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In this Issue 
Ear ly  las t  year ,  Hewle t t -Packard  in t roduced a  fami ly  o f  new works ta t ion  com 
puters that surpr ised the workstat ion world with their  high performance â€” a 
huge increase over the previous industry leaders â€” and their low prices. On 
standard industry  benchmarks,  the HP Apol lo  9000 Ser ies 700 computers outd is  
tanced the compet i t ion by a wide margin.  The speed of  the Ser ies 700 machines 
can be at t r ibuted to a combinat ion of  three factors.  One is a new version of  HP's 
PA-RISC archi tecture cal led PA-RISC 1.1.  (The PA stands for  prec is ion archi tec 
ture and the RISC stands for reduced instruct ion set comput ing.)  PA-RISC 1.1 
was worked on by  teams f rom HP and the  fo rmer  Apo l lo  Computers ,  Incorpo 
rated, specifically newly acquired by HP. It includes several enhancements specifically 

a imed computers '  a  worksta t ion per formance.  The second factor  in  the new computers '  speed is  a  new set  
of  very megahertz .  in tegrated c i rcu i t  ch ips capable of  operat ing at  c lock rates up to 66 megahertz .  Cal led 
PCX-S, 640,000-transistor float includes a 577,000-transistor CPU (central processing unit), a 640,000-transistor float 
i n g - p o i n t  a  a n d  a  1 8 5 , 0 0 0 - t r a n s i s t o r  m e m o r y  a n d  s y s t e m  b u s  c o n t r o l l e r .  T h e  t h i r d  f a c t o r  i s  a  
new vers ion o f  the HP-UX operat ing system that  takes advantage of  the arch i tec tura l  enhancements  o f  
PA-RISC 1.1 and of fers addi t ional  compi ler  opt imizat ions to make programs run faster .  
The Ser ies 700 hardware design story wi l l  appear in our  next  issue (August) .  In th is  issue we present  the 
sof tware par t  o f  the Ser ies 700 speed formula.  The ar t ic le  on page 6 summar izes the arch i tectura l  en 
hancements of  PA-RISC 1.1 and te l ls  how the kernel  of  the HP-UX operat ing system was modi f ied to take 
advantage o f  them.  The ar t ic le  on page 11 descr ibes the deve lopment  process for  the kerne l  modi f ica  
t ions,  qual i ty .  was tuned to meet  an aggress ive schedule wi thout  compromis ing qual i ty .  This  ar t ic le  in  
cludes 700 project, description of the overall management structure for the Series 700 development project, 
which is overview considered within HP to be a model for future short-t ime-to-market projects. An overview of 
the addi t ional  compi ler  opt imizat ions inc luded in  the new HP-UX re lease is  prov ided by the ar t ic le  on page 
15,  a long per for  per formance data showing how the compi ler  enhancements improve the benchmark per for  
mance o f  im Ser ies  700 works ta t ions .  A new opt imiz ing preprocessor  fo r  the  FORTRAN compi le r  tha t  im 
proves per formance by 30% is  descr ibed in the ar t ic le  on page 24.  Opt imizat ion techniques cal led regis ter  
reassoc ia t ion and sof tware p ipe l in ing,  which he lp  make program loops execute faster ,  are o f fered by the 
new compi ler  vers ions and are descr ibed in  the ar t ic les on pages 33 and 39,  respect ive ly .  The new re lease 
of  the HP-UX operat ing system is  the f i rs t  to  of fer  shared l ibrar ies,  which s igni f icant ly  reduce the use of  
d isk space and a l low the operat ing system to make bet ter  use of  memory.  The HP-UX implementat ion of  
shared l ibrar ies is  descr ibed in the ar t ic le on page 46.  

The three Women's repor ts  in  th is  issue are based on presentat ions g iven at  the 1991 HP Technical  Women's 
Conference.  The f i rs t  paper (page 54) d iscusses the integrat ion of  an e lectronic d ic t ionary into HP-NL, HP's 
na tu ra l  1982  unde rs tand ing  sys tem,  wh ich  was  unde r  deve lopmen t  a t  HP  Labora to r i es  f rom 1982  to  1991 .  
D ic t ionar ies  are  impor tant  components  o f  most  computat iona l  l ingu is t ic  products ,  such as  machine t rans la t ion 
systems, analyzers.  language understanding systems, grammar checkers, spel l ing checkers, and word analyzers.  
E lect ron ic  d ic t ionar ies began as word l is ts  and have been evolv ing,  becoming more complex and f lex ib le  in  
response one the needs of  l inguist ic  appl icat ions.  Whi le the electronic d ict ionary integrated into HP-NL was one 
o f  the  the  advanced  and  g rea t l y  i nc reased  the  sys tem 's  capab i l i t i es ,  the  in teg ra t ion  was  no t  w i thou t  p rob  
lems,  which the researchers  fee l  should  he lp  gu ide the potent ia l  app l icat ions of  e lect ron ic  d ic t ionar ies.  The 
paper  conc ludes wi th  a  survey of  app l icat ions that  can use e lect ron ic  d ic t ionar ies  today or  in  the fu ture.  
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The paper measurement page 68 presents the results of research on automated laser printer print quality measurement 
using spat ia l  f requency methods.  Pr inters using di f ferent  pr int  a lgor i thms, dot  s izes,  stroke widths,  resolut ions,  
ehnhancement  techniques,  and toners were g iven a test  pat tern to  pr in t  cons is t ing of  concentr ic  c i rc les 
s p a c e d  p r i n t e d  c l o s e r  ( h i g h e r  s p a t i a l  f r e q u e n c y )  w i t h  i n c r e a s i n g  r a d i u s .  T h e  p r i n t e d  t e s t  p a t t e r n s  w e r e  
analyzed evaluations optical methods and measures of relative print quality were computed. These machine evaluations 
were then compared wi th  the judgments  o f  four teen t ra ined human observers  shown pr in ted samples f rom the 
same pr inters.  In a l l  cases,  the human jury agreed wi th the machine evaluat ions.  The method is  capable of  
showing whether  pr in ter  changes can be expected to improve text ,  graphics,  ne i ther ,  or  both.  

Computer contained rendering is the synthesis of an Â¡mage on a screen from a mathematical model contained in 
a  computer .  Photorea l is t ic  render ings,  which are produced us ing g lobal  i l lumunat ion models ,  are the most  ac 
curate ,  for  they are computat ion- in tens ive,  requ i r ing minutes for  s imple  models  and hours  for  complex sub 
jects. paral lel  paper on page 76 presents the results of simulat ions of an experimental paral lel  processor architec 
ture for  photoreal is t ic  render ing us ing the rayt rac ing render ing technique.  The resul ts  so far  ind icate that  four  
processors operat ing in  para l le l  can speed up the render ing process by a factor  of  three.  Work cont inues at  HP 
Laborator ies to  develop actual  hardware to  test  th is  arch i tectura l  concept .  

R.P. Dolan 
Editor 

Cover 
The cover through an ar t is t 's  rendi t ion of  the t ransformat ions that  take place when source code goes through 
reg is ter  reassoc iat ion and sof tware p ipe l in ing compi ler  opt imizat ions.  The mul t ip le- loop f lowchar t  represents  
the or ig ina l  source code,  the smal ler  f lowchar t  represents the opt imizat ion per formed on the innermost  loop by 
regis ter  reassociat ion,  and the d iagram in the foreground represents sof tware p ipel in ing.  

What's Ahead 
The August  issue wi l l  present  the hardware design of  the HP Apol lo 9000 Ser ies 700 workstat ion computers.  
A lso  co lo r  w i l l  be  the  des ign  and  manufac tu r ing  o f  the  new co lo r  p r in t  ca r t r idge  fo r  the  HP DeskJe t  500C 
and DeskWri ter  C pr inters,  and the dr iver design for  the DeskWri ter  C. There wi l l  a lso be an art ic le on the HP 
MRP Act ion  Manager ,  wh ich  prov ides an in terac t ive  user  in ter face for  the  HP MM mater ia ls  management  
sof tware.  
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HP-UX Operating System Kernel 
Support for the HP 9000 Series 700 
Workstations 
Because much of the Series 700 hardware design was influenced by the 
system's software architecture, engineers working on the kernel code 
were able to make changes to the kernel that significantly improved 
overall system performance. 

by Karen Kerschen and Jeffrey R. Glasson 

When the HP 9000 Series 700 computers were introduced, 
we in the engineering and learning products organization 
in the HP-UX kernel laboratory had a chance to see how 
our year-long project stacked up against the competition. 
In a video, we watched a Model 720 workstation pitted 
against one of our comparably priced competitor's sys 
tems. Both systems were running Unigraphics, which is a 
suite of compute-intensive mechanical modeling programs 
developed by McDonnell Douglas Corp. The two comput 
ers converted images of a General Motors Corvette ZR1 
from two to three dimensions, rotated the drawings, 
contoured the surfaces, and recreated a four-view layout. 
The Model 720, the lowest-priced of our new systems, 
performed over eight times faster than the competition. 

The Series 700 is based on the first processor to imple 
ment the PA-RISC 1.1 architecture, which includes en 
hancements designed specifically for the technical needs 
of the workstation market. This was a departure from the 
previous HP processor design, which served general 
computation needs. 

The new system SPU (system processing unit) features 
three new chips: an integer processor, a floating-point 
coprocessor, and a memory and system bus controller. In 
addition, the Series 700 was developed to provide I/O 
expandability through the Extended Industry Standard 
Architecture (EISA) bus. For the software project teams, 
this new hardware functionality raised some basic ques 
tions, such as "What can the user do with these hardware 
capabilities?" and "What can we do to take advantage of 
the hardware features?" The answer to the first question 
was fairly obvious because we knew that key users 
would be engineers running CAE application programs 
such as compute-intensive graphics for modeling mechani 
cal engineering designs. We also realized that the Series 
700 systems were not intended as specialized systems, 
but were aimed at a broad spectrum of high-performance 
workstation applications, and they had to be fast every 
where, without making trade-offs to computer-aided 
design. Thus, addressing the second question gave 
direction to the year-long software development effort. 

The engineering challenges faced by our kernel develop 
ment teams were to identify the new features of the 
hardware that could be exploited by the operating sys 
tem, and then to add or alter the kernel code to take 
advantage of these features. By studying the hardware 
innovations, the software team identified four areas for 
kernel modification: CPU-related changes, floating-point 
extensions, TLB (translation lookaside buffer) miss 
routines, and I/O and memory controller changes. Under 
lying the entire effort was an essential factor â€” perfor 
mance. To succeed in the marketplace, the Series 700 had 
to have very fast response time and throughput. 

The Series 700 performance accomplishments were 
achieved by a working partnership between hardware and 
software engineers. Both realized that an integrated 
system approach was key to making the Series 700 a 
high-performance machine. New hardware components 
were engineered to ensure a balanced system, which 
meant that I/O performance matched CPU performance. 
Software architecture was considered in designing the 
hardware, and much of the hardware suggested opportu 
nities for streamlining throughput and response time 
through changes in the kernel code. 

The hardware architecture of the Series 700 is shown in 
Fig. 1. Each of these components is architected to ensure 
that the software runs faster. The rest of this article 
describes the changes to the kernel code to take advan 
tage of the Series 700 hardware features. The manage 
ment structure and development process are described in 
the article on page 11. 

CPU-Related Changes to Kernel Code 
From a hardware perspective, the CPU chip performs all 
processor functions (except floating-point) including 
integer arithmetic (except multiplication), branch process 
ing, interrupt processing, data and instruction cache 
control, and data and instruction memory management. 
Additional interrupt processing and cache flush instruc 
tions were added to the hardware, along with cache hints 
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Fig. 1. A block diagram of the HP 9000 Series 700 hardware (TLBs 
are translation lookaside buffers) . 

to prefetch cache lines from memory (see the article on 
page 15 for more information about cache hints). 

The software release for the Series 700 operating system 
was designed to address key features of the CPU chip. To 
tailor the kernel to the CPU's capabilities required the 
following changes: 

' Emulation of floating-point instructions, which also sup 
ports the floating-point coprocessor enhancements 

â€¢ Cache flush instructions to the I/O and memory controller 
for the benefit of graphics applications 

1 Shadow registers for improved TLB (translation look- 
aside buffer) miss handling 

â€¢ 4K-byte page size to reduce TLB miss rate 
1 Sparse PDIR (page directory), which reduces overhead 
for the EISA I/O address space and is faster 

1 New block TLB entries to map the kernel and graphics 
frame buffers. 

Emulation of Floating-Point Instructions 
Although all Series 700 systems have floating-point 
hardware, kernel instructions can now emulate all the 
new floating-point instructions in software. This redundan 
cy was designed into the software to deal with floating 
point exceptions. PA-RISC 1.1 was defined to allow 
hardware designers the freedom to implement what they 
wanted efficiently, while still providing a consistent view 
of the system to software. If someone executes an 
instruction, the system doesn't care whether it was done 
in hardware or software â€” the result is functionally identi 
cal, although performance differs. The computation 
proceeds much more slowly in software than in hard 
ware, but this solution provides a machine without a 
floating-point coprocessor that can still execute the 
floating-point instructions and be binary compatible. 

The software implementation capability also provides 
certain classes of operations that the hardware cannot 

* A translation lookaside buffer or TLB is a hardware address translation table. The TLB 
and cache memory typically provide an interface to the memory system for PA-RISC 
processors. The TLB speeds up virtual-to-real address translations by acting as a cache for 
recent reference More detailed information about the TLB can be found in reference 1 . 

execute. For example, the Series 700 floating-point 
coprocessor cannot multiply and divide denormalized 
numbers. When it encounters denormalized numbers, 
the hardware generates an assist trap to signal the 
operating system to emulate the required instruction. 

Software engineers modified the kernel to accommodate 
the expanded floating-point register file and to make 
these registers accessible as destinations. The additional 
registers allow more floating-point data to be accessed 
quickly, which reduces the system's need to access 
memory in floating-point-intensive applications. 

Cache and Cache Flush Instructions 
The Series 700 system has separate instruction and data 
caches (see Fig. 1). This design allows better pipelining 
of instructions that reference data by giving two ports to 
the CPU's ALU (arithmetic logic unit). This amounts to a 
degree of parallel processing in the CPU. To maximize 
this parallel processing, both cache arrays interface 
directly to the CPU and the floating-point coprocessor. 

The data path from the CPU to the data caches was 
widened from 32 to 64 bits. This allows two words to be 
transferred in one cycle between memory and registers. 
The operating system exploits the 64-bit-wide data path to 
allow higher throughput between the CPU and memory. 
The operating system also takes advantage of the wid 
ened data path when using floating-point double-word 
LOADs, STORES, and quad-word STORES to COPY and ZERO 
data in the kernel. 

New cache flush instructions have been added to access 
special dedicated hardware in the memory and system 
bus controller (discussed in detail later in this article). 
This hardware does direct memory access (DMA) block 
moves to and from memory without involving the CPU. It 
also handles color interpolation and hidden surface 
removal. These features benefit graphics applications, 
which use the enhanced cache flush instructions to 
access data more efficiently. 

Shadow Registers 
Another CPU feature is the addition of shadow registers. 
Shadow registers are extensions of the processor that 
reduce the number of instructions needed to process 
certain interrupts, particularly TLB misses. The new 
PA-RISC processor shadows seven general registers. 
Without shadow registers, when the processor receives an 
interrupt the operating system must save (reserve) some 
registers before they can be used to service the interrupt. 
This is because the operating system has no idea how the 
general registers are being used at the time of the inter 
rupt. (A user program might be running or executing a 
system call in the kernel.) Shadow registers eliminate the 
need for the operating system to store registers before 
they are used in the interrupt handler. The CPU automati 
cally stores the shadowed registers when the interrupt 
occurs and before the processor jumps to the interrupt 
handler. This shortens the interrupt handlers by several 

"In the floating-point 754 floating-point standard, a denormalized number is a nonzero floating-point 
number whose exponent has a reserved value, usually the format's minimum, and whose 
explicit or implicit leading significant bit is zero. 
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instructions. Shadow registers are used for TLB interrupts, 
which are the most time-critical interrupts. 

The CPU has another new instruction â€” RFIR (return from 
interrupt and restore) â€” to return from an interrupt and 
restore (copy) the shadow registers back to the general 
registers. RFIR exists along with RFI (return from inter 
rupt), which doesn't copy the shadow registers. RFIR has 
specific and limited applicability to TLB interrupts be 
cause interrupts using the shadow registers cannot be 
nested. Most of the time, the operating system still 
uses RFI. 

4K-Byte Page Size 
To further improve memory access, the page size was 
increased from 2K bytes to 4K bytes. This reduces the 
number of TLB misses a typical application will encoun 
ter. In the software, changes were made in the low levels 
of the operating system's virtual memory subsystem. A lot 
of work was done so that the PA-RISC 1.0 systems, which 
have a 2K-byte page size, can have a logical 4K-byte page 
size. 

Sparse Page Directory 
If we had used the old page directory (PDIR) architecture 
that maps virtual to physical pages of memory, gaps in 
the EISA address space would have wasted a significant 
amount of physical memory to store unused PDIR entries. 
Therefore, it was decided to redefine the page directory 
from an array to a linked list. Now, instead of taking the 
virtual address and calculating an offset in the table, a 
hash function produces a pointer to a page directory 
entry (PDE) that corresponds to the physical address. In 
most cases, the hashing algorithm produces a direct 
mapping to the point in the table. In some cases, such as 
a hash collision, the first PDE on the list has to link to 
another PDE as shown in Fig. 2. 

If the translation does not exist in the PDIR, a PDE is 
taken off the PDE free list and inserted into the correct 
hash chain. The sparse PDIR reduces the amount of 
memory needed to store the page tables. 

TLB Miss Improvements 
The TLB, which is on the processor chip, consists of two 
96-entry fully associative TLBs â€” one for instructions and 
one for data. Each of these TLBs has block TLB entries â€” 
four each for instructions and data. Each fully associative 
entry maps only a single page, while each block entry is 
capable of mapping large contiguous ranges of memory, 
from 128K bytes to 16M bytes. These block entries help 
reduce TLB misses by permanently mapping large por 
tions of the operating system and graphics frame buffer. 

Block entries reduce the number of total TLB entries 
used by the operating system. Block entry mapping leaves 
more general TLB entries for user programs and data, 
thus reducing the frequency of TLB misses and improving 
overall system performance. We map most of the kernel's 
text space and a good portion of the kernel's data using 
block TLB entries. 

TLB misses are handled differently by the Series 700 
processor than in earlier processor implementations. Miss 
handler code is invoked when the TLB miss interrupt is 
generated by the processor. The processor saves some 
registers in its shadow registers and transfers control to 
the software TLB miss handler. The miss handler hashes 
into the sparse PDIR in memory to find a viitual-to-physical 
translation of the address that caused the interrupt. If it 
finds it, the translation is installed in the TLB and the 
transaction is retried. If it doesn't find it, page fault code 
is executed. (In another case, protection identifiers, which 
govern access rights, might prevent translation, that is, 
the address might exist but the process trying to access 
the data might not have access rights to the data.) 

Floating-Point Coprocessor Extensions 
The PA-RISC 1.1 architecture features a floating-point 
coprocessor with an extended floating-point instruction 
set that has 32 double-precision registers (previously, 
there were 16). These registers are also accessible as 64 
single-precision registers (compared to 16 single-precision 
registers in the previous implementation). The additional 
floating-point registers add flexibility in terms of how 

Virtual  Address 

S p a c e  i  I  V i r t u a l  P a g e  
R e g i s t e r  I  N u m b e r  Free PDE List Pointer 

1  T  

Hash Queue Head PDEs 

1st PDE on List 

Physical  Address 
Chain Link 

( I f  Not Matched on List  Head) 

PDE = Page Directory Entry 

Fig. 2. Virtual-to-physical address 
translation using linked lists. 
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many registers a programmer can access. More data can 
be held in registers that are quickly accessible by the 
CPU. 

Many new floating-point instructions were added to the 
floating-point instruction set to accommodate more 
demanding graphics applications and improve matrix 
manipulations. From the software perspective, the follow 
ing areas of kernel code were changed: 

â€¢ Save states 
â€¢ Store instructions 
â€¢ Extensions to FEST 
â€¢ Multiply instructions 
â€¢ Floating-point exception handling. 

Save States. When a user process gets a signal, the system 
copies the contents of all its registers (general and 
floating-point) to the user stack so that the user's signal 
handler can access and modify them. However, to main 
tain binary compatibility with older implementations and 
applications, hooks were added to the kernel to identify 
the size of the save-state data structure. Knowing the size 
of this data structure ensures that the system will copy 
the correct number of registers to the user stack (or copy 
back from the user stack), so that programs compiled on 
older (PA-RISC 1.0) hardware will run without having to 
be recompiled on the new hardware. 

Store Instructions. Quad-word store instructions in the 
floating-point processor store four words (two double- 
word registers) at once, and execute in fewer cycles than 
two double-word store instructions. The kernel uses the 
quad-word store instruction in copy and zero routines, if 
it detects its presence. Quad store instruction code is not 
portable to the PA-RISC 1.0 implementation or to other 
1.1 systems. 

(TEST Extensions. Extensions to REST streamline graphics 
clip tests, which benefits two-dimensional and three- 
dimensional graphics performance. 

FTEST is an instruction used to check the status of subsets 
of the floating-point compare queue. In previous imple 
mentations, FTEST could test only the result of the last 
FCMP (floating-point compare). The Series 700 extends 
FCMP to keep the last twelve compare results in a queue, 
using bits 10 through 20 of the floating-point status 
register in addition to the C bit (bit 5). FTEST now looks 
at different pieces of the queue to determine whether to 
nullify the next instruction. An example of how the FTEST 
extension can save processor cycles is given on page 10. 

FTEST extensions are not part of PA-RISC 1.1 architecture, 
but are specific to the Series 700. Therefore, any code 
using the extensions is not portable to other PA-RISC 
implementations. 

Multiply Instructions. New multiple-operation instructions, 
including multiply-and-add (FMPYADD), multiply-and-sub- 
tract (FMPYSUB), and multiply-and-convert from floating 
point format to (fixed) integer format (FMPYCFXT), more 
fully exploit the ALU and MPY computational units in the 
floating-point coprocessor. This approach reduces the 
number of cycles required to execute typical computational 
combinations, such as multiplies and adds. 

Also, an integer multiply instruction was added to the 
instruction set to execute in the floating-point coproces 
sor. Previously a millicode library routine was called to 
do integer multiplies. This new implementation is much 
faster. 

Floating-Point Exception Handling. The floating-point copro 
cessor's computational speed results from the floating 
point instructions embedded in the hardware. This pro 
vides the biggest performance boost to graphics, 
particularly for transformations. However, certain circum 
stances (such as operations on denormalized numbers) 
cause the hardware to generate an exception, which 
requires the kernel to emulate the instruction in software. 
The emulation of the floating-point instruction set pro 
vides much-needed backup and auxiliary computational 
support. 

Memory and System Bus Controller 
The memory and system bus controller, which was 
implemented as a new chip, has two new features de 
signed specifically to streamline graphics functionality: 

â€¢ The ability to read or write from the graphics frame buff 
er (video memory) to main memory using direct memory 
access (DMA) circuitry. DMA allows block moves of data 
to and from the graphics card without having to go 
through the CPU. 

â€¢ The capability to do color interpolation (for light source 
shading) and hidden surface removal. 

Accommodating the new hardware system bus and 
memory functionality required extensive changes to the 
kernel code. 

Besides the operating system changes, the HP Starbase 
graphics drivers2 were rewritten to take advantage of 
block moves and color interpolation. These drivers are 
used by the X server to improve X Window System 
performance and allow the use of lower-cost 3D graphics 
hardware. This is because the drivers use the memory 
and system bus controller to produce the graphical 
effects, rather than relying on dedicated graphics hardware. 

The memory and system bus controller features new 
registers in its graphics portion. Kernel code was en 
hanced to allow user processes to use these additional 
registers. Any user graphics process can request the 
kernel to map the memory and system bus controller 
registers into its address space. A new Â¡octl system call 
parameter provides access to the memory and system bus 
controller registers. The new call maps the controller 
register set into the user's address space to enable reads 
and writes from those registers to instruct the memory 
and system bus controller to perform graphics functions. 
Once the user sets up the memory and system bus 
controller registers, the transactions are initiated by 
issuing a special flush data cache instruction. 

Finally, new kernel code allows multiple processes to 
share the memory and system bus controller. At context- 
switch time, extra work happens if a process is using the 
controller. The operating system saves and restores the 
set of memory and system bus controller registers only if 
the process has mapped them into its address space. 
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An Example of the FTEST Instruction 

Bits two 0 They 20 of the floating-point status register serve two purposes. They 
are used to return the model and revision of the coprocessor following a COPR 0,0 
instruction as defined by the PA-RISC architecture. Their other use is for a queue of 
floating-point compare results. 

Whenever a floating-point compare instruction (FCMP) is executed, the queue is 
advanced as follows: 

FPstatus[11:20]  =  FPstatus[10:19]  
FPsta tus [10 ]  =  FPsta tus [5 ]  
F P s t a t u s [ 5 ]  =  F C M P  r e s u l t  ( t h e  C - b i t )  

The FTEST instruction has been extended to allow checking various combinations of 
the compare queue. For example, to evaluate (fr4 == fr5) && (fr6 â€” fr7) && (fr8 
==fr9) && (frÃ­o == frii) would take 24 cycles to execute using the PA-RISC 1 .0 
instructions: 

FCMP,= f r4, f r5 
FTEST 
b ranch  
FCMP,= f r6, f r7 

FTEST 
branch  
FCMP,=fr8,fr9 
FTEST 
branch  
FCMP,=  f r IO . f r l l  
FTEST 
branch  

By comparison, using the Series 700 floating-point compare queue: 

FCMP,= fr4, fr5 
FCMP,= fr6,fr7 
FCMP,=fr8,fr9 
FCMP,= fr10,fr11 
FTEST, ACC4 
branch  

takes only 12 cycles to execute. 

Because of this, nongraphics processes are not penalized 
by the operating system's saving and restoring of unused 
registers. 

Conclusion 
Noted author Alvin Toffler identified an underlying 
challenge to today's computer industry in his book, Power 
Shift. "From now on," he wrote, "the world will be split 
between the fast and the slow." Thanks to a successful 
partnership of hardware innovation and kernel tuning, the 
Series 700 can definitely be classified as one of the fast. 
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Providing HP-UX Kernel Functionality 
on a New PA-RISC Architecture 
To ensure customer satisfaction and produce a high-performance, 
high-quality workstation on a very aggressive schedule, a special 
management structure, a minimum product feature set, and a modified 
development process were established. 

by Donald E. Bellinger, Frank P. Lemmon, and Dawn L. Yamine 

The aggressive schedule for the development of the HP 
9000 Series 700 systems required the development team 
in the HP-UX kernel laboratory to consider some modifi 
cations to the normal software development process, the 
number of product features, and the management struc 
ture. The goals for the product features were to change 
or add the minimum number of HP-UX kernel functions 
that would ensure customer satisfaction, meet our perfor 
mance goals, and adapt to a new I/O system. This version 
of the HP-UX kernel code became known as minimum 
core functionality, or MCF. 

Series 700 Management Structure 
To accomplish the goals set for the HP 9000 Series 700 
system required a special management structure that 
included a program manager with leadership and respon 
sibility for the whole program, and a process that allowed 
rapid and sound decisions to be made. The resulting 
management structure delegated the bulk of the manage 
ment to focused teams of individual developers and 
first-level managers. The program manager owned every 
facet of the release, from the software feature set to the 
allocation of prototypes and production of chips in the 
fabrication shop. Since the Series 700 program was 
multidivisional and located in two geographical loca 
tions, the program manager had to maintain a desk at 
both locations, close to the the hardware and software 
development teams. 

The rapid decision policy promoted by the management 
team enabled small teams of individual developers and 
first-level managers to make important program decisions 
quickly and directly. Decision time itself was measured 
and tracked around the program. For example, the system 
team's goal was to have no open issues over two weeks 
old. Also, the MCF kernel team tracked kernel defects on 
a daily basis. If a defect aged over three days, additional 
help was assigned immediately. The process to determine 
the disposition of defects ran on a 24-hour clock. The 
defect data was posted in the evening, votes were col 
lected by the team captain the next morning, the team 
reviewed the votes and made decisions in the afternoon, 
and approved fixes were incorporated into the build that 
night. 

One key decision made early in the program was whether 
to base the kernel on HP-UX 7.0, which was stable and 
shipping, or HP-UX 8.0, which was not yet shipping to 
customers. HP-UX 8.0 offered the advantage of being the 
basis for future releases, and thus the developers and 
customers of the follow-on release to MCF could avoid 
the overhead of first having to update to 8.0. This was a 
critical decision. The R&D team promoted the advantages 
of 8.0, while the program manager weighed the risks. 
Within two weeks the program manager and the team 
decided to base the operating system on HP-UX 8.0 and 
the issue was never revisited. 

Each team worked systemwide, with individual developers 
focusing on a facet of the system. The performance team, 
with members from hardware, kernel, languages, graphics, 
and performance measurement groups, focused on the 
overall goal of maximizing system performance in com 
putation, graphics, and I/O. The value added business 
(VAB) team focused on delivering high-quality prototype 
hardware and software to key VAB partners, allowing 
their software applications to release simultaneously with 
the HP 9000 Model 720. There was also an integration 
team, a release team, and a quality and testing team. 

The members of these teams were not merely representa 
tives who collected action items and returned them to 
their respective organizations. The team members were 
the engineers and managers involved in the development 
work. Thus, multidivisional problems were solved right at 
the team meetings. 

The overall program structure glued these teams together. 
Key decisions were made by the program manager and 
other top-level members of the management team. The 
system team managed the tactical issues and the coor 
dination of the focused teams. Most people were mem 
bers of multiple teams, providing crucial linkage between 
individual team goals and organizational goals. There was 
a rich, almost overwhelming flow of information. The 
system team appended team reports and product status 
information to their weekly minutes, which were distrib 
uted widely so everyone saw the results. 

June 1992 Hewlett-Packard Journal 11 

© Copr. 1949-1998 Hewlett-Packard Co.



The rest of this article will discuss the activities per 
formed in the software development process to create the 
MCF kernel. Technical details of the kernel MCF can be 
found in the article on page 6. 

Quality Control Plan 
Historically, the reliability of HP-UX software has been 
measured in terms of the following items: 

â€¢ Defect density (the number of defects per one thousand 
lines of noncomment source statements, or KNCSS) 

â€¢ Functional test coverage (the number of external inter 
faces tested and the branch flow coverage values) 

1 Reliability under stress (continuous hours of operation, 
or CHO). 

The MCF team added the following measures: 
â€¢ Design and code reviews to ensure high software compo 
nent quality before delivery to system integration and test 

i Weekly integration cycles with full testing participation 
by the development partners, which included develop 
ment teams outside of the kernel laboratory. 

The weekly integration cycles uncovered a number of 
interaction and system defects rapidly and early. 

The program team designated schedule and quality as the 
top two priorities of the MCF release. Another program 
team decision reduced the functionality to the minimum 
core requirements, which in turn reduced the time to 
market. The program team also chose to release only one 
system initially (the Model 720) rather than three (the 
Models 720, 730, and 750) and to sell the Model 720 in a 
stand-alone configuration only, rather than supporting it in 
a diskless cluster. 

These decisions resulted in reduced testing complexity. 
The test setup times highlight the complexity reduction. 
For the MCF release, the test setup time represented 
about 1% of the total test time. For the subsequent 
releases (with Models 710, 720, 730, and 750 participating, 
in both stand-alone and diskless configurations) the test 
setup time rose to about 12%. The increase is significant 
since the test setup time cannot be automated and 
represents valuable engineering time. 

Certification Process 
The program team's decision to limit functionality guaran 
teed a better, more stable system faster. There were 
fewer components in which defects occurred and there 
were fewer interfaces where interaction problems arose. 

The system test team was able to capitalize on both these 
benefits. A team decision was made to set a lower 
reliability goal of 48 continuous hours of operation (CHO) 
under stress, instead of the traditional 96 CHO. This 
decision substantially reduced the number of system test 
cycles required. The system test team next decided to 
attempt the 48 CHO reliability goal in a single, four-week 
test cycle. Previous HP-UX releases had required four test 
cycles, each ranging from two to six weeks. 

The single-test-cycle model, a benefit of reduced function 
ality, emphasized one of the key development goals: "Do 
it right the first time." This goal was important, because 

the aggressive MCF schedule did not permit the develop 
ment teams any time for rework. 

In summary, the MCF quality plan featured the following 
objectives: 

â€¢ A reduction in configuration and testing complexity 
â€¢ A single test cycle 
â€¢ A 48-CHO software certification goal 
â€¢ The use of design and code reviews before delivering new 

functionality 
â€¢ The use of traditional quality measurements before deliv 

ery to system integration and test 
â€¢ Weekly integration cycles with full partner testing partici 

pation 
â€¢ An early baseline established by the quality requirements 

of the VAB team activities. 

Design and Code Reviews 
The software engineers in the HP-UX kernel laboratory 
determined that the best way to achieve the MCF quality 
objectives was to focus on design and code reviews. 
Engineers evaluated the effectiveness of their existing 
review process to find defects before kernel integration 
and determined that it was not adequate to meet the MCF 
quality goals. This led to a search for a new design and 
code review process. Several of the engineers had used a 
formal review process called software inspection1 on 
previous projects, and felt that it would find key defects 
before kernel integration. 

The inspection process was used during the design phase 
with moderate success. A handful of the engineers had 
been previously trained on the process. The rest of the 
engineers simply received a document that described the 
inspection process. There was no formal training given on 
inspection roles, criteria, checklist, time requirements, or 
meeting conduct. 

When the inspection meetings began, several of the 
first-level managers felt that the inspection process was 
not as successful as it could be. They heard complaints 
from the engineers about the design documents, insuffi 
cient preparation by the inspectors, rambling meetings, 
and the absence of time estimates in the MCF schedule 
to perform the process. 

The managers put the inspection process on hold and 
asked an inspection consultant about the complaints they 
had heard. The consultant gave guidance about the team 
member's roles, how inspectors should prepare for the 
meetings, what to focus on during the meetings, and the 
amount of time required when the process is operating 
properly. 

The managers took this feedback back to the engineers 
so they could make changes. For example, the time 
estimate to do the inspections was added to the MCF 
schedule. This change showed the engineers that they had 
the opportunity to do inspections, and that the process 
was considered important. Performing inspections also 
caused the MCF schedule to slip by two weeks. The 
program team made an adjustment elsewhere in the 
program to recover the two weeks. 
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E  F  M C F  P r o j e c t  

Other Projects Inside 
and Outside HP 

Fig. in MCF inspection efficiency compared to other projects in 
side and outside HP. 

The main benefit of using inspections was that important 
defects were found early. The advance defect visibility 
minimized schedule delays by reducing the impact on 
critical path activities. One defect uncovered during an 
inspection was later estimated to require at least two 
weeks to isolate and repair if it had been found during 
system integration. 

Fig. 1 compares the MCF inspection efficiency with the 
results of other projects inside and outside HP. MCF 
achieved the second best results. Although data was not 
collected on the number of defects found during product 
and system testing, the general feeling was that there 
were fewer defects found in comparison to other HP-UX 
releases. This feeling was confirmed when the MCF 
kernel took six weeks to achieve the 48 continuous hours 
of operation quality goal, compared to previous HP-UX 
kernels which had taken at least eight weeks. 

Branch and Source Management 
The kernel sources had been managed by a source control 
system that permitted multiple development branches to be 
open at any time. This permitted different development 
efforts to proceed independently. When the time came to 
merge branch development into the main trunk, it was 
necessary to lock the branch. Branch locks ranged on the 
order of a few days to two weeks, depending on the 
number of changes and the stability of the resulting kernel. 
The delays frustrated the engineers who were waiting to 
include critical path functionality and important defect fixes. 

The basic MCF source management philosophy was: 
"Keep the branch open!" Thus, locking the branch for two 
weeks was unacceptable. 

Two branches were required to implement the aggressive 
MCF schedule: one to implement the new 4K-byte page 
size, and the other to implement software support for a 
new I/O backplane. 

Both branches began from the same snapshot of the 
HP-UX 8.0 kernel sources. As work progressed, a snap 
shot of the 4K-byte page size team's work was merged 

with the I/O team's branch. The merge was done in an 
ongoing, incremental fashion so that no big surprises 
would appear late in the release and the branch lock time 
would be minimized. 

The merge was accomplished by running a software tool 
that checked even,- line, in every file, on both branches. If 
a file had no changes on either branch the original file 
was kept. If a file changed on one branch but not the 
other, the change was incorporated. If a file changed on 
both branches it was flagged for an engineer to re\ie\v 
and resolve manually. 

The MCF merge goal was to lock the branch and require 
engineering review for no more than 36 hours. The goal 
was consistently met because of the careful attention of 
the kernel branch administrator and the high degree of 
team cooperation when assistance was required. 

Automated Nightly Build and Test 
What new testing challenges did the MCF release present? 
The key goal was to do a full kernel build and regression 
test cycle five nights a week, not just once a week as 
had been done in the past. Could we push the existing 
process this far? The kernel integration team was uncer 
tain, but was confident that the minimum core functional 
ity model could be capitalized on. 

Regression testing revisits the software that has already 
been tested by the development team. What did the 
kernel integration team expect to gain from redundant 
testing? First, to observe, characterize, and resolve any 
problems detected in the nightly kernel build. Second, at 
least to match the test results from the previous build, 
with the goal of converging to zero test failures rapidly. 

The MCF regression test plan featured the following: 
â€¢ A test setup process that was bootstrapped 
â€¢ Automated software that ran the regression tests five 

nights a week 
â€¢ An emphasis placed on parallel operation and the reliable 

presence of test results 
â€¢ Automated software that updated the test machines with the 

system integration team's good system on a weekly basis. 

The regression tests for kernel integration included the 
following: 

â€¢ File system tests: hierarchical, distributed, networked, 
and CD-ROM 

â€¢ Kernel functional tests 
â€¢ Disk quota functional tests 
â€¢ Database send and receive functional tests. 

The software developers created their own tests to cover 
new functionality (e.g., SCSI, Centronics, and digital tape 
interfaces). These tests were run by the development 
teams directly. 

The Test Setup Process 
At first test machines were scarce because there were 
only a handful of hardware prototypes available to the 
MCF team. Therefore, regression testing began on a 
standby basis. Eventually, one hardware prototype became 
available for use on weeknights. This allowed the test 
setup process to begin in earnest. 
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Kernel Build System 

HP 9000 Model 720 
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HP 9000 Model 720 
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Fig. 2. The MCF redundancy testing setup. 

The least-demanding tests such as the distributed and 
hierarchical file system tests were installed and run first. 
After any kernel or test problems were observed, charac 
terized, and resolved by analyzing the results, the setup 
for the more difficult tests for areas such as the kernel, 
the network, and the CD-ROM file system began. 

Automatic Testing 
Software was developed to automate running the regres 
sion tests nightly. The software was designed to perform 
the following tasks: 

â€¢ Put the kernel program and include files on the test sys 
tems 

â€¢ Reboot the test systems 
â€¢ Start the tests 
â€¢ Mail the test results directly to the kernel integration 
team. 

At one point, the kernel began to panic and the regres 
sion tests were prematurely interrupted. This caused a 
problem in receiving a complete set of test results. 
Fortunately, by this time, two functional prototype ma 
chines were available for nightly regression testing (see 
Fig. 2). The solution was to have both machines run the 
regression tests each night, but in reverse order. The first 
machine ran the easier file system tests first, followed by 
the more demanding kernel functional and remaining 
tests. The second system ran the same test groups, but in 
reverse order. The "redundant but reverse order" solution 
ensured the presence of a full set of test results each 
morning by combining the output of both systems if 
required. 

Once all the test groups were set up and running, it 
proved impossible for the automated software to com 
plete them within the six-hour time limit. The problem 
was solved by modifying the automated software to start 
as many of the test groups as possible in parallel. The 
plan was to capitalize on the HP-UX process scheduling 
abilities and maximize the throughput. One assumption 
was made using this approach â€” the tests would not 
adversely interact with each other. The assumption 
proved to be true in general. The exceptions were the 
disk quota, CD-ROM, and system accounting tests, which 
had conflicts. The automated software was modified to 
serialize the execution of the disk quota and CD-ROM test 

groups and run them as a separate stream in parallel with 
the other test groups. The test administrator chose to 
handle the system accounting test manually, which 
continued to fail occasionally because of known conflicts. 

Weekly Delivery to System Integration 
A complete internally consistent system was built every 
week, allowing up-to-date software with the latest fixes to 
be used by the development partners for system integra 
tion. To deliver the new system to system integration, the 
kernel build administrator examined the logs, handled any 
exceptional conditions, communicated with partners, and 
then wrote, for review by the management teams, a 
report that explained what changed from week to week. 

On Monday mornings, before the kernel build administra 
tor had arrived to check the logs, the kernel program and 
the include files were automatically sent from Cupertino, 
California to the HP-UX commands team in Fort Collins, 
Colorado. After delivery, the HP-UX commands, which 
required the include files, began automatically building 
the system. If the kernel build administrator detected a 
problem in the error logs, the commands build adminis 
trator was called. The two administrators consulted over 
the telephone whether to let the commands build com 
plete, or to interrupt it. Often, if there was a problem, the 
kernel delivery was still useful. For example, it was only 
necessary to interrupt the commands build two or three 
times out of twenty or more kernel deliveries. 

In summary, the weekly delivery process offered the 
following features: 

â€¢ Files were delivered in advance, before the tests had cer 
tified them 

â€¢ Rapid team communication was used to notify the part 
ners depending on the delivery if any problem was de 
tected 

â€¢ Systems delivered were often usable by the partners even 
when problems were detected 

> Problems, status, and any changes were communicated 
quickly and directly. 

Conclusion 
The HP-UX kernel laboratory produced a version of the 
HP-UX operating system that achieved excellent perfor 
mance and rapid time to market for a new workstation 
computer, the HP 9000 Model 720. This achievement was 
made possible by a simplified management structure, the 
specification of minimum core functionality, a quality 
control plan that used design and code reviews, and a 
kernel integration process that featured full automation 
of the software build, test, and delivery activities. 
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New Optimizations for PA-RISC 
Compilers 
Extensions to the PA-RISC architecture exposed opportunities for code 
optimizations that enable compilers to produce code that significantly 
boosts the performance of applications running on PA-RISC machines. 

by Robert C. Hansen 

Hewlett-Packard's involvement in reduced instruction set 
computers (RISC) began in the early 1980s when a group 
was formed to develop a computer architecture powerful 
and versatile enough to excel in all of Hewlett-Packard's 
markets including commercial, engineering, scientific, and 
manufacturing. The designers on this team possessed 
unusually diverse experience and training. They included 
compiler designers, operating system designers, micro- 
coders, performance analysts, hardware designers, and 
system architects. The intent was to bring together 
different perspectives, so that the team could deal effec 
tively with design trade-offs that cross the traditional 
boundaries between disciplines. After 18 months of 
iterative, measurement-oriented evaluation of what com 
puters do during application execution, the group pro 
duced an architecture definition known today as Precision 
Architecture RISC, or PA-RISC.1'2'3 

In the late 1980s, there were a number of groups that 
were looking for ways to make Hewlett-Packard more 
successful in the highly competitive workstation market. 
These groups realized the need for better floating-point 
performance and virtual memory management in PA-RISC 
to produce a low-cost, high-performance, PA-RISC-based 
workstation product. Experts from these groups and other 
areas were brought together to collaborate on their ideas 
and to propose a set of extensions to PA-RISC. Many 
members of this team were from the then newly acquired 
Apollo Computers (now HP Apollo). With the knowledge 
gained from years of experience with PA-RISC and PRISM 
from Apollo Computers, suggested extensions to the 
architecture were heavily scrutinized and only accepted 
after their benefits could be validated. The result was a 
small but significant set of extensions to PA-RISC now 
known as PA-RISC 1.1. 

Although not a rigid rule, most of the architecture exten 
sions of PA-RISC 1.1 were directed at improving Hewlett- 
Packard's position in the technical workstation market. 
Many of the extensions aimed at improving application 
performance required strong support in the optimizer 
portion of the PA-RISC compilers. Key technical engineers 
were reassigned to increase the staff of what had pre 
viously been a small optimizer team in HP's California 
Language Laboratory. In addition, engineers responsible 
for compiler front ends became involved with supporting 
new optimization and compatibility options for the two 
versions of the architecture. Finally, many compiler 

members from the HP Apollo group shared their insights 
on how to improve the overall code generation of the 
PA-RISC 1.1 compilers. The PA-RISC 1.1 extensions, 
together with enhancements to the optimizing compilers, 
have enabled Hewlett-Packard to build a low-cost high- 
performance desktop workstation with industry-leading 
performance. 

The first release of the PA-RISC 1.1 architecture is found 
in the HP 9000 Series 700 workstations running version 
8.05 of the HP-UX operating system (HP-UX 8.05). The 
operating system and the compilers for the Series 700 
workstation are based on the HP-UX 8.0 operating system, 
which runs on the HP 9000 Series 800 machines. 

This article presents a brief discussion about the architec 
ture extensions, followed by an overview of the enhance 
ments made to the compilers to exploit these extensions. 
In addition to enhancements made to the compilers to 
support architecture extensions, there were a number of 
enhancements to traditional optimizations performed by 
the compilers that improve application performance, 
independent of the underlying architecture. These generic 
enhancements will also be covered. Finally, performance 
data and an analysis will be presented. 

PA-RISC 1.1 Architecture Overview 

Most of the extensions to PA-RISC were motivated by 
technical workstation requirements and were designed to 
improve performance in the areas of virtual memory 
management, numerical applications, and graphics, all at 
the lowest possible cost. Most of the architecture exten 
sions can be exploited by the compilers available on 
PA-RISC 1.1 implementations. Additional implementation- 
specific extensions, like special instructions, have been 
made to improve performance in critical regions of 
system code and will not be discussed here. 

New Instructions 
Most implementations of PA-RISC employ a floating-point 
assist coprocessor to support high-performance numeric 
processing.2 It is common for a floating-point coprocessor 
to contain at least two functional units: one that performs 
addition and subtraction operations and one that performs 
multiplication and other operations. These two functional 
units can accept and process data in parallel. To dispatch 
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F M P Y A D D f r 1 . f r 2 . f r 3 . M , l r 5  

(a) 

F M P Y A D D f f 1 , f r 2 , f r 3 , W , f r 1  

I b )  

Fig. 1. Legal and illegal uses of the five-operand FMPYADD instruc 
tion. Because of parallelism the multiply and add operations 
execute at the same time, (a) Legal use of the instruction. There is 
no interdependence between operands, (b) Illegal use of the 
instruction. The operand in floating-point register frl is used in 
both operations. 

operations to these functional units at a higher rate, two 
five-operand floating-point instructions were added to the 
instruction set: 
FMPYADD: Floating-point multiply and add 
FMPYSUB: Floating-point multiply and subtract. 

In a single instruction, the compiler can specify a float 
ing-point multiplication operation (two source registers 
and one target) together with an independent floating 
point addition or subtraction operation in which one 
register is both a source and a target. However, because 
the multiply operation is executed in parallel with the add 
or subtract operation in a five-operand instruction, the 
result of one operation cannot be used in the paired 
operation. For example, in an FMPYADD, the product of the 
multiplication cannot be used as a source for the addition 
and vice versa (see Fig. 1). 

Since most floating-point multipliers can also perform 
fixed-point multiplication operations, the unsigned integer 
multiplication instruction XMPYU was also defined in 
PA-RISC 1.1. XMPYU operates only on registers in the 
floating-point register file described below. This dependen 
cy implies that fixed-point operands may have to be 
moved from general registers to floating-point registers 

and the product moved back to a general-purpose regis 
ter. Since there is no architected support for moving 
quantities between general-purpose and floating-point 
register banks directly, this movement is done through 
stores and loads from memory. The compiler decides 
when it is beneficial to use the XMPYU instruction instead 
of the sophisticated multiplication and division techniques 
provided in PA-RISC.4 Signed integer multiplication can 
also be accomplished using the XMPYU instruction in 
conjunction with the appropriate extract (EXTRS, EXTRU) 
instructions. 

Additional Floating-Point Registers 
To increase the performance for floating-point-intensive 
code, the PA-RISC 1.1 floating-point register file has been 
extended. The number of 64-bit (double-precision) registers 
has been doubled from 16 to 32 (see Fig. 2). 

In addition, both halves of each 64-bit register can now 
be addressed as a 32-bit (single-precision) register, giving 
a total of 64 single-precision registers compared to only 
16 for PA-RISC 1.0. Moreover, contiguous pairs of single- 
precision values can be loaded or stored using a single 
double-word load or store instruction. Using a double- 
word load instruction to load two single-precision quanti 
ties can be useful when manipulating single-precision 
arrays and FORTRAN complex data items. 

Cache Hints 
On PA-RISC systems, instructions and data are typically 
fetched and stored to memory through a small, high-speed 
memory known as a cache. A cache shortens virtual 
memory access times by keeping copies of the most 
recently accessed items within its fast memory. The cache 
is divided into blocks of data and each block has an 
address tag that corresponds to a block of memory. When 
the processor accesses an instruction or data, the item is 
fetched from the appropriate cache block, saving signifi 
cant time in not having to fetch it from the larger 
memory system. If the item is not in the cache, a cache 

S t a t u s  E x c e p t i o n  R e g i s t e r  1  

Except ion  Reg is ter  2  Except ion  Reg is ter  3  

Except ion  Reg is ter  4  Except ion  Reg is ter  5  

Except ion  Regis ter  6  Except ion  Regis ter  7  

One 64-Bit or Two 32-Bit Data Registers 

One 64-Bit or Two 32-Bit Data Registers 

Fig. regis The floating-point register file contains 28 64-bit data regis 
ters conditions. seven 32-bit registers for reporting exceptional conditions. 
The status register holds information on the current rounding 
mode, five exception flags, and the exception trap enables for five 
IEEE exceptions: overflow, underflow, divide by zero, invalid 
operation, and inexact. If an exception is raised when traps are 
enabled, an interrupt to the main processor occurs, with the ex 
ception and the instruction causing it recorded in an exception 
register. 
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miss occurs and the processor may stall until the needed 
block of memory is brought into the cache. 

To increase cache throughput, an extension to cache 
management has been exposed to the compiler. A bit has 
been encoded in the store instructions that can be used 
when the compiler knows that each element in a cache 
block will be overwritten. This hint indicates to the 
hardware that it is not necessary to fetch the contents of 
that cache block from memory in the event of a cache 
miss. This cache hint could be used to provide a signifi 
cant savings when copying large data structures or 
initializing pages. 

Optimization Enhancements 

Optimizing compilers make an important contribution to 
application performance on PA-RISC processors.5-6 A 
single shared optimizer back end is used in most PA- 
RISC compilers. When global optimization is enabled, the 
following traditional transformation phases take place:7 

â€¢ Global data flow and alias analysis (knowing which data 
items are accessed by code and which data items may 
overlap is the foundation for many phases that follow) 

â€¢ Constant propagation (folding and substitution of 
constant computations) 

â€¢ Loop invariant code motion (computations within a loop 
that yield the same result for every iteration) 

â€¢ Strength reduction (replacing multiplication operations 
inside a loop with iterative addition operations) 

â€¢ Redundant load elimination (elimination of loads when 
the current value is already contained in a register) 

â€¢ Register promotion (promotion of a data item held in 
memory to being held in a register) 

â€¢ Common subexpression elimination (removal of redun 
dant computations and the reuse of the one result) 

â€¢ Peephole optimizations (use of a dictionary of equivalent 
instruction patterns to simplify instruction sequences) 

â€¢ Dead code elimination (removal of code that will not 
execute) 

â€¢ Branch optimizations (transformation of branch instruc 
tion sequences into more efficient instruction sequences) 

â€¢ Branch delay slot scheduling (reordering instructions to 
perform computations in parallel with a branch) 

â€¢ Graph coloring register allocation (use of a technique 
called graph coloring to optimize the use of machine 
registers) 

â€¢ Instruction scheduling (reordering instructions within a 
basic block to minimize pipeline interlocks) 

â€¢ Live variable analysis (removing instructions that compute 
values that are not needed). 

With PA-RISC 1.1, a number of these areas were en 
hanced to take advantage of the extensions to the archi 
tecture. Specifically, the last two transformations, register 
allocation and instruction scheduling, saw many changes 
to support the extended floating-point registers and new 
five-operand instructions. 

In addition to the enhancements made to support the 
architecture extensions, the compiler optimization team 

â€¢ The the compiler also uses an optimizing preprocessor on the front end that performs 
some code dependent optimizations before sending the code to the standard FORTRAN 
compiler and the shared optimizer back end (see article on page 24). 

spent a considerable amount of time analyzing application 
code to identify missed optimization opportunities. There 
was also a ver\- thorough evaluation of Hewlett-Packard's 
optimizing compilers to see how they matched some key 
workstation competitors' compilers. Many architecture 
independent enhancements were identified and added at 
the same time as the PA-RISC 1.1 enhancements. 

These compiler enhancements were integrated with the 
HP-UX 8.0 compilers available on the HP 9000 Series 800 
machines. Because the same base was used, the architec 
ture independent optimization enhancements added to the 
compilers will also benefit code compiled with the HP-UX 
8.0 compilers. 

Many of the enhancements to the optimizing compilers 
led to significant improvements in the Systems Perfor 
mance Evaluation Cooperative (SPEC) benchmark suite. 
Release 1.2b of the SPEC suite contains 10 benchmarks 
that primarily measure CPU (integer and floating-point) 
performance in the engineering and scientific fields. 
Performance data for the SPEC benchmarks is presented 
later in this article. 

Improved Register Allocation 
Near-optimal use of the available hardware registers is 
crucial to application performance. Many optimization 
phases introduce temporary variables or prolong the use 
of existing register variables over larger portions of a 
procedure. The PA-RISC optimizer uses an interference 
graph coloring technique8 to allocate registers to a 
procedure's data items. When the coloring register alloca 
tor runs out of free registers, it is forced to save or 
"spill" a register to memory. Spilling a register implies 
that all instructions that access the item that was spilled 
must first reload the item into a temporary register, and 
any new definitions of the item are immediately stored 
back to memory. Spilling can have a costly impact on 
run-time performance. 

With PA-RISC 1.1, the register allocator was enhanced to 
support the additional floating-point registers. These 
additional floating-point registers have greatly decreased 
the amount of floating-point spill code in floating-point- 
intensive applications. The register allocator now has 
more than twice the number of 64-bit (double-precision) 
floating-point registers available for allocation purposes 
(see Fig. 2). Also, the PA-RISC 1.1 architecture now 
allows either half of a 64-bit register to be used as a 
32-bit (single-precision) register, resulting in more than 
four times the number of single-precision registers that are 
available in PA-RISC 1.0. 

Improved Instruction Scheduling 
The instruction scheduler is responsible for reordering the 
machine-level instructions within straight-line code to 
minimize stalls in the processor's pipeline and to take 
advantage of the parallelism between the CPU and the 
floating-point coprocessor. It is also responsible for 
attempting to fill pipeline delay slots of branch instruc 
tions with a useful instruction. Of course, the instruction 
scheduler must maintain the correctness of the program 
when it reorders instructions. The instruction scheduling 
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algorithm used in the PA-RISC compilers is based on the 
technique described in reference 9. 

Until recently, instruction scheduling was done just once 
after register allocation, immediately before the machine 
instructions are written to the object file. This one-pass 
approach suffered because the register allocator may 
allocate registers to data items in a manner that imposes 
artificial dependencies. These artificial dependencies can 
restrict the scheduler from moving instructions around to 
avoid interlocks (i.e., pipeline stalls). 

For example, the LOW (load word) instruction on PA-RISC 
typically takes two cycles to complete. This means that if 
the very next instruction following the LOW uses the 
target register of the LOW, the processor will stall for one 
cycle (load-use interlock) until the load completes. The 
instruction scheduler is responsible for reordering instruc 
tions to minimize these stalls. The software pipelining 
article on page 39 describes pipeline stalls in more detail. 

If the register allocator allocates the same register to two 
independent data items, this might impair the reordering 
operations of the instruction scheduler. For example, if 
register allocation results in the following code: 

L O W  0  ( 0 ,  % r 3 0 ) ,  % r 2 0   s o m e  d a t a  i n t o  r e g i s t e r  2 0  
A D D  % r 2 0 ,  % r 2 1 ,  % r 2 2   r e g i s t e r  2 0  
L D W  8  ( 0 ,  % r 3 0 ) ,  % r 2 0   s o m e  o t h e r  d a t a  i n t o  r e g i s t e r  2 0  
A D D  % r 2 0 ,  . . .   r e g i s t e r  2 0  

the scheduler cannot move any of the instructions up 
wards or downwards to prevent load-use interlocks 
because of the dependencies on register 20. This could 
lead to a situation in which no useful instruction can be 
placed between the LDW and the instructions that use 
register 20. 

These artificial dependencies imposed by the register 
allocator could also limit the instruction scheduler's 
ability to interleave general register instructions with 
floating-point instructions. Interleaving is crucial in 
keeping both the general CPU and the floating-point 
coprocessor busy and exploiting a limited amount of 
parallelism. 

To improve the effectiveness of instruction scheduling, 
both the PA-RISC 1.0 and 1.1 compilers now perform 
instruction scheduling twice, once before register alloca 
tion and once after. By scheduling before register alloca 
tion, the scheduler can now detect a greater amount of 
instruction-level parallelism within the code and thus have 
greater freedom in reordering the instructions. Scheduling 
after register allocation enables the scheduler to reorder 
instructions in regions where the register allocation may 
have deleted or added instructions (i.e., spill code 
instructions). 

The instruction scheduler's dependency analysis capabili 
ties have also been improved to recognize many of the 
cases where indexed loads and stores are accessing 
distinct elements of the same array. Through more 
accurate information, the scheduler has greater freedom 
to safely move loads of some array elements ahead of 
stores to other elements of that array. 

Another improvement made to help the scheduler when it 
is ordering code involved tuning the heuristics used to 
take into account some of the unique features of imple 
mentations of PA-RISC 1.1. These heuristics are aimed at 
avoiding cache stalls (stores immediately followed by 
loads or other stores), and modeling the floating-point 
latencies of the new PA-RISC 1.1 implementation more 
closely. 

Finally, the instruction scheduler has also been enhanced 
to identify cases in which the new five-operand instruc 
tions available in PA-RISC 1.1 can be formed. The sched 
uler, running before register allocation, identifies floating 
point multiplication (FMPY) instructions and independent 
floating-point addition (FADD) or subtraction (FSUB) 
instructions that can be combined to form a single 
five-operand FMPYADD or FMPYSUB instruction. 

When five-operand instructions are formulated during the 
scheduler pass, global data flow information is used to 
ensure that one of the registers used as an operand of 
the FADD or FSUB can be used to hold the result of the 
FADD or FSUB. This will be true if the data flow informa 
tion shows that the register containing the original 
operand has no further use in the instructions that follow. 
For example, in the instruction sequence: 

F M P Y  f r 1 ,  f r 2 ,  f r 3   =  f r 1  *  f r 2  

F A D D  f r 4 ,  f r 5 ,  f r 6   =  f r 4  +  f r 5  

if fr5 has no further uses in the instructions that follow 
the FADD, it can be used to replace register fr6 as the 
result of the addition. Any instructions that follow the 
FADD that use the result of the addition would be modi 
fied to use register fr5 instead of register fr6. 

Another problem confronting the instruction scheduler is 
instructions that occur between two instructions targeted 
to be joined. For example, take a simple case of using fr3 
between the FMPY and the FADD: 

FMPY f r l ,  f r2 ,  f r3  
FSTDS f r3 ,  memory 

FADD fr4,  f r5,  f r6 

;  f r 3  =  f r l  *  f r 2 ,  f r 5  =  f r 4  +  f r 5  
;  s t o re  f r 3  i n  memory  

;  f r6  =  f r4  +  f r5  

The five-operand FMPYADD cannot be placed in the posi 
tion of the FADD without moving the use of fr3 below the 
new five-operand instruction because the wrong value 
may be stored to memory. When the scheduler is satisfied 
that the necessary criteria have been met, it will produce 
the five-operand instruction: 

F M P Y A D D  f r l ,  f r 2 ,  f r 3 ,  f r 4 ,  f r 5  ;  f r 3  =  f r l  *  f r 2 ,  f r 5  =  f r 4  +  f r 5  
FSTDS f r3 ,  memory 

where register fr5 serves as both an operand and the 
result of the addition. 

These five-operand instructions allow the compiler to 
reduce significantly the number of instructions generated 
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for some applications. In addition, they allow the floating 
point coprocessor to dispatch two operations in a single 
cycle. 

Software Pipelining 
Software pipelining is an advanced transformation that 
attempts to interleave instructions from multiple iterations 
of a program loop to produce a greater amount of 
instruction-level parallelism and minimize pipeline stalls. 
Software pipelining is a new component that has been 
added to the global optimizer for both PA-RISC 1.0 and 
PA-RISC 1.1. The article on page 39 provides more 
information on this loop transformation scheme. 

Register Reassociation 
Register reassociation is a code improving transformation 
that supplements loop-invariant code motion and strength 
reduction. The main objective of this optimization is to 
eliminate integer arithmetic operations found in loops. It 
is particularly useful when applied to multidimensional 
array address computations. The article on page 33 pro 
vides more information on this transformation technique. 

Linker Optimizations 
The ADDIL instruction is used by the compilers in conjunc 
tion with load or store instructions to generate the virtual 
addresses of global or static data items. The compiler 
must produce these large addresses because the compiler 
has no knowledge of where the desired data will be 
mapped with regards to the global data base register. The 
ADDIL instruction is unnecessary if the short displacement 
field in the load or store instruction is adequate to 
specify the offset of the data from the base register. The 
actual displacement of data items is finalized at link time. 
The PA-RISC 1.0 and 1.1 compilers now arrange for small 
global variables to be allocated as close to the base of 
the data area as possible. The HP-UX linker has been 
enhanced to remove any unnecessary ADDIL instructions 
when the short displacement field in load and store 
instructions is found to be adequate. 

As optimization strategies become more sophisticated, the 
use of run-time profiling data can be very useful in 
guiding various transformations. In the first of many 
stages to come, the PA-RISC optimizing linker now uses 
profiling information to reorder the procedures of an 
application to reduce cache contention and to minimize 
the number of dynamic long branches needed to transfer 
control between heavily called routines. This repositioning 
technique is currently known as profile-based procedure 
repositioning.10 

These two linker-based optimizations are enabled through 
special compiler and linker options. See "Link-Time 
Optimizations" on page 22 for more information on these 
two transformations. 

FORTRAN Vectorizing Preprocessor 
The Hewlett-Packard FORTRAN optimizing preprocessor 
is a major addition to the FORTRAN compiler for the HP 
9000 Series 700 implementation of PA-RISC 1.1. The 
preprocessor was a joint effort of Hewlett-Packard and an 
outside vendor. Using advanced program and data flow 
analysis techniques, and with specific details covering the 

implementation of the underlying architecture, FORTRAN 
source code is transformed to be more efficient and to 
take advantage of a highly tuned vector library. The 
preprocessor has boosted benchmark performance and 
real customer application performance by as much as 
30%. The Series 700 FORTRAN optimizing preprocessor is 
described in the article on page 24. 

Compatibility 

An important design goal in evolving the architecture to 
PA-RISC 1.1 was to allow a smooth transition from 
existing PA-RISC 1.0 implementations. With the exception 
of FORTRAN, the compilers on the Series 700 imple 
mentation of PA-RISC 1.1 are based on the compilers 
used in the existing Series 800 implementations of PA- 
RISC 1.0. Because the same compilers are used on Series 
800 and 700 systems, maximum portability of source code 
is achieved. 

Another system design goal was to provide software 
compatibility at the source code level with the HP 9000 
Series 300 and Series 400 workstations, which are based 
on the Motorola MC680xO architecture. 

Special efforts have been made for the C and FORTRAN 
languages to provide this compatibility. The PA-RISC C 
compiler has been enhanced with compiler directives to 
provide Series 300 and 400 compatible data alignment, 
which is the one area of potential incompatibility with 
PA-RISC. In the case of FORTRAN, a larger number of 
compatibility issues exist. The first release of system 
software included a version of the FORTRAN compiler 
from the Series 800 and a separate version from the 
Series 300 and 400 workstations. The latest releases now 
contain a single FORTRAN compiler based on the Series 
300 and 400 workstation compiler that has an option that 
allows users to compile their FORTRAN applications with 
semantics identical to either the Series 800 compiler or 
the Series 300 compiler. 

Given that the PA-RISC 1.1 architecture is a strict super 
set of PA-RISC 1.0, all HP-UX object code is completely 
forward compatible from PA-RISC 1.0 based implementa 
tions to the new PA-RISC 1.1 workstations. Portability 
includes object modules, libraries, and relocatable pro 
grams. Programs compiled and linked on PA-RISC 1.0 
implementations can run unchanged on PA-RISC 1.1 
implementations, and any combination of object modules 
and libraries from the two systems can be linked togeth 
er. Recompilation is necessary only if the programmer 
wishes to take advantage of the architecture and opti 
mization enhancements. This forward compatibility of 
object modules allowed many vendors to port their 
products to the Series 700 with little or no effort. 

Although object files can be ported from PA-RISC 1.0 
implementations to PA-RISC 1.1 implementations, the 
reverse may not always be true if the object file on a 
PA-RISC 1.1 machine was generated by a compiler that 
exploits the extensions to the PA-RISC 1.1 architecture. 
The HP-UX loader detects such situations and refuses to 
execute a program on a PA-RISC 1.0 implementation that 
has been compiled with PA-RISC 1.1 extensions. To assist 

June 1992 Hewlett-Packard Journal 19 

© Copr. 1949-1998 Hewlett-Packard Co.



the user in generating the most portable object files, a 
compiler option has been added to specify the destination 
architecture (DA) for the code generated by the compiler. 
For example, 

% ce  +DA1 .0  my_p rog . c  

would generate an object file based on the PA-RISC 1.0 
architecture definition. The object file could also be 
ported directly to a PA-RISC 1.1 implementation without 
the need for recompilation. A user can also use this 
option explicitly to ask for PA-RISC 1.1 extensions, or for 
cross compiling while on a PA-RISC 1.0 implementation 
with the command-line sequence: 

% ce  +DA1 .1  my_p rog . c  

Of course, the object file produced could no longer be 
executed on a PA- RISC 1.0 implementation. 

If the destination architecture is not specified, the default 
for the compilers is to generate code based on the 
architecture implementation on which the compiler is 
executing. 

Performance 

Through a combination of clock rate, instruction set 
extensions, compiler optimization enhancements, and 
processor implementation, the HP 9000 Series 700 
workstations are currently producing industry leading 
performance. Although much of this performance im 
provement comes from an increase in clock rate, as seen 
in the tables below, the compilers play a significant role 
in increasing the overall performance. 

Table I compares the raw speed of the HP 9000 Series 
720 workstation based on PA-RISC 1.1 architecture with 
the HP 9000 Series 835 workstation based on PA-RISC 
1.0. The SPEC benchmarks for the Series 835 were 
compiled with the HP-UX 7.0 compilers using full opti 
mization. For the Series 720, the HP-UX 8.07 compilers 
containing the latest enhancements to support PA-RISC 
1.1 were used. For the SPEC benchmark suite, higher 
SPECmarks imply higher throughput. 

Table I 
Performance Comparison of PA-RISC Implementations 

P r o c e s s o r /  C l o c k  C a c h e  S P E C m a r k s  
I m p l e m e n -  M H z  S i z e  i n  
t a t i o n  K b y t e s  I n t e g e r  F l o a t  O v e r a l l  

numbers, the performance numbers are divided by the 
clock frequency. The normalized SPECmark performance 
of the Model 720 is 92% higher than the normalized 
performance of the Model 835. Floating-point perfor 
mance, which is 162% higher, is primarily because of the 
optimizing preprocessor, better compiler optimizations, 
architecture extensions, implementation of separate 
floating-point multiplication and arithmetic functional 
units, faster floating-point operations, and larger caches. 
The gains in the integer SPEC benchmark (22%) are 
primarily because of enhancements to traditional opti 
mizations that are architecture independent. 

Table II 
Normalized Performance Comparison of 

PA-RISC Implementations 

P r o c e s s o r /  C l o c k  N o r m a l i z e d  
I m p l e m e n -  M H z  P e r f o r m a n c e  
tation 

Improvement over 
Series 835 

instruction Cache/Data Cache 

The data in Table II compares the relative efficiency of 
the HP 9000 Series 835 and the HP 9000 Series 720 by 
normalizing the benchmark performance. To normalize the 

I n t e -  F l o a t  O v e r -  I n t e -  F l o a t  O v e r -  
g e r  a l l  g e r  a l l  

M o d e l  1 5  0 . 6 5  0 . 6 1  0 . 6 3  1 . 0 0  1 . 0 0  1 . 0 0  
8357 
PA-RISC 
1.0 

M o d e l  5 0  0 . 7 9  1 . 6 0  1 . 2 1  1 . 2 2  2 . 6 2  1 . 9 2  
720/ 
PA-RISC 
1.1 

To see exactly how much performance was gained 
through enhancements to the traditional compiler opti 
mizations (not architecture-specific), we compiled the 
SPEC benchmarks using the HP-UX 8.07 compilers with 
level 2 optimization and the destination architecture 
PA-RISC 1.0. This disables the use of the added instruc 
tions and floating-point registers. We also disabled use of 
the FORTRAN optimizing preprocessor. Table III shows 
how the HP-UX 7.0 SPEC benchmarks compare to the 
HP-UX 8.05 benchmarks while running on an HP 9000 
Model 720. 

From Table III, we can see that the enhancements made 
to the traditional compiler optimizations performed by the 
compilers produced gains of 1 to 24 percent. 

It is also interesting to see how much the architecture 
itself contributed to performance improvement. To do 
this, we used the same HP-UX 8.05 compilers (with the 
-0 option, which indicates to compile without the FOR 
TRAN optimizing preprocessor) to produce SPEC bench 
marks compiled for PA-RISC 1.0 and PA-RISC 1.1. Table 
IV shows that all floating-point benchmarks except Spice 
show a significant improvement. This improvement comes 
directly from the larger register file and the added 
instructions in the PA-RISC 1.1 instruction set. The 
integer SPEC benchmarks are absent from this table 
because the architecture enhancements do little for 
integer code. 
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T a b l e  I I I  
C o m p a r i s o n  b e t w e e n  B e n c h m a r k s  C o m p i l e d  W i t h  

H P - U X  7 . 0  a n d  H P - U X  8 . 0 7  C o m p i l e r s  R u n n i n g  o n  a n  H P  9 0 0 0  
M o d e l  7 2 0  W o r k s t a t i o n  

B e n c h m a r k s  H P - U X  H P - U X  C o m p i l e r  
7 . 0  8 . 0 5  I m p r o v e m e n t  

T a b l e  I V  
P e r f o r m a n c e  I m p r o v e m e n t  R e s u l t i n g  f r o m  A r c h i t e c t u r e  
E n h a n c e m e n t s  o n  t h e  H P  9 0 0 0  M o d e l  7 2 0  W o r k s t a t i o n  

Finally, we wanted to see how much the optimizing 
preprocessor contributed to the SPEC benchmark im 
provement. To do this, we used the HP-UX 8.05 FOR 
TRAN compiler to produce two sets of the FORTRAN 
SPEC benchmarks. Both sets were compiled with full 
optmization but only one was compiled with full optimiza 
tion and the addition of the preprocessor. While bench 
marks nasa7 and tomcatv showed fairly large improvements 
with the optimizing preprocessor, the gains for matrix300 
were dramatic. All these benchmarks are known to suffer 
from cache and TLB (translation lookaside buffer) miss 
penalties, but the preprocessor was able to improve their 
performance through its memory hierarchy optimizations. 
Table V shows a comparison between the benchmarks 
created on an HP-UX 8.05 operating system running on an 
HP 9000 Model 720 and compiled with and without the 

optimizing preprocessor enhancements. Excluded bench 
marks showed little or no gain. See the article on page 24 
for more about the FORTRAN optimizing preprocessor. 

T a b l e  V  
P e r f o r m a n c e  G a i n s  W i t h  t h e  

F O R T R T A N  O p t i m i z i n g  P r e p r o c e s s o r  

B e n c h m a r k s  W i t h o u t  W i t h  I m p r o v e m e n t  
P r e p r o c e s s o r  P r e p r o c e s s o r  

O 2 0 . n a s a 7  4 4 . 2  6 2 . 9  1 . 4 2  

Conclusions 
To remain competitive in the workstation market, the 
PA-RISC architecture has been extended to better meet 
the performance demands of workstation applications. 
With these changes to the architecture, Hewlett-Packard's 
compiler products have evolved to exploit the extensions 
made. Most important, the compilers successfully exploit 
the increase in the number of floating-point register files 
and the new instructions including the integer multiply 
and the five-operand instructions. 

Besides being enhanced to exploit these new architectural 
features, additional code improving transformations have 
been introduced that are independent of the underlying 
architecture and substantially boost the performance of 
applications. These include a new vectorizing preproces 
sor for FORTRAN, software pipelining, register reassoci- 
ation, link-time optimizations, and better instruction 
scheduling. The combined result of the architecture exten 
sions, compiler enhancements, and a high-speed CMOS 
processor implementation is a workstation system that 
compares favorably with the most advanced workstations 
presently available. 
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Link-Time Optimizations 

There are some optimizations that can be performed only when the linker produces 
an executable file. For the PA-RISC systems these optimizations include removing 
unnecessary instructions by changing the location of certain data segments, and 
locating procedures that call each other frequently close together. 

Elimination of Unnecessary ADDIL Instructions 
Compilers generally do not know whether their data will be close to the base 
register for the data segment. Therefore, references to global or static variables on 
PA-RISC to require two instructions to form the address of a variable or to 
load (or store) the contents of the variable. For example the instructions: 

ADDIL  LR 'var -$g loba l$ ,dp  
LOW RR'va r -$g loba l$ ( r1 ) , r10  

load the contents of contents of a global variable into register 10. 

The ADDIL instruction constructs the left side of the 32-bit virtual address. In most 
cases, an the data is within reach of the load or store instructions, and an 
unnecessary ADDIL instruction is present in the code. Since ADDILs account for 
about from of the generated code, significant run-time savings result from their 
removal. 

If the location for the variable turns out to be close to the global data pointer dp, 
then of offset of the ADDIL is zero and the ADDIL is like a COPY of global base 
register 27 (the location of dp) to register 1 . In such a case, it is more efficient to 
eliminate the ADDIL and use register 27 as the base register in the LOW instruc 
tion. This elimination can be performed at link time once the linker lays out all the 
global data and computes the value that will be assigned to dp. 

The -0 linker option turns on linker optimizations. Link-time optimizations include 
removing the unnecessary ADDILs. Data is also rearranged to increase the number 
of data items that can be accessed without ADDILs. The -0 option is passed to the 
linker option the compilers when the +03 compiler option is selected. The +03 option 
also loops, the compiler not to optimize by moving ADDILs out of loops, in the 
expectation that they will be removed at link time. This can be very effective in 
reducing register pressure for some procedures. For example, to optimize a C 
program at link time as well as compile time, use cc +03 foo.c. 

Because shared libraries on HP-UX use position independent code that is refer 
enced from register 1 9 as a base register, ADDIL elimination is not done when 
building an HP-UX shared library. It is also in conflict with the -A (dynamic linking] 
option, the -r (relocatable link) option, and the -g (symbolic debugging) option. All 
conflicts are resolved by disabling this optimization. Shared libraries and position 
independent code are described on page 46. 

The linker rearranges data to maximize the number of variables that can be placed 
at the beginning of the data area, increasing the probability that ADDILs referenc 
ing these variables can be removed. Nonstandard, conforming programs that rely 
on specific positioning of global or static variables may not work correctly after 
this optimization. 

ADDIL elimination is appropriate for programs that access global or static variables 
frequently. Programs not doing so may not show noticeable improvement. Link- 
time optimization increases linking time significantly (approximately 20%) because 
of the additional processing and memory required. 

Profile-Based Procedure Repositioning at Link Time 
Research has consistently shown that programs tend to keep using the instructions 
and data that were used recently. One of the corollaries of this principle is that 
programs have large amounts of code (and to a lesser extent data) that is used to 
handle when that very seldom happen, and therefore are only in the way when 
running normal cases. 

This 8.05 is exploited by a new optimization in the HP-UX 8.05 linkers 
called feedback- procedure repositioning (sometimes referred to as feedback- 
directed positioning).1 This three-step optimization first instruments the program to 
count how often procedures call each other at run time. The instrumented program 
is run on sample input data to collect a profile of the calls executed by the pro 
gram. The linker then uses that profile information in the final link of the produc 
tion program to place procedures that call each other frequently close together. 

A more important case is the inverse â€” things that are infrequently or never called 
are grouped together far away from the heavily used code. This increases instruc 
tion-cache locality and in large applications decreases paging, since only the code 
that will be used is demand-loaded into main memory or cache, not a mixture of 
useful cache unneeded code that happens to be allocated to the same page or cache 
line. 

This optimization is invoked by two new linker options: 
â€¢ -I: execution. the code to collect procedure call counts during execution. This 

option is used in conjunction with the -P option. 
â€¢ -P: Examine the data file produced with the -I option and reposition the proce 

dures according to a "closest is best" strategy. 
These options are often passed to the linker via the compiler driver program's -W 
option. For instance, a C program can be optimized with profile-driven procedure 
positioning by: 

c c  - c  - 0  f o o . c  f  c o m p i l e  w i t h  o p t i m i z a t i o n s  
c c  - W l . - l  f o o . o  i f  l i n k  w i t h  p r o f i l i n g  i n s t r u m e n t a t i o n  c o d e  a d d e d  
a .  o u t  <  d a t a .  i n  f  r u n  p r o g r a m  t o  g e n e r a t e  p r o f i l e  i n f o r m a t i o n  

#  i n  t h e  " f l o w . d a t a "  f i l e  
c c  - W I . - P  f o o . o  f  l i n k  w i t h  p r o c e d u r e s  p o s i t i o n e d  a c c o r d i n g  t o  

I  p r o f i l e  

The first link of the executable produces an executable with extra code added to 
produce a file of profile information with counts of all the calls between each pair 
of procedures executed. The final link uses the profile data file information to 
determine the order of procedures in the final executable file, overriding the nor 
mal positioning by the order of the input files seen. This order will optimize use of 
the virtual memory system for the program's code segment. A secondary effect is 
to reduce the number of long branch stubs (code inserted to complete calls longer 
than 256K bytes). While the total number of long branch stubs may actually in 
crease, the number of long branches executed at run time will decrease. 

Carl Burch 
Software Engineer 
California Language Laboratory 
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HP 9000 Series 700 FORTRAN 
Optimizing Preprocessor 
By combining HP design engineering and quality assurance capabilities 
with a well-established third party product, the performance of Series 700 
FORTRAN programs, as measured by key workstation benchmarks, was 
improved by more than 30%. 

by Robert A. Gottlieb, Daniel J. Magenheimer, Sue A. Meloy, and Alan C. Meyer 

An optimizing preprocessor is responsible for modifying 
source code in a way that allows an optimizing compiler 
to produce object code that makes the best use of the 
architecture of the target machine. The executable code 
resulting from this optimization process is able to make 
efficient use of storage and execute in minimum time. 

The HP 9000 Series 700 FORTRAN optimizing preproces 
sor uses advanced program and data flow analysis tech 
niques and a keen understanding of the underlying 
machine implementation to transform FORTRAN source 
code into code that is more efficient and makes calls to a 
highly tuned vector library. The vector library is a group 
of routines written in assembly language that are tuned to 
run very fast (see "Vector Library" on page 29). Fig. 1 
shows the data flow involved in using the optimizing 

FORTRAN 
Source 

Code 

FORTRAN 
Optimizing 

Preprocessor 

Optimized FORTRAN Code 

FORTRAN 
Optimizing 
Compiler 

Optimized Object Code 

Fig. 1. Data flow for compiling FORTRAN source code using the 
optimizing preprocessor. 

preprocessor to transform FORTRAN source code into an 
optimized executable file. 

A slightly different version of this product serves as the 
preprocessor for HP Concurrent FORTRAN, which is now 
running on HP Apollo DN 10000 computers. HP Apollo 
engineers responsible for this product identified opportu 
nities for substantial improvements to the preprocessor 
and concluded that these improvements were also appli 
cable to the Series 700 FORTRAN. Performance analysis 
confirmed these conclusions, and after marketing analysis, 
an extended multisite, cross-functional team was formed 
to incorporate the preprocessor into the FORTRAN 
compiler for the HP 9000 Series 700 computer systems. 
Because of this effort, as of the HP-UX 8.05 release, the 
preprocessor is bundled with every FORTRAN compiler. 

The preprocessor is based on a third-party product. HP's 
contribution included: 
Tying the preprocessor into the HP FORTRAN product 
(This included user interface changes and extensive doc 
umentation changes.) 

1 Identifying modifications required to allow the preproces 
sor to recognize HP's extended FORTRAN dialect 

1 Assembly coding a vector library that incorporates 
knowledge of CPU pipelining details and implementation 
dependent instructions to allow the Series 700 to work at 
peak performance 

1 Performing extensive quality assurance processes that 
uncovered numerous defects, ensuring that the product 
meets HP's high-quality standards. 

These contributions are discussed in detail in this article. 
Examples of specific transformations and performance 
improvements on key industry benchmarks are also 
described. 

Preprocessor Overview 
Although the preprocessor is bundled with every Series 
700 FORTRAN compiler as of the HP-UX 8.05 release, the 
preprocessor is not automatically enabled whenever a 
user compiles a FORTRAN program. To invoke the 
preprocessor, the +OP option must be specified on the 
command line invoking the FORTRAN compiler. For 
example, 
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f77 +OP f i le . f  

will cause the file file.f to be preprocessed and then 
compiled by the FORTRAN compiler. In addition, an 
integer between 0 and 4 can be appended following +OP. 
This integer selects the settings of certain preprocessor 
options. For example, to make the preprocessor optimize 
as aggressively as possible, the following could be used: 

f77 +OP4 f i le. f  

By default, the +OP option also automatically invokes the 
standard optimizer at the optimization level defined by 
the -0 option, which typically indicates full optimization 
(-02). 

Advanced Options. The preprocessor can be invoked with 
many options by using the -WP option. For example, 

f 77  +OP -WP,  -novec to r i ze  f i l e . f  

precludes the preprocessor from generating calls to the 
vector library. Some other classes of options include: 

â€¢ Mining Options. These options instruct the preprocessor 
to replace subroutine or function calls with the actual 
text of the subroutine or function. This removes the over 
head of a procedure call and exposes additional opportu 
nities for optimizations. These options allow the user not 
only to instruct the preprocessor whether or not to inline, 
but also to provide the maximum level of subprogram 
nesting and lists of files to examine for inlining. The user 
can exercise manual control over inlining with directives, 
and impose restrictions on inlining in nested loops. 

â€¢ Optimization Options. Using optimization options, the 
user can adjust parameters that control loop unrolling, 
transformations that may affect arithmetic roundoff, 
and the aggressiveness of the optimizations that are 
attempted. 

â€¢ Vectorization Options. These options tell the preproces 
sor whether or not to generate calls to the vector library 
and adjust the minimum vector length that will cause 
such a call to be generated. 

â€¢ Listing Options. The user can obtain detailed information 
about the program and the optimizations performed by 
the preprocessor with listing options. Also, the user can 
adjust the format and level of detail of the information in 
the listings. 

â€¢ Other Options. Some options specify whether certain 
directives (described below) are to be recognized by the 
preprocessor and what global assumptions can be made 
about the behavior of the user program. There are also 
options that allow the user to designate special inline 
comment characters to be recognized and whether to 
save program variables in static memory. 

Directives. The preprocessor provides an extensive set of 
directives. These directives can be inserted directly in the 
FORTRAN application and appear to the compiler as 
comments except when enabled by certain command-line 
options. Placement of these directives in the code allows 
the user to vary control of the optimizations performed 
by the preprocessor in each subprogram. This control can 
have the granularity of a single line in a subprogram. 

Some of the features provided by directives include: 

â€¢ Optimization Control. Optimization directives provide 
control of inlining. roundoff, and optimization aggressive 
ness. 

â€¢ Vector Call Control. Vector call translation directives con 
trol substitutions that result in calls to the vector library 
from the preprocessor. 

â€¢ Compatibility. Certain directive formats used by competi 
tive products are recognized to allow correct optimiza 
tions to be performed on supercomputer applications. 

â€¢ Assertions. Assertions can be inserted in an application 
to allow the user to provide additional program informa 
tion that will allow the preprocessor to make informed 
decisions about enabling or disabling certain optimiza 
tions. For example, many FORTRAN applications violate 
array subscript bounds. If the user does not inform the 
preprocessor of this language standard violation, trans 
formations may be performed that result in incorrect 
execution of the program. 

Transformations 
The HP FORTRAN optimizing preprocessor supports a 
number of different transformations (changes to the 
source code) that are intended to improve the perfor 
mance of the code. These transformations include the 
following categories: 

â€¢ Scalar transformations 
â€¢ Interprocedural transformations 
â€¢ Vector transformations 
â€¢ Data locality (blocking) and memory access transforma 

tions. 

Scalar Transformations. Many of these transformations are 
"enabling" optimizations. That is, they are necessary to 
expose or enable opportunities for the other optimiza 
tions. Some of these transformations include: 

â€¢ Loop Unrolling. This transformation attempts to com 
press together several iterations of a loop, with the intent 
of lowering the cost of the loop overhead and exposing 
more opportunity for more efficiently using the functional 
units of the PA-RISC architecture. The article on page 39 
provides some examples of loop unrolling. 

â€¢ Loop Rerolling. This transformation is the exact opposite 
of loop unrolling in that it is used when a loop has been 
explicitly unrolled by the user. The transformation recog 
nizes that the code has been unrolled, and rerolls it into a 
smaller loop. This may be beneficial in cases where the 
code can be transformed to a call to the vector library. 

â€¢ Dead Code Elimination. This transformation removes 
code that cannot be executed. This can improve perfor 
mance by revealing opportunities for other transforma 
tions. 

â€¢ Forward Substitution. The preprocessor replaces refer 
ences to variables with the appropriate constants or ex 
pressions to expose opportunities for additional trans 
formations. 

â€¢ Induction Variable Analysis. The preprocessor recognizes 
variables that are incremented by a loop-invariant 
amount within a loop, and may replace expressions using 
one induction variable with an expression based on 
another induction variable. For example, in the following 
code fragment the preprocessor identifies that K is an 
induction variable: 
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DO I  =  1 ,  N  
A( l )  =  B(K)  
l \  =  l \  I  

ENDDO 

The code generated by the preprocessor would be: 

DO I  =  1 ,N 
A ( l )  =  B (K - I+1 )  

ENDDO 

â€¢ Lifetime Analysis. The preprocessor analyzes the use of 
variables within a routine, and determines when the value 
of a variable can be discarded because it will not be 
needed again. 

Interprocedural Transformations. The preprocessor is capa 
ble of performing subroutine and function inline substitu 
tion. This optimization allows the preprocessor, either by 
explicit user control or heuristically, to replace a call to a 
routine with the code in the routine. This transformation 
improves performance by: 

â€¢ Reducing call overhead, which is useful for very small 
routines 

â€¢ Replacing expressions in inlined subroutines or functions 
with constants because some arguments to these routines 
might be constants 

â€¢ Exposing other performance improvement opportunities 
such as data locality. 

Vector Transformations. The preprocessor replaces code 
sequences with calls to the vector library where appropri 
ate. Some classes of these calls include: 

â€¢ Loop Vectorization. This refers to cases in which the 
user's code refers to one or several sequences of inputs, 
producing a sequence of outputs. These sequences would 
be references to arrays. For example, 

DO 10  I  =  1 ,  N  
1 0  A ( l )  =  B ( l )  +  C ( l )  

would become: 

CALLvec_$dadd_vec to r (B (1 ) ,C(1 ) ,N ,A(D)  

Not all seemingly appropriate places would be vectorized 
because in some cases multiple references to the same 
subscripted variable might be more efficiently done by 
inline code rather than by a call to a vector library 
routine. 

â€¢ Reduction Recognition. The preprocessor will recognize 
some cases in which the results are accumulated for use 
as an aggregate, such as in summing all the elements in 
an array or finding the maximum value in an array. For 
example, 

DO 10  I  =  1 ,  N  
1 0  X  =  X  +  A ( l )  *  B I D  

would become: 

X =  X  +  vec_$ddot (A(1 ) ,B(1 ) ,N)  

This transform improves performance in part by knowing 
that while a Series 700 computer can add one stream of 
numbers in three machine cycles per element, it can also 
add two streams of numbers in four machine cycles per 
two elements. 

There is one problem with this transform. When using 
two streams to compute the result (which is what the 
routine does) in floating-point calculations, changing the 
order in which numbers are added can change the result. 
This is called roundoff error. Because of this problem, the 
reduction recognition transformation can be inhibited by 
using the roundoff switch. 

1 Linear Recurrence Recognition. This transformation is 
used in cases in which the results of a previous iteration 
of a loop are used in the current iteration. This is called a 
recurrence. 
Example: 

DO 10 I  =  2,  N 
1 0  A ( l )  =  B  ( I )  +  C * A ( I - 1 )  

In this case the Ith element of A is dependent on the 
result of the calculation of the (1-1 )th element of A. This 
code becomes: 

CALL vec_$red cr(B(2),N-1 ,C,A(1 )) 

Data Locality and Memory Access Transformations. Memory 
side effects such as cache misses can have a significant 
impact on the performance of the Series 700 machine. As 
a result, a number of transformations have been devel 
oped to reduce the likelihood of cache misses and other 
problems. 
Stride-1 Inner Loop Selection. This transformation ex 
amines a nested series of loops, and attempts to deter 
mine if the loops can be rearranged so that a different 
loop can run as the inner loop. This is done if the new 
inner loop will have more sequential walks of arrays 
through memory. This type of access is advantageous 
because it reduces cache misses. For example, 

DO 10 I  =  1,  N 
DO 10 J  =  1 ,  N 

10  A( I ,J )  =  B( I ,J )  +  C( I ,J )  

accesses the arrays A, B, and C. However, it accesses 
them in the sequences: 

B(1,1), 8(1,2), B(1,3), ... 
C(1,1), CI1.2), C(1,3), ... 

which will result in nonsequential access to memory, 
making cache misses far more likely. The following legal 
transform will reduce the likely number of cache misses. 

DO 10 J  =  1 ,  N  
DO 10  I  -  1 ,  N  

1 0  A ( I , J )  =  B ( I , J )  +  C ( I , J )  

These loops have 
been exchanged 

Data Locality Transformations. For situations in which 
there is significant reuse of array data, and there is oppor 
tunity to restructure, or "block," the code to reduce cache 
misses, the preprocessor will create multiple nested 
loops that will localize the data in the cache at a cost of 
more loop overhead. 
Matrix Multiply Recognition. The preprocessor will recog 
nize many forms of classic matrix multiply and replace 
them with calls to a highly tuned matrix multiply routine. 
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Example of a Transformation. The following code fragments 
taken from the MatrixSOO benchmark of the SPEC bench 
mark tests show how some of the transformations de 
scribed above are incorporated into a FORTRAN program. 

R E A L * 8  A ( 3 0 0 , 3 0 0 ) ,  6 ( 3 0 1 , 3 0 1 ) ,  C ( 3 0 2 , 3 0 2 )  

D A T A  M ,  N ,  L  / 3 0 0 , 3 0 0 , 3 0 0 /  

I A  =  3 0 0  
m _  on i  I D â€” JU I 

1 C  =  3 0 2  

C A L L  S G E M M I M ,  N ,  L ,  A ,  I A ,  B ,  I B ,  C ,  1 C ,  0 ,  + 1 )  

E N D  

S U B R O U T I N E  S G E M M I M ,  N ,  L ,  A ,  I A ,  B ,  I B ,  C ,  1 C ,  J T R P O S ,  J O B )  

R E A L * 8  A ( I A , N ) ,  B ( I B , L ) ,  C ( I C , L )  

J B  =  I S I G N ( I A B S ( J 0 6 ) + 2 * ( J T R P O S / 4 ) , J 0 8 )  

J U M P  =  J T R P O S  +  1  

G O  T O  ( 1 0 ,  3 0 ) ,  J U M P  

1 0  C O N T I N U E  

D O  2 0  J  =  1 ,  L  

2 0  C A L L  S G E M V I M ,  N ,  A ,  I A ,  B ( 1 , J ) ,  1 ,  C ( 1 , J ) ,  1 ,  J B )  

R E T U R N  

3 0  C O N T I N U E  

D O  4 0  J  =  1 ,  L  

4 0  C A L L  S G E M V I M ,  N ,  A ,  I A ,  B ( 1 , J ) ,  1 ,  C ( J , 1 ) ,  1 C ,  J B )  

R E T U R N  

E N D  

S U B R O U T I N E  S G E M V I M ,  N ,  A ,  I A ,  X ,  I X ,  Y ,  I Y ,  J O B )  

R E A L * 8  A ( I A , N ) ,  X ( I X , N ) ,  Y ( I Y , N )  

I F  ( N . L E . O )  R E T U R N  

I I  =  1  I J  =  I A  

I F  | ( ( I A B S ( J O B H ) / 2 ) . E Q . O )  G O  T O  2 1 0  

I J  =  1  

I I  =  I A  

2 1 0  C O N T I N U E  

I F  ( M O D ( I A B S ( J O B ) - 1 , 2 ) . N E . O )  G O  T O  2 3 0  

D O  2 2 0  J  =  1 ,  M  

2 2 0  Y ( 1 , J )  =  O . O D O  

2 3 0  C O N T I N U E  

I F  ( J O B I T O )  G O  T O  2 5 0  

D O  2 4 0  J  =  1 ,  N  

K  =  1  +  ( J - 1 ) * I J  

2 4 0  C A L L  S A X P Y I M ,  X ( 1 , J ) ,  A ( K , 1 ) ,  I I ,  Y ( 1 , 1 ) ,  I Y )  

R E T U R N  

2 5 0  C O N T I N U E  

D O  2 6 0  J  =  1 ,  N  

L  =  1  +  ( J - 1 ) * I J  

2 6 0  C A L L  S A X P Y I M ,  - X ( 1 , J ) ,  A ( L , 1 ) ,  I I ,  Y ( 1 , 1 ) ,  I Y )  

R E T U R N  

E N D  

S U B R O U T I N E  S A X P Y ( N ,  A ,  X ,  I N C X ,  Y ,  I N C Y )  

R E A L  X ( I N C X . N ) ,  Y ( I N C Y , N ) ,  A  

I F  ( N . L E . O )  R E T U R N  

D O  3 1 0  I  =  1 ,  N  

3 1 0  Y ( 1 , l )  =  Y ( 1 , l )  +  A * X ( 1 , I )  
R E T U R N  

E N D  

First, routine SGEMM is inlined into the main routine, and 
the scalar forward substitution transformation is applied 
to propagate arguments. 

R E A L * 8  A ( 3 0 0 , 3 0 0 ) ,  6 ( 3 0 1 , 3 0 1 ) ,  C ( 3 0 2 , 3 0 2 )  

D A T A  M ,  N ,  L  / 3 0 0 , 3 0 0 , 3 0 0 /  

I A  =  3 0 0  

I B  =  3 0 1  

1C = 302 
J B  =  1  

J U M P  =  1  

G O  T O  ( 1 0 ,  3 0 ) ,  1  

1 0  C O N T I N U E  

D O  2 0  J  =  1 ,  L  

2 0  C A L L  S G E M V I M ,  N ,  A ,  I A ,  B ( 1 , J ) ,  1 ,  C ( 1 , J ) ,  1 ,  J B )  

R E T U R N  

3 0  C O N T I N U E  

D O  4 0  J  =  1 ,  L  

4 0  C A L L  S G E M V I M ,  N ,  A ,  I A ,  6 ( 1 , J ) ,  1 ,  C ( J , 1 ) ,  1 C ,  J 6 )  

R E T U R N  

E N D  

Second, dead code elimination is applied. The computed 
GO TO turns into a simple GO TO, and the unreachable code 
is removed. 

R E A L * 8  A ( 3 0 0 , 3 0 0 ) ,  6 ( 3 0 1 , 3 0 1 ) ,  C ( 3 0 2 , 3 0 2 )  

D A T A  M ,  N ,  L  / 3 0 0 , 3 0 0 , 3 0 0 /  

I A  =  3 0 0  

1 6  =  3 0 1  

1 C  =  3 0 2  

J B  =  1  

J U M P  =  1  

D O  I  =  1 ,  L  

C A L L S G E M V ( M , N , A , I A , B ( 1 , I ) , 1 , C ( 1 , I ) , 1 , J 6 )  

E N D  D O  

R E T U R N  

E N D  

Next, lifetime analysis is applied to the code, and it is 
seen that with the current code configuration the vari 
ables L, 16, 1C, and JUMP are never modified after the 
initial assignment. 

R E A L * 8  A ( 3 0 0 , 3 0 0 ) ,  6 ( 3 0 1 , 3 0 1 ) ,  C ( 3 0 2 , 3 0 2 )  

D A T A  M ,  N  / 3 0 0 . 3 0 0 /  

I A  =  3 0 0  

J B  =  1  

D O  I  =  1 ,  3 0 0  

C A L L S G E M V ( M , N , A , I A , B ( 1 , I ) , 1 , C ( 1 , I ) , 1 , J B )  

E N D  D O  

E N D  

Notice that the large body of conditional code has been 
removed. This is significant as far as the capability to 
perform further optimizations is concerned. The reason 
that M, N, and I A were not replaced with the value 300 is 
that at this point it is not known that the corresponding 
arguments to SGEMV are not modified. 

Next, the routine SGEMV is inlined, and once again, a 
number of transformations are applied: 

R E A L * 8  A ( 3 0 0 , 3 0 0 ) ,  6 ( 3 0 1 , 3 0 1 ) ,  C ( 3 0 2 , 3 0 2 )  

D A T A  M / 3 0 0 /  

D O  I  =  1 ,  3 0 0  

1 3 =  1  

D O  J  =  1 ,  M  

C(J , I )  =  O .ODO 

E N D  D O  

D O  J  =  1 ,  3 0 0  

C A L L S A X P Y ( M , 6 ( J , I ) , A ( 1 , J ) , I 3 , C ( 1 , I ) , 1 )  

E N D  D O  

E N D  D O  
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END 
Now, we inline SAXPY to get: 

R E A L * 8  A ( 3 0 0 , 3 0 0 ) ,  6 ( 3 0 1 , 3 0 1 ) ,  C ( 3 0 2 , 3 0 2 )  

D O  I  =  1 ,  3 0 0  

D O  J  =  1 ,  3 0 0  

C ( J , I )  =  O . D O  

E N D  D O  

D O  J  =  1 ,  3 0 0  

D O  K  =  1 ,  3 0 0  

C ( K , I )  =  C ( K , I )  +  B ( J , I )  *  A ( K , J )  

E N D  D O  

E N D  D O  

E N D  D O  

Finally, we see that this is a matrix multiply and trans 
form it into a call to a fast matrix multiply routine: 

C A L L B L A S _ $ D G E M M ( ' N ' / N ' , 3 0 0 , 3 0 0 , 3 0 0 , 1 . D O ,  

X  A ( 1 , 1 | , 3 0 0 , B ( 1 , D , 3 0 1 , O . D O , C ( 1 ,  1 ) , 3 0 2 )  

E N D  

This set of transformations results in an 1 1 x perfor 
mance improvement because of the ability to transform 
the original code to a form that can use blocking effi 
ciently via a coded matrix multiply routine. 

Matching the HP FORTRAN Dialect 
Although a primary motivation for using the preprocessor 
was the significant performance gains, it was also very 
important for the preprocessor to work as an integrated 
component of the FORTRAN compile path. One key 
aspect to this integration was for the preprocessor to 
recognize and correctly process the dialect extensions 
supported by the HP Series 700 FORTRAN compiler. 

Three dialect areas were addressed: language extensions, 
compiler directives, and command-line options. For each 
of these areas, there were some items that the preproces 
sor could just ignore, while others required certain actions. 
Another aspect of the dialect issue is that the trans 
formed FORTRAN code generated by the preprocessor 
must conform to HP's FORTRAN dialect. 

The first task was to define the list of HP dialect exten 
sions the preprocessor had to recognize. The initial pass 
at this was done by gathering all known extensions in 
HP FORTRAN including the military extensions (MILÂ· 
STD-1753), VAX FORTRAN 4.0 features, Apollo Domain 
DN10000 features, and other HP extensions. This list was 
given to the third-party developers as a starting point for 
implementing HP dialect recognition in the preprocessor. 

The next step in defining the dialect extensions was to 
push the preprocessor through our extensive FORTRAN 
test suites. These suites contain over 8500 tests, ranging 
from very simple programs to large FORTRAN applica 
tions. The method we used was to run each positive test 
(no expected failure) with the preprocessor, and compare 
the results with the expected answers. In this manner, we 
were able to collect additional dialect items that needed 
to be added to the preprocessor. The final set of dialect 
items came as we entered a beta program later in the 

release, exposing the preprocessor to sets of customer 
codes. 

There were a large number of language extensions the 
preprocessor did not originally recognize, but they were 
generally relatively minor features. One example is the ON 
statement, an HP extension that allows specification of 
exception handling. The preprocessor merely had to 
recognize the syntax of this statement and echo it back 
to the transformed file. Another example was allowing 
octal and hexadecimal constants to appear as actual 
arguments to a statement function. 

The HP compiler directives also needed to be recognized, 
sometimes requiring semantic actions from the preproces 
sor. As an example, consider the code segment: 

I N T E G E R  A ( 1 0 ) ,  B ( 1 0 ) ,  C ( 1 0 ) ,  D  

D O  I  =  1 ,  1 0  

A ( l )  =  B i l l  *  C ( l )  +  D  

E N D D O  

The preprocessor will transform this to the following 
vector call: 

C A L L  v e c _ $ i m u l t _ a d d _ c o n s t a n t  ( B ( 1 ) , C ( 1 ) , 1 0 , D , A ( D )  

However, if the SSHORT directive is present in the file, the 
preprocessor will instead generate a call to the short 
integer version of this vector routine: 

C A L L  v e c _ $ i m u l t _ a d d _ c o n s t a n t 1 6  ( B ( 1 ) , C ( 1 ) , 1 0 , D , A ( 1 ) )  

Most of the directives, such as SWARNINGS, are ignored by 
the preprocessor. 

There were also a number of FORTRAN command-line 
options that the preprocessor needed to be aware of. For 
example, the -12 option specifies that short integers will 
be the default, which should cause the same effect as the 
SSHORT directive in the example above. For each of these 
options, the information was passed via preprocessor 
command-line options. In the case of the -12 option, the 
FORTRAN driver will invoke the preprocessor with the 
-int=2 option. 

Another interesting command-line option is +DA1.0, which 
indicates that the resulting executable program can be 
run on a PA-RISC 1.0 machine. Since the vector library 
contains PA-RISC 1.1-specific instructions, the preproces 
sor is informed that no vector calls should be generated 
in the transformed source by passing it the -novectorize 
flag. 

In addition to having the preprocessor recognize the HP 
Series 700 FORTRAN dialect, there was a need to ensure 
that the resulting transformed source from the preproces 
sor would be acceptable to the standard FORTRAN 
compiler. This situation actually occurred in several 
different cases. In one case, the preprocessor generated 
FORTRAN source code in which DATA statements appear 
amid executable statements, something the compiler 
allows only if the -K command-line option is present. The 
solution was to have the preprocessor change the order 
in which it emits the DATA statements. 

(continued on page 30| 
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Vector Library 

The vector library is a collection of routines written in assembly language that are 
tuned to achieve optimal performance in a PA-RISC 1.1 machine. 

At the time we decided to port the preprocessor to the HP-UX operating system, 
the HP Concurrent FORTRAN compiler team had already been working with the 
third operating to generate calls to the vector library available in the Domain operating 
system. To have a single interface for both products, we decided to provide the 
Domain library interface on HP-UX. 

The Domain library consists of 57 basic functions, with variations for different 
types and variable or unit stride, for a total of 380 routines. However, not all of 
these 39 are generated by the preprocessor. Table I lists some of the 39 basic 
routines that are generated by the Series 700 preprocessor. 

T a b l e  I I  
D i f f e r e n t  V e r s i o n s  o f  v e c _ $ a b s  

R o u t i n e s  

T a b l e  I  
S o m e  o f  t h e  B a s i c  V e c t o r  L i b r a r y  R o u t i n e s  

O p e r a t i o n s  

vec_$abs(U, Count,  R) 
vec_$neg(U, Count,  R) 

vec_$add_constant (U,  Count ,  a ,  R)  
vec_Smul t_constant(U,  Count ,  a ,  R)  

vec_$sub_constant (U,  Count ,  a ,  R)  
vec_$add_vector(U,  V,  Count ,  R)  
vec_$mul t_vector{U,  V,  Count ,  R)  
vec_$sub_vector(U,  V,  Count ,  R)  

vec_$add_mul t_vector (U,  V,  W,  Count ,  R)  
vec_$mul t_add_vector (U,  V,  W,  Count ,  R)  
vec_$mul t_rsub_vector (U,  V,  W,  Count ,  R)  
vec_$mul t_sub_vector (U,  V,  W,  Count ,  R)  

vec_$add_mult(U, V,  Count,  a,  R|  
vec_$mult_add(U, V, Count,  a,  R) 
vec_$mult_sub(U, V, Count,  a,  R) 

vec_$add_mul t_constant (U,  V,  Count ,  a ,  R)  
vecJmu l t_add_cons tan t (U ,  V ,  Coun t ,  a ,  R )  

vec_$asum(U,  Count )  
vec_$sum(U,  Count )  
vec_$dot(U, V, Count)  

v e c _ $ r e d ( U , V ,  C o u n t ,  R )  
vec_$redc (U,  Coun t ,  a ,  R)  

vec_$copy(U,V ,  Coun t )  
vec_$ini t (U, V, Count,)  

Unary 

Scalar-vector 

Vector-vector 

Vector-vector-vector 

Scalar-vector-vector 
R(i) = (a + V(i))xU(i) 
R(i)  = (a x 

Vec to r - vec to r - sca la r  
R( i |  = (U( i )  + V( i | |  x  a 

Summation and dot product 
result = SUM(lU(i)l) 
result = SUM|U(i|) 
result = SUM(U(i) x V(il) 

Linear recurrences 
R(i+1) = U(i)  + V( i)  x R(i)  
R ( i+1 )  =  U( i )  +  ax  (a  x  R( i | )  

Copy and initialization 

For most of these basic routines there are eight versions for handling the varia 
tions in type and stride. Table II lists the eight versions for vec_ $abs, the routine 
that computes an absolute value. 

* Stride is the number of array elements that must be skipped over when a subscript's 
value is changed by 1. 

R o u t i n e  

vec_Sabs(U,  Count  R)  

vec_$dabs(U,  Count ,  R)  

vec_Sabs (U ,  Coun t  R )  

vec_$iabs16(U, Count,  R) 

vec_Sabs j (U ,  S t r i de l ,  Coun t ,  R ,  
Str ide 2) 

vec_$dabs_ i (U,  St r ide l ,  Count ,  R,  
Str ide 2) 

vec_$iabs_ i (U,  St r ide l ,  Count ,  R,  
Str ide 2) 

vec_$ iabs16J(U,  S t r ide l ,  Count ,  R ,  
Str ide 2) 

C h a r a c t e r i s t i c s  

Single-precision floating-point, unit stride 
Double-precision floating-point, unit 
stride 
32-bit integer, unit stride 
16-bit integer, unit stride 
Single-precision floating-point, variable 
stride 
Double-precision floating-point, variable 
stride 
32-bit integer, variable stride 

16-bit integer, variable stride 

Because of time constraints, we could not hand-tune every routine, so we chose to 
concentrate on those that would derive the most benefit from tuning. For the rest, 
we used FORTRAN versions of the routines. Some of those routines were run 
through the preprocessor to unroll the loops and/or run through the software 
pipelining optimizer to get the best possible code with minimal effort. 

Machine-Specific Features. Two features of PA-RISC 1.1 that hand-tuning was 
able to combined particular advantage of are the FMPYADD and FMPYSUB combined 
operation instructions, and the ability to use double-word loads into 32-bit floating 
point latencies pairs. In addition, floating-point instruction latencies provide the 
greatest opportunities for scheduling. 

Because of these factors, we felt that floating-point routines would benefit more 
from hand-tuning than integer routines. In particular, 32-bit floating-point routines 
can exploit the double-word load and store feature, which is currently beyond the 
capabilities of the optimizer. 

For some of the most critical routines, we used a nonarchitected instruction avail 
able quad-word This particular implementation of PA-RISC 1 .1 to do quad-word stores. This 
instruction requires longer store interlocks so it isn't always worthwhile to use it, 
but it was able to improve some routines by about 10%. 

Double-Word Load and Stores. To use double-word loads and stores for single- 
precision vectors, care must be taken to ensure that the addresses are properly 
aligned. PA-RISC 1.1 enforces strict alignment requirements on data accesses. 
Thus, double- single-word load must reference a word-aligned address, and a double- 
word example, must reference a double-word-aligned address. For example, take two 
single-precision vectors: 

REAL*4A(4 ) ,B (4 )  

The elements of arrays A and B might be laid out in memory as shown in Fig. 1 . 

Suppose we want to copy vector A to vector B. If we use single-word loads and 
stores, each element will be accessed by a separate load or store. There is no 

Fig. 1. double-word- arrangement of vectors A and B in memory. All the elements are double-word- 
aligned. 
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Double Word 

Double Word 

Fig. the are arrangement of vectors A and B in memory when the some of the elements are 
not double-word-aligned. 

problem with alignment because each element is aligned on a word boundary. This 
method requires four loads and four stores. 

Since vectors A and B are both double-word-aligned (the starting address is a 
multiple of eight), we can use double-word loads and stores, cutting the number 
of memory accesses in half. The first load will load A(1) and A(2) into a double 
floating-point register. The first store will store that register into B(1) and B{2|. 
This method requires only two loads and two stores. 

In Fig. not we have a case in which the starting addresses of the vectors are not 
double-word-aligned. In this case only elements 2 and 3 can be copied using 
double-word loads and stores. The first and last elements must use single-word 
accesses because of alignment restrictions. 

Special code is required to handle all the possible alignment combinations for the 
different vectors in a library routine. For example, there are 16 different possible 
alignment combinations for vec_Smult_sub_vector. 

We reduced the amount of code needed to handle all these combinations by per 
forming a single iteration for some combinations, then jumping to the code for the 
opposite combination. For example, if vectors 2 and 4 are double-word aligned and 
vectors 1 and 3 are not, we can perform the operation on one element, which 
effectively inverts the alignment combination. Vectors 1 and 3 will now be double- 
word code and vectors 2 and 4 will not. We can then go to the code for the 
vector combination unaligned-aligned-unaligned-aligned, which takes advantage 
of double-word load and store instructions for that particular alignment combination. 

We also code advantage of commutative operations to reduce the amount of code 
we had to write. Again, for vec_$mult_sub_vector, the multiplication is commuta 
tive, the we can swap the pointers to vectors 1 and 2, then jump to the code for the 
commuted combination. 

Using these techniques, we reduced the number of different combinations that had 
to be six. for the routine vec_$mult_sub_vector from 1 6 to six. 

Instruction Scheduling 
The instruction scheduling for the vector library is tuned for this particular imple 
mentation of PA-RISC 1.1. The characteristics of other implementations could very 
well be different. 

There are requirements for minimum distance between certain types of instruc 
tions to avoid interlocks. To make the most efficient use of the procesor, the 
instruction sequences for independent operations can be interleaved. This is 
known page software pipelining, which is discussed in the article on page 39. 

Another aspect of this issue is that the transformed 
FORTRAN source code is often structured differently 
from what a human programmer would write, exposing 
the FORTRAN compiler to code it had not seen before. 
The result is that we uncovered (and fixed) several minor 
compiler defects both in the FORTRAN compiler front 
end and the optimizer. 

In Pursuit of HP Quality 
Early in the HP-UX 8.05 release cycle, as potential perfor 
mance benefits were identified, a commitment was made 
to use the preprocessor and to deliver specific perfor 
mance on key benchmarks and applications. The subse 
quent development effort involved a geographically 
distributed HP team working together with the third 
party â€” all on a very tight schedule. In this situation, close 
attention to the quality assurance process was required. 
Three general areas of quality were addressed: 

â€¢ Performance testing for both industry benchmarks and 
general applications 

â€¢ Correctness of preprocessor source transformations 
â€¢ Preprocessor acceptance of the HP FORTRAN dialect. 

To address these quality issues, the following steps were 
taken: 

â€¢ Identification of a test space to use for testing purposes 
â€¢ Initiation of a beta test program 
â€¢ Choice of a method for tracking and prioritizing outstand 

ing problems 
â€¢ Development of a regular testing and feedback cycle. 

Identifying the Test Space. For performance related testing, 
standard benchmarks such as the SPEC benchmark 
programs and Linpack were used. Since we had com 
mitted to specific performance numbers with these 
benchmarks, it was crucial to monitor their progress. As 
the release progressed, performance related issues also 
came to our attention through runs of an internally 
maintained application test suite as well as from HP 
factory support personnel and from a beta program. 

While some of the performance tests did help test the 
correctness and dialect issues of quality, we wanted to 
identify a set of programs or program fragments specifi 
cally for these purposes. White box testing was provided 
by the third party. For HP's testing process, we viewed 
the preprocessor as a black box, concentrating on its 
functionality to the FORTRAN user. To this end, we chose 
to concentrate on the same test bed that we use for 
quality assurance on the Series 700 FORTRAN compiler. 
In addition, to get further exposure to typical FORTRAN 
programs, we also developed a beta program. 

This choice of a testing space did not test the complete 
functionality of the preprocessor. For example, procedure 
Mining was performed when the preprocessor was run 
on our test suites, but for this release we did not develop 
a set of tests specifically to test the inlining capabilities. 

Another issue in choosing the test space was to identify 
the command-line option combinations to test. In the case 
of the preprocessor, over 30 individual options are sup 
ported, and when the different option combinations were 
considered, the complete set of option configurations 
became unreasonably large to test fully under our tight 
development schedule. 

To handle the option situation, we concentrated on 
configurations most likely to be used. In most situations, 
we anticipated that the preprocessor would be invoked 
through the FORTRAN compiler driver by using one of 
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the +OP options. These five options (+OPO ... +OP4) were 
designed to be most useful for general use, and they 
exercise many of the main preprocessor features. For this 
reason, we restricted the majority of our test runs to 
using the +OP options. 

Although not initially considered for testing purposes, the 
examples given in the FORTRAN manual also turned out 
to be important for tracking the quality of the preproces 
sor. Many tests were written for the manual to help 
explain each of the new features provided by the prepro 
cessor. Running these tests during the release uncovered 
a few regressions (defects) in the preprocessor. These 
regressions were fixed, adding to the overall quality of 
the product. 

Beta Program. An important source of quality issues was 
the beta program initiated specifically to gain additional 
exposure for the preprocessor. Since this was a new 
component of the FORTRAN compile path, it was espe 
cially important to expose the preprocessor to existing 
FORTRAN applications. 

The results of the beta program were quite successful. 
Since some of the sites involved applications heavily 
reliant on the HP FORTRAN dialect, we uncovered a 
number of preprocessor problems concerning dialect 
acceptance. Performance issues were also raised from the 
beta program. In some cases significant performance 
gains were reported; in others, less success was achieved. 

As problems reported were fixed, updated versions of the 
preprocessor were provided to the beta sites. In this 
manner, the beta program provided another source of 
improvement and regression tracking. 

Problem Tracking. With the tight schedule and multisite 
team, it was important to have a mechanism for tracking 
problems that arose with the preprocessor. The purpose 
was to make sure that all problems were properly re 
corded, to have a common repository for problems, and 
to have a basis for prioritizing the outstanding problems. 

Although many people could submit problems, a single 
team member was responsible for monitoring a list that 
described reported preprocessor problems and closing out 
problems when they were resolved. As part of this 
process, a test suite was developed that contained exam 
ple code from each of the submitted problems. This test 
suite provided us with a quick method of checking 
recurrence of old problems as development progressed. 

Since this list was used to prioritize preprocessor prob 
lems, the team developed a common set of guidelines for 
assigning priority levels to each submitted problem. For 
example, any item that caused a significant performance 
problem (e.g., slowdown on a key benchmark) would be 
assigned a very high priority, while problems with an 
infrequently used feature in HP FORTRAN dialect process 
ing were given a lower priority. 

During team conferences, the problem list was a regular 
agenda item. The team would review all outstanding 
problems, adjusting priority levels as considered appropri 
ate. In this manner, we had an ongoing list representing 
the problems that needed to be fixed in the preprocessor. 

Testing and the Feedback Cycle. As part of any quality 
process, it is important to develop a regular set of 
activities to monitor impro%-ements and regressions in the 
product. As the preprocessor release entered its later 
stages, we developed a regular weekly cycle that coin 
cided with the program-wide integration cycle. The 
activities we performed during each week of this period 
included: 

â€¢ Review of the list of outstanding problems, identifying the 
next items to be addressed by the third party. 

â€¢ Weekly phone conference with the third party. These 
meetings provided close tracking of the problems fixed 
the previous week as well as a discussion of any new 
problems to be fixed the following week. 

â€¢ A regression test of the latest version of the preprocessor. 
Each week we received a new version of the preproces 
sor containing the latest fixes. The testing involved run 
ning our test suites and checking for any regressions. 

â€¢ The resolution of any fixed problems and updating the 
outstanding problem list. 

â€¢ A decision about allowing the latest version of the pre 
processor to be submitted to system integration. Based 
on the results of test runs, the new preprocessor would 
be submitted if it was superior to the previous version. 

The fast, regular feedback of this process towards the 
end of the product release cycle maximized the quality of 
the product within very tight delivery constraints. 

Performance Analysis 
The FORTRAN optimizing preprocessor has had a signifi 
cant impact on the performance of FORTRAN applica 
tions. While the performance improvement seems to vary 
significantly based on the specifics of the code, we have 
seen more than a 10 x speedup in some programs be 
cause of improvements in data locality, which significantly 
reduces cache miss rates. Array manipulation also tends 
to show improvement. 

The Livermore Loops are a collection of kernel loops 
collected by the staff at Argonne Laboratories, and are 
frequently used as benchmarks for scientific calculations. 
Table I shows the performance results for these loops 
executing after being compiled with the optimizing 
preprocessor. 

The improvements in loops 3, 6, 11, 12, and 18 were 
because of vectorization. Loop 13 benefited from loop 
splitting, while loop 14 benefited from loop merging. Loop 
15 gained from transforming "spaghetti code" to struc 
tured code. Loop 21 gained significantly from recognition 
of a matrix multiply and a call to a tuned and blocked 
matrix multiply routine. Note that because of either the 
options selected or the heuristics of the optimizer, loops 
5 and 8 degraded in performance. 

MatrixSOO is a well-known benchmark in the SPEC bench 
mark suite. The code in this routine performs eight 
matrix multiplies on two 300-by-300 matrices. In this case, 
the application of blocking to the matrix multiply algo 
rithm had a significant impact on the performance of the 
benchmark. Table II compares the results of running the 
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MatrixSOO benchmark with and without the optimizing 
preprocessor. 

Note the significant reduction in cache miss rate because 
of the blocking techniques. This technique is applicable to 
a number of multidimensional matrix algorithms beyond 
matrix multiply. 

Besides benchmarks, we have seen some significant 
performance improvements in other applications when 
the preprocessor is used. Although we had one case in 
which there was a 211% improvement, most FORTRAN 
programs have exhibited performance improvements in 
the 15% to 20% range. Also, as in the Livermore Loops 
benchmarks, we have found a few cases in which there 
was either no improvement in performance, or a degra 
dation in performance. We continue to investigate these 
cases. 

Table I 
Performance of Livermore Loops 

Using the Preprocessor 

Table II 
Performance of MatrixSOO Benchmark 
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Register Reassociation in PA-RISC 
Compilers 
Optimization techniques added to PA-RISC compilers result in the use of 
fewer machine instructions to handle program loops. 

by Vatsa Santhanam 

Register reassociation is a code improving transformation 
that is applicable to program loops. The basic idea is to 
rearrange expressions found within loops to increase 
optimization opportunities, while preserving the results 
computed. In particular, register reassociation can expose 
loop-invariant partial expressions in which intermediate 
results can be computed outside the loop body and 
reused within the loop. For instance, suppose the follow 
ing expression is computed within a loop: 

( l oop_va r ian t  +  l oop_cons tan t_1 )  +  l oop_cons tan t_2  

where loop_variant is a loop-varying quantity, and 
loop_constant_1 and loop_constant_2 are loop-invariant quanti 
ties (e.g., literal constants or variables with no definitions 
within a loop). In the form given above, the entire expres 
sion has to be computed within the loop. However, if this 
expression is reassociated as: 

( l oop_cons tan t_1  +  l oop_cons tan t_2 |  +  l oop_va r i an t  

the sum of the two loop-invariant terms can be computed 
outside the loop and added to the loop-varying quantity 
within the loop. This transformation effectively eliminates 
an add operation from the body of the loop. Given that 
the execution time of applications can be dominated by 
code executed within loops, reassociating expressions in 
the manner illustrated above can have a very favorable 
performance impact. 

The term "register reassociation" is used to describe this 
type of optimization because the expressions that are 
transformed typically involve integer values maintained in 
registers. The transformation exploits not just the associa 
tive laws of arithmetic but also the distributive and 
commutative laws. Register reassociation has also been 
described in the literature as subscript commutation.1 

Opportunities to apply register reassociation occur fre 
quently in code that computes the effective address of 
multidimensional array elements that are accessed within 
loops. For example, consider the following FORTRAN 
code fragment, which initializes a three-dimensional array: 

DO 100 i  =  1 ,  DIM1 
DO 100 j  =  1 ,  D IM2 

DO 100 k  =  1 ,  D IM3 
1 0 0  A ( i , j , k )  =  0 . 0  

Arrays in FORTRAN are stored in column-major order, 
and by default, indexes for each array dimension start at 
one. Fig. 1 illustrates how array A would be stored in 

Increasing 
Memory  

Addresses 

AIDIM1, DIM2.il 

AIDIM1.DIM2.2I 

Fig. 1. Column-major storage layout for array A. 

memory. Given such a storage layout, the address of the 
array element A(i, j, k) is given by: 

A D D R  ( A ( 1 , 1 , 1 ) )  +  ( k - 1 )  x  D I M 2  x D I M I  x  e l e m e n t _ s i z e  +  
( Â ¡ - 1 )  x  D I M 1  x  e l e m e n t _ s i z e  +  
(Â ¡ -1 )  x  e lement_s ize  

where ADDR (A(1,1,1)) is the base address of the first ele 
ment of array A, DIMn is the size of the nth dimension, 
and element_size is the size of each array element. Since 
the individual array dimensions are often simple integer 
constants, a compiler might generate code to evaluate the 
above expression as follows: 

[ ( ( ( ( k  x  D I M 2 )  +  j )  x  D I M 1 )  +  i )  -  |  
e lement_size + (ADDR (A(1,1,1) |  

D I M 2 )  x  D I M 1  +  1 ) ]  x  
(1) 
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Since the variable k assumes a different value for each 
iteration of the innermost loop in the above example, the 
entire expression is loop-variant. 

With suitable reassociation, the address computation can 
be expressed as: 

A D D R | A ( i , j , k ) |  =  a  x  k  +  p  ( 2 )  

where a and p are loop-invariant values that can be 
computed outside the loop, effectively eliminating some 
code from the innermost loop. From expression 1: 

a  =  D I M 1  x  D I M 2  x  e l e m e n t _ s i z e  

i  =  [ ( j  x  D I M 1  +  i )  -  ( ( 1  +  D I M 2 )  x  D I M 1  +  
e lement_s ize 

and 

The simplified expression (a x k + p) evaluates a linear 
arithmetic progression through each iteration of the 
innermost loop. This exposes an opportunity for another 
closely related loop optimization known as strength 
reduction.2'3 The basic idea behind this optimization is to 
maintain a separate temporary variable that tracks the 
values of the arithmetic progression. By incrementing the 
temporary variable appropriately in each iteration, the 
multiplication operation can be eliminated from the loop. 
For our simple example, the temporary variable would be 
initialized to a + p outside the innermost loop and in 
cremented by a each time through the loop. This concept 
is illustrated in Fig. 2. 

Note that this can be particularly beneficial for an archi 
tecture such as PA-RISC in which integer multiplication is 
usually translated into a sequence of one or more instruc 
tions possibly involving a millicode library call, t 

On some architectures, such as PA-RISC and the IBM 
RISC System/6000, register reassociation and strength 
reduction can be taken one step further. In particular, if 
the target architecture has an autoincrement addressing 
mode, incrementing the temporary variable that maintains 
the arithmetic progression can be accomplished automati 
cally as a side effect of a memory reference. Through this 
additional transformation, array references in loops can 
essentially be converted into equivalent, but cheaper, 
autoincrementing pointer dereferences. 

An Example 
To clarify the concepts discussed so far, let us compare 
the PA-RISC assembly code for the above example with 
and without register reassociation. Assume that the 
source code fragment for the example is contained in a 
subroutine in which the array A is a formal parameter 
declared as: 

R E A L  * 4  A {  1 0 , 2 0 , 3 0 )  

The loop limits DIM1, DIM2, and DIM3 take on the constant 
values 10, 20, and 30 respectively. The following assembly 
code was produced by the HP 9000 Series 800 HP-UX 
8.0 FORTRAN compiler at level 2 optimization with loop 
unrolling and reassociation completely disabled.tt 

1 :  L D I  1 , % r 3 1  i  < -  1  
2 :  F C P Y . S G L  % f r O L , % f r 4 L  f r 4  < -  0 . 0  
3 :  L D I  2 0 , % r 2 4  r 2 4  < -  2 0  
4 :  L D I  6 0 0 , % r 2 9  r 2 9  < -  6 0 0  
5 :  i _ loop_s ta r t  
6 :  L D I  1 , % r 2 3  
7 :  j _ loop_s ta r t  
8 .  L D I  2 0 , % r 2 5  
9 :  k_ loop_s ta r t  

1 0 :  A D D  % r 2 5 , % r 2 3 , % r 1 9  
11: SH2ADD %r19,%r19,%r20 
12: SH1ADD %r20,%r31,%r21 
1 3 :  L D O  - 2 1 1 ( % r 2 1 ) , % r 2 2  
1 4 :  L D O  2 0 ( % r 2 5 ) , % r 2 5  
15: COMB, <= %r25,%r29,k_loop_start 

16: FSTWX.S %fr4L,%r22(0,%r26) 
1 7 :  L D O  1 ( % r 2 3 ) , % r 2 3  
18: COMB,<=,N %r23,%r24,k_loop_start 

1 9 :  L D I  2 0 , % r 2 5  
2 0 :  L D O  1 ( % r 3 1 ) , % r 3 1  
21:  COMIBF,<,N 10,%r31, j_ loop_star t  
2 2 :  L D I  1 , % r 2 3  
2 3 :  B V , N  % r O ( % r 2 )  

20 

t < k * 2 0 >  < -  2 0  

r 1 9  < - t < k * 2 0 >  +  j  
r 2 0  < -  r 1 9 * 5  
r21 <- r20*2 + Â¡ 
r 2 2  < -  r 2 1  - 2 1 1  
t < k * 2 0 >  < - t < k * 2 0 >  
i f  t<k*20> <= r29 
go to k_loop_start 
* [ r22*4  +  ADDR(A(1 ,1 ,1 ) ) ]  < -  f r4  
j  < -  j  +  1  
Â¡f j <= r24 
go  to  k_ loop_s ta r t  

i  < -  i  +  1  
i f  i  <=  10  go  to  j _ loop_s ta r t  

return 

DO 100 k=1.DIM3 

( D I M 3 - 1 ) x a  ( n - l ) x a  

Pk=n where 2<n<DIM3 

Pk=DIM3  

Fig. the An illustration of using a temporary variable P to track the 
address expression ak+p to stride through array A. 

t  R e m o v i n g  m u l t i p l i c a t i o n s  f r o m  l o o p s  i s  b e n e f i c i a l  e v e n  o n  v e r s i o n  1 . 1  o f  P A - R I S C  w h i c h  

d e f i n e s  f i l e -  f i x e d - p o i n t  m u l t i p l y  i n s t r u c t i o n  t h a t  o p e r a t e s  o n  t h e  f l o a t i n g - p o i n t  r e g i s t e r  f i l e -  

T o  e x p l o i t  t h i s  i n s t r u c t i o n ,  i t  m a y  b e  n e c e s s a r y  t o  t r a n s f e r  d a t a  v a l u e s  f r o m  g e n e r a l  r e g  

i s t e r s  t o  f l o a t i n g - p o i n t  r e g i s t e r s  a n d  t h e n  b a c k  a g a i n .  

t t  T h e  S e r i e s  8 0 0  H P - U X  8 . 0  F O R T R A N  c o m p i l e r  d o e s  n o t  i n c l u d e  t h e  c o d e  g e n e r a t i o n  a n d  

o p t i m i z a t i o n  e n h a n c e m e n t s  i m p l e m e n t e d  f o r  t h e  S e r i e s  7 0 0  F O R T R A N  c o m p i l e r .  E x a m i n  

i n g  t h e  c o d e  p r o d u c e d  b y  t h e  S e r i e s  8 0 0  F O R T R A N  c o m p i l e r  i n s t e a d  o f  t h e  S e r i e s  7 0 0  

F O R T R A N  c o m p i l e r  h e l p s  b e t t e r  i s o l a t e  a n d  h i g h l i g h t  t h e  f u l l  i m p a c t  o f  r e g i s t e r  

r e a s s o c i a t i o n .  
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The labels Â¡Joop_start, j_loop_start, and k_loop_start that mark 
a start of a loop body and the annotations are not 
generated by the compiler, but were added for clarity. 

The following sections describe the optimizations per 
formed in the above code segment. 

Constant Folding. Given that DIM2 = 20 and DIM1 = 10. the 
partial expression - (U + DIM2) x DIM1 + 1) has been eva 
luated to be -211 at compile time. 

Loop Invariants. Loop-invariant code motion has positioned 
instructions that compute loop-invariant values as far out 
of the nest of loops as possible. For instance, the defini 
tion of the floating-point value 0.0 has been moved from 
the innermost loop to outside the body of all three loops 
where it will be executed exactly once (line 2). (On 
PA-RISC systems, when floating-point register 0 is used as 
a source operand in an instruction other than a floating 
point store, its value is defined to be 0.0.) 

Index Shifting. The innermost k-loop (lines 10 to 16) 
contains code that computes the partial expression ((((kx 
DIM2) + j) x DIM1) + Â¡) whose value is added to -211 and 
stored in register 22 (line 13) before being used in the 
instruction that stores 0.0 in the array element. Register 
22 is used as the index register; it is scaled by four (to 
achieve the multiplication by the element size) and then 
added to base register 26, which contains ADDR (A(1,1,1)). 
These operations produce the effective address for the 
store instruction. 

The compiler has strength-reduced the multiplication of k 
by DIM2 in line 14. A temporary variable that tracks the 
value of k x 20 (referred to as t<k*20> in the annotations) 
has been assigned to register 25 in line 8. This temporary 
variable is used in the calculation of the address of A(i,j,k). 
By incrementing the temporary variable by 20 on each 
iteration of the innermost loop, the multiplication of k by 
20 is rendered useless, and therefore removed. 

Linear Function Test Replacement. After strength-reducing k 
x 20, the only other real use of the variable k is to 
check for the loop termination condition (line 15). 
Through an optimization known as linear function test 

replacement,2'3 the use of the variable k in the innermost 
loop termination check is replaced by a comparison of 
the temporary variable t<k*20> against 600, which is the 
value of DIMS scaled by a factor of 20. This optimization 
makes the variable k superfluous, thus enabling the 
compiler to eliminate the instructions that initialize and 
increment its value. 

Branch Scheduling. A final point to note is that the loop 
termination checks for the i-loop and j-loop are per 
formed using the nullifying backward conditional branch 
instructions in lines 18 and 21. In PA-RISC, the semantics 
of backward nullifying conditional branches are that the 
delay slot instruction (the one immediately following the 
branch instruction) is executed only if the branch is 
taken and suppressed otherwise. This nullification feature 
allows the compiler to schedule the original target of a 
backward conditional branch into its delay slot and 
redirect the branch to the instruction following the 
original target. 

In contrast to the i-loop and j-loop, the innermost loop 
termination check is a non-nullifying backward condition 
al branch whose delay slot instruction is always executed, 
regardless of whether the branch is taken. 

Applying Reassociatlon 
The most important point to note about the assembly 
code given above is that the innermost loop, where much 
of the execution time will be spent, consists of the seven 
instructions in Lines 10 to 16. By applying register reas- 
sociation to the innermost loop, and making use of the 
base-register modification feature available on certain 
PA-RISC load and store instructions, the innermost loop 
can be reduced to three instructions, t 

The following code fragment shows the three instructions 
for the innermost loop. Registers r!9 to r22 and fr4 are 
assumed to be initialized with values indicated by the 
annotations. 

;  I n i t i a l i ze  genera l  reg is te rs  r19  th rough  r22  and  f l oa t i ng -po in t  
;  reg is ter  f r4  

;  f r4  < -  0 .0  
;  r19  < -  1  
;  r20  < -  30  
;  r21 <-ADDR(A(i , j ,1Â» 
; r22 <- 800 

;  The  t h ree  i nne rmos t  l oop  i ns t ruc t i ons  
k_ loop_star t  

L D O  1 ( % r 1 9 ) , % r 1 9  ;  k  < -  k  +  1  
COMB,<=  %r19 ,%r20 ,k_ loop_s ta r t ;  i f  k  <=  r20  go  to  k_ loop_s ta r t  
F S T W X , M  % f r 4 L , % r 2 2 ( 0 , % r 2 1 )  ;  * [ r 2 1 ]  < -  f r 4 ,  r 2 1  < -  r 2 1  +  r 2 2  

This assembly code strides through the the elements of 
array A with a compiler-generated temporary pointer 
variable that is maintained in register 21. This register 
pointer variable is initialized to the address of A(i,j,1) 
before entry to the innermost loop and postincremented 
by 800 bytes after the value 0.0 is stored in A(i,j,k). 

This code also reflects the real intent of the initialization 
loop, which is to initialize the array A by striding through 
the elements in row-major order. It does this in fewer 
instructions by exploiting PA-RISC's base-register modifi 
cation feature. The equivalent semantics for the above 
inner-loop code expressed in C syntax is: 

fo r  (p  =  &a( i , j ,1 ) ,  k  =  1 ;  k  <= 30;  k++)  

*p++ = 0 .0 ;  

The code sequence for the k-loop in the assembly code 
fragment can be improved even further. Note that as a 
result of register reassociation, the loop variable k, which 
is maintained in register 19, is now only used to control 
the iteration count of the loop. Using the linear function 
test replacement optimization mentioned earlier, the loop 
variable can be eliminated. Specifically, the loop termina 
tion check in which the variable k in register 19 is 
compared against the value 30 in register 20 can be 
replaced by an equivalent comparison of the compiler- 
generated temporary pointer variable (register 21) against 

tBase-register modification of loads and stores effectively provides the autoincrement 
addressing mode described earlier. 
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the address of the array element A(i, j,30). This can reduce 
the innermost loop to just the following two instructions. 

F S T W X . M  % f r 4 L , % r 2 2 ( 0 , % r 2 1 )   < -  f r 4 , r 2 1  < -  r 2 1  +  r 2 2  
k _ l o o p _ s t a r t   t w o  i n n e r m o s t  l o o p  i n s t r u c t i o n s  

COMB,<=,N %r21,%r20,kjoop_start; l f  r21 <= ADDR (A(i, j ,30)) go to 
 

F S T W X . M  % f r 4 L , % r 2 2 ( 0 , % r 2 1 )   < -  f r 4 , r 2 1  < -  r 2 U r 2 2  

Register r20 would have to be initialized to the address of 
A(i, Â¡,30). 

On PA-RISC machines, if a loop variable is only needed 
to control the loop iteration count, the loop variable can 
often be eliminated using a simpler technique. Specifically, 
the PA-RISC instruction set includes the ADDB (add and 
branch) and ADD I B (add immediate and branch) condition 
al branch instructions. These instructions first add a 
register or an immediate value to another register value 
and then compare the result against zero to determine the 
branch condition. 

If a loop variable is incremented by the same amount on 
each iteration of the loop and if it is needed solely to 
check the loop termination condition, the instructions that 
increment the loop variable can be eliminated from the 
body of the loop by replacing the loop termination check 
with an ADDB or ADDIB instruction using an appropriate 
increment value and a suitably initialized general-purpose 
count register. 

For our small example, the innermost loop can be trans 
formed into a two-instruction countdown loop using the 
ADDIB instruction as shown in the following code. 

L D I  - 2 9 ,  % r 1 9  
k_ loop_s ta r t  

ADDIB ,<=  1 ,%M9,  k_ loop_s ta r t  

FSTWX.M %fr4L,%r22(0,%r21)  

;  i n i t i a l i ze  count  reg is te r  

;  r 19  < -  r19  +  1 ,  I f  r 19  <=  0  go  to  
;  k_ loop_s ta r t  
 < - f r 4 ,  r 2 1  < -  r 2 2  +  r 2 1  

The j-loop and i-loop of our example can be similarly 
transformed. The increment and branch facility is not 
unique to PA-RISC, but unlike some other architectures, 
the general-purpose count register is not a dedicated 
register, allowing multiple loops in a nest of loops to be 
transformed conveniently. 

Note that even though reassociation has helped reduce 
the innermost loop from seven instructions to two 
instructions, one cannot directly extrapolate from this a 
commensurate improvement in the run-time performance 
of this code fragment. In particular, the execution time 
for this example can be dominated by memory subsystem 
overhead (e.g., cache miss penalties) because of poor 
data locality associated with data assignments to array A. 

Compiler Implementation 
Register reassociation and other ideas presented in this 
article were described in the literature several years 
ago.3-4-5-6 Compilers that perform this optimization include 
the DN 10000 HP Apollo compilers and the IBM compilers 
for the System 370 and RISC System/6000 architectures.5-6-7 

Strength reduction and linear function test replacement 
have been implemented in PA-RISC compilers from their 
very inception. The implementation of these optimizations 
is closely based on the algorithm described by Allen 
Cocke, and Kennedy.2 Register reassociation, on the other 
hand, has been implemented in the PA-RISC compilers 
very recently. The first implementation was added to the 
HP 9000 Series 700 compilers in the 8.05 release of the 
HP-UX operating system. Register reassociation is enabled 
through the use of the +OS compiler option, which is 
supported by both the FORTRAN and C compilers in 
release 8.05 of the HP-UX operating system. 

The implementation of register reassociation offered in 
HP-UX 8.05 is somewhat limited in scope. Register 
reassociation is performed only on address expressions 
found in innermost straight-line loops. The scope of 
register reassociation has been greatly extended in the 
compilers available with release 8.3 of the HP-UX operat 
ing system, which runs on the Series 700 PA-RISC 
workstations. Register reassociation, which is now per 
formed by default in the C, C++, FORTRAN, and Pascal 
compilers at level 2 optimization, is attempted for all 
loops (with or without internal control flow) and not 
limited merely to straight-line innermost loops. Further 
more, in close conjunction with register reassociation, 
these compilers make aggressive use of the PA-RISC 
ADDIB and ADDB instructions and the base-register modifi 
cation feature of load and store instructions to eliminate 
additional instructions from loops as described earlier. 

Using the example given earlier, the following code is 
generated by the Series 700 HP-UX 8.3 FORTRAN com 
piler at optimization level 2 (without specifying the +OP 
FORTRAN preprocessor option). 

This code shows that register reassociation and strength 
reduction have been applied to all three loop nests. 
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k-Loop Optimization. For the k-loop. a compiler-generated 
temporary pointer variable Pijk. which is maintained in 
register 29. is used to track the address of the array 
element A(i,j,k). This temporary variable is incremented by 
800 through base-register modification (line 12) instead of 
the original loop variable k incrementing by one. The 800 
comes from DIM1 x DIM2 x element_size (10 x 20 x 4), 
which represents the invariant quantity a in expression 2. 

Before entering the k-loop, Pijk has to be initialized to the 
address of A(i,j,1) because the variable k was originally 
initialized to one before entering the k-loop. For this 
example, the address of A(i,j,1) can be computed as: 

[ ( ( ( 1  x  2 0 )  +  j )  x  1 0 )  +  Â ¡ )  -  ( ( 1  +  2 0 )  x  1 0  +  1 ) ]  x  4  +  
A D O R ( A ( 1 ,  1 , 1 ) |  

which can be simplified to 

4 0  X  j  +  ( ( 4  x  i )  -  4 4  +  A D D R ( A ( 1 , 1 , 1 ) ) ( .  

which for the j-loop is a linear function of the loop 
variable j of the form: 

where: 

a = 40 

and 

p  =  ( ( 4  x  i )  - 4 4  +  A D D R ( A ( 1 , 1 , 1 ) ) ) .  

j-Loop Optimization. To strength-reduce the address expres 
sion for A(i,j,1), the compiler has created a temporary 
variable Fiji, which is maintained in register 24. Wherever 
the original loop variable j was incremented by one. this 
temporary variable is incremented by 40 (Une 14). Before 
entering the j-loop, Pij1 has to be initialized to the address 
of A(i,1,1) since the variable j was originally initialized to 
one before entering the j-loop. For this example, the 
address of A(i,1,1) can be computed as 

[ ( ( ( 1  x  2 0 )  +  1 )  x  1 0 )  t  i )  -  ( ( 1  +  2 0 )  x  1 0  +  1 ) ]  x  4  +  
ADDR(A(1,1,D) 

which can be simplified to 

4 x Â¡ 

which for the i-loop is a linear function of the loop- 
varying quantity i of the form: 

ai + (3 

where: 

a = 4 

and 

Execution 
Sequence 

i=1,j=20,k=1...30 

Array Element Addresses Contained in Temporary Variables 

P i l l  P i j l  P i j k  

A(1.1,1] ,A(1.1,2) . . .  AI1.1.30I  

AI1,2,1I... Â«1.2,301 

AH ,20 ,1 ) .  A i l ,  20 ,30)  

Â«2,1,11... Â«2,1,301 

A(2,2 ,1) . . .A(2,2 .30)  

AI2.20.1) ...  A(2,20,30I 

i=10,j=1.k=1...30 

Â¡=10,j=2,k=1...30 

Â¡=10.j=20.k=1...30 

In i t ia l ly  P i1  1  =  F i j i  =  P i jk  =  ADDR(A|1 ,1 .1 ) |  

Â® ADDR (Â«1,1,211 = ADDR(Â«1,1,1)| + BOO Bytes 

Â ©  A D O R  ( A I U D I  =  A D D R ( A ( 1 , 1 , 1 | )  +  4 0  B y t e s  

CD AODR (A(2,1.1| |  = ADDR(A(1,1,1))  + 4 Bytes 

A|10,2 .1] . . .A(10,2 ,30)  

A(10,20.1I...  AOO.20.301 

Fig. 3. The array element address 
es contained in each of the tempo 
rary variables during different 
iterations of the i, j, and k loops 
of the example code fragment. 
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i-Loop Optimization. To strength-reduce the address expres 
sion for A(i,1,1), the compiler has created a temporary 
variable PÃ11, which is maintained in register 26. Wherever 
the original loop variable i was incremented by one, this 
temporary variable is incremented by four (line 16). 
Before entering the Hoop, Pill has to be initialized to the 
address of A(1,1,1) since the variable i was originally 
initialized to one before entering the i-loop. 

The address of A(1,1,1) is passed as a formal parameter to 
the subroutine containing our code fragment since by 
default, parameters are passed by reference in FORTRAN 
(which implies that the first argument to our subroutine 
is the address of the very first element of array A). On 
PA-RISC machines, the first integer parameter is passed 
by software convention in register 26, and since PÃ11 is 
maintained in register 26, no explicit initialization of the 
compiler-generated temporary Pill is needed. 

The values assumed by all three compiler-generated 
temporary variables during the execution of the example 
code fragment given above are illustrated in Fig. 3. Note 
that the elements of array A are initialized in row-major 
order. Because FORTRAN arrays are stored in column- 
major order, elements of the array are not accessed 
contiguously. This could result in cache misses and thus 
some performance degradation. For FORTRAN this 
problem can be remedied by using the stride-1 inner loop 
selection transformation described on page 26. This 
transformation examines nested loops to determine if the 
loops can be rearranged so that a different loop can run 
as the inner loop. 

Loop Termination. The compiler has managed to eliminate 
all three of the original loop variables by replacing all 
loop termination checks with equivalent ADDIB instructions 
(lines 11, 13, and 15). Coupled with the use of base- 
register modification, the innermost loop has been re 
duced to just two instructions (compared to seven 
instructions without reassociation). 

In implementing register reassociation (and exploiting 
architectural features such as base-register modification) 
in a compiler, several factors need to be taken into 
account. These include the number of extra machine 
registers required by the transformed instruction se 
quence, the number of instructions eliminated from the 
loop, the number of instructions to be executed outside 
the loop (which can be important if the loop iterates only 
a few times), and the impact on instruction scheduling. 
These and other heuristics are used by the HP-UX 8.3 
compilers in determining whether and how to transform 
integer address expressions found in loops. 

Finally, the register reassociation phase of the compiler 
shares information about innermost loops (particularly 

base-register modification patterns) with the software 
pipelining phase. The pipelining phase uses this informa 
tion to facilitate the overlapped execution of multiple 
iterations of these innermost loops (see "Software 
Pipelining in PA-RISC Compilers" on page 39). 

Conclusion 
Register reassociation is a very effective optimization 
technique and one that makes synergistic use of key 
PA-RISC architectural features. For loop-intensive numeric 
applications whose execution times are not dominated by 
memory subsystem overhead, register reassociation can 
improve run-time performance considerably, particularly 
on hardware implementations with relatively low floating 
point operation latencies. 
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Software Pipelining in PA-RISC 
Compilers 
The performance of programs with loops can be improved by having the 
compiler generate code that overlaps instructions from multiple iterations 
to exploit the available instruction-level parallelism. 

by Sridhar Ramakrishnan 

In the hardware environment, pipelining is the partitioning 
of instructions into simpler computational steps that can 
be executed independently in different functional units 
like adders, multipliers, shifters, and so on. Software 
pipelining is a technique that organizes instructions to 
take advantage of the parallelism provided by indepen 
dent functional units. This reorganization results in the 
instructions of a loop being simultaneously overlapped 
during execution â€” that is, new iterations are initiated 
before the previous iteration completes. 

The concept of software pipelining is illustrated in Fig. 1. 
Fig. la shows the sequence of instructions that loads a 
variable, adds a constant, and stores the result. We 
assume that the machine supports a degree of parallelism 
so that for multiple iterations of the instructions shown in 
Fig. la, the instructions can be pipelined so that a new 
iteration can begin every cycle as shown in Fig. Ib. Fig. 
Ib also shows the parts of the diagram used to illustrate 
a software pipeline. The prolog is the code necessary to 
set up the steady-state condition of the loop. In steady 
state one iteration is finishing every cycle. In our example 
three iterations are in progress at the same time. The 
epilog code finishes executing all the operations that 

1 .  L O A D  

2 .  A D D  

3 .  STORE 

(a) 

(b) 

Fig. 1. A software pipeline example, (a) The sequence of instruc 
tions in a one-stage pipeline (or one iteration), (b) Multiple itera 
tions of the instructions shown in (a) pipelined over parallel 
execution components. 

were started in the steady state but have not yet 
completed. 

This example also illustrates the performance improve 
ment that can be realized with software pipelining. In the 
example in Fig. 1 the pipelined implementation completes 
three iterations in five cycles. To complete the same 
number of iterations without pipelining would have taken 
nine cycles. 

Loop Scheduling 
As instructions proceed through the hardware pipeline in 
a PA-RISC machine, a hardware feature called pipeline 
interlock detects when an instruction needs a result that 
has yet to be produced by some previously executing 
instruction or functional unit. This situation results in a 
pipeline stall. It is the job of the instruction scheduler in 
the compiler to attempt to minimize such pipeline stalls 
by reordering the instructions. The following example 
shows how a pipeline stall can occur. 

For the simple loop 

f o r  (  I  =  0 ;  I  <  N ;  I  =  I  +  1  )  {  
A [ l ]  =  A [ l ]  +  C * B [ I ]  

the compiled code for this loop (using simple pseudo 
instructions) might look like: 

f o r  (  I  =  0 ;  I  <  N ;  I  =  I  +  1  )  {  
L O A D  B [ l ] ,  R 2  
L O A D  A [ l ] ,  R 1  
MULT  C ,  R2 ,  R3  

ADD R1 ,  R3 ,  R4  

S T O R E  R 4 ,  A [ l ]  

R3  =  C*R2 
;  p ipe l ine  s ta l l s  R3  needed 

R4 = R1 + R3 
;  p ipe l ine  s ta l l s  R4  needed 

Assume that for this hypothetical machine the MULT, ADD, 
STORE, and LOAD instructions take two cycles each. We 
will also assume in this example and throughout this 
paper that no memory access suffers a cache miss. Fig. 2 
illustrates how the pipeline stalls when the ADD and STORE 
instructions must delay execution until the values of R3 
and R4 become available. Clearly, this becomes a serious 
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Cycles 

One 
Iteration 

5 0  =  L O A D  B [ l ]  
E O  -  R ?  C o n t a i n s  B [  1  1  
5 1  =  L O A D  A [ l ]  
E, = Ri Contains A[l] 
52 = Begin MULT 
E2 = R3 Contains Result 
84 = Begin ADD 
E4 = R4 Contains RI + R3 
SG = Begin STORE 
EG = R4 Contains A[IJ) Fig. 2. An illustration of a pipeline stall. 

problem if the MULT and ADD instructions have multiple- 
cycle latencies (as in floating-point operations). If we 
ignore the costs associated with the branch instruction in 
the loop, each iteration of the above loop would take 
eight cycles. Put differently, the processor is stalled for 
approximately 25% of the time (two cycles out of every 
eight). 

One way of avoiding the interlocks in this example is to 
insert useful and independent operations after each of the 
MULT and ADD instructions. For the example above there 
are none. This problem can be solved by unrolling the 
loop a certain number of times as follows: 

f o r  (  I  =  0 ;  I  <  N ;  I  =  I  +  2  )  {  
A [ l ]  =  A [ l ]  +  C * B [ I ]  
A [ l + 1 ]  =  A [ l + l ]  +  C * B [ I + 1 ]  

Notice that the loop increment is changed from one to 
two to take into account the fact that each time the loop 
is entered we now perform two iterations of the original 
loop. There is additional compensation code that is not 
shown here for the sake of simplicity. 

The best schedule for this loop is as follows: 

f o r  I  I  =  0 ;  I  <  N ;  I  =  I  +  2  )  {  
L O A D  B [ l ] ,  R 2  
L O A D  A [ l ] ,  R l  
MULT C, R2, R3 
LOAD B[ l+1] ,  R6 
A D D  R l ,  R 3 ,  R 4  
LOAD A[ l+1] ,  R5 
MULT C, R6,  R7 
STORE R4, A[ l ]  
ADD R5 ,  R7 ,  R8  

"In the sets of software pipelining, compensation code refers to the code that sets up the 
steady Compensation and the code that executes after completion of the steady state. Compensation 
code is discussed later in this article. 

 R 8  n e e d e d  
STORE R8, A[ l+1] 

} 

If we assume perfect memory access on the LOADs and 
STOREs, this schedule will execute two iterations every 11 
cycles (again, ignoring the costs associated with the 
branch instruction). Fig. 3 shows what happens during 
each cycle for one iteration of the unrolled loop. 

Despite the improvement made with loop unrolling, there 
are three problems with this technique. First, and perhaps 
most important is that the schedule derived for a single 
iteration of an unrolled loop does not take into account 
the sequence of instructions that appears at the beginning 
of the next iteration. Second, we have a code size expan 
sion that is proportional to the size of the original loop 
and unroll factor. Third, the unroll factor is determined 
arbitrarily. In our example, the choice of two for the 
unroll factor was fortuitous since the resulting schedule 
eliminated one stall. A larger unroll factor would have 
generated more code than was necessary. 

Software pipelining attempts to remedy some of the 
drawbacks of loop unrolling. The following code is a 
software pipelined version of the above example (again, 
we do not show the compensation code): 

f o r  (  I  =  0 ;  I  <  N ;  I  =  I  +  4  )  {  
LOAD B| l+3] ,  R14 
LOAD A[ l+3] ,  R13 
MULT C, RIO, R11 
ADD R5 ,  R7 ,  R8  

STORE R4, A[ l ]  

s ta r t  the  fou r th  i te ra t ion  
s ta r t  the  fou r th  i te ra t ion  
R11  =  C  *  B [ l+2 ]  ( t h i rd  i t e ra t i on )  
A [ l + 1 ]  =  A [ l + l ]  +  C  *  B l l + 1 ]  ( s e c o n d  
i terat ion) 
f in ish  the  f i rs t  i te ra t ion .  

I 

Fig. 4 shows the pipeline diagram for this example. 
Notice that in a single iteration of the pipelined loop, we 
are performing operations from four different iterations. 
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However, each successive iteration of the pipelined loop 
would destroy the values stored in the registers that are 
needed three iterations later. On some machines, such as 
the Cydra-5, this problem is solved by hardware register 
renaming.1 In the PA-RISC compilers, this problem is 
solved by unrolling the steady-state code u times, where 
u is the number of iterations simultaneously in flight. In 
Fig. 4, u is four, since there are four iterations executing 
simultaneously during cycles 6 and 7. 

Software pipelining is not without cost. First, like loop 
unrolling, it has the code size expansion problem. Second, 
there is an increased use of registers because each new 
iteration uses new registers to store results. If this 
increased register use cannot be met by the available 

Steady State 

i i  =  In i t ia t ion Interval  (The Number of  Cycles Before a  New I terat ion 
Can Be Started) 

Fig. 4. A software pipeline diagram of the example code fragment. 

Fig. 3. One iteration of the example 
in Fig. 2 after the code is unrolled to 
execute two iterations of the pre 
vious code in one iteration. 

supply of registers, the compiler is forced to generate 
"spill" code, in which results are loaded and stored into 
memory. The compiler tries to ensure that this does not 
happen. Third, the PA-RISC compilers will not handle 
loops that have control flow in them (for example, a loop 
containing an Â¡f-then statement). 

However, unlike unrolling in which the unrolling factor is 
arbitrarily determined, the factor by which the steady- 
state code is unrolled in software pipelining is determined 
algorithmically (this will be explained in detail later). A 
key advantage of software pipelining is that the instruc 
tion pipeline filling and draining process occurs once 
outside the loop during the prolog and epilog section of 
the code, respectively. During this period, the loop does 
not run with the maximum degree of overlap among the 
iterations. 

Pipeline Scheduling 
To pipeline a loop consisting of N instructions, the 
following questions must be answered: 

â€¢ What is the order of the N instructions? 
â€¢ How frequently (in cycles) should the new iteration be 

initiated? (This quantity is called the initiation interval, 
or Â¡i.) 

Conventional scheduling techniques address just the first 
question. 

The goal of pipelining is to arrive at a minimum value of 
ii because we would like to initiate iterations as frequent 
ly as possible. This section will provide a brief discussion 
about how the value of ii is determined in the PA-RISC 
compilers. More information on this subject is provided in 
reference 2. 

The scheduling process is governed by two kinds of 
constraints: resource constraints and precedence 
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Resources 
Floating-Point 

Target Register 

=  Cycles when Resource Is  Needed 

Fig. 5. An example of a resource reservation table for the 
FMPY instruction. 

constraints. Resource constraints stem from the fact that 
a given machine has a finite number of resources and the 
resource requirements of a single iteration should not 
exceed the available resources. If an instruction is sched 
uled at cycle x, we know that the same instruction will 
also execute at cycle x + ii, cycle x -t- (2 x ii), and so on 
because iterations are initiated every ii cycles. For the 
example shown in Fig. 4 ii is two. 

In PA-RISC compilers we build a resource reservation 
table associated with each instruction. For example, the 
instruction: 

F M P Y . D B L  f r l ,  f r 2 ,  f r 3  ;  f r 3  =  f r l  *  f r 2  

would have the resource reservation table shown in Fig. 5 
for the HP 9000 Series 700 family of processors. The 
reservation table defines the resources used by an 
instruction for each cycle of execution. For example, the 
FMPY instruction modeled in Fig. 5 requires the floating 
point multiplier and the target register (fr3) during its 
second cycle of execution. The length of the table is 
dependent on the latency of the associated instruction. 

Precedence constraints are constraints that arise because 
of dependences in the program. For example, for the 
instructions: 

FMPY f r l ,  f r 2 ,  f r3  
FADO fr3,  f r4,  f r2 

there is a dependence from the FMPY instruction to the 
FADO instruction. Also, there is a dependence that goes 
from the FADD to the FMPY instruction because the FMPY 
from the next iteration cannot start until the FADD from 
the preceding iteration completes. Such dependencies can 
be represented as a graph in which the nodes represent 
machine instructions and the edges represent the direc 
tion of dependence (see Fig. 6). The attributes on the 
edges represent: 
d: a delay value (in cycles) from node u to node v. This 
value implies that to avoid a stall node v can start no 
earlier than d cycles after node u starts executing. 

â€¢ p: a value that represents the number of iterations before 
the dependence surfaces (i.e., minimum iteration dis 
tance). This is necessary because we are overlapping 
multiple iterations. A dependence that exists in the same 
iteration will have p = 0 (FADD depends on fr3 in Fig. 6). 
Values of p are always positive because a node cannot 
depend on a value from a future iteration. Edges that 
have p = 0 are said to represent intra-iteration depen 
dences, while nonzero p values represent inter-iteration 
dependences. 

Given an initiation interval, ii, and an edge with values 
<p,d> between two nodes u and v, if the function S(x) 
gives the cycle at which node x is scheduled with respect 
to the start of each iteration, we can write: 

S ( v )  -  S ( u )  >  d ( u , v )  -  i i  x  p ( u , v )  ( 1 )  

If p(u, v) = 0 then: 

S(v)-S(u)> d(u, v). 

Equation 1 is depicted in Fig. 7. 

The goal of scheduling the N instructions in the loop is to 
arrive at the schedule function S and a value for ii. This 
is done in the following steps: 

1. Build a graph representing the precedence constraints 
between the instructions in the loop and construct the 
resource reservation table associated with each of the 
nodes of the graph. 

2. Determine the minimum value of the initiation interval, 
(Mil) based on the resource requirements of the N 
instructions in the loop. For example, if the floating-point 
multiply unit is used for 10 cycles in an iteration, and 
there is only one such functional unit, Mil can be no 
smaller than 10 cycles. 

3. Determine the recurrence minimum initiation interval 
RMII. This value takes into account the cycles associated 

Inter-Iteration 

Intra-lteration 

< p  =  0 ,  d  =  3 >  < p  =  1 . d  =  3 >  

Fig. 6. A dependency graph. 

"  T h e  o n  v a l u e s  a r e  s o m e t i m e s  c a l l e d  o m e g a  v a l u e s  i n  t h e  l i t e r a t u r e  o n  s o f t w a r e  p i p e l i n i n g .  
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S(v) 

p<u,Ã )̄ = 0 
S(v)-S(u)> d(u.v) 

(a) 

Siui  

cycles 

(b) 
S(v) + Â¡i x p - S(u) > d 

S ( v ) - S ( u ) > d - i i x p  

Sivl â€¢ u - p 

Fig. 7. (a) A dependency graph showing the schedule function 
when when (b) An illustration of the schedule function when 
p(u,v)>0. 

with inter-iteration dependencies. If c is such a cycle in a 
graph then equation 1 becomes: 

S(v) - S(u) > d(c) - Ã¼ x p(c) 
d(c) - Ã¼ x p(c) < 0 

which gives 

ii> d(c) 
P(c) 

RMII is the maximum value of ii for all cycles c in a 
graph. 

4. Determine the minimum initiation interval min_ii, which 
is given by: min_ii = max(MII, RMII). 

5. Determine the maximum initiation interval, max_ii. This 
is obtained by scheduling the loop without worrying 
about the inter-iteration dependences. The length of such 
a schedule gives max_ii. If we go back to our first 
example, we can see that we had a schedule length of 

* fx l  equal the smal lest  integer that is greater than or equal to x.  For example, ("5/31 

=  2and Ã/2  1  =  2 .  

eight cycles. There is no advantage if we initiate new 
iterations eight or more cycles apart. Therefore, eight 
would be a proper upper bound for the initiation interval 
in that example. 

6. Determine the value of Ã¼ by iterating in the range 
_ii, max_ii]. 

6.1 For each value, ii, in the range min_ii to max_ii do 
the following: 

6.2 Pick an unscheduled node x from the dependency 
graph and attempt to schedule it by honoring its prece 
dence and resource constraints. If it cannot be scheduled 
within the current ii, increment Ã¼ and start over. 

If the unscheduled node can be scheduled at cycle m, set 
S(x) = m and update a global resource table with the 
resources consumed by node x starting at cycle m. This 
global resource table is maintained as a modulo ii 
table â€” that is, the table wraps around. 

6.3 If all the nodes have been scheduled, a schedule 
assignment S(x) and a value for ii have been successfully 
found and the algorithm is terminated. 

Otherwise, go back to step 6.2. 

Iterations 

Stage 

Prolog 

Steady State 
sc = 3 

Epilog 

LP = Length of Pipeline Schedule 

i i  =  In i t ia t ion  In terva l  

Q  =  P i p e l i n e  E n t r y  

Q  =  P i p e l i n e  E x i t  

If LP = 70 Cycles and ii = 25 cycles 

Then Stage Count  (sc)  = ÃTOl =3 
1 25 1 

Fig. 8. An illustration of the parts of a pipeline used to compute 
the stage count. 

June 1992 Hewlett-Packard Journal 43 
© Copr. 1949-1998 Hewlett-Packard Co.



Original Loop Pipelined Loop 

No 

T < 2 x s c - 1  

Pipel ine 

Compensat ion ,  
Code 

LP 

Fig. 9. Loop transformation to add compensation code to make 
sure the pipeline loop executes the same number of times as the 
original loop. Block B represents the original loop and the case in 
which the loop does not execute enough times to reach the pipe 
line. 

There are three important points about this algorithm that 
need to be made: 

i The length of a pipeline schedule (LP) may well exceed 
max_ii. 

i Since we iterate up to max_ii, we are guaranteed that the 
schedule for the steady state will be no worse than a con 
ventional schedule for the loop. 

i Step 6. 1 is difficult because it involves choosing the best 
node to schedule given a set of nodes that may be avail 
able and ready to be scheduled. The choice of a priority 
function that balances considerations such as the im 
plication for register pressure if this node were to be 
scheduled at this cycle, the relationship of this node on 
the critical path, and the critical resources used by this 
node, is key and central to any successful scheduling 
strategy. 

Given LP and ii, we can now determine the stage count 
(sc), or number of stages into which the computation in a 
given iteration is partitioned (see Fig. 8). This is given by: 

(2) 

The stage count also gives us the number of times we 
need to unroll the steady-state code. This is the unroll 
factor mentioned earlier. 

There are two observations about equation 2. First, to 
guarantee execution of the prolog, steady-state, and epilog 
portions of the code, there must be at least (2 x sc) - 1 
iterations. Second, once the steady-state code is entered, 
there must be at least sc iterations left. In the pipeline 
diagram shown in Fig. 8 there must be at least five 
iterations to get through the pipeline (to get from a to b), 
and there must be three iterations left once the steady- 
state portion of the pipeline is reached. 

Several different ways are available for generating the 
compensation code necessary to ensure the above condi 
tions. For example, consider the following simple loop. 

for (  i  = 1;  i  <= T; Â¡++ ) {  

Here B represents some computation that does not 
involve conditional statements. This loop is transformed 
into: 

T  =  n u m b e r  o f  t i m e s  l o o p  e x e c u t e s  
Â ¡ f  (  T  <2  *  s c  -  1 )  t hen  
M  = T  -  s c ;  
goto  jump_out ;  
end i f ;  

M  = T - | s c - 1 )  

prolog; 
steady_state;  

epilog; 

M  =  M  +  s c  
jump_out :  

for ( i  = 1; i  <= M; Â¡++) 

/ * A r e  t h e r e  e n o u g h  i t e r a t i o n s  
* t o  e n t e r  t h e  p i p e l i n e ?  
* N o .  * /  

/ * s c - 1  i t e r a t i o n s  a r e  c o m p l e t e d  
* i n  t h e  p r o l o g  a n d  e p i l o g  * /  

/ * E a c h  i t e r a t i o n  o f  t h e  s t e a d y  s t a t e  
* d e c r e m e n t s  M  b y  s c  a n d  t h e  s t e a d y  
* s t a t e  t e r m i n a t e s  w h e n  M  <  0  * /  

/ * C o m p e n s a t i o n  c o d e  e x e c u t e s  
*  M  t i m e s .  I f  M  =  0 ,  t h i s  
*  l o o p  d o e s  n o t  e x e c u t e  * /  

This transformation is shown in Fig. 9. The compensation 
code in this code segment ensures that all the loop 
iterations specified in the original code are executed. For 
example, if T = 100 and sc = 3, the number of compensa 
tion (or cleanup) iterations is 2. As illustrated in Fig. 10, 
the prolog and epilog portions take care of 2 iterations, 
the compensation code takes care of 2 iterations, and the 
steady-state portion handles the remaining 96 iterations 
(which means that the unrolled steady state executes 32 
times). 

A Compiled Example 
Software pipelining is supported on the HP 9000 Series 
700 and 800 systems via the -0 option. Currently, loops 
that are small (have fewer than 100 instructions) and 
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have no control flow (no branch or call statements) are 
considered for pipelining. 

The following example was compiled by the PA-RISC 
FORTRAN compiler running on the HP-UX 8.0 operating 
system: 

do 10 Â¡ = 1, 1000 
z(i) = (( x(i) * yfÂ¡)Â¡ 

10 cont inue 
+  a )  *  b  

where x, y, z, a, and b are all double-precision quantities. 
The compensation code is not shown in the following 
example. 

Without pipelining, the PA-RISC code generated is: 

$00000015 
F L D D X . S  % 2 9 ( 0 , % 2 3 ) , % f r 4  ;  f r 4  =  x ( i ) ;  
F L D D X , S  % 2 9 ( 0 , % 2 6 ) , % f r 5  ;  f r 5  =  y ( i ) ;  

;  # #  1  c y c l e  I n t e r l o c k  
F M P Y . D B L  % f r 4 , % f r 5 , % f r 6  ;  f r 6  =  x ( i ) * y ( i ) ;  

;  # #  2  c y c l e  I n t e r l o c k  
F A D D . D B L  % f r 6 , % f r 2 2 , % f r 7  ;  f r 7  =  x ( i ) * y ( i ) + a ;  

;  f t  2  c y c l e  I n t e r l o c k  
F M P Y , D B L  % f r 7 , % f r 2 3 , % f r 8  ;  f r 8  =  ( x ( i ) * y ( i ) + a ) * b  

;  # /  1  c y c l e  I n t e r l o c k  
F S T D X . S  % f r 8 , % 2 9 ( 0 , % 2 5 )  ;  s t o r e  z ( i )  
L D O  1 ( % 2 9 ) , % 2 9  ;  i n c r e m e n t  i  
C O M B , < = , N  % 2 9 , % 6 , $ 0 0 0 0 0 0 1 5 + 4  
F L D D X . S  % 2 9 ( 0 , % 2 3 ) , 1 0 4  ;  r 1 0 4  =  x ( i + 1 ) ;  

Prolog 

Steady State 
sc = 3 

Epilog 

T = 100 Iterations 
Prolog + Epilog = 2 Iterations 
Stage Count = 3 
Compensat ion I terat ions C (T + 1  -  sc)  Mod sc = 2  (Only I f  Pipel ine Executes)  

Iterations Â¡n Steady State = (100 - (Prolog + Epilog + C))/sc 
=  ( 1 0 0 - 4 ) / 3  =  3 2  

Fig. among An illustration of how loop iterations are divided among 
the portions of a pipelined loop. 

If we assume perfect memory accesses, each iteration 
takes 14 cycles. Since there are six cycles of interlock. 
the CPU is stalled 43% of the time. 

Using the pipelining techniques of loop unrolling and 
instruction scheduling to avoid pipeline stalls, the PA- 
RISC code generated is: 

LS9000 
COPY %r26 ,%r20  
L D O  1 ( % r 2 6 ) , % r 2 6  
FLDDX,S%r20(0,%r23),%fr11 
FLDDX.S %r20(0,%r25),%fr12 
F A D D . D B L  % f r 5 , % f r 2 2 , % f r 1 3  
F M P Y . D B L  % f r 1 1 , % f r 1 2 , % f r 7  
FSTDX.S %fr4,%r29(0,%r24) 
F M P Y . D B L  % f r 1 3 , % f r 2 3 , % f r 8  
COPY %r26 ,%r29  
L D O  1 ( % r 2 6 ) , % r 2 6  
FLDDX.S %r29(0,%r23),%fr9 
FLDDX.S %r29(0,%r25),%fr10 
F A D D . D B L  % f r 7 , % f r 2 2 , % f r 1 4  
F M P Y . D B L  % f r 9 , % f r 1 0 , % f r 6  
FSTDX.S %fr8,%r19(0,%r24) 
F M P Y . D B L  % f r 1 4 , % f r 2 3 , % f r 9  
COPY %r26 ,%r19  
L D O  1 ( % r 2 6 ) , % r 2 6  
FLDDX.S %r19(0,%r23),%fr8 
FLDDX.S %r19(0,%r25),%fr11 
F A D D . D B L  % f r 6 , % f r 2 2 , % f r 7  
F M P Y . D B L  % f r 8 , % f r 1 1 , % f r 5  
FSTDX.S %fr9,%r20(0,%r24) 
F M P Y . D B L  % f r 7 , % f r 2 3 , % f r 4  
COMB,<=,N %r26,%r4,L$9000+4 
COPY %r26 ,%r20  

r20 = Â¡ + 2; 
r26 = i  +  3 ;  
f r 11  =x ( i+2 ) ;  
f r12 = y( i+2);  
f r13 = x( i+1)*y( i+1)  
f r7 = x( i+2)*y( i+2);  
store z( i )  Resul t ;  
f r8  =  (x( i+1)*y( i+1)  
r29 = i  +  3 ;  
r26 = i  +  4 ;  
f r9 = x( i+3);  
frIO = y(Â¡+3); 
f r14 = x( i+2)*y( i+2)+a;  
f r6  = x( i+3)*y( i+3) ;  
store z( i+1) Resul t ;  
f r9  =  (x ( i+2 ) *y ( i+2 )+a) *b  
r19 = i  +  4 ;  
r26 = i  +  5 ;  
f r8 = x( i+4);  
f r l l  =  x ( i + 4 ) ;  
f r7  =  x( i+3)*y( i+3)+a;  
fr8 = x(Â¡+4)*y(Â¡+4); 
store z( i+2) Resul t ;  
f r4  =  (x ( i+3 ) *y ( i+3 )+a) *b  
a r e  w e  d o n e ?  

This loop produces three results every 26 cycles which 
means that an iteration completes every 8.67 cycles. Since 
there are no interlock cycles we have 100% CPU utiliza 
tion in this loop. Since it takes 14 cycles per iteration 
without pipelining, there is a speedup of approximately 
38% in cycles per iteration with pipelining. 

Another optimization technique provided in PA-RISC 
compilers, called register reassociation, can be used with 
software pipelining to generate better code because 
during steady state it uses different base registers for 
each successive iteration. See the article on page 33 for 
more on register reassociation. 
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Shared Libraries for HP-UX 
Transparency is the main contribution of the PA-RISC shared library 
implementation. Most users can begin using shared libraries without 
making any significant changes to their existing applications. 

by Cary A. Coutant and Michelle A. Ruscetta 

Multiprogramming operating systems have long had the 
ability to share a single copy of a program's code among 
several processes. This is made possible by the use of 
pure code, that is, code that does not modify itself. The 
compilers partition the program into a code segment that 
can be protected against modification and a data segment 
that is private to each process. The operating system can 
then allocate a new data segment to each process and 
share one copy of the code segment among them all. 

This form of code sharing is useful when many users are 
each running the same program, but it is more common 
for many different programs to be in use at any one time. 
In this case, no code sharing is possible using this simple 
scheme. Even two vastly different programs, however, are 
likely to contain a significant amount of common code. 
Consider two FORTRAN programs, each of which may 
contain a substantial amount of code from the FORTRAN 

Text  

Data 

(a) 

Text 

Data 

(b) 

Fig. each Library implementations, (a) Archive library in which each 
program has its own copy of the library code, (b) A shared library 
implementation in which one copy of the library is shared between 
programs. 

run-time library â€” code that could be shared under the 
right circumstances. 

A shared library is a collection of subroutines that can be 
shared among many programs. Instead of containing 
private copies of the library routines it uses, a program 
refers to the shared library. With shared libraries, each 
program file is reduced in size by the amount of library 
code that it uses, and virtual memory use is decreased to 
one copy of each shared library's code, rather than many 
copies bound into every program file. 

Fig. la shows a library scheme in which each program 
contains a private copy of the library code (libe). This 
type of library implementation is called an archive library. 
Note that the processes vi1 and vi2 share the same copy 
of the text segment, but each has its own data segment. 
The same is true for Isl and Is2. Fig. Ib shows a shared 
library scheme in which one copy of the library is shared 
among several programs. As in Fig. la, the processes 
share one copy of their respective text segments, except 
that now the library portion is not part of the program's 
text segment. 

Shared libraries in the HP-UX operating system were 
introduced with the HP-UX 8.0 release which runs on the 
HP 9000 Series 300, 400, 700, and 800 workstations and 
systems. This feature significantly reduces disk space 
consumption, and allows the operating system to make 
better use of memory. The motivation and the design for 
shared libraries on the Series 700 and 800 PA-RISC 
workstations and systems are discussed in this article. 

How Shared Libraries Work 
Traditional libraries, now distinguished as relocatable or 
archive libraries, contain relocatable code, meaning that 
the linker can copy library routines into the program, 
symbolically resolve external references, and relocate the 
code to its final address in the program. Thus, in the final 
program, references from the program to library routines 
and data are statically bound by the linker (Fig. 2a). 

A shared library, on the other hand, is bound to a pro 
gram at run time (Fig. 2b). Not only must the binding 
preserve the purity of the library's code segment, but 
because the binding is done at run tune, it must also be 
fast. 

With these constraints in mind, we consider the following 
questions: 

1. How does the program call a shared library routine? 
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Core Image 

(a) 

Core Image 

(b) 

Fig. archive Binding libraries to programs, (a) In relocatable or archive 
libraries, the linker binds the program's .0 files and the referenced 
library files to create the executable a.out file. When a.out is run the 
loader creates the core image and runs the program, (b) For 
shared libraries, the linker creates an incomplete executable file 
(the library routines are not bound into the a.out file at link time). 
The shared library routines are dynamically loaded into the pro 
gram's address space at run time. 

2. How does the program access data in the shared 
library? 

3. How does a shared library routine call another routine 
in the same library? 

4. How does a shared library routine access data in the 
same library? 

5. How does a shared library routine call a routine in 
another shared library (or in the program)? 

6. How does a shared library routine access data in 
another shared library (or in the program)? 

Linkage Tables. These questions can be answered several 
ways. The simplest technique is to bind each shared 

libran,' to a unique address and to use the bound address 
es of the library routines in each program that references 
the shared library. This achieves the speed of static 
binding associated with archive libraries, but it has three 
significant disadvantages: it is inflexible and difficult to 
maintain from release to release, it requires a central 
registry so that no two shared libraries (including third- 
party libraries) are assigned the same address, and it 
assumes infinite addressing space for each process. 

Instead, we use entities called linkage tables to gather all 
addresses that need to be modified for each process. 
Collecting these addresses in a single table not only 
keeps the code segment pure, but also lessens the cost of 
the dynamic binding by minimizing the number of places 
that must be modified at run time. 

All procedure calls into and between shared libraries 
(questions 1 and 5) are implemented indirectly via a 
procedure linkage table (PLT). In addition, procedure 
calls within a shared library (question 3) are done this 
way to allow for preemption (described later). The 
program and each shared library contain a procedure 
linkage table in their data segments. The procedure 
linkage table contains an entry for each procedure called 
by that module (Fig. 3). 

Similarly, a shared library accesses its data and other 
libraries' data (questions 4 and 6) through a data linkage 
table (DLT). This indirection requires the compilers to 
generate indirect loads and stores when generating code 

Program or Procedure Shared Library 

PLT =  Procedure  L inkage Table  
DLT =  Data  L inkage Table  

Fig. pro Linkage tables provide the link between a program or pro 
cedure and the shared library routines. The procedure linkage 
table pro contains pointers to routines referenced from a pro 
gram, a procedure, or a shared library routine. The data linkage 
table (DLT) contains pointers that provide a shared library with 
access to its own data as well as other libraries' data. 
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for a shared library, which means that shared library 
routines must be compiled with the appropriate compiler 
option. 

Indirect access to data is costly because it involves an 
extra memory reference for each load and store. We did 
not want to force all programs to be compiled with 
indirect addressing for all data, nor did we want the 
compilers attempting to predict whether a given data 
reference might be resolved within the program itself, or 
within a shared library. 

To deal with these data access issues we chose to satisfy 
all data references from the program to a shared library 
(question 2) by importing the data definitions from the 
shared libraries statically (that is, at link time). Thus, 
some or all of a shared library's data may be allocated in 
the program's data segment, and the shared library's DLT 
will contain the appropriate address for each data item. 

Binding Times. To bind a program with the shared libraries 
it uses, the program invokes a dynamic loader before it 
does anything else. The dynamic loader must do three 
things: 

1. Load the code and data segments from the shared 
libraries into memory 

2. Resolve all symbolic references and initialize the 
linkage tables 

3. Modify any absolute addresses contained within any 
shared library data segments. 

Step 1 is accomplished by mapping the shared library file 
into memory. Step 2 requires the dynamic loader to 
examine the linkage tables for each module (program and 
shared libraries), find a definition for each unsatisfied 
reference, and set the entries for both the data and 
procedure linkage tables to the appropriate addresses. 
Step 3 is necessary because a shared library's data 
segment may contain a pointer variable that is supposed 
to be initialized to the address of a procedure or variable. 
Because these addresses are not known until the library 
is loaded, they must be modified at this point. (Modifica 
tion of the code segment would make it impure, so the 
code segment must be kept free of such constructs.) 

Step 2 is likely to be the most time-consuming, since it 
involves many symbol table lookups. To minimize the 
startup time associated with programs that use shared 
libraries, we provide a mechanism called deferred bind 
ing. This allows the dynamic loader to initialize every 
procedure linkage table entry with the address of an 
entry point within the dynamic loader. When a shared 
library procedure is first called, the dynamic loader will 
be invoked instead, at which time it will resolve the 
reference, provide the actual address in the linkage table 
entry, and proceed with the call. This allows the cost of 
binding to be spread out more evenly over the total 
execution time of the program, so it is not noticed. An 
immediate binding mode is also available as an option. 
Deferred and immediate binding are described in more 
detail later in this article. 

Position Independent Code. Because it is essential to keep a 
shared library's code segment pure, and we don't know 

where it will be loaded at run time, shared libraries must 
be compiled with position independent code. This term 
means that the code must not have any dependency on 
either its own location in memory or the location of any 
data that it references. Thus, we require that all branches, 
calls, loads, and stores be either program-counter (pc) 
relative or indirect via a linkage table. The compilers 
obey these restrictions when invoked with the +z option. 
However, assembly-code programmers must be aware of 
these restrictions. 

Branches within a procedure and references to constant 
data in the code segment are implemented via pc-relative 
addressing modes. The compiler generates pc-relative code 
for procedure calls, but the linker then creates a special- 
purpose code sequence called a stub, which accesses the 
procedure linkage table. Loads and stores of variables in 
the data segment must be compiled with indirect addressing 
through the data linkage table. 

The linkage tables themselves must also be accessible in 
a position independent manner. For the PA-RISC architec 
ture, we chose to use a dedicated register to point to the 
current procedure and data linkage tables (which are 
adjacent), while on the Motorola 68000 architecture, we 
use pc-relative addressing to access the linkage tables. 

Shared Library IVade-ofFs 
The motivation for shared libraries is that program files 
are smaller, resulting in less use of disk space, and 
library code is shared, resulting in less memory use and 
better cache and paging behavior. In addition, library 
updates automatically apply to all programs without the 
need to recompile or relink. 

However, these benefits are accompanied by costs that 
must be considered carefully. First, program startup time 
is increased because of the dynamic loading that must 
take place. Second, procedure calls to shared library 
routines are more costly because of the linkage table 
overhead. Similarly, data access within a shared library is 
slower because of the indirect addressing. Finally, library 
updates, while seeming attractive on the one hand, can be 
a cause for concern on the other, since a newly intro 
duced bug in a library might cause existing applications 
to stop working. 

Design Goals for HP-UX Shared Libraries 
When we first began designing a shared library facility for 
the HP-UX operating system, AT&T's System V Release 3 
was the only UNIX operating system implementation of 
shared libraries. Sun Microsystems released an imple 
mentation in SunOS shortly afterwards.1 We also investi 
gated a few other models including: Multics,2-3 VAX/VMS,4 
MPE V and MPE XL,5 AIX,6 and Domain/OS.7 While 
AT&T's scheme requires static binding as well as a 
mechanism for building shared libraries, the others are all 
based on some combination of indirection and position 
independent code. 

None of the existing models offered what we considered 
to be our most important design goal â€” transparency. We 
felt that the behavior of shared libraries should match the 
behavior of archive libraries as closely as possible, so 
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Z 3 2  B y t e s  
p e r  S p a c e  2 M - 1 , 2 M - 1 , o r  
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Fig. 4. The PA-RISC virtual memory architecture. 

that most programmers could begin using shared libraries 
without changing anything. In addition, the behavior of 
most shared library implementations with respect to 
precedence of definitions differs dramatically from ar 
chive library behavior. If an entry point is defined in both 
the program and an archive library, only the definition 
from the program would be used in the program, and 
calls to that routine from the library would be bound to 
the definition in the program, not the one in the library. 
Such a situation is called preemption because the defini 
tion in the program preempts a definition of the same 
name in the library, and all references are bound to the 
first definition. 

Another design goal that we followed was that the 
dynamic loader must be a user-level implementation. The 
only kernel support we added was a general memory- 
mapped file mechanism that we use to load shared 
libraries efficiently. The dynamic loader itself is a shared 
library that is bootstrapped into the process's address 
space by the startup code. 

We also wanted to ease the task of building shared 
libraries. We explicitly avoided any design that would 
require the programmer to modify library source code or 
follow a complicated build process. 

Finally, we recognized that, in the absence of an obvious 
standard, our shared library model should not be signifi 
cantly different from other implementations based on 
AT&T's System V Release 4. 

PA-RISC Design Issues 
Although the HP-UX shared library implementation is 
designed to have the same external interface and behav 
ior in the HP 9000 Series 300, 800, and 700 systems, 
restrictions imposed by the PA-RISC systems (Series 700 
and 800 systems) posed some interesting design consider 
ations that resulted in additional complexity in the 

underlying implementation. One of the main restrictions is 
based on the PA-RISC software architecture for virtual 
memory and the lack of a facility in the operating system 
to handle the situation. 

Virtual memory in PA-RISC is structured as a set of 
address spaces each containing 232 bytes (see Fig. 4).8 A 
virtual address for a processor that supports a 64-bit 
address is constructed by the concatenation of the 
contents of a 32-bit register called a space register and a 
32-bit offset. The PA-RISC software architecture divides 
each space into four IG-byte quadrants, with four space 
registers (sr4 to srT) assigned to identify a quadrant (see 
Fig. 5). This scheme requires that text and data be loaded 
into separate spaces and accessed with distinct space 
pointers. Program text is accessed using sr4, shared 
library text is accessed using sr6, and all data for shared 
libraries and program files is accessed using sr5. This 
architecture does not allow contiguous mapping of text 
and data in an executable file. Therefore, to handle 
shared libraries in PA-RISC we had to have a dedicated 
linkage table pointer register and provide support for 
interspace procedure calls and returns. 

Dedicated Linkage Table Pointer. Since code and data could 
not be mapped contiguously, the linkage tables could not 
be accessed with a pc-relative code sequence generated at 
compile time. Therefore, we chose a general register 
(gr!9) as a place for holding the pointer for shared 
library linkage. All position independent code and data 
references within a shared library go indirectly through 
the gr!9 linkage register. Code in a main program ac 
cesses the linkage table directly since the main program 
code is not required to be position independent. 

Position independent code generation for shared libraries 
must always consider the gr!9 linkage register as being 
live (in use), and must save and restore this register 
across procedure calls. 

The plabel. The dedicated linkage table pointer added 
complexity to the design for handling procedure labels 
and indirect procedure calls. Two items in the PA-RISC 
software architecture had to be modified to include 
information about the linkage table pointer: a function 
pointer called a plabel (procedure label), which is used in 
archive HP-UX libraries and programs, and a millicode 
routine called SSdyncall, which is used when making 
indirect function calls. To support this new plabel defini 
tion the following changes had to be made. 
In programs that use shared libraries, a plabel value is the 
address of the PLT entry for the target routine, rather 
than a procedure address. An HP-UX PA-RISC shared 
library plabel is marked by setting the second-to-last low- 
order bit of the plabel (see Fig. 6). 
The SSdyncall routine was modified to use this PLT address 
to obtain the target procedure address and the target gr!9 
value. In the modified implementation, the SSdyncall rou 
tine and the kernel's signal-handling code check to see if 
the HP-UX shared library plabel bit is set, and if so, the 
library procedure's address and linkage table pointer 
values can be obtained using the plabel value. 

* The text data. Series 300 systems do support contiguously mapped text and data. 
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Base Register 

4 of 232 Spaces 

Interspace Calls and Returns. The second significant impact 
on the shared library design was the need for a way to 
handle interspace calls and returns because in the PA- 
RISC software architecture, program text and shared 
memory text are mapped into separate spaces. 

The default procedure call sequence generated by the 
HP-UX compilers consists of intraspace branches (BL 
instruction) and returns (BV instruction). The compilers 
assume that all of a program's text is in the same virtual 
space. To perform interspace branches, an interspace call 
and return sequence is required. The call and return 
sequence for an interspace branch is further complicated 
by the fact that the target space is not known at compile 
time, so a simple interspace branch instruction (BLE 
offset(srX,base)) is not sufficient. Instead, a code sequence 
that loads the target space into a space register and then 
performs an interspace branch is required. 

The HP-UX memory map implementation mmapO is used 
for mapping shared library text. As mentioned earlier, all 
shared library text is mapped into the sr6 space (quad 3 
addresses) and all data is mapped into the sr5 space 
(quad 2 addresses). This mapping, along with the need to 
have a dedicated position independent code linkage 
register, requires special code sequences to be produced 
for each function in the library. These code sequences are 
referred to as stubs. The linker places stubs into the 

plabel Bit 

HP-UX Shared Library plabel 

Address of Target Procedure's PLT Entry 

PLT Entry 

Target (Export Stub) Address 

Linkage Table Pointer (gr19) Value 

Fig. 6. A shared library plabel and PLT entry. 

Fig. 5. The relationship of space 
registers sr4, sr5, sr6, and sr7 to 
the virtual address spaces. 

routine making the call and in the library routines (and 
program files) being called to handle saving and restoring 
the gr!9 linkage register and performing the interspace 
branch (see Fig. 7). As mentioned above, compilers 
generate an intraspace branch (BL) and an intraspace 
return (BV) for procedure call sequences. The linker 
patches the BL to jump to the import stub code (Â® in Fig. 
7), which then performs the interspace branch to the 
target routine's export stub (Â© in Fig. 7). The export stub 
is used to trap the return from the call, restore the 
original return pointer and execute an interspace branch. 

HP-UX User Interface 
The HP-UX shared library design offers various user 
interface routines that provide capabilities to dynamically 
load and unload libraries, to define symbols, and to 
obtain information about loaded libraries and symbol 
values. All of these user interface routines are designed 
to be used by a user-level program to control the run-time 
loading and binding of shared libraries. 

Library Loading. Shared libraries can be loaded either 
programmatically (explicit loading) or via arguments in 
the link command line (implicit loading). Explicit loading 
and unloading are provided through the shl_load() and 
shl_unload() routines. Libraries specified for implicit loading 
are mapped into memory at program startup. There are 
two main binding modes for loading shared libraries: 
immediate binding and deferred binding. For implicit 
loading the binding modes can be specified on the link 
command line using the -B immediate or -B deferred linker 
command une options. The default mode for implicit 
shared libraries is deferred binding. For explicit loading 
the binding mode is specified by using the BINDJMMEDIATE 
or BINO_DEFERRED flag in shIJoadO's argument list. 

The deferred binding mode will bind a code symbol when 
the symbol is first referenced, and will bind all visible 
data symbols on program startup. The data symbols must 
be bound when the library is loaded since there is no 
mechanism for trapping a data reference in PA-RISC 

50 June 1992 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



i b i s  l ibe s i  

T e x t  

Fig. 7. Shared library procedure calls. 

(see "Deferred Binding, Relocation, and Initialization of 
Shared Library Data" on page 52 for more details). The 
deferred binding mode spreads the symbol-binding time 
across the life of the program, and will only bind 
procedures that are explicitly referenced. 

The immediate binding mode binds all data and code 
symbols at program startup. If there are any unresolved 
symbols, a fatal error is reported and loading is not 
completed. The program will abort if unresolved symbols 
are detected while loading any implicitly loaded libraries 
when immediate binding is used. The immediate binding 
mode forces all of the symbol binding to be done on 
startup, so the binding cost is paid only at startup. The 
immediate binding mode also has the advantage of 
determining unresolved symbol references at startup. (In 
deferred binding mode the program could be running for 
some time before an unresolved symbol error is detected.) 

Additional flags are available for explicitly loading shared 
libraries that alter the behavior of the immediate and 
deferred binding modes. These flags provide the user with 
some control over the binding time and binding order of 
shared library symbols, and are used in conjunction with 
the BINDJMMEDIATE and BIND_DEFERRED flags. 

1 BIND_FIRST. This option specifies that the library should be 
placed at the head of the library search list before the 
program file. The default is to have the program file at the 
head of the search list and to place additional shared li 
braries at the end of the search list. All library searching 
is done from left (head) to right (tail). 

' BIND_NONFATAL When used with the BINDJMMEDIATE flag, 
this flag specifies that if a code symbol is not found at 
startup time, then the binding is deferred until that code 
symbol is referenced (this implies that all unresolved 
code symbols will be marked deferred with no error or 
warning given, and all unresolved data symbols will pro 
duce an error). The default immediate binding behavior is 
to abort if a symbol cannot be resolved. This option al 
lows users to force all possible binding to be done at 
startup, while allowing the program file to reference sym 
bols that may be undefined at startup but defined later in 
the execution of the program. 
BIND_NOSTART. This flag specifies that the shared library 
initializer routine should not be called when the library is 
loaded or unloaded. The initializer routine is specified 
using the +1 linker option when the shared library is built. 
Default behavior is for the dynamic loader to call the in 
itializer routine, if defined, when the shared library is 
loaded. 
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Deferred Binding, Relocation, and Initialization of Shared Library Data 

In most a library implementations, including the HP-UX implementation, a 
shared indepen can be loaded at any address at run time. While position indepen 
dent code is used for library text, library data must be relocated at run time after a 
load address has been assigned to the library. Also, because addresses of symbols 
defined by shared libraries are not known until run time, references from applica 
tion virtual to shared libraries cannot be bound to correct virtual addresses at 
link time, nor can references between shared libraries or from shared libraries to 
application programs be resolved at library build time. Instead, all such references 
are statically resolved to linkage tables. Each entry in a linkage table corresponds 
to a specific symbol. When a program that uses shared libraries is executed, the 
loader must initialize each linkage table entry with the address of the corresponding 
symbol. 

Furthermore, languages such as C++ support run-time initialization of data. A 
class can have a constructor, which is a function defined to initialize objects of 
that class. The constructor is executed when an object of that class is created. 
C++ mandates that the constructors for nonlocal static objects in a translation 
unit be executed before the first use of any function or object defined in that 
module. Other languages, such as Ada, may have similar run-time initialization 
requirements. 

The dynamic loader must therefore perform relocation, binding, and initialization at 
run time. Linkage table entries for function calls can be initialized to trap into the 
dynamic loader, so that the binding of a function reference can be deferred until 
the first call through the reference. On the other hand, data references cannot be 
trapped in this manner on most architectures. Thus, in most shared library imple 
mentations, the dynamic loader must perform all relocation, binding, and initializa 
tion of data for an entire library when that library is loaded. This normally implies a 
high startup cost for programs that use shared libraries. 

Module Tables 
The HP-UX design conceptually maintains some of the boundaries between the 
modules that make up a shared library. All export table entries, linkage table en 
tries, relocation records, and constructors are grouped by translation unit into 
module initialization The dynamic loader defers the binding, relocation, and initialization 
of data that a module until the first potential access of any symbol defined in that 
module. This greatly reduces the startup overhead of programs that use shared 
libraries. 

Since the Series 700 architecture does not support trapping on specific data refer 
ences, data dynamic loader cannot directly detect the first access of a given data 
symbol. Instead, the dynamic loader considers a given data symbol to be potential 
ly accessed on the first call to any function that references the symbol. Rather than 
actually keeping track of which functions reference which data symbols, the mod 
ule table allows the dynamic loader to make a further approximation. On the first 
call to a given function, the dynamic loader considers the whole module to have 
been potentially accessed. It consults the module table to determine which linkage 

'  A static object is an object that l ives throughout the life of the program, and a translation 
unit preprocessor. the source file produced after going through the C++ preprocessor. 

table entries to bind, which relocation records to apply, and which constructors to 
execute. 

This algorithm is recursive, since binding linkage table entries, relocating data, and 
executing constructors all may reference symbols in other modules. These modules 
must also be considered to be potentially accessed. The dynamic loader must 
therefore bind, relocate, and initialize data in those modules as well. If libraries 
typically contain long chains of data references between modules, then this algo 
rithm will be processing data for many modules on the first call to a given library 
function. If the library is completely connected by such references, this algorithm 
degenerates into binding, relocating, and initializing all data for an entire library 
the first time any function in that library is called. However, our experience shows 
that four libraries seldom have chains more than three or four modules long, and 
many programs access only a fraction of the total number of modules in a library. 
Deferring the binding, relocation, and initialization of data on a module basis has 
shown that the time spent performing these tasks can be reduced by 50% to 80%, 
depending on the program and libraries involved. 

Further C++ Considerations 
The C++ A of static destructors adds another complication to the design. A 
destructor for an object is executed when the object is destroyed. Static objects 
are considered destroyed when the program terminates. C++ mandates that de 
structors for static objects be called in reverse order from the constructors. Other 
languages may have different semantics. Therefore, the dynamic loader employs a 
more directly technique. Rather than execute constructors directly when process 
ing data for a module, the dynamic loader executes a function called an elaborator, 
which executes defined by the C++ run-time support code. The C++ elaborator executes 
all static constructors for the module and also inserts any corresponding destruc 
tors C++ support head of a linked list. On program termination, the C++ run-time support 
code traverses this list and executes all destructors. 

The HP-UX shared library design also supports explicit loading and unloading of 
shared functions from within a program via the shljoad and shl_unload functions 
described in the accompanying article on page 50. While C++ does not define any 
particular semantics for dynamic loading and unloading of libraries, it seems natu 
ral to execute static destructors for objects defined in an explicitly loaded library 
when the library is unloaded. Since the destructors for objects defined in a library 
are often defined in the library itself, the dynamic loader clearly cannot wait until 
program termination to execute destructors for objects in libraries that have al 
ready been unloaded. Therefore, the dynamic loader invokes a library termination 
function when a library is unloaded. This function, also defined by the C++ run 
time support system, traverses the linked list of destructors and executes all de 
structors for the library being unloaded. It then removes those destructors from the 
list. For symmetry, the dynamic loader also invokes an initialization function when 
a library is loaded, implicitly or explicitly, but this capability is not used by the C++ 
implementation. 

Marc Sabatella 
Software Development Engineer 
Systems Technology Division 

B1ND_VERBOSE. This flag causes messages to be emitted 
when unresolved symbols are discovered. Default behav 
ior in the immediate bind mode performs the library load 
and bind silently and returns error status through the 
return value and errno variable. 

Other user interface routines are provided for obtaining 
information about libraries that have already been loaded. 
shl_get(). This routine returns information about currently 
loaded libraries, including those loaded implicitly at start 
up time. The library is specified by the index, or ordinal 
position of the shared library in the shared library search 
list. The information returned includes the library handle, 

pathname, initializer address, text start address, text end 
address, data start address, and data end address. 
shl_get_handle(). This routine returns the same information 
as the of routine, but the user specifies the library of 
interest by the library handle rather than the search-order 
index. Typically, the shl_get() routine would be used when 
a user wants to traverse through the list of libraries in 
search order, and the shl_get_handle() routine can be used 
to get information about a specific library for which the 
library handle is known (i.e., explicitly loaded libraries). 
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Dynamic Symbol Management. User interface routines 
provided for dynamic symbol management include shl_find- 
sym() to shl_definesym(). The shl_findsym() routine is used to 
obtain the addresses of dynamically loaded symbols so 
that they can be called. The shl_findsym(| interface is the 
only supported way of calling dynamically loaded routines 
and obtaining addresses for dynamically loaded data 
items. The shl_definesym() routine allows the user to dynam 
ically define a symbol that is to be used in future symbol 
resolutions. The user provides the symbol name, type, and 
value. If the value of the symbol falls within range of a 
library that has previously been loaded, then the newly 
defined symbol is associated with that library and will be 
removed when the associated library is unloaded. 

Other Features 
Other features that are specific to the HP-UX shared 
library implementation include a module-level approach to 
version control, a method of symbol binding that reduces 
the shared library startup cost for programs that use a 
small percentage of the library routines, and special C++ 
support. The special C++ support is described in the 
short article on the previous page. 

Version control. One of the advantages of shared libraries 
is that when a change (e.g., a defect repair) is made to 
the library, all users can take immediate advantage of the 
change without rebuilding their program files. This can 
also be a disadvantage if the changes are not applied 
carefully, or if the change makes a routine incompatible 
with previous versions of that routine. To protect users of 
shared libraries, some type of version control must be 
provided. 

The HP-UX shared library approach to version control is 
provided at the compilation unit (module) level, which is 
unlike most existing implementations that provide version 
control only at the library level. Our version control 
scheme is based on library marks that are used to identi 
fy incompatible changes. When an incompatible change is 
made to a routine, the library developer date-stamps the 
routine using a compiler source directive. The date is 
used as the version number and is associated with all 
symbols exported from that module. The resulting module 
can then be compiled and added to the shared library 
along with the previous versions of that module. Thus, 
the date stamp is used as a library mark that reflects the 
version of the library routine. When a user program file is 
built, the mark of each library linked with the program is 
recorded in the program file. When the program is run, 
the dynamic loader uses the mark recorded in the pro 
gram file to determine which shared library symbol is 
used for binding. The dynamic loader will not accept any 
symbol definitions that have a mark higher than the mark 
recorded for the defining library in the program file. 

This scheme can also be used for changes that are 
backwards compatible and for programs that rely on new 

behavior. In this case, library developers would include a 
dummy routine with a new date to force an increase in 
the library's mark. Any new programs linked with this 
library would have the new mark recorded, and if run on 
a system with an older version of the library, the dynamic 
loader will refuse to load the old library because the 
version number of the installed library would be lower 
than the number recorded in the program file. 

Archive Symbol Binding. Typically, a shared library is 
treated as one complete unit, and all symbols within the 
library are bound when any symbol in that library is 
referenced. In the HP-UX scheme, the shared library file 
maintains module granularity similar to archive libraries. 
When the shared library is built, a data structure within 
the shared library is used to maintain the list of modules 
(compilation units) used to build the library. The list of 
defined symbols and referenced symbols is maintained for 
each module. During symbol resolution, the dynamic 
loader binds only symbols for modules that have been 
referenced. This symbol binding technique provides a 
significant performance improvement in the startup and 
symbol binding time for typical programs (i.e., programs 
that reference a relatively low percentage of the total 
symbols in the attached shared libraries). 
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Integrating an Electronic Dictionary 
into a Natural Language Processing 
System 
This available discusses the types of electronic dictionaries available and the 
trends discussion electronic dictionary technology, and provides detailed discussion 
of particular dictionaries. It describes the incorporation of one of these 
electronic dictionaries into Hewlett-Packard's natural language 
understanding system and discusses various computer applications that 
could use the technology now available. 

by Diana C. Roberts 

Computational linguistics is demonstrating its relevance to 
commercial concerns. During the past few years, not only 
have companies funded and carried out research projects 
in computational linguistics, but also several products 
based on linguistic technology have emerged on the 
market. Franklin Products has created a line of handheld 
calculator-like dictionaries which range from a spelling 
dictionary to a pronouncing dictionary with a speech 
generator attached to a full thesaurus. Franklin Products, 
Texas Instruments, Casio, and Seiko all produce multilin 
gual handheld translating dictionaries. Many text editors 
and word processors provide spelling checkers and 
thesauruses, such as those used by WordPerfect. Gram- 
matik IV and Grammatik Mac are widely available style 
and grammar checkers. Merriam-Webster and the Oxford 
University Press have recently released their dictionaries 
on CD-ROM. 

Both the commercial success of these linguistics products 
and the promising nature of their underlying theoretical 
basis encourage more ambitious work in industrial 
research. Outside of the United States, particularly in 
Europe and Japan, there is great interest in machine 
translation, although products remain on the research 
level. The Toshiba Corporation has developed a Japanese- 
English typed-input translating system for conversational 
language. Within the United States, Unisys, SRI, and 
Hewlett-Packardt have developed natural language under 
standing systems with prospective applications of data 
base inquiry and equipment control, among other areas. 
In the area of electronic dictionary development, both the 
Centre for Lexical Information (CELEX) in the Nether 
lands and Oxford University Press (publishers of the 
Oxford English Dictionary) in England are developing 
dictionary products that are sophisticated both in the 
linguistic data they contain and in the way the data is 
accessed. 

t Hewlett-Packard's HP-NL (Hewlett-Packard Natural Language) system was under develop 
ment from 1982 to 1991.' 

The linguistics of computational linguistic theory is based 
on standard modern theories such as lexical functional 
grammar, or LFG,2 and head-driven phrase-structure 
grammar, or HPSG.3 Most of these theories assume the 
word to be the basic linguistic element in phrase forma 
tion, that is, they are "lexicalized" theories. Words, 
therefore, are specified in great linguistic detail, and 
syntactic analysis of sentences is based on the interplay 
of the characteristics of the component words of a 
sentence. Therefore, products based on linguistic theory 
such as grammar checkers and natural language under 
standing systems require dictionaries containing detailed 
descriptions of words. Products that do not involve 
sentential or phrasal analysis, such as spelling checkers 
and word analyzers, also require extensive dictionaries. 
Thus, dictionaries are very important components of most 
computational linguistic products. 

Of course, the book dictionary has been a standard 
literary tool, and the widespread acceptance of the 
computer as a nontechnical tool is creating an emerging 
demand for standard dictionaries in electronic form. In 
fact, the importance of linguistically extensive dictionaries 
to computational linguistic projects and products is 
reflected in the emerging availability of electronic dictio 
naries during the past few years. Webster's Ninth on 
CD-ROM, a traditional type of dictionary now in electron 
ic form, became available from Merriam-Webster in 1990. 
Longman House made the typesetting tape for its Long 
man's Dictionary of Contemporary English (LDOCE) 

Notation and Conventions 

In this (e.g., italic type is used for natural language words cited in the text (e.g., 
happy). 
The sans-serif font is used for programming keywords. 
The asterisk (*) preceding a phrase indicates ungrammaticality. 
The dagger (t) indicates a footnote. 
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available to the research community of linguists, lexicog 
raphers, and data access specialists in the mid-1980s. It is 
still a research tool, but has become very expensive to 
commercial clients, presumably reflecting its value to the 
research and commercial community. The products from 
CELEX and the Oxford University Press mentioned above 
are among the most sophisticated electronic dictionary 
products available today. The second edition of the 
Oxford English Dictionary, the OED2, is available on 
CD-ROM. Its data, in running text form, is marked explic 
itly in SGML (the Standard Generalized Markup Language, 
ISO 8879) for retrieval. The CELEX dictionary in English, 
Dutch, and German is a relational database of words and 
their linguistic behavior. These two latter products are 
sophisticated in very different ways and are designed for 
very different uses, but they have in common a great 
flexibility and specificity in data retrieval. 

Related work that can support further lexicographical 
development in the future is being carried on by the Data 
Collection Initiative (DCI) through the Association for 
Computational Linguistics. This and similar initiatives are 
intended to collect data of various forms, particularly 
literary, for computer storage and access. Lexicographers 
are already making use of large corpora in determining 
the coverage for their dictionaries.4 The availability of 
large corpora for statistical studies will certainly aid and 
may also revolutionize lexicographical work and therefore 
the nature of electronic dictionaries. 

There is apparently a commercial market for linguistically 
based products, since such products are already being 
sold. Many of these current products either rely on 
electronic dictionaries or are themselves electronic 
dictionaries of some kind. Recent years have seen elec 
tronic dictionaries become more sophisticated, both in 
their content and in the accessibility of their data. Be 
cause many sophisticated products based on computation 
al linguistics must rely on dictionary information, the 
potential scope of computational systems based on 
linguistics has increased with the improvements in 
electronic dictionaries. 

My aim with this paper is to introduce the area of elec 
tronic dictionary technology, to suggest areas of research 
leading to product development that crucially exploit the 
emerging dictionary technologies, and to report on the 
results of one such effort at Hewlett-Packard Laboratories. 

What Is a Dictionary? 
Commonly, a dictionary is considered to be a listing by 
spelling of common natural language words, arranged 
alphabetically, typically with pronunciation and meaning 
information. There are, however, collections of words that 
violate one or more of these three stereotypical character 
istics but are still considered dictionaries. For instance, 
the simplest kind of dictionary is the word list, used for 
checking spelling; it contains no additional word informa 
tion. The Bildworterbuch from Duden contains both 
pictures and words for each entry, and is arranged not 
alphabetically, but by topic. Stedman's Medical Dictionary 
contains alphabetically ordered technical terms from the 
domain of medicine and their definitions rather than 
common English words. It also contains some etymologi 
cal information, but offers pronunciation information for 

only some entries. Similarly, symbol tables of compilers 
contain symbols used by software programs; their entries 
are not natural language words. Data dictionaries of 
database management systems also contain entries for 
non-natural-language words, as well as other nonstandard 
dictionary information such as computer programs. 

If all three of the stereotypical characteristics can be 
violated, then for the purposes of this paper we need to 
establish what a dictionary is. As a start, we can appeal 
to a dictionary as an authority on itself. Webster's Ninth 
New Collegiate Dictionary (the electronic version of 
which is one of the dictionaries discussed in this paper) 
says that a dictionary is "1: a reference book containing 
words usu. alphabetically arranged along with information 
about their forms, pronunciations, functions, etymologies, 
meanings, and syntactical and idiomatic uses 2: a refer 
ence book listing alphabetically terms or names important 
to a particular subject or activity along with discussion of 
their meanings and applications 3: a reference book 
giving for words of one language equivalents in another 4: 
a list (as of phrases, synonyms, or hyphenation instruc 
tions) stored in machine-readable form (as on a disk) for 
reference by an automatic system (as for information 
retrieval or computerized typesetting)." 

There are some common elements of these definitions, 
which together form the defining characteristics of the 
dictionary. First and most crucial, the dictionary is a 
listing of language elements, commonly words. Implied 
too is that the entries can be taken from any domain. 
These entries are arranged in some way to make retrieval 
either possible or easy. And finally, the dictionary also 
often contains other information associated with the 
entry. An electronic dictionary is any kind of dictionary in 
machine-readable form. 

The electronic dictionaries available now vary greatly. 
This paper will only consider dictionaries whose entries 
come from the domain of natural language, and whose 
entries are words rather than phrases. I will discuss three 
dimensions along which electronic dictionaries differ from 
each other: type of additional information about the entry 
presented, the explicitness of the information categories 
(more explicit marking of the categories reducing ambigu 
ity), and the accessibility and organization of the data. 
After the discussion of electronic dictionaries and their 
characteristics, I will discuss the possible uses of elec 
tronic dictionaries and the necessary characteristics of 
the dictionaries for the various possible uses. The pur 
poses to which an electronic dictionary can be put 
depend on its characteristics in each of the three 
dimensions discussed in the following sections. 

Evolution of Electronic Dictionaries 
Early electronic dictionaries were word lists. They had a 
limited range of use because they contained limited types 
of information in a simple organization. Electronic dictio 
naries are becoming more complex and more flexible 
now, as they become potentially more useful in domains 
that did not exist before. The potential uses are shaping 
the ways in which electronic dictionaries are evolving. 

As computers began to be used for writing and commu 
nication, the standard desk reference book, the dictionary, 
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was ported to electronic form. When this reference tool 
became available in the same medium as the word 
processor â€” the computer â€” the lexicographical information 
was now machine-readable. As linguistically based soft 
ware systems matured, the demand for accessible lexico 
graphical data based on modern linguistic theory grew. 
This demand has brought several important pressures on 
electronic dictionaries. 

Lexicographical Information. First, several newer electronic 
dictionaries provide extensive linguistic information based 
in some cases on modern linguistic theories. Word entries 
in traditional dictionaries often do not recognize the same 
categories that are important to generative linguistic 
theory. Traditional dictionaries focus on defining words, 
providing historical derivation information (etymologies), 
providing sample sentences to illustrate word use, and 
providing some basic linguistic information, such as 
spelling, syllabification, pronunciation, part of speech, 
idiomatic use, and semantically related words (synonyms, 
hyponyms, hypernyms, and antonyms), t This information, 
if it were unambiguously accessible, could be used for 
some software applications â€” for example, a spelling 
checker, a semantic net, or possibly speech generation or 
recognition, depending on the sophistication of the speech 
system. However, this information is insufficient for 
applications that require complex word and/or sentence 
analysis, such as natural language processing, which 
involves natural language understanding. 

The recent expansion of electronic dictionaries coincided, 
not surprisingly, with the emergence of several book 
dictionaries of English that carefully detail linguistic word 
information based on modern linguistic theory. These 
"learning dictionaries," created for foreign learners of 
English rather than native speakers, contain only the 
most common words instead of attempting to be exhaus 
tive. These dictionaries concentrate more on complete 
syntactic and morphological characterization of their 
entries than on exhaustive meaning explanations and 
citations, and use linguistic categories from modern 
generative linguistics in preference to traditional catego 
ries. Three of these dictionaries are Longman's Dictionary 
of Contemporary English (LDOCE), the Oxford Advanced 
Learner's Dictionary of Current English (OALD), and 
Collins COBUILD English Language Dictionary. Some of 
the most useful electronic dictionaries draw their 
lexicographical information from these sources, tt 

The following are some of the kinds of information found 
in electronic dictionaries, both traditional and modern: 

â€¢ Orthography (spelling) 
â€¢ Syllabification 
â€¢ Phonology (pronunciation) 
â€¢ Linguistic information about the word's properties, in 

cluding syntax, semantics (meaning), and morphology 
(word structure) 

â€¢ Related word(s) â€” related by morphology, either inflec 
tional (work, works) or derivational (happy, unhappy) 

t In a other, of words, one of which has a broader meaning than the other, the word with the 
broader meaning is the hypernym and the word with the more narrow meaning is the hvponym. 
For example, for the words book and novel, book would be the hypernym and novel the hyponym. 

tt Extensive and explicit phonetic, morphological, and syntactic information is useful now in 
computer structured whereas neither semantic nor etymological information is yet structured 
enough to be useful. 

â€¢ Synonym listings 
â€¢ Semantic hierarchies 
â€¢ Frequency of occurrence 
â€¢ Meaning (not yet a robustly structured field) 
â€¢ Etymology 
â€¢ Usage (sample phrases and/or sentences, either created 

by the lexicographer or cited from texts). 

Data Categorization. A second trend in newer electronic 
dictionaries is to represent the lexicographical data in such 
a way that it is unambiguously categorized, either tagged 
in the case of running text dictionaries, or stored in a 
database. Linguistically based software systems must be 
able to access lexicographical information unambiguously. 

Traditional dictionaries rely on human interpretation of 
various typefaces which are often formally ambiguous to 
determine the category of information represented. In the 
entry for "dictionary" in Webster's Ninth, the italic type 
face is used to represent both the part-of-speech and 
foreign-language etymological information, and the part-of- 
speech indicator comes after the entry for "dictionary" 
and before the entry for the plural "-naries". 

One of the earlier desk-type dictionaries in electronic 
form was the Longman's Dictionary of Contemporary 
English. The tape containing the typesetting information 
for the book form was stored electronically. Thus, all its 
lexicographical information was available electronically, 
but the data fields were ambiguously indicated through 
the typesetting commands. 

The second edition of the Oxford English Dictionary 
(OED2) is available in an electronic edition on CD-ROM. 
This dictionary, like the LDOCE, is a running text dictio 
nary rather than a regular database. Its data fields, 
however, are explicitly marked using the SGML tagging 
language. Here, data retrieval does not face the problem 
of ambiguity. 

The CELEX electronic dictionary is in relational database 
form. This encourages uniformity in the classification 
system and in the data. 

Accessibility of Data. A third trend is the increased acces 
sibility to their data offered by some electronic dictio 
naries. Accessibility is affected by both data structure and 
data encryption. In some dictionaries, the entry point for 
retrieval is only by word spelling; in others, there are 
multiple entry points. The data of some dictionaries is 
designed intentionally to be inaccessible programmatically; 
in other cases, it is designed to be accessible. 

In word lists such as spelling dictionaries, data organiza 
tion is not extensive, usually consisting of only alphabeti 
cal ordering and indexing to allow fast access. The data 
in these dictionaries is fully accessible to at least the 
spelling software application, and may be designed in a 
way that it could be used by other software applications 
as well. For instance, the Â¡spell dictionary is a word list in 
ASCII format that can be used for other purposes. 

Other dictionary types vary more in their accessibility, 
both in whether the data is accessible at all programmati 
cally, and in how flexible the access is. The data in the 
OED editions and in Webster's Ninth is encrypted (an 
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10th 
1st  
2nd 

a 
A & P  
a's 
A A A  
aardrup  
aa rdva rk  
a a r d w o l f  
a a r d w o l v e s  
Aa rhus  
Aaron  
A B A  
Ababa  
a b a c k  
abac te r i a l  
abacus  
a b a c u s e s  

Fig. 1. The first few entries in the dictionary used by the spelling 
checker Â¡spell. 

unencrypted version of the OED2 is available, but expen 
sive). In both the LDOCE and the CELEX dictionaries, the 
data is available programmatically. 

In Webster's Ninth, the user can access data only through 
spelling. In the OED, the user can access data through 
spelling, quotation year, original language, and many other 
attributes. In the CELEX dictionary, which is a relational 
database, access is completely flexible. And in LDOCE, 
the user can access the data through selected fields in 
the data entries. 

Coverage. A fourth trend in modern electronic dictionaries 
is that, as linguistically based software systems become 
larger, the need grows for representing all and only those 
words relevant to a particular application in the electron 
ic dictionary. All relevant words must be represented to 
allow for complete coverage. It is desirable also to 
represent only relevant words to improve storage and 
retrieval costs. At least one of the learning dictionaries 
discussed above, Collins COBUILD dictionary, chose its 
selection of entries not by the traditional approaches of 
introspection and of searching for unusual word uses, but 
rather by amassing a corpus of text and entering word 
occurrences in that corpus into its dictionary. This should 
result in a dictionary with a vocabulary representative of 
the domain in which the corpus was gathered rather than 
an idiosyncratically collected vocabulary. This approach 
yields an additional desirable characteristic: statistical 
studies on the corpus can indicate frequency of word use, 
which can be used in ordering both linguistic uses and 
meaning uses of the same word. This frequency information 
could be useful to software applications. 

Sample Dictionaries 
Word lists contain word spellings, sometimes accompanied 
by syllabification, pronunciation, or frequency information. 
An example is the dictionary used by the spelling checker 
Â¡spell. Fig. 1 shows the first few entries in this dictionary, 
which contains word entries by spelling only. 

Another well-known word list electronic dictionary is the 
Brown corpus, which was constructed from statistical 
studies on linguistic texts. It provides spelling and part-of- 
speech information. However, its great contribution is its 
frequency information, which records the frequency of 

different words with the same spelling. Frequency lists 
usually collapse word frequencies to occurrences of a 
spelling instead of accounting for homonyms. 

Other electronic dictionaries contain more extensive data 
than do word lists. The desktop dictionary Webster's 
Xinth on CD-ROM, for instance, provides spelling, syllabi 
fication, pronunciation, meaning, part of speech, and 
some etymological information for each word. 

The Oxford English Dictionary on CD-ROM desktop 
dictionary also provides extensive information. Its data 
includes spelling, etymology (parent language), part of 
speech, quotations to demonstrate context, year of 
quotation, and meaning. 

The data in the machine-readable Longman's Dictionary 
for Contemporary English (LDOCE) and in the CELEX 
lexical database from the Centre for Lexical Information 
is also extensive and includes phonology, syllabification, 
part of speech, morphology, specification of the argu 
ments that occur with the word in a phrase, such as 
subject, object and so on (subcategorization), and in the 
CELEX dictionary, frequency. Also, while the desktop type 
of electronic dictionary does not typically contain linguis 
tic information that coincides with modern linguistic 
theories, these two electronic dictionaries contain work 
categorizations based on modern linguistic theory. Much 
of the CELEX dictionary's syntactic data is based on 
categories from the LDOCE and the OALD. 

Fig. 2 shows examples from the CELEX electronic dictio 
nary. In these examples, the lemma is the root word, the 
part of speech is the major word class to which the word 
belongs, the morphology is the formula for deriving the 
spelling of the fleeted word from the lemma's spelling, 
morphological information includes morphological characteristics 
of the word (singular, comparative, etc.), and flection type 
contains the same morphological information compressed 
to one column. 

The HP Natural Language System 
A natural language processing system is a software 
system that takes natural language input (typically spoken 
or typed input), assigns some interpretation to the input, 
and perhaps transforms that interpretation into some 
action. Examples of natural language processing systems 
are speech recognizers, machine translators, and natural 
language understanding systems. 

HP's natural language understanding system, HP-NL, 
accepts typed English input and performs morphological, 
syntactic, and semantic analysis on the input. If the 
sentence is well-formed, HP-NL assigns a logic representa 
tion to the sentence. HP-NL can then translate this logic 
expression into another language, for instance a database 
query language such as SQL. 

The linguistic coverage of HP-NL is limited by, among 
other factors, the size of its lexicon, or its word invento 
ry. To increase the size of the lexicon and therefore the 
coverage of the software system, and to demonstrate that 
electronic dictionaries can be used to solve problems of 
computation, we integrated the CELEX lexical database 
into the HP-NL natural language understanding system. 
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e n t r y  l e m m a  p a r t  o f  s y n t a c t i c  i n f o r m a t i o n  
s p e e c h  

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN 
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e n t r y  l e m m a  s p e l l i n g  s y l l a b i f i c a t i o n  m o r p h o l o g y  f r e q u e n c y  f l e c t i o n  

143  

3 6  

321  

6 4  

7 6  

8 8  

1 5  

t ype  

S 

b 
a l S  
pe 
S 

morphological  
information 
Y N N N N N N N N N N N N  
N N N N N Y N N N N N N N  
N N Y N N N N N N N N N N  
Y N N N N N N N Y Y N N N  
N N N N N N Y Y N N N N N  
Y N N N N N N N N N N N N  
Y N N N N N N Y N N N Y N  

Fig. 2. Examples of data from 
the CELEX electronic dictionary. 

Natural Language Processing Technology 
Current linguistic technology relies on detailed linguistic 
specification of words. Linguistic analysis is based on 
basic information about words, the building blocks of 
phrases. We will restrict our consideration to two central 
kinds of linguistic information: morphological and syntac 
tic information. 

Morphological information specifies which component 
parts of a word (morphemes) may occur together to 
constitute a word. Morphemes may show up on a re 
stricted class of words. For instance, the prefix un- may 
appear on adjectives, and the suffix -s may occur on 
third-person verbs: 

la .  happy 
b.  un+happy 
c .  w o r k  
d. * un+work 

2a.  work 
b .  work+s  
c .  happy 
d. * happy+s 

(adjective) 
(adjective) 
(verb) 

(base verb) 
(present third-person-singular verb) 
(adjective) 

Syntactic information specifies how words interact with 
other words to form phrases. Two important kinds of 
syntactic information are part of speech and subcatego- 
rization. Part of speech is the major word category to 
which the word belongs â€” for example, noun, verb, 
adjective, and so on. Part of speech is important in 
determining which words may occur together and where 
they may occur in a sentence. For instance, a verb does 
not typically occur as the first element in a declarative 
English sentence: 

3a. She finished repairing the broken toy. 
b. Finished she repairing the broken toy. 
c. * Finished repairing the broken toy. 

Subcategorization indicates more specifically than part of 
speech which words or phrases may occur with the word 
in question. It specifies how many and which arguments 
may occur with a word. Devour must have a noun phrase 

following it in a sentence (devour subcategorizes for a 
postverbal noun phrase), whereas eat need not: 

4a. The tiger devoured its kill. 
b.*The tiger devoured. 
c. The tiger ate its kill. 
d. The tiger ate. 

Subcategorization also allows us to determine which 
verbs may occur where in verbal clusters: 

5a. They may have left the party already. 
b. * They may left the party already. 
c. * They may have could left the party already. 

Words must be specified in sufficient detail that the 
natural language processing system can draw distinctions 
such as those indicated above. 

HP-NL's Lexicon 
The grammatical theory behind the HP-NL system is 
HPSG (head-driven phrase structure grammar).3'5 In this 
theory, as in most other modern linguistic theories, full 
specification of linguistic information at the word level is 
essential. 

Many words have a great deal of linguistic information in 
common. For instance, in example 4 above, each verb 
subcategorizes for the same kind of subject and object, 
but the object is obligatory in the case of devour, and 
optional in the case of eat. In example 2 above, we see 
that English present third-person-singular main verbs end 
with -s. HP-NL captures these and other linguistic similar 
ities of words through a system of hierarchical word 
classification.6 

HP-NL's lexicon consists of word entries and word classes 
arranged in a tree hierarchy (the word class hierarchy). 
Each nonleaf node in the word class hierarchy is a word 
class. A word class defines a collection of words that 
share some cluster of linguistically relevant properties, 
which are predictive or descriptive of the linguistic 
behavior of the words. The words may be similar mor 
phologically and/or syntactically, and may have similar 
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SUBCAT 

UNSATURATED 

p a r e n t s  =  s u b c a t  
c o m p l e m e n t s  =  s u b j e c t  
features 
gfun-spec 

=  subcat  p lus  
=  s u b j e c t  

syntax 

features =  lex  p lus 

p a r e n t s  =  m a j o r  
f e a t u r e s  =  m a j  v  

f ea tu res  
subcat minus 
maj n 
npform norm 
compl that whether for 

o b l i g  T  

INTRANSITIVE 

parents = unsaturated 

BASE 

p a r e n t s  =  v e r b  
fea tures  =  form bse  

WORK-1 

p a r e n t s  =  B a s e  I n t r a n s i t i v e  
s p e l l i n g s  =  " w o r k "  
s e m a n t i c s  =  w o r k  
c o m p l e m e n t s  -  p p - f o r  
g f u n - s p e c  =  p p - f o r  

syntax 

features 
maj p 
subcat plus 
lex minus 
pform for 

role for 

Fig. for An example of a word entry (subcategorization section for 
the word work), excerpted from a word class hierarchy. 

subcategorization. A word class partitions the lexicon into 
two sets of words: those that belong to the word class 
and those that do not. The characteristics of a word class 
are defined by the characteristics that its members share. 
Word classes are more general closer to the root of the 
word class hierarchy, and are more specific closer to the 
leaves. Word entries are the leaves of the word class 
hierarchy. The word entry itself contains spelling, word 
class membership (parent), and idiosyncratic linguistic 
information (see Fig. 3). 

The complete linguistic specification of a word is estab 
lished through instantiation (Fig. 4). In this, the linguistic 
information of the word is unified with the information of 
all of its parent word classes. Any possible conflicting 
information is resolved in favor of the more specific 
information. 

Lexicon Development 
The development of this extensive word classification 
system, the word class hierarchy, makes the creation of 
HP-NL lexical entries fairly easy. Lexical development 
consists of determining the word class to which a word 
belongs and identifying the word's idiosyncratic behavior 
with respect to that word class and of recording the 
spelling and idiosyncratic linguistic behavior of the word. 

Even with this powerful lexical tool, creating lexical 
entries is time-consuming. First, each word to be entered 

into the lexicon must be analyzed linguistically for word 
class membership and idiosyncratic behavior with respect 
to that word class. And second, it is difficult for the 
lexicon developer to know which words a user of a 
natural language processing system will want to use, and 
which should therefore be entered into the lexicon. Of 
course, lexical tools such as desktop dictionaries and 
frequency listings can help the lexicon developer, but 
nonautomatic lexicon development is still work-intensive. 

Because of this, a hand-built lexicon must be small or 
labor-expensive. And because the linguistic coverage of a 
natural language processing system is limited by the size 
of its lexicon, the narrow coverage resulting from the 
small lexicon could result in failure of the natural lan 
guage processing system caused solely by unrecognized 
vocabulary. Natural language processing systems used as 
computer interfaces are intended to allow the user 
maximum freedom in expression. 

To address the problems of identifying the most common 
words of English and specifying their linguistic behavior, 
HP-NL's lexicon was augmented with dictionary data 
obtained from the CELEX electronic dictionary. The 
CELEX electronic dictionary was chosen for three rea 
sons. First, the linguistic classification system is compat 
ible with modern linguistic theory. Second, the data is 
fully accessible. And third, the CELEX electronic dictio 
nary provides the frequency data needed to identify 
common words. 

Lexical Extension Using the CELEX Dictionary 
Several advantages were expected from using the lexical 
information in the CELEX electronic dictionary. First, the 
primary objective in this effort was to increase the 
linguistic coverage of HP-NL by increasing the size of the 
HP-NL lexicon with externally compiled dictionary data 
from the CELEX electronic dictionary. Until CELEX was 
integrated into HP-NL, HP-NL's basic lexicon contained 
approximately 700 root words (about 1500 words in all, 
including those derived from the root words by lexical 
rule). Because the only sentences that can be parsed are 

WORK 1. instantiated 

s p e l l i n g s  =  " w o r k "  
s e m a n t i c s  =  w o r k  
f e a t u r e s  =  s u b c a t  p l u s  

lex plus 
maj v 
form bse 

c o m p l e m e n t s  =  s u b j e c t  p p - f o r  
g f u n - s p e c  =  s u b j e c t  

syntax 

features 
subcat minus 
maj n 
npform norm 
compl that whether for 

o b l i g  T  
pp-for 

syntax 

features 
maj p 
subcat plus 
lex minus 
pform for 

role for 

Fig. 4. Ail example of an instantiated word entry. 
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NUMBER-LEX 

SINGULAR-ONLY 

p a r e n t s  =  n u m b e r - l e x  
f e a t u r e s  =  a g r S r d s g  

PLURAL 

p a r e n t s  =  n u m b e r - l e x  
f e a t u r e s  =  a g r S r d p I  

M A S S  

SINGULAR 

LEX-RULE-PLURAL 

o l d - p a r e n t  =  s i n g u l a r  
n e w - p a r e n t  =  p l u r a l  
s p e l l i n g s  =  s u f f i x - s  

Fig. 5. An excerpt from the word class hierarchy for the Singular 
and Plural word classes, with lexical rule. 

those whose component words have been specified 
explicitly in the dictionary, HP-NL's rather small dictionary 
also necessarily meant narrow coverage. The CELEX 
dictionary has both more words than HP-NL (the CELEX 
dictionary has 30,000 lemmas and 180,000 wordforms) and 
more different word uses for many of the words. 

Second, because the developers of the CELEX dictionary 
drew on learning dictionaries of English (which attempt 
to cover core vocabulary) for their lexical data, the CELEX 
dictionary represents the most common words in English. 
Assuming that natural language processing users will 
prefer common rather than unusual words, using the 
CELEX data should eliminate the need on the part of 
HP-NL lexicon developers to guess at the words commonly 
used by natural language processing users. 

Finally, we believed that buying a license to use the 
CELEX dictionary would be cheaper than creating a large 
lexicon ourselves. 

All of these expectations were met. The CELEX dictio 
nary was clearly the best choice among the candidate 
electronic dictionaries. The data is accessible, unambigu 
ously categorized, and extensive. It recognizes many 
lexical classes of interest to linguists, and the fee for 
commercial clients is reasonable. None of the other 
candidate dictionaries had all of these qualities. 

Procedure 
In the work reported here, the orthography, language 
variation, phonology, inflectional morphology, and syntax 
data from the English CELEX database was used. 

To integrate a large portion of the CELEX dictionary into 
the HP-NL dictionary, we transduced CELEX spelling, 
syntactic, and morphological information into a form 
compatible with the HP-NL system by mapping the 
CELEX dictionary's word classifications onto the (often 
more detailed) word classes of HP-NL's lexical hierarchy. 

Several mappings between the CELEX dictionary's word 
classification scheme and HP-NL's word classes are 
straightforward. For instance, the CELEX dictionary's two 
classes called count nouns (C_N) and uncount nouns 
(Unc_N) correspond to HP-NL's three classes Singular, Plural, 

and Mass nouns. A count noun can be pluralized and takes 
a singular verb in its singular form and a plural verb in its 
plural form. Examples from the CELEX dictionary are 
almond(s), bookworm(s), and chum(s). 

6a. Her chum was waiting for her at the corner, 
b. Her chums were playing tag when the cat got stuck 

in the tree. 

The two word classes in HP-NL that together correspond 
to the C_N word class are the Singular word class and the 
Plural word class, which are related by the plural lexical 
rule (Fig. 5). 

The CELEX uncount nouns are those nouns that occur 
only in the singular form with a singular verb. This 
includes mass and abstract nouns. Examples of Unc_N 
nouns from the CELEX dictionary are bread, cardboard, 
and integrity. 

7a. How much cardboard is in that box? 
b. * How many cardboards are in that box? 

8a. The ruler has great integrity, 
b. * The ruler has great integrities. 

The corresponding word class in HP-NL is the Mass word 
class (Fig. 6). 

Some nouns can be used as either count or uncount 
nouns and are classified as both C_N and Unc_N in the 
CELEX dictionary. Examples are cake, hair, and cable: 

9a. How much cake would you like? 
b. How many cakes are on the table? 

These are classified as both Singular (and therefore also 
derived Plural) and Mass in HP-NL. 

This portion of the mapping between the CELEX dictionary 
and HP-NL is simple: 

C _ N  * *  S i n g u l a r  ( a n d  b y  d e r i v a t i o n ,  P l u r a l )  
Unc_N Â«-Â» Mass 

This shows an apparent one-to-one mapping. However, 
some of the remainder of the CELEX dictionary nouns 
also map onto the Singular word class. 

Sing_N for Nouns: Singular Use 
Plu_N for Nouns: Plural Use 
GrC_N for Nouns: Group Countable 
GrUnc_N for Nouns: Group Uncountable 

The Sing_N and GrUnc_N classes both map onto the Singular- 
only HP-NL word class, and therefore these words have no 

NUMBER-LEX 

SINGULAR-ONLY 

SINGULAR 

P L U R A L  M A S S  

p a r e n t s  =  n u m b e r - l e x  
f e a t u r e s  =  a g r m a s s  

Fig. class An excerpt from the word class hierarchy for the word class 
Mass. 
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related Plural form. The GrC_N class maps onto the Singular 
word class, so these words have a related Plural form. 

If all of the many-to-one mappings had been multiple 
CELEX word classes collapsing down to one HP-NL class, 
the transduction would have been perhaps difficult to 
untangle, but possible. Instead, as we will see in the next 
section, in some cases HP-NL recognizes more word 
classes than the CELEX dictionary. This means that 
information that HP-NL needs for accurate parsing is not 
provided by the CELEX dictionary. 

Difficulties 
While using the CELEX dictionary did pay off in the 
expected ways, there were some difficulties that the user 
of electronic dictionaries should be aware of. 

Finding the correspondences between the CELEX dictio 
nary's word classes and HP-NL's word classes was surpris 
ingly complicated. Part of the problem was sketchy 
documentation: some of the word classes were underde- 
scribed, and in one case, the documentation inaccurately 
described the data, switching two columns (this error has 
since been corrected). Also, some of the linguistic distinc 
tions the CELEX dictionary recognizes are orthogonal to 
the distinctions HP-NL recognizes. Furthermore, some of 
the correspondences between the CELEX dictionary and 
HP-NL word classes involved one-to-many mappings in 
which the CELEX dictionary recognizes fewer word class 
distinctions than HP-NL requires. 

Unclear CELEX Classification. The documentation provides a 
short one-to-three-word description for each of the 
syntactic word categories. In some cases, the description 
clearly describes the syntactic behavior. For instance, the 
example above demonstrating the mapping between the 
the CELEX dictionary C_N and Unc_N classes and the 
HP-NL Singular, Plural, and Mass word classes shows a case 
in which the somewhat slim documentation was adequate 
ly informative. 

In the case of verb subcategorization, however, the 
documentation is not informative enough. The CELEX 
dictionary recognizes eight verb subcategorization classes: 
transitive, transitive plus complementation, intransitive, 
ditransitive, linking, prepositional, phrasal prepositional, 
and expressional verbs. Exactly what syntactic behavior 
is meant by each of these classes is unclear, however, 
although sample words are given in addition to a descrip 
tion for each word class. The following sample words 
occur in the CELEX documentation: 

Trans_V: Transitive 
crash: he crashed the car 
admit: he admitted that he was wrong 

not cycle: * he cycled the bike 
TransCompJ/: Transitive plus Complementation 

found: the jury found him guilty 
make: they had made him chairman 

lntrans_V: Intransitive 
alight: he got the bus and alighted at the City Hall 
leave: she left a will 

she left at ten o'clock 
not modify: * he modified 

Ditrans_V: Ditransitive 
envy, he envied his colleagues 
tell: she told hijn she would keep in touch 

Link_V: Linking Verb 
be: I am a doctor 
look: she looks worried 

Phrasal: Phrasal Verb 
Prepositional 

minister to 
consist of 

Phrasal prepositional 
walk away with 
cry out against 

Expression 
toe the line 
bell the cat 

In English, there is a group of verbs that occur with two 
arguments. Sometimes the second postverbal argument 
must be a noun phrase, sometimes it must be a to preposi 
tional phrase, and sometimes it may be either. Consider 
the following uses of give, explain, and begrudge: 

10a. The girl gave a book to her younger sister, 
b. The girl gave her younger sister a book. 

c.The girl explained the story to her sister. 
d.*The girl explained her sister the story. 

e. * The girl begrudged her new ball to her sister. 
f. The girl begrudged her sister her new ball. 

The linguistic behavior of these words is clear. However, 
the CELEX documentation does not clarify which class 
should contain the use of give in 10a and explain in lOc, 
which can accept either a noun phrase (NP) and a pp-to 
phrase as the second argument. Furthermore, it is unclear 
from the documentation whether the CELEX dictionary 
recognizes the two uses of give as being related to each 
other. 

Inspecting the CELEX data also yields no clear indication 
whether the ditransitive class includes verbs with only 
two NP arguments like begrudge, with only one NP and 
one pp-to argument like explain, or with both like give. 

Perhaps all three verb types are ditransitive, perhaps only 
those that alternate, and perhaps only those that accept 
only two noun phrase complements. Inspecting the 
classification of these three words themselves yields little 
more insight. Many words have multiple syntactic behav 
iors, so that it is difficult to tell exactly which syntactic 
behaviors which CELEX word classification is intended to 
cover. 

Following are some other examples that demonstrate the 
difficulty of ascertaining the intended meaning of the 
CELEX verb classes: 

lla. I waited all day for you! 
b. The patriots believed that their government was 

right, 

It is unclear whether wait for is a transitive verb (the 
pp-for argument being considered an adjunct), a ditransi 
tive verb (the pp-for argument being considered a second 
complement), or a transitive plus complementation verb 
(the pp-for argument being considered a miscellaneous 
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complement). Similarly, in the case of believe, it is un 
clear both from documentation and from inspecting the 
data whether the sentential argument of believe causes 
this verb to be transitive, transitive plus complementation, 
or intransitive. 

Orthogonal Classification. The CELEX dictionary recognizes 
some categories that are orthogonal to the kinds of 
categories that HP-NL recognizes and requires. For 
instance, the CELEX dictionary recognizes linking verbs, 
which "link a subject / with a complement that describes 
that subject a doctor in a sentence like / am a doctor. 

These subject complements can take the form of a noun 
phrase (She is an intelligent woman), an adjective 
phrase (She looks worried), a prepositional phrase (She 

lives in Cork}, an adverb phrase (How did she end up 

there?) or a clause (Her main intention is to move 

somewhere else)." (CELEX Users' Guide) 

The distinction between linking and nonlinking verbs is a 
semantic one. HP-NL's word class hierarchy draws mor 
phological and syntactic distinctions, but not semantic 
ones. So this information must be identified as not being 
useful (currently) and discarded. 

One-to-Many Mapping. Some of the distinctions the CELEX 
dictionary draws are useful but not extensive enough for 
HP-NL's purposes. For instance, linguistic theories distin 
guish between two types of phrasal verbs: raising and 
equi verbs. 

Raising: 
12a. The student seems to be healthy, 

b. There seems to be a healthy student. 

Equi: 
13a. The student tried to climb the tree, 

b. There tried to climb the tree the student. 

The CELEX dictionary does not draw this distinction. 
While the verbs seem and try are indeed present in the 
database, not all of their syntactic behavior is docu 
mented. To use the CELEX dictionary, some of the data 
would have to be augmented from some other source. 

One large group of words is underspecified in the CELEX 
dictionary with respect to the HP-NL natural language 
processing system: the members of the closed word 
classes, those classes of grammatical words to which new 
words are seldom added. Examples are prepositions such 
as of and to, determiners such as the and every, and 
auxiliary verbs such as be and could. These grammatical 
words carry a great deal of information about the linguis 
tic characteristics of the phrase in which they appear, and 
must therefore be specified in detail for a natural lan 
guage processing system. 

Outcome 
Despite the difficulties noted here, incorporating the 
CELEX dictionary into HP-NL turned out to be not only 
profitable for the system but also instructive. The vocabu 
lary of the HP-NL system was increased from about 700 
basic words to about 50,000 basic words. 

The addition of the words greatly increased the number 
of sentences that could be parsed. This increase, howev 
er, resulted in an overall slowing of parsing, because of 

lexical ambiguity. This both slowed word retrieval and 
increased the number of possible partial parses. 

Only words in the open classes (noun, verb, adjective) 
could be added. The HP-NL system requires a lexical 
specification that is too theory-specific for the very 
important grammatical words, as well as for some mem 
bers of the open classes. However, many members of the 
open classes could be correctly represented in the HP-NL 
format. 

The HP-NL project was terminated before user studies 
could be conducted that would have determined whether 
the CELEX dictionary provides the words a user would 
choose while using a natural language processing system. 

Computational Applications of Electronic Dictionaries 
This case study, done using a large electronic dictionary, 
suggests that electronic lexographical information can be 
incorporated successfully into nondictionary applications. 
First, we found that the CELEX data is in such a form 
that it can be transformed for and accessed successfully 
by a software application. Second, the data in the CELEX 
dictionary is useful in the domain of natural language 
processing. The areas of success and difficulty in incorpo 
rating the CELEX dictionary into the HP-NL system 
should indicate which kinds of software applications 
could successfully integrate an electronic dictionary. 

The greatest gain from the CELEX dictionary was in 
increasing HP-NL's vocabulary dramatically. Although the 
vocabulary increase also resulted in slower parsing, the 
larger vocabulary was still seen as an improvement, 
because the larger vocabulary greatly extended HP-NL's 
natural language coverage. For an application that does 
not seek to have wide vocabulary coverage, a large 
dictionary would clearly not provide the same large 
advantage. 

Another improvement to HP-NL is in the particular 
vocabulary represented. The CELEX dictionary provides 
common English words, which are the words HP-NL 
needed. An application requiring an unusual vocabulary 
(for instance, a vocabulary of technical terms) would not 
benefit from the CELEX dictionary as much as did HP-NL. 

The largest problem in using the CELEX dictionary was 
inadequate information for some word classes. Some of 
the documentation was not completely clear, and some 
words were not represented in the detail required for 
successful parsing by HP-NL. This rendered some of the 
CELEX dictionary's information useless for HP-NL. This 
did not present a great difficulty; many of the problematic 
words had already been created for HP-NL. Of course, 
not all applications of dictionary technology will be in 
such an advanced linguistic state as HP-NL. An applica 
tion of dictionary technology has the most likelihood of 
being successful, at least in the near term, if it does not 
require very fine categorization of words, particularly 
closed-class words. 

One topic that was not addressed in the current study is 
the role of word meanings in a software application. The 
CELEX dictionary contains no definition information. 
Therefore, its words have no meaning with respect to a 
particular domain such as querying a particular database. 
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Mapping the meanings of the words from the CELEX 
dictionary to a domain must still be done painstakingly by 
hand. A thesaurus could potentially provide large groups 
of synonyms for words that are defined by hand with 
respect to an application. At this point, however, the most 
successful application of electronic dictionary technology 
would avoid the problem of meaning entirely and use 
words themselves as tokens. 

In summary, the kind of software application most likely 
to benefit from electronic dictionaries would require a 
large vocabulary of common words. 

Choosing Applications 
Now that we have some idea of the characteristics of the 
software applications that might benefit from an electron 
ic dictionary and what kinds of problems might be 
encountered in incorporating the dictionary into the 
application, we can consider what particular applications 
could use electronic dictionaries. 

To review, software systems of the following types could 
benefit from the data in an electronic dictionary: 

â€¢ Any software system that uses natural language in any 
way 

â€¢ A software system that requires a large vocabulary of 
common words 

â€¢ A software system that does not require detailed linguis 
tic specification of grammatical words 

â€¢ A software system that does not make use of word defini 
tions 

â€¢ A software system that does not require complete linguis 
tic analysis of words unless it supplies its own categoriza 
tion scheme (such as HP-NL). 

Some types of software applications that match these 
characteristics are natural language processing, speech 
generation and recognition, document input, document 
management, and information retrieval. 

The electronic dictionary in turn should possess the 
following characteristics: 

â€¢ Data accessible to software application (not encrypted) 
â€¢ Good data organization (so that access is easy and flex 

ible) 
â€¢ Appropriate vocabulary (for instance, good coverage of 

the core vocabulary of English) 
â€¢ Appropriate additional information (for instance, modern 

linguistic classification for natural language processing 
systems). 

Of the dictionaries we have surveyed, few satisfy the first 
requirement. The CELEX dictionary, LDOCE, and several 
word lists have accessible data. These electronic dictio 
naries vary in the degree to which they exhibit the other 
characteristics. 

Natural Language Processing. Natural language processing 
systems are the software applications whose need for 
electronic dictionaries is most extensive and most ob 
vious. The information necessary is spelling, morphology, 
part of speech, and subcategorization, at least. A more 
extensive discussion of the role of electronic dictionaries 
in natural language processing systems was presented 
earlier in this paper. 

Speech Technology. In both speech generation and speech 
recognition, a vocabulary list and associated pronunci 
ations are essential. Depending on the sophistication of 
the speech system, other linguistic information may also 
be useful. 

If the speech generation system is to generate words 
alone, a word list with pronunciations is sufficient, but 
if it must generate full phrases or sentences spontaneous 
ly rather than from a script, a natural language generation 
system is necessary. This generation system may be based 
on linguistic theory or it may be based instead on tem 
plate forms, but in either case, an electronic dictionary- 
could provide the word classification information 
necessary. 

Speech recognition systems that recognize one-word or 
canned commands also need no more than a word list 
with pronunciations. However, if a speech recognition 
system must recognize spontaneously created phrases, a 
more sophisticated approach to recognition is necessary. 
After the word possibilities have been identified, there are 
several ways in which the speech recognizer can identify 
potential sentences: 

i By ruling out ill-formed sentences on the basis of impossi 
ble word-type combinations 

< By rating possible sentences on the basis of collocation 
information derived from a statistical survey of texts 

' By parsing with a natural language understanding system. 

Of these, the first and last possibilities would require 
word class information in addition to pronunciation 
information, which can be gained from electronic dictio 
naries currently available. The second possibility would 
require data from a statistical study, preferably performed 
on texts from the relevant domain. 

Document Input. Examples of computer applications that 
facilitate document input are optical character recognition 
(OCR), "smart" keyboards, and dictation aids. Document 
input is error-prone. One of the many ways to reduce 
errors is to allow the computer access to linguistic 
information. 

Such an application would need a word listing, a theory 
of the errors likely to be made by the system, and a 
theory of the relative frequency of appearance of well- 
formed subparts of words. A more sophisticated system 
might recognize multiple word blocks, requiring the 
linguistic module to provide either word classification 
information (for parsing-like ability) or word collocation 
information (for statistical information on word co 
occurrence). 

The HP-UX operating system provides a minimal "smart" 
keyboard facility in the csh environment, with an escape 
feature for completing known commands. This feature 
could be expanded for full English, and could include not 
only word completion, but also partial word completion. 
That is, the application could have some knowledge of 
the frequency of substrings in spellings (or its equivalent 
in speech), and with this knowledge could reduce the 
number of keystrokes necessary for input. 
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When speech recognition technology advances sufficiently, 
the opportunity for dictation aids will arise. These tools 
could perform a similar function to smart keyboards, but 
in the realm of spoken rather than typed language. 

Optical character recognition is one of the most promis 
ing areas in which electronic dictionaries could be used. 
At least one language-based assistance product for OCR is 
available commercially: OmniSpell, a spelling corrector for 
use with the OCR product OmniPage. It suggests likely 
alternate spellings for strings not recognized as words. 

Document Management. Linguistic information can also aid 
in checking and improving the quality of a document 
stored on a computer. Spelling checkers, based on com 
mon typographical errors and variation of the misspelling 
from well-formed words, as well as on phonological 
characteristics of the misspelled word, are available 
already. 

Grammar and style checkers, however, are not available 
in as great abundance or variety. There are grammar 
checkers available such as the Grammatik spelling check 
er, but they focus primarily on form statistics (average 
word length in a sentence, average syllable length of 
words) and on frozen style characteristics (use of idiom 
atic expressions and cliches, use of passive). They are 
notably not very good at identifying errors in grammar, 
such as lack of subject-verb concord with complex 
subjects, 

14. * The teacher but not the students are happy with the 
football team. 

choice of correct pronoun case in complex prepositional 
objects, 

15. * Between John and I, he works more, 

and similar subtle points in grammar, t 

Natural language parsing technology could improve the 
performance of grammar checkers, and an electronic 
dictionary would be an important part of such a natural 
language processing system. Otherwise, an electronic 
dictionary indicating part of speech and other relevant 
grammatical information such as verb conjugation class, 
noun phrase number, and pronoun case could be useful in 
heuristic inspection of sentences. 

Information Retrieval. Information retrieval capability could 
be expanded by incorporating a theory of related words 
into information retrieval systems. While this expansion 
may not be necessary for standard databases in which 
words have a formal meaning and are not really natural 
language items, it could be very useful in full-text data 
bases. There are two kinds of information that could 
expand retrieval possibilities. 

t  One these grammar checker  incorrect ly  ident i f ied both of  these sentences as being 
grammatical. 

First, a user might search on a keyword but be interested 
in retrieving all occurrences of that word in related 
morphological forms: 

16a. factory / factories 
b. goose / geese 
c. happy / happiness 

A morphological analyzer module that can recognize 
morphologically-related words, either through exhaustive 
listing or through some theory of morphological variants, 
might expand retrieval possibilities. 

Second, a user might be interested in retrieving all 
information on a particular topic, but that topic might be 
identified by several different synonyms. For instance, the 
user might want to retrieve all mentions of animal in a 
text. A thesaurus would permit the user to retrieve men 
tions of creature and beast, and perhaps also subtopics 
such as mammal, amphibian, and reptile. 

Conclusion 
Electronic dictionaries have recently reached a state of 
development which makes them appropriate for use on 
the one hand as machine-readable end-user products, and 
on the other hand as components of larger language- 
based software systems. There are several domains of 
software applications that either are already benefitting 
from electronic dictionaries or could benefit from elec 
tronic dictionaries that are available now. One project at 
Hewlett-Packard Laboratories has successfully integrated 
one electronic dictionary, the CELEX lexical database, 
into its natural language processing system. Other soft 
ware applications that could use the extensive informa 
tion available in electronic dictionaries are speech genera 
tion and recognition, document input such as optical 
character recognition and "smart" keyboards, document 
management such as spelling and grammar checking, and 
information retrieval. 

Acknowledgments 
I would like to thank the following people for related 
discussions: Brett Kessler, Dan FlictÃ³nger, Derek Proudian, 
Dale Morris, and David Keppel. I also thank Brett Kessler 
for his collaboration. 

References 
1. J. Nerbonne and D. Proudian, The HP-NL System, STL Report 
STL-88-11, Hewlett-Packard Company, 1988. 
2. J. Rela ed., The Mental Representation of Grammatical Rela 
tions, The MIT Press, 1982. 
3. C. Pollard and I. Sag, Information-Based Syntax and Semantics, 
CSLI and Notes, no. 13, Center for the Study of Language and 
Information, Stanford University, 1987. 
4. Collins COBUILD English Language Dictionary, William Collins 
Sons & Co. Ltd., 1987. 
5. C. Pollard, Generalized Phrase-Structure Grammars, Head 
Grammars, and Natural Language, PhD Thesis, Stanford Univer 
sity, 1984. 
6. D. PhD Lexical Rules in the Hiei-archical Lexicon, PhD 
Thesis, Stanford University, 1987. 

64 June 1992 Hewlett-Packard Journal 

© Copr. 1949-1998 Hewlett-Packard Co.



Bibliography 
1. K.L. Acerson. WordPerfect 5.1 Tiie Complete Reference. Osbome 
McGraw-Hill. 1990. 
2. B. Boguraev and T. Briscoe. eds.. Computational Lexicography 
for. \alural Language Processing. Longman. 1989. 
3. G. Burnage. CELEXâ€”A Guide For Users. Drukkerij SSN, 1990. 
4. J. Carroll. B. Boguraev, C. Grover. and T. Briscoe. A Development 
Enrirnnment for Large Xatural Language Grammars. Technical 
Report No. 167, Uiuversity of Cambridge Computer Laboratory. Uni 
versity of Cambridge. 1988. 
5. CELEXNeics, nos. 1-5. December 1986 to August 1990, Centre for 
Lexical Information. University of Xijmegen, The Netherlands. 
6. B. Dorr, "Conceptual Basis of the Lexicon in Machine Translation." 
Proceedings of the First International Lexical Acquisition Work 
shop of the International Joint Conference on Artificial Intelli 
gence (IJCAI), Detroit, Michigan, 1989. 
7. T>\idenBildirorterbuch. 
8. D. Flickinger and J. Nerbonne, Inheritance and Complementa 
tion: A Case Study of EASY Adjectives and Related Nouns, Associa 
tion for Computational Linguistics, 1992, to be published. 
9. D. in C. Pollard, and T. Wasow, "Structure-Sharing in Lexi 
cal Representation," Proceedings of the 25th Annual Meeting of the 
Association for Computational Linguistics, Chicago, Illinois, 1985. 
10. W.N. Francis and H. Kucera, Frequency Analysis of English 
Usage: Lexicon and Grammar, Houghton-Mifflin Company, 1982. 
11. G. Gazdar, E. Klein, G. Pullum, and I. Sag, Generalized Phrase 
Structure Grammar, Harvard University Press, 1985. 
12. C.F. Goldfarb, The SGML Handbook, Clarendon Press, Oxford, 
1990. 
13. C. Grover, T. Briscoe, J. Carroll, and B. Boguraev, The Alvey Nat 
ural Language Tools Grammar, Technical Report no. 162, University 
of Cambridge Computer Laboratory, University of Cambridge, 1989. 
14. M. lida, J. Nerbonne, D. Proudian, and D. Roberts, "Accommodat 
ing Complex Applications," Proceedings of the First International 
Lexical Acquisition Workshop of the International Joint Confer 
ence on Artificial Intelligence (IJCAI), Detroit, Michigan, 1989. 

15. K. Koskenniemi. "Two-Level Model for Morphological Analysis." 
Proceedings of the Eighth International Joint Conference on Arti 
ficial Intelligence. Karlsruhe. Germany, 1983. 
16. K. Koskenniemi. Tico-Level Morphology: A General Computa 
tional Model for Word-Fonn Recognition and Production. Publica 
tion no. 11. University of Helsinki. 1983. 
17. Longman Dictionary of Contemporary English. Longman 
Group UK Ltd.. 1989. 
18. S. Miike. K. Hasebe. H. Somers, and S. Amano. "Experiences 
with of the Translating Dialogue System." Proceedings of the 
26th Annual Meeting of the Association for Computational Lin 
guistics, Buffalo. New York. 1988. 
19. Oxford Advanced Learner's Dictionary of Current English. 
Oxford University Press, 1989. 
20. Oxford English Dictionary on Compact Disc, User's Guide. 
Oxford University Press, 1987. 
21. D. Roberts, Linking Tliematic Roles and Syntactic Arguments 
in HPSG, Unpublished Master's Thesis, Cornell University, 1991. 
22. S. Shieber, j4rc Introduction to Unification-Based Approaches 
la Grammar, Center for the Study of Language and Information, 
Stanford University, 1985. 
23. B.M. Slator, "Using Context for Sense Preference," Proceedings 
of the First International Lexical Acquisition Workshop of the 
International Joint Conference on Artificial Intelligence (IJCAI), 
Detroit, Michigan, 1989. 
24. Stedman 's Medical Dictionary, Williams & Wilkins Company, 
1938. 
25. Webster's Ninth New Collegiate Dictionary, Merriam-Webster, 
1989. 

HP-UX is based on and Â¡s compatible with UNIX System Laboratories' UNIX* operating sys 
tem. SVID2 specifications. complies with X/Open's XPG3, POSIX 1003.1 and SVID2 interface specifications. 
UNIX is a countries. trademark of UNIX System Laboratories Inc. in the U.S.A. and other countries. 
X/Open is a trademark of X/Open Company Limited in the UK and other countries. 

Authors 
June 1992 

H P - U X  K e r n e l  S u p p o r t  

K a r e n  K e r s c h e n  

Documentation usability is 
one of the professional in 
terests of learning products 
engineer Karen Kerschen. 
Karen's first project when 
she joined HP's Technical 
Workstation group in 1987 
was to edit the HP-UX 
Reference Manual. Since 

that project she has coauthored an HP-UX manual on 
system security and Â¡s now responsible for an HP-UX 
manual for system administrators that decribes how 
the HP-UX operating system works. Before joining HP, 
she worked in the University of California's EECS de 
partment as the assistant editor for the IEEE publica 
tion IEEE Electmtecnnology Review. To stay abreast of 
developments in her field, she Â¡s a member of the 
Society for Technical Communication. She has a BFA 
(1 967) from the Cooper Union for the Advancement of 
Science and Art in New York City. Karen grew up in 
New York. Her interests and hobbies include photog 
raphy, Latin American studies, creative writing, and 
Spanish translation. 

Jeffrey R. Glasson 
Software engineer Jeffrey 
Glasson was responsible for 
developing software to take 
advantage of new PA-RISC 
hardware features and spe 
cial routines to handle float 
ing-point traps. He has also 
worked on HP-UX performance 
tuning and developing low- 

level code for the HP 9000 Model 835. Jeff came to HP 
in 1984 after earning a BS in computer engineering from 
the University of San Diego that same year. He Â¡s now 
a senior software engineer at Apple Computer, Inc. He 
is married and enjoys skiing, wine tasting, and playing 
strategy games. 

1 1  K e r n e l  F u n c t i o n a l i t y  

F r a n k  P .  L e m m o n  

Product assurance engineer 
Frank Lemmon was a soft 
ware testing specialist in the 
HP-UX kernel laboratory. He 
was responsible for provid 
ing automated regression 
testing for the minimum core 
functionality kernel. He 
joined HP in 1979 at the 

former Computer Systems Division. Some of the proj 
ects he worked on include a message I/O project, 
implementation of a stitch-wire breadboard system, 
coordination of the partner test plan for the HP-UX 
install and update programs, and development of a 
quick test facility for the HP-UX system integration 
process. Frank left HP in 1 991 and now works as a 
product assurance engineer at Auspex Systems Inc in 
Santa Clara, California. He has a BS degree in engi 
neering (1973) from the University of California at Los 
Angeles and an MS in computer science (1976) from 
Santa Clara University. Before joining HP he worked 
as a hardware development engineer at Amdahl Corpo 
ration, and as a design engineer for Itek Corporation at 
the Applied Technology Division. Frank Â¡s married. He 
was the founder of the HP windsurfing club and is a 
hike leader with the Sierra Club. 

June 1992 Hewlett-Packard Journal 65 

© Copr. 1949-1998 Hewlett-Packard Co.



f 

Donald E. Bollinger 
Don Bollinger was the 
project manager responsible 
for integration of system 
software for the HP 9000 
Series 700 minimum core 
functionality release. Don 
joined HP in 1979 at the for 
mer Data Systems Division 
(DSD) after receiving a BS 

degree in electrical engineering and computer science 
that same year from the Massachusetts Institute of 
Technology. He also has an MBA from Santa Clara 
University. At DSD, Don worked as a development 
engineer on the HP 1000 RTE operating system. 
Before working on the Series 700 project, he was a 
project manager for development of HP-UX commands 
and integration of HP-UX system software. Born in 
Pasadena, California, Don is married and has three 
children. Being a concerned parent, he is very involved 
in the elementary school in his area. 

Dawn L. Yamine 

Productivity engineer Dawn 
Yamine worked as an in 
spections consultant for the 
software projects involved in 
developing the minimum 
core functionality release of 
the HP-UX kernel. Dawn 
joined HP's Manufacturing 
Productivity Division in 1984 

after receiving a master's degree in computer science 
that same year from Bradley University in Peoria, 
Illinois. She also has a BS in accounting (1 980) from 
Millikin University in Decatur, Illinois. She has worked 
as a quality engineer and as a technical trainer. She 
had the opportunity to teach structured design meth 
ods to the HP team that developed the system to 
monitor Biosphere II. Born in Decatur, Illinois, Dawn 
is married and enjoys skiing and boardsailing. 

1 5  O p t i m i z a t i o n s  i n  P A - R I S C  1 . 1  

Robert C. Hansen 

A graduate of San Jose 
State University with a BS 
degree (1986) in computer 
engineering, Bob Hansen is 
a language engineer/scien 
tist at HP's Systems Technol 
ogy Division. Since joining 
HP in 1985, he has worked 
ona path flow analyzer (a 

tool for analyzing test coverage) and a native SPL/XL 
compiler used to port Turbo Image from MPE Vto 
MPE XL. Before joining HP, he worked as a coop stu 
dent at IBM doing real-time data acquisition. Before 
working on the PA-RISC optimizer project he was do 
ing research on methods to do profile-based compil 
ing. He is a coauthor of a paper that describes using 
profile information to guide code positioning. He is 
listed as an inventor on a pending patent that describes 
a technique for profile guided code positioning. Bob 
was born in Japan at Johnson Air Force Base. His 
hobbies and interests include remodeling houses and 
outdoor activities such as fishing, hiking, camping, 
and ultimate frisbee. 

2 4  O p t i m i z i n g  P r e p r o c e s s o r  

Daniel  J .  Magenheimer 

; A project manager in HP's 
g Colorado Language Labora- 
I tory, Dan Magenheimer 

^ ^ ^  j  c o m a n a g e d  t h e  S e r i e s  7 0 0  
' - . ' - ,  i  FORTRAN opt imiz ing prepro-  

I cessor project. He was a 
I member of the team that 

defined the PA-RISC archi 
tecture when he joined HP 

Laboratories in 1 982. He has a BA degree in computer 
science (1 981 ) from the University of California at 
Santa Barbara and an MSEE (1985) from Stanford 
University. He has authored several technical articles 
and is a member of the IEEE Computer Society. His 
professional interests include computer architecture, 
performance analysis, compilers, and development 
environments. Born in Milwaukee, Wisconsin, Dan is 
married and has two children. His family keeps him 
busy but he does find time to play some basketball 
and Softball. 

Robert A. Gottlieb 

Software engineer/scientist 
Bob Gottlieb joined HP's 
Apollo Systems Division in 
1989. He has a BA in electri 
cal engineering and mathe 
matical sciences (1 975) and 
a professional master of 
electrical engineering (MEE 
1976) from Rice University. 

He was one of the engineers who worked on the opti 
mizing preprocessor for the Series 700 FORTRAN 
compiler. He has also worked on HP Concurrent 
FORTRAN for the Apollo DN 10000 system and the 
design and implementation of the induction and 
analysis phase for the FORTRAN compiler, also for 
DN10000. Before joining Apollo he worked at Aliant 
Computer Systems on parallelizing compiler develop 
ment and at Digital Equipment Corp. on a Pascal com 
piler and CAD development. He is a member of the 
ACM and his professional interests are in compiler 
optimization, particularly in areas such as parallelism 
and Â¡nterprocedural optimizations. Born in Aberdeen, 
Maryland, Bob is married likes traveling, skiing, and 
scuba diving. 

Software development 
engineer Alan Meyer joined 
HP's Colorado Language 
Laboratory in 1989. Alan has 
a BS degree in computer 
science (1981) from the Uni 
versity of Washington and a 
PhD in computer science 
(1989) from Washington 

State University. He worked on the FORTRAN compiler 
project for the 8.05 release of the HP-UX operating 
system. He is a member of the ACM and has authored 
or coauthored two articles on geometric modelling. 
Born in Pullman, Washington, Alan is married and has 
one daughter. For relaxation he likes to hike, ski, and 
garden. 

Sue A. Meloy 

A software development 
engineer at HP's Systems 

_ ^  T e c h n o l o g y  D i v i s i o n ,  S u e  
"  ' ^Jk  -  Me loy  worked  on  the  vec to r  

*  f l  " ' ; l  i b r a r y f o r  t h e  S e r i e s  7 0 0  
m ^  '  i l l  T  FORTRAN comp i l e r .  Sue  was  

J ^  a  c o o p  s t u d e n t  a t  H P  i n  1 9 7 7  
anc' Decame a permanent 
employee in 1979. Projects 

she worked on before the vector library include a C++ 
compiler code generator for the HP 9000 Series 300, 
an architecture neutral distribution format (ANDF) 
prototype, the C compiler for the Series 800, and BA 
SIC compilers for the HP 300 and HP 1000 computer 
systems. Sue has a BS degree in computer science 
(1 978) from California State University at Chico. An 
expert on C, she served as HP's representative on the 
ANSI C standards committee. Her professional inter 
ests include C, code generation, and debugging opti 
mized code. She has also published several articles 
on debugging optimized code and C. Born in Redwood 
City, California, Sue is married. Her favorite pastimes 
include reading, cooking, and learning to play the piano. 

3 3  R e g i s t e r  R e a s s o c i a t i o n  

Vatsa Santhanam 

A computer language 
engineer/scientist at HP's 
California language labora 
tory, Vatsa Santhanam works 
on the design and imple 
mentation of compiler opti 
mization techniques. He 
joined HP in 1984 at HP's 
Santa Clara Division. While 

there he worked as a test system software design 
engineer on a VLSI tester project. He has since 
worked on different optimization projects including an 
investigation of Â¡nterprocedural optimizations. He 
also worked on a project that produced HP's response 
to an Open Software Foundation's request for 
technology for an architecture neutral software dis 
tribution format (ANDF). He received a Bachelors of 
Technology degree in electrical engineering (1982) 
from the Indian Institute of Technology in Madras, 
India and an MS in computer science (1 984) from the 
University of Wisconsin at Madison. He also worked 
as a teaching assistant at the University of Wisconsin. 
He has coauthored three papers on compiler technol 
ogy and is named as a coinventor on patent applica 
tions for an interprocedural register allocation tech 
nique and an architecture neutral distribution format. 
Vatsa was born in Madras, India and grew up in Ja 
pan and Hong Kong. He is married, and when he is 
not pursuing his professional interests in compilers 
and computer architecture, he likes to play chess, 
dabble in Hindu astrology, and listen to Indian classical 
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S r i d h a r  R a m a k r i s h n a n  

A software engineer at 
HP's Systems Technology 
Division, Sridhar Ramakrish 
nan joined HP in 1988. He 
worked on the instruction 
scheduling and pipelining 
components of the optimizer 

|x project. Before the optimizer 
" project, he worked on the 

development of a programming environment for Ada 
based on SoftBench. He has a Bachelor of Technology 
degree in computer science ( 1 985) from the Indian 
Institute of Technology in Bombay, India and an MS in 
computer science (1987) from the University of New 
Hampshire. Before joining HP, he worked on an Ada 
debugger and other tools at Tartan Laboratories Â¡n 
Pittsburgh, Pennsylvania. He has published a paper 
that describes a compiler for Prolog. Sridhar's profes 
sional interests include code generation and optimiza 
tion and programming development environments. 

4 6  S h a r e d  L i b r a r y  

G a r y  A .  C o u t a n t  

a Senior software engineer 
Gary Coutant was the project 
manager for the linker proj 
ect for the HP 9000 Series 
700 and 800 systems. Gary 
joined HP's Information Net- 
works Division in 1979. Oth- 
er projects he has worked on 
include HP Word, an HP 

3000-based spooling system called Print Central, and 
HP-UX commands. Gary has a BS in physics (1977) 
from Furman University and an MS in computer science 
(1979) from the University of Arizona. He has coauthored 
one paper on an advanced tty driver for the UNIX op 
erating system and another paper on performance 
measurement. He is a member of the ACM and his 
main professional interest is computer languages. 
Born in Chicago, Illinois, Gary is married and has one 
daughter. Golf and tennis are among his recreational 
activities. 

.  f ,  

M i c h e l l e  A .  R u s c e t t a  

A software development 
engineer at HP's Systems 
Technology Division, Michelle 
Ruscetta joined HPin 1983 
after graduating from the 
University of Utah with a BS 
degree in computer science 
that same year. She was one 
of the engineers who worked 

on the linker and dynamic loader used in the shared 
library project. Projects she has worked on Â¡n the past 
include developing enhancements to HP's PA-RISC C 
compiler and developing methods of debugging opti 
mized code. The optimized code project provided the 
basis for a paper that describes an approach to 
source-level debugging of optimized code. Michelle 
was born Â¡n Schenectady, New York. Her recreational 
interests include tennis and Softball 

D i a n a  C .  R o b e r t s  

Diana Roberts received her 
BS degree in psychology 
from the Georgia Institute of 
Technology in 1982 and her 
MA degree in linguistics 
from Cornell University in 
1991. She joined HP Labora 
tories in 1985 as a member 
of the technical staff and did 

development work in the lexicon of HP-NL, the HP 
natural language understanding system. She is a 
member of the Association for Computational Linguis 
tics and has published on linguistic subjects. Besides 
her native English, she is fluent in German and has an 
active interest in the German language and German 
linguistics. She is conversant Â¡n French and has some 
facility Â¡n Italian and Spanish. From the fall of 1982 to 
the spring of 1 984 she was an exchange fellow at the 
University of Hanover, Germany. During that time she 
served as an assistant teacher of linguistics at the 
university and taught English as a foreign language at 
a local language school. In the summer of 1 991 she 
again taught English as a foreign language Â¡n Germany. 
Another of her interests is folk literature. Diana was 
born in Idaho Falls, Idaho and grew up Â¡n Atlanta, 
Georgia. Her leisure activities include camping, hiking, 
dancing, sewing, and reading. 

6 8  S p a t i a l  F r e q u e n c y  M e t h o d s  

D a l e  D .  R u s s e l l  

Now a member of the tech 
nical staff at HP's Boise 
Printer Division, chemist 
Dale Russell joined the HP 
InkJet Components Operation 
Â¡n 1987. She has worked on 
ink formulations, waterfast- 
ness improvement for InkJet 
inks, color science, and the 

development of machine vision print quality evalua 
tion methods, and is now doing R&D on electrographic 
toners. Two patents on waterfastness improvement, 
five pending patents on dye chemistry and analytical 
methods, and ten professional papers have resulted 
from her work. Her undergraduate degree is a BA Â¡n 
English from the University of California at Davis 
(1967), and she holds MS and PhD degrees Â¡n chemis 
try (1 979 and 1 985) from the University of Arizona. 
She served as a research chemist with the Environ 
mental Trace Substance Research Program from 1979 
to 1 980 and as an assistant professor of chemistry at 
Northern Arizona University from 1984 to 1987, and is 
currently an adjunct professor of chemistry at Boise 
State University. She is a member of the Society for 
Imaging Science and Technology, the American 
Chemical Society, and the International Society for 
Optical Engineering. Born Â¡n San Diego, California, 
she is married and has two children. Her interests 
include mountaineering, snow, rock, and ice climbing, 
marathons and triathlons, and skiing. She's a certified 
scuba diver and paraglider pilot and a graduate of the 
National Outdoor Leadership School. She is active in 
her church, serves as a women's shelter volunteer, 
and teaches rock climbing, rappeling, and wilderness 
survival for the Boy Scouts of America. 

S u s a n  S .  S p a c h  

Susan Spach has been a 
member of the technical 
staff of Hewlett-Packard 
Laboratories in Palo Alto, 
California since 1985. She 
has done simulations of 
graphics algorithms to be 
designed Â¡n hardware and 
has worked on 3D graphics 

architectures and algorithms, concentrating on accel 
erating realistic rendering algorithms. A native of 
Durham, North Carolina, she attended the University 
of North Carolina at Chapel Hill, receiving her BA de 
gree in mathematics in 1979 and her MS degree Â¡n 
computer science Â¡n 1 981 . Before coming to HP Labs, 
she was a software engineer at the same university, 
working on database applications and 3D graphics 
research. She is a member of the ACM and the IEEE 
Computer Society, and has coauthored several papers 
on 3D graphics algorithms, geometric modeling, ren 
dering, and graphics architecture. She is married and 
has a daughter. An avid runner, she was an organizer 
of the HP National Running Club and serves as its 
treasurer. 

R o n a l d  W . P u l l e y b l a n k  

A member of the technical 
staff of Hewlett-Packard 
Laboratories Â¡n Palo Alto, 
California, Ron Pulleyblank 
has been doing research on 
3D computer graphics archi- 

â€¢^lÂ· t lectures and algorithms, 
^ ^ L  r ^ ^ ^ ^ ^ *  c o n c e n t r a t i n g  o n  a c c e l e r a t -  

"  ^ ^ ^  i n g  r e a l i s t i c  r e n d e r i n g  a l g o  
rithms. A native of Detroit, he received BS degrees Â¡n 
electrical engineering and physics from the University 
of Michigan Â¡n 1964 and 1965, and a PhD degree Â¡n 
electrical engineering from the University of Pennsyl 
vania in 1 969. He taughl electrical engineering at the 
University of Lagos, Nigeria and the University of the 
Pacific and worked on digital communications at Bell 
Telephone Laboratories before joining HP in 1980. At 
HP's Delcon Division, he worked on measurement 
techniques for transmission impairment measuring 
sets and on nonintrusive measurements for data 
transmission over telephone lines. With HP Labs 
since 1 981 , he has has worked on techniques for inte 
grating voice and data on LANs and on hardware and 
algorithm design for 3D graphics. A member of the 
IEEE, he has published papers on integrating voice 
and data in broadband cable systems, optimal digital 
communications, and the design of a VLSI chip for 
rendering bicubic patches. Ron suffers from ALS, is 
quadriplegic, and requires a ventilator to breathe. He 
is married, has two daughters, and serves on the dis 
ability awareness task force of the City of Palo Alto. 
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Application of Spatial Frequency 
Methods to Evaluation of Printed 
Images 
Contrast transfer function methods, applied in pairwise comparisons, 
differentiated between print algorithms, dot sizes, stroke widths, 
resolutions (dpi), smoothing algorithms, and toners. Machine judgments 
based a these methods agreed with the print quality judgments of a 
panel of trained human observers. 

by Dale D. Russell 

Certain aspects of printed images lend themselves to 
analysis by spatial frequency methods. The ultimate goal 
of this type of analysis is to derive a single figure of 
merit from a test pattern that is sensitive to the overall 
performance of the printer system.1 The printer system 
includes the firmware, hardware, and software, as well 
as the print engine with its associated colorant/paper 
interaction. 

The value of the modulation transfer function (MTF) in 
defining optical systems has been demonstrated for 
decades. As early as 1966, photographic resolving power 
was shown to be an inadequate measure of system 
performance and the MTF has been increasingly used.2 
Similarly, the resolution of a printer in terms of dots per 
inch (dpi) is not adequate to describe the performance 
and fidelity of the printer through the whole range of 
spatial frequencies that must be rendered. A consideration 
of resolution alone fails to take into account either the 
lower-frequency fidelity or the limiting effect of the 
human eye.1 

The MTF generates a curve indicating the degree to 
which image contrast is reduced as spatial frequency is 
increased. Unlike resolution, MTF gives a system re 
sponse with values from zero to a finite number of cycles 
per millimeter, thus filling in information about the low 
and middle ranges of the spatial frequency spectrum. 

Strictly speaking, continuous methods such as the MTF 
and the contrast transfer function (CTF) do not apply to 
discrete systems such as a digital printer, and applications 
of these functions to discrete systems typically meet with 
mixed success. The MTF and CTF assume a system that 
is linear and space and time invariant. Any system with 
fixed sampling locations (such as a 300-dpi grid) is not 
space invariant, and sampling theory must be judiciously 
applied to characterize it. Printers not only digitize data, 
but most printers binarize it as well, making interpola 
tions of values impossible. This introduces what is 
essentially a large noise component and gives rise to 
moire patterns on periodic data. 

On the other hand, spatial frequency methods offer a 
great advantage in that the transfer functions for individu 
al components of a system can be cascaded (i.e., multi 
plied together) to yield the transfer function of the 
system (with some exceptions). Provided that a system is 
close to linear, as it must be if the printed image is to 
look anything like the intended image, then multiplying 
component MTFs point by point adequately predicts a 
complete system MTF.1 If MTF methods can be adapted 
to discrete systems, then the overall transfer function will 
exhibit a sensitivity to changes in the transfer functions 
of all system components. This sensitivity can be ex 
ploited, for example, to diagnose problems or to evaluate 
new printer designs. 

The modulation transfer function is the modulus of the 
system optical transfer function, which is the Fourier 
transform of the system point-spread function.3 While the 
MTF of a component or system is easier to calculate, 
experimental work is generally based on measurement of 
the CTF. This function is then compared to the theoretical 
performance of a system to yield a single figure of merit 
for that system. A printer commanded to print a 50% fill 
pattern consisting of lines will reach a limit of spatial 
frequency at which it must overprint the designated area. 
This results in increasing average optical density with 
increasing spatial frequency, as observed in the test 
patterns. The CTF is based on contrast, or the difference 
in reflectance of the printed and unprinted portions of the 
test pattern. As the white space is increasingly en 
croached upon by the printed area, or increasingly filled 
with spray and scatter, the contrast is degraded. This 
results in a loss of print fidelity and a concomitant 
decrease in the value of the CTF at that frequency. In the 
limit, contrast and CTF drop to zero. 

In addition to printer limitations, the human eye, with 
discrete receptors, has a spatial frequency limit of sensi 
tivity. This cutoff point sets a practical limit on the need 
for improved contrast in a printed image. Furthermore, 
the contrast sensitivity curve for the human eye, when 
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considered as part of the total system, can be convolved 
with the CTF curve for the printer to assess the relative 
importance of improvements in contrast as perceived by 
the human observer. 

Integrating under the CTF curve through the pertinent 
frequency range gives a single value of the function for 
that system. This figure can be compared with a standard 
that represents the theoretical performance to obtain a 
figure of merit for the system. When the CTF-derived 
figure of merit correlates with one or more parameters as 
evaluated by the human observer, then the additional 
advantage of being able to predict human response with a 
machine-graded test is realized. 

Fourier transform methods are closely related to the MTF 
and are also applicable to print quality evaluation. Where 
as the CTF experiment shows printer performance using 
a particular test pattern, the Fourier transform can in 
principle be applied to any printed image. The Fourier 
transform in this case takes intensity-versus-position data 
and transforms it to the spatial frequency domain. When 
a Fourier transform for an image is compared to the 
Fourier transform for a "standard" image, the dropout 
areas reveal which frequencies are not transferred by that 
printer. This can be used to determine limits of printer 
performance and to identify sources of change in printer 
performance. 

A number of advantages are associated with the use of 
the Fourier transform for image quality analysis. First, the 
freedom to select virtually any character or image means 
that exactly the same image can be presented to both the 
human and machine observers. Greater control over the 
experimental variables is possible, since the very same 
page is evaluated, rather than a test target for the ma 
chine vision system and a page of text or graphics for the 
human. Printing two different patterns on two separate 
pages at two different times necessarily introduces 
uncontrolled and even unknown variables that may 
influence print quality measurements. Use of the Fourier 
transform for this analysis can eliminate at least some of 
these variables. 

With fast Fourier transform algorithms available today, the 
time to transform an entire frame of image data is only a 
minute or so. This makes the time required for analysis 
by this method considerably less than that for a complete 
workup of the spatial frequency sweep test target. Given 
the freedom to select any image for the Fourier trans 
form, attention can be focused on the most egregious 
visible defects in printer performance. This should further 
reduce the time required for analysis and ultimately for 
printer system improvements. 

This paper discusses the development and application of 
various test patterns to black-and-white print quality 
evaluation with extension to color print quality evaluation. 
A trained panel of judges evaluated merged text and 
graphics samples, and their responses are compared with 
the results of the CTF method. In addition, some exam 
ples of the Fourier transform evaluation of printed images 
are given, and are compared to the information from the 
CTF method. 

Experimental Methods 
Three different test patterns were used to derive contrast 
transfer function data for the printer systems being 
evaluated. The simplest pattern consists of printed Unes 
paired with imprinted spaces of equal width, in a se 
quence of increasing spatial frequency. The advantage of 
this is is its simplicity. The principal disadvantage is 
that it provides information on the printer system only in 
one axis. Evaluation of the contrast is done using image 
processing software to generate a line profile normal to 
the printed lines. Contrast is determined as indicated 
below. 

The second pattern consists of 50% hatched fill patterns 
at five selected spatial frequencies (0.85 to 2.0 cycles/mm) 
chosen to lie within the range of human sensitivity (0 to 
~4.7 cycles/degree at a viewing distance of 12 in) and to 
contain the majority of the spatial frequency information 
for text. Each is presented at seven different angles from 
the horizontal axis to the vertical axis of the page. This 
pattern was analyzed by measuring the average optical 
density and comparing it with the computed theoretical 
optical density of a 50% pattern, given the paper and 
colorant used. Patterns of this type are commercially 
available in print quality analysis packages. 

The most complex pattern evaluated consists of concen 
tric rings increasing in spatial frequency from the center 
out. This pattern includes all print angles relative to the 
page, but is sensitive to the algorithm used to generate 
the circle. It provides striking evidence of the impact of 
the software on the final rendering of a printed sample. 
In terms of CTF, it reveals the very large contribution of 
the software to the overall transfer function. 

For uniformly sampled spaces, as in a scanner or printer, 
a circular spatial frequency test pattern gives a visual 
representation of the system response at all print angles. 
One effect of the continuously varied spatial frequency 
mapped onto a fixed grid is the appearance of moire 
patterns, which indicate beat frequencies between the 
grid and the desired print frequency.4 The moire patterns 
are observed along the pattern axes at frequencies 
corresponding to division of the printer's capability in 
dots-per-inch by integer and half-integer numbers. While 
normally used to test the physical reproduction capability 
of a grid and spot point function, the circular spatial 
frequency test pattern also proves useful for evaluating 
the rendering print quality of graphics algorithms. 

The concentric circle test pattern is shown in Fig. 1, 
which is a 2400-dpi Linotronic imagesetter output de 
scribed under the heading "Effect of Print Algorithm" 
below. The white dots on the horizontal axis are frequen 
cy markers with a spacing of 0.5 cycles/mm. There are 
similar markings in the vertical axis with a spacing of 10 
cycles/inch. The viewing distance determines the spatial 
frequency on the human retina in cycles/degree, which is 
the appropriate unit for dealing with human contrast 
sensitivity. To convert from cycles/degree to cycles/mm, 
the following relationship is used: 
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Fig. image Concentric circle test pattern. 2400-dpi Linotronic image 
setter output. 

v = 57.3 Â£ 

where v is the spatial frequency in cycles/mm, ju is the 
spatial frequency in cycles/degree, and H is the viewing 
distance in mm.5 

Five different black-and-white electrographic printers, 
with firmware and toner variations of each, were eva 
luated. Two color printers, electrographic and thermal 
transfer, were also compared. 

The color and black patterns were analyzed using a CCD 
(charge-coupled device) color video camera vision system 
and commercially available control software. Digital image 
processing was performed with commercially available 
and in-house software. Care was taken to control such 
experimental variables as the distance from the camera to 
the paper, the output power of the lamp, the angles of 
viewing and illumination, and the magnification of the 
image. Measurements were made in a thermostatically 
controlled room so that detector noise and dark current 
would be minimal and relatively constant. Every effort 
was made to eliminate stray light. 

Optical densities of the printed lines and unprinted spaces 
were determined along with the spatial frequencies. This 
was done by evaluating a line profile taken normal to the 
printed line. A contrast function, C, was computed for 
each line-space pair according to the formula:6 

C = 
I m a x  I  

"*" ̂  

where Imax and ImÂ¡n are the reflected light intensities of 
the space and line, respectively, as measured by the video 
camera for the line profile data. These values had a range 
of 0 (no measurable reflected light) to 255 (maximum 
measurable light intensity). 

Color patterns were illuminated under filtered light to 
increase the contrast while keeping reflected intensities 
within the range of 0 to 255 as measured by the video 
camera. Therefore, all values reported for the colored 
samples are relative and not absolute. Data is reported 
here for only one of the three color channels. A complete 
analysis would include all three channels. However, we 
found no case in this study where the inclusion of the 
other two channels altered a result. This data is normal 
ized and presented as percent modulation on the plots. 

By generating rays starting at the center of the test 
target, line profiles can be taken through as many print 
angles as desired, for complete analysis of the test 
pattern. In this work, 10 rays were taken from the center 
to the edge of the target, in the fourth quadrant, at 
10-degree increments starting with the vertical axis and 
ending with the horizontal axis. The CTF data for all ten 
rays was computed at the desired frequencies and aver 
aged to obtain the percent modulation as a function of 
spatial frequency for the sample. The data reported here 
was all obtained by this method and represents an 
average of the CTFs at the ten print angles. 

Using in-house software, text and "standard" images were 
transformed into the spatial frequency domain. The 
standard images were printed on a 2400-dpi imagesetter 
using scaled bit maps otherwise identical to the test 
image. Differences between the sample and the standard 
Fourier transforms were computed and the dropout 
frequencies noted. These correspond to mathematical 
notch filters applied to the standard at certain frequencies. 

The test image can then be reconstructed by adding the 
dropout frequencies one at a time to identify which 
frequencies are responsible for which print defects. The 
defect frequencies can sometimes be attributed to printer 
functions, such as gear noise or mechanical vibration 
frequencies. In this case, a new engine design or materi 
als set will be required to correct the printed image. 

Dropout frequencies associated with the sampling fre 
quency of the print grid (i.e., dpi), cannot be corrected 
without changing the resolution, and thus represent a 
fundamental limitation. These frequencies can be filled in 
by various resolution enhancement techniques, or the 
resolution of the printer must be increased. One applica 
tion of the Fourier transform method is the immediate 
evaluation of various resolution enhancement techniques. 

Human response to print quality was determined by a 
committee of 14 trained observers. The committee was 
shown samples consisting of merged text and graphics for 
which they graded solid fill homogeneity, contrast, edge 
roughness, edge sharpness, line resolution, and character 
density. The committee also gave overall subjective 
impressions of each sample at the page level, and ranked 
the samples by making paired comparisons. 

Results 
Effect of Print Algorithm. A number of different algorithms 
were examined for preparing the concentric circle test 
target. Bresenham's algorithm generates the pattern very 
quickly, but snaps all radii to the nearest integer value. 
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Fig. 2. Test target output from a 300-dpi eleetrographic printer 
(printer P) with a good match between dot size and resolution. 

Several PostScript interpreters were evaluated; some have 
floating-point accuracy, others gave unusual renderings. 
There were considerable differences among them. The 
test target can also be calculated in polar fashion by 
incrementing an angle from 0 to 360 degrees and using 
the sine and cosine of the angle to calculate points to 
render directly to a bit map. This makes it possible to 
use the target for print engine and dpi tests. 

The method chosen for the rest of this investigation 
generates a bit map by using a square root function to 
generate the circles: 

Y = INT(v/Radius2 - X2) 

for integer values of X. This is computed in one octant of 
the circle and reflected to the others. Fig. 1 is a 2400-dpi 
Linotronic output of the test pattern. Differences in print 
quality arising from the print algorithm alone could have 
boon evaluated using the CTF method outlined in this 
paper. The choice of an algorithm for printing the concen 
tric circle pattern was based on subjective and qualitative 
visual ranking of the geometric integrity of test patterns 
generated as described here. 

Effect of DPI, Dot Size, and Edge Smoothing. Increasing the 
dpi of a printer results in improved CTF through a wider 
range of spatial frequencies, provided dot size is reduced 
accordingly. If dot size is held constant, only low-frequency 
response is improved. Fig. 2 is from a 300-dpi electro- 
graphic printer (coded printer P) that has a reasonable 
match between dot size and resolution. Features are 
visually distinguished out to the Nyquist frequent" 150 
cycles/mm. 

A second 300-dpi printer, coded printer R, has a larger 
dot size than printer P. Comparison of Fig. 3 with Fig. 2 
shows loss of contrast at, higher spatial frequencies. It has 

Fig. 3. Test target output from a 300-dpi eleetrographic printer 
with a larger dot size (printer R). 

been calculated that a severe degradation of the MTF 
results from even a 5% increase in dot size.5 

Fig. 4 is from printer R with an edge smoothing algorithm 
applied, and shows improvement at low and middle 
frequencies. At high frequencies, however, there is actual 
ly loss of contrast as the white space between lines is 
increasingly encroached upon by the thicker, smoothed 
lines. The main advantage of this particular edge smooth 
ing technique lies in the low to middle frequency regions 
where most text information is located. When the print 

Fig. 4. Test target from printer R with an edge smoothing algo- 
rilhni applied. 
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Fig. with Enlargement of 300-dpi text (4-point) from printer R with 
out edge smoothing. 

quality jury evaluated text only, they unanimously pre 
ferred the edge smoothing algorithm. However, when fine 
lines, 50% fill, and other graphics patterns were included 
in the samples, the overall preference was in favor of the 
unsmoothed samples. Figs. 5 and 6 are enlargements 
of text samples shown to the jury of smoothed and 
unsmoothed print. 

Figs. 7 and 8 are from 400-dpi and 600-dpi printers, 
respectively. The moire centers are observed to occur at 
locations on the vertical and horizontal axes correspond 
ing to the dpi value in dots per inch divided by integers 
and half-integers. As resolution in dpi is improved, the 
moire patterns have fewer discernible rings and appear at 
higher frequencies. Print fidelity is therefore better 
through a broader range of spatial frequencies. Fig. 9 is a 
plot of the normalized contrast, as percent modulation, 
for three printers with 300-dpi, 600-dpi, and 1200-dpi 
resolution. In general, the moire patterns are evidence of 

Fig. 7. Test target output from a 400-dpi electrographic printer. 

print defects, and measures taken to reduce their visibili 
ty in the test target will result in improved fidelity for 
both text and graphics.4 

Effect of Toner. Toner particle size can have a measurable 
impact on print quality,7 and the CTF method can be 
used to evaluate this effect. Two special toners were 
compared with a standard commercially available toner. 
The special toners were characterized by having smaller 
average particle size and a narrower particle size distribu 
tion. A comparison of Figs. 10 and 2 shows the impact of 
this on the concentric circle test pattern. The special 

Fig. with Enlargement of 300-dpi text (4-point) from printer R with 
an edge smoothing algorithm applied. Fig. 8. Test target ouput from a 600-dpi electrographic printer. 
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Fig. for Percent modulation as a function of spatial frequency for 
300-dpi, 600-dpi, and 1200-dpi printers. 

toners give smoother line edges, less scatter, and conse 
quently better contrast. The CTF plots in Fig. 11 illustrate 
the impact of this over the spatial frequency range. The 
curve for the special toner remains high through the 
human sensitivity range. The print quality jury invariably 
preferred the special toners to the standard toner. 

Color Samples. Color print samples of the concentric circle 
pattern were generated by 300-dpi, 400-dpi, and 2400-dpi 
color printers. Data shown here is for green print sam 
ples. The choice of a secondary color introduces the 
added parameter of color-to-color registration, which can 
be separately evaluated by the method. The difference in 
resolution and the wider stroke width of the 300-dpi 
printer combined to make the 400-dpi printer clearly 
superior. Text and graphics samples judged by the print 
quality jury followed the same order of preference. When 
the 300-dpi printer had its stroke width modified by 
deleting one pixel width every line, it became the better 
of the two printers, according to the CTF data. This is 
illustrated in Fig. 12. Human evaluation gave the same 
result. 

CTF Analysis Compared to Human Perception. Five black-and- 
white printers and two color printers were evaluated by 
CTF analysis and print quality jury evaluation. Two CTF 
methods were compared to human perception. The first 
was the quick method covering five frequencies and seven 
print angles, which measured average optical density to 
approximate the contrast function. This narrow-range 
method has the advantages of simplicity and speed, and 
is adequate for many applications. In addition, it has good 
correlation with the print quality jury findings, approxi 
mately 83% for pairwise comparisons. This data is pre 
sented in Table I. 

Table I 
Preferred Graphics Samples 

Results of Human vs Machine-Graded Tests 

Sam 
ple 

Parameter 
Tested 

P r i n t e r  P r i n t  Q u i c k  C o n -  
Q u a l i t y  C T F  c e n t r i c  
Jury Circle 

Target 

"Sample set" refers to the code numbers of the print 
conditions being compared. The numbers under the 
method headings are the preferred sample in each set. In 
the case of the two CTF methods, the area under the 
CTF curve is the figure of merit used to predict to 
preferred sample. 

The print quality jury consisted of 14 trained observers. 
The quick CTF test used only 5 spatial frequencies from 
0.85 to 2.0 cycles per mm, and only 7 angles of print axis. 
The concentric circle target used frequencies from 0 to 
6.5 cycles per mm, and 1 1 angles of print axis. Graphics 
only are considered in this test set. For the machine- 
graded tests, the integral under the CTF curves was used 
as a figure of merit to determine which sample was 
better. The preferred sample in each two-sample set is 
listed by number in Table I. 

Fig. the Test target output from ;i MOO-dpi printer, showing the 
effect of a special toner. 
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Spatial  Frequency (cycles/mm) 

O  S a m p l e s  A  S a m p l e  4  

Fig. fre Plot of percent modulation as a function of spatial fre 
quency for printer P. Sample 3 was printed with a special toner and 
sample 4 was printed with standard toner. 

The concentric circle target method is much more time 
and labor intensive, but has 100% correlation with the 
print quality jury for this data set. Since it covers a 
broader frequency range and more print angles, it does 
distinguish print fidelity more completely. Paired compari 
son of samples 8 and 1 (Fig. 13) illustrates this advan 
tage. The quick CTF method predicts that sample 8 is 
better than sample 1. In the same frequency range, the 
concentric circle method shows slightly better contrast 
for sample 1. However, at higher frequencies, the concen 
tric circle pattern reveals significantly better performance 
for sample 1. The print quality jury preferred sample 1. 
The frequencies through which sample 1 outperforms 
sample 8 are within human perception, and apparently 
correlate with factors that influenced the committee. 

Spatial  Frequency (cycles/mm) 

O  S a m p l e s  A  S a m p l e  1  

Fig. fre Plot of percent modulation as a function of spatial fre 
quency for paired comparison of samples 8 and 1 . Sample 8 is from 
printer Q with the edge smoothing algorithm turned off and stan 
dard toner. Sample 1 is the same except that special toner was 
used. 

A comparison test of sample 1 against sample 2 also 
shows this effect (Fig. 14). Based on the magnitude of 
the integral under the CTF curves, the quick method 
shows a very slight difference between the samples with 
1 better than 2. The concentric circle method, in the 
same range, also gives sample 1 a very slight edge, but in 
the higher-frequency region, sample 1 distinctly outper 
forms sample 2. The print quality jury overwhelmingly 
preferred sample 1. Apparently, this frequency region is 
important to human print quality evaluation and should be 
included in machine-graded tests if the increased likeli 
hood of correlation with human perception justifies the 
increased time for the test. 

Spatial  Frequency (cycles/mm) 

O  E  A  Q  G  Q  A d j u s t e d  L i n e w i d t h  

Fig. fre Plot of percent modulation as a function of spatial fre 
quency data three color (green) test plots. The test pattern for data 
curve pattern was printed with a 400-dpi color printer. The test pattern 
for data curve "Q" was printed with a 300-dpi color printer. Curve 
"Q adj. linewidth" is for the 300 dpi-printer with a narrower line- 
width. 

Spatial  Frequency (cycles/mm) 

O  S a m p l e  1  A  S a m p l e  2  

Fig. fre Plot of percent modulation as a function of spatial fre 
quency for paired comparison of samples 1 and 2. Sample 1 is from 
printer Q with special toner and resolution enhancement technique 
off. Sample 2 is the same except that an edge smoothing algorithm 
is applied. 
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IS IS IS 
2400 dpi Image 300 dpi Image Reconstructed Image 

Fig. sample, Enlarged 12-point text showing a 2400-dpi original sample, a 300-dpi original, and the same 2400-dpi sample after being Fourier 
transformed, filtered, and reconstructed. 

Fourier Transform Results. In Fig. 15, three images are 
compared. The first is a 2400-dpi image, which has been 
chosen to represent an "ideal" image. The second is 
300-dpi output of the same bit map which has been 
scaled to accommodate the change in addressability. The 
third is the same 2400-dpi image which has been trans 
formed, filtered, and reconstructed to resemble the 
300-dpi image. The filter notched the Fourier transform to 
approximate the frequency limitations of the 300-dpi 
printer. Mathematical addition of some of the spatial 
frequency components back into the notched Fourier 
transform, with subsequent inverse transformation, shows 
which frequencies are responsible for which print defects. 
When the source of the frequency dropout is identified, it 
can either be corrected or accepted as a fundamental 
limitation on printer performance. The transforms of the 
two images may also be subtracted from each other, with 
the difference corresponding directly to spatial frequency 
limitations of the 300-dpi printer. 

Conclusions 
CTF methods, applied here in pairwise comparisons, 
differentiated between algorithms, dot sizes, stroke 
widths, dpi, edge smoothing, and toners. In addition, the 
method shows whether system changes will be expected 
to improve text, graphics, neither, or both, based on the 
spatial region in which the CTF response is altered. 

The Fourier transform method is useful for identifying 
spatial frequencies that affect various image characteris 
tics. It also demonstrates usefulness for predicting where 

the fundamental limitations of the printer have been 
reached. This will have an impact on engine design. 

In all comparisons of printed samples, the results corre 
sponded to the overall subjective preferences of a trained 
print quality panel. From this it is concluded that this 
method shows promise as an automated print quality 
analysis technique, with application to both black and 
white and color printers. 
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Parallel Raytraced Image Generation 
Simulations of an experimental parallel processor architecture have 
demonstrated that four processors can provide a threefold improvement in 
raytraced image rendering speed compared to sequential rendering. 

by Susan S. Spach and Ronald W. Pulleyblank 

Computer graphics rendering is the synthesis of an image 
from a mathematical model of an object contained in a 
computer. This synthesized image is a two-dimensional 
rendering of the three-dimensional object. It is created by 
calculating and displaying the color of every controllable 
point on the graphics display screen. A typical display 
contains a grid of 1280 by 1024 of these controllable 
points, which are called pixels (picture elements). The 
memory used to store pixel colors is called the frame 
buffer. Specialized hardware accelerators available on 
today's workstations, such as HP's Turbo SRX and Turbo 
VRX products,1 can render models composed of polygons 
in real time. This makes it possible for the user to alter 
the model and see the results immediately. Real-time 
animation of computer models is also possible. 

The most time-consuming operation in rendering is the 
computation of the light arriving at the visible surface 
points of the object that correspond to the pixels on the 
screen. Real-time graphics accelerators do this by trans 
forming polygonalized objects in the model to a desired 
position and view, calculating an illumination value at the 
polygon vertices, projecting the objects onto a 2D plane 
representing the display screen, and interpolating the 
vertex colors to all the pixels within the resulting 2D 
polygons. This amounts to approximating the true surface 
illumination with a simplified direct lighting model. 

Direct lighting models only take into account the light 
sources that directly illuminate a surface point, while 
global illumination models attempt to account for the 
interchange of light between all surfaces in the scene. 
Global illumination models result in more accurate images 
than direct lighting models. Images produced with global 
lighting models are often called photorealistic. 

Fig. 1 shows the contrast between hardware shading and 
photorealistic renderings. Fig. la was computed using a 
local illumination model while Figs. Ib, le, and Id were 
computed using global illumination algorithms. 

The disadvantage of photorealistic renderings is that they 
are computationally intensive tasks requiring minutes for 
simple models and hours for complex models. 

Raytracing is one photorealistic rendering technique that 
generates images containing shadows, reflections, and 
transparencies. Raytracing is used in many graphics 
applications including computer-aided design, scientific 

visualization, and computer animation. It is also used as a 
tool for solving problems in geometric algorithms such as 
evaluation of constructive solid geometry models and 
geometric form factors for radiative energy transfer. 

The goal of our research is to develop parallel raytracing 
techniques that render large data models in the fastest 
possible times. Our parallel raytracing techniques are 
being implemented to run on the Image Compute Engine 
(ICE) architecture. ICE, under development in our project 
group at HP Laboratories, is a multiprocessor system 
intended to accelerate a variety of graphics and image 
processing applications. ICE consists of clusters of 
floating-point processing elements, each cluster containing 
four processors with local and shared memory. The 
clusters are networked using message passing links and 
the system topology is configured using a crossbar 
switch. A prototype system of eight clusters is under 
construction. Data distribution, load balancing, and 
algorithms possessing a good balance between computa 
tion and message passing are research topics in our 
parallel implementation. 

Raytracing Overview 
Generation of synthetic images using the raytracing 
technique was introduced by Appel2 and MAGI3 in 1968 
and then extended by Whitted in 1980.4 Raytracing is a 
method for computing global illumination models. It 
determines surface visibilities, computes shading for 
direct illumination, and computes an approximation to the 
global illumination problem by calculating reflections, 
refractions, and shadows. The algorithm traces simulated 
light rays throughout a scene of objects. The set of rays 
reaching the view position is used to calculate the illu 
mination values for the screen pixels. These rays are 
traced backwards from the center of projection through 
the viewing plane into the environment. This approach 
makes it unnecessary to compute all the rays (an infinite 
number) in the scene. Only a finite number of rays 
needed for viewing are computed. 

An observer view position (the center of projection or 
"eye" position) and a view plane are specified by the user 
(Fig. 2). The raytracer begins by dividing a window on 
the view plane into a rectangular grid of points that 
correspond to pixels on the screen and then proceeds to 
determine the visibility of surfaces. For each pixel, an eye 
ray is traced from the center of projection through the 
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Fig. (c) Photorealistic illumination scene computed using a local illumination model, (b) (c) (d) Photorealistic renderings computed using global illumination 
algorithms. 

pixel out into the scene environment. The closest ray/ob 
ject intersection is the visible point to be displayed at 
that pixel. For each visible light source in the scene, the 
direct illumination is computed at the point of intersec 
tion using surface physics equations. The resulting illu 
mination value contributes to the value of the color of 
the pixel. These rays are referred to as primary rays. 

Center of Projection 

Fig. 2. The raytracing technique traces rays of light from the 
viewer's eye (center of projection) to objects in the scene. 

The raytracing algorithm proceeds to calculate whether or 
not a point is in shadow. A point is not in shadow if the 
point is visible from the light source. This is determined 
by sending a ray from the point of intersection to the 
light source. If the ray intersects an opaque object on the 
way, the point is in shadow and the contribution of the 
shadow ray's light source to the surface illumination is 
not computed. However, if no objects intersect the ray, 
the point is visible to the light source and the light 
contribution is computed. Fig. 3a illustrates shadow 
processing. The point on the sphere surface receives light 
from light source A, but not from light source B. 

A ray leaving the surface toward the view position has 
three components: diffuse reflection, specular reflection, 
and a transmitted component. Specular and transmitted 
rays are determined by the direction of the incoming ray 
and the laws of reflection and refraction. The light 
emitted by these rays is computed in the same manner as 
the primary ray and contributes to the pixel correspond 
ing to the primary ray. Figs. 3b and 3c show the reflec 
tion and transmitted rays of several objects in a scene. 
Diffuse reflection (the scattering of light equally in all 
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Fig. 3. Types of rays, (a) Shadow, (b) Reflection, (c) Refraction. 

directions) is approximated by a constant value. Accurate 
computation of the diffuse component requires the solving 
of energy balance equations as is done in the radiosity 
rendering algorithm.5'6'7 Diffuse interreflections can also 
be approximated using raytracing techniques8-9 but this 
requires excessive computation. 

The raytracing algorithm is applied recursively at each 
intersection point to generate new shadow, reflection, and 
refraction rays. Fig. 4 shows the light rays for an environ 
ment. The rays form a ray tree as shown in Fig. 5. The 
nodes represent illumination values and the branches 
include all secondary rays generated from the primary 
ray. Conceptually, the tree is evaluated in bottom-up order 
with the parent's node value being a function of its 
children's illumination. The weighted sum of all the node 
colors defines the color of a pixel. A user-defined maxi 
mum tree depth is commonly used to limit the size of the 
tree. It is evident from Figs. 4 and 5 that shadow rays 
dominate the total ray distribution. 

The basic operations in raytracing consist of generating 
rays and intersecting the rays with objects in the scene. 
An advantage of raytracing is that it is easy to incorpo 
rate many different types of primitives such as polygons, 
spheres, cylinders, and more complex shapes such as 

04 

Fig. 4. Light sources, objects, and rays for an environment. 

parametric surfaces and fractal surfaces. The only require 
ment to be able to use an object type is that there be a 
procedure for intersecting the object with a ray. One of 
the main challenges in raytracing is making the ray 
intersection operation efficient. Algorithmic techniques 
have been developed that include faster ray-object inter 
sections, data structures to limit the number of ray-object 
intersections, sampling techniques to generate fewer rays, 
and faster hardware using distributed and parallel process 
ing.10'11'12 Our research effort concentrates on using data 
structures to limit the number of ray-object intersections 
and on using parallel techniques to accelerate the overall 
process. 

Spatial Subdivision 
Spatial subdivision data structures are one way to help 
limit the number of intersections by selecting relevant 
objects along the path of a ray as good candidates for ray 
intersection. Spatial subdivision methods partition a 
volume of space bounding the scene into smaller vol 
umes, called voxels. Each voxel contains a list of objects 
wholly or partially within that voxel. This structuring 
yields a three-dimensional sort of the objects and allows 
the objects to be accessed in order along the ray path. 

We employ a spatial subdivision technique termed the 
hierarchical uniform grid13 as the method of choice. This 
approach divides the world cube bounding the scene into 
a uniform three-dimensional grid with each voxel contain 
ing a list of the objects within the voxel (Fig. 6a). If a 
voxel contains too many objects, it is subdivided into a 
uniform grid of its own (Fig. 6b). Areas of the scene that 
are more populated are more finely subdivided, resulting 
in a hierarchy of grids that adapts to local scene com 
plexities. 

The hierarchical uniform grid is used by the raytracer to 
choose which objects to intersect. We find the voxel in 
the grid that is first intersected by the ray. If that voxel 
contains objects, we intersect the ray with those objects. 
If one or more intersections occur within the voxel, the 
closest intersection to the ray origin is the visible point 
and secondary rays are spawned. If there are no intersec 
tions or if the voxel is empty, we traverse the grid, to the 
next voxel and intersect the objects in the new voxel 
(Fig. 7a). The ray procedure ends if we exit the grid, 

S3 

S4 

S5 

Object 4 

Fig. 5. Ray tree for the environment of Fig. 4. 
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(a) 

results and repeated ray intersections. First, the intersec 
tion point of an object must occur within the current 
voxel. Second, intersection records, containing the ID of 
the last ray intersected with that object and the result, 
are stored with the object to prevent repeated intersec 
tion calculations of the same ray with the same object as 
the ray traverses the grid. 

ICE Overview 
ICE is a parallel architecture composed of clusters of 
floating-point processors. Each cluster has four proces 
sors and roughly 64M bytes of shared memory accessible 
for reading and writing by all four processors. Each 
processor has 4M bytes of local memory, which is used 
to hold private data and program code. The clusters 

la) 

(b) 

Fig. 6. The hierarchical uniform grid spatial subdivision technique, 
(a) The world cube surrounding the scene is divided into a uniform 
three-dimensional grid of volumes called voxels, (b) If a voxel con 
tains its many objects, it is subdivided into a uniform grid of its 

indicating that no object in the scene intersects the ray 
(Fig. 7b). 

Grid traversal is fast because the grid is uniform, allowing 
the use of an incremental algorithm for traversing from 
voxel to voxel. There is a penalty for moving up and 
down the hierarchy to different grids but this is the cost 
of having the data structure efficiently adapt to the scene 
complexity. 

Adjacent voxels are likely to contain the same object 
because objects may overlap several voxels. Two critical 
implementation details are included to avoid erroneous 

(b) 

Fig. inter Hierarchical uniform grid traversal, (a) Hit: the ray inter 
sects an object, (b) Miss: no ray-object intersection. 
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communicate using message passing links and the system 
topology is configurable with a crossbar switch. There is 
a data path from the common display buffer to the clus 
ter's shared memory. Fig. 8 shows the ICE architecture. 

Each shared memory can be configured to hold frame 
buffer data and/or can be used to hold data accessible by 
all four processors. The frame buffer data can be config 
ured as a complete 1280-by-1024 double buffered frame 
buffer of RGB and Z values or a rectangular block subset 
of the frame buffer. The message passing links are used 
for intercluster communication and access to common 
resources such as a disk array. The host workstation can 
broadcast into all local and shared memories via the 
message passing links. 

The frame buffers in each cluster's shared memory are 
connected by custom compositing hardware to a double 
buffered display frame buffer which is connected to a 
monitor. The compositing hardware removes the bot 
tleneck from the cluster frame buffers to the single 
display frame buffer. The compositing hardware can 
function in three different modes: Z buffer mode, alpha 
blend mode, and screen space subdivision mode. 

In Z buffer mode, the compositing hardware simulta 
neously accesses the same pixel in all the cluster frame 
buffers, selects the one with the smallest Z, and stores it 
in the display buffer. This mode is used for Z-buffered 
polygon scan conversion. 

In alpha blend mode the same pixel is simultaneously 
accessed in all cluster frame buffers. Pixels from adjacent 

To Other ICE Processor Boards 

From Other 
Compositing 

Chips 

Display Buffer 

Fig. 8. Image Compute Engine (ICE) architecture. 

data blocks are sorted into nearest and farthest and 
blended using the blending rule: a x nearest + (1-a) 
x farthest. The final result is a blend of pixels from all 
the clusters and is presented to the display buffer. This 
mode is used in volumetric rendering of sampled data. 

In screen space subdivision mode, each cluster contains 
pixels from a subset of the screen and the compositing 
hardware simply gathers the pixels from the appropriate 
cluster. This mode is used in raytracing applications. 

Parallel Raytracing on ICE 
Raytracing is well suited for parallelization because the 
task consists mainly of intersecting millions of indepen 
dent rays with objects in the model. Much research in 
recent years has concentrated on using multiprocessors 
to speed up the computation. Two approaches have 
been used to partition the problem among the proces 
sors: image space subdivision and object space sub 
division.14- 15, 16, 17, 18, 19 

In image space subdivision, processor nodes (clusters) 
are allocated a subset of the rays to compute and the 
entire data set is stored at each node. While this method 
achieves almost linear speed increases, it is not a feasible 
solution for rendering data sets that require more memory 
than is available on a processing node. With object space 
methods, computations (rays) and object data are both 
distributed to processing nodes and coordination between 
them is accomplished through message passing between 
clusters. We have chosen an object space subdivision 
approach for implementation on ICE because of its ability 
to handle very large data sets. 

Parallel object space subdivision is efficient if it results in 
low interprocessor communication and low processor idle 
time. As we partition the computation and object data, 
several decisions need to be made. How are the object 
data, ray computations, and frame buffer pixels distrib 
uted among the processor nodes? How are ray computa 
tions and the corresponding object data brought together? 
How is load balancing accomplished? 

The screen is subdivided into blocks of pixels which are 
assigned to clusters where they are stored in the shared 
memory. When the picture is complete these pixels are 
gathered into the display frame buffer by the custom 
compositing chips. 

The spatial subdivision grid data structure is stored at 
every processing node. Voxels for which the data is not 
stored locally are designated as remote voxels. The data 
associated with the voxels in the grid data structure is 
distributed among the clusters in a way that attempts to 
statically balance the computational load among the 
processor clusters. This is accomplished by grouping 
adjacent voxels into blocks and distributing the blocks 
among clusters so that each cluster contains many blocks 
selected uniformly from throughout the model space. 
Voxels distributed in this manner to a cluster are called 
the primary voxels for that cluster. Voxels are distributed 
in blocks to maintain coherence along a ray and reduce 
intercluster communication (it is likely that the next 
voxel will be on the same cluster for several iterations of 
grid traversal). 
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The distribution of the voxels of a grid is performed for 
all the grids in the hierarchy so that all portions of the 
model that have a great deal of complexity are subdivided 
into voxels and distributed throughout the network of 
clusters. Thus, no matter where the viewpoint may be, 
whether zoomed in or not, the objects in the view, and 
thus the computational load, should be well-distributed 
among the clusters of processors. 

When the data is distributed among processing nodes as 
it is for large data sets, and we trace a ray through our 
grid data structure, we may come to a voxel in which the 
data resides on a different processing node, that is, a 
remote voxel. At this point we send the ray information 
to the processing node that contains the data and the 
computation continues there. 

If the data associated with the primary distribution of the 
data set does not fill up a cluster's shared memory, 
additional data, which duplicates data in another cluster, 
is added. The first additional data added is data used to 
speed up shadow testing. This is important because 
shadow rays are launched from every ray-object intersec 
tion point towards every light source, creating congestion 
at voxels containing light sources. To alleviate this, the 
data in voxels nearest a light source that fall wholly or 
partially within the cones defined by the light source 
(cone vertex) and the cluster's primary voxels (cone 
bases) are added to the data stored within the cluster's 
shared memory. If there is still space available in shared 
memory after the shadow data is added, voxel data from 
voxels adjacent to the cluster's primary voxel blocks is 
added. If there is space enough to store the complete 
data set in every cluster, that is done. 

Each processor within a cluster maintains a workpool, 
located in group shared memory, of jobs defined by either 
a primary or a secondary ray. As new rays are formed 
they are placed in a processor's workpool. When a 
processor finds its workpool empty it takes jobs from its 
neighbor's workpool. This organization is intended to 
keep processors working on different parts of the data 
base to minimize group shared memory access conflicts. 

Each cluster is responsible for determining which primary 
rays originate in its primary voxels and initializing its 
workpools accordingly. This can be done with knowledge 
of the viewing parameters by projecting the faces of 
certain primary voxels (those on faces of the world cube 
facing the eye position) onto the screen and noting which 
pixels are covered. Jobs consisting of primary rays are 
listed as runs on scan lines to minimize the job creation 
time. 

A ray is taken from the workpool by a processor in the 
cluster, which attempts to compute the remainder of the 
ray tree. Any rays, primary or secondary, that cannot be 
processed at a cluster because it does not contain the 
necessary voxel and its associated model data are for 
warded to the cluster that contains the required voxel as 
a primary voxel. A queue of rays is maintained for each 
possible destination cluster; these are periodically bundled 
into packets and sent out over the message passing links. 

Fig. 9. Three scenes used to measure the rendering speed im 
provement of parallel processing over sequential processing. 

Each ray includes information about what pixel its color 
contribution must be accumulated in. These color con 
tributions of rays may be computed in any of the clusters 
but the results are sent to the cluster that has responsi 
bility for the portion of the frame buffer containing that 
pixel. There, the contributions are accumulated in the 
pixel memory. 
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Raytracing completion is determined using a scoreboard- 
ing technique. The host computer keeps a count of rays 
created and rays completed. Clusters send a message to 
the host when a ray is to be created, and the host 
increments its count of rays created. Similarly, when a 
ray completes in a cluster, the cluster tells the host and 
the host increments its count of rays completed. When 
these two counts are equal, the rendering job is done and 
the compositing hardware, operating in screen space 
subdivision mode, transfers all the frame buffer data from 
each cluster group shared memory to the display frame 
buffer. 

When static load balancing by uniform distribution of 
data among clusters and dynamic load balancing by 
commonly accessible workpools within clusters are 
inadequate, then dynamic load balancing between clusters 
is carried out. Our plan for accomplishing this is to 
create workpools of rays for mutually exclusive blocks of 
voxels in each cluster. Rays are placed on the voxel 
workpool according to which voxel the ray has just 
entered. These workpools are organized as a linked list. 
Processors get a voxel workpool from the linked list for 
processing. In this way, processors are working on 
different regions of the data set, thereby reducing conten 
tion for group shared memory. When a cluster exhausts 
its workpools it asks the other clusters for information on 
their workloads and requests from the busiest cluster one 
of its unused workpools together with its associated data. 

Results 
The ICE hardware, currently under construction, is 
expected to be completed in the spring of 1992. Parallel 
raytracing software in C has been written and simulations 
on an Apollo DN10000 have been performed. The 
DN10000 workstation has four processors and 128M bytes 
of shared memory, similar to one cluster on ICE. 

The DN10000 software includes a parallel programming 
toolset based on the Argonne National Laboratories 
macro set.20 This toolset includes macros for implement 
ing task creations and memory synchronization. Our 
simulation is of one cluster with workpools for dynamic 
load balancing within a cluster. It is capable of rendering 
objects composed of polygons and spheres. 

Fig. 9 shows three scenes that were rendered sequen 
tially and with the parallel software on the DN 10000. 
The teapot and the car are B-spline surface objects that 
have been tessellated into polygons. The teapot contains 
3600 polygons, the car contains 46,000 polygons, and the 
sphereflake contains 7300 spheres. Table I gives the 
rendering times in seconds for a screen of 500 by 500 
pixels. Each scene experienced at least a threefold 
speed improvement using four processors. 

Table I 
Results 

(500 by 500 pixels) 

Teapot 

Car 

Sphereflake 

1 
Processor 

422s 

879s 

1458s 

Processors 

130s 

288s 

392s 

Improvement 

3.2 

3.0 

3.7 

Conclusions and Future Work 
An overview of the raytracing algorithm and a discussion 
of a parallel implementation of raytracing for the ICE 
architecture have been presented. A first version of the 
parallel software is running on an Apollo DN 10000 
yielding a threefold improvement in speed over the 
sequential software. The DN10000 simulations provide a 
vehicle for parallel code development and statistical 
gathering of scene renderings. A version of the multiclus- 
ter software is being written on the DN 10000 to develop 
code for simulation of message passing and load balanc 
ing. We will have a version of the code to port directly to 
the ICE architecture when the hardware is finished. 

ICE will provide a platform for parallel algorithm develop 
ment and experimentation for a variety of graphics 
applications. Raytracing characteristics, such as grid size, 
ray tree depth, ray type distribution (shadow, reflection, 
refraction), and required interprocessor communication 
bandwidths, are scene dependent, making any sort of 
theoretical analysis difficult. The goal of our future work 
is an extremely fast implementation of raytracing capable 
of handling very large data sets. At the same time, we 
would like to develop an understanding of how best to 
distribute data and perform load balancing on the ICE 
architecture. 
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