This is used to look up the
address of the variable in an array of pointers.

Since every variable in the logical expression is associated
with a comparator, it would be useful to store the informa
tion indicating the comparator in the spare two bits with the
variable index. Unfortunately, there are six comparators,
which would require at least three bits to store. However,
the comparators form pairs of inverses. Equal is the oppo
site of not equal, greater than is the opposite of less than or
equal to and less than is the opposite of greater than or
equal to. As such, the logical NOT operation is used so that
only the three basic comparators have to be used in the
state table, allowing the comparator to fit in the two spare
bits of the variable index. Since most comparisons are
equalities, this saves a great deal of space while preserving
the simple table format with no items crossing byte bound
aries. All comparisons are with 8-bit values. These are
stored in the byte after the variable index and operator.

The logical operators are stored in single-byte values. This is
wasteful since only a couple of bits are really required for
these. However, it maintains the simplicity of the generator
and interpreter by avoiding the necessity of table items
crossing byte boundaries.

The expression is stored in the table in reverse Polish format
with the comparisons as values. The expression is terminated
with a zero byte to indicate where calculation should stop.

Each action consists of the six-bit index for the variable
stored in one byte and the single-byte value to be assigned
stored in the next byte. The list of actions is terminated by a
zero value to indicate the end of the list.

While most of the actions involve assignments of a single
byte, the setting up of timeouts requires that a 16-bit value
for the timeout in milliseconds be set. This variable is con
sidered a special case by the state machine generator and
two assignments are generated. This maintains the readabil
ity of the state machine diagram without adding complexity
to the state machine table to handle 16-bit values.

The final part of the transition information is the next state.
This is given as a single-byte value.

The state table entries for the transition text example given
earlier are:

(mc_t imed_out_ index 1 128) , 1 , / == * /
(m c j a m _ s e n s e _ i n d e x I 1 2 8) , I , / * = = * /
(mc_pÂ¡cker_state_Â¡ndex I 128), mc_picker_open, /* == */
I , / * A N D * /
2 , / * O R * /
0,
mc_X_motÂ¡on_dÂ¡rectÂ¡onJndex, mc_X_brake,
m c _ a c t i o n _ i n d e x , m c j a m m e d ,
0,
0,

The transition data for each state is generated in turn. At the
end of the transitions out of a given state, a single byte of
value 255 is inserted to indicate the end of the transitions
associated with that state.

To access the transitions associated with a given state, a
table of pointers is used. The pointer indexed by a given
state number points to the first transition from that state.

A single byte of data is used to hold the number of the
current state. This is the same value as appears on the
Teamwork/RT diagram.

Finally, a structure is generated that holds a pointer to the
state pointer table, a pointer to the index variable, a pointer
to the state variable, and a code to be used for logging.

The complete data structures for the state table are shown
in Fig. 2.

State Table Interpreter
To execute the state table an interpreter routine is used. This
reads the state table and carries out the actions required.

The interpreter routine is passed a pointer to the header
structure for the state machine to be executed. It uses the
pointer to the state variable to get the current state. It uses
this as an index into the state pointer table to get a pointer
to the transitions for the current state. It then scans the
transition information.

The first thing in the transition information must be an ex
pression, terminated by a zero byte. The interpreter routine
checks each byte in turn to see if it is a comparison, an
operation, or the terminating zero.

If either or both of the top bits are set, then it is a compari
son and the next byte is the value to be compared. The bot
tom six bits of the byte are used as an index into the index
table to get the pointer to the variable to be checked. This is
then used to get the variable's value. The first two bits are
used to determine whether the comparison should be for
equality, greater than, or less than. The next byte is read, the
comparison is executed, and the result is placed on a stack.
The current byte is then incremented past both bytes of the
comparison.

If neither of the top two bits is set but the value is not zero,
then is byte indicates a logical operator. If the operator is
AND or OR, then the top two values are removed from the
stack, the operation is carried out on them, and the result is
pushed back on the stack. If the operator is NOT, then the top
value is pulled off the stack, inverted, and pushed back on.
The current byte is then incremented past the operator.

This is repeated until a zero byte is found as the current
byte. Then the top value is pulled off the stack to indicate
whether the expression evaluated to TRUE or not.

If the expression is TRUE, the actions are read in turn as byte
pairs until a zero byte is found as the first byte. For each
byte pair, the value in the second byte is assigned to the vari
able pointed to by the pointer in the index table indicated by
the index in the first byte. When the terminating zero byte is
found, the next byte is assigned to the state variable and the
interpreter routine exits, having completed a transition.

24 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

State Pointer Table

State Variable

State Table
Header Structure

Variable 0 Pointer

Variable 1 Painter

Variable 2 Pointer

Variable 3 Pointer

Variable n Pointer

Index Table

State 0 Pointer

State 1 Pointer

State 2 Pointer

If the expression evaluates to FALSE, the actions are skipped
over until a zero index is found. The next byte is skipped as
well, since this is the next state value. The subsequent byte
is checked to see if there are any more transitions to pro
cess. If this byte is not 255, then another transition follows
and it is processed in the same manner. If this byte is 255,
then all the transitions have been processed and none have
conditions that are TRUE. The interpreter routine exits with
out carrying out any actions or altering the state variable.

Initialization and Exception Conditions
The state variable must be initialized at startup for the initial
state of the system. Rather than provide a mechanism for
the initialization routines to know the initial state, an addi
tional state 0 is added to the state machine. Any transitions
on the diagram that connect off-page are viewed as connect
ing to this additional state. Since the initial transition that
identifies the initial state is the only one that can come from
off-page, this allows the initial state to be set merely by set
ting it to zero. As soon as the state machine is executed, it
will transition into the initial state on the diagram.

When an exception occurs, it is useful to be able to restart
the state machine to initialize those areas of the mechanism
under that control. Rather than connect all the transitions that
handle exception conditions to the initial state, these are
allowed to run off-page. In the Teamwork/RT notation, this
means that the state machine has exited and that it should be
restarted from the initial state on its next invocation. Since
these 0, connectors connect to the additional state 0,

State 0 Transition n

State 1 Transition 0

State 1 Transition 1

State 1 Transition n

State 2 Transition 0

State 2 Transition n

State n Transition 0

State n Transition 1

State n Transition n

Transition
Information Table Fig. 2. State table data structures.

this has exactly the desired effect. The exception transition
can then be made to restart the state machine without the
clutter of unnecessary connections on the diagram.

Debugging and Trace Logging
To be able to debug problems with a real-time control system,
it is important to be able to get trace information back from
the unit after a failure to determine what the system was
doing at the time of failure. With a system that is largely im
plemented as state tables, it is possible to follow the flow of
actions in terms of the state changes involved. As such, the
state table interpreter was designed with a tracing function
built in.

Whenever a state change occurs, the state table interpreter
logs the current time as a 16-bit rolling clock counting in
milliseconds, the 8-bit log value in the state table header
structure that identifies which state machine is being exe
cuted, and the 8-bit value of the new state. The resultant
32-bit value is stored in an internal rolling buffer and is also
transmitted on one of the H8 processor's built-in serial lines.

To decode this trace information, host-based interpreter
programs are used. These decode the information in the
trace log to identify exactly which state table and state within
the table are involved. These are then printed out using the
names on the Teamwork/RT state transition diagrams. This
enables the changes in state to be followed on the diagrams
merely by following the names given. The time each state
was entered is listed alongside the name of the state to facil
itate the interpretation of the mechanical factors that may

December 1!)94 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

have caused the state change. The use of milliseconds
throughout, both for timeouts and for trace logging, allows
engineers debugging failures to work in real-world values
rather than units that are solely dependent on the software
design.

During product test, the serial output from the micropro
cessor is monitored and the data is interpreted in real time.
This allows both real-time debugging of failures and the
gathering of a complete history of a test. In the field, the

rolling buffer is returned from the autochanger via its SCSI
interface. This only allows a recent history to be returned,
but does not require additional hardware to monitor the
serial port.

HP-UX is based on and is compatible with Novell's UNIXÂ® operating system. It also complies
with SVID2 XPG4, POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface specifications.
UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

26 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Using State Machines as a Design
and Coding Tool
The wide acceptance of real-time extensions to structured analysis
techniques have led to the use of state machine descriptions for the
specification of systems in which state or sequence is a vital part.
However, the techniques for implementing these specifications have
remained poorly understood and haphazard, leading to implementations
that are difficult to verify against the specification. This paper examines
different approaches to the use of state machines and explores their
advantages and disadvantages.

by Mark J. Simms

In the theory of state machines, two types of state machine
model are defined: the Mealy Model and the Moore model.
In the Mealy model, outputs are associated with transitions.
When a transition happens, the output is generated. The for
mat of this type of state machine as implemented in Cadre's
Teamwork software is shown in Fig. 1. In the Moore model,
outputs are associated with states. When a state is entered,
the output is generated. The format of this type of state
machine as implemented in Teamwork is shown in Fig. 2.

Traditionally, the Mealy state machine model has been used
for software systems. Teamwork versions prior to 4.0 did
not support the Moore state machine model. This is because
software state-based systems typically only take action in
response to an event. An output is set on the transition, al
though it may remain set indefinitely. This is sometimes not

the optimum way of approaching a state-based model, but
tends to reflect the way software engineers think.

As a result, this paper will concentrate on the Mealy model
and references to state machines may be taken to assume
this model unless there is a specific reference to the contrary.
All of the concepts can be applied to Moore-model state
machines because any Moore state machine can be imple
mented as a Mealy state machine, although the converse is
not true.

When the original concepts of structured analysis were pro
posed by Tom DeMarco,1 no concepts of state or sequence
were used. This led to difficulty in modeling a large class of
problems, including real-time control systems that are largely
based around state and sequence and have little data flow

E numi! Running/
Reset_Cruise

Resume/
Acce le ra te Jo_Des i red Speed

Star t Increasing. Speed/
Accelerate

Accelerat ing

Act ivate /
Get Speed

Star t lncreas ing_Speed/
Accelerate

Resume/
Acce lera te_to_Desi red_Speed

S t o p j n c r e a s i n g S p e e d /
M a i n t a i n S p e e d R e a c h e d

S t a r t j n c r e a s i n g j i p e e d /
Accelerate

S t o p I n c r e a s i n g S p e e d /
M a i n t a i n S p e e d R e a c h e d

Brake_Engaged/
S t o p _ M a m t a i n i n g S p e e d

Act iva te /Get Speed

Brake Engaged /
S t o p M a i n t a i n i n g S p e e d

Fig. 1. Mealy state machine.

December 1994 Hewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

1
Id le /

Reset Cruise
Engine Running S lowing /

S t o p M a i n t a i n i n g S p e e d

Resume
Resume Resuming/

Acce le ra te to_Des i red_Speed S top Increas ing Speed

Star t_ lncreasing_Speed Acce lera t ing /
Accelerate

S ta r t Increas ing Speed

Activate

In i t ia l ize/
Ge t Speed

S ta r t Inc reas ing Speed S top Increas ing Speed

Brake Engaged

Cruising/
Ma in ta in_Speed_Reached

Activate

Brake. Engaged

Fig. 2. Moore state machine.

content. As a result, two proposals were made for extensions
to the structured analysis notation that would enable this
type of problem to be modeled.

The first proposal came from Paul Ward and Steve Mellor,2
who introduced a concept of signals to the structured analy
sis notation. Signals differ from data flows in that they carry
timing information but no data. There are two types of sig
nals: events and prompts. Events are generated by state
machines and by data transformations in response to
changes in the environment and cause state transitions
within the state machine. Prompts are generated by state
machines to control data transformations. Ward and Mellor

proposed three types of control that could be exercised on
data transformations: enable, disable, and trigger. Teamwork/
SIM adds the kill prompt. The format of a Ward-Mellor state
machine is shown in Fig. 3.

The second proposal came from Derek Hatley and Imtiaz
Pirbhai,3 who use the concept of a control flow. Control
flows have the same properties as data flows, but are used
for control purposes. They carry data and are continuously
valid. The only way to pass timing information is to change
the value of a control flow in response to an external event.
Logical expressions involving input control flow values are
used to determine when transitions of a state machine take

Engine_Running/
Tr igger "Reset_Cruise"

Resume/
Enable "Accelera te_to_Desi red_Speed"

Star t_ lncreas ing_Speed/
Enable "Accelerate"

Accelerat ing

Act ivate /
Tr igger "Get_Speed"

S t a r t I n c r e a s i n g S p e e d /
Enable "Accelerate"

Resume/
Enable "Accelerate_to_Desired_Speed"

S topJncreas ing_Speed /
Disable "Accelerate_to_Desired_Speed"

Enab le "Ma in ta in Speed_Reached"

S tar tJncreas ing_Speed /
Enable "Accelerate"

Stop_lncreasing_Speed/
Disable "Accelerate"

E n a b l e M a i n t a i n S p e e d R e a c h e d

Brake Engaged /
Disable
" M a i n t a i n .
Speed_Reached"

Act ivate /
T r igger "Get jspeed"

Brake_Engaged

Fig. 3. Ward-Mellor state machine.

28 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Engine_Runn ing=True" /
Act ion="Reset_Cmise"

Command="Resume"/
Act ion= "Accelerate_to_Desired_Speed"

Command="Resume"/
A c t i o n = " A c c e l e r a t e J o _ D e s i r e d S p e e d "

Command^' S tar t Increas ing Speed" /
A c t i o n = A c c e l e r a t e "

Command=' S top Increas ing Speed"
Desi red_Speed_Reached="True '7

A c t i o n = ' M a i n t a i n S p e e d R e a c h e d

Accelerat ing

Command="Activate '7
Act ion="Get_Speed"

Command="Start_ lncreasing_Speed"
Act ion="Accelerate"

Command="Star t_ lncreas ing Speed '7
Act ion="Accelerate"

Command="Stop_ lncreas ing_Speed7
A c t i o n = " M a m t a m S p e e d R e a c h e d "

Brake_Engaged="True'7
A c t i o n = " D i s a b l e

Command="Act ivate '7
Act ion="Get_Speed"

Brake_Engaged="True '7
A c t i o n = D i s a b l e '

Fig. 4. Hatley-Pirbhai state machine.

place. Assignments are used in a state machine to control
the values of output control flows. The format of a Hatley-
Pirbhai state machine is shown in Fig. 4.

Ward and Mellor's signals can only be used in a Mealy state
machine since they have an instantaneous quality and it
makes little sense to have an instantaneous signal associ
ated with a state. This could be interpreted as the signal
being sent whenever the state is entered, but this is really
associating it with all the transitions into the state.

Hatley and Pirbhai's control flows can be used with either
state machine model. If the setting of control flows is associ
ated with transitions in a Mealy state machine, they are as
sumed If be set until actively reset on another transition. If
the setting of control flows is associated with states in a
Moore state machine, then the control flow is deemed to be
undefined if the state machine is in a state that does not
actively output that control flow. This leads to a clearer defi
nition of what is happening with a Mealy state machine and
therefore a tendency to use this model.

Design Criteria
When using state machines as a design tool rather than an
analysis tool, the method of implementing the state machine
must be considered to give the design a rigid definition. In
particular, the means of passing the external inputs to the
state machine and the way the state machine interfaces to the
procedural flow of the rest of the code must be well-defined.

Ward and Mellor recommend that the analysis be partitioned
into tasks according to the number of state machines in the
system. In addition to the state machine, the data trans
formations that it prompts and the event recognizers that
supply it with events may be in the same task. This leads to
a very simple interface to the rest of the code. The state ma
chine is the top-level module of the task. It calls an event
recognizer to get an event from the outside world. The event
recognizer returns an event to the state machine if one is
available or returns a code indicating no event if no event is

available. The state machine then executes the transition
by flagging data transformations as enabled, disabled, or
triggered and changing to the next state. It executes any
enabled or triggered data transformations by calling the
relevant procedures. Finally, it sets the state of triggered
data transformations to disabled before calling the event
recognizer again.

This implementation approach has a few drawbacks. First, if
there are a large number of state machines, then the number
of tasks can become very large. For systems that have to be
implemented on hardware with limited power, this can be
very wasteful. To get around this problem, a system by which
multiple state machines can be implemented in a single task
is required. This can be done by making the state machine
return control to the calling procedure after each loop. This
allows multiple state machines to be called in sequence.
This also allows other data transformation modules to be
called in the same sequence, imitating the parallel nature of
the analysis.

Secondly, in systems that are capable of suspending tasks,
the Ward-Mellor approach is very wasteful of processor
time. In this type of system, the event passing mechanism
should be built into the operating system in such a manner
that tasks can block until an event is generated. This works
well if triggers are the only prompts required. If data trans
formations must be enabled and disabled, the operating sys
tem must be used to do this. However, this might produce
excessive operating system overhead.

The most efficient implementations based on this type of
design require that only triggers be used, but multiple state
machines can be executed in the same task. With these re
strictions, the Ward-Mellor design approach can be highly
efficient for large and medium-sized systems. A real-time
operating system handles the scheduling of the tasks and
can block a task waiting for a semaphore to be set. The
semaphore can be set either by another task or by an inter
rupt service routine responding to an external event. A

Docoml i r i 1 ! I !M Hew le t t -Packa rd . Jou rna l 29

© Copr. 1949-1998 Hewlett-Packard Co.

counting semaphore can be used to allow multiple events to
activate a single task. Alternatively, a message queue mecha
nism can be used to implement a similar technique. If events
are passed between state machines in the same task, then
this can be implemented by flags that are checked by the
event recognizer before suspending.

The top-level module in each task is responsible for calling
the event recognizer routine. This blocks until the task's
semaphore is set. It then determines what event occurred
and returns the corresponding event code to the top-level
module. The appropriate state machine is called based on
the event code and passed the code as a parameter. The
state machine determines the data transformation modules
to be triggered and executes them in turn. It assigns the new
state and returns. The event recognizer is then called again.

Hatley and Pirbhai offer far less guidance than Ward and
Mellor on how to convert structured analysis state machines
into designs. However, the meaning of the state machine
appears more obvious at first sight, leading to a fairly
obvious design.

Since the control flows are simple data values, these are
easily implemented as static variables. The state machine
needs only to read the variables, evaluate the logical expres
sions on the transitions in sequence until one is found to be
true, execute the assignments on that transition and assign
the new state. This continues with the transitions from the
new state.

This approach has two problems. First, the order in which
the transitions are processed is arbitrary. This means that
the actions performed by the implementation are not neces
sarily uniquely determined by the state machine description.
This is, however, a problem with the underlying analysis
method. It is the responsibility of the analyst to ensure
either that no two transitions become active simultaneously
or that the system will operate within specification even if
they do.

Second and more serious, the state machine offers no
obvious way of interacting with the environment other than
through the static variables. This means that the state ma
chine would ideally run in its own task interfacing with the
rest of the system via the variables representing the control
flows. This is a highly inefficient implementation. This can
be improved by implementing the state machine in such a
manner that it returns control to the module that called it
after each cycle. This allows several state machine modules
and associated data transformation modules to be placed in
the same task. This improves efficiency somewhat, but still
uses processing time when nothing is being done.

Because of the inefficiency of this sort of implementation it
can only be used where there is sufficient processor time to
spare. However, it does have advantages when there is no
operating system or where the operating system only offers
basic functionality. Since the state machine operates on
global variables, some simple data transformations can be
incorporated into the state machines. This can produce a
design that is very easy to learn and to follow and that can
be implemented very easily.

It is sometimes advantageous to add some of the features
of control-flow-based state machines to signal-based state

machines. This involves adding states that control the flow
of the state machine based on the value of variables. There
should always be at least one exit transition active when
ever such a state is entered. These states are not true states
since the state machine never waits in the state. Instead
they are merely decision points that affect the future flow
through the state machine. Under certain circumstances,
this can greatly simplify the state machine.

Implementation Techniques
There are two major approaches to implementing state
machines in software. The first is to generate inline code
that executes the state machine logic directly. This is the
faster solution, but uses a large amount of code space. This
approach is typically used on large systems where there is a
lot of memory and on systems where response time is very
important.

The second approach is to generate a table that encodes the
state machine logic in a compact manner that is then inter
preted by a separate state machine interpreter. This produces
very compact code that is suitable for systems where code
space is low and response time is not critical.

Both signal-driven and control-flow-driven state machines
can be implemented either as inline code or as tables. Vari
ous different coding schemes can be used depending on the
complexity of the syntax used for the state machine, hi sys
tems where the state machine module never returns, the
program counter can be used to determine the state. More
usually, however, a static state variable is used to maintain
the state between calls of the state machine module.

For a Hatley-Pirbhai type state machine, this leads to an
implementation of the form shown in Fig. 5. The state ma
chine is implemented as a single C function. A static variable
within the function holds the state. This variable is initial
ized to the initial state of the state machine when the task is
started. The function is structured as a switch statement in
which each case limb is the processing for a given state. The

void state_machme(void)
{

static state = Engine Off;
switch (state) {
case Engine_0tf:

if (ting ine. Runn ing == True) {
Act ion = ReseLCruise;
state = Idle;

}
break;

case Idle:
i f { Command = Resume) {

Act ion = Accelerate_to_Desired_Speed;
state = resuming;

} else i f (Command == Start Increasing Speed } {
Act ion = Accelerate;
state = accelerating;

} else if (Command == Activate) {
Action = Get_Speed;
state = Initialize;

}
break;

easel S lowing) :

break;
}

Fig. 5. Code for Hatley-Pirbhai state machine.

30 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Â«de f i ne number o f_enab led f unc t i ons 3
Â«de f i ne Acce le ra te_ to_Des i red Speed JNDEX 0
Â«def ine Accelerate JNDEX 1
Â«def ine Ma in ta in JSpeed Reached JNDEX 2

void {* funct ion_array)(l [number of enabled funct ions] =
{ a c c e l e r a t e _ t o _ d e s i r e d _ s p e e d ,

accelerate,
m a i n t a i n s p e e d r e a c h e d

i n t e n a b l e d a r r a y ! n u m b e r _ o f _ e n a b l e d f u n c t i o n s]
= { FALSE, FALSE. FALSE);

void state_machine(int event)
{

static int state = EngineJJff;
int i
switch (state) {
case Engine.Off:

if (event == Engine, Running I {
Reset_Cruise();
state = Idle;

}
break;

case Idle:
i f (e v e n t = R e s u m e) {

enab led ar ray !
Accelerate_to_Desired_Speed_INDEX] =

TRUE;
state = Accelerating;

} else i f { event == Start Increasing Speed) {
enabled .array! Accelerate JNDEX] = TRUE;
state = Accelerating;

} else if (event == Activate) {
Get_Speed();
state = Initialize;

}
break;

case Slowing:

break;
}
for (i = 0; i < number of enabled funct ions; i+

i f (enabled array! i]) {
function arrayi i] () ;

the array. At the end of the function, the array of flags is
searched and the corresponding functions are called via the
pointers in the second array.

This design makes a few assumptions about the calling envi
ronment. First, the event recognizer functionality is not in
the state machine itself. The event recognizer is executed in
the calling environment and the event code is passed as a
parameter to the function. Secondly, the calling environment
must not block because this would prevent the enabled
modules from being executed. Since the enabled modules
are called as functions from the state machine, the state
machine function must be executed at least as often as the
enabled modules need to be called.

Since the content of these state machines is fairly simple
and well-defined, machine code is a somewhat inefficient
way of storing it. As a result, in systems where code space is
at a premium, it may be advantageous to implement the de
scription of the state machine as a table that is interpreted
by a separate routine. The following paragraphs describe
one possible way of doing this for a Hatley-Pirbhai state
machine.

The state machine consists of an array of pointers and a
state variable. The state variable is used as an index into the
array to get the address of an array of structures containing
a pointer and a value. Each transition consists of a single
condition structure followed by a series of action structures
and then a structure with a null pointer and the destination
state indicating the end of the transition. The end of the
transitions for a given state is indicated by another structure
with a null pointer. This is depicted in Fig. 7.

To execute this state machine, an interpreter function is
given the state variable and the list of pointers. Using the
state variable as an index into the table, it uses the corre
sponding pointer to find the first structure corresponding to

Fig. 6. Ward-Mellor state machine code.

case limb corresponding to the currently active state is exe
cuted when the function is called. This tests the exit condi
tions for the state in a series of if statements. If one of these
is qualified, then the actions are carried out in the statements
attached to the if statement and the new state is assigned.
The function is then exited to allow other processing to be
carried out in the same task.

For a Ward-Mellor type state machine, this approach leads
to an implementation of the form given in Fig. 6. Two arrays
are used. The first holds pointers to all the functions that are
enabled and disabled. The second holds a flag indicating
whether the function is currently enabled or disabled. The
function that implements the state machine has many simi
larities to that for the Hatley-Pirbhai state machine. It is
structured as a switch statement with a case limb for each
state. Each case limb consists of if statements that deter
mine if the corresponding actions should be executed. The
conditions used are far more restrictive than in the Hatley-
Pirbhai case. They check whether the event code passed to
the function as a parameter is the value corresponding to
the required event. The actions are either triggers, which
simply call the function that corresponds to the required
action, or enables and disables, which set and clear flags in

Engine Running

Fig. 7. State tables for a table-driven state machine.

December 1 994 Hewlett-Packard Journal 3 1

© Copr. 1949-1998 Hewlett-Packard Co.

a transition from the current state. It then checks to see if
the condition is true by comparing the variable pointed to by
the pointer with the value stored in the structure. If they are
different, the table is scanned until a structure with a null
pointer is found indicating the end of that transition. The
procedure is then repeated until either a true condition is
found or a condition with a null pointer is found. If a condi
tion with a null pointer is found, all the conditions have been
tested and the interpreter function returns to its calling
environment.

If a condition is found to be true, the interpreter function
scans the subsequent structures and assigns each value in
the structure to the variable indicated by the corresponding
pointer. It continues to do this until a structure with a null
pointer is encountered, indicating the end of the transition.
It assigns the value in this structure to the state variable
to cause a change of state. It then returns to its calling
environment.

A similar approach can be used for Ward-Mellor state ma
chines. Event codes and pointers to functions to be enabled
or disabled are encoded in the tables. This requires a slightly
more flexible table format, but the principles are the same.

Automatic Generation
Once a rigorous mapping has been defined between the
state machine design and the code to be produced from it, it
is theoretically possible to design tools that can translate
state machine descriptions directly to the source code for
the final software. With the extensive use of graphical state
machine editors for analysis, this gives the potential for a
graphical form of source code that is easy to follow and easy
to modify, removing some of the major problems of software
maintenance.

Analysis tools are not designed with direct code generation
in mind. As a result, the mappings from state machine de
scription to code must be defined by the engineers on the
project using the tools. This allows a lot of flexibility for
experienced engineers to produce mappings that are highly
tuned to the application concerned. It does mean that there
is a requirement for anyone wishing to learn about the code
to determine what the mapping is and why it was chosen.
Once this is understood, the functionality of the code can be
followed from the state machine diagrams.

For a it analysis tool to be able to fulfill this role, it
must have a number of features. The following are some of
the most important:

' The tool must support the state machine features required
by the implementers. This includes Mealy and Moore state
machines, types of conditions that cause transitions, types
of actions that can be placed on transitions or in states, size
and complexity of diagrams, and so on.

1 It must be possible to integrate the tool into the configura
tion management system. Since the state machine diagrams
are now source code, it is vital that they be treated with a
high degree of care and attention.
The tool must be able to access the diagrams. If the data is
stored in any sort of database system, the appropriate access
routines must be supplied.
The tool must keep diagrams in a documented format that
does not change between revisions. Continually modifying

code generation programs to track the format of the
diagrams is unacceptable.

Once these features have been established, code generation
becomes a simple task of defining the mapping between the
state machines and the code and then designing the transla
tor program and any interpreter routines for table-driven
state machines. The rest of the code can then be designed
from the remainder of the structured analysis with the state
machine implementation in mind.

There have been a number of dedicated code generator pro
grams on the market for some time, many of which use state
machines as part or all of their input tools. These systems
come with rigorously defined semantics for their diagrams
so that users of the system can rapidly understand designs
with which they are unfamiliar. These programs also come
with a defined mapping of the diagrams to code.

The biggest problem with this sort of system is that the fea
tures of the state machines and the mapping to code supplied
by the vendor may not be ideal for the implementation that
is required for a given problem. Few systems currently avail
able offer any ways of tuning the implementation for a given
set of design criteria. This is one of the major features to
look for in such a system.

A hybrid approach is possible in which a code generator tool
is used, but a custom front end is included to tune the result
ing code from the generator. This might be done either by
treating the tool in the same way as a generic structured
analysis tool and accessing the diagrams and generating
code directly from them or by postprocessing the resultant
code to optimize it for the given situation.

The hybrid approach is probably harder than designing a
generator for a generic structured analysis tool, but the re
sults could be better. The added rigor of code generators
means that it is easier to use standardized semantics for the
system. The semantics are more likely to be complete than
those of a structured analysis tool.

Summary
The usefulness of state machines for specifying control
applications has been well-proven. Their use in design and
implementation is also showing a great deal of promise. It
has shown major advantages in the following areas:

â€¢ Rapid code implementation because of the very close
mapping of analysis, design, and code

â€¢ Ease of maintenance because of the availability of easy-
to-read code in the form of state machine diagrams

â€¢ Compact implementation of a large proportion of the
functionality of a problem because of the use of table-based
state machines.

These advantages make the investment in tools for this
technique well worth the effort and expense involved.

References
1. T. DeMarco, Structured Analysis and System Specification,
Prentice Hall, 1978.
2. P.T. Ward and S.J. Mellor, Structured Development for Real-Time

Systems, Prentice Hall, 1985.
3. D.J. Hatley and I.A. Pirbhai, Strategies for Real-Time System

Specification, Dorset House Publishing, 1987.

32 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

An Event-Based, Retargetable
Debugger
Remote and event-based debugging capability, a sophisticated graphical
user target and adaptability to different languages and target
platforms are some of the features provided in this debugger.

by Arun John lyengar, Thaddeus S. Grzesik, Valerie J. Ho-Gibson, Tracy A. Hoover, and John R. Vasta

Software developers rely heavily on debuggers for both
fixing bugs and analyzing programs. The information ob
tained by a debugger can be used to add new features and
improve performance. Event-based debugging1 is a powerful
method for examining program behavior. In event-based
debugging, the user instructs the debugger to respond to
events that occur during program execution. The proper
selection of events allows programs to be debugged at a
higher level than would otherwise be possible.

This article describes the HP Distributed Debugging Environ
ment (HP DDE).2 HP DDE is distributed because it is capable
of debugging programs executing on remote hosts. HP DDE
has been ported and retargeted to several platforms and can
be used to debug programs written in C, C++, FORTRAN,
Pascal, and various assembly languages. The platforms that
HP DDE can run on include the HP-UX operating system,
Domain/OS 68K, Domain/OS Prism, the SPARC implementa
tion of Solaris, and the PA-RISC implementation of the OSF/1
operating system. HP DDE has a sophisticated graphical
user interface that provides the user with point-and-click
access to commands and program state. Finally, HP DDE
has many features that support event-based debugging and
debugging optimized code.

The modular architecture of HP DDE enhances its portability
and has been a critical component in its success. HP DDE
consists of a main debugger that communicates with several
modules called managers. The main debugger contains sup
port for generalized debugger functions, and the managers
contain dependencies on specific languages, object code for
mats, target platforms, and user interfaces.

User- Visible Features

Event-Based Debugging in HP DDE
Almost all debuggers support a traditional debugging para
digm in which the user inserts breakpoints before critical
points in the program and examines the state of the program
after breakpoints are hit to find program errors. The disad
vantage of this paradigm is that the user has to know where
to insert breakpoints within t lie program. The user may also
have to examine the state of the program at a number of
breakpoints before obtaining the desired information.

In event-based debugging, the debugger does not return
control to the user until an event defined by the user occurs.
By choosing an appropriate event, the user can avoid stop
ping the program at points that are not critical. Event-based
debugging allows the user to identify what is going on in a
program without spending large amounts of time inserting
breakpoints at crucial points.

Event-based debugging is achieved by monitoring the exe
cuting program at an interval or granularity level specified
by the user. Whenever the debugger determines that a de
sired event has occurred, the debugger returns control to
the user. A lower level of granularity, corresponding to fre
quent monitoring, allows the user to determine more accu
rately the location where a particular event occurs. How
ever, a low granularity level can cause execution time to
increase substantially. HP DDE provides several intervals
for monitoring program execution, including every machine
instruction, every source statement, and entry to or exit
from each procedure. Monitoring can be restricted to spe
cific procedures within a program. Typically, a user would
use procedure-entry-and-exit-level granularity to narrow an
event to a specific procedure. After the faulty procedure is
located, the user can use source-statement-level or machine-
instruction-level granularity within the procedure to deter
mine the exact location of an event.

HP DDE contains many features for event-based debugging
including conditional breakpoints, execution traces, data
watchpoints, and event intercepts. Conditional breakpoints
allow the user to halt execution at a given point in a pro
gram only if a set of conditions are met. Execution traces
suspend program execution at intervals specified by the
user. Data watchpoints allow the user to monitor a variable
or memory range (program execution is suspended when a
value corresponding to a watched variable or memory range
changes). Event intercepts allow the user to regain control
of the program when events such as program exceptions,
shared library loading and unloading, thread creation and
termination, and signals from the operating system occur.

The HP DDE command language allows the user to declare
variables for use in a debugging session and contains loops,
conditionals, and assignment statements to allow a wider
range of event specification.

Dcri'inbci \W\ llcwlclt-l'ackanl Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

Examples
Suppose that the user desires to suspend execution every
time a variable x becomes zero. This can be accomplished
with the following HP DDE command: t

dde> watchpo in t x -do [i f (x != 01 - then (go)]

The behavior when no monitoring interval is specified in the
watchpoint command (as in this example) is to monitor the
expression after every source statement.

As another example, suppose the user wishes to break upon
entry to function foo only if argument x is nonnegative. This
can be accomplished using a conditional breakpoint:

dde> breakpoin t foo -do [i f (x < 0) - then (go)]

It is a for the user to examine data structures while a
program is suspended. The following HP DDE commands
will print all positive elements of a 20-element array A:

dde> dec la re in t dde_var
dde> set dde_var=0
dde> wh i le dde_var < 20 - l oop [i f A [dde_var] > 0 - then

(p r i n t A [d d e _ v a r])
set dde_var = dde_var + 1]

The declare command allocates space for new variables that
can be used in debugging sessions, and the backslash () indi
cates that an HP DDE command continues on the next line.

The following commands will suspend execution whenever
the sum of the 20 elements of A is greater than 100:

dde> dec lare in t i
dde> dec lare in t sum
d d e > w a t c h p o i n t A - d o

[set i=0; set sum = 0;
while Â¡ < 20 - loop

[set sum = sum + A[i j ; set i = i + 1] ; \
i f sum <= 100 - then (go)]

Sequences of commands such as these can be stored in a file
and used as input to HP DDE. In addition, macro expansion
allows a user to define a single command that is automati
cally expanded by the command interpreter into multiple
commands.

As a final example, the following commands will execute a
program and print the number of times a multithreaded
application switches between different threads:

d d e > d e c l a r e i n t t s _ c o u n t
dde> se t t s_coun t = 0
d d e > g o] t h r e a d _ s w i t c h - d o [s e t t s _ c o u n t = t s _ c o u n t + 1 ; g o]
dde> go ; p r in t t s_count

The User Interface
Several user interfaces have been designed for HP DDE. The
most sophisticated is a graphical user interface based on the
X Window System and OSF/Motif.3 It features multiple win
dows, context-sensitive pop-up menus, and online help. The
user can customize menus, command buttons, and key bind
ings. A typical HP DDE debugging session with four win
dows is illustrated in Fig. 1. The graphical user interface can
manipulate up to six different types of windows:

â€¢ Target program window. This is the window from which HP
DDE is invoked. All data to and from the program being

t HP DDE transcript commands can be entered in the command entry line area in the transcript
display window described in the next section.

debugged is directed to this window. The main parameter to
the debugger is the name of the program to be debugged.

â€¢ Transcript display window. This is the debugger's main
window. It has four components. The command entry line
component at the bottom of the window is for keyboard
entry of debugger commands. All debugger commands can
be entered from the keyboard in this area. Above the com
mand entry line is the transcript area, which displays input
to the debugger (including commands accessed from the
mouse) and debugger output. The buttons along the left side
of this window provide quick access to common debugger
commands. For example, the user can single-step the pro
gram (execute a single source statement) by clicking on the
button labeled Step. These buttons can be reconfigured by
the user to represent other commands. The pull-down menus
across the top of the transcript display window allow access
to all debugger commands via the mouse.

â€¢ Source code display window. This window displays the
source code for the program being debugged.

â€¢ Assembly display window. This window displays the dis
assembled machine instructions for the program being
debugged.

â€¢ Traceback display window. This window displays the current
dynamic call chain of the target program.

â€¢ Variable display window. This window displays the values of
variables or memory ranges for which watchpoints have
been set. When a watched value changes, HP DDE suspends
execution, notifies the user of the change in value, and
updates the variable display window with the new value.

Context-sensitive pop-up menus allow the user to access
common debugger commands with the mouse. Menus ap
pear when the mouse is clicked. The menu that appears de
pends on the position of the mouse within a particular win
dow at the time the mouse is clicked. For example, clicking
on the mouse with the cursor positioned in the source code
region brings up the menu displayed in Fig. 2. The cursor in
Fig. 2 was positioned at the opening bracket of the expres
sion list[i] at the time the mouse was clicked. The menu was
thus seeded with the expression list[i]. If the cursor had been
positioned over list, the menu would have been seeded with
list instead of list[i]. The mouse can be positioned to print
complex expressions in source programs without requiring
the user to type in the expressions.

For even quicker access, double-clicking causes HP DDE to
execute the first menu item instead of displaying the menu.
The default pop-up menus contain actions that are commonly
performed by users. However, pop-up menus can be easily
reconfigured by users to contain actions that are common to
a particular application.

Debugging Optimized Code
At a high level, optimization can be described as modifying
instructions and memory references to improve program
performance. Multiple source statements may map to the
same machine instruction. In some cases source statements
may not correspond to any machine instructions. Variables
may be moved from memory into a register or from one
register to another to eliminate costly memory references.
Unless a debugger has some way of knowing how source
statements and machine instructions have been rearranged
and where a variable is located, it can be very difficult to

34 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

D i s t r i b u t e d D e b u g g i n g E n v i r o n m e n t - S e s s i o n 1 8 7 7 8

Program Monitor Information Interface Property Miscellaneous

Stop Execution

Help

Executing image in process 18780: "/users/ho_gibson/dde/tesl

Break at: averagemain32
dde> step

Stepped to: averageprint_average22

dde> step

Stepped to: \\average\sum\12

dde> print low
\\average\sum\low: 0

dde> print high

\\average\sum\high: 9

dde>]

(a)

d d e S e s s i o n 1 8 7 7 8 S o u r c e C o d e D i s p l a y

/ u s e r s / h o _ g i b s o n / d d e / t e s t / a v e r a g e . c

8.
9.

10.
11
12
13.
14.

15
16.
17
18.
19

20
21

int sum (list, low, high)
int list[], low, high;

int i, s = 0;

for (i = low; i <= high; i++

s += list[i];
return (s);

}

void print_average (list, low, high)
int list[], low, high;

(b)

d d e S e s s i o n 1 8 7 7 8 T r a c e b a c k D i s p l a y

1. .
2 . .
3 . .
4 . .

â€¢

$START$ (00001934)
_start (80040F24)
averagemain32 (00002044)

\\average\print_average\22 (00001 FB8)
 averageX sum\ 1 2

(cl

x te rm
S d d e a v e r a g e
D

(d)

Fig. 1. Some of the windows
involved in a typical HP DDE
debugging session, (a) Transcript
display window, (b) Source code
display window, (c) Traceback
display window, (d) Target
program window.

Fig. 2. A context-sensitive pop-up
menu. This menu was obtained
by positioning the mouse cursor
(denoted by the caret on line 14)
in the source code display window
and clicking on a mouse button.

December 1!)94 Hewlett-Packard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

in tx ;
Workstat ion /X Terminal

(Local Host)

x = 0;
while (x < 10)

Range 1:
x Â¡n R3

g (&x) ;
return x;

Range 2:
x in SP -60

Fig. 3. Example of range locations. Variable x has two locations:
register 3 in Range 1 and 60 bytes below the top-of-stack in Range 2.

debug an optimized application at the source level. Program
mers often must resort to debugging at the assembly level to
gain an accurate understanding of program execution.

HP DDE contains some support for debugging optimized code
at the source level. However, these features are only usable
if the compiler provides adequate debugging information.

On HP Apollo's Domain/OS, the compilers produce range
locations for variables (see Fig. 3). The range location record
contains a program counter range and a location for the vari
able that is correct for the range. A variable may also have a
default location so that its range locations need not cover
the entire instruction ranges in which the variable is active.
Additional information is provided containing the many-to-
many mapping between source statements and machine
instructions. Currently on the HP-UX operating system only
the mapping between source lines and machine instructions
is provided.

Given the appropriate information from a compiler, HP DDE
can indicate the source lines associated with a particular
machine instruction and the machine instructions for a par
ticular source line. This type of information can help the
user determine the flow of control in an optimized program.
When the user wants to see the value of a variable, HP DDE
determines the correct symbol location based on the current
program counter and the range location information stored
for that symbol.

See "Compiler Optimizations and Debugging" on page 37
for a short discussion about the importance of debugging
optimized code.

Remote Debugging
HP DDE is capable of debugging programs running on a
remote system. This can be accomplished by running most
of HP DDE on a remote system and redirecting input and
output to a local host, or by running most of HP DDE on the
local system and the application and a small part of HP DDE
on the remote system. The latter approach is currently only
available on local hosts running Domain/OS.

To run HP DDE remotely on a typical UNIXÂ® workstation,
the user can simply run HP DDE on the remote system and
redirect the OSF/Motif user interface to the X display on the
local host (see Fig. 4a). The X Window System's portability
allows HP DDE's user interface to be displayed on any sys
tem that supports the X protocol.

Alternatively, the user can execute most of HP DDE on a
local host running Domain/OS while the application pro
gram executes on a remote system (Fig. 4b). A small part of
HP DDE must also execute on the remote system to handle

* L A N

(a)

Workstat ion
(Local Host)

Appl icat ion
Being

Debugged

Remote
System

Embedded
System

Wi th Min ima l
Operating

System

^ L A N

HP DDE
User Interface

Appl icat ion
Being

Debugged

(b)

Fig. 4. Two possible remote HP DDE sessions, (a) Most of HP DDE
and the application being debugged are run on a remote system and
the HP HP user interface is run from an X terminal, (b) Most of HP
DDE is run on a local host and a portion of HP DDE and the appli
cation are run on a remote system.

communication between the remote and local systems. This
is a useful method for debugging programs if the remote
system cannot run HP DDE on its own, as is often the case
for embedded systems or prototype systems.

The implementation of HP DDE's remote debugging capability
is described later in this article.

Comparisons to Other Debuggers
Dbx4 and gdb0 are two commonly used workstation debug
gers and Dbxtool,6 which is a window- and mouse-based
debugger built on top of dbx, is also well known and has a
graphical user interface similar to that of HP DDE. None of
these debuggers has the range of features for supporting
event-based debugging provided by HP DDE. The dbx and
dbxtool command languages do not allow the user to de
clare new variables during debugging sessions and do not
contain loops or conditional statements, hi addition, HP
DDE has a larger number of options for specifying monitor
points at different levels of granularity than dbx and

36 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

dbxtool. The gdb command language does not contain loops
or conditionals.

Several event-based debuggers have been developed as re
search prototypes. Unlike HP DDE. they are not available as
commercial products. Dalek1 is a sequential event-based
debugger which is an extension of gdb. Dalek allows high-
level events to be defined from combinations of lower-level
events. Dalek is superior to HP DDE in providing the ability
to define high-level events. However. HP DDE is probably
easier to use because our goal has been to provide the user
with powerful event-based debugging features which can be
used with little effort. A number of event-based debuggers
have been developed for parallel and distributed systems.7-8

Several people have looked at the problem of debugging
optimized code. Hennessy10 presents algorithms for deter
mining the value of variables in an optimized program. When
the debugger is stopped at a breakpoint and the user tries to
print a variable x, the debugger should output the value of x
that is consistent with the order of execution of statements
in the unoptimized program. Since the optimizer can reorder
statements, the value stored in the memory location for x
may not be the value the user expects to see. Hennessy pro
vides an approach for calculating the value of x when the
value stored in the appropriate memory location is not the
value the user expects to see. A debugger called DOC11 uses
an approach that is similar to that of Hennessy and has bet
ter capabilities than HP DDE for determining the value of
variables. Convex12 has developed a production-quality de
bugger with elaborate features for debugging optimized code.
The Convex debugger uses visual highlighting of source and
assembly displays to indicate the flow of control in an opti
mized program. HP DDE does not have any of the visual
highlighting features present in the Convex debugger. The
SELF debugging system13 shields the debugger from com
piler optimizations by dynamically deoptimizing code. SELF
uses dynamic compilation which means that instead of com
piling entire programs prior to execution, code is generated
incrementally at run time and kept in a cache. Dynamic de-
optimization is generally not feasible for languages that do
not use dynamic compilation. In addition, this approach is
insufficient for bugs that occur in the optimized version of a
program but not in the unoptimized version.

Architecture

As a class of tools, debuggers perform a wide range of
operations from very low-level, target-specific operations to
middle-level, language-specific operations to high-level user
interface operations. Because of the nature of these opera
tions a debugger can be difficult to port and retarget.

HP DDE has been designed in a modular fashion with the
goal of isolating object code dependent, language dependent,
target dependent, and user interface dependent functions
from generic debugging functions. The HP DDE architecture
consists of a main debugger and several managers, which
are categorized according to language, target, object code,
and user interface type (see Fig. 5).

The main debugger is designed to provide as many generic
debugger operations as it can without compromising the
generality of HP DDE. Examples of these operations include

Compiler Optimizations and Debugging

The object code produced by a compiler using straightforward compiling techniques
is often not very efficient. In many cases, the object code can be made to run faster
or take up less space through program transformations known as optimizations.
Compilers that improve performance through code transformations are known as
optimizing compilers.

In an correspondence program, there is generally a one-to-one correspondence between
a source statement and a group of one or more machine instructions. Optimizing
compilers must preserve the correctness of a program, but after optimization, this
one-to-one correspondence no longer exists in many cases, and the program may
no longer execute in the order implied by the source code. This complicates de
bugging. Programmers must often resort to debugging assembly code to figure out
how an optimized program is behaving.

In general, users should debug the unoptimized version of a program before using
the optimizer. However, there are a number reasons why the ability to debug
optimized code is desirable:

' A program may run correctly when compiled without optimization and fail when
compiled with optimization. This can happen even if the optimizer is working
correctly. For example, reordering statements may result in arithmetic overflow or
underflow. An uninitialized variable or an out-of-bounds memory reference might
cause a problem in the optimized version but not in the unoptimized version.

' The be or space requirements of an unoptimized program might be too big to
allow adequate testing.

' Production code is often optimized. A customer may submit a bug report with a
core file produced from an optimized program. It would be desirable to have the
ability to analyze the core file.

' Optimizing compilers can be written more easily with good tools for debugging
optimized code.

â€¢ The code. may not have the ability to generate unoptimized code.
â€¢ The programmer may have mistakenly supplied explicit assertions, directives, or
options that caused the optimizing compiler to generate incorrect code.

> Optimizing compilers may have bugs.

symbol table and program monitor management. The manag
ers perform operations that are specific to a given machine,
language, compiler, or user interface. Each manager has an
interface specification that defines the operations a particular
manager should provide. A manager is formally defined as
any piece of software that correctly implements the functions
defined in the interface specification.

The main debugger also has a set of functions called callback

l'i/i/rliiniK that managers can invoke to obtain information
from the main debugger. As the main debugger satisfies a
user command, it can call on the various managers to per
form operations provided by a particular manager. And while
a manager is satisfying a request from the main debugger it
can request information from the main debugger through a
callback function.

Managers do not communicate with one another because HP
DDE is structured so that it should not be necessary. This
strict partitioning allows a developer to port and retarget a
manager or develop a new manager as necessary without
modifying other managers or the main debugger.

In the main debugger and managers, platform-specific system
calls are avoided except in the lowest-level parts of the man
agers. However, system-specific calls are generally needed,
so we have implemented a set of general-purpose utilities,
part of which can be customized for the target platform.

December 1994 Hewlett-Packard .Journal 37

© Copr. 1949-1998 Hewlett-Packard Co.

HP DDE
Main Debugger

(Symbol Table Package, Abstract Syntax Tree Package,
Expression Evaluator Package, Memory Management Package,

and Other Services)

User
Interface

L a n g u a g e i O b j e c t C o d e
I n t e r f a c e I n t e r f a c e

Target
Interface

Interface
Specifications

They are generally independent of the functions of a debug
ger and can be used by any application. In all of the system-
specific calls we try to be compliant with the latest version
of POSIX.

These general-purpose utilities include a list utility, a hash
table utility, a memory allocation utility, and a string handling
utility. The memory allocation utility provides a generic inter
face to system memory management functions such as ma Hoc
and free. It allows a caller to allocate memory directly from
the heap or to allocate a cluster of storage, which is man
aged separately from the rest of the heap and from which
smaller pieces of memory can be allocated later.

Because of the partitioned implementation scheme, HP DDE
can support a wide variety of target machines, languages,
object code formats, and user interfaces simply by imple
menting new managers. Although implementing a new man
ager is not a trivial task, supporting a new architecture or
object code format is generally straightforward.

The Main Debugger
The main debugger constitutes the largest and most complex
part of HP DDE. It contains the implementation of generic
debugger operations that control and maintain information
about a debugging session. The design of HP DDE is such
that most debugger functionality resides in the main debug
ger so that managers can be small and easy to implement.
The main debugger supports a wide variety of platforms and
block-structured languages but makes few assumptions about
their specific properties. When the main debugger needs
target, language, or object code dependent information it
calls a manager to supply it.

Managers

Fig. 5. HP DDE consists of a main
debugger and several managers.
Three user interface managers,
eight language managers, four
object code managers, and five
target managers currently exist

Just as HP DDE is divided into the main debugger and vari
ous managers, the main debugger is further subdivided into
several distinct packages, each of which implements a well-
defined subset of the operations provided by the main de
bugger. Although the main debugger is not written in C++, it
has been implemented using an object-oriented methodology,
and a package is similar to a class. Each package defines a
function interface to the data it controls, such that one pack
age can only refer to the data in another through the function
interface. Parts of these package interfaces are exported as
callback functions for use by the various managers.

Most of the services provided by the main debugger fall into
one of the following categories: symbol table management,
command dispatch and processing, program monitor man
agement, abstract syntax tree construction and expression
evaluation, stack management, location identifier parsing,
target program execution management, user interface dis
play management, and short-term and long-term storage
management.

Symbol Table. HP DDE's symbol table is managed by the
main debugger and initialized by the object code manager
through callback functions. The symbol table isolates the
main debugger from differences in debugging information
emitted by different compilers and is versatile enough to
represent programs in all languages that HP DDE supports.

Other parts of the main debugger and other managers can
call the symbol table package to obtain information from the
symbol table. Although HP DDE is dependent on the cor
rectness of the symbol table, as is any debugger, HP DDE
does not assume that the symbol table is complete. If a

38 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

piece of information is not in the symbol table, an error
does not occur. This behavior requires the caller to check to
see if the symbol table package returns the expected piece
of information.

See "A Short Primer on Debugger Internals" at right for
more about symbol table use during a debugging session.

Abstract Syntax Trees and Expression Evaluation. To remain as
language independent as possible, the main debugger imple
ments an abstract syntax tree construction package. Lan
guage managers call this package to generate intermediate
language! trees representing language expressions. The
intermediate language is powerful enough to represent
most expression constructs for all languages that HP DDE
supports.

Once a language manager has constructed a language inde
pendent intermediate language tree for a language expression
specified by the user, the tree is returned to the main debug
ger for processing by the expression evaluator package. The
evaluator calls other packages and managers to determine
the value and type of the expression.

During expression evaluation, some language-specific infor
mation may be needed. For example, arrays are laid out in
column-major format in some languages and in row-major
format in others. Other language dependent abstractions
include the case-sensitivity of the language, whether a string
is null terminated, various attributes of arrays and pointers,
and type-checking rules. Like the set of intermediate lan
guage constructs HP DDE supports, this group of language
abstractions is meant to be representative. For example, the
main debugger knows the variety of ways arrays are treated
in different block-structured languages and how to treat
each one correctly. However, the main debugger does not
know the language of the expression, but only the value of
the particular attribute.

Short-Term and Long-Term Memory Management. Because HP
DDE is implemented in a strictly partitioned manner, man
agement of heap storage can be difficult. One package or
manager can allocate a piece of data, but has no way of
knowing when it can be freed. To simplify this problem, the
main debugger uses the general-purpose memory allocation
utility mentioned earlier to implement a higher-level storage
package.

At the start of execution the main debugger allocates a
cluster of storage, which it uses as temporary space. Callers
to the higher-level storage package can request a piece of
the temporary cluster for storage that is needed only briefly
rather than throughout a debugging session. A package or
manager that requests this temporary space does not need
to be responsible for freeing it because the entire cluster is
freed and reallocated at the end of each command execution
cycle.

For example, the abstract syntax tree package allocates
intermediate language nodes in temporary storage because
the types and values of expressions are determined within
one command cycle, and the information is no longer needed
once it has been displayed to the user. On the other hand,

t An intermediate language is a language that is used as an intermediate step between the
original (high-level) source code and the (low-level) target language.

A Short Primer on Debugger Internals

When the a debugger, the user typically wants to be able to stop the program at
various times during execution, print the value of a program symbol, follow the
program flow of control by stepping through the source lines in a function, or
examine the program execution stack to determine how execution ended up at a
particular location.

To enable the user to perform marry of these operations, a debugger must have
access data a lot of information, much of it related to program blocks, symbols, data
types, and source lines. Many debuggers read this information from the object
code file and store it in an internal symbol table for easy lookup and traversal

A debugger uses the information in the symbol table to translate a symbolic loca
tion specified by the user into a virtual address. Once a debugger has a virtual
address for a program location, it can set a program monitor (such as a breakpoint,
trace, or watchpoint) at that location. Once the virtual address for a program
symbol to known, a debugger can find its value and display the value according to
the symbol's type.

To determine the type and value of a language expression specified by the user,
which may range from a simple variable reference to a complex expression, a
debugger needs some way to determine if the expression is correct. One way to
implement this functionality is with a parser that translates the expression into
some of of abstract syntax or intermediate language tree made up of operator
nodes and operand leaves. This tree is then evaluated to determine the type and
result value of the expression.

The contents of the symbol table are important to a debugger, but it also needs
access de the address space of the target program. On many UNIX systems, de
buggers a the target program with the ptracel) system call. With ptracel) a
debugger can read from and write to the program's address space, execute the
program for one or many instructions, and send a signal to the program. For exam
ple, virtual a debugger has translated a program location into a virtual address, it
uses ptracel) to write a special instruction into the instruction stream of the target
program. Execution of the special instruction causes the target program to stop
and the debugger to regain control of the target program.

symbol table and breakpoint information is allocated in long-
term storage because it is needed throughout a debugging
session.

Target Managers
Target managers are responsible for providing debugger
functionality specific to the hardware, operating system,
and run-time libraries. Since these components tend to be
platform-specific, it is critical to isolate the dependencies on
these components from the main debugger.

The two major goals in isolating platform-specific dependen
cies within target managers are to make it easier to port HP
DDE to a new platform and to facilitate remote debugging
on heterogeneous systems.

The target manager's primary responsibility is to control the
program being debugged and report the state of the program
to the main debugger. A carefully defined interface has been
created to hide the details of how a program is controlled and
inspected. These details often vary widely between hardware
platforms, operating systems, and run-time libraries.

HP DDE supports debugging of threads based on the POSIX
threads model. Each thread has a unique register set, stack,
and call chain. Every thread in a program can be examined
by the main debugger. The target manager hides the details
of a threads implementation. For example, currently on the
HP-UX operating system, thread control is implemented

Dc'crmhrr lull I Hewlett-Packard Jouinal 39

© Copr. 1949-1998 Hewlett-Packard Co.

using a run-time library. However, on the Solaris operating
system, thread control is embedded in the kernel.

The target manager uses an event-driven model to communi
cate with the main debugger. The main debugger directs the
target manager to resume the program and report back
events when execution is halted. Program events are trig
gered by several circumstances, including breakpoints, data
watchpoints, traces, faults such as UNIX signals, shared
library loads and unloads, program forks and execs, thread
creation, termination, and context switching, and C++
exception catches and throws.

For every event, the current program counter and stack
pointer are reported to the main debugger. The target man
ager also constructs the dynamic call chain. Every event is
associated with a specific thread. The thread that triggered
the event is selected as the primary thread, but the main
debugger can also examine the program counter, stack
pointer, and dynamic call chain of all other threads in the
program. For events such as shared library loads, the name
and address spaces of the shared library are returned. For
events caused by a fault such as a UNIX signal the type of
fault (e.g., signal number) is returned.

When the target program is halted, the target manager pro
vides a variety of services to the main debugger. The current
state of the program can be queried or modified. Machine
registers and memory can be altered, and program functions
can be called. Thread scheduling order and state can be
changed. Program forks and execs can be followed to debug
the new process. For program forks, both the parent and the
child can be debugged simultaneously. A separate debugger
is spawned to debug the child program.

The target manager also handles issues related to run-time
libraries. Run-time libraries tend to vary with hardware plat
forms and operating systems. An example of this is the C++
run-time library. The implementations of certain language
features, such as exception handling, are embedded in the
C++ run-time library. HP DDE's target manager interfaces
with this library and handles events such as throws and catches.
For example, to stop on a C++ throw, the target manager sets
a hidden breakpoint on the run-time routine that handles
throws. After the hidden breakpoint is triggered, the call
chain can be followed to find the user routine that issued
the throw.

Remote Debugging Capabilities
As mentioned earlier, HP DDE supports remote debugging in
two different ways. The first way is to run most of HP DDE
on a remote host and redirect input and output to a local
host, and the second way is to run most of HP DDE on the
local host and the rest of HP DDE and the application being
debugged on the remote system. This section describes the
second way.

HP DDE's remote debugging capabilities are handled by the
target manager. HP DDE is started on a local host system
and instructed by the user to debug an application executing
on a remote target system. A portion of the target manager,
the target debug kernel, also executes on the remote system
(see Fig. 6). The main part of the target manager runs on the
host and communicates with the target debug kernel. The
target debug kernel interfaces with the hardware, operating

Workstat ion
(Local Host)

Remote
System

Operating
System

Run-Time
Libraries

1 L A N

HP DDE
Main Debugger

Other
Managers

Target
M a n a g e r

Ma in

Target Debug
Kernel

I ^ ^ H

Applicat ion
Being

Debugged

Fig. the Remote debugging session showing the distribution of the
target manager software.

system, and run-time libraries of the remote system. Com
munication between the host and remote system is handled
entirely by the interface between the target debug kernel
and the rest of the target manager. Other DDE managers and
the main debugger are not aware of the interface between
the host and remote system, or even the fact that the target
program is executing on a remote system.

The method for communicating between the local host and
remote system depends on the protocols common to both
systems. One possibility is to communicate via remote pro
cedure calls. This is the protocol used for remote systems
running the HP Apollo Domain/OS. Embedded systems that
do not support remote procedure calls might use a simpler
protocol.

Remote debugging is most useful when the target system
does not have all the functionality or resources to run HP
DDE. For example, when porting HP DDE to HP Apollo's
PRISM system, remote debugging was needed during early
development before the operating system and run-time sys
tem were fully functional. Remote debugging can also be
used to lessen the load on the remote system. Since all but a
small piece of HP DDE is running on the local host system,
the local host supplies resources such as memory and CPU
to run HP DDE.

Object Code Managers
Object code managers are responsible for converting
symbolic debug information generated by compilers into HP
DDE's internal symbol table format. The object code manager
functionality was separated from the target manager to take
advantage of common symbol table formats across target
platforms. An object code manager that recognizes a partic
ular symbol table format can be reused on any platform that
uses the same symbol table format.

The object code manager creates HP DDE's internal symbol
table in several stages. When a program is first loaded, the
object code manager creates the primitive data types that

40 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

might be required by a program (e.g.. integral and floating
point types in various sizes). The object code manager also
supplies a mapping from those primitive types to language-
specific type names (such as char or Â¡nt for C).

After the primitive data types are created, the object code
manager enters information about the program being de
bugged into the symbol table. Program information is stored
hierarchically as a tree. The object code manager creates a
subtree in the symbol table for each executable file in a pro
gram. Each level of a tree is known as a block. Tree blocks
represent the lexical structure of programs. Blocks contain
symbol and Une number information for the lexical scopes
they represent. The root block of each subtree, which con
tains symbols global to the executable file it represents, is
known as an image block. Fig. 7 shows an example of a
symbol table block.

Symbol table elements are created for each global type or
variable at program load time. However, symbols local to
the child blocks of an image block do not have to be created
immediately. HP DDE can incrementally initialize local sym
bols when they are needed. If a block is never referenced,
the local symbols of the block may never have to be entered
into the symbol table. HP DDE's startup time and space re
quirements are reduced by minimizing the amount of initial
information in the symbol table.

After the program is loaded, the object code manager may
subsequently be invoked if the program dynamically loads a
new executable shared library.

HP DDE makes very few assumptions about the level of
support provided by an object code manager. Symbol table
information can be sparse. An object code manager can pro
vide limited support for debugging programs that were not
compiled in debug mode by doing such things as using the
linker symbol table information. In this case, the level of
symbolic debug support is reduced.

Language Managers
Language managers are responsible for the language-specific
aspects of a debugging session. A separate language manager
exists for each language supported by HP DDE, including C,
C++, Fortran, Pascal, and various assembly languages. Mul
tiple language managers can be loaded simultaneously.

HP DDK uses language managers when evaluating and print
ing expressions. HP DDE has a language mode that deter
mines how expressions are evaluated. The default language
mode is the language corresponding to the current point of
program execution. However, the programmer can override
the default language mode. Each language manager is re
sponsible for parsing expressions according to the syntax
of the language. If the expression is legal, an intermediate
language tree representing the expression is created. The
main a evaluates the in termedia te language t ree in a
bottom-up fashion and invokes the language manager during
this evaluation. The language manager is called to type check
each nonleaf node in the intermediate language tree before
the node is evaluated. If a type-checking error occurs, the
language manager can either halt the evaluation process or
insert type conversion nodes into the intermediate language
tree to make the operation legal.

int sum (l ist low, high)
intl istQ, low. high.
{

inti, s = 0;
for (i = low; i <= high; Â¡++I

s += list! i];
return (s);

= b l o c k V Y i m a g e l a . o u i r a v e r a g e ^ u m =

name: sum
s t a r t j i n e _ n r 1 2
end J ine^nr 19
source j i le : 'average.c {Mon Jul 25 11:10:53 1994)

s t m t j i s t :

â€” statement \Yimage(a. out (\average\sum\1 5
I i n e _ n r 1 5
start_otfset 16
end_offset 19

â€” statement \Vimage(a.out| \average\sum\12 â€”
line_nr: 12
start_offset: 0
end_oflset: 15

â€” statement \Yimagela. out)\average\sum\16 â€”
line_nr: 16
start .offset 20
end_offset: 39

â€” statement \Yimagela out)\average\sum\17 â€”
line_nr: 17
start_offset: 40
end_otfset: 91

â€” statement \Yimage(a.outJ\average\sum\18 â€”
line^nr: 18
start_offset: 92
end_otfset: 99

â€” statement \Vimagela. out)\average\sum\19 â€”
line _nr: 19
start^offset: 100
end offset: 107

sym_list:

â€” symbol \Vimage(a.out)\average\sum\list â€”
name: list
datatype: pointer
attributes: [param by val]

â€” symbol \\ ' image(a.out)\average\sum\low â€”
name: low
datatype: int
attributes: [param by val]

â€” symbol \Vimagela.outl\average\sum\high â€”
name: high
datatype: int
attributes: [param by val]

â€” symbol \Vimagela. out)\average\sum\i â€”
name: i
datatype: int
attributes: [stack variable]

â€” symbol \Vimage(a.out)\average\sum\s â€”
name: s
datatype: int
attributes: [stack variable]

Fig. block Home of tin- information contained in a symbol table block
for the function sum, which is part of a larger C program.

A language manager performs a number of auxiliary func
tions as well, including formatting data for output and defin
ing the value of several attributes that the main debugger
uses to conform to the behavior of the language currently in
effect. Examples include whether identifiers are case sensi
tive, whether an array of characters is equivalent to a string,
or whether a pointer can be indexed as if it were an array. A

December 1994 Hewlett-Packard Journal 41

© Copr. 1949-1998 Hewlett-Packard Co.

language manager also determines how text is selected from
HP DDE's user interface displays. The user interface can
define a point-and-click operation to select arguments for
debugger commands. When a user clicks a mouse button on
text displayed somewhere in the user interface, the current
language manager determines the text the user is referring
to from the position of the mouse cursor (see Fig. 2).

User Interface Managers
The main role of a user interface manager is to collect user
input, convert user input into debugger commands, send
commands to the main debugger, and display output from
the main debugger. As described earlier, five different out
put areas are defined in HP DDE: the source code display,
assembly code display, stack traceback display, watched
variable display, and transcript display (see Fig. 1). The user
interface specification allows considerable freedom in the
way these displays are implemented. A user interface can
ignore output for every display except the transcript display,
which records the interactions between the user and HP
DDE. Commands exist to enable and disable the other dis
plays and to redirect output intended for other displays to
the transcript display.

A user interface is dynamically loaded by the main debugger
at startup time. Although several user interfaces exist, there
is no way to switch user interfaces after one has been spe
cified at startup time.

The most sophisticated user interface provided by HP DDE
is the GUI described earlier. A more primitive line mode
user interface also exists for systems that do not support X
Windows and OSF/Motif.

Implementation Experiences
Our experiences with the HP DDE architecture have been
positive, and its design concept has been validated by the
number of times HP DDE has been ported. The interface
specifications allow developers to write new managers with
out worrying about other parts of HP DDE. However, we do
pay a price for such an extreme level of generality and ab
straction. For instance, our source line count is currently
hovering around 250,000 lines, which is high compared with
the dbx and gdb debuggers. Machine resources consumed
by HP DDE can be quite substantial, particularly when de
bugging large programs. In addition, performance can be
suboptimal because several function calls must be made
nearly every time a piece of information is needed from
another part of the debugger.

Although the original designers of the HP DDE architecture
did an exceptional job designing and implementing the de
bugger abstractions, some assumptions did creep in. For
instance, it is fairly straightforward to support a procedural,
block-structured language. However, we recently imple
mented extensive C++ support and certain aspects of the
implementation were rather difficult because of various
features of the language such as inheritance and dynamic
type identification and the dependence on the run-time sys
tem. do preserve modularity, the interface specifications do
not allow one manager to make a direct call to a function in
another manager. However, the implementation would have

been easier if the language manager had the ability to make
direct calls to target and object code manager functions.

One of the problems in developing HP DDE has been the
partitioning of debugger functionality into a main debugger
and different managers. The goal has been to put as much
functionality as possible into the main debugger while keep
ing HP DDE as general as possible. While most of the origi
nal manager interface specifications are still valid, modifica
tions have been necessary. For example, the target manager
interface specification was modified extensively to provide
multithreaded debugging support. Also, the language man
ager interface specification was modified to enable more
extensive C++ debugging support.

In addition, HP DDE was originally implemented on HP
Apollo's Domain/OS, which provided a great deal of support
for different aspects of debugging, including a procedural
interface to the shared library loader and an enhanced ptraceO
(process trace) facility that allowed the debugger to follow
the child of a forked process. Parts of the manager and call
back interfaces were designed with this additional operating
system support in mind. Consequently, target-related opera
tions and event processing are often more complicated on
UNIX implementations with less sophisticated debugging
support.

One deficiency that HP DDE has in common with many other
debuggers is the performance of watchpoints and conditional
breakpoints. In HP DDE, watchpoints are implemented by
setting hidden breakpoints at the granularity requested by
the user and monitoring data at these breakpoints. Each
time execution stops at a hidden breakpoint, the current
value of the data must be compared against the old value. If
the monitoring interval is short, a great deal of time is spent
stopping at breakpoints and performing comparisons.

Conditional breakpoints are implemented in a similar fash
ion. The expression specified by the user is stored with the
breakpoint information. Each time execution reaches the
conditional breakpoint, the expression is parsed and evalu
ated. Depending on the complexity of the expression and
the frequency with which the breakpoint is triggered, this
can be time-consuming.

Conclusion
HP DDE is a multilingual debugger that has been ported to
several different platforms. Event-based debugging features
allow the user to debug programs at a higher level than
would otherwise be possible. HP DDE also has the ability to
debug applications running on remote systems and to debug
optimized code. The sophisticated GUI provides many fea
tures that aid usability, including multiple windows, context-
sensitive pop-up menus, and online help.

HP DDE's modular architecture consists of a main debugger
and several managers. The managers encapsulate dependen
cies on target platforms, object code formats, languages, and
user interfaces. Manager interface specifications indicate
the services required from new managers to support new
target platforms, object code formats, languages, and user
interfaces.

42 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

References
1. R.A. Olsson. R.H. Crawford, and WAV. Ho. "A Dataflow .Approach
to Event-Based Debugging." Software-Practice and Experience,

Vol. 21. no. 2. February 1991. pp. 209-229.
2. HP DDE Debugger User's Guide. Hewlett-Packard Company.
1994.
3. V. Ho-Gibson. "HP Programmer's Toolset: New HP-UX Software
Development Tools," Proceedings oflntere.i- '!>3. the 19th Annual

HP L'scr Conference and E.rpo. Vol. 1. September 1993. pp.
4035.1-4035.16.
4. M.A. Unton. "The Evolution of Dbx." Proceedings of the 1990

Summer I 'SEXIX Conference, June 1990, pp. 211-220.
5. R.M. Stallman and R.H. Pesch, L'sing GDB: A Guide to the G.VÃ
Source-Level Debugger Version 4.0, Free Software Foundation.
Cambridge, Massachusetts, 1991.
6. E. Adams and S.S. Muchnick, "Dbxtool: A Window-Based Symbolic
Debugger for Sun Workstations," Software â€” Practice and Experi

ence, Vol. 16, no. 7, July 1986, pp. 653-668.
7. 1.J.P. Elshoff, "A Distributed Debugger for Amoeba," Proceedings

(if the ACM Workshop on Parallel and Distributed Debugging, May
1988, pp. 1-10.
8. P. Using "Debugging Heterogeneous Distributed Systems Using
Event-Based Models of Behavior," Proceedings of the ACM Work

shop on Parallel and Distributed Debugging, May 1988, pp. 11-22.
9. C. Lin, and R.J. LeBlanc, "Event-based Debugging of Object/Action
Programs," Proceedings of the ACM Workshop on Parallel and Dis

tributed Debugging, May 1988, pp. 23-34.
10. J. Hennessy, "Symbolic Debugging of Optimized Code,"j4CM
Transactions on Programming Languages and Systems, Vol. 4,
no. 3, July 1982, pp. 323-344.
11. D.S. Coutant, S. Meloy, and M. Ruscetta, "DOC: A Practical Ap
proach to Source-Level Debugging of Globally Optimized Code,"

Proceedings of the SIGPLAX '88 Conference on Programming

Language Design and Implementation. 1988, pp. 11-22.
12. G. Brooks. G.J. Hansen. and S. Simmons. "A New Approach to
Debugging Optimized Code." Proceedings of the SIGPHX '92 Con

ference on Programming Language Design and Implementation.

1992. pp. 1-11.
13. U. Holzle, C. Chambers. D. Ungar. "Debugging Optimized Code
with Dynamic Deoptimization." Proceedings of the SIGPLÂ·A.'Â·

/â€¢pnce on Programming Language Design and Implementa

tion. 1992. pp. 32-43.

Bibliography
1. B. Beander. "VAX DEBUG: An Interactive. Symbolic. Multilingual
Debugger." Proceedings of the ACM SiGSOfT SIGPLAX Software

Engineering Symposium on High-Level Debugging. March 1983,
pp. 173-179.
2. M.S. Johnson, "Some Requirements for Architectural Support of
Software Debugging," Proceedings of the Symposium mi Airliitir-

t u nil Support for Program m Â¡ni/ Languages and Operating Sumi'mx.

1982, pp. 140-148.
3. P.B. Kessler, "Fast Breakpoints: Design and Implementation,"
Proceedings of the ACM SIGPLAN '90 Conference on Program-

ni i mi Language Design and Implementation, June 1990, pp. 78-84.
4. R. Wahbe, "Efficient Data Breakpoints," Proceedings ofASPLOS V,

October 1992, pp. 200-212.

HP-UX is based on and is compatible with Novell's UNIX5 operating system. It also complies
with SVID2 XPG4, POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface specifications.
UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.
OSF/Motif is a trademark of the Open Software Foundation in the U.S. and other countries.

December l!)i)4 Hewlett-Packard Journal 43

© Copr. 1949-1998 Hewlett-Packard Co.

Wavelet Analysis:
Theory and Applications
Wavelet analysis has attracted attention for its ability to analyze rapidly
changing transient signals. Any application using the Fourier transform
can be localized using wavelets to provide more accurately localized
temporal and frequency information. This paper gives an overview of
wavelet analysis and describes a software toolbox created by HP
Laboratories Japan to aid in the development of wavelet applications.

by Daniel T.L. Lee and Akio Yamamoto

Wavelet analysis (also called wavelet theory, or just wave
lets) has attracted much attention recently in signal process
ing. It has been successfully applied in many applications
such as transient signal analysis, image analysis, commu
nications systems, and other signal processing applications.
It is not a new theory in the sense that many of the ideas and
techniques involved in wavelets (subband coding, quadra
ture mirror filters, etc.) were developed independently in
various signal processing applications and have been known
for some time. What is new is the development of recent
results on the mathematical foundations of wavelets that
provide a unified framework for the subject.

Within this framework a common link is established be
tween the many diversified problems that are of interest to
different fields, including electrical engineering (signal pro
cessing, data compression), mathematical analysis (harmonic
analysis, operator theory), and physics (fractals, quantum
field theory). Wavelet theory has become an active area of
research in these fields. There are opportunities for further
development of both the mathematical understanding of
wavelets and a wide range of applications in science and
engineering.

Like Fourier analysis, wavelet analysis deals with expansion
of functions in terms of a set of basis functions. Unlike
Fourier analysis, wavelet analysis expands functions not in
terms of trigonometric polynomials but in terms of wavelets,

which are generated in the form of translations and dilations
of a fixed function called the mother wavelet. The wavelets
obtained in this way have special scaling properties. They
are localized in time and frequency, permitting a closer con
nection between the function being represented and their
coefficients. Greater numerical stability in reconstruction
and manipulation is ensured.

The objective of wavelet analysis is to define these powerful
wavelet basis functions and find efficient methods for their
computation. It can be shown that every application using the
fast Fourier transform (FFT) can be formulated using wave
lets to provide more localized temporal (or spatial) and fre
quency information. Thus, instead of a frequency spectrum,

for example, one gets a wavelet spectrum. In signal process
ing, wavelets are very useful for processing nonstationary
signals.

Wavelets have created much excitement in the mathematics
community (perhaps more so than in engineering) because
the mathematical development has followed a very interest
ing path. The recent developments can be viewed as resolv
ing some of the difficulties inherent in Fourier analysis. For
example, a typical question is how to relate the Fourier co
efficients to the global or local behavior of a function. The
development of wavelet analysis can be considered an out
growth of the Littlewood-Paley theory1 (first published in
1931), which sought a new approach to answer some of
these difficulties. Again, it is the unifying framework made
possible by recent results in wavelet theory related to prob
lems of harmonic analysis (also to similar problems in oper
ator theory called the CalderÃ³n-Zygmund theory1) that has
generated much of the excitement.

In electrical engineering, there have been independent devel
opments in the analysis of nonstationary signals, specifically
in the form of the short-term Fourier transform, a variation
of which called the Gabor transform was first published in
1946. 2 A major advance in wavelet theory was the discovery
of smooth mother wavelets whose set of discrete translations
and dilations forms an orthonormal basis for L2(R), where R
is the real numbers and L2 is the set of all functions, f, that
have bounded energy, that is, functions for which

|f(t)|2dt

This is a main difference from the Gabor transform. In the
Gabor case, no orthonormal basis can be generated from
smooth wavelets. Thus the unifying framework brought
about a better understanding and a new approach that over
comes the difficulties in the short-term Fourier transform
methods.

In the next section we give an overview of the main features
of wavelet analysis and then turn to a software toolbox that

44 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

HP Laboratories Japan has developed to help in the develop
ment of wavelet applications.

For an excellent tutorial introduction to the subject, see
Rioul and Yetterli2 and the references therein (it lists 106
references). Daubechies' book1 is a standard reference on
the subject.

Fundamentals of Wavelet Theory

This section gives a quick overview of the main formulas.

The Analyzing Wavelet
Consider a complex-valued function if satisfying the follow
ing conditions:

= 2ic
J â€”

Itul -dco < (2)

where *? is the Fourier transform of ip. The first condition
implies finite energy of the function ip, and the second condi
tion, the admissibility condition, implies that if W(co) is
smooth then W (0) = 0.

The function ip is the mother wavelet.

Continuous Wavelet Transform
If ip satisfies the conditions described above, then the wave

let transform of a real signal s(t) with respect to the wavelet
function ip(t) is defined as:

s(t)dt, (3)

where ip' denotes the complex conjugate of ip, and this is
defined on the open (b,a) half-plane (b G R, a > 0). The
parameter b corresponds to the time shift and the parameter
a corresponds to the scale of the analyzing wavelet.

If we define ipa,b(t) as

(4)

which means rescaling by a and shifting by b, then equation 3
can be written as a scalar or inner product of the real signal
s(t) with the function tpa,b(t):

- * > - / _ > S(b,a) = (t)s(t)dt. (5)

When function ip(t) satisfies the admissibility condition,
equation 2, the original signal s(t) can be obtained from the
wavelet transform S(b,a) by the following inverse formula:

X ^

Â » J
L u i I

^ J â € ” x J

S(b,a)Tpa,b(t)Â«. (6)
â€” x J â€” -x,

Discrete Wavelet Transform
In the discrete domain, the scale and shift parameters are
discretized as a = am and b = nbo, and the analyzing wave
lets are also discretized as follows:

-m/2
VnuiCO = a

; / t - n b 0 \

*{ -? /' (7)

where m and n are integer values. The discrete wavelet
transform and its inverse transform are defined as follows:

J â€”

V'm.n(t)s(t)dt.

S(t) =

(8)

(9)

where kv is a constant value for normalization.

The function Vm,n(t) provides sampling points on the scale-
time but linear sampling in the time (b-axis) direction but
logarithmic in the scale (a-axis) direction.

The most common situation is that ao is chosen as:

(10)

where v is an integer value, and that v pieces of Vm.nOO are
processed as one group, which is called a voice. The integer v
is the number of voices per octave; it defines a well-tempered
scale in the sense of music. This is analogous to the use of a
set of narrowband filters in conventional Fourier analysis.

Wavelet analysis is not limited to dyadic scale analysis. By
using an appropriate number of voices per octave, wavelet
analysis can effectively perform the 1/3-octave, 1/6-octave,
or 1/12-octave analyses that are used in acoustics.

The main focus of current research is on finding optimal
wavelet basis functions and efficient algorithms for comput
ing the corresponding wavelet transforms. The wavelet basis
function can be implemented as an FIR (finite impulse re
sponse) filter or an IIR (infinite impulse response) filter
depending on the particular properties needed.

Graphical Representation
This section describes how to display complex-valued
functions such as equations 3 and 8 so that useful informa
tion about the signal s(t) can be highlighted. There are two
aspects to consider.

The open (b,a) half-plane on which the wavelet transform is
defined can be mapped onto the full plane (b,-log(a)). This
representation is indispensable if we want to display, in a
single picture, information with a wide range of scale parame
ters. For example, for sound signals in the audible range, a
spread of ten octaves is common. A disadvantage of this
representation, on the other hand, is that straight lines on
the open (b,a) half-plane become exponential curves in the
logarithmic representation.

Expressions 3 and 8 depend on the choice of the analyzing
wavelet vj). To obtain full quantitative information about the
signal s(t) from its transform S(b,a), we need to know the
analyzing wavelet V- There are, however, many features of
the signal that are independent of the choice of ip. Such fea
tures involve the phase of the complex-valued functions.
Therefore, it is useful to represent separately the modulus
and the phase of the complex-valued function S(b,a) to be
described.

Shown in Figs. 1 and 2 is an example of the wavelet trans
form of a localized pulse that approximates a delta function.

December 1994 Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

Scale a

Time Shift b

Fig. 1. Magnitude of the wavelet transform of a delta function.

The horizontal axis is time in both the magnitude picture,
Fig. 1, and the phase picture, Fig. 2, and the vertical axis is
scale, with small scale at the top.

In Fig. 1, the magnitude increases toward the top of the pic
ture. The modulus or magnitude, IS(b,a)l, is converted to
grayscale and is normalized to its maximum, that is, the plot
shows x, where:

ISI < 1. (11)
The phase of S(b,a) is given by a grayscale picture in which
a phase of 0 corresponds to white and a phase of 2n to
black. This convention is quite useful in interpreting the
resulting picture. When the phase reaches 2n, it is wrapped
around to the value 0. The lines where the density drops
abruptly to zero are clearly visible on the picture and play an
important role in the interpretation as a visible line of con
stant phase. In Fig. 2, one can see the lines of constant
phase pointing to the location of the delta function.

Examples of Wavelet Functions
Haar Wavelet. The Haar wavelet is the simplest kind of wave
let function. Suppose that 4>(t) is a box function satisfying
the following:

Scale a

Time Shift b

Fig. 2. Phase of the wavelet transform of a delta function.

!1 if 0 < t < 1
0 otherwise.

If we we the function ip(t) as i|)(t) = cj>(2t) - <|>(2t-l), we
can obtain the following function:

1 if 0 < t < 1/2
Tp(t) = <j - 1 if 1/2 < t < 1

0 otherwise.

The function 4>(t) is the Haar scaling function, and ip(t) is
the Haar wavelet. This function is orthogonal to its own
translations and dilations, that is, the family

n>m,n(t) = 2-"172 - n) , m , n e Z , (14)

where Z is the real integers, constitutes an orthonormal
basis for L2(R). Historically the Haar function was the origi
nal wavelet. This wavelet is not continuous, and its Fourier
transform ^(co) decays only like lwl"1, corresponding to bad
frequency localization.

Meyer Wavelet. Yves Meyer constructed a smooth orthonor
mal wavelet basis as follows. First of all, define the Fourier
transform <t>(io) of a scaling function (j)(t) as:

<E>(co) =

1

cos
0

if lwl < f n
O

if |ii < Icol < |jt (15)

otherwise,

where v is a smooth function satisfying the following
conditions:

v(t) =
I 0 if t < 0
I I i f t > 1

with the additional property

v(t) + v(l-t) = 1.

This function 0 is plotted in Fig. 3.

(16)

(17)

In this case, the wavelet function ip can be found easily from
<t>. First, we find the Fourier transform of ty:

= eilu/2 ^ 0(w
lez

l))4>(co/2)

= eioj/2[ct>(tu + 2jt) + <5(w - 2;t)]0(co/2).

The function *P is plotted in Fig. 4.

(18)

(19)

Now since V is compactly supported (its duration is finite
and nonzero) and V e Ck where k is arbitrary and may be
* (i.e., V has at least k derivatives), ijj can be obtained by
taking the inverse Fourier transform. Fig. 5 shows a graph of
the Meyer wavelet i|)(t) G C4.

Morlet Wavelet. This particular function was most often used
by R. Kronland-Martinet and J. Morlet. Its Fourier transform
is a shifted Gaussian, adjusted slightly so that *P(0) = 0:

= e -(<"-%) /2 - e-<Â»2/2e-<aÂ¡/2 (20)

(21)

46 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

1 2 -

1.0

0.4

0.0

-0.2

1 - 2 - r

- 6 - 3 0 3 6

t

Fig. basis. Fourier transform of the scaling function for the Meyer basis.

Often coo is chosen so that the ratio of the highest maximum
of ty to the second highest maximum is approximately 1/2,
that is,

co0 = (2/m 2)1/2 = 5.3364... (22)

In practice one often takes o>o = 5. For this value of o>o, the
second term in equation 20 is so small that it can be ne
glected in practice. Consequently, the Morlet wavelet can
be considered as a modulated Gaussian waveform. Its real
and imaginary parts for (DO = 5 are shown in Figs. 6 and 7,
respectively.

The Morlet wavelet is complex, even though most applica
tions in which it is used involve only real signals. The wave
let transform of a real signal with this complex wavelet is
plotted in modulus-phase form, that is, one plots l(s, ij>niill)l

1.2 r

i.o -

0.8 -

0 . 6 -

0.2 -

0.0

-0.2
-10 10

- 0 . 5 -

-1 .0

Fig. 5. The Meyer wavelet.

and tan~1[Im(s, \|Â»mn}/Re(s, tym,n)], where the brackets indi
cate the scalar or inner product of the signal waveform s
with the basis function tym n, that is,

= S(t)l|)'ra,n(t)dt.

The phase plot is particularly suited for the detection of
singularities.

Daubechies Wavelet. Except for the Haar basis, all of the
examples of orthonormal wavelet bases consist of infinitely
supported functions. Ingrid Daubechies constructed an or
thonormal wavelet in which t|) is compactly supported. The
way to ensure compact support for the wavelet ty is to
choose a scaling function c|> with compact support.

1.0 -r

-0 .5

-1 .0

Fig. 6. Real part of the Morlet wavelet for WQ = 5.

Fig. 4. Fourier transform of the Meyer wavelet.

December 1U94 Hewlett-Packard Journal 47

© Copr. 1949-1998 Hewlett-Packard Co.

- 1 . 0

Fig. 7. Imaginary part of the Morlet wavelet for COQ = 5.

First of all, find a progression (ak;k e Z) satisfying the
following four conditions for all integer N > 2:

a k = 0 i f k < 0 o r k > 2 N (2 3)

zc

akÂ«k+2m = 6om for all integer m (24)
k=-Â«

a k = J 2 (2 5)
k=-oc

OC

^ P k k m = 0 , 0 < m < N - l , (2 6)
k=-=o

where |3k = (-l)ka_k+1.

If N = 1, then OQ = aÂ¡ = 1, corresponding to the Haar basis.

We can find a compactly supported scaling function 4>(t)
from the above progression (ctk). The function cf>(t) is one
solution of a functional equation:

= a k v ' 2 (K 2 t - k) .
k=-oo

(27)

It is continuous and compactly supported and satisfies

I 4>(t)dt = l for integer N and the corresponding progression

{<xk}. The support of 4>(t) is [0,2N-1].

Furthermore, if |3k is defined as the condition 26, the function
ijj(t) satisfying a functional equation

= p k v ' 2 (j) (2 t - k) (28)
k= - x

is compactly supported and fulfills the following:

â€¢ ip(t)tmdt = 0 for all integers 0 < m < N-l.

4>(t), n>(t) e C*<N) for Holder spaces CXW, where X(N) is an
integer parameter and the elements of C^~> are functions
that have X(N) derivatives.

- 0 . 5

Fig. 8. The Daubechies scaling function for N = 2.

Figs. 8 and 9 show graphs of the Daubechies scaling function
4> and the corresponding wavelet i|) for the value of N = 2.

Software Tools: Khoros System

The wavelet analysis software developed by HP Laboratories
Japan is implemented as a toolbox in the Khoros system.
The Khoros system is an integrated software development
environment for information processing and visualization,
based on the X Window System. It is distributed in the pub
lic domain and has been ported to the HP-UX operating
system.3

Khoros components include a visual programming language,
code generators for extending the visual language and adding
new application packages to the system, an interactive user
interface editor, an interactive image display package, an

2 - r

a 0

Fig. 9. The Daubechies wavelet for N = 2.

48 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 10. Sinusoid \v1th constant
frequency.

extensive library of image processing, numerical analysis,
and signal processing routines, and 2D/3D plotting packages.

The Khoros system also supports the toolbox update method
for new routines created by another person or developed on
another machine. A toolbox contributed by HP Laboratories
Japan, the HPLJ Toolbox, contains wavelet application de
velopment tools, image data compression utilities, and other
utilities.

Wavelet Analysis Examples

The following examples illustrate the advantages of the
time-scale resolution properties of the wavelet transform
and a related concept, the chirplet transform, for the analy
sis of step input signals, including a delta function, a step
or box function, a differentially discontinuous function, a
ramp function, sinusoidal functions, a chirp signal, and a
sum of gliding tones.

Wavelet Analysis
This section gives several application examples of wavelet-
based signal analysis, including both stationary and nonsta-
tionary signal analysis. These results were obtained with a
Morlet wavelet, that is, a complex sinusoid windowed with a
Gaussian envelope, expressed as follows:

= elctexp - i t 2) 2l / '
(29)

As for the number of voices discussed earlier, we use v = 6
in the following three examples of synthesized data analysis.

Example 1. The first example gives the analysis of two sinu
soids. Fig. 10 shows a sinusoid with a single constant fre
quency, and Figs. 1 1 and 12 represent its wavelet transform.
The horizontal axis is in time in both the magnitude picture,
Fig. 11, and the phase picture, Fig. 12. The vertical axis is
scale, small scale at the top. Certain features of the signal
are evident: horizontal strips of constant magnitude, and
vertical lines in step with the phase of the signal.

Fig. 13 shows a sinusoid with linearly increasing frequency.
The wavelet transform analysis results for this signal are
shown in Figs. 14 and 15. Clearly visible is the upward slope
corresponding to the increase of frequency.

Example 2. The second example is the analysis of the super
position of two delta functions and two sinusoids, as shown
in Fig. 16. One delta function is larger than the sinusoidal
signals and is visible in Fig. 16, but the other is much smaller
and does not appear.

Figs. 17 and 18 show the wavelet transform representations.
We can easily see the two peaks at smaller scale that corre
spond to the discontinuities contained in the input signal.

Example 3. This example shows the analysis of a sum of three
sinusoids with different starting times. The input signal shown
in Fig. 19 is not discontinuous, but its first derivative is.

where c is a constant value of 5 so that the function ty(t)
satisfies the admissibility condition.

Time Shift b

Fig. 11. Magnitude of the wavelet
transform of a constant-frequci u
sinusoid.

December 1904 Hewlett-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

Time Shift b

Fig. 12. Phase of the wavelet
transform of a constant-frequency
sinusoid.

Fig. 13. Sinusoid with linearly
increasing frequency.

Time Shift b

Fig. 14. Magnitude of the wavelet
transform of a sinusoid with
linearly increasing frequency.

Time Shi f t b

Fig. 15. Phase of the wavelet
transform of a sinusoid with
linearly increasing frequency.

50 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

] Fig. 16. Two delta functions and
two sinusoids.

T i m e S h i f t b

Fig. 17. Magnitude of the wavelet
transform of the sum of two delta
functions and two sinusoids.

T i m e S h i f t b

Fig. 18. Phase of the wavelet
transform of the sum of two delta
functions and two sinusoids.

Fig. 19. Three sinusoids with
different starting times.

December 1994 Hewlell -Packard Journal 51

© Copr. 1949-1998 Hewlett-Packard Co.

Time Shift b

Fig. 20. Magnitude of the wavelet
transform of three sinusoids with
different starting times.

Time Shift b

Both the frequencies and the beginnings of the components
are very clearly visible in the wavelet transform pictures,

Figs. 20 and 21. A low-frequency sinusoid starts first, followed
by a medium-frequency and a high-frequency sinusoid.

Real Data Analysis. This section shows the results of real data
analysis. This data, provided by the Lake Stevens Instrument
Division, is the transmitter turn-on data of a dual-band trans
ceiver that was taken at a center frequency of 146.52 MHz
with the measurement span set to 39.0625 kHz. In other
words, the data is filtered to approximately a 40-kHz band
width. The time interval between points is 20 us.

The input signal is plotted in Fig. 22. In this case, the trans
form was performed for the value of v = 12, and the magni
tude and phase of the wavelet transform are shown in Figs.
23 and 24, respectively.

Fig. 21. Phase of the wavelet
transform of three sinusoids with
different starting times.

Chirplet Analysis
The wavelet transform has the effect of dissecting the time-
scale plane into time-invariant cells with an aspect ratio
dependent on the scale parameter. This property is impor
tant in spectral processing of signals but does not affect
dynamic spectrum displays where time t is advanced by
small increments relative to the cell width.

The representation of signals may benefit if the cell shape is
not held time-invariant throughout. This time-dependent
adjustment can be performed adaptively. Such a technique,
called the chirplet transform, has been proposed. It uses
oblique cells adapted to the local structure, permitting
separation of the signal components.

Fig. 22. Transmitter turn-on
data.

52 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Time Shift b

Fig. 23. Magnitude of the wavelet
transform of transmitter turn-on
data.

Time Shift b

Fig. 24. Phase of the wavelet
transform of transmitter turn-on
data.

The chirplet is introduced as:

ck(t) = (30)

where the C]< are the chirplet basis functions, fk is the fre
quency of Ck, a is a measure of the "sharpness" of the chir
plet, and r is a frequency drift rate parameter. The chirplet
transform is defined as:

(31) C(fk , t) = ck (t - T) s (t)dT .

Positive drift rate r is associated with upward sloping
oblique cells and the magnitude of r is selected as needed to
resolve the structure of interest.

Consider a signal formed by two successive gliding tones
each of the form:

E(t)Ã§os|2jtÃÂ£0t + Â¿pt2 + i (32)

where E(t) is a rising and falling modulating envelope. An
example of the input signal is shown in Fig. 25.

Figs. 26 and 27 represent the results of the conventional
wavelet transform and the chirplet transform, respectively.
The wavelet transform can analyze the change of frequency
of the input signal, but separation of the signal components
is not possible. The chirplet transform analysis, on the other
hand, can separate the two components clearly.

Acknowledgments
The authors wish to thank Konstantinos Konstantinides of
HP Laboratories for help with the Khoros system. Thanks
also to Robert T. Cutler of Lake Stevens Instrument Division
for providing real test data for our wavelet analysis.

Fig. 25. Sum of two successive
gliding tones.

December 1994 Hewlett-Packard Journal 53

© Copr. 1949-1998 Hewlett-Packard Co.

Time Shift b

Time t

References
1. 1. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
2. O. IEEE and M. Vetterli, "Wavelets and Signal Processing," IEEE
Signal Processing Magazine, Vol. 8, no. 4, October 1991, pp. 14-38.
3. K. Konstantinides and J. R. Rasure, The Khoros Software Develop
ment Environment f or Image and Signal Processing, HP Laborato
ries Technical Report HPL-92-96, 1992.

Fig. 26. Magnitude of the wavelet
transform of the sum of two
successive gliding tones.

Fig. 27. Magnitude of the chirplet
transform of the sum of two
successive gliding tones.

Khoros is a trademark of the University of New Mexico.

HP-UX is based on and is compatible with Novell's UNIXÂ® operating system. It also complies
with SVID2 XPG4, POSIX 1003.1, 1003.2, FIPS 151-1, and SVID2 interface specif ications.

UNIX countries, exclusively registered trademark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

54 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Approaches to Verifying Operational
Test Release Vectors
Five test are employed to minimize the time to develop the test
vectors used to test manufactured parts on an 1C component tester.

by Joy Xiao Han

In today's competitive computer industry, the ability to
accelerate the development process from design to manu
factured part in a timely manner is an important factor. At
HP's Chelmsford systems laboratory one of the things we
do is design and develop chips for HP 9000 Series 800
workstations. Among the activities performed during this
development is the generation of a series of test vectors
called operational test release (OTR) vectors, which are
used on component testers to verify the correctness of the
manufactured parts.

It typically takes six months to generate and verify opera
tional test release vectors. With the techniques described in
this article we have been able to reduce the time spent
creating these vectors to four months.

Test Vector Development
The final product of our test vector development process is
a set of vectors (also called test patterns) that can be loaded
onto a tester to verify manufactured parts. Physical defects
that appear on manufactured parts can be so varied that it is
often impractical to try to detect them directly. Instead, auto
matic test generation, waveform creation, and verification
tools are employed to deal with a logical model of a physical
defect, which is known as a fault. The most widely used
fault model is the stuck-at fault in which the input or the
output of a logic element is stuck at logic 0 or 1. For exam
ple, an open trace, assuming positive logic, might exhibit
itself as stuck at logic 0.

Each vector that tests a typical block of application logic
has at least two parts. One part is made up of data and/or
instructions which are applied to the input of the chip. The
other part, called "expected results," is used for comparison
with the actual output of the application logic to detect any
faults.

The first steps of our test vector development process are
shown in Fig. 1. We start by using a program called ATPG
(automatic test pattern generator) from Crosscheck Corpo
ration to produce a file containing the test input patterns,
the fault-free simulation output patterns (expected results),
and the scan-in and scan-out patterns for the test logic.
ATPÃœ uses a circuit model of the chip to determine the
content of the patterns produced.

1 We use performs term application logic in this paper to refer to the logic on the chip that performs
the intended functions of the component. The other logic on the chip is called test logic, which
is included on the chip for testability.

1 Scan-out patterns are also treated as expected results.

Circuit
Model

Stepl

R u n
A T P G

S o f t w a r e
Step 2

(1011 ...1100)

' Tes t Pa t te rns
1 Expected Resul ts
1 Scan- In and Scan-

Out Pat terns

Step 3

_n_n_n_

Cont inue

Expec ted
Resu l ts

f rom ATPG

Fig. 1. The steps used to create a raw waveform data base.

The next step in our process is to use the Verilog hardware
description language (Verilog HDL) to create a behavioral and
structural model of the target hardware. The instructions in
the program are structured to test the application logic via
special test pins collectively called a test access port (TAP).
The TAP provides access to test logic circuits that are built
into a component to test the component itself and the inter
connections between components. The TAP also provides
access to circuits that allow control and observation of the

December 1994 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

Overview of the Test Access Port

Since the emergence of surface mounted devices a great deal of concern and
discussion has gone into determining how to test boards crammed with these
high-density devices. In 1 990 these concerns resulted in ANSI/IEEE Standard
1149.1-1990, Standard Access Port and Boundary-Scan Architecture. This stan
dard circuit test logic that can be included on an integrated circuit to provide
standardized approaches to testing the component itself or the interconnections
between components on a printed circuit board. The standard also allows for
observing or controlling the behavior of a component during its normal operation.
The test logic allows test instructions and test data to be fed to a component, and
upon execution of an instruction, allows the results to be read out and observed.
All instructions, test data, and results are communicated in serial format.

The test logic defined by the standard consists of a chain of boundary-scan cells
and test support logic, which are accessed through the TAP inputs (see Fig. 1). A
boundary-scan cell is a shift-register stage that is connected between each input
or output pin on an 1C and the application logic to which each pin is normally
connected (see Fig. 2). The scan cell has two states of operation. One state allows
a sequence of bits representing data and instructions to be shifted (scanned-in)
into a value. of scan cells, resulting in latching each cell to the desired value. The
scan-in and scan-out lines shown in Fig. 2 carry the bits from one cell to another.
The logic specified in the standard is designed so that the serial movement of

instruction data is not apparent to the circuits whose operation is controlled by
the instruction.

The other state of operation for the scan cells involves testing the application
logic. application test operation involves either receiving test data from the application
logic data the signal-in line and then latching the output, or shifting test data into
the application logic via the signal-out line. The test logic is specified such that
the movement of test data has no effect on the instruction present in the test
circuitry.

After the test state is done the scan mode can be invoked again to shift out the
latched test results for comparison with the expected results.

The clock, shift, and mode lines shown in Fig. 2 are controlled by the TAP signals
(described below). The TAP lines are responsible for sending the proper signal
sequences to control the scanning or testing states. In addition, the mode line is
controlled according to the type of pin it is connected to (e.g., input, output,
bidirectional, instate, etc.).

The IEEE standard defines a minimum of three input connections and one output
connection (see Fig 1). An optional fourth input (TRST*) provides for asynchronous
initialization of the test logic circuitry defined in the standard.

r â € ” S c a n C e l l s - Y ~ S c a n C e l l s

. 1 . . , i â € ¢ 1 . 1

TDI

From I TCK
Testy TMS

System |TRST.
TOO I

L TAP Input Signals

Test Interconnections
System Interconnections

To Other
Components

TCK= Test Clock
TDI = Test Data In

TOO = Test Data Out
TMS = Test Mode Select

TRST' = Test Reset

Fig. 1. A simplified block diagram of the
test logic defined in ANSI/IEEE Standard
1149.1-1990 surrounding application logic.

application circuits during their normal operation. The
specification for the TAP logic is given in IEEE Standard
1149.1-1990, and a brief overview is provided above. Also
included in the Verilog HDL model are calls to a utility called
Stds_monitor()* which associates timing information with the bit
patterns sent to the device under test. These calls will create
a raw waveform database containing timing and pattern
information. It is called a raw waveform database because
during simulation runs every change on the component's
pins is included in the database. One of the techniques de
scribed below explains how this data is manipulated to
produce a more refined waveform database.

The third step shown in Fig. 1 involves running the Verilog-XL
logic simulator using the Verilog HDL model created in step

2 and the patterns created in step 1 as inputs. A waveform
database and an output pattern file are created from this
simulation. The output patterns from the simulation are
compared to the expected output patterns generated by the
ATPG software. If the patterns don't match, steps 2 and 3
are repeated until they do. If the patterns do match, we
move on to prepare the waveform database to become our
operational test release vectors.

A great deal of time can be spent going back and forth be
tween steps 2 and 3. The rest of this paper describes some
techniques that I have found to be helpful in getting through
steps 2 and 3 quickly. These techniques verify that the TAP
circuits are functioning properly.

The Stds_monitor() runs as part of the Verilog-XL simulator.

56 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

1C Component

To Next Cell or TOO
L

Scan Out

To Next Cell or TOO

Scan Out

Output
Pin

Scan In
From Previous
Cel I or TD I

From TAP
| Test Logic

Mode
Clock

Shift

Fig. application The derived of scar cells in relation chip I/O pins and the application logic. The mode, clock and shift signals are derived from the TAP input signals TMS, TCK, and TRST* respectively.
The first scan-in signal and the last scan-out signal correspond to TDI and TOO respectively.

Test the TCK is the test clock input that provides the clock for the test logic. This
clock is provided so that scan cells surrounding the application logic can be con
trolled independently of system clocks. TCK allows shifting of test data concurrently
with system operation (allowing online monitoring). It also ensures that test data
can be moved to or from a chip without changing the state of the application logic.

Test control Select. TMS is the signal used by the TAP controller to control test
operations. One use of TMS is to select whether the test circuitry is in the test
state like the scan state. To guard against race conditions, the TMS signal like the
TDI signal described below must be sampled on the rising edge of TCK.

Test asynchronous The optional TRST signal is included to allow for asynchronous reset
of the TAP controller. The reset signal only affects the test logic and has no impact
on the application logic.

Test respectively. Lines. TDI and TOO are the test data input and output lines respectively.
They circuit. for the serial movement of test data through the circuit. Data pre
sented at TDI is clocked into the selected register on the rising edge of TCK, while
output simplify appearing at TOO is clocked out on the falling edge of TCK. To simplify
the operation of components that are compatible with the standard, data must be
propagated from TDI to TOO without inversion.

Bibliography
1. IEEE 1149.1-1990, Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1-1990,
IEEE Standards Board, May 1990.
2. R. G. Bennets, Design of Testable Logic Circuits, Addison-Wesley, 1 984.
3. V. Computer Press, and S C. Seth, Test Generation for VLSI Chips, IEEE Computer Society Press,
1988.

Technique 1
Check the scan chain without a system clock. This step is
mainly used to make sure that the scan chain on the chip is
not broken. This test works by ensuring that whatever value
is scanned in (SI in Fig. 2) should be exactly identical to the
value scanned out (SQ). The scan chain is advanced by clock
pulses. For example, a pulse from CLKA followed by a pulse
from CLKB causes the data on SI to be propagated to SQ. SQ
turns into the SI for the next scannable flip flop on the scan
chain. If the chip passes this test, we know that the scan logic
is set properly and that there is continuity in the scan chain.

Technique 2
Check the scan chain with a system clock. This check verifies
that the combinational logic in the application logic portion of

1 A scan there is a shift-register path through a circuit which is typically placed there to improve
testability. See "Overview of the Test Access Port" on page 56.

the chip works. Usually the master clock (MCLK) is opposite
in state to the system clock (CLK) (i.e., when CLK is on, MCLK
is off and vice versa). The only exception to this behavior
occurs when we execute a double-strobe test to check the
time margin on the chip.

The opposite clock states are verified by ensuring that the
data on the D input in Fig. 2, which is the result of all pre
vious combinational logic, is inverted at MQ when CLK is low.
On the other hand, when CLK is turned on, the inverted value
of M Q (the exact value of D) appears at Q. This is the same
value we can monitor at SQ by advancing the scan chain
with pulses from CLKA and CLKB in the correct sequence.

Technique 3
Check the TAP state sequence. Since the TAP logic is basi
cally a state machine its current state is recorded in a mode
register. I have found it necessary to pay attention to the

December 1994 Hewlett-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

(Signal In

(Scan In

(S ignal Out)

(Scan Out) Fig. 2. Scannable flip-flop. This
is a portion of our implementa
tion of a scan cell. The MCLK, ML,
CLKA, and CLKB signals are con
trolled by the TAP test logic and
are derived from the TAP input
signals IMS, TRST*, and TCK.

previous state of the TAP circuit by checking certain bits in
the mode register. For example, one error that typically
takes a long time to correct occurs when the bit in the mode
register that controls I/O direction (PSCAN in Fig. 3) is not
set properly during initialization. Forgetting to set this bit
causes TSTDEN (test data enable) to go high during a scan.
Later when data is supposed to be coming out of the chip
(via the I/O pin) and the tester is driving a value into the
chip, a bus fight occurs. We want TSTDEN to be low, which
puts the gate in tristate mode when the tester is driving a
signal onto the pin. Anytime the wrong data is output be
cause of something that is done or not done early in the test
cycle, it always takes a long time to debug. Debugging time
can be saved if each state (bits in the mode register) is
closely monitored.

Technique 4
Check the value of each pin before each system clock. One
bug that occurs frequently is that test vectors will run
smoothly during simulation, but cause bus fights when they
are run on the tester. From Fig. 3 we can see that if BUSIN
and the tester drive an identical value onto the I/O pin at the
same time, a problem occurs that can only be caught by the
tester and not by simulation. This problem can be eliminated
if we stop the simulation before each system clock and
make sure that the I/O pin is driven by either BUSIN when the
pin acts as an output (i.e., the pins drive the values to the
BUSOUT), or by the tester when the pin acts as an input, but
not both at one time. This task can be easily accomplished
by using the Verilog-XL command Sshowvars.

Technique 5
Verify that the process of creating the operational test release
(OTR) vectors for the tester is correct. Fig. 4 shows the addi
tional steps we take to create and verify the OTR vectors.

The first thing we do is take the raw waveform database
described above and use the conditioners ALIGN and
WINDOW to create a more refined waveform database. We
use the ALIGN conditioner to align each signal to be edge
triggered. The WINDOW conditioner is used to select certain
cycles or windows within a cycle during which output data
is valid, which results in monitoring pins only at the times
we care about. The next step is to verify that the windowed
data is okay. This involves the same process we went
through in steps 2 and 3 of Fig. 1. If everything is okay, the
waveform database is converted to OTR vectors to run on
the tester.

' Conditioners are functions that provide a way to modify waveform data generated via
Stdsjnonitor. The ALIGN and WINDOW conditioners come from TSSI Inc.

TESTER
DRIVING

>â€¢ BUSOUT

TESTDEN = 0 when TESTER DRIVING Is Sending Input to I/O Pin
= 1 when BUSIN Is Sending Output to I/O Pin

Fig. 3. A simplified diagram of the circuitry around an I/O pin.

58 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 4. The final steps in creating the OTR vectors.

Conclusion
These five techniques have proven to be a success in the
Chelmsford systems lab by shortening the time it takes us to
produce final test vectors. These techniques can also be
applied to non-ATPG OTR vectors, since we can create vec
tors manually to meet different needs and put them into
ATPG format. We characterized the entire analog circuitry
embedded in one chip by controlling the proper bits on the
scan chain.

Acknowledgments
I would like to acknowledge all those from the Chelmsford
systems lab and the Corvallis Integrated Circuit Business
Division lab who contributed to the slave memory control
ler's operational test release. Also, special thanks to my
managers for their continuous recognition and support.

December lÃ­Ã¼iÂ·l Ilrwlrti-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

Estimating the Value of Inspections
and Early Testing for Software Projects
A return-on-investment model is developed and applied to a typical
software project to show the value of doing inspections and unit and
module testing to reduce software defects.

by Louis A. Franz and Jonathan C. Shin

The software inspection process has become an important
part of the software development cycle,1-2'3'4 and has been
used with varying levels of success within Hewlett-Packard.4'5
One of the main reasons for its success is that detecting
defects early has a big impact on reducing the cost of dealing
with software defects later in the development cycle. One
HP entity used metrics data from several software projects
and an industry profit and loss model to show the high cost
of finding and fixing defects late in the development cycle
and during postrelease.5

This paper describes the methods we have used to integrate
inspections and prerelease testing into the development of an
information technology software project. The metrics col
lected and the tools we used to collect the metrics data on
this project are described. Finally, we describe an approach
to using the metrics data collected during inspections and

testing to estimate the value (return on investment) of in
vesting time and effort in early defect detection activities.

Background
The sales and inventory tracking (SIT) project evolved from
separate initiatives by several different groups in HP. These
initiatives had different objectives, but all relied on elements
of the same data: computer dealer sales and inventory levels
of HP products. To simplify the collection, processing, and
storage of this data, it was decided to create a centralized
system to house the data. All the applications that would
need to use this information could access the central SIT
system database. Fig. 1 shows the four major modules that
make up the SIT system and the major data stores accessed
by the system. These modules will be referenced throughout
this paper. Table I provides a summary of the major attributes
of the system.

Fig. 1. The major components of
the sales and inventoiy tracking
(SIT) system.

60 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

T a b l e I
S u m m a r y o f t h e S a l e s a n d I n v e n t o r y T r a c k i n g S y s t e m

- m t y p e B a t c h

Hardware platform

Language

DBMS

Data communications
(used for the electronic
transfer of data between
the dealer and HP)

Data access and
manipulation tools

Code

HP 3000 Series 980 running the
MPE/XL operating system

COBOL

HP AllBase/SQL (relational)

Electronic Data Interchange
(EDI) Ais7SI standard transac
tion sets (file formats):

867 product transfer and
resale report

846 inventory inquiry and
advice

Cognos, PowerHouse (Quiz),
Super-tool, KSAM, and VPLUS

25K total lines of source code
(13.6 KNCSS)

* KNCSS = Thousands of noncomment source statements

We used the traditional HP software life cycle for our devel
opment process. The basic steps of this process include:

â€¢ Investigation
â€¢ Design
â€¢ Construction and Testing
â€¢ Implementation and Release
â€¢ Postimplementation Review.

The inspection and prerelease testing discussed in this paper
occurred during the design, construction, and testing phases.

Inspection Process and Inspection Metrics
The objectives of the inspection process are to find errors
early in the development cycle, check for consistency with
coding standards, and ensure supportability of the final
code. During the course of conducting inspections for the
SIT project, we modified the HP inspection process to meet
our specific needs. Table II compares the recommended HP
inspection process with our modified process.

Step 3 was changed to Issue and Question Logging because
we found that inspectors often only had questions about the
document under inspection, and authors tended to feel more
comfortable with the term issue rather than defect. The

T a b l e I I
C o m p a r i s o n o f I n s p e c t i o n P r o c e s s e s

temÃ­ defect seemed to put the author on the defensive and
severely limited the effectiveness of the inspection process.

The Question and Answer step was added because inspectors
often had questions or wanted to discuss specific issues
during the Issue and Question Logging session. These ques
tions defocused the inspection and caused the process to
take longer.

hi the Planning step the author and the moderator plan the
inspection, including the inspection goal, the composition of
the inspection team, and the meeting time. The Kickoff step
is used for training new inspectors, assigning the roles to the
inspection team members, distributing inspection materials,
and emphasizing the main focus of the inspection process.
During the Preparation step, inspectors independently go
through the inspection materials and identify as many defects
as possible. In the Cause Brainstorming step, inspection team
members brainstorm ideas about what kind of global issues
might have caused the defects and submit suggestions on
how to resolve these issues. During the Rework step, the
author addresses or fixes every issue that was logged during
step 3. Finally, in the Follow-up step, the moderator works
with the author to determine whether every issue was
addressed or fixed.

Along with the modified process, a one-page inspection
process overview was generated as the training reference
material for the project team. This overview was a very con
venient and useful guideline for the project team because it
helped to remind the team what they were supposed to do
for each inspection.

Deciding What to Inspect
Because of time and resource constraints, not all of the
project's 13 source programs and 29 job streams could be
inspected. The project team decided to use the risk assess
ment done for the master test plan, which uses the opera
tional importance and complexity of a module as a basis for
deciding which programs and job streams to inspect. The risk
assessment used for the master test plan is described later.
Fig. 2 shows the results of this selection process in terms of
inspection coverage and relative level of complexity of the
programs and job streams.

Inspection Metrics
Three forms were used to collect inspection metrics: the
inspection issue log, the inspection summary form, and the
inspection data summary and analysis form. Fig. 3 shows an
inspection log and an inspection summary form.

Test Plan
and

Test Script
Inspected

Percent of
Programs
Inspected

Percent of
Job Streams

(JCL)
Inspected

Relative
Complexity

* This module consisted of only one JCL and one program.

Fig. system Inspection coverage for the major modules in t lie SIT system
bused on i lie criteria used in the master plan.

December 1994 Hewlett-Packard Journal 61

© Copr. 1949-1998 Hewlett-Packard Co.

Inspection Summary

Inspection Issue Log

(a) (b)

Fig. 3. (a) Inspection issue log. (b) Inspection summary form.

The inspection issue log is used for logging the issues ob
served by the inspectors during the Issue and Question
Logging session. The inspection summary describes the doc
ument inspected, the inspector's preparation time, the type
of inspection , the number of pages and lines inspected, the
number and types of defects identified, and the total time
used to fix or address all the defects. The inspection data
summary and analysis form is a spreadsheet that was used
to collect the data entries required to calculate inspection
efficiency, inspection effectiveness, total time saved, and the
return-on-investment value (described later). Table III lists
the data collected in the data summary and analysis form for
each item inspected.

We selected four key inspection metrics to measure our in
spection effort: number of critical defects found and fixed,
number of noncritical defects found and fixed, total time used
by inspections, and total time saved by inspections.

Testing Process
Our testing process included test planning, unit testing,
module testing, and system testing. Test planning involved
creating a master test plan and doing a risk assessment to
determine where to focus our testing time.

Master Test Plan. A master test plan was created during the
design phase when the test strategy for the project was out
lined (Fig. 4). The master test plan included the test plan

design and the type of tests to be performed. For design
purposes, the system was divided into logical modules with
each module performing a specific function (see Fig. 1). The
test design was also oriented around this division.

Unit Test Case
Worksheet

Mas te r
Test Plan

Module
Test Plan

Module
Test Script

Module
Test Report

Fig. 4. Master test plan organization.

System
Test Plan

System
Test Script

System
Test Report

62 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Metric

Inspection time

Defects

Documentation type

Table I I I
Inspect ion Summary and Ana lys is Data

U n i t s o r S o u r c e o f D a t a

M o d u l e I S u b m o d u l e
O p e r a t i o n a l T e c h n i c a l O v e r a l l R i s k
I m p o r t a n c e D i f f i c u l t y R a t i n g

Preparation and meeting time in
hours

Number of critical and noncritical
defects

Code, requirements and design
specifications, manuals, test
plans, job streams (JCL), and
other documents

Size of document

Amount inspected

Preparation rate

Logging rate

Moderator follow-up
time

Time to f ix a defect Hours

Total time used

Time saved on critical *
defects

Time saved on non-
critical defects

Total time saved

Return on investment *

KNCSS for code and number of
pages for other documents

KNCSS or number of pages
inspected

= (number of pages) x (number of
people)/preparation time

= (critical + noncritical defects)/
(hours/number of people)

Hours

= inspection time + time to fix +
follow-up time

Defined later in this article.

The primary and secondary features to be tested were also
included in the master test plan. The primary features were
tested against the product specifications and the accuracy
of the data output. Secondarily, testing was performed to
ensure optimum speed and efficiency, ease of use (user
interface), and system supportability.

Risk Assessment. A risk analysis was performed to assess the
relative risk associated with each module and its compo
nents. This risk analysis was used to help drive the schedule
and lower-level unit and integrated tests. Two factors were
used in assessing risk: operational importance to overall
system functionality and technical difficulty and complexity.
Each module was divided into submodules and rated against
each risk factor. For example, the proper execution of the
logic in submodule 4.2 was critical to the success of the sys
tem as a whole, while submodule 1.4 merely supplied addi
tional reference data to the database. Accordingly, module
4.2 received a higher operational importance rating. Simi
larly, submodule 4.2 also received a higher complexity rating
because of the complexity of the coding task it entailed.
Each rating was based on a scale of one to five with one
being the lowest rating and five being the highest rating.
Ratings for each risk factor were then combined to get an
overall risk rating for each submodule (Fig. 5).

Fig. 5. Risk ratings by submodule.

Unit Testing. Unit testing, as in most software projects, was
performed for all programs and job streams. For the purpose
of this project, each individual program and job stream was
considered a unit. Since programs were often embedded in
job streams, program unit tests were often synchronized
with job stream unit tests to conserve time and effort.

Because of the small size of the project team, almost all
tests were performed by the program or job stream author.
To minimize the impact of this shortcoming, a simple testing
review process was established. A series of standard forms
were created to document each test and facilitate review by
the designer, users, and the project lead at different points
in the unit testing process (see Fig. 6).

Module Testing. An integrated test of all programs and job
streams within each module was conducted to test the over
all functionality of each of the four system modules. Since
each program or job stream had already been tested during
unit testing, the primary focus of module testing was on ver
ifying that the units all functioned together properly and that
the desired end result of the module's processing was
achieved.

A brief integrated test plan document was created for each
module. This test plan listed the features to be tested and
outlined the approach to be used. In addition, completion
criteria, test deliverables and required resources were
documented (Fig. 7).

Detailed test scripts were used to facilitate each module test
and make it easy to duplicate or rerun a particular test. Each

December 1994 Hewlett-Packard Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

Unit Test Case Worksheet

Unit Test Script

Module Unit: 4.3

Program/Screen/Job Name: S IT 4031 S

Scr ip t * :

Procedure

(D S e t f i l e e q u a t i o n s

(2) Run p rogram, parm - c

(3) Ver i fy f i le layout matches

Resources needed â€”

Programs: GETPROD

Screens: â€”

Database: SITDB, PRIME

SITDB Tab les : Ou t le t s , Channe l_p roduc ts

Others

Unit Test Case

Module Unit: 4.2

Program/Screen /Job Name: S IT 4020J

Script #:

P a s s : @ > / N o

C a s e D e s c r i p t i o n

Date Inspected: 5 /4/92

Ver i f y tha t l oca t ions w i th m iss ing e lements a re repor ted .

Input Conditions

Out le ts tab le "bus iness_name" b lank 010 = 0671100920

E n d - u s e r t a b l e " c o m p a n y " b l a n k O I D = 0 6 7 1 1 0 0 1 1 5

Output Conditions

OID = 0671100920 appears on repor t

OID = 0671100115 appears on repor t

Special Requirements

Use test f i le TST40207.TEST.SIT

Fig. 6. Unit test forms.

Feature to Be Tested

â€¢ Module processes run correctly when run in production order
â€¢ Module processes run correctly with actual production data
â€¢ Al l basis JCLs, screens pass data to next process on t imely basis

Approach

â€¢ Set up production test environment

â€¢ Stream JCLs, run programs, and execute entry screens in production order
â€¢ Use production data

â€¢ Verify subsets of key table data after each process

Completion Criteria

â€¢ All programs, JCLs, screens run without error or abort

â € ¢ E n d P r o d u c t o f p r o c e s s i s c o r r e c t d a t a l o a d e d i n t o P r o d u c t , m i x . P r o d u c t . e x h i b i t ,
C h a n n e l p r o d u c t s . C u s t o m e r _ P r o d u c t s , a n d C u s t o m e r E x h i b i t s T a b l e s

Test Del iverables
â€¢ Test script

â€¢ Test summary report

Resources
â€¢ Staff- Lou, Shripad, Jill
â€¢ Environment

J u p i t e r - S I T a c c o u n t
B l i t z - P a t s y D B (P A T S Y Â » . P A T D T A . M A S | : M o d e 5

- Pr ime DB (PRIME3##.PR3DTA.MAS):Mode 6

Fig. 7. A portion of an integrated test plan.

test script document included a listing of the resources
needed for the test, such as supporting databases, SIT data
base tables, files, file equations, programs, and a step-by-
step procedure for executing the test. Where appropriate,
specific data to be entered into the system was included in
the procedure. Also included were the expected results of
each test step and the overall test.

Once the integrated module tests had been completed suc
cessfully (often this took several iterations), a report detail
ing the test results was created. The integrated test report
documented the number of times the test was run, verified
that the completion criteria were met, listed the number of
critical and noncritical defects detected, and verified that
each defect had been fixed.

System Testing. System testing was conducted in tandem
with a pilot test at an HP dealer. Initial values were entered
for the general-purpose database tables and for the dealer
involved in the pilot test. Production schedules were used to
control the job streaming that executed the system.

Testing Metrics. Two kinds of metrics were selected to mea
sure our testing effort: total number of critical defects and

64 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

total testing time for each test phase. Table IV summarizes
our test metrics for unit and module testing. One critical
defect was found during system testing and the total system
test time was 19 hours.

' Noncomment source statements (NCSS)
' Not applicable

Tc = Total testing time for critical defects in hours

Nc = Total number of critical defects

(ATT|C = Average testing time per critical defect = 1JNC
(ATT|C is defined as zero when Nc is zero

Return-on-Investment Model
It is now generally accepted that inspections can help soft
ware projects find defects early in the development cycle.
Similarly, the main purpose of unit and module testing is to
detect defects before system or pilot testing. Questions that
often come up regarding these defect finding efforts include
how much project time they will consume, how effective
they are, and how we can measure their value. Most of
these issues have been addressed in different ways in the
literature.4'5

In this section we present a return-on-investment (ROI)
model we used to measure the value of inspections and
early testing in terms of time saved (and early to market).
The whole idea behind this kind of measurement is that it
should take longer to find and fix a defect at system test
than it does to find the same defect during inspection or unit
testing. This means that for every defect found during an
inspection or at an earlier stage of the testing phase, there
should be a time savings realized at the system test phase.

First we define the Prerelease ROI as:

Prerelease ROI =
Total Time Saved / Total Time Used (1)

where:

Total Time Saved = Total Time Saved by Inspection +
Total Time Saved by Unit and Module Testing

and

Total Time Used = Total Time Used by Inspection +
Total Time Used by Unit and Module Testing.

We calculate the individual ROI for inspection and testing,
respectively, as follows:

Testing ROI = Total Time Saved by Unit
and Module Testing / Total Time Used
by Unit and Module Testing. (3)

We wanted to measure not only how much time was being
spent on inspection and testing but also how much time was
being saved as a result of the defects found during inspec
tions and unit and module testing.

The time used during an inspection includes the sum of the
total inspection time spent by each team member, the time
spent by the author on fixing the defects, and the time spent
by the moderator following up on defect resolution with the
author.

For inspections, we defined the total time saved and the
total time used as:

Total Time Saved by Inspection = Time Saved on
Critical Defects + Time Saved on Noncritical Defects

Total Time Used by Inspection = Inspection Time +
Time to Fix and Follow up for Defect Resolution

where the critical defects are defects that affect function
ality and performance and noncritical defects are all other
defects.

The time spent finding and fixing a critical defect at system
test is called BBT (black box testing time). Therefore, for
every critical defect found before system test, the total time
saved can be calculated as follows:

Time Saved on Critical Defects = BBT x Number of
Critical Defects - Total Time Used.

The model we used to measure noncritical defects is based
on the assumption that noncritical defects could be found
by inspection but would not be detected by testing. The non-
critical defects will become supportability issues after man-
ufac-iuring release. We defined a new variable called MTTR
(mean total time to rework) to measure the time spent on
noncritical defects.

MTTR = Time to Find Defect + Time to Fix Defect +
Time to Release to Production.

Thus,

Time Saved on Noncritical Defects = MTTR x Number
of Noncritical Defects.

For testing metrics we wanted to measure not only how
much time was being spent on unit and module testing, but
also how much time was being saved as a result of the de
fects found during these tests. Thus, we defined the total
time saved and total time used for testing as:

Total Time Saved = Time Saved on Critical Defects

Total Time Used = Time to Design and Build a Test +
Time to Execute + Time to Find and Fix a Defect.

Inspection ROI = Total Time Saved
by Inspection / Total Time Used by Inspection (2) * We used an average t ime o f 6 hours fo r MTTR in our ca lcu la t ions .

l)r< -cmlxT linn Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

The defect data and time data for our sales and inventory
tracking project are summarized in Tables V and VI.

Table V
Defect Summary for the SIT Project

D u r i n g D u r i n g
I n s p e c t i o n T e s t i n g

2 5 T

Number of Crit ical De- 12
fects Found and Fixed

Number of Noncr i t ica l 78
Defects Found and
Fixed

51

Total
Prerelease

Defects

63

78

With the code size equal to 13.6 KNCSS, prerelease defect
density = 141/13.6 = 10.4 defects/KNCSS.

Using the model described above, we can calculate the ROI
values shown in Table VI.

Total Time Saved by Inspection = (20 hours x 12) +
(6 hours x 78) - 90 hours = 708 hours

Total Time Saved by Testing = 20 hours x 51 - 310 = 710
hours

From equations 1, 2, and 3:

ROI for Inspections = 708 / 90 = 787%

ROI for Testing = 710 / 310 = 229%

Prerelease Total ROI = 1418 / 400 = 355%.

Table VI
Time Data and Return on Investment Results

T o t a l T i m e T o t a l T i m e R e t u r n o n
Used (hours) Saved (hours) Inves tment (%)

I n s p e c t i o n 9 0 7 0 8 7 8 7

T e s t i n g 3 1 0 7 1 0 2 2 9

P r e r e l e a s e 4 0 0 1 4 1 8 3 5 5
Total

Results
Fig. 8 shows that with the exception of module SIT4.0 the
average testing time per critical defect decreased from unit
test to module test for the system's major modules. The rea
son that it took 19 hours per critical defect at system test is
mainly the time it took to find and fix one defect that was
overlooked during inspection. Had the project team not over
looked one particular issue related to product structure that
resulted in this defect, the average testing time per critical
defect at system test would have been significantly lower.

Module SIT4.0 went through the most thorough inspection
including a design inspection since it is the most complex of
the four modules. We believe our efforts paid off because it
took less time at unit test and module test in terms of aver
age testing time per critical defect for module SIT4.0 than
for the other three modules.

' The ranges to find and fix a critical defect during system test at HP ranges from 4 to 20 hours.
We used 20 hours in our ROI calculations.

U n i t M o d u l e S y s t e m

S I T 1 . 0 0 S I T 2 . 0 A S I T 3 . 0 0 S I T 4 . 0 D S y s t e m

Fig. 8. Testing time by test phase and module.

Fig. 9 is a plot of the ROI column in Table VI. It shows that
inspections have resulted in more than three times the ROI
of testing. This reinforces the notion that a great deal of
money and time can be saved by finding defects early in the
software development cycle.

Lessons Learned
The inspection and testing processes we used for the SIT
project are not very different from other software projects
in HP. However, we did put more emphasis on early defect
detection and collected a lot of metrics. The following are
some of the lessons we learned from our efforts during this
project.

Project Management. Some of the lessons we learned about
project management include:

1 Setting aside time for inspections and thorough testing does
pay off in the long run. Management approval may be diffi
cult to get, especially when under intense time pressure.
One should get commitment to delivering a quality product,
then on inspections and testing as part of delivering on
this commitment.
Keep high-level test plans short and simple while still pro
viding enough direction for the lower-level plans. By keep
ing these plans short and simple, time will be saved and the
project team can still get adequate direction.

1,000 T

I n s p e c t i o n T e s t i n g P r e r e l e a s e T o t a l

Fig. 9. Relative impact of inspections and testing.

66 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ Adequate follow-up to inspection and testing activities is
important to make sure all issues are resolved. The inspec
tion log. testing error logs, and integration test reports
helped the project lead keep up on the status of each issue
and ensure that each issue was resolved.

â€¢ Establish coding standards at the beginning so that mini
mal time is spent during code inspections questioning
points of style. The focus of code inspections should be
code functionality.

Inspection. Since the inspection process is the most impor
tant tool for defect-free software, many adjustments were
made here.

â€¢ Attitude is the key to effective inspections. No one writes
error-free code, but many people think they do. Authors
must realize that they make mistakes and take the attitude
that they want inspectors to find these errors. The inspec
tors, on the other hand, can destroy the whole process by
being too critical. The inspectors must keep the author's ego
intact by remaining constructive. Perhaps the best way to
keep people's attitudes in line is to make sure they know
that they may be an inspector now, but at a later date, their
role and the author's will be reversed. For this reason, im
plementing an inspection process for most or all of a proj
ect's code is likely to be much more effective than random
inspection of a few programs.

â€¢ No managers should be involved in the inspection of code.
Having a manager present tends to put the author on the
defensive. Also, depending on the person, the inspector ei
ther goes on the offensive or withdraws from the process
entirely.

â€¢ In addition to finding defects (or "issues"), which helps to
save testing and rework time, the inspection process has
other, more intangible, benefits:
o Increased teamwork. Inspections provide an excellent

forum for the team to see each other's strengths and weak
nesses and gain a new respect for each other's unique abi
lities. By adding the question and answer session to the
inspection process, we provided a forum for the team to
discuss issues and creatively solve them together.

o Support team education. Including members of the team
that would eventually support the SIT system allowed
these people to become familiar with the system and con
fident that it would be supportable.

Testing. The lessons learned from unit and module testing
include the need for expanded participation in testing and
the value of test scripts.

â€¢ Unit testing. On small project teams it is difficult to coordi
nate testing so that someone other than the author tests each

unit. Establishing a process that includes the designer, other
programmers, and users helps tremendously towards ensur
ing full test case coverage.

â€¢ Module testing. Integration test scripts are invaluable. The
effort expended to create the scripts for the SIT project was
significant, especially the first one. However, the reward,
in terms of time saved and rework, more than justified the
effort. Furthermore, these scripts have been very useful to
the support team for performing regression testing when
the programs or job streams are modified.

Success Factors. The SIT product was released to production
in early March 1992. Since that time the product has been
relatively defect-free. In reviewing what has been done, we
observed some key factors that contributed to our success.
These success factors can be summarized as following:

' Strong management support. We had very strong manage
ment support for the inspection and testing process and the
time commitment involved. This was the most important and
critical success factor for the implementation of inspections
and metrics collection.

1 Team acceptance. The SIT project team accepted the quality
concept. We agreed on our quality goals and understood
how the inspection and testing processes would help us to
achieve those goals.

1 Focus. The SIT project was selected as the pilot project to
implement the inspection process. Our initial focus was on
code inspection. After the project team felt comfortable
with doing inspections, other documents such as test
scripts and test plans were also inspected.

Acknowledgments
We would like to thank the following people for their help
and support in developing this paper: Jennifer Hansen, Tadd
Koziel, Bruce Morris, Patti Hutchison, John Robertson, Debra
Vent, and Kelley Wood.

References
1. M.E. Fagan, "Design and Code Inspections to Reduce Errors in
Program Development," IBM System Journal, Vol.15, no. 3, 1976,
pp. 182-211.
2. M.E. Fagan, "Advances in Software Inspections," IEEE Transac
tions on Software Engineering, Vol. SE-12, no. 7, July 1986, pp.
744-751.
3. T. Gilb, Principles of Software Engineering Management,
Addison-Wesley Publishing Co., 1988, Chapter 12.
4. F.W. Blakely and M.E. Boles, "A Case Study of Code Inspections,"
Hewlett-Packard Journal, Vol. 42, no. 4, October 1991, pp. 58-63.
5. W.T. Ward, "Calculating the Real Cost of Software Defects,"
Hewlett-Packard Journal, Vol. 42, no.4, October 1991, pp. 55-58.

[)<â€¢< -ciHber 1994 Hewlett-Packard Journal 67

© Copr. 1949-1998 Hewlett-Packard Co.

Clock Design and Measurement Issues
in Pentiumâ„¢ Systems
Design difficulties in producing a statistically stable 66-MHz Pentium
system new, reviewed. The information is pertinent to many other new,
high-speed processors as well. A new, more informed approach to
designing well-timed systems in this performance class is proposed.
Measurements that support this approach are examined, particularly
those made with the HP 8133A pulse generator.

by Michael K. Williams and Andreas M.R. Pfaff

Clock rates in all classes of computational systems, from
PCs to supercomputers, have been escalating exponentially
for years. Computational systems formerly considered sim
pler have come to run at speeds that were previously found
only in more complex and aggressive systems. Before this
happened, systems at the simpler end of this spectrum (PCs
and workstations) operated at clock rates that don't present
very difficult clock distribution and reception problems.

Recent introductions of new processor types have given PC
and workstation system designers new chips and chipsets
that enable system designs that deliver much higher levels
of performance.1 Most of these devices employ internal
structures that come directly from the world of mainframes
and supercomputers: pipelining, 64-bit data buses, on-board
floating-point units, instruction prefetching, and sophisti
cated caching schemes. Many of these processors are sum
marized in Table I. These new device families include Intel's
Pentium processor, Digital's Alpha, the Apple/IBM/Motorola
PowerPC, and others. These ICs have clock rates that range
from tens to hundreds of MHz. Some are expected eventually
to exceed 1 GHz.

T a b l e I
S o m e N e w P r o c e s s o r T y p e s a n d t h e i r C l o c k R a t e s

With all of the sophisticated internal structures and faster
operating speeds comes a price to be paid by the design
team. Specifically, successful system design at these speeds
requires very careful consideration of many mechanisms,
such as timing and pulse fidelity, that are unimportant at
lower speeds (16 to 33 MHz).

Pulse fidelity, sometimes referred to as signal integrity, is
that part of high-speed digital design that is concerned with
managing the analog effects that prevent signals from being
reliably recognized at their destinations. This includes ensur
ing that edges arrive at their loads with proper edge speeds
and proper shapes, and controlling the various types of
noise that EMI, reflections, ground bounce, etc.) that
can cause unreliable or false triggering. The extent to which
these issues are important has increased dramatically in PC
and workstation designs. Wider buses and faster clocks and
edges (higher waveform spectral content) are the primary
sources of these problems. The classic discussion of all of
these analog effects can be found in reference 2.

Timing, or clock distribution and reception, is the other criti
cal facet of design in these faster systems, and is possibly
the most significant and least well-understood aspect of the
design. Timing environment design is the process of specify
ing how the clock is to be distributed and received through
out the system such that the state architecture is reliably
synchronized. Reliable means that synchronization is guar
anteed on every cycle of every copy of the design that is
manufactured, despite the presence of a variety of statistical
tolerancing mechanisms (skew, jitter, etc.) which reduce the
precision with which the clock can be delivered. These tol
erancing mechanisms are described in detail on page 70.
When reliable synchronization is ensured by sound design
practices, the design is said to be statistically stable.

The question of exactly how to ensure this statistical stability
is one that each design team must face as they adopt these
new devices into their designs. Success at answering this
question brings with it higher yields, fewer design turns, and
the elimination of extremely subtle timing failures. Methods
for doing this, while relatively new to designs at the work
station and PC level, have been commonplace in the design of
higher capability systems (mainframes and supercomputers)
for many years. A descriptive term for the approach that is
common to all of these methods is informed design.

68 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Performance
Targets

Functionality

Select
Technology

M i x

Elemental
Tolerances

Devices and
Interconnects

Pentium or Cache
Controller Clock

T

Work ing
Clock

Tolerances

Skew, Ji t ter ,
and

Pulse Width
Distortion

Engineering
Judgement

Timing
Scheme and

Final
Tolerance

Budget

Fig. and/or Timing environment design process. Design-specific and/or
unrated parametric information must be incorporated into the
engineering decision making process from the outset.

Two results are produced by an informed approach to the
design of a timing environment. The obvious one is a specifi
cation of a clock distribution scheme. Equally important,
however, is a detailed knowledge of the tolerance on the
arrival time of any clock waveform emerging from any out
put of any copy of that network, on any cycle of its opera
tion. This knowledge, that is, the tolerance budget, is used
by the of verification software to determine if the rest of
the system is correctly timed. Obviously the quality of this
determination is a function of the quality of the tolerance
budget. Informed design, as it applies to timing, can be
viewed as the practice of ensuring that all of the mecha
nisms that contribute to the overall tolerancing of the clock
have been accurately assessed.

Measurement is used to characterize devices and printed
circuit board processes to see how they tolerance. This
device-level tolerance data is used to compute the overall
tolerance on the system clock. And this system-level toler
ance is used within the timing verifier to ensure the creation
of a statistically stable system. Fig. 1 illustrates where device-
level parametric data fits into the overall decision making
process.

In this article we examine some of the difficulties a designer
will encounter in specifying, analyzing, and verifying a timing
scheme for a 66-MHz Pentium system. This falls in the lower
speed range for the new round of processors. However,
ultralight timing specifications coupled with the currently
available implementation technologies (clock buffers,
printed circuit boards, etc.) make 66-MHz Pentium systems
among the most difficult from a timing environment design
perspective. We will see, for example, that the timing within
the CPU complex (processor, cache controller, and cache
RAMs) and very sensitive to clock jitter. This sensitivity, and

Clock to any
Cache SRAM

Fig. 2. The difference in arrival time between either the Pentium
clock or the cache controller clock and the clock arriving at any
SRAM must be less than 700 ps in every system on every cycle.

others, make 66-MHz systems ideal for the informed design
approach. Furthermore, the issues and methods presented
are general and extend to other processor types as well.

Pentium Characteristics and Requirements
An understanding of the difficulties of distributing a clock
within a Pentium design must begin with an understanding
of Pentium timing requirements. Our discussion of this as
pect of the design will be in summary form, and the reader is
referred to the Intel documentation3'6 for a more complete
discussion of requirements. Also, reference 7 discusses both
the requirements and the various design decisions in much
deeper detail than can be done here.

A variety of system configurations are supported by the
Pentium processor. The clock rate can be either 60 or 66
MHz. The system can use either no second-level caching, or
it can have 256K-byte or 512K-byte cache memories. Systems
with 256K-byte caches can operate at either clock rate, while
512K-byte systems are limited to 60 MHz. A "typical" Pentium
design is expected to operate at 66 MHz and have a 256K-byte
second-level cache. For such systems, there are 12 clock
loads within the CPU complex. Depending upon how the
rest of the system is designed, the total number of clock
loads will typically be in the range of 15 to 20, although in
some server systems, this number can range an order of
magnitude higher.

The Pentium specification dictates that the arrival times of
the clock at the processor and at the cache controller never
differ by more than 200 ps. It also states that the difference
in arrival times between the processor and any cache mem
ory, and the cache controller and any cache memory, can
never exceed 700 ps (Fig. 2). These tolerance specifications
must be met at 0.8, 1.5, and 2.0 volts. In any design, there
will be other tolerance requirements that state how much
difference in arrival time is permitted between clocks at
loads within the CPU complex and clocks at loads external
to it (external loads). These requirements will always be
directly determined by the design itself. However, the over
all tolerance budget will usually be driven by the timing
within the ('I'l ' complex.

r 1994 Hewlett-Packard Journal 69

© Copr. 1949-1998 Hewlett-Packard Co.

Tolerance Mechanisms in Clock Distribution Networks

As described in the accompanying article, we are attempting to guard against a
number reduce statistical tolerancing mechanisms, such as skew and jitter, that reduce
the precision with which a clock signal can be delivered. Here we present an
overview of these mechanisms.1 For the purpose of considering system timing
issues, it is useful to separate the system state architecture into a timing environ
ment and a computation environment (see Fig. 1). The boundary between these
two parts of the system is composed of the system state devices. Except for seg
ment delay times and communications locality, we don't address the details of the
computation environment here. The timing environment can be further broken down
into distribution sections: the clock or phase generator, the clock distribution network,
and the memory elements.

The clock generator supplies the signal whose edges eventually dictate when
switching occurs throughout the system. The clock generator determines the
period, pulse width, number of phases, and relative phase separation of the clock
waveform. The primary attributes of the generator to be specified at design time
are the processor period and stability or jitter. For systems that use a processor
chip, the period is usually specified by the manufacturer of the processor. Instability
(jitter) in the waveform emerging from the generator detracts from either perfor
mance issues reliability. Beyond these, there are frequently secondary issues and
features that contribute to system testability â€” frequency and duty cycle adjust
ability, overtone suppression, modes (burst, single-step, fast, and slow), scan-path
drive and timing, and others.

The state devices are flip-flops, latches, or memory devices of some type. New
devices with enhanced testability features are appearing more frequently. The
state con play an important role in determining the low-level timing con
straints in that their setup, hold, and minimum pulse width requirements must be
satisfied at full clock speed.

The clock distribution network is a network of buffers and interconnects that
conveys the clock signal to the clock consumers. It is responsible for fanout ampli
fication and is generally tree-structured. In simpler systems, all of the fanout can
occur clock a single buffer. In larger systems, thousands of copies of the clock can be
produced, requiring many levels of buffering (12 to 15 levels in some supercom
puters). From a timing perspective, the ideal situation is for all of the copies of the
clock at to emerge from the leaves of the clock distribution network at the
same moment. However, the devices (both buffers and interconnects) that make

Clock
Generator

Fig. system into architecture model. Any synchronous digital system can be decomposed into a
timing the and a compute environment. The design issues specific to the timing
environment are becoming critical in PC and workstation designs.

4000
Cycle

Â«Cycles
M i n
M a x
L g s l + D i s p
L g s t - D i s p
M e a n
Sid. D ev.

' Acquisition *
4324
15.135nS
15.1G8nS
32. pS
33.pS
1 5 . 1 5 2 n S
5.7682pS

' Display
401
15.135nS
1 5 . 1 6 8 n S
2 8 . p S
3 3 . p S

L J K e e p S e t t i n g s

C l i p b o a r d

1 . 0 2 5 0 p S T ! M

Fig. 2. There are a number of metrics of jitter.
This measurement shows the cycle-to-cycle
variation in the period of a 66-MHz clock. This
was made using the Amherst Systems
Associates M1 time interval measurement
software, which analyzes digitized waveform
data from an HP 54720D oscilloscope for jitter
in a variety of ways.

70 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Input Edge
Slew Rate

Receiver Threshold
Noise Voltage

Distribution

Edge Placement Time
Distribution

Fig. result power as it occurs in clock buffers, is generally the result of noise in the power environ
ment switching currents, image currents, etc.) modulating the switching threshold of the buffer

up the paths through the clock distribution network have a statistically distributed
delay. (dynamic). distributions can be time-invariant (static) or time-variant (dynamic).
An example of a statically distributed tolerance is skew in clock buffers. This is
the variation in delay either from pin to pin in a single package or from part to
part. Interconnects can also exhibit tolerancing. This is most easily thought of as a
variation in the propagation rate of several picoseconds per inch (10 to 40 ps/in).
Interconnect tolerancing is frequently a source of unanticipated timing failures.

An example of a dynamically distributed tolerance is jitter. The placement in time
of a waveform edge that has jitter varies from one cycle to another. It can be
thought of as having a period that changes from one cycle to the next. Fig. 2
shows waveform example of this variation. Jitter can be added to the clock waveform in
two places: at the generator or in the buffers. At the generator, jitter can occur
through either internal noise or dynamic temperature or supply voltage instabilities.
Jitter added in the clock buffers is caused primarily by noise in the power environ
ment (return and Â¡mage currents in power planes sweeping past power and
ground threshold. etc.) causing time-varying shifts in the device's switching threshold.
This of distribution in Fig. 3. Note that jitter (an expansion of the distribution of the
edge placement) is increased when the noise voltage is increased or the edge rate
of the jitter arriving at the buffer is decreased. The management of jitter at con
sistent and acceptably low levels is perhaps the single greatest challenge for
designers of systems that incorporate many of the new high-performance proces
sors. be more in-depth discussion of jitter measurement and management can be
found in references 1 and 2.

There are also statistical variations in how two identical parts are used. For
example, one system may run a little warmer than another, another may have a
little more noise in the power environment, and so on. Some of these tolerances

are time-variant and some are not. As shown in Fig. 4, these device-level distribu
tions can be statistically combinedt to give a system-level distribution on the path
delays in the clock distribution network. This system-level path delay distribution
has a mean value that is sometimes called the nominal delay. By statistically
combining the individual nominal delays along the path, one computes the
nominal delay for that path.

When there the nominal delays, it is important to keep in mind that there is actually
a delay specified This means that even if every path in the design is specified
to be identical, when the product is manufactured there will be product-to-product
variations in the propagation delay of any given path, there will be path-to-path
variations within any given machine, and there will be cycle-to-cycle variations on
a given a in a given machine. The result is that one must design the system in a
manner that both suitably minimizes these tolerances and consciously considers the
fact that the tolerances will always be nonzero. The design is said to be statistically
stable when it has this characteristic.

When anticipated tolerances in the system accumulate beyond the value anticipated by
the designer, the design is said to be statistically unstable. In statistically unstable
designs, some small fraction of the manufactured systems will experience timing
failures despite the absence of any physical defects. In these systems, the clock
can arrive at times other than the designer anticipated, and this can mean that
one or more of the state device timing requirements (setup time, hold time, or
minimum pulse width) will be violated.

Violations of any of the device-level timing requirements can result in statistically
unreliable switching at the state devices. This can cause unpredictable deviations
in normal system-level behavior. These faults can be extremely difficult and time-
consuming to isolate. In fact, the failure modes exhibited by systems with internal
timing conventional are easily among the most difficult to diagnose using conventional
troubleshooting methods. It is frequently necessary to employ an analytic approach
to find these faults in any sort of efficient manner. These failure modes include:

â€¢ Intermittent or nonrepeating
â€¢ Low frequency of occurrence (minutes through weeks)
â€¢ Migration of the symptom location through the system
â€¢ Hibernation (failures occur as device parameters change slightly with age)
â€¢ Statistical.

References
1. M.K. Delivery," "Distortion and Tolerance Mechanisms in High-Speed Clock Delivery,"
Proceedings of the 1993 Hewlett-Packard High-Speed Digital Symposium, pp. 4-1 to 4-41 . Also
available as Application Note ASA 93-1 from Amherst Systems Associates.
2. M.K. Reception," "Design Trade-offs in High-Speed Clock Distribution and Reception,"
Proceedings of the 1993 Hewlett-Packard High-Speed Digital Symposium, pp. 6-1 to 6-34. Also
available as Application Note ASA 93-2 from Amherst Systems Associates.

t The complicated of these subordinate distributions is more complicated than direct addition. It
must tree-structured take into account correlations that occur in such tree-structured circuits, and other
related mechanisms called tracking effects.

Static Dynamic

3 a + 3 0 - 3 o + 3 o - 3 o + 3 c r - 3 o + 3 o

B u f f e r s I n t e r c o n n e c t \ C Â ¡ C o n n e c t o r s

Mean De lay

Fig. 4. A variety of tolerancing mechanisms
contribute to the uncertainty in the arrival
time of the clock edge at any clock load. Gen
erally the only one that is available in catalogs
or data sheets is the buffer tolerancing.

December 1994 Hewlett-Packard Journal 7 1

© Copr. 1949-1998 Hewlett-Packard Co.

In general, the difficulty of any particular timing environ
ment design can be estimated from two facets of the design:
the number of clock loads and the amount of allowable
clock tolerance, expressed as a fraction of the period. One
threshold of difficulty occurs at about ten board-level clock
loadst and tolerance budgets that are less than 10% or so of
the period. For the typical 66-MHz system we have assumed
that the loading (15 to 20 clock loads) ranks it as somewhat
difficult. The tolerances within the CPU complex of 200 and
700 ps represent 1.3% and 4.7%, respectively, of the 15-ns
cycle time. This represents a very challenging timing re
quirement. Table II summarizes Pentium clock tolerancing
for various system configurations.

T a b l e I I
C l o c k T o l e r a n c i n g a n d L o a d i n g

w i t h i n t h e P e n t i u m C P U C o m p l e x

C l o c k
S p e e d
(M H z)

C a c h e
S i z e

(by tes)

6 0 o r 6 6 N o n e

6 6 2 5 6 K

60

60

512K

256K

T o l e r a n c e
(ps)

N/A

700

800

800

N u m b e r o f L o a d s

1 (CPU only)

12 (CPU, cache
control, 10 SRAM)

20 (CPU, cache
control, 18 SRAM)

12 (CPU, cache
control, 10 SRAM)

Design Example
In this section, we attempt to impart some insight as to where
the tolerance budget comes from. We illustrate some of the
aspects of the design that are major drivers of this budget.
Our goal is to show the importance of having complete and
accurate design information at every step of the process.
However, the process of completely and precisely evaluating
each component of that budget is complicated, and is beyond
the scope of this article. The interested reader is directed to
References 8 and 9 for a more in-depth discussion of the
design decisions presented here.

Before describing the design, we encourage the reader to
adopt the view that every design decision that pertains to
clock paths should be made very carefully and considered
from the perspective of how that decision impacts the toler
ancing of the clock. It is a fact that every physical design
decision (buffer selection, transmission line geometry and
impedance, termination, grounding schemes, etc.) that
relates to the clock paths impacts clock tolerancing.

Preliminary Decisions. Our example design here is a fully
synchronous 66-MHz system with a 256K-byte second-level
cache. It is based on the use of the Intel 82496 cache con
troller and the 82491 cache SRAMs. hi this discussion, we

t Most clock buffers have 10 or fewer outputs. When the number of loads in a design exceeds
this output either multiple loads must be clustered on each output or a multichip solution is
required. The former increases the load capacitance range (Cmax - CmÂ¡n) any output can see,
wh ich and the d i f f e rence in a r r i va l t ime be tween the fas tes t and s lowes t cond i t i ons .
The latter solution, using additional devices, increases cost and the length of the clock paths,
which in turn increases the opportunity for tolerancing to occur in the clock.

Circles Show Locations of Clock Pins

Fig. 3. Intel suggests this placement for use with their second-level
cache chipset.

make almost no assumptionstt about circuitry beyond the
CPU complex, since the design challenge lies with the
clocks within the complex. Beyond this, we assume the Intel
suggested device placement (Fig. 3). Placement must be
very carefully considered for these devices not only from a
clock-distribution perspective, but also from the perspective
of the times of flight of all of the data, address, and control
signals. These times are very precisely specified in the
Pentium specification.

As stated earlier, the typical design is expected to have a
total of 15 to 20 board-level clock loads. To minimize clock
tolerancing caused by variations in the load capacitance, it
is desirable to drive the system in a point-to-point fashion.
This means one clock load per clock buffer pin. We have
selected a 20-output static clock buffer for this role. It has a
pin-to-pin tolerance (skew) of 500 ps.

The interconnect for the design being described here was
also very carefully considered. It was decided to route all
clocks in microstrip (typically less tolerancing than stripline
because of a faster propagation rate). An interactive field
solver was used to design the microstrip. The resulting
propagation rate is 146.4 ps/in.

Predicting Actual Clock Tolerances. A good way to begin is to
do an inventory of where the clock loads in the system are
expected to be placed and get as much information as pos
sible about what types of loading they will present. Intel
provides very complete pi-modelsttt for all of the pins on
the devices within the Pentium CPU complex (also known
as the "optimized interface group"). These models provide
minimum, maximum, and typical values. The minimum and

t t We when make reference to worst-case external clock loading when we do the load/
placement inventory.

t t t A a i s a s tandard ac mode l o f an inpu t p in , cons is t ing o f a para l le l induc to r , a ser ies
capacitor, and another parallel inductor.

72 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Clock
Buf fe r

Length Clock
Consumer

â€¢te

Fig. 4. Most of the clock nets in our design can be viewed as simple
series-terminated transmission lines driving single capacitive loads.

maximum ratings permit an accurate determination of the
range of distortion delayt that will occur at any pin type.
Usually, the best a designer can hope for in terms of pub
lished parametric pin data is typical input capacitance values.
This only permits estimation of the typical distortion delay,
not the range.

When the clock load inventory is completed, the designer
will know approximately how far most loads are from the
clock buffer and which buffers are most heavily loaded (typ
ical). This information lets the designer estimate how late
the slowest load typically reaches threshold. From this value,
the other clock paths can be adjusted (e.g., by serpentining)
to align their typical delays with the slowest one in the sys
tem. For this design, the result of the inventory is that the
largest mean path delay is 1586 ps. The delay ranges for all
of the other paths in the system are centered on this value.

Since we used point-to-point distribution for mosttt of the
clock paths, the general structure of the clock nets is shown
in Fig. 4. The general formula for computing the tolerancing
at this point is:

tolerancenet = skewÂ¡nt + skewext + jitter,

Skewint is the intrinsic skew, that is, the delay variation of
the buffer (pin-to-pin in this case). For our buffer, this is 500
ps. Skewext is the extrinsic skew, that is, the delay variation
along the net. Jitter is the peak value, rather than rms or
some other statistical jitter metric.

Extrinsic skew is not a single mechanism. It can be broken
down into two major components:

skewext = ALTpd + tolmfg,

where ALTp(Â¡ is the variation in the propagation delay of a
signal down a loaded transmission line. It takes into account

t Distortion delay is that component of the delay that a clock edge experiences as it arrives at
the load as enters the die. The parametrics of the pin, as represented by the pi-model, act as
a filter slope more the high-end spectral content of the edge is attenuated, the more the slope
of the waveform is reduced, adding delay in the amount of time it takes the waveform to climb to
threshold. What is important with the clock is not absolute delay, but delay variation, so when
the parametrics vary more widely, more variation (tolerance) can occur in the timing at the pin.
This variation is often referred to simply as load capacitance variation.

tt Because of a 200-ps allowable difference in arrival t ime between the processor and the
cache controller, these two loads are actually clustered at the end of a single clock net. This
is discussed in much more detail in Reference 4.

the range of loads seen at the end of a net. Tolnlfg is the man
ufacturing tolerance of the interconnect. It ranges from about
1 ps/in to about 50 ps/in times the length of the interconnect.

ALTpd can be computed from:

= LT 1 - i + Clr

LC0

where L is the length of the net in inches and Tpd is the
unloaded propagation rate in ps/in. Cimax and C]^^ are the
maximum and minimum values of load capacitance. To com
pute the difference in arrival times between two clock loads.
these values will be from different pins. Equivalent values
for GI can be computed from pi-models. CQ is the intrinsic
capacitance of the net.

Following this general format for computing the tolerances,
we can compute a worst-case difference in arrival times of
the clocks to the cache controller and the cache RAMs.

700 ps > skeWint + ALTpd + tolmfg + jitter.

Plugging in what we computed,

700 ps > 500 + 90 + 60 + jitter,

which gives us the constraint on clock jitter:

50 ps > jitter.

The overall tolerance budget is summarized in Fig. 5. The
jitter constraint is very aggressive for PC and workstation
class computers. Normally, this constraint is a full order
of magnitude higher. Keeping noise levels low enough to
meet this constraint will present some unique measurement
requirements, as we shall see in the next section.

Incorporating Measurement Information
We have, thus far, described a number of the more challeng
ing issues that must be addressed in producing a 66-MHz
Pentium design with statistically stable timing. We have at
tempted to emphasize the importance of employing informed
design practices. The basic tenet of these practices is that
important design decisions (e.g., timing verification) are
based upon deliberately and accurately gathered design infor
mation. The better this design data is, the better the design
decisions that are based upon this data. In the case of timing,

Interconnect
Manufactur ing

Tolerance
60 ps

AC. Effects

Buffer Skew
500 ps

(Pin-to-Pin)
Ji t ter < 50 ps

Total Budget = 700 ps

Fig. we After accounting for all of the tolerancing mechanisms we
have tolerate or no control over, our typical Pentium design can tolerate
approximately 50 ps of jitter.

December 1994 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

we are talking about all of the low-level tolerance information
required to compute an accurate tolerance budget.

As noted on page 70, the only significant component of the
tolerance budget that can be found in data sheets is the
buffer tolerance. All of the other low-level tolerance infor
mation must be determined through measurement. It cannot
be generated for a design at one company and shared with
others. The tolerance information is determined by the spe
cific methods and devices employed in a particular design,
and each design is unique in these regards.

Perhaps the most notable measurement information relates
to the very tight jitter allowance. An upper limit of 50 ps will
require exploration and experimentation of various design
alternatives (device placement, bypass filtering, ground
plane cuts, etc.) to determine their exact effect on jitter.
Jitter caused by switching noise will be first-order sensitive
to clock buffer placement. And this may involve some mea
surement activities that are very new to PC and workstation
design activities.

Measurement is usually viewed as a stimulus and response
process. Stimulus gear includes pulse and function genera
tors and waveform synthesizers. Response gear includes
oscilloscopes, time-interval analyzers, spectrum analyzers,
and so on. Response is unquestionably important when the
measurement of very low-amplitude jitter (10 to 50 ps) is
being performed. However, one of the less well-understood
facets of precision measurement relates to the specification
of stimulus gear and methods for these measurements. In
the high-speed PC and workstation designs we're discussing
here, stimulus issues center primarily in two areas: charac
terization activities and applications calling for an alternate,
adjustable clock source. As we shall see, the precision of the
waveform submitted to a device under test has a significant
impact on the quality of the design data that results from the
measurement, hi this section, we discuss a number of mea
surement methods that apply to these two areas.

Instrumentation Issues. For all of the measurements described
in this section, the way the measurement is made and the
quality of the instrumentation employed in the measurement
are issues of genuine importance. The importance of preci
sion cannot be underestimated. Any tolerance on the mea
surement must also be included in the final tolerance data.
That, of course, means that measurement tolerance directly
detracts from system performance.

The very low levels of jitter allowed in the systems we're
discussing makes the measurements very challenging. For
example, the waveform timing uncertainty or jitter of the
source (pulse generator) must be much less than the jitter of
the device under test (DUT). There are two reasons for this.
The first is to avoid corrupting the measurement. A good
rule of thumb is to try to keep stimulus jitter an order of
magnitude below what you are expecting to measure. In that
way, the majority of the jitter measured is what occurs
within the DUT. The second reason for low source jitter is
that the tolerance budget establishes an upper bound on the
amount of jitter permitted on the clocks distributed to the
loads, and the total jitter on those clock signals includes

DUT
J1+J2

Fig. as a the device under test is a static clock buffer it acts as a
jitter in combining noise-induced jitter with jitter coming in
from the signal source. For tight systems like Pentiums, it is clear
that both the source jitter and the power environment jitter must be
kept to a minimum to permit reliable testing and characterization.

jitter from the signal source. Consider, for example, Fig. 6,
which shows a clock buffer being driven by an external sig
nal source. The buffer can be viewed as a "jitter mixer," that
is, the total jitter transmitted to the clock loads is the sum of
the jitter that the buffer adds because of noise (J2) and the
jitter on the externally generated waveform that drives the
buffer (Jl). If Jl is significant with respect to J2, it will
swamp the measurement. Furthermore, if Jl + J2 exceeds the
jitter limit, the system will not function properly during the
measurement. This brings up an interesting point. If you plan
to make these sorts of measurements and use an external
signal source, you must account for the jitter of whatever
signal source you may use in the tolerance budget.

In our Pentium design, our 50-ps allowance for jitter means
that if we plan to use a signal source with 15 ps of jitter, we
should limit jitter in the system to less than 35 ps. A 10-ps
source will permit the design to work with 40 ps of in-system
jitter. However, to use a source with much more than 15 ps of
jitter means greater design difficulty in minimizing in-system
jitter,t and increasing difficulty in interpreting system-level
jitter measurements because of the difficulty of determining
how much of the jitter is from the source and how much is
from the system.

Substitute Clock Measurements. The most common reason for
using an external source to drive the clock is to do system-
level timing margin testing and verification. The fundamental
question behind these measurements is how sensitive the
system is to imperfect device timing. In other words, the
sensitivity of the system to variations in parameters such as
frequency, duty cycle, skew/jitter, or phase separationtt is
being determined.

Fig. 7 illustrates a measurement setup for one type of mar
gin testing. Specifically, the setup permits investigating how
sensitive load number one is to various types of parametric
tolerancing by controllably varying the parameters of the
waveforms produced by the signal source. For example, by
advancing the phase of the waveform to load 1 and noting
where unreliable switching occurs, and then retreating the
phase of load 1 and again noting where unreliable switching

t It is probably a useful rule of thumb that when the stabil ity requirement of the clock in a
mass-produced computer system exceeds the stability found in precision pulse generators, the
requirement is perhaps too aggressive.

tt Phase separation is a parameter in systems with multiphase clocks. It is the minimum sepa
ration between an edge in one clock phase and an edge in another.

74 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. be The margin available at a specific load in a system can be
examined by driving that load from a two-channel signai source and
carefully adjusting the relative phase of the channels until unreliable
switching is detected.

occurs, the operating limits of the load 1 clock can be esti
mated, t It is common during the course of a design to need
to adjust or ascertain the tolerance at a specific point in the
system (i.e., a point tolerance). For example, the clock to a
particular point in the system may have to be forced to be
earlier, or less toleranced than originally assumed, because
some aspect of the segment bounded by that state device
has changed.

Another critical verification is that the jitter that actually
occurs in the final hardware is acceptably low. The designer
starts with an assumption of what can be achieved. However,
accurately predicting jitter is difficult, even with "representa
tive" assessment boards and experiments. Front-end assess
ment of jitter is important, but only an estimate can be pro
duced without final hardware. Only the final hardware will
have the actual switching activity, the actual return and image
currents, and the actual paths and obstacles that steer these
currents. To verify jitter, it's necessary to measure it in a
variety of locations and switching conditions.

One other significant application of an alternate, adjustable
clock source occurs during debugging. The external clock
can bypass either the clock source or paths through the clock
distribution network to permit the investigation of a timing
problem at the loads. The benefit of this, of course, is that a
defective source or clock distribution network can be by
passed or the loads supplied with a clock with jitter reduced
to below normal operational levels.

Characterization Measurements. The verification activities
described in the previous section are intended to determine
how sensitive the system is to imperfect timing. Device
characterization measurements ask the question from the
other side â€” how imperfect might the timing be? This class
of measurements includes fixtured device measurements.

For example, phase-locked loop clock buffers are basically
active signal sources. As such, they have jitter of their own
(intrinsic jitter). To characterize various facets of this jitter
(cycle-to-cycle deviation, phase noise, jitter spectrum, set
tling time, susceptibility to power supply noise, etc.) without
corruption from some external effect, it is important to sup
ply the device with a stable reference signal and a clean
power environment (Fig. 8). Note that a measurement of the
intrinsic jitter of a well-fixtured phase-locked loop clock
buffer does not establish how the device will perform in the

t Of course, this only shows the sensitivity of that particular system. However, that result car
then be population to take into account what might happen across a larger population of
systems.

Intrinsic Jitter?
lPeak-to-Peak,

RMS, Spectrum)

Fig. 8. A stable reference signal should be supplied while character
izing a phase-locked loop.

system. Instead, it establishes an upper bound on stability.
The live system will have a noisier power environment and
less stable reference signals. The spectrum of these distur
bances will not likely be consistent in every application, nor
will it be easily predicted. The behavior of the phase-locked
loop is affected in a very complex way by the superposition
of these various external processes.

Another measurement process that involves the clock buffers
is the determination of so-called "derating factors." The pub
lished tolerances for clock buffers include not only process
and manufacturing variations, but also consideration that
the parts may be operated across a range of temperatures,
operating voltages, and loadings. The system designer has
no control over how buffers vary because of process varia
tions, but does have control over the range of temperature,
voltage, and loading in the design, and may wish to attempt
to remove that part of the buffer tolerance that is attributable
to these margins on the operating ranges. A series of fixtured
device measurements made while carefully varying some
environmental variable can yield estimations of how much of
the published tolerance is attributable to the environmental
operating range.

There is also a role for board-level measurements. As stated
earlier, the jitter of a clock buffer (phase-locked loop or
static) is affected to a large extent by the level of noise in
the power environment. More specifically, it is determined
by the noise where the device power and ground pins attach
to the power and ground planes. This noise is caused by
image and return currents in those planes. There are places
on the board where this noise is significantly higher than
other places. Furthermore, the gradient of these changes
can be fairly tight, with quiet points existing millimeters
from points that carry high image currents. All this means
that buffer placement and orientation on the board have an
impact on clock jitter. It is possible to evaluate approximately
where the quiet locations are on a "technology board." Fig. 9
shows such an experiment. The external signal source is
used to drive a representative collection of switching gates.

High-Speed
Oscil loscope

Noise activity
evaluated in region

for clock buffer
placement and

orientation.

Fig. 9. By examining the power environment noise in the region
where the clock buffer is expected to be placed, the quietest power
and ground connection points can be determined.

December 1994 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

B 0 _ B Q E
Q Q Q Q Q

o
D B B B B B B B E B G Ã ¼ B O B B

D E E D O D E E D

It is unlikely that the gates on the technology board will be
exactly the circuitry that appears in the final design, since
this sort of activity is most likely performed very early in the
design process. A grid of test points in the region where the
buffer is likely to be placed offers visibility into the power
and ground planes, and these can be evaluated by a high
speed oscilloscope or spectrum analyzer. Once it is known
where the quiet locations are, the placement and orientation
of the buffer can be specified.

HP 8133A Pulse Generator.10-11 For many of the measurements
described in this section, it is critical to use a high-precision
adjustable signal source. The HP 8133A pulse generator
(Fig. 10) is an excellent choice for the stimulus instrument
in these measurements. It is stable, accurate, and precise.
The rms jitter for this instrument is warranted to be less
than 5 ps. Both authors have had the opportunity to charac
terize a number of these instruments. The result of these
characterizations is that the distribution is approximately
Gaussian. Furthermore, for pulse repetition rates below 500
MHz, the rms jitter of the instruments is typically 1.2 to 1.3
ps. Rms jitter is equal to one standard deviation of the jitter
distribution. Worst-case jitter can be taken to be six standard
deviations. For a Gaussian distribution, this means that
worst-case jitter is approximately 8 ps. Applying this to our
50-ps Pentium tolerance budget, we would have to ensure
that the system jitter is less than 42 ps to ensure that the
system functions correctly during testing. This also means
that most of the jitter of the measurement comes from the
system and not from the external source.

When the HP 8133A is configured as a multichannel instru
ment (Option 003 is recommended for clock characterization
and testing activities), the phase delay from one channel to
the other can be adjusted in 1-ps increments from the front
panel or in 300-fs steps over the HP-IB (IEEE 488, IEC 625).

If a less stable or precise source is used for these measure
ments, the quality of the results could be compromised. For

Fig. 10. The HP 8133A 3-GHz
pulse generator is an excellent
candidate for use as a high-
stability, high-resolution signal
source for testing Pentium and
other high-speed processor
designs.

example, if we assume jitter levels of just a few tens of pico
seconds, the system may not even function properly during
testing and the measurement of any jitter in the system will
be less meaningful since the majority of the jitter will come
from the external source.

Summary
In this article, we have reviewed some of the significant
challenges that exist in designing a statistically stable timing
environment for a 66-MHz Pentium system. Many of the dif
ficulties described easily generalize to most of the other new
high-speed processors as well. We have advanced the argu
ment that a new, more informed approach to designing the
timing for these more aggressive systems is required. This
informed design approach requires the determination of
important design information at the front end of the design
process so that important subsequent design decisions can
be made knowledgeably, with more predictable results.

We also examined a variety of measurements that support
this approach. Our tolerance budget for a typical Pentium
system revealed much more sensitivity to jitter than has
been common for designs at this level. Our discussion cen
tered on the measurement of jitter-related design informa
tion. In the course of discussing these measurements, we
also examined the role of stimulus equipment. Specifically,
we discussed what impact various facets of the performance
of a high-stability pulse generator would have on the quality
of the measurement data. For example, the simple decision
to use a higher-stability pulse generator as an adjustable
substitute for the clock means that the design can have
higher levels of intrinsic jitter (i.e., a simpler design) and
continue to function during testing. In the course of our dis
cussion, we showed how the HP 8133A pulse generator can
be employed in designs as aggressively timed as Pentium
and others.

76 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

References
1. L. 12, "The New Contenders." IEEE Spectrum. Vol. 30. no. 12,
December 1993, pp. 20-25.
2. W.R. Blood. Jr.. MECL System Design Handbook, Fourth Edition.
Motorola Inc.. 1988.
3. Pentium Processor User's Manual â€” Volume 1: Pentium Processor
Data Book. Intel Corporation. 1993.
4. Pentium Processor User's Manual â€” Volume 2: 82496 Cache Con
troller and 82491 Cache SRAM Data Book. Intel Corporation, 1993.
5. D. Lin and J. Reilly, Pentium Processor Clock Design, Application
Note AP-479, Intel Corporation, March 1993.
6. R. Jolly, Clock Design in 50-MHz Intel486 Systems, Application
Note AP-453, Intel Corporation, 1991.
7. M.K. Williams, Clock Design in Intel Pentium Systems, Amherst
Systems Associates Application Note ASA 93-3, 1993.

S. M.K. Williams. "Design Trade-offs in High-Speed Clock Distribu
tion and Reception." Proceedings of the 199-3 Hewlett-Packard
High-Speed Digital Symposium, pp. 6-1 to 6-34. Also available as
Application Note ASA 9:3-2 from Amherst Systems Associates.
9. M.K. Williams. "Timing Considerations in Clock Distribution Net
works." Proceedings of the 1992 Heiclett-Packard High-Speed Digi
tal Symposium, pp. 2-1 to 2-21. Also available as Application Note
ASA 92-2 from Amherst Systems Associates.
10. H.J. Wagner. "A Programmable 3-GHz Pulse Generator," Heidett-
Packard Journal. Vol. 44. no. 2. April 1993, pp. 52-55.
11. P. Schinzel. A. Pfaff. T. Dippon. T. Fischer, and A.R. Armstrong,
"Design of a 3-GHz Pulse Generator." Heu'lett-Packard Journal. Vol.
44, no. 2, April 1993, pp. 60-72.

Pentium is a U.S. trademark of Intel Corporation.

Authors
December 1994

D D S - 2 T a p e D r i v e

D a m o n R . U j v a r o s y

An R&D section manager at
the HP Computer Peripherals
Bristol Division, Damon
Ujvarosy joined the Calcula
tor Products Division in Love-
land, Colorado in 1976. His
responsibilities have included
being R&D section manager
at the Disk Memory Division

(DMD) for 400-megabyte and 1 -gigabyte 31/2-inch disk
drive development, R&D project manager at DMD for
magnetooptic heads, data channels, and servos for
disk drives, and R&D project manager at the Fort
Collins facility for 1C development and the HP 9835
desktop computer. He was section manager for the
development of the DDS-2 tape drive described in
this issue. Born in Milwaukee, Wisconsin, he received

a BSEE degree from the University of Wisconsin in
1976 and an MSEE degree from Colorado State Uni
versity in 1979. Damon is the author of two published
papers. He's married, has two children, and enjoys
squash, golf, and woodworking.

1 2 D O S A u t o l o a d e r

S t e v e n A . D i m o n d

Steve Dimond was born near
Dundee, Scotland and grad
uated from the University of
Surrey in 1974 with a BSc
degree in mechanical engi
neering. With the Computer
Peripherals Bristol Division
since 1984, Steve is pres
ently an autoloader customer

support engineer. He served as principal engineer and
one of the designers for the DOS tape autoloader de
scribed in this issue. Previously, he served as a me
chanical designer for the HP JetStore box for external
DAT drives, as lead engineer to transfer SVi-inch disk
manufacturing from Boise to Bristol, as a mechanical
engineer for HP-IB and SCSI SVi-inch DAT drive
boxes, and as a designer of the HP 35401 A Vi-inch
cartridge autochanger. A member of the Institution of
Mechanical Engineers, Steve is named as a coinven
tor in three patents on a %-inch cartridge autoloader,
one patent applied for on the architecture of the DOS
autoloader, and one design patent on the DOS auto
loader magazine. Before joining HP, he worked at
Racal Zonal on the design of equipment to make
magnetic tape and at Vermont Research Ltd. design
ing 8-inch removable disk drives. This year he is an
advisory editor to the Handbook of Electromechanical
Product Design by PL. Hurricks. Steve is married and
has two daughters and one son. His outside interests
include running, travel, and watching motor sports on
television.

2 1 S t a t e T a b l e G e n e r a t i o n

Mark J. Simms
A software engineer at the
HP Computer Peripherals
Bristol Division, Mark Simms
joined HP in 1984. His re
sponsibilities at HP have

I included PC central remote
I backup product design, firm

ware design for the HP
1 91 45A tape drive and the HP

35470A DOS tape drive, and mechanism control firm
ware design for the HP Cl 553A autoloader. His work
has resulted in a patent on remote backup to a cen
tral computer and two patents on the DDS-DC tape
format. A native of Leeds in the United Kingdom,
Mark received a BSc degree in computer science
from Bristol University in 1984 and is a member of
the British Computer Society. He is married and has
one son.

2 7 S t a t e M a c h i n e s f o r D e s i g n

Mark J. Simms

Author's biography appears elsewhere in this section.

3 3 E v e n t - B a s e d , R e t a r g e t a b l e
D e b u g g e r

A r u n K . l y e n g a r

Arun lyengar has been an
R&D software engineer at
the Massachusetts Lan
guage Lab of HP's Systems
Technology Division since
1992. Since joining HP, he
has worked on developing
HP's Distributed Debugging
Environment (DDE). He is

currently developing debuggers and performance
analysis tools for parallel and distributed platforms.

December 1994 Hewlett-Packard Journal 77

© Copr. 1949-1998 Hewlett-Packard Co.

v

Arun received his PhD degree (1992) and his MS
degree (1 988), both in computer science, from the
Massachusetts Institute of Technology, and his BA
degree in chemistry from the University of Pennsylva
nia in 1985. His graduate research focused on paral
lel processing. He helped design and implement the
run-time system for the Monsoon dataflow multipro
cessor while at the Massachusetts Institute of Tech
nology. He has also worked for DuPont writing scien
tific software. He has published a number of papers
on parallel processing and biological computing. He
is married and has one son. Arun is an accomplished
pianist whose specialty is classical music. He also
runs and is an avid reader.

T r a c y A . H o o v e r

A software engineer with
the Systems Technology
Division, Tracy Hoover joined
HP in 1990. She has been
working on the HP Distrib
uted Debugging Environment
(DDE) project since joining
HP and Â¡sonÃ© of the lead
engineers on the team.

Tracy's work on HP DDE included the OSF/Motif user
interface, the port to the OSF/1 operating system, and
C++ debugging support. She received a BA degree
from Wellesley College in 1985, with a double major in
computer science and English. After graduation, she
worked for Data General on a FORTRAN compiler proj
ect, and then at Masscomp in Westford, Massachu
setts, on FORTRAN compiler and debugger projects.
In her spare time, she enjoys playing early music on
the viola da gamba, reading, cooking, and knitting.
She recently earned her private pilot's license, and
she and her husband often go flying together.

J o h n R . V a s t a

John Vasta was a software
engineer/scientist at HP's
Systems Technology Division.

i He is now developing soft-
j ware configuration tools at
Atria Software Inc. A native

I of Palo Alto, California, John
â€¢â€¢ completed his BSEE degree

from Northeastern University
in 1985 and joined HP in 1987. John's responsibilities
involved investigating debugging and performance
analysis requirements and tools for parallel and dis
tributed programs. Lead engineer and architect on the
HP DDE project, he helped design and implement sup
port for debugging C++ programs. He has worked on a
debugger project, C++ Developer (a component of Soft-
Bench), and HP C++ compiler projects at HP's language
labs in Massachusetts, Colorado, and California. Be
fore coming to HP, he was a hardware and software
engineer for LTX Corporation. John is married and
has three children, two of whom are twins. His out
side interests are focused around family life and out
door activities.

T h a d d e u s S . G r z e s i k

Born in Nashua, New
Hampshire, Ted Grzesik re
ceived a BS in mathematics
and computer science from
the University of Massachu
setts at Lowell in 1993. He
is now a software engineer
in the Systems Technology
Division. He joined HP in

1990. Ted is a member of the team that implemented
threads support in HP DDE and is responsible for main
tenance and enhancements to the graphical user inter
face in HP DDE. Earlier responsibilities at HP included
porting the Verdix Ada debugger to Domain/OS and
Apollo DN1 0000. Before joining HP, Ted was systems
engineer for editors and debuggers at Wang Labora
tories, an applications engineer for internal support
tools at Lincoln Laboratory, and an applications engi
neer for printed circuit design software at Multiwire.
Ted is married and has one son. His hobbies are skiing,
motorcycling, and alternative music.

V a l e r i e J . H o - G i b s o n

A project manager with the
Systems Technology Division,
Valerie Ho-Gibson joined HP
in 1989 as part of the Apollo
Computer acquisition. At HP,
she has managed the HP
DDE project, and has also
been responsible for other
program analysis tools. At

Apollo Computer, she was the project engineer for
language tools. Before joining Apollo, she was a soft
ware engineer in the UNIXÂ® system laboratory at
AT&T Bell Laboratories. Valerie earned an AB degree
in applied mathematics from Harvard University in
1 983 and an MS degree in computer science from
New York University in 1985. Valerie is married and
has a son. Outside HP, she enjoys choral singing and
travel.

4 4 W a v e l e t A n a l y s i s

D a n i e l T . L . L e e

With HP Laboratories since
1 981 , Dan Lee is manager of
the image technology de
partment. He has been proj
ect manager of the data
compression project and the
Â¡mage coding project and is
the developer of an interna
tional color fax standard.

From 1987 to 1993, he worked on assignment in
Japan, serving as research supervisor at Advanced
Telecommunications Research for four years and as
project manager at HP Laboratories Japan in charge
of the digital signal processing project for two years.
Before joining HP, he worked at the IBM Research
Division in Â¡mage processing, coding, and speech
recognition. He has written over 40 technical papers
for journals and conferences, and his work has re
sulted in three patents in the areas of speech and
signal processing. He was born in Hong Kong, re
ceived his BS degree in electrical engineering from
Cornell University in 1973, and received MS and PhD
degrees in electrical engineering from Stanford

University in 1 975 and 1 979. Dan is married, has two
daughters, and enjoys skiing.

Akio Yamamoto
Akio Yamamoto is a member

a of the technical staff of HP
Laboratories Japan, respon
sible for digital video coding
and image communication.
He joined the company in
1991, working on multidi
mensional signal processing.
For the project described in

this issue, he developed a set of wavelet analysis
tools and demonstrated the effectiveness of the
wavelet technology in signal processing. Akio holds
BE (1986), ME (1988), and PhD (1991) degrees in elec
tronic engineering from the University of Tokyo. He is
a member of the IEEE, the ACM, and the lEICE-Japan.

5 5 O p e r a t i o n a l T e s t R e l e a s e V e c t o r s

J o y X i a o H a n

^ ^ ^ ^ A n e n g i n e e r i n t h e
mtÂ£ j j ^k Che lmsford Sys tems Lab,

m A J o y H a n j o i n e d H P i n 1 9 9 2 .
^ P _ r W S h e i s i n v o l v e d w i t h l i b r a r y

and layout issues for chips
 - u s e d i n H P 9 0 0 0 S e r i e s 8 0 0

^ - J S . - ^ ^ c o m p u t e r s . S h e w a s a t e s t
^^^^^^^^^Ã‰ eng ineer fo r the tes t vec tor
^^^^â€¢"â€¢^^^â„¢ development process de
scribed in this issue. Joy was born in Shanghai,
China and received a BS in electrical engineering from
Cornell University in 1992. Her professional society
memberships include the IEEE and the Society of
Women Engineers. Her two main hobbies are investing
in engineering companies and playing golf.

6 0 E s t i m a t i n g t h e V a l u e o f
I n s p e c t i o n s

J o n a t h a n C . S h i h

Born in Chang-Hwa, Taiwan,
Jonathan Shih is a software
development engineer at
HP's Computer Systems
Operation. His present re
sponsibilities include testing
strategy, process develop
ment, and testing technology
for a knowledge database.

Jonathan joined HP's Santa Clara Division in 1979.
He has worked as a software design engineer at HP's
Commercial Systems Division, as a quality engineer at
HP's North American Distribution Operation, as a hard
ware design engineer for a datacom card used in the
HP 9000 Model 832 computer, and as materials engi
neering manager for HP 1000 and HP 3000 computer
systems. Before coming to HP, he was a process en
gineer at Siliconix Corporation and a manufacturing
supervisor for the Taiwan Branch of Texas Instruments.
He received a BS degree in engineering science from
National Cheng Kong University in Taiwan in 1971, MS
(1977) and Engineer degrees (1978) in material science
and engineering from Stanford University, and an MS
degree in electrical engineering and computer science
from Santa Clara University in 1980. He is married

78 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

and has two daughters. His hobbies include stamp
collecting and tai-chi, which he has taught.

Louis A. Franz
Lou Franz is a program
manager at HP's North
American Distribution Orga
nization (NADO). His current
responsibilities include pro
gram management for the
reseller sales and inventory
tracking program. With HP
since 1989, Lou has been a

systems administrator, programmer analyst, and proj
ect manager, and was a founding member of the
NADO EDI (electronic data interchange) program. Lou
was born Â¡n Kensington, Maryland, and graduated
from the University of Idaho with a BA degree Â¡n
information systems Â¡n 1988.

6 8 P e n t i u m C l o c k D e s i g n

Michael K. Wil l iams

Mike Williams is owner and
principal consultant with
Amherst Systems Associates
in Amherst, Massachusetts.
He is a technical consultant
in the area of timing environ
ment design and precision
time-interval measurement,
and provides product devel

opment assistance for clock distribution components.
He has worked with the HP 8133A pulse generator in
several applications and on timing issues for several
HP divisions. He has served on the faculty of the Uni
versity of Massachusetts at Amherst, and has written
articles and papers on timing environment design.
Mike is married and has a daughter. His interests
include photography, horseback riding, sailing, the
design and history of mechanical marine chronome
ters, and shooting sports. He is a member of the
Antiquarian Horological Society.

8 0 E n t e r p r i s e M o d e l i n g

M. Shahid Mujtaba

Shahid Mujtaba is a principal
project engineer at HP Labo-
ratories. He is the principal
architect of the modeling and
simulation representations,
and designer and implemen-

rtor of the EMS (enterprise
modeling and simulation)
engine. He is currently look

ing for opportunities for the application of the EMS
system and methodology within HP. Previously, he
developed a robot control language for a manufactur
ing robot control system. The language and controller
were subsequently transferred to Yokogawa-Hewlett-
Packard and to HP's Computational Products Singapore
for use Â¡n the HP ThinkJet and keyboard assembly
manufacturing lines. A native of Singapore, he re
ceived a BE degree (First Class Honours) in mechani
cal engineering from the University of Singapore. In
recognition of being the top engineering graduate, he
was awarded the Institution of Engineers, Singapore
Gold Medal. He was awarded a Ford Foundation
Scholarship for graduate studies at Stanford University
where he earned MSEE, MSIE, and PhD degrees.
Before joining HP he did manipulator research at the
Stanford Artificial Intelligence Laboratory of Stanford
University. The AL User's Manual, which he coauthored
while at Stanford, was translated into Japanese and
published Â¡n book form. He has coauthored or authored
seventeen publications and two films Â¡n the area of
robotics, and five publications Â¡n the area of enterprise
modeling and simulation. Shahid is named as a co-
inventor Â¡n two patents, one on a method of coordi
nated control of motion devices and one on a system
for hybrid position and force control, both while at HP.
He is a member of the ACM, the IEEE, the Society for
Computer Simulation, the AAAI, the SME, and the
Association of LISP Users. He's married and his out
side interests include ballroom dancing, origami, and
gardening.

Andreas M.R Pfatf
An R&D engineer with the
Boblingen Instruments Divi
sion, Andreas Pfaff joined HP
in 1989. Presently designing
laser sources and optical
power meters, he designed
the output amplifier of the
HP 8133A pulse generator
and helped introduce that

product Â¡n the United States. He is the author of a
1993 HP Journal article on the HP 8133A and an EDN
article on testing high-speed amplifiers with the HP
8133A. Born Â¡n Hanau, Germany, Andreas received a
degree Â¡n electrical engineering from the University
of Aachen in 1989. In his spare time, he loves to ride
his 1969 MotoGuzzi V7 Special motorcycle.

December 1994 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

Enterprise Modeling and Simulation:
Complex Dynamic Behavior of a
Simple Model of Manufacturing
Simulating a structurally simple model of a manufacturing enterprise
revealed complex dynamic behavior. Enterprise modeling and simulation
provided estimates of end-of-life inventory and order delivery performance
based availability, interactions of forecast quality, quoted product availability,
material procurement and safety stock policies, vendor lead times,
product life cycle, and part commonality. An unexpected result was that
end-of-life inventory can exist even under ideal environmental conditions.
Prospective applications of these methods include estimating the effects
of incremental improvements, verifying impacts of process changes, and
generating enterprise behavior information.

by M. Shahid Mujtabat

Can we understand the potential impacts of process changes?
Can we quantify the expected amount of improvements and
benefits? Can we anticipate the effects of environmental
changes? Can we predict the effects and side-effects of mak
ing changes? And can we do all these before taking action
and making major resource commitments?

We suggest that the answer is yes to all these questions, and
the means is enterprise modeling and simulation.

The purpose of this paper is to show how enterprise model
ing and simulation research activities at HP Laboratories
can be applied to predict system behavior and gain insights
using sound engineering and scientific principles and tech
niques before implementing the new solution at the level of
the business enterprise.

In this paper, we first discuss modeling and simulation tech
nology in broad terms to provide background and context.
We then describe one model, the Simple Model, in detail,
and present the insights gained from running simulations on
that model and analyzing and displaying the results. An un
expected insight was that end-of-life inventory existed at the
end of the product life cycle even though the method for
computing safety stocks should theoretically have resulted
in none when customers ordered exactly according to fore
cast. Other interesting insights were that high inventory levels
can occur when actual orders come in too high or too low
with respect to forecasts. In other words, forecast quality has
a major impact on some of the metrics under consideration.
We then describe the current state of enterprise modeling
and simulation, future research directions, and possible ap
plication areas, including process reengineering on page 86.
In the appendixes we include more detailed explanations
and sufficient technical details of the model to permit the
results to be duplicated by other researchers. A glossary of

t Author can be reached at email address mujtaba@hpl.hp.com.

terms and a summary of the values for different experiments
are provided for quick reference on pages 85 and 95. The
evolution of enterprise modeling and simulation activities at
HP Laboratories and the place of the Simple Model in those
activities provides a historical context and is described on
page 90.

Modeling and Simulation
Extensive literature exists on the simulation modeling pro
cess, for example Chapter 1 of Law and Kelton,1 Chapter 1
of Pritsker,2 Chapter 6 of McHaney,3 and Law and McComas.4
The general consensus is that the purposes of the simulation
modeling process are to define a problem clearly and to de
velop a model as a tool to understand and solve that problem.

"Modeling and simulation have become endeavors central to
all disciplines of engineering and science. They are used in
the analysis of physical systems where they help us gain a
better understanding of the functioning of our physical world.
They are also important to the design of new engineering
systems where they enable us to predict the behavior of a
system before it is actually built. Modeling and simulation
are the only techniques available that allow us to analyze
arbitrarily nonlinear systems accurately and under varying
experimental conditions."5

"The facility or process of interest is usually called a system,

and in order to study it scientifically we often have to make
a set of assumptions about how it works. These assumptions,
which usually take the form of mathematical or logical rela
tionships, constitute a model that is used to try to gain some
understanding of how the corresponding system behaves."1

Thus, a model is a conceptual abstraction of an existing or
proposed real system that captures the characteristics of
interest of the system. Modeling is the process of building
the abstraction (model).

80 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

"If the relationships that compose the model are simple
enough, it may be possible to use mathematical methods
(such as algebra calculus, or probability theory) to obtain
exac t an on ques t ions o f in te res t : th i s i s ca l l ed an
analytic solution. However, most real-world systems are too
complex to allow realistic models to be evaluated analytically.
and these models must be studied by means of simulation."1

"Simulation is the use of a model to develop conclusions that
provide insight on the behavior of any real world elements.
Computer simulation uses the same concept but requires that
the model be created through programming on a computer."3

In general, modeling and simulation are useful when system
prototyping is too costly or time-consuming, seriously dis
ruptive, or simply impossible. They are useful for exploring
proposed system changes by providing performance esti
mates of a proposed system or of an existing system under
some projected set of operating conditions. A simulation
model or set of models can provide an experimental testbed
on which to try out new ideas or concepts, since it is
cheaper to experiment in the laboratory than on the real
system.

Our premise is that these techniques applied to enterprise
processes could help predict the behavior of the organization
more quantitatively than repeated assertion or the application
of mental models.

Enterprise Modeling and Simulation
We define enterprise modeling as the process of building
abstractions or models of three primary functional compo
nents of an enterprise: manufacturing, marketing, and R&D
(research and development) for the purpose of gaining in
sight into the interactions between these functions and the
interaction of the enterprise with other enterprises. The
complexity of the enterprise and the large number of people
who have ownership of different parts makes it difficult for
a single individual to grasp a detailed understanding of all
the components. There is a limit to the level of complexity
and the means to share and communicate it with others that
can be carried in the head of a single individual.

Many process changes and decisions are based on implicit
mental models in the heads of decision makers or advocates.
Mental models6 are deeply ingrained assumptions, general
izations, or even pictures or images that influence how we
understand the world and how we take action. Very often,
we are not consciously aware of our mental models or the
effects they have on our behavior.6 Generally mental models
assume that there are a small number of factors in cause and
effect relationships. The problem with mental models is the
difficulty of communicating them, checking their consistency,
and combining the mental models of different people. It is
very difficult to estimate the effects of interacting factors
and to combine mental models into a larger-scale composite
model that incorporates the insights, knowledge, and under
standing of many individuals.

One means of merging different viewpoints is the use of
Hierarchical Process Modeling,7'8 which provides an ex
plicit, graphical representation of the process with which
individuals can agree or disagree. Experience in applying
Hierarchical Process Modeling9 to the building of enterprise
models suggests that the result is a repository for knowledge

of the processes we are studying. During its creation, team
members develop a common understanding of the dynamics
of model behavior through interaction with one another and
with the model. The result is an explicit model that reconciles
differing points of view and a reusable model that serves as
a foundation on which to build future models.

There is an awareness that a model can be used to embody
knowledge of a system rather than be used as a tool.10 For
example, Funke11 states that at the Boeing Company, simu
lation has provided "a forum for the collection of process
operating rules and assumptions in one medium as a basis to
develop the model" of a process or system.

Other ongoing works on the application of models to em
body knowledge at the enterprise level of manufacturing
operations include TOVE12 and CTM-OSA.13'14 Pardasani and
Chan15 describe the expansion of an infrastructure for creat
ing simulation models based on the ISO reference model for
shop floor production standards to create enterprise models.

In applying the process of enterprise modeling and simulation
we need to engage in activities of modeling in the large (with
"model as knowledge") where the major issues of interest
are communication and documentation, team coordination,
modularity and large model development, and multimodel
organization, instead of modeling in the small (with "model
as tool") where the issues of interest are top-down design,
informal and formal program specifications, simplification
and elaboration, and validation and verification.10

In modeling the manufacturing enterprise, the primary area of
focus is the manufacturing function, which includes, in addi
tion to the traditional production and shop floor functions,
the production and material planning, material management,
and order processing functions. In traditional modeling and
simulation applied to the manufacturing domain, computer
simulations have been applied to the production floor or ma
chine shop level to study machine utilization and production
and material flows and buffers. These methods together with
traditional operations research methods have helped reduce
inventory on the production floor and cut build times to a
level where these are small compared to the other parts of
the system. Enterprise modeling and simulation expand the
scope so that traditional modeling and simulation are com
ponents in the enterprise modeling and simulation system.

Enterprise modeling and simulation indicate the impact of
proposed improvement efforts at the enterprise level before
the changes are made. The "simulation" in enterprise model
ing and simulation is the process of running the model in a
computer to understand the behaviors over time under differ
ent operating conditions and circumstances. It will help us
identify leverage points and indicate where we can expect to
get the most impact for a given investment or change.16

According to Senge,6 "The real leverage in most manage
ment situations lies in understanding dynamic complexity,
not detail complexity." He suggests that most systems analy
ses focus on detail complexity (that is, a large number of
variables), not dynamic complexity ("situations where cause
and effect are subtle, and where the effects over time of
interventions are not obvious"). We suggest that enterprise
modeling and simulation help in understanding dynamic
complexity, and in addition provide the framework for
slowly expanding the detail complexity.

December 1994 Hewlett-Packard Journal 81

© Copr. 1949-1998 Hewlett-Packard Co.

Order
Processing

Forecasts and
Consignment
L = 6mo
V = 80/mo

Quoted
Avai labi l i ty Y
4 Weeks

Planning
Frequency
1 Week

W e e k s 6 1 0 1 4
l v a l u e 2 5 % , 4 0 % , 3 5 %

r % , s % , t %

Safety Stock
4, 8, 16 Weeks of
A, B, C Parts in RPI
2 Weeks of Product in FGI

Residual
Inventory

Delivery
Performance

I

Adder Product Structure
Total Cost = SI Ok
P a r t C l a s s = A B C
Par t Va lue = 50% 30% 20%

Build Time
B
2 Weeks

Transit
T i m e S
1 Week

Modeling and simulation at the enterprise level are showing
increasing levels of activity. For example, a recent article in
Fortune magazine17 discusses business-oriented economics
that focuses on what economists call "the firm" and the rest
of us call "the company" as the unit of analysis. (Traditional
microeconomics, by contrast, is concerned with markets
and prices. It looks at the economy or at an industry, but
rarely peeks inside the individual enterprise.) Fortune cites
the example of Merck's finance team, which built a com
pleted model and subjected it to Monte Carlo simulation
analysis.

The Simple Model

The Simple Model (shown with capital letters because of its
importance in this paper), was one in a series of models
developed at HP Laboratories (see page 90). The Simple
Model was named because of its structural simplicity, but as
subsequent descriptions will show, it exhibits dynamic be
havior that is complex and not intuitively obvious until it is
explained. Expressed in terms used by Senge,6 the Simple
Model is a tool for understanding dynamic complexity using
a model with very low detail complexity.

The Simple Model was commissioned to abstract a real man
ufacturing facility with greatly simplified assumptions, such
as a single product with a one-level bill of materials and a
trapezoidal order demand pattern. The purpose of the model
was to explore the relationship between different factors
and metrics used in manufacturing. Although the model can
generate data on many different metrics, this paper will focus
on two main metrics: (1) inventory levels and write-off at the
end of the product life cycle and (2) customer satisfaction
metrics. We will first describe the structure and assumptions
of the Simple Model and then show the results of running
the model under different conditions.

Fig. 1. Diagram of the Simple
Model for the nominal case
experiment.

Conceptual Description
Fig. 1 shows conceptually the Simple Model of a factory
producing a product called Adder.t Marketing specifies a
trapezoidal order forecast profile for customer orders, and
the number of consignment units (defined as demonstration
units used in the sales offices). R&D specifies the Adder
product structure. Order processing quotes a product avail
ability of four weeks. Production determines that the build
time is two weeks, and shipping states that transit time for
sending the product to the customer is one week. We as
sume that the production and shipping processes are under
sufficient control that they do not vary from these constant
numbers.

The problem assumes that the values of class A, B, and C
parts in the Adder product make up 50, 30, and 20 percent,
respectively, of the product material cost. In valuing the fin
ished product, labor cost is small enough to be factored into
the material cost, and the value of the product is the sum of
values of its parts, hi addition, we assume that the values of
6-week, 10-week, and 14-week lead time parts make up 25,
40, and 35 percent, respectively, of the product cost, that the
vendors deliver the parts exactly on time, and that there are
no rejects because of defective parts.

These characteristics are reflected in Table I, which shows
the value of each part category. There are a large number of
unit costs and part quantity combinations that satisfy the
above constraints. The actual bill of materials used for the
model is shown in Table II.

The length of the longest lead time among the parts is 14
weeks for parts A.3, B.3, and C.3. Allowing a build time of

t There from a little bit of whimsy in naming the product. The author selected the name from a
fairy tale in which somebody ordered the biggest adder available, expecting it to be an adding
machine. When the box was opened, out popped a snake. Snakes, of course, was an internal
HP code name for a class of workstations.

82 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Table I
S imp le Mode l Adder Produc t S t ruc tu re

(a) Product Structure by Part Value

P a r t V a l u e P a r t V a l u e P a r t V a l u e

A . 1 $ 1 2 5 0 B . I $ 7 5 0 C . I $ 5 0 0

A . 2 $ 2 0 0 0 B . 2 $ 1 2 0 0 C . 2 $ 8 0 0

A . 3 $ 1 7 5 0 B . 3 $ 1 0 5 0 C . 3 $ 7 0 0

(b) Part Value by Part Class Safety Stock

C l a s s P a r t s i n C l a s s V a l u e % V a l u e S a f e t y S t o c k

Table I I
Adder B i l l o f Ma te r ia l s

two weeks and transit time of one week means that the pe
riod from the time parts A.3, B.3, and C.3 are ordered in the
manufacturing enterprise to the time that the product using
those parts is received by the customer is 17 weeks. This
means that the policy of waiting for customer orders before
we order parts from our vendors will lead to an order-to-
delivery time of at best 17 weeks.

To quote availability of four weeks requires us to order mate
rial and plan production before we receive customer orders.
The best information we have on current and past customer
behavior is actual orders, and the best information we have
on future customer orders is the order forecast.

Given that we want quoted availability to be less than the
sum of material delivery, production, and product delivery
times, we need to plan ahead of time how much to build
based on order forecasts. This decision on how much to
build in future weeks is the responsibility of production

planning, which each week computes the number of units to
be started in future weeks.

Forecasts of future customer orders are estimates; customers
may order more or less than forecasted. In the event that
customers order less, we should have no problem meeting
the demand if we build to meet the forecast. However, if
customers order more, we might run out of product. To
allow for this contingency production planning must specify
that we need to build a few more units and cany them in a
stock of finished goods inventory (FGI). The amount of ex
tra product to be carried is the safety stock, and depends on
many factors including the average expected order level, the
expected fluctuations in orders, and how much we want to
allow for contingencies. A high safety stock level will pro
tect us from low forecasts, but requires a greater investment
in inventory. One way of specifying inventory levels is to use
a measure related to number of weeks of forecasted de
mand. In the case of this model, we assume that production
planning specifies two weeks of 13-week leading average
forecast as target FGI safety stock.

The discussions for FGI safety stock are also applicable for
raw material. There must be enough raw material on hand
when the time comes to build the product. To allow for ex
cess demand from the production line because of high cus
tomer demand, and for late deliveries by vendors, we need
to order some extra material. This extra amount is deter
mined by material planning and is the target raw parts in
ventory (RPI) safety stock. The amount of RPI safety stock
can be determined in different ways. One way is to use part
classification.

In practice, part classification indicates the relative impor
tance of a part and hence the attention it receives. Since class
A parts are reviewed more frequently, a smaller quantity is
carried than for the B or C parts. In our model, part class
determines the amount of material safety stock to be carried
in weeks, and all parts are reviewed weekly by material
planning. For A, B, and C parts the target RPI safety stock is
4, 8, and 16 weeks, respectively, of the 13-week leading aver
age forecast. The 13-week leading average forecast and the
FGI and RPI target safety stocks are discussed in greater
detail under "Target Safety Stock," below.

Fig. 2 shows the trapezoidal product order forecast supplied
by marketing. The demand during each week of a four-week
month is constant. The demand builds up over three months,

100-r

I
Â£>

4 L + 3 L + 4 L + 5 L + 6

Consignment Demand
â€¢ Order Demand

Fig. 2. Adder order forecast and consignment demands in units.

December 1994 Hewlett-Packard Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

remains constant for L months, and then reduces to zero over
three months, so the total product life is L+6 months. In the
first month, some units are required for consignment pur
poses. The mature monthly demand V is 80 units, and the
total amount of inventory for consignment is set at 1.5 weeks
of projected mature demand, or 30 units. In our experiments
we used a baseline value of 6 months for L. This order fore
cast results in a lifetime total of 780 units, or a total fore
casted production cost flowthrough (PCFT, see Glossary,
page 85) of $7.8 million, exclusive of the 30 consignment
units.

Of the many performance metrics for the system during the
product life cycle, the three main ones of interest are the end-
of-lif e inventory, which needs to be disposed of or written off,
the shipment and delivery performance, and the inventory
during the product life cycle.

Detailed Description
The fundamental description of the Simple Model of the
enterprise and the primary flows and dynamic components
that interact with it over time are shown in Fig. 3.

Entities External to the Enterprise. Customers send orders to
the manufacturing enterprise. In the simulation each order
for a single unit is sent individually to the manufacturing
enterprise. The orders go into the backlog of the manufac
turing enterprise, and at some point a shipment fulfilling
each order is delivered to the customer. Customers have the
expectation that the time between ordering and receipt of
delivery is the quoted availability, but are willing to wait
indefinitely for orders.

The manufacturing enterprise sends orders for each part to
the respective vendor, shown collectively in Fig. 3 as vendors.
The shipment of physical parts arrives at some time in the
future determined by the lead time for the part. Ideally the

Forecasts

Orders

Products

RPI WIP FGI

Fig. Model Material, order, and information flows of the Simple Model
simulation. The heavy solid lines represent the flow of physical mate
rial, to long-dash lines represent the flow of information related to
individual orders, and the short-dash line represents the flow of peri
odic of forecasts. The containers represent the accumulation of
physical material or orders, the pointers represent levels of the quan
tities in the containers, and the light solid lines from the containers
represent this status information being transmitted to the planning
function. The light solid line from the planning function represents a
control signal flow that regulates the amount of material flowing
from RPI to WIP and ultimately to FGI.

time between the issuance of an order and receipt of the
material (parts) should be the lead time quoted by the vendor,
and for all the runs in this paper, this will be the case.

Func t ions In te rna l to the En te rp r ise bu t Ex te rna l to Manufac tu r ing .
Periodically, marketing provides forecasts of customer
orders in future periods. Each forecast is a list of the quantity
of products that are estimated to be ordered in subsequent
periods. In practice, forecasts are updated periodically and
estimates for the same month in the future can vary from
month to month. In the model, the forecast is used to com
pute the shipment plan, and to compute the 13-week leading
average forecast for computing FGI and RPI safety stocks.
R&D (not shown in Fig. 3) provides a bill of materials
(BOM) that defines the product structure. Since the BOM
does not change during the simulation, we do not show the
R&D function.

Processes Internal to the Manufacturing Function. This section
should be read in conjunction with Figs. 1, 2, and 3.

Order processing accepts orders and keeps track of all out
standing orders received from customers, and keeps a run
ning total of the quantity of products required in the backlog.
In addition, it prioritizes the orders by the ranking criterion,
which in this model happens to be first-in, first-out (FIFO),
into a ship list. The backlog level is provided to the produc
tion planning function. The prioritized list of orders and the
quantity that needs to be shipped in the current period are
provided to shipping.

Shipping fills and ships the orders on the ship list that order
processing provides. From the point of view of the manufac
turing enterprise, the duration between receipt of customer
order and delivery of the shipment at the customer site
should be the time period specified as the quoted availabil
ity. to an order is attempted no earlier than necessary to
satisfy the quoted availability taking transit time into ac
count. An order is filled and shipped only if at the time of
the attempt the number of units in FGI is greater than zero.
In other words, shipping's objective is to fill outstanding
orders that need to be filled and not to try to maintain FGI at
some level. This means that the actual order-to-delivery time
for a particular order will depend on whether units are avail
able to fill the order at the time the order is due to be
shipped. If units are not available, the order will have a
higher priority for being filled in the next period because of
the FIFO rule used to establish the ship list.

Production planning computes the current shipment plan
and build plan. It computes the current shipment plan from
the current order forecasts and current order backlog to
attempt to satisfy the quoted availability. It then computes
the current build plan from the shipment plan, build time,
current FGI, current WIP, and FGI safety stock.

To come up with a suitable build plan, production planning
must know about the characteristics of the system it is trying
to control, that is, it must have a model of the system that it
uses for doing its computation. An important aspect of the
computation is to take into account the number of units
already in process rather than relying only on the number of
units of product required. Such a model is generally a mathe
matical or analytical model, and the formulation is described
in Appendix I. The build plan for the current period is used

84 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Glossary of Terms and Abbreviations

A b b r e v i a t i o n s

A/F. orders ratio. This is the ratio of the actual orders received to the
forecasted orders. Normally expressed as a percentage. A/F greater than 100%
implies were actual orders came in higher than forecasts, that is, forecasts were
low or came was high. A/F less than 100% implies that actual orders came in
lower than forecasts, that is, forecasts were high or demand was low.

BOM. into of materials. A description of the components that go into an assembly
and their respective quantities.

Â» Single-level BOM. The components are raw materials fabricated or manufactured
elsewhere (i.e., purchased parts).

â€¢ Multiple-level BOM. The components are other assemblies and purchased parts.

EOL End of life (end of product life cycle).

FGI. Finished goods inventory.

RPI. processed. parts inventory. Raw material in stores waiting to be processed.

WIP. assembled in process. Raw material on the production line being assembled into
the final product.

PCFT. Production cost flowthrough. Dollar value of production passing through the
manufacturing enterprise. Because of the assumptions underlying the Simple
Model, in this paper PCFT is synonymous with shipments from the manufacturing
enterprise.

T e r m s

Backlog. Products ordered by customers but not yet shipped.

Build Time. The time required for completion of the product when all the parts
are available.

Committed Inventory. The total inventory to which the manufacturing enterprise
is currently committed. It is the sum of the on-order material and the on-hand
inventory.

Consignment Inventory. Inventory in the sales offices and for demonstration
purposes.

End-of-Life Inventory. The amount of inventory left over at the end of the product
life cycle, that is, when no more orders are backlogged or outstanding for the
product. EOL inventory includes leftover unused RPI, unshipped units in FGI, and
consignment inventory. In general, material and products left over at the end of
the product life cycle are not useful for anything else and must be written off.

Forecast Quality. Qualitative description of the amount of deviation of actual
customer orders from forecasted orders. The ratio A/F described above is one way

to quantify forecast quality. Forecast quality is best for A/F = 100%. and gets
worse as A/F moves away from 1 00%.

Lead and The time between placement of an order to the vendors and receipt
of the material.

On-Hand Inventory. All physical inventory that is owned by the enterprise. It is
the sum of RPI, WIP, and FGI.

On-Order Inventory. Same as on-order material.

On-Order Material. The total amount of material for which orders are currently
open increases which will eventually be received from vendors. It increases each time a
new order is issued and sent to the vendor, and decreases each time a shipment
of parts is received from the vendor.

On-Time Delivery. Measures whether the order is delivered to the customer
within represents quoted availability. When described in units or dollars, it represents the
units delivery dollar value of the deliveries that are delivered within the quoted delivery
time. on-time described as a percentage it represents the percentage of on-time
deliveries with respect to the total deliveries.

On-Time Shipments. Products that were shipped to customers within the quoted
availability minus the transit time, that is, those shipped to arrive in time to satisfy
the quoted availability.

Order Backlog. The total amount of outstanding orders from customers that
have received yet been shipped. It increases each time a new order is received from
customers, and decreases each time an order is shipped to customers.

Order-to-Delivery Time. The time period from order issue to order delivery at
the customer site.

Order-to-Ship Time. Time period from order receipt to order shipment at the
manufacturing enterprise.

Orders Delivered. Orders that have been delivered to customers.

Orders Shipped. Orders that have been shipped to customers.

Product Life Cycle. The general shape of the increase, leveling off, and decrease
in order volume for the product. We assume here it is trapezoidal.

S and S-Plus. S is a language and interactive programming environment for data
analysis and graphics developed at AT&T Bell Laboratories. S-Plus is a product
version of S that is sold and supported by Statistical Sciences, Inc.

to trigger the start of the appropriate number of units in the
current period.

Material planning uses the BOM to generate a material con
sumption plan for each part that can support the build plan.
It then uses the material consumption plan, on-order material,
RPI, RPI safety stock, and part lead times to determine the
material ordering plan, that is, how much of each part to
order in the current and future weeks. Details of the compu
tation of the consumption and ordering plans are given in
Appendix I.

Material ordering sends orders for the appropriate amount
of each part in the current week to the vendors. As each
order is sent, the on-order material for that part increases.

Raw material stores (not shown in the figures) receives and
stores incoming material in RPI and provides material to
production when requested. As it receives deliveries from

vendors, it sends information about the shipment to on-order
material which is reduced by the amount of the shipment
received.

Production receives a build plan and requests as much
material as required from raw material stores to build the
number of units required. Only complete sets of parts are
drawn from stores, that is, if one or more parts are not avail
able For sufficient quantities, all parts are drawn partially. For
example, if the build plan calls for 10 units to be built, and
there are only 5 units of part A. 3 and more than 10 units
each of the other parts in RPI, only 5 units of of each part
will be drawn and sent to WIP, and only 5 units can be
started. The objective of raw material stores is to fill re
quests for material if possible, and not to maintain RPI at
any particular level. The mathematical derivation of the
number of units actually started subject to the available
material is given in Appendix I.

December 1994 Hewlett-Packard Journal 85

© Copr. 1949-1998 Hewlett-Packard Co.

Enterprise Modeling and Simulation Applications in Reengineering

Process reengineering as defined by Hammer and Champy Â¡n their book, Reengineer
ing the Corporation} is "the fundamental rethinking and radical redesign of business
processes to achieve dramatic improvements in critical, contemporary measures of
performance, such as cost, quality, service, and speed." It is being applied at an
increasing rate by three kinds of companies: those Â¡n deep trouble, those not yet in
trouble but whose management has the foresight to see trouble coming, and those
Â¡n peak condition with no discernible difficulties whose management is ambitious
and aggressive. These three categories cover a large number of companies. The
impact dollars. on processes with throughputs measured Â¡n the billions of dollars.

Reengineering is pervasive, controversial, and disruptive, and has different
interpretations. CSC Index, whose chairman is Champy,1 states that even though
they pioneered the practice of reengineering, they are startled by how widespread
the phenomenon has become. Their survey results2 based on 497 large companies
in the U.S.A. and another 124 Â¡n Europe show that 69% of the U.S. companies and
75% of European companies are already reengineering (average completed or
active initiatives Â¡n excess of 3). More than half of the rest were planning to
launch an initiative over the next 1 2 months or were discussing one.

Hammer teams Champy3 mention three kinds of techniques that reengineering teams
can use re- help them get ideas flowing: boldly apply one or more principles of re-
engineering, search out and destroy assumptions, and go looking for opportunities
for the creative application of technology.

A sampling of the literature reveals that redesign is influenced by the past
experience of the reengineering team and the recommendations of reengineering
consultants. Ultimately, many redesign decisions are made on speculation based
on implicit mental models, convincing arguments by vocal proponents for change,
sheer optimism, blind faith, or desperation.

A major new is the uncertainty of predicting outcomes. Radical redesign and new
ideas bring the possibility of boundless gain or tremendous loss. While assumptions
are being searched out and destroyed ruthlessly, it should not be forgotten that
some assumptions are rooted Â¡n scientific principles which cannot be ignored with
impunity no matter how highly enthusiastic or motivated the reengineering team.

Enterprise Modeling and Simulation
Some corporation suggested by Hammer and Champy4 for reengineering the corporation
include product development from concept to prototype, sales from prospect to
order, order fulfillment from order to payment, and service from inquiry to resolution.

The Simple Model described in the accompanying article is a start towards address
ing order fulfillment Modeling and simulating the other processes on the list require
different kinds of knowledge acquisition. For example, product development requires

more knowledge about the R&D function, sales requires more knowledge about the
marketing function, and service has not been considered Â¡n the current model, where
the focus is on manufacturing.

The following paragraphs describe areas where enterprise modeling and simula
tion provide the enterprise modeling and simulation system may provide value in the
reengineering effort.

Identifying Processes
Hammer mapped, Champy5 suggest that once processes are identified and mapped,
deciding which ones require reengineering and the order Â¡n which they should be
addressed is not a trivial part of the reengineering effort. Typically there are three
criteria for making the selection: dysfunction, importance, and feasibility.

Enterprise modeling and simulation provide one way of gaining insight Â¡n these
areas by generating performance metrics with and without the change under differ
ent circumstances. For example, the Simple Model showed the importance of differ
ent controllable and uncontrollable factors to the different system performance
metrics such as EOL inventory and order-to-delivery cycle times.

After selecting a process for reengineering, an understanding of the current process
is crucial. It is necessary to know what the existing process does, how well (or
poorly) high- performs, and the critical issues governing its performance from a high-
level key This understanding is the prerequisite to redesign. The key is under
standing the process rather than completely analyzing it Â¡n agonizing detail.

Enterprise modeling and simulation offer at least two ways of obtaining this under
standing and possibly showing the cause of the dysfunction. First, the very act of
building a consensus model that different people can agree with sheds light on
what might not be working. Second, simulating the model will confirm or reject
the validity of what is suspected. For example, after building the Simple Model, it
was possible to test it in a large number of possible operating conditions to provide
understanding of the cause and effect relationships. The first major insight from
simulating the model was that what appeared to be a reasonable way of computing
safety to that would go to zero as demand went down actually gave rise to
end-of-life inventory even though the demand was forecasted accurately. Enter
prise of and simulation provide a way of gauging the relative impact of
different process changes as a step towards selecting the appropriate subprocess
to reengineer, and of quantifying the amount of prospective improvement.

Enterprise modeling and simulation can show the prospective impact of Â¡nfeasible
changes. In simulating the proposed reengineering changes, even if they are
Â¡nfeasible, the results will indicate if there is any promise Â¡n further consideration
of a particular direction. For example, it is clearly not feasible to have zero build

The required material is drawn from RPI and goes into WIP
where it remains for the duration of the build period. After
that, the completed units go into FGI.

Target Safety Stock. Inventory is the amount of physical
material, and ideally the enterprise would like to maintain it
at or close to zero in RPI and FGI, and only carry it in WIP
when raw material is being converted into final product. In
practice, to reduce the effects on production of late vendor
deliveries and customer orders coming in higher than fore
casts, safety stock needs to kept. In the Simple Model, where
vendor delivery tune uncertainty is not an issue, to allow for
the contingency that customer orders may come in higher
than forecast, production planning targets the FGI safety
stock to be two weeks of 13-week leading average forecast,
and material planning targets RPI safety stock for each part
to be the quantity of that part required for the production of
the number of weeks specified in Table I(b) of the 13-week
leading average forecast.

The 13-week leading average forecast at the end of a particu
lar week in the future is the sum of the order forecasts over
the 13 weeks immediately following the particular week
divided by 13. This average anticipates trends 13 weeks (one
calendar quarter) into the future, increasing as order fore
casts increase, and decreasing as order forecasts decrease.
In particular, the 13-week average forecast is zero at the end
of the product life cycle, which means that any target safety
stock expressed in weeks of 13-week leading average will aim
for a zero target safety stock level at the end of the life cycle.

Having specified target safety stock in preparation for de
mands higher than forecasted, what is the impact if custom
ers order exactly according to forecast? The expectation is
that actual FGI should be equal to targeted FGI safety stock
level, and actual RPI for each part should be equal to targeted
RPI safety stock level for that part.

86 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

time the products and zero transportation times for shipments in the real world,
but setting those values to zero in the model indicates the theoretical maximum
benefits of these actions, and the magnitude of the results provides a data point
for decisions on how much investment to put on driving these two times to zero
instead of on other opportunities.

Furthermore, fay showing the time behavior of the changes, enterprise modeling and
simulation can show when actions can be expected to take effect. Inertia is a prop
erty of most systems, reflected in the time taken to respond to external influences or
changes. Most physical systems are predictable in this respect, but the time be
havior simply organizational systems such as the enterprise is less predictable simply
because it is not understood as well. Enterprise modeling and simulation help to
increase the predictability of system behavior given that we know something
about immediate system's structure and the behavior of its components. While immediate
improvement for reengineering is the desired goal, enterprise modeling and simu
lation result. show the length and causes of delays in obtaining the desired result.

E x p o s i n g a n d C h a l l e n g i n g A s s u m p t i o n s

Hammer model Champy suggest that we question assumptions.6 Enterprise model
ing and model require assumptions to be stated explicitly during the model
building process to reconcile differences in points of views. Challenges and dis
agreements on the validity are with respect to clearly stated assumptions rather
than mental in opinions resulting from differences in mental models of differ
ent individuals. For example, the production planning and material procurement
processes used in the Simple Model are expressed mathematically in Appendix I.
If these are accepted as rational methods of planning, then there is no question or
debate expressed the values of the outputs for a given set of inputs. If processes expressed
mathematically are not acceptable as rational methods of planning and an alter
native method is proposed, then that alternative method can certainly be tried,
and the for compared with the previous method. The debate and challenge for
improvement becomes one of improving the logic of planning rather than one
revolving around the meaning of words and labels or one on how the model
should behave based on past experience or speculation.

The approach advocated by Hammer and Champy suggests that changes be made
by understanding the problem and devising the solution. This is central to model
ing and simulation in addressing problems in the realm of the enterprise. Enter
prise that and simulation offer a way of testing and verifying that given the
current knowledge, the results of the simulation do not exhibit any obvious flaws
before the process is implemented.

R o l e o f T e c h n o l o g y

Hammer enabling Champy devote a whole chapter to discussing the essential enabling
rale of information technology, and assert that modern state-of-the-art information
technology is part of any reengineering effort. They caution that the misuse of

technology can block reengineering altogether by reinforcing old ways of thinking
and old not patterns, and that equating technology with automation does not
result in reengineering.

We suggest that the application of enterprise modeling and simulation is a creative
application of a well-understood technology to the processes of the enterprise.
The technology of modeling and simulation has been applied to fields such as
product design and the design of physical systems, but is only now beginning to
be applied creatively in analyzing the processes of the enterprise. What enables
the creative application of modeling and simulation is the tremendous increase in
computational power. In this respect, we would like to suggest another rule along
the lines of the rules described in reference 1.

Old Rule. Decisions regarding process changes are based on mental models
and analysis of historical data.
Disruptive Technology: Enterprise modeling and simulation.
New Rule: Decisions regarding process changes are based both on historical
data models analysis of computer simulated behavior of explicit models with
explicit assumptions that show the prospective consequences of different
actions under a large number of operating circumstances.

C o n c l u s i o n

Reengineering is a philosophy of renewal and rapid, discontinuous, and drastic
change uncer the way corporate enterprises do their work, which brings with it uncer
tainty and fear of the unknown future. It is disruptive and controversial, and there
is as yet no agreement that successes outnumber failures. During the implementa
tion, "People focus on the pain of the present and the joy of the past. They forget
about the pain of the past and the joy of the present."7 However, given that it is
occurring on such a wide scale, we suggest that application of enterprise model
ing and the can increase the chances for success by (1) quantifying the
potential benefits of the reengineered process in an explicit, defensible way, (2)
illustrating the transition between the pain of the present and the joy of the future,
and (3) showing the possible outcomes of current actions, thereby making the
future more predictable and less surprising to those most affected by it.

R e f e r e n c e s

1 M. Hammer and J. Champy, Reengineering the Corporation: A Manifesto for Business
Revolution, Harper-Collins Publishers, Inc., 1993.
2. State of Re-Engineering Report, Executive Summary, CSC Index, 1994.
3. M. Hammer and J. Champy, op cit, p. 1 46.
4. M. Hammer and J. Champy, op dtp. 118.
5. M. Hammer and J. Champy. op cit, p. 1 22.
6. M. Hammer and J. Champy, op cit, p. 145.
7. J. July/August "The Prophet of Pain," Worth. Vol. 3, no. 6, July/August 1994, pp. 80-81.

Simple Model Simulation
The Simple Model described above represents a simple pro
cess design for a manufacturing facility that is subject to
simulation. On the surface, the design appears to be reason
able and adequate, and in fact is based on representative
data and characteristics of the process. However, simula
tions will show some unexpected behavior, as well as the
envelope of the possible behaviors.

The Simple Model was executed on an evolving system called
the EMS system, which consists of two parts: the simulation
engine part and the data analysis and display part. The simu
lation engine has continued to develop with each model that
we have studied. It captures and abstracts processes in the
enterprise. The simulation engine is an object-oriented, en
hanced discrete event simulation software system.

The initial implementation of the simulation engine part of
the EMS system was the Manufacturing Enterprise Simula
tor on the TI Explorer II.9 The current implementation runs

on HP 9000 Series 700 workstations at the Manufacturing
Systems Technology Department of HP Laboratories. The
implementation language is the Common Lisp Object Sys
tem (CLOS).18 The simulation engine has been implemented
in CLOS provided by three different vendors: Franz, Inc.,19
Lucid, Inc.,20 and Harlequin, Ltd.21 Models subsequent to the
Simple Model (see page 90) were large enough to stress the
limits of all three implementations. Graphical output was
produced using S-Plus. Further details of the history and
development of the EMS system are given in reference 9. The
initial version of the Simple Model was implemented within
a week based on the full order-to-ship model22 (see page
90). It then took successive refinement and a tremendous
amount of time to analyze the results.

For the reader familiar with discrete event simulation, details
of the similarities and differences in concept between this
implementation and conventional discrete event simulation
are discussed in reference 9. In general, orders and shipments

December 1994 Hewlett-Packard Journal 87

© Copr. 1949-1998 Hewlett-Packard Co.

C l

1

2

Total Committed
Inventory

On-Hand Inventory tor Consignment Units

On-Order
Inventory for
Consignment

Units

20 30 50 60 40

Weeks

Fig. 4. Nominal case inventory components as functions of time. The experimental conditions are shown in Fig. 1.

70 80

are modeled as the entities of discrete event simulation.
Backlog, on-order material, RPI, WIP, and FGI are modeled
as queues. Customers and vendors are modeled as source-
sink combinations of orders and material and vice versa.
Production is modeled as an activity.

The production and material planning functions, which are
essentially information processing and decision making func
tions, are implemented as mathematical models embedded in
the simulation. The information generated by these planning
functions determines when and how many units of product to
start building and how many units of material to order. Thus,
we can think of the Simple Model as an analytical mathemat
ical model embedded in a discrete event simulation model.
The analytical model (formulation given in Appendix I) dic
tates how the simulation model should behave in the same
way as the planning functions dictate how operations should
be handled in reality. The simulation model is the reflection
of physical reality and reflects the behavior of the physical
system that is told what to do.

There are two aspects of uncertainty: bias and variance.
Most simulation models focus on variance and assume bias
(offset) to be zero. While the EMS system supports the abil
ity to simulate the model under stochastic conditions, in the
runs described in this paper, variance is always zero and the
emphasis of the analysis is on the situation in which bias
can be nonzero.

Each run represents one combination of inputs and parame
ters of the system, and the traditional statistical analysis of
means and confidence levels is not directly applicable for
the analysis of these runs. While process variances are im
portant considerations in a system, the motivation of this
work was to identify the first-order effects of the various
factors, considering the variances as second-order effects.

Details of the timing of the event sequence are shown in
Appendix II.

Experimental Results

Experiment 0: The Nominal Case
The nominal case experiment assumes ideal conditions for
testing the model. The purpose is to establish model baseline
behavior and offer face validation by verifying that results
are consistent with intuition and the observed behavior of
the real system. Initial conditions for committed inventory
and backlog are set to zero. A warmup period of five months
(20 weeks) allows material to be ordered and received be
fore customer orders arrive on week 21. The last customer
orders arrive on week 68. Order forecasts are consistent
with the trapezoidal profile already defined, and while they
are generated weekly, they do not change from week to
week. Week 21 corresponds to the first week of month 1,
and week 68 corresponds to the last week of month L+6 in
Fig. 2. Production begins during week 19 to ensure units in
FGI at the end of week 21. The computation of FGI and RPI
safety stock levels is assumed to apply only for weeks after
week 20. Up to and including week 20, the required safety
stock level is set to 0.

Time Response of On-Hand Inventory and On-Order Material .
Fig. 4 shows inventory levels measured in dollar terms over
time. The two bottom regions show the on-order material
and on-hand inventory for consignment units. There is a
gradual buildup of on-order material, which is rapidly trans
formed into on-hand inventory over four weeks, followed by
a flattening out (since the consignment units are never
shipped). The middle region shows on-hand inventory for
trade or shippable units, which is the sum of RPI, WIP, and
FGI. The upper region shows the on-order material commit
ment for trade units. The top surface of the graph shows
how total material commitment changes over time.

Inventory Investment. Committed inventory at the end of week
20, before the first customer order arrives, is approximately

88 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

(a)
1 0 2 0 3 0 4 0 5 0 6 0 7 0

W e e k s
80

20 T

1 0 2 0 3 0 4 0 5 0 6 0 7 0 2 0 4 0 5 0 6 0

Fig. Shipments and as functions of time for the nominal case, (a) Shipments and orders, (b) Backlog and orders, (c) WIP and orders, (d) Material
ordered and orders, (e) RPI and orders, (f) FGI and orders.

$3.5 million. If orders to vendors cannot be cancelled, this
$3.5 million commitment must be disposed of if we decide to
cancel the product before the first customer order arrives.

During the mature part of the life cycle of the product, the
on-hand inventory is approximately $2.5 million and the
total To inventory is approximately $4.7 million. To
support shipment levels of $200,000 a week requires $4.7
million of committed inventory (23.5 weeks of steady-state
PCFT) and $2.32 million of on-hand inventory (11.6 weeks of
steady-state PCFT), both of which include $300,000 of con
signment units (1.5 weeks of steady-state PCFT). Details of
the computations verifying these numbers in the simulation
are given in Appendix IV-2. The maximum inventory exposure
over the life cycle is $4.7 million.

The EOL consignment inventory of $300,000 reflects the
amount of potential write-off because we did not dispose of
the consignment units. The EOL nonconsignment inventory
for trade units is reflected in the tail of the graph, and its

value is approximately $64,000. If the material cannot be
consumed any other way, there is an EOL write-off of
$64,000 of nonconsignment inventory and $300,000 of con
signment inventory for a PCFT of $7.8 million under ideal
conditions of perfect forecast quality and on-time vendor
delivery.

Time Response of Other Metrics. Fig. 5 shows other time series
metrics in comparison to orders received. The shipment
profile (Fig. 5a) is identical to the order profile but shifted in
time by three weeks. This is because the four-week availabil
ity and one-week transit time require three weeks of order-
to-ship time for on-time delivery.

Steady-state backlog (Fig. 5b) is $600,000, or three weeks of
orders. Again, this is because the four-week availability and
one-week transit time result in orders staying in backlog for
three weeks, that is, the current backlog is the sum of the
last three weeks of orders.

December 1994 Hewlett-Packard Journal 89
© Copr. 1949-1998 Hewlett-Packard Co.

Enterprise Modeling and Simulation Research at HP Laboratories

Our work at HP Laboratories on enterprise modeling and simulation is an outgrowth
of the factory modeling project, which began in early 1987. While we were work
ing in appreciate area of robotic automation for manufacturing, we began to appreciate
the complexity of the geographically distributed, multientity marketing, manufac
turing, and distribution operations necessary for HP to remain competitive. We
also realized that there were very few tools available to help understand, design,
and operate these complex systems.

Having CAE involved in product design with the evolving use of CAD and CAE
tools, magni thought that there was an opportunity of potentially tremendous magni
tude for applying similar technologies to the design and operation of the factory
and business systems used to market, manufacture, and distribute products. In an
effort elements capitalize on this opportunity, we began identifying the primary elements
of a single factory and building our preliminary order-to-ship model that spanned
all major activity from the receipt of an order to its shipment.

Preliminary Order-to-Ship Model
This simulation model was a vehicle to show the feasibility of applying simulation at a
scope larger than a production line, where simulation was beginning to be applied.
Developed and proposed for discussion purposes, it was a model to analyze why the
order-to-ship time for some products stretched to weeks when the application of
modern hours. techniques had reduced the build time to a matter of hours.
More details on the reasons behind this work are given in references 1 and 2.

Full Order-to-Ship Model
By late context. 988 the preliminary model was ready for testing in a real-world context.
Data and operational information were provided by a real manufacturing division
to help enhance our early model. This process helped to validate the preliminary
order-to-ship model and led to the development of the full order-to-ship model.3
The primary factors considered were order forecast quality, production capacity
constraints, supplier lead times, and order filling policies. The primary metrics of
interest were order lateness, backlog, and inventory. The model included three

distribution centers, one manufacturing entity, and a centralized sales and order
entry system. It was configured for one-level bills of materials (BOM), multiline
orders, and long life cycle products.

The results of the analysis done with the full order-to-ship model were encouraging;
they showed things that were consistent with real-world experiences (e.g., high
forecasts led to high inventory and low backlog). The results also provided a view
of greater potential by helping to identify areas for future improvement (e.g., the
dominant cause of product shortages is long lead time parts coupled with poor
forecasts rather than the build time).

While the results of this model were modest, the building and running of this model
enabled us to explore some important technologies (i.e., Hierarchical Process
Modeling for knowledge acquisition, a discrete event simulation language, SLAM II,4
and a knowledge-based environment. Knowledge Craft, for system representation
and building simulations). Our efforts led to generalized enterprise-level modeling
elements and an object-oriented simulator. We also identified some new obstacles
(e.g., managing large amounts of simulation data, extracting information) to be
overcome in attaining our goals. More details are given in reference 1.

For about a year, no further model development was done, but rather, much effort
was put simulation consolidating what we had learned about the modeling and simulation
issues. This effort led to the complete overhaul of our modeling and simulation
code while migrating it to the Common Lisp Object System on HP workstations.
The power and speed of our system took a quantum leap forward.

Simple Model
With real-world improved system ready, we were presented with another real-world
opportunity to apply our techniques. The Simple Model was proposed as a means
of pulling together the main activities, processes and circumstances involved in a
manufacturing enterprise. The primary purpose was to understand end-of-life
(EOL) inventory and order delivery performance issues. The combined impacts of
several environmental factors and operational policies were considered in the

Fig. 5c shows an initial spike in WIP preceding the start of
orders by two weeks. This happens because the number of
units started during week 19 is not only what is to be shipped
two weeks later, but also the quantity that must be in FGI
(approximately two weeks of orders) at the end of week 21.
The WIP levels taper off downwards starting in week 44
towards the latter part of the life cycle because as the de
sired FGI safety stock level decreases, less production is
required than is shipped because some units shipped from
FGI do not have to be replenished.

Fig. 5d shows material orders. The three large spikes in
material orders are caused by different lead times for parts
to fill the targeted RPI safety stock at the beginning of the
cycle. Each of the three small spikes corresponds to the
different lead time parts for the initial WIP spike. Once the
initial spikes are past, the material ordering volume is ap
proximately the same height as the customer orders, except
that it is shifted earlier in time, showing that once the sys
tem has reached mature demand, material inflow in the form
of material ordered is balanced by the material outflow in
the form of shipments. Material ordering starts ramping down
beginning in week 28 just as the orders reach the maximum
demand for this particular set of circumstances.

Fig. 5e shows RPI as a function of time. Notice that the
vertical scale is different from the other graphs. The RPI
level is 7.6 weeks of PCFT during the mature demand period
and starts ramping down in week 44. Fig. of shows FGI as a

function of time. The FGI safety stock during the mature
demand week is two weeks of PCFT, which is the same
as two weeks of steady-state orders. The FGI level starts
ramping down in week 44.

Inventory Results. The results establish the baseline behavior
of a system designed to take contingencies into account
when those contingencies do not occur. Appendix IV pro
vides further details for computing some of these results on
a theoretical or common sense basis. Some interesting ob
servations can be made. First, EOL inventory and write-off
exist even though customers ordered exactly according to
forecast and we expect safety stock to go to zero. Second,
the level of inventory required to support this level of busi
ness can be quantified. Third, long lead time parts make up a
greater percentage of the value of parts on order than their
percentage in the product structure.

EOL inventory is important for short life cycle products
because the inventory cannot be used for anything else and
must be written off. In this case it is a result of the way of
computing safety stock. It occurs if in the early part of the life
cycle too much material is ordered because of high targeted
FGI and RPI. For short life cycle products it can be a signifi
cant percentage of PCFT. EOL inventory is less of an issue
for long life cycle products because the leftover inventory is
generally a smaller percentage of total PCFT and excess
inventory in early periods can be used at a later time.

90 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

analysis. The model, leveraging our earlier work, dealt with a one-level BOM. one
factory, one product and subsequently a family of successive products with common
parts and overlapping life cycles.

Our analysis provided some interesting insights, such as certain material procure
ment for safety stock policies result in EOL inventory even for perfect order fore
casts, and with low forecasts, increasing material lead times and planning frequency
result we increased EOL inventory. More important, we began to realize that we
were for something that could really have a positive impact for HP. In fact, the
business results led to the development of the planning calendar model with the
Simple Model as its foundation. We also continued our technical enhancements by
connecting the output to S-Plus5-6 for data analysis and the creation of a Lotus3
interface to display output.

Planning Calendar Model
The purpose of the planning calendar model7'8'9 was to determine the effects of
planning cycle times on inventory levels. It required extension of the Simple
Model approx include production planning and material planning cycle times. It approx
imated at two-level BOM and multiple assembly sites using a one-level BOM at
one site. It used historical forecasts and orders. The primary factors were forecast
quality, the length of the planning cycle, and the maximum lead times for parts.
The primary metrics of interest were average inventory, delivery performance, and
inventory levels at the start of production. The primary technical development was
the application of S-Plus data analysis capabilities to the data.

With inventory model, material lead times had a dominant effect on inventory levels
and committed inventory. Historically, forecasts were generally low, so for the
historical data given, the planning cycle time used for the particular product had
insignificant impact compared to material lead times. There was greater potential
for reducing inventory by reducing lead times than by reducing planning time. Low
forecasts increased backlogs.

Current Modeling Activit ies
We are currently finishing an analysis of a single-site manufacturing system where
we were in at how to improve the supplier response time. The challenges in

this application include managing a multilevel bill-of-materials and understanding
the consequences of long, variable test cycle times. We are also working with
sector-level reengineering teams to help understand the consequences of proposed
changes and explore alternatives.

Our enterprise modeling and simulation capabilities have evolved considerably
from are preliminary order-to-ship model. However, there are still many more
interesting challenges to address before we reach our goal of a computer-aided
business process design and operation system.

Robert Bitter
Project Manager
Enterprise Modeling and Simulation Project
HP Laboratories

References
1 . M.S. Complex "Simulation Modelling of a Manufacturing Enterprise with Complex Material.
Information, and Control Flows," International Journal of Computer Integrated Manufacturing.
Vol.7, no. 1,1994. pp 29-46.
2. M.S. Proceedings "Systems with Complex Material and Information Flows," Proceedings of the
International Conference on Object-Oriented Manufacturing Systems IICOOMSI, pp. 1 88-1 93
3. M.S. Laboratories Formulation of the Order-to-Ship Process Simulation Model, HP Laboratories
Technical Report #HPL-92-135, December 1992.
4. A.A.B. Pritsker, Introduction to Simulation and SLAM II, Third Edition. Systems Publishing
Corp., 1986.
5. S-Plus Programmer's, User's, and Reference Manuals, Statistical Sciences Inc., 1992.
6. A.A. Brooks/ J.M. Chambers, and A.R. Wilks, The New S Language, Wadsworth & Brooks/
Cole Advanced Books & Software, 1 988.
7. C.M. Simple Analysis of Inventory and Customer Service Performance Using a Simple
Manufacturing Model, Master of Science Thesis for Leaders for Manufacturing (LFM) Program,
Massachusetts Institute of Technology, May 1993.
8. K. Oliver, Simple Model Report, distributed by email on January 12, 1993
9. M.S. Delivery and R. Hitter, Enterprise Modeling System: Inventory Exposure and Delivery
Performance, HP Laboratories Technical Report iHPL-94-89, October 1 994.

Lotus is a U.S. registered trademark of Lotus Development Corporation.

This nonzero EOL inventory is significant because our
safety stock policy targets zero safety stock levels in FGI
and RPI at the end of the life cycle. Having observed this
phenomenon in the simulation, we were able to show mathe
matically why the EOL inventory is not zero. The formal
derivation of this result is outside the scope of the current
paper, but more detailed analysis of the data showed that it
is the Class C parts that are left over. The Class C parts will
be zero in the case when orders come in as forecasted for
the conditions of experiment 0 only if the target RPI safety
stock for Class C parts is less than or equal to the 13-week
leading average forecast. Also, for the conditions of experi
ment 0, any part with target safety stock greater than 13
weeks of 13-week leading average forecast will end up with
EOL material. The behavior of the amount of Class C EOL
material as the number of weeks of target safety stock goes
down is given in Appendix IV-3, and an informal explanation
showing the reasoning behind the EOL material is given in
Appendix FV-4.

The nonzero EOL is a function of the number of weeks of
13-week leading average forecast. Other techniques of com
puting safety stock, for example using a cumulative leading
forecast rather than the 13-week leading average forecast,
might lead to different results.

Smoothing WIP and Production. The initial spike in WIP shows
how the policy of starting production in week 19 (and not

before) gives rise to a spike in capacity demand at the begin
ning of the product cycle. It could be eliminated by incorpo
rating production capacity constraints into production and
material planning or by allowing FGI to build up before the
first order comes in (i.e., before week 21). Both of these
require production to start before week 19.

Experiment Set la:
Single Uncontrollable Factor Variation
In the nominal case, the customer order pattern was accu
rately forecast. We now consider the situation where the
actual orders are different from the forecasts.

We assume that customers order according to a constant
order forecast profile multiplied by some constant factor
Actual/Forecast or A/F. A/F is the ratio of actual orders to
forecast orders; its definition is shown in Fig. 6a. In practice,
marketing would change the forecasts periodically. Since we
were not modeling the forecasting process, we chose the
simplifying assumption that although a new forecast is gen
erated every week, it is identical to the forecast generated
the previous week, t Here is an example of bias in the order
forecast with no variance. The model interpretation is that
although estimates were wrong in the past, we expect that
future orders will be equal to the original forecast. This is

t This is not a limitation of the model. A user-specified forecast can be accepted by the model.
Later models have incorporated historical forecasts. The reason for this assumption was to get
a better make of the effect of forecast bias. Fluctuating forecast deviations make
interpretation harder.

December 1994 Hewlett-Packard .Journal 91

© Copr. 1949-1998 Hewlett-Packard Co.

Actual
Forecast

= 2 0 0 %

Forecast

Actual
Forecast

= 50%

Time
(a)

Actual
Forecast

= 2 0 0 %

High Demand or
Low Forecast

y F o r e c a s t

Low Demand or High Forecast

A c t u a l
Forecas t

= 5 0 %

Time
(b) Current Time

Fig. 6. at of A/F. (a) A/F ratio, (b) Actuals and forecasts at
the current time.

reflected in Fig. 6b. Actuals came in as shown in the part of
the graph to the left of the current time, while the part to the
right of the current time line shows the current expectation
of future orders.

Clearly, we would expect an effect when A/F is not 100%. If
A/F is less than 100%, that is, if forecasts are high, FGI will
start to build up, since production planning has directed a
larger number of units to be built than are subsequently de
manded. Production planning and material planning take
this into account and plan to build less and order less mate
rial in the future, but the overall material level is higher than
when A/F is equal to 100%. On the other hand, if A/F is
greater than 100%, that is, forecasts are low, FGI will start to
be eaten away because production planning has directed a
smaller number of units to be built than are subsequently

demanded. Subsequently, production planning and material
planning take this into account and raise the production, but
since they are always estimating low future demand, we
would expect the inventory level in general to be lower than
in the case where A/F is 100%. Surprisingly, this intuitive
result does not hold, as will be seen later.

We ran the simulations with A/F ranging from 50% to 200% at
equal intervals of 25%. In addition, we ran it at smaller inter
vals in the region of 95% to 125%.

EOL Write-off. A consequence of keeping forecasts identical
for all runs is that the consignment profile does not change
with respect to A/F. Fig. 7 shows EOL metrics as A/F ranges
from 50% to 200%. Note that the changes in value are not
constant across the horizontal axis. Fig. 7a shows that total
EOL inventory increases as A/F decreases. Fig. 7b shows
that the percentage impact is even worse, simply because
the write-off is a higher percentage when PCFT, which is
directly influenced by A/F, is lower. For low forecasts, that
is, A/F greater than 100%, the EOL inventory decreases. For
high forecasts, that is, A/F less than 100%, the EOL inventory
increases. The lower the A/F, the higher the EOL inventory.

Fig. 7 leads to the obvious conclusion that inventory write-off
can be reduced by the strategy of underforecasting orders.
However, this is only one side of the story. The complete
story is shown in Fig. 8.

Impacts on Time Series of A/F Changes. Fig. 8 shows the im
pact of A/F changes on different time series measures. To

avoid clutter we will not show inventory for consignment

in subsequent time series. FGI, WIP, RPI, on-order material,
and on-hand inventory will refer to the material associated
with trade units unless otherwise specified.

All of the graphs in each row of Fig. 8 exhibit identical be
havior before week 21. This is to be expected, since before
the first orders come in on week 21, the situation is the
same for all cases. Only as different amounts of orders come
in on or after week 21 is the situation different for different
values of A/F.

Fig. 8a shows the order forecasts and actual orders for ref
erence. The ratio of the values of the two lines at any time in
the graph is equal to A/F.

Fig. 8b shows the backlog and actual orders time series on the
same scale. Notice how the backlog increases spectacularly
as A/F goes beyond 125%. Fig. 8c, which displays backlog in
terms of mature demand, shows that for an A/F value of

Nonconsignment

Consignment

5 0 7 5 9 5 1 0 0 1 0 5 1 1 0 1 2 0 1 2 5 1 5 0 1 7 5 2 0 0

(a) A / F (% |

Fig. 7. EOL (end-of-life) inventory for experiment set la.

4 0 T

Â± 30
S
S
â€¢z
2 0 -

10-

5 0 7 5 9 5 1 0 0 1 0 5 1 1 0 1 2 0 1 2 5 1 5 0 1 7 5 2 0 0

(b)

92 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

A/F = 50%

Order Forecast

Actual Orders

Backlog

Actual Orders

B a c k l o g /
M a t u r e D e m a n d

,â€ž
RPI

Actual Orders

WIP

Actual Orders

FGI

Actual Orders

(g)
On-Order Material

(h)
Mater ia l Ordered

Actual Orders

Committed Inventory

On-Hand Inventory

Actual Orders

Shipments

(k l
Shipments

On-Time Shipments

Average
Order-to-Delivery

Time
(m)

% On-Time Del iver ies

0 2 0 4 0 6 0
W e e k s

A/F = 75%

/ " V

0 2 0 4 0 6 0 8 0
W e e k s

A/F = 100%

..n....

\

0 2 0 4 0 6 0
W e e k s

A/F = 125S

r \

0 2 0 4 0 6 0 8 0
W e e k s

150Â°i A/F = 175Â°.

O 2 0 4 0 6 0 8 0
W e e k s

O 2 0 4 0 6 0 8 0
W e e k s

n

2 0 4 0 6 0
W e e k s

n
'Â§

i
o

4

2

o

60 g
405
200-
0

Fig. set la. series data for various values of A/F for experiment set la.

200% the backlog can be as much as eight weeks of mature
demand. Backlog measured in terms of weekly mature de
mand is constant for low A/F. It increases for high A/F be
cause products cannot be shipped as fast as orders come in.

Fig. 8d shows that the EOL RPI level falls as A/F increases.
In addition, the general level of RPI as a function of time
falls as A/F increases until A/F is greater than 150%, when
the RPI level actually appears to rise as A/F increases. The
reason is that because of shortages we order more of all

material to build the shortfall in units. The short lead time
parts show up first, but cannot be used because of a short
age of the long lead time parts with minimal safety stock. An
analysis of the results shows that the critical part is A.3.

Fig. 8e shows that the WIP profile increases as A/F increases.
This is expected, since WIP is directly related to the ship
ments flowing through the system, and the shipments are
directly related to orders, which are directly related to A/F.

December 1994 Hewlett-Packard Journal 93

© Copr. 1949-1998 Hewlett-Packard Co.

Remember that this is true only when the production capac
ity constraint is not reached. If production capacity is only a
little greater than forecast, high demands would result in the
level of WIP being capped at some limit but spread out over
time.

Fig. 8f shows that the FGI level is identical for all values of
A/F less than 100%. For A/F greater than 100%, the FGI gets
eaten away slowly because the rate of replenishment of new
units does not keep up with the shipments because of under-
forecasting. However, since FGI safety stock levels are based
on two weeks of 13-week average forecast and the forecasts
used are identical in all the experimental runs, the peak FGI
tends to be the same.

Fig. 8g, on-order material, shows initial large spikes for
material for RPI and FGI safety stock, followed by a drop
after the material for safety stock has been delivered. Sub
sequently the profile shows an increasing level over time as
A/F increases.

Fig. 8h, material ordered, shows the same spikes before week
21 that we have seen before. Again the material ordered
versus time increases as A/F increases.

Fig. 8i shows that, in general, committed inventory after
week 21 is higher for higher A/F and stretches out farther
over time. For lower A/F the committed inventory is lower
in the early part of the life cycle, but there is an increase in
EOL inventory.

Fig. 8j shows that for A/F less than 100%, shipments follow
the order stream nicely. High A/F (high demand) values
cause the initial orders to be filled as specified, but subse
quently shipments drop off and then catch up. The product
shipment over time is smooth when A/F is less than or equal
to 100%. When A/F is greater than 100%, during the early
part of the life cycle the orders are filled as they come in. As
the FGI safety stock is consumed, the shipments fall to the
forecasted levels, and then subsequently tend to rise to the
actual order levels.

The on-time shipment graphs in Fig. 8k show that initial
orders are delivered on time in all cases. For A/F less than
100% (forecasts are high), all orders are delivered on time.
For A/F greater than 100% (forecasts are low), initial orders
are delivered on time, but subsequent orders are late. As A/F
increases beyond 100%, both the percentage and the total
dollar value of on-time shipments (and consequently deliver
ies), go down, and the late orders never catch up. On-time
delivery graphs, which are not shown, would be identical to
on-time shipment graphs shifted by one week.

As expected, because of the policy of shipping as late as
possible, Fig. 81 shows that average order-to-delivery time
never goes below four weeks, but increases with time up to
18 weeks as A/F increases to 200%. Fig. 8m, showing the
percentage of on-time deliveries, is consistent with Figs. 8k
and 81 in terms of on-time deliveries.

How Late Are Late Orders? How late are the late orders and
how many orders are delivered on time (namely, within four
weeks of being ordered)? These questions are answered in
Fig. 9, which shows the dollar volume of deliveries and the
order-to-delivery time. For A/F less than or equal to 100%
(forecasts high or demand low), all orders are delivered on
time. For A/F = 105%, most orders are delivered on time. For

A/F = 150% and 200% (forecasts low), some orders are deliv
ered on time, and a large fraction of orders are delivered
late. Furthermore, for high A/F values, even though the total
volume of shipments is higher, the amount of on-time ship
ments and deliveries actually goes down. Some orders are
delivered as much as 14 weeks late, that is, 18 weeks after
receipt of order. This 14 weeks is the upper limit of lateness
for this particular model and data configuration. No matter
how high A/F gets, orders will never be later than 14 weeks.
The explanation for this is given in Appendix IV-5.

Interpretation of Results. In this model, forecasts were not
updated on the basis of orders. In reality, when orders are
very much under or over forecasts, there will be pressure to
change the forecasts. If further information on the forecast
ing process is available, this can be incorporated into the
model. Another study that could be done is to see what hap
pens if we treat the initial orders as early indicators of the
whole life cycle, that is, after some period of time, we revise
the forecasts so that they more closely represent the volume
of actual orders. On the other hand, if the life cycle is very
short, it may turn out that revising the forecasts when the
first orders come in may not have an impact on system re
sponse. We have established a nominal trapezoidal product
life cycle, but this could be changed in various ways. It
could be stretched out horizontally to increase the life cycle
(as is done in subsequent experiments), or vertically, to
show a higher level of product demand.

Customers need to receive the products within a reasonably
short time, or they might cancel the order. For the model,
we assume that customers are willing to wait patiently as
long as it takes for the manufacturing facility to produce and
ship the products, and that they will not cancel the order.

The purpose of this detailed discussion is to show how
changing the one factor, A/F, can have different impacts on
different metrics, and how this might affect different parties
interested in the outcomes. A/F is partly under the control of
customers, and partly under the control of marketing, as
suming that greater effort will provide a better estimate of
orders. It shows that if A/F is low, order processing and
shipping would have excellent performance metrics in get
ting products out in a timely fashion, whereas material pro
curement would be in the situation of trying to explain why
there is so much material in the plant, and marketing and
the plant manager may have to explain why orders are
below target. On the other hand, if A/F is high, customers

Order-to-Delivery
Time in Weeks

15-r

1 0 0 1 0 5 1 1 0 1 2 0 1 2 5 1 5 0 1 7 5 2 0 0

Fig. 9. la. by order-to-delivery time in weeks for experiment la.

94 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Factor Descr ip t ion

A c t u a l / F o r e c a s t , %

Part Safety Stocks
Class A 4K weeks
Class B 8K weeks
Class C 16K weeks

Life Cycle, L+6 months

Availability, weeks

Percentage value of 6, 10, and
14-week lead time parts in the
product (r%,s%,r%)

Table I I I
Range of Values of Factors for Di f ferent Exper iment Sets

P a r a m e t e r N a m e N u m b e r o f
Di f ferent Values

Values

A/F

K

11 A/F(%) = 50 .75 ,95 .700 .105 ,110 .120 ,125 ,
150.175.200

5 K = 0 . 5 . 0 . 7 5 J . 0 , 1 . 5 , 2 . 0

L = 0,3,6, 12, 18

Â¥=1,2,4,8,12

rrr = (100,0,0),rst = (25,40,35),

sss = (0,100,0), ttt = (0,0,100)

Experiment 0 (nominal case): Values shown in italics.
Experiment Set 1 a (uncontrollable factor A/F varied]: Values of A/F varied as shown. Values of other factors same as experiment 0.
Experiment Set 1 0. (A/F = 1 00%. controllable factors varied): Values of factors other than A/F varied as shown in turn. Values of other factors same as in Experiment 0.

Experiment Set 2 (dual-factor experiments): Values of factor A/F and one other factor varied in turn. Values of other factors same as in Experiment 0.
Experiment Set F (all factors varied): Values of all five factors varied as shown.

end up with EOL inventory of C parts. When K is greater
than 1, EOL RPI increases. When K is 2, we carry 16 weeks
of B parts and EOL RPI includes both B and C parts.

will be screaming for products, order processing and ship
ping will be trying to placate angry customers, production
will be under pressure to put out products faster, and mate
rial procurement will have to explain the perpetual shortage
of raw material A.3 while other material is piling up.

Experiment Set Ib:
Controllable Factors Varied with 100% A/F
We next look at the effect of changing the factors over
which the manufacturing enterprise has some control. In the
single-factor experiments, the variation of each factor is
summarized in Table III. Except for the set of runs where
A/F varied as in experiment la, A/F was set at 100%.

Changes in safety stock levels can be characterized in many
ways â€” for example, for each part individually. We chose to
multiply the safety stock levels of experiment 0 by a con
stant multiplier K whose value ranged from 0.5 to 2.0. Life
cycle lengths were changed by using values of L to result in
life cycle lengths L+6 between 6 and 24 months.

Availability Y was varied from 1 week to 12 weeks (it cannot
be less than 1 week because of the 1-week shipment transit
time). Y = 1 requires off-the-shelf delivery and implies a total
build-to-forecast strategy. As Y increases, the production
strategy shifts from build-to-forecast to build-to-order. From
prior considerations, an availability Y of 18 weeks will result
in on-time delivery of every order regardless of forecast
quality.

While there are different ways to characterize modification
of part lead times â€” for example, changing it for each part â€”
we chose to change part lead times by changing the percent
age of parts with lead times of 6, 10, and 14 weeks to be
100% in turn.

EOL Results. The EOL inventory graphs for A/F = 100% are
summarized in Fig. 10. EOL inventory increases as safety
stock increases; the results are consistent with experiment
0. When K is 0.75, we carry 12 weeks of C parts and there is
no EOL RPI. When K is 1, we carry 16 weeks of C parts and

Fig. lOb shows that product life length has no impact on
EOL inventory. This is to be expected in the model because
increasing L stretches out the middle portion of the time
series graphs, and the behavior towards the end of life tends
to be the same in all cases when L increases (illustrated in a
future graph, Fig. lib). For short L, the effect of the rising
demand in the beginning of the life cycle affects the behavior
at the end of the life cycle. Fig. lOc shows that as availability
Y is shortened, EOL inventory increases, that is, quoting
shorter lead times to customers exposes us to more risk of
EOL inventory. This is intuitively correct; the longer the
quoted availability, the longer we can afford to wait before
ordering material.

Part lead time has no impact on EOL inventory when A/F =
100% (Fig. lOd).

Other Results. Fig. 11 shows the inventory measures over
time is different factors are varied. Delivery performance is
not shown because for A/F = 100%, delivery is always 100%
on time.

Fig. lla shows the inventory measures over time as a func
tion of raw material safety stock multiplier K. The heights of
the three initial spikes for material orders increase as K in
creases, directly impact RPI and on-order material, and indi
rectly impact on-hand and committed inventories. In general,
the higher the K, the higher the inventory levels, including
EOL inventory, which is the tail of the committed inventory
graph. The on-order material level before the start of pro
duction increases as K increases. Keeping all the other fac
tors constant, there is no change in backlog or delivery
performance, and these are not shown in Fig. 1 la.

Fig. 1 Ib shows the inventory measures over time for varying
the product life cycle by changing L from 0 to 18 months.
This is one of the less interesting graphs, shown here for

December 1994 Hewlett-Packard Journal 95

© Copr. 1949-1998 Hewlett-Packard Co.

Nonconsignment
Consignment

200

-5 1.5 -r

g 1.0 --

0.5+

(b)

03 06
L (Months)

12 18

1 . 5 - T

1 . 0 - -
t
a 1.0

Ã­ 0.5"

2 4

Y (Weeks)
12

(c) (d)

(1 0 0 , 0 , 0) (2 5 , 4 0 , 3 5) (0 , 1 0 0 , 0) (0 , 0 , 1 0 0)
I t (% 6-week, % 10-week, % 14-week lead t ime parts)

Fig. for EOL Inventory by single-factor changes with A/F = 100% for experiment set Ib. (a) Effect of material safety stock (5 runs),
(b) Effect of product life (4 runs), (c) Effect of availability (5 runs), (d) Effect of lead time (4 runs).

completeness. EOL inventory is the same in all cases. How
ever, because total PCFT increases, EOL inventory is a
lower percentage of PCFT as L increases.

Fig. lie shows the inventory levels over time for varying
quoted availability Y. As Y increases, after the same three
initial spikes, the amount of material ordered gets delayed,
and the on-order material graphs get stretched to the right.
The committed inventory graphs are also stretched into the
future. The committed inventory is lower and the EOL in
ventory (tail of the committed inventory graph) tends to
decrease. The delivery profiles are shifted out into the
future and the backlog levels are higher.

Fig. lid shows the time responses of the inventory metrics
as part lead times vary. Notice the change in shape of the
material ordered graphs. For It = (25,40,35), there are three
large and three small spikes, whereas for the other cases,
there is one large spike and one small spike. As lead time
increases, the material needs to be ordered earlier. On-order
material increases as the lead time increases. On-hand inven
tory does not change. There is no impact on EOL inventory,
order backlog, or on-hand inventory (RPI+WIP+FGI) as long
as A/F remains constant at 100%.

Interpretation of Results. This set of results shows how each
organization in the manufacturing enterprise can improve its
performance metrics assuming that it relies on the forecasts
given as being accurate and does not try to second-guess
them. For example, if material procurement is under pressure
to lower inventory levels, it would naturally try to reduce K.
On the other hand, order processing and shipping would
prefer to reduce Y to reduce having to deal with impatient
customers.

Experiment Set 2: Dual-Factor Experiments
In this experiment set, we varied two factors in combination
and attempted to observe the effects. However, instead of
looking at all combinations, we looked at the impact of each
of the other factors when A/F changed. This enabled us to
see the effect of the controlled action in various situations
of customer ordering behavior.

Results of Two-Factor Experiments. Fig. 12 summarizes the
information on EOL and on-time deliveries as A/F and other
factors are varied. Fig. 12a shows that as K increases, there
is higher exposure to EOL inventory as A/F decreases. How
ever, increasing K in general gives better delivery perfor
mance by shortening the average order-to-delivery time as
A/F increases above 100%. Below an A/F value of 100%, K
does not have an impact on the already excellent delivery
performance shown by 0% late deliveries.

Fig. 12b shows that as L increases, the total shipments for a
given A/F increase. For long L, the absolute volume of on-
time deliveries initially increases as A/F increases. As A/F
keeps on increasing past 100%, the absolute volume of on-
time time decreases. The average order-to-delivery time
is not affected very much by L, and the EOL inventory is im
pacted insignificantly. The absolute amount of EOL inventory
seems to depend little on L except when L is 0. For L = 0, the
long lead time and high safety stock parts may actually cause
most of the material for life cycle use to be ordered before
the first customer order is received. The percentage of EOL
writeoff decreases for a given A/F as L increases, reflecting
the fact that the EOL writeoff is a smaller percentage of the
total shipments as total shipments increase.

96 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Committed Inventory

On-Hand Inventory

K = 0.5

L = 0 Months L = 3 Months L = 6 Months L = 12 Months L = 18 Months

Order Forecast

Actual Orders J â€¢',
Material Ordered

Actual Orders

On-Order Material /V
FGI

Ac tua l Orde rs (\
2 =

RPI
Actual Orders

10 g

Committed Inventory

On-Hand Inventory
2 1
0

Ib)
5 0 1 0 0
W e e k s

5 0 1 0 0
W e e k s

5 0 1 0 0
W e e k s

5 0 1 0 0
W e e k s

0 5 0 1 0 0
W e e k s

Y = 1 Weeks 2 Weeks = 4 Weeks Y = 8 Weeks Y = 12 Weeks

Order Forecast

Actual Orders

i

0 a

Mater ia l Ordered
Actual Orders

On-Order Mater ia l

Committed Inventory
On-Hand Inventory

Del iveries

Actual Orders Z
Backlog

Actual Orders
0 2 0 4 0 6 0 8 0 0 2 0 4 0 6 0 8 0 0 2 0 4 0 6 0 8 0 9 2 0 4 0 6 0 0 2 0 4 0 6 0 8 0

W e e k s

Committed Inventory

On-Hand Inventory

Fig. varying Inventory measure time series for experiment set Ib: varying different factors with A/F = 100% (order forecast graph coincides
with (5 (d) graph), (a) Varying safety stock levels (5 runs), (b) Varying life cycle (5 runs), (c) Varying availability (5 runs), (d) Varying
lead time (4 runs).

December 1994 Hewlett-Packard Journal 97

© Copr. 1949-1998 Hewlett-Packard Co.

Shipments

On-Time Deliveries

K = 0.5 K = 0.75 K = 1 K = 1.5 K = 2
15 Â«
10 .2
5i n *Â»

Average Order-to-Delivery
Time

EOL Inventory

EOL% Writeoff

% Late Deliveries

(a)
1 0 0 1 5 0 2 0 0 5 0 1 0 0 1 5 0

A / F I M
2 0 0 5 0 1 0 0 1 5 0 2 0 0 O 1 0 0 1 5 0 2 0 0 5 0 1 0 0 1 5 0 2 0 0

L = 0 Months L = 3 Months L = 6 Months L = 12 Months L= 18 Months

Shipments

On-Time Deliveries

30 =
2 0 J
1 0 i

10

A v e r a g e O r d e r - t o - D e l i v e r y
T ime

10 .

EOL Inventory

EOL % Wr i teo f f

% La te De l i ve r i es

6 0 =
4 0 S

(b)
5 0 Ã O O Ã 5 0 2 0 (5 0 Ã Ã ’ Ã “ " Ã 5 Ã “ 2 0 (5 0 1 0 0 1 5 0 2 0 0 5 0 1 0 0 1 5 0 2 0 0 5 0 1 0 0 1 5 0 2 0 0

Y = 1 Weeks Y = 2 Weeks Y = 4 Weeks Y - 8 W e e k s Y = 12 Weeks

Sh ipmen ts

On -T ime De l i ve r i es

1 0 . 2

i l

A v e r a g e O r d e r - t o - D e l i v e r y
T ime

10 Â»

11
EOL Inventory

20
1 5 . *
1 0 S

5 5

EOL % Wr i teo f f

% La te De l i ve r i es

si
50 1 0 0 1 5 0 2 0 5 0

A/F (%)
1 0 0 1 5 0 2 0 0 i O 1 0 0 1 5 0 2 0 0 Ã O 1 0 0 1 5 0 2 0 0 5 0

A / F (%) T A / F (% >
1 0 0 1 5 0 2 0

A / F (%)

It = 100, 0, 0 It = 25, 40, 35 It = 0, 100, 0 It = 0, 0, 100

Shipments

On-Time Deliveries

10 Â¡2

Average Order-to-Delivery
Time

i - b jÂ¿

U
EOL Inventory

10

0

EOL % Wr i teo f f

% La te De l i ve r i es

80 _
60 g
40 u
20 Â£
O Â°-

(d)
50 1 0 0 1 5 0 2 0 0 5 0

A/F IÂ»
100 1 5 0 2 0 0 5 0 100 150 20050 100 150 200

Fig. 12. EOL and shipment metrics as functions of A/F for experiment set 2 as each of the other factors is varied, (a) K varied, (b) L varied,

(c) Y varied, (d) It varied.

Fig. customers shows that increasing Y is desirable for reducing the in customers waiting for long periods of time, which in prac-
percentage 1, late deliveries and reducing EOL inventory, but tice might lead to possible order cancellations. When Y = 1,
that the order-to-delivery order-to-delivery time increases, resulting the worst average order-to-delivery time is lower than the

98 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

best average order-to-delivery time when Y = 12 weeks. This
is an example of a situation in which trying to reduce late
deliveries by quoting a longer lead time actually leads to
longer average delivery times and possibly lower customer
satisfaction.

Fig. 12d shows that if all other things are kept constant,
longer vendor lead time leads to poorer performance when
A/F is greater than 100% and increased EOL exposure when
A/F is less than 100%. For It = (100,0,0), that is, lead time for
all parts is 6 weeks, A/F has little impact on average order-
to-delivery time over the given range. Furthermore, the per
centage of late deliveries is generally lower than for the
other values of lead time. If Y could be set to 12 weeks for
the case It = (100,0,0), no orders will ever be late, regardless
of the value of A/F. Applying reasoning similar to that on
page 82, the policy of waiting for customer orders to arrive
before we order parts could lead to an order-to-delivery time
of nine weeks, which is shorter than 12.

Observations. We have looked at the interactions of A/F with
the other factors in our experiments and noticed the com
plexity of the interactions. The results of experiment set 2
show the impact of uncertain customer behavior on various
organizations within the enterprise. In an uncertain world
where A/F is outside our control, it would appear that in
creasing K and L, reducing It, and increasing Y would in
crease on-time deliveries, which is desirable from the point
of view of the manufacturing enterprise. However, increas
ing Y will tend to increase order-to-delivery times and back
log volumes, which could potentially lead to poorer cus
tomer satisfaction and high backlogs for order processing
and shipping to deal with.

The other problem of taking these actions is that while
delivery performance for the enterprise improves in general,
different people and organizations are responsible for in
fluencing and setting the values of K, Y, and It and obtaining
the reward of improved metrics. Increasing K results in bet
ter availability but increased write-off, especially if A/F is
below 100%. One individual owns K, another individual owns
Y, the vendors and R&D together determine It, marketing
owns L, and customers determine A/F. Any one of these can
influence the other measures unilaterally, so it is necessary
to coordinate the efforts of increasing some parameters and
reducing others simultaneously. For example, material pro
curement could reduce K on the assumption that it will re
duce RPI, committed inventory and EOL inventory, and this
would be correct if A/F were 100%, but if A/F came in
greater than 100%, the overall delivery performance would
be poor. On the other hand, if R&D chose longer lead time
parts because vendors demanded a premium price for short
delivery times, EOL inventory would tend to be higher re
gardless of what value of K was chosen by material procure
ment. If quoted availability Y were reduced from 4 weeks to
1 week, inventory levels would tend to go up.

We could also consider the effects of the four other factors
on one another, and that would give rise to another six com
binations. These discussions are outside the scope of this
paper.

Experiment Set F: All Factors Varied
In experiment 0, we looked at the results of one simulation
run. In experiment 1, for each factor we looked at four to

eleven runs. In experiment 2. we looked at 44 to 55 runs for
each combination of A/F and the other factor. As we study
the effects of multiple factors, the number of runs increases
exponentially. Complexity increases not only in tenias of
number of simulation runs considered but also the way in
which we analyze the data. A full factorial experiment, that
is. one in which all the factors are varied in all combinations
given here, requires the analysis of 5500 runs. While it is
easy the specify different levels of factors, the analysis of the
amount of data generated as a result of increasing the num
ber of factors becomes intractable. For example, if all of the
time series graphs of a single run were plotted on one sheet
of paper each, we would have a pile of printouts eleven
reams of paper thick. To do the analysis, we used a graphing
technique supported in S-Plus called a design plot, t

Design Plots. Fig. 13 shows the design plots of the means of
each of four different metrics at each of the levels of the five
factors. The four metrics are EOL inventory, EOL inventory
percentage, total on-time deliveries, and percent on-time
deliveries. Each plot reflects one metric and summarizes the
value of that metric for 5500 runs. The point labeled A is the
mean of the EOL values of all experimental runs with A/F =
50% (mean of 500 values). A longer line indicates greater
sensitivity of the metric to that factor over the range consid
ered, all other things being equal. For example, A/F appears
to have the strongest impact on EOL inventory, EOL per
centage, and on-time shipments. On the other hand, the ma
ture demand period L has a strong influence on the total
dollar volume of on-time product deliveries.

An interesting point is that mean EOL and EOL percentage
decrease steadily as A/F increases. On-time deliveries in
dollars increases up to a point as A/F increases to 125%, but
subsequently decreases (point B in Fig. 13c). The explana
tion is that the safety stock policy gives some protection for
on-time delivery in dollars when A/F > 100%. On-time deliv
eries as a percentage remains at 100% for A/F< 100% and
subsequently decreases as A/F increases over 100% (point B'
in Fig. 13d).

Another interesting behavior is that of the points marked C
and D. The fact that the mean values of the metrics appear
close together for the (25,40,35) case and the (0,0,100) case
suggests that the length of the maximum lead time of parts
in the bill of material has a very strong influence on on-time
deliveries if all other factors are kept constant.

Further Analysis. We have barely scratched the surface of
what is possible in analyzing the simulation data of this one-
level analy of material, single-product situation. Further analy
sis and display of the variables is possible through scatter
plots of pairs of variables and responses, and the use of fac
tor plots which show greater detail. For example, further
analysis could try fitting a statistical model using least sum
of squares of residuals for the responses, separately and
jointly. This was not done for this paper.

Experiment Set M:
Multiple Product Life Cycles with Part Commonality
This set of experiments showed the impact of part com
monality across multiple product life cycles. The product

t We call is a design plot because it is generated by the S-Plus function plot.design There is no
standard name of this plot. In the literature.23 it is referred to as a "a plot of the mean response
for each level of each factor "

December 1994 Hewlett -Packard Journal 99

© Copr. 1949-1998 Hewlett-Packard Co.

K A / F L Y I t

Factors

Note: I t = (% 6-week, % 10-week, % 14-week lead t ime parts) ,
rrr indicates It = (100,0,0)
sss indicates It = (0,100,0)
ttt indicates It = (0,0,100)
rst indicates It = (25,40,35).

Fig. varied Design plots for experiment set F: all five factors varied (5500 runs).

cycles overlapped in time, that is, one started before the
preceding one finished, and we looked at a series of scenar
ios that differed in the values of common parts in adjacent
products. These were the assumptions:

â€¢ There were four products: Adder-1, Adder-2, Adder-3, and
Adder-4.

â€¢ Part commonality occurred between adjacent products only.
â€¢ Demand increased 30% for each new product.
â€¢ The unit cost of each product was 85% of the unit cost of

the previous product.
â€¢ Each product life cycle was 6 months, or L = 0. This means

that the complete cycle for each product is 6 months, or 24
weeks.

â€¢ There was a one-month overlap between products, that is,
the first month of demand of a new product begins in the
last month of demand of the previous product. This implies
a total lifetime of the product family of 21 months, or 84
weeks.

â€¢ Other factors and conditions remained as in the nominal
case.

Fig. 14 shows a graphical representational of the part
commonality between adjacent products for the different
experiments. In particular, since part commonality for ex
periment M-0 is 0% across adjacent products, there are no
shaded areas. A fuller discussion of part commonality is
given in Appendix III.

Fig. 15 shows the forecasted and actual order patterns for
the four products.

Fig. 16 shows the RPI levels for parts used in the different
products in Experiment M-0 (no part commonality). Con
signment inventories are not shown to avoid clutter in the
graphs. The WIP, FGI, products ordered, PCFT and delivery
profiles are identical for all runs in experiment set M. How
ever, each of the runs has a different profile for RPI. Note
the EOL inventory of each set of parts.

Fig. 17 shows the consignment and EOL inventory levels for
each run. As expected, the consignment level increases by
product because the forecasted and actual orders increase
by product. The consignment value for a particular product
is the same across experiments. The EOL inventory for
Adder-4 is the same in all the experiments. There does not
appear to be any correlation between part commonality and
the EOL inventory. A correlation exists between part ob
solescence for a product and the EOL inventory for that
product.

Fig. 18 shows the part obsolescence across products for each
of the experiments. Notice how the EOL for each product in
Fig. 17 is proportional to the obsolete parts for each product
in Fig. 18.

Traditionally, in considering part commonality, design prin
ciples suggest using as many parts as possible from the old
product. However, the results above suggest that from the
point of view of EOL inventory, the amount of leftover mate
rial at the end of each product is proportional to the percent
age of the part value of the obsolete parts in the old product.

100 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

M-5

S1 0,000

Adder-2
58,500

Adder-3
57,225

Adder-4
56,141

20Â°=

80Â°:

100%

100%

100%

â€¢ Parts Common to Adder- 1 and Adder-2
E3 Parts Common to Adder-2 and Adder-3
FT1 Parts Common to Adder-3 and Adder-4
I | Par ts Unique to Product

It further suggests that the important consideration from the
point of view of EOL inventory is that the percentage value
of obsolete parts at the end of each product's life should be
minimized.

Discussion

In this section we discuss specific results of the Simple
Model, enhancements to the EMS system to do more de
tailed analysis, the role of the Simple Model in enterprise
modeling and simulation, and optional ways of using
enterprise modeling and simulation.

The major results can be summarized as follows:
â€¢ Rational material ordering and safety stock policies designed

to reduce inventory to zero at the end of the product life
cycle can give rise to leftover material if customers orders
exactly according to forecast.

â€¢ System behavior and the impact on different metrics such
as write-off, delivery times, and performance deliveries can
be quantified with respect to the factors of forecast quality,
safety stock levels, material lead times, product life cycles,
and quoted availability individually as well as in combination.

2.5

2.0- -

5 1 . 5 -
Â¡2

Fig. 14. Part commonality be
tween products across experiment
set M. Demand (width of bars)
for each product is 30% higher
than for the previous product.
Unit cost (length of bars) is 85%
of previous product cost.

â€¢ Forecast quality, which is influenced by the external environ
ment, has a major effect on the metrics of interest. For ex
ample, high inventory levels may occur when actual orders
come in too high or too low.

â€¢ The influence of part commonality on write-off can be
quantified; this suggests an alternative way of looking at the
practice of using common parts in a series of products.

What have we learned from the simulation runs on the Simple
Model? We have derived a set of specific insights into system
behavior under a variety of operating conditions using a
methodology of generating behavior over time. We went
through a large number of scenarios and showed how to
gauge system behavior from the perspectives of different
parties.

Interpreting the Results
The model results are sensitive to the underlying assump
tions. Since we assumed the vendors always delivered on
time in the simulation, the safety stocks in effect guarded
only against demand uncertainties. We examined in detail
the situation of order forecast bias with zero variance. This

0.5 --

0.0

20

Adder-1
Orders

-1 J Adder-2 1 Adder-3 1
r s I O r d e r s O r d e r s |

8 0 8 0
W e e k s

120 140
140

W e e k s

Fig. 15. Orders for different products for experiment set M.
Fig. for Rl'i levels for the different parts as a function of time for
experiment M-0 (no part commonality).

December 1994 Hewlett-Packard Journal 101

© Copr. 1949-1998 Hewlett-Packard Co.

6 T

A d d e r - 1 - 2 - 3 - 4 A d d e r - 1 2 - 3 - 4 A d d e r - 1 - 2 - 3 - 4 A d d e r - 1 - 2 - 3 - 4 A d d e r - 1 - 2 - 3 - 4 A d d e r - 1 - 2 - 3 - 4
M O M - 1 M - 2 M - 3 M - 4 M - 5

f C o n s i g n m e n t N o n c o n s i g n m e n t

Fig. amounts Consignment and EOL inventory by product for different amounts of part commonality for experiment M-0.

is not an inherent limitation of the model, but reflects only
the deterministic circumstances in which we ran the simula
tions. However, the results indicate that even if production
and supplier lead times are completely predictable and sup
pliers deliver on schedule, interactions and delays within the
system lead to long lead times being seen by the customers
when there is underforecasting of customer orders. The
manufacturing enterprise needs to take this into account
and start looking elsewhere â€” merely making the production
faster and more efficient is not sufficient.

The results so far have only scratched the surface of the
analysis and interpretation possibilities. Other analysis
could be done by varying ship times, FGI safety stock levels,

production planning frequency, material ordering frequency,
order filling policies, and uncertainty and time delays of infor
mation flow. This increases the number of runs and the quan
tity of data collected as well as the complexity of analysis,
but would provide a richer set of relationships.

The Simple Model example may have left the reader with
the impression that the current EMS system can deal with
only simple or trivial cases. One goal of enterprise modeling
and simulation research activities is to address successively
more complex interactions and to model real-world intrica
cies more closely. In support of that goal, the following sec
tions discuss subsequent and future enhancements to deal
with other issues that have been raised.

M-o M-1 M - 2 M - 3 M - 5

Adder-1
$10,000

Adder 2
$8,500

Adder 3
$7,225

Adder-4
$6,141

20%

100%

100%

100%

100%

J Par ts Common to Succeeding Product

^] Parts Obsolete after this Product

Fig. 18. Parts obsolescence be
tween products across experiment
setM.

102 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Forecasts

Uncertainty and Variability. In the experiments described, the
Simple Model was run under deterministic circumstances.
Demand values and process times were constant across a
particular run for convenience of understanding, and we
considered uncertainty in the form of forecast biases where
demands were a fixed multiple of forecasts over the period
of the forecasts. Other forms of uncertainty could include
the actual life cycle being different from the forecasted life
cycle. Uncertainly in process times could be handled by
using two values for process times: the planned process
time for planning purposes and the actual time for execu
tion. This reflects the situation when actual process times
are uncertain and different from the estimated times for the
process. For example, the build time for planning purposes
could be two weeks, but it could turn out that the actual
build time was one or three weeks.

We did not deal with variances that might occur when the
total demand is forecasted accurately but the week-to-week
demand fluctuates widely. Furthermore, variances of process
times (e.g., delivery times from vendors and assembly times),
yields (e.g., defective units), and build times for individual
units were not modeled.

Dealing with variances is fairly straightforward once they
are characterized. It requires using random number genera
tors and multiple runs starting with different random num
ber seeds â€” the current practice of discrete event simulation.
There are three primary costs associated with this: the in
crease in data collection to characterize the variances of
different processes, the increase in computational effort,
and the increase in analysis effort. Only the data for the

Fig. 19. Material and order flow
diagram of a simple multientity
distributed enterprise.

model needs to be changed to reflect variances. The model
structure itself requires no changes.

Distribution and Multisite/Multiorganizational Interaction. The
product distribution function and interaction between multi
ple sites were not considered in the Simple Model. Multisite
and multiorganization interactions have been implemented
by enclosing cloned versions of a slightly enhanced manu
facturing enterprise model as shown in Fig. 19. The enhance
ment requires the manufacturing facility to generate and
transmit its projected material requirements in addition to
material orders.

Capacity and Supply Limitations. In current practice, build
plans and material plans are sometimes computed ignoring
production capacity and vendor limitations. In some cases,
these plans are adjusted to conform to production capacity
and vendor supply constraints, such as a minimum order
quantity or a maximum that can be ordered in a period. In
other cases, these limitations are observed at plan execution,
that is, at production, or when deliveries are not received
from vendors when expected. There is no unique way of
dealing with these limitations.

Implementing capacity limitations in the current Simple
Model is straightforward during production. To deal with it
during planning requires the inclusion of two classes of ca
pacity constraints in the production planning algorithms: the
capacity restrictions for an individual product, assembly, or
subassembly as well as total capacity, and the rate at which
production capacity can increase.

December 1994 Hewlett-Packard Journal 103

© Copr. 1949-1998 Hewlett-Packard Co.

In reality, when prospective capacity limitations are detected,
production and manufacturing line design and engineering
considerations determine the rate of capacity expansion.
When gross overcapacity is detected, consideration is given
to reducing costs by reducing capacity. While currently the
EMS system cannot model the strategic decisions of
whether to expand capacity or forego extra orders, it can
model the consequences of picking either of these actions.

Interaction of Multiple Products. The Simple Model assumed
a single product with unconstrained production capacity.
Consequently, a single unavailable part stops production of
that product. Since this phenomenon also occurs with multi
ple products with no common parts, multiple products with
no common parts can be analyzed by adding up the effects
of the individual products separately. The reader familiar
with linear systems will recognize this as the principle of
superposition.

Adding up the results would also be valid for multiple prod
ucts with common parts with no part shortages as in experi
ment set M. It would not be valid for multiple products with
common parts, resources, and supply and production capac
ity limitations under scarcity conditions. When a part or
resource is in short supply, decisions must be made on how
to allocate the parts and resources based on some simple
heuristic or optimal allocation scheme.

Multilevel Bills of Materials. The Simple Model dealt with a
single-level BOM. Further expansions allow an arbitrary
number of levels of BOM to be passed as data to the model.
A seven-level BOM for a real product has been implemented
and tested successfully. This capability to pass BOM as data
allows us to make different runs with different product
structures (as for example in experiment set M) without
modifying the model structure.

Connection to a Mathematical Programming or Optimization
Package. The Simple Model focused on applying simple algo
rithms for planning. The production planning and material
procurement processes were initially implemented as the

explicit closed-form solutions derived in Appendix I. It was
realized subsequently that these algorithmic closed-form
solutions were the solutions to the linear programming
problem formulation. As more sophisticated planning deci
sion techniques are proposed and studied, implementing the
algorithmic solution for each new technique becomes im
practical. An alternative approach is to formulate the plan
ning process as an optimization problem and separate its
solution from the formulation. This leads to concentrating
on ways to better formulate the problem, leaving the solu
tion to a separate process such as a mathematical program
ming package. This could provide a means of rapidly testing
alternative strategies for production planning (e.g., global
production planning across the entire enterprise versus
local production planning at each site).

R&D, Marketing, and Cash Flow. Fig. 20 shows a proposed
enterprise model at a broader scope for the next level of
complexity. It generalizes Fig. 3 which focused mainly on
manufacturing activities. Modeling the marketing function
(and associated activities such as the forecasting process,
pricing issues, and product obsolescence) could help show
the impact of marketing decisions and activities on the over
all system response as well as the impact of using current
orders to project future forecasts. Modeling the R&D func
tion could provide insights on impacts on time to market,
with product development time taken into account in addi
tion to build time. Modeling these functions can help us deal
with situations that require coordination of marketing, R&D,
and manufacturing activities and can help identify the exis
tence of leverage points for process improvement. The
blocks shown in the diagram represent functions, and each
could describe multiple instances of that function. For ex
ample, the block labeled manufacturing could represent
multiple manufacturing sites interacting with one another.

The primary flows in the Simple Model concentrated on infor
mation (e.g., orders, forecasts, plans, and status information),
material, and control (e.g., triggers that cause activities like

Enterprise
Quality, Lead Time,

and Cost Information
Market ing

Needs/Quotes

Fig. 20. Proposed enterprise
modeling entities for expanded
analysis.

104 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

production to start). Flows and inventory levels were con
verted to monetary units before being analyzed, but cash
flows were not modeled explicitly.

Modeling cash flows for payments of parts, products, and
process costs will provide a financial perspective. Showing
projected cash flows and investments and the projected
financial consequences of investment decisions will provide
the stepping stones to doing discounted cash flow and net
present value analysis. Modeling cash flows will also help
generate pro forma financial statements to estimate reve
nue, cost, and income owing to different capital budgeting
and allocation decisions, and provide a tool that could help
address business issues. An example of such an issue is the
transition from a high-margin business to a low-margin high-
volume business.24 The model may help by projecting cash
requirements for investments and operations and providing
estimates for return on assets during the transition.

Whither the Simple Model and the EMS System?
The Simple Model is not an end or final model; it is inter
mediate in a series of models that have contributed to the
evolution of enterprise modeling and simulation (see page 90)
and the development of the EMS system. Its simulation dem
onstrates the kinds of results that can be generated by enter
prise modeling and simulation. Its value is in providing greater
quantitative analysis where previously qualitative approaches
have been adequate (see below). Its immediate subsequent
application was the planning calendar model.25'26'27

The subsequent and future enhancements discussed make
the Simple Model more complete. Some of the changes
make the model larger, add detail complexity, and generate
more precise results. Other changes broaden the scope of
the model, and make it more representative of the other
functions of the enterprise besides manufacturing; these
changes require the addition of greater levels of abstraction,
the ability to consolidate different points of view, and knowl
edge are across the organizat ion. Al l the changes are
technically feasible and require different kinds of activities:
the first set of changes requires greater emphasis on "model
ing in the small," and the second set requires greater empha
sis on "modeling in the large" (see discussion on page 81).
Discussions based on the experience and views of some
managers responsible for operations suggest that expanding
the size by increasing the detail complexity, while providing
greater predictability of the system, is difficult and requires
a tremendous amount of investment to manage the complex
ity of the models and the generation and interpretation of
the resulting data. Monroe24 and Harmon28 have individually
recommended that there is greater value and potentially a
far greater return on investment to be obtained by broaden
ing the scope of future models to address and reflect business
issues and concerns.

Regardless of the direction of model enhancement is the
challenge of managing simulation data. The simulation runs
for the experiments generated large amounts of data, and
only aggregate data was collected and summarized. For in
stance, RPI levels for every part were generated for each
week during the simulation, but the data collected was the
aggregate dollar value of all the parts. The challenge became
one not of collecting all data, but one of deciding ahead of
time which data was interesting and not collecting that

The Simple Model: Sponsor's Perspective

As HP's delivery Systems Organization customers increasingly request delivery
of complete systems with much shorter lead times, our design, manufacturing and
delivery systems are being stretched beyond their performance limits.

Qualitative approaches to improvement have served us well in the past, but more
quantitative analysis is needed to understand and improve the total system both
from a customer and an HP perspective.

The Simple Model was conceived and developed in teamwork with HP Laborato
ries. We sponsored it to help learn and communicate the key drivers and charac
teristics of a manufacturing enterprise. The insight achieved could then be used in
our order fulfillment initiative to design product, manufacturing, and delivery
systems to match critical business requirements and position us to meet future
customer needs effectively in the global marketplace.

Jerry Harmon
General Manager
HP Puerto Rico
Sponsor of Simple Model
for HP Computer Manufacturing

which was not; otherwise the storage requirements for stor
ing all the generated data became significant. The data pre
sented in the form of graphs and charts in this paper is only
a small portion of the actual data collected and analyzed. A
larger amount of collected data was discarded because it did
not look interesting.

The sheer amount of detailed data that needs to be examined
and interpreted tends to overwhelm the analyst. The analysis
and interpretation of the data was very much a creative team
effort requiring much discussion, and is not yet understood
well enough to be automated. As we increase the number of
factors, the behavior becomes more complex, and the
amount of data tends to increase exponentially with the
number of factors. When presented with the data in its raw
form, decision makers and experts familiar with the problem
issues but less familiar with modeling and simulation all have
the same general reaction that it is too complex and difficult
to understand. While this is a valid reaction, the reality is that
the enterprise is a complex system of interacting information,
material, resource, and control flows, and whether we like it
or not, has complex behavior. Enterprise models as abstrac
tions or idealizations for the real system merely reflect that
complex behavior in the simulation. We can choose to ignore
the complexity of the real system and use ad hoc qualitative
methods to deal with the resulting behavior, or we can
choose to face the complexity, understand it by selecting
what we think are important factors that influence the be
havior of the enterprise, and find opportunities for applying
the understanding. Enterprise modeling and simulation rep
resent one means of facing this complexity and providing an
understanding of this behavior. As with most endeavors, we
have found that the precursor to simplicity of expression is
greater depth of understanding.

Increased technology in the hands of the modeling and simu
lation expert is not sufficient for providing the insight that
will help make better decisions and highlight important re
sults. Merely generating large numbers of insights and conclu
sions is insufficient. It requires the perspective of operations

December 1994 Hewlett-Packard Journal 105

© Copr. 1949-1998 Hewlett-Packard Co.

teams and decision makers to guide the direction of explora
tion and to emphasize the correct metrics to solve the current
situation. In fact, Monroe24 has suggested, and we in the
enterprise modeling and simulation project concur, that
techniques to digest and present large amounts of data rap
idly and in a more easily understood fashion would be a
beneficial next step and a fruitful area of research, and that
joint work of a modeling expert with an operations team to
further understand the issues of data reduction, interpreta
tion, and presentation will help modeling and simulation
take its rightful place as a useful tool in analyzing business
decisions.

The Simple Model is a descriptive model that illustrates
complex dynamic behavior of a manufacturing enterprise
with low structural and detail complexity. As we have seen
in this paper, its primary output is data and information on
the state of the world, and it goes a great distance towards
presenting observations. Unlike an optimization model,
which is a prescriptive model whose solution recommends
the best action under a given set of circumstances, the Simple
Model does not suggest actions. It is up to the analyst or deci
sion maker to come up with creative solutions to solve the
problems highlighted by observations of the model behavior
and then assess the results from a subsequent simulation
run incorporating those solutions.

Prospective Applications
Let us now look at application areas for enterprise modeling
and simulation. These include but are not limited to improv
ing the performance of the current system (continuous im
provement), studying the impact of reducing process times,
and generating information for the enterprise, all of which
are discussed below. A potentially far more powerful appli
cation is looking at new designs where the process itself is
being changed (i.e., reengineering). Because of the strong
current interest, large impact, and controversy surrounding
reengineering, this subject is given its own discussion on
page 86.

Incremental Improvements. Actions for continuous improve
ment can be suggested by running the nominal or baseline
model and rerunning it with minor modification and changes
in parameters or actions over which we have control. For
example, it may not be possible to reduce all the part lead
times down to six weeks, but we could certainly see the
impact of reducing the value of 14-week parts in the product
to determine the impact on the metrics of interest. We could
look at the impact of reducing build times or FGI safety
stock levels slightly to study the impact on the measures of
interest. We could examine the impact of making two small
changes at the same time. This application of enterprise
modeling and simulation supports the process of continuous
improvement by demonstrating the benefits of small
changes.

Verifying Impact of Reducing Process Times. Davidow and
Malone29 talk about how short cycle times attenuate "the
trumpet of doom," which is a plot of forecasting error versus
time that implies that the further a person must forecast into
the future, the greater the possibility of error. Rather than
speculate on or guess on the impact of this trumpet of
doom, enterprise modeling and simulation provide a way to
quantify the effect of reducing system cycle times. This can

be accomplished by making some estimates of the amount
of uncertainties within the model.

Stalk and Hout30 suggest mapping out explicitly the major
causes of problems in processes such as new product devel
opment or in operations, and comparing actual versus stan
dard cycle times. These maps provide qualitative relation
ships. To the extent that processes can be mapped explicitly
and quantitatively, enterprise modeling and simulation can
show how the system behavior changes for a given change in
the process and can verify whether modifying the component
processes has the desired overall global effect.

Generating Enterprise Behavior Information. Davidow and
Malone29 identify four categories of information of use to a
corporation: content, form, behavior, and action. Content
information is historical in nature and reflects the experi
ence. Form information describes shape and composition
and is usually more voluminous than content information.
Behavior information often begins with form information
and usually requires a massive amount of computer power
to predict behavior through simulation. They suggest that
the final triumph of the information revolution will be the
use of action information â€” information that instantly con
verts to sophisticated action. Until recently, only the most
elementary category, content, has been available to business
in any systematic and manageable way, and obtaining or
generating the other three categories has become economi
cally feasible only in recent years. They go on to describe
how behavior information generated by computer simulation
is the new paradigm for product design ranging from molec
ular design through automotive design to airplane design.
With such behavior information design disasters of the past
might be averted, and potential and unforeseen future trag
edy can be replaced with a successful and predictable con
clusion. With the arrival of workstations in the 1980s, it be
came reasonable for the computer to create realistic models
and put them through their paces rather than painstakingly
building prototypes and testing them under a variety of op
erating conditions. High-speed simulators could be built that
reproduced the actual electrical characteristics of devices in
different configurations.

We suggest that enterprise modeling and simulation repre
sent an assistive and enabling technology for the design and
implementation of processes of the enterprise, and that the
application of such techniques to the enterprise could poten
tially have greater impact than product design. Furthermore,
these techniques have the characteristic of converting con
tent and form information into behavior information on
which action can be taken. While the enterprise modeling
and simulation process currently does not suggest actions
or alternatives, it describes the behavior of the system de
signed with alternate processes under different operational
scenarios.

Conclusions
In this paper, we outlined activities in enterprise modeling
and simulation at HP Laboratories and presented in detail the
results of the simulation of a simple model of a manufactur
ing enterprise. We have also described possible areas where
enterprise modeling and simulation might be applicable, and
reiterate that enterprise modeling and simulation provide a

106 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

way of quantifying the impacts of proposed changes before
they are implemented.

The Simple Model captures the characteristics and behavior
of a manufacturing entity' at a fairly high level. It shows that
in the best of circumstances (e.g.. customers ordering ex
actly according to forecast), seemingly rational operational
policies can lead to end-of-life inventory. The situation only
gets more complex as greater uncertainty is introduced.

Experience with using the Simple Model suggests two direc
tions for future research in enterprise modeling and simula
tion. The first is to expand the scope of the Simple Model to
more completely represent the functions and organizations
and their interactions in the enterprise. The second is to
improve the process by which the data generated by the
simulation models can be understood and summarized, and
the resulting information presented in a form that permits
decision makers,to understand more completely and to act
more rapidly and with greater assurance that the desired
objectives will be achieved.

Acknowledgments
The enterprise modeling and simulation system was devel
oped by the team of Bob Hitter, Bob Joy, and the author, all of
whom are affiliated with Hewlett-Packard Laboratories. The
Simple Model was proposed by Jerry Harmon of HP Puerto
Rico and developed by Shailendra Jain and the author in two
parallel efforts that served to verify the results using two
different approaches. Jerry Harmon, Bob Hitter, Shailendra
Jain, and Paul Williams of Hewlett-Packard Laboratories and
the author were involved in interpreting the results of the
Simple Model at various times. Others have provided fresh
insight during the course of discussions. The author would
like to thank his team members, colleagues, and the many
reviewers for their helpful comments and assistance in the
preparation of this document.

References
1. A.M. Law and W.D. Kelton, Simulation Modeling and Analysis,
Second Edition, McGraw-Hill, Inc., 1991, p. 1.
2. A.A.B. Pritsker, Introduction to Simulation and SLAM II, Third

Edition, Systems Publishing Corp., 1986.
3. R. McHaney, Computer Simulation â€” A Practical Perspective,

Academic Press, Inc., 1991.
4. A.M. Law and M.G. McComas, "Secrets of Successful Simulation
Studies," Proceedings of the Winter Simulation Conference 1991,
Society for Computer Simulation, pp. 21-27.
5. F.E. Cellier, Continuous System Modeling, Springer-Verlag, Inc.,
1991.
6. P.M. Senge, The Fifth Discipline, Doubleday/Currency, 1990.
7. L. Marran, M.S. Fadali, and E. Tacker, "A New Modeling Methodol
ogy for Large-Scale Systems," Proceedings of the International
Conference on Systems, Man, and Cybernetics, IEEE, May 1989,
pp. 989-990.
8. Structured Methods â€” An Overview for Engineers and Managers,
Hewlett-Packard Corporate Engineering, 1988, pp. 77-90.

9. M.S. Mujtaba "Simulation Modelling of a Manufacturing Enter
prise with Complex Material. Information, and Control Flows."
International Journal of Computer Integrated Manufacturing.

Vol. 7. no. 1. 1994, pp. 29-46.
10. B.P. Zeigler. Multifaceted Modeling and Discrete Event Simula
tion. Academic Press Inc.. 1984.
11. V.B. Norman, et al. "Simulation Practices in Manufacturing."
Proceedings of the Winter Simulation Conference 1992. pp.
1004-1010.
12. M. Fox. "The TO\"E Project â€” Towards a Common Sense Model
of the Enterprise," Proceedings of the International Conference on
Object-Oriented Manufacturing Systems (ICOOMS), May 1992. pp.
176-181.
13. H.R. Jorysz and F.B. Vemadat, "CTM-OSA Part 1: Total Enterprise
Modelling and Function View." International Journal of Computer
Integrated Manufacturing. Vol. 3, nos. 3 and 4, Fall 1990, pp.
144-156.
14. H.R. Jorysz and F.B. Vernadat, "CIM-OSA Part 2: Information
View," International Journal of Computer Integrated Manufactur

ing, Vol. 3, nos. 3 and 4, Fall 1990, pp. 157-167.
15. A. Pardasani and A. Chan, "Enterprise Model: A Decision-Support
Tool of Computer Integrated Manufacturing," Proceedings of the
International Conference on Object-Oriented Manufacturing
Systems (ICOOMS), May 1992, pp. 182-187.
16. J. Harmon, personal communication.

17. R. Norton, "A New Tool to Help Managers," Fortune, May 30,
1994, pp. 135-140.
18. G.L. Steele, Common Lisp â€” The Language, Second Edition,
Digital Press, 1990.
19. Allegro CL Common Lisp User Guide Volumes 1 and 2 Version
4.2, Franz Inc., January 1994.
20. Lucid Common Lisp/HP Manuals and User Guide, Lucid Inc.,
June 1990.
21. LispWorks Manuals Edition 3.2, Harlequin Ltd., March 1994.
22. M.S. Mujtaba, Formulation of the Order-to-Ship Process Simu
lation Model, HP Laboratories Technical Report #HPL-92-135,
December 1992.
23. J.M. Chambers and T.J. Hastie, Statistical Models in S, Wadsworth
& Brooks/Cole Advanced Books & Software, 1992.
24. J. Monroe, sponsor of planning calendar model,25'26'27 leader of
HP Computer Systems Organization planning program 1992-1993,
telephone communication, September 12, 1994.
25. C.M. Kozierok, Analysis of Inventory and Customer Service
Performance Using a Simple Manufacturing Model, Master of
Science Thesis for Leaders for Manufacturing (LFM) Program,
Massachusetts Institute of Technology, May 1993.
26. K. Oliver, Simple Model Report, distributed by email on January
12, 1993.
27. M.S. Mujtaba and R. Ritter, Enterprise Modeling System: Inven
tory Exposure and Delivery Performance, HP Laboratories Techni
cal Report #HPL-94-89, October 1994.
28. J. Harmon, sponsor and proponent of the Simple Model, leader of
HP Computer Manufacturing forecasting and planning redesign team
1991-1992, currently General Manager, HP Puerto Rico, telephone
communication, September 1994.
29. W.H. Davidow and M.S. Malone, The Virtual Corporation, Harper
Collins Publishers, Inc., 1992.
30. G. Stalk and T.M. Hout, "Competing Against Time," The Free
Press, A Division of Macmillan, Inc., 1990.

December 1994 Hewlett-Packard Journal 107

© Copr. 1949-1998 Hewlett-Packard Co.

Appendix I: Mathematics of Production and Material Planning for the Simple Model

1-1 The Planning Function
The planning function is actually an analytic model embedded within a discrete
event simulation model. The fundamental principle on which the production and
material planning algorithms are based is the conservation of mass, that is, con
sumption cannot be higher than the total supply available. The order in which the
build plan computation is done is the reverse of the order in which subassemblies
are built and products are shipped (i.e., from shipment to product build to part
order). This ease of explanation, the current week is considered to be week 0. This
derivation emphasizes clarity of explanation rather than rigorous detail.

There are three sets of decision variables to be determined for each week: s(t), the
shipment plan, b(t), the build plan, and mÂ¡(t), the material ordering plan. These are
shown in italics.

Before of get into the mathematical formulation, let us first look at the process of
computation. Fig. 1 illustrates how the production and material planning algorithms
work following order: model. The computational process is described in the following order:
I-2 describes the notation shown in Fig. 1.
I-3 describes the safety stock computation.
I-4 describes the initial conditions for computation.
I-5 describes the computation of the shipment plan.
I-B describes the computation of the build plan.

â€¢ I-7 week. computation of the number of units started this week.
â€¢ I-8 material the computation of the material consumption and material ordering

plans.
> I-9 describes the actual material ordered this week.
â€¢ I-1 the describes the computation of the number of weeks for each of the plans.

1-2 Notation
â€¢ n, s, t = indexes for week number (current week = 0)
â€¢ f(t) = Current forecast of product orders for week t, t = 0, 1 Nf
â€¢ F(t) = FGIatendofweekt
â€¢ W(t) = WIP at end of week t
â€¢ B(t) = Backlog units at end of week t
â€¢ B(t,s) = Backlog units at end of week t having shipment dates in week s
â€¢ s(t)= Planned shipments during week t
â€¢ bit) = Units planned to be started during week t
â€¢ B = Build time in number of weeks
> Y = Quoted availability in number of weeks
â€¢ S = Shipment or transit time
â€¢ j = Index relating to part
â€¢ QJ = Quantity of part j per unit of product
â€¢ qi(t) = Planned consumption of part j during week t

Production Planning
Mater ia l P lanning

Mater ia l

i Â » Ã ¯ - ^ P l a n W e e k s Â «
Orders

Weeks of
RPI
VF

1 RPI Safety Stock
Rj(t)

Part Lead
Times

LÂ¡

Weeks o f
FGI
W

FGI Safety Stock
F(t)

Quoted
Availabi l i ty Y

Transit Time S

Backlog

Quantity of
Part j per

Unit of
Product

QÂ¡

T Build Plan

RjM)

Note: Subscript j indicates Vj e J.

This Week's Build

Fig. 1. Notation and production/material
planning. The shipment plan is computed from
the backlog, forecasts, quoted availability, and
transit time. The build plan is computed from
the shipment plan, the build time, WIP, FGI,
and FGI safety stock. The actual build is com
puted from the build plan and the material
availability. The material consumption plan is
computed from the build plan and the bill of
materials. The material ordering plan is com
puted from RPI, RPI safety stock, the material
consumption plan, on-order material, and lead
time.

108 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ mj(t)= Planned quantity of material j to be ordered during week t, t = 0, 1 Nj,
j e J

â€¢ Rj(t) = RPI of part j at the end of week t
â€¢ rj{t) = Units of part j received during week t
â€¢ Oj(t) = Units of part j on order at the end of week t
â€¢ LJ = Vendor lead time for part j
â€¢ J = Set of parts that go into the product
â€¢ w = FGI safety stock in weeks of demand
â€¢ Vj = RPI safety stock of part j in weeks of demand
â€¢ Ns = Last week for computing shipment plan
â€¢ Nb = Last week for computing build plan
â€¢ Nf = Last week used for forecasts
â€¢ NJ = Last week for computing material order for part j.

Since the current week is 0, the values of these variables represent actual values
for weeks before 0, and the values are computed, set, or derived for weeks 0 and
later. In particular, the values of variables at the end of week -1 represent the
current values of those variables, as described Â¡n I-4. All numerical quantities
except time indexes are zero or positive.

1 - 3 S a f e t y S t o c k C o m p u t a t i o n

Safety forecast. is expressed in number of weeks of 1 3-week leading average forecast.
The 13-week leading average forecast at the end of week t is defined as:

The target FGI safety stock at the end of week t is w weeks and the target RPI
safety these at the end of week t for part j is Vj weeks. The expressions for these
quantities are:

Minimize sin), n = 0.1 Ns

F(t) = wf(t)

R(t) =

(2)

(3)

1 - 4 I n i t i a l C o n d i t i o n s
â€¢ F(-1) FGI Actual FGI at the end of the previous week, that is, current FGI
> W(-1) WIP Actual WIP at the end of the previous week, that is, current WIP
â€¢ Oj(-1 current = Actual part j on order at the end of the previous week, that is, current

on-order material
â€¢ Rj(-1 RPI = Actual RPI for part j at the end of the previous week, that is, current RPI

for partj.
â€¢ B(-1) current Order backlog Â¡n units at the end of the previous week, that is, current

backlog:

(4)
se(all shipment dates in current backlog)

â€¢ B(-1,s) = Component of current backlog with shipment date Â¡n week s.

1 - 5 S h i p m e n t P l a n

The shipment plan indicates prospective shipments during the current and future
weeks. shipped is computed on the assumption that customer orders are not shipped
before they are due, but are shipped Â¡n time to satisfy the quoted availability
requirements. This implies that for any week, the orders planned to be shipped are
those that are already late (i.e., should have been shipped Â¡n an earlier week) and
those that must be shipped to be delivered on time. Notice that Â¡n computing the
shipping plan, we do not take into account the amount of inventory on hand or Â¡n
process. This is representative of the way shipment plans are computed and then
subsequently checked against reality.

Put another way, this can be expressed as planning to ship the minimum quantity
in each can that will satisfy the quoted availability criteria. The problem can be
formulated as shown Â¡n the set of equations below, which indicate that we are
attempting to minimize shipments in the current week, current plus next week,
current plus next 2 weeks, and so on such that the total shipments Â¡n those weeks
is greater than the current existing backlog whose shipment date is already past
or Â¡n those weeks, plus the forecasted orders whose desired shipment dates lie Â¡n
those weeks.

I - (Y -

flt)
t = 0

and sin) > 0.

These equations define a series of (Ns + 1) linear programming problems. However,
this formulation will always return a set of feasible solutions, and the optimal
feasible solutions can be expressed Â¡n closed form as follows:

sin) =<

B l - l . s) f o r n = 0

fin - (Y - S))

f o r 0 < n < Y - S
fo r n > Y - S .

(5)

The term (Y- S) is the difference between the quoted availability and the transit
time (i.e., the order-to-ship time to achieve on-time delivery), and indicates the
time in the future after which shipments depend solely on forecasts.

1 - 6 B u i l d P l a n

The build plan, which indicates how many units are to be started in the current
week the and succeeding weeks, is based on the assumption that the FGI levels at
the end of weeks 0,1,. ...B-1 have already been determined by the current FGI,
WIP, and shipments preceding week 0. It further assumes that we might be able to
control FGI at the end of week B or later by deciding how many units we start this
week and future weeks, that is, by controlling bfO),bf1l,...,bin). We want to keep
the b(nÂ¡as low as possible but greater than or equal to 0, such that the total planned
build during weeks 0 through n must be greater than or equal to shipments during
weeks 0 WIP. B+n plus FGI at the end of week B+n minus current FGI and WIP.
The complete formulation is as follows:

Minimize b(nl,n = 0,1 Nb

n B + n

such tha t]T o f t ! >]T s (t) + F (B + n) - F (-1) - W(-1)
t = 0 t = o

and bÂ¡nl>0.

Again, optimal above is a series of (Nb+1) linear programming problems, with optimal
feasible solutions that are expressed Â¡n closed form as follows:

XJO,
B + n n - 1

b (n) = m a x { O , F (B + n) + Y s f t) - R - 1) - W | - 1) - J T b l t) \ . (6)
t = o t = o

forn = 0, 1 Nb.

To summarize the above, the current build plan should look as follows:

1 Week:
Planned Build:

0
blOl

2
b/2)

n
bin).

1 - 7 A c t u a l U n i t s S t a r t e d

The actual units started this week, bo, will be blO) if there is sufficient material. If
there is with material the actual units started is the maximum possible with
the available material, or:

Maximize brj

such that Qjb0 < Rj(-1) + rj(0), Vj e J

and Os bo s WDli

for which the closed form solution is:

bn = min < blO), min
J S J

(7)

December 1994 Hewlett-Packard Journal 109

© Copr. 1949-1998 Hewlett-Packard Co.

1-8 Material Requirement Analysis
If the lead time for a part j Â¡s Lj weeks, the RPI level for part j at the end of weeks
0,1, ... Lj-1 has been determined by material on hand, material on order, and
projected use. We could control RPI for part j at the end of week Lj or later by
deciding how much of part j we order in this week and subsequent weeks. The
estimated material consumption during a week is the quantity of the material for
the build for that week, that is:

The material ordered during weeks 0 through n must be greater than or equal to the
material consumed during weeks 0 through Lj+n plus the desired safety stock at
the end of week Lj+n minus the current on-hand material and the current on-order
material. This can be expressed mathematically as follows:

Minimize mj(nl, n = 0,1 Nj, jeJ

R j (L j + n) ~ R j (~ 1) - 0 Â ¡ (- 1 s u c h t h a t] T m / t l > ^
t = o t = o

and mj fn i>0.

After substituting equation 8, this becomes a series of l inear programming
formulations for which the closed form solution is:

m j [n) = m a x
W t l + R j Ã L j + n) - R j (- 1) (9)

,=o

forn = 0, 1 Nj . jeJ.

The current material ordering plan is shown by the following table.

Material 1
Material 2

Material j

0
m,(0)
m2(0>

W e e k

2
m,(2l
m2l2>

m Â ¡ (1 l m Â ¡ (2)

m2Ã­n)

1-9 Actual Material Ordered
Given the table above, the actual material ordered in this week must be mÂ¡(0),
V j e J .

1-10 Determination of the Required Number of Weeks
Since we want to compute the material procurement plan for material j for periods
0 through Nj, we need to make sure we have values of the forecasts, shipment
plan, section build plan far enough Â¡n the future to allow us to do so. This section
shows how many periods of those plans we need to compute.

In 10 "Computing 16 below, "mÂ¡(nÂ¡ requires x(n)" should be read as, "Computing mÂ¡(n)
requires values of x(0), x(1) x(n)." Thus 10 should be read as, "Computing
mÂ¡{Nj) requires the values of RÂ¡(0), Rj(1), fÃ­j(LÂ¡+NÂ¡)."

From 9,

m j t N j I r e q u i r e s R j (L j + N j) (1 0)

a n d m Â ¡ f N j) r e q u i r e s b (L Â ¡ + N Â ¡) . (1 1)

From 10, 3, and 1,

mj/NjI requires f(Lj + Nj + 13).

From 1 1 and 6,

mj(Nj) requires F(B + Lj + Nj)

and mÂ¡ÃNj) requires s(B + Lj + Nj).

From13, 2, and!,

mjÃ­Njl requires f(B + LÂ¡ + NÂ¡ + 1 3).

From 14, 5, and 1,

mjINjI requires f(B + LJ + NJ - (Y - S)).

Computation of Nj,. From 11,

N b = m a x J L j + N j) .

Computation of Ns. From 14,

Ns = max B + LÂ¡ + NÂ¡ .

Computation of Nf. From 12, 15, and 16,

+ N J + 1 3

N , = m a x ^ B + L J + N J + 1 3

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
+ L J + N , - (Y - S)

Since B to: O, (Y - S) > 0, the middle expression dominates, and 1 9 reduces to:

J S J
Nf = max B + LÂ¡ + NÂ¡ + 13 . (20)

Appendix II: Weekly Event Sequence

110 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Appendix III: Details of Part Commonality Experiments

The following table shows the definitions used to describe part commonality. MC
stands lowercase material cost, with uppercase denoting dollar values and lowercase
denoting percentage values, m represents the set of material.

Common to products
i and i-1

Unique to product!

Common to products
i and i+1

S e t o f V a l u e o f P e r c e n t a g e
M a t e r i a l M a t e r i a l V a l u e

m Â ¡ Â ¡ _ i M C Â ¡ Â ¡ _ i M
-MCT

MCÂ¡Â¡
mCÃ¼ ~ MC, '

mcu+1

x 100

100

M C ;
100

Commonality occurs only between adjacent products. This implies that a part can
be used in at most two products.

Each with val MC, j is further broken up into class A, B, and C parts with relative val
ues 50, week and 20 percent. Each of these classes is made up of 6, 10, and 14 week
lead times with relative values 25, 40, and 35 percent. (See Table I on page 83.)

At the end of the product i life cycle, obsolete inventory (if any) should come only
from parts in sets mÂ¡ Â¡ and mÂ¡ Â¡_-|. Any leftover parts from mÂ¡ Â¡+, can be used in
product the . This implies that mcÂ¡Â¡_, and mcÂ¡ Â¡ impact the obsolete inventory at the
end of the product life cycle for product i.

The values shown in the following table should be derived from the real bill of
materials. For our experiments, we reverse the process, that is, we generate a bill
of materials from the table, which was generated heuristically from the experi
mental scenarios, with the following constraints on the values of me:

> For than i and j, mcÂ¡ Â¡ must be greater than or equal to 0 and less than or equal to
100.

â€¢ For each i, the sum of mcÂ¡ j over all j must be 100.
â€¢ In each experiment, if any mcÂ¡ Â¡+i is zero, then mc,+i Â¡ must also be zero.

Description of Experimental Scenarios
Run M-ft no part commonality at all between adjacent products.

Run M-1: 20% part commonality between adjacent products. The parts common
to products i and i+1 make up 20% of the part values of both products. This may
happen by a reduction in either part quantity or part cost, but the reason is not
reflected in the dollar value of leftover inventory or material.

Run M-2: 20% part commonality when moving to a new product. The parts com
mon to products i-1 and i make up 20% of the part value of product i; the rest of
the value of product i is split equally between the parts unique to product i and
those product, to products i and i+1 . Since product Adder-1 has no prior product,
the value is split equally between unique parts and parts common to Adder-1 and
Adder-2. 20% of the value of Adder-2 is made up of parts common to Adder-1 and
Adder-2; the remaining 80% is split equally between unique parts and parts com
mon to of and Adder-3. 20% of the value of product Adder-4 is made up of
parts common to Adder-3 and Adder-4; the balance of the value is unique parts
since there are no succeeding products.

Run M-3: 50% and 25% part commonality between alternate products. There is
50% part commonality between products Adder-1 and Adder-2 and between
Adder-3 and Adder-4; there is 25% part commonality between Adder-2 and
Adder-3.

Run M-4: 50% part commonality between adjacent products; no unique parts in
Adder-2 and Adder-3; 50% unique parts in Adder-1 and Adder-4.

Run M-5: 80% part commonality between succeeding products.

Part Commonality Data (%) for Multiple Product Crossover

Product Demand (units) Product Cost ($) Common Parts (%)

M O M-1

Experiment Run

M - 2 M - 3 M- M-5

December 1994 Hewlett-Packard Journal 111

© Copr. 1949-1998 Hewlett-Packard Co.

Appendix IV: Details of Explanations for Experiments 0 and la

IV- 1 Estimated Financial Impact Based on Theoretical Considerations for
Exper imento
The impact of product Adder on the financial situation of the enterprise, as
explained on page 89, is:

. Total PCFT = $7,800,000
â€¢ Mature volume = MV = mature PCFT = $800,000/month or $200,000/week
â€¢ Consignment inventory = $300,000.

IV-2 Mature Demand Week Considerations for Experiment 0

RPI Material to Support Mature Demand

C l a s s A C l a s s B C l a s s C A l l C l a s s e s

Â®H-MV

On-Order Material to Support Mature Demand

Â ® L e a d T i m e 6 w e e k s 1 0 w e e k s 1 4 w e e k s A l l P a r t s

2 5 % 4 0 % 3 5 % 1 0 0 % 2) Percentage of Part
Value in Product

Â ® W e e k l y O r d e r d u r i n g $ 5 0 k
Mature Demand
Â © x M V

$70k $200k

Â ® A m o u n t o n O r d e r = $ 3 0 0 k $ 8 0 0 k $ 9 8 0 k $ 2 0 8 0 k
Weekly Order x Lead
Time:Â®xÂ®

P e r c e n t V a l u e o f P a r t 1 4 . 4 %
on Order: Â® -s- $2080k

On-order Material in
Weeks of MV

1.5

38.5%

4.0

47.1%

4.9

100%

10.4

Total Inventory Metrics during Mature Demand

Â® RPI

Â ® W I P

Â® FGI

Â® On-Hand Inventory: Â® + Â® + Â®

Â® On-Order Material

Â® Committed Inventory: Â® + Â®

Â© Consignment Inventory

Â® Total Committed Inventory: Â® + Â®

IV-3 End-of-Life Considerations for Experiment 0
Total PCFT = $7,800,000. Net profit = $78,000(1/100), where i is the profit as a
percent of PCFT.

The following table summarizes the impact on the profitability of various margins i.

Write-Off as a Function of Profit on Shipped Units

Â ® P r o f i t M a r g i n i 5 % 1 0 % 2 0 % 3 0 %

$ 3 9 0 k $ 7 8 0 k $ 1 5 6 0 k $ 2 3 4 0 k Profit from Trade Units
$7 .8MxÂ®

Leftover Material $64,615

Â ® L e f t o v e r M a t e r i a l a s % o f N e t 1 6 . 5 7 % 8 . 2 8 % 4 . 1 4 % 2 . 7 6 %
Profit: <D -=- Â®

Â ® C o n s i g n m e n t $ 3 0 0 , 0 0 0

Â © C o n s i g n m e n t a s % o f N e t P r o f i t 7 6 . 9 2 % 3 8 . 4 6 % 1 9 . 2 3 % 1 2 . 8 2 %
Â®+@

Â ® T o t a l E O L M a t e r i a l a s % o f N e t 9 3 . 4 9 % 4 6 . 7 5 % 2 3 . 3 7 % 1 5 . 5 8 %
Profit: (

The following table shows the impact on Class C EOL material of reducing safety
stock levels. These results were computed using means other than simulation.

Weeks of Class C Safety Stock

1 6 weeks

1 5 weeks

14 weeks

13 weeks

Class C EOL Material

$64,615

$35,385

$13,846

$0

IV-4 Why There Is Class C material Left Over for Experiment 0
The last period in which we expect to receive orders is week 68. The end of week
55 is Adder fore before the end of the product life cycle. From the Adder order fore
cast in Fig. 2 on page 83 and the target RPI safety stock for class C material being
16 weeks of the 13-week leading average forecast (Table Ib on page 83), at the end
of week of the amount of class C material in RPI should theoretically be 16/13 of
the total demand to the end of life, or (16/1 3) x (1% x V) = (28/13) x V units,
where V = 80.

In week 55. we need to start building the units for orders received in week 55.
Ignoring the current FGI, the maximum new build from week 56 to the the end of life
is equal the the demand from week 55 through the end of life, that is, 2V. Thus, at the
end of build 55, there is more class C material on hand â€” enough to build (28/1 3)
x V units â€” than needed for the demand to the the end of the product life cycle.

Remember that we did not consider units in FGI. If we want to reduce FGI units
down to than by the end of the product life cycle, the total new build must be less than
that computed above, and hence there will be even more class C material left over.

In summary, one reason for the leftover class C material is that the safety stock
computation requires holding more class C raw material in RP1 13 weeks before
the end of life than can be consumed by orders received in the last 14 weeks of
the product life cycle.

IV-5 Why Orders Cannot Be More than 14 Weeks Late for Experiment 1 a
Assume yet an order comes in during week x. In the worst case we have not yet
ordered any material for the unit that goes with this order. The earliest the material
can be during is week x+1 , and the longest lead time part will be delivered during
week (x+1)+1 4, which is week x+1 5. Since build time is 2 weeks, the unit is ready
in week in Since transit t ime is 1 week, the unit is delivered to the customer in
week delivery Since the quoted availability is 4 weeks, on-time delivery means the
customer should receive it in week x+4. This means that the lateness is 14 weeks.

112 December 1 994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL
I N D E X Volume 45 January 1 994 through December 1 994

Parti: Chronological Index
February 1994
High-Quality Color InkJet Office Printers, Douglas R. Watson and

Ha tern E. Mostafa

Laser-Comparable InkJet Text Printing, Jaime H. BohÃ³rquez, Brian

P. Can/ield, Kenneth J. Courian, Frank Drogo, Corrina A.E. Hall,

Clayton L. Holstun, Aneesa R. Scandalis, and Michele E. Shepard

An Inside View of the Drop Generation Process

Modifying Office Papers to Improve InkJet Print Quality

High-Quality InkJet Color Graphics Performance on Plain Paper,
Catherine B. Hunt, Ronald A. Askeland, Leonard Slevin, and

Keshava A. Prasad

Polyester Media Development for InkJet Printers, Daniel L. Briley

InkJet Printer Print Quality Enhancement Techniques, CorinnaA.E.

Hall, Aneesa R. Scandalis, Damon W. Broder, Shelley L Moore,

Reza Movaghar, W. Wistar Rhoads, and William H. Schwiebert

The Third-Generation HP Thermal InkJet Printhead, J. Stephen

Aden, Jaime H. BohÃ³rquez, Douglas M. Collins, M. Douglas Crook,

Andre Garcia, and Ulrich E. Hess

Development of the HP DeskJet 1200C Print Cartridge Platform,
the Platform Development Team

Print Cartridges for a Large-Format Color InkJet Drafting Plotter

Environmentally Friendly Packaging

HP DeskJet 1200C Printer Architecture, Kevin M. Bockman, Anton

Tabor, Erol Erturk, Robert R. Giles, and William H. Schwiebert

CAD System Organization

Product Design Effect on Environmental Responsibility and
Distribution Costs

A New Product Development Model

Print Cartridge Fixturing and Maintenance in the HP DeskJet 1200C
Printer, Michael T. Dangelo, Reza Movaghar, and Arthur K. Wilson

Media Path for a Small, Low-Cost, Color Thermal InkJet Printer,
Damon W. Broder, David C. Burney, Shelley I. Moore, and Stephen

B. Witte

Stepper Motor Simulation Model

Automated Assembly and Testing of HP DeskJet 1200C Print
Cartridges, William S. Colburn, Randell A. Agadoni, Michael M.

Johnson, Edward Wiesmeier, III, and Glen Oldenburg

Connectivity of the HP DeskJet 1200C Printer, Anthony D. Parkhurst,

Ramchandran Padmanabhan, Steven D. Mueller, and Kirt A. Winter-

Apri l 1994

Development of a Multimedia Product for HP Workstations, Gary P.

Rose, Jeffery T. Oesterle, Joseph E. Rasper, and Robert J. Hammond

HP MPower: A Collaborative Multimedia Environment. William R.

Yoder

X Stations in HP MPower

The HP Instant Ignition Program

Diagnosing and Reporting Problems in the Multimedia Environment

A Graphical User Interface for a Multimedia Environment, Charles

V. Fernandez

HP SharedX: A Tool for Real-Time Collaboration, Daniel Garfinkel,

Bruce C. Welti, and Thomas W. Yip

X Window System CliemYServer Architecture

Graphics Glossary

Whiteboard: A New Component of HP SharedX

Imaging Services in a Multimedia Environment, Andrew Munro and

Ahmad H. Shekarabi

HP Image Library Scaling Functions

A Printing Solution for a Multimedia Environment, John Handler

Faxing Documents in HP MPower, Francis P. Sung and Mark A.

Johnson

Audio Support in HP MPower, Ellen N. Brandt, Thomas G. Fincher,

and Monish S. Shah

Overview of A-law and n-law Data Formats

Video Support in a Multimedia Environment, Craig S. Richard

Mail Facilities in a Multimedia Environment, Robert B. Williams,

Harry K. Phinney, and Kenneth L. Steege

MIME Header Fields

A Fast and Intuitive Online Help System, Michael R. Wilson, Lori A.

Cook, and Steven P. Hiebert

WYSIWYG Printing in an X Application

Developing Online Application Help, Dex Smith

June 1994
Corporate Business Servers: An Alternative to Mainframes for Busi
ness Computing, Thomas B Alexander, Kenneth G. Robertson,

Dean T. Lindsay, Donald L. Rogers, John R. Obermeyer, John R.

Keller, Keith Y. Oka, and Marlin M. Jones, II

Package Design Using 3D Solid Modeling

PA-RISC Symmetric Multiprocessing in Midrange Servers, Kirk M.

Bresniker

SoftBench Message Connector: Customizing Software Development
Tool Interactions, Joseph J. Courant

December 1994 Hewlett-Packard Journal 113

© Copr. 1949-1998 Hewlett-Packard Co.

Six-Sigma Software Using Cleanroom Software Engineering Tech
niques, Grant E. Head

Legal Primitive Evaluation

Fuzzy Family Setup Assignment and Machine Balancing, Jan Krucky

The Greedy Board Family Assignment Heuristic

August 1994
An Advanced Scientific Graphing Calculator, Diana K. Byrne,
Charles M. Patton, David Arnett, Ted W. Beers, and Paul J.
McClellan

User Versions of Interface Tools

HP-PAC: A New Chassis and Housing Concept for Electronic Equip
ment, Johannes Mann, JÃ¼rgen Haberle, Siegfried Kopp, and Tim

Schwegler

High-Speed Digital Transmitter Characterization Using Eye Diagram
Analysis, Christopher M. Miller

Thermal Management in Supercritical Fluid Chromatography,
Connie Nathan. and Barbara A. Hackbarth

WhatisSFC?

Linear Array Transducers with Improved Image Quality for Vascular
Ultrasonic Imaging, Matthew G. Mooney and Martha Grewe Wilson

Structured Analysis and Design in the Redesign of a Terminal and
Serial Printer Driver, Catherine L. Kilcrease

Data-Driven Test Systems, Adele S. LaÃ±Ã¡is

October 1994
Customer-Driven Development of a New High-Performance Data
Acquisition System, Von C. Campbell

A Compact and Flexible Signal Conditioning System for Data
Acquisition, John M. da Cunha

High-Throughput Amplifier and Analog-to-Digital Converter,
Ronald J. Riedel

Binary Ranges Speed Processing

On-the-Fly Engineering Units Conversion, Christopher P.J. Kelly

Built-in Self-Test and Calibration for a Scanning Analog-to-Digital
Converter, Gerald I. Rook and Christopher P.J. Kelly

A Hierarchy of Calibration Commands

Manufacturing Test Optimization for VXI-Based Scanning Analog-to-
Digital Converters, Bertram S. Kolts and Rodney K. Village

Design Leverage and Partnering in the Design of a Pressure Scanning
Analog-to-Digital Converter, Richard E. Warren and Conrad R. Proft

Integrated Pin Electronics for Automatic Test Equipment, James W.
Grace, David M. DiPietro, Akito Kishida, and Kenji Kinsho

CMOS Programmable Delay Vernier, Masaharu Goto, James 0.
Barnes, and Ronnie E. Owens

Theoretical Approach to CMOS Inverter Jitter

Real-Time Digital Signal Processing in a Mixed-Signal LSI Test
System, Keita Gunji

Vector Error Testing by Automatic Test Equipment, Koji Karube

High-Frequency Impedance Analyzer, Takanori Yonekura

Virtual Remote: The Centralized Expert, Hamish Butler

Frame Relay Conformance Testing, Martin Dubuc

Glossary

The FDDI Ring Manager for the HP Network Advisor Protocol
Analyzer, Sunil Bhat, Bob Kroboth, and Anne L. Driesbach

FDDI Topology Mapping, Sunil Bhat

Automation of Electrical Overstress Characterization for
Semiconductor Devices, Carlos H. Diaz

December 1994
Fast DDS-2 Digital Audio Tape Drive, Damon R. Ujvarosy

DDS-2 Tape Autoloader: High-Capacity Data Storage in a 51/<-Inch
Form Factor, Steven A. Dimond

Autoloader Control Electronics

Autoloader Firmware Design

Network Backup with the HP C1553A DOS Autoloader

Automatic State Table Generation, Mark J. Simms

Using State Machines as a Design and Coding Tool, Mark J. Simms

An Event-Based, Retargetable Debugger, Arun K. lyengar,
Thaddeus S. Grzesik, Valerie J. Ho-Gibson, Tracy A. Hoover, and
JohnR. Vasta

Compiler Optimizations and Debugging

A Short Primer on Debugger Internals

Wavelet Analysis: Theory and Applications, Daniel T.L. Lee and

Akio Yamamoto

Approaches to Verifying Operational Test Release Vectors,
Joy Xiao Han

Overview of the Test Access Port

Estimating the Value of Inspections and Early Testing for Software
Projects, Louis A. Franz and Jonathan C. Shih

Clock Design and Measurement Issues in Pentiumâ„¢ Systems,
Michael K. Williams and Andreas Pfaff

Tolerance Mechanisms in Clock Distribution Networks

Enterprise Modeling and Simulation: Complex Dynamic Behavior of
a Simple Model of Manufacturing, M. Shahid Mujtaba

Glossary of Terms and Abbreviations

Enterprise Modeling and Simulation Applications in Reengineering

Enterprise Modeling and Simulation Research at HP Laboratories

The Simple Model: Sponsor's Perspective

Appendix I: Mathematics of Production and Material Planning for
the Simple Model

Appendix II: Weekly Event Sequence

Appendix III: Details of Part Commonality Experiments

Appendix IV: Details of Explanations for Experiments 0 and la

114 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Part 2: Subject Index
S u b j e c t Page/Month

A b s t r a c t t e s t s u i t e 8 4 / O c t .

A c c u r a c y , m e d i a d r i v e 7 8 / F e b .

A c o u s t i c i m p e d a n c e 4 3 / A u g .

A c t u a l - t o - f o r e c a s t r a t i o 9 1 / D e c .

Algori thm, logical mapping 100/Oct.

Algorithm, physical mapping 102/Oct.

A l i g n m e n t , p r i n t c a r t r i d g e 3 9 / F e b .

A-law and u-law data formats 65/Apr.

A n a l y z e r , e y e d i a g r a m 3 1 / A u g .

A n a l y z e r , i m p e d a n c e 6 7 / O c t .

A n a l y z e r , p r o t o c o l 8 8 / O c t .

A n a l y z i n g w a v e l e t 4 5 / D e c .

A n n o t a t i n g i m a g e s 2 8 / A p r .

A n t i b a c k l a s h d e v i c e 7 5 / F e b .

A p e r t u r e , u l t r a s o u n d 4 5 / A u g .

Appl ica t ion he lp use model 90 /Apr .

A r b i t r a t i o n 1 2 / J u n e

Arch i t ec tu re , ink je t p r in te r 56 /Feb .

A r e a f i l l q u a l i t y 1 8 / F e b .

A s s e m b l y , p r i n t c a r t r i d g e 7 9 / F e b .

A u d i o e d i t o r 6 2 / A p r .

A u d i o f i l e t y p e s 6 3 / A p r .

A u d i o h a r d w a r e 6 6 / A p r .

A u t h o r i n g , h e l p s y s t e m 9 4 / A p r .

A u t o l o a d e r , D O S t a p e 1 2 / D e c .

Automatic test pattern generator
(A T P G) 5 5 / D e c .

A v a i l a b i l i t y 8 2 , 9 5 / D e c .

B
B a c k u p , d a t a 6 , 1 2 , 1 8 / D e c .

B a g , i n k 4 9 / F e b .

B a l i n k i n t r a n s f o r m a t i o n 2 4 / F e b .

B a n d i n g 1 9 / F e b .

B a s i s f u n c t i o n s 4 4 / D e c .

B e a m w i d t h , u l t r a s o u n d 4 5 / A u g .

B i l l o f m a t e r i a l s (B O M) 8 5 / D e c .

B i t e r r o r r a t i o t e s t s 2 9 / A u g .

B i t o n a l 3 7 / A p r .

B l e e d 1 9 , 2 9 / F e b .

B l o c k i n g 2 0 , 3 1 / F e b .

Branch ing , too l in te rac t ion 35 / June

B u s c o n v e r t e r s 1 7 / J u n e

B u s y i n g a t r a n s a c t i o n 1 I / J u n e

C a l c u l a t o r , s c i e n t i f i c 6 / A u g .

C a l i b r a t i o n , H P E 1 4 1 3 1 9 , 2 5 / O c t .

C a l i b r a t i o n , d e l a y 5 6 / O c t

Calibration, impedance.
m o d i f i e d O S L 7 0 / O c t .

C a l l b a c k f u n c t i o n s 3 7 / D e c .

C a p a b i l i t y i n d e x 4 0 / J u n e

C a p t a t i o n 4 2 / F e b .

CHAMP (channel-reseller
and manufac tur ing process) 17 /Apr .

C h a i n i n g , t o o l i n t e r a c t i o n 3 5 / J u n e

C h a r g e d - d e v i c e m o d e l 1 0 7 / O c t .

C h a s s i s , f o a m 2 3 / A u g .

C h i r p l e t a n a l y s i s 5 2 / D e c .

C h i r p l e t t r a n s f o r m 5 2 / D e c .

C h o o s e b o x e s 1 5 / A u g .

Cleanroom software
e n g i n e e r i n g 4 1 / J u n e

Client/server architecture,
H P M P o w e r 1 3 , 2 5 , 6 4 / A p r .

Clock dis t r ibut ion, Pent ium 68/Dec.

C l o c k m e a s u r e m e n t s 7 4 / D e c .

C o a l e s c e n c e 1 9 / F e b .

C o c k l e 1 8 / F e b .

C o h e r e n t w r i t e b u f f e r s 1 5 / J u n e

C o l l a b o r a t i o n 2 3 / A p r .

C o l o r d e g r a d a t i o n 8 8 / A p r .

C o l o r f l o w i m a g i n g 4 4 / A u g .

C o l o r m a n a g e m e n t 3 I / A p r .

C o l o r m a t c h i n g 3 2 / A p r .

C o l o r o p t i m i z a t i o n 2 4 / F e b .

C o l o r q u a l i t y , i n k j e t 1 8 / F e b .

C o l o r r a m p 3 2 / A p r .

C o l o r a n t s 3 3 / F e b .

C o m m e n t a t o r , F D D I 9 0 / O c t .

C o m p a r a t o r , p i n 4 3 , 4 5 / O c t .

C o m p i l e r o p t i m i z a t i o n s 3 7 / D e c .

Component placement
m a c h i n e s 5 1 / J u n e

Computers, business servers ... 6, 3 I/June

Condit ioners , for 1C test ing 58/Dec.

C o n n e c t o r , H P S h a r e d X 2 6 / A p r .

C o n t a c t a n g l e , i n k 3 0 / F e b .

C o n t e n t t y p e s , M I M E 7 6 / A p r .

C o n t e x t d i a g r a m 5 6 / A u g .

C o n t e x t u a l h e l p 8 1 / A p r .

C o n t r o l f l o w d i a g r a m 5 4 / A u g .

C o n t r o l s p e c i f i c a t i o n 5 4 / A u g .

Core server , HP SharedPrint 47/Apr.

C o v e r e d R O M 9 / A u g .

C r a c k i n g 3 1 / F e b .

C r y s t a l l i z a t i o n 3 2 / F e b .

C u r l 1 8 / F e b .

C u r r e n t - m o d e a m p l i f i e r 1 7 / O c t .

Current-voltage impedance
m e t h o d 6 8 / O c t

C y a n a t e e s t e r 2 8 / J u n e

D A T d r i v e 6 / D e c .

D a t a d i c t i o n a r y - 5 4 / A u g .

D a t a - d r i v e n t e s t s y s t e m s 6 2 / A u g .

D a t a f l o w d i a g r a m 5 4 / A u g .

D a u b e c h i e s w a v e l e t 4 7 / D e c .

D O S a u t o l o a d e r 1 2 / D e c .

D D S - 2 t a p e d r i v e 6 / D e c .

D e b u g g e r i n t e r n a l s 3 9 / D e c .

Debugg ing op t imized code 34 /Dec .

D e f e c t - f r e e s o f t w a r e 4 0 / J u n e

D e l a y l i n e s t r u c t u r e s 5 3 / O c t .

D e l a y v e r n i e r , C M O S 5 1 / O c t .

D e s i g n l e v e r a g i n g 3 5 / O c t .

D e s i g n m a r g i n 1 9 / D e c .

D e s i g n p l o t s 9 9 / D e c .

D e s i g n J e t 6 5 0 C p r i n t e r 6 , 5 0 / F e b .

D e s k J e t 1 2 0 0 C p r i n t e r 6 / F e b .

D e s k t o p c o n f i g u r a t i o n s 1 4 / A p r .

Detector, flame ionization, SFC . . . 41/Aug.

D i a g n o s t i c s , H P M P o w e r 1 8 / A p r .

D i f f e r e n t i a l e q u a t i o n s 2 1 / A u g .

Digital signal processing,
L S I t e s t e r 5 9 / O c t .

Digital transmitter
characterization . .

D i g i t a l v i d e o

D i r e c t i o n a l b r i d g e

D i s p l a y m o d u l e s

Display resources and rendering . .

D i s t r i b u t e d m u l t i m e d i a

Distributed priority list
arbitration . .

D i t h e r i n g

D o t g a i n 2 6 ,

D r a w i n g m o d e s

D r i v e r o l l e r , i n k j e t p r i n t e r

D r i v e r , p i n 4 3 ,

D r i v e r r e d e s i g n

O r _ M P o w e r

D r i l l - d o w n

D r o p d e t e c t i o n

D r o p g e n e r a t i o n , i n k j e t

D r o p p l a c e m e n t e r r o r s

D r o p s i z e , i n k j e t

D r o p v o l u m e , i n k j e t 1 2 ,

D r u m , t a p e d r i v e

29/Aug.

. 8/Apr.

68/Oct.

95/Oct.

3 I/Apr.

12/Apr.

12/June

40/Apr.

30/Feb.

87/Feb.

74/Feb.

44/Oct.

52/Aug.

18/Apr.

94/Oct.

82/Feb.

11/Feb.

18/Feb.

10/Feb.

20/Feb.

. 9/Dec.

December 1994 Hewlett-Packard Journal 115

© Copr. 1949-1998 Hewlett-Packard Co.

D r y i n g t i m e 2 8 / F e b .

D S P m o d u l e 6 1 / O c t .

Dual- f requency t ransducers 50/Aug.

D u p l i c a t e c a c h e t a g s 1 4 / J u n e

D y e s e l e c t i o n 2 4 / F e b .

E d g e q u a l i t y , i n k j e t 1 8 / F e b .

Electrical overstress test ing 106/Oct.

Electrical system, inkjet printer . . . 62/Feb.

Electrostatic discharge testing . . . 106/Oct.

Engineering units conversion 21/Oct.

Enterprise modeling
a n d s i m u l a t i o n 8 0 / D e c .

E P P f o a m c h a s s i s 2 3 / A u g .

E r r o r d i f f u s i o n 9 1 / F e b .

E r r o r t r a c e c a p t u r e 3 6 / A u g .

Event -based debugging 33 /Dec .

E v e n t m a t r i x 5 5 / A u g .

E v e n t s , c a l c u l a t o r 1 6 / A u g .

Evolutionary delivery,
c l e a n r o o m 4 2 / J u n e

E x c i t a t i o n s u p p l y 1 4 / O c t .

E x e c u t a b l e t e s t s u i t e 8 4 / O c t .

Expanded polypropylene 23/Aug.

E x p r e s s i o n e v a l u a t i o n 3 9 / D e c .

E x t i n c t i o n r a t i o 3 0 / A u g .

E y e d i a g r a m a n a l y z e r 3 1 / A u g .

E y e l i n e d i a g r a m 3 2 / A u g .

F a x c l i e n t 5 4 / A p r .

F a x d a t a b a s e s 5 5 / A p r .

F a x s e r v e r 5 5 , 5 9 / A p r .

F a x i n g d o c u m e n t s 9 , 5 3 / A p r .

F D D I R i n g M a n a g e r 8 8 / O c t .

F G I 8 2 , 8 5 / D e c .

File manager, HP VUE 3.0 21/Apr.

F i l t e r s , p r i n t i n g 4 9 / A p r .

Filters, root raised-cosine 64/Oct.

Firmware design, autoloader 15/Dec.

Firmware , inkje t pr in ter 64 , 85/Feb.

Fixtures, impedance
m e a s u r e m e n t 7 3 / O c t .

F o a m c h a s s i s 2 3 / A u g .

F o r e c a s t q u a l i t y 8 0 , 8 5 / D e c .

Foreign language format,
H P H e l p S y s t e m 8 5 / A p r .

Frame relay
c o n f o r m a n c e t e s t i n g 8 3 / O c t .

Func t iona l ve r i f i ca t ion 43 / June

F u z z y c o m p o s i t i o n 5 6 , 6 1 / J u n e

Fuzzy family assignment
h e u r i s t i c 5 7 / J u n e

F u z z y l o g i c 5 1 / J u n e

Fuzzy log ic , HP E1413 33 /Oc t .

F u z z y r e l a t i o n s 5 6 / J u n e

F u z z y s e t t h e o r y 5 4 / J u n e

G a b o r t r a n s f o r m 4 4 / D e c .

G a m u t , c o l o r 1 8 / F e b .

G e n e r a l h e l p 9 2 / A p r .

Graphical user interface 20/Apr.

G r a y s c a l e 3 7 / A p r .

Greedy board heur i s t i c 53 / June

G r i d - c e n t e r e d m e t h o d 9 0 / F e b .

Grid-intersection method 90/Feb.

H

H a a r w a v e l e t 4 6 / D e c .

Hatley-Pirbhai state machine 28/Dec.

H e a d s , t a p e d r i v e 7 / D e c .

Heater, inkjet 15, 23, 32, 36, 73/Feb.

H e l p d i a l o g s 8 1 , 8 4 / A p r .

H e l p e n t r y p o i n t s 8 1 , 9 1 / A p r .

Help file compression
a n d d e c o m p r e s s i o n 8 4 / A p r .

H e l p f i l e s y s t e m 8 0 / A p r .

H e l p i n f o r m a t i o n m o d e l s 9 2 / A p r .

H e l p - s m a r t a p p l i c a t i o n 8 2 / A p r .

H e l p u s e m o d e l 9 0 / A p r .

H e l p v o l u m e s 8 2 / A p r .

H i g h - Q m e a s u r e m e n t s 7 0 / O c t .

H i g h - t h r o u g h p u t a m p l i f i e r 1 6 / O c t .

H P - P A C 2 3 / A u g .

H u m a n b o d y m o d e l 1 0 6 / O c t .

H y p e r t e x t l i n k s 9 3 / A p r .

I

1 C , d e l a y v e r n i e r 5 1 / O c t .

1C , p in e l ec t ron i c s 42 , 44 /Oc t .

1 C , p r o c e s s o r i n t e r f a c e 1 4 / J u n e

1C test system, mixed signal 42/Oct .

I F V M f u n c t i o n 4 3 / O c t .

Image compression
a n d d e c o m p r e s s i o n 3 9 / A p r .

I m a g e c o n v e r s i o n 4 1 / A p r .

I m a g e f i l e s 3 7 / A p r .

I m a g e m a n i p u l a t i o n 4 1 / A p r .

I m a g e p r o c e s s o r 8 6 / F e b .

I m a g e s c a l i n g 4 1 / A p r .

I m p e d a n c e a n a l y z e r 6 7 / O c t .

Industry standard file types 39/Apr.

I n k d e s i g n , b l a c k 1 3 / F e b .

I n k d e s i g n , c o l o r 2 3 / F e b .

I n k l e v e l i n d i c a t o r 5 3 / F e b .

I n k - r e c e p t i v e c o a t i n g 2 8 / F e b .

I n k s , i n k j e t 3 3 / F e b .

I n p u t f o r m s 1 3 / A u g .

Input /output subsys tem 16 /June

I n s p e c t i o n s , c o d e 6 1 / A u g .

Instrumentation amplifier 17/Oct.

In teg ra ted d r ive r p r in thead 41 /Feb .

I n t e l l e c t u a l c o n t r o l 4 3 / J u n e

In t e rp re t e r , s t a t e t ab le 24 /Dec .

Interprocess communication 14/Apr.

I n t e r v a l , m o n i t o r 9 9 / O c t .

I n t e r v a l , u p d a t e 9 9 / O c t .

I n v e n t o r y 8 5 , 8 8 / D e c .

ISS
(Instrument Software System) 76/Oct.

I t e m h e l p 8 2 / A p r .

I - V i m p e d a n c e m e t h o d 6 8 / O c t .

J i t t e r , c l o c k 6 8 / D e c .

J i t t e r , C M O S i n v e r t e r 5 4 / O c t .

J i t t e r , t r a n s m i t t e r 3 6 / A u g .

"Jus t -enough- tes t " s t r a tegy 30 /Oc t .

K
K h o r o s s y s t e m 4 8 / D e c .

K n o w l e d g e w o r k e r 1 0 / A p r .

L * a * b s y s t e m 2 4 / F e b .

L a n g u a g e i n t e r f a c e 9 2 / F e b .

L a n g u a g e , t e s t p l a n 6 2 / O c t .

L a n g u a g e , T T C N 8 4 / O c t .

L a n g u a g e s , t e s t s u i t e 8 4 / O c t .

L a r g e - f o r m a t p l o t t e r 5 0 / F e b .

L e a d t i m e 8 2 , 8 5 / D e c .

Legal primitive evaluation 45, 47/June

L e v e l 1 d i a g r a m 5 6 / A u g .

Library, operation modular 62/Oct.

L i n e q u a l i t y , i n k j e t 1 8 / F e b .

Linear phased-array transducers . . 46/Aug.

L i n e a r i t y , t a p e d r i v e 9 / D e c .

L o a d , a c t i v e 4 3 , 4 5 / O c t .

L o c a l i z a b i l i t y 8 9 / A p r .

LSI test system, mixed signal 42/Oct.

M
M a c h i n e b a l a n c i n g 5 3 , 5 9 / J u n e

M a c h i n e m o d e l , E S D 1 0 6 / O c t .

M A C l e s s n o d e s 1 0 5 / O c t .

Magazine, tape autoloader 14/Dec.

M a i l c o m p o s e r 7 4 / A p r .

M a i l s y s t e m 7 1 / A p r .

M a i l t r a n s f e r a g e n t 7 3 / A p r .

M a i l u s e r a g e n t s 7 2 / A p r .

116 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Management information base
(M I B) 8 8 , 9 8 / O c t

Managing shared windows 30/Apr.

Manufactur ing , computer 28 /June

Manufacturing
e n t e r p r i s e m o d e l 8 2 . 9 0 / D e c .

Manufacturing test optimization . . 30/Oct.

M a p . p h y s i c a l 8 9 , 9 7 . 1 0 2 / O c t .

M a p , l o g i c a l 8 9 , 9 7 . 1 0 0 / O c t .

Mapping. FDDI ring
t o p o l o g y - 8 9 , 9 4 , 9 7 / O c t .

M a s k m e a s u r e m e n t s 3 6 / A u g .

M a t c h i n g f o n t s 3 4 / A p r .

Mathematics, calculator 19/Aug.

M a x i c l i e n t 1 5 / A p r .

M e a l y s t a t e m a c h i n e 2 7 / D e c .

Measurement modules,
H P H D 2 0 0 0 7 / O c t .

Mechanical design,
t a p e a u t o l o a d e r 1 4 / D e c .

Mechanical design, computer 26/June

Mechanical design, inkjet printer . . 58/Feb.

Media path, inkjet printer 72/Feb.

Memory configurations, HP 48GX . . 7/Aug.

M e m o r y i n t e r l e a v i n g 1 9 / J u n e

Memory s ize convent ions 9/June

M e m o r y s y s t e m 1 9 / J u n e

Message Connector, SoftBench . . . 34/June

M e t a m a i l 7 5 / A p r .

M e y e r w a v e l e t 4 6 / D e c .

MIME (Multipurpose
Internet Mail Extensions) 72, 75/Apr.

M i m e t y p e s 7 8 / A p r .

M i n i c l i e n t 1 5 / A p r .

Modes, inkjet printer 21, 35/Feb.

M o t t l i n g 1 9 / F e b .

M o d e l , d e v e l o p m e n t 6 5 / F e b .

M o d e l , s t e p p e r m o t o r 7 5 / F e b .

M o d e l i n g , e n t e r p r i s e 8 0 / D e c .

Models,
m a n u f a c t u r i n g e n t e r p r i s e 9 0 / D e c .

M o d u l e t e s t i n g 6 3 / D e c .

M o o r e s t a t e m a c h i n e 2 7 / D e c .

M o r l e t w a v e l e t 4 6 / D e c .

M o t h e r w a v e l e t 4 4 / D e c .

Motions, tape autoloader 14/Dec.

MPEG-1
(Moving Pictures Expert Group) . . . 8/Apr.

M u l t i m e d i a e d i t o r 7 3 / A p r .

Mult imedia environment 10/Apr.

M u l t i m e d i a m a i l 7 I / A p r .

Multiprocessing computers 6, 3 I/June

M u n s e l l s y s t e m 2 4 / F e b .

N
N e i g h b o r i n f o r m a t i o n 9 8 / O c t .

N e t w o r k A d \ i s o r . F D D I 8 8 / O c t

N e t w o r k b a c k u p 1 8 / D e c .

O f f i c e P a p e r P r o g r a m 1 6 / F e b .

O n l i n e a p p l i c a t i o n h e l p 9 0 / A p r .

O n l i n e h e l p 1 2 , 7 9 / A p r .

Operational test release vectors . . 55/Dec.

Order-to-delivery time 82, 85/Dec.

O v e r v o l t a g e p r o t e c t i o n 9 / O c t .

P a c k a g e s , H P D D E 3 8 / D e c .

Packaging, print cartridge 53/Feb.

Packaging technology, foam 23/Aug.

P a l e t t e 3 7 / A p r .

Paper advance, inkjet printer 39/Feb.

P a p e r , i n k j e t 1 6 / F e b .

P A - R I S C 6 , 3 1 / J u n e

P a r t c o m m o n a l i t y 9 9 / D e c .

P a r t n e r s h i p s 3 8 / O c t .

P C L 5 C l a n g u a g e 8 5 / F e b .

P e l t i e r c o o l e r 4 0 / A u g .

P e n t i u m c l o c k d e s i g n 6 8 / D e c .

Performance, multiprocessor 2 I/June

P i g m e n t d i s p e r s i o n 1 3 / F e b .

P i p e l i n e , C P U 1 5 / J u n e

P i p e l i n e , p r i n t i n g 5 1 / A p r .

P i p e l i n i n g , H P E 1 4 1 3 2 0 / O c t .

P i x e l m a p p i n g 3 4 / A p r .

P l a c e m e n t m a c h i n e s 5 1 / J u n e

Plo t t ing , 3D ca lcu la tor 17 /Aug.

Po lyes te r media , ink je t 28 /Feb .

P o s t S c r i p t p r i n t e r 6 / F e b .

P r e c i s i o n B u s , H P 1 9 / J u n e

Preheater, inkjet printer ... 15, 37, 73/Feb.

P r e s s u r e s c a n n e r 3 7 / O c t .

Pre wanning , p r in thead 13 /Feb .

P r i m a r y f a m i l y 5 2 / J u n e

Priming, inkjet cartridge 71/Feb.

Print cartridge alignment 39/Feb.

Print cartridge development 46/Feb.

P r i n t c a r t r i d g e f i x t u r i n g 6 7 / F e b .

Pr in t car t r idge maintenance 67/Feb.

P r i n t c l i e n t 4 6 / A p r .

Print quality,
inkje t 9 , 16 , 18 , 22 , 35 , 55/Feb.

P r i n t q u a l i t y t e s t e r 8 0 / F e b .

P r i n t e r s , c o l o r i n k j e t 6 / F e b .

P r i n t h e a d . i n k j e t 4 1 / F e b .

P r i n t i n g p i p e l i n e 5 1 / A p r .

P r o c e s s s p e c i f i c a t i o n 5 4 / A u g .

P r o c e s s o r b o a r d 1 3 / J u n e

P r o c e s s o r i n t e r f a c e c h i p 1 4 / J u n e

P r o c e s s o r m e m o r y b u s 1 0 / J u n e

P r o c e s s o r m o d u l e s 1 3 / J u n e

P r o d u c t - s p e c i f i c f i l e s 6 3 / A u g .

Production cost flowthrough
(P C F T) 8 2 , 8 5 / D e c .

P r o g r e s s i v e d i s c l o s u r e 9 2 / A p r .

Pseudorandom binary sequence . . 29/Aug.

P u d d l i n g 2 1 / F e b .

P u m p , S F C 4 0 / A u g .

Q F D h o u s e o f q u a l i t y 4 7 / A u g .

Q u a d 1 0 / J u n e

Q u i c k h e l p 8 1 , 9 1 / A p r .

R a n g e s w i t c h i n g 1 8 / O c t .

R a s t e r o p e r a t i o n s 8 7 / F e b .

R e c e i v e r s e r v i c e 2 6 / A p r .

R e e n g i n e e r i n g 8 6 / D e c .

R e m o t e d e b u g g i n g 3 6 , 4 0 / D e c .

Resolut ion enhancement 36/Feb.

Re t a rge t ab l e debugge r 33 /Dec .

Return-on-investment model,
s o f t w a r e i n s p e c t i o n s 6 5 / D e c .

Risk assessment,
s o f t w a r e t e s t i n g 6 3 / D e c .

R O M P T R s 9 / A u g .

R o t a t i o n , m a g a z i n e 1 6 / D e c .

R o u t i n e e d i t o r 3 5 / J u n e

R o u t i n e e n g i n e 3 5 / J u n e

R o u t i n e m a n a g e r 3 5 / J u n e

R P I 8 2 , 8 5 / D e c .

S a f e t y s t o c k 8 2 / D e c .

Sales and inventory
t r a c k i n g s y s t e m 6 0 / D e c .

S a l l e n a n d K e y f i l t e r 1 1 / O c t .

Sampling, harmonic repetitive 32/Aug.

S c a l e , w a v e l e t 4 5 / D e c .

S c a n c e l l 5 7 / D e c .

S c r e e n c a l i b r a t o r 9 5 / F e b .

S e a m t e a m s 6 / F e b .

S e l f - t e s t 2 5 / O c t .

Sender/receiver architecture,
H P S h a r e d X 2 4 / A p r .

December 1 994 Hewlett-Packard Journal 117

© Copr. 1949-1998 Hewlett-Packard Co.

s e n d m a i l 7 3 / A p r .

S e r v e r s , b u s i n e s s 6 , 3 1 / J u n e

S e r v i c e p r o c e s s o r 2 2 / J u n e

Signal conditioning plug-on (SCP) . . 9/Oct.

S i m p l e M o d e l 8 2 / D e c .

S i m u l a t i o n , e n t e r p r i s e 8 0 / D e c .

S i x - s i g m a 4 0 / J u n e

S n o o p y p r o t o c o l 1 1 / J u n e

SoftBench Message Connector . . . 34/June

S o f t w a r e , d a t a d r i v e n 6 2 / A u g .

Software inspections 48/June, 61/Dec.

S o f t w a r e m e t r i c s 6 1 / D e c .

S o f t w a r e t e s t i n g 6 2 / D e c .

S p e c u l a t i v e p r e f e t c h 1 8 / J u n e

Speed , ink je t p r in te r 9 , 14 /Feb .

S p l i t b a n k 5 1 / J u n e

S p r a y 1 9 / F e b .

Spring-bag print cartridge 49/Feb.

S t a b i l i t y , s t a t i s t i c a l 6 8 / D e c .

S t a t e t a b l e g e n e r a t i o n 2 I / D e c .

S t a t e m a c h i n e s 2 1 , 2 7 / D e c .

S t a t i s t i c a l t e s t i n g 4 7 / J u n e

S t e p p e r m o t o r 7 5 / F e b .

S t r a i n g u a g e s 1 3 / O c t .

S t r u c t u r e c h a r t 5 9 / A u g .

Structured analysis and design . . . 52/Aug.

S t ruc tu red da t a , c l ean room 47 / June

Structured specifications,
c l e a n r o o m 4 2 / J u n e

S t y l e m a n a g e r 2 2 / A p r .

Supercritical fluid
c h r o m a t o g r a p h y 3 8 / A u g .

S y m b o l t a b l e 3 8 / D e c .

S y n t a x t r e e s 3 9 / D e c .

Tape, DDS-2

Tape drive, DDS-2

Telephony

Temperature control, printhead . . .

TEMPOB

Test access por t (TAP)

T e s t e x e c u t i v e

T e s t p a t t e r n s

T e s t p l a n n i n g

Test software, data-driven

T e s t s y s t e m , L S I

Test vector development

Test ing, print cartr idge

Text qual i ty , inkjet 9 ,

T h e r m a l c y c l i n g

Thermoelectr ic cooler

Three-opamp amplif ier

T ime sh i f t , wave le t

T iming env i ronmen t

Tolerance mechanisms

T o o l i n t e r a c t i o n

Transducers, linear ultrasound . . .

Transition information, state

Transmitter characterization

Transparency film, inkjet

Trapezoidal imaging

Turbine test

7/Dec.

6/Dec.

9/Apr.

12/Feb.

9/Aug.

56/Dec.

64/Aug.

55/Dec.

62/Dec.

62/Aug.

42/Oct.

55/Dec.

79/Feb.

35/Feb.

42/Feb.

40/Aug.

17/Oct.

45/Dec.

69/Dec.

70/Dec.

34/June

43/Aug.

23/Dec.

29/Aug.

28/Feb.

50/Aug.

9/Oct.

U
Ultrasound transducers,
v a s c u l a r . 4 3 / A u g .

User interface, calculator 13/Aug.

Vascular ultrasound transducers . . 43/Aug.

V i d e o s o f t w a r e 7 0 / A p r .

V i d e o t e c h n o l o g y 6 8 / A p r .

V i e w v o l u m e 1 7 / A u g .

V i r t u a l D M A 6 7 / A p r .

V i s c o s i t y , i n k 3 0 / F e b .

V o i c e 4 5 / D e c .

V u e p a d 7 4 / A p r .

V u e m i m e 7 6 / A p r .

V X I b u s 6 / O c t .

W
W a i t t i m e b a n d i n g 1 9 / F e b .

Ward-Mellor state machine 28/Dec.

W a v e f o r m d a t a b a s e 5 5 / D e c .

W a v e l e t a n a l y s i s 4 4 / D e c .

W a v e l e t t r a n s f o r m 4 5 / D e c .

W a i t t h e b u s 1 1 / J u n e

W h i t e b o a r d 2 8 / A p r .

W I P 8 4 , 8 5 / D e c .

Workspace manager,
H P V U E 3 . 0 2 1 / A p r .

W r i n k l i n g 3 1 / F e b .

W Y S I W Y G p r i n t i n g 8 6 / A p r .

XYZ
X s t a t i o n s 1 6 / A p r .

X v i d e o s o f t w a r e 7 0 / A p r .

Y C b C r . . . 3 7 / A p r .

118 December 1994 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Part 3: Product Index
H P 4 8 G / G X S c i e n t i f i c G r a p h i n g C a l c u l a t o r A u g .

H P 3 0 0 0 S e r i e s 9 8 7 / 2 0 0 B u s i n e s s C o m p u t e r J u n e

HP 3000 Series 991/995 Corporate Business Systems June

H P 8 1 3 3 A 3 - G H z P u l s e G e n e r a t o r D e c .

H P 9 0 0 0 M o d e l G 7 0 . H 7 0 . 1 7 0 S e r v e r s J u n e

H P 9 0 0 0 M o d e l T 5 0 0 C o r p o r a t e B u s i n e s s S e r v e r J u n e

HP 21255B Linear Phased-Array
V a s c u l a r U l t r a s o u n d T r a n s d u c e r A u g .

HP 21258B Linear Phased-Array
V a s c u l a r U l t r a s o u n d T r a n s d u c e r A u g .

H P 7 1 5 0 1 A E y e D i a g r a m A n a l y z e r A u g .

H P C 1 5 3 3 A D D S - 2 T a p e D r i v e D e c .

H P C 1 5 5 3 A D O S T a p e A u t o l o a d e r D e c .

HP E1413 64-channel scanning analog-to-digital converter Oct.

HP E1414 pressure scanning analog-to-digital converter Oct.

H P D e s i g n J e t 6 5 0 C p l o t t e r F e b .

H P D e s k J e t 1 2 0 0 C p r i n t e r F e b .

H P D e s k J e t 1 2 0 0 C / P S P o s t S c r i p t p r i n t e r F e b .

H P D i s t r i b u t e d D e b u g g i n g E n v i r o n m e n t (D D E) D e c .

H P G 1 2 0 5 A S u p e r c r i t i c a l F l u i d C h r o m a t o g r a p h A u g .

H P H D 2 0 0 0 d a t a a c q u i s i t i o n s y s t e m O c t .

H P H e l p D e v e l o p e r ' s K i t A p r .

H P H e l p S y s t e m A p r .

H P I m a g e L i b r a r y A p r .

H P I n s t a n t I g n i t i o n A p r .

H P M P o w e r A p r .

H P - P A C C h a s s i s a n d P a c k a g i n g T e c h n o l o g y A u g .

H P S h a r e d P r i n t A p r .

H P S h a r e d X A p r .

HP Sonos 1000 Cardiovascular Ultrasound Imaging System . . Aug.

H P T e l e s h a r e A p r .

H P V U E 3 . 0 A p r .

S o f t B e n c h M e s s a g e C o n n e c t o r J u n e

W h i t e b o a r d A p r .

Part 4: Author Index
A d e n , J . S t e p h e n F e b .

A g a d o n i , R a n d e l l A F e b .

A l e x a n d e r , T h o m a s B J u n e

A r n e t t , D a v i d A u g .

A s k e l a n d , R o n a l d A F e b .

B a r n e s , J a m e s O O c t .

B a u e r , S t e v e F e b .

B e a m e r , C a r o l F e b .

B e e r s , T e d W . A u g .

B e r t a g n e , M i c h a e l G D e c .

B h a t , S u n i l O c t .

B l a i r , D u s t i n F e b .

B o c k m a n , K e v i n M F e b .

B o h Ã ³ r q u e z , J a i m e H F e b .

B r a n d t , E l l e n N A p r .

B r e s n i k e r , K i r k M J u n e

B r i l e y , D a n i e l L F e b .

B r o d e r , D a m o n W . F e b .

B r o o k s , D a v i d W . F e b .

B r o w e r , H e n d r i c k F e b .

B u r n e y , D a v i d C F e b .

B u t l e r , H a m i s h O c t .

B y r n e , D i a n a K A u g .

C a m p b e l l , V o n C O c t .

C a n f i e l d , B r i a n P . . . F e b .

C a r l i n , T i m F e b .

C l u g s t o n , D o n a l d F e b .

C o i n e r , E r i c h F e b .

C o l b u r n , W i l l i a m S F e b .

C o l l i n s , D o u g l a s M F e b .

C o o k , L o r i A A p r .

C o u r a n t , J o s e p h J J u n e

C o u r i a n , K e n n e t h J F e b .

C r o o k , M . D o u g l a s F e b .

d a C u n h a , J o h n M O c t .

D a n g e l o , M i c h a e l T . F e b .

D e i n i n g e r , A x e l A p r .

D i a z , C a r l o s H O c t .

D i m o n d , S t e v e n A D e c .

D i P i e t r o , D a v i d M O c t .

D r i e s b a c h , A n n e L O c t .

D r o g o , F r a n k F e b .

D u b u c , M a r t i n O c t .

E r t u r k , E r o l F e b .

F e r n a n d e z , C h a r l e s V . A p r .

F i n c h e r , T h o m a s G A p r .

F r a n z , L o u i s A D e c .

G a r c i a , A n d r e F e b .

G a r f i n k e l , D a n i e l A p r .

G i l e s , R o b e r t R . . . F e b .

G o t o , M a s a h a r u O c t .

G r a c e , J a m e s W . O c t .

G r z e s i k , T h a d d e u s S D e c .

G u n j i , K e i t a O c t .

H a b e r l e , J Ã ¼ r g e n A u g .

H a c k b a r t h , B a r b a r a A A u g .

H a l l , C o r r i n a A . E F e b .

H a m l i n , M i n d y F e b .

H a m m o n d , R o b e r t J A p r .

H a n , J o y X i a o D e c .

H a r m o n , J e r r y D e c .

H e a d , G r a n t E J u n e

H e s s , U l r i c h E F e b .

H i e b e r t , S t e v e n P . A p r .

H o c k , S c o t t W . F e b .

H o c k l e y , D e b b i e R . B F e b .

H o - G i b s o n , V a l e r i e J D e c .

H o l s t u n , C l a y t o n L F e b .

H o o v e r , T r a c y A D e c .

H u n t , C a t h e r i n e B F e b .

H u n t , D a v e F e b .

l y e n g a r , A r a n K D e c .

J o h n s o n , M a r k A A p r .

J o h n s o n , M i c h a e l M F e b .

J o n e s , M a r l i n M . , I I J u n e

' i 1 > w l e l l P a c k a r d J o u r n a l I 1 !)

© Copr. 1949-1998 Hewlett-Packard Co.

K a p l i n s k y , G e o r g e F e b .

K a r u b e , K o j i O c t .

K a s p e r , J o s e p h E A p r .

K e l l e r , J o h n R J u n e

K e l l y , C h r i s t o p h e r P . J O c t .

K i l c r e a s e , C a t h e r i n e L A u g .

K i n s h o , K e n j i O c t .

K i s h i d a , A k i t o O c t .

K o l t s , B e r t r a m S O c t .

K o p p , S i e g f r i e d A u g .

K r o b o t h , R o b e r t H O c t .

K r u c k y , J a n J u n e

L a n d i s , A d e l e S A u g .

L e e , D a n i e l T . L D e c .

L i n d s a y , D e a n T . J u n e

L i t t l e , R o b F e b .

M a g e n i s , S u e A p r .

M a h n , J o h a n n e s A u g .

M a n d l e r , J o h n A p r .

M c C l e l l a n , P a u l J A u g .

M i l l e r , C h r i s t o p h e r M A u g .

M o o n e y , M a t t h e w G A u g .

M o o r e , S h e l l e y I F e b .

M o s t a f a , H a t e m E F e b .

M o v a g h a r , R e z a F e b .

M u e l l e r , S t e v e n D F e b .

M u j t a b a , M . S h a h i d D e c .

M u n r o , A n d r e w A p r .

N a t h a n , C o n n i e A u g .

O b e r m e y e r , J o h n R J u n e

O e s t e r l e , J e f f e r y T . A p r .

O k a , K e i t h Y . J u n e

O l d e n b u r g , G l e n F e b .

O w e n s , R o n n i e E O c t .

P a d m a n a b h a n , R a m c h a n d r a n F e b .

P a n a h , T o n y F e b .

P a r k h u r s t , A n t h o n y D F e b .

P a t t o n , C h a r l e s M A u g .

P e t e r s o n , J o h n V . A p r .

P f a f f , A n d r e a s M . R D e c .

P h i n n e y , H a r r y K A p r .

P r a s a d , K e s h a v a A F e b .

P r o f t , C o n r a d R O c t .

R a a k , G e r a l d I O c t .

R e i d , B r u c e F e b .

R i e d e l , R o n a l d J O c t .

R h o a d s , W . W i s t a r F e b .

R i c h a r d , C r a i g S A p r .

R i t t e r , R o b e r t D e c .

R o b e r t s o n , K e n n e t h G J u n e

R o g e r s , D o n a l d L J u n e

R o s e , G a r y P . A p r .

S c a n d a l i s , A n e e s a R F e b .

S c h e f f e l i n , J o e F e b .

S c h w e g l e r , T i m A u g .

S c h w i e b e r t , W i l l i a m H F e b .

S h a h , M o n i s h S A p r .

S h e k a r a b i , A h m a d H A p r .

S h e p a r d , M i c h e l e E F e b .

S h i h , J o n a t h a n C D e c .

S i m m s , M a r k J D e c .

S l e v i n , L e o n a r d F e b .

S m i t h , D e x A p r .

S t e e g e , K e n n e t h L A p r .

S u n g , F r a n c i s P . A p r .

T a b a r , A n t o n F e b .

T h o m a n , J e f f F e b .

T i m m , D a l e F e b .

T o u s i , S u s a n H F e b .

T o w e r y , D a v i d F e b .

T r e z i s e , G r e g K D e c .

U j v a r o s y , D a m o n R D e c .

V a n L i e w , A m y F e b .

V a s t a , J o h n R D e c .

V i l l a g e , R o d n e y K O c t .

W a r r e n , R i c h a r d E O c t .

W a t s o n , D o u g l a s R F e b .

W e l t i , B r u c e C A p r .

W i e s m e i e r , E d w a r d , I I I F e b .

W i l l i a m s , M i c h a e l K D e c .

W i l l i a m s , R o b e r t B A p r .

W i l s o n , A r t h u r K F e b .

W i l s o n , M a r t h a G r e w e A u g .

W i l s o n , M i c h a e l R A p r .

W i n t e r , K i r t A F e b .

W i t t e , S t e p h e n B F e b .

Y i p , T h o m a s W . A p r .

Y o d e r , W i l l i a m R A p r .

Y a m a m o t o , A k i o D e c .

Y o n e k u r a , T a k a n o r i O c t .

D e c e m b e r 1 9 9 4 V o l u m e 4 5 â € ¢ N u m b e r 6

Techn ica l In fo rmat ion f rom the Labora tor ies o f
H e w l e t t - P a c k a r d C o m p a n y

H e w l e t t - P a c k a r d C o m p a n y . P . O . B o x 5 1 8 2
P a l o A l t o , C a l i f o r n i a , 9 4 3 0 3 - 0 7 2 4 U . S . A .

H E W L E T T '
PACKARD

5963-321 OE

© Copr. 1949-1998 Hewlett-Packard Co.

	Fast DDS-2 Digital Audio Tape Drive
	Autoloader Control Electronics
	Autoloader Firmware Design
	Automatic State Table Generation
	Using State Machines as a Design and Coding Tool
	An Event-Based, Retargetable Debugger
	Compiler Optimizations and Debugging
	A Short Primer on Debugger Internals
	Wavelet Analysis: Theory and Applications
	Approaches to Verifying Operational Test Release Vectors
	Overview of the Test Access Port
	Clock Design and Measurement Issues in Pentium Systems
	Tolerance Mechanisms in Clock Distribution Networks
	Glossary of Terms and Abbreviations
	Enterprise Modeling and Simulation Applications in Reengineering
	Enterprise Modeling and Simulation Research at HP Laboritories
	The Simple Model: Sponsor's Perspective
	Appendix III: Details of Part Commonality Experiments
	Appendix IV: Details of Explanations for Experiments 0 and 1a

