
H E W L E T - P A C K A R D

JOURNAL
June 1992

N/sc

H E W L E T T
P A C K A R D

© Copr. 1949-1998 Hewlett-Packard Co.

H E W L E T T - P A C K A R D

JOURNAL J u n e 1 9 9 2 V o l u m e 4 3 â € ¢ N u m b e r 3

Articles

Â¡ HP-UX Karen Sys tem Kerne l Suppor t fo r the HP 9000 Ser ies 700 Works ta t ions , by Karen
Kerschen and Jef f rey R. G/asson

I An Example of the FTEST Instruction

Prov id ing HP-UX Kernel Funct ional i ty on a New PA-RISC Arch i tecture, by Donald E. Bol l inger ,
Frank P. Lemmon, and Dawn L. Yamine

^ New Op t im i za t i ons f o r PA-R ISC Comp i l e r s , by Robe r t C . Hansen

/ / L i n k - T i m e O p t i m i z a t i o n s

7 A HP 9000 Ser ies 700 FORTRAN Opt im iz ing Preprocessor , by Roben A . Go t t l i eb , Dan ie l J .
Magenhe imer , Sue A. Meloy , and A lan C. Meyer

Vector Library

Q Q Reg i s t e r Reassoc ia t i on i n PA -R ISC Comp i l e r s , by Va t sa San thanam

^< Q So f twa re P ipe l i n i ng i n PA-R ISC Comp i l e r s , by S r i dha r Ramak r i shnan

A t Â ¡ Shared L ib ra r ies fo r HP-UX, by CaryA . Cou tan t and M iche l le A . Rusce t ta

Deferred Binding, Relocation, and Initialization of Shared Library Data

Editor, Richard R Dolan â€¢ Associate Editor, Charles L Leath â€¢ Publication Production Manager, Susan E. Wright â€¢ I l lustration, RenÃ©e D. Pighini
Typography /Layou t , R i ta C Smi th â€¢ Tes t and Measurement Organ iza t ion L ia ison . J M ichae l Gospe

Advisory Harry Wil l iam W. Brown, Integrated Circuit Business Division, Santa Clara. California â€¢ Harry Chou, Microwave Technology Division, Santa Rosa, California â€¢
Rajesh Gordon. Waltham, Systems Div is ion, Cupert ino, Cal i fornia Gary Gordon. HP Laborator ies, Palo Al to. Cal i fornia* J im Grady, Waltham Div is ion. Waltham,
Massachusetts â€¢ Man J. Marline, Systems Technology Division. Roseville, California â€¢ Roger L Jungerman, Microwave Technology Division. Santa Rosa, California â€¢
Paula Thomas Kanarek, InkJet Components Division, Corvallis, Oregon â€¢ Thomas F. Kraemer, Colorado Springs Division, Colorado Springs, Colorado * Ruby R. Lee, Networked
Systems Japan Cuper t ino, Cal i forn ia Bi l l L loyd, HP Laborator ies Japan. Kawasaki , Japan* Al f red Maute, Waldbronn Analy t ica l Div is ion, Waldbronn. Germany*
Michael Printer San Measurement Systems Division. Loveland. Colorado* Shel ley I . Moore, San Diego Printer Division, San Diego. Cal i fornia* Dona L. Morr i l l , Worldwide
Customer Chelmsford, Division, Mountain View, California * Wil l iam M. Mowson, Open Systems Software Division, Chelmsford, Massachusetts * Steven J. Narciso, VXi
Systems Division. Loveland, Colorado * Raj Oza, Software Technology Division, Mountain View, California * Han Tian Phua, Asia Peripherals Division, Singapore â€¢ GÃ¼nter
Riebesell, BÃ²blingen Instruments Division, BÃ²blingen. Germany Marc J. Sabatel la, Systems Technology Division, Fort Coll ins. Colorado* Michael B. Saunders, Integrated
Circuit California Division, Corvall is, Oregon * GÃ¼nter Steinbach, HP Laboratories, Palo Alto. California* Phil ip Stenton, HP Laboratories Bristol, Bristol, England* Stephen
R. Undy, Instrument Technology Division, Fon Coll ins, Colorado Koichi Yanagawa. Kobe Instrument Division, Kobe, Japan* Dennis C. York. Corvall is Division. Corvall is,
Oregon * Barbara ZÃ¯mmer, Corporate Engineering, Palo Alto, California

Â©Hewlett-Packard Company 1992 Printed in U.S.A.

June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Research Reports

I n t e g r a t i n g a n E l e c t r o n i c D i c t i o n a r y i n t o a N a t u r a l L a n g u a g e P r o c e s s i n g S y s t e m ,
b y D i a n a C . R o b e r t s

- \ Q A p p l i c a t i o n o f S p a t i a l F r e q u e n c y M e t h o d s t o E v a l u a t i o n o f P r i n t e d I m a g e s , b y D a l e D . R u s s e i l

" 7 p ! a n d R a y t r a c e d I m a g e G e n e r a t i o n , b y S u s a n S . S p a c h a n d R o n a l d W . P u l l e y b i a n k

Departments

4 I n t h i s I s s u e
5 C o v e r
5 W h a t ' s A h e a d

6 5 A u t h o r s

T h e H e w l e t t - P a c k a r d J o u r n a l i s p u b l i s h e d b i m o n t h l y b y t h e H e w l e t t - P a c k a r d C o m p a n y t o r e c o g n i z e t e c h n i c a l c o n t r i b u t i o n s m a d e b y H e w l e t t - P a c k a r d
(H P } p e r s o n n e l . W h i l e t h e i n f o r m a t i o n f o u n d i n t h i s p u b l i c a t i o n i s b e l i e v e d t o b e a c c u r a t e , t h e H e w l e t t - P a c k a r d C o m p a n y d i s c l a i m s a l l w a r r a n t i e s o f
m e r c h a n t a b i l i t y a n d f i t n e s s f o r a p a r t i c u l a r p u r p o s e a n d a l l o b l i g a t i o n s a n d l i a b i l i t i e s f o r d a m a g e s , i n c l u d i n g b u t n o t l i m i t e d t o i n d i r e c t , s p e c i a l , o r c o n s e
quen t ia l pub l i ca t i on . a t to rney ' s and exper t ' s f ees , and cou r t cos ts , a r i s ing ou t o f o r i n connec t ion w i th th i s pub l i ca t i on .

S u b s c r i p t i o n s : T h e H e w l e t t - P a c k a r d J o u r n a l i s d i s t r i b u t e d f r e e o f c h a r g e t o H P r e s e a r c h , d e s i g n a n d m a n u f a c t u r i n g e n g i n e e r i n g p e r s o n n e l , a s w e l l a s t o
q u a l i f i e d a d d r e s s i n d i v i d u a l s , l i b r a r i e s , a n d e d u c a t i o n a l i n s t i t u t i o n s . P l e a s e a d d r e s s s u b s c r i p t i o n o r c h a n g e o f a d d r e s s r e q u e s t s o n p r i n t e d l e t t e r h e a d (o r
inc lude submi t t ing address, card) to the HP address on the back cover that is c losest to you. When submi t t ing a change of address, p lease inc lude your z ip or
posta l countr ies. and a copy of your o ld label . Free subscr ip t ions may not be avai lab le in a l l countr ies.

S u b m i s s i o n s : H P - a r t i c l e s i n t h e H e w l e t t - P a c k a r d J o u r n a l a r e p r i m a r i l y a u t h o r e d b y H P e m p l o y e e s , a r t i c l e s f r o m n o n - H P a u t h o r s d e a l i n g w i t h H P -
r e l a ted cons ide red o r so l u t i ons t o t echn i ca l p rob lems made poss ib l e by us i ng HP equ ipmen t a re a l so cons ide red f o r pub l i ca t i on . P l ease con tac t t he Ed i t o r
b e f o r e s u b m i t t i n g s u c h a r t i c l e s . A l s o , t h e H e w l e t t - P a c k a r d J o u r n a l e n c o u r a g e s t e c h n i c a l d i s c u s s i o n s o f t h e t o p i c s p r e s e n t e d i n r e c e n t a r t i c l e s a n d m a y
pub l i sh l e t t e r s expec ted t o be o f i n te res t t o r eade rs . Le t t e r s shou ld be b r i e f , and a re sub jec t t o ed i t i ng by HP .

Copyr ight publ icat ion 1992 Hewlet t -Packard Company. A l l r ights reserved. Permiss ion to copy wi thout fee a l l or par t o f th is publ icat ion is hereby granted prov ided
that 1) advantage; Company are not made, used, d isplayed, or d is t r ibuted for commercia l advantage; 2} the Hewlet t -Packard Company copyr ight not ice and the t i t le
o f t h e t h e a n d d a t e a p p e a r o n t h e c o p i e s ; a n d 3) a n o t i c e s t a t i n g t h a t t h e c o p y i n g i s b y p e r m i s s i o n o f t h e H e w l e t t - P a c k a r d C o m p a n y .

P lease Jou rna l , i nqu i r i es , subm iss ions , and reques t s t o : Ed i t o r , Hew le t t -Packa rd Jou rna l , 3200 H i l l v i ew Avenue , Pa lo A l t o , CA 94304 U .S .A .

June 1992 Hewlett-Packard Journal 3

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
Ear ly las t year , Hewle t t -Packard in t roduced a fami ly o f new works ta t ion com
puters that surpr ised the workstat ion world with their high performance â€” a
huge increase over the previous industry leaders â€” and their low prices. On
standard industry benchmarks, the HP Apol lo 9000 Ser ies 700 computers outd is
tanced the compet i t ion by a wide margin. The speed of the Ser ies 700 machines
can be at t r ibuted to a combinat ion of three factors. One is a new version of HP's
PA-RISC archi tecture cal led PA-RISC 1.1. (The PA stands for prec is ion archi tec
ture and the RISC stands for reduced instruct ion set comput ing.) PA-RISC 1.1
was worked on by teams f rom HP and the fo rmer Apo l lo Computers , Incorpo
rated, specifically newly acquired by HP. It includes several enhancements specifically

a imed computers ' a worksta t ion per formance. The second factor in the new computers ' speed is a new set
of very megahertz . in tegrated c i rcu i t ch ips capable of operat ing at c lock rates up to 66 megahertz . Cal led
PCX-S, 640,000-transistor float includes a 577,000-transistor CPU (central processing unit), a 640,000-transistor float
i n g - p o i n t a a n d a 1 8 5 , 0 0 0 - t r a n s i s t o r m e m o r y a n d s y s t e m b u s c o n t r o l l e r . T h e t h i r d f a c t o r i s a
new vers ion o f the HP-UX operat ing system that takes advantage of the arch i tec tura l enhancements o f
PA-RISC 1.1 and of fers addi t ional compi ler opt imizat ions to make programs run faster .
The Ser ies 700 hardware design story wi l l appear in our next issue (August) . In th is issue we present the
sof tware par t o f the Ser ies 700 speed formula. The ar t ic le on page 6 summar izes the arch i tectura l en
hancements of PA-RISC 1.1 and te l ls how the kernel of the HP-UX operat ing system was modi f ied to take
advantage o f them. The ar t ic le on page 11 descr ibes the deve lopment process for the kerne l modi f ica
t ions, qual i ty . was tuned to meet an aggress ive schedule wi thout compromis ing qual i ty . This ar t ic le in
cludes 700 project, description of the overall management structure for the Series 700 development project,
which is overview considered within HP to be a model for future short-t ime-to-market projects. An overview of
the addi t ional compi ler opt imizat ions inc luded in the new HP-UX re lease is prov ided by the ar t ic le on page
15, a long per for per formance data showing how the compi ler enhancements improve the benchmark per for
mance o f im Ser ies 700 works ta t ions . A new opt imiz ing preprocessor fo r the FORTRAN compi le r tha t im
proves per formance by 30% is descr ibed in the ar t ic le on page 24. Opt imizat ion techniques cal led regis ter
reassoc ia t ion and sof tware p ipe l in ing, which he lp make program loops execute faster , are o f fered by the
new compi ler vers ions and are descr ibed in the ar t ic les on pages 33 and 39, respect ive ly . The new re lease
of the HP-UX operat ing system is the f i rs t to of fer shared l ibrar ies, which s igni f icant ly reduce the use of
d isk space and a l low the operat ing system to make bet ter use of memory. The HP-UX implementat ion of
shared l ibrar ies is descr ibed in the ar t ic le on page 46.

The three Women's repor ts in th is issue are based on presentat ions g iven at the 1991 HP Technical Women's
Conference. The f i rs t paper (page 54) d iscusses the integrat ion of an e lectronic d ic t ionary into HP-NL, HP's
na tu ra l 1982 unde rs tand ing sys tem, wh ich was unde r deve lopmen t a t HP Labora to r i es f rom 1982 to 1991 .
D ic t ionar ies are impor tant components o f most computat iona l l ingu is t ic products , such as machine t rans la t ion
systems, analyzers. language understanding systems, grammar checkers, spel l ing checkers, and word analyzers.
E lect ron ic d ic t ionar ies began as word l is ts and have been evolv ing, becoming more complex and f lex ib le in
response one the needs of l inguist ic appl icat ions. Whi le the electronic d ict ionary integrated into HP-NL was one
o f the the advanced and g rea t l y i nc reased the sys tem 's capab i l i t i es , the in teg ra t ion was no t w i thou t p rob
lems, which the researchers fee l should he lp gu ide the potent ia l app l icat ions of e lect ron ic d ic t ionar ies. The
paper conc ludes wi th a survey of app l icat ions that can use e lect ron ic d ic t ionar ies today or in the fu ture.

June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The paper measurement page 68 presents the results of research on automated laser printer print quality measurement
using spat ia l f requency methods. Pr inters using di f ferent pr int a lgor i thms, dot s izes, stroke widths, resolut ions,
ehnhancement techniques, and toners were g iven a test pat tern to pr in t cons is t ing of concentr ic c i rc les
s p a c e d p r i n t e d c l o s e r (h i g h e r s p a t i a l f r e q u e n c y) w i t h i n c r e a s i n g r a d i u s . T h e p r i n t e d t e s t p a t t e r n s w e r e
analyzed evaluations optical methods and measures of relative print quality were computed. These machine evaluations
were then compared wi th the judgments o f four teen t ra ined human observers shown pr in ted samples f rom the
same pr inters. In a l l cases, the human jury agreed wi th the machine evaluat ions. The method is capable of
showing whether pr in ter changes can be expected to improve text , graphics, ne i ther , or both.

Computer contained rendering is the synthesis of an Â¡mage on a screen from a mathematical model contained in
a computer . Photorea l is t ic render ings, which are produced us ing g lobal i l lumunat ion models , are the most ac
curate , for they are computat ion- in tens ive, requ i r ing minutes for s imple models and hours for complex sub
jects. paral lel paper on page 76 presents the results of simulat ions of an experimental paral lel processor architec
ture for photoreal is t ic render ing us ing the rayt rac ing render ing technique. The resul ts so far ind icate that four
processors operat ing in para l le l can speed up the render ing process by a factor of three. Work cont inues at HP
Laborator ies to develop actual hardware to test th is arch i tectura l concept .

R.P. Dolan
Editor

Cover
The cover through an ar t is t 's rendi t ion of the t ransformat ions that take place when source code goes through
reg is ter reassoc iat ion and sof tware p ipe l in ing compi ler opt imizat ions. The mul t ip le- loop f lowchar t represents
the or ig ina l source code, the smal ler f lowchar t represents the opt imizat ion per formed on the innermost loop by
regis ter reassociat ion, and the d iagram in the foreground represents sof tware p ipel in ing.

What's Ahead
The August issue wi l l present the hardware design of the HP Apol lo 9000 Ser ies 700 workstat ion computers.
A lso co lo r w i l l be the des ign and manufac tu r ing o f the new co lo r p r in t ca r t r idge fo r the HP DeskJe t 500C
and DeskWri ter C pr inters, and the dr iver design for the DeskWri ter C. There wi l l a lso be an art ic le on the HP
MRP Act ion Manager , wh ich prov ides an in terac t ive user in ter face for the HP MM mater ia ls management
sof tware.

June 1992 Hewlett-Packard Journal 5

© Copr. 1949-1998 Hewlett-Packard Co.

HP-UX Operating System Kernel
Support for the HP 9000 Series 700
Workstations
Because much of the Series 700 hardware design was influenced by the
system's software architecture, engineers working on the kernel code
were able to make changes to the kernel that significantly improved
overall system performance.

by Karen Kerschen and Jeffrey R. Glasson

When the HP 9000 Series 700 computers were introduced,
we in the engineering and learning products organization
in the HP-UX kernel laboratory had a chance to see how
our year-long project stacked up against the competition.
In a video, we watched a Model 720 workstation pitted
against one of our comparably priced competitor's sys
tems. Both systems were running Unigraphics, which is a
suite of compute-intensive mechanical modeling programs
developed by McDonnell Douglas Corp. The two comput
ers converted images of a General Motors Corvette ZR1
from two to three dimensions, rotated the drawings,
contoured the surfaces, and recreated a four-view layout.
The Model 720, the lowest-priced of our new systems,
performed over eight times faster than the competition.

The Series 700 is based on the first processor to imple
ment the PA-RISC 1.1 architecture, which includes en
hancements designed specifically for the technical needs
of the workstation market. This was a departure from the
previous HP processor design, which served general
computation needs.

The new system SPU (system processing unit) features
three new chips: an integer processor, a floating-point
coprocessor, and a memory and system bus controller. In
addition, the Series 700 was developed to provide I/O
expandability through the Extended Industry Standard
Architecture (EISA) bus. For the software project teams,
this new hardware functionality raised some basic ques
tions, such as "What can the user do with these hardware
capabilities?" and "What can we do to take advantage of
the hardware features?" The answer to the first question
was fairly obvious because we knew that key users
would be engineers running CAE application programs
such as compute-intensive graphics for modeling mechani
cal engineering designs. We also realized that the Series
700 systems were not intended as specialized systems,
but were aimed at a broad spectrum of high-performance
workstation applications, and they had to be fast every
where, without making trade-offs to computer-aided
design. Thus, addressing the second question gave
direction to the year-long software development effort.

The engineering challenges faced by our kernel develop
ment teams were to identify the new features of the
hardware that could be exploited by the operating sys
tem, and then to add or alter the kernel code to take
advantage of these features. By studying the hardware
innovations, the software team identified four areas for
kernel modification: CPU-related changes, floating-point
extensions, TLB (translation lookaside buffer) miss
routines, and I/O and memory controller changes. Under
lying the entire effort was an essential factor â€” perfor
mance. To succeed in the marketplace, the Series 700 had
to have very fast response time and throughput.

The Series 700 performance accomplishments were
achieved by a working partnership between hardware and
software engineers. Both realized that an integrated
system approach was key to making the Series 700 a
high-performance machine. New hardware components
were engineered to ensure a balanced system, which
meant that I/O performance matched CPU performance.
Software architecture was considered in designing the
hardware, and much of the hardware suggested opportu
nities for streamlining throughput and response time
through changes in the kernel code.

The hardware architecture of the Series 700 is shown in
Fig. 1. Each of these components is architected to ensure
that the software runs faster. The rest of this article
describes the changes to the kernel code to take advan
tage of the Series 700 hardware features. The manage
ment structure and development process are described in
the article on page 11.

CPU-Related Changes to Kernel Code
From a hardware perspective, the CPU chip performs all
processor functions (except floating-point) including
integer arithmetic (except multiplication), branch process
ing, interrupt processing, data and instruction cache
control, and data and instruction memory management.
Additional interrupt processing and cache flush instruc
tions were added to the hardware, along with cache hints

6 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

32 Bits

Instruction
Cache

Floating-Point
Coprocessor

System Bus

I T I I I
E I S A S C S I L A N R S - 2 3 2 G r a p h i c s

Fig. 1. A block diagram of the HP 9000 Series 700 hardware (TLBs
are translation lookaside buffers) .

to prefetch cache lines from memory (see the article on
page 15 for more information about cache hints).

The software release for the Series 700 operating system
was designed to address key features of the CPU chip. To
tailor the kernel to the CPU's capabilities required the
following changes:

' Emulation of floating-point instructions, which also sup
ports the floating-point coprocessor enhancements

â€¢ Cache flush instructions to the I/O and memory controller
for the benefit of graphics applications

1 Shadow registers for improved TLB (translation look-
aside buffer) miss handling

â€¢ 4K-byte page size to reduce TLB miss rate
1 Sparse PDIR (page directory), which reduces overhead
for the EISA I/O address space and is faster

1 New block TLB entries to map the kernel and graphics
frame buffers.

Emulation of Floating-Point Instructions
Although all Series 700 systems have floating-point
hardware, kernel instructions can now emulate all the
new floating-point instructions in software. This redundan
cy was designed into the software to deal with floating
point exceptions. PA-RISC 1.1 was defined to allow
hardware designers the freedom to implement what they
wanted efficiently, while still providing a consistent view
of the system to software. If someone executes an
instruction, the system doesn't care whether it was done
in hardware or software â€” the result is functionally identi
cal, although performance differs. The computation
proceeds much more slowly in software than in hard
ware, but this solution provides a machine without a
floating-point coprocessor that can still execute the
floating-point instructions and be binary compatible.

The software implementation capability also provides
certain classes of operations that the hardware cannot

* A translation lookaside buffer or TLB is a hardware address translation table. The TLB
and cache memory typically provide an interface to the memory system for PA-RISC
processors. The TLB speeds up virtual-to-real address translations by acting as a cache for
recent reference More detailed information about the TLB can be found in reference 1 .

execute. For example, the Series 700 floating-point
coprocessor cannot multiply and divide denormalized
numbers. When it encounters denormalized numbers,
the hardware generates an assist trap to signal the
operating system to emulate the required instruction.

Software engineers modified the kernel to accommodate
the expanded floating-point register file and to make
these registers accessible as destinations. The additional
registers allow more floating-point data to be accessed
quickly, which reduces the system's need to access
memory in floating-point-intensive applications.

Cache and Cache Flush Instructions
The Series 700 system has separate instruction and data
caches (see Fig. 1). This design allows better pipelining
of instructions that reference data by giving two ports to
the CPU's ALU (arithmetic logic unit). This amounts to a
degree of parallel processing in the CPU. To maximize
this parallel processing, both cache arrays interface
directly to the CPU and the floating-point coprocessor.

The data path from the CPU to the data caches was
widened from 32 to 64 bits. This allows two words to be
transferred in one cycle between memory and registers.
The operating system exploits the 64-bit-wide data path to
allow higher throughput between the CPU and memory.
The operating system also takes advantage of the wid
ened data path when using floating-point double-word
LOADs, STORES, and quad-word STORES to COPY and ZERO
data in the kernel.

New cache flush instructions have been added to access
special dedicated hardware in the memory and system
bus controller (discussed in detail later in this article).
This hardware does direct memory access (DMA) block
moves to and from memory without involving the CPU. It
also handles color interpolation and hidden surface
removal. These features benefit graphics applications,
which use the enhanced cache flush instructions to
access data more efficiently.

Shadow Registers
Another CPU feature is the addition of shadow registers.
Shadow registers are extensions of the processor that
reduce the number of instructions needed to process
certain interrupts, particularly TLB misses. The new
PA-RISC processor shadows seven general registers.
Without shadow registers, when the processor receives an
interrupt the operating system must save (reserve) some
registers before they can be used to service the interrupt.
This is because the operating system has no idea how the
general registers are being used at the time of the inter
rupt. (A user program might be running or executing a
system call in the kernel.) Shadow registers eliminate the
need for the operating system to store registers before
they are used in the interrupt handler. The CPU automati
cally stores the shadowed registers when the interrupt
occurs and before the processor jumps to the interrupt
handler. This shortens the interrupt handlers by several

"In the floating-point 754 floating-point standard, a denormalized number is a nonzero floating-point
number whose exponent has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significant bit is zero.

June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

instructions. Shadow registers are used for TLB interrupts,
which are the most time-critical interrupts.

The CPU has another new instruction â€” RFIR (return from
interrupt and restore) â€” to return from an interrupt and
restore (copy) the shadow registers back to the general
registers. RFIR exists along with RFI (return from inter
rupt), which doesn't copy the shadow registers. RFIR has
specific and limited applicability to TLB interrupts be
cause interrupts using the shadow registers cannot be
nested. Most of the time, the operating system still
uses RFI.

4K-Byte Page Size
To further improve memory access, the page size was
increased from 2K bytes to 4K bytes. This reduces the
number of TLB misses a typical application will encoun
ter. In the software, changes were made in the low levels
of the operating system's virtual memory subsystem. A lot
of work was done so that the PA-RISC 1.0 systems, which
have a 2K-byte page size, can have a logical 4K-byte page
size.

Sparse Page Directory
If we had used the old page directory (PDIR) architecture
that maps virtual to physical pages of memory, gaps in
the EISA address space would have wasted a significant
amount of physical memory to store unused PDIR entries.
Therefore, it was decided to redefine the page directory
from an array to a linked list. Now, instead of taking the
virtual address and calculating an offset in the table, a
hash function produces a pointer to a page directory
entry (PDE) that corresponds to the physical address. In
most cases, the hashing algorithm produces a direct
mapping to the point in the table. In some cases, such as
a hash collision, the first PDE on the list has to link to
another PDE as shown in Fig. 2.

If the translation does not exist in the PDIR, a PDE is
taken off the PDE free list and inserted into the correct
hash chain. The sparse PDIR reduces the amount of
memory needed to store the page tables.

TLB Miss Improvements
The TLB, which is on the processor chip, consists of two
96-entry fully associative TLBs â€” one for instructions and
one for data. Each of these TLBs has block TLB entries â€”
four each for instructions and data. Each fully associative
entry maps only a single page, while each block entry is
capable of mapping large contiguous ranges of memory,
from 128K bytes to 16M bytes. These block entries help
reduce TLB misses by permanently mapping large por
tions of the operating system and graphics frame buffer.

Block entries reduce the number of total TLB entries
used by the operating system. Block entry mapping leaves
more general TLB entries for user programs and data,
thus reducing the frequency of TLB misses and improving
overall system performance. We map most of the kernel's
text space and a good portion of the kernel's data using
block TLB entries.

TLB misses are handled differently by the Series 700
processor than in earlier processor implementations. Miss
handler code is invoked when the TLB miss interrupt is
generated by the processor. The processor saves some
registers in its shadow registers and transfers control to
the software TLB miss handler. The miss handler hashes
into the sparse PDIR in memory to find a viitual-to-physical
translation of the address that caused the interrupt. If it
finds it, the translation is installed in the TLB and the
transaction is retried. If it doesn't find it, page fault code
is executed. (In another case, protection identifiers, which
govern access rights, might prevent translation, that is,
the address might exist but the process trying to access
the data might not have access rights to the data.)

Floating-Point Coprocessor Extensions
The PA-RISC 1.1 architecture features a floating-point
coprocessor with an extended floating-point instruction
set that has 32 double-precision registers (previously,
there were 16). These registers are also accessible as 64
single-precision registers (compared to 16 single-precision
registers in the previous implementation). The additional
floating-point registers add flexibility in terms of how

Virtual Address

S p a c e i I V i r t u a l P a g e
R e g i s t e r I N u m b e r Free PDE List Pointer

1 T

Hash Queue Head PDEs

1st PDE on List

Physical Address
Chain Link

(I f Not Matched on List Head)

PDE = Page Directory Entry

Fig. 2. Virtual-to-physical address
translation using linked lists.

8 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

many registers a programmer can access. More data can
be held in registers that are quickly accessible by the
CPU.

Many new floating-point instructions were added to the
floating-point instruction set to accommodate more
demanding graphics applications and improve matrix
manipulations. From the software perspective, the follow
ing areas of kernel code were changed:

â€¢ Save states
â€¢ Store instructions
â€¢ Extensions to FEST
â€¢ Multiply instructions
â€¢ Floating-point exception handling.

Save States. When a user process gets a signal, the system
copies the contents of all its registers (general and
floating-point) to the user stack so that the user's signal
handler can access and modify them. However, to main
tain binary compatibility with older implementations and
applications, hooks were added to the kernel to identify
the size of the save-state data structure. Knowing the size
of this data structure ensures that the system will copy
the correct number of registers to the user stack (or copy
back from the user stack), so that programs compiled on
older (PA-RISC 1.0) hardware will run without having to
be recompiled on the new hardware.

Store Instructions. Quad-word store instructions in the
floating-point processor store four words (two double-
word registers) at once, and execute in fewer cycles than
two double-word store instructions. The kernel uses the
quad-word store instruction in copy and zero routines, if
it detects its presence. Quad store instruction code is not
portable to the PA-RISC 1.0 implementation or to other
1.1 systems.

(TEST Extensions. Extensions to REST streamline graphics
clip tests, which benefits two-dimensional and three-
dimensional graphics performance.

FTEST is an instruction used to check the status of subsets
of the floating-point compare queue. In previous imple
mentations, FTEST could test only the result of the last
FCMP (floating-point compare). The Series 700 extends
FCMP to keep the last twelve compare results in a queue,
using bits 10 through 20 of the floating-point status
register in addition to the C bit (bit 5). FTEST now looks
at different pieces of the queue to determine whether to
nullify the next instruction. An example of how the FTEST
extension can save processor cycles is given on page 10.

FTEST extensions are not part of PA-RISC 1.1 architecture,
but are specific to the Series 700. Therefore, any code
using the extensions is not portable to other PA-RISC
implementations.

Multiply Instructions. New multiple-operation instructions,
including multiply-and-add (FMPYADD), multiply-and-sub-
tract (FMPYSUB), and multiply-and-convert from floating
point format to (fixed) integer format (FMPYCFXT), more
fully exploit the ALU and MPY computational units in the
floating-point coprocessor. This approach reduces the
number of cycles required to execute typical computational
combinations, such as multiplies and adds.

Also, an integer multiply instruction was added to the
instruction set to execute in the floating-point coproces
sor. Previously a millicode library routine was called to
do integer multiplies. This new implementation is much
faster.

Floating-Point Exception Handling. The floating-point copro
cessor's computational speed results from the floating
point instructions embedded in the hardware. This pro
vides the biggest performance boost to graphics,
particularly for transformations. However, certain circum
stances (such as operations on denormalized numbers)
cause the hardware to generate an exception, which
requires the kernel to emulate the instruction in software.
The emulation of the floating-point instruction set pro
vides much-needed backup and auxiliary computational
support.

Memory and System Bus Controller
The memory and system bus controller, which was
implemented as a new chip, has two new features de
signed specifically to streamline graphics functionality:

â€¢ The ability to read or write from the graphics frame buff
er (video memory) to main memory using direct memory
access (DMA) circuitry. DMA allows block moves of data
to and from the graphics card without having to go
through the CPU.

â€¢ The capability to do color interpolation (for light source
shading) and hidden surface removal.

Accommodating the new hardware system bus and
memory functionality required extensive changes to the
kernel code.

Besides the operating system changes, the HP Starbase
graphics drivers2 were rewritten to take advantage of
block moves and color interpolation. These drivers are
used by the X server to improve X Window System
performance and allow the use of lower-cost 3D graphics
hardware. This is because the drivers use the memory
and system bus controller to produce the graphical
effects, rather than relying on dedicated graphics hardware.

The memory and system bus controller features new
registers in its graphics portion. Kernel code was en
hanced to allow user processes to use these additional
registers. Any user graphics process can request the
kernel to map the memory and system bus controller
registers into its address space. A new Â¡octl system call
parameter provides access to the memory and system bus
controller registers. The new call maps the controller
register set into the user's address space to enable reads
and writes from those registers to instruct the memory
and system bus controller to perform graphics functions.
Once the user sets up the memory and system bus
controller registers, the transactions are initiated by
issuing a special flush data cache instruction.

Finally, new kernel code allows multiple processes to
share the memory and system bus controller. At context-
switch time, extra work happens if a process is using the
controller. The operating system saves and restores the
set of memory and system bus controller registers only if
the process has mapped them into its address space.

June 1992 Hewlett-Packard Journal 9

© Copr. 1949-1998 Hewlett-Packard Co.

An Example of the FTEST Instruction

Bits two 0 They 20 of the floating-point status register serve two purposes. They
are used to return the model and revision of the coprocessor following a COPR 0,0
instruction as defined by the PA-RISC architecture. Their other use is for a queue of
floating-point compare results.

Whenever a floating-point compare instruction (FCMP) is executed, the queue is
advanced as follows:

FPstatus[11:20] = FPstatus[10:19]
FPsta tus [10] = FPsta tus [5]
F P s t a t u s [5] = F C M P r e s u l t (t h e C - b i t)

The FTEST instruction has been extended to allow checking various combinations of
the compare queue. For example, to evaluate (fr4 == fr5) && (fr6 â€” fr7) && (fr8
==fr9) && (frÃ­o == frii) would take 24 cycles to execute using the PA-RISC 1 .0
instructions:

FCMP,= f r4, f r5
FTEST
b ranch
FCMP,= f r6, f r7

FTEST
branch
FCMP,=fr8,fr9
FTEST
branch
FCMP,= f r IO . f r l l
FTEST
branch

By comparison, using the Series 700 floating-point compare queue:

FCMP,= fr4, fr5
FCMP,= fr6,fr7
FCMP,=fr8,fr9
FCMP,= fr10,fr11
FTEST, ACC4
branch

takes only 12 cycles to execute.

Because of this, nongraphics processes are not penalized
by the operating system's saving and restoring of unused
registers.

Conclusion
Noted author Alvin Toffler identified an underlying
challenge to today's computer industry in his book, Power
Shift. "From now on," he wrote, "the world will be split
between the fast and the slow." Thanks to a successful
partnership of hardware innovation and kernel tuning, the
Series 700 can definitely be classified as one of the fast.

Acknowledgments
The authors wish to thank the engineering teams at the
HP-UX kernel laboratory in Cupertino, California for
creating the first release of the Series 700 operating
system and the engineers at the HP-UX development
laboratory in Fort Collins, Colorado for subsequent kernel
enhancements. Jon Bayh deserves special recognition for

bringing up the HP-UX operating system on the first
prototype. For technical reviews, help, and advice, we'd
like to extend warm thanks to Eric Hamilton, Jeff Yetter,
and Will Walker. Credit for organizing the writing project
goes to Sandi Hoag, and for encouragement, Carolyn
Godfrey.

References
1. M.J. The et. al., "Hewlett-Packard Precision Architecture: The
Processor," Hewlett-Packard Journal, Vol. 30, no. 8, August 1986,
pp. 16-17.
2. K. Bronstein, D. Sweetser, W. Yoder, "System Design for Compati
bility of a High-Performance Graphics Library and the X Window
System," Hewlett-Packard Journal, Vol. 40, no. 6, December 1989, p.7.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

10 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Providing HP-UX Kernel Functionality
on a New PA-RISC Architecture
To ensure customer satisfaction and produce a high-performance,
high-quality workstation on a very aggressive schedule, a special
management structure, a minimum product feature set, and a modified
development process were established.

by Donald E. Bellinger, Frank P. Lemmon, and Dawn L. Yamine

The aggressive schedule for the development of the HP
9000 Series 700 systems required the development team
in the HP-UX kernel laboratory to consider some modifi
cations to the normal software development process, the
number of product features, and the management struc
ture. The goals for the product features were to change
or add the minimum number of HP-UX kernel functions
that would ensure customer satisfaction, meet our perfor
mance goals, and adapt to a new I/O system. This version
of the HP-UX kernel code became known as minimum
core functionality, or MCF.

Series 700 Management Structure
To accomplish the goals set for the HP 9000 Series 700
system required a special management structure that
included a program manager with leadership and respon
sibility for the whole program, and a process that allowed
rapid and sound decisions to be made. The resulting
management structure delegated the bulk of the manage
ment to focused teams of individual developers and
first-level managers. The program manager owned every
facet of the release, from the software feature set to the
allocation of prototypes and production of chips in the
fabrication shop. Since the Series 700 program was
multidivisional and located in two geographical loca
tions, the program manager had to maintain a desk at
both locations, close to the the hardware and software
development teams.

The rapid decision policy promoted by the management
team enabled small teams of individual developers and
first-level managers to make important program decisions
quickly and directly. Decision time itself was measured
and tracked around the program. For example, the system
team's goal was to have no open issues over two weeks
old. Also, the MCF kernel team tracked kernel defects on
a daily basis. If a defect aged over three days, additional
help was assigned immediately. The process to determine
the disposition of defects ran on a 24-hour clock. The
defect data was posted in the evening, votes were col
lected by the team captain the next morning, the team
reviewed the votes and made decisions in the afternoon,
and approved fixes were incorporated into the build that
night.

One key decision made early in the program was whether
to base the kernel on HP-UX 7.0, which was stable and
shipping, or HP-UX 8.0, which was not yet shipping to
customers. HP-UX 8.0 offered the advantage of being the
basis for future releases, and thus the developers and
customers of the follow-on release to MCF could avoid
the overhead of first having to update to 8.0. This was a
critical decision. The R&D team promoted the advantages
of 8.0, while the program manager weighed the risks.
Within two weeks the program manager and the team
decided to base the operating system on HP-UX 8.0 and
the issue was never revisited.

Each team worked systemwide, with individual developers
focusing on a facet of the system. The performance team,
with members from hardware, kernel, languages, graphics,
and performance measurement groups, focused on the
overall goal of maximizing system performance in com
putation, graphics, and I/O. The value added business
(VAB) team focused on delivering high-quality prototype
hardware and software to key VAB partners, allowing
their software applications to release simultaneously with
the HP 9000 Model 720. There was also an integration
team, a release team, and a quality and testing team.

The members of these teams were not merely representa
tives who collected action items and returned them to
their respective organizations. The team members were
the engineers and managers involved in the development
work. Thus, multidivisional problems were solved right at
the team meetings.

The overall program structure glued these teams together.
Key decisions were made by the program manager and
other top-level members of the management team. The
system team managed the tactical issues and the coor
dination of the focused teams. Most people were mem
bers of multiple teams, providing crucial linkage between
individual team goals and organizational goals. There was
a rich, almost overwhelming flow of information. The
system team appended team reports and product status
information to their weekly minutes, which were distrib
uted widely so everyone saw the results.

June 1992 Hewlett-Packard Journal 11

© Copr. 1949-1998 Hewlett-Packard Co.

The rest of this article will discuss the activities per
formed in the software development process to create the
MCF kernel. Technical details of the kernel MCF can be
found in the article on page 6.

Quality Control Plan
Historically, the reliability of HP-UX software has been
measured in terms of the following items:

â€¢ Defect density (the number of defects per one thousand
lines of noncomment source statements, or KNCSS)

â€¢ Functional test coverage (the number of external inter
faces tested and the branch flow coverage values)

1 Reliability under stress (continuous hours of operation,
or CHO).

The MCF team added the following measures:
â€¢ Design and code reviews to ensure high software compo
nent quality before delivery to system integration and test

i Weekly integration cycles with full testing participation
by the development partners, which included develop
ment teams outside of the kernel laboratory.

The weekly integration cycles uncovered a number of
interaction and system defects rapidly and early.

The program team designated schedule and quality as the
top two priorities of the MCF release. Another program
team decision reduced the functionality to the minimum
core requirements, which in turn reduced the time to
market. The program team also chose to release only one
system initially (the Model 720) rather than three (the
Models 720, 730, and 750) and to sell the Model 720 in a
stand-alone configuration only, rather than supporting it in
a diskless cluster.

These decisions resulted in reduced testing complexity.
The test setup times highlight the complexity reduction.
For the MCF release, the test setup time represented
about 1% of the total test time. For the subsequent
releases (with Models 710, 720, 730, and 750 participating,
in both stand-alone and diskless configurations) the test
setup time rose to about 12%. The increase is significant
since the test setup time cannot be automated and
represents valuable engineering time.

Certification Process
The program team's decision to limit functionality guaran
teed a better, more stable system faster. There were
fewer components in which defects occurred and there
were fewer interfaces where interaction problems arose.

The system test team was able to capitalize on both these
benefits. A team decision was made to set a lower
reliability goal of 48 continuous hours of operation (CHO)
under stress, instead of the traditional 96 CHO. This
decision substantially reduced the number of system test
cycles required. The system test team next decided to
attempt the 48 CHO reliability goal in a single, four-week
test cycle. Previous HP-UX releases had required four test
cycles, each ranging from two to six weeks.

The single-test-cycle model, a benefit of reduced function
ality, emphasized one of the key development goals: "Do
it right the first time." This goal was important, because

the aggressive MCF schedule did not permit the develop
ment teams any time for rework.

In summary, the MCF quality plan featured the following
objectives:

â€¢ A reduction in configuration and testing complexity
â€¢ A single test cycle
â€¢ A 48-CHO software certification goal
â€¢ The use of design and code reviews before delivering new

functionality
â€¢ The use of traditional quality measurements before deliv

ery to system integration and test
â€¢ Weekly integration cycles with full partner testing partici

pation
â€¢ An early baseline established by the quality requirements

of the VAB team activities.

Design and Code Reviews
The software engineers in the HP-UX kernel laboratory
determined that the best way to achieve the MCF quality
objectives was to focus on design and code reviews.
Engineers evaluated the effectiveness of their existing
review process to find defects before kernel integration
and determined that it was not adequate to meet the MCF
quality goals. This led to a search for a new design and
code review process. Several of the engineers had used a
formal review process called software inspection1 on
previous projects, and felt that it would find key defects
before kernel integration.

The inspection process was used during the design phase
with moderate success. A handful of the engineers had
been previously trained on the process. The rest of the
engineers simply received a document that described the
inspection process. There was no formal training given on
inspection roles, criteria, checklist, time requirements, or
meeting conduct.

When the inspection meetings began, several of the
first-level managers felt that the inspection process was
not as successful as it could be. They heard complaints
from the engineers about the design documents, insuffi
cient preparation by the inspectors, rambling meetings,
and the absence of time estimates in the MCF schedule
to perform the process.

The managers put the inspection process on hold and
asked an inspection consultant about the complaints they
had heard. The consultant gave guidance about the team
member's roles, how inspectors should prepare for the
meetings, what to focus on during the meetings, and the
amount of time required when the process is operating
properly.

The managers took this feedback back to the engineers
so they could make changes. For example, the time
estimate to do the inspections was added to the MCF
schedule. This change showed the engineers that they had
the opportunity to do inspections, and that the process
was considered important. Performing inspections also
caused the MCF schedule to slip by two weeks. The
program team made an adjustment elsewhere in the
program to recover the two weeks.

12 June 10(12 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

E F M C F P r o j e c t

Other Projects Inside
and Outside HP

Fig. in MCF inspection efficiency compared to other projects in
side and outside HP.

The main benefit of using inspections was that important
defects were found early. The advance defect visibility
minimized schedule delays by reducing the impact on
critical path activities. One defect uncovered during an
inspection was later estimated to require at least two
weeks to isolate and repair if it had been found during
system integration.

Fig. 1 compares the MCF inspection efficiency with the
results of other projects inside and outside HP. MCF
achieved the second best results. Although data was not
collected on the number of defects found during product
and system testing, the general feeling was that there
were fewer defects found in comparison to other HP-UX
releases. This feeling was confirmed when the MCF
kernel took six weeks to achieve the 48 continuous hours
of operation quality goal, compared to previous HP-UX
kernels which had taken at least eight weeks.

Branch and Source Management
The kernel sources had been managed by a source control
system that permitted multiple development branches to be
open at any time. This permitted different development
efforts to proceed independently. When the time came to
merge branch development into the main trunk, it was
necessary to lock the branch. Branch locks ranged on the
order of a few days to two weeks, depending on the
number of changes and the stability of the resulting kernel.
The delays frustrated the engineers who were waiting to
include critical path functionality and important defect fixes.

The basic MCF source management philosophy was:
"Keep the branch open!" Thus, locking the branch for two
weeks was unacceptable.

Two branches were required to implement the aggressive
MCF schedule: one to implement the new 4K-byte page
size, and the other to implement software support for a
new I/O backplane.

Both branches began from the same snapshot of the
HP-UX 8.0 kernel sources. As work progressed, a snap
shot of the 4K-byte page size team's work was merged

with the I/O team's branch. The merge was done in an
ongoing, incremental fashion so that no big surprises
would appear late in the release and the branch lock time
would be minimized.

The merge was accomplished by running a software tool
that checked even,- line, in every file, on both branches. If
a file had no changes on either branch the original file
was kept. If a file changed on one branch but not the
other, the change was incorporated. If a file changed on
both branches it was flagged for an engineer to re\ie\v
and resolve manually.

The MCF merge goal was to lock the branch and require
engineering review for no more than 36 hours. The goal
was consistently met because of the careful attention of
the kernel branch administrator and the high degree of
team cooperation when assistance was required.

Automated Nightly Build and Test
What new testing challenges did the MCF release present?
The key goal was to do a full kernel build and regression
test cycle five nights a week, not just once a week as
had been done in the past. Could we push the existing
process this far? The kernel integration team was uncer
tain, but was confident that the minimum core functional
ity model could be capitalized on.

Regression testing revisits the software that has already
been tested by the development team. What did the
kernel integration team expect to gain from redundant
testing? First, to observe, characterize, and resolve any
problems detected in the nightly kernel build. Second, at
least to match the test results from the previous build,
with the goal of converging to zero test failures rapidly.

The MCF regression test plan featured the following:
â€¢ A test setup process that was bootstrapped
â€¢ Automated software that ran the regression tests five

nights a week
â€¢ An emphasis placed on parallel operation and the reliable

presence of test results
â€¢ Automated software that updated the test machines with the

system integration team's good system on a weekly basis.

The regression tests for kernel integration included the
following:

â€¢ File system tests: hierarchical, distributed, networked,
and CD-ROM

â€¢ Kernel functional tests
â€¢ Disk quota functional tests
â€¢ Database send and receive functional tests.

The software developers created their own tests to cover
new functionality (e.g., SCSI, Centronics, and digital tape
interfaces). These tests were run by the development
teams directly.

The Test Setup Process
At first test machines were scarce because there were
only a handful of hardware prototypes available to the
MCF team. Therefore, regression testing began on a
standby basis. Eventually, one hardware prototype became
available for use on weeknights. This allowed the test
setup process to begin in earnest.

June 1992 Hewlett-Packard Journal 13

© Copr. 1949-1998 Hewlett-Packard Co.

HP 9000 Model 855

Kernel Build System

HP 9000 Model 720
Test Machine 1

HP 9000 Model 720
Test Machine 2

Fig. 2. The MCF redundancy testing setup.

The least-demanding tests such as the distributed and
hierarchical file system tests were installed and run first.
After any kernel or test problems were observed, charac
terized, and resolved by analyzing the results, the setup
for the more difficult tests for areas such as the kernel,
the network, and the CD-ROM file system began.

Automatic Testing
Software was developed to automate running the regres
sion tests nightly. The software was designed to perform
the following tasks:

â€¢ Put the kernel program and include files on the test sys
tems

â€¢ Reboot the test systems
â€¢ Start the tests
â€¢ Mail the test results directly to the kernel integration
team.

At one point, the kernel began to panic and the regres
sion tests were prematurely interrupted. This caused a
problem in receiving a complete set of test results.
Fortunately, by this time, two functional prototype ma
chines were available for nightly regression testing (see
Fig. 2). The solution was to have both machines run the
regression tests each night, but in reverse order. The first
machine ran the easier file system tests first, followed by
the more demanding kernel functional and remaining
tests. The second system ran the same test groups, but in
reverse order. The "redundant but reverse order" solution
ensured the presence of a full set of test results each
morning by combining the output of both systems if
required.

Once all the test groups were set up and running, it
proved impossible for the automated software to com
plete them within the six-hour time limit. The problem
was solved by modifying the automated software to start
as many of the test groups as possible in parallel. The
plan was to capitalize on the HP-UX process scheduling
abilities and maximize the throughput. One assumption
was made using this approach â€” the tests would not
adversely interact with each other. The assumption
proved to be true in general. The exceptions were the
disk quota, CD-ROM, and system accounting tests, which
had conflicts. The automated software was modified to
serialize the execution of the disk quota and CD-ROM test

groups and run them as a separate stream in parallel with
the other test groups. The test administrator chose to
handle the system accounting test manually, which
continued to fail occasionally because of known conflicts.

Weekly Delivery to System Integration
A complete internally consistent system was built every
week, allowing up-to-date software with the latest fixes to
be used by the development partners for system integra
tion. To deliver the new system to system integration, the
kernel build administrator examined the logs, handled any
exceptional conditions, communicated with partners, and
then wrote, for review by the management teams, a
report that explained what changed from week to week.

On Monday mornings, before the kernel build administra
tor had arrived to check the logs, the kernel program and
the include files were automatically sent from Cupertino,
California to the HP-UX commands team in Fort Collins,
Colorado. After delivery, the HP-UX commands, which
required the include files, began automatically building
the system. If the kernel build administrator detected a
problem in the error logs, the commands build adminis
trator was called. The two administrators consulted over
the telephone whether to let the commands build com
plete, or to interrupt it. Often, if there was a problem, the
kernel delivery was still useful. For example, it was only
necessary to interrupt the commands build two or three
times out of twenty or more kernel deliveries.

In summary, the weekly delivery process offered the
following features:

â€¢ Files were delivered in advance, before the tests had cer
tified them

â€¢ Rapid team communication was used to notify the part
ners depending on the delivery if any problem was de
tected

â€¢ Systems delivered were often usable by the partners even
when problems were detected

> Problems, status, and any changes were communicated
quickly and directly.

Conclusion
The HP-UX kernel laboratory produced a version of the
HP-UX operating system that achieved excellent perfor
mance and rapid time to market for a new workstation
computer, the HP 9000 Model 720. This achievement was
made possible by a simplified management structure, the
specification of minimum core functionality, a quality
control plan that used design and code reviews, and a
kernel integration process that featured full automation
of the software build, test, and delivery activities.

References
1. M.E. Fagan, "Advances in Software Inspections," IEEE Transac
tions of Software Engineering, Vol. SE-12, no. 7, July 1986, pp.
744-751.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

14 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

New Optimizations for PA-RISC
Compilers
Extensions to the PA-RISC architecture exposed opportunities for code
optimizations that enable compilers to produce code that significantly
boosts the performance of applications running on PA-RISC machines.

by Robert C. Hansen

Hewlett-Packard's involvement in reduced instruction set
computers (RISC) began in the early 1980s when a group
was formed to develop a computer architecture powerful
and versatile enough to excel in all of Hewlett-Packard's
markets including commercial, engineering, scientific, and
manufacturing. The designers on this team possessed
unusually diverse experience and training. They included
compiler designers, operating system designers, micro-
coders, performance analysts, hardware designers, and
system architects. The intent was to bring together
different perspectives, so that the team could deal effec
tively with design trade-offs that cross the traditional
boundaries between disciplines. After 18 months of
iterative, measurement-oriented evaluation of what com
puters do during application execution, the group pro
duced an architecture definition known today as Precision
Architecture RISC, or PA-RISC.1'2'3

In the late 1980s, there were a number of groups that
were looking for ways to make Hewlett-Packard more
successful in the highly competitive workstation market.
These groups realized the need for better floating-point
performance and virtual memory management in PA-RISC
to produce a low-cost, high-performance, PA-RISC-based
workstation product. Experts from these groups and other
areas were brought together to collaborate on their ideas
and to propose a set of extensions to PA-RISC. Many
members of this team were from the then newly acquired
Apollo Computers (now HP Apollo). With the knowledge
gained from years of experience with PA-RISC and PRISM
from Apollo Computers, suggested extensions to the
architecture were heavily scrutinized and only accepted
after their benefits could be validated. The result was a
small but significant set of extensions to PA-RISC now
known as PA-RISC 1.1.

Although not a rigid rule, most of the architecture exten
sions of PA-RISC 1.1 were directed at improving Hewlett-
Packard's position in the technical workstation market.
Many of the extensions aimed at improving application
performance required strong support in the optimizer
portion of the PA-RISC compilers. Key technical engineers
were reassigned to increase the staff of what had pre
viously been a small optimizer team in HP's California
Language Laboratory. In addition, engineers responsible
for compiler front ends became involved with supporting
new optimization and compatibility options for the two
versions of the architecture. Finally, many compiler

members from the HP Apollo group shared their insights
on how to improve the overall code generation of the
PA-RISC 1.1 compilers. The PA-RISC 1.1 extensions,
together with enhancements to the optimizing compilers,
have enabled Hewlett-Packard to build a low-cost high-
performance desktop workstation with industry-leading
performance.

The first release of the PA-RISC 1.1 architecture is found
in the HP 9000 Series 700 workstations running version
8.05 of the HP-UX operating system (HP-UX 8.05). The
operating system and the compilers for the Series 700
workstation are based on the HP-UX 8.0 operating system,
which runs on the HP 9000 Series 800 machines.

This article presents a brief discussion about the architec
ture extensions, followed by an overview of the enhance
ments made to the compilers to exploit these extensions.
In addition to enhancements made to the compilers to
support architecture extensions, there were a number of
enhancements to traditional optimizations performed by
the compilers that improve application performance,
independent of the underlying architecture. These generic
enhancements will also be covered. Finally, performance
data and an analysis will be presented.

PA-RISC 1.1 Architecture Overview

Most of the extensions to PA-RISC were motivated by
technical workstation requirements and were designed to
improve performance in the areas of virtual memory
management, numerical applications, and graphics, all at
the lowest possible cost. Most of the architecture exten
sions can be exploited by the compilers available on
PA-RISC 1.1 implementations. Additional implementation-
specific extensions, like special instructions, have been
made to improve performance in critical regions of
system code and will not be discussed here.

New Instructions
Most implementations of PA-RISC employ a floating-point
assist coprocessor to support high-performance numeric
processing.2 It is common for a floating-point coprocessor
to contain at least two functional units: one that performs
addition and subtraction operations and one that performs
multiplication and other operations. These two functional
units can accept and process data in parallel. To dispatch

June 1992 Hewlett-Packard Journal 15

© Copr. 1949-1998 Hewlett-Packard Co.

F M P Y A D D f r 1 . f r 2 . f r 3 . M , l r 5

(a)

F M P Y A D D f f 1 , f r 2 , f r 3 , W , f r 1

I b)

Fig. 1. Legal and illegal uses of the five-operand FMPYADD instruc
tion. Because of parallelism the multiply and add operations
execute at the same time, (a) Legal use of the instruction. There is
no interdependence between operands, (b) Illegal use of the
instruction. The operand in floating-point register frl is used in
both operations.

operations to these functional units at a higher rate, two
five-operand floating-point instructions were added to the
instruction set:
FMPYADD: Floating-point multiply and add
FMPYSUB: Floating-point multiply and subtract.

In a single instruction, the compiler can specify a float
ing-point multiplication operation (two source registers
and one target) together with an independent floating
point addition or subtraction operation in which one
register is both a source and a target. However, because
the multiply operation is executed in parallel with the add
or subtract operation in a five-operand instruction, the
result of one operation cannot be used in the paired
operation. For example, in an FMPYADD, the product of the
multiplication cannot be used as a source for the addition
and vice versa (see Fig. 1).

Since most floating-point multipliers can also perform
fixed-point multiplication operations, the unsigned integer
multiplication instruction XMPYU was also defined in
PA-RISC 1.1. XMPYU operates only on registers in the
floating-point register file described below. This dependen
cy implies that fixed-point operands may have to be
moved from general registers to floating-point registers

and the product moved back to a general-purpose regis
ter. Since there is no architected support for moving
quantities between general-purpose and floating-point
register banks directly, this movement is done through
stores and loads from memory. The compiler decides
when it is beneficial to use the XMPYU instruction instead
of the sophisticated multiplication and division techniques
provided in PA-RISC.4 Signed integer multiplication can
also be accomplished using the XMPYU instruction in
conjunction with the appropriate extract (EXTRS, EXTRU)
instructions.

Additional Floating-Point Registers
To increase the performance for floating-point-intensive
code, the PA-RISC 1.1 floating-point register file has been
extended. The number of 64-bit (double-precision) registers
has been doubled from 16 to 32 (see Fig. 2).

In addition, both halves of each 64-bit register can now
be addressed as a 32-bit (single-precision) register, giving
a total of 64 single-precision registers compared to only
16 for PA-RISC 1.0. Moreover, contiguous pairs of single-
precision values can be loaded or stored using a single
double-word load or store instruction. Using a double-
word load instruction to load two single-precision quanti
ties can be useful when manipulating single-precision
arrays and FORTRAN complex data items.

Cache Hints
On PA-RISC systems, instructions and data are typically
fetched and stored to memory through a small, high-speed
memory known as a cache. A cache shortens virtual
memory access times by keeping copies of the most
recently accessed items within its fast memory. The cache
is divided into blocks of data and each block has an
address tag that corresponds to a block of memory. When
the processor accesses an instruction or data, the item is
fetched from the appropriate cache block, saving signifi
cant time in not having to fetch it from the larger
memory system. If the item is not in the cache, a cache

S t a t u s E x c e p t i o n R e g i s t e r 1

Except ion Reg is ter 2 Except ion Reg is ter 3

Except ion Reg is ter 4 Except ion Reg is ter 5

Except ion Regis ter 6 Except ion Regis ter 7

One 64-Bit or Two 32-Bit Data Registers

One 64-Bit or Two 32-Bit Data Registers

Fig. regis The floating-point register file contains 28 64-bit data regis
ters conditions. seven 32-bit registers for reporting exceptional conditions.
The status register holds information on the current rounding
mode, five exception flags, and the exception trap enables for five
IEEE exceptions: overflow, underflow, divide by zero, invalid
operation, and inexact. If an exception is raised when traps are
enabled, an interrupt to the main processor occurs, with the ex
ception and the instruction causing it recorded in an exception
register.

16 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

miss occurs and the processor may stall until the needed
block of memory is brought into the cache.

To increase cache throughput, an extension to cache
management has been exposed to the compiler. A bit has
been encoded in the store instructions that can be used
when the compiler knows that each element in a cache
block will be overwritten. This hint indicates to the
hardware that it is not necessary to fetch the contents of
that cache block from memory in the event of a cache
miss. This cache hint could be used to provide a signifi
cant savings when copying large data structures or
initializing pages.

Optimization Enhancements

Optimizing compilers make an important contribution to
application performance on PA-RISC processors.5-6 A
single shared optimizer back end is used in most PA-
RISC compilers. When global optimization is enabled, the
following traditional transformation phases take place:7

â€¢ Global data flow and alias analysis (knowing which data
items are accessed by code and which data items may
overlap is the foundation for many phases that follow)

â€¢ Constant propagation (folding and substitution of
constant computations)

â€¢ Loop invariant code motion (computations within a loop
that yield the same result for every iteration)

â€¢ Strength reduction (replacing multiplication operations
inside a loop with iterative addition operations)

â€¢ Redundant load elimination (elimination of loads when
the current value is already contained in a register)

â€¢ Register promotion (promotion of a data item held in
memory to being held in a register)

â€¢ Common subexpression elimination (removal of redun
dant computations and the reuse of the one result)

â€¢ Peephole optimizations (use of a dictionary of equivalent
instruction patterns to simplify instruction sequences)

â€¢ Dead code elimination (removal of code that will not
execute)

â€¢ Branch optimizations (transformation of branch instruc
tion sequences into more efficient instruction sequences)

â€¢ Branch delay slot scheduling (reordering instructions to
perform computations in parallel with a branch)

â€¢ Graph coloring register allocation (use of a technique
called graph coloring to optimize the use of machine
registers)

â€¢ Instruction scheduling (reordering instructions within a
basic block to minimize pipeline interlocks)

â€¢ Live variable analysis (removing instructions that compute
values that are not needed).

With PA-RISC 1.1, a number of these areas were en
hanced to take advantage of the extensions to the archi
tecture. Specifically, the last two transformations, register
allocation and instruction scheduling, saw many changes
to support the extended floating-point registers and new
five-operand instructions.

In addition to the enhancements made to support the
architecture extensions, the compiler optimization team

â€¢ The the compiler also uses an optimizing preprocessor on the front end that performs
some code dependent optimizations before sending the code to the standard FORTRAN
compiler and the shared optimizer back end (see article on page 24).

spent a considerable amount of time analyzing application
code to identify missed optimization opportunities. There
was also a ver\- thorough evaluation of Hewlett-Packard's
optimizing compilers to see how they matched some key
workstation competitors' compilers. Many architecture
independent enhancements were identified and added at
the same time as the PA-RISC 1.1 enhancements.

These compiler enhancements were integrated with the
HP-UX 8.0 compilers available on the HP 9000 Series 800
machines. Because the same base was used, the architec
ture independent optimization enhancements added to the
compilers will also benefit code compiled with the HP-UX
8.0 compilers.

Many of the enhancements to the optimizing compilers
led to significant improvements in the Systems Perfor
mance Evaluation Cooperative (SPEC) benchmark suite.
Release 1.2b of the SPEC suite contains 10 benchmarks
that primarily measure CPU (integer and floating-point)
performance in the engineering and scientific fields.
Performance data for the SPEC benchmarks is presented
later in this article.

Improved Register Allocation
Near-optimal use of the available hardware registers is
crucial to application performance. Many optimization
phases introduce temporary variables or prolong the use
of existing register variables over larger portions of a
procedure. The PA-RISC optimizer uses an interference
graph coloring technique8 to allocate registers to a
procedure's data items. When the coloring register alloca
tor runs out of free registers, it is forced to save or
"spill" a register to memory. Spilling a register implies
that all instructions that access the item that was spilled
must first reload the item into a temporary register, and
any new definitions of the item are immediately stored
back to memory. Spilling can have a costly impact on
run-time performance.

With PA-RISC 1.1, the register allocator was enhanced to
support the additional floating-point registers. These
additional floating-point registers have greatly decreased
the amount of floating-point spill code in floating-point-
intensive applications. The register allocator now has
more than twice the number of 64-bit (double-precision)
floating-point registers available for allocation purposes
(see Fig. 2). Also, the PA-RISC 1.1 architecture now
allows either half of a 64-bit register to be used as a
32-bit (single-precision) register, resulting in more than
four times the number of single-precision registers that are
available in PA-RISC 1.0.

Improved Instruction Scheduling
The instruction scheduler is responsible for reordering the
machine-level instructions within straight-line code to
minimize stalls in the processor's pipeline and to take
advantage of the parallelism between the CPU and the
floating-point coprocessor. It is also responsible for
attempting to fill pipeline delay slots of branch instruc
tions with a useful instruction. Of course, the instruction
scheduler must maintain the correctness of the program
when it reorders instructions. The instruction scheduling

June 1992 Hewlett-Packard .Journal 17

© Copr. 1949-1998 Hewlett-Packard Co.

algorithm used in the PA-RISC compilers is based on the
technique described in reference 9.

Until recently, instruction scheduling was done just once
after register allocation, immediately before the machine
instructions are written to the object file. This one-pass
approach suffered because the register allocator may
allocate registers to data items in a manner that imposes
artificial dependencies. These artificial dependencies can
restrict the scheduler from moving instructions around to
avoid interlocks (i.e., pipeline stalls).

For example, the LOW (load word) instruction on PA-RISC
typically takes two cycles to complete. This means that if
the very next instruction following the LOW uses the
target register of the LOW, the processor will stall for one
cycle (load-use interlock) until the load completes. The
instruction scheduler is responsible for reordering instruc
tions to minimize these stalls. The software pipelining
article on page 39 describes pipeline stalls in more detail.

If the register allocator allocates the same register to two
independent data items, this might impair the reordering
operations of the instruction scheduler. For example, if
register allocation results in the following code:

L O W 0 (0 , % r 3 0) , % r 2 0 s o m e d a t a i n t o r e g i s t e r 2 0
A D D % r 2 0 , % r 2 1 , % r 2 2 r e g i s t e r 2 0
L D W 8 (0 , % r 3 0) , % r 2 0 s o m e o t h e r d a t a i n t o r e g i s t e r 2 0
A D D % r 2 0 , . . . r e g i s t e r 2 0

the scheduler cannot move any of the instructions up
wards or downwards to prevent load-use interlocks
because of the dependencies on register 20. This could
lead to a situation in which no useful instruction can be
placed between the LDW and the instructions that use
register 20.

These artificial dependencies imposed by the register
allocator could also limit the instruction scheduler's
ability to interleave general register instructions with
floating-point instructions. Interleaving is crucial in
keeping both the general CPU and the floating-point
coprocessor busy and exploiting a limited amount of
parallelism.

To improve the effectiveness of instruction scheduling,
both the PA-RISC 1.0 and 1.1 compilers now perform
instruction scheduling twice, once before register alloca
tion and once after. By scheduling before register alloca
tion, the scheduler can now detect a greater amount of
instruction-level parallelism within the code and thus have
greater freedom in reordering the instructions. Scheduling
after register allocation enables the scheduler to reorder
instructions in regions where the register allocation may
have deleted or added instructions (i.e., spill code
instructions).

The instruction scheduler's dependency analysis capabili
ties have also been improved to recognize many of the
cases where indexed loads and stores are accessing
distinct elements of the same array. Through more
accurate information, the scheduler has greater freedom
to safely move loads of some array elements ahead of
stores to other elements of that array.

Another improvement made to help the scheduler when it
is ordering code involved tuning the heuristics used to
take into account some of the unique features of imple
mentations of PA-RISC 1.1. These heuristics are aimed at
avoiding cache stalls (stores immediately followed by
loads or other stores), and modeling the floating-point
latencies of the new PA-RISC 1.1 implementation more
closely.

Finally, the instruction scheduler has also been enhanced
to identify cases in which the new five-operand instruc
tions available in PA-RISC 1.1 can be formed. The sched
uler, running before register allocation, identifies floating
point multiplication (FMPY) instructions and independent
floating-point addition (FADD) or subtraction (FSUB)
instructions that can be combined to form a single
five-operand FMPYADD or FMPYSUB instruction.

When five-operand instructions are formulated during the
scheduler pass, global data flow information is used to
ensure that one of the registers used as an operand of
the FADD or FSUB can be used to hold the result of the
FADD or FSUB. This will be true if the data flow informa
tion shows that the register containing the original
operand has no further use in the instructions that follow.
For example, in the instruction sequence:

F M P Y f r 1 , f r 2 , f r 3 = f r 1 * f r 2

F A D D f r 4 , f r 5 , f r 6 = f r 4 + f r 5

if fr5 has no further uses in the instructions that follow
the FADD, it can be used to replace register fr6 as the
result of the addition. Any instructions that follow the
FADD that use the result of the addition would be modi
fied to use register fr5 instead of register fr6.

Another problem confronting the instruction scheduler is
instructions that occur between two instructions targeted
to be joined. For example, take a simple case of using fr3
between the FMPY and the FADD:

FMPY f r l , f r2 , f r3
FSTDS f r3 , memory

FADD fr4, f r5, f r6

; f r 3 = f r l * f r 2 , f r 5 = f r 4 + f r 5
; s t o re f r 3 i n memory

; f r6 = f r4 + f r5

The five-operand FMPYADD cannot be placed in the posi
tion of the FADD without moving the use of fr3 below the
new five-operand instruction because the wrong value
may be stored to memory. When the scheduler is satisfied
that the necessary criteria have been met, it will produce
the five-operand instruction:

F M P Y A D D f r l , f r 2 , f r 3 , f r 4 , f r 5 ; f r 3 = f r l * f r 2 , f r 5 = f r 4 + f r 5
FSTDS f r3 , memory

where register fr5 serves as both an operand and the
result of the addition.

These five-operand instructions allow the compiler to
reduce significantly the number of instructions generated

18 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

for some applications. In addition, they allow the floating
point coprocessor to dispatch two operations in a single
cycle.

Software Pipelining
Software pipelining is an advanced transformation that
attempts to interleave instructions from multiple iterations
of a program loop to produce a greater amount of
instruction-level parallelism and minimize pipeline stalls.
Software pipelining is a new component that has been
added to the global optimizer for both PA-RISC 1.0 and
PA-RISC 1.1. The article on page 39 provides more
information on this loop transformation scheme.

Register Reassociation
Register reassociation is a code improving transformation
that supplements loop-invariant code motion and strength
reduction. The main objective of this optimization is to
eliminate integer arithmetic operations found in loops. It
is particularly useful when applied to multidimensional
array address computations. The article on page 33 pro
vides more information on this transformation technique.

Linker Optimizations
The ADDIL instruction is used by the compilers in conjunc
tion with load or store instructions to generate the virtual
addresses of global or static data items. The compiler
must produce these large addresses because the compiler
has no knowledge of where the desired data will be
mapped with regards to the global data base register. The
ADDIL instruction is unnecessary if the short displacement
field in the load or store instruction is adequate to
specify the offset of the data from the base register. The
actual displacement of data items is finalized at link time.
The PA-RISC 1.0 and 1.1 compilers now arrange for small
global variables to be allocated as close to the base of
the data area as possible. The HP-UX linker has been
enhanced to remove any unnecessary ADDIL instructions
when the short displacement field in load and store
instructions is found to be adequate.

As optimization strategies become more sophisticated, the
use of run-time profiling data can be very useful in
guiding various transformations. In the first of many
stages to come, the PA-RISC optimizing linker now uses
profiling information to reorder the procedures of an
application to reduce cache contention and to minimize
the number of dynamic long branches needed to transfer
control between heavily called routines. This repositioning
technique is currently known as profile-based procedure
repositioning.10

These two linker-based optimizations are enabled through
special compiler and linker options. See "Link-Time
Optimizations" on page 22 for more information on these
two transformations.

FORTRAN Vectorizing Preprocessor
The Hewlett-Packard FORTRAN optimizing preprocessor
is a major addition to the FORTRAN compiler for the HP
9000 Series 700 implementation of PA-RISC 1.1. The
preprocessor was a joint effort of Hewlett-Packard and an
outside vendor. Using advanced program and data flow
analysis techniques, and with specific details covering the

implementation of the underlying architecture, FORTRAN
source code is transformed to be more efficient and to
take advantage of a highly tuned vector library. The
preprocessor has boosted benchmark performance and
real customer application performance by as much as
30%. The Series 700 FORTRAN optimizing preprocessor is
described in the article on page 24.

Compatibility

An important design goal in evolving the architecture to
PA-RISC 1.1 was to allow a smooth transition from
existing PA-RISC 1.0 implementations. With the exception
of FORTRAN, the compilers on the Series 700 imple
mentation of PA-RISC 1.1 are based on the compilers
used in the existing Series 800 implementations of PA-
RISC 1.0. Because the same compilers are used on Series
800 and 700 systems, maximum portability of source code
is achieved.

Another system design goal was to provide software
compatibility at the source code level with the HP 9000
Series 300 and Series 400 workstations, which are based
on the Motorola MC680xO architecture.

Special efforts have been made for the C and FORTRAN
languages to provide this compatibility. The PA-RISC C
compiler has been enhanced with compiler directives to
provide Series 300 and 400 compatible data alignment,
which is the one area of potential incompatibility with
PA-RISC. In the case of FORTRAN, a larger number of
compatibility issues exist. The first release of system
software included a version of the FORTRAN compiler
from the Series 800 and a separate version from the
Series 300 and 400 workstations. The latest releases now
contain a single FORTRAN compiler based on the Series
300 and 400 workstation compiler that has an option that
allows users to compile their FORTRAN applications with
semantics identical to either the Series 800 compiler or
the Series 300 compiler.

Given that the PA-RISC 1.1 architecture is a strict super
set of PA-RISC 1.0, all HP-UX object code is completely
forward compatible from PA-RISC 1.0 based implementa
tions to the new PA-RISC 1.1 workstations. Portability
includes object modules, libraries, and relocatable pro
grams. Programs compiled and linked on PA-RISC 1.0
implementations can run unchanged on PA-RISC 1.1
implementations, and any combination of object modules
and libraries from the two systems can be linked togeth
er. Recompilation is necessary only if the programmer
wishes to take advantage of the architecture and opti
mization enhancements. This forward compatibility of
object modules allowed many vendors to port their
products to the Series 700 with little or no effort.

Although object files can be ported from PA-RISC 1.0
implementations to PA-RISC 1.1 implementations, the
reverse may not always be true if the object file on a
PA-RISC 1.1 machine was generated by a compiler that
exploits the extensions to the PA-RISC 1.1 architecture.
The HP-UX loader detects such situations and refuses to
execute a program on a PA-RISC 1.0 implementation that
has been compiled with PA-RISC 1.1 extensions. To assist

June 1992 Hewlett-Packard Journal 19

© Copr. 1949-1998 Hewlett-Packard Co.

the user in generating the most portable object files, a
compiler option has been added to specify the destination
architecture (DA) for the code generated by the compiler.
For example,

% ce +DA1 .0 my_p rog . c

would generate an object file based on the PA-RISC 1.0
architecture definition. The object file could also be
ported directly to a PA-RISC 1.1 implementation without
the need for recompilation. A user can also use this
option explicitly to ask for PA-RISC 1.1 extensions, or for
cross compiling while on a PA-RISC 1.0 implementation
with the command-line sequence:

% ce +DA1 .1 my_p rog . c

Of course, the object file produced could no longer be
executed on a PA- RISC 1.0 implementation.

If the destination architecture is not specified, the default
for the compilers is to generate code based on the
architecture implementation on which the compiler is
executing.

Performance

Through a combination of clock rate, instruction set
extensions, compiler optimization enhancements, and
processor implementation, the HP 9000 Series 700
workstations are currently producing industry leading
performance. Although much of this performance im
provement comes from an increase in clock rate, as seen
in the tables below, the compilers play a significant role
in increasing the overall performance.

Table I compares the raw speed of the HP 9000 Series
720 workstation based on PA-RISC 1.1 architecture with
the HP 9000 Series 835 workstation based on PA-RISC
1.0. The SPEC benchmarks for the Series 835 were
compiled with the HP-UX 7.0 compilers using full opti
mization. For the Series 720, the HP-UX 8.07 compilers
containing the latest enhancements to support PA-RISC
1.1 were used. For the SPEC benchmark suite, higher
SPECmarks imply higher throughput.

Table I
Performance Comparison of PA-RISC Implementations

P r o c e s s o r / C l o c k C a c h e S P E C m a r k s
I m p l e m e n - M H z S i z e i n
t a t i o n K b y t e s I n t e g e r F l o a t O v e r a l l

numbers, the performance numbers are divided by the
clock frequency. The normalized SPECmark performance
of the Model 720 is 92% higher than the normalized
performance of the Model 835. Floating-point perfor
mance, which is 162% higher, is primarily because of the
optimizing preprocessor, better compiler optimizations,
architecture extensions, implementation of separate
floating-point multiplication and arithmetic functional
units, faster floating-point operations, and larger caches.
The gains in the integer SPEC benchmark (22%) are
primarily because of enhancements to traditional opti
mizations that are architecture independent.

Table II
Normalized Performance Comparison of

PA-RISC Implementations

P r o c e s s o r / C l o c k N o r m a l i z e d
I m p l e m e n - M H z P e r f o r m a n c e
tation

Improvement over
Series 835

instruction Cache/Data Cache

The data in Table II compares the relative efficiency of
the HP 9000 Series 835 and the HP 9000 Series 720 by
normalizing the benchmark performance. To normalize the

I n t e - F l o a t O v e r - I n t e - F l o a t O v e r -
g e r a l l g e r a l l

M o d e l 1 5 0 . 6 5 0 . 6 1 0 . 6 3 1 . 0 0 1 . 0 0 1 . 0 0
8357
PA-RISC
1.0

M o d e l 5 0 0 . 7 9 1 . 6 0 1 . 2 1 1 . 2 2 2 . 6 2 1 . 9 2
720/
PA-RISC
1.1

To see exactly how much performance was gained
through enhancements to the traditional compiler opti
mizations (not architecture-specific), we compiled the
SPEC benchmarks using the HP-UX 8.07 compilers with
level 2 optimization and the destination architecture
PA-RISC 1.0. This disables the use of the added instruc
tions and floating-point registers. We also disabled use of
the FORTRAN optimizing preprocessor. Table III shows
how the HP-UX 7.0 SPEC benchmarks compare to the
HP-UX 8.05 benchmarks while running on an HP 9000
Model 720.

From Table III, we can see that the enhancements made
to the traditional compiler optimizations performed by the
compilers produced gains of 1 to 24 percent.

It is also interesting to see how much the architecture
itself contributed to performance improvement. To do
this, we used the same HP-UX 8.05 compilers (with the
-0 option, which indicates to compile without the FOR
TRAN optimizing preprocessor) to produce SPEC bench
marks compiled for PA-RISC 1.0 and PA-RISC 1.1. Table
IV shows that all floating-point benchmarks except Spice
show a significant improvement. This improvement comes
directly from the larger register file and the added
instructions in the PA-RISC 1.1 instruction set. The
integer SPEC benchmarks are absent from this table
because the architecture enhancements do little for
integer code.

20 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

T a b l e I I I
C o m p a r i s o n b e t w e e n B e n c h m a r k s C o m p i l e d W i t h

H P - U X 7 . 0 a n d H P - U X 8 . 0 7 C o m p i l e r s R u n n i n g o n a n H P 9 0 0 0
M o d e l 7 2 0 W o r k s t a t i o n

B e n c h m a r k s H P - U X H P - U X C o m p i l e r
7 . 0 8 . 0 5 I m p r o v e m e n t

T a b l e I V
P e r f o r m a n c e I m p r o v e m e n t R e s u l t i n g f r o m A r c h i t e c t u r e
E n h a n c e m e n t s o n t h e H P 9 0 0 0 M o d e l 7 2 0 W o r k s t a t i o n

Finally, we wanted to see how much the optimizing
preprocessor contributed to the SPEC benchmark im
provement. To do this, we used the HP-UX 8.05 FOR
TRAN compiler to produce two sets of the FORTRAN
SPEC benchmarks. Both sets were compiled with full
optmization but only one was compiled with full optimiza
tion and the addition of the preprocessor. While bench
marks nasa7 and tomcatv showed fairly large improvements
with the optimizing preprocessor, the gains for matrix300
were dramatic. All these benchmarks are known to suffer
from cache and TLB (translation lookaside buffer) miss
penalties, but the preprocessor was able to improve their
performance through its memory hierarchy optimizations.
Table V shows a comparison between the benchmarks
created on an HP-UX 8.05 operating system running on an
HP 9000 Model 720 and compiled with and without the

optimizing preprocessor enhancements. Excluded bench
marks showed little or no gain. See the article on page 24
for more about the FORTRAN optimizing preprocessor.

T a b l e V
P e r f o r m a n c e G a i n s W i t h t h e

F O R T R T A N O p t i m i z i n g P r e p r o c e s s o r

B e n c h m a r k s W i t h o u t W i t h I m p r o v e m e n t
P r e p r o c e s s o r P r e p r o c e s s o r

O 2 0 . n a s a 7 4 4 . 2 6 2 . 9 1 . 4 2

Conclusions
To remain competitive in the workstation market, the
PA-RISC architecture has been extended to better meet
the performance demands of workstation applications.
With these changes to the architecture, Hewlett-Packard's
compiler products have evolved to exploit the extensions
made. Most important, the compilers successfully exploit
the increase in the number of floating-point register files
and the new instructions including the integer multiply
and the five-operand instructions.

Besides being enhanced to exploit these new architectural
features, additional code improving transformations have
been introduced that are independent of the underlying
architecture and substantially boost the performance of
applications. These include a new vectorizing preproces
sor for FORTRAN, software pipelining, register reassoci-
ation, link-time optimizations, and better instruction
scheduling. The combined result of the architecture exten
sions, compiler enhancements, and a high-speed CMOS
processor implementation is a workstation system that
compares favorably with the most advanced workstations
presently available.

Acknowledgements
There are too many names to list whose ideas and
contributions have helped produce an industry leading
workstation offering with highly tuned optimizing compil
ers. This includes all of the members of the HP California
Language Laboratory optimization technology section, the
HP Apollo Massachusetts Language Laboratory, and the
HP Colorado Language Laboratory who shared many
optimization ideas with us.

I would like to extend special thanks to Manoj Dadoo for
his help in providing the latest SPEC benchmark results.

References
1. J. S. Birnbaum and W. S. Worley, Jr., "Beyond RISC: High-Precision
Architecture," Hewlett-Packard Journal, Vol. 36, no. 8, August 1985.
2. M. The et al, "Hewlett-Packard Precision Architecture: The
Processor," Hewlett-Packard Journal, Vol. 37, no. 8, August 1986,
pp. 4-21.
3. Ruby B. Lee, "Precision Architecture," IEEE Computer, Vol. 22,
January 1989, pp. 78-91.

(continued on page 23)

June 1992 Hewlett-Packard Journal 21

© Copr. 1949-1998 Hewlett-Packard Co.

Link-Time Optimizations

There are some optimizations that can be performed only when the linker produces
an executable file. For the PA-RISC systems these optimizations include removing
unnecessary instructions by changing the location of certain data segments, and
locating procedures that call each other frequently close together.

Elimination of Unnecessary ADDIL Instructions
Compilers generally do not know whether their data will be close to the base
register for the data segment. Therefore, references to global or static variables on
PA-RISC to require two instructions to form the address of a variable or to
load (or store) the contents of the variable. For example the instructions:

ADDIL LR 'var -$g loba l$,dp
LOW RR'va r -$g loba l$ (r1) , r10

load the contents of contents of a global variable into register 10.

The ADDIL instruction constructs the left side of the 32-bit virtual address. In most
cases, an the data is within reach of the load or store instructions, and an
unnecessary ADDIL instruction is present in the code. Since ADDILs account for
about from of the generated code, significant run-time savings result from their
removal.

If the location for the variable turns out to be close to the global data pointer dp,
then of offset of the ADDIL is zero and the ADDIL is like a COPY of global base
register 27 (the location of dp) to register 1 . In such a case, it is more efficient to
eliminate the ADDIL and use register 27 as the base register in the LOW instruc
tion. This elimination can be performed at link time once the linker lays out all the
global data and computes the value that will be assigned to dp.

The -0 linker option turns on linker optimizations. Link-time optimizations include
removing the unnecessary ADDILs. Data is also rearranged to increase the number
of data items that can be accessed without ADDILs. The -0 option is passed to the
linker option the compilers when the +03 compiler option is selected. The +03 option
also loops, the compiler not to optimize by moving ADDILs out of loops, in the
expectation that they will be removed at link time. This can be very effective in
reducing register pressure for some procedures. For example, to optimize a C
program at link time as well as compile time, use cc +03 foo.c.

Because shared libraries on HP-UX use position independent code that is refer
enced from register 1 9 as a base register, ADDIL elimination is not done when
building an HP-UX shared library. It is also in conflict with the -A (dynamic linking]
option, the -r (relocatable link) option, and the -g (symbolic debugging) option. All
conflicts are resolved by disabling this optimization. Shared libraries and position
independent code are described on page 46.

The linker rearranges data to maximize the number of variables that can be placed
at the beginning of the data area, increasing the probability that ADDILs referenc
ing these variables can be removed. Nonstandard, conforming programs that rely
on specific positioning of global or static variables may not work correctly after
this optimization.

ADDIL elimination is appropriate for programs that access global or static variables
frequently. Programs not doing so may not show noticeable improvement. Link-
time optimization increases linking time significantly (approximately 20%) because
of the additional processing and memory required.

Profile-Based Procedure Repositioning at Link Time
Research has consistently shown that programs tend to keep using the instructions
and data that were used recently. One of the corollaries of this principle is that
programs have large amounts of code (and to a lesser extent data) that is used to
handle when that very seldom happen, and therefore are only in the way when
running normal cases.

This 8.05 is exploited by a new optimization in the HP-UX 8.05 linkers
called feedback- procedure repositioning (sometimes referred to as feedback-
directed positioning).1 This three-step optimization first instruments the program to
count how often procedures call each other at run time. The instrumented program
is run on sample input data to collect a profile of the calls executed by the pro
gram. The linker then uses that profile information in the final link of the produc
tion program to place procedures that call each other frequently close together.

A more important case is the inverse â€” things that are infrequently or never called
are grouped together far away from the heavily used code. This increases instruc
tion-cache locality and in large applications decreases paging, since only the code
that will be used is demand-loaded into main memory or cache, not a mixture of
useful cache unneeded code that happens to be allocated to the same page or cache
line.

This optimization is invoked by two new linker options:
â€¢ -I: execution. the code to collect procedure call counts during execution. This

option is used in conjunction with the -P option.
â€¢ -P: Examine the data file produced with the -I option and reposition the proce

dures according to a "closest is best" strategy.
These options are often passed to the linker via the compiler driver program's -W
option. For instance, a C program can be optimized with profile-driven procedure
positioning by:

c c - c - 0 f o o . c f c o m p i l e w i t h o p t i m i z a t i o n s
c c - W l . - l f o o . o i f l i n k w i t h p r o f i l i n g i n s t r u m e n t a t i o n c o d e a d d e d
a . o u t < d a t a . i n f r u n p r o g r a m t o g e n e r a t e p r o f i l e i n f o r m a t i o n

i n t h e " f l o w . d a t a " f i l e
c c - W I . - P f o o . o f l i n k w i t h p r o c e d u r e s p o s i t i o n e d a c c o r d i n g t o

I p r o f i l e

The first link of the executable produces an executable with extra code added to
produce a file of profile information with counts of all the calls between each pair
of procedures executed. The final link uses the profile data file information to
determine the order of procedures in the final executable file, overriding the nor
mal positioning by the order of the input files seen. This order will optimize use of
the virtual memory system for the program's code segment. A secondary effect is
to reduce the number of long branch stubs (code inserted to complete calls longer
than 256K bytes). While the total number of long branch stubs may actually in
crease, the number of long branches executed at run time will decrease.

Carl Burch
Software Engineer
California Language Laboratory

Reference
1 . Programming on HP-UX. The HP-UX 8.05 Technical Addendum. HP part number B2355A,
option OBF.

22 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

4. D. J. Magenheimer. LÂ· Peters. KW. Pettis. and D. Zuras. "Integer
Multiplication and Division on the HP Precision Architecture," IEEE
Tmnsactions on Computers. Vol. 37, August 1988, pp. 980-990.
5. Mark S. Johnson and Terrence C. Miller. "Effectiveness of a Ma
chine-Level. Global Optimizer," Proceedings of the SIGPLAN '86
Symposium on Compiler Construction, SIGPLAN Notices, Vol. 20,
no. 7, July 1986.
6. K. Archi p'ettis and W. B. Buzbee. "Hewlett-Packard Precision Archi
tecture Compiler Performance." Heidett-Packard Journal, Vol. 38,
no. 3, March 1987.
7. D. the Coutant, C. L. Hammond, and J. W. Kelly, "Compilers for the
New Generation of Hewlett-Packard Computers," Hewlett-Packard
â€¢Journal, Vol. 37, no. 1, January 1986.
8. G. Color Chaitin, "Register Allocation and Spilling via Graph Color
ing," Proceedings of the SIGPLAN '82 Symposium On Compiler
Construction, SIGPLAN Notices, Vol. 17, no. 6, June 1982, pp.
98-105.
9. P. Gibbons and S. Muchnick, "Efficient Instruction Scheduling for
a Pipelined Architecture," Proceedings of the SIGPLAN '86 Sympo

sium on Compiler Construction, SIGPLAN Notices, Vol. 20, no. 7,
July 1986.
10. K Pettis and R.C. Hansen, "Profile Guided Code Positioning,"
Proceedings of the SIGPLAN '90 Symposium on Programming

Language Design and Implementation, S/GPLAY \otices. Vol. 25.
no. 6, June 1990.

Bibliography
1. M. Steiss, S. Mangelsdorf, E. DeLano. C. Gleason. and D. Steiss,
"CMOS PA-RISC Processor for a New Family of Workstations." IEEE
COMPCON Spring '91 Digest of Papers. February 1991.
2. R. and L. Johnson. L Thayer. D. Li. V. Meier. C. Dowdell. and
D. Roberts, "System Design for a Low Cost PA-RISC Desktop
Workstation," IEEE COMPCON Spring '91 Digest of Papers, Febru
ary 19Ã‡1.
3. D. Odnert, R. Hansen, M. Dadoo, and M. Laventhal, "Architecture
and Compiler Enhancements for PA-RISC Workstations," IEEE
COMPCON Spring '91 Digest of Papers, February 1991.

HP-UX is based on and is compatible with USL's UNIX operating system. It also complies with
X/Opens* XPG3, POSIX 1003.1. and SVID2 interface
UNIX in other registered trademark of UNIX System Laboratories Inc. in the USA and other
countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

June 1992 Hewlett-Packard Journal 23

© Copr. 1949-1998 Hewlett-Packard Co.

HP 9000 Series 700 FORTRAN
Optimizing Preprocessor
By combining HP design engineering and quality assurance capabilities
with a well-established third party product, the performance of Series 700
FORTRAN programs, as measured by key workstation benchmarks, was
improved by more than 30%.

by Robert A. Gottlieb, Daniel J. Magenheimer, Sue A. Meloy, and Alan C. Meyer

An optimizing preprocessor is responsible for modifying
source code in a way that allows an optimizing compiler
to produce object code that makes the best use of the
architecture of the target machine. The executable code
resulting from this optimization process is able to make
efficient use of storage and execute in minimum time.

The HP 9000 Series 700 FORTRAN optimizing preproces
sor uses advanced program and data flow analysis tech
niques and a keen understanding of the underlying
machine implementation to transform FORTRAN source
code into code that is more efficient and makes calls to a
highly tuned vector library. The vector library is a group
of routines written in assembly language that are tuned to
run very fast (see "Vector Library" on page 29). Fig. 1
shows the data flow involved in using the optimizing

FORTRAN
Source

Code

FORTRAN
Optimizing

Preprocessor

Optimized FORTRAN Code

FORTRAN
Optimizing
Compiler

Optimized Object Code

Fig. 1. Data flow for compiling FORTRAN source code using the
optimizing preprocessor.

preprocessor to transform FORTRAN source code into an
optimized executable file.

A slightly different version of this product serves as the
preprocessor for HP Concurrent FORTRAN, which is now
running on HP Apollo DN 10000 computers. HP Apollo
engineers responsible for this product identified opportu
nities for substantial improvements to the preprocessor
and concluded that these improvements were also appli
cable to the Series 700 FORTRAN. Performance analysis
confirmed these conclusions, and after marketing analysis,
an extended multisite, cross-functional team was formed
to incorporate the preprocessor into the FORTRAN
compiler for the HP 9000 Series 700 computer systems.
Because of this effort, as of the HP-UX 8.05 release, the
preprocessor is bundled with every FORTRAN compiler.

The preprocessor is based on a third-party product. HP's
contribution included:
Tying the preprocessor into the HP FORTRAN product
(This included user interface changes and extensive doc
umentation changes.)

1 Identifying modifications required to allow the preproces
sor to recognize HP's extended FORTRAN dialect

1 Assembly coding a vector library that incorporates
knowledge of CPU pipelining details and implementation
dependent instructions to allow the Series 700 to work at
peak performance

1 Performing extensive quality assurance processes that
uncovered numerous defects, ensuring that the product
meets HP's high-quality standards.

These contributions are discussed in detail in this article.
Examples of specific transformations and performance
improvements on key industry benchmarks are also
described.

Preprocessor Overview
Although the preprocessor is bundled with every Series
700 FORTRAN compiler as of the HP-UX 8.05 release, the
preprocessor is not automatically enabled whenever a
user compiles a FORTRAN program. To invoke the
preprocessor, the +OP option must be specified on the
command line invoking the FORTRAN compiler. For
example,

24 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

f77 +OP f i le . f

will cause the file file.f to be preprocessed and then
compiled by the FORTRAN compiler. In addition, an
integer between 0 and 4 can be appended following +OP.
This integer selects the settings of certain preprocessor
options. For example, to make the preprocessor optimize
as aggressively as possible, the following could be used:

f77 +OP4 f i le. f

By default, the +OP option also automatically invokes the
standard optimizer at the optimization level defined by
the -0 option, which typically indicates full optimization
(-02).

Advanced Options. The preprocessor can be invoked with
many options by using the -WP option. For example,

f 77 +OP -WP, -novec to r i ze f i l e . f

precludes the preprocessor from generating calls to the
vector library. Some other classes of options include:

â€¢ Mining Options. These options instruct the preprocessor
to replace subroutine or function calls with the actual
text of the subroutine or function. This removes the over
head of a procedure call and exposes additional opportu
nities for optimizations. These options allow the user not
only to instruct the preprocessor whether or not to inline,
but also to provide the maximum level of subprogram
nesting and lists of files to examine for inlining. The user
can exercise manual control over inlining with directives,
and impose restrictions on inlining in nested loops.

â€¢ Optimization Options. Using optimization options, the
user can adjust parameters that control loop unrolling,
transformations that may affect arithmetic roundoff,
and the aggressiveness of the optimizations that are
attempted.

â€¢ Vectorization Options. These options tell the preproces
sor whether or not to generate calls to the vector library
and adjust the minimum vector length that will cause
such a call to be generated.

â€¢ Listing Options. The user can obtain detailed information
about the program and the optimizations performed by
the preprocessor with listing options. Also, the user can
adjust the format and level of detail of the information in
the listings.

â€¢ Other Options. Some options specify whether certain
directives (described below) are to be recognized by the
preprocessor and what global assumptions can be made
about the behavior of the user program. There are also
options that allow the user to designate special inline
comment characters to be recognized and whether to
save program variables in static memory.

Directives. The preprocessor provides an extensive set of
directives. These directives can be inserted directly in the
FORTRAN application and appear to the compiler as
comments except when enabled by certain command-line
options. Placement of these directives in the code allows
the user to vary control of the optimizations performed
by the preprocessor in each subprogram. This control can
have the granularity of a single line in a subprogram.

Some of the features provided by directives include:

â€¢ Optimization Control. Optimization directives provide
control of inlining. roundoff, and optimization aggressive
ness.

â€¢ Vector Call Control. Vector call translation directives con
trol substitutions that result in calls to the vector library
from the preprocessor.

â€¢ Compatibility. Certain directive formats used by competi
tive products are recognized to allow correct optimiza
tions to be performed on supercomputer applications.

â€¢ Assertions. Assertions can be inserted in an application
to allow the user to provide additional program informa
tion that will allow the preprocessor to make informed
decisions about enabling or disabling certain optimiza
tions. For example, many FORTRAN applications violate
array subscript bounds. If the user does not inform the
preprocessor of this language standard violation, trans
formations may be performed that result in incorrect
execution of the program.

Transformations
The HP FORTRAN optimizing preprocessor supports a
number of different transformations (changes to the
source code) that are intended to improve the perfor
mance of the code. These transformations include the
following categories:

â€¢ Scalar transformations
â€¢ Interprocedural transformations
â€¢ Vector transformations
â€¢ Data locality (blocking) and memory access transforma

tions.

Scalar Transformations. Many of these transformations are
"enabling" optimizations. That is, they are necessary to
expose or enable opportunities for the other optimiza
tions. Some of these transformations include:

â€¢ Loop Unrolling. This transformation attempts to com
press together several iterations of a loop, with the intent
of lowering the cost of the loop overhead and exposing
more opportunity for more efficiently using the functional
units of the PA-RISC architecture. The article on page 39
provides some examples of loop unrolling.

â€¢ Loop Rerolling. This transformation is the exact opposite
of loop unrolling in that it is used when a loop has been
explicitly unrolled by the user. The transformation recog
nizes that the code has been unrolled, and rerolls it into a
smaller loop. This may be beneficial in cases where the
code can be transformed to a call to the vector library.

â€¢ Dead Code Elimination. This transformation removes
code that cannot be executed. This can improve perfor
mance by revealing opportunities for other transforma
tions.

â€¢ Forward Substitution. The preprocessor replaces refer
ences to variables with the appropriate constants or ex
pressions to expose opportunities for additional trans
formations.

â€¢ Induction Variable Analysis. The preprocessor recognizes
variables that are incremented by a loop-invariant
amount within a loop, and may replace expressions using
one induction variable with an expression based on
another induction variable. For example, in the following
code fragment the preprocessor identifies that K is an
induction variable:

June 1992 Hewlett-Packard Journal 25

© Copr. 1949-1998 Hewlett-Packard Co.

DO I = 1 , N
A(l) = B(K)
l \ = l \ I

ENDDO

The code generated by the preprocessor would be:

DO I = 1 ,N
A (l) = B (K - I+1)

ENDDO

â€¢ Lifetime Analysis. The preprocessor analyzes the use of
variables within a routine, and determines when the value
of a variable can be discarded because it will not be
needed again.

Interprocedural Transformations. The preprocessor is capa
ble of performing subroutine and function inline substitu
tion. This optimization allows the preprocessor, either by
explicit user control or heuristically, to replace a call to a
routine with the code in the routine. This transformation
improves performance by:

â€¢ Reducing call overhead, which is useful for very small
routines

â€¢ Replacing expressions in inlined subroutines or functions
with constants because some arguments to these routines
might be constants

â€¢ Exposing other performance improvement opportunities
such as data locality.

Vector Transformations. The preprocessor replaces code
sequences with calls to the vector library where appropri
ate. Some classes of these calls include:

â€¢ Loop Vectorization. This refers to cases in which the
user's code refers to one or several sequences of inputs,
producing a sequence of outputs. These sequences would
be references to arrays. For example,

DO 10 I = 1 , N
1 0 A (l) = B (l) + C (l)

would become:

CALLvec_$dadd_vec to r (B (1) ,C(1) ,N ,A(D)

Not all seemingly appropriate places would be vectorized
because in some cases multiple references to the same
subscripted variable might be more efficiently done by
inline code rather than by a call to a vector library
routine.

â€¢ Reduction Recognition. The preprocessor will recognize
some cases in which the results are accumulated for use
as an aggregate, such as in summing all the elements in
an array or finding the maximum value in an array. For
example,

DO 10 I = 1 , N
1 0 X = X + A (l) * B I D

would become:

X = X + vec_$ddot (A(1) ,B(1) ,N)

This transform improves performance in part by knowing
that while a Series 700 computer can add one stream of
numbers in three machine cycles per element, it can also
add two streams of numbers in four machine cycles per
two elements.

There is one problem with this transform. When using
two streams to compute the result (which is what the
routine does) in floating-point calculations, changing the
order in which numbers are added can change the result.
This is called roundoff error. Because of this problem, the
reduction recognition transformation can be inhibited by
using the roundoff switch.

1 Linear Recurrence Recognition. This transformation is
used in cases in which the results of a previous iteration
of a loop are used in the current iteration. This is called a
recurrence.
Example:

DO 10 I = 2, N
1 0 A (l) = B (I) + C * A (I - 1)

In this case the Ith element of A is dependent on the
result of the calculation of the (1-1)th element of A. This
code becomes:

CALL vec_$red cr(B(2),N-1 ,C,A(1))

Data Locality and Memory Access Transformations. Memory
side effects such as cache misses can have a significant
impact on the performance of the Series 700 machine. As
a result, a number of transformations have been devel
oped to reduce the likelihood of cache misses and other
problems.
Stride-1 Inner Loop Selection. This transformation ex
amines a nested series of loops, and attempts to deter
mine if the loops can be rearranged so that a different
loop can run as the inner loop. This is done if the new
inner loop will have more sequential walks of arrays
through memory. This type of access is advantageous
because it reduces cache misses. For example,

DO 10 I = 1, N
DO 10 J = 1 , N

10 A(I ,J) = B(I ,J) + C(I ,J)

accesses the arrays A, B, and C. However, it accesses
them in the sequences:

B(1,1), 8(1,2), B(1,3), ...
C(1,1), CI1.2), C(1,3), ...

which will result in nonsequential access to memory,
making cache misses far more likely. The following legal
transform will reduce the likely number of cache misses.

DO 10 J = 1 , N
DO 10 I - 1 , N

1 0 A (I , J) = B (I , J) + C (I , J)

These loops have
been exchanged

Data Locality Transformations. For situations in which
there is significant reuse of array data, and there is oppor
tunity to restructure, or "block," the code to reduce cache
misses, the preprocessor will create multiple nested
loops that will localize the data in the cache at a cost of
more loop overhead.
Matrix Multiply Recognition. The preprocessor will recog
nize many forms of classic matrix multiply and replace
them with calls to a highly tuned matrix multiply routine.

26 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Example of a Transformation. The following code fragments
taken from the MatrixSOO benchmark of the SPEC bench
mark tests show how some of the transformations de
scribed above are incorporated into a FORTRAN program.

R E A L * 8 A (3 0 0 , 3 0 0) , 6 (3 0 1 , 3 0 1) , C (3 0 2 , 3 0 2)

D A T A M , N , L / 3 0 0 , 3 0 0 , 3 0 0 /

I A = 3 0 0
m _ on i I D â€” JU I

1 C = 3 0 2

C A L L S G E M M I M , N , L , A , I A , B , I B , C , 1 C , 0 , + 1)

E N D

S U B R O U T I N E S G E M M I M , N , L , A , I A , B , I B , C , 1 C , J T R P O S , J O B)

R E A L * 8 A (I A , N) , B (I B , L) , C (I C , L)

J B = I S I G N (I A B S (J 0 6) + 2 * (J T R P O S / 4) , J 0 8)

J U M P = J T R P O S + 1

G O T O (1 0 , 3 0) , J U M P

1 0 C O N T I N U E

D O 2 0 J = 1 , L

2 0 C A L L S G E M V I M , N , A , I A , B (1 , J) , 1 , C (1 , J) , 1 , J B)

R E T U R N

3 0 C O N T I N U E

D O 4 0 J = 1 , L

4 0 C A L L S G E M V I M , N , A , I A , B (1 , J) , 1 , C (J , 1) , 1 C , J B)

R E T U R N

E N D

S U B R O U T I N E S G E M V I M , N , A , I A , X , I X , Y , I Y , J O B)

R E A L * 8 A (I A , N) , X (I X , N) , Y (I Y , N)

I F (N . L E . O) R E T U R N

I I = 1 I J = I A

I F | ((I A B S (J O B H) / 2) . E Q . O) G O T O 2 1 0

I J = 1

I I = I A

2 1 0 C O N T I N U E

I F (M O D (I A B S (J O B) - 1 , 2) . N E . O) G O T O 2 3 0

D O 2 2 0 J = 1 , M

2 2 0 Y (1 , J) = O . O D O

2 3 0 C O N T I N U E

I F (J O B I T O) G O T O 2 5 0

D O 2 4 0 J = 1 , N

K = 1 + (J - 1) * I J

2 4 0 C A L L S A X P Y I M , X (1 , J) , A (K , 1) , I I , Y (1 , 1) , I Y)

R E T U R N

2 5 0 C O N T I N U E

D O 2 6 0 J = 1 , N

L = 1 + (J - 1) * I J

2 6 0 C A L L S A X P Y I M , - X (1 , J) , A (L , 1) , I I , Y (1 , 1) , I Y)

R E T U R N

E N D

S U B R O U T I N E S A X P Y (N , A , X , I N C X , Y , I N C Y)

R E A L X (I N C X . N) , Y (I N C Y , N) , A

I F (N . L E . O) R E T U R N

D O 3 1 0 I = 1 , N

3 1 0 Y (1 , l) = Y (1 , l) + A * X (1 , I)
R E T U R N

E N D

First, routine SGEMM is inlined into the main routine, and
the scalar forward substitution transformation is applied
to propagate arguments.

R E A L * 8 A (3 0 0 , 3 0 0) , 6 (3 0 1 , 3 0 1) , C (3 0 2 , 3 0 2)

D A T A M , N , L / 3 0 0 , 3 0 0 , 3 0 0 /

I A = 3 0 0

I B = 3 0 1

1C = 302
J B = 1

J U M P = 1

G O T O (1 0 , 3 0) , 1

1 0 C O N T I N U E

D O 2 0 J = 1 , L

2 0 C A L L S G E M V I M , N , A , I A , B (1 , J) , 1 , C (1 , J) , 1 , J B)

R E T U R N

3 0 C O N T I N U E

D O 4 0 J = 1 , L

4 0 C A L L S G E M V I M , N , A , I A , 6 (1 , J) , 1 , C (J , 1) , 1 C , J 6)

R E T U R N

E N D

Second, dead code elimination is applied. The computed
GO TO turns into a simple GO TO, and the unreachable code
is removed.

R E A L * 8 A (3 0 0 , 3 0 0) , 6 (3 0 1 , 3 0 1) , C (3 0 2 , 3 0 2)

D A T A M , N , L / 3 0 0 , 3 0 0 , 3 0 0 /

I A = 3 0 0

1 6 = 3 0 1

1 C = 3 0 2

J B = 1

J U M P = 1

D O I = 1 , L

C A L L S G E M V (M , N , A , I A , B (1 , I) , 1 , C (1 , I) , 1 , J 6)

E N D D O

R E T U R N

E N D

Next, lifetime analysis is applied to the code, and it is
seen that with the current code configuration the vari
ables L, 16, 1C, and JUMP are never modified after the
initial assignment.

R E A L * 8 A (3 0 0 , 3 0 0) , 6 (3 0 1 , 3 0 1) , C (3 0 2 , 3 0 2)

D A T A M , N / 3 0 0 . 3 0 0 /

I A = 3 0 0

J B = 1

D O I = 1 , 3 0 0

C A L L S G E M V (M , N , A , I A , B (1 , I) , 1 , C (1 , I) , 1 , J B)

E N D D O

E N D

Notice that the large body of conditional code has been
removed. This is significant as far as the capability to
perform further optimizations is concerned. The reason
that M, N, and I A were not replaced with the value 300 is
that at this point it is not known that the corresponding
arguments to SGEMV are not modified.

Next, the routine SGEMV is inlined, and once again, a
number of transformations are applied:

R E A L * 8 A (3 0 0 , 3 0 0) , 6 (3 0 1 , 3 0 1) , C (3 0 2 , 3 0 2)

D A T A M / 3 0 0 /

D O I = 1 , 3 0 0

1 3 = 1

D O J = 1 , M

C(J , I) = O .ODO

E N D D O

D O J = 1 , 3 0 0

C A L L S A X P Y (M , 6 (J , I) , A (1 , J) , I 3 , C (1 , I) , 1)

E N D D O

E N D D O

June 1992 Hewlett-Packard Journal 27

© Copr. 1949-1998 Hewlett-Packard Co.

END
Now, we inline SAXPY to get:

R E A L * 8 A (3 0 0 , 3 0 0) , 6 (3 0 1 , 3 0 1) , C (3 0 2 , 3 0 2)

D O I = 1 , 3 0 0

D O J = 1 , 3 0 0

C (J , I) = O . D O

E N D D O

D O J = 1 , 3 0 0

D O K = 1 , 3 0 0

C (K , I) = C (K , I) + B (J , I) * A (K , J)

E N D D O

E N D D O

E N D D O

Finally, we see that this is a matrix multiply and trans
form it into a call to a fast matrix multiply routine:

C A L L B L A S _ $ D G E M M (' N ' / N ' , 3 0 0 , 3 0 0 , 3 0 0 , 1 . D O ,

X A (1 , 1 | , 3 0 0 , B (1 , D , 3 0 1 , O . D O , C (1 , 1) , 3 0 2)

E N D

This set of transformations results in an 1 1 x perfor
mance improvement because of the ability to transform
the original code to a form that can use blocking effi
ciently via a coded matrix multiply routine.

Matching the HP FORTRAN Dialect
Although a primary motivation for using the preprocessor
was the significant performance gains, it was also very
important for the preprocessor to work as an integrated
component of the FORTRAN compile path. One key
aspect to this integration was for the preprocessor to
recognize and correctly process the dialect extensions
supported by the HP Series 700 FORTRAN compiler.

Three dialect areas were addressed: language extensions,
compiler directives, and command-line options. For each
of these areas, there were some items that the preproces
sor could just ignore, while others required certain actions.
Another aspect of the dialect issue is that the trans
formed FORTRAN code generated by the preprocessor
must conform to HP's FORTRAN dialect.

The first task was to define the list of HP dialect exten
sions the preprocessor had to recognize. The initial pass
at this was done by gathering all known extensions in
HP FORTRAN including the military extensions (MILÂ·
STD-1753), VAX FORTRAN 4.0 features, Apollo Domain
DN10000 features, and other HP extensions. This list was
given to the third-party developers as a starting point for
implementing HP dialect recognition in the preprocessor.

The next step in defining the dialect extensions was to
push the preprocessor through our extensive FORTRAN
test suites. These suites contain over 8500 tests, ranging
from very simple programs to large FORTRAN applica
tions. The method we used was to run each positive test
(no expected failure) with the preprocessor, and compare
the results with the expected answers. In this manner, we
were able to collect additional dialect items that needed
to be added to the preprocessor. The final set of dialect
items came as we entered a beta program later in the

release, exposing the preprocessor to sets of customer
codes.

There were a large number of language extensions the
preprocessor did not originally recognize, but they were
generally relatively minor features. One example is the ON
statement, an HP extension that allows specification of
exception handling. The preprocessor merely had to
recognize the syntax of this statement and echo it back
to the transformed file. Another example was allowing
octal and hexadecimal constants to appear as actual
arguments to a statement function.

The HP compiler directives also needed to be recognized,
sometimes requiring semantic actions from the preproces
sor. As an example, consider the code segment:

I N T E G E R A (1 0) , B (1 0) , C (1 0) , D

D O I = 1 , 1 0

A (l) = B i l l * C (l) + D

E N D D O

The preprocessor will transform this to the following
vector call:

C A L L v e c _ $ i m u l t _ a d d _ c o n s t a n t (B (1) , C (1) , 1 0 , D , A (D)

However, if the SSHORT directive is present in the file, the
preprocessor will instead generate a call to the short
integer version of this vector routine:

C A L L v e c _ $ i m u l t _ a d d _ c o n s t a n t 1 6 (B (1) , C (1) , 1 0 , D , A (1))

Most of the directives, such as SWARNINGS, are ignored by
the preprocessor.

There were also a number of FORTRAN command-line
options that the preprocessor needed to be aware of. For
example, the -12 option specifies that short integers will
be the default, which should cause the same effect as the
SSHORT directive in the example above. For each of these
options, the information was passed via preprocessor
command-line options. In the case of the -12 option, the
FORTRAN driver will invoke the preprocessor with the
-int=2 option.

Another interesting command-line option is +DA1.0, which
indicates that the resulting executable program can be
run on a PA-RISC 1.0 machine. Since the vector library
contains PA-RISC 1.1-specific instructions, the preproces
sor is informed that no vector calls should be generated
in the transformed source by passing it the -novectorize
flag.

In addition to having the preprocessor recognize the HP
Series 700 FORTRAN dialect, there was a need to ensure
that the resulting transformed source from the preproces
sor would be acceptable to the standard FORTRAN
compiler. This situation actually occurred in several
different cases. In one case, the preprocessor generated
FORTRAN source code in which DATA statements appear
amid executable statements, something the compiler
allows only if the -K command-line option is present. The
solution was to have the preprocessor change the order
in which it emits the DATA statements.

(continued on page 30|

28 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Vector Library

The vector library is a collection of routines written in assembly language that are
tuned to achieve optimal performance in a PA-RISC 1.1 machine.

At the time we decided to port the preprocessor to the HP-UX operating system,
the HP Concurrent FORTRAN compiler team had already been working with the
third operating to generate calls to the vector library available in the Domain operating
system. To have a single interface for both products, we decided to provide the
Domain library interface on HP-UX.

The Domain library consists of 57 basic functions, with variations for different
types and variable or unit stride, for a total of 380 routines. However, not all of
these 39 are generated by the preprocessor. Table I lists some of the 39 basic
routines that are generated by the Series 700 preprocessor.

T a b l e I I
D i f f e r e n t V e r s i o n s o f v e c _ $ a b s

R o u t i n e s

T a b l e I
S o m e o f t h e B a s i c V e c t o r L i b r a r y R o u t i n e s

O p e r a t i o n s

vec_$abs(U, Count, R)
vec_$neg(U, Count, R)

vec_$add_constant (U, Count , a , R)
vec_Smul t_constant(U, Count , a , R)

vec_$sub_constant (U, Count , a , R)
vec_$add_vector(U, V, Count , R)
vec_$mul t_vector{U, V, Count , R)
vec_$sub_vector(U, V, Count , R)

vec_$add_mul t_vector (U, V, W, Count , R)
vec_$mul t_add_vector (U, V, W, Count , R)
vec_$mul t_rsub_vector (U, V, W, Count , R)
vec_$mul t_sub_vector (U, V, W, Count , R)

vec_$add_mult(U, V, Count, a, R|
vec_$mult_add(U, V, Count, a, R)
vec_$mult_sub(U, V, Count, a, R)

vec_$add_mul t_constant (U, V, Count , a , R)
vecJmu l t_add_cons tan t (U , V , Coun t , a , R)

vec_$asum(U, Count)
vec_$sum(U, Count)
vec_$dot(U, V, Count)

v e c _ $ r e d (U , V , C o u n t , R)
vec_$redc (U, Coun t , a , R)

vec_$copy(U,V , Coun t)
vec_$ini t (U, V, Count,)

Unary

Scalar-vector

Vector-vector

Vector-vector-vector

Scalar-vector-vector
R(i) = (a + V(i))xU(i)
R(i) = (a x

Vec to r - vec to r - sca la r
R(i | = (U(i) + V(i | | x a

Summation and dot product
result = SUM(lU(i)l)
result = SUM|U(i|)
result = SUM(U(i) x V(il)

Linear recurrences
R(i+1) = U(i) + V(i) x R(i)
R (i+1) = U(i) + ax (a x R(i |)

Copy and initialization

For most of these basic routines there are eight versions for handling the varia
tions in type and stride. Table II lists the eight versions for vec_ $abs, the routine
that computes an absolute value.

* Stride is the number of array elements that must be skipped over when a subscript's
value is changed by 1.

R o u t i n e

vec_Sabs(U, Count R)

vec_$dabs(U, Count , R)

vec_Sabs (U , Coun t R)

vec_$iabs16(U, Count, R)

vec_Sabs j (U , S t r i de l , Coun t , R ,
Str ide 2)

vec_$dabs_ i (U, St r ide l , Count , R,
Str ide 2)

vec_$iabs_ i (U, St r ide l , Count , R,
Str ide 2)

vec_$ iabs16J(U, S t r ide l , Count , R ,
Str ide 2)

C h a r a c t e r i s t i c s

Single-precision floating-point, unit stride
Double-precision floating-point, unit
stride
32-bit integer, unit stride
16-bit integer, unit stride
Single-precision floating-point, variable
stride
Double-precision floating-point, variable
stride
32-bit integer, variable stride

16-bit integer, variable stride

Because of time constraints, we could not hand-tune every routine, so we chose to
concentrate on those that would derive the most benefit from tuning. For the rest,
we used FORTRAN versions of the routines. Some of those routines were run
through the preprocessor to unroll the loops and/or run through the software
pipelining optimizer to get the best possible code with minimal effort.

Machine-Specific Features. Two features of PA-RISC 1.1 that hand-tuning was
able to combined particular advantage of are the FMPYADD and FMPYSUB combined
operation instructions, and the ability to use double-word loads into 32-bit floating
point latencies pairs. In addition, floating-point instruction latencies provide the
greatest opportunities for scheduling.

Because of these factors, we felt that floating-point routines would benefit more
from hand-tuning than integer routines. In particular, 32-bit floating-point routines
can exploit the double-word load and store feature, which is currently beyond the
capabilities of the optimizer.

For some of the most critical routines, we used a nonarchitected instruction avail
able quad-word This particular implementation of PA-RISC 1 .1 to do quad-word stores. This
instruction requires longer store interlocks so it isn't always worthwhile to use it,
but it was able to improve some routines by about 10%.

Double-Word Load and Stores. To use double-word loads and stores for single-
precision vectors, care must be taken to ensure that the addresses are properly
aligned. PA-RISC 1.1 enforces strict alignment requirements on data accesses.
Thus, double- single-word load must reference a word-aligned address, and a double-
word example, must reference a double-word-aligned address. For example, take two
single-precision vectors:

REAL*4A(4) ,B (4)

The elements of arrays A and B might be laid out in memory as shown in Fig. 1 .

Suppose we want to copy vector A to vector B. If we use single-word loads and
stores, each element will be accessed by a separate load or store. There is no

Fig. 1. double-word- arrangement of vectors A and B in memory. All the elements are double-word-
aligned.

June 1992 Hewlett-Packard Journal 29

© Copr. 1949-1998 Hewlett-Packard Co.

Double Word

Double Word

Fig. the are arrangement of vectors A and B in memory when the some of the elements are
not double-word-aligned.

problem with alignment because each element is aligned on a word boundary. This
method requires four loads and four stores.

Since vectors A and B are both double-word-aligned (the starting address is a
multiple of eight), we can use double-word loads and stores, cutting the number
of memory accesses in half. The first load will load A(1) and A(2) into a double
floating-point register. The first store will store that register into B(1) and B{2|.
This method requires only two loads and two stores.

In Fig. not we have a case in which the starting addresses of the vectors are not
double-word-aligned. In this case only elements 2 and 3 can be copied using
double-word loads and stores. The first and last elements must use single-word
accesses because of alignment restrictions.

Special code is required to handle all the possible alignment combinations for the
different vectors in a library routine. For example, there are 16 different possible
alignment combinations for vec_Smult_sub_vector.

We reduced the amount of code needed to handle all these combinations by per
forming a single iteration for some combinations, then jumping to the code for the
opposite combination. For example, if vectors 2 and 4 are double-word aligned and
vectors 1 and 3 are not, we can perform the operation on one element, which
effectively inverts the alignment combination. Vectors 1 and 3 will now be double-
word code and vectors 2 and 4 will not. We can then go to the code for the
vector combination unaligned-aligned-unaligned-aligned, which takes advantage
of double-word load and store instructions for that particular alignment combination.

We also code advantage of commutative operations to reduce the amount of code
we had to write. Again, for vec_$mult_sub_vector, the multiplication is commuta
tive, the we can swap the pointers to vectors 1 and 2, then jump to the code for the
commuted combination.

Using these techniques, we reduced the number of different combinations that had
to be six. for the routine vec_$mult_sub_vector from 1 6 to six.

Instruction Scheduling
The instruction scheduling for the vector library is tuned for this particular imple
mentation of PA-RISC 1.1. The characteristics of other implementations could very
well be different.

There are requirements for minimum distance between certain types of instruc
tions to avoid interlocks. To make the most efficient use of the procesor, the
instruction sequences for independent operations can be interleaved. This is
known page software pipelining, which is discussed in the article on page 39.

Another aspect of this issue is that the transformed
FORTRAN source code is often structured differently
from what a human programmer would write, exposing
the FORTRAN compiler to code it had not seen before.
The result is that we uncovered (and fixed) several minor
compiler defects both in the FORTRAN compiler front
end and the optimizer.

In Pursuit of HP Quality
Early in the HP-UX 8.05 release cycle, as potential perfor
mance benefits were identified, a commitment was made
to use the preprocessor and to deliver specific perfor
mance on key benchmarks and applications. The subse
quent development effort involved a geographically
distributed HP team working together with the third
party â€” all on a very tight schedule. In this situation, close
attention to the quality assurance process was required.
Three general areas of quality were addressed:

â€¢ Performance testing for both industry benchmarks and
general applications

â€¢ Correctness of preprocessor source transformations
â€¢ Preprocessor acceptance of the HP FORTRAN dialect.

To address these quality issues, the following steps were
taken:

â€¢ Identification of a test space to use for testing purposes
â€¢ Initiation of a beta test program
â€¢ Choice of a method for tracking and prioritizing outstand

ing problems
â€¢ Development of a regular testing and feedback cycle.

Identifying the Test Space. For performance related testing,
standard benchmarks such as the SPEC benchmark
programs and Linpack were used. Since we had com
mitted to specific performance numbers with these
benchmarks, it was crucial to monitor their progress. As
the release progressed, performance related issues also
came to our attention through runs of an internally
maintained application test suite as well as from HP
factory support personnel and from a beta program.

While some of the performance tests did help test the
correctness and dialect issues of quality, we wanted to
identify a set of programs or program fragments specifi
cally for these purposes. White box testing was provided
by the third party. For HP's testing process, we viewed
the preprocessor as a black box, concentrating on its
functionality to the FORTRAN user. To this end, we chose
to concentrate on the same test bed that we use for
quality assurance on the Series 700 FORTRAN compiler.
In addition, to get further exposure to typical FORTRAN
programs, we also developed a beta program.

This choice of a testing space did not test the complete
functionality of the preprocessor. For example, procedure
Mining was performed when the preprocessor was run
on our test suites, but for this release we did not develop
a set of tests specifically to test the inlining capabilities.

Another issue in choosing the test space was to identify
the command-line option combinations to test. In the case
of the preprocessor, over 30 individual options are sup
ported, and when the different option combinations were
considered, the complete set of option configurations
became unreasonably large to test fully under our tight
development schedule.

To handle the option situation, we concentrated on
configurations most likely to be used. In most situations,
we anticipated that the preprocessor would be invoked
through the FORTRAN compiler driver by using one of

30 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

the +OP options. These five options (+OPO ... +OP4) were
designed to be most useful for general use, and they
exercise many of the main preprocessor features. For this
reason, we restricted the majority of our test runs to
using the +OP options.

Although not initially considered for testing purposes, the
examples given in the FORTRAN manual also turned out
to be important for tracking the quality of the preproces
sor. Many tests were written for the manual to help
explain each of the new features provided by the prepro
cessor. Running these tests during the release uncovered
a few regressions (defects) in the preprocessor. These
regressions were fixed, adding to the overall quality of
the product.

Beta Program. An important source of quality issues was
the beta program initiated specifically to gain additional
exposure for the preprocessor. Since this was a new
component of the FORTRAN compile path, it was espe
cially important to expose the preprocessor to existing
FORTRAN applications.

The results of the beta program were quite successful.
Since some of the sites involved applications heavily
reliant on the HP FORTRAN dialect, we uncovered a
number of preprocessor problems concerning dialect
acceptance. Performance issues were also raised from the
beta program. In some cases significant performance
gains were reported; in others, less success was achieved.

As problems reported were fixed, updated versions of the
preprocessor were provided to the beta sites. In this
manner, the beta program provided another source of
improvement and regression tracking.

Problem Tracking. With the tight schedule and multisite
team, it was important to have a mechanism for tracking
problems that arose with the preprocessor. The purpose
was to make sure that all problems were properly re
corded, to have a common repository for problems, and
to have a basis for prioritizing the outstanding problems.

Although many people could submit problems, a single
team member was responsible for monitoring a list that
described reported preprocessor problems and closing out
problems when they were resolved. As part of this
process, a test suite was developed that contained exam
ple code from each of the submitted problems. This test
suite provided us with a quick method of checking
recurrence of old problems as development progressed.

Since this list was used to prioritize preprocessor prob
lems, the team developed a common set of guidelines for
assigning priority levels to each submitted problem. For
example, any item that caused a significant performance
problem (e.g., slowdown on a key benchmark) would be
assigned a very high priority, while problems with an
infrequently used feature in HP FORTRAN dialect process
ing were given a lower priority.

During team conferences, the problem list was a regular
agenda item. The team would review all outstanding
problems, adjusting priority levels as considered appropri
ate. In this manner, we had an ongoing list representing
the problems that needed to be fixed in the preprocessor.

Testing and the Feedback Cycle. As part of any quality
process, it is important to develop a regular set of
activities to monitor impro%-ements and regressions in the
product. As the preprocessor release entered its later
stages, we developed a regular weekly cycle that coin
cided with the program-wide integration cycle. The
activities we performed during each week of this period
included:

â€¢ Review of the list of outstanding problems, identifying the
next items to be addressed by the third party.

â€¢ Weekly phone conference with the third party. These
meetings provided close tracking of the problems fixed
the previous week as well as a discussion of any new
problems to be fixed the following week.

â€¢ A regression test of the latest version of the preprocessor.
Each week we received a new version of the preproces
sor containing the latest fixes. The testing involved run
ning our test suites and checking for any regressions.

â€¢ The resolution of any fixed problems and updating the
outstanding problem list.

â€¢ A decision about allowing the latest version of the pre
processor to be submitted to system integration. Based
on the results of test runs, the new preprocessor would
be submitted if it was superior to the previous version.

The fast, regular feedback of this process towards the
end of the product release cycle maximized the quality of
the product within very tight delivery constraints.

Performance Analysis
The FORTRAN optimizing preprocessor has had a signifi
cant impact on the performance of FORTRAN applica
tions. While the performance improvement seems to vary
significantly based on the specifics of the code, we have
seen more than a 10 x speedup in some programs be
cause of improvements in data locality, which significantly
reduces cache miss rates. Array manipulation also tends
to show improvement.

The Livermore Loops are a collection of kernel loops
collected by the staff at Argonne Laboratories, and are
frequently used as benchmarks for scientific calculations.
Table I shows the performance results for these loops
executing after being compiled with the optimizing
preprocessor.

The improvements in loops 3, 6, 11, 12, and 18 were
because of vectorization. Loop 13 benefited from loop
splitting, while loop 14 benefited from loop merging. Loop
15 gained from transforming "spaghetti code" to struc
tured code. Loop 21 gained significantly from recognition
of a matrix multiply and a call to a tuned and blocked
matrix multiply routine. Note that because of either the
options selected or the heuristics of the optimizer, loops
5 and 8 degraded in performance.

MatrixSOO is a well-known benchmark in the SPEC bench
mark suite. The code in this routine performs eight
matrix multiplies on two 300-by-300 matrices. In this case,
the application of blocking to the matrix multiply algo
rithm had a significant impact on the performance of the
benchmark. Table II compares the results of running the

June 1992 Hewlett-Packard Journal 31
© Copr. 1949-1998 Hewlett-Packard Co.

MatrixSOO benchmark with and without the optimizing
preprocessor.

Note the significant reduction in cache miss rate because
of the blocking techniques. This technique is applicable to
a number of multidimensional matrix algorithms beyond
matrix multiply.

Besides benchmarks, we have seen some significant
performance improvements in other applications when
the preprocessor is used. Although we had one case in
which there was a 211% improvement, most FORTRAN
programs have exhibited performance improvements in
the 15% to 20% range. Also, as in the Livermore Loops
benchmarks, we have found a few cases in which there
was either no improvement in performance, or a degra
dation in performance. We continue to investigate these
cases.

Table I
Performance of Livermore Loops

Using the Preprocessor

Table II
Performance of MatrixSOO Benchmark

Acknowledgments
Kathy Harris, Maureen Hoffert, Manoj Dadoo, Don
Gourley, and David Boundy all had significant roles in
turning the product into reality as did managers Peter
Morris, Marl Godfrey, Jeff Rees, and Mike Kolesar. Norm
Rubin was a principal engineer and Joyce Spencer was
the project manager for HP Concurrent FORTRAN, the
sister product currently shipping on the Apollo DN 10000.
Both were an important influence on pursuing this
technology for the Series 700. We are also indebted to
the many HP field support engineers and factory support
personnel who helped improve the quality of the prepro
cessor, especially Bob Montgomery and Felix Krasovec.
Kuck and Associates Inc. has invested many engineer
years in FORTRAN preprocessor technology. HP is
pleased to be able to provide an industry leading FOR
TRAN product through the combination of Kuck and
Associates' preprocessor and HP's FORTRAN compiler
technology.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3. POSIX 1 003. 1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

32 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Register Reassociation in PA-RISC
Compilers
Optimization techniques added to PA-RISC compilers result in the use of
fewer machine instructions to handle program loops.

by Vatsa Santhanam

Register reassociation is a code improving transformation
that is applicable to program loops. The basic idea is to
rearrange expressions found within loops to increase
optimization opportunities, while preserving the results
computed. In particular, register reassociation can expose
loop-invariant partial expressions in which intermediate
results can be computed outside the loop body and
reused within the loop. For instance, suppose the follow
ing expression is computed within a loop:

(l oop_va r ian t + l oop_cons tan t_1) + l oop_cons tan t_2

where loop_variant is a loop-varying quantity, and
loop_constant_1 and loop_constant_2 are loop-invariant quanti
ties (e.g., literal constants or variables with no definitions
within a loop). In the form given above, the entire expres
sion has to be computed within the loop. However, if this
expression is reassociated as:

(l oop_cons tan t_1 + l oop_cons tan t_2 | + l oop_va r i an t

the sum of the two loop-invariant terms can be computed
outside the loop and added to the loop-varying quantity
within the loop. This transformation effectively eliminates
an add operation from the body of the loop. Given that
the execution time of applications can be dominated by
code executed within loops, reassociating expressions in
the manner illustrated above can have a very favorable
performance impact.

The term "register reassociation" is used to describe this
type of optimization because the expressions that are
transformed typically involve integer values maintained in
registers. The transformation exploits not just the associa
tive laws of arithmetic but also the distributive and
commutative laws. Register reassociation has also been
described in the literature as subscript commutation.1

Opportunities to apply register reassociation occur fre
quently in code that computes the effective address of
multidimensional array elements that are accessed within
loops. For example, consider the following FORTRAN
code fragment, which initializes a three-dimensional array:

DO 100 i = 1 , DIM1
DO 100 j = 1 , D IM2

DO 100 k = 1 , D IM3
1 0 0 A (i , j , k) = 0 . 0

Arrays in FORTRAN are stored in column-major order,
and by default, indexes for each array dimension start at
one. Fig. 1 illustrates how array A would be stored in

Increasing
Memory

Addresses

AIDIM1, DIM2.il

AIDIM1.DIM2.2I

Fig. 1. Column-major storage layout for array A.

memory. Given such a storage layout, the address of the
array element A(i, j, k) is given by:

A D D R (A (1 , 1 , 1)) + (k - 1) x D I M 2 x D I M I x e l e m e n t _ s i z e +
(Â ¡ - 1) x D I M 1 x e l e m e n t _ s i z e +
(Â ¡ -1) x e lement_s ize

where ADDR (A(1,1,1)) is the base address of the first ele
ment of array A, DIMn is the size of the nth dimension,
and element_size is the size of each array element. Since
the individual array dimensions are often simple integer
constants, a compiler might generate code to evaluate the
above expression as follows:

[((((k x D I M 2) + j) x D I M 1) + i) - |
e lement_size + (ADDR (A(1,1,1) |

D I M 2) x D I M 1 + 1)] x
(1)

June 1992 Hewlett-Packard Journal 33

© Copr. 1949-1998 Hewlett-Packard Co.

Since the variable k assumes a different value for each
iteration of the innermost loop in the above example, the
entire expression is loop-variant.

With suitable reassociation, the address computation can
be expressed as:

A D D R | A (i , j , k) | = a x k + p (2)

where a and p are loop-invariant values that can be
computed outside the loop, effectively eliminating some
code from the innermost loop. From expression 1:

a = D I M 1 x D I M 2 x e l e m e n t _ s i z e

i = [(j x D I M 1 + i) - ((1 + D I M 2) x D I M 1 +
e lement_s ize

and

The simplified expression (a x k + p) evaluates a linear
arithmetic progression through each iteration of the
innermost loop. This exposes an opportunity for another
closely related loop optimization known as strength
reduction.2'3 The basic idea behind this optimization is to
maintain a separate temporary variable that tracks the
values of the arithmetic progression. By incrementing the
temporary variable appropriately in each iteration, the
multiplication operation can be eliminated from the loop.
For our simple example, the temporary variable would be
initialized to a + p outside the innermost loop and in
cremented by a each time through the loop. This concept
is illustrated in Fig. 2.

Note that this can be particularly beneficial for an archi
tecture such as PA-RISC in which integer multiplication is
usually translated into a sequence of one or more instruc
tions possibly involving a millicode library call, t

On some architectures, such as PA-RISC and the IBM
RISC System/6000, register reassociation and strength
reduction can be taken one step further. In particular, if
the target architecture has an autoincrement addressing
mode, incrementing the temporary variable that maintains
the arithmetic progression can be accomplished automati
cally as a side effect of a memory reference. Through this
additional transformation, array references in loops can
essentially be converted into equivalent, but cheaper,
autoincrementing pointer dereferences.

An Example
To clarify the concepts discussed so far, let us compare
the PA-RISC assembly code for the above example with
and without register reassociation. Assume that the
source code fragment for the example is contained in a
subroutine in which the array A is a formal parameter
declared as:

R E A L * 4 A { 1 0 , 2 0 , 3 0)

The loop limits DIM1, DIM2, and DIM3 take on the constant
values 10, 20, and 30 respectively. The following assembly
code was produced by the HP 9000 Series 800 HP-UX
8.0 FORTRAN compiler at level 2 optimization with loop
unrolling and reassociation completely disabled.tt

1 : L D I 1 , % r 3 1 i < - 1
2 : F C P Y . S G L % f r O L , % f r 4 L f r 4 < - 0 . 0
3 : L D I 2 0 , % r 2 4 r 2 4 < - 2 0
4 : L D I 6 0 0 , % r 2 9 r 2 9 < - 6 0 0
5 : i _ loop_s ta r t
6 : L D I 1 , % r 2 3
7 : j _ loop_s ta r t
8 . L D I 2 0 , % r 2 5
9 : k_ loop_s ta r t

1 0 : A D D % r 2 5 , % r 2 3 , % r 1 9
11: SH2ADD %r19,%r19,%r20
12: SH1ADD %r20,%r31,%r21
1 3 : L D O - 2 1 1 (% r 2 1) , % r 2 2
1 4 : L D O 2 0 (% r 2 5) , % r 2 5
15: COMB, <= %r25,%r29,k_loop_start

16: FSTWX.S %fr4L,%r22(0,%r26)
1 7 : L D O 1 (% r 2 3) , % r 2 3
18: COMB,<=,N %r23,%r24,k_loop_start

1 9 : L D I 2 0 , % r 2 5
2 0 : L D O 1 (% r 3 1) , % r 3 1
21: COMIBF,<,N 10,%r31, j_ loop_star t
2 2 : L D I 1 , % r 2 3
2 3 : B V , N % r O (% r 2)

20

t < k * 2 0 > < - 2 0

r 1 9 < - t < k * 2 0 > + j
r 2 0 < - r 1 9 * 5
r21 <- r20*2 + Â¡
r 2 2 < - r 2 1 - 2 1 1
t < k * 2 0 > < - t < k * 2 0 >
i f t<k*20> <= r29
go to k_loop_start
* [r22*4 + ADDR(A(1 ,1 ,1))] < - f r4
j < - j + 1
Â¡f j <= r24
go to k_ loop_s ta r t

i < - i + 1
i f i <= 10 go to j _ loop_s ta r t

return

DO 100 k=1.DIM3

(D I M 3 - 1) x a (n - l) x a

Pk=n where 2<n<DIM3

Pk=DIM3

Fig. the An illustration of using a temporary variable P to track the
address expression ak+p to stride through array A.

t R e m o v i n g m u l t i p l i c a t i o n s f r o m l o o p s i s b e n e f i c i a l e v e n o n v e r s i o n 1 . 1 o f P A - R I S C w h i c h

d e f i n e s f i l e - f i x e d - p o i n t m u l t i p l y i n s t r u c t i o n t h a t o p e r a t e s o n t h e f l o a t i n g - p o i n t r e g i s t e r f i l e -

T o e x p l o i t t h i s i n s t r u c t i o n , i t m a y b e n e c e s s a r y t o t r a n s f e r d a t a v a l u e s f r o m g e n e r a l r e g

i s t e r s t o f l o a t i n g - p o i n t r e g i s t e r s a n d t h e n b a c k a g a i n .

t t T h e S e r i e s 8 0 0 H P - U X 8 . 0 F O R T R A N c o m p i l e r d o e s n o t i n c l u d e t h e c o d e g e n e r a t i o n a n d

o p t i m i z a t i o n e n h a n c e m e n t s i m p l e m e n t e d f o r t h e S e r i e s 7 0 0 F O R T R A N c o m p i l e r . E x a m i n

i n g t h e c o d e p r o d u c e d b y t h e S e r i e s 8 0 0 F O R T R A N c o m p i l e r i n s t e a d o f t h e S e r i e s 7 0 0

F O R T R A N c o m p i l e r h e l p s b e t t e r i s o l a t e a n d h i g h l i g h t t h e f u l l i m p a c t o f r e g i s t e r

r e a s s o c i a t i o n .

34 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The labels Â¡Joop_start, j_loop_start, and k_loop_start that mark
a start of a loop body and the annotations are not
generated by the compiler, but were added for clarity.

The following sections describe the optimizations per
formed in the above code segment.

Constant Folding. Given that DIM2 = 20 and DIM1 = 10. the
partial expression - (U + DIM2) x DIM1 + 1) has been eva
luated to be -211 at compile time.

Loop Invariants. Loop-invariant code motion has positioned
instructions that compute loop-invariant values as far out
of the nest of loops as possible. For instance, the defini
tion of the floating-point value 0.0 has been moved from
the innermost loop to outside the body of all three loops
where it will be executed exactly once (line 2). (On
PA-RISC systems, when floating-point register 0 is used as
a source operand in an instruction other than a floating
point store, its value is defined to be 0.0.)

Index Shifting. The innermost k-loop (lines 10 to 16)
contains code that computes the partial expression ((((kx
DIM2) + j) x DIM1) + Â¡) whose value is added to -211 and
stored in register 22 (line 13) before being used in the
instruction that stores 0.0 in the array element. Register
22 is used as the index register; it is scaled by four (to
achieve the multiplication by the element size) and then
added to base register 26, which contains ADDR (A(1,1,1)).
These operations produce the effective address for the
store instruction.

The compiler has strength-reduced the multiplication of k
by DIM2 in line 14. A temporary variable that tracks the
value of k x 20 (referred to as t<k*20> in the annotations)
has been assigned to register 25 in line 8. This temporary
variable is used in the calculation of the address of A(i,j,k).
By incrementing the temporary variable by 20 on each
iteration of the innermost loop, the multiplication of k by
20 is rendered useless, and therefore removed.

Linear Function Test Replacement. After strength-reducing k
x 20, the only other real use of the variable k is to
check for the loop termination condition (line 15).
Through an optimization known as linear function test

replacement,2'3 the use of the variable k in the innermost
loop termination check is replaced by a comparison of
the temporary variable t<k*20> against 600, which is the
value of DIMS scaled by a factor of 20. This optimization
makes the variable k superfluous, thus enabling the
compiler to eliminate the instructions that initialize and
increment its value.

Branch Scheduling. A final point to note is that the loop
termination checks for the i-loop and j-loop are per
formed using the nullifying backward conditional branch
instructions in lines 18 and 21. In PA-RISC, the semantics
of backward nullifying conditional branches are that the
delay slot instruction (the one immediately following the
branch instruction) is executed only if the branch is
taken and suppressed otherwise. This nullification feature
allows the compiler to schedule the original target of a
backward conditional branch into its delay slot and
redirect the branch to the instruction following the
original target.

In contrast to the i-loop and j-loop, the innermost loop
termination check is a non-nullifying backward condition
al branch whose delay slot instruction is always executed,
regardless of whether the branch is taken.

Applying Reassociatlon
The most important point to note about the assembly
code given above is that the innermost loop, where much
of the execution time will be spent, consists of the seven
instructions in Lines 10 to 16. By applying register reas-
sociation to the innermost loop, and making use of the
base-register modification feature available on certain
PA-RISC load and store instructions, the innermost loop
can be reduced to three instructions, t

The following code fragment shows the three instructions
for the innermost loop. Registers r!9 to r22 and fr4 are
assumed to be initialized with values indicated by the
annotations.

; I n i t i a l i ze genera l reg is te rs r19 th rough r22 and f l oa t i ng -po in t
; reg is ter f r4

; f r4 < - 0 .0
; r19 < - 1
; r20 < - 30
; r21 <-ADDR(A(i , j ,1Â»
; r22 <- 800

; The t h ree i nne rmos t l oop i ns t ruc t i ons
k_ loop_star t

L D O 1 (% r 1 9) , % r 1 9 ; k < - k + 1
COMB,<= %r19 ,%r20 ,k_ loop_s ta r t ; i f k <= r20 go to k_ loop_s ta r t
F S T W X , M % f r 4 L , % r 2 2 (0 , % r 2 1) ; * [r 2 1] < - f r 4 , r 2 1 < - r 2 1 + r 2 2

This assembly code strides through the the elements of
array A with a compiler-generated temporary pointer
variable that is maintained in register 21. This register
pointer variable is initialized to the address of A(i,j,1)
before entry to the innermost loop and postincremented
by 800 bytes after the value 0.0 is stored in A(i,j,k).

This code also reflects the real intent of the initialization
loop, which is to initialize the array A by striding through
the elements in row-major order. It does this in fewer
instructions by exploiting PA-RISC's base-register modifi
cation feature. The equivalent semantics for the above
inner-loop code expressed in C syntax is:

fo r (p = &a(i , j ,1) , k = 1 ; k <= 30; k++)

*p++ = 0 .0 ;

The code sequence for the k-loop in the assembly code
fragment can be improved even further. Note that as a
result of register reassociation, the loop variable k, which
is maintained in register 19, is now only used to control
the iteration count of the loop. Using the linear function
test replacement optimization mentioned earlier, the loop
variable can be eliminated. Specifically, the loop termina
tion check in which the variable k in register 19 is
compared against the value 30 in register 20 can be
replaced by an equivalent comparison of the compiler-
generated temporary pointer variable (register 21) against

tBase-register modification of loads and stores effectively provides the autoincrement
addressing mode described earlier.

June 1992 Hewlett-Packard Journal 35

© Copr. 1949-1998 Hewlett-Packard Co.

the address of the array element A(i, j,30). This can reduce
the innermost loop to just the following two instructions.

F S T W X . M % f r 4 L , % r 2 2 (0 , % r 2 1) < - f r 4 , r 2 1 < - r 2 1 + r 2 2
k _ l o o p _ s t a r t t w o i n n e r m o s t l o o p i n s t r u c t i o n s

COMB,<=,N %r21,%r20,kjoop_start; l f r21 <= ADDR (A(i, j ,30)) go to

F S T W X . M % f r 4 L , % r 2 2 (0 , % r 2 1) < - f r 4 , r 2 1 < - r 2 U r 2 2

Register r20 would have to be initialized to the address of
A(i, Â¡,30).

On PA-RISC machines, if a loop variable is only needed
to control the loop iteration count, the loop variable can
often be eliminated using a simpler technique. Specifically,
the PA-RISC instruction set includes the ADDB (add and
branch) and ADD I B (add immediate and branch) condition
al branch instructions. These instructions first add a
register or an immediate value to another register value
and then compare the result against zero to determine the
branch condition.

If a loop variable is incremented by the same amount on
each iteration of the loop and if it is needed solely to
check the loop termination condition, the instructions that
increment the loop variable can be eliminated from the
body of the loop by replacing the loop termination check
with an ADDB or ADDIB instruction using an appropriate
increment value and a suitably initialized general-purpose
count register.

For our small example, the innermost loop can be trans
formed into a two-instruction countdown loop using the
ADDIB instruction as shown in the following code.

L D I - 2 9 , % r 1 9
k_ loop_s ta r t

ADDIB ,<= 1 ,%M9, k_ loop_s ta r t

FSTWX.M %fr4L,%r22(0,%r21)

; i n i t i a l i ze count reg is te r

; r 19 < - r19 + 1 , I f r 19 <= 0 go to
; k_ loop_s ta r t
 < - f r 4 , r 2 1 < - r 2 2 + r 2 1

The j-loop and i-loop of our example can be similarly
transformed. The increment and branch facility is not
unique to PA-RISC, but unlike some other architectures,
the general-purpose count register is not a dedicated
register, allowing multiple loops in a nest of loops to be
transformed conveniently.

Note that even though reassociation has helped reduce
the innermost loop from seven instructions to two
instructions, one cannot directly extrapolate from this a
commensurate improvement in the run-time performance
of this code fragment. In particular, the execution time
for this example can be dominated by memory subsystem
overhead (e.g., cache miss penalties) because of poor
data locality associated with data assignments to array A.

Compiler Implementation
Register reassociation and other ideas presented in this
article were described in the literature several years
ago.3-4-5-6 Compilers that perform this optimization include
the DN 10000 HP Apollo compilers and the IBM compilers
for the System 370 and RISC System/6000 architectures.5-6-7

Strength reduction and linear function test replacement
have been implemented in PA-RISC compilers from their
very inception. The implementation of these optimizations
is closely based on the algorithm described by Allen
Cocke, and Kennedy.2 Register reassociation, on the other
hand, has been implemented in the PA-RISC compilers
very recently. The first implementation was added to the
HP 9000 Series 700 compilers in the 8.05 release of the
HP-UX operating system. Register reassociation is enabled
through the use of the +OS compiler option, which is
supported by both the FORTRAN and C compilers in
release 8.05 of the HP-UX operating system.

The implementation of register reassociation offered in
HP-UX 8.05 is somewhat limited in scope. Register
reassociation is performed only on address expressions
found in innermost straight-line loops. The scope of
register reassociation has been greatly extended in the
compilers available with release 8.3 of the HP-UX operat
ing system, which runs on the Series 700 PA-RISC
workstations. Register reassociation, which is now per
formed by default in the C, C++, FORTRAN, and Pascal
compilers at level 2 optimization, is attempted for all
loops (with or without internal control flow) and not
limited merely to straight-line innermost loops. Further
more, in close conjunction with register reassociation,
these compilers make aggressive use of the PA-RISC
ADDIB and ADDB instructions and the base-register modifi
cation feature of load and store instructions to eliminate
additional instructions from loops as described earlier.

Using the example given earlier, the following code is
generated by the Series 700 HP-UX 8.3 FORTRAN com
piler at optimization level 2 (without specifying the +OP
FORTRAN preprocessor option).

This code shows that register reassociation and strength
reduction have been applied to all three loop nests.

36 June 1992 Hewlett-Packard Journal
© Copr. 1949-1998 Hewlett-Packard Co.

k-Loop Optimization. For the k-loop. a compiler-generated
temporary pointer variable Pijk. which is maintained in
register 29. is used to track the address of the array
element A(i,j,k). This temporary variable is incremented by
800 through base-register modification (line 12) instead of
the original loop variable k incrementing by one. The 800
comes from DIM1 x DIM2 x element_size (10 x 20 x 4),
which represents the invariant quantity a in expression 2.

Before entering the k-loop, Pijk has to be initialized to the
address of A(i,j,1) because the variable k was originally
initialized to one before entering the k-loop. For this
example, the address of A(i,j,1) can be computed as:

[(((1 x 2 0) + j) x 1 0) + Â ¡) - ((1 + 2 0) x 1 0 + 1)] x 4 +
A D O R (A (1 , 1 , 1) |

which can be simplified to

4 0 X j + ((4 x i) - 4 4 + A D D R (A (1 , 1 , 1)) (.

which for the j-loop is a linear function of the loop
variable j of the form:

where:

a = 40

and

p = ((4 x i) - 4 4 + A D D R (A (1 , 1 , 1))) .

j-Loop Optimization. To strength-reduce the address expres
sion for A(i,j,1), the compiler has created a temporary
variable Fiji, which is maintained in register 24. Wherever
the original loop variable j was incremented by one. this
temporary variable is incremented by 40 (Une 14). Before
entering the j-loop, Pij1 has to be initialized to the address
of A(i,1,1) since the variable j was originally initialized to
one before entering the j-loop. For this example, the
address of A(i,1,1) can be computed as

[(((1 x 2 0) + 1) x 1 0) t i) - ((1 + 2 0) x 1 0 + 1)] x 4 +
ADDR(A(1,1,D)

which can be simplified to

4 x Â¡

which for the i-loop is a linear function of the loop-
varying quantity i of the form:

ai + (3

where:

a = 4

and

Execution
Sequence

i=1,j=20,k=1...30

Array Element Addresses Contained in Temporary Variables

P i l l P i j l P i j k

A(1.1,1] ,A(1.1,2) . . . AI1.1.30I

AI1,2,1I... Â«1.2,301

AH ,20 ,1) . A i l , 20 ,30)

Â«2,1,11... Â«2,1,301

A(2,2 ,1) . . .A(2,2 .30)

AI2.20.1) ... A(2,20,30I

i=10,j=1.k=1...30

Â¡=10,j=2,k=1...30

Â¡=10.j=20.k=1...30

In i t ia l ly P i1 1 = F i j i = P i jk = ADDR(A|1 ,1 .1) |

Â® ADDR (Â«1,1,211 = ADDR(Â«1,1,1)| + BOO Bytes

Â © A D O R (A I U D I = A D D R (A (1 , 1 , 1 |) + 4 0 B y t e s

CD AODR (A(2,1.1| | = ADDR(A(1,1,1)) + 4 Bytes

A|10,2 .1] . . .A(10,2 ,30)

A(10,20.1I... AOO.20.301

Fig. 3. The array element address
es contained in each of the tempo
rary variables during different
iterations of the i, j, and k loops
of the example code fragment.

June 1992 Hewlett-Packard Journal 37
© Copr. 1949-1998 Hewlett-Packard Co.

i-Loop Optimization. To strength-reduce the address expres
sion for A(i,1,1), the compiler has created a temporary
variable PÃ11, which is maintained in register 26. Wherever
the original loop variable i was incremented by one, this
temporary variable is incremented by four (line 16).
Before entering the Hoop, Pill has to be initialized to the
address of A(1,1,1) since the variable i was originally
initialized to one before entering the i-loop.

The address of A(1,1,1) is passed as a formal parameter to
the subroutine containing our code fragment since by
default, parameters are passed by reference in FORTRAN
(which implies that the first argument to our subroutine
is the address of the very first element of array A). On
PA-RISC machines, the first integer parameter is passed
by software convention in register 26, and since PÃ11 is
maintained in register 26, no explicit initialization of the
compiler-generated temporary Pill is needed.

The values assumed by all three compiler-generated
temporary variables during the execution of the example
code fragment given above are illustrated in Fig. 3. Note
that the elements of array A are initialized in row-major
order. Because FORTRAN arrays are stored in column-
major order, elements of the array are not accessed
contiguously. This could result in cache misses and thus
some performance degradation. For FORTRAN this
problem can be remedied by using the stride-1 inner loop
selection transformation described on page 26. This
transformation examines nested loops to determine if the
loops can be rearranged so that a different loop can run
as the inner loop.

Loop Termination. The compiler has managed to eliminate
all three of the original loop variables by replacing all
loop termination checks with equivalent ADDIB instructions
(lines 11, 13, and 15). Coupled with the use of base-
register modification, the innermost loop has been re
duced to just two instructions (compared to seven
instructions without reassociation).

In implementing register reassociation (and exploiting
architectural features such as base-register modification)
in a compiler, several factors need to be taken into
account. These include the number of extra machine
registers required by the transformed instruction se
quence, the number of instructions eliminated from the
loop, the number of instructions to be executed outside
the loop (which can be important if the loop iterates only
a few times), and the impact on instruction scheduling.
These and other heuristics are used by the HP-UX 8.3
compilers in determining whether and how to transform
integer address expressions found in loops.

Finally, the register reassociation phase of the compiler
shares information about innermost loops (particularly

base-register modification patterns) with the software
pipelining phase. The pipelining phase uses this informa
tion to facilitate the overlapped execution of multiple
iterations of these innermost loops (see "Software
Pipelining in PA-RISC Compilers" on page 39).

Conclusion
Register reassociation is a very effective optimization
technique and one that makes synergistic use of key
PA-RISC architectural features. For loop-intensive numeric
applications whose execution times are not dominated by
memory subsystem overhead, register reassociation can
improve run-time performance considerably, particularly
on hardware implementations with relatively low floating
point operation latencies.

Acknowledgments
I would like to thank members of HP's California Lan
guage Laboratory and HP's Massachusetts Language
Laboratory who contributed ideas to the design and
development of register reassociation optimization in
PA-RISC compilers. Special thanks go to Bob Gottlieb and
Richard Schooler for sharing their insights on register
reassociation and strength reduction algorithms used in
the Apollo DN 10000 compilers.

References
1. R.G. Scarborough and H.G. Kolsky, "Improved Optimization of
FORTRAN Object Programs," IBM Journal of Research and Devel

opment, Vol. 24, no. 6, November 1980, pp. 660-676.
2. F.E. Allen, J. Cocke, and K. Kennedy, "Reduction of Operator
Strength," Program Flow Analysis, Prentice Hall, 1981, pp. 79-101.
3. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Tech

niques, and Tools, Addison-Wesley Publishing Company, 1986,
pp. 643-648.
4. R. L. Sites, "The Compilation of Loop Induction Expressions,"
ACM Transactions on Programming Languages and Systems, Vol.
no. 1, 1977, pp. 50-57.
5. M. Auslander and M. Hopkins, "An Overview of the PL.8
Compiler," Proceedings of Ike SIGPLAN Symposium on Compiler

Construction, 1982, pp. 22-31.
6. J. Cocke and P. Markstein, "Measurement of Program Improve
ment Algorithms," Proceedings of the IFIP Congress, 1980,
pp. 221-228.
7. K. RISC et al, "Advanced Compiler Technology for the RISC
System/6000 Architecture," IBM RISC System/6000 Technology,

1990, pp. 154-161.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also complies with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

38 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Software Pipelining in PA-RISC
Compilers
The performance of programs with loops can be improved by having the
compiler generate code that overlaps instructions from multiple iterations
to exploit the available instruction-level parallelism.

by Sridhar Ramakrishnan

In the hardware environment, pipelining is the partitioning
of instructions into simpler computational steps that can
be executed independently in different functional units
like adders, multipliers, shifters, and so on. Software
pipelining is a technique that organizes instructions to
take advantage of the parallelism provided by indepen
dent functional units. This reorganization results in the
instructions of a loop being simultaneously overlapped
during execution â€” that is, new iterations are initiated
before the previous iteration completes.

The concept of software pipelining is illustrated in Fig. 1.
Fig. la shows the sequence of instructions that loads a
variable, adds a constant, and stores the result. We
assume that the machine supports a degree of parallelism
so that for multiple iterations of the instructions shown in
Fig. la, the instructions can be pipelined so that a new
iteration can begin every cycle as shown in Fig. Ib. Fig.
Ib also shows the parts of the diagram used to illustrate
a software pipeline. The prolog is the code necessary to
set up the steady-state condition of the loop. In steady
state one iteration is finishing every cycle. In our example
three iterations are in progress at the same time. The
epilog code finishes executing all the operations that

1 . L O A D

2 . A D D

3 . STORE

(a)

(b)

Fig. 1. A software pipeline example, (a) The sequence of instruc
tions in a one-stage pipeline (or one iteration), (b) Multiple itera
tions of the instructions shown in (a) pipelined over parallel
execution components.

were started in the steady state but have not yet
completed.

This example also illustrates the performance improve
ment that can be realized with software pipelining. In the
example in Fig. 1 the pipelined implementation completes
three iterations in five cycles. To complete the same
number of iterations without pipelining would have taken
nine cycles.

Loop Scheduling
As instructions proceed through the hardware pipeline in
a PA-RISC machine, a hardware feature called pipeline
interlock detects when an instruction needs a result that
has yet to be produced by some previously executing
instruction or functional unit. This situation results in a
pipeline stall. It is the job of the instruction scheduler in
the compiler to attempt to minimize such pipeline stalls
by reordering the instructions. The following example
shows how a pipeline stall can occur.

For the simple loop

f o r (I = 0 ; I < N ; I = I + 1) {
A [l] = A [l] + C * B [I]

the compiled code for this loop (using simple pseudo
instructions) might look like:

f o r (I = 0 ; I < N ; I = I + 1) {
L O A D B [l] , R 2
L O A D A [l] , R 1
MULT C , R2 , R3

ADD R1 , R3 , R4

S T O R E R 4 , A [l]

R3 = C*R2
; p ipe l ine s ta l l s R3 needed

R4 = R1 + R3
; p ipe l ine s ta l l s R4 needed

Assume that for this hypothetical machine the MULT, ADD,
STORE, and LOAD instructions take two cycles each. We
will also assume in this example and throughout this
paper that no memory access suffers a cache miss. Fig. 2
illustrates how the pipeline stalls when the ADD and STORE
instructions must delay execution until the values of R3
and R4 become available. Clearly, this becomes a serious

June 1992 Hewlett-Packard Journal 39

© Copr. 1949-1998 Hewlett-Packard Co.

Cycles

One
Iteration

5 0 = L O A D B [l]
E O - R ? C o n t a i n s B [1 1
5 1 = L O A D A [l]
E, = Ri Contains A[l]
52 = Begin MULT
E2 = R3 Contains Result
84 = Begin ADD
E4 = R4 Contains RI + R3
SG = Begin STORE
EG = R4 Contains A[IJ) Fig. 2. An illustration of a pipeline stall.

problem if the MULT and ADD instructions have multiple-
cycle latencies (as in floating-point operations). If we
ignore the costs associated with the branch instruction in
the loop, each iteration of the above loop would take
eight cycles. Put differently, the processor is stalled for
approximately 25% of the time (two cycles out of every
eight).

One way of avoiding the interlocks in this example is to
insert useful and independent operations after each of the
MULT and ADD instructions. For the example above there
are none. This problem can be solved by unrolling the
loop a certain number of times as follows:

f o r (I = 0 ; I < N ; I = I + 2) {
A [l] = A [l] + C * B [I]
A [l + 1] = A [l + l] + C * B [I + 1]

Notice that the loop increment is changed from one to
two to take into account the fact that each time the loop
is entered we now perform two iterations of the original
loop. There is additional compensation code that is not
shown here for the sake of simplicity.

The best schedule for this loop is as follows:

f o r I I = 0 ; I < N ; I = I + 2) {
L O A D B [l] , R 2
L O A D A [l] , R l
MULT C, R2, R3
LOAD B[l+1] , R6
A D D R l , R 3 , R 4
LOAD A[l+1] , R5
MULT C, R6, R7
STORE R4, A[l]
ADD R5 , R7 , R8

"In the sets of software pipelining, compensation code refers to the code that sets up the
steady Compensation and the code that executes after completion of the steady state. Compensation
code is discussed later in this article.

 R 8 n e e d e d
STORE R8, A[l+1]

}

If we assume perfect memory access on the LOADs and
STOREs, this schedule will execute two iterations every 11
cycles (again, ignoring the costs associated with the
branch instruction). Fig. 3 shows what happens during
each cycle for one iteration of the unrolled loop.

Despite the improvement made with loop unrolling, there
are three problems with this technique. First, and perhaps
most important is that the schedule derived for a single
iteration of an unrolled loop does not take into account
the sequence of instructions that appears at the beginning
of the next iteration. Second, we have a code size expan
sion that is proportional to the size of the original loop
and unroll factor. Third, the unroll factor is determined
arbitrarily. In our example, the choice of two for the
unroll factor was fortuitous since the resulting schedule
eliminated one stall. A larger unroll factor would have
generated more code than was necessary.

Software pipelining attempts to remedy some of the
drawbacks of loop unrolling. The following code is a
software pipelined version of the above example (again,
we do not show the compensation code):

f o r (I = 0 ; I < N ; I = I + 4) {
LOAD B| l+3] , R14
LOAD A[l+3] , R13
MULT C, RIO, R11
ADD R5 , R7 , R8

STORE R4, A[l]

s ta r t the fou r th i te ra t ion
s ta r t the fou r th i te ra t ion
R11 = C * B [l+2] (t h i rd i t e ra t i on)
A [l + 1] = A [l + l] + C * B l l + 1] (s e c o n d
i terat ion)
f in ish the f i rs t i te ra t ion .

I

Fig. 4 shows the pipeline diagram for this example.
Notice that in a single iteration of the pipelined loop, we
are performing operations from four different iterations.

40 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

However, each successive iteration of the pipelined loop
would destroy the values stored in the registers that are
needed three iterations later. On some machines, such as
the Cydra-5, this problem is solved by hardware register
renaming.1 In the PA-RISC compilers, this problem is
solved by unrolling the steady-state code u times, where
u is the number of iterations simultaneously in flight. In
Fig. 4, u is four, since there are four iterations executing
simultaneously during cycles 6 and 7.

Software pipelining is not without cost. First, like loop
unrolling, it has the code size expansion problem. Second,
there is an increased use of registers because each new
iteration uses new registers to store results. If this
increased register use cannot be met by the available

Steady State

i i = In i t ia t ion Interval (The Number of Cycles Before a New I terat ion
Can Be Started)

Fig. 4. A software pipeline diagram of the example code fragment.

Fig. 3. One iteration of the example
in Fig. 2 after the code is unrolled to
execute two iterations of the pre
vious code in one iteration.

supply of registers, the compiler is forced to generate
"spill" code, in which results are loaded and stored into
memory. The compiler tries to ensure that this does not
happen. Third, the PA-RISC compilers will not handle
loops that have control flow in them (for example, a loop
containing an Â¡f-then statement).

However, unlike unrolling in which the unrolling factor is
arbitrarily determined, the factor by which the steady-
state code is unrolled in software pipelining is determined
algorithmically (this will be explained in detail later). A
key advantage of software pipelining is that the instruc
tion pipeline filling and draining process occurs once
outside the loop during the prolog and epilog section of
the code, respectively. During this period, the loop does
not run with the maximum degree of overlap among the
iterations.

Pipeline Scheduling
To pipeline a loop consisting of N instructions, the
following questions must be answered:

â€¢ What is the order of the N instructions?
â€¢ How frequently (in cycles) should the new iteration be

initiated? (This quantity is called the initiation interval,
or Â¡i.)

Conventional scheduling techniques address just the first
question.

The goal of pipelining is to arrive at a minimum value of
ii because we would like to initiate iterations as frequent
ly as possible. This section will provide a brief discussion
about how the value of ii is determined in the PA-RISC
compilers. More information on this subject is provided in
reference 2.

The scheduling process is governed by two kinds of
constraints: resource constraints and precedence

June 1992 Hewlett-Packard Journal 41
© Copr. 1949-1998 Hewlett-Packard Co.

Resources
Floating-Point

Target Register

= Cycles when Resource Is Needed

Fig. 5. An example of a resource reservation table for the
FMPY instruction.

constraints. Resource constraints stem from the fact that
a given machine has a finite number of resources and the
resource requirements of a single iteration should not
exceed the available resources. If an instruction is sched
uled at cycle x, we know that the same instruction will
also execute at cycle x + ii, cycle x -t- (2 x ii), and so on
because iterations are initiated every ii cycles. For the
example shown in Fig. 4 ii is two.

In PA-RISC compilers we build a resource reservation
table associated with each instruction. For example, the
instruction:

F M P Y . D B L f r l , f r 2 , f r 3 ; f r 3 = f r l * f r 2

would have the resource reservation table shown in Fig. 5
for the HP 9000 Series 700 family of processors. The
reservation table defines the resources used by an
instruction for each cycle of execution. For example, the
FMPY instruction modeled in Fig. 5 requires the floating
point multiplier and the target register (fr3) during its
second cycle of execution. The length of the table is
dependent on the latency of the associated instruction.

Precedence constraints are constraints that arise because
of dependences in the program. For example, for the
instructions:

FMPY f r l , f r 2 , f r3
FADO fr3, f r4, f r2

there is a dependence from the FMPY instruction to the
FADO instruction. Also, there is a dependence that goes
from the FADD to the FMPY instruction because the FMPY
from the next iteration cannot start until the FADD from
the preceding iteration completes. Such dependencies can
be represented as a graph in which the nodes represent
machine instructions and the edges represent the direc
tion of dependence (see Fig. 6). The attributes on the
edges represent:
d: a delay value (in cycles) from node u to node v. This
value implies that to avoid a stall node v can start no
earlier than d cycles after node u starts executing.

â€¢ p: a value that represents the number of iterations before
the dependence surfaces (i.e., minimum iteration dis
tance). This is necessary because we are overlapping
multiple iterations. A dependence that exists in the same
iteration will have p = 0 (FADD depends on fr3 in Fig. 6).
Values of p are always positive because a node cannot
depend on a value from a future iteration. Edges that
have p = 0 are said to represent intra-iteration depen
dences, while nonzero p values represent inter-iteration
dependences.

Given an initiation interval, ii, and an edge with values
<p,d> between two nodes u and v, if the function S(x)
gives the cycle at which node x is scheduled with respect
to the start of each iteration, we can write:

S (v) - S (u) > d (u , v) - i i x p (u , v) (1)

If p(u, v) = 0 then:

S(v)-S(u)> d(u, v).

Equation 1 is depicted in Fig. 7.

The goal of scheduling the N instructions in the loop is to
arrive at the schedule function S and a value for ii. This
is done in the following steps:

1. Build a graph representing the precedence constraints
between the instructions in the loop and construct the
resource reservation table associated with each of the
nodes of the graph.

2. Determine the minimum value of the initiation interval,
(Mil) based on the resource requirements of the N
instructions in the loop. For example, if the floating-point
multiply unit is used for 10 cycles in an iteration, and
there is only one such functional unit, Mil can be no
smaller than 10 cycles.

3. Determine the recurrence minimum initiation interval
RMII. This value takes into account the cycles associated

Inter-Iteration

Intra-lteration

< p = 0 , d = 3 > < p = 1 . d = 3 >

Fig. 6. A dependency graph.

" T h e o n v a l u e s a r e s o m e t i m e s c a l l e d o m e g a v a l u e s i n t h e l i t e r a t u r e o n s o f t w a r e p i p e l i n i n g .

42 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

S(v)

p<u,Ã)̄ = 0
S(v)-S(u)> d(u.v)

(a)

Siui

cycles

(b)
S(v) + Â¡i x p - S(u) > d

S (v) - S (u) > d - i i x p

Sivl â€¢ u - p

Fig. 7. (a) A dependency graph showing the schedule function
when when (b) An illustration of the schedule function when
p(u,v)>0.

with inter-iteration dependencies. If c is such a cycle in a
graph then equation 1 becomes:

S(v) - S(u) > d(c) - Ã¼ x p(c)
d(c) - Ã¼ x p(c) < 0

which gives

ii> d(c)
P(c)

RMII is the maximum value of ii for all cycles c in a
graph.

4. Determine the minimum initiation interval min_ii, which
is given by: min_ii = max(MII, RMII).

5. Determine the maximum initiation interval, max_ii. This
is obtained by scheduling the loop without worrying
about the inter-iteration dependences. The length of such
a schedule gives max_ii. If we go back to our first
example, we can see that we had a schedule length of

* fx l equal the smal lest integer that is greater than or equal to x. For example, ("5/31

= 2and Ã/2 1 = 2 .

eight cycles. There is no advantage if we initiate new
iterations eight or more cycles apart. Therefore, eight
would be a proper upper bound for the initiation interval
in that example.

6. Determine the value of Ã¼ by iterating in the range
_ii, max_ii].

6.1 For each value, ii, in the range min_ii to max_ii do
the following:

6.2 Pick an unscheduled node x from the dependency
graph and attempt to schedule it by honoring its prece
dence and resource constraints. If it cannot be scheduled
within the current ii, increment Ã¼ and start over.

If the unscheduled node can be scheduled at cycle m, set
S(x) = m and update a global resource table with the
resources consumed by node x starting at cycle m. This
global resource table is maintained as a modulo ii
table â€” that is, the table wraps around.

6.3 If all the nodes have been scheduled, a schedule
assignment S(x) and a value for ii have been successfully
found and the algorithm is terminated.

Otherwise, go back to step 6.2.

Iterations

Stage

Prolog

Steady State
sc = 3

Epilog

LP = Length of Pipeline Schedule

i i = In i t ia t ion In terva l

Q = P i p e l i n e E n t r y

Q = P i p e l i n e E x i t

If LP = 70 Cycles and ii = 25 cycles

Then Stage Count (sc) = ÃTOl =3
1 25 1

Fig. 8. An illustration of the parts of a pipeline used to compute
the stage count.

June 1992 Hewlett-Packard Journal 43
© Copr. 1949-1998 Hewlett-Packard Co.

Original Loop Pipelined Loop

No

T < 2 x s c - 1

Pipel ine

Compensat ion ,
Code

LP

Fig. 9. Loop transformation to add compensation code to make
sure the pipeline loop executes the same number of times as the
original loop. Block B represents the original loop and the case in
which the loop does not execute enough times to reach the pipe
line.

There are three important points about this algorithm that
need to be made:

i The length of a pipeline schedule (LP) may well exceed
max_ii.

i Since we iterate up to max_ii, we are guaranteed that the
schedule for the steady state will be no worse than a con
ventional schedule for the loop.

i Step 6. 1 is difficult because it involves choosing the best
node to schedule given a set of nodes that may be avail
able and ready to be scheduled. The choice of a priority
function that balances considerations such as the im
plication for register pressure if this node were to be
scheduled at this cycle, the relationship of this node on
the critical path, and the critical resources used by this
node, is key and central to any successful scheduling
strategy.

Given LP and ii, we can now determine the stage count
(sc), or number of stages into which the computation in a
given iteration is partitioned (see Fig. 8). This is given by:

(2)

The stage count also gives us the number of times we
need to unroll the steady-state code. This is the unroll
factor mentioned earlier.

There are two observations about equation 2. First, to
guarantee execution of the prolog, steady-state, and epilog
portions of the code, there must be at least (2 x sc) - 1
iterations. Second, once the steady-state code is entered,
there must be at least sc iterations left. In the pipeline
diagram shown in Fig. 8 there must be at least five
iterations to get through the pipeline (to get from a to b),
and there must be three iterations left once the steady-
state portion of the pipeline is reached.

Several different ways are available for generating the
compensation code necessary to ensure the above condi
tions. For example, consider the following simple loop.

for (i = 1; i <= T; Â¡++) {

Here B represents some computation that does not
involve conditional statements. This loop is transformed
into:

T = n u m b e r o f t i m e s l o o p e x e c u t e s
Â ¡ f (T <2 * s c - 1) t hen
M = T - s c ;
goto jump_out ;
end i f ;

M = T - | s c - 1)

prolog;
steady_state;

epilog;

M = M + s c
jump_out :

for (i = 1; i <= M; Â¡++)

/ * A r e t h e r e e n o u g h i t e r a t i o n s
* t o e n t e r t h e p i p e l i n e ?
* N o . * /

/ * s c - 1 i t e r a t i o n s a r e c o m p l e t e d
* i n t h e p r o l o g a n d e p i l o g * /

/ * E a c h i t e r a t i o n o f t h e s t e a d y s t a t e
* d e c r e m e n t s M b y s c a n d t h e s t e a d y
* s t a t e t e r m i n a t e s w h e n M < 0 * /

/ * C o m p e n s a t i o n c o d e e x e c u t e s
* M t i m e s . I f M = 0 , t h i s
* l o o p d o e s n o t e x e c u t e * /

This transformation is shown in Fig. 9. The compensation
code in this code segment ensures that all the loop
iterations specified in the original code are executed. For
example, if T = 100 and sc = 3, the number of compensa
tion (or cleanup) iterations is 2. As illustrated in Fig. 10,
the prolog and epilog portions take care of 2 iterations,
the compensation code takes care of 2 iterations, and the
steady-state portion handles the remaining 96 iterations
(which means that the unrolled steady state executes 32
times).

A Compiled Example
Software pipelining is supported on the HP 9000 Series
700 and 800 systems via the -0 option. Currently, loops
that are small (have fewer than 100 instructions) and

44 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

have no control flow (no branch or call statements) are
considered for pipelining.

The following example was compiled by the PA-RISC
FORTRAN compiler running on the HP-UX 8.0 operating
system:

do 10 Â¡ = 1, 1000
z(i) = ((x(i) * yfÂ¡)Â¡

10 cont inue
+ a) * b

where x, y, z, a, and b are all double-precision quantities.
The compensation code is not shown in the following
example.

Without pipelining, the PA-RISC code generated is:

$00000015
F L D D X . S % 2 9 (0 , % 2 3) , % f r 4 ; f r 4 = x (i) ;
F L D D X , S % 2 9 (0 , % 2 6) , % f r 5 ; f r 5 = y (i) ;

; # # 1 c y c l e I n t e r l o c k
F M P Y . D B L % f r 4 , % f r 5 , % f r 6 ; f r 6 = x (i) * y (i) ;

; # # 2 c y c l e I n t e r l o c k
F A D D . D B L % f r 6 , % f r 2 2 , % f r 7 ; f r 7 = x (i) * y (i) + a ;

; f t 2 c y c l e I n t e r l o c k
F M P Y , D B L % f r 7 , % f r 2 3 , % f r 8 ; f r 8 = (x (i) * y (i) + a) * b

; # / 1 c y c l e I n t e r l o c k
F S T D X . S % f r 8 , % 2 9 (0 , % 2 5) ; s t o r e z (i)
L D O 1 (% 2 9) , % 2 9 ; i n c r e m e n t i
C O M B , < = , N % 2 9 , % 6 , $ 0 0 0 0 0 0 1 5 + 4
F L D D X . S % 2 9 (0 , % 2 3) , 1 0 4 ; r 1 0 4 = x (i + 1) ;

Prolog

Steady State
sc = 3

Epilog

T = 100 Iterations
Prolog + Epilog = 2 Iterations
Stage Count = 3
Compensat ion I terat ions C (T + 1 - sc) Mod sc = 2 (Only I f Pipel ine Executes)

Iterations Â¡n Steady State = (100 - (Prolog + Epilog + C))/sc
= (1 0 0 - 4) / 3 = 3 2

Fig. among An illustration of how loop iterations are divided among
the portions of a pipelined loop.

If we assume perfect memory accesses, each iteration
takes 14 cycles. Since there are six cycles of interlock.
the CPU is stalled 43% of the time.

Using the pipelining techniques of loop unrolling and
instruction scheduling to avoid pipeline stalls, the PA-
RISC code generated is:

LS9000
COPY %r26 ,%r20
L D O 1 (% r 2 6) , % r 2 6
FLDDX,S%r20(0,%r23),%fr11
FLDDX.S %r20(0,%r25),%fr12
F A D D . D B L % f r 5 , % f r 2 2 , % f r 1 3
F M P Y . D B L % f r 1 1 , % f r 1 2 , % f r 7
FSTDX.S %fr4,%r29(0,%r24)
F M P Y . D B L % f r 1 3 , % f r 2 3 , % f r 8
COPY %r26 ,%r29
L D O 1 (% r 2 6) , % r 2 6
FLDDX.S %r29(0,%r23),%fr9
FLDDX.S %r29(0,%r25),%fr10
F A D D . D B L % f r 7 , % f r 2 2 , % f r 1 4
F M P Y . D B L % f r 9 , % f r 1 0 , % f r 6
FSTDX.S %fr8,%r19(0,%r24)
F M P Y . D B L % f r 1 4 , % f r 2 3 , % f r 9
COPY %r26 ,%r19
L D O 1 (% r 2 6) , % r 2 6
FLDDX.S %r19(0,%r23),%fr8
FLDDX.S %r19(0,%r25),%fr11
F A D D . D B L % f r 6 , % f r 2 2 , % f r 7
F M P Y . D B L % f r 8 , % f r 1 1 , % f r 5
FSTDX.S %fr9,%r20(0,%r24)
F M P Y . D B L % f r 7 , % f r 2 3 , % f r 4
COMB,<=,N %r26,%r4,L$9000+4
COPY %r26 ,%r20

r20 = Â¡ + 2;
r26 = i + 3 ;
f r 11 =x (i+2) ;
f r12 = y(i+2);
f r13 = x(i+1)*y(i+1)
f r7 = x(i+2)*y(i+2);
store z(i) Resul t ;
f r8 = (x(i+1)*y(i+1)
r29 = i + 3 ;
r26 = i + 4 ;
f r9 = x(i+3);
frIO = y(Â¡+3);
f r14 = x(i+2)*y(i+2)+a;
f r6 = x(i+3)*y(i+3) ;
store z(i+1) Resul t ;
f r9 = (x (i+2) *y (i+2)+a) *b
r19 = i + 4 ;
r26 = i + 5 ;
f r8 = x(i+4);
f r l l = x (i + 4) ;
f r7 = x(i+3)*y(i+3)+a;
fr8 = x(Â¡+4)*y(Â¡+4);
store z(i+2) Resul t ;
f r4 = (x (i+3) *y (i+3)+a) *b
a r e w e d o n e ?

This loop produces three results every 26 cycles which
means that an iteration completes every 8.67 cycles. Since
there are no interlock cycles we have 100% CPU utiliza
tion in this loop. Since it takes 14 cycles per iteration
without pipelining, there is a speedup of approximately
38% in cycles per iteration with pipelining.

Another optimization technique provided in PA-RISC
compilers, called register reassociation, can be used with
software pipelining to generate better code because
during steady state it uses different base registers for
each successive iteration. See the article on page 33 for
more on register reassociation.

Acknowledgements
The author would like to thank Manoj Dadoo, Monica
Lam, Meng Lee, Bruce Olsen, Bob Rau, Mike Schlansker,
and Carol Thompson for their assistance with this project.

References
1. B.R. Rau, et al, "The Cydra-5 Departmental Supercomputer," Com
puter, January 1989, pp. 12-35.
2. M. Lam, "Software Pipelining: An Effective Scheduling Technique
for VLIW Machines," Proceedings of the SIGPLAN '88 Conference
on Programming Language Design and Implementation, June
1988, pp. 318-328.

June 1992 Hewlett-Packard Journal 45

© Copr. 1949-1998 Hewlett-Packard Co.

Shared Libraries for HP-UX
Transparency is the main contribution of the PA-RISC shared library
implementation. Most users can begin using shared libraries without
making any significant changes to their existing applications.

by Cary A. Coutant and Michelle A. Ruscetta

Multiprogramming operating systems have long had the
ability to share a single copy of a program's code among
several processes. This is made possible by the use of
pure code, that is, code that does not modify itself. The
compilers partition the program into a code segment that
can be protected against modification and a data segment
that is private to each process. The operating system can
then allocate a new data segment to each process and
share one copy of the code segment among them all.

This form of code sharing is useful when many users are
each running the same program, but it is more common
for many different programs to be in use at any one time.
In this case, no code sharing is possible using this simple
scheme. Even two vastly different programs, however, are
likely to contain a significant amount of common code.
Consider two FORTRAN programs, each of which may
contain a substantial amount of code from the FORTRAN

Text

Data

(a)

Text

Data

(b)

Fig. each Library implementations, (a) Archive library in which each
program has its own copy of the library code, (b) A shared library
implementation in which one copy of the library is shared between
programs.

run-time library â€” code that could be shared under the
right circumstances.

A shared library is a collection of subroutines that can be
shared among many programs. Instead of containing
private copies of the library routines it uses, a program
refers to the shared library. With shared libraries, each
program file is reduced in size by the amount of library
code that it uses, and virtual memory use is decreased to
one copy of each shared library's code, rather than many
copies bound into every program file.

Fig. la shows a library scheme in which each program
contains a private copy of the library code (libe). This
type of library implementation is called an archive library.
Note that the processes vi1 and vi2 share the same copy
of the text segment, but each has its own data segment.
The same is true for Isl and Is2. Fig. Ib shows a shared
library scheme in which one copy of the library is shared
among several programs. As in Fig. la, the processes
share one copy of their respective text segments, except
that now the library portion is not part of the program's
text segment.

Shared libraries in the HP-UX operating system were
introduced with the HP-UX 8.0 release which runs on the
HP 9000 Series 300, 400, 700, and 800 workstations and
systems. This feature significantly reduces disk space
consumption, and allows the operating system to make
better use of memory. The motivation and the design for
shared libraries on the Series 700 and 800 PA-RISC
workstations and systems are discussed in this article.

How Shared Libraries Work
Traditional libraries, now distinguished as relocatable or
archive libraries, contain relocatable code, meaning that
the linker can copy library routines into the program,
symbolically resolve external references, and relocate the
code to its final address in the program. Thus, in the final
program, references from the program to library routines
and data are statically bound by the linker (Fig. 2a).

A shared library, on the other hand, is bound to a pro
gram at run time (Fig. 2b). Not only must the binding
preserve the purity of the library's code segment, but
because the binding is done at run tune, it must also be
fast.

With these constraints in mind, we consider the following
questions:

1. How does the program call a shared library routine?

46 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Core Image

(a)

Core Image

(b)

Fig. archive Binding libraries to programs, (a) In relocatable or archive
libraries, the linker binds the program's .0 files and the referenced
library files to create the executable a.out file. When a.out is run the
loader creates the core image and runs the program, (b) For
shared libraries, the linker creates an incomplete executable file
(the library routines are not bound into the a.out file at link time).
The shared library routines are dynamically loaded into the pro
gram's address space at run time.

2. How does the program access data in the shared
library?

3. How does a shared library routine call another routine
in the same library?

4. How does a shared library routine access data in the
same library?

5. How does a shared library routine call a routine in
another shared library (or in the program)?

6. How does a shared library routine access data in
another shared library (or in the program)?

Linkage Tables. These questions can be answered several
ways. The simplest technique is to bind each shared

libran,' to a unique address and to use the bound address
es of the library routines in each program that references
the shared library. This achieves the speed of static
binding associated with archive libraries, but it has three
significant disadvantages: it is inflexible and difficult to
maintain from release to release, it requires a central
registry so that no two shared libraries (including third-
party libraries) are assigned the same address, and it
assumes infinite addressing space for each process.

Instead, we use entities called linkage tables to gather all
addresses that need to be modified for each process.
Collecting these addresses in a single table not only
keeps the code segment pure, but also lessens the cost of
the dynamic binding by minimizing the number of places
that must be modified at run time.

All procedure calls into and between shared libraries
(questions 1 and 5) are implemented indirectly via a
procedure linkage table (PLT). In addition, procedure
calls within a shared library (question 3) are done this
way to allow for preemption (described later). The
program and each shared library contain a procedure
linkage table in their data segments. The procedure
linkage table contains an entry for each procedure called
by that module (Fig. 3).

Similarly, a shared library accesses its data and other
libraries' data (questions 4 and 6) through a data linkage
table (DLT). This indirection requires the compilers to
generate indirect loads and stores when generating code

Program or Procedure Shared Library

PLT = Procedure L inkage Table
DLT = Data L inkage Table

Fig. pro Linkage tables provide the link between a program or pro
cedure and the shared library routines. The procedure linkage
table pro contains pointers to routines referenced from a pro
gram, a procedure, or a shared library routine. The data linkage
table (DLT) contains pointers that provide a shared library with
access to its own data as well as other libraries' data.

June 1992 Hewlett-Packard Journal 47

© Copr. 1949-1998 Hewlett-Packard Co.

for a shared library, which means that shared library
routines must be compiled with the appropriate compiler
option.

Indirect access to data is costly because it involves an
extra memory reference for each load and store. We did
not want to force all programs to be compiled with
indirect addressing for all data, nor did we want the
compilers attempting to predict whether a given data
reference might be resolved within the program itself, or
within a shared library.

To deal with these data access issues we chose to satisfy
all data references from the program to a shared library
(question 2) by importing the data definitions from the
shared libraries statically (that is, at link time). Thus,
some or all of a shared library's data may be allocated in
the program's data segment, and the shared library's DLT
will contain the appropriate address for each data item.

Binding Times. To bind a program with the shared libraries
it uses, the program invokes a dynamic loader before it
does anything else. The dynamic loader must do three
things:

1. Load the code and data segments from the shared
libraries into memory

2. Resolve all symbolic references and initialize the
linkage tables

3. Modify any absolute addresses contained within any
shared library data segments.

Step 1 is accomplished by mapping the shared library file
into memory. Step 2 requires the dynamic loader to
examine the linkage tables for each module (program and
shared libraries), find a definition for each unsatisfied
reference, and set the entries for both the data and
procedure linkage tables to the appropriate addresses.
Step 3 is necessary because a shared library's data
segment may contain a pointer variable that is supposed
to be initialized to the address of a procedure or variable.
Because these addresses are not known until the library
is loaded, they must be modified at this point. (Modifica
tion of the code segment would make it impure, so the
code segment must be kept free of such constructs.)

Step 2 is likely to be the most time-consuming, since it
involves many symbol table lookups. To minimize the
startup time associated with programs that use shared
libraries, we provide a mechanism called deferred bind
ing. This allows the dynamic loader to initialize every
procedure linkage table entry with the address of an
entry point within the dynamic loader. When a shared
library procedure is first called, the dynamic loader will
be invoked instead, at which time it will resolve the
reference, provide the actual address in the linkage table
entry, and proceed with the call. This allows the cost of
binding to be spread out more evenly over the total
execution time of the program, so it is not noticed. An
immediate binding mode is also available as an option.
Deferred and immediate binding are described in more
detail later in this article.

Position Independent Code. Because it is essential to keep a
shared library's code segment pure, and we don't know

where it will be loaded at run time, shared libraries must
be compiled with position independent code. This term
means that the code must not have any dependency on
either its own location in memory or the location of any
data that it references. Thus, we require that all branches,
calls, loads, and stores be either program-counter (pc)
relative or indirect via a linkage table. The compilers
obey these restrictions when invoked with the +z option.
However, assembly-code programmers must be aware of
these restrictions.

Branches within a procedure and references to constant
data in the code segment are implemented via pc-relative
addressing modes. The compiler generates pc-relative code
for procedure calls, but the linker then creates a special-
purpose code sequence called a stub, which accesses the
procedure linkage table. Loads and stores of variables in
the data segment must be compiled with indirect addressing
through the data linkage table.

The linkage tables themselves must also be accessible in
a position independent manner. For the PA-RISC architec
ture, we chose to use a dedicated register to point to the
current procedure and data linkage tables (which are
adjacent), while on the Motorola 68000 architecture, we
use pc-relative addressing to access the linkage tables.

Shared Library IVade-ofFs
The motivation for shared libraries is that program files
are smaller, resulting in less use of disk space, and
library code is shared, resulting in less memory use and
better cache and paging behavior. In addition, library
updates automatically apply to all programs without the
need to recompile or relink.

However, these benefits are accompanied by costs that
must be considered carefully. First, program startup time
is increased because of the dynamic loading that must
take place. Second, procedure calls to shared library
routines are more costly because of the linkage table
overhead. Similarly, data access within a shared library is
slower because of the indirect addressing. Finally, library
updates, while seeming attractive on the one hand, can be
a cause for concern on the other, since a newly intro
duced bug in a library might cause existing applications
to stop working.

Design Goals for HP-UX Shared Libraries
When we first began designing a shared library facility for
the HP-UX operating system, AT&T's System V Release 3
was the only UNIX operating system implementation of
shared libraries. Sun Microsystems released an imple
mentation in SunOS shortly afterwards.1 We also investi
gated a few other models including: Multics,2-3 VAX/VMS,4
MPE V and MPE XL,5 AIX,6 and Domain/OS.7 While
AT&T's scheme requires static binding as well as a
mechanism for building shared libraries, the others are all
based on some combination of indirection and position
independent code.

None of the existing models offered what we considered
to be our most important design goal â€” transparency. We
felt that the behavior of shared libraries should match the
behavior of archive libraries as closely as possible, so

48 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Space Reg is te r

Space Identi f ier

Z 3 2 B y t e s
p e r S p a c e 2 M - 1 , 2 M - 1 , o r

21E-1 Virtual Spaces

Fig. 4. The PA-RISC virtual memory architecture.

that most programmers could begin using shared libraries
without changing anything. In addition, the behavior of
most shared library implementations with respect to
precedence of definitions differs dramatically from ar
chive library behavior. If an entry point is defined in both
the program and an archive library, only the definition
from the program would be used in the program, and
calls to that routine from the library would be bound to
the definition in the program, not the one in the library.
Such a situation is called preemption because the defini
tion in the program preempts a definition of the same
name in the library, and all references are bound to the
first definition.

Another design goal that we followed was that the
dynamic loader must be a user-level implementation. The
only kernel support we added was a general memory-
mapped file mechanism that we use to load shared
libraries efficiently. The dynamic loader itself is a shared
library that is bootstrapped into the process's address
space by the startup code.

We also wanted to ease the task of building shared
libraries. We explicitly avoided any design that would
require the programmer to modify library source code or
follow a complicated build process.

Finally, we recognized that, in the absence of an obvious
standard, our shared library model should not be signifi
cantly different from other implementations based on
AT&T's System V Release 4.

PA-RISC Design Issues
Although the HP-UX shared library implementation is
designed to have the same external interface and behav
ior in the HP 9000 Series 300, 800, and 700 systems,
restrictions imposed by the PA-RISC systems (Series 700
and 800 systems) posed some interesting design consider
ations that resulted in additional complexity in the

underlying implementation. One of the main restrictions is
based on the PA-RISC software architecture for virtual
memory and the lack of a facility in the operating system
to handle the situation.

Virtual memory in PA-RISC is structured as a set of
address spaces each containing 232 bytes (see Fig. 4).8 A
virtual address for a processor that supports a 64-bit
address is constructed by the concatenation of the
contents of a 32-bit register called a space register and a
32-bit offset. The PA-RISC software architecture divides
each space into four IG-byte quadrants, with four space
registers (sr4 to srT) assigned to identify a quadrant (see
Fig. 5). This scheme requires that text and data be loaded
into separate spaces and accessed with distinct space
pointers. Program text is accessed using sr4, shared
library text is accessed using sr6, and all data for shared
libraries and program files is accessed using sr5. This
architecture does not allow contiguous mapping of text
and data in an executable file. Therefore, to handle
shared libraries in PA-RISC we had to have a dedicated
linkage table pointer register and provide support for
interspace procedure calls and returns.

Dedicated Linkage Table Pointer. Since code and data could
not be mapped contiguously, the linkage tables could not
be accessed with a pc-relative code sequence generated at
compile time. Therefore, we chose a general register
(gr!9) as a place for holding the pointer for shared
library linkage. All position independent code and data
references within a shared library go indirectly through
the gr!9 linkage register. Code in a main program ac
cesses the linkage table directly since the main program
code is not required to be position independent.

Position independent code generation for shared libraries
must always consider the gr!9 linkage register as being
live (in use), and must save and restore this register
across procedure calls.

The plabel. The dedicated linkage table pointer added
complexity to the design for handling procedure labels
and indirect procedure calls. Two items in the PA-RISC
software architecture had to be modified to include
information about the linkage table pointer: a function
pointer called a plabel (procedure label), which is used in
archive HP-UX libraries and programs, and a millicode
routine called SSdyncall, which is used when making
indirect function calls. To support this new plabel defini
tion the following changes had to be made.
In programs that use shared libraries, a plabel value is the
address of the PLT entry for the target routine, rather
than a procedure address. An HP-UX PA-RISC shared
library plabel is marked by setting the second-to-last low-
order bit of the plabel (see Fig. 6).
The SSdyncall routine was modified to use this PLT address
to obtain the target procedure address and the target gr!9
value. In the modified implementation, the SSdyncall rou
tine and the kernel's signal-handling code check to see if
the HP-UX shared library plabel bit is set, and if so, the
library procedure's address and linkage table pointer
values can be obtained using the plabel value.

* The text data. Series 300 systems do support contiguously mapped text and data.

June 1992 Hewlett-Packard Journal 49

© Copr. 1949-1998 Hewlett-Packard Co.

Base Register

4 of 232 Spaces

Interspace Calls and Returns. The second significant impact
on the shared library design was the need for a way to
handle interspace calls and returns because in the PA-
RISC software architecture, program text and shared
memory text are mapped into separate spaces.

The default procedure call sequence generated by the
HP-UX compilers consists of intraspace branches (BL
instruction) and returns (BV instruction). The compilers
assume that all of a program's text is in the same virtual
space. To perform interspace branches, an interspace call
and return sequence is required. The call and return
sequence for an interspace branch is further complicated
by the fact that the target space is not known at compile
time, so a simple interspace branch instruction (BLE
offset(srX,base)) is not sufficient. Instead, a code sequence
that loads the target space into a space register and then
performs an interspace branch is required.

The HP-UX memory map implementation mmapO is used
for mapping shared library text. As mentioned earlier, all
shared library text is mapped into the sr6 space (quad 3
addresses) and all data is mapped into the sr5 space
(quad 2 addresses). This mapping, along with the need to
have a dedicated position independent code linkage
register, requires special code sequences to be produced
for each function in the library. These code sequences are
referred to as stubs. The linker places stubs into the

plabel Bit

HP-UX Shared Library plabel

Address of Target Procedure's PLT Entry

PLT Entry

Target (Export Stub) Address

Linkage Table Pointer (gr19) Value

Fig. 6. A shared library plabel and PLT entry.

Fig. 5. The relationship of space
registers sr4, sr5, sr6, and sr7 to
the virtual address spaces.

routine making the call and in the library routines (and
program files) being called to handle saving and restoring
the gr!9 linkage register and performing the interspace
branch (see Fig. 7). As mentioned above, compilers
generate an intraspace branch (BL) and an intraspace
return (BV) for procedure call sequences. The linker
patches the BL to jump to the import stub code (Â® in Fig.
7), which then performs the interspace branch to the
target routine's export stub (Â© in Fig. 7). The export stub
is used to trap the return from the call, restore the
original return pointer and execute an interspace branch.

HP-UX User Interface
The HP-UX shared library design offers various user
interface routines that provide capabilities to dynamically
load and unload libraries, to define symbols, and to
obtain information about loaded libraries and symbol
values. All of these user interface routines are designed
to be used by a user-level program to control the run-time
loading and binding of shared libraries.

Library Loading. Shared libraries can be loaded either
programmatically (explicit loading) or via arguments in
the link command line (implicit loading). Explicit loading
and unloading are provided through the shl_load() and
shl_unload() routines. Libraries specified for implicit loading
are mapped into memory at program startup. There are
two main binding modes for loading shared libraries:
immediate binding and deferred binding. For implicit
loading the binding modes can be specified on the link
command line using the -B immediate or -B deferred linker
command une options. The default mode for implicit
shared libraries is deferred binding. For explicit loading
the binding mode is specified by using the BINDJMMEDIATE
or BINO_DEFERRED flag in shIJoadO's argument list.

The deferred binding mode will bind a code symbol when
the symbol is first referenced, and will bind all visible
data symbols on program startup. The data symbols must
be bound when the library is loaded since there is no
mechanism for trapping a data reference in PA-RISC

50 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

i b i s l ibe s i

T e x t

Fig. 7. Shared library procedure calls.

(see "Deferred Binding, Relocation, and Initialization of
Shared Library Data" on page 52 for more details). The
deferred binding mode spreads the symbol-binding time
across the life of the program, and will only bind
procedures that are explicitly referenced.

The immediate binding mode binds all data and code
symbols at program startup. If there are any unresolved
symbols, a fatal error is reported and loading is not
completed. The program will abort if unresolved symbols
are detected while loading any implicitly loaded libraries
when immediate binding is used. The immediate binding
mode forces all of the symbol binding to be done on
startup, so the binding cost is paid only at startup. The
immediate binding mode also has the advantage of
determining unresolved symbol references at startup. (In
deferred binding mode the program could be running for
some time before an unresolved symbol error is detected.)

Additional flags are available for explicitly loading shared
libraries that alter the behavior of the immediate and
deferred binding modes. These flags provide the user with
some control over the binding time and binding order of
shared library symbols, and are used in conjunction with
the BINDJMMEDIATE and BIND_DEFERRED flags.

1 BIND_FIRST. This option specifies that the library should be
placed at the head of the library search list before the
program file. The default is to have the program file at the
head of the search list and to place additional shared li
braries at the end of the search list. All library searching
is done from left (head) to right (tail).

' BIND_NONFATAL When used with the BINDJMMEDIATE flag,
this flag specifies that if a code symbol is not found at
startup time, then the binding is deferred until that code
symbol is referenced (this implies that all unresolved
code symbols will be marked deferred with no error or
warning given, and all unresolved data symbols will pro
duce an error). The default immediate binding behavior is
to abort if a symbol cannot be resolved. This option al
lows users to force all possible binding to be done at
startup, while allowing the program file to reference sym
bols that may be undefined at startup but defined later in
the execution of the program.
BIND_NOSTART. This flag specifies that the shared library
initializer routine should not be called when the library is
loaded or unloaded. The initializer routine is specified
using the +1 linker option when the shared library is built.
Default behavior is for the dynamic loader to call the in
itializer routine, if defined, when the shared library is
loaded.

June 1992 Hewlett-Packard Journal 51

© Copr. 1949-1998 Hewlett-Packard Co.

Deferred Binding, Relocation, and Initialization of Shared Library Data

In most a library implementations, including the HP-UX implementation, a
shared indepen can be loaded at any address at run time. While position indepen
dent code is used for library text, library data must be relocated at run time after a
load address has been assigned to the library. Also, because addresses of symbols
defined by shared libraries are not known until run time, references from applica
tion virtual to shared libraries cannot be bound to correct virtual addresses at
link time, nor can references between shared libraries or from shared libraries to
application programs be resolved at library build time. Instead, all such references
are statically resolved to linkage tables. Each entry in a linkage table corresponds
to a specific symbol. When a program that uses shared libraries is executed, the
loader must initialize each linkage table entry with the address of the corresponding
symbol.

Furthermore, languages such as C++ support run-time initialization of data. A
class can have a constructor, which is a function defined to initialize objects of
that class. The constructor is executed when an object of that class is created.
C++ mandates that the constructors for nonlocal static objects in a translation
unit be executed before the first use of any function or object defined in that
module. Other languages, such as Ada, may have similar run-time initialization
requirements.

The dynamic loader must therefore perform relocation, binding, and initialization at
run time. Linkage table entries for function calls can be initialized to trap into the
dynamic loader, so that the binding of a function reference can be deferred until
the first call through the reference. On the other hand, data references cannot be
trapped in this manner on most architectures. Thus, in most shared library imple
mentations, the dynamic loader must perform all relocation, binding, and initializa
tion of data for an entire library when that library is loaded. This normally implies a
high startup cost for programs that use shared libraries.

Module Tables
The HP-UX design conceptually maintains some of the boundaries between the
modules that make up a shared library. All export table entries, linkage table en
tries, relocation records, and constructors are grouped by translation unit into
module initialization The dynamic loader defers the binding, relocation, and initialization
of data that a module until the first potential access of any symbol defined in that
module. This greatly reduces the startup overhead of programs that use shared
libraries.

Since the Series 700 architecture does not support trapping on specific data refer
ences, data dynamic loader cannot directly detect the first access of a given data
symbol. Instead, the dynamic loader considers a given data symbol to be potential
ly accessed on the first call to any function that references the symbol. Rather than
actually keeping track of which functions reference which data symbols, the mod
ule table allows the dynamic loader to make a further approximation. On the first
call to a given function, the dynamic loader considers the whole module to have
been potentially accessed. It consults the module table to determine which linkage

' A static object is an object that l ives throughout the life of the program, and a translation
unit preprocessor. the source file produced after going through the C++ preprocessor.

table entries to bind, which relocation records to apply, and which constructors to
execute.

This algorithm is recursive, since binding linkage table entries, relocating data, and
executing constructors all may reference symbols in other modules. These modules
must also be considered to be potentially accessed. The dynamic loader must
therefore bind, relocate, and initialize data in those modules as well. If libraries
typically contain long chains of data references between modules, then this algo
rithm will be processing data for many modules on the first call to a given library
function. If the library is completely connected by such references, this algorithm
degenerates into binding, relocating, and initializing all data for an entire library
the first time any function in that library is called. However, our experience shows
that four libraries seldom have chains more than three or four modules long, and
many programs access only a fraction of the total number of modules in a library.
Deferring the binding, relocation, and initialization of data on a module basis has
shown that the time spent performing these tasks can be reduced by 50% to 80%,
depending on the program and libraries involved.

Further C++ Considerations
The C++ A of static destructors adds another complication to the design. A
destructor for an object is executed when the object is destroyed. Static objects
are considered destroyed when the program terminates. C++ mandates that de
structors for static objects be called in reverse order from the constructors. Other
languages may have different semantics. Therefore, the dynamic loader employs a
more directly technique. Rather than execute constructors directly when process
ing data for a module, the dynamic loader executes a function called an elaborator,
which executes defined by the C++ run-time support code. The C++ elaborator executes
all static constructors for the module and also inserts any corresponding destruc
tors C++ support head of a linked list. On program termination, the C++ run-time support
code traverses this list and executes all destructors.

The HP-UX shared library design also supports explicit loading and unloading of
shared functions from within a program via the shljoad and shl_unload functions
described in the accompanying article on page 50. While C++ does not define any
particular semantics for dynamic loading and unloading of libraries, it seems natu
ral to execute static destructors for objects defined in an explicitly loaded library
when the library is unloaded. Since the destructors for objects defined in a library
are often defined in the library itself, the dynamic loader clearly cannot wait until
program termination to execute destructors for objects in libraries that have al
ready been unloaded. Therefore, the dynamic loader invokes a library termination
function when a library is unloaded. This function, also defined by the C++ run
time support system, traverses the linked list of destructors and executes all de
structors for the library being unloaded. It then removes those destructors from the
list. For symmetry, the dynamic loader also invokes an initialization function when
a library is loaded, implicitly or explicitly, but this capability is not used by the C++
implementation.

Marc Sabatella
Software Development Engineer
Systems Technology Division

B1ND_VERBOSE. This flag causes messages to be emitted
when unresolved symbols are discovered. Default behav
ior in the immediate bind mode performs the library load
and bind silently and returns error status through the
return value and errno variable.

Other user interface routines are provided for obtaining
information about libraries that have already been loaded.
shl_get(). This routine returns information about currently
loaded libraries, including those loaded implicitly at start
up time. The library is specified by the index, or ordinal
position of the shared library in the shared library search
list. The information returned includes the library handle,

pathname, initializer address, text start address, text end
address, data start address, and data end address.
shl_get_handle(). This routine returns the same information
as the of routine, but the user specifies the library of
interest by the library handle rather than the search-order
index. Typically, the shl_get() routine would be used when
a user wants to traverse through the list of libraries in
search order, and the shl_get_handle() routine can be used
to get information about a specific library for which the
library handle is known (i.e., explicitly loaded libraries).

52 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Dynamic Symbol Management. User interface routines
provided for dynamic symbol management include shl_find-
sym() to shl_definesym(). The shl_findsym() routine is used to
obtain the addresses of dynamically loaded symbols so
that they can be called. The shl_findsym(| interface is the
only supported way of calling dynamically loaded routines
and obtaining addresses for dynamically loaded data
items. The shl_definesym() routine allows the user to dynam
ically define a symbol that is to be used in future symbol
resolutions. The user provides the symbol name, type, and
value. If the value of the symbol falls within range of a
library that has previously been loaded, then the newly
defined symbol is associated with that library and will be
removed when the associated library is unloaded.

Other Features
Other features that are specific to the HP-UX shared
library implementation include a module-level approach to
version control, a method of symbol binding that reduces
the shared library startup cost for programs that use a
small percentage of the library routines, and special C++
support. The special C++ support is described in the
short article on the previous page.

Version control. One of the advantages of shared libraries
is that when a change (e.g., a defect repair) is made to
the library, all users can take immediate advantage of the
change without rebuilding their program files. This can
also be a disadvantage if the changes are not applied
carefully, or if the change makes a routine incompatible
with previous versions of that routine. To protect users of
shared libraries, some type of version control must be
provided.

The HP-UX shared library approach to version control is
provided at the compilation unit (module) level, which is
unlike most existing implementations that provide version
control only at the library level. Our version control
scheme is based on library marks that are used to identi
fy incompatible changes. When an incompatible change is
made to a routine, the library developer date-stamps the
routine using a compiler source directive. The date is
used as the version number and is associated with all
symbols exported from that module. The resulting module
can then be compiled and added to the shared library
along with the previous versions of that module. Thus,
the date stamp is used as a library mark that reflects the
version of the library routine. When a user program file is
built, the mark of each library linked with the program is
recorded in the program file. When the program is run,
the dynamic loader uses the mark recorded in the pro
gram file to determine which shared library symbol is
used for binding. The dynamic loader will not accept any
symbol definitions that have a mark higher than the mark
recorded for the defining library in the program file.

This scheme can also be used for changes that are
backwards compatible and for programs that rely on new

behavior. In this case, library developers would include a
dummy routine with a new date to force an increase in
the library's mark. Any new programs linked with this
library would have the new mark recorded, and if run on
a system with an older version of the library, the dynamic
loader will refuse to load the old library because the
version number of the installed library would be lower
than the number recorded in the program file.

Archive Symbol Binding. Typically, a shared library is
treated as one complete unit, and all symbols within the
library are bound when any symbol in that library is
referenced. In the HP-UX scheme, the shared library file
maintains module granularity similar to archive libraries.
When the shared library is built, a data structure within
the shared library is used to maintain the list of modules
(compilation units) used to build the library. The list of
defined symbols and referenced symbols is maintained for
each module. During symbol resolution, the dynamic
loader binds only symbols for modules that have been
referenced. This symbol binding technique provides a
significant performance improvement in the startup and
symbol binding time for typical programs (i.e., programs
that reference a relatively low percentage of the total
symbols in the attached shared libraries).

Acknowledgments
We would like to recognize the contributions made in the
design of the HP-UX shared library mechanism by Stacy
Martelli, Kevin Wallace, and Eric Hamilton. Much of the
implementation, testing, and debugging was done by Carl
Burch and Jim Schumacher. In addition, we appreciate
the efforts of engineers in other HP laboratories who
helped in getting everything put together, especially Bob
Schneider.

References
1. R.A. Gingell, et al, "Shared Libraries in SunOS," USENIX Proceed
ings, Summer 1987.
2. R.C. Daley and J.B. Dennis, "Virtual Memory, Process, and Sharing
in Multics," Communications of the ACM, Vol. 11, no. 5, May 1968.
3. A. and et. al., "The Multics Virtual Memory: Concepts and
Design," Communications of the ACM, Vol. 15, no. 5, May 1972.
4. L.J. Kenah and S.F. Bate, VAX/VMS Internals and Data Struc
tures, Digital Press, 1984.
5. HP Link Editor/XL Reference Manual, Hewlett-Packard Co.,
November 1987.
6. M.A. Auslander, "Managing Programs and Libraries in AIX Version
3 for and System/6000 Processors," IBM Journal of Research and
Development, Vol. 34, no. 1, January 1990.
7. Domain/OS Programming Environment Reference, Hewlett-
Packard Co., October 1989.
8. M.J. Manon, et al, "Hewlett-Packard Precision Architecture: The
Processor," Hewlett-Packard Journal, Vol. 37, no. 8, August 1986,
pp. 4-21.

HP-UX is based on and is compatible with UNIX System Laboratories' UNIX* operating system.
It also specifications. with X/Open's XPG3. POSIX 1003.1 and SVID2 interface specifications.
UNIX in other registered trademark of UNIX System Laboratories Inc. in the U.S.A. and other
countries.

X/Open is a trademark of X/Open Company Limited in the UK and other countries.

June 1992 Hewlett-Packard Journal 53
© Copr. 1949-1998 Hewlett-Packard Co.

Integrating an Electronic Dictionary
into a Natural Language Processing
System
This available discusses the types of electronic dictionaries available and the
trends discussion electronic dictionary technology, and provides detailed discussion
of particular dictionaries. It describes the incorporation of one of these
electronic dictionaries into Hewlett-Packard's natural language
understanding system and discusses various computer applications that
could use the technology now available.

by Diana C. Roberts

Computational linguistics is demonstrating its relevance to
commercial concerns. During the past few years, not only
have companies funded and carried out research projects
in computational linguistics, but also several products
based on linguistic technology have emerged on the
market. Franklin Products has created a line of handheld
calculator-like dictionaries which range from a spelling
dictionary to a pronouncing dictionary with a speech
generator attached to a full thesaurus. Franklin Products,
Texas Instruments, Casio, and Seiko all produce multilin
gual handheld translating dictionaries. Many text editors
and word processors provide spelling checkers and
thesauruses, such as those used by WordPerfect. Gram-
matik IV and Grammatik Mac are widely available style
and grammar checkers. Merriam-Webster and the Oxford
University Press have recently released their dictionaries
on CD-ROM.

Both the commercial success of these linguistics products
and the promising nature of their underlying theoretical
basis encourage more ambitious work in industrial
research. Outside of the United States, particularly in
Europe and Japan, there is great interest in machine
translation, although products remain on the research
level. The Toshiba Corporation has developed a Japanese-
English typed-input translating system for conversational
language. Within the United States, Unisys, SRI, and
Hewlett-Packardt have developed natural language under
standing systems with prospective applications of data
base inquiry and equipment control, among other areas.
In the area of electronic dictionary development, both the
Centre for Lexical Information (CELEX) in the Nether
lands and Oxford University Press (publishers of the
Oxford English Dictionary) in England are developing
dictionary products that are sophisticated both in the
linguistic data they contain and in the way the data is
accessed.

t Hewlett-Packard's HP-NL (Hewlett-Packard Natural Language) system was under develop
ment from 1982 to 1991.'

The linguistics of computational linguistic theory is based
on standard modern theories such as lexical functional
grammar, or LFG,2 and head-driven phrase-structure
grammar, or HPSG.3 Most of these theories assume the
word to be the basic linguistic element in phrase forma
tion, that is, they are "lexicalized" theories. Words,
therefore, are specified in great linguistic detail, and
syntactic analysis of sentences is based on the interplay
of the characteristics of the component words of a
sentence. Therefore, products based on linguistic theory
such as grammar checkers and natural language under
standing systems require dictionaries containing detailed
descriptions of words. Products that do not involve
sentential or phrasal analysis, such as spelling checkers
and word analyzers, also require extensive dictionaries.
Thus, dictionaries are very important components of most
computational linguistic products.

Of course, the book dictionary has been a standard
literary tool, and the widespread acceptance of the
computer as a nontechnical tool is creating an emerging
demand for standard dictionaries in electronic form. In
fact, the importance of linguistically extensive dictionaries
to computational linguistic projects and products is
reflected in the emerging availability of electronic dictio
naries during the past few years. Webster's Ninth on
CD-ROM, a traditional type of dictionary now in electron
ic form, became available from Merriam-Webster in 1990.
Longman House made the typesetting tape for its Long
man's Dictionary of Contemporary English (LDOCE)

Notation and Conventions

In this (e.g., italic type is used for natural language words cited in the text (e.g.,
happy).
The sans-serif font is used for programming keywords.
The asterisk (*) preceding a phrase indicates ungrammaticality.
The dagger (t) indicates a footnote.

54 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

available to the research community of linguists, lexicog
raphers, and data access specialists in the mid-1980s. It is
still a research tool, but has become very expensive to
commercial clients, presumably reflecting its value to the
research and commercial community. The products from
CELEX and the Oxford University Press mentioned above
are among the most sophisticated electronic dictionary
products available today. The second edition of the
Oxford English Dictionary, the OED2, is available on
CD-ROM. Its data, in running text form, is marked explic
itly in SGML (the Standard Generalized Markup Language,
ISO 8879) for retrieval. The CELEX dictionary in English,
Dutch, and German is a relational database of words and
their linguistic behavior. These two latter products are
sophisticated in very different ways and are designed for
very different uses, but they have in common a great
flexibility and specificity in data retrieval.

Related work that can support further lexicographical
development in the future is being carried on by the Data
Collection Initiative (DCI) through the Association for
Computational Linguistics. This and similar initiatives are
intended to collect data of various forms, particularly
literary, for computer storage and access. Lexicographers
are already making use of large corpora in determining
the coverage for their dictionaries.4 The availability of
large corpora for statistical studies will certainly aid and
may also revolutionize lexicographical work and therefore
the nature of electronic dictionaries.

There is apparently a commercial market for linguistically
based products, since such products are already being
sold. Many of these current products either rely on
electronic dictionaries or are themselves electronic
dictionaries of some kind. Recent years have seen elec
tronic dictionaries become more sophisticated, both in
their content and in the accessibility of their data. Be
cause many sophisticated products based on computation
al linguistics must rely on dictionary information, the
potential scope of computational systems based on
linguistics has increased with the improvements in
electronic dictionaries.

My aim with this paper is to introduce the area of elec
tronic dictionary technology, to suggest areas of research
leading to product development that crucially exploit the
emerging dictionary technologies, and to report on the
results of one such effort at Hewlett-Packard Laboratories.

What Is a Dictionary?
Commonly, a dictionary is considered to be a listing by
spelling of common natural language words, arranged
alphabetically, typically with pronunciation and meaning
information. There are, however, collections of words that
violate one or more of these three stereotypical character
istics but are still considered dictionaries. For instance,
the simplest kind of dictionary is the word list, used for
checking spelling; it contains no additional word informa
tion. The Bildworterbuch from Duden contains both
pictures and words for each entry, and is arranged not
alphabetically, but by topic. Stedman's Medical Dictionary
contains alphabetically ordered technical terms from the
domain of medicine and their definitions rather than
common English words. It also contains some etymologi
cal information, but offers pronunciation information for

only some entries. Similarly, symbol tables of compilers
contain symbols used by software programs; their entries
are not natural language words. Data dictionaries of
database management systems also contain entries for
non-natural-language words, as well as other nonstandard
dictionary information such as computer programs.

If all three of the stereotypical characteristics can be
violated, then for the purposes of this paper we need to
establish what a dictionary is. As a start, we can appeal
to a dictionary as an authority on itself. Webster's Ninth
New Collegiate Dictionary (the electronic version of
which is one of the dictionaries discussed in this paper)
says that a dictionary is "1: a reference book containing
words usu. alphabetically arranged along with information
about their forms, pronunciations, functions, etymologies,
meanings, and syntactical and idiomatic uses 2: a refer
ence book listing alphabetically terms or names important
to a particular subject or activity along with discussion of
their meanings and applications 3: a reference book
giving for words of one language equivalents in another 4:
a list (as of phrases, synonyms, or hyphenation instruc
tions) stored in machine-readable form (as on a disk) for
reference by an automatic system (as for information
retrieval or computerized typesetting)."

There are some common elements of these definitions,
which together form the defining characteristics of the
dictionary. First and most crucial, the dictionary is a
listing of language elements, commonly words. Implied
too is that the entries can be taken from any domain.
These entries are arranged in some way to make retrieval
either possible or easy. And finally, the dictionary also
often contains other information associated with the
entry. An electronic dictionary is any kind of dictionary in
machine-readable form.

The electronic dictionaries available now vary greatly.
This paper will only consider dictionaries whose entries
come from the domain of natural language, and whose
entries are words rather than phrases. I will discuss three
dimensions along which electronic dictionaries differ from
each other: type of additional information about the entry
presented, the explicitness of the information categories
(more explicit marking of the categories reducing ambigu
ity), and the accessibility and organization of the data.
After the discussion of electronic dictionaries and their
characteristics, I will discuss the possible uses of elec
tronic dictionaries and the necessary characteristics of
the dictionaries for the various possible uses. The pur
poses to which an electronic dictionary can be put
depend on its characteristics in each of the three
dimensions discussed in the following sections.

Evolution of Electronic Dictionaries
Early electronic dictionaries were word lists. They had a
limited range of use because they contained limited types
of information in a simple organization. Electronic dictio
naries are becoming more complex and more flexible
now, as they become potentially more useful in domains
that did not exist before. The potential uses are shaping
the ways in which electronic dictionaries are evolving.

As computers began to be used for writing and commu
nication, the standard desk reference book, the dictionary,

June 1992 Hewlett-Packard Journal 55

© Copr. 1949-1998 Hewlett-Packard Co.

was ported to electronic form. When this reference tool
became available in the same medium as the word
processor â€” the computer â€” the lexicographical information
was now machine-readable. As linguistically based soft
ware systems matured, the demand for accessible lexico
graphical data based on modern linguistic theory grew.
This demand has brought several important pressures on
electronic dictionaries.

Lexicographical Information. First, several newer electronic
dictionaries provide extensive linguistic information based
in some cases on modern linguistic theories. Word entries
in traditional dictionaries often do not recognize the same
categories that are important to generative linguistic
theory. Traditional dictionaries focus on defining words,
providing historical derivation information (etymologies),
providing sample sentences to illustrate word use, and
providing some basic linguistic information, such as
spelling, syllabification, pronunciation, part of speech,
idiomatic use, and semantically related words (synonyms,
hyponyms, hypernyms, and antonyms), t This information,
if it were unambiguously accessible, could be used for
some software applications â€” for example, a spelling
checker, a semantic net, or possibly speech generation or
recognition, depending on the sophistication of the speech
system. However, this information is insufficient for
applications that require complex word and/or sentence
analysis, such as natural language processing, which
involves natural language understanding.

The recent expansion of electronic dictionaries coincided,
not surprisingly, with the emergence of several book
dictionaries of English that carefully detail linguistic word
information based on modern linguistic theory. These
"learning dictionaries," created for foreign learners of
English rather than native speakers, contain only the
most common words instead of attempting to be exhaus
tive. These dictionaries concentrate more on complete
syntactic and morphological characterization of their
entries than on exhaustive meaning explanations and
citations, and use linguistic categories from modern
generative linguistics in preference to traditional catego
ries. Three of these dictionaries are Longman's Dictionary
of Contemporary English (LDOCE), the Oxford Advanced
Learner's Dictionary of Current English (OALD), and
Collins COBUILD English Language Dictionary. Some of
the most useful electronic dictionaries draw their
lexicographical information from these sources, tt

The following are some of the kinds of information found
in electronic dictionaries, both traditional and modern:

â€¢ Orthography (spelling)
â€¢ Syllabification
â€¢ Phonology (pronunciation)
â€¢ Linguistic information about the word's properties, in

cluding syntax, semantics (meaning), and morphology
(word structure)

â€¢ Related word(s) â€” related by morphology, either inflec
tional (work, works) or derivational (happy, unhappy)

t In a other, of words, one of which has a broader meaning than the other, the word with the
broader meaning is the hypernym and the word with the more narrow meaning is the hvponym.
For example, for the words book and novel, book would be the hypernym and novel the hyponym.

tt Extensive and explicit phonetic, morphological, and syntactic information is useful now in
computer structured whereas neither semantic nor etymological information is yet structured
enough to be useful.

â€¢ Synonym listings
â€¢ Semantic hierarchies
â€¢ Frequency of occurrence
â€¢ Meaning (not yet a robustly structured field)
â€¢ Etymology
â€¢ Usage (sample phrases and/or sentences, either created

by the lexicographer or cited from texts).

Data Categorization. A second trend in newer electronic
dictionaries is to represent the lexicographical data in such
a way that it is unambiguously categorized, either tagged
in the case of running text dictionaries, or stored in a
database. Linguistically based software systems must be
able to access lexicographical information unambiguously.

Traditional dictionaries rely on human interpretation of
various typefaces which are often formally ambiguous to
determine the category of information represented. In the
entry for "dictionary" in Webster's Ninth, the italic type
face is used to represent both the part-of-speech and
foreign-language etymological information, and the part-of-
speech indicator comes after the entry for "dictionary"
and before the entry for the plural "-naries".

One of the earlier desk-type dictionaries in electronic
form was the Longman's Dictionary of Contemporary
English. The tape containing the typesetting information
for the book form was stored electronically. Thus, all its
lexicographical information was available electronically,
but the data fields were ambiguously indicated through
the typesetting commands.

The second edition of the Oxford English Dictionary
(OED2) is available in an electronic edition on CD-ROM.
This dictionary, like the LDOCE, is a running text dictio
nary rather than a regular database. Its data fields,
however, are explicitly marked using the SGML tagging
language. Here, data retrieval does not face the problem
of ambiguity.

The CELEX electronic dictionary is in relational database
form. This encourages uniformity in the classification
system and in the data.

Accessibility of Data. A third trend is the increased acces
sibility to their data offered by some electronic dictio
naries. Accessibility is affected by both data structure and
data encryption. In some dictionaries, the entry point for
retrieval is only by word spelling; in others, there are
multiple entry points. The data of some dictionaries is
designed intentionally to be inaccessible programmatically;
in other cases, it is designed to be accessible.

In word lists such as spelling dictionaries, data organiza
tion is not extensive, usually consisting of only alphabeti
cal ordering and indexing to allow fast access. The data
in these dictionaries is fully accessible to at least the
spelling software application, and may be designed in a
way that it could be used by other software applications
as well. For instance, the Â¡spell dictionary is a word list in
ASCII format that can be used for other purposes.

Other dictionary types vary more in their accessibility,
both in whether the data is accessible at all programmati
cally, and in how flexible the access is. The data in the
OED editions and in Webster's Ninth is encrypted (an

56 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

10th
1st
2nd

a
A & P
a's
A A A
aardrup
aa rdva rk
a a r d w o l f
a a r d w o l v e s
Aa rhus
Aaron
A B A
Ababa
a b a c k
abac te r i a l
abacus
a b a c u s e s

Fig. 1. The first few entries in the dictionary used by the spelling
checker Â¡spell.

unencrypted version of the OED2 is available, but expen
sive). In both the LDOCE and the CELEX dictionaries, the
data is available programmatically.

In Webster's Ninth, the user can access data only through
spelling. In the OED, the user can access data through
spelling, quotation year, original language, and many other
attributes. In the CELEX dictionary, which is a relational
database, access is completely flexible. And in LDOCE,
the user can access the data through selected fields in
the data entries.

Coverage. A fourth trend in modern electronic dictionaries
is that, as linguistically based software systems become
larger, the need grows for representing all and only those
words relevant to a particular application in the electron
ic dictionary. All relevant words must be represented to
allow for complete coverage. It is desirable also to
represent only relevant words to improve storage and
retrieval costs. At least one of the learning dictionaries
discussed above, Collins COBUILD dictionary, chose its
selection of entries not by the traditional approaches of
introspection and of searching for unusual word uses, but
rather by amassing a corpus of text and entering word
occurrences in that corpus into its dictionary. This should
result in a dictionary with a vocabulary representative of
the domain in which the corpus was gathered rather than
an idiosyncratically collected vocabulary. This approach
yields an additional desirable characteristic: statistical
studies on the corpus can indicate frequency of word use,
which can be used in ordering both linguistic uses and
meaning uses of the same word. This frequency information
could be useful to software applications.

Sample Dictionaries
Word lists contain word spellings, sometimes accompanied
by syllabification, pronunciation, or frequency information.
An example is the dictionary used by the spelling checker
Â¡spell. Fig. 1 shows the first few entries in this dictionary,
which contains word entries by spelling only.

Another well-known word list electronic dictionary is the
Brown corpus, which was constructed from statistical
studies on linguistic texts. It provides spelling and part-of-
speech information. However, its great contribution is its
frequency information, which records the frequency of

different words with the same spelling. Frequency lists
usually collapse word frequencies to occurrences of a
spelling instead of accounting for homonyms.

Other electronic dictionaries contain more extensive data
than do word lists. The desktop dictionary Webster's
Xinth on CD-ROM, for instance, provides spelling, syllabi
fication, pronunciation, meaning, part of speech, and
some etymological information for each word.

The Oxford English Dictionary on CD-ROM desktop
dictionary also provides extensive information. Its data
includes spelling, etymology (parent language), part of
speech, quotations to demonstrate context, year of
quotation, and meaning.

The data in the machine-readable Longman's Dictionary
for Contemporary English (LDOCE) and in the CELEX
lexical database from the Centre for Lexical Information
is also extensive and includes phonology, syllabification,
part of speech, morphology, specification of the argu
ments that occur with the word in a phrase, such as
subject, object and so on (subcategorization), and in the
CELEX dictionary, frequency. Also, while the desktop type
of electronic dictionary does not typically contain linguis
tic information that coincides with modern linguistic
theories, these two electronic dictionaries contain work
categorizations based on modern linguistic theory. Much
of the CELEX dictionary's syntactic data is based on
categories from the LDOCE and the OALD.

Fig. 2 shows examples from the CELEX electronic dictio
nary. In these examples, the lemma is the root word, the
part of speech is the major word class to which the word
belongs, the morphology is the formula for deriving the
spelling of the fleeted word from the lemma's spelling,
morphological information includes morphological characteristics
of the word (singular, comparative, etc.), and flection type
contains the same morphological information compressed
to one column.

The HP Natural Language System
A natural language processing system is a software
system that takes natural language input (typically spoken
or typed input), assigns some interpretation to the input,
and perhaps transforms that interpretation into some
action. Examples of natural language processing systems
are speech recognizers, machine translators, and natural
language understanding systems.

HP's natural language understanding system, HP-NL,
accepts typed English input and performs morphological,
syntactic, and semantic analysis on the input. If the
sentence is well-formed, HP-NL assigns a logic representa
tion to the sentence. HP-NL can then translate this logic
expression into another language, for instance a database
query language such as SQL.

The linguistic coverage of HP-NL is limited by, among
other factors, the size of its lexicon, or its word invento
ry. To increase the size of the lexicon and therefore the
coverage of the software system, and to demonstrate that
electronic dictionaries can be used to solve problems of
computation, we integrated the CELEX lexical database
into the HP-NL natural language understanding system.

June 1992 Hewlett-Packard Journal 57

© Copr. 1949-1998 Hewlett-Packard Co.

e n t r y l e m m a p a r t o f s y n t a c t i c i n f o r m a t i o n
s p e e c h

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNYNNNNNNNNNNNNNN

YNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNYNNNNNNNNNNNNNNNNNNN

NYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNNNN

NYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNYNNNNNNNNNNNNNNNNNNNNNNNN

e n t r y l e m m a s p e l l i n g s y l l a b i f i c a t i o n m o r p h o l o g y f r e q u e n c y f l e c t i o n

143

3 6

321

6 4

7 6

8 8

1 5

t ype

S

b
a l S
pe
S

morphological
information
Y N N N N N N N N N N N N
N N N N N Y N N N N N N N
N N Y N N N N N N N N N N
Y N N N N N N N Y Y N N N
N N N N N N Y Y N N N N N
Y N N N N N N N N N N N N
Y N N N N N N Y N N N Y N

Fig. 2. Examples of data from
the CELEX electronic dictionary.

Natural Language Processing Technology
Current linguistic technology relies on detailed linguistic
specification of words. Linguistic analysis is based on
basic information about words, the building blocks of
phrases. We will restrict our consideration to two central
kinds of linguistic information: morphological and syntac
tic information.

Morphological information specifies which component
parts of a word (morphemes) may occur together to
constitute a word. Morphemes may show up on a re
stricted class of words. For instance, the prefix un- may
appear on adjectives, and the suffix -s may occur on
third-person verbs:

la . happy
b. un+happy
c . w o r k
d. * un+work

2a. work
b . work+s
c . happy
d. * happy+s

(adjective)
(adjective)
(verb)

(base verb)
(present third-person-singular verb)
(adjective)

Syntactic information specifies how words interact with
other words to form phrases. Two important kinds of
syntactic information are part of speech and subcatego-
rization. Part of speech is the major word category to
which the word belongs â€” for example, noun, verb,
adjective, and so on. Part of speech is important in
determining which words may occur together and where
they may occur in a sentence. For instance, a verb does
not typically occur as the first element in a declarative
English sentence:

3a. She finished repairing the broken toy.
b. Finished she repairing the broken toy.
c. * Finished repairing the broken toy.

Subcategorization indicates more specifically than part of
speech which words or phrases may occur with the word
in question. It specifies how many and which arguments
may occur with a word. Devour must have a noun phrase

following it in a sentence (devour subcategorizes for a
postverbal noun phrase), whereas eat need not:

4a. The tiger devoured its kill.
b.*The tiger devoured.
c. The tiger ate its kill.
d. The tiger ate.

Subcategorization also allows us to determine which
verbs may occur where in verbal clusters:

5a. They may have left the party already.
b. * They may left the party already.
c. * They may have could left the party already.

Words must be specified in sufficient detail that the
natural language processing system can draw distinctions
such as those indicated above.

HP-NL's Lexicon
The grammatical theory behind the HP-NL system is
HPSG (head-driven phrase structure grammar).3'5 In this
theory, as in most other modern linguistic theories, full
specification of linguistic information at the word level is
essential.

Many words have a great deal of linguistic information in
common. For instance, in example 4 above, each verb
subcategorizes for the same kind of subject and object,
but the object is obligatory in the case of devour, and
optional in the case of eat. In example 2 above, we see
that English present third-person-singular main verbs end
with -s. HP-NL captures these and other linguistic similar
ities of words through a system of hierarchical word
classification.6

HP-NL's lexicon consists of word entries and word classes
arranged in a tree hierarchy (the word class hierarchy).
Each nonleaf node in the word class hierarchy is a word
class. A word class defines a collection of words that
share some cluster of linguistically relevant properties,
which are predictive or descriptive of the linguistic
behavior of the words. The words may be similar mor
phologically and/or syntactically, and may have similar

58 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

SUBCAT

UNSATURATED

p a r e n t s = s u b c a t
c o m p l e m e n t s = s u b j e c t
features
gfun-spec

= subcat p lus
= s u b j e c t

syntax

features = lex p lus

p a r e n t s = m a j o r
f e a t u r e s = m a j v

f ea tu res
subcat minus
maj n
npform norm
compl that whether for

o b l i g T

INTRANSITIVE

parents = unsaturated

BASE

p a r e n t s = v e r b
fea tures = form bse

WORK-1

p a r e n t s = B a s e I n t r a n s i t i v e
s p e l l i n g s = " w o r k "
s e m a n t i c s = w o r k
c o m p l e m e n t s - p p - f o r
g f u n - s p e c = p p - f o r

syntax

features
maj p
subcat plus
lex minus
pform for

role for

Fig. for An example of a word entry (subcategorization section for
the word work), excerpted from a word class hierarchy.

subcategorization. A word class partitions the lexicon into
two sets of words: those that belong to the word class
and those that do not. The characteristics of a word class
are defined by the characteristics that its members share.
Word classes are more general closer to the root of the
word class hierarchy, and are more specific closer to the
leaves. Word entries are the leaves of the word class
hierarchy. The word entry itself contains spelling, word
class membership (parent), and idiosyncratic linguistic
information (see Fig. 3).

The complete linguistic specification of a word is estab
lished through instantiation (Fig. 4). In this, the linguistic
information of the word is unified with the information of
all of its parent word classes. Any possible conflicting
information is resolved in favor of the more specific
information.

Lexicon Development
The development of this extensive word classification
system, the word class hierarchy, makes the creation of
HP-NL lexical entries fairly easy. Lexical development
consists of determining the word class to which a word
belongs and identifying the word's idiosyncratic behavior
with respect to that word class and of recording the
spelling and idiosyncratic linguistic behavior of the word.

Even with this powerful lexical tool, creating lexical
entries is time-consuming. First, each word to be entered

into the lexicon must be analyzed linguistically for word
class membership and idiosyncratic behavior with respect
to that word class. And second, it is difficult for the
lexicon developer to know which words a user of a
natural language processing system will want to use, and
which should therefore be entered into the lexicon. Of
course, lexical tools such as desktop dictionaries and
frequency listings can help the lexicon developer, but
nonautomatic lexicon development is still work-intensive.

Because of this, a hand-built lexicon must be small or
labor-expensive. And because the linguistic coverage of a
natural language processing system is limited by the size
of its lexicon, the narrow coverage resulting from the
small lexicon could result in failure of the natural lan
guage processing system caused solely by unrecognized
vocabulary. Natural language processing systems used as
computer interfaces are intended to allow the user
maximum freedom in expression.

To address the problems of identifying the most common
words of English and specifying their linguistic behavior,
HP-NL's lexicon was augmented with dictionary data
obtained from the CELEX electronic dictionary. The
CELEX electronic dictionary was chosen for three rea
sons. First, the linguistic classification system is compat
ible with modern linguistic theory. Second, the data is
fully accessible. And third, the CELEX electronic dictio
nary provides the frequency data needed to identify
common words.

Lexical Extension Using the CELEX Dictionary
Several advantages were expected from using the lexical
information in the CELEX electronic dictionary. First, the
primary objective in this effort was to increase the
linguistic coverage of HP-NL by increasing the size of the
HP-NL lexicon with externally compiled dictionary data
from the CELEX electronic dictionary. Until CELEX was
integrated into HP-NL, HP-NL's basic lexicon contained
approximately 700 root words (about 1500 words in all,
including those derived from the root words by lexical
rule). Because the only sentences that can be parsed are

WORK 1. instantiated

s p e l l i n g s = " w o r k "
s e m a n t i c s = w o r k
f e a t u r e s = s u b c a t p l u s

lex plus
maj v
form bse

c o m p l e m e n t s = s u b j e c t p p - f o r
g f u n - s p e c = s u b j e c t

syntax

features
subcat minus
maj n
npform norm
compl that whether for

o b l i g T
pp-for

syntax

features
maj p
subcat plus
lex minus
pform for

role for

Fig. 4. Ail example of an instantiated word entry.

June 1992 Hewlett-Packard Journal 59

© Copr. 1949-1998 Hewlett-Packard Co.

NUMBER-LEX

SINGULAR-ONLY

p a r e n t s = n u m b e r - l e x
f e a t u r e s = a g r S r d s g

PLURAL

p a r e n t s = n u m b e r - l e x
f e a t u r e s = a g r S r d p I

M A S S

SINGULAR

LEX-RULE-PLURAL

o l d - p a r e n t = s i n g u l a r
n e w - p a r e n t = p l u r a l
s p e l l i n g s = s u f f i x - s

Fig. 5. An excerpt from the word class hierarchy for the Singular
and Plural word classes, with lexical rule.

those whose component words have been specified
explicitly in the dictionary, HP-NL's rather small dictionary
also necessarily meant narrow coverage. The CELEX
dictionary has both more words than HP-NL (the CELEX
dictionary has 30,000 lemmas and 180,000 wordforms) and
more different word uses for many of the words.

Second, because the developers of the CELEX dictionary
drew on learning dictionaries of English (which attempt
to cover core vocabulary) for their lexical data, the CELEX
dictionary represents the most common words in English.
Assuming that natural language processing users will
prefer common rather than unusual words, using the
CELEX data should eliminate the need on the part of
HP-NL lexicon developers to guess at the words commonly
used by natural language processing users.

Finally, we believed that buying a license to use the
CELEX dictionary would be cheaper than creating a large
lexicon ourselves.

All of these expectations were met. The CELEX dictio
nary was clearly the best choice among the candidate
electronic dictionaries. The data is accessible, unambigu
ously categorized, and extensive. It recognizes many
lexical classes of interest to linguists, and the fee for
commercial clients is reasonable. None of the other
candidate dictionaries had all of these qualities.

Procedure
In the work reported here, the orthography, language
variation, phonology, inflectional morphology, and syntax
data from the English CELEX database was used.

To integrate a large portion of the CELEX dictionary into
the HP-NL dictionary, we transduced CELEX spelling,
syntactic, and morphological information into a form
compatible with the HP-NL system by mapping the
CELEX dictionary's word classifications onto the (often
more detailed) word classes of HP-NL's lexical hierarchy.

Several mappings between the CELEX dictionary's word
classification scheme and HP-NL's word classes are
straightforward. For instance, the CELEX dictionary's two
classes called count nouns (C_N) and uncount nouns
(Unc_N) correspond to HP-NL's three classes Singular, Plural,

and Mass nouns. A count noun can be pluralized and takes
a singular verb in its singular form and a plural verb in its
plural form. Examples from the CELEX dictionary are
almond(s), bookworm(s), and chum(s).

6a. Her chum was waiting for her at the corner,
b. Her chums were playing tag when the cat got stuck

in the tree.

The two word classes in HP-NL that together correspond
to the C_N word class are the Singular word class and the
Plural word class, which are related by the plural lexical
rule (Fig. 5).

The CELEX uncount nouns are those nouns that occur
only in the singular form with a singular verb. This
includes mass and abstract nouns. Examples of Unc_N
nouns from the CELEX dictionary are bread, cardboard,
and integrity.

7a. How much cardboard is in that box?
b. * How many cardboards are in that box?

8a. The ruler has great integrity,
b. * The ruler has great integrities.

The corresponding word class in HP-NL is the Mass word
class (Fig. 6).

Some nouns can be used as either count or uncount
nouns and are classified as both C_N and Unc_N in the
CELEX dictionary. Examples are cake, hair, and cable:

9a. How much cake would you like?
b. How many cakes are on the table?

These are classified as both Singular (and therefore also
derived Plural) and Mass in HP-NL.

This portion of the mapping between the CELEX dictionary
and HP-NL is simple:

C _ N * * S i n g u l a r (a n d b y d e r i v a t i o n , P l u r a l)
Unc_N Â«-Â» Mass

This shows an apparent one-to-one mapping. However,
some of the remainder of the CELEX dictionary nouns
also map onto the Singular word class.

Sing_N for Nouns: Singular Use
Plu_N for Nouns: Plural Use
GrC_N for Nouns: Group Countable
GrUnc_N for Nouns: Group Uncountable

The Sing_N and GrUnc_N classes both map onto the Singular-
only HP-NL word class, and therefore these words have no

NUMBER-LEX

SINGULAR-ONLY

SINGULAR

P L U R A L M A S S

p a r e n t s = n u m b e r - l e x
f e a t u r e s = a g r m a s s

Fig. class An excerpt from the word class hierarchy for the word class
Mass.

60 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

related Plural form. The GrC_N class maps onto the Singular
word class, so these words have a related Plural form.

If all of the many-to-one mappings had been multiple
CELEX word classes collapsing down to one HP-NL class,
the transduction would have been perhaps difficult to
untangle, but possible. Instead, as we will see in the next
section, in some cases HP-NL recognizes more word
classes than the CELEX dictionary. This means that
information that HP-NL needs for accurate parsing is not
provided by the CELEX dictionary.

Difficulties
While using the CELEX dictionary did pay off in the
expected ways, there were some difficulties that the user
of electronic dictionaries should be aware of.

Finding the correspondences between the CELEX dictio
nary's word classes and HP-NL's word classes was surpris
ingly complicated. Part of the problem was sketchy
documentation: some of the word classes were underde-
scribed, and in one case, the documentation inaccurately
described the data, switching two columns (this error has
since been corrected). Also, some of the linguistic distinc
tions the CELEX dictionary recognizes are orthogonal to
the distinctions HP-NL recognizes. Furthermore, some of
the correspondences between the CELEX dictionary and
HP-NL word classes involved one-to-many mappings in
which the CELEX dictionary recognizes fewer word class
distinctions than HP-NL requires.

Unclear CELEX Classification. The documentation provides a
short one-to-three-word description for each of the
syntactic word categories. In some cases, the description
clearly describes the syntactic behavior. For instance, the
example above demonstrating the mapping between the
the CELEX dictionary C_N and Unc_N classes and the
HP-NL Singular, Plural, and Mass word classes shows a case
in which the somewhat slim documentation was adequate
ly informative.

In the case of verb subcategorization, however, the
documentation is not informative enough. The CELEX
dictionary recognizes eight verb subcategorization classes:
transitive, transitive plus complementation, intransitive,
ditransitive, linking, prepositional, phrasal prepositional,
and expressional verbs. Exactly what syntactic behavior
is meant by each of these classes is unclear, however,
although sample words are given in addition to a descrip
tion for each word class. The following sample words
occur in the CELEX documentation:

Trans_V: Transitive
crash: he crashed the car
admit: he admitted that he was wrong

not cycle: * he cycled the bike
TransCompJ/: Transitive plus Complementation

found: the jury found him guilty
make: they had made him chairman

lntrans_V: Intransitive
alight: he got the bus and alighted at the City Hall
leave: she left a will

she left at ten o'clock
not modify: * he modified

Ditrans_V: Ditransitive
envy, he envied his colleagues
tell: she told hijn she would keep in touch

Link_V: Linking Verb
be: I am a doctor
look: she looks worried

Phrasal: Phrasal Verb
Prepositional

minister to
consist of

Phrasal prepositional
walk away with
cry out against

Expression
toe the line
bell the cat

In English, there is a group of verbs that occur with two
arguments. Sometimes the second postverbal argument
must be a noun phrase, sometimes it must be a to preposi
tional phrase, and sometimes it may be either. Consider
the following uses of give, explain, and begrudge:

10a. The girl gave a book to her younger sister,
b. The girl gave her younger sister a book.

c.The girl explained the story to her sister.
d.*The girl explained her sister the story.

e. * The girl begrudged her new ball to her sister.
f. The girl begrudged her sister her new ball.

The linguistic behavior of these words is clear. However,
the CELEX documentation does not clarify which class
should contain the use of give in 10a and explain in lOc,
which can accept either a noun phrase (NP) and a pp-to
phrase as the second argument. Furthermore, it is unclear
from the documentation whether the CELEX dictionary
recognizes the two uses of give as being related to each
other.

Inspecting the CELEX data also yields no clear indication
whether the ditransitive class includes verbs with only
two NP arguments like begrudge, with only one NP and
one pp-to argument like explain, or with both like give.

Perhaps all three verb types are ditransitive, perhaps only
those that alternate, and perhaps only those that accept
only two noun phrase complements. Inspecting the
classification of these three words themselves yields little
more insight. Many words have multiple syntactic behav
iors, so that it is difficult to tell exactly which syntactic
behaviors which CELEX word classification is intended to
cover.

Following are some other examples that demonstrate the
difficulty of ascertaining the intended meaning of the
CELEX verb classes:

lla. I waited all day for you!
b. The patriots believed that their government was

right,

It is unclear whether wait for is a transitive verb (the
pp-for argument being considered an adjunct), a ditransi
tive verb (the pp-for argument being considered a second
complement), or a transitive plus complementation verb
(the pp-for argument being considered a miscellaneous

June 1992 Hewlett-Packard Journal 61

© Copr. 1949-1998 Hewlett-Packard Co.

complement). Similarly, in the case of believe, it is un
clear both from documentation and from inspecting the
data whether the sentential argument of believe causes
this verb to be transitive, transitive plus complementation,
or intransitive.

Orthogonal Classification. The CELEX dictionary recognizes
some categories that are orthogonal to the kinds of
categories that HP-NL recognizes and requires. For
instance, the CELEX dictionary recognizes linking verbs,
which "link a subject / with a complement that describes
that subject a doctor in a sentence like / am a doctor.

These subject complements can take the form of a noun
phrase (She is an intelligent woman), an adjective
phrase (She looks worried), a prepositional phrase (She

lives in Cork}, an adverb phrase (How did she end up

there?) or a clause (Her main intention is to move

somewhere else)." (CELEX Users' Guide)

The distinction between linking and nonlinking verbs is a
semantic one. HP-NL's word class hierarchy draws mor
phological and syntactic distinctions, but not semantic
ones. So this information must be identified as not being
useful (currently) and discarded.

One-to-Many Mapping. Some of the distinctions the CELEX
dictionary draws are useful but not extensive enough for
HP-NL's purposes. For instance, linguistic theories distin
guish between two types of phrasal verbs: raising and
equi verbs.

Raising:
12a. The student seems to be healthy,

b. There seems to be a healthy student.

Equi:
13a. The student tried to climb the tree,

b. There tried to climb the tree the student.

The CELEX dictionary does not draw this distinction.
While the verbs seem and try are indeed present in the
database, not all of their syntactic behavior is docu
mented. To use the CELEX dictionary, some of the data
would have to be augmented from some other source.

One large group of words is underspecified in the CELEX
dictionary with respect to the HP-NL natural language
processing system: the members of the closed word
classes, those classes of grammatical words to which new
words are seldom added. Examples are prepositions such
as of and to, determiners such as the and every, and
auxiliary verbs such as be and could. These grammatical
words carry a great deal of information about the linguis
tic characteristics of the phrase in which they appear, and
must therefore be specified in detail for a natural lan
guage processing system.

Outcome
Despite the difficulties noted here, incorporating the
CELEX dictionary into HP-NL turned out to be not only
profitable for the system but also instructive. The vocabu
lary of the HP-NL system was increased from about 700
basic words to about 50,000 basic words.

The addition of the words greatly increased the number
of sentences that could be parsed. This increase, howev
er, resulted in an overall slowing of parsing, because of

lexical ambiguity. This both slowed word retrieval and
increased the number of possible partial parses.

Only words in the open classes (noun, verb, adjective)
could be added. The HP-NL system requires a lexical
specification that is too theory-specific for the very
important grammatical words, as well as for some mem
bers of the open classes. However, many members of the
open classes could be correctly represented in the HP-NL
format.

The HP-NL project was terminated before user studies
could be conducted that would have determined whether
the CELEX dictionary provides the words a user would
choose while using a natural language processing system.

Computational Applications of Electronic Dictionaries
This case study, done using a large electronic dictionary,
suggests that electronic lexographical information can be
incorporated successfully into nondictionary applications.
First, we found that the CELEX data is in such a form
that it can be transformed for and accessed successfully
by a software application. Second, the data in the CELEX
dictionary is useful in the domain of natural language
processing. The areas of success and difficulty in incorpo
rating the CELEX dictionary into the HP-NL system
should indicate which kinds of software applications
could successfully integrate an electronic dictionary.

The greatest gain from the CELEX dictionary was in
increasing HP-NL's vocabulary dramatically. Although the
vocabulary increase also resulted in slower parsing, the
larger vocabulary was still seen as an improvement,
because the larger vocabulary greatly extended HP-NL's
natural language coverage. For an application that does
not seek to have wide vocabulary coverage, a large
dictionary would clearly not provide the same large
advantage.

Another improvement to HP-NL is in the particular
vocabulary represented. The CELEX dictionary provides
common English words, which are the words HP-NL
needed. An application requiring an unusual vocabulary
(for instance, a vocabulary of technical terms) would not
benefit from the CELEX dictionary as much as did HP-NL.

The largest problem in using the CELEX dictionary was
inadequate information for some word classes. Some of
the documentation was not completely clear, and some
words were not represented in the detail required for
successful parsing by HP-NL. This rendered some of the
CELEX dictionary's information useless for HP-NL. This
did not present a great difficulty; many of the problematic
words had already been created for HP-NL. Of course,
not all applications of dictionary technology will be in
such an advanced linguistic state as HP-NL. An applica
tion of dictionary technology has the most likelihood of
being successful, at least in the near term, if it does not
require very fine categorization of words, particularly
closed-class words.

One topic that was not addressed in the current study is
the role of word meanings in a software application. The
CELEX dictionary contains no definition information.
Therefore, its words have no meaning with respect to a
particular domain such as querying a particular database.

62 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Mapping the meanings of the words from the CELEX
dictionary to a domain must still be done painstakingly by
hand. A thesaurus could potentially provide large groups
of synonyms for words that are defined by hand with
respect to an application. At this point, however, the most
successful application of electronic dictionary technology
would avoid the problem of meaning entirely and use
words themselves as tokens.

In summary, the kind of software application most likely
to benefit from electronic dictionaries would require a
large vocabulary of common words.

Choosing Applications
Now that we have some idea of the characteristics of the
software applications that might benefit from an electron
ic dictionary and what kinds of problems might be
encountered in incorporating the dictionary into the
application, we can consider what particular applications
could use electronic dictionaries.

To review, software systems of the following types could
benefit from the data in an electronic dictionary:

â€¢ Any software system that uses natural language in any
way

â€¢ A software system that requires a large vocabulary of
common words

â€¢ A software system that does not require detailed linguis
tic specification of grammatical words

â€¢ A software system that does not make use of word defini
tions

â€¢ A software system that does not require complete linguis
tic analysis of words unless it supplies its own categoriza
tion scheme (such as HP-NL).

Some types of software applications that match these
characteristics are natural language processing, speech
generation and recognition, document input, document
management, and information retrieval.

The electronic dictionary in turn should possess the
following characteristics:

â€¢ Data accessible to software application (not encrypted)
â€¢ Good data organization (so that access is easy and flex

ible)
â€¢ Appropriate vocabulary (for instance, good coverage of

the core vocabulary of English)
â€¢ Appropriate additional information (for instance, modern

linguistic classification for natural language processing
systems).

Of the dictionaries we have surveyed, few satisfy the first
requirement. The CELEX dictionary, LDOCE, and several
word lists have accessible data. These electronic dictio
naries vary in the degree to which they exhibit the other
characteristics.

Natural Language Processing. Natural language processing
systems are the software applications whose need for
electronic dictionaries is most extensive and most ob
vious. The information necessary is spelling, morphology,
part of speech, and subcategorization, at least. A more
extensive discussion of the role of electronic dictionaries
in natural language processing systems was presented
earlier in this paper.

Speech Technology. In both speech generation and speech
recognition, a vocabulary list and associated pronunci
ations are essential. Depending on the sophistication of
the speech system, other linguistic information may also
be useful.

If the speech generation system is to generate words
alone, a word list with pronunciations is sufficient, but
if it must generate full phrases or sentences spontaneous
ly rather than from a script, a natural language generation
system is necessary. This generation system may be based
on linguistic theory or it may be based instead on tem
plate forms, but in either case, an electronic dictionary-
could provide the word classification information
necessary.

Speech recognition systems that recognize one-word or
canned commands also need no more than a word list
with pronunciations. However, if a speech recognition
system must recognize spontaneously created phrases, a
more sophisticated approach to recognition is necessary.
After the word possibilities have been identified, there are
several ways in which the speech recognizer can identify
potential sentences:

i By ruling out ill-formed sentences on the basis of impossi
ble word-type combinations

< By rating possible sentences on the basis of collocation
information derived from a statistical survey of texts

' By parsing with a natural language understanding system.

Of these, the first and last possibilities would require
word class information in addition to pronunciation
information, which can be gained from electronic dictio
naries currently available. The second possibility would
require data from a statistical study, preferably performed
on texts from the relevant domain.

Document Input. Examples of computer applications that
facilitate document input are optical character recognition
(OCR), "smart" keyboards, and dictation aids. Document
input is error-prone. One of the many ways to reduce
errors is to allow the computer access to linguistic
information.

Such an application would need a word listing, a theory
of the errors likely to be made by the system, and a
theory of the relative frequency of appearance of well-
formed subparts of words. A more sophisticated system
might recognize multiple word blocks, requiring the
linguistic module to provide either word classification
information (for parsing-like ability) or word collocation
information (for statistical information on word co
occurrence).

The HP-UX operating system provides a minimal "smart"
keyboard facility in the csh environment, with an escape
feature for completing known commands. This feature
could be expanded for full English, and could include not
only word completion, but also partial word completion.
That is, the application could have some knowledge of
the frequency of substrings in spellings (or its equivalent
in speech), and with this knowledge could reduce the
number of keystrokes necessary for input.

June 1992 Hewlett-Packard .Journal 63

© Copr. 1949-1998 Hewlett-Packard Co.

When speech recognition technology advances sufficiently,
the opportunity for dictation aids will arise. These tools
could perform a similar function to smart keyboards, but
in the realm of spoken rather than typed language.

Optical character recognition is one of the most promis
ing areas in which electronic dictionaries could be used.
At least one language-based assistance product for OCR is
available commercially: OmniSpell, a spelling corrector for
use with the OCR product OmniPage. It suggests likely
alternate spellings for strings not recognized as words.

Document Management. Linguistic information can also aid
in checking and improving the quality of a document
stored on a computer. Spelling checkers, based on com
mon typographical errors and variation of the misspelling
from well-formed words, as well as on phonological
characteristics of the misspelled word, are available
already.

Grammar and style checkers, however, are not available
in as great abundance or variety. There are grammar
checkers available such as the Grammatik spelling check
er, but they focus primarily on form statistics (average
word length in a sentence, average syllable length of
words) and on frozen style characteristics (use of idiom
atic expressions and cliches, use of passive). They are
notably not very good at identifying errors in grammar,
such as lack of subject-verb concord with complex
subjects,

14. * The teacher but not the students are happy with the
football team.

choice of correct pronoun case in complex prepositional
objects,

15. * Between John and I, he works more,

and similar subtle points in grammar, t

Natural language parsing technology could improve the
performance of grammar checkers, and an electronic
dictionary would be an important part of such a natural
language processing system. Otherwise, an electronic
dictionary indicating part of speech and other relevant
grammatical information such as verb conjugation class,
noun phrase number, and pronoun case could be useful in
heuristic inspection of sentences.

Information Retrieval. Information retrieval capability could
be expanded by incorporating a theory of related words
into information retrieval systems. While this expansion
may not be necessary for standard databases in which
words have a formal meaning and are not really natural
language items, it could be very useful in full-text data
bases. There are two kinds of information that could
expand retrieval possibilities.

t One these grammar checker incorrect ly ident i f ied both of these sentences as being
grammatical.

First, a user might search on a keyword but be interested
in retrieving all occurrences of that word in related
morphological forms:

16a. factory / factories
b. goose / geese
c. happy / happiness

A morphological analyzer module that can recognize
morphologically-related words, either through exhaustive
listing or through some theory of morphological variants,
might expand retrieval possibilities.

Second, a user might be interested in retrieving all
information on a particular topic, but that topic might be
identified by several different synonyms. For instance, the
user might want to retrieve all mentions of animal in a
text. A thesaurus would permit the user to retrieve men
tions of creature and beast, and perhaps also subtopics
such as mammal, amphibian, and reptile.

Conclusion
Electronic dictionaries have recently reached a state of
development which makes them appropriate for use on
the one hand as machine-readable end-user products, and
on the other hand as components of larger language-
based software systems. There are several domains of
software applications that either are already benefitting
from electronic dictionaries or could benefit from elec
tronic dictionaries that are available now. One project at
Hewlett-Packard Laboratories has successfully integrated
one electronic dictionary, the CELEX lexical database,
into its natural language processing system. Other soft
ware applications that could use the extensive informa
tion available in electronic dictionaries are speech genera
tion and recognition, document input such as optical
character recognition and "smart" keyboards, document
management such as spelling and grammar checking, and
information retrieval.

Acknowledgments
I would like to thank the following people for related
discussions: Brett Kessler, Dan FlictÃ³nger, Derek Proudian,
Dale Morris, and David Keppel. I also thank Brett Kessler
for his collaboration.

References
1. J. Nerbonne and D. Proudian, The HP-NL System, STL Report
STL-88-11, Hewlett-Packard Company, 1988.
2. J. Rela ed., The Mental Representation of Grammatical Rela
tions, The MIT Press, 1982.
3. C. Pollard and I. Sag, Information-Based Syntax and Semantics,
CSLI and Notes, no. 13, Center for the Study of Language and
Information, Stanford University, 1987.
4. Collins COBUILD English Language Dictionary, William Collins
Sons & Co. Ltd., 1987.
5. C. Pollard, Generalized Phrase-Structure Grammars, Head
Grammars, and Natural Language, PhD Thesis, Stanford Univer
sity, 1984.
6. D. PhD Lexical Rules in the Hiei-archical Lexicon, PhD
Thesis, Stanford University, 1987.

64 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Bibliography
1. K.L. Acerson. WordPerfect 5.1 Tiie Complete Reference. Osbome
McGraw-Hill. 1990.
2. B. Boguraev and T. Briscoe. eds.. Computational Lexicography
for. \alural Language Processing. Longman. 1989.
3. G. Burnage. CELEXâ€”A Guide For Users. Drukkerij SSN, 1990.
4. J. Carroll. B. Boguraev, C. Grover. and T. Briscoe. A Development
Enrirnnment for Large Xatural Language Grammars. Technical
Report No. 167, Uiuversity of Cambridge Computer Laboratory. Uni
versity of Cambridge. 1988.
5. CELEXNeics, nos. 1-5. December 1986 to August 1990, Centre for
Lexical Information. University of Xijmegen, The Netherlands.
6. B. Dorr, "Conceptual Basis of the Lexicon in Machine Translation."
Proceedings of the First International Lexical Acquisition Work
shop of the International Joint Conference on Artificial Intelli
gence (IJCAI), Detroit, Michigan, 1989.
7. T>\idenBildirorterbuch.
8. D. Flickinger and J. Nerbonne, Inheritance and Complementa
tion: A Case Study of EASY Adjectives and Related Nouns, Associa
tion for Computational Linguistics, 1992, to be published.
9. D. in C. Pollard, and T. Wasow, "Structure-Sharing in Lexi
cal Representation," Proceedings of the 25th Annual Meeting of the
Association for Computational Linguistics, Chicago, Illinois, 1985.
10. W.N. Francis and H. Kucera, Frequency Analysis of English
Usage: Lexicon and Grammar, Houghton-Mifflin Company, 1982.
11. G. Gazdar, E. Klein, G. Pullum, and I. Sag, Generalized Phrase
Structure Grammar, Harvard University Press, 1985.
12. C.F. Goldfarb, The SGML Handbook, Clarendon Press, Oxford,
1990.
13. C. Grover, T. Briscoe, J. Carroll, and B. Boguraev, The Alvey Nat
ural Language Tools Grammar, Technical Report no. 162, University
of Cambridge Computer Laboratory, University of Cambridge, 1989.
14. M. lida, J. Nerbonne, D. Proudian, and D. Roberts, "Accommodat
ing Complex Applications," Proceedings of the First International
Lexical Acquisition Workshop of the International Joint Confer
ence on Artificial Intelligence (IJCAI), Detroit, Michigan, 1989.

15. K. Koskenniemi. "Two-Level Model for Morphological Analysis."
Proceedings of the Eighth International Joint Conference on Arti
ficial Intelligence. Karlsruhe. Germany, 1983.
16. K. Koskenniemi. Tico-Level Morphology: A General Computa
tional Model for Word-Fonn Recognition and Production. Publica
tion no. 11. University of Helsinki. 1983.
17. Longman Dictionary of Contemporary English. Longman
Group UK Ltd.. 1989.
18. S. Miike. K. Hasebe. H. Somers, and S. Amano. "Experiences
with of the Translating Dialogue System." Proceedings of the
26th Annual Meeting of the Association for Computational Lin
guistics, Buffalo. New York. 1988.
19. Oxford Advanced Learner's Dictionary of Current English.
Oxford University Press, 1989.
20. Oxford English Dictionary on Compact Disc, User's Guide.
Oxford University Press, 1987.
21. D. Roberts, Linking Tliematic Roles and Syntactic Arguments
in HPSG, Unpublished Master's Thesis, Cornell University, 1991.
22. S. Shieber, j4rc Introduction to Unification-Based Approaches
la Grammar, Center for the Study of Language and Information,
Stanford University, 1985.
23. B.M. Slator, "Using Context for Sense Preference," Proceedings
of the First International Lexical Acquisition Workshop of the
International Joint Conference on Artificial Intelligence (IJCAI),
Detroit, Michigan, 1989.
24. Stedman 's Medical Dictionary, Williams & Wilkins Company,
1938.
25. Webster's Ninth New Collegiate Dictionary, Merriam-Webster,
1989.

HP-UX is based on and Â¡s compatible with UNIX System Laboratories' UNIX* operating sys
tem. SVID2 specifications. complies with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications.
UNIX is a countries. trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries.
X/Open is a trademark of X/Open Company Limited in the UK and other countries.

Authors
June 1992

H P - U X K e r n e l S u p p o r t

K a r e n K e r s c h e n

Documentation usability is
one of the professional in
terests of learning products
engineer Karen Kerschen.
Karen's first project when
she joined HP's Technical
Workstation group in 1987
was to edit the HP-UX
Reference Manual. Since

that project she has coauthored an HP-UX manual on
system security and Â¡s now responsible for an HP-UX
manual for system administrators that decribes how
the HP-UX operating system works. Before joining HP,
she worked in the University of California's EECS de
partment as the assistant editor for the IEEE publica
tion IEEE Electmtecnnology Review. To stay abreast of
developments in her field, she Â¡s a member of the
Society for Technical Communication. She has a BFA
(1 967) from the Cooper Union for the Advancement of
Science and Art in New York City. Karen grew up in
New York. Her interests and hobbies include photog
raphy, Latin American studies, creative writing, and
Spanish translation.

Jeffrey R. Glasson
Software engineer Jeffrey
Glasson was responsible for
developing software to take
advantage of new PA-RISC
hardware features and spe
cial routines to handle float
ing-point traps. He has also
worked on HP-UX performance
tuning and developing low-

level code for the HP 9000 Model 835. Jeff came to HP
in 1984 after earning a BS in computer engineering from
the University of San Diego that same year. He Â¡s now
a senior software engineer at Apple Computer, Inc. He
is married and enjoys skiing, wine tasting, and playing
strategy games.

1 1 K e r n e l F u n c t i o n a l i t y

F r a n k P . L e m m o n

Product assurance engineer
Frank Lemmon was a soft
ware testing specialist in the
HP-UX kernel laboratory. He
was responsible for provid
ing automated regression
testing for the minimum core
functionality kernel. He
joined HP in 1979 at the

former Computer Systems Division. Some of the proj
ects he worked on include a message I/O project,
implementation of a stitch-wire breadboard system,
coordination of the partner test plan for the HP-UX
install and update programs, and development of a
quick test facility for the HP-UX system integration
process. Frank left HP in 1 991 and now works as a
product assurance engineer at Auspex Systems Inc in
Santa Clara, California. He has a BS degree in engi
neering (1973) from the University of California at Los
Angeles and an MS in computer science (1976) from
Santa Clara University. Before joining HP he worked
as a hardware development engineer at Amdahl Corpo
ration, and as a design engineer for Itek Corporation at
the Applied Technology Division. Frank Â¡s married. He
was the founder of the HP windsurfing club and is a
hike leader with the Sierra Club.

June 1992 Hewlett-Packard Journal 65

© Copr. 1949-1998 Hewlett-Packard Co.

f

Donald E. Bollinger
Don Bollinger was the
project manager responsible
for integration of system
software for the HP 9000
Series 700 minimum core
functionality release. Don
joined HP in 1979 at the for
mer Data Systems Division
(DSD) after receiving a BS

degree in electrical engineering and computer science
that same year from the Massachusetts Institute of
Technology. He also has an MBA from Santa Clara
University. At DSD, Don worked as a development
engineer on the HP 1000 RTE operating system.
Before working on the Series 700 project, he was a
project manager for development of HP-UX commands
and integration of HP-UX system software. Born in
Pasadena, California, Don is married and has three
children. Being a concerned parent, he is very involved
in the elementary school in his area.

Dawn L. Yamine

Productivity engineer Dawn
Yamine worked as an in
spections consultant for the
software projects involved in
developing the minimum
core functionality release of
the HP-UX kernel. Dawn
joined HP's Manufacturing
Productivity Division in 1984

after receiving a master's degree in computer science
that same year from Bradley University in Peoria,
Illinois. She also has a BS in accounting (1 980) from
Millikin University in Decatur, Illinois. She has worked
as a quality engineer and as a technical trainer. She
had the opportunity to teach structured design meth
ods to the HP team that developed the system to
monitor Biosphere II. Born in Decatur, Illinois, Dawn
is married and enjoys skiing and boardsailing.

1 5 O p t i m i z a t i o n s i n P A - R I S C 1 . 1

Robert C. Hansen

A graduate of San Jose
State University with a BS
degree (1986) in computer
engineering, Bob Hansen is
a language engineer/scien
tist at HP's Systems Technol
ogy Division. Since joining
HP in 1985, he has worked
ona path flow analyzer (a

tool for analyzing test coverage) and a native SPL/XL
compiler used to port Turbo Image from MPE Vto
MPE XL. Before joining HP, he worked as a coop stu
dent at IBM doing real-time data acquisition. Before
working on the PA-RISC optimizer project he was do
ing research on methods to do profile-based compil
ing. He is a coauthor of a paper that describes using
profile information to guide code positioning. He is
listed as an inventor on a pending patent that describes
a technique for profile guided code positioning. Bob
was born in Japan at Johnson Air Force Base. His
hobbies and interests include remodeling houses and
outdoor activities such as fishing, hiking, camping,
and ultimate frisbee.

2 4 O p t i m i z i n g P r e p r o c e s s o r

Daniel J . Magenheimer

; A project manager in HP's
g Colorado Language Labora-
I tory, Dan Magenheimer

^ ^ ^ j c o m a n a g e d t h e S e r i e s 7 0 0
' - . ' - , i FORTRAN opt imiz ing prepro-

I cessor project. He was a
I member of the team that

defined the PA-RISC archi
tecture when he joined HP

Laboratories in 1 982. He has a BA degree in computer
science (1 981) from the University of California at
Santa Barbara and an MSEE (1985) from Stanford
University. He has authored several technical articles
and is a member of the IEEE Computer Society. His
professional interests include computer architecture,
performance analysis, compilers, and development
environments. Born in Milwaukee, Wisconsin, Dan is
married and has two children. His family keeps him
busy but he does find time to play some basketball
and Softball.

Robert A. Gottlieb

Software engineer/scientist
Bob Gottlieb joined HP's
Apollo Systems Division in
1989. He has a BA in electri
cal engineering and mathe
matical sciences (1 975) and
a professional master of
electrical engineering (MEE
1976) from Rice University.

He was one of the engineers who worked on the opti
mizing preprocessor for the Series 700 FORTRAN
compiler. He has also worked on HP Concurrent
FORTRAN for the Apollo DN 10000 system and the
design and implementation of the induction and
analysis phase for the FORTRAN compiler, also for
DN10000. Before joining Apollo he worked at Aliant
Computer Systems on parallelizing compiler develop
ment and at Digital Equipment Corp. on a Pascal com
piler and CAD development. He is a member of the
ACM and his professional interests are in compiler
optimization, particularly in areas such as parallelism
and Â¡nterprocedural optimizations. Born in Aberdeen,
Maryland, Bob is married likes traveling, skiing, and
scuba diving.

Software development
engineer Alan Meyer joined
HP's Colorado Language
Laboratory in 1989. Alan has
a BS degree in computer
science (1981) from the Uni
versity of Washington and a
PhD in computer science
(1989) from Washington

State University. He worked on the FORTRAN compiler
project for the 8.05 release of the HP-UX operating
system. He is a member of the ACM and has authored
or coauthored two articles on geometric modelling.
Born in Pullman, Washington, Alan is married and has
one daughter. For relaxation he likes to hike, ski, and
garden.

Sue A. Meloy

A software development
engineer at HP's Systems

_ ^ T e c h n o l o g y D i v i s i o n , S u e
" ' ^Jk - Me loy worked on the vec to r

* f l " ' ; l i b r a r y f o r t h e S e r i e s 7 0 0
m ^ ' i l l T FORTRAN comp i l e r . Sue was

J ^ a c o o p s t u d e n t a t H P i n 1 9 7 7
anc' Decame a permanent
employee in 1979. Projects

she worked on before the vector library include a C++
compiler code generator for the HP 9000 Series 300,
an architecture neutral distribution format (ANDF)
prototype, the C compiler for the Series 800, and BA
SIC compilers for the HP 300 and HP 1000 computer
systems. Sue has a BS degree in computer science
(1 978) from California State University at Chico. An
expert on C, she served as HP's representative on the
ANSI C standards committee. Her professional inter
ests include C, code generation, and debugging opti
mized code. She has also published several articles
on debugging optimized code and C. Born in Redwood
City, California, Sue is married. Her favorite pastimes
include reading, cooking, and learning to play the piano.

3 3 R e g i s t e r R e a s s o c i a t i o n

Vatsa Santhanam

A computer language
engineer/scientist at HP's
California language labora
tory, Vatsa Santhanam works
on the design and imple
mentation of compiler opti
mization techniques. He
joined HP in 1984 at HP's
Santa Clara Division. While

there he worked as a test system software design
engineer on a VLSI tester project. He has since
worked on different optimization projects including an
investigation of Â¡nterprocedural optimizations. He
also worked on a project that produced HP's response
to an Open Software Foundation's request for
technology for an architecture neutral software dis
tribution format (ANDF). He received a Bachelors of
Technology degree in electrical engineering (1982)
from the Indian Institute of Technology in Madras,
India and an MS in computer science (1 984) from the
University of Wisconsin at Madison. He also worked
as a teaching assistant at the University of Wisconsin.
He has coauthored three papers on compiler technol
ogy and is named as a coinventor on patent applica
tions for an interprocedural register allocation tech
nique and an architecture neutral distribution format.
Vatsa was born in Madras, India and grew up in Ja
pan and Hong Kong. He is married, and when he is
not pursuing his professional interests in compilers
and computer architecture, he likes to play chess,
dabble in Hindu astrology, and listen to Indian classical

66 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

3 9 S o f t w a r e P i p e l i n i n g 5 4 E l e c t r o n i c D i c t i o n a r y 7 6 P a r a l l e l I m a g e G e n e r a t i o n

S r i d h a r R a m a k r i s h n a n

A software engineer at
HP's Systems Technology
Division, Sridhar Ramakrish
nan joined HP in 1988. He
worked on the instruction
scheduling and pipelining
components of the optimizer

|x project. Before the optimizer
" project, he worked on the

development of a programming environment for Ada
based on SoftBench. He has a Bachelor of Technology
degree in computer science (1 985) from the Indian
Institute of Technology in Bombay, India and an MS in
computer science (1987) from the University of New
Hampshire. Before joining HP, he worked on an Ada
debugger and other tools at Tartan Laboratories Â¡n
Pittsburgh, Pennsylvania. He has published a paper
that describes a compiler for Prolog. Sridhar's profes
sional interests include code generation and optimiza
tion and programming development environments.

4 6 S h a r e d L i b r a r y

G a r y A . C o u t a n t

a Senior software engineer
Gary Coutant was the project
manager for the linker proj
ect for the HP 9000 Series
700 and 800 systems. Gary
joined HP's Information Net-
works Division in 1979. Oth-
er projects he has worked on
include HP Word, an HP

3000-based spooling system called Print Central, and
HP-UX commands. Gary has a BS in physics (1977)
from Furman University and an MS in computer science
(1979) from the University of Arizona. He has coauthored
one paper on an advanced tty driver for the UNIX op
erating system and another paper on performance
measurement. He is a member of the ACM and his
main professional interest is computer languages.
Born in Chicago, Illinois, Gary is married and has one
daughter. Golf and tennis are among his recreational
activities.

. f ,

M i c h e l l e A . R u s c e t t a

A software development
engineer at HP's Systems
Technology Division, Michelle
Ruscetta joined HPin 1983
after graduating from the
University of Utah with a BS
degree in computer science
that same year. She was one
of the engineers who worked

on the linker and dynamic loader used in the shared
library project. Projects she has worked on Â¡n the past
include developing enhancements to HP's PA-RISC C
compiler and developing methods of debugging opti
mized code. The optimized code project provided the
basis for a paper that describes an approach to
source-level debugging of optimized code. Michelle
was born Â¡n Schenectady, New York. Her recreational
interests include tennis and Softball

D i a n a C . R o b e r t s

Diana Roberts received her
BS degree in psychology
from the Georgia Institute of
Technology in 1982 and her
MA degree in linguistics
from Cornell University in
1991. She joined HP Labora
tories in 1985 as a member
of the technical staff and did

development work in the lexicon of HP-NL, the HP
natural language understanding system. She is a
member of the Association for Computational Linguis
tics and has published on linguistic subjects. Besides
her native English, she is fluent in German and has an
active interest in the German language and German
linguistics. She is conversant Â¡n French and has some
facility Â¡n Italian and Spanish. From the fall of 1982 to
the spring of 1 984 she was an exchange fellow at the
University of Hanover, Germany. During that time she
served as an assistant teacher of linguistics at the
university and taught English as a foreign language at
a local language school. In the summer of 1 991 she
again taught English as a foreign language Â¡n Germany.
Another of her interests is folk literature. Diana was
born in Idaho Falls, Idaho and grew up Â¡n Atlanta,
Georgia. Her leisure activities include camping, hiking,
dancing, sewing, and reading.

6 8 S p a t i a l F r e q u e n c y M e t h o d s

D a l e D . R u s s e l l

Now a member of the tech
nical staff at HP's Boise
Printer Division, chemist
Dale Russell joined the HP
InkJet Components Operation
Â¡n 1987. She has worked on
ink formulations, waterfast-
ness improvement for InkJet
inks, color science, and the

development of machine vision print quality evalua
tion methods, and is now doing R&D on electrographic
toners. Two patents on waterfastness improvement,
five pending patents on dye chemistry and analytical
methods, and ten professional papers have resulted
from her work. Her undergraduate degree is a BA Â¡n
English from the University of California at Davis
(1967), and she holds MS and PhD degrees Â¡n chemis
try (1 979 and 1 985) from the University of Arizona.
She served as a research chemist with the Environ
mental Trace Substance Research Program from 1979
to 1 980 and as an assistant professor of chemistry at
Northern Arizona University from 1984 to 1987, and is
currently an adjunct professor of chemistry at Boise
State University. She is a member of the Society for
Imaging Science and Technology, the American
Chemical Society, and the International Society for
Optical Engineering. Born Â¡n San Diego, California,
she is married and has two children. Her interests
include mountaineering, snow, rock, and ice climbing,
marathons and triathlons, and skiing. She's a certified
scuba diver and paraglider pilot and a graduate of the
National Outdoor Leadership School. She is active in
her church, serves as a women's shelter volunteer,
and teaches rock climbing, rappeling, and wilderness
survival for the Boy Scouts of America.

S u s a n S . S p a c h

Susan Spach has been a
member of the technical
staff of Hewlett-Packard
Laboratories in Palo Alto,
California since 1985. She
has done simulations of
graphics algorithms to be
designed Â¡n hardware and
has worked on 3D graphics

architectures and algorithms, concentrating on accel
erating realistic rendering algorithms. A native of
Durham, North Carolina, she attended the University
of North Carolina at Chapel Hill, receiving her BA de
gree in mathematics in 1979 and her MS degree Â¡n
computer science Â¡n 1 981 . Before coming to HP Labs,
she was a software engineer at the same university,
working on database applications and 3D graphics
research. She is a member of the ACM and the IEEE
Computer Society, and has coauthored several papers
on 3D graphics algorithms, geometric modeling, ren
dering, and graphics architecture. She is married and
has a daughter. An avid runner, she was an organizer
of the HP National Running Club and serves as its
treasurer.

R o n a l d W . P u l l e y b l a n k

A member of the technical
staff of Hewlett-Packard
Laboratories Â¡n Palo Alto,
California, Ron Pulleyblank
has been doing research on
3D computer graphics archi-

â€¢^lÂ· t lectures and algorithms,
^ ^ L r ^ ^ ^ ^ ^ * c o n c e n t r a t i n g o n a c c e l e r a t -

" ^ ^ ^ i n g r e a l i s t i c r e n d e r i n g a l g o
rithms. A native of Detroit, he received BS degrees Â¡n
electrical engineering and physics from the University
of Michigan Â¡n 1964 and 1965, and a PhD degree Â¡n
electrical engineering from the University of Pennsyl
vania in 1 969. He taughl electrical engineering at the
University of Lagos, Nigeria and the University of the
Pacific and worked on digital communications at Bell
Telephone Laboratories before joining HP in 1980. At
HP's Delcon Division, he worked on measurement
techniques for transmission impairment measuring
sets and on nonintrusive measurements for data
transmission over telephone lines. With HP Labs
since 1 981 , he has has worked on techniques for inte
grating voice and data on LANs and on hardware and
algorithm design for 3D graphics. A member of the
IEEE, he has published papers on integrating voice
and data in broadband cable systems, optimal digital
communications, and the design of a VLSI chip for
rendering bicubic patches. Ron suffers from ALS, is
quadriplegic, and requires a ventilator to breathe. He
is married, has two daughters, and serves on the dis
ability awareness task force of the City of Palo Alto.

Juno 1992 Hewlett-Packard Journal 67

© Copr. 1949-1998 Hewlett-Packard Co.

Application of Spatial Frequency
Methods to Evaluation of Printed
Images
Contrast transfer function methods, applied in pairwise comparisons,
differentiated between print algorithms, dot sizes, stroke widths,
resolutions (dpi), smoothing algorithms, and toners. Machine judgments
based a these methods agreed with the print quality judgments of a
panel of trained human observers.

by Dale D. Russell

Certain aspects of printed images lend themselves to
analysis by spatial frequency methods. The ultimate goal
of this type of analysis is to derive a single figure of
merit from a test pattern that is sensitive to the overall
performance of the printer system.1 The printer system
includes the firmware, hardware, and software, as well
as the print engine with its associated colorant/paper
interaction.

The value of the modulation transfer function (MTF) in
defining optical systems has been demonstrated for
decades. As early as 1966, photographic resolving power
was shown to be an inadequate measure of system
performance and the MTF has been increasingly used.2
Similarly, the resolution of a printer in terms of dots per
inch (dpi) is not adequate to describe the performance
and fidelity of the printer through the whole range of
spatial frequencies that must be rendered. A consideration
of resolution alone fails to take into account either the
lower-frequency fidelity or the limiting effect of the
human eye.1

The MTF generates a curve indicating the degree to
which image contrast is reduced as spatial frequency is
increased. Unlike resolution, MTF gives a system re
sponse with values from zero to a finite number of cycles
per millimeter, thus filling in information about the low
and middle ranges of the spatial frequency spectrum.

Strictly speaking, continuous methods such as the MTF
and the contrast transfer function (CTF) do not apply to
discrete systems such as a digital printer, and applications
of these functions to discrete systems typically meet with
mixed success. The MTF and CTF assume a system that
is linear and space and time invariant. Any system with
fixed sampling locations (such as a 300-dpi grid) is not
space invariant, and sampling theory must be judiciously
applied to characterize it. Printers not only digitize data,
but most printers binarize it as well, making interpola
tions of values impossible. This introduces what is
essentially a large noise component and gives rise to
moire patterns on periodic data.

On the other hand, spatial frequency methods offer a
great advantage in that the transfer functions for individu
al components of a system can be cascaded (i.e., multi
plied together) to yield the transfer function of the
system (with some exceptions). Provided that a system is
close to linear, as it must be if the printed image is to
look anything like the intended image, then multiplying
component MTFs point by point adequately predicts a
complete system MTF.1 If MTF methods can be adapted
to discrete systems, then the overall transfer function will
exhibit a sensitivity to changes in the transfer functions
of all system components. This sensitivity can be ex
ploited, for example, to diagnose problems or to evaluate
new printer designs.

The modulation transfer function is the modulus of the
system optical transfer function, which is the Fourier
transform of the system point-spread function.3 While the
MTF of a component or system is easier to calculate,
experimental work is generally based on measurement of
the CTF. This function is then compared to the theoretical
performance of a system to yield a single figure of merit
for that system. A printer commanded to print a 50% fill
pattern consisting of lines will reach a limit of spatial
frequency at which it must overprint the designated area.
This results in increasing average optical density with
increasing spatial frequency, as observed in the test
patterns. The CTF is based on contrast, or the difference
in reflectance of the printed and unprinted portions of the
test pattern. As the white space is increasingly en
croached upon by the printed area, or increasingly filled
with spray and scatter, the contrast is degraded. This
results in a loss of print fidelity and a concomitant
decrease in the value of the CTF at that frequency. In the
limit, contrast and CTF drop to zero.

In addition to printer limitations, the human eye, with
discrete receptors, has a spatial frequency limit of sensi
tivity. This cutoff point sets a practical limit on the need
for improved contrast in a printed image. Furthermore,
the contrast sensitivity curve for the human eye, when

68 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

considered as part of the total system, can be convolved
with the CTF curve for the printer to assess the relative
importance of improvements in contrast as perceived by
the human observer.

Integrating under the CTF curve through the pertinent
frequency range gives a single value of the function for
that system. This figure can be compared with a standard
that represents the theoretical performance to obtain a
figure of merit for the system. When the CTF-derived
figure of merit correlates with one or more parameters as
evaluated by the human observer, then the additional
advantage of being able to predict human response with a
machine-graded test is realized.

Fourier transform methods are closely related to the MTF
and are also applicable to print quality evaluation. Where
as the CTF experiment shows printer performance using
a particular test pattern, the Fourier transform can in
principle be applied to any printed image. The Fourier
transform in this case takes intensity-versus-position data
and transforms it to the spatial frequency domain. When
a Fourier transform for an image is compared to the
Fourier transform for a "standard" image, the dropout
areas reveal which frequencies are not transferred by that
printer. This can be used to determine limits of printer
performance and to identify sources of change in printer
performance.

A number of advantages are associated with the use of
the Fourier transform for image quality analysis. First, the
freedom to select virtually any character or image means
that exactly the same image can be presented to both the
human and machine observers. Greater control over the
experimental variables is possible, since the very same
page is evaluated, rather than a test target for the ma
chine vision system and a page of text or graphics for the
human. Printing two different patterns on two separate
pages at two different times necessarily introduces
uncontrolled and even unknown variables that may
influence print quality measurements. Use of the Fourier
transform for this analysis can eliminate at least some of
these variables.

With fast Fourier transform algorithms available today, the
time to transform an entire frame of image data is only a
minute or so. This makes the time required for analysis
by this method considerably less than that for a complete
workup of the spatial frequency sweep test target. Given
the freedom to select any image for the Fourier trans
form, attention can be focused on the most egregious
visible defects in printer performance. This should further
reduce the time required for analysis and ultimately for
printer system improvements.

This paper discusses the development and application of
various test patterns to black-and-white print quality
evaluation with extension to color print quality evaluation.
A trained panel of judges evaluated merged text and
graphics samples, and their responses are compared with
the results of the CTF method. In addition, some exam
ples of the Fourier transform evaluation of printed images
are given, and are compared to the information from the
CTF method.

Experimental Methods
Three different test patterns were used to derive contrast
transfer function data for the printer systems being
evaluated. The simplest pattern consists of printed Unes
paired with imprinted spaces of equal width, in a se
quence of increasing spatial frequency. The advantage of
this is is its simplicity. The principal disadvantage is
that it provides information on the printer system only in
one axis. Evaluation of the contrast is done using image
processing software to generate a line profile normal to
the printed lines. Contrast is determined as indicated
below.

The second pattern consists of 50% hatched fill patterns
at five selected spatial frequencies (0.85 to 2.0 cycles/mm)
chosen to lie within the range of human sensitivity (0 to
~4.7 cycles/degree at a viewing distance of 12 in) and to
contain the majority of the spatial frequency information
for text. Each is presented at seven different angles from
the horizontal axis to the vertical axis of the page. This
pattern was analyzed by measuring the average optical
density and comparing it with the computed theoretical
optical density of a 50% pattern, given the paper and
colorant used. Patterns of this type are commercially
available in print quality analysis packages.

The most complex pattern evaluated consists of concen
tric rings increasing in spatial frequency from the center
out. This pattern includes all print angles relative to the
page, but is sensitive to the algorithm used to generate
the circle. It provides striking evidence of the impact of
the software on the final rendering of a printed sample.
In terms of CTF, it reveals the very large contribution of
the software to the overall transfer function.

For uniformly sampled spaces, as in a scanner or printer,
a circular spatial frequency test pattern gives a visual
representation of the system response at all print angles.
One effect of the continuously varied spatial frequency
mapped onto a fixed grid is the appearance of moire
patterns, which indicate beat frequencies between the
grid and the desired print frequency.4 The moire patterns
are observed along the pattern axes at frequencies
corresponding to division of the printer's capability in
dots-per-inch by integer and half-integer numbers. While
normally used to test the physical reproduction capability
of a grid and spot point function, the circular spatial
frequency test pattern also proves useful for evaluating
the rendering print quality of graphics algorithms.

The concentric circle test pattern is shown in Fig. 1,
which is a 2400-dpi Linotronic imagesetter output de
scribed under the heading "Effect of Print Algorithm"
below. The white dots on the horizontal axis are frequen
cy markers with a spacing of 0.5 cycles/mm. There are
similar markings in the vertical axis with a spacing of 10
cycles/inch. The viewing distance determines the spatial
frequency on the human retina in cycles/degree, which is
the appropriate unit for dealing with human contrast
sensitivity. To convert from cycles/degree to cycles/mm,
the following relationship is used:

June 1992 Hewlett-Packard Journal 69

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. image Concentric circle test pattern. 2400-dpi Linotronic image
setter output.

v = 57.3 Â£

where v is the spatial frequency in cycles/mm, ju is the
spatial frequency in cycles/degree, and H is the viewing
distance in mm.5

Five different black-and-white electrographic printers,
with firmware and toner variations of each, were eva
luated. Two color printers, electrographic and thermal
transfer, were also compared.

The color and black patterns were analyzed using a CCD
(charge-coupled device) color video camera vision system
and commercially available control software. Digital image
processing was performed with commercially available
and in-house software. Care was taken to control such
experimental variables as the distance from the camera to
the paper, the output power of the lamp, the angles of
viewing and illumination, and the magnification of the
image. Measurements were made in a thermostatically
controlled room so that detector noise and dark current
would be minimal and relatively constant. Every effort
was made to eliminate stray light.

Optical densities of the printed lines and unprinted spaces
were determined along with the spatial frequencies. This
was done by evaluating a line profile taken normal to the
printed line. A contrast function, C, was computed for
each line-space pair according to the formula:6

C =
I m a x I

"*" ̂

where Imax and ImÂ¡n are the reflected light intensities of
the space and line, respectively, as measured by the video
camera for the line profile data. These values had a range
of 0 (no measurable reflected light) to 255 (maximum
measurable light intensity).

Color patterns were illuminated under filtered light to
increase the contrast while keeping reflected intensities
within the range of 0 to 255 as measured by the video
camera. Therefore, all values reported for the colored
samples are relative and not absolute. Data is reported
here for only one of the three color channels. A complete
analysis would include all three channels. However, we
found no case in this study where the inclusion of the
other two channels altered a result. This data is normal
ized and presented as percent modulation on the plots.

By generating rays starting at the center of the test
target, line profiles can be taken through as many print
angles as desired, for complete analysis of the test
pattern. In this work, 10 rays were taken from the center
to the edge of the target, in the fourth quadrant, at
10-degree increments starting with the vertical axis and
ending with the horizontal axis. The CTF data for all ten
rays was computed at the desired frequencies and aver
aged to obtain the percent modulation as a function of
spatial frequency for the sample. The data reported here
was all obtained by this method and represents an
average of the CTFs at the ten print angles.

Using in-house software, text and "standard" images were
transformed into the spatial frequency domain. The
standard images were printed on a 2400-dpi imagesetter
using scaled bit maps otherwise identical to the test
image. Differences between the sample and the standard
Fourier transforms were computed and the dropout
frequencies noted. These correspond to mathematical
notch filters applied to the standard at certain frequencies.

The test image can then be reconstructed by adding the
dropout frequencies one at a time to identify which
frequencies are responsible for which print defects. The
defect frequencies can sometimes be attributed to printer
functions, such as gear noise or mechanical vibration
frequencies. In this case, a new engine design or materi
als set will be required to correct the printed image.

Dropout frequencies associated with the sampling fre
quency of the print grid (i.e., dpi), cannot be corrected
without changing the resolution, and thus represent a
fundamental limitation. These frequencies can be filled in
by various resolution enhancement techniques, or the
resolution of the printer must be increased. One applica
tion of the Fourier transform method is the immediate
evaluation of various resolution enhancement techniques.

Human response to print quality was determined by a
committee of 14 trained observers. The committee was
shown samples consisting of merged text and graphics for
which they graded solid fill homogeneity, contrast, edge
roughness, edge sharpness, line resolution, and character
density. The committee also gave overall subjective
impressions of each sample at the page level, and ranked
the samples by making paired comparisons.

Results
Effect of Print Algorithm. A number of different algorithms
were examined for preparing the concentric circle test
target. Bresenham's algorithm generates the pattern very
quickly, but snaps all radii to the nearest integer value.

70 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. Test target output from a 300-dpi eleetrographic printer
(printer P) with a good match between dot size and resolution.

Several PostScript interpreters were evaluated; some have
floating-point accuracy, others gave unusual renderings.
There were considerable differences among them. The
test target can also be calculated in polar fashion by
incrementing an angle from 0 to 360 degrees and using
the sine and cosine of the angle to calculate points to
render directly to a bit map. This makes it possible to
use the target for print engine and dpi tests.

The method chosen for the rest of this investigation
generates a bit map by using a square root function to
generate the circles:

Y = INT(v/Radius2 - X2)

for integer values of X. This is computed in one octant of
the circle and reflected to the others. Fig. 1 is a 2400-dpi
Linotronic output of the test pattern. Differences in print
quality arising from the print algorithm alone could have
boon evaluated using the CTF method outlined in this
paper. The choice of an algorithm for printing the concen
tric circle pattern was based on subjective and qualitative
visual ranking of the geometric integrity of test patterns
generated as described here.

Effect of DPI, Dot Size, and Edge Smoothing. Increasing the
dpi of a printer results in improved CTF through a wider
range of spatial frequencies, provided dot size is reduced
accordingly. If dot size is held constant, only low-frequency
response is improved. Fig. 2 is from a 300-dpi electro-
graphic printer (coded printer P) that has a reasonable
match between dot size and resolution. Features are
visually distinguished out to the Nyquist frequent" 150
cycles/mm.

A second 300-dpi printer, coded printer R, has a larger
dot size than printer P. Comparison of Fig. 3 with Fig. 2
shows loss of contrast at, higher spatial frequencies. It has

Fig. 3. Test target output from a 300-dpi eleetrographic printer
with a larger dot size (printer R).

been calculated that a severe degradation of the MTF
results from even a 5% increase in dot size.5

Fig. 4 is from printer R with an edge smoothing algorithm
applied, and shows improvement at low and middle
frequencies. At high frequencies, however, there is actual
ly loss of contrast as the white space between lines is
increasingly encroached upon by the thicker, smoothed
lines. The main advantage of this particular edge smooth
ing technique lies in the low to middle frequency regions
where most text information is located. When the print

Fig. 4. Test target from printer R with an edge smoothing algo-
rilhni applied.

June 1H92 Hewlett-Packard Journal 71

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. with Enlargement of 300-dpi text (4-point) from printer R with
out edge smoothing.

quality jury evaluated text only, they unanimously pre
ferred the edge smoothing algorithm. However, when fine
lines, 50% fill, and other graphics patterns were included
in the samples, the overall preference was in favor of the
unsmoothed samples. Figs. 5 and 6 are enlargements
of text samples shown to the jury of smoothed and
unsmoothed print.

Figs. 7 and 8 are from 400-dpi and 600-dpi printers,
respectively. The moire centers are observed to occur at
locations on the vertical and horizontal axes correspond
ing to the dpi value in dots per inch divided by integers
and half-integers. As resolution in dpi is improved, the
moire patterns have fewer discernible rings and appear at
higher frequencies. Print fidelity is therefore better
through a broader range of spatial frequencies. Fig. 9 is a
plot of the normalized contrast, as percent modulation,
for three printers with 300-dpi, 600-dpi, and 1200-dpi
resolution. In general, the moire patterns are evidence of

Fig. 7. Test target output from a 400-dpi electrographic printer.

print defects, and measures taken to reduce their visibili
ty in the test target will result in improved fidelity for
both text and graphics.4

Effect of Toner. Toner particle size can have a measurable
impact on print quality,7 and the CTF method can be
used to evaluate this effect. Two special toners were
compared with a standard commercially available toner.
The special toners were characterized by having smaller
average particle size and a narrower particle size distribu
tion. A comparison of Figs. 10 and 2 shows the impact of
this on the concentric circle test pattern. The special

Fig. with Enlargement of 300-dpi text (4-point) from printer R with
an edge smoothing algorithm applied. Fig. 8. Test target ouput from a 600-dpi electrographic printer.

72 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

110

100

90

i "
J 6 0

J 5 0

* 4 0

30

20

10

O

Spatial Frequency (cycles/mm)

0 1 2 0 0 d p i A 6 0 0 d p i Q 3 0 0 d p i

Fig. for Percent modulation as a function of spatial frequency for
300-dpi, 600-dpi, and 1200-dpi printers.

toners give smoother line edges, less scatter, and conse
quently better contrast. The CTF plots in Fig. 11 illustrate
the impact of this over the spatial frequency range. The
curve for the special toner remains high through the
human sensitivity range. The print quality jury invariably
preferred the special toners to the standard toner.

Color Samples. Color print samples of the concentric circle
pattern were generated by 300-dpi, 400-dpi, and 2400-dpi
color printers. Data shown here is for green print sam
ples. The choice of a secondary color introduces the
added parameter of color-to-color registration, which can
be separately evaluated by the method. The difference in
resolution and the wider stroke width of the 300-dpi
printer combined to make the 400-dpi printer clearly
superior. Text and graphics samples judged by the print
quality jury followed the same order of preference. When
the 300-dpi printer had its stroke width modified by
deleting one pixel width every line, it became the better
of the two printers, according to the CTF data. This is
illustrated in Fig. 12. Human evaluation gave the same
result.

CTF Analysis Compared to Human Perception. Five black-and-
white printers and two color printers were evaluated by
CTF analysis and print quality jury evaluation. Two CTF
methods were compared to human perception. The first
was the quick method covering five frequencies and seven
print angles, which measured average optical density to
approximate the contrast function. This narrow-range
method has the advantages of simplicity and speed, and
is adequate for many applications. In addition, it has good
correlation with the print quality jury findings, approxi
mately 83% for pairwise comparisons. This data is pre
sented in Table I.

Table I
Preferred Graphics Samples

Results of Human vs Machine-Graded Tests

Sam
ple

Parameter
Tested

P r i n t e r P r i n t Q u i c k C o n -
Q u a l i t y C T F c e n t r i c
Jury Circle

Target

"Sample set" refers to the code numbers of the print
conditions being compared. The numbers under the
method headings are the preferred sample in each set. In
the case of the two CTF methods, the area under the
CTF curve is the figure of merit used to predict to
preferred sample.

The print quality jury consisted of 14 trained observers.
The quick CTF test used only 5 spatial frequencies from
0.85 to 2.0 cycles per mm, and only 7 angles of print axis.
The concentric circle target used frequencies from 0 to
6.5 cycles per mm, and 1 1 angles of print axis. Graphics
only are considered in this test set. For the machine-
graded tests, the integral under the CTF curves was used
as a figure of merit to determine which sample was
better. The preferred sample in each two-sample set is
listed by number in Table I.

Fig. the Test target output from ;i MOO-dpi printer, showing the
effect of a special toner.

June 1992 Hewlett-Packard Journal 73

© Copr. 1949-1998 Hewlett-Packard Co.

Spatial Frequency (cycles/mm)

O S a m p l e s A S a m p l e 4

Fig. fre Plot of percent modulation as a function of spatial fre
quency for printer P. Sample 3 was printed with a special toner and
sample 4 was printed with standard toner.

The concentric circle target method is much more time
and labor intensive, but has 100% correlation with the
print quality jury for this data set. Since it covers a
broader frequency range and more print angles, it does
distinguish print fidelity more completely. Paired compari
son of samples 8 and 1 (Fig. 13) illustrates this advan
tage. The quick CTF method predicts that sample 8 is
better than sample 1. In the same frequency range, the
concentric circle method shows slightly better contrast
for sample 1. However, at higher frequencies, the concen
tric circle pattern reveals significantly better performance
for sample 1. The print quality jury preferred sample 1.
The frequencies through which sample 1 outperforms
sample 8 are within human perception, and apparently
correlate with factors that influenced the committee.

Spatial Frequency (cycles/mm)

O S a m p l e s A S a m p l e 1

Fig. fre Plot of percent modulation as a function of spatial fre
quency for paired comparison of samples 8 and 1 . Sample 8 is from
printer Q with the edge smoothing algorithm turned off and stan
dard toner. Sample 1 is the same except that special toner was
used.

A comparison test of sample 1 against sample 2 also
shows this effect (Fig. 14). Based on the magnitude of
the integral under the CTF curves, the quick method
shows a very slight difference between the samples with
1 better than 2. The concentric circle method, in the
same range, also gives sample 1 a very slight edge, but in
the higher-frequency region, sample 1 distinctly outper
forms sample 2. The print quality jury overwhelmingly
preferred sample 1. Apparently, this frequency region is
important to human print quality evaluation and should be
included in machine-graded tests if the increased likeli
hood of correlation with human perception justifies the
increased time for the test.

Spatial Frequency (cycles/mm)

O E A Q G Q A d j u s t e d L i n e w i d t h

Fig. fre Plot of percent modulation as a function of spatial fre
quency data three color (green) test plots. The test pattern for data
curve pattern was printed with a 400-dpi color printer. The test pattern
for data curve "Q" was printed with a 300-dpi color printer. Curve
"Q adj. linewidth" is for the 300 dpi-printer with a narrower line-
width.

Spatial Frequency (cycles/mm)

O S a m p l e 1 A S a m p l e 2

Fig. fre Plot of percent modulation as a function of spatial fre
quency for paired comparison of samples 1 and 2. Sample 1 is from
printer Q with special toner and resolution enhancement technique
off. Sample 2 is the same except that an edge smoothing algorithm
is applied.

74 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

IS IS IS
2400 dpi Image 300 dpi Image Reconstructed Image

Fig. sample, Enlarged 12-point text showing a 2400-dpi original sample, a 300-dpi original, and the same 2400-dpi sample after being Fourier
transformed, filtered, and reconstructed.

Fourier Transform Results. In Fig. 15, three images are
compared. The first is a 2400-dpi image, which has been
chosen to represent an "ideal" image. The second is
300-dpi output of the same bit map which has been
scaled to accommodate the change in addressability. The
third is the same 2400-dpi image which has been trans
formed, filtered, and reconstructed to resemble the
300-dpi image. The filter notched the Fourier transform to
approximate the frequency limitations of the 300-dpi
printer. Mathematical addition of some of the spatial
frequency components back into the notched Fourier
transform, with subsequent inverse transformation, shows
which frequencies are responsible for which print defects.
When the source of the frequency dropout is identified, it
can either be corrected or accepted as a fundamental
limitation on printer performance. The transforms of the
two images may also be subtracted from each other, with
the difference corresponding directly to spatial frequency
limitations of the 300-dpi printer.

Conclusions
CTF methods, applied here in pairwise comparisons,
differentiated between algorithms, dot sizes, stroke
widths, dpi, edge smoothing, and toners. In addition, the
method shows whether system changes will be expected
to improve text, graphics, neither, or both, based on the
spatial region in which the CTF response is altered.

The Fourier transform method is useful for identifying
spatial frequencies that affect various image characteris
tics. It also demonstrates usefulness for predicting where

the fundamental limitations of the printer have been
reached. This will have an impact on engine design.

In all comparisons of printed samples, the results corre
sponded to the overall subjective preferences of a trained
print quality panel. From this it is concluded that this
method shows promise as an automated print quality
analysis technique, with application to both black and
white and color printers.

References
1. E.M. Crane, "Acutance and Granulance," SPIE, no. 310, 1981, p.
125.
2. R. Welch, "Modulation Transfer Functions," Photogrammetric

Engineering, Vol. 37, no. 3, 1971.
3. S.K. Park, R. Schowengerdt, and M.A. Kaczynski, "Modulation
Transfer Function Analysis for Sampled Image Systems," Applied
Optics, Vol. 23, no. 15, 1984.
4. J. Shu, R. Springer, and C.L. Yeh, "Moire Factors and Visibility in
Scanned and Printed Halftone Images," Optical Engineering, Vol.
28, 1989, p. 805.
5. K.L. Yip and E. Muka, "MTF Analysis and Spot Size Selection for
Continuous-Tone Printers," Journal of Imaging Technology, Vol. 15,
no. 5, 1989.
6. M.C. King and M.R. Goldrick, "Optical MTF Evaluation Techniques
for Microelectronic Printers," Solid State Technology, Vol. 19, no. 2,
1977.
7. M. Devel and J. Szczepanik, "MTF Analysis of Xerographic Devel
opment 1, Transfer," Journal of Imaging Science, Vol. 25, no. 1,
1988.

June 1992 Hewlett-Packard Journal 75

© Copr. 1949-1998 Hewlett-Packard Co.

Parallel Raytraced Image Generation
Simulations of an experimental parallel processor architecture have
demonstrated that four processors can provide a threefold improvement in
raytraced image rendering speed compared to sequential rendering.

by Susan S. Spach and Ronald W. Pulleyblank

Computer graphics rendering is the synthesis of an image
from a mathematical model of an object contained in a
computer. This synthesized image is a two-dimensional
rendering of the three-dimensional object. It is created by
calculating and displaying the color of every controllable
point on the graphics display screen. A typical display
contains a grid of 1280 by 1024 of these controllable
points, which are called pixels (picture elements). The
memory used to store pixel colors is called the frame
buffer. Specialized hardware accelerators available on
today's workstations, such as HP's Turbo SRX and Turbo
VRX products,1 can render models composed of polygons
in real time. This makes it possible for the user to alter
the model and see the results immediately. Real-time
animation of computer models is also possible.

The most time-consuming operation in rendering is the
computation of the light arriving at the visible surface
points of the object that correspond to the pixels on the
screen. Real-time graphics accelerators do this by trans
forming polygonalized objects in the model to a desired
position and view, calculating an illumination value at the
polygon vertices, projecting the objects onto a 2D plane
representing the display screen, and interpolating the
vertex colors to all the pixels within the resulting 2D
polygons. This amounts to approximating the true surface
illumination with a simplified direct lighting model.

Direct lighting models only take into account the light
sources that directly illuminate a surface point, while
global illumination models attempt to account for the
interchange of light between all surfaces in the scene.
Global illumination models result in more accurate images
than direct lighting models. Images produced with global
lighting models are often called photorealistic.

Fig. 1 shows the contrast between hardware shading and
photorealistic renderings. Fig. la was computed using a
local illumination model while Figs. Ib, le, and Id were
computed using global illumination algorithms.

The disadvantage of photorealistic renderings is that they
are computationally intensive tasks requiring minutes for
simple models and hours for complex models.

Raytracing is one photorealistic rendering technique that
generates images containing shadows, reflections, and
transparencies. Raytracing is used in many graphics
applications including computer-aided design, scientific

visualization, and computer animation. It is also used as a
tool for solving problems in geometric algorithms such as
evaluation of constructive solid geometry models and
geometric form factors for radiative energy transfer.

The goal of our research is to develop parallel raytracing
techniques that render large data models in the fastest
possible times. Our parallel raytracing techniques are
being implemented to run on the Image Compute Engine
(ICE) architecture. ICE, under development in our project
group at HP Laboratories, is a multiprocessor system
intended to accelerate a variety of graphics and image
processing applications. ICE consists of clusters of
floating-point processing elements, each cluster containing
four processors with local and shared memory. The
clusters are networked using message passing links and
the system topology is configured using a crossbar
switch. A prototype system of eight clusters is under
construction. Data distribution, load balancing, and
algorithms possessing a good balance between computa
tion and message passing are research topics in our
parallel implementation.

Raytracing Overview
Generation of synthetic images using the raytracing
technique was introduced by Appel2 and MAGI3 in 1968
and then extended by Whitted in 1980.4 Raytracing is a
method for computing global illumination models. It
determines surface visibilities, computes shading for
direct illumination, and computes an approximation to the
global illumination problem by calculating reflections,
refractions, and shadows. The algorithm traces simulated
light rays throughout a scene of objects. The set of rays
reaching the view position is used to calculate the illu
mination values for the screen pixels. These rays are
traced backwards from the center of projection through
the viewing plane into the environment. This approach
makes it unnecessary to compute all the rays (an infinite
number) in the scene. Only a finite number of rays
needed for viewing are computed.

An observer view position (the center of projection or
"eye" position) and a view plane are specified by the user
(Fig. 2). The raytracer begins by dividing a window on
the view plane into a rectangular grid of points that
correspond to pixels on the screen and then proceeds to
determine the visibility of surfaces. For each pixel, an eye
ray is traced from the center of projection through the

76 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. (c) Photorealistic illumination scene computed using a local illumination model, (b) (c) (d) Photorealistic renderings computed using global illumination
algorithms.

pixel out into the scene environment. The closest ray/ob
ject intersection is the visible point to be displayed at
that pixel. For each visible light source in the scene, the
direct illumination is computed at the point of intersec
tion using surface physics equations. The resulting illu
mination value contributes to the value of the color of
the pixel. These rays are referred to as primary rays.

Center of Projection

Fig. 2. The raytracing technique traces rays of light from the
viewer's eye (center of projection) to objects in the scene.

The raytracing algorithm proceeds to calculate whether or
not a point is in shadow. A point is not in shadow if the
point is visible from the light source. This is determined
by sending a ray from the point of intersection to the
light source. If the ray intersects an opaque object on the
way, the point is in shadow and the contribution of the
shadow ray's light source to the surface illumination is
not computed. However, if no objects intersect the ray,
the point is visible to the light source and the light
contribution is computed. Fig. 3a illustrates shadow
processing. The point on the sphere surface receives light
from light source A, but not from light source B.

A ray leaving the surface toward the view position has
three components: diffuse reflection, specular reflection,
and a transmitted component. Specular and transmitted
rays are determined by the direction of the incoming ray
and the laws of reflection and refraction. The light
emitted by these rays is computed in the same manner as
the primary ray and contributes to the pixel correspond
ing to the primary ray. Figs. 3b and 3c show the reflec
tion and transmitted rays of several objects in a scene.
Diffuse reflection (the scattering of light equally in all

June 1992 Hewlett-Packard Journal 77

© Copr. 1949-1998 Hewlett-Packard Co.

y.
#*
\ e

- X - B

(0

Fig. 3. Types of rays, (a) Shadow, (b) Reflection, (c) Refraction.

directions) is approximated by a constant value. Accurate
computation of the diffuse component requires the solving
of energy balance equations as is done in the radiosity
rendering algorithm.5'6'7 Diffuse interreflections can also
be approximated using raytracing techniques8-9 but this
requires excessive computation.

The raytracing algorithm is applied recursively at each
intersection point to generate new shadow, reflection, and
refraction rays. Fig. 4 shows the light rays for an environ
ment. The rays form a ray tree as shown in Fig. 5. The
nodes represent illumination values and the branches
include all secondary rays generated from the primary
ray. Conceptually, the tree is evaluated in bottom-up order
with the parent's node value being a function of its
children's illumination. The weighted sum of all the node
colors defines the color of a pixel. A user-defined maxi
mum tree depth is commonly used to limit the size of the
tree. It is evident from Figs. 4 and 5 that shadow rays
dominate the total ray distribution.

The basic operations in raytracing consist of generating
rays and intersecting the rays with objects in the scene.
An advantage of raytracing is that it is easy to incorpo
rate many different types of primitives such as polygons,
spheres, cylinders, and more complex shapes such as

04

Fig. 4. Light sources, objects, and rays for an environment.

parametric surfaces and fractal surfaces. The only require
ment to be able to use an object type is that there be a
procedure for intersecting the object with a ray. One of
the main challenges in raytracing is making the ray
intersection operation efficient. Algorithmic techniques
have been developed that include faster ray-object inter
sections, data structures to limit the number of ray-object
intersections, sampling techniques to generate fewer rays,
and faster hardware using distributed and parallel process
ing.10'11'12 Our research effort concentrates on using data
structures to limit the number of ray-object intersections
and on using parallel techniques to accelerate the overall
process.

Spatial Subdivision
Spatial subdivision data structures are one way to help
limit the number of intersections by selecting relevant
objects along the path of a ray as good candidates for ray
intersection. Spatial subdivision methods partition a
volume of space bounding the scene into smaller vol
umes, called voxels. Each voxel contains a list of objects
wholly or partially within that voxel. This structuring
yields a three-dimensional sort of the objects and allows
the objects to be accessed in order along the ray path.

We employ a spatial subdivision technique termed the
hierarchical uniform grid13 as the method of choice. This
approach divides the world cube bounding the scene into
a uniform three-dimensional grid with each voxel contain
ing a list of the objects within the voxel (Fig. 6a). If a
voxel contains too many objects, it is subdivided into a
uniform grid of its own (Fig. 6b). Areas of the scene that
are more populated are more finely subdivided, resulting
in a hierarchy of grids that adapts to local scene com
plexities.

The hierarchical uniform grid is used by the raytracer to
choose which objects to intersect. We find the voxel in
the grid that is first intersected by the ray. If that voxel
contains objects, we intersect the ray with those objects.
If one or more intersections occur within the voxel, the
closest intersection to the ray origin is the visible point
and secondary rays are spawned. If there are no intersec
tions or if the voxel is empty, we traverse the grid, to the
next voxel and intersect the objects in the new voxel
(Fig. 7a). The ray procedure ends if we exit the grid,

S3

S4

S5

Object 4

Fig. 5. Ray tree for the environment of Fig. 4.

78 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

II
(a)

results and repeated ray intersections. First, the intersec
tion point of an object must occur within the current
voxel. Second, intersection records, containing the ID of
the last ray intersected with that object and the result,
are stored with the object to prevent repeated intersec
tion calculations of the same ray with the same object as
the ray traverses the grid.

ICE Overview
ICE is a parallel architecture composed of clusters of
floating-point processors. Each cluster has four proces
sors and roughly 64M bytes of shared memory accessible
for reading and writing by all four processors. Each
processor has 4M bytes of local memory, which is used
to hold private data and program code. The clusters

la)

(b)

Fig. 6. The hierarchical uniform grid spatial subdivision technique,
(a) The world cube surrounding the scene is divided into a uniform
three-dimensional grid of volumes called voxels, (b) If a voxel con
tains its many objects, it is subdivided into a uniform grid of its

indicating that no object in the scene intersects the ray
(Fig. 7b).

Grid traversal is fast because the grid is uniform, allowing
the use of an incremental algorithm for traversing from
voxel to voxel. There is a penalty for moving up and
down the hierarchy to different grids but this is the cost
of having the data structure efficiently adapt to the scene
complexity.

Adjacent voxels are likely to contain the same object
because objects may overlap several voxels. Two critical
implementation details are included to avoid erroneous

(b)

Fig. inter Hierarchical uniform grid traversal, (a) Hit: the ray inter
sects an object, (b) Miss: no ray-object intersection.

June 1992 Hewlett-Packard Journal 79

© Copr. 1949-1998 Hewlett-Packard Co.

communicate using message passing links and the system
topology is configurable with a crossbar switch. There is
a data path from the common display buffer to the clus
ter's shared memory. Fig. 8 shows the ICE architecture.

Each shared memory can be configured to hold frame
buffer data and/or can be used to hold data accessible by
all four processors. The frame buffer data can be config
ured as a complete 1280-by-1024 double buffered frame
buffer of RGB and Z values or a rectangular block subset
of the frame buffer. The message passing links are used
for intercluster communication and access to common
resources such as a disk array. The host workstation can
broadcast into all local and shared memories via the
message passing links.

The frame buffers in each cluster's shared memory are
connected by custom compositing hardware to a double
buffered display frame buffer which is connected to a
monitor. The compositing hardware removes the bot
tleneck from the cluster frame buffers to the single
display frame buffer. The compositing hardware can
function in three different modes: Z buffer mode, alpha
blend mode, and screen space subdivision mode.

In Z buffer mode, the compositing hardware simulta
neously accesses the same pixel in all the cluster frame
buffers, selects the one with the smallest Z, and stores it
in the display buffer. This mode is used for Z-buffered
polygon scan conversion.

In alpha blend mode the same pixel is simultaneously
accessed in all cluster frame buffers. Pixels from adjacent

To Other ICE Processor Boards

From Other
Compositing

Chips

Display Buffer

Fig. 8. Image Compute Engine (ICE) architecture.

data blocks are sorted into nearest and farthest and
blended using the blending rule: a x nearest + (1-a)
x farthest. The final result is a blend of pixels from all
the clusters and is presented to the display buffer. This
mode is used in volumetric rendering of sampled data.

In screen space subdivision mode, each cluster contains
pixels from a subset of the screen and the compositing
hardware simply gathers the pixels from the appropriate
cluster. This mode is used in raytracing applications.

Parallel Raytracing on ICE
Raytracing is well suited for parallelization because the
task consists mainly of intersecting millions of indepen
dent rays with objects in the model. Much research in
recent years has concentrated on using multiprocessors
to speed up the computation. Two approaches have
been used to partition the problem among the proces
sors: image space subdivision and object space sub
division.14- 15, 16, 17, 18, 19

In image space subdivision, processor nodes (clusters)
are allocated a subset of the rays to compute and the
entire data set is stored at each node. While this method
achieves almost linear speed increases, it is not a feasible
solution for rendering data sets that require more memory
than is available on a processing node. With object space
methods, computations (rays) and object data are both
distributed to processing nodes and coordination between
them is accomplished through message passing between
clusters. We have chosen an object space subdivision
approach for implementation on ICE because of its ability
to handle very large data sets.

Parallel object space subdivision is efficient if it results in
low interprocessor communication and low processor idle
time. As we partition the computation and object data,
several decisions need to be made. How are the object
data, ray computations, and frame buffer pixels distrib
uted among the processor nodes? How are ray computa
tions and the corresponding object data brought together?
How is load balancing accomplished?

The screen is subdivided into blocks of pixels which are
assigned to clusters where they are stored in the shared
memory. When the picture is complete these pixels are
gathered into the display frame buffer by the custom
compositing chips.

The spatial subdivision grid data structure is stored at
every processing node. Voxels for which the data is not
stored locally are designated as remote voxels. The data
associated with the voxels in the grid data structure is
distributed among the clusters in a way that attempts to
statically balance the computational load among the
processor clusters. This is accomplished by grouping
adjacent voxels into blocks and distributing the blocks
among clusters so that each cluster contains many blocks
selected uniformly from throughout the model space.
Voxels distributed in this manner to a cluster are called
the primary voxels for that cluster. Voxels are distributed
in blocks to maintain coherence along a ray and reduce
intercluster communication (it is likely that the next
voxel will be on the same cluster for several iterations of
grid traversal).

80 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

The distribution of the voxels of a grid is performed for
all the grids in the hierarchy so that all portions of the
model that have a great deal of complexity are subdivided
into voxels and distributed throughout the network of
clusters. Thus, no matter where the viewpoint may be,
whether zoomed in or not, the objects in the view, and
thus the computational load, should be well-distributed
among the clusters of processors.

When the data is distributed among processing nodes as
it is for large data sets, and we trace a ray through our
grid data structure, we may come to a voxel in which the
data resides on a different processing node, that is, a
remote voxel. At this point we send the ray information
to the processing node that contains the data and the
computation continues there.

If the data associated with the primary distribution of the
data set does not fill up a cluster's shared memory,
additional data, which duplicates data in another cluster,
is added. The first additional data added is data used to
speed up shadow testing. This is important because
shadow rays are launched from every ray-object intersec
tion point towards every light source, creating congestion
at voxels containing light sources. To alleviate this, the
data in voxels nearest a light source that fall wholly or
partially within the cones defined by the light source
(cone vertex) and the cluster's primary voxels (cone
bases) are added to the data stored within the cluster's
shared memory. If there is still space available in shared
memory after the shadow data is added, voxel data from
voxels adjacent to the cluster's primary voxel blocks is
added. If there is space enough to store the complete
data set in every cluster, that is done.

Each processor within a cluster maintains a workpool,
located in group shared memory, of jobs defined by either
a primary or a secondary ray. As new rays are formed
they are placed in a processor's workpool. When a
processor finds its workpool empty it takes jobs from its
neighbor's workpool. This organization is intended to
keep processors working on different parts of the data
base to minimize group shared memory access conflicts.

Each cluster is responsible for determining which primary
rays originate in its primary voxels and initializing its
workpools accordingly. This can be done with knowledge
of the viewing parameters by projecting the faces of
certain primary voxels (those on faces of the world cube
facing the eye position) onto the screen and noting which
pixels are covered. Jobs consisting of primary rays are
listed as runs on scan lines to minimize the job creation
time.

A ray is taken from the workpool by a processor in the
cluster, which attempts to compute the remainder of the
ray tree. Any rays, primary or secondary, that cannot be
processed at a cluster because it does not contain the
necessary voxel and its associated model data are for
warded to the cluster that contains the required voxel as
a primary voxel. A queue of rays is maintained for each
possible destination cluster; these are periodically bundled
into packets and sent out over the message passing links.

Fig. 9. Three scenes used to measure the rendering speed im
provement of parallel processing over sequential processing.

Each ray includes information about what pixel its color
contribution must be accumulated in. These color con
tributions of rays may be computed in any of the clusters
but the results are sent to the cluster that has responsi
bility for the portion of the frame buffer containing that
pixel. There, the contributions are accumulated in the
pixel memory.

June 1992 Hewlett-Packard Journal 81

© Copr. 1949-1998 Hewlett-Packard Co.

Raytracing completion is determined using a scoreboard-
ing technique. The host computer keeps a count of rays
created and rays completed. Clusters send a message to
the host when a ray is to be created, and the host
increments its count of rays created. Similarly, when a
ray completes in a cluster, the cluster tells the host and
the host increments its count of rays completed. When
these two counts are equal, the rendering job is done and
the compositing hardware, operating in screen space
subdivision mode, transfers all the frame buffer data from
each cluster group shared memory to the display frame
buffer.

When static load balancing by uniform distribution of
data among clusters and dynamic load balancing by
commonly accessible workpools within clusters are
inadequate, then dynamic load balancing between clusters
is carried out. Our plan for accomplishing this is to
create workpools of rays for mutually exclusive blocks of
voxels in each cluster. Rays are placed on the voxel
workpool according to which voxel the ray has just
entered. These workpools are organized as a linked list.
Processors get a voxel workpool from the linked list for
processing. In this way, processors are working on
different regions of the data set, thereby reducing conten
tion for group shared memory. When a cluster exhausts
its workpools it asks the other clusters for information on
their workloads and requests from the busiest cluster one
of its unused workpools together with its associated data.

Results
The ICE hardware, currently under construction, is
expected to be completed in the spring of 1992. Parallel
raytracing software in C has been written and simulations
on an Apollo DN10000 have been performed. The
DN10000 workstation has four processors and 128M bytes
of shared memory, similar to one cluster on ICE.

The DN10000 software includes a parallel programming
toolset based on the Argonne National Laboratories
macro set.20 This toolset includes macros for implement
ing task creations and memory synchronization. Our
simulation is of one cluster with workpools for dynamic
load balancing within a cluster. It is capable of rendering
objects composed of polygons and spheres.

Fig. 9 shows three scenes that were rendered sequen
tially and with the parallel software on the DN 10000.
The teapot and the car are B-spline surface objects that
have been tessellated into polygons. The teapot contains
3600 polygons, the car contains 46,000 polygons, and the
sphereflake contains 7300 spheres. Table I gives the
rendering times in seconds for a screen of 500 by 500
pixels. Each scene experienced at least a threefold
speed improvement using four processors.

Table I
Results

(500 by 500 pixels)

Teapot

Car

Sphereflake

1
Processor

422s

879s

1458s

Processors

130s

288s

392s

Improvement

3.2

3.0

3.7

Conclusions and Future Work
An overview of the raytracing algorithm and a discussion
of a parallel implementation of raytracing for the ICE
architecture have been presented. A first version of the
parallel software is running on an Apollo DN 10000
yielding a threefold improvement in speed over the
sequential software. The DN10000 simulations provide a
vehicle for parallel code development and statistical
gathering of scene renderings. A version of the multiclus-
ter software is being written on the DN 10000 to develop
code for simulation of message passing and load balanc
ing. We will have a version of the code to port directly to
the ICE architecture when the hardware is finished.

ICE will provide a platform for parallel algorithm develop
ment and experimentation for a variety of graphics
applications. Raytracing characteristics, such as grid size,
ray tree depth, ray type distribution (shadow, reflection,
refraction), and required interprocessor communication
bandwidths, are scene dependent, making any sort of
theoretical analysis difficult. The goal of our future work
is an extremely fast implementation of raytracing capable
of handling very large data sets. At the same time, we
would like to develop an understanding of how best to
distribute data and perform load balancing on the ICE
architecture.

Acknowledgments
Mark Smith is the main hardware designer for the ICE
project with support from Jim Christy, Manu Thapar, and
Damn Young. Tom Malzbender designed the compositing
chips and is developing volume rendering algorithms for
ICE. David Kirk provided the DN10000 parallel toolset.

References
1. R. Swanson and L. Thayer, "A Fast Shaded-Polygon Renderer,"
Computer Graphics (SIGGRAPH 1986 Proceedings), Vol. 20, no. 4,
1986, pp. 95-101.
2. A. of "Some Techniques for Shading Machine Renderings of
Solids," Proceedings of the AFIPS 1968 Spring Joint Computer
Conference, Vol. 32, 1968, pp. 37^5.
3. Mathematical Applications Group, Inc., "3D Simulated Graphics,"
Datamation, February 1968.

82 June 1992 Hewlett-Packard Journal

© Copr. 1949-1998 Hewlett-Packard Co.

4. T. Whined. "An Improved Illumination Model for Shaded Display."
Communications of the ACM. Vol. 23. no. 6. June 1980, pp. 343-349.
5. C. Goral. K. Torrance, and D. Greenberg, "Modeling the Interac
tion (SIG- Light Between Diffuse Surfaces." Computer Graphics (SIG-
GRAPH 1984 Proceedings), Vol. 18. no. 3. 1984, pp. 21:3-222.
6. M. Com et al. "The Hemi-cube: A Radiosity Solution for Com
plex Environments." Computer Graphics (SIGGRAPH 1985 Pro

ceedings), Vol. 19. no. 4. 1985, pp. 31-10.
7. M. Ra et al. "A Progressive Refinement Approach to Fast Ra
diosity Image Generation," Computer Graphics (SIGGRAPH 1988
Proceedings), Vol. 22. no. 4, 1988, pp. 75-84.
8. J.T. Kajiya, "The Rendering Equation." Computer Graphics (SIG
GRAPH 1986 Proceedings), Vol. 20, no. 4, 1986, pp. 143-150.
9. G. Ward, et al, "A Ray Tracing Solution for Diffuse Interreflection,"
Computer Graphics (SIGGRAPH 1988 Proceedings), Vol. 22, no. 4,
1988, pp. 85-92.
10. M.A.J. Sweeney, and R.H. Bartels. "Ray Tracing Free-Form
B-spline Surfaces," IEEE Computer Graphics and Applications,
Vol. 6, no. 2, February 1986.
11. P. Hanrahan, "Raytracing Algebraic Surfaces," Computer Graph
ics (SIGGRAPH 1983 Proceedings), Vol. 17, no. 3, 1983, pp. 83-89.
12. D. Kirk, and J. Arvo, "A Survey of Raytracing Acceleration Tech
niques," Introduction to Raytracing, Academic Press, 1989, pp.
201-262.

13. D. Jevans and B. Wyvill. "Adaptive Voxel Subdivision for Ray
Tracing," Computer Graphics Interface 89, 1989.
14. M. Dippe and J. Swensen. "An Adaptive Subdivison Algorithm
and Parallel Architecture for Realistic Image Synthesis." Computer
Graphics (SIGGRAPH 1984 Proceedings), Vol. 18. no. 3. 1984, pp.
149-158.
15. J.G. Cleary, B.M. Wyvffl, G.M. Birtwistle. and R. Vatri. "Multipro
cessor Ray Tracing," Computer Graphics Forum. Vol. 5. 1986, pp.
3-12.
16. H. Kobayashi. S. Nishimura. H. Kubota. T. Xakamura. and Y. Shi-
gei, System Balancing Strategies for a Parallel Ray-Traced System
Based 1988, Constant Subdivision," The Visual Computer, no. 4. 1988,
pp. 197-209
17. S.A. Green, D.J. Paddon, and E. Lewis, "A Parallel Algorithm and
Tree-Based Computer Architecture for Ray Traced Computer Graph
ics," International Conference, University of Leeds, 1988.
18. S.A. Green and D.J. Paddon, "A Highly Flexible Multiprocessor
Solution for Raytracing," The Visual Computer, no. 6, 1990, pp.
62-73.
19. V. Isle, C. Aykanat, and B. Ozguc, "Subdivision of 3D Space Based
on Graph Partitioning for Parallel Ray Tracing," Proceedings of the

Eurographics Workshop on Image Synthesis, 1991.
20. J. Boyle et al, Portable Programs for Parallel Processors, Holt,
Rinehart, and Winston, Inc., 1987.

June 1992 Hewlett-Packard Journal 83

© Copr. 1949-1998 Hewlett-Packard Co.

F r : S U S A N W R I G H T / 9 7 L O C

T o

QOÃ354984

L E W I S Â »
H P C O R P O R A T E H E A D Q U A R T E R S
O D I V 0 0 0 0 2 0 R D

H E W L E T T
P A C K A R D

5 0 9 1 - 4 2 6 3 E

© Copr. 1949-1998 Hewlett-Packard Co.

	An Example of the FTEST Instruction
	Providing HP UX Kernel Functionality on a New PA-RISC Architecture
	New Optimizations for PA-RISC Compilers
	Link Time Optimizations
	HP 9000 Series 700 FORTRAN Optimizing Preprocessor
	Vector Library
	Register Reassociation in PA-RISC Compilers
	Software Pipelining in the PA-RISC Compilers
	Shared Libraries for HP UX
	Deferred Binding, Relocation,and Initialization of Shared Library Data
	Integrating an Electronic Dictionary into a Natural Language Processing System
	Application of Spatial Frequency Methods to Evaluation of Printed Images
	Parallel Raytraced Image Generation

