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In this Issue

Optical data storage technology offers several advantages over magnetic
storage. Optical disks are more durable and reliable, have greater storage
capacity, and cost far less per megabyte than magnetic disks. On the other
hand, optical access time is currently much longer than magnetic, so don't
look for optical disks to replace magnetic disks completely any time soon.

There are three optical storage technologies: compact disk read-only mem-
ory (CD-ROM), write-once-read-many (WORM), and rewritable optical. CD-
ROM is basically the technology that is used for compact disk audio recording.
The data is represented by pits on the disk surface, which are read by a
laser system WORM technology also stores the data as pits, but the pits are created by a
high-power laser instead of by duplicating a master disk. Rewritable optical techniology also comes
in three types, but only one—magnetooptical—is currently practical. Data is stored magnetically
on the disk. It is written and read optically using a laser system and can be erased and rewritten
repeatedly without wear or degradation.

HP offers both CD-ROM drives and rewritable optical disk drives and autochangers. The article
on page 6 describes the autochanger concept and architecture. Officially called the HP Series
6300 Model 20GB/A rewritable optical disk library system, the autochanger is the key element in
a concept called direct access secondary storage, or DASS. The idea is that if you could have
all of your data on-line, even archival data, you'd prefer that to off-line archival storage on reels
of magnetic tape. The Model 20GB/A stores 20.8 gigabytes of data on 32 magnetooptical disks.
Access time ranges from a fraction of a second if the required disk is in one of the two built-in
magnetooptical drives to 15 seconds or less if a disk needs to be exchanged. Besides archival
storage, the autochanger is designed for backing up large systems without operator intervention
and for data-intensive applications such as electronic image management. The major autochanger
design issues were the mechanical design (page 14), the servomechanism design (page 24),
qualifying the vendor-supplied drives (page 35), and integrating the autochanger with the HP-UX
operating system (page 11). Reliability was the overriding concern, since the autochanger is
intended to serve as a vital link in a company's computer operations. It's designed for a lifetime
of a million exchanges.

The HP Series 6100 Model 600/A CD-ROM drive (page 38) is designed for providing such
things as software manuals for computer systems. large reference documents, training packages,
and large-scale software distribution. Each disk can store over 500 megabytes of data. Design
issues included the implementation of error correction (page 42) and software protection (page
49), integration of the drive with the HP-UX operating system (page 54), and the design of the
controller board for the vendor-supplied drive mechanism (page 38). The ISO 8660/High Sierra
Group standard format is used for recording data, so the Model 600/A can read non-HP CD-ROM
disks and audio CDs recorded using that format.
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In HP's PA-RISC architecture, printers, terminals, and personal computers connect with HP
3000 PA-RISC computers through remote multiplexers called data communications and terminal
controllers, or DTCs. The host computer and the DTCs are connected by a local area network.
For wide area communications, packet switched networks, both public and private, are now
common, and the DTCs can connect directly to these networks, which are defined by an inter-
national standard, CCITT recommendation X.25. Asynchronous devices such as terminals and
printers can connect to X.25 networks through hardware or software elements called packet
assembler/disassemblers, or PADs. PAD support software allows the DTCs to communicate with
PADs over the network. In the HP architecture, the PAD support software is assigned to the DTC
rather than to the host HP 3000 system. This is done to maximize performance. The article on
page 63 describes the design, development methodology, and testing of the PAD support software
for the HP 2345A DTC. One of the test tools was a message machine that simulates the environ-
ment of the software under test. Designed using object-oriented concepts, the message machine
is described in the article on page 74.

Copper beryllium (CuBe) alloy is widely used for spring contacts in the electronic industry. On
page 88, Nguyen Hung of HP Singapore reports on an investigation of the dimensional changes
of cold-drawn CuBe during aging at elevated temperatures. The results show that the changes
are anisotropic and agree well with theoretical predictions.

December is our annual index issue. The 1990 index begins on page 81.

R.P. Dolan

Editu

Cover
Magnetooptical disk cartridges are shown with various mechanical parts designed for the HP
Series 6300 Model 20GB/A 20-gigabyte rewritable optical disk library system.

What'’s Ahead

Lightwave component analysis with modulation rates to 20 GHz is the major topic in the February
issue. The design of the HP 8703A lightwave component analyzer, the HP 83420A lightwave test
set, and related products will be presented. Also featured will be the design of the HP 8153A
lightwave multimeter, a modular instrument for optical power measurements and other basic fiber
optic mesurements. HP VUE, a visual user interface for the Domain and HP-UX operating systems,
will be the topic of the lone software article.
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A Rewritable Optical Disk Library System
for Direct Access Secondary Storage

This autochanger system can store up to 20.8 Gbytes of
data on-line. Applications include archival storage,
automated backup and recovery, and document storage

and retrieval.

by Donald J. Stavely, Mark E. Wanger, and Kraig A. Proehl

of computer peripherals. Customers for these

peripherals include not only users of HP systems, but
also OEM customers and others who use HP peripherals
with non-HP host systems.

Supplying peripherals to OEM customers has been a
major initiative for Hewlett-Packard and has had a large
impact on how we plan and evolve our business strategies.
To be successful in the OEM business has required that
we develop a broader and more timely understanding of
the market than we had in the past. We feel that our experi-
ence as a system company gives us valuable insights into
how our peripherals work in systems and applications to
solve real customer needs.

HP's Greeley Storage Division is responsible for high-
end secondary storage devices that are used for backup and
archival storage on computers, mainframes, and networks
of workstations. Our current product offering is a family
of low-cost, autoloading, streaming, 1/2-inch GCR tape
drives.’

As we looked to the future, we naturally focused our
attention on advances in tape technology. Emerging prod-
ucts were using air bearings for media reliability, a thin-film
18-track head for very high transfer rate, and a compact
tape cartridge for ease of handling. Initially, this technology
seemed a good match to what our current HP and OEM
customers needed. Customers were asking for faster backup
to reduce planned system dewntime—or more accurately,
to keep from increasing their downtime as their disk storage
requirements grew. They also need ever higher levels of
reliability to minimize unplanned system downtime.

Unfortunately, simplistic market research—asking cus-
tomers what they want—often vields only predictable and
simplistic answers, They want what they have now, only
faster, cheaper, more reliable, and so on. In other words,
customers may be too close to their problems to see them
from a new perspective.

We evolved a much more powerful market research pro-
cess that consists of three steps. The first step is to gain a
thorough knowledge of how customers do business. What
applications do they run? How much disk space do they
have? How do they do backup today? What else do they
use tape drives for?

The second step of the process is to try to solve customers’
problems in the abstracti—matching available technologies

I I EWLETT-PACKARD MANUFACTURES a wide range
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to a high-level model of each customer’s business. The last
step is to present a coherent vision of the future back to
our customers. In essence, we are trying to help them look
past the limitations of today's solutions and help them
architect the solutions of tomorrow. We call this developing
an “imaginative understanding of user needs.”

Fig. 1. The HP Series 6300 Model 20GBIA rewritable optical
disk library system stores up to 20.8 Gbytes of data on 32
optical disks. An aufochanger automatically selects the cor-
rect disk and inserts it into one of two internal drives

© Copr. 1949-1998 Hewlett-Packard Co.




In probing more deeply with both HP system customers
and OEM customers, we found that their responses to our
simplistic market research were indeed conditioned by the
properties and limitations of tape technology. The truth is
that customers don’t like tapes. Tapes are inherently off-
line devices requiring sequential access to data and
operator intervention to handle the media. What customers
really want is direct access to all of their archival data,
without special utilities and without operator intervention.
We call this concept direct access secondary storage, or
DASS. When we clearly articulated this concept and fed
it back to customers, we received consistently positive re-
sponses.

Rewritable optical disk technology, configured in an au-
tomated library, has exactly the right properties to meet
this customer need for direct access to archival data. Opti-
cal disks are removable, rugged, reliable, and fairly inex-
pensive on a cost-per-megabyte basis. Transfer rates are
competitive with many current tape products. And because
it is a disk drive, an optical disk drive attaches to the host
system using standard disk drivers and file systems. This
can give direct, transparent access from current applica-
tions without modification. The connection between opti-
cal disks and secondary storage makes perfect sense, but
it was not obvious to either customers or the optical drive
vendors themselves.

The optical disk autochanger plays the other key role in
the DASS concept. With many gigabytes of on-line Win-
chester-disk storage, a typical host system requires tens or
even hundreds of gigabyies of secondary storage for backup
and archival information. In the DASS concept, this sec-
ondary storage must be on-line—accessible without operator
intervention or special recovery utilities. Rewritable opti-
cal drives in an autochanger configuration provide a cost-
effective answer to the customer need for direct access to
huge amounts of historical data.

Reliability is the single most important attribute of an
autochanger. The customer perception is that autochangers
are “‘mechanical nightmares" that are fascinating to watch

Primary Storage

at trade shows but frightening to consider as a vital link
in a company's computer operations. It was for this reason
that Hewlett-Packard chose to design and build its own
autochanger mechanism.

The philosophy used to guide the development was that
reliability should not be tested into a product, nor even
designed in—it must be architected in. An architecture that
minimizes complexity, followed by careful design and
rigorous testing, is the only way to achieve a quantum leap
in reliability.

Optical Disc Library System

The result of these considerations is the HP Series 6300
Model 20GB/A rewritable optical disk library system, Fig.
1. The Model 20GB/A combines the convenience and low
storage cost of optical-disk technology with the massive
capacity of a library system to provide on-line access to
vast amounts of infrequently accessed information. The
Model 20GB/A is a direct access secondary storage (DASS)
device that fills the price/performance gap between high-
performance hard disks and low-cost tape storage (Fig. 2).
Because of its huge, 20.8-Gbyte storage capacity and low
cost per megabyte (Fig. 3), the product makes it feasible to
store information on-line that has traditionally been stored
off-line, and to automate labor-intensive backup and recov-
ery processes. It also greatly reduces the floor space re-
quired for archiving (Fig. 4).

The Model 20GB/A uses magnetooptical technology (see
box. page 8). Data is stored on removable 5'-inch disks.
Optical disks are not susceptible to head crashes and are
much more tolerant of magnetic interference than magnetic
media. Fingerprints and small scratches have no effect on
the data. Data can last over ten years without the retension-
ing or reconditioning that tapes require.

The Model 20GB/A consists of an autochanger, two mag-
netooptical disk drives, and 32 5%-inch, 650-Mbyte optical
disk cartridges in a deskside cabinet. A mailslot is provided
for loading or removing disks. The autochanger automati-
cally selects the appropriate cartridge and inserts it into

{continued an page 10)

*High-Performance

Hard Disks

-Performance: Access in ms
-Costs: $15-520/Mbyte

Secondary Storage
*Sequential Tape Drives

-Performance: Access in min

DASS

*Rewritable Optical
Disk Drives
and Autochangers

-Performance: Access in 0.1-15 s
-Cost: $0.38/Mbyte (Media Only)

Applications

"Historical/Archival Storage
(Infrequently Accessed Data)

‘Unattended Backup/Restore
(Automated Operations)

*Document Storage and Retrieval
(Electronic Image Management)

Fig. 2. The optical disk library
system is a direct access second-
ary storage (DASS) device, lower

-Cost: $0.15-0.20/Mbyte

© Copr. 1949-1998 Hewlett-Packard Co.

in cost than high-performance
disk drives, but higher in perfor-
mance than low-cost tape.
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Magnetooptical Recording Technology

Rewritable optical technology today encompasses three differ-
ent methods:
= Magnetooptical
m Dye-Polymer
= Phase-Change

The most durable and predominant technigue in the market
today is magnetooptical. This discussion will be limited fo this
technique, which is the method that Hewiett-Packard has chosen
for introducing rewritable optical technology for direct access
secondary storage.

Magnetooptical technology relies on the storage of information
on a thin film of magnetic material, Like conventional magnetic
recording, the information is stored on the media in the form of
magnetic domains. The domains are aligned vertically, in contrast
to most magnetic recordings today, which are based upon lon-
gitudinal magnetization. The important and significant difference
comes from the fact that the processes of writing, erasing, and
reading are performed with a light beam derived from a solid-
state laser and associated optics, not by mechanical heads that
come into contact or near contact with the recording surface.
This attribute allows optical recording to have longer life and
higher reliability than tapes and flexible disks, Optical disks are
immune to the typical wearout modes that occur with contact or
close proximity recording.

Recording

Thermomagnetic writing is the term used to describe the pro-
cess of writing information on a thin magnetooptical film. The
laser beam heat-modulates the magnetic film about its Curie
temperature. The Curie temperature of a magnetic material is
the temperature at which the material loses its coercive magnetic
field. This occurs between 150°C and 200°C for typical mag-
netooptical thin films. When this occurs, the material loses all
memory of its prior magnetization and can acquire a new mag-
netization as it coolsin the presence of an external magnetic field.

The writing process is shown schematically in Fig. 1. The re-
corded information is stored on the magnetic medium by revers-
ing a magnetic domain to store a one and by not reversing a
domain to store a zero. Thus the precondition for writing informa-
tion is for all domains to be initialized to the zero state. This
means that, to overwrite data, an erase pass must be performed
before the write pass to set up this initial condition of all-zero
domain alignment. During the erase pass, the laser is turned on
to heat the magnetic domains and an external magnetic field is
applied in the proper orientation to change all of the domains to
the zero state.

Data can be written on the erased track during a subsequent
disk rotation. With the polarity of the external magnetic field re-
versed, the laser is turned on and off to heat only those domains
that are to be changed to the one state. The external magnetic
field required to erase or write data is supplied by a bias magnet
which is typically positioned on the opposite side of the film
surface from the optical head. This external bias magnet must
have the ability to change magnetic polarity; therefore, it is typ-
ically an electromagnet or a permanent magnet that can be
mechanically rotated to accomplish polarity changes.

When magnetooptical films are at room temperature, they typ-
ically exhibit coercivities of several thousands of Oersteds. This
means that in the absence of laser heating, the magnetic field
required to affect their state of magnetization is extremely large.
Because of these high coercivities at operating and storage tem-

peratures, magnetooptical records are less susceplible to dam-
age from external fields than records on conventional magnetic
storage materials such as those on fiexible and rigid magnetic
disks.

High-Powered
Laser Beam

| Coil with
Polarity Reversed

Fig. 1. The magnetooptical write process. (a) All of the mag-
netic domains are magnetized north-pole-down. This all-zeros
siate is the precondition for writing. (b) The laser beam turns
on for each domain that is to store a one. Heating the domain
above the Curie temperature causes it to lose its previous
magnetization and orient itself with the external magnetic field
of the bias coil. (c) To erase the data, the polarity of the
external field is reversed and the laser is turned on, returning
all of the magnetic domains to the condition shown in (a).
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Readback

For data readout. information is extracted from the magnetoop-
tical film by reflecting a polanzed light beam off the magnetic
film surface and detecting a change in the angle of polarization
of the reflected beam. This physical phenomenon, upon which
the magnetooptica! rewritable technology is based. is known as
the Kerr effect. It is manifested as a change in the state of polari-
zation of light upon interaction with a magnetized medium. The
amaount of polarization rotation is small (less than one degree)
but techmiques used in film manufacturing can enhance the ef-
fect. In addition, a variety of detection and readout technigues
have been developed to enhance the magnetooptical signal. As
a result, good signal-lo-noise ratios of 60 dB or more can be
achieved.

Another magnetooptical readout allernative is based upon the
Faraday effect. This effect is similar to the Kerr effect but relies
on light transmitted through magnetic films. The interaction of
the light with the film causes polarization state changes. This
technique is not employed in the magnetooptical rewritable pro-
cess primarily because of the low transmissibility of magnetoop-
tical films and the difficuity of placing interactive optics on both
sides of the media.

Magnetooptical Materials

Magnetooptical materials are composed of a rare earth ele-
ment and a transition metal, Typical rare earth elements used in
magnetooptical recording include gadolinium (Gd, z = 64) and
terbium (Tb, z = 65). These rare garth elements are also called
lanthanides. These elements are soft, gray metals that have good
conductivity. As a group, the lanthanides are not very abundant.
The most commaon lanthanide is cerium, which makes up only
3x 10 * percent of the mass of the earth's crust. The transition
metals commonly used in magnetooptical recording include iron
(Fe,z = 26) and cobalt (Co, z = 27). These elements contribute
characteristics such as high melting temperature, good conduc-
tivity, and fairly high hardness. Alloys of rare earths and transition
metals are amorphous and have been processed to achieve a
high level of chemical stability. The transition metal provides the
dominant magnetooptical interaction (Kerr effect) while the rare
earth element helps to provide high vertical magnetic anisotropy.

Curie and Compensation Temperatures

The important parameters in processing magnetooptical films
are the Curie temperature of the alloy (mentioned earlier) and
the compensation temperature. The compensation temperalure
is the temperature at which the magnetization component of the
transition element is equal and opposite to that of the rare earth
element, so that the net magnetization is zero. The compensation
point can be either above or below the ambient temperature. At
the compensation temperature, since there Is no net magnetiza-
tion, the material cannot interact with external fields. Therefore,
the coercivity is extremely high and the magnetic domains are
very stable. For practical magnetooptical recording films in use
today. the compensation temperature is kept well below the Curie
temperature and the lowest operating temperature the film will
see. The reason is that the interaction of the compensation point
magnetic behavior can affect the requirements for Curie temper-
ature recording, If the compensation temperature is in the region
of operation, the magnetic properties change dramatically and
can interfere with the designed magnetooptical recording pro-
cess.

The compensation point for magnetooptical films is determined
by the percentage of the rare earth element in the film. Typical
percentages, for example, are for terbium to be below 19 to 20
atomic percent to keep the compensation temperature below

Adhesion Layer
Magnetooptic LaN I
Reflective Layer -
Protective Layer
e
Adhesive Layer / e

Polycarbonate Layer e

Fig. 2. Magnetooptical disk consiruction

ambient. If the percentage of terbium is higher, say above 22 1o
23 atomic percent, then the compensation lemperature can ex-
ceed ambient. At percentages greater than 27 or 2B atomic
percent, there is no compensation temperature because the com-
pensation temperature exceeds the Curie temperature, and mag-
netic properties above the Curie temperature dominate the film
behavior

The Curie temperature is seiected so that the laser light source
can easily raise the magnetooptical film material to this temper-
ature without exceeding the design limits on the laser power. A
film with a lower Curie temperaiure reguires less heat and there-
fore is more sensitive. Hence the Curie temperature conirols the
media sensitivity

The Curie temperature for magnetooptical films is determined
by the selection of the transition metal component. One way to
control the Curie temperature is to adjust the ratio of cobalt to
iron in the transition metal. As the ratio of cobalt to iron is in-
creased, the Curie temperature is increased and the film sensitiv-
ity is decreased—more power is required to reach the Curie
ternperature.

Manufacturing
The manufacturing processes for magnetooptical disks have

to fake Into account a wide variety of parameters. Important

considerations include the following:

m Mechanical stability of the substrate, which is typically plastic
(polycarbonate). Glass and aluminum have also been used
Some of the parameters of concern are warp, tilt, axial and
radial runouts, and accelerations,

u Birefringence of the substrate, a condition in which the index
of refraction is dependent on the polarization of the light.

m Dust protection. This is provided by a transparent layer that
keeps dust, scralches, or other optical disturbances away
from the focal plane of the recording surface

m Surface reflectance control. This reguires control of layer
thicknesses and refractive indexes.

® Thermal characteristics, including thermal properties of films
and surrounding structures and materials.

m Magnetic properties, which are determined by film composi-
tion and thicknesses

m Protective coatings, such as dielectric barrier films for corro-
sion protection.

A typical cross section of a magnetooptical disk is shown in
Fig. 2. The disk consists of two ten-nanometer-thick layers of
magnetooptical film—aone for each side of the disk—sandwiched
between two polycarbonate disks. Dielectric material and adhe-
sives separate and bond the layers.

Ed Sponheimer
Project Manager
Greeley Storage Division
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one of the two internal drives, Operation is transparent to
users, who see only a slightly slower response time when
accessing optically stored data—approximately 100 mil-
liseconds if the disk is already in a drive, or about 10 to
15 seconds if disks need to be exchanged. The HP-UX
operating system recognizes each disk side as a 325-Mbyte
mountable file system, so data access and software compati-
bilitv are the same as if the library system were a (slower)
hard disk.

The Model 20GB/A conforms to ANSI and 150 specifica-
tions for continuous composite format 5%-inch rewritable
optical disks. This ensures compatibility with the HP Series
6300 Model 650/A stand-alone rewritable optical disk drive
and the drives and media of other manufacturers. The sys-
tem implements the Small Computer System Interface
(SCSI) in asynchronous mode with separate IDs for both
drives and the autochanger. The product is supported on
HP 9000 Series 300 and 800 computer systems running the
HP-UX 8.0 operating system,

Design Philosophy

The design criteria for the HP Series 6300 Model 20GB/A
rewritable optical disk library syvstem were focused on three
points that we felt were essential to the successful launch
of a peripheral with new functionality: minimizing time
to market, making the product very reliable, and complet-
ing full system integration. The major design and architec-
ture philosophies we used were high leverage of existing
successful designs, design simplicity, and modular design
with limited coupling between modules.

Drive(s) Plus
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“Varies with application. Conservative estimates are 0.01 per page and
0.02 per page with storage and retrieval.
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Leveraged designs allowed us to produce early bread-
boards rapidly with a high level of sophistication. In using
leveraged designs, we also gained all the benefits of the
engineer-vears of effort that went into reliability engineer-
ing. We leveraged coupled servo architecture, motor/en-
coder design, a proprietary HP motor control 1C, pullev
and belt design practices and capabilities, and carriage and
way design. We limited ourselves to off-the-shelf power
supplies to decrease risk and tooling expense.

The design for reliability began with a study of failure
rates on HP plotter products and the HP quarter-inch tape
cartridge autochanger. We found that the predominant fail-
ures were associated with sensors, switches, motors, and
solenoids. We next generated graphs of annual failure rate
as a function of the number of sensors and as a function
of the number of actuators. The architecture that followed
from this analysis called for a minimum number of sensors
and motors, and for a “passive payload” design, which
means that no sensors or actuators were allowed on any
maving parts. This strategy decreased the number of high-
failure-rate parts and supporting parts as well, such as
cables, connectors, and flexible circuits. It also eliminated
flexing wires, which have fatigue problems. We were well
aware that as printers have evolved in reliability, the hard-
est remaining reliability problem is the flexible cable going
to the printhead.

The mechanical design of the autochanger is described
in the article on page 14.

Another feature of the design is the servomechanism
“sense of touch,” which is tied directly to the passive

{cantinued on page 12)
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Integrating the Optical Library Unit into the HP-UX Operating System

The HP Series 6300 Model 20GB/A rewritable optical disk li-
brary autochanger is unlike any other peripheral supporiad on
the HP-UX operating system and therefore required a new ap-
proach to integration into the operating system. On one hand,
its random-access altributes suggest a connection with the
operating system that is disk-like. On the other hand, its need
to share muitiple disks with one or two drives hints at something
that may need specific user or application support

Although the design opticns were unresiricted, we wanted an
integration method that would satisfy two overriding goals. First,
the integration method should hide as much as possible the
requirement to swap disks into and out of the drives. This irans-
parency goal means that no special programs or utilities are
required to access information on the autochanger. This holds
for commands that rely on network services as well s commands
that treat mass storage peripherals as raw devices. The second
goal was that the integration method should have minimum im-
pact (complexity, coupling, etc.) on the HP-UX operating system.

Design Choices

The accepted way of integrating WORM (write once, read
many) autochangers relies heavily on the application. An appli-
calion is provided with low-level control of the changer mecha-
nism and low-level control of the drives. The application is respon-
sible for swapping disks in and out of drives and tracking the
location of disks. This method clearly does not allow transpa-
rency, but our solution needed to support this low-level control
so that existing applications that already rely on it could be poried
to HP-UX and so that other autochanger-specific utilities could
be developed The HP-UX ioctl system call is used fo support
these low-level commands.

A tempting way to model the integration is to view the entire
autochanger as one large disk. This solution implies that the disk
cartridges that make up this large disk travel as a group and
remain in some logical order. Since disks in the autochanger are
inherently removable, the administrative problems of keeping
setls of disks together led us away from this solution

The solution we settled on treats each side of a disk as an
individual disk.' The system administrator is free to create file
systerms on these disks and moun! them or access them in the
raw mode using existing system calls such as read(), write(), and
other utilities that use raw devices. A file system residing on an
individual disk surface can be mounted anywhere in the directory
structure of the HP-UX file system.

Neither existing commands nor application programs require
maodification to maintain their functionality. The file systems resid-
ing on cartridges maintain their NFS (Sun Microsystems’ Network
File System) functionality with other machines on the network.
The file systems are also protected from power failure to avoid
lengthy file system recovery processes.

By confining most of the changes to a driver, the goal of
minimizing HP-UX changes was met. Fig. 1 illustrates the struc-
ture of the autochanger driver. The autochanger driver consists
of two main parts: the surface driver and the changer driver, The
existing disk driver is used to control the drives. This is the same
driver that controls the stand-alone rewritable optical drive, the
HP Series 6300 Model 650/A.

The changer driver provides low-level control of the au-
tochanger mechanism. It accepts commands o move the disk
in slot x to drive 2, to report whether there is a disk in slot 2, and
similar tasks. The surface driver controls the swapping of disks

and routes disk requests o the disk driver when the requested
disk is in a drive

The Swapping Algorithm

When requests for different surfaces occur, only one of those
surfaces can be inserted into each drive. The other reguests
musl! be suspended. To aveoid having these requests wait forever,
we set a limit, called the hog time, on the time that a carlridge
can be in a drive processing reguests while other requests are
waiting. Once this time expires, that cariridge is removed and
the request waiting the longest is inserted. We have found that
the hog time should be somewhat larger than the time required
to exchange a cariridge. Twenty seconds has proved sufficient.

If a cartridge in a drive were to be replaced immediately when
there are no additional requests for that surface, it is possible
that shortly after the cartridge exchange is started, a request for
the original surface could arrive. This could result in a cartridge
swap for every request. To avoid this problem an additional limit
called the wait time was added. This is the maximum time that
a cartridge can reside in a drive without processing any requests
while other requests are waiting to use the drive. Choosing the
wait time too large increases the effective swap time of the au-
tochanger. Making the wait lime loo smail increases the chances
of thrashing as a result of consecutive requests for the same
surface. We found a wait time of one second to be sufficient to
avoid the extra swapping in most instances.

Because we realize that certain configurations will require dif-
ferent hog and wail times, these values are configurable (via
drive ioctl calls) while the system is running. For example, in a
backup application, the hog time should probably be high, so
that other processes won't seriously degrade the throughput. If
an application program reads blocks of data and then processes
that data for more than a second before it reads more data, the
wait time should be increased to avoid swapping between reads

Autochanger Driver Design
The design of the autochanger driver overcomes three prob-
lems:
® |t avoids a file system check (the tsck command) of all the
cartridges after a power loss.
® |t avoids excessive swapping caused by the syncer.
B |tsupports the concept of asynchronous read and write operations.

Flle System

Surface Driver ' ': 4 Disk Driver

Fig. 1. The autochanger driver consists of a surface driver
and a changer driver. The existing disk driver is used to
control the optical drives
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Avoiding a Lengthy fsck. The superuser must execute the mount
command for each surface to be accessed before users can
perform file system operations to the autochanger. Normal Win-
chester disks require a file system check if the power cycles
while the disk |s mounted. Since we do not want to require the
user to check every surface; which could take several hours, we
make sure the file system on every disk 15 in a known, valid slale
before the disk is removed from a drive.

To do this, the autochanger driver uses the concept of virtually
mounted devices A virtually mounted device 1s not vulnerable
to power failure corruption of its file system. When a device is
virtually mounted, it is not directly connected to the rest of the
file system Only basic information about the file system and
device is stored. The file system is available for use, but files
cannot be accessed until the device has been physically

mounted.
Cartridges in the autochanger that are waiting in their slots are

only virtually mounted. When a file on a virtually mounted device
is referenced by a user, the file system code uses the stored
information to mount the device physically before the file is ac-
cessed. When the operations on that device are finished, the file
system physically unmounts the device. This causes any buffers
in the host that were not written to the device 1o be flushed. The
file system is now in a state that would not require file system
repair on a power failure. Cartridges only need to be virtually
‘ mounted when the system is first booted

Avoiding Extra Syncer Swaps. To limit the number of modified

buffers that haven't been written to the disk at the time a power
| failure occurs, there is a process that executes periodically that

Hlushes these buffers. This process, called the syncer, schedules
‘ all the modified buffers to the drivers so they will be written to

the disk. If a surface is removed from the drive without flushing
all the modified buffers, the syncer will execuie and require the
cartridge 1o be reinserted. Having several cartridges mounted
can cause excessive thrashing

The solution is to write all the modified buffers for a surface
before the cartridge is removed. This is done as part of the
physical unmounting process.
Supporting Asynchronous Operalions. Every block device
driver in the HP-UX kernel must be able to support the concept
of asynchronous requests. An asynchronous request essentially
means that when the file system makes a request to the drivi to
perform say, a write to disk, the driver should queue the reguest
and immediately return without actually doing the /0. This tends
to pose a problem in that, once the request is gqueued, some
thread of execution must eventually complete the request. The
| normal method of doing this 1s through hardware-generated inter-
| rupts to the driver. However, this interrupt structure is absent in

the autochanger driver

There are two basic ways 1o solve this problem. One is to

‘ pravide the extra thread of execution through the disk driver's
L

interrupt calls. This adds extra complexity and coupling to both
of the drivers. The method we have chosen is to create extra

kernel daemons to provide the exira threads of execution neces-
sary. Two daemons are used. A transport daemon is responsible
for moving the cartridges, and a spinup daemon s responsible
for spinning up the drive. The two daemans make it possible to
overlap moves and spinups. For example, atter a cariridge has
been put into a drive and begins to spin up, the picker can be
used lo move another cartridge out of another drive.

The transport daemon flushes the asynchronous write opera-
tions to the disk before it removes a cartridge from a drive. The
spinup daemon flushes all the waiting asynchronous requests
la a new cartridge that has just been put into a drive. Thus, all
asynchronous writes are eventually flushed out to a drive. If an
asynchronous request arrives while a cartridge is currently in a
drive, that request is passed to the disk driver immediately. This
maintains the asynchronous function of the autochanger driver.
One advantage of this daemon approach is that it is portable to
other UNIX® architeclures

There are four processes in the autochanger driver: Accept
Reguests, Schedule Async Requests, and the transport and spinup
daemons. Each process represents a separate thread of execu-
tion. Accept Reguests executes any requests for surfaces already
indrives. All other requests are queued. This process is in charge
of determining if @ swap is to occur as the result of receiving a
request by checking the hog time and other conditions. The
transport daemon only runs when Accept Requests determines that
a swap should occur. It also performs the physical unmounting
and makes sure the surface in the drive is pul in a consistent
state before it is removed from the drive. The spinup daemon is
charge of spinning up the cartridge after it has been inserted. It
also performs the physical mounting and processes any asyn-
chronous requests waiting to use that drive. The Schedule Async
Request process is executed when no synchronous reqguests are
waiting for a surface. Its purpose is to salisfy the reguirement
that asynchronous requests return without waiting for any I/0 to
be performed. This process is not a daemon but is called by an
interrupt from the wait timer in the spinup daemon, If the wait
timer times out, Schedule Async Request is started if no synchronous
requests are waiting to use the drive.

“UNIX is a registarad trademark of AT&T n the LLSA. and other countries

References

1 B Thompson, [ Stoite, ang D Ellis, "A Transparent Integration Approach for
Rewtitable Oplical Autochangers.” Proceedinigs of the USENIX Association Surmrmer
Conference, 1980,

Daryl C. Stolte

Bruce A. Thompson
David Ellis

Development Engineers
Greeley Storage Division

(continued from page 10)

payload concept. The ability for the controller to sense
forces and distance allowed us to remove physical sensors
in the hardware. The architecture called for moving the
sensors from the robot back into the information processing
capabilities of the motor controller and encoder. Sense of
touch algorithms allow the controller to sense whether
there is a cartridge in a location, verify a move, and so on.
Another reliability enhancement is overforce sensing and
error recovery. Using sense of touch, the robot stops motion
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before anything is broken. An error recovery algorithm is
then invoked to clear the error condition and complete the
move sequence. This design provides another chance to
avoid a service call.

Details of the servomechanism design are in the article
on page 24.

The design is highly modular with limited coupling of
the modules. This effort paid off in many ways. The design
areas could be assigned to engineers in a relatively un-
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coupled way, as long as the interactions of the design mod-
ules were relatively well-defined. In these design modules,
functionality was the key. Designers had the ability to
simplify or redesign with measured effect on the rest of
the project. This has been very fruitful as the project has
continued in its life. As reliabilitv concerns are raised, they
can be addressed with minimum impact on other aspects
of the design. This allows improvement with limited risk
of introducing new problems in related designs.

Trving to achieve minimum system integration time and
maximum flexibility led to the concept of mounting the
autochanger in either a stand-alone HP rack or a standard
19-inch rack. This would allow the library svstem to fit
into many different systems, both HP and non-HP. This
design was adopted early in the project, and is now being
born in a follow-on product.

In selecting a system as an initial host, we chose the
HP-UX operating system because it provides enough power
and flexibility to support this peripheral, and is almost an
open architecture. This provided us with a number of op-
tions including developing a driver ourselves or developing
a file level interface. Integration of the autochanger with
the HP-UX operating system is the subject of the box on
page 11.

Autochanger Architecture

One of the major goals in the design of the autochanger
architecture was defining a growth path for future products.
We did not want to lock ourselves into an architecture that
would not allow us to meet the interface performance de-
mands of the future. The optical drives that were going to
be used in the autochanger communicated via the SCSI, and
since there was a standard emerging for an SCSI au-
tochanger command set, we decided that the primary inter-
face of the autochanger would also be SCSI.

There are two drives in the standard configuration, and
this means that the autochanger needs to use three SCSI
bus IDs (two for the drives and one for the autochanger
controller and mechanism). This posed the problem that
if more than two autochangers were used by a host on a
single SCSI bus, the available bus 1Ds (8) would soon be
used up. We investigated some other architectures that
would consume only one SCSI ID, with the autochanger
and its two drives configured as logical unit numbers
(LUNSs) under that single ID. However, there were concerns
about the performance degradation of doing the SCSI-to-
SCSI command conversion for each LUN,

Even more ambitious than this architecture was the full
file-level interface concept. This entailed defining an en-
tirely new interface that interacted on a file level and totally
hid the SCSI in the drives. With this concept, we felt we
would have complete freedom to optimize the perfor-
mance, throughput, and thrashing issues associated with
an autochanger. On the other hand, this approach would
also cause us to abandon the SCSI-II interface standard
being adopted by most of the industry, and the use of a
standard interface was seen as essential if this product was
going to have a viable life as an OEM product.

Although future growth was a major concern, time to
market was an even greater preoccupation. The auto-
changer was on an aggressive schedule, so we needed to

be careful about not taking on too big a task for the time
allotted. We were able to satisfv both goals by opting for
the first architectural option described—the use of three
SCSI IDs on the bus.

Autochanger Controller

The autochanger controller board is based on a 68000
microprocessor. The 88000 controls or oversees all pro-
cesses in the autochanger. Because of the architecture cho-
sen, the 68000 has no direct communication with the mag-
netooptical drives over the SCSI bus. The autochanger is
meant to be an SCSI target device only, and at present does
not support any initiator functions.

The 68000 operates with a time-sliced operating system
whose primary function is to control the two servo loops
of the Y and Z motors. Operation of these two loops can
consume up to 70% of the processor’s 12-MHz bandwidth.
The remainder of the processor’s time is involved with
command interpretation and the overseeing of all other
autochanger functions.

Commands to the autochanger can come from one of
three different sources: the SCSI, an RS-232 port, or the
front panel. The SCSI is the primary means for controlling
the autochanger. The RS-232 port is primarily for diagnos-
tic purposes, although it can also be used as the primary
interface for the autochanger controller. The frant panel is
the personal, direct user interface. Commands can be en-
tered through each of these interfaces, and although their
formats differ, they are all processed through a common
control flow in the 68000 firmware.

The hardware implementation of this architecture is
highly integrated and uses either multifunction or intelli-
gent off-the-shelf parts. The SCSI is managed by a propri-
etary controller IC, which frees the processor from all but
the most necessary processing tasks of the SCSI bus. The
RS-232 port is managed by a multifunction peripheral chip.
which also handles all the interrupt vectoring and generates
various timers used by the controller. The front panel is
controlled by an 8051-type microcontroller, which man-
ages all the key presses and is responsible for updating the
vacuum fluorescent display. The low-level servo process-
ing is serviced by another proprietary 1C, which manages
the duty cycle of each motor and monitors the position
encoder information.

The controller board also contains 16K words of non-
volatile RAM. This RAM is used to store critical state infor-
mation and positional parameters for use in autochanger
error recovery and powerfail conditions. The nonvolatile
RAM also contains certain configuration parameters and
certain logging values that constantly reflect the age and
health of the machine.
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Mechanical Design of an Optical Disk

Autochanger

The autochanger moves 32 disk cartridges between two
magnetooptical drives and two stacks of storage positions
using only two motors and three optical sensors.

by Daniel R. Dauner, Raymond C. Sherman, Michael L. Christensen, Jennifer L. Methlie, and Leslie

G. Christie, Jr.
HE MECHANICAL DESIGN of the autochanger
T mechanism for the HP Series 6300 Model 20GB/A
rewritable aptical disk library system posed several
technical challenges, including architecture, reliability,
physical size, and schedule. The system holds 32 optical
disk cartridges and has two magnetooptical disk drives.
The magnetooptical disks are rewritable. Each cartridge
holds 650 Mbytes of data; however, only 325 Mbytes is
accessible at a time because the drives are single-sided.
The total capacity of the library system is 20.8 Gbytes. The
system runs on a single-ended SCSI asynchronous bus,
which conforms to the SCSI II standard established for
autochangers. The average access time to load a disk from
a storage position to a drive is seven seconds.
The mechanical architecture of the autochanger excludes

Front-Panel

any electrical components, cables, or connectors on the
moving parts of the mechanism. This “passive pavload”
concept was chosen to maximize product reliability. The
design team set a goal at the onset of the project to have
an absolute minimum of sensaors, solenoids, and motors.
The final design has only two motors, no solenoids, and
three optical sensors. The sensors are used in the vertical
calibration of the system and in the mailslot.

Physical size was determined early in the product design
to allow use in two orientations. In the normal orientation,
the autochanger fits into an HP rack. It can also be laid on
its side and used in an industry-standard 19-inch rack.
This two-orientation requirement established the height,
width, and depth of the product. Meeting these space con-
straints was a persistent challenge in the design of the
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subsystems.

Adding to these design challenges were the need to en-
sure HP quality and the time constraints of an aggressive
schedule.

Fig. 1 shows the mechanical layout of the autochanger.

Mechanical Functions

There are two basic mechanical functions of the product.

First, the user can load or remove a cartridge via the
mailslot. Second, the cartridges are moved from storage
slots and the mailslot to drives and vice versa via the picker
mechanism. These functions are implemented using two
motors and associated subsystems. All movement in the
product has been grouped into two tvpes: Y or vertical
motion and Z or horizontal motion.
Y Motion. All movement up and down along the vertical
ways is labeled Y motion. It is driven by a de¢ servo motor
and a vertically mounted leadscrew. A small toothed belt
drives the vertical leadscrew through a reduction gear. The
vertical carriage is attached to the leadscrew.

The vertical carriage is made up of the haorizontal car-
riage, picker, and translate mechanisms. All of these mech-
anisms are powered by a toothed belt called the T belt.

Z Motion. The Z or horizontal plane is the plane in which

the following motions occur;

® Plunge. The picker plunges to get a cartridge from a drive
or slot or to put a cartridge into a drive or slot. The picker

is the cartridge carrier, that is, the device that holds a

cartridge that is being moved between a storage slot and

a drive.
® Flip, The picker is caused to rotate 180 degrees.
® Translate. The system has two stacks of cartridges. In a

translate move, the Y and Z systems are positioned to

move the picker and the horizontal carriage—on which
the picker is mounted—from stack to stack. Translate
motions occur only at the lowest vertical position of the
vertical carriage.

® Mailslot Actuation. This is a special plunge with picker
side and vertical positioning.

All Z motion occurs within or as part of the vertical
carriage. All Z motion is driven by the T belt, which is
attached to the Z motor and oriented perpendicularly to
the vertical carriage assembly.

The plunge occurs in the picker mechanism. This motion
is driven by the T belt through a gear attached to the picker
leadserew. The flip is required because the disks are double-
sided and the drives are single-sided. The translate occurs
through a special combination of Y position and release
mechanisms on the vertical carriage. When all of the proper
conditions are met the Z motor will drive the horizontal
carriage from one stack to the other. Mailslot actuation
occurs at a particular vertical height, sensed by mating
actuators on the picker mechanism and the mailslot. When
all of the proper conditions are met a plunge motion of the
picker actuates the mailslot.

Vertical Carriage

As described earlier, the cartridge holder [picker) must
be able to move in the vertical direction to any magazine
or drive slot. It must also be able to move to one of the two
horizental positions. The vertical carriage is the mecha-
nism that constrains these motions. It is designed to hold
the end of the cartridge holder in close tolerance despite
variations of the sheet-metal structure that forms the enclo-
sure for the product and to which all of the other parts are
mounted and referenced. The vertical carriage is light in
weight to reduce dynamic forces. It is designed to be installed
and removed easily and to have a high degree of reliability.
The biggest challenge in its design proved to be designing
it to fit into a 375-mm box structure.

The vertical carriage is shown in Fig. 2. It is guided in
its vertical motion by a set of angled rails, which attach to
the structure, as shown in Fig. 1. The vertical carriage con-
sists of:
® A set of bearing blocks with roller bearings, which roll

on the rails
® Plastic carriage blocks, which hold the bearing blocks,

the T belt pulleys. and the horizontal rod and way
® The horizontal rod and way, which provide the translate
means for the horizontal carriage and picker.

In the breadboard design, a 0.75-inch-diameter rod and
a linear bearing were used for the vertical transport. How-
ever, because of the volume limitations, this design proved
difficult to implement. To solve this problem and meet
manufacturing requirements, the rail and roller bearing ap-
proach was chosen. The main problem this design faced
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was the variations of the sheet-metal structure. To account
for these variations, the right-side bearing blocks are con-
strained in the carriage block but are spring-loaded (float-
ing) between the vertical rail and the carriage block. This
allows the assembly to correct for up to a millimeter of
structure variation and still maintain the reference against
the left rail, which always serves as the vertical reference
surtace.

A steel bearing block linkage is used to stiffen the vertical
carriage assembly relative to the vertical rails. The bearing
block linkage ties the two floating bearing blocks together
to ensure that their motion always acts to tighten the ver-

Horizontal
Carriage

Fig. 3. Horizontal carnage and
picker mounted on the vertical
carrnage.

tical carriage within the vertical rails.

Because of the limited volume, the left-side rail has to
perform several functions. Half-inch holes in the bottom
of the extruded aluminum rail provide for mounting the
bearings and shaft. This assembly has space for gearing in
the back and the drive gear for the T belt in the front. At
the top, a quarter-inch slotted hole in the rail and a plastic
slider that fits around it provide a belt tensioner. The top
T belt idler pulley is placed through the slider and rail,
and is spring-loaded upwards to provide proper belt ten-
sion. Because the belt places a moment on the slider, it
will lock up when momentary high forces are encountered.
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This keeps the belt from slipping when the drive system
encounters the high force spikes sometimes seen during
magazine and drive insertions.

The bearing blocks provided several design challenges.
The first problem was running the bearings on the
aluminum rails. This was very noisy and caused the
aluminum to wear. Plastic tires were placed on the bear-
ings, but developed flat spots in storage temperature test-
ing. Plastic with better creep qualities was tried, but
showed fatigue failures shart of the required life.

For the final design, the plastic is Delrin and the tires
are redesigned to increase their surface contact area. The
bearing blocks were originally designed to be made of
aluminum, but the aluminum tended to gall while sliding
in the carriage blocks, and was much higher in cost than
initially expected. Therefore, an all-plastic design was con-
ceived, using bearing blocks made of polyphenylene sul-
fide with 40% glass. This design works much better. It
results in lower friction, lower wear, better tolerances be-
tween mating parts, and a significant cost savings.

The carriage blocks tie the horizontal rod and way to-
gether structurally, hold the T belt pulleys, and provide
the sliding constraints for the bearing blocks. Glass-filled
polycarbonate helps reduce the carriage blocks’ weight and
cost. Because the carriage blocks are the stops for translate
motions of the horizontal carriage, the distance between
the blocks is set by machined features in the horizontal
rod and way, which are held securely in place by crush
bumps in the plastic blocks and then bonded for added
rigidity. Once the vertical carriage is installed between the
side rails, the carriage blocks cannot separate,

The horizontal rod is a three-eighths-inch hardened
stainless-steel rod. The horizontal way at the bottom of the
vertical carriage is a machined aluminum L-section bar.
The top of the L section is a track for roller bearings on
the horizontal carriage and the bottom of the L section
provides a latch that holds the horizontal carriage in the
appropriate translate positions. The aluminum way also
provides a mounting surface for a portion of the translate
lock assembly. This way was originally to be extruded, but
the added machining made this less cost-effective than a
completely machined part.

Horizontal Carriage

The horizontal carriage supports the picker and trans-
lates it from one cartridge stack to the other. The support
structure for the horizontal carriage allows linear motion
in one axis while excluding linear motion in two axes and
rotational motion in three axes. A rigid structure is neces-
sary to ensure proper alignment of the picker for cartridge
exchanges,

The horizontal carriage is supported by the following
parts of the vertical carriage: the harizontal rod, the hori-
zontal way, the two carriage blocks, the four bearing blocks,
and the bearing block linkage on the spring-loaded (right)
side. Fig. 3 shows the horizontal carriage and picker
mounted on the vertical carriage.

A machined aluminum casting controls picker alignment
and serves as a mounting surface for the flip support, the
translation lock assembly, the hub lock assembly, two idler
shafts, two bearings for the main picker shaft, two tire

shafts, and two linear bearings for translation capabilities.
Rigiditv and spatial concerns top the list of design require-
ments.

The hardened, ground, steel horizontal rod supports the
horizontal carriage linear bearings. Twe tires on roller bear-
ings, mounted beneath the horizental carriage, ride on the
front and rear surfaces of the aluminum horizontal way (L
bar) to control rotation about the rod.

Translate Mechanism

The translate motion—moving a cartridge from one side
of the autochanger to the other—requires a combination of
the vertical and horizontal motions. There were six design
goals for the translate mechanism. First, in line with the
passive payload concept. the movement must only use the
two servo motors and require no additional sensors or sole-
noids to clutter a clean and reliable design. Second, the
mechanism must be reliable to one million cartridge ex-
changes. This requires a translate mechanism life of 1.5
million translates because, on the average, there are 1.5
translates per exchange. Third, no more than 6 mm of Y
motion can be used to actuate the translate mechanism.
Fourth, the design must minimize wear through proper
selection of materials and geometry. Fifth, the design must
be fault tolerant. This fault tolerance must include the abil-
ity to recover from power failures at all times, Sixth, the
design must allow translates at both the top and bottom
vertical positions to provide architectural flexibility, al-
though in the current product, translates only occur at the
bottom.

The translate mechanism (see Fig. 4) consists of the ver-
tical carriage including the horizontal carriage and the hori-
zontal way with adjustable stops, and the translate lock
mechanism. The translate lock mechanism (Fig. 5) consists
of:

m A translate lock arm, which pivots in and out of a slot
in the vertical carriage’s horizontal way

m A hublock, which can engage a notch in the picker hub
to prevent the hub from rotating

= A translate bar fixed in the structure, which pushes the

Plcker [ Horizontal
€ Carria
Hub ! i
A
O
Hublock
Arm

\_ Horizontal

Translate Way
Lock
Arm

Fig. 5. Translate lock mechanism.
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lock open.

Both the translate lock arm and the hublock are mounted
on the horizontal carriage. They are independently spring-
loaded downward for the normal case of the horizontal
carriage being locked in place and the plunge motion al-
lowed.

The translate lock mechanism has to hold the horizontal
carriage rigidly fixed normally, and ensure that only one
motion at a time can occur, either translate or plunge. En-
suring only singular motion is necessary because there are
no sensors to tell the system what the picker and horizontal
carriage are actually doing, so the servo could conceivably
get “lost” without this stipulation. Fig. 6 shows the two
basic locked positions: plunge allowed and translate pre-
vented or translate allowed and plunge prevented.

The translate lock arm pivols on a horizontal axis con-
tained within the horizontal carriage. The translate lock
arm is spring-loaded to pivot downward, which forces the
arm into a slot in the horizontal way and locks the horizon-
tal carriage, and therefore the picker, to one side of the
vertical carriage or the other. To minimize wear from the
sliding motions, the translate lock arm has a needle bearing
on its far end for contacting the translate bar and a molded
wear pad closer to the center that contacts the hublock.
The translate bar is rigidly attached to the sheet-metal struc-
ture and is the contact surface that actuates the translate
lock arm. The hublock is another downwardly spring-
loaded, pivoting arm that is responsible for locking the hub
when actuated by contact with the translate lock arm. The
hub is part of the plunge mechanism so that locking the
hub results in locking the plunge mechanism. Locking the
hub locks the horizontal carriage to the T belt so that the
Z servo can move the entire horizontal carriage instead of
just actuating the plunge motion.

The translate movement can best be described if split
into four phases. In phase 1, the Z motor lines up a slot in
the hub with the hublock, allowing for its eventual inser-
tion. The Y servo lowers the entire vertical carriage assem-
bly, causing the translate lock arm to contact and be pivoted
upward by the translate bar. The translate lock arm in turn
contacts the hublock, moving the hublock into the hub slot
and locking the hub and the plunger. At the end of phase
1, both the plunge and translate motions are locked. This
overlapping of the two locks is a reliability feature that

prevents the 7 servo from freewheeling and losing track of
where the picker is. The servo is always in positive control.

In phase 2, when the hub is securely locked, the translate
lock arm is lifted free and clear of the stops on the horizontal
way to allow the Z servo to translate the horizontal carriage
across the vertical carriage. Phase 2 is completed when the
Y servosaturates™® as a result of the vertical carriage’s hitting
the hard stop of the translate bar at the bottom of the struc-
ture, thus ending the vertical movement, No sensor is re-
quired to end the vertical movement, thus contributing to
reliability and simplicity,

In phase 3, the Y servo is stationary while the Z servo
drives the horizontal carriage from one side to the other.
The needle bearing on the translate lock arm rides on the
translate bar. This allows the tab on the translate lock arm
to clear the horizontal way along the entire path. The design
has to be tolerant of a possible power failure, since it would
be very easy to get into an unrecoverable position at this
time. To this end, the translate lock arm geometry is such
that if the vertical carriage rises, as it would after a power
failure, the Z servo can still pull the horizontal carriage to
one side and have the tab on the translate lock arm lock
into the stop. This is another major reason why the hublock
and the translate lock can never physically be unlocked at
the same time, even in the worst-case tolerance conditions.
Phase 3 ends with the Z servo saturating with the horizontal
carriage against the opposite side of the vertical carriage,
thereby finishing the translation part of the move.

The Z servo continues to saturate throughout phase 4,
while the Y servo moves the vertical carriage upward. This
movement allows the translate lock arm to drop into the
beveled stop in the horizontal way, which locks the hori-
zontal carriage. The hublock does not follow the translate
lock arm downward because it is held in place through
friction by the saturating Z servo. This ensures that the
horizontal carriage is in direct contact with the side, allow-
ing reliable locking of the translate lock arm. A bevel in
the stop eliminates the possibility that any burr in the lock
arm will cause it to hang up. The stop is adjusted during
assembly to ensure that the horizontal carriage does not
float sideways in the locked position. When the vertical
*Servo saturation means that fhe torgue output of the serva motar, which is calculated from

this matar voltage and the mator targue constant, has exgeeded athreshold. Servo saturation
5 also called force sense of touch

O

Fig. 6. (a) Translate lock arm

% Translate Bar at

Bottom of Structure

(a) (b)
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locked into horizontal way. Plunge
motions allowed. (b) Hublock arm
locked into picker hub. Translate
motians allowed—no plunge mo-
tions.
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carriage has moved vertically far enough toallow the needle
bearing on the translate lock arm to separate from the trans-
late bar, the Z servo comes out of saturation and allows
the hublock to fall back down onto the translate lock arm.
The translate move is now complete, freeing the auto-
changer to perform whatever other moves are requested.

Picker
Like the rest of the autochanger, the cartridge retrieval
mechanism is designed with simplicity in mind to help
meet both reliability and cost goals. The mechanism re-
quires four degrees of motion within a small form factor:
in‘out plunge, grasp/release cartridge, side-to-side trans-
late, and 180-degree flip. In spite of all the motions, it was
felt that the picker had to have a passive payload, that is,
no motors, solenoids, or sensors on the moving platform,
for the highest possible reliability.
Fig. 7 shows the basic layout of the mechanism. It con-
sists of six main components or subassemblies:
® The vertical carriage, which connects to the vertical
leadscrew, providing the up/down motion
® The horizontal carriage, which holds the cartridge picker
mechanism, flip latch, and translate lock arm, and trans-
lates from side to side
® The picker hub, which converts the belt motion to picker
plunge motion
® The picker itself, which can grab and hold a cartridge
® The translate lock mechanism, which either holds the
horizontal carriage fixed or allows it to translate from
side to side
® The flip latch mechanism, which holds the picker flat
during plunges but can allow the picker to be flipped
180 degrees.
The picker hub is a single plastic molded piece with
three functional sections. The back portion is a pulley,

Picker

which the belt from the motor engages to provide all the
power to the horizontal carriage and picker. The front is a
gear, which mates with a smaller gear on the end of the
picker’s leadscrew to convert the belt motion to picker
plunge motion. Finally, the center section has two cutouts
180 degrees apart which are used by the translation latch
to lock the hub. The belt is the only power source for the
entire picker mechanism, and the encoder on the motor
moving the belt is the only method of sensing anything on
the horizontal carriage.

The picker mechanism design was heavily influenced
by space constraints. The width of the sheet-metal structure
limited both picker width and picker height (because of
flips). Short structure-length constraints and long mini-
mum plunge depth requirements necessitated a compact
cartridge grasping mechanism. In addition, the front-panel
openings in the magnetooptical drives limited where the
picker could grab the cartridge and required that whatever
inserted the disk had to go well past the drive front panel.
Another concern was how to handle misalignments, par-
ticularly as the cartridge was loaded into the drive.

With these concerns in mind, the picker was designed
to mimic a hand pushing a cartridge into a drive. “Fingers”
grab the cartridge from either the drive or a magazine. and
the “thumb’ pushes the disk back into place. The
leadscrew’s nut floats within the thumb, providing the
muscle. (The nut is not rigidly attached to the thumb to
allow for leadscrew runout and general part variations.)
The finger mounts into the thumb, which in turn rides in
a plastic shell that has tracks to guide the finger to grab or
release the cartridge. Identical thumbs, fingers, and shell
halves are used on both sides to form the whole grasping
mechanism. Fig. 8 shows the two paths the fingers can take
depending on their initial position. The fingers are spring-
loaded to a normally rotated-in position. When the fingers

Vertical Carriage

/ Horizontal
| Carriage

g Translate Lock !
f Arm i J

| g
I \ Flip Latch Mechanism

Fig. 7. Cartridge retrieval mechanism.
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move out and contact the cartridge, thev are splayed out-
ward and grab the disk. In the track, a one-way gate turns
the system into a type of mechanical flip-flop. This gate,
a molded spring, is forced downward as the finger travels
over it from the drive side, but will not move down when
the fingers come from the picker side. Thus, with the next
plunge, the fingers must follow the release path and are
rotated out to release the cartridge. The center of the thumb
then pushes the cartridge to its final position. As the thumb
retracts, the fingers spring around again to their normally
closed position, ready to grab a cartridge on the next plunge.

Materials were an interesting challenge in the picker de-
sign, The one-way gate is made of Ultem, which has high
strength, good wear qualities, and low creep—important
characteristics for a preloaded, highlyv cycled spring. The
fingers, thumbs, and sleeves all require low-wearing mate-
rials, and since these parts slide against each other, each
has to be of a different material. The fingers also require

L Cartridge
> |

Splays
Outward

Plunge Motion

Fig. 8. Picker finger and thumb
mechanism.

high strength, so they are made of 35% long glass, 15%
Teflon polycarbonate. The thumbs have the most parts slid-
ing against them (leadscrew nuts, sleeves, and fingers) and
require good flatness, so they are molded of 30% glass,
15% Teflon Nylon 6/10. The sleeves, which are part of the
electrostatic discharge path for any charge that might build
up on the picker and affect the cartridge, are molded of
10% carbon, 15% Teflon polycarbonate.

Flip Mechanism

The objectives in designing the flip latch mechanism
were to use already existing motion and to limit the flip
to 180 degrees. Using the rotation of the picker hub without
moving the leadscrew satisfies the first objective, and smart
hard stops satisty the second. Fig. 9 shows the main parts
of the latch: the pivot arm, the release arm, and the cam.
In normal picker plunge motions, a nib on the rear of the
picker shell is trapped between the pivot arm on the bottom

Flip Support
Bracket

Release Arm \\

Arrow Indicates the
Spring Load Direction

=
o)

‘/ Motion of

Picker Flip

Pivot Arm /
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Fig. 9. Flip latch mechanism.
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and the cam on the top. This keeps the picker flat with
respect to the drives and magazines. Fig. 10 shows the
steps involved in opening and closing the lock during a
flip. To flip, the thumb plunges backwards. pushing the
release arm, which is mounted on the pivot arm. Although
the release arm can rotate downward on the pivot arm, the
thumb, pushing backward on the release arm, forces the
pivot arm to rotate backward also, allowing the nib to fall
down through. As the belt continues to rotate the hub, the
picker’s leadscrew bottoms out when the thumb can move
back no farther. Thus the entire picker rotates with the
hub. As soon as the nib has cleared the pivot arm, the arm
springs back to its normal position. At the end of the flip,
the nib from the other side comes around, opens the cam,
and is stopped by the pivot arm. The thumb, which origi-
nally pushed the release arm backward, now pushes it
down. With the release arm down, the picker cannot flip
again until the lock is rearmed, that is, until the thumb
plunges out far enough to allow the release arm to spring
back up again.

Stress loads, space, tolerance build-up, and fail-safe
once-only actuation were the major concerns in the design
of the flip mechanism. Long fiberglass material in both the
cam and the pivot arm gives the parts superior wear and
impact strength. The orientation of the latch parts not only
economizes space but puts the impact loading down onto
the pivot shaft for minimal bending stresses. The cam al-
lows for variations in parts and any wear in use while
maintaining the picker fixed during plunge operations. The
back side of the release arm is designed to help prevent
accidental double flips. When the release arm is rotated
just slightly, the back no longer aligns with a through hole
in the lock’s support bracket. This prevents the pivot arm
from rotating and eliminates the possibility that the impact
at the end of the flip might cause the flip latch to open again.

Mailslot

The mailslot is a mechanism that allows the user to install
a cartridge in the autochanger just as if it were being put
into a drive. For the picker to grab the disk cartridge, the
mailslot mechanism must rotate the cartridge 180 degrees.

The part of the mailslot that accepts and delivers car-
tridges is called the carrier. In the out position, the carrier
extends the cartridge approximately 20 mm out from the
front panel for ease of removal by the user. When a cartridge
is installed and pushed flush with the front panel, a spring

(a) (b)

mechanism catches, giving the user a stop position. As this
position is reached, a sensor trips. indicating that the
mailslot has a cartridge installed. The picker then moves
to the correct height to activate the mechanism. Using the
picker to activate the mailslot eliminates the need for
another motor in the system.

The mailslot rotates the cartridge using forces applied
through the picker and an actuator (see Fig. 11). The ac-
tuator is approximately at the center of mass of the cartridge
and the carrier, thereby keeping the forces in a straight
line. The leadscrew nut on the picker drives the actuator.
The actuator and the carrier run in tracks molded into the
top and bottom pieces of the mailslot. The tracks are de-
signed so that as the actuator drives the the carrier from
front to back in the mailslot, the carrier is rotated 180
degrees.

The cartridge load sequence consists of the following
moves:

User pushes load button

Move picker to mailslot actuate height

Plunge to maximum get position

Check for sensor sensing cartridge in mailslot

Rotate mail in

. Move to get-mail height

. Plunge to get cartridge

. Pull cartridge into picker

. [Sequence of moves to put cartridge into drive or mag-
azine)

10. Move to mailslot actuate height

11. Rotate mail out.

When the carrier is facing the inside of the autochanger,
it looks like another magazine slot to the picker. When the
garrier is facing the outside it looks like a drive to the user.
A special catch mechanism between the actuator and the
mailslot top keeps the carrier from moving when either the
user or the picker is pushing or pulling on the cartridge.
but allows the carrier to be rotated and moved when the
picker is pushing or pulling on the actuator. In other words,
the carrier has limit positions on both sides of the mailslot,
and the actuator must be the moving device to move the
carrier past these limit positions.

Because the carrier slides in the top and bottom pieces
of the mailslot, the wear of the carrier against these parts
required special materials considerations. The carrier and
actuator needed to be different from the top and bottom,
but all parts were to be molded. For regulatory reasons, all

Picker
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Fig. 10. Flip latch operation. (a) Initiation of flip. Thumb pushes release arm. (b) Start of flip.
Picker falls through. (c) Start of cam opening. (d) End position of flip. Release arm cocked.
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of the materials had to be self-extinguishing when exposed
to flame. The top and bottom are made of polycarbonate
with glass and Teflon fillers. Polycarbonate is used because
of its low cost, since these are the two largest parts. The
Teflon (PTFE) is put in for friction reduction. The glass is
added because the parts need to be flat and strong enough
to hold the whole assembly while the user or picker pushes
on the mechanism from either side. A special milled glass
fiber was chosen as a filler because it tends to produce
flatter parts (£0.2 mm across the part) and adds the required
stiffness. The carrier and actuator are both molded out of
polyethersulfone (PES) with Teflon filler. PES has several
characteristics that are needed in the part design. It is very
dimensionally stable material. The PES and polycarbonate
materials wear against each other very well. PES can be
color matched to the custom color required by HP. Also,
PES can be ultrasonically welded. The carrier is approxi-
mately 120 mm deep over a section 11 mm high. Molding
this would be very difficult if not impossible, so the carrier
is made in two pieces and the two are welded together.
To assemble the mailslot, all parts are either added to
the top half of the enclosure or placed directly into the
bottom half. The top and bottom are then screwed together.

Magazines

The four magazines in the HP Series 6300 Model 20GB/A
rewritable optical disk library system each hold eight mag-
netooptical disk cartridges (Fig. 12). The magazines must
hold the cartridges in position for the picker to remove and
replace them without too much force, but they must also
hold the cartridges while the machine is physically moved.
The magazines are designed so that referencing and align-
ment are correct when the assembly is inserted into the

structure.

The alternative of molding the magazine assemblies in
one part was ruled out because of schedule constraints and
tooling costs. Minimum wear on the cartridge contact sur-
faces required a plastic part, and for ease of assembly we
use a sheet-metal mating part. The entire magazine assem-
bly uses only three parts: a plastic part used four times, a
sheet metal part used twice, and a plastite screw used eight
times. Details needed for holding the cartridges are easily
created in the plastic part. Sheet metal is an inexpensive
and effective way of holding the plastic parts together and
referencing them into the structure.

The plastic guide in the magazine assembly is made of
polycarbonate with 10% PTFE (Teflon) and 10% aramid
(Kevlar) fibers. The Teflon is added for friction reduction.
Testing during product development showed that the stan-
dard cartridge case made of ABS wore too easily against
even the lubricaled guide, so the cartridge cases were
changed to polycarbonate. Extensive testing has shown
making both the cartridge case and the guide of polycarbo-
nate is acceptable because of the lubrication in the guide.

The aramid is an additive for dimensional stability. Dur-
ing molding, the aramid ensures that the part shrinkage is
the same in both flow directions. This keeps the plastic
guide stable in all of its required referencing tasks. The
cartridge is spaced and held vertically by the guide. The
catch details for holding the cartridge are molded into this
part and close tolerances are needed for a proper snap fit.
The plastic molding process allows a design that lowers
insertion force but keeps the removal force at desired levels.
Fig. 12 shows the cantilever spring and cartridge snap de-
tails.

The autochanger is designed for a million exchanges.
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Therefore, the springs designed into the guides must have
a long fatigue life. The Kevlar is helpful in this area, but
not as much as fiberglass would be. A trade-off of dimen-
sional stability for part strength and therefore fatigue life
was made in the choice of materials. This trade-off has
required testing to ensure that the spring life is at least
150,000 cycles per spring. Considerable testing has estab-
lished that the part meets the requirement. The cantilever
springs are designed for constant stress over their entire
length.

The sheet-metal part is a horizontally symmetric part
that holds the plastic parts together and allows easy instal-
lation of the assembly into the structure. This part is folded
such that the side plastic parts are accurately located with
respect to the reference surfaces on the sides of the struc-
ture. This reference scheme keeps the tolerances between
the magazines and other critical elements to a minimum.
Once the magazine assembly is built, it can only be installed
correctly into the machine. Hard-tooling of the sheet-metal
part reduced magazine location errors and improved per-
formance of the unit during of the course of testing and
design.
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Optical Disk Autochanger
Servomechanism Design

A “sense of touch” and error recovery routines contribute
to reliability. Data capture, error injection, and mechanical
regression testing facilities improved the productivity of the

designers.

by Thomas C. Oliver and Mark J. Bianchi

HE SERVOMECHANISM OF THE HP Series 6300

I Model 20GB/A rewritable optical disk library system

isacollection of electronics and firmware algorithms

that control the autochanger mechanism. The servo pro-

vides the muscles and brains that bring the mechanical

limbs to life. Muscles are provided using motars, power

supplies, and sensors. The brains are contained in the

firmware program that controls how the muscles are ener-
gized.

It is the responsibility of the servo to control the auto-
changer mechanism reliably. Designing for reliable control
requires that many aspects of the system be analyzed and
optimized. The design encompasses a broad range of en-
gineering disciplines, including system models for stability
and performance, continuous and discrete-time control
theory, firmware architecture, motor parameter optimiza-
tion, analog hardware design, and digital logic design.

Goals and Solutions

The goals for the servomechanism design were high re-
liability, flexibility, system stability, high performance,
user safety, and contributions to other parts of the develop-

HP Motor Control IC

Drivers

Decoder &

ment effort.

Techniques for achieving high reliabilitv include the
sense of touch for adaptive, gentle movements, minimizing
the number of components through firmware integration,
the use of proven, reliable technologies (HP ICs, standard
LSI, surface mount technology), increasing hardware de-
sign margins by overrating, and the use of self-calibration,
error detection, and recovery techniques.

Flexibility is provided by firmware implementation of
servo functions, a modular design architecture, and the use
of a high-level programming language.

Svstem stability is ensured by extensive system modeling
before and during implementation, optimized programma-
ble compensation for each movement, and margin verifica-
tion over all operating ranges.

High performance is achieved by optimal compensator
selection for each movement, motor and power supply op-
timization based on the performance model, and overlap-
ping of movements.

User safely is ensured by continuously monitoring
applied forces in firmware and hardware.

Contributions to the development project outside the

Counter
68000 Bus

Mechanism

Vo Shutdown
Register Circuitry
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servo area include a data capture system, mechanical re-
gression tests, error injection, and code that can be lever-
aged by other projects.

Design Philosophy

Extensive modeling was performed before the design was
implemented. A performance model was developed so that
motors, gears, and power supplies could be selected to
meet the swap time goal. Plant models and compensator
techniques® were simulated so that optimal control
schemes could be investigated. Bandwidth analysis was
required to ensure that a microprocessor could close the
control loop fast enough. Root locus and Bode analysis
methods were vital tools used to ensure adequate stability
margins.

Proven, reliable HP technologies are emploved in the
servo design. Digital implementations were selected over
analog techniques because they offer greater flexibility and
fewer components. A custom digital IC from the HP
DraftPro plotter family is used because it has a proven track
record and is used in large volumes. HP optical encoders
were a natural choice based on their exceptional reliability
and manufacturability. A power driver from the HP 7980A
tape drive is also used. Design margins were increased on
all critical components, particularly the devices that dissi-
pate large amounts of power. Additional reliability is
achieved by sharing a single microprocessor between the
servo and interface functions.

The servo firmware architecture contributes to HP Series
6300 Model 20GB/A reliability on many levels. The firm-
ware is designed to provide maximum integration of servo
functions such as closed-loop control, profile generation,
and error detection. Firmware integration helps reduce
parts count and increase flexibility. A “sense of touch”
technique was developed to eliminate the need for sensors
on the moving transport, a key contribution to reliability,
Control of each mechanical function (vertical movement,
flip, translate, [/O) is tailored to provide gentle, adaptive

*A plant model (s a3 cantrol theory model of the device being controlled, Compensator
tachniques are methods of stabllizing the control systerm
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movements. Self-calibration, error detection, and error re-
covery play key roles in increasing reliability and manufac-
turability.

Another project philosophy was to increase the produc-
tivity of the design team through the creation and use of
tools. Features such as data capture, error injection, and
mechanical regression tests are incorporated into the
firmware to give the design engineers a “mechanical oscil-
loscope” for the mechanism. Our investment in networked
HP 9000 workstations provided a common development,
debug, and testing platform for the design team.

Hardware Architecture

The servo hardware is kept to a minimum to ensure
reliability. Digital circuitry is used whenever possible be-
cause it usually requires fewer parts and is more flexible
than analog implementations. Real-time functions, which
can't be performed in firmware, reside in hardware. These
functions include the motor drivers and the motor position
encoding. Fig. 1 shows the servo hardware architecture.

The motor driver consists of a pulse width modulator
and an H-bridge amplifier. A custom HP ASIC (application-
specific IC) is used to generate a PWM (pulse width mod-
ulation) signal for two motor drivers configured for bidirec-
tional operation. The IC contains a register that is used to
transform a digital value into a TTL PWM signal having a
duty cvele proportional to the register value. A state se-
quencer PAL (programmable array logic) transforms the
IC's outputs into four time-sequenced signals that control
operation of the FET H-bridge. The PAL prevents cross
conduction in the FET H-bridge and offers a flexible alter-
native to analog time delay circuits. The FETs amplify the
sequencer outputs and present voltage pulses to the motor.
The motor averages out the high-frequency pulses and re-
sponds as if a de voltage were applied at its inputs.

As the motor turns, its two-channel shaft encoder sends
a series of pulses to the HP ASIC. Quadrature decoding is
performed by the ASIC, and a register representing the
motor position is made available to the system. Thus, the
firmware uses the ASIC as a single interface with which

To/From
Hardware
{Motor Control IC)

Fig. 2. Top-level firmware ar-
chitecture.
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to control the motor voltage and receive positional feed-

back.

Firmware Architecture

The servo firmware is partitioned into two types of code:
real-time and nonreal-time. Real-time firmware is referred
to as servo code while nonreal-time firmware is called
mechanism code. Servo code is responsible for the closed-
loop operation of the system. Real-time code is placed in
an interrupt routine, which executes once every milli-
second. Mechanism operations are coordinated by the
mechanism code through control of the servo code. The
two processes communicate through a set of primitive
routines, which manage the flow of commands and state
information. Fig. 2 shows the overall firmware architecture
and Fig. 3 shows the servo firmware architecture.

Servo Code

The servo code is responsible for closed-loop compensa-
tion, profile generation, sense of touch calculation, error
detection and shutdown, and development tools.
Closed-Loop Compensation. Closed-loop compensation is
the algorithm that determines how the motors respond to
command position changes or payload disturbances. Com-
pensation is implemented with a simple P-D (proportional-
derivative) algorithm. It can be described by the following
equation:

pwm = K, (e — K,w),

where pwm is the command voltage to the PWM on the
motor control ASIC, e is the motor’s position error, w is
the motor's angular velocity, K, is the proportional gain
(stiffness), and K, is the derivative gain.

Since each mechanical function has a different load

characteristic, the servo gains must be adjusted for each
mechanical operation. Knowledge of the load is maintained
by the mechanism code, which controls these gain values.
Profile Generation. The method used to change the motors’
position from point (Y;,Z,) to point (Y,,Z,) is referred to
as profile generation. Profile generation is the creation of
a series of command positions to the Y and Z compensators
that will cause the motors to move a desired distance. A
trapezoidal velocily profile is generated based on parame-
ters of distance, acceleration, and peak velocity. Scaling is
also performed to allow the motors to move different dis-
tances at different speeds simultaneously.
Sense of Touch Calculation. The servo code is responsible
for determining the forces being exerted by each motor/load
system. Forces are monitored by the servo and mechanism
firmware to obtain an additional form of feedback from the
mechanism. During each interrupt, the servo calculates
force using an equation based on motor voltage and veloc-
ity. The equation is:

f = Kspwm — Ky,
where f is the applied force, pwm is the command voltage
to the PWM on the motor control IC, o is the motor speed,

and K, and K, are constants based on the motors and gear-
ing. Traditional techniques use direct current measure-
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ment, which involves added circuitry and cost.

Error Detection and Shutdewn. Error detection isan impor-
tant safety and reliability feature of the servo code. During
each interrupt, the servo firmware monitors the forces, volt-
ages, and currents of both motor systems to determine if
an error condition exists. Measured values are compared
against expected thresholds for a given submove. The
mechanism control code tailors the threshold for each sub-
move within a mechanical operation. If limits are exceeded,
the servo will immediately disable motor power and record
pertinent information for later processing.

Development Tools. The servo code also performs func-
tions that aided in the project as a whole. Features such
as data capture, error injection, and peak force detection
were designed into the firmware in its early stages. Data
capture provided designers with a multichannel “mechan-
ical oscilloscope” to observe key variables used in the servo
interrupt (see “Data Capture,” page 29). Error injection al-
lowed designers to simulate error conditions within the
servo code and observe the system'’s response (see “Error
Injection,” page 33). Peak force detection provides servo
information that was used to identify movements that were
stressing the design margins of the mechanical assemblies.
Hooks for the mechanical regression test were used to de-
termine how well a unit was operating over time.

Mechanism Code

The mechanism code provides a translation between the
SCSI interface and the servo code. Commands are received
and executed by transforming them into a series of smaller
submoves. Adaption, error detection, and recovery func-
tionalities also reside in the mechanism code.

The mechanism code accepts high-level commands from
the autochanger interface, executes the command, and re-
turns status. High-level commands include the following:
® Move/Exchange. Move cartridge from element A to ele-

ment B.
® Seek. Position transport at target element.

B Test. Test for the presence of a cartridge at a target ele-
ment.

B Actuate Mailslot. Rotate the mailslot assembly to per-
form /O with the user.

An element is defined to be any possible resting place for

a cartridge, including storage magazines, optical drives,

the mailslot, and the transport.

The commands are transformed into a series of basic
autochanger operations, such as:

m Vertical Move. Position transport to a vertical position.

® Translate. Position transport to access a given vertical
stack of cartridges.

= Flip. Rotate the transport.

® Cartridge I/O. Control the plunger to move cartridges
between the transport and the magazines, drives, or
mailslot.

® Rotate Mailslot. Control the plunger to rotate the mailslot
assembly to or from the user,

For example, “Move element 11 to element 2 with flip”
would be transformed into the following sequence of auto-
changer functions:

1) Determine that element 11 is a storage slot and element
2 is a drive,

2) Determine if a translate is required to position the trans-
port to the appropriate stack for the storage slot. If so,
perform the translate.

3) Perform vertical move to the storage element.

4) Get cartridge from the storage element.

5) Perform flip.

6) Determine if a translate is required to position the trans-
port to the appropriate stack for the drive. If so, perform
the translate.

7) Perform vertical move to the drive element.

8) Put cartridge into the drive element.

Each autochanger function is then transformed into a
series of small movements called submoves. There are two
types of submoves:
® Move (Y,Z). Move motors a given distance at a specified

acceleration and peak speed.

® Saturate (Y,Z). Same as a move except that motion is
halted if force exceeds a specified threshold.

Move (Y,Z) is used for high-speed, unobstructed move-
ments of a known distance. Saturate (Y,Z) is for low-speed,
adaptive movements of variable distance.

Autochanger functions consist of one or more combina-
tions of move (Y.Z) and saturate (Y.Z) submoves. Each
function has a tailored set of these submoves that guaran-
tees that the movements will be gentle. As the submoves
are executed, the servo gains are adjusted to allow for
changes in load characteristics. An example of the process
for a flip is outlined below:

1) Move plunger backwards a fixed distance to engage the
flip lock.

2) Change gain for flipping.

3) Move plunger backwards a fixed distance to perform
the flip.

4) Ensure that the flip is completed by performing a satu-
rate until the force exceeds a fixed threshold.

5) Change gain for plunger movement.

6) Move plunger forward to relieve the force.

Each submove within a function has a unique set of
stability, performance, error recovery, force, and reliability
critera. Each submove is assigned a unique identification
code (ID) which is used to determine how the move should
be performed. Before a submove is executed, its ID is used
to fetch acceleration, velocity, and force limits to use. If
the move fails, its ID is used to determine the type of error
recovery scheme to employ. This tailored technique pro-
vides gentle, stable control of the mechanism, thus increas-
ing reliability.

Adaption

Adaptive algorithms were developed to increase reliabil-
ity and decrease sensitivities to dimensional variations.
Dimensions that require adaption are the translate distance,
flip distance, magazine depths, mailslot depth, and mail-
slot actuator throw. If a dimension is susceptible to vari-
ation, the firmware is designed to measure the distance
using a two-step process. The first step is to undershoot
the typical position using a move. The second step is to
perform a saturate until a hard stop is encountered. The
amount of variation is calculated and the proper dimen-
sional adjustment is made. Subsequent operations will be
performed at full speed using the newly calibrated dimen-
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sion. This form of self-correction eliminates unnecessary
impulse forces caused by tolerance buildup.

Adaption is also used to increase the reliability of the
autochanger/drive interface. Initially, drive insertions are
performed at slow speeds. An adaptive technique is em-
ployed to measure the point at which the drive accepts the
cartridge. The results are used so that subsequent insertions
are exact and can occur at high speed.

Mechanism Initialization

For the servo firmware to be able to perform controlled
movements, the mechanism must be methodically set into
a known initial state. This process of initializing the trans-
port system is referred to as finding home. The successful
completion of the find home routines is crucial for the
proper operation of the autochanger.

The transport mechanism is designed to operate through
a number of degrees of freedom using only two servo
motors. As a result, motions such as flip, translate, and
insert/extract require the servo to move the transport thumb
to specific absolute positions within the transport sleeve
(see article, page 14). The translate motion, in addition to
requiring a specific location along the transport sleeve,
requires an absolute reference point at the bottom of the
autochanger. These positional requirements necessitate the
accurate and repeatable location of two points of origin
from which the servo can reference its motions. These are
called the plunge origin and the vertical origin. Once these
points of origin are found, the servo can reliably perform
all of its fundamental movements. However, the auto-
changer may have power removed at any time during one
of its motions. This implies that upon subsequent restora-
tion of power, the mechanism may not be in a state that
facilitates locating these points of origin. The find home
algorithms must therefore be capable of interpreting the
current state of the mechanics through various feedback
methods, moving the mechanics in such a way that location
of the points of origin is possible, and finally locating the
points of origin in a very repeatable and reliable manner.

To interpret the current state of the mechanics upon
power-up, the find home process employs a number of
algorithms collectively referred to as initial recovery. These
algorithms are charged with assessing the state of the me-
chanics using position feedback and force sense of touch.
Once sufficient information has been gathered, these al-
gorithms are also responsible for maneuvering the mecha-
nism to a position from which it is possible to complete
the find home process. Each initial recovery algorithm is
designed to perform specific motions assuming a certain
mechanical configuration and/or range of position. There-
fore, each algorithm is most effective when used with a
specific move type. To choose the recovery algorithm that
best matches the current state of the autochanger, the non-
volatile RAM is examined to determine the ID of the last
movement that was occurring when the power was re-
moved. This number is used to select the appropriate initial
recovery routine.

Once the initial recovery routine has completed, the find
home process can proceed with locating the plunge and
vertical origins. This process involves a number of steps
that must be performed in a specific order. The transport
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must complete a full flip so that the mechanical hard stop
along the plunge axis can be located. Force sense of touch
is employed to locate this point and the servo firmware
initializes the plunge axis position to zero. The transport
can then be moved downward to locate the vertical hard
stop at the bottom of the autochanger. After this is deter-
mined using force sense of touch, the vertical position is
initialized to zero. The last basic find home motion is per-
formed by sensing which vertical stack the transport is
facing. Once the two axis origins have been located and
the correct stack has been set, the mechanism is able to
perform all of its fundamental motions,

Three more operations are performed that provide the
firmware with additional information. The first involves a
slow traversal of the two vertical stacks while monitoring
the vertical force. This motion ensures that the entire path
is free of obstructions. The second involves determining
whether there is a cartridge in the transport sleeve. This
is performed by moving the plunger slowly outward to-
wards a solid section of the mailslot while monitoring the
force exerted. The presence or absence of a large force
increase denotes the presence or absence of a cartridge.
The third operation involves determining which side of
the transport sleeve is facing upward. This piece of infor-
mation is important since it helps determine the orientation
of the cartridge before it is inserted into a magnetooptical
drive. These drives are single-sided devices, so proper
orientation of the cartridge is vital to the successful comple-
tion of a move or exchange command.

The accurate positioning of the front of the transport is
critical for reliable insertion and retraction of cartridges
into and from the magazine slots and magnetooptical
drives. The servo system is capable of very accurate posi-
tioning of the transport mechanism. However, vertical mo-
tion of the transport is controlled from the horizontal car-
riage assembly, which is in the rear of the transport.
Mechanical tolerances and variations in the manufacturing
of the transport assembly may result in the mechanism’s
not being exactly perpendicular with the vertical axis. In
addition to a deviation from perpendicular, the front of the
transport may change its vertical position in flipping from
one side to another and from changing from one vertical
stack to another. To compensate for these three variations,
two optical sensors are employed in conjunction with
firmware algorithms to calibrate the transport system.

Transport Calibration

The accurate positioning of the front of the transport is
critical for reliable insertion and retraction of disks into
and from the magazine slots and optical drives. The servo
system is capable of very accurate positioning of the trans-
port mechanism. However, vertical motion of the transport
is controlled from the horizontal carriage assembly, which
is in the rear of the transport. Mechanical tolerances and
variations in the manufacturing of the transport assembly
result in a mechanism that may not be exactly perpendicu-
lar to the vertical axis. In addition to a deviation from
perpendicular, the front of the transport can change its
vertical position in flipping from one side to another and
in changing from one vertical stack to another. To compen-
sate for these three variations, two optical sensors are em-
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Data Capture System

Early in the development of the autochanger, it was found that
much of the servomechanical testing and evaluation could not
be performed by visual observation. The unaided eye was sulfi-
cient to diagnose gross mechanical problems at slow speeds
However, the design team needed some way o instrument the
autochanger so that servo and mechanical parameters could be
accuraiely corfelated and analyzed. Typical methods of mea-
surement would have involved the use of accelerometers and/or
high-speed cameras to provide dynamic measurements. These
techniques were dismissed since they could not provide many
of the measurements nesded by the team, and because of the
difficulty of synchronizing their output with simultaneous mea-
surements of the servo loops. A "mechanical oscilloscope” was
deemed necessary to facilitate the debugging of high-speed,
dynamic problems and to assist the designers in the evaluation
of design modifications. Thus, the data caplture systemwas born.

The data capture system |s a combination of firmware-resident
procedures and workstation-based tools. It provides the design-
ers with the means to examine the variation of any important
firmware variable with respect to time. The capture system em-
ploys the HP 64000 emulation system in conjunction with “home-
grown” data processing and plotting tools. It is designed to be
used in a windowed environment, since its output is displayed
as an X-Y graph of the variables of interest. Autaplot, a very flexible,
general-purpose plotting program, displays the output data in a
graphics window for quick viewing. The beauty of the system is
that no special hardware is needed, assuming that one has a
workstation and an emulation system. In our case, each firmware
designer had both of these, so each designer also had a com-
plete data capture system. This greatly improved the team's
productivity and ability to debug complex, dynamic servo-
mechanical problems

Since the servo system contains accurate position information
and is operated on a repeatable time base (one-millisecond in-
terrupt cycle), it is an excellent choice for a mechanical measure-
ment system, Positions, velocities, accelerations, and forces are
accurately measured in the servo loops and are maintained In
digital format. The data capture firmware exploits this by simply
copying the values of these variables into a buffer during the
servo interrupt cycle. In this way, a log of sampled data is created
that can be processed into graphical format.

The data capture system allows a number of variables (up to
10) to be traced simultaneously during a user-specified length
of time. The sampling period can be set from the highest resolu-
tion of one sample per millisecond down to the lowest of one
sample per 255 milliseconds. In addition, the trigger event that
begins the data trace can be set to one of four different conditions:
(1) the first occurrence of a specified move I1D, (2) the first occur-
rence of a specified error code, (3) the occurrence of any error
condition, or (4) a special event that can be inserted into the
firmware specifically for debugging. The trigger location within
the capture time is also user-definable and can be set at the
beginning, the center, or the end of the capture period. This
feature makes it possible to view data that immediately follows
the trigger event, data that surrounds the trigger event, or data
that precedes the trigger event.

Data Capture Operation

Fig. 1 shows how the data capture system operates. The cap-
ture parameters for a specific trace (variables of interest, sample
period, capture time, and trigger condition and position) are

entered into a text file. A shall script is invoked that converts this
text file into an HP 84000 command script. After executing this
command script in the emulation window, the data capture sys-
tem is armed and awaits the trigger condition. At this point, ine
data capture routines begin copying the values of the specified
variables into the data capture buffer, which is located in an
unused area of emulator RAM. These routines capy the variables
into sequential memory locations in the buffer every sample
period. The size of the capture buffer is determined by the number
of variables. the size of each variable (byte, word, or long word),
the time between samples, and the capture duration. The capture
firmware uses pointer arithmetic to keep track of the beginning
and end of the buffer, and to implement a circular buffer. Once
the capiure system is enabled, the autochanger is instructed to
perform the motions that will cause the trigger event to occur.
When the trigger condition occurs, the remainder of the capture
bufter is filled with data.

At this point, another command script is executed in the emu-
iation window, This script copies the contents of the buffer mem-
ory to a file. This data file is then processed by a program called
mkpit, which generates autoplot commands as its output. The infor-
mation displayed in the output plot is determined by parameters
located within the data capture configuration file. These param-
eters define which captured variables should be plotted on each
axis, what sealing factor should be applied to each variable, and
what titles should be placed on each axis. Mkpit also allows simple
math functions to be performed on the variables (e.g.. plot “vart
— var2" or plot *— var3"). Any of the captured variables can be
used as the independent variable instead of time. For example,
it is possible to plot the measured vertical force along the Y axis
and the measured vertical position along the X axis. The mechan-
ical regression utilities make use of this feature to generate a
plot of friction versus position along a given mechanical axis.

A rew data trace can be created by reexecuting the HP 64000
command script, exercising the autochanger, saving the buffer
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Fig. 1. Operation of the data capture system.
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data, and then plotting the resulting data file. A trace of different
variables triggered by a different event can be captured easily
by simply editing a new configuration file and repeating the
aforementioned process.

Fig. 2 is a plot generated by the data capture system. The
data for this plot was captured during a vertical motion of the
autochanger's transport mechanism. It shows the position, veloc-
ity, and force applied by the vertical motor.

Second System

A second data capture system was developed that further
exploits the hardware on the autochanger controlier board. This
system collects a few vital bytes of data every 10 milliseconds
and transfers this data to a workstation for collection and postpro-
cessing. The controller board contains an RS-232 port, which
can be connected to a terminal for debugging purposes. The
design team determined that this interface was capable of trans-
ferring 18 bytes of data every 10 milliseconds if the baud rate
were set at 19,200 baud. Using this information, the designers
decided upon a select number of important variables that would
be most useful in deciphering and debugging error conditions.
Firmware was written that gathers these bytes of data and trans-
fers them to the RS-232 port upon demand.

Data collection is accomplished by first establishing a physical
connection between the autochanger under test and an HP-UX
workstation via an RS-232 port. The eu program (cu is a standard
HP-UX communication program) is invoked on the workstation
and its output is redirected into a file. When the appropriate
command is typed, the autochanger firmware begins transferring

500 E00 Fig. 2. Typical data capture sys-

tem plot.

the 18-byte packets of data to the workstation. This data collection
may last from seconds to hours, depending on the objective of
the autochanger testing. The output file can be processed con-
currently with the data collection or examined after the data trans-
fer is completed,

Two programs were developed 1o process the data produced
by this system. The first, called pll. is used to filter out any incom-
plete packets of data. The first byte of data in each packet is a
counter, which is incremented after each packet is transferred.
This is used by pil to screen out any data dropouts. The second
program, mesplt, IS & posiprocessing program similar to the one
used in the emulation-based capture system. However, this pro-
gram offers many more triggering and display features. With
mesplt, it is possible to scan through vast amounts of data and
plot only the specific condition or conditions that are requested.
Statistical values, such as minimum, maximum, and mean force
measured over minutes or hours, can be plotted quickly. A
weekend's worth of data, collected from an operating auto-
changer, can be easily scanned to locate and examine the events
that led to a specific error code. The usefulness of this tool in
debugging infrequent error conditions cannot be overestimated.
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ployed in conjunction with firmware algorithms to cali-
brate the transport system.

The autochanger is designed so that all magazine slots
and drives are accurately mounted and referenced to the
walls of the autochanger structure. The optical sensors are
also accurately referenced to this same structure and each
one's trip point is very tightly specified. Hence, the distance
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from the trip point to any one of the vertical locations is
known within a very small mechanical tolerance. The
firmware contains a table of these distances stored in ROM.
By measuring the height of the sensors with respect to the
vertical origin, the firmware is able to position the front of
the transport accurately at any storage slot or drive. Mea-
surement of these sensors is performed by moving the trans-
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port down toward a sensor (with the plunge leadscrew
facing upward) while monitoring the output state of that
sensor. The state of the sensor will change when the appro-
priate flag on the transport sleeve interrupts the optical
beam. When this occurs, the vertical encoder position is
stored as the height of the sensor. A similar measurement
is performed after the transport sleeve has been flipped
and the plunge leadscrew is facing downward. The differ-
ence in height between the two sides of the sleeve is stored
as another calibration offset. Thus. accurate positioning to
a given storage slot or drive entails a combination of three
distances: (1) the mechanical distance from the optical sen-
sor to the slot or drive of interest, (2) the distance from the
vertical origin to the optical sensor located in the same
stack as the slot or drive of interest, and (3) an offset result-
ing from the orientation of the transport sleeve.

Service

It is important that the find home and calibration pro-
cesses be as adaptive and fault-tolerant as possible, since
proper operation of the autochanger depends upon their
successful completion. If these processes cannot be suc-
cessfully completed, then the autochanger is inoperable
and must be serviced by a customer engineer. Unnecessary
service calls negatively impact the praoduct’s reliability and
add to its cost of ownership. For these reasons, much effort
was spent on the design of the find home algorithms in an
effort to make them as robust as possible.

In the event that something has broken within the au-
tochanger, repair time can be significantly reduced if the
autochanger can make intelligent inferences regarding the
faulty components. The find home and calibration routines
perform checks after each motion to determine if an incor-
rect condition exists. If such a condition exists, the firm-
ware will set an appropriate error code and will suggest a
list of up to three field replaceable units that it believes
may be faulty. This self-diagnosis allows the customer en-
gineer to verify and repair the faulty units rapidly.

Error Recovery
Error recovery is the process by which an unexpected
condition is rectified so that normal operation can con-
tinue. In the autochanger mechanism, errors may occur for
a number of different reasons. Some of these reasons are:
® The host computer requested that a cartridge be moved
from a location that did not contain a cartridge.
® There is a temporary mechanical misalignment because
of the dynamic nature of the mechanism.

® A power failure has occurred during a movement.

® There has been a mechanical or electronic failure of the
autochanger.

The error recovery firmware is designed to recover from
a plethora of different error conditions and provide accu-
rate information to the host computer regarding the status
of the mechanism.

The four functions of the error recovery routines are error
prevention, error detection, restoration of the mechanism
to normal operating conditions after an error is detected,
and completion of the command during which the error
occurred, Error prevention involves verifying that the re-
quested source location contains a cartridge and that the

requested destination location is empty. This is done by
examining an array in nonvolatile RAM that contains the
status of each element within the autochanger. If the
firmware believes that the requested move would result in
an error, the command is rejected before any motion is
attempted. This method of prevention, although very reli-
able, is not foolproof. The element status array may be
incorrect if a customer engineer manually moves cartridges
around within the autochanger without reinitializing the
element status array. In this event, the firmware must rely
on the second facet of error recovery, namely error detec-
tion.

Error detection is the means by which the firmware de-
termines that something out of the ordinary has occurred
within the autochanger. The firmware detects errors in two
ways. The first involves the servo loop manitors, which
run continuously during autochanger motion. These
routines monitor the forces that are being exerted by the
vertical and plunge axes. If either of the measured forces
should exceed levels specified for a given motion, the
monitor routines immediately disable the servo system and
set an error flag.

The second method of detection involves the use of force
sense of touch at key positions during cartridge movement.
While a cartridge is being extracted from its storage slot,
the firmware moves the transport thumb outward slightly
beyond the point at which it should engage the cartridge.
If no change in force is encountered during this move, then
the storage slot is assumed to be empty and an error has
occurred. Upon returning a cartridge to a storage slot, the
same outward movement is performed to ensure that a car-
tridge was in the transport. In addition, after retracting the
thumb back into the transport, a small vertical motion is
performed while monitoring the force on the vertical axis.
A large change in the vertical force signifies a failure by
the mechanism to release the cartridge. Similar tests are
performed when inserting and extracting cartridges into
and from the optical drives.

The design of the error recovery firmware is predicated
on the assumption that because of the simple and reliable
design of the mechanics, error conditions should occur
very infrequently. This means that the execution speed of
the error recovery routines can be reduced significantly
without negatively impacting the overall performance of
the autochanger. As a result, the firmware controlling the
normal operation of the autochanger is greatly simplified
by partitioning the code so that all error recovery algorithms
are consolidated into one functional area and all motion
control firmware resides in another. A simplified hierarchi-
cal diagram of the motion control firmware and error recov-
ery firmware is shown in Fig. 4.

The motion contrel firmware is designed to complete its
execution regardless of the status of the servo system. The
lowest-level procedures that perform motion control test
the status of the servo system. If the servos have been dis-
abled, the procedures simply return and no motion is per-
formed. All attempts to modify mechanism state informa-
tion occur via procedures that verify the status of the servo
system. These state variables will not be modified if the
servos have been disabled. Therefore, if an error occurs,
the motion control firmware completes its execution in a
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normal manner, but no motion occurs and the state of the
mechanism is preserved. This provides the error recovery
firmware with a snapshot of the mechanism at the instant
that an error occurred. Error recovery can then proceed
with restoration of the mechanics.

As can be seen in Fig. 4, ERROR_RECOVERY is composed
of the tweo procedures: FIND_.HOME and NEW_COMMAND_
GENERATOR. These two procedures can be thought of as
physical recovery and logical recovery procedures, respec-
tively. The FIND_HOME procedure is responsible for success-
fully maneuvering the mechanism out of the error condi-
tion and then restoring the mechanics to a known initial
state. It makes extensive use of the snapshot of state infor-
mation that was preserved when the error occurred, and
of information gathered via force sense of touch move-
ments, FIND_HOME is the same procedure that is used for
power-up initialization. Therefore, once it completes, the
mechanism is in a known state and safe motions can be
performed. FIND_HOME is invoked by ERROR_RECOVERY
whenever a physical error has occurred that forces the ser-
vos to be disabled. The logical recovery segment of ERROR_
RECOVERY is dependent upon FIND_HOME's successful com-
pletion. If FIND_HOME does fail, then ERROR_RECOVERY as-
sumes that something is drastically wrong and calls a routine
that attempts to diagnose the failure of the mechanics.

The NEW_COMMAND_GENERATOR procedure is composed
of a number of routines that perform three main tasks. The
first is to examine the original command and the current
state of the machine. The second is to generate a new com-
mand that will either gather more information, attempt to
complete the original command, or attempt to restore the
autochanger to the configuration that existed just before
the original command was issued. The third task is to send
the newlv formed command back to the PERFORM_MOTIONS
routine to be executed. This process may be repeated a
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Fig.4. Simplified hierarchical dia-
gram of the motion contral and
error recovery firmware.

number of times to complete a command or restore the
autochanger successfully, This looping process is initiated
by any movement error that occurs while PERFORM_MO-
TIONS is executing. Once in this loop, ERROR_RECOVERY is
directed by a state machine which determines how to re-
solve the error condition or exit gracefully. Each type of
motion command (move cartridge, exchange cartridges, test
for cartridge, seek to cartridge, or rotate mailslot) has a
state machine sequence that is designed to solve the spe-
cific recovery requirements of that particular motion type.
However, all state machines are composed of four common
states: error recovery initialization, retry the original com-
mand, restore the autochanger to its original configuration,
and return a pass or fail status. A detailed state diagram
for the move cartridge error recovery algorithm is given in
Fig. 5.

An error that occurs during a move cartridge command
will cause ERROR_RECOVERY to begin execution. The error
recovery state machine is set to its initial state, during
which the original move command is stored for later use
and FIND_HOME is invoked to return the mechanism to a
known state. FIND_HOME will then return a pass/fail status
and will provide information regarding the presence or
absence of a cartridge in the transport. The state machine
changes to the Test Source state, during which a test for
cartridge command is generated. This command is passed
back to the PERFORM_MQOTIONS procedure, which will exe-
cute a physical test of the source location for the presence
or absence of a cartridge. The result of this test is passed
back to ERROR_RECOVERY. If a motion error occurs during
this test, ERROR_RECOVERY will invoke FIND_HOME to re-
solve the error and the same test for cartridge command is
repeated. This process can be repeated a number of times,
and if motion errors continue to occur, the state machine
will decide that error recovery has failed. However, if no
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Initial Error Injection

State

Error recovery is a very complex procedure, as explained in
the accompanying article. The number of possible situations from
| which the autochanger must recover is very large Te induce
these errors physically would have required many engineer-hours
that the development team didn't have. In addition, many errors
are extremely difficult to induce. Since the error recovery lesling
had to be repeated every time the error recovery firmware was
changed, it was deemed neceassary to have error injection built
into the product for the purpose of testing error recovery

The error injection facility is enabled via the SCSI so that tests
can run automatically. It can inject errors for any move at any
position. Multiple errors can be queued. The facility injects errors
at the lowest possible level for maximum firmware testing. It can
alse simulate power failure.

The built-in error injection firmware can be divided into two
major functions: setting up the error trigger and injecting the error
Setting up the Error Trigger. The objective of error injection is
to be able ta inject ail possible errors for any move at any position
on the vertical or plunge axis. All motion is broken down into
many submoves. Each submove s assigned a unigue move ID.
When the SCSI command is sent to enable error injection, all the
pertinent information needed is sent with that command to set
up the trigger conditions. The injection information includes the
move |D to trigger on, the axis {o trigger on, the position to trigger
on, and the type of error to inject.

Injecting the Error. Once the error injection command Is sent

over the SCSI, the built-in error injection firmware is then armed

and waits for the trigger conditions to be met. When the trigger

conditions are met, the error will be injected. Three types of

errors can be injected:

®» Servo monitor error. The servo monitor status is intercepted

Fig. 5. State diagram for the move cartridge error recovery and an injected status is substituted. The injected status may

state machine. be overforce, overcurrent, or overvoltage. This simulates unex-
pected physical errors.

® Force sense of touch error. The status returned from the force
sense of touch is intercepted and an injected status is substi-

{uted. For example, when the autochanger is expecting to feel

a cartridge, an error can be injected fo tell the autochanger

v

motion error occurs, the state machine proceeds to the
Test_Dest state, during which another test for cartridge com-
mand is generated and passed back to PEFORM_MOTIONS.

The de§tinatiun location is then physically tested and the that it did not feel the cartridge

result is passed back to ERROR_RECOVERY. As with the = Powertfail error. When the trigger conditions are met, the built-in
Test_Source state, any motion error will cause FIND_HOME to error injection firmware simply jumps to the power-up vectors
be executed again along with a reexecution of the test for This makes it possible to test powerfall operation autornatically
cartridge command. for all situations.

At this point, the state machine knows whether the
source, destination, and transport are full or empty. Any
full/empty combination that should not logically be possi-
ble (such as the source being empty, the transport being

Automatic Testing

Having error injection capability was only the beginning. The
next step was to develop test suites that could could be run from
an SCSI host to test the autochanger automatically. Developing

full, and 'the destination als? being full) ‘33“5?5 ERRELeenN- these tests was the major part of the overall error injection testing
ery to fail and an appropriate error status is returned to development. The test suite not only had to send the appropriate
the host. If the source is empty, the transport is empty, and injection commands to enable error injection, but also had to be
the destination is full, then the command must have com- smart enough to issue the correct SCSI move command to trigger
pleted and the state machine proceeds to the Error_Recovery_ the injected error, and to check for the proper SCSI status. The
Passed state. Otherwise, the state machine proceeds to the following test suites were developed:

Retry state and the appropriate move command is generated. B Inject errors for all possible move 1Ds

= [nject errors at predetermined risky positions
® |nject errors at random positions
= All of the above with powerfail errors injected.

This command is either a move from the original source
to the original destination or a move from the transport to
the destination.

The command is once again passed back to PERFORM_
MOTIONS and a cartridge movement is attempted. If it is
successful, the state machine proceeds to the Error_Recovery_
Passed state. Otherwise, FIND_HOME is again invoked and

Rick Kato
Development Engineer
Greeley Storage Division
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the state machine returns to the Test_Locations sequence to
determine which locations are full or empty. Once the Test_
Source and Test_Dest functions have completed and returned
the status of both locations, the state machine cycles back
to the Retry state and either a Move_Source_to_Dest or a Move_
Transport_to_Dest operalion is initiated. depending on the
presence or absence of a cartridge in the transport. This
retry sequence may also be repeated a number of times if
motion errors continue to occur, and then the state machine
will proceed to the Restore state.

A very similar chain of events occurs in the Restore state,
except that in this state the exit criterion is the successful
restoration of the autochanger to the configuration that
existed before the original command was attempted. The
move commands that are generated will attempt to place
the cartridge back into the source location. As with the
Retry state, any movement errors that occur during an at-
tempted restore will cause the state machine to cycle be-
tween the Test_Locations sequence and the Restore state. This
process may be repeated a number of times, after which
the state machine arrives at the Error_Recovery Failed state.
Once the state machine is in either the Error_Recovery Passed
or the Error_Recovery_Failed state, the appropriate status infor-
mation is returned by MOVE_WITH_ERROR_RECOVERY to the
host and error recovery is complete.

Firmware Development Environment

A number of factors contributed to the successful de-
velopment of the autochanger firmware. One significant
factor was the use of individual workstations connected
by a local area network (LAN). This networking provided
independent access to a common set of source code. The
code files for the project resided on one hard disc, and
each development workstation used the Network File Sys-
tem (NFS)* to gain access to the files. Each workstation
had the same view of the source code, but each firmware
designer was able to work independently on an HP 9000
Model 370 workstation. The bottleneck normally produced
by editing, compiling, and linking on one machine was
removed. In addition to increasing the designers’ produc-
tivity, the use of a common set of code files facilitated
revision control, tool development, and system administra-
tion.

Another factor that greatly contributed to the au-
tochanger program was the development of the data capture
tool (see box, page 29). This tool provided a means for
capturing and displaying any time-varying global variable
within the firmware. Data capture was primarily used to
focus on mechanical or servo aspects of the autochanger,
Network File System is a product of Sun Microsystems
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such as the position, velocity, or force of one or both axes
of motion. It provided the designers with a “mechanical
oscilloscope’ that produced enlightening views into the
operations of the autochanger. Hence, it was extremely
useful in examining and diagnosing operational errors.

While data capture provided useful insight regarding er-
rors that occurred during the autochanger development,
another tool provided the means for exercising the error
recovery code without requiring that specific errors occur.
The error injection tool (see box, page 33) allowed the
firmware designers to force an error to occur during a spe-
cific motion and at a specific position or range of positions.
By using this tool, the many different states of the error
recovery code could be debugged, tested, and verified.
Since an error can occur during any portion of the mecha-
nism’s operation, simulating all errors by physically induc-
ing an error would be extremely difficult to do. Error injec-
tion solved this problem and provided a powerful and flex-
ible means for ensuring the reliability of the error recovery
firmware,

A third tool that contributed to the firmware develop-
ment was the mechanical regression test suite. This set of
procedures provided the means to measure various
mechanical aspects of each unit. Friction tests, spring con-
stants, hard stops and datum, performance measurements,
and servo parameters could be acquired using these
utilities, Measurements could be taken, then tests run and
the measurements rerun to assess various factors (degrada-
tion over time or temperature, effectiveness of a part or
design change, baseline measurement). These routines are
now used during the manufacturing process to assess the
correctness of the unit's assembly.
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Qualification of an Optical Disk Drive

for Autochanger Use

Ninety-three design changes were made to the stand-alone

drive to qualify it for use in an autochanger

by Kevin S. Saldanha and Colette T. Howe

tegrity, performance, and reliability for a mass storage

device, an optical disc drive that is to be used in an
autochanger requires a well-defined communications and
mechanical interface that operates efficiently and reliably
over hundreds of thousands of load and unload cycles.

In designing the HP Series 6300 Model 20GB/A rewrita-
ble optical disk library system, we had control over the
autochanger end of this interface, but we had to work
closely with the drive vendor to establish the other end.
The vendor's original design goals had not included use
of the drive in autochanger environments. Endowing the
drive with this additional functionality and verifying it
proved quite a challenge. Between the release of the stand-
alone product (Model 650/A) and the autochanger product
(Model 20GB/A) there were 93 changes to the drive.

I N ADDITION TO THE USUAL requirements of data in-

Communications Interface

We needed a reliable interface to the drive that did not
impair performance by tying up the SCSI bus. During loads,
the autochanger needs feedback from the drive to know
when the drive has accepted a cartridge that has been in-
serted. The autochanger also needs to be able to initiate
ejection of a cartridge from the drive, and during operation
and under fault conditions, the drive status needs to be
communicated to the autochanger controller.

This interface is implemented with two hardwired signal
lines: an eject line and a busy line. The semaphore on the
busy line indicates drive status, fault conditions on load,
and the acceptance of the cartridge in the drive. The timing
of the signals was worked out based on a thorough under-
standing of the load and unload sequences and retry al-
gorithms in the drive. As a result of this effort, we were
able to provide inputs to the drive vendor that made these
processes shorter and more reliable.

The spin-up sequence during loads includes a read of
prestamped control tracks. Part of this is phase-encoded
information (PEP) that is read before tracking is established,
and can take up to 1.5 seconds to read. The autochanger
requires this information just once, when the cartridge is
first introduced into it. To eliminate subsequent PEP reads,
a third hardwired signal line is included.

Mechanical Interface

Except for not using the eject button on the drive, the
mechanical interface definition is no different from that in
a manually operated drive. This is largely because of the
flexibility of the autochanger architecture. Once we ob-

tained specifications on acceptable insertion windows,
angles, and distances, it was possible to program the au-
tochanger to operate within these limits. The main require-
ment the autochanger has of the drive is that the cartridge
eject to a certain minimum distance and with a specified
minimum force.

Design Goals

The metric chosen to gauge the reliability of the drive
in load/unload cveling was the mean number of swaps
between failures (MSBF). The drive as released for use in
stand-alone operation had an MSBF of 5.000, which is
adequate for manual use. However, this fell far short of the
target of 40,000 set for the release of the drive for the au-
tochanger product. With the numerous changes im-
plemented in the drive and media, we were able to prove
an MSBF of 150,000 with a confidence level of 95% at the
release of the autochanger product. For these products, the
drive was operating in the normal horizontal mode. Work
is currently underway on a project that will also allow
operation of the autochanger and the drive in it on their
sides in vertical mode. We have already achieved an MSBF
of 200,000 in both these axes [Fig. 1).

Test Strategy

The ideal test vehicle was, of course, the autochanger
itself. We could test the drive, the autochanger, and the
interface in conditions similar to actual use. Indeed, this
is how the bulk of our testing was conducted, and much
valuable information was learned from it. As we began
finding and fixing the more obvious problems, it took
longer to find the more intermittent and wear dependent
ones. It takes about two months to perform 200,000 swaps
in an autochanger doing nothing else.

We developed special test fixtures to perform specific
tests at much higher rates so we could accelerate the test
cyele. One of these, the “scrubber,” could insert and with-
draw a cartridge in a loader tray and complete 200,000
cycles in a week. We also developed a drive tester that
essentially was a stationary autochanger picker, which we
used to test drives and cartridges. We also provided one
of these to the drive vendor so they could duplicate and
better understand problems that were encountered.

We maintained detailed records of failures encountered
by the autochanger, drive, and cartridge. It proved useful
to keep the swap count of a cartridge on the disk itself. A
list of all known problems and their resolution status was
also maintained and updated regularly. It served as a useful
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measure of how the qualification effort was progressing
(Fig. 2).

Problems and Solutions

We were able to identify and solve problems in several
areas as a result of this testing.

The early force-distance profiles used by the autochanger
during inserts resulted in excessive loads at first contact
with the cartridge slot door and misdetection of the hard
stop in the loader tray. This force profile was tuned to
deliver a much lower force to the cartridge and to accom-
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modate significant variations in the location of the hard
stop (see article, page 14).

We encountered bus hangups stemming from noise on
the SCSI and the autochanger-to-drive interface lines. Ca-
bles were shortened and rerouted away from noise sources
to eliminate these problems.

Some of the misload failures observed were attributable
to misdetection of signals at the communications interface
between the drive and the autochanger. Changes in timing
and debouncing of signals both in the autochanger and in
the drive made this detection far more reliable and fixed

Defects Fixed

Fig. 2. A count of known prob-
lems was a useful measure of the
progress of the drive qualification
effort.
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these problems.

Mechanical Problems

Several mechanical problems were encountered and
fixed in the course of this development effort. Many of these
were related to friction wear between contacting surfaces.

The cartridge; then made of ABS, was subject to heavy
wear where it made contact with the autochanger picker,
its shutter, the slot door, the loader tray, and the alignment
pins in the drives. The ABS dust generated posed a poten-
tial threat to data integrity if it landed on the disc or the
objective lens. More immediately, these dust deposits
caused the cartridge to bind in the loader tray or catch on
the alignment pins. Measures taken to minimize this in-
clude coating the loader tray with Teflon, blunting sharp
lead-in angles on the tray, increasing the radii of the locator
pin tips and changing the slot door material to polycarbo-
nate.

Dust from wear was also generated within the cartridge
from contact with the disk. This dust was deposited directly
on the disk during unloads, when the media spins down
onto landing pads on the cartridge. This contamination,
which started out as a ring at the inner diameter, could
migrate out over the control tracks and the data areas, and
could even find its way onto the objective lens. With as
few as 8,000 loads into a drive, an ABS cartridge could
cause problems such as failure to spin up successfully be-
cause of obscured control tracks, improper focusing, and
increases in raw byte error rates. These wear problems were
overcome by changing the cartridge material to a polycar-
bonate and by gluing a slip ring onto the disk where it
comes into contact with the landing pad on the cartridge.

There was also wear between the drive spindle motor
shaft and the the disk hub. Wear on the hub resulted in a
sharp edge, which at some point seized the spindle during
loads and unloads. These problems were solved by modify-
ing the spindle and hub geometry to make the capture
easier and by increasing the spindle hardness. A disk level-
ing pad was designed to keep the disk from being loaded
and unloaded at an angle. The magnetic chuck that holds
the disk was modified to provide a stronger capture force-
distance profile. Further improvements along these lines
were made for operation of the drive on its side. The
strength of a retention spring was increased to compensate
for the loss of the assistance of gravity in the secure seating
of the cartridge against the media sensors.

In addition to mechanical wear problems, we encoun-
tered a challenging electrostatic discharge problem. The
cartridges were building up a charge as they were being
inserted in drives and magazines and moved around by
the picker. The cartridges would discharge to the drive
loader tray. While most of the charge dissipated through
chassis GND, it sometimes managed to cause glitches in the
drive electronics. Reproducing these problems and testing
fixes was greatly helped by the media testers in use here
and at the vendor’s site. Although alternative conducting
materials were investigated for the cartridge, the solution
to these ESD problems was found in establishing a better
ground path and putting low-pass filters on susceptible
drive controller signals.

In the course of improving the load/unload reliability of

the drive mechanism, the testing conducted was also ben-
eficial in increasing the margin for the basic read/write
functionality of the drive. The drive accesses control tracks
and reads them only during spin-up. These control tracks
contain preformatted data. It is harder for the drive to main-
tain tracking and focus on control tracks than on data tracks.
Intermittent tracking problems were observed when access-
ing these tracks during loads in autochangers. The changes
that have been implemented to fix this have resulted in
overall improvements in tracking performance in the drive.

Open Communication

Effective exchange of information has been a kev ingre-
dient in the success of this effort. The qualification of the
drive mechanism and contreller for use in manually oper-
ated stand-alone operation began at HP's Disk Memory Di-
vision in Boise, Idaho. After evaluating several vendors,
one was chosen to supply us with both drives and media.
A second media source was also identified. We began work-
ing with them to define and qualify the drive and media.
This effort drew on the expertise of the program in Boise.

The project was then transferred to HP's Greeley Storage
Division in Colerade, where work had already begun on
integrating the drive into a stand-alone product as well as
into an autochanger. The flow of information between us
and our vendors had by now swelled to a torrent with
facsimile messages flying back and forth daily. Despite the
fact that the drive vendor was in Japan, we were able to
evolve a very elfective working relationship. Aside from
regular management contacts, we had periodic technical
meetings both here and in Japan. These served to establish
engineer-to-engineer contacts. It then became easy to direct
communications to the right people and obtain quick res-
olution of issues. We were fortunate enough to be working
with a responsive vendor and it was not uncommon to send
a facsimile request for information one evening and return
the next morning to find a response to it.
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A CD-ROM Drive for HP 3000 and HP 9000

Computer Systems

The HP Series 6100 Model 600/A HP-1B CD-ROM drive
provides facilities that allow HP 3000 and HP 9000 computer
system users to access data stored on CD-ROM disks,
which can store up to 553 Mbytes of audio and digital

information.

by Edward W. Sponheimer and John C. Santon

audio CD technology used to store computer data.
The important features of the CD-ROM are its capac-
ity, permanence, fast production process, and low per-unit
production cost. CD-ROMs are ideal for data that is not
expected to change soon, or information that needs to be
distributed to a large number of users.
The ideal applications for the CD-ROM include:
w Providing software manuals for computer systems

T HE CD-ROM (compact disk read-only memory) is

m Providing a large reference document, such as a dictio-

nary or an encyvclopedia
® Providing a training package including reading materi-

als, graphics, and tests
m Providing large-scale software distribution.

The HP Series 6100 Model 600/A HP-IB CD-ROM drive
can support software distribution, on-line data or docu-
mentation retrieval, computer-based training, and other
multimedia applications. Special software security features
are designed into the Model 600/A to provide data protec-
tion and software distribution security. The capacity of
CD-ROMs allows a whole operating system and other soft-

Land
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Fig. 1. A portion of a CD-ROM surface (not to scale)
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ware subsystems to be stored on one disk. Since customers
may not purchase all the subsystem software, the software
protection scheme ensures that customers have access only
to the subsystems they purchased. The article on page 49
describes the software protection scheme employed by the
Model 600/A.

The Model 600/A uses HP Command Set 80 (CS-80) pro-
tocol’ to communicate with the host computer over the
HP-IB interface. Command Set 80 defines a set of com-
mands that enable communication between an HP disk and
the host computer. For HP 9000 users, the CD-ROM reader
can be used to read non-HP CD-ROMs provided they are
created in the ISO 9660 High Sierra standard file format.
The article on page 54 describes the ISO 9660 support.

The rest of this article presents an overview of CD-ROM
technology and the Model 600/A controller board.

CD-ROM Technology

CD-ROM is an optical storage technology. Data is read
from the disk using a laser beam. The CD-ROM is a platter
120 mm in diameter that has pits (holes) and lands (material
between holes) on one surface, arranged in a continuous
spiral (see Fig. 1). The pits and lands represent the informa-
tion (ones and zeros) stored on the disc. A one is rep-
resented by a transition from a pit to a land or from a land
to a pit, and the length of the land or pit represents the
number of zeros (see Fig. 2). The pits and lands form a
track that is 0.6 micrometers wide (track pitch = 1.6 um)
which yields a track density of 15,875 tracks per inch. A
combination of a pit and a land that follows it can run from
0.9 to 3.3 um in length. To put these numbers in perspec-

0001001000100001000 1
lisss Sfi=

Bit Data

= = Pits and Lands

Fig. 2. Transition between one and zero and zero and one
on a CD-ROM. Ones are represented by transitions from pits
to lands or from lands to pits
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tive, the total length of the groove on a CD-ROM disk is
approximately three miles and the total number of pits is
almost two billion. A CD-ROM disk can store up to 600
megabytes of computer data.

Data is not written on the CD-ROM by the user’s comput-
er. Data must be mastered using a specialized publishing
process. Subsequent disks can be inexpensively made from
the master. There are three steps to making a CD-ROM:
data conversion, premastering, and mastering. In the data
conversion phase, the data is organized and formatted. Pre-
mastering adds the error codes and indexes needed for
efficient CD-ROM use. The master, used to stamp the pits
in the production discs, is finally created in the mastering
phase. A new master must be made every time a new disk
is published. However, once the initial cost of publishing
the master is done, the cost of reproducing copies is very
low.

Recording Format

The format of how data is formatted on a compact disc
is specified in two standards called the red book and the
vellow book.?* The red book was the first standard and it
specifies the format for digital audio data. The yellow book
is an extension to the red book and it specifies the format
for other forms of digital data, particularly computer data.

Data is recorded on the disk using a code called EFM
(eight-to-fourteen modulation). The recording circuits use
a lookup table to convert each eight bits of data to 14 chan-
nel bits. Three merge bits are inserted after each 14-bit
symbol to ensure that the symbol ends do not violate the
rules of the EFM code and to equalize the total lengths of
pits and lands on the disk (see Fig. 3). The smallest size
of an information unit on the CD-ROM is called a frame.
The contents of a frame are shown in Fig. 4. The frame is
the synchronization element for CD audio and the object
of error correction encoding for computer data.

The synchronization pattern of channel bits identifies
the beginning of each frame and does not participate in

8-Bit Data |11100010/10111010|
J’Jl."( \
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Fig. 3. Eight-to-fourteen bit encoding example.
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the EFM coding. The control subcode provides some infor-
mation about the data in a frame such as the presence of
CD audio or data symbols. The data symbols represent the
information content of the frame. These symbols can rep-
resent audio, user data, or a third level of error correction
coding. The last eight bytes are parity bytes used for error
correction.

The 24 bytes of information represented by 588 channel
bits are combined with other frames of 24 bytes of informa-
tion into sectors of 98 frames. Sectors occur 75 times per
second making the transfer rate from the disk 176.400 bytes/s
(98 frames/sector * 24 bytes/frame x 75 sectors/second).
The organization of the bytes in a disk sector is shown in
Fig. 5.

Error Correction Code

The mode byte shown in Fig. 5 describes the nature of
the data contained in the data field of the CD-ROM. The
vellow book standard defines two modes for computer data.
In mode 1, the CD-ROM can store up to 553 Mbytes of
information on a 60-minute disk. Mode 1 uses the 288
EDC/ECC (error detection coding and error correction cod-
ing) bytes to improve the data error rate. In mode 2 the
CD-ROM can store up to 630 Mbytes because all the bytes
are used for data (including the 288 EDC/ECC bytes). Mode
2 can be used for applications in which error rates are not
critical such as the storage of graphical information.

For the Model 600/A there are three levels of error correc-
tion. The first two levels, CIRC1 and CIRC2 (CIRC stands
for cross interleaved Reed-Solomon code), are provided by
the CD audio standard. The third level of error correction
encoding is provided for mode 1 data by a Reed-Solomon
product-like code, using the EDC/ECC bytes. The error cor-
rection data is placed on the disk when it is mastered. The
first two levels of error correction are done on all data
fields and are decoded in real time by the CD-ROM drive.
The third level is decoded by the CD-ROM controller. See
the article on page 42 for more information about error
correction on the Model 600/A.

Disk Addressing

On a CD-ROM disk, the groove is divided into a lead-in
portion that contains a table of contents, a program area
that contains user data, and a lead-out area that contains
all zeros. The table of contents resides in CD-ROM area
0:0:0 to 0:1:74 (0 minutes, 1 second, 74th frame). The table

Number of
Channel Bits Derivation
Synchronization 27 Bits (24 Bits + 3 Merge Bits)
Pattern
Control Subcode 17 Bits (1 Byte x 17 Bits/Byte®)
Data Symbols 408 Bits (24 Bytes x 17 Bits/Byte®)
Error 136 Bits (8 Bytes x 17 Bits/Byte®)
Correction
588 Bits Total

* 17 Bits/Byte = (14 Modulation Bits + 3 Merge Bits)/Byte

Fig. 4. Channel bit format in a CD frame.
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Sychronization Header

Bytes Bytes
HHHE . EE-H
-]
i
12 Bytes 4 Bytes 2048 Bytes 288 Bytes
| T
2352 Bytes

Fig. 5. A sector on a CD-ROM disk.

of contents contains the absolute address for each existing
track (from 0 to 99 minutes). Each track can contain only
one mode of data storage. Audio tracks and digital tracks
have buffer areas between them. The start of the user area
starts at frame location 0:2:0 (logical address 0:0:0). If pres-
enl, the system area directory resides in the program area
starting at location 0:2:0. The system area data files, which
can exist anywhere on the disk, contain information used
by the drive or host computer, such as disk security infor-
mation, logical sector size, CS-80 volume boundaries, and
the CD-ROM revision number. The Model 600/A looks for
a constant in the system area to determine whether a disc
is an HP CD-ROM.

The Controller Board

The Model 600/A controller board provides the interface
between the native CD-ROM drive and the host computer.
It has three sections: the controller, the disk interface, and
the audio section (see Fig. 6). The controller provides the
intelligence on the board and is responsible for:

m Communicating with the host computer via the HP-IB
interface
m Controlling the CD-ROM drive through the 19.2-kbit/s

UART
® Accessing the software protection information in the

EEPROM
m Providing the software protection keys to the unscram-

bler

Controlier
* CPU
* RAM
Control ® EPROM
19.2 kbits's

CD-ROM
Data
2.1 Mbits/s

m Programming the 4-Mbyte/s DMA controller for DMA
transfers to the host via the HP-IB.

The unscrambler circuit is responsible for decoding the
data on the disk that is scrambled (encoded) for software
security. It operates at a transfer rate of 154 kbytes/s and
is capable of unscrambling data from the media or from
the host. If the CD-ROM in the drive is not an HP disk, the
controller switches the unscrambler out of the inbound
path of CD-ROM data. The controller uses the keyword
information in the EEPROM and the password information
from the host to determine the key for the unscrambler.

The disk interface provides the entry point for CD-ROM
data. Data arrives from the disk in bursts of 16 bits at 2.1
Mbits/s. These bursts occur once every 11.36 microseconds
giving an overall transfer rate of 176.4 kbytes/s. The CD-
ROM data is in serial format so it must be deserialized
before being sent to the unscrambler or directly to the HP-IB
interface.

The Model 600/A can also play audio information re-
corded on a CD or a CD-ROM. The CD-ROM standard®
divides all data into groups of 100 tracks and each track
can be either audio or digital. Audio information from the
drive is serial and arrives at a data rate of 44,100 16-bit
samples/s on each channel. The samples alternate between
left and right channels. Audio data reconstruction is ac-
complished with a 4 x oversampling digital filter with error
interpolation, and a digital-to-analog converter (DAC) that
operates at 176,400 stereo 16-bit samples/s. The oversam-
pling filter interpolates between samples and outputs data
at the rate of the DAC. The filter is used to deal with aliasing.
When a sampled signal is reconstructed, a Fourier trans-
form of the resultant signal shows a baseband signal and
a modulated carrier at the sampling frequency. If the audio
rate at 44,100 16-bit samples/s signal is reconstructed and
the sampled signal is frequency limited to 20 kHz (top end
of the audio band), the quiet zone, which is the range be-
tween the recreated baseband signal and its alias, is only
4.1 kHz wide. To filter out the alias effectively requires a
very steep low-pass filter (most implementations use a
seven-pole Chebychev filter). It's not practical to build such
a filter without creating some phase distortion in the high-
frequency end of the the baseband signal. By digitally re-
creating samples between each recorded sample (oversam-

176,400
Stereo 16-Bit
Samples/s
DAC

40 HEWLETT-PACKARD JOURNAL DECEMBER 1390

Fig.6. The Model 600/A CD-ROM
controller.
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pling) the signal can be reconstructed at a higher sampling
frequency, thus increasing the width of the quiet zone and
decreasing the demand on the low-pass filter. Following
the DAC is a low-pass filter that attenuates most of the
alias signal. Finally, the signal is routed to the backplane
preamplifier and to the potentiometer for the volume con-
trol, which drives an all-pass amplifier that drives the head-
phones.

Conclusion

Compact disk technology started as a technological ad-
vancement in noise reduction for the musical recording
distribution industry. It has become a valuable tool in the
computer industry for the distribution of information, man-
uals, and software. The HP Series 6100 Model 600/A HP-1B
CD-ROM drive, which has complete indusiry-standard
compatibility, full error correction support, software se-
curity, and CD audio support, provides the full spectrum
of CD-ROM technology to HP's computer systems.
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Error Correction Implementation and
Performance in a CD-ROM Drive

The HP Series 6100 Model 600/A implements the error
protection algorithm defined by the CD-ROM yellow book
standard. This extra level of protection means that the error
rate is improved from one errorin 10’ bits to one in 10'°,

by John C. Meyer

mation that is input at the transmitter should be faith-

fully reproduced at the receiver. Unfortunately, because
of things like noise, power-line fluctuations, and imperfec-
tions in the media, data can be corrupted before it reaches
the receiver. This is why error detection coding and error
correction coding (EDC/ECC) techniques are incorporated
in the digital transmission system. The data on the media
is encoded at the transmitting end with the EDC/ECC bits
and decoded at the receiving end to correct for errors and
to recover the original data. If there are errors. the EDC/ECC
algorithms are designed to detect and correct a certain
number of errors or to cause retransmission of the data.
The box on page 46 is a primer on EDC/ECC techniques.

Because the CD-ROM disk has a very high bit density,
it has an inherent error rate of 10 ° to 10 " errors per bit.
The red book standard,” which has become International
Electrotechnical Commission (IEC) standard 908, specifies
the CD audio media format and provides a parity and error
correction scheme that reduces the error rate to 107" to
10~ errors per bit. All CD manufacturers provide this
level of error protection.** The yellow book standard,?
which is currently undergoing standardization as European
Computer Manufacturers Association standard 130, or
ECMA-130, specifies the CD-ROM format. This standard
expands on the CD audio standard to include track defini-
tions for digital data, mixed media disks, and digital data
representation within a frame. For example, the minimum
addressable section of a disk is defined by the red book as
1/75 of a second of audio data or 1176 16-bit audio samples,
and by the vellow book it is defined as 2352 bytes of digital
data or a disk sector. The CD-ROM yellow book specifica-
tion provides an additional level of error protection that
reduces the error rate to 107" to 107 "% errors per bit. Fig.
1 summarizes the results of error correction provided by

Yellow Book
7 Error
Correction

107510 107

I N AN IDEAL DIGITAL transmission channel the infor-

107" to 102

Error Rate 10 °to 10°°
per Bit

Fig. 1. Results of error protection schemes provided by the
red book and yellow book CO-ROM standards.
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the red book and vellow book standards.

The yellow book further defines three modes for sectors
within data tracks. These modes all have a 16-byte header
composed of 12 bytes of synchronization data (00, FF,...,
FF, 00), three bytes of address data (minute, second, frame),
and a mode byte (00, 01, or 02). Mode 0 sector headers are
followed by 2336 bytes of zeros. These sectors are used for
lead-in at the beginning of disks, lead-out at the end of
disks, and transition regions between audio and digital
data tracks. The table of contents for a disk is contained
in a portion of the lead-in area. Mode 1 sector headers are
followed by 2048 bytes of user data and 288 bytes of EDC/
ECC data. The EDC/ECC bytes add the extra data protection
over that which is available at the native interface as
specified by the red book standard. Mode 2 sector headers
are followed by 2336 bytes of user data. These sectors can
be used for bit maps or other data that may not require the
data protection provided by mode 1. Fig. 2 shows these
mode formats.

Red Book Error Protection

The CD audio standard (red book) specifies two levels
of parity and error correction which are implemented
within the drive, The algorithm used for encoding the par-
ity bytes is called a cross interleaved Reed-Solomon code
(CIRC). As shown in Fig. 3, there are two CIRC encoders,
CIRC1 and CIRC2, which provide the two levels of error
protection. Sectors are divided into 98 24-byte F1-frames,
which are processed through the CIRC encoder, which con-
sists of three delay sections and two encode sections. The
first delay section interleaves the F1-frames into two 12-
byte groups. One group is delayed for two F1-frame times
(24 byte times). The interleaved Fi-frames then pass

(12 Bytes) (4 Bytes) | (2336 Bytes)
[TEPres Synchronization | Header User Data EDC/ECC
(12 Bytes) (4 Bytes) | (2048 Bytes) (288 Bytes)
Synchronization r User Data

Fig. 2. CD-ROM sector mode formats.
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through the CIRC2 encoder section, which generates four
Q-parity bytes using a (28.24)* Reed-Solomon code. The
second delay section delays the CIRC2 bytes from ON to
27N Fi-frame times (N = 4). Time-delayed packets of 28
bytes then pass through the CIRC1 encoder, which gener-
ates four P-parity bytes using a (32, 28) Reed-Solomon code.
Finally, the third delay section delays every other byte
from the CIRC1 encoder one F1-frame time. At the output
of the CIRC encoder, the 32-byte packets are called F2-
frames.

As a result of all this delaying and interleaving the orig-
inal F1-frame bytes are delayed from three to 108 F1-frame
times, and they wind up being redistributed over 106 F2-
frames. Thus, one frame’'s data is spread over three physical
sectors on the media, thereby reducing the impact of burst
errors. An additional control byte is added to the F2-frames
to form 33-byte F3-frames.

F3-frame bytes are 8-to-14-bit (EFM) encoded and linked
together with a 24-bit synchronization header. Three merg-
ing bits are used between bytes to maintain run length
limits between transitions on the media. The result is that
gach 192-bit F1-frame is represented by a total of 588 chan-
nel bits on the media (see page 39 for an explanation of
8-to-14-bit encoding), Most of this redundancy can be used
for error recovery, either for detection of errors and creation
of erasure flags or for correction of errors using the P-parity
and Q-parity bytes. An erasure flag is error location infor-
mation that is obtained outside the decoding process, usu-
ally from hardware. If erasure flags are available, the
number of errors that can be corrected increases because

*(28,24) (28 infermaton and panty bytes, 24 information bytes) There are four parity
bytes
Delay Lines
{N = F1-Frame
Times)
F1-Frame
Bytes
(24 Bytes
Divided into
Two 12-Byte
Groups)

Generate Four
Q-Parity Bytes

Interleaving

syndrome bytes do not have to be used to locate errors. A
syndrome byte is the result of some parity check on a re-
ceived code word. Codes are generated so that syndromes
are zero when there is no error and nonzero when they
contain information to locate and correct errors in a code
word.

As data is read from the disk, the first level of error
detection is during 14-to-8-bit decoding. If bytes don’t de-
code properly, erasure flags can be set to aid the correction
process at the CIRC1 decoder (see Fig. 4). The CIRC1 de-
coder uses a (32,28) Reed-Solomon code that has four re-
dundant bytes and can therefore detect and correct two
errors, or correct up to four errors if erasure flags are avail-
able from earlier processes. The CIRC2 decoder uses a (28,
24) Reed-Solomon code that can also correct up to four
errors with erasure flags. Correction algorithms within
drives do not always take full advantage of the codes’ cor-
rection capability. All manufacturers’ implementations do,
however, use enough of this capability to lower error rates
from the 10 % to 10 ® level at the disk to the 10 ' to 10 '
level at the interface.

CD-ROM Error Protection

The CD audio specification is good for reproducing dig-
ital high-fidelity sound, since interpolation can be used to
reconstruct byte errors that are uncorrectable by CIRC en-
coding. This approach is not acceptable for digital data, so
the mode 1 CD-ROM specification was created to address
this deficiency by improving the bit error rates to the 10522
to 10 '® range. The CD-ROM encoding process involves
the calculation of EDC and parity bytes for each 2048-byte

One F1-Frame

Delay
e
— Rl )
y 32-Byte
. F2-Frames

J%ET-]%E!HHHHH

iﬂﬂﬁf

"

|

Control
Byte

<

n
-]

|

Generate Four
P-Parity Bytes

Fig. 3. CD audio standard CIRC (cross interleaved Reed-Solomon) encoder.
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F2-Frame Bytes

28 Bytes
(Less Four
P-Parity Bytes)

sector.

Fig. 5 shows the organization of the 288 EDC/ECC bytes
in a mode 1 sector. The EDC portion consists of four cyclic
redundancy check (CRC) bytes and eight bytes of zeros.
The CRC is a simple checksum that is calculated over the
16-byte header (12 bytes of synchronization plus the four
header bytes) and the 2048 bytes of user data. The CRC
calculates the value of a polynomial and stores the result
in the four-byte CRC field. P-parity and Q-parity bytes,
which are not the same as the CIRC parity bytes described
above, are calculated using the Reed-Solomon product-like
code.” In this algorithm error correction is applied to the
four header address and mode bytes, the 2048 bytes of user
data, the four EDC check bytes, and the eight pad bytes.
This totals 2064 bytes. No error correction is applied to
the 12 synchronization bytes. The 2064 bytes are arranged
in two 1032-byte matrices, one matrix for even-numbered
bytes and the other for odd-numbered bytes. For the calcu-
lation of P-parity bytes, the matrices are arranged in 24
rows and 43 columns in row-major order. The P-parity
bytes are calculated down the columns using a (26,24)
Reed-Solomon code and appended to the bottom of the
columns, creating two 26-row-by-43-column matrices. Q-
parity bytes are calculated along the diagonals of these
matrices using a (45, 43) Reed-Solomon code and are ap-
pended to the ends of the rows. This calculation produces
two 26-row-by-45-column matrices (2340 bytes). Fig. 6
shows these steps. Adding the 12 synchronization bytes
results in 2352 bytes, which is one CD-ROM sector. These
codes contain enough information to detect and correct
one error per row and column, or to correct up to two errors
per row and column if erasure flags are available. Since
most drive manufacturers provide erasure flags from their
CIRC implementations, error rates of 10 '® to 10 '® errors
per bit can be achieved.

When the CD-ROM is mastered the Reed-Solomon prod-
uct-like code is applied to the information bits before the
CIRC1 and CIRC2 encoding. During decoding, the situation
is reversed with the mode 1 decoding applied last.

EEEYESS
= *
= P

-

// \
CRC Zeros P-Parity Q-Parity

(4 Bytes) | (8 Bytes) | (172 Bytes) (104 Bytes)

Fig. 5. Organization of the 288 EDC/ECC bytes in mode 1

sector.
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24 Bytes
(Less Four
Q-Parity Bytes)

Fig. 4. CIRC error correction and
decoding process.

The Model 600/A Implementation
In the Model 600/A CD-ROM drive, the mode 1 error
correction algorithm is implemented in the controller. Ex-
cept for some HP 3000 computer system requirements, im-
plementing mode 1 error management was straightforward.
The most important HP 3000 system requirement that im-
pacted our implementation was a feature that restricted
our error correction time, the host watchdog timer. A
watchdog timer is a hardware timer on the host that is set
at the beginning of an asynchronous operation, in our case
an I/0O operation, and cleared when the operation is com-
plete. If the timer expires without being cleared, it sets an
interrupt to notify the initiator of the operation that the
operation did not complete.
The Model 600/A controller’s typical response to data
errors reported from the drive is to:
= Send any good data that happens to be in the buffer to
the host
m Reread the sector in error while capturing erasure flags
and building a correction table from them
= Correct errors using multiple read retries if necessary

Matrices

Calculate

P-Parity Bytes
Down Each
Column
2 X 24 x 43 = 2064 Bytes

Calculate
Q-Parity Bytes
Down Each
Diagona| 2 x 26 % 43 = 2236 By‘les
P-Parity Bytes —L' l

2 x 26 x 45 = 2340 Bytes

Q-Parity Bytes

Fig. 6. Computation of P-parity and Q-parity bytes using the
Reed-Solomon product-like code.
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m Transfer the corrected data to the host

® Resume the interrupted transaction.

During such a process. in which the host is generally in
the middle of a DMA transfer, the drive controller must
send bytes to the host fast enough to ensure that the host
does not time out the transfer and shut it down. The Model
600/A design constraint was one second maximum between
bytes.

CD-ROM drives originated in the audio world where fast
response is not an issue. Controller communication with
the drive is via a serial port at 19.2 kbytes/s, and most
transactions with the drive can be completed in tens of
milliseconds. However, there is no guarantee that the drive
will respond to a given command byte in anything less
than one second. Also, the drive can take up to five seconds
to begin transferring data on a reread. Clearly, some method
was needed to avoid host shutdown during error correction.

The solution in the Model 600/A is to hold a sector of
data in reserve in the controller’s buffer at all times so that
if error recovery is invoked, bytes can be sent to the host
at well controlled intervals. With this scheme the maximum
number of errors to correct in a call to the computationally
intensive correction routine can then be regulated to ensure
that the host receives a byte about every half second. The
controller is still, of course, at the mercy of the drive if it
should fail to respond in a timely manner because of focus
failure* or other mechanical problems. However, this ap-
proach normally allows plenty of margin for the host watch-
dog timer and provides the controller with enough time to
do up to twenty read retries if necessary.

Several other features of the Model 600/A implementa-
tion help to expedite error recovery. Wherever possible,
computations within the ECC algorithm are replaced by
table lookup. These include multiplications by alpha (the
primitive element associated with the Reed-Solomon
code), base alpha logarithm and antilogarithm calculations,
address calculations for matrix access, syndrome associa-
tion table indexing, and shift operations during CRC
checksumming. Also, all error table traversals are coded
to minimize table reordering as errors are corrected and
deleted from the tables. This means that tables are traversed
from tail to head—not a revolutionary idea, but one that
saves a lot of time when errors can be corrected as they
are encountered. Since it takes three or more errors in a
row or column to prevent correction, a situation that mul-
tiple data interleaving is designed to minimize, most errors
can be corrected during the first pass through the correction
table and no table reordering is necessary. As a result, large
blocks of errors within a sector, including difficult error
geometries, can be corrected in just over one millisecond
per error.

Testing and Verification

After CIRC error correction at the drive interface, the
CD-ROM is quite error-free. During the course of the Model
600/A development, not a single data error was encoun-
tered that was not artificially induced. Nevertheless, third
level error correction, as implemented in the controller, is
the final defense in ensuring accurate data transfer to the
host and it had to be thoroughly tested to make sure that

*A hardware problem that might be caused by a dirty or damaged disk

it performs its job properly when needed. The challenge
we faced was how to test this error recovery algorithm in
a relatively error-free environment.

During the disk mastering process. errors can be intro-
duced into any part of a sector, allowing disks to be man-
ufactured with known error patterns on them. The Model
600/A was tested extensively with such a disk in a test
matrix that included all possible combinations of transac-
tion phase, logical sector size, and error position within a
transaction. These three system variables affect the overall
performance of the correction algorithm, and testing these
variables ensured that the controller could correct all error
patterns on the disk and would behave properly under all
error conditions.

The test disk was designed to contain only correctable
error patterns. Since the Model 600/A implementation
takes advantage of erasure flags and uses the most robust
iterative correction algorithm possible for the Reed-Sol-
omon codes used in CD-ROMs, it can correct up to two
errors in any row or column of the data matrix. It follows
that an error pattern having nine errors that line up in three
rows and three columns can block the correction algorithm.
For the correction algorithm used in the Model 600/A, the
probability of this happening has been calculated to be
2.84 x 10° x P,% where P, is the probability of a random
error at the drive interface after CIRC.” This becomes an
infinitesimal number when one uses for the value of P, the
random byte error rate that is generally specified by drive
manufacturers, that is, 10 ' to 10~ '* errors per bit.

To gain some understanding of how many errors in a
sector the Model 600/A controller can handle before unre-
coverable errors are likely to occur, a test was developed
that reads random sectors from a commercially available
test disk, a TD-10 from Laser Magnetic Storage, Incorpo-
rated. The test inserts erasure flags and random errors at
random locations in the sectors, sends the modified sectors
to the Model 600/A controller, and then executes a down-
loaded ECC routine. The only differences between the
downloaded ECC routine and the normal run-time ECC
routine are in the interface to the controller’s buffer and
the error reporting mechanism. Otherwise, the downloaded
routine makes calls to the same modules that the run-time
routine uses. The following is the unrecoverable data test
algorithm.

Loop

Generate a random block address within Mode 1 region on TD-10

Do long read of sector at random address

Insert flags between bytes, set to no_error

Generate random number of errors (1 - 120)

For each error

Generate a unigue random location within the sector
Generate 2 random byte error masks

XOR the odd and even bytes at location with error masks
Change fiags to error for odd and even bytes

End for

Write altered sector to the controller buffer

Execute ECC download

Log results
End loop

Note that errors are generated in pairs that are eventually
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The concept of parity is familiar to most computer users, par-
licularly if they have ever had the experience of receiving garbled
data on their screen because the wrong terminal straps were
set, or have had the message "memory parity error at ff0977a8,
core dumped” appear on their screen and wished that last file
had been saved more recently.

Parity, in its simplest sense, is just the modulo-2 addition (ex-
clusive OR) of all the bits in a transmitted codewaord. This includes
all the information bits plus a redundant bit that can be set to
make parity odd or even. Simple parity can detect a single error
since any one bit that changes in the transmitted codeword will
change the parity of the received codeword. However, if there
are two errors in transmission, parity will be restored at the receiv-
ing end and the errors will go undetected (see Fig. 1). Simple
parity, then, is useful only in systems in which the probability of
error is so small that the probability of two errars is extremely
small.

Simple parity can be extended to enable not only detection,
but also correction of single errors. If there are k information bits
in the transmitted codewords, then for every k codewords we
can add a redundant codeword that is made up of redundant
bits for each bit position in the previous codewords. In other
words, we deal with information bite as a k » k mairix and add
redundancy to both rows and columns. Now if a single bit in one
of the set of k+ 1 codewords changes, the parity of exactly one
row and one column of the received codeword set will be wrong,
This locates the bit in error, which can then be changed to correct
the error. This systemn is illustrated in Fig. 2. It is known as a
product code and is guaranteed to be able to correct single
errors and detect double errors within the set.

Another method of detecting and correcting errors is to use a
linear block code. These codes, known as (n.k) block codes,
have codewords that are n bits long, containing k information
bits and n—k redundant bits. Without going into great detail,
these codes consist of codeword vectors, C, that are obtained
by multiplying the information vectors, I, by the k x n generator
matrix, G, that is, C = I xG. The generator matrix creates the
bits to add for parity. The received codeword vectors, R, are
assumed to be the sum of the transmitted vectors and an error
vector, E, so that R = C + E. Associated with the generator
matrix, and algebraically related to it in a specific way, is a parity
check matrix, H, which has the nice feature that for all codewords,
C x H = 0. An added attraction that arises from this fact is that,

Information Result Modulo-2
Bits Addition

EEEAERER o voeror

nn- ,l_?f.‘f_ 1 One Error, Detectable

nnn.’ 0 Two Errors, Undetectable
A

Parity Bits

Codewords

*Error Bits

Fig. 1. Simple parity example.

Error Detection and Correction Primer

0 No Errors

1]
1]
1 One Error Correctable
0

0

(=]

1

1 Two Errors Detectable, Uncorrectable

D‘A Results of

Parity Checks

n* = Error Bits

. = Parity Bits
Fig. 2. Product code parity example.

if S=R x H does not equal zero, it contains information
to locate and correct errors in the received codeword because
S=(C+E)xH=(CxH +(ExH =0+ExHand E
» H contains the error correction information. S is known as the
syndrome vector (a vector that is the result of a parity check), and
its power 1o detect and correct errors depends on the number of
redundant bits in the code. A Hamming linear block code is
illustrated in Fig. 3.

One characteristic of mass data storage is that it is usually
byte-oriented, at least at the controller and interface levels. Codes
can be built on finite fields other than the binary field, and the

1 1 1] 1 0 0 0
= 1 1 0 1 (] 0
G= 1 1 1 0 0 1 0 - Generator Matrix
1 0 1 0 0 0 1
1 0 ]
0 1 0
0 0 1
H= 1 1 0 | -+=—— Parity Check Matrix
0 1 1
1 1 3
1 0 1

Fig. 3. A Hamming (7,4) linear block code.
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Byte Parity Delay Data on Data Read

Stream Bytes (Byte Times) Media Back
00 4 00
o1 8 o1
02 \ 12 02
03 16 03
PO 0 PO PO
I 10 a4 \‘ 00 10
I 1 8 i1
12 12 =z
| 13 \ 16 13
P1 0 \ P1 P1
20 4 10 20
Four-Symbol 21 B 01 21
Codewords ~ | 22 12 22
23 16 23
P2 0 P2 P2
30 4 20 30
31 8 1 3
32 12 02 32
33 16 33
P3 ] P3 P3
40 4 30" 40
4 8 21" a1
42 12 12* 42
43 16 03" 43
Pa 0 P4 P4
40
3
22
13

* Bytes Containing Error Data

Fig. 4. Time-domain interleaving example

codes used in optical media, Reed-Solomon codes, are cor-
structed on the Galois field GF(256) or GF(2%), a field of 256
symbols. Generator and parity check matrices are constructed
differently than for linear block codes, but are used in much the
same way. However, codewords consist of n 8-bit symbols rather
than n bits, and all arithmetic is done modulo-256 rather than
modulo-2. Decoding and correction are more complex than for
linear block codes, but the principle is the same.

Basically, the Reed-Solomon codes are effective on random
byte errors. However, errors in the mass storage environment
tend to occur as bursts across multiple bytes. To help alleviate
this problem and make the codes more effective, one further

Byte Parity Data on Data Read
Stream Bytes Media Back
00 00 01 02 03 00 00 01 02 03
01 10 11 12 13 15] i0 11 12 13
o2 20 21 22 23 02 20 21 2 3
03 a0 i 32 33 03 30 3+ 32 a3
10 P00 P P2 P23 10 PO P P2 P3
11 11
12 12
13 13
20 20
21 21
22 2
23 23
30 3o
a1 31
3z 32
a3 33
PO
P1
P2
P3

*Bytes Containing Error Data

Fig. 5. Spatial interleaving exampie.

technique is used on optical media. This is called interieaving.
On CD-ROM media, data is time shifted and interleaved as it
goes into the channel (i.e., as it is mastered). Note in Fig. 4 how
any n-symbol burst can be fully corrected with a single error
correcting code since any given codeword has only one error
in it. A different method is employed on magnetooptical media.
Here every nth symbol in the data stream is used to form one of
n codewords. This turns out to be mare of a spatial interleaving
as illustrated in Fig. 5. These interleaving techniques tend to
randomize burst errors and extend the effectiveness of the cor-
rection codes.
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distributed to the odd and even correction matrices. This
simulates drive hardware that can only detect errors within
di-bytes* and can only create erasure flags for byte pairs.
Fig. 7 is a graph of the results of one test run that performed
25,150 passes through the loop. The number of errors on
the x axis is the number of error pairs that were generated
for each 2048-byte sector. These results show that there is
still a ninety percent chance of correcting sectors that have
ten percent data corruption.

What does this mean to the user? These error simulation
results indicate that disks with byte error rates as high as
10" after CIRC still have a very good chance of being read
correctly on the first pass through the error correction
routine. Since its overall error recovery effort also includes
multiple read retries that attempt to fill in the blanks on
sectors that are unrecoverable, the Model 600/A offers the
user the maximum in error recovery for CD-ROM technol-

ogy.

*16-bit words
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Fig. 7. A graph resulting from 21,150 passes through an
unrecoverable data test algorithm. The graph shows the prob-
ability of unrecoverable data based on the number of errors.
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Providing Software Protection Capability

for a CD-ROM Drive

The HP Series 6100 Model 600/ A drive supports two levels
of security for software protection: load-time security, which
prevents loading a package without the proper authority,
and scrambling data on the disk to prevent reading a

protected disk with another CD-ROM reader.

by Kenneth R. Nielsen

N EFFECTIVE USE of CD-ROMs is for the distribu-

tion of very large quantities of software and litera-

ture. Before CD-ROM technology, software updates
were distributed on tape. This method required the creation
of multiple customized tapes for each customer. The tapes
contained only the software that the customer had pur-
chased. The security solution with this method was sim-
ple—customers only received tapes for the packages they
had purchased.

With CD-ROM as the distribution medium, many large
software packages can fit on one disk. This capability pro-
vides a significant cost savings over the tape distribution
method. The problem with using CD-ROMs for distribution
is how to give customers many software packages on one
disk yet restrict them from using software that they did not
purchase. This article discusses some aspects of the HP
Series 6100 Model 600/A CD-ROM drive security scheme.

Implementation Considerations

Two security schemes were considered for the HP Model
600/A: run-time security and load-time security. Run-time
security requires each package to check the system that it
is about to run on. If the system is approved for running
the package, the package will continue to run. If the system
is not approved, the package will shut down, not allowing
the package to run on a system that it was not originally
installed on. Run-time security would have been a good
method if we did not have the constraints of having to run
on existing systems that do not have a method of identifying
themselves, and protecting software that cannot be easily
modified to use run-time security.

Load-time security does not allow the customer to load
a package from the disk without the proper authority. This
is the method we decided to use for the Model 600/A. This
method satisfies both of the constraints mentioned above.
The authority for accessing packages on an HP CD-ROM
is a unique password that is shipped to the customer with
each disk. This password enables customers to identify
themselves uniquely to the Model 600/A CD-ROM drive.

Security Toolbox

There are many opinions on and methods of implement-
ing software security features.’* If we had provided a soft-
ware security method that software distributors had to use,
we would have ended up with a very small number of
users. Instead, we decided to implement a toolbox ap-
proach. This gives users a box of security tools that can be
used independently or not used at all.

The tools provided in the toolbox include:

m The capability to lock and unlock discrete portions of
the disk selectively

m The ability to unscramble or decode secured data

m Theability to provide the host with a unique identifier.

The security scheme implemented may be defined in the
security information that goes on the disk when it is mas-
tered. This information may also define which host-to-disk
commands (Command Set 80 commands) the Model 600/A
will accept from the host.

The security information for a disk is located in the disk’s
system area. When a disk is mounted in the drive, based
on the information in the system area, the Model 600/A
either forces the implementation of the security scheme or

Region M

Fig. 1. Organization of groups,
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redefines the default values of certain parameters. The de-
fault values are used when a new disk is loaded and after
a Security Clear command is received from the host.

Region Access Map

The capability to lock and unlock regions of the disk
selectively is provided using a structure called a region
aceess map, which is located in the system area of the disk.
The region access map logically divides the disk into re-
gions. Each region has one or more logical sectors and each
region is assigned to a group. Several different regions may
be assigned to one group, but a region can only be assigned
to one group. Fig. 1 shows this organization. Each region
access map entry contains the start address of a region and
the group the region is assigned to.

A structure called a group access map is used to deter-
mine which groups to lock or unlock. A default group
access map exists in the system area of the disk. The group
access map is a string of bits with the value of each bhit
representing the default locked or unlocked state of each
corresponding group. Groups that are available to everyone
will normally have their default value unlocked. Groups
that must be individually purchased will normally have
their default value locked.

For the customer to modify the group access map to
unlock purchased packages, a group access map with the
appropriate group representations set to unlocked and a
verification password must be sent from the host to the
Model 600/A disk controller. The disk controller will da
some manipulation on the group access map, the publica-
tion identifier from the disk, and the internal identifier of
the disk controller. The result of the manipulation is com-
pared with the verification password received from the
host. If the comparison proves that the group access map,
the disk, and the disk controller all belong together, the
customer’s group access map is accepted as defining the
locked and unlocked groups on the disk. If not, the HP
Model 600/A disk controller will use the default group
access map located in the system area of the disk. Fig. 2
summarizes this process.

To keep anyone from setting up a computer and sending
a variety of verification passwords at full machine speed
with the purpose of breaking through the security mecha-
nism, the Model 600/A will purposely delay one second
before returning to the host after discovering an incorrect
password.

Fig. 3a shows a typical group of files that might exist on
a software distribution disk. The operating system is con-
tained in logical sectors 0 through 500, the COBOL com-
piler in sectors 501 through 600, and the Pascal compiler
in sectors 601 through 700. Because of the modularity of
the Pascal and COBOL compilers, both use drivers located
in sectors 701 through 750. The region access map contains
the disk addresses of each file. All the operating system files
are assigned to group 0, the nonshared part of the COBOL
compiler to group 1, the nonshared part of the Pascal com-
piler to group 2, and the shared drivers to group 3.

If all customers were allowed access to the operating
system but not the COBOL or Pascal compilers, the default
group access map would have bit 0, representing group 0,
set to unlocked, and bits 1, 2, and 3, representing groups
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1, 2, and 3 respectively, set to locked (see Fig. 3b). If the
customer had purchased COBOL but not Pascal, the cus-
tomer's group access map would have bits 0,1, and 3 set
to unlocked and all ather bits, including bit 2, set to locked
(see Fig. 3c). Because there may be hundreds of software
packages on a disk, it would be easier if the customer did
not have to type in the group access map each time the
system needed to be updated. Therefore, the group access
map is not scrambled (encoded), allowing the customer to
modify the map after receiving permission to access new
packages. Allowing the user to maodify the group access
map does not nullify the security scheme because the group
access map and the verification password must be compat-
ible, ensuring that the customer can unlock only purchased
software.

When the customer tries to access the disk, a host pro-
gram will ask the customer for the password that came
with the disk. The program will send the group access map
and the password to the Model 600/A disk controller, and
after performing the comparison process described earlier,
the controller will unlock the correct portions of the disk.
Once the disk is unlocked, it can be read using any standard
CS-80 driver.

If the host does try to access a locked portion of the disk,
the Model 600/A will normally respond with a NO DATA
FOUND fault. However, there are some system drivers that
will abort if this occurs. To solve this problem the Model
600/A is also capable of not responding with the NO DATA
FOUND fault and returning to the host a string of meaning-
less data to complete the transaction so that it seems as if

Disk
Controller

Internal
Identifier

Publication
Identifier

Group Access
Manipulate Map
Input
Data

Result

Verification
Password

Default Group

Map Is Used to
Define Locked
and Unlocked Groups

Fig. 2. Process for determining the locked and unlocked area
of a disk.
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nothing happened. (The CS-80 command Data Fill, which is
described later in this article, provides this capability). The
host can then inquire about the security status to find out
if an attempt was made to access a locked region of the
disk and that invalid data was transmitted.

Unscrambling Data

The lockable disk is only secure if it is mounted in the
Model 600/A CD-ROM drive, To prevent reading the disk
from another CD-ROM reader, the data on a distribution
disk is scrambled. The Model 600/A can unscramble a disk
that has its data scrambled. This option should protect the
packages from being loaded via another reader, and pro-
vides an extra level of security on top of the group access
map and the verification password.

When data is scrambled for security purposes, a de-
ciphering key is also generated. The unscrambling al-
gorithm will return the scrambled data back to readable
data only if it has available the same key used in the
scrambling algorithm. The Model 600/A’s unscrambling
algorithm is located on the drive’s controller board (see
page 40). The key for the Model 600/A is an 8-byte value
that can be located either on the disk or sent from the host.
If the key is on the disk and scrambled, it is decdoded
using a predefined algorithm. If the key is sent from the
host, the key will be decoded using an algorithm that is
unique to each customer’s Model 600/A CD-ROM drive.
This scheme allows each of several customers to have a
unique key even if they all have access to the same data.

The security tool for unscrambling data can be used in
different ways. One method unscrambles either the whole
disk or selected portions of the disk when data is read from
the disk and sent to the host. Another method involves the
host’s using the Model 600/A as an unscrambling box. This
method can be used only if certain portions of a package
are scrambled. If the key used to unscramble the data is
on the disk, the default method is to unscramble all data
as it is read from the disk (see Fig. 4 switch position 2). If
the key is sent from the host, the default method is to read
the data and leave it scrambled (see Fig. 4 switch position
3).

501 600 601 700 701 750
> COBOL Pascal Shared

Fig. 3. (a) Atypical group of files
on a software distribution disk and
U = Unlocked their group associations. (b)
L = Locked Group access map showing that
the customer has access fo the
operating system but not the
COBOL or Pascal compilers. (c)
Group access map showing that
the customer has access to the
operating system, the COBOL
compiler, and the shared drivers

To use the Model 600/A as an unscrambling box the host
reads a complete scrambled file from the disk and then
sends a customer-unique deciphering key to the CD-ROM
drive. The host’s unscrambling algorithm is a write, un-
scramble, and read sequence. First the scrambled file is
written to the data buffer on the Model 600/A’s controller
using the CS-80 command Write Buffer (see Fig. 4 switch
position 4). Next, using the CS-80 command Unscramble Buf-
fer the host commands the controller to unscramble the
data in the buffer using the deciphering key passed down
earlier (see Fig. 4 switch position 1). Finally, the host uses
the CS-80 command Read Buffer to transfer the unscrambled
contents of the controller’s data buffer to host memory.

Unique Identifier

If a customer wants to implement run-time security, the
Model 600/A has an 8-byte serial number available for the
host. The serial number is in the same packed format as
bytes two through nine of the HP 46084A HP-HIL ID mod-
ule.” This is the module used for system identification on
HP 9000 Series 300 systems. The definition of the Model
600/A’s 8-byte unique identifier corresponds to the report

Disk
Data

Machine

Fig. 4. Steering unscrambled data in and around the Mode/
600/A's unscrambler.
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security code definition of bytes two through nine of the
ID module.

Command Protocol

The HP-IB Command Set 80 protocol is used for com-
munication between the CD-ROM reader and the HP 3000
MPE VE operating system. To simplify integration and for
initial system startup the Model 600/A looks like a write-
protected HP 7935A 300-megabyte disk to the HP 3000
MPE VE operating system.

Making the Model 600/A look like a write-protected HP
7935A in most respects was simple. The biggest problem
was trying to support the Release command, which frees a
disk to be removed from the drive. Without a button on
the front panel of the Model 600/A, the customer cannot
request that the disk be released. On the HP 7935A, if the
customer wants to remove a disk, the front-panel release
button is pressed and the HP 7935A executes a release
sequence that essentially asks the host if it can release the
disk and go off-line, allowing the user to remove the disk
and replace it with another disk. The HP 3000 system rec-
ognizes this sequence and knows that a disk has been re-
moved and possibly replaced.

On the Model 600/A, if the door is unlocked, the user
can remove a disk caddy at any time. It would be meaning-
less to make a Release request to the host because if the
host denied the request, the host would think that the same
disk was still loaded. The solution to this problem is that
when a disk is removed a report is sent to the host that a
new disk of zero length has just been loaded.

The constraint of trying to look like a write-protected HP
7935A meant that commands specific to the security or
audio features of the CD-ROM had to be added under the
CS-80 Initiate Utility command.

Service

Servicing the Model 600/A posed a potential problem.
Since each unit must have a unique serial number that is
used to validate passwords and manipulate unscrambling
keys, the service engineer must have a means of program-
ming these numbers in the field when a CD-ROM drive’s
controller board is replaced. The alternative to this would
be to return the unit to the factory for repair.

Every repair board has programmed in EEPROM the se-
rial number REPAIRBD and a special seed that is used to
generate a unique password verification number. If this
serial number is present on a board, the Model 600/A will
allow a special service command (Service I) to be executed
that programs a serial number into the controller board’s
EEPROM. It will also cause the unit to derive and program
aunique password verification number into the EEPROM.

If the service engineer discovers after programming the
controller board that the original controller board should
not have been replaced, there is a process to return the
repair controller board serial number back to REPAIRBD.
The process requires that a special disk be mounted into
the drive before a second special service command (Service
1) is executed. The combination of the special disk and the
bytes sent with the Service Il command will reprogram the
serial number REPAIRBD and the special seed back into the
controller board’s EEPROM. If the Service Il command is
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attempted and proves to be an invalid command because
the wrong disk is being used or the wrong bytes are sent
to the Model 600/A, the controller will either program the
EEPROM incorrectly or erase the EEPROM, requiring it to
be senl back to the factory for reprogramming.

Utility Commands
The utility commands are CS-80 commands developed

to support CD-ROM capabilities, security toolbox func-

tions, and status information relevant to the Model 600/A

security scheme. These commands are implemented via

the CS-80 Initiate Utility command. The Initiate Utility command
was included in the original CS-80 definition to allow the
implementation of commands that are not in the formal

CS-80 definition but fit into the CS-80 protocol.

CD-ROM Commands. The following CS-80 commands are

designed to support the Model 600/A and the features of

CD-ROMs.

m Door Lock. Lock the drive's media door to prevent un-
wanted removal of the disk.

m Door Unlock. Unlock the drive’s media door to allow re-
moval of disk.

m Play Audio (length of play] (address of audio portion of the disk
where to start playing). Play an audio portion of the CD-ROM.
This command will return to the report phase when the
audio is finished.

m Play Audio With Return Address (length of play) (address of audio
portion of the disk where to start playing). Play an audio portion
of the CD-ROM. This command will have multiple
execution phases. At the end of each execution phase
the address that is currently playing is returned to the
host.

m Read TOC (track number). This command will return the
TOC (table of contents) entry for the desired track
number. The entry returned will consist of the address
of that track and the control and address field from the
Q channel of the CD-ROM.

m Set Logical Sector Length (sector length). This command will
modify the logical length of a logical sector. The options
available are 256, 512, 1024, 2048, 2336 and 2352 bytes.
The default sector length will be either 256 bytes or the
length defined in the system area of the disk. The typical
frame of an industry-standard CD-ROM written with
computer data contains 16 bytes of header, 2048 bytes
of data, and 288 bytes of error correcting code (ECC).
The 256, 512, 1024 and 2048-byte sectors will return
data from the data field. If the disk has data for which
data integrity is not important (e.g., video data), the ECC
field may be replaced with 288 bytes of user data. The
2336-byte sector length will return all 2336 bytes of data
(the full sector minus the header field). The 2352-byte
length will return the full sector. If the CD-ROM is a
secured disk, this command is disallowed.

Security Toolbox Commands. These are the CS-80 com-

mands that implement the securily scheme for the Model

600/A.

m Data Fill (enable/disable)(fill word). This command will either
enable or disable the data fill capability. If data fill is
enabled when a locked region of the disk is encountered,
the fill word will finish the rest of the current transaction
and the NO DATA FOUND fault is not set. If data fill is
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disabled, the current transaction will abort when a
locked region of the disk is encountered and the NO DATA
FOUND fault is set.

® Unscrambie Buffer (length of data)(address in buifer where fo start).
This command will cause the Model 600/A controller’s
data buffer to be unscrambled with the key that is cur-
rently loaded in the controller’s unscrambler (Fig. 4
switch position 1).

® Unscrambled Read (onvoff). This command will either send
the data stream from the disk through the unscrambling
algorithm (on) or not (off) before sending the data to the
host (Fig. 4 switch positions 2 and 3).

® Read Buffer (length of data) (address in buffer where to start).
This command will cause the contents of the controller’s
data buffer to be returned to the host.

® Receive Data Unscrambling Key (key).
This command will cause the key received to be manipu-
lated by the Model 600/A’s unique identifier algorithm
and then be used as the unscrambling key for future
unscrambling.

® Receive Group Access Map (password)(group access map). This
command will cause the received group access map to
be accessed if the password, the group map, and the
currently loaded CD-ROM's identifier all belong to-
gether.

® Return Drive Security Number. This command will cause the
Model 600/A's compacted serial number to be returned
to the host.

® Write Buffer (length of data)(address in buffer where to start). This
command will cause the Model 600/A’s data buffer to
be written into by the host (Fig. 4 switch position 4).

Security Status Commands. The following commands were

added to retrieve status information about the CD-ROM

and to make the security toolbox easier to use.

® Report Security Quick Status. This command will return one
byte that indicates powerfail, disk change, and/or a se-
curity fault. This status is cleared either by a Security Clear
command or by the execution of the Request Security Status
command.

® Request Security Status. This command will return a string
of bits indicating the type of disk currently loaded, the
security features that are present in the system area of
the disk, and the security faults that have occurred. This
status is cleared either by the Security Clear command or
by the execution of the Request Security Status command.

® Security Clear. This command will cause all security fea-
tures to return to their default state. The CS-80 Clear
command will not affect the security features. The differ-
ence between the CS-80 Clear command and the Security
Clear command is that the CS-80 Clear command will set
the CD-ROM reader and all internal state machines back
to power-on conditions. The Security Clear command will
set the security features back to either power-on or new
disk loaded conditions. Using the Security Clear and the
CS-80 Clear commands independently will help ensure
that no data corruption occurs.

B Set Security Status Mask. This command will prevent the
occurrences that are masked from affecting the Security
Status or Security Quick Status commands.

Conclusion

The tools designed into the HP Series 6100 Model 600/A
HP-1B CD-ROM drive should be adequate for almost any
user who wants to distribute software or data on CD-ROM
disks. The disk publisher can tailor the security level to
range from no security at all to a verv complex security
scheme. If the host system wants to build a security driver
with a protocol that is similar to the host CS-80 driver, the
commands are available to do so. If the disk distributor
wants to change the unique customer password verification
number, there are hooks built into the Model 600/A to
allow that change to be done safely at the customer’s site.
Essentially, the Model 600/A security scheme provides a
good balance between security and ease of implementation
for both the distributor and the customer.

Acknowledgments

The HP Series 6100 Model 600/A HP-IB CD-ROM drive
project was a joint effort between HP's Greeley Storage
Division (GSD) in Greeley, Colorado and HP's Application
Support Division (ASD) in Mountain View, California. The
desire for such a product was generated by ASD. They had
a good idea of the general outline of the product they
wanted, but being a support division, they did not have
the R&D or manufacturing resources needed to design, de-
velop. and manufacture the product. Therefore, GSD was
contracted to supply the product. The security tool defini-
tions were designed by a committee that consisted of Chris
Armbrust and Pankaj Shah from ASD, John Santon from
GSD, and Steve Hand from HP's Commercial Systems Di-
vision. I would like to thank ASD section manager Jeannie
Bruins who managed the host implementation part of the
project, GSD project manager Ed Sponheimer who had the
responsibility for managing the product and coordinating
with ASD, Chris Armbrust of ASD who provided valuable
insights about customer use and what the final product
should look like, Mark Cousins and Pankaj Shah from ASD
who were the interface team for the HP 3000 operating
system, and finally the GSD development team of John
Meyer, firmware designer for drive control and error correc-
tion, John Santon, hardware designer, and Bob Proctor,
mechanical designer.

References

1. T.A. Rullo, Advances in Computer Security Management, Vol-
ume 1, Heyden and Sons, 1980.

2. D.K. Hsiao, D.S. Kerr, S.E. Madnick, Computer Security,
Academic Press, 1979,

3. “Using HP-HIL Devices,” Facilities for Series 200/300/500
HP-UX Concepts and Tutorial, HP publication number 97089-
90081.

4. CS-80 Instruction Set Programming Manual, HP publication
number 5955-3442.

DECEMBER 1990 HEWLETT-PACKARD JOURNAL 53

© Copr. 1949-1998 Hewlett-Packard Co.



Support for the ISO 9660/HSG CD-ROM
File System Standard in the HP-UX

Operating System

To allow HP-UX users access to CD-ROM files, the ISO

9660/HSG file system format standard has been

incorporated into the HP-UX 7.0 operating system.

by Ping-Hui Kao, William A. Gates, Bruce A. Thompson, and Dale K. McCluskey

electronic distribution medium. It provides large ca-

pacity (600 Mbytes), longevity, low cost, multi-
media (audio/video) capability, read-only protection, and
random accessibility.

The IS0 9660 standard’ and the High Sierra Group (HSG)
working paper”® describe file system formats for publication
and distribution of information on CD-ROM media. CD-
ROMs and the ISO 9660/HSG standard have become well
established in the MS-DOS environment. Currently, there
are large amounts of personal computer software distrib-
uted on CD-ROMSs. Microsoft’s MS-DOS CD-ROM exten-
sions®* provide the capability to access files on CD-ROMs
in the UNIX* environment.

This paper describes HP's design, implementation, and
support for the ISO 9660/HSG CD-ROM file system in the
HP-UX 7.0 operating svstem kernel. The CD-ROM file sys-
tem is an implementation of MS-DOS CD-ROM extensions
on HP-UX operating systems. After mounting a CD-ROM
that adheres to the CD-ROM file system standard, files on
the CD-ROM are accessible through normal HP-UX system
calls and commands, allowing users and application pro-
grams to take advantage of the high capacity and low du-
plication cost of this medium without the need for any
special programmatic interface.

T HE CD-ROM IS a very cost-effective and versatile

Design Goals
The primary objective of incorporating the ISO 9660/HSG
CD-ROM file system into the HP-UX operating system was
to provide easy access to this new medium so that applica-
tions including HP product distributions could take advan-
tage of CD-ROM technology. Based on this and other objec-
tives the design goals for the CD-ROM project included:
® Mounting. The user must be able to mount ISO 9660/HSG
file systems under the HP-UX system, The files on the
CD-ROM are then accessible through normal HP-UX
commands and system calls like those on the HP-UX
native high-performance file system (HFS).” The user
must also be able to mount other file systems such as
the network file system (NFS) under directories in the
CD-ROM file system.
® Networking. Files on an ISO 9660/HSG-compatible CD-
ROM must be accessible via supported networking ser-

*UNIX is a registered frademark of AT&T in the U S A and other countries.
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vices such as NFS and RFA (remote file access—an HP-
proprietary network service for file accessing).
Application Programs. An application program that is
functional in a read-only mode in an HFS environment
must also be functional in a CD-ROM file system environ-
ment unless it is dependent on some features of the HFS.
1SO 9660 versus HSG. Although the ISO standard is the
official CD-ROM file system format standard, many older
CD-ROMs conform to the format defined in the HSG
working paper. The HP-UX must hide any differences
between these two formats from the user.

Adherence to HP's Diskless Semantics. One of the major
features in HP's implementation of diskless workstations
is that all diskless clients in a cluster have the same view
of files on all mounted file systems. This feature must
be preserved with the addition of the CD-ROM file sys-
tem.

Performance. The I/O transfer rate should be as close to
a CD-ROM drive's maximum rate (150 kbytes/s) as pos-
sible when the benefits from buffer caching are excluded.
The number of disk seeks must be minimized. File sys-
tem buffering and path name caching must be used to
help overcome the transfer rate and seek time (up to 1

System Area (32K Bytes)
Volume Descriptor

Volume Descriptor Terminator
Path Table
Path Table

Directory and File Data

Fig. 1. The ISO 9660/HSG data layout on a CD-ROM disk.
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s) limitations of CD-ROM drives.

® Configurability. Provide the user with the capability to
remove CD-ROM-file-system-specific code from the ker-
nel if it is not required.

® File execution. Programs recorded on an 1SO-9660/HSG
formatted CD-ROM must be able to be executed directly.
Executable files in demand-loaded form should be
executable as well as shared text executables and regular
executable files.

8 Level of Implementation. The resulting implementation
must conform to level 1 implementation and level 2
interchange according to ISO 9660. These levels specify
that access is limited to a file system that is described
by a primary volume descriptor and that contains single-
section files. Single-section files and volume descriptors
are described later.

® Quality Implementation. The CD-ROM file system code
must have good quality and be easy to maintain. Tech-
niques, such as structured design, should be used to help
achieve this goal.

ISO 9660/HSG CD-ROM File System

The overall data layout for an ISO 9660/HSG CD-ROM
file system is shown in Fig. 1. There are typically four
sections in this layout: system area, volume descriptor,
path table, and directory and file data. The system area
and the volume descriptors must occur in the order shown.
System Area. This section makes up the first 16 2048-byte
blocks on the media. It is reserved for storing information
to boot a system, the secondary loader, security keys, and
other system data supplied by the disk preparer.

Volume Descriptor. This section typically contains one
primary volume descriptor and zero or more supplemen-
tary volume descriptors. Each volume descriptor describes
the attributes and structure of a directory hierarchy on the
CD-ROM. The list of volume descriptors is terminated by
a volume descriptor terminator. These volume descriptors
allow multiple directory hierarchies to exist on a single
volume (i.e., a physical CD-ROM], or a single directory
hierarchy to span multiple volumes.

Path Table, This section contains the path tables for all
the directory hierarchies on the CD-ROM. Each record in
the path table contains information that enables the system
to locate the directory it describes. The path tables do not
have to be placed together as shown in Fig. 1. They can be
placed anywhere on the disk in whatever manner is accept-
able to the data preparer. This is often done to minimize
disk access times.

Directory and File Data. This section contains the directory
and file data for all the directory hierarchies on the CD-
ROM. A directory contains records that describe directories
or file sections (described later). Directories are described
by two directory records (see Fig. 2). The first record de-
scribes the parent directory. The secand record and a record
in the parent directory describe the directory itself. Fig. 3
shows the structure of a directory record.

A file is divided into pieces called file units which are
recorded with file unit gaps between them. For perfor-
mance, the sizes of file units and file unit gaps can be
selected to maximize disk read speed. A file can also be
divided into file sections. Each file section has its own

directory record. All file sections for the same file must all
share the same filename. File sectioning allows a file to
span multiple volumes.

An optional data structure called an extended attribute
record can be used to specify additional information about
the file or directorv with which it is associated. An ex-
tended attribute record contains information such as the
owner and group identifiers, access permissions, and ere-
ation, modification, expiration, and effective dates and
times. The extended attribute record of a file or directory
is recorded before the data of the file or directory (see Fig. 4).

CD-ROM File System Design and
Implementation

The structure of the HP-UX file system is based on the
abstraction of file systems and file system operations re-
ferred to as the vnode layer. The vnode layer was introduced
by Sun Microsystems Inc.® This structure supports the ad-
dition of new file systems in the UNIX environment. The
vnode layer had been added to the HP-UX system to support
non-HFS file systems (see Fig. 5). Given that it was already
in place, it seemed logical to implement the CD-ROM file
system under the vnode layer. The advantages of this ap-
proach are:
® Modularity. The part of the kernel that supports CD-ROM

file systems can be easily separated from the other parts

of the kernel.

® [nteroperability, The CD-ROM file system can easily
coexist with other supported file systems like NFS be-
cause CD-ROM files on an NFS server are made available
to NFS clients,

® Integration. Other file systems can be mounted on CD-

ROM directories. This provides the capability of updat-

ing a directory in a CD-ROM by mounting a floppy disc

on the directory. Also, additional CD-ROMs can be
mounted on a directory to create a large directory hierar-
chy that might exceed the capacity of a single disk. By
mounting these CD-ROMs on different directories the
user can have different configurations of the directory
hierarchy.

® Resource sharing. The CD-ROM file system can share
system resources (e.g., buffer management, name cache,
drivers, etc.) with other file systems.

At the vnode layer each file has an associated data struc-

Directory
Records Directory
. Al
Records for A (Parent)
e | N S\
B cl

Directory B

Records for {

Fig. 2. The association between directory records and direc-
tories and files. Each directory is assigned two directory rec-
ords, one record for the directory itself and the other for ils
parent.
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Length of Directory Record
Length of Extended Attribute Record
Location of File or Directory
Size of File or Directory
Recording Date and Time
File Flags
File Unit Size
Interieave Gap Size
Volume Sequence Number
Length of Filename
Filename

System Use Area

Fig. 3. The contents of an ISC 9660/HSG directory record

ture called a vnode. This is a generic data structure used by
all the supported file system types to describe attributes
about a file. One entry in the vnode is a pointer to a file
system-dependent data structure. Information needed by
the specific file system implementation is stored in this
structure.

The higher-level layers of the kernel operate on vnodes
and low-level file-system-specific operations are encapsu-
lated in separate modules. For example, the main part of
the kernel does not know about the CD-ROM file system
because that knowledge is encapsulated in the CD-ROM
file system code.

CD-ROM File System cdnode

In the HP-UX high-performance file system, each file has
an associated data structure called an inode, which resides
on the disk. Each inode is assigned a unique number by the
system and the structure contains information such as file
ownership, file type, internal representation, access per-
missions, and other data that the system uses to perform
operations on a file. In the CD-ROM file system a system
dependent pointer in the vnode points to a structure called
a cdnode. A cdnode structure stores information similar to
that found in an inede but specific to the CD-ROM file sys-

Extended Aftribute Record

File Unit Gap 1

File Unit Gap n

Fig. 4. A file section record.
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tem. Unfortunately, inode-like structures with unique num-
bers do not exist in the [SO 9660/HSG file system. There-
fore, cdnode information must be created using directory
records and extended attribute records. If a file does not
have an extended attribute record associated with it, some
of the fields in a cdnode contain default values.
A unique number similar to an HFS inode number had
to be defined for the cdnode. Our solution was to use the
disk address of the directory record for each directory as
the cdnode number. This number uniquely identifies a file
or directorv because the ISO 9660/HSG format does not
support multiple links. In addition, this solution also pro-
vides us with the ability to locate the directory entry with-
out any extra calculation.
We encountered one difficulty with using the disk ad-
dress of the directory record to represent the cdnode
number—deciding which directory record to use. A direc-
tory can be referenced from three locations in the directory
hierarchy: from the directory itself (the “."" entry), from a
subdirectory (the *“.."" entry), and from a record in its parent
directory (see Fig. 6). We determined early that we could
not use the disk address for the directory entry “." to
identity the directory uniquely because there can be many
subdirectories. The choice between using the disk address
for the *“." entry and the directory entry in the parent direc-
tory was not obvious until the case of resolving the
pathname for the entry ““.."" was considered. If the reference
from the parent directory is used, at least three reads of
different directories are needed to perform a pathname
lookup of the ".." entry. For example, in Fig. 6 if the current
directory is /edrom/usrlib and we want to locate the cdnode
number for directory /edromiusr, the three reads would be:
® Read the “..” entry of the current directory to get the
location of the parent directory.
® Read the “..” entry of directory /edrom/usr to get the loca-
tion of directory /edrom, the grandparent directory.

m Read through directory /cdrom to locate an entry that
matches directory reference /edrom/usr. The disk address
of this entry would be the ednode number for directory

System Calls
+‘

Device Drivers

Fig. 5. The vnode architecture.

© Copr. 1949-1998 Hewlett-Packard Co.



References to Directory cdromiusr

/edrom/usr.

It is much simpler to use the disk address of the directory
record " as the cdnode number to obtain the cdnode number
of ... With this scheme the only operation needed is to
read the directory entry “..” and from it the location of the
parent directory can be calculated easily. In our implemen-
tation the cdnode number of the parent directory is stored
in the cdnode whenever possible to reduce the number of

read operations.

Pathname Lookup

One operation the kernel performs frequently is the reso-
lution of pathnames. Name resolution is traditionally done
one pathname component at a time to provide proper han-
dling of mount points. With the advent of different file
system types, traversing the pathname has become even
more complicated.

Each wnode is defined by a unique file system type
specifier and a set of services required by HP-UX semantics.
To perform a pathname lookup on a vnode, the pathname
lookup function for that file system is called (e.g., nfs_
lookup), returning the vnode for the next component. If a
mount exists on this vnode, then changing file systems is
indicated, perhaps to one of a different type. The vnode of
the root directory for the new file system is obtained. This
vnode may contain different file system dependent functions
than the previous vnode. The functions at the new vnode are
used to continue the pathname lookup process until all
components have been parsed. Thus, each file system is
allowed to handle its own directory searches, and mounting
different file systems on arbitrary directories is possible.

Because of the long execution path and the slow disk
seeks, the scheme above could be very time-consuming.
To help with this, the directory name lookup cache, a fea-
ture that comes with the vnode layer, is used. It caches
frequently used pathname elements and their vnode point-
ers. This significantly reduces the amount of redundant
disk accesses made during pathname lookup.

The 1SO 9660/HSG format provides a supporting data
structure called a path table that is included for pathname
lookup. The path table describes the entire directory struc-
ture of a file system. This allows traversing the entire
pathname with one seek to avoid the lengthy seek time of
CD-ROM drives. This method does not allow checking of

Fig. 6. Direclory references in a
typical directory hierarchy

mount points during the traversal. The path table can be
very large, and could consume a large amount of the avail-
able memory if kept in main memory entirely. If the path
table had to be referenced from the disk, much of its poten-
tial benefit would be lost. Although not ideal, most of the
path table’s performance gain is already provided by the
directory name lookup cache mentioned above. For these
reasons, path tables are not used for pathname resolution
in our implementation.

Backward Compatibility

One major design goal was to minimize the impact on
application programs. The strategy to achieve transparent
access to the CD-ROM file system was to map, as much as
possible, the characteristics of ISO 9660/HSG onto standard
HP-UX semantics and characteristics. The first area of con-
cern was the directory library routines because the CD-
ROM file system directory entries are quite different from
those of the HFS. HP-UX routines use the system call get-
direntries to obtain directory entries in a file system indepen-
dent way. When getdirentries is used to read a CD-ROM file
system directory, the fields of the directory records are
mapped into the format of a standard HFS directory entry.

Another potential problem area was the system call stat,
which returns inode information for a file. To preserve the
object code compatibility of existing compiled programs,
the stat structure used to return inode information was not
changed. When stat is used for a CD-ROM file, information
about a file that maps well into the stat structure is passed
back and other items specific to ISO 9660/HSG formats,
such as file unit size, interleave gap size, and so on are
dropped. To obtain the data that does not map well into
the stat structure, a new system call fsetl (file system control)
was created. Standard HP-UX file attributes, such as user
identifier, group identifier, and permissions are optionally
specified in 1SO 9660/HSG in an extended attribute record.
For files without an extended attribute record, the user
identifier and group identifier are simply set to an out-of-
range number and permissions are set to 0555 (readable
and executable by everyone as specified in the standard).
Fsctl allows retrieval of information specific to any file sys-
tem. The reason we rejected the idea of using the system
command joctl in favor of fsctl was that ioetl is intended for
control of special devices.
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Design and Development Obstacles

During the design and development of the features to
support the ISO 9660/HSG standard, the following obsta-
cles had to be overcome.
Disk Block Size, The kernel's buffer management scheme
requires that all file system blocks be accessible in DEV_
BSIZE (currently 1024 bytes) units. Unfortunately, the
minimum size of an accessible CD-ROM disk block is 2048
bytes (a multiple of DEV_BSIZE) according to the CD-ROM
standard. For read requests to a CD-ROM, care is taken in
the CD-ROM file system code to ensure that reads start on
2048-byte boundaries with sizes in multiples of 2048-byte
blocks.
Smaller Logical Blocks. The logical block size of a CD-ROM
can be 512, 1024, or 2048 bytes as determined by the data
preparer. If the size of a logical block is less than 2048
bytes, the whole 2048-byte disk block containing the logical
block must be read from the disk. However, only the logical
block is copied into the user's buffer.
Interleaving. To optimize access time and to match an
application’s expected access patterns, files on a CD-ROM
file system can be recorded in interleaved mode for each
file, and the size of a file unit and a file unit gap can be
random as long as the sizes are multiples of 2048-byte
sectors. A kernel routine, cdfs_rd, was implemented to use
information in the cdnode such as file location, extended
attribute record size, file unit size, and file gap size to
calculate the location of each section of a file. If necessary,
cdfs_rd also concatenates pieces of data from different file
sections into blocks before passing the file back to callers.
This routine also tries to maintain the size of a buffer to
8K bytes whenever appropriate so that buffer management
efficiency can be maintained.
Demand-paged exec. One major challenge was to support
direct execution of demand-paged programs on a CD-ROM.
In the current implementation of HP-UX, virtual memory
depends on files being physically divided into fixed-size
blocks (minimum of 4096 bytes for HP 9000 Series 300
computers), except for the last block. The disk address for
each block is kept in the system page table when the files
are first executed via the exec call. When a file is paged in,
the file's disk address is used to read in the block by calling
the relevant device strategy routine directly. Since the files
on a CD-ROM can be recorded in interleaved mode and
the size of file units can be any number of logical blocks,
we cannot rely on the page-in routine to read in pages from
the disk directly by calling the device strategy routine. For
CD-ROM files, instead of the file’s physical disk address,
the offset into the file is stored in the page table. With this
setup, when the file is paged in, a routine called cdfs_strategy
uses the file offset to read in the page by calling the cdst_rd
routine. The cdfs_rd routine hides the fact that the portion
of the file containing the page may not be contiguous on
the disk.
Diskless Protocol. HP-UX supports diskless clusters, and
a client’s requests are passed via a lightweight protocol to
the server. This protocol assumes there is only one kind
of file system. A switch was added to this protocol to accept
different kinds of file systems,
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Testing and Validation

To ensure compliance with our design goals, the follow-
ing methods were used to test and validate the CD-ROM
file system implementation.
Commercial CD-ROMs. Several commercially available
CD-ROMs were purchased to see if they could be accessed
through the CD-ROM file system. In selecting the CD-ROMs
to purchase, first the mastering companies used to produce
the disks were chosen and then at least one CD-ROM was
purchased from each. By doing this, the CD-ROM file sys-
tem code was exposed to different interpretations of the
standard.
Regression Testing. The HP-UX kernel is subjected to
nightly regression and verification testing by an automated
test suite, Tests were added to this suite that mounted a
CD-ROM file system volume and verified proper system
call behavior. System calls were tested on stand-alone and
diskless configurations.
Test Disk. A test CD-ROM was produced that contained
many items not available on commercial CD-ROMs. This
test disk contained several releases of HP-UX (to investigate
the possibility of software distribution on CD-ROM),
executable programs from HP 9000 Series 300 and Series
800 computers (in particular, to test demand-loadable
executables), huge files, small files, uncommon filenames,
and so on. The test disk was particularly useful in testing
the demand-loadable executables, but because the CD-ROM
manufacturers could not create some of the more exotic
data constructs (such as extended attribute records and
interleaved files), testing of these constructs was not possi-
ble.
Cdgen. Because there are many possible data constructs
that are not widely used in the industry today, such as
interleaving, multisection files, associated files, and ex-
tended attribute records, there was no way to test the paths
in the CD-ROM file system code that handles these cases.
To solve this, a CD-ROM image generator called cdgen was
written to create a simulation of a CD-ROM. Cdgen takes a
list of files and creates a CD-ROM image from them. This
image is then written to either an HP-UX file or a hard
disk. The hard disk can then be mounted and treated as a
CD-ROM file system volume. Cdgen supports the following
standard data formats and constructs:
m HSG or ISO 9660 format
m Multiple directory hierarchies per volume (primary and
supplementary volume descriptors)
Multiple volume descriptor set terminators
Interleaving
Extended attribute records
Multisection files
Associated files
System use, system area, application use, and escape
sequence data in all constructs that provide them.

Cdgen was first used to test obscure corner cases such as
interleaved demand-loadable executables, directories end-
ing exactly on a sector boundary, zero-length files, and
system use data in “." and “..” directory records. Later,
automated tests were written that incorporated cdgen, and
the tests were added to the kernel regression test suite.
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Conclusion

All of our design goals were achieved and the delivered
performance matches the speed of the underlying device.
The structured design techniques used during design made
some sections of the CD-ROM file system code very mod-
ular. Pathname lookup is much simpler and more modular
than its counterpart in HFS, even though the CD-ROM file
system directory structures are more complicated. Al-
though the I/O rate is very dependent on the physical layout
of the data on a CD-ROM, it was measured at 149.9 kbytes/s
(the maximum for a CD-ROM drive is 150 kbytes/s) without
the help of the buffer cache. All nonfile-system-dependent
commands and CD-ROM applications from independent
software vendors that we tested ran without changes. The
quality of this syvstem improved after the last few corner
case errors were identified by the images created with cdgen.
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\ that designed the efec-

S tronics and firmware al-
gorithms that control the autochanger mechanism
of the HP Series 6300 Model 20GB/A. His past proj-
ecls include designing the servo systems for the
HP 9144A and 91424 tape drives Before joining
HP, Tom worked lor Liebert Corporation on a micro-
processor-based controller design. His major pro-
lessional interestis high-performance, multivanant
control systems. Tom grew up in Columbus, Ohio.
He and his wife make their home in Fort Collins, Col-
orado. His outside interests include windsurfing,
weight lifting, basketball, skiing, and blues music.

35 —_ Optical Drive Qualification

Kevin S. Saldanha

for HP's Greeley Stora

w0

e is partof the proj
for the gualification of the optical disk drive
Mode! 20GB/A autochanger. Before joining HP in
1985, Kevin worked for Xidex Magnetics and au-
thored a 1384 paper on operations research. His
professionalinterests now center around optical re-
cording. Originally from Mangalore, India; he is
married and lives in Fort Collins, Colorado. Heen-
joys music, the outdobrs, and travel

Colette T. Howe

Colette Howseisan R&Den-
gineer far HP's Greeley
Storage Division. She holds
a BS degree in electrical
engineering (1984) from
the University of Utan. She
jained HF in 1884 and has
contributed to the design of
the HP 9153A disk drive
and the design and gualifi-
cation of the HP 91538, 21230, and 79638 disk
drives, Currently, she is part of the project team
responsible for qualification of the optical disk drive
for the Model 20GB/A autochanger Belore joining
HP, Colette was atechnician with Evans & Suther-
land Computer Corporation. She is a member of the
IEEE Computer Society and her professional in-
terests center around specialty drive gualifications
board layouts, optical devices, and imaging sys-
tems. She was born in Salt Lake City, Utah, and she
and her husband reside in Greeley, Colorado. Her
hobbies include biking, downhill skiing, windsurf-
ing . sewing, and cooking. She also serves as Aelief
Society President of the Greeley University Branch
forthe Church of Jesus Christ of Latter Day Saints

38 —— CD-ROM Drive

Edward W. Sponheimer

Ed Sponheimer joined HP's
Civil Engineering Division
in 1977, after receiving a
BSEE degree from the Uni-
versity of Arizona in 1976
Ed was the project man-
ager for the HP 8153C
40-Mbyte hard disk drive,
and RAD project manager
- for the Mode! 600/A CD-
ROM HP-IB drive and the Model 650/4 rewritable
optical stand-alone drive. He is currently the ma-
terials engineering manager for optical products
Ed came to HP from Hughes Aircraft Company
where he warked in component evaluation and
analysis and test equipment engineering. Ed is a

Wy

W o

degree. He
1981, working in the Desk-
top Computer Division. He
X has contri d 1o service
‘ engineenng efforts on the
| 3 HP 8816 computer, has
done software testing onthe HP 91330 and 9153A
disk drives, and has done hardware design onthe
HP' 81538 and 9153C disk drives and the Model
BOOVA CD-ROM drive. John is especially interesled
in applications of software structured design
methodology to hardware design. John and his
wite and two daughters live in Johnstown, Col-
orado. Gardening, backpacking, and radio control
modeling are some of his leisure activities

42 —— CD-ROM Error Correction

John C. Meyer
L A John Meyer received a BEE
degree from the University
of Minnesota in 1984, and
will receive his MSEE from
Colorado State University
in 1990. He has been with
~ HP since 1984. He has
worked In manufacturing
support for small magnetic
disk peripherals. For the
CD-AOM product, he developed the error correc-
tlon mechanism, He is currently working on optical
drive controllers, mechanism drivers, buffer man-
agement, and error correction for a new product.
Before joining HP, John spent twelve years as a
self-employed carpenter and contractor. He was
alsoa .5 Navy Seabee, working as a construction
electrician. John is married, and has eight-year-old
twins, one girl and one boy. He was born in Min-
neapalis, Minnesota, and he and his family cur-
rently live in Greeley, Colorado. He plays guitar,
and enjoys rock coliecting

49— CD-ROM Software Protection

Kenneth R. Nielsen

Born in Minneapolis, Min-
nesota, Ken Nielsen
graduated from Dunwoody
Industrial Institute in 1968
asanelectronic technician.
After joining HP in 1969, he
1 attended Colorado State
o R . University, majoring in

|\ electrical engineering. Ken
was design engineer for the
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HPF 9144 A tape cartridge driver, and manufacturing
engineer for the HP 87500A/B 3.5-inch hard disk
drive. He worked on the firmware design of the
channel code and security implementation for the
HP 6100 Model 600/A CD-ROM HP-IB drive. He is
currently working in manufacturing engineering,
supporting firmware for autochangers and optical
drives. Kenismarned, and lives with his wife and
three children in Loveland, Colorado. He plays rac-
auetball, golf, and tennis, and enjoys woodworking
and refereging soccer games

54 — HP-UX CD-ROM Support

Ping-Hui Kao
L | Ping-Hui Kao was barn in
Tainan, Taiwan, and
graduated from Chung-
Yuan University with a
BSEE degree in 1978. He
received an MSEE degree
from Arizona State Univer-

v Famey sity in 1982 With HP since

¥ 1984, he has worked on

NS HP-UX commands and the

HP-UX kernel, particularly on the kernel for the HP

9000 Series 300 file system. Ping-Hui designed

and implemented the CD-ROM file system in the

HP-UX kemel, and is currently working on new
products for supperting CO-ROM technology in
HP-UX. Ping-Hul is married, has two sons, lives in
Fart Collins, Colorado, and enjoys fishing as a

hobby

William A. Gates

Bill Gates was born in
Artesia, New Mexico, and
is @ graduate of Arizona
State University, where he
earned a BSEE degree in
1981 He joined HP in 1881,
and has worked in HP-UX
documentation and HP-UX
technical support. He did
product testing for the CO-
ROM file system, and worked on the development
ofthe CD-ROM file system image generator. He is
currently working on conformance testing stan-
dards for HP-UX. Bill lives in Fort Collins with his
wife and son, and enjoys playing guitar, writing
music, and playing tennis, volleyball, and softball
He also does weight-lifting, aerobics, and hiking.

Bruce A. Thompson
Y= - Bom in lowa, Bruce
Thompson graduated from
lowa State University in
1981 with 2 computer en-
gineering degree. He
started working at HP in
1982. He worked on the
L HP 7974 and 7978 "%-inch
" tape drives, and
codesigned the DDS for-
mat for digital audio tape drives (DAT). Bruce

worked on the HP-UX kernel software for the HP
CD-ROM drive, and is currently working on the
HP-UX kermel drivers for the optical autochanger
Bruce was the codeveloper of a software develop-
ment tool called HCL (Hierarchy Chart Language),
and has written several conference papers. Heis
single, and lives in Fort Collins, Colorado, where he
enjoys photography, amateur radio, and collecting
antigue soda boltles

Dale K. McCluskey

Dale McCluskey was born
in Lorna Linda, Califormia,
and started working at HP
in 1986, He Is currently a
techrical support enginger
for HP-UX at HP's Fort Col-
lins Systen Division, Dale
has also written software for
manufacturing and helped
add CD-ROM support o
HP-UX. Dale graduated from Walla Walla College
withaBS in Computer Science in 1986. He and his
wite live in Fort Collins, Colorado. He enjoys
backpacking, cross-country skiing, and stamp
collecting.

63 —DTC PAD Support

Jean-Pierre Allegre
Jean-Pierre Allegre has
been an R&D engineer for
HP's Grenoble Networks
Division since 1986. He is
a graduate of the Ecole
Nationale Superieure
d'Electronigue et de
Radioeleclricile de

.ﬁ Grenoble and the Ecole

y Nationale Superieure des
Telecommunications de Paris. He is a member of
the project team that designed the DTC PAD sug-
port architecture and is now pursuing new DTC
PAD support functionalities. Previously, he was a
quality control engineer for NS X.25 software. His
professional interests include networks and lan-
guages. Jean-Pierre was born in Grencble. He and
his wife are newlyweds and live in Seyssins. His
favorite pastimes include skiing, tennis, and
boardsailing.

Marie-Thérese Sarrasin
Mare-The Sarrasin is a
senior lab engineer forHP's
Grenoble Networks Divi-
sion: Her educational back-
ground includes a BS de-
gree in computer science
= (1877) from Grenoble Uni-
versity and an MS degree
in computer graphics

Lt (1982) from Grenoble Na-
tional School of Mathematics and Computer Sci-
ence. With HP since 1982, she helped design and
gualify HP 1000 software products, HP 3000 MPE

VPAD support, and X.25 MPE XL PAD support, and
she participated in the investigation for Telnet/xXL
and the new DTC architecture. Before joining HP
she was an analyst for Mutte, a transport company
A native of Bourgoin-Jallieu, Marie-The now lives
in Rives, where she serves as town councillor. 8he
is married and has two young children: She enjoys
traveling, mountain climbing, skilng, running, read-
ing and writing poetry, and lelling staries ta her chil-
dren

74— Message Interface

Frédéric Maioli

When schoolteacher Fréd-
eric Maioll purchased a
Texas Instruments Ti57 cal-
culator he realized he had
missed his vocalon, pro-
gramming. Whereupon he
re-enrolled in schoal,
graduating in 1986 from the
Ecole Nationale Superieure
d'Intormatique et de
Mathematigues Appliguées de Grenoble. Fredéric
has been an R&D engineer for HP's Grenoble Nel-
works Division since 1986. His most recent preject
was the DTC PAD suppart project. Before this he
designed a configuration expert system far the HP
2334A PAD. His professional interests include
functional, iogic, and objecl-criented program-
ming. Bom in Lyon, Fréderic has a five-year old
child and currently lives in Grenoble. During his lei-
sure hours he enjoys listening to music and is learn-
ing to play the flute, He also enjoys hiking

88 — CuBe Anisotropic Change

Nguyen P. Hung

Nguyen Hung is an R&D
project manager far HP's
Asia-Pacific Computer
Division. He holds a BS
degree (1978) and an
MSME degree (1979) from
the University of Michigan
and a PhD ME degree
(1987) from the University
of California at Berkeley
His research determined which materials are best
suited for use in network and signal analyzers.
Presently, he is developing a proprietary manufac-
turing process to be used in the |atest HP input de-
vices. Nguyen joined HP's Network Measurements
Division in 1979. He is amember of the American
Society for Metals and has contributed articles to
Experimental Mechanics, Machine Design. and
American Machinists. He was barn in Vietnam
Mguyen and his wife reside in Singapere. During
his free time he enjoys snorkeling, hiking, and
photography

Frank E. Hauser

Frank Hauser recently retired as a professor of
mechanical engineering at the University of Califor-
nia at Berkeley.
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X.25 Packet Assembler/Disassembler
Support in the HP 3000 Data
Communications and Terminal Controller

The PAD support software implements the communications
protocols specified in CCITT recommendations X.3 and
X.29. For performance reasons, the software is in the
datacom and terminal controller (DTC) rather than the host

MPE XL system.

by Jean-Pierre Allegre and Marie-Thérése Sarrasin

terminal controller (DTC),' offered connectivity

from personal computers, terminals, and printers
to a single HP 3000 computer system running the MPE XL
operating system. The DTC, connected to the host computer
by an IEEE 802.3 local area network (LAN), could be
thought of as a remote multiplexer.

From a hardware point of view, the DTC is built around
an HP proprietary bus called the Device /O (DIO) bus. A
server card with a 68000 microprocessor handles LAN ac-
cess and DIO management. Up to six multiplexer cards
with Z80 microprocessors can be plugged into the back-
plane. Adapter cards give each multiplexer card either eight
direct-connect or six modem ports. Thus the first version
of the DTC allowed up to 48 direct connections to an MPE
XL system (see Fig. 1).

From a software point of view, the DTC uses its own

F IRST RELEASED IN 1986, the HP 2345A distributed

HP 3000 MPE XL Computer System

minimal operating system, called AOS. AOS is a message-
based operating system that manages intertask communica-
tion. Each software module is a task in operating system
terms. A task interacts with the other tasks by sending
messages. The operating system manages a queue of mes-
sages. When a message is at the head of the queue. it is
dequeued and given to the target task. Then the target task
executes and is not interrupted until the message is com-
pletely processed. Hardware interrupts are managed by
operating system handlers that transform these interrupts
into operating system messages,

On top of the IEEE 802.3 LAN, the DTC implements an
HP proprietary protocol, AFCP, for the transport layer of
the seven-laver Open Systems Interconnection (OSI) model
of the International Organization for Standardization (ISO).
This transport protocol is optimized for LAN traffic and
its peer is implemented in the host computer system. The

|EEE 802.3 LAN
Local: y— ) ! ‘ - Remote:
e e —.. =
Rean HP2345A | HP2345A Pz
o4z DTC | DTC
"//_ R B N HP2335A
r / | HP2335A
= |,I
— | n n Fig. 1. The original HP 2345A dis-
s ; <=3 > A4 Modems tributed terminal controller could
; be thought of as a remote multi-
Terminals plexer
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transport layer carries terminal I/O requests that are en-
coded using another proprietary protocal, ADCP, which
manages all the terminal read, write, and control functions.
It has also been optimized for performance.

The software architecture of the original DTC is shown
in Fig. 2. The management task (MGT in Fig. 2) handles
all the management requests within the DTC along with
initialization. Among its important functions are software
download and upload. At initialization, the DTC sends a
multicast request. Upon receiving this request, the host
starts sending the DTC code through the LAN. This allows
easy updates of the code without the need for a ROM
change. When the DTC detects an abnormal condition, it
is able to upload its entire memory to the host, allowing
further study by an HP representative for troubleshooting.
The management task also handles all the reset and status
requests.

The DIODAM task is in charge of managing the DIO bus
interface and also does some ADCP preprocessing.

The MUX task transforms the read, write, and control
requests into characters transmitted to each terminal. It
also multiplexes several independent data streams to the
backplane slots.

Second DTC Release
In its second major release, the HP 2345A has been re-

named the data communications and terminal controller.

It now offers the following new functionalities (see Fig. 3):

# PC-based management”

# Access to X.25 packet-switched networks through syn-
chronous network processor (SNP) cards

m A capability for terminals to switch from one MPE XL
host to another on the LAN

® Back-to-back access to non-MPE XL systems connected

Local Terminal
Switching Capability

s
HP 3000 HP 3000
MPE XL MPE XL
Compuler Computer

IEEE 802.3 LAN

IEEE 802.3 LAN

AFCP

DIODAM (ADCP)

DIO
BUS

R
DRI
T
EPRCTREE

Fig. 2. Software architecture of the original DTC. AOS is the
operating system. AFCPand ADCP are proprietary protocols.

via RS-232-C to another terminal controller (DTC or TS8)

on the LAN,

The X.25 access provides for system-to-system communi-
cations as well as for remote terminal communications. Up
to three SNP cards, which are based on the 68010 micropro-
cessor, can be plugged into the DIO backplane instead of
multiplexer cards. SNP adapters of two different kinds
allow high-speed, multistandard or RS-232 SNP connec-
tions to the X.25 network. Each SNP card can handle up
to 256 connections for X.25 packet sizes of 128, 256, or
512 bytes and up to 54 connections for a packet size of
4096 bytes. Access to the LAN is through the server card,
as it was in the original DTC.

The second-release DTC is managed through a personal
computer using the HP OpenView DTC Manager,” an appli-
cation based on Microsoft” Windows and the HP OpenView

Microsoft is a U.S. registered trademark of Microsoft Corporation.

Back-to-Back Functionality

HP 3000
MPE V

Asynchronous HP 2345A

Network
Access oTC
X.25
ﬁ Network
3 Access
HP OpenView
DTC
Manager
Remote Device
Access through
X.25
PAD

64 HEWLETT-PACKARD JOURNAL DECEMBER 1930

System-to-System

HP 2345A
DTC

Fig. 3. The second-release HFP
2345A DTC, renamed the data
communications and terminal con-
troller, offers X.25 network access,
the ability of terminals to switch
from one host to another, and
back-to-back access to MPE V
systems on the LAN.

Communication
through X.25
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network management architecture. The management fea-

tures include:

® DTC configuration

& DTC download/upload/reset/status

® Board upload/reset/status

m Site management (show connections with information
on end-to-end path)

® Protocol status

= Connection upload/reset/status

® Logging and tracing.

The same operating system runs on the server card and
on the SNP cards. From the operating system point of view,
the server card is the master card and each SNP card is a
slave card. Communication between tasks from the server
board to an SNP board over the DIO bus is managed by the
operating system. A message can be sent to any task from
the master board to the slave board and vice versa in a
transparent way thanks to the operating system’s mul-
tiboard communication mechanism. Messages from the
server to the SNP are copied by the operating system onto
the SNP board. Messages from an SNP task to the server
don't need to be copied because the server board can access
all of the SNP cards’' memary.

To make these functionalities possible, many protocols
have been added in the DTC. Fig. 4 shows the possible
paths through the DTC and its protocols.

ALCP is an HP proprietary protocol based on the CCITT
X.213 recommendation, An OSI Network Laver Service for
Connection-Oriented Protocols. ALCP offers X.25 access
for host-to-host communications. Two operating system
tasks, X.25 Level Il and X.25 Level 1I, implement ALCP,
the X.25 level III recommendation, LAP-B (X.25 level II),
and X.21 bis (X.25 level I). X.25 data is encoded in ALCP
messages and transmitted to the host using the AFCP trans-
port layer (level IV) and vice versa.

Local Device-to-
Host Path

PAD-to-Host Path

System-to-System Path

DTCMGR

LAN Driver

PADSUP

I X.25 Level Il I

DTCMGR

I X.25 Level Il

The terminal switching capability is offered by DTC user
interface commands located in the DIODAM task.

The back-to-back functionality is offered with the im-
plementation of the Telnet/TCP/IP stack. Telnet isa DARPA
standard network virtual terminal protocol and is im-
plemented in the DIODAM task. ADCP (the HP virtual ter-
minal protocol) has been enhanced to support the added
Telnet functionality. The TCP and IP protocols have been
implemented as two independent DTC tasks on the server
board.

Communication through remote asynchronous PAD de-
vices is implemented in a PAD support task (PADSUP) on
the SNP board.

The DTCMGR agent task replaces the management task
of the first-release DTC. This task receives terminal and PC
requests and transmits them to the appropriate DTC task.

The target name resolution task (TNR in Fig. 4) is in
charge of name-to-address resolution using configuration
information, HP proprietary protocols (Probe or Name
Lookup Protocol, NLP), or standard protocols (Address Res-
olution Protocol, ARP).

The DTCMGR extension (EXT) task provides the SNP
logging and tracing facilities. These functionalities send
data to the personal computer running the HP OpenView
DTC Manager software, which is able to format and display
the data.

PAD Support Functionality

A PAD (packet assembler/disassembler) is a piece of soft-
ware and/or hardware that allows an asynchronous device,
such as a terminal or a printer, to communicate with an
X.25 network. PAD support in the DTC provides a host
computer with support for terminals connected to public
PADs (also called network PADs) and with support for
terminals and printers connected to private PADs.

Back-to-Back
Path

s

DIODAM (ADCP/Telnet)

Fig. 4. Software architecture of
the second-release DTC. X.25 ac-
cess is through SNP cards in the
DTC. The PAD support software
is on the SNP card. TNR is the
target name resolution task. Tel-
net, TCP, and IP are standard pro-
tocols. AFCP and ADCP are pro-
prietary protocols. The path
through the protocols depends on
the type of connection.
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Communication between a PAD and an asynchronous
terminal is described in the CCITT X.28 recommendation.
The different parameters necessary to set up the proper
terminal profile are defined in the CCITT X.3 recommenda-
tion, and communication between the host and the PAD
is ruled by the CCITT X.29 recommendation (see Fig. 5).

A private PAD can be thought of as an external PAD. It
is connected to a PDN (public data network) as a host and
has an X.25 address, but it behaves like a PAD when com-
municating with another host. HP provides the HP 2334A
and HP 2335A X.25 cluster controllers, which allow up to
16 terminals and/or printers to access a network (see Fig. 6).

Applicable Standards

The CCITT has issued X.25, X.28, X.29, and X.3 recom-
mendations in 1976, 1980, 1984, and 1988.

The objective of MPE XL PAD support in the second-
release DTC is to support applications by using the X.3
and X.29 recommendations and philosophy. To achieve
this, the PAD support must manage the X.3 parameters in
such a way that the user does not have to care about them.
In the new DTC, the same processing is done for every type
of PAD—public or private. The PAD support sets parameter
values according to the 1980 X.3 recommendation so that
the DTC can support as many PADs as possible.

The PAD support in the new DTC uses X.3 and X.29 to
transmit control requests to the PAD. The X.3 recommen-
dation defines a set of couples of parameter references and
values to control the asynchronous interface of the PAD.
According to the 1980 X.3 recommendation, eighteen pa-
rameters are available to manage a PAD:

1 Escape from data transfer and enter a PAD command
2 Echo
3 Data forwarding condition
4 Idle timer (time between two characters)
o Flow control using XON/XOFF
6 PAD service signals
7 Break processing
8 Discard output
9,10,14 Padding after CR, LF, LF line folding
1" Line speed
13 Linefeed insertion after CR

15,16,17,18 Editing parameters.

A simple example is the parameter reference 2, defined
for echo processing. If this parameter is set to the value 0
the PAD will not echo the data sent to the network. When
the value is set to 1 the PAD is in charge of echoing the
data entered on the terminal keyboard to the screen. There-
fore, a reference number specifies a functionality (e.g., echo
processing) and many values can be attached to this func-
tionality (do echo, do not echo).

In the 1984 X.3 recommendation, four more parameters
were added along with the possibility of having network
dependent formats for PAD devices. The four added param-
eters are:

19 Editing PAD service signals
20 Echo mask

21 Parity treatment

22 Page wait.

In the 1988 X.3 recommendation, the main modification
is that PAD service signals (prompts and user messages)
can be in English, French, or Spanish.

To transmit the X.3 parameters to the PAD, the X.29

T =
| =
|0
| ‘ |
IJ_A_ I|
Asynchronous ‘ ‘ |
Terminal LAN = ]
- ——l—llir :_I
P ; F——3——
i _— | ! [l =
Public Data o . | (i | ‘ ‘
Network | HP234sA Rl | | |
DTC = [
Il ‘
I {1
01 [ '
| o I| | |
I . I
=
L i8S (111} o |
HP 3000 Fig. 5. Connection through a
MPE XL public or netwark PAD, showing
- X.29———» _
Computer the CCITT recornmendations that
%28 et " %25 Systems govern communications.
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recommendation is used. This recommendation defines the
operations a host can perform on a PAD. According to the
1980 X.29 recommendation, the main operations on a PAD
are:

Set Set a profile of X.3 parameters
Read Reguestthe PAD X.3 parameter values
Setand read Set a profile and then read it

Parameter indication Receive the values of the required current
PAD profile after a read or setand read
Notify the host that the Break key has been
pressed and tell the host whether the PAD
is discarding data

Clear a virtual circuit as soon as all data sent
tothe PAD has been sent to the device
Indicate a PAD problem (invalid message
code received, forexample).

Indication of break

Invitation to clear

PAD error message

A profile is a set of X.3 parameter references and values.
All these messages are coded and transmitted using X.25
packets with the qualifier flag set. The usual convention
for describing a profile is

[=parameter reference > . <parameter value= J=

For example, 2:1, 3:2, 4:1 means that parameter 2 has value
1, parameter 3 has value 2, and parameter 4 has value 1.
In the 1984 X.29 recommendation, a new message was
added, called the reselection PAD message. It makes it
possible to clear an X.25 circuit to a destination after trans-
mission of all the data and to establish a new circuit to a
given destination in the same message. In the 1988 X.29
recommendation, this was enhanced to support the TOA/
NPI (type of address/mumbering plan indicator) address
subscription facility defined in the X.2 recommendation.
This enhancement is mainly for future extension to ISDN.

DTC PAD Support Architecture

We could have built a PAD support task in the host
computer on top of the NetIPC (network interprocess com-
munication) software using the VT (virtual terminal) net-
work service. This was done for MPE V PAD support. For
the DTC and MPE XL, we have instead built a task called
PADSUP within the DTC, mainly for performance reasons.
This decreases the amount of character processing that
must be done by the host, since this is done remotely by
the PADSUP task in the DTC front end. All X.3 and X.29
processing is in the DTC PADSUP task, so the entire X.25,
X.3, and X.29 implementation is within the DTC.

The PADSUP task receives ADCP requests from the
DIODAM task as if it were a multiplexer with a physically
attached terminal. It transforms these requests into X.25
and X.29 requests through the ALCP interface.

This architecture has many advantages. Remote termi-
nals have the same data path in the host as local terminals,
thereby decreasing the time needed for implementation,
support, and maintenance. The known ADCP protocol,
which was designed for the original DTC, was retained
because it is simple and efficient for asynchronous com-
munications, and very few extensions were needed for PAD
devices. The ALCP interface, which is already used for
system-to-system communication, is used to communicate
with the X.25 level ITl module. The efficient, reliable AFCP
transport protocol is used for communication with the MPE
XL host, and access to the transport layer is hidden by
DIODAM.

The architecture also allows switching capability. Be-
cause the user interface is in the DIODAM task, the func-
tionality implemented for the local terminals can be reused
by the PAD support task to connect remote terminals to
any MPE XL computer on the LAN.

Asynchronous
Terminal
LAN
I |
Public Data I || ‘ I |
Network HP 23458
0l | It | |
. (PDN) DTC —1 |l
HP 23354 | I |
. _ | —
il
Printer
=
X N
_z_‘?f—_—-_—_‘.: i
- %29 ————————»
X3 oL - A Computer Fig. 6. Connection through a pri-
X28 A =BREYRED o i Systems vate PAD such as the HP 2335A.
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Security

Through the X.25 network and gateways, numerous PAD
users may try to connect to various systems. This causes
security concerns for system and network managers, who
need to restrict the use of some systems. For example, when
private X.25 networks are tied to public networks, access
is often authorized for users within the private networks
and restricted for public PAD users. On the other hand,
some customers don't care about security. To meet varied
customer needs, the DTC PAD support offers flexible se-
curity features.

Two kinds of security are provided. First, a management
function available from the HP OpenView DTC Manager
PC workstation can be used to start or stop the PADSUP
task, When the PADSUP task is not started on a card, all
PAD calls will be cleared.

The second type of security is a security list based on
the X.25 calling address. Users with unauthorized X.25
device addresses are filtered out at the DTC level. A table,
configured at the HP OpenView DTC Manager PC, as-
sociates X.25 device addresses with host names and pass-
words. When the user tries to log on with security con-
figured, the password tied to the list must be entered in
the user data of the call packet or through the DTC user
interface. The user is allowed three attempts to enter the
password. If a wrong password is entered or if the node
name to which the user wants to be connected is unau-
thorized, the connection will be cleared. Users who know
the password can be allowed access to all systems or only
to certain systems. It is also possible to reject all users
calling from a particular address. Wildcard digits are avail-
able for use with public PADs, where the X.25 address is
not relevant.

Testing the PAD

A major problem for PAD support is managing multiven-
dor PADs connected to multivendor devices. The X.3 re-
commendation defines a set of parameter values that look
like driver characteristics. There have now been four suc-
cessive editions of this recommendation from the CCITT.
Each PAD vendor implements only a subset of the latest
X.3 parameter values. From experience, we know that even
some mandatory values aren't implemented in some PADs.
It is always a support nightmare to characterize a PAD
problem, especially if the problem is that the system is
hung up in the middle of an application.

To alleviate this problem, a PAD test sequence is im-
plemented in the DTC. It is run at connection initialization
to verify the X.3 parameter values supported by the PAD.
After this test, information is available to inform the net-
work administrator of potential intrinsic mappings that
may fail because of PAD restrictions. Once data transfer
starts, the PADSUP task always knows what it can and
cannot ask the PAD to do.

To map all the intrinsics used in the terminal /O world,
only a subset of the X.3 couples (parameters and values)
is needed. PAD support in the DTC tries to set all the values
at connection initialization that will be needed during the
connection to support all the applications. If a parameter
is not supported by a PAD, an error is logged and the DTC
PAD support never sets this parameter again, thereby avoid-
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ing further problems. This implementation exposes all the
multivendor PAD problems at connection initialization,
which seems the best point to detect problems.

The PAD test is performed by the PAD support task just

after the X.25 call confirmation packet is received by the
DTC from the host (host calling terminal) or sent by the
DTC to the host (terminal calling host). The sequence is as
follows:
1. Identification of PAD parameters. An X.29 read of all
PAD parameters is sent to identify the parameter numbers
supported or not supported by the calling or called PAD.
2. PAD test. An X.29 set and read of a given set of X.3
couples is sent to the PAD. These couples consist of the
parameter numbers supported by the PAD with the param-
eter values required by all types of applications. To
minimize the number of messages needed to determine the
characteristics of the PAD, the first X.29 set and read mes-
sage sets alls the values that may be used for each param-
eter. For example, the profile of couples might be 1:0,1:1,
2:0,2:1,3:0,3:2,4:0,4:1,4:10, and so on.

The PAD support task then waits for an X.29 parameter
indication, in which all unsupported parameter values are
marked by an error flag. When such a value is detected,
an event is logged if the value is considered optional (for
example, if parameter 4 is not supported, HP VPLUS appli-
cations can't work with this PAD), or the connection is
cleared if the value is considered mandatory (for example,
parameter 5 with the value 1, PAD flow control). Some
PADs don't follow the 1980 X.29 recommendation and an-
swer with X.29 PAD error messages for the values they
don't support. In this case, many set and read messages
are sent to identify the unsupported couples.

At the end of this sequence, a list of supported PAD
parameter values is computed and stored for later use in
data transfer.

3. PAD configuration. An X.29 set of all the parameters is
sent to initialize the PAD profile.

Mapping ADCP Requests

The PADSUP task must transform ADCP requests into
X.25/X.29 data, and is in charge of user data editing. Only
the main path is described here.

To establish a connection to a host MPE XL system from
a remote terminal, the user enters the X.25 address of the
desired DTC or host. The PAD transmits an X.25 call to
the DTC, which decodes the X.25 host address and trans-
lates it into a host name using configuration data. With
this host name, the DTC can send a request onto the LAN
using the HP Probe protocol to retrieve the LAN address
of the MPE XL host system. With the LAN address, the
connection can be initialized to the host.

Upon a host request to establish a connection to a PAD
port, the DTC receives a string that identifies the device.
Associated with this string is an X.25 address obtained
from configuration data. With this X.25 address, an X.25
call packet can be transmitted to the PAD.

Write data is transmitted to the PAD as X.25 data. Fora
write and read operation, the PADSUP task sends data to
the device and expects data from the device. When data
comes from the device, the PADSUP task is in charge of
data editing (suppression of backspace, detection of subsys-
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tem break). The read data is sent to the host as soon as a
read termination condition is encountered by the PADSUP
task (end of record detected, byte count reached, time-out,
etc.).

Control requests correspond to setting driver parameters.
They are mapped into X.3 couples by the PADSUP task
and are sent to the PAD. The list of supported parameter
values, built during the PAD test, is used to ensure that
the PAD is sent only the couples it is able to use. For
example, when an HP VPLUS block mode application is
used, the PADSUP task receives a write port configuration
command with a flag indicating that the HP VPLUS block
mode is enabled. The task then configures the PAD with
the X.3 parameter values corresponding to no escape from
data transfer (1:0), no echo (2:0), data forwarding condition
(3:0,4:10), break enabled (7:21), XON/XOFF flow control en-
abled (5:1,12:1), no editing (15:0). When the user presses
the Enter key, all of the data on the current screen is sent
by the terminal to the PAD, which sends it on to the DTC
PAD support task because of the data forwarding condition.
All full packets are sent to the DTC and the last packet is
sent using the idle timer value specified by parameter refer-

ence 4 set to the value 10.
Another example is the transmission of a break to the

application. If the application authorizes the user to press
the Break key, the PADSUP task receives a control request
consisting of a write port configuration message with a
break enabled flag. The task sends an X.29 set to the PAD
to enable break processing (7:21). When the user presses
the Break key to interrupt processing, the PAD sends an
X.25 interrupt packet to the DTC PADSUP task along with
an X.29 indication of break packet. The PAD will discard
all data received from the DTC. On the X.25 interrupt, the
PADSUP task sends an asynchronous break detected event
to the DIODAM task, which transmits it to the host. On
the X.29 indication of break, the PADSUP task sends an
X.29 set to the PAD to reset the PAD discard output state
(set 8:0). This message flushes all data buffered in the X.25
network and puts the PAD in a normal delivery state. New
data coming from the application can again be displayed
on the terminal.

In the case of a control request to clear a connection, the
PADSUP task receives in AFCP abort connection message
from the DIODAM task to shut down the X.25 connection.
Special care must be taken when it comes to closing a
connection. X.25 clear packets are not flow controlled as
X.25 data packets are, so it is possible that the clear packet
may overtake the last data packet sent and therefore the
last data for the PAD device may be lost. For this reason,
X.29 specifies a safe way to close a connection, The PAD-
SUP task does not send the X.25 clear packet, but instead
sends an X.29 invitation to clear message, which is flow
controlled like normal data. When the PAD receives this
message, it will already have received all the X.25 data,
and will then issue an X.25 clear message. On receipt of
the X.25 clear message, the PADSUP task can clear its in-
ternal table.

When the connection is cleared by the user PAD (with
the X.28 CLR command, for example), the PADSUP task
sends an ADCP asynchronous link level disconnected mes-
sage to the DIODAM task, which transmits it to the host,

closing the AFCP connection.

Editing

One of the functions performed at the PADSUP level is
data editing. This consists of processing the byte stream
received from the X.25 network and detecting any special
characters for which actions are to be performed. These
special characters include backspace, line delete, subsys-
tem break, and others. They are configurable ASCII values
that the application sets using file system intrinsics such
as FCONTROL. The PADSUP task has to be able to process
these characters according to their configured ASCII values.
Usually, part of the processing is done by the PADs, most
of which are able to pracess backspace and line delete
characters. However, because ADCP provides more editing
features than X.3, and because all PADs don't support the
editing functionality, the PADSUP task has to be capable
of doing this processing itself.

Editing is on the critical code path. It is invoked for any
inbound X.25 packet and requires character-by-character
processing. The more straightforward algorithm is to use
a cascade of IF statements. Because there are eleven special
characters to test for, this makes eleven tests for each
character. The most frequent case, a normal character, is
the worst case because all eleven tests must be performed
before it is known that there is nothing to do. On the other
hand, this algorithm consumes very little memory because
it requires storing only the eleven special values. Each
connection can have a different set of values configured,
so the total number of values that must be stored is 11 X256,
where 256 is the maximum number of connections.

The algorithm we have implemented is more memory-
consuming but has much better performance. The main
principle is to use a structure that we call a character filter.
It is an array of 256 entries for each connection (256 %256
total entries), indexed by the ASCII values. Each entry rep-
resents a particular action to perform. For example, if the
backspace character is represented by the ASCII value 08,

Character Filter

Write Port Configuration

M i {no_action)
pasaes Write Port
Backspace = '#' Configuration 1
Processing
Line Delete = '§' ———

Subsystem Break = 'Y’

PLIMIRM] (subs_brk_action)

Index = ASCIl Value — 35 ('#')
36 ('S")

(backspace_act)

255 (mo_action)

Fig. 7. Awrite port configuration message results in the build-
ing of the character filter.
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at the index 08 the PADSUP task records the code for the
backspace action. The most frequent action is no action for
the normal characters and is coded with 0. The array is
initialized to zero and the proper actions are recorded at
the ASCII values of the special characters when a special
ADCP control message called a write port configuration
message is received from the host (see Fig. 7).

When the data arrives from the X.25 network, the editing
algorithm is executed (see Fig. 8). For each character, the
action to be performed is fetched from the character filter
and executed. In the case of a normal character, nothing
is done. For the others, the appropriate processing is
triggered.

To avoid a test of the length of the buffer on each charac-
ter, a special character called the end of data marker is
written at the end of the buffer. A special action is recorded
in the character filter for this character. When this character
is encountered, this action is triggered, and only in this
case is the test of the length of the buffer made. If the end
of the buffer has not been reached, it means that the end
of data marker was part of the user data and should be
treated as a normal character, so no action is taken.

PADSUP Development Methodology

In developing the PAD support component, the first step
was to define the external specifications of the product.
All MPE XL intrinsics and the X.3 and X.29 recommenda-
tions were analyzed to define what could be supported and
what could not be supported because of X.3 recommenda-
tion restrictions. The configuration and the support fea-
tures were studied with the participation of HP marketing
people.

The second step was to define the best architecture to
provide the desired functionality. We analyzed the data
flow from the host to the DTC and the PAD, and then
defined the component responsibilities for the host mod-
ules and the DTC modules.

The third step was to analyze the exact characteristics
of the PADSUP task within the DTC. For this, we used the
structured analysis method®* with the HP Teamwork SA/
RT tool to define what needed to be done without regard
to how it would be done. We then drew a functional model
(what the system does), a data model (how data is trans-
formed), and a behavior model (state transition diagram
and matrix, and decision tables that characterize the sys-
tem). This method was of considerable benefit for analyzing
and detailing all the mechanisms needed in the PADSUP
task. The graphic representation and the top-down method
helped us better locate where the complexity and the main
incidence of all the features occurred on the model. A
review was done to verify the PADSUP analysis. This
analysis gave us some metrics (Bang,” estimated number
of decisions or branches, etc.) to characterize the module’s
complexity, helped us in schedule estimation, and gave a
good idea of the tests needed during the qualification phase.
During this phase, the project model and the preliminary
test plan were completed.

PADSUP Task Design
During the PADSUP task design phase, we defined what
modules and what interfaces were needed to meet the
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specifications. We organized, ranked, and ordered the
characteristics to meet the requirements. We chose to fol-
low the structured analysis with a structured design, pro-
viding three kinds of documents: structure chart, module
specifications, and design dictionary. The structure chart
shows the basic components of the solution and shows the
interfaces in a top-down manner. The module specifica-
tions define the procedural aspects of the solution, or the
sequence of interactions. The design dictionary defines the
interfaces.

A first review of the main module organization was done
to verify the encapsulation, design cohesion, and coupling
of the different modules. The main modules were then
designed independently.

A complete review of each module was done to find the
design flaws. This was highly successful because we found
all the complex areas before coding and were able to re-
design the parts that were too complex. As a result, very
few design bugs were found during testing.

In the coding phase, the design documents helped us to
be productive rapidly. The code was done in C on HP-UX
workstations.

PADSUP Task Testing

The PAD support task has been tested in a multiple-step
process. The target code (to be downloaded to the hardware
later) was produced with the HP-UX C compiler on an HP
9000 Series 300 workstation and then postprocessed. This
was possible because the microprocessor on the SNP card
is a 68010, which is of the same family as the workstation
microprocessor. This made it possible to test the code in
a comfortable environment (diskless workstation) and then
port the code to the hardware with a high level of confi-
dence, since the target code was almost the same, One of
the main advantages of doing this was the availablity on
the workstation of many C tools that we could use on the
target code (C debugger, branch flow analyzer, prof for per-

User Data
Buffer Before Editing

Character Filter
o (no_action)

1 (no_action)

IR (subs_bri_action)

Delete
Previous
Character
_ Buffer After Editiﬂg
(no_action)
no_action

255 (no_action)

Fig. 8. Editing with the character filter.
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formance analysis, etc.).

The multistep testing process consisted of unit testing,
integration testing, and real-environment testing. Related
issues include testing in the maintenance phase and testing
of multivendor PADs.

Unit Testing. The objective of this step was to bring each
individual component (procedure or function) to a good
quality level for later integration. The designer of each
procedure or function was responsible for developing code
stubs to exercise the component. This was done at the unit
level, that is, the component was tested by itself and not
in a complete environment. This level of testing exposed
most of the coding errors.

Functional Testing. At this test level, all the individual
modules of the PADSUP task were merged together and
exercised in a functional way, that is, we were testing
whether the module was indeed performing the functions
specified. This was mainly achieved with the message
machine described in the article on page 74, which is capa-
ble of building messages, sending them to the module under
test, receiving the output, and decompiling it in a readable
format. In regression mode, output files were compared to
reference files that had been manually checked during pre-
vious testing. Since both the output file and the reference
file were in readable format, the differences were easy to
see. All of these tests were run on the HP-UX workstation.

The message machine tool was really convenient to use.
With it, we easily achieved the branch flow analysis (BFA)
coverage required. The objective of the project was to test
85% of all the software branches. We have achieved 93%
without the need of any additional operations such as set-
ting breakpoints or adding code. Moreover, because the
tool provides for easy automation, all of the test suite has
been maintained and now we can run a regression lest
overnight without any external intervention and reach a
BFA coverage of 93% on each version or patch released,
The number of test cases is quite large. Up to 50,000 differ-
ent messages are sent to the module under test, and the
overall size of all the output files that are checked for dif-
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ferences with reference files is 36 megabytes.

Integration Testing. These tests were conducted at two
different levels: in the simulated environment provided by
the message machine under the HP-UX operating system
and in the target environment (hardware).

The objective of the HP-UX integration testing was to
add step-by-step all of the tasks external to the PADSUP
task in the simulated environment. In the first step, all of
the other tasks were emulated by the message machine.
These were then replaced. one by one, with the actual
tasks, and the system was exercised by the message
machine. Finally, all of the interfaces with other modules
were tested and debugged with the actual tasks still on the
workstation,

For hardware integration, the code was downloaded to
the hardware and run in its final environment. Because of
the multiple tests already conducted, the quality at this
stage was already rather high and we found very few defects
during this testing. The principal tool we used was a debug
port that allowed us to connect a terminal to the board and
set breakpoints, dump memory areas, and so on.
Real-Environment Testing. These tests were done mainly
by the QA department to test the quality objectives of the
product in the areas of functionality, localizability, usabil-
ity, reliability, performance, and serviceability. The setup
used was close to a real customer environment. For ease
of testing, two different environments have been used: a
real PAD environment and the XXPAD environment.

The real PAD environment is a customer-type environ-
ment. It consists of an MPE XL system, a DTC with SNP
cards, an X.25 network or switch, PADs, terminals, and
printers. The tests consist mainly of manual validation (for
DTCMGR functions, for example) and of test programs run
on the MPE XL system that exercise the datacom functions
through the system intrinsics. The problem with this setup
is that the number of sessions is limited by the hardware.
The DTC supports 256 PAD connections per synchronous
card and three synchronous cards per DTC, so a full test
requires so much hardware that it is impractical. To approx-
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imate a full test (i.e., limit, stress, and volume testing), we
use the XXPAD environment.

The XXPAD environment makes it possible to minimize
hardware setup. The PAD is basically a multiplexer of many
asynchronous lines (16 in the case of the HP 2335A PAD)
to a single X.25 line. Therefore, instead of managing 16 or
more terminals, we can just put on the X.25 line a piece
of hardware and software that emulates numerous asyn-
chronous devices. This way, the number of connections
tested can be increased simply by increasing the number
of virtual circuits handled by the test machine. For ease of
implementation and for hardware availability, this tool was
developed on an MPE machine running HP NS X.25 soft-
ware, which provides programmatic access to X.25 level
III. On top of the level 111 access, we developed a test pro-
gram called XXPAD, which is able to handle as many vir-
tual circuits as required. This program reads the instruc-
tions to execute (basically user commands) from a script
file and handles both X.25 and X.29 data.

For the PADSUP tests, the scripts simulated multiple
users connected to the DTC and to the MPE XL system and
running some basic applications such as the command in-
terpreter and editor. Some test programs were also de-
veloped on the MPE XL system to stress special data trans-
fer cases, such as large writes, large reads, and stress con-
ditions of control requests. These ran in conjunction with
the XXPAD tool on the PAD side.

In its first versions, the XXPAD tool ran on an MPE V
system (Fig. 9). When the XL version of the HP NS X.25
software became available, it was possible to migrate to
the MPE XL system using a loopback configuration. The
XXPAD tool accessed the DTC through the NS stack (sys-
tem-to-system) and then looped back on the network to
enter another SNP card on which the connection was
routed to the PADSUP module as formatted by the XXPAD
tool (Fig. 10). The XXPAD tool eliminated a great deal of
hardware and test setup for the tests implying multiple
connections,

To determine when to end the quality tests, each quality
engineer logged the time taken for each test and the number
of bugs encountered. This data was input to a software tool
along with a measure of the quality level we wanted to
reach. Using the Musa model,” the tool gave us a weekly
forecast of the end of the tests. Two months before the
scheduled end of the tests, the weekly forecasts became
stable, indicating the same date for the end of the tests.
Maintenance Testing. In the maintenance phase of the
PADSUP task, the functional test suite continues to be
maintained with the message machine. Each time a new
version of the PADSUP code is built, it is validated against
the test suite. It requires some extra work to maintain the
test suite. The reference files must be kept up to date, and
because the test coverage is high, any small change in the
code causes a modification in the result of the tests (i.e.,
the difference between the reference files and the output
files) that has to be manually validated. But the test suite
ensures a high level of quality and confidence when a new
version or patch has to be delivered on a tight schedule.
We are also working with the real hardware environment,
of course, and with the XXPAD environment because it
allows automatic regression and reliability tests in a realis-
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tic environment.

Conclusion

The PAD support in the DTC architecture offers remote
access to HP 3000 MPE XL systems in a PAD multivendor
environment by masking all vendor-gspecific or nonstan-
dard implementations without adding code or configura-
tion complexity. It improves both performance and reliabil-
ity by using the existing terminal /O path on the MPE XL
system. Offloading of all data editing from the host to the
DTC increases throughput and connectivity by allowing a
single network access for several systems. Modularity of
both design and code has been preserved to make the PAD
support task reusable in future products.

Formal methodology has been used throughout the de-
velopment. The use of structured analysis, structured de-
sign, and formal testing at different levels, all with the
permanent collection of metrics, has been fundamental to
the success of the project. While such techniques cost us
time in the first phases of the development, they saved a
lot in the integration and test phases and left the product
in good shape with regard to maintenance and expandabil-

ity.
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An Object-Oriented Message Interface for
Testing the HP 3000 Data Communications
and Terminal Controller

Creating a general-purpose message compiler/decompiler
using symbolic expressions, expert systems concepts,
object classes, and inheritance reduces software testing
overhead and improves test readability and portability.

by Frédéric Maioli

minal controller (DTC), which operates with the

MPE XL 2.0 operating system, provides access to
X.25 networks, PAD (packet assembler/disassembler) sup-
port, asynchronous terminals and printers connected lo-
cally or through modem links, back-to-back connections,
and other capabilities. All of these services can be shared
by multiple MPE XL systems connected through a local
area network (LAN). With the back-to-back feature, a DTC
can work without a host.

The HP 2345A DTC software is based on a multiproces-
sor, multitasking operating system. In this system, parallel
processes or tasks communicate among themselves by ex-
changing messages.

An important step in developing a task is testing it. This
is done by building a message machine, a program that
simulates the message environment of the task under test.
During the development of the DTC network software, sev-
eral message machines were written in the MPE XL operat-
ing system and on HP 9000 Series 200 Pascal workstations.

Reusing an existing message machine can seem very at-
tractive to someone starting a new project. However, even
when this can be done effectively, each version will usually
be maintained separately, and the benefits of having some
common code are gradually lost.

Looking for a better solution, we have used object-
oriented concepts to write a message machine for testing
the HP 2345A DTC PAD support software (see article, page
63). The program is declarative rather than procedural. This
makes it smaller in code size, more reusable, and very easy
to adapt to new message structures. The main drawback is
a decrease in performance, which can be overcome by run-
ning the tests on a more powerful hardware platform.

T HE HP 2345A DATA COMMUNICATIONS and ter-

Task Interaction

As already mentioned, a task is a process inside the DTC.
A byte-code message is a sequence of bytes that a task
sends to another task. The syntax of the different messages
a task can send or receive constitutes its message interface.

Each task maintains its own behavior as it interacts with
its environment by sending and receiving messages. Test-
ing a task consists in checking its behavior by sending it
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a sequence of messages or a message script. The tested task
reacts to the message script by sending back a sequence of
messages that constitutes a message trace.

A message script file is written in a message source lan-
guage and is interpreted by the message machine, which
sends the corresponding byte-code messages (see Fig. 1).
The advantage of having a message source language and
an interpreter is the readability of the message scripts. This
also makes it possible to send a message from an interactive
interface, run a message script in step-by-step mode, or put
the tested task in a determined state (to debug it, for exam-
ple).

The message machine catches any message sent by the
tested task in its byte-code format, translates it to source
format, and logs it in the message trace file. Translating
from source to byte code is called message compilation,
and the reverse operation is called message decompilation.

The complete task test is a set of message scripts that
test as much as possible of the task’s behavior.

In the process of maintaining the DTC software, new
versions of a task may be released. Compatibility of the old

/ 3 \\.
{ Simulated ]
Byte-Code o' Task W
Messages SR
= K N 2 ~
Task K/ N P Message Message Script
# - o BB b Message Trace
Test \
N 7. |
A K 7

= S -
/. AU

| simulated |
a\ Task

Fig. 1. To test a task, the user creates a message scripl. The
message machine translates this script to byte-code mes-
sages that simulate the environment of the task under test.
The tested task's responses are returned to the user as a
message ltrace.
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and new versions is checked by running the same task test
on both versions and comparing the respective message
traces. This operation is called a regression test because
the comparison is expected to validate the new version’s
compatibility.

The usual way to run a regression test is te run a compari-
son program such as the HP-UX diff utility, which searches
for any differences between two message trace files.

An Example

To illustrate these concepts, let us consider a protocol
for communication between a task named device and a task
named server. These tasks have been chosen for purposes
of this example, but one can imagine that the device task
manages a set of RS-232 terminal links, while server handles
a computer system’s I/O.

Fig. 2 shows an example of a message exchange between
the two tasks server and device. Five different messages can
be exchanged. The open_session message signifies that a de-
vice has become active and requests that a session be
opened (logon). The close_session message is sent when a
device logs off. The write message sends data to a device.
The read_line message occurs when a device enters a line
of text. The read_break message signifies that a break inter-
rupt key signal has been received from a device.

The byte-code syntax of these messages is described in
Fig. 3. The information inside a byte-code message is struc-
tured in fields. The message_code field is a 2-byte integer
containing a constant related to the type of message. The
dest_task field is one byte long and is used by the operating
system to identify the task the message is going to. In this
example the ASCII value is 25 for the server task and 32 for
the device task.

The data field is a string of bytes representing the content
of a write or read message. The data_length field is a 2-byte
integer field representing the length of the data string in
bytes.

The break_code field is a 1-byte field that distinguishes
the read_line message (value = 0) from the read_break message
(value = 1). These messages have the same message code.
The dev_num field is a 2-byte integer that identifies the
hardware device managed by the device task.

As mentioned above, our message machines define a
source language associated with the byte-code message syn-
tax. Examples of source messages are:

write

open_session close_session

message_code:20 message_code:21
dest_task dest_task

dev_num

_length

Terminal
Events

User Logs In

Banner Printing

Send Command

Receive Text

Device Server
Task Task
P °PeN_secsing
I
wite __—]
*F""_;;w 1
1 S wite __—
Prompt Received |4 |
[T——220ling
—
witte  ___—
i
S
. !
ro__—

Type Break Key

Prompt After
Interuption

Log Out

Fig. 2. Messages

e ed.brea
‘//ﬂ‘f,/

exchanged between the two tasks server

and device.
open_session  dest_task: 25 dev_num; 30
read_line dest task: 25 dev_num: 30 data: 'listf,2°
read_break dest task: 25 dev_num: 30

close_session

dest_task: 25 dev_num:

30

read_ling

message_code:23

break_code:0

In this example, each line represents a message to server,
which is identified by the dest_task value 25. The first sym-
bol in a line identifies the message. It is followed by a
sequence of identifier/value pairs. The identifier is a param-
eter name (terminated by :) corresponding to a field in the
byte-code syntax, and the value is the value of this param-
eter in the message.

The byte-code fields corresponding to parameters in
source messages are called parameter fields. Examples are
dest_task, dev_num, and data. Not all the fields of a byte-code
message are parameters in the source syntax. There are also
constant fields, or selector fields, whose value identifies a
unique message structure. Examples are message_code and
break code. Finally, there are fields, such as data length,
whose values depend on the values of other fields. These

message_code:23

desl_task

g 3

data_length

Fig. 3. Byte-code syntax of the
messages in Fig. 2.
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are called computed fields.

Notice that the list of source messages given above could
be used as a message script by a message machine and
would correspond to a test of server. This reproduction of
the dialog of the example of Fig. 2 would make the message
machine produce the message trace:

write dest_task: 32dev_num: 30data: ' XYZMPE XL A.30.00. TUE,
MAY 29, 1990
write dest_task: 32 dev_num: 30data: "'
write dest_task: 32 dev_num: 30data: 'FILE1 FILE2 FIL'
write dest_task: 32 dev_num: 30data: "'

Conventional Compilation and Decompilation

When one wants to reuse a message machine and adapt
it to new message formats, most of the changes consist of
rewriting the message compilation and decompilation pro-
cedures.

There is a procedure compile_message, which takes as input
a line of message source code and returns the byte-code
format of this message:

procedure compile_message(line)
local variables: idf, result
read an identifier idf in line;
if idf = ‘open_session' {
let result be a new string
write the integer 20 on 2 bytes in result; /* message_code */
compile_parameter_in_type_size(line,'dest_task’,result,
‘integer',1);
compile_parameter_in_ type_size(line,'dev_num’ resuit,
‘integer',2);
return result; }
else if idf = ‘close_session’

else if idf = 'write’

else error('bad message name’)
end if
return resuit

end procedure

In this procedure, the message type is identified. Then
the byte-code message is synthesized parameter by param-
eter in the following procedure;

procedure compile_parameter_in_type_size(line,param_name,
result,type,size)
local variables: idf
read an identifier idf in line;
if idf and param_name are not the same then error("bad
parameter name");
if type = ‘integer’ then
read the integer int in decimal format in line;
write the integer int in binary on size bytes in result;
else if type = 'string’ then ...

end if
end procedure
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Decompiling a message is slightly more difficult. First,
one must match a message structure to a byte-code format.
This is done by a decision tree that tests values in fixed
fields:

procedure decompile_message(byte_message)
local variables : message_code, break_code
let message_code be the integer from byte 1 to byte 2 in
byte_message;
if message_code = 20
return decompile_open_session(byte_message);
else if message_code = 21

else If message_code = 23
let break_code be the integer at byte 6 in byte_message;
if break_code = 0 then
return decompile_read_line(byte_message);
else if break_code = 1 then

end if
else error("bad message code");
end if
end procedure

There is a procedure for each message structure, which
is called when the message structure has been determined.
For example, the one correspanding to the open_session mes-
sage is:

procedure decompile_open_session(byte_message);
local variables: result
let result be a new string;
write ‘request_session’ in result;
decompile_dest_task_in(byte_message,result);
decompile_dev_num( ... );
return result;

end procedure

For each parameter, there is the reciprocal of the param-
eter compilation procedure. One example is:

procedure decompile_dest_task_in(byte_message,resuit)
let dest_task be the integer at byte 3 in byte_message;
write ‘dest_task’ and dest_task in result

end procedure

Writing the message compilers and decompilers in al-
gorithmic language is simple for a few messages, but it is
more difficult for 50 messages, a typical number for the
message interface of a real DTC task. The message compilers
and decompilers are programs that are very dependent on
message byte-code and source syntax, so they contain much
redundant information.

This approach has several drawbacks. First, the byte-
code-to-message matcher is complex, difficult to validate,
and difficult to maintain when new message structures are
added. Second, some fields are common to several mes-
sages. It would be possible to write some partial compila-
tion and decompilation procedures common to several
messages, but modifying the syntax of one message could
require modifications in other messages. Third, when
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changing or adding a field, there are interdependent mod-
ifications in the compiler and in the decompiler. This
creates the need for a compatibility test between compila-
tion and decompilation procedures.

A further drawback of the conventional approach is that,
for the same script and the same tested task, some param-
eters can have different values in message traces that do
not constitute regression test violations. For example, there
can bhe a message trace that contains some information
about the current date:

write dest_task: 32 dev_num: 30 data: ‘XYZ MPE XL A.30.00. TUE,
MAY 29, 1990

This causes useless differences between message traces
that increase the difficulty of analyzing these files and of
automating the tests.

A final drawback of the conventional approach is that
no message documentation is maintained as the message
machine evolves. The documentation used in reality is the
source listing of the compilation and decompilation proce-
dures.

Using Symbolic Programming Concepts
Object-oriented languages provide symbolic expression
facilities. This gave us the idea of representing the message
source language using symbolic expressions. This is the
same as using lists in Lisp," arrays in Smalltalk,? or terms
in Prolog”.
The traditional source message:

open_session dest_task: 25 dev_num: 30

is equivalent to the symbolic expression (using Lisp lists,
for instance):

(open_session (dest_task 25) (dev_num 30))

More generally, any source message will have the syn-
tax:"

(<=message name> (<parameter name> <parameter value>)‘)

There are significant advantages to the use of symbolic
expressions. First, it is easy and improves readability to
give name values instead of integer values to some param-
eters. For example, (dest task 'device’) is better than (dest_task
32).

Second, intelligent regression is possible. When compar-
ing message trace files, the HP-UX diff utility provides a
byte-to-byte comparison. It is a better solution to compare
two symbolic expressions by traversing their structures
(like the equal function in Lisp’). This is because:
® It is more efficient to compare symbols than the bytes

of strings.
® One can customize the comparison algorithm by not

comparing some parameters that contain variable infor-
mation, such as the current date.
Yin all syntax descnption in this paper, syntax definition is denoted by =, syntax repatition

is denoted by *. synlax alternalives are separated by .. and symax concatanation s dancled
by juxtaposition

s The formatting of regression violations is easily im-
proved. The incorrect messages are displayed rather than
the incorrect lines.

@ It is easier to recover automatically after a nonregression
violation and continue the comparison, since the com-
parer synchronizes on messages rather than lines.

A third advantage of using symbolic expressions is auto-
matic indentation. Some environments provide indenting
formatters for symbolic expressions (such as Lisp pretty
printing'). Using it, large source messages with many pa-
rameters are very readable:

(command_name (param1 vall)

(param2 val2)
(param3 val3)

)

We used Smalltalk arrays and found it simple to imple-
ment such a printing formatter.

Specifying the Compiler and Decompiler

The most important drawback in adding or modifying a
new message format in the message compiler and decom-
piler is that the same information for message translation
is coded at least twice, once in the compiler and once in
the decompiler, This is a source of errors, code overhead,
unreadability, and nonportability of the message machine,
The question arises: Wouldn't it be possible to define only
once the necessary information for both compilation and
decompilation? Many symbolic programs define a data for-
malism and an interpreter over this formalism. Most of the
behavior of these programs is embedded in specification
data bases rather than procedures. This is the case for most
expert systems, which contain an interpreter (the inference
engine) over a specification of the expertise (the rule base,
which is a data base). The question is then: Does there exist
a formalism to specify the mapping between the source
format and the byte-code format of a message, with general-
purpose compiling and decompiling procedures?

We have been able to answer this question in the affirma-
tive. We have obtained an efficient specification formalism,
which now covers 95% of our message compilation and
decompilation. The remainder is implemented convention-
ally.

Our formalism makes the distinction between two kinds
of fields in messages. There are fields with a statically
known position in the byte-code syntax, and fields with a
statically unknown position. “Statically” means that the
field is always located at the same place in the byte code.
This location does not depend on the message content. For
example, the dest task field in all messages has a statically
known position (at byte 3) in all byte-code messages, but
the data field does not have a statically known position,
since the end position of the field is known only when the
message to be compiled or decompiled is known.

To simplify, we will call fields with a statically known
position positioned fields and fields with a statically un-
known position unpositioned fields. The specification for-
malism only covers positioned fields. Given a message's
specification, we have written the general-purpose compi-
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lation and decompilation procedure that interprets the
specification.
The following symbolic expressions describe the specifi-
cation of the messages of the example above:
® Declaration of all the parameter fields of all the messages
and their types (integer, string, or symbolicinteger which
translates a string to an integer):

(parameter_fields
(devnum Integer)
(dest_task (Symboliclnteger (‘'device’ 32)
('server’ 25)))
(data String)
)

® Declaration of constant and computed fields:

(constant_fields message_code break_code)
(computed_fields data_length)

® Declaration of the size (in bytes) of each field in the
byte-code messages (positioned fields only):

(fields_size
(message_code 2)
(dest_task 1)
(dev_num 2)
(data_length 2)
(break_code 1))

® Specification of all the messages. For each message, there
is an expression for called a metamessage. A metames-
sage formalizes the notion of message structure. First,
there is the corresponding message name, then three
subexpressions called metafields. The parameter_fields
metafield contains all parameter field names. The con-
stant_fields metafield maps values to constant fields. The
byteCode_order metafield defines how the fields are or-
dered in byte code.

(message _specs
(open_session
(parameter_fields dev_num dest_task)
(constant_fields (message_code 20))
(byteCode_order message_code dest_task dev_num))
(close_session ...)
(write ...)

(read_line
(parameter_fields dev_num dest_task data)
(constant_fields (message_code 23)
(break_code 0))
(byteCode_order message_code dest_task
dev_num break_code))
(read_break
(parameter_fields dev_num dest_task)
(constant_fields (message_code 23)
(break_code 0))
(byteCode_order message_code dest_task
dev_num break_code data_iength))
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The message specification is now completed. Before
using it to perform compilation and decompilation, there
is an initialization step called the metacompilation phase
where the specification is checked for correctness. Exam-
ples of checked constraints are field name consistency and
collisions, and field juxtaposition consistency in each mes-
sage.

The metacompilation also generates intermediate results.
A field_position metafield is added to each metamessage to
complete byteCode_order information. It relists the byte-code
fields, adding to each of them the pair <first byte, last byte>.
This pair defines the position of the field in the byte-code
string:

(message_specs
(read_break

{byteCode_position (message_code 0 1)
(dest_task 2 2)
(dev_num 3 4)
(break_code 5 5)))

)

A constant field always has the same position in all the
messages that contain it. Otherwise, it would be impossible
to map a byte-code onto a message structure. The positions
of all constant fields are kept in the constant_field_position list:

(constant_field_position
(message_code 0 1)
(break_code 5 5))

The decoder tree is used by the decompiler to identify
a message from a byte code. In the example, it is:

(decoder_tree
(message_code
(20 request_session)
(21 close_session)
(22 write)
(23 (break_code (0 read_line) (1 read_break})))

)

The syntax is:

<decoder_tree> 1=
<message name=;
(<constant field name > (<constant field value> <decoder_tree=)")
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It is used in the following function, which is used by the
decompiler:

function decode_bytesit,str)
* find the message structure name associated with the byte code
str by performing the tests specified in the decoder tree t *

local variables: x.y,val,cName nvy..vniy.. 4,

if t is a name, return t;
t has the form (cName (v t) ... (Vq ta))
otherwise error(“bad decoder tree”);
let x and y be such that the ‘constant_ field_position’ list contains:
(constant_field_position ... (cName x y) ...}

let val = the integer coded from byte x to byte y in str

leti,1 <= j<= nsuchthatv, = val
otherwise error(“undecodable byte code");
return decode_bytes(t;,str);
end function

The decoder tree takes the place of the decision tree in
the conventional decompilation procedure. It is automati-
cally generated at the metacompilation step:

procedure generate_decoder_tree(lst)

/* return a decoder tree mapping one of the message names in the list
Ist from a byte code string */

local variables: n,vy..v,i,m; .c,S vy sublist,subdecoder result
suppose Ist has the form (my ... m,)

ifn =1 return my;
endif
/* find a constant field that discriminates messages */

find a constant field ¢ such that
for all i, 1 <= | <= n consider the metamessage:
(m; ... (constant_fields ... (c vj) ...) ...)
and let S be the set of all v,
and S contains at least two elements
if not found error("“impossible to build a decoder tree")
end find

let result = an empty list

/* recursively build the tree */

for all v in S
sublist = the list of m; such that v; = vy
subdecoder = generate_decoder_tree(sublist)
put subdecoder to the end of result

end for

add c to the beginning of result

return result

end procedure

The general-purpose compiler looks as follows (for simplic-
ity, tvpe checking and parameter value translation have

not been indicated here):

function compile(lst)
* translate the source message ist in byte code *

local variables: m,n,py..pn.Vy--V JMCq..CrWy W,

P.by-Bp X1 X5 Y- Yp b result
suppose Ist has the form: (m (py Vq) ... (Bs Vi)

find the metamessage of the form:
(m (parameter_fields p4 ... py)
(constant_fields (c; Wq) ... (Cq W)
(byteCode_position (b; X4 y4) ... (by X5 ¥p))
otherwise error(“syntax error”)

/* initialize byte code */
let result be an empty string

/* explained later */

call the procedure attached to m to compute computed field values

fori <= i<=p
if j exists such that b; = ¢; then
/* code constant field */
code w; as integer from byte x; to byte y; in result
else if j exists such that b; = p;
/" code parameter field */
code v, as integer from byte x; to byte y; in result
else if ... /* and so on for computed parameters */
end if
end for
* explained later */
call the procedure attached to m to compile unpositioned
parameters to result

end function
The decompiler is as follows:

function decompile(str)
/* translate the byte code string sir in source message */

local variables: 1,m,n,pq..pn,P.01..bp. g .. X0, 1 - Yp.result,
ij,val

lett = the decoder tree specification;
let m = decode_bytes(t,str);

find the message specification in message_specs:
(m (parameter_fields py ... pp)
(byteCode_position (by x4 ¥1) ... (b X5 Yp))
)
/* explained later */
call the procedure attached to m to decompile unpositioned
parameters and computed fields from str

let result be the list made up of the single element m
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for1<=l==n
if | exists such that b; = p;
/" positioned parameter */
val = the integer coded from bytes x, to y; in str
else
/* explained later */
else val = value computed by the procedure attached to m
endif
add (p, val) at the end of result
end for
return result
end function

The different statements commented /* explained later */
refer to conventional procedures necessary to compile and
decompile unpositioned fields and compute values of com-
puted fields. These procedures (not described here) repre-
sent no more than 5% of the message machine implemen-
tation (in noncomment source code lines of Smalltalk).

As a result of this design, to add, modify, or remove
message structures it is only necessary to edit the message
specification list, adapting a few procedures for un-
positioned fields, and running the metacompilation step.

Using Objects and Inheritance

The symbolic message machine was implemented in
Smalltalk/V on a personal computer and then ported to a
C-coded Smalltalk implementation on the HP- UX operat-
ing system to interface with the test environment of the
DTC operating system. A Smalltalk interpreter provides
the interface to the DTC operating system test environment
on HP-UX. The message machine and all tests are im-
plemented in this interpreter. Its expression power and
openness are powerful advantages that help develop and
run the tests more efficiently than before.

A number of facilities allowed us to write an efficient
and well-adapted implementation. One adaptation was the
use of array objects to represent symbolic expressions.
Another was the use of classes and inheritance to imple-
ment objects representing metamessages, metafields, and
positions. In particular, different metamessages contain
much common information. The immediate solution con-
sists of implementing partial message descriptions, rela-
tions between them, and metamessages to propagate
metafields and field structure information. Metamessages
also refer to procedural information that is to be propagated
along these relations. Therefore, it was helpful to map
classes and superclasses to metamessages and partial de-
scriptions, and the basic class inheritance mechanism to
the propagation relation.

Thus, a class is created for each message and the
metafield information is obtained from methods—that is,
by inheritance. Procedures related to unpositioned fields
are treated in the same way. For example, to obtain
metafield information on the write and open_session mes-
sages, one creates the classes:
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DicMessage
WriteMessage, subclass of DicMessage
OpenSessionMessage, subclass of DicMessage.

DtcMessage provides information common to all messages.
Specifying values of the parameters_field metaparameter con-
sists of implementing the following methods:

method parameter_fields() on class of DicMessage
return the Array (dest_task dev_num)
end method

method parameter_fields() on class of WriteMessage
result : = result of sending parameter_fields to superclass of self
return concatenation of result and the symbol data

end method

Other adaptations were:

m Metafield information is cached in sets, dictionaries, and
ordered collections for better performance.

m The compile and decompile procedures are methods of
the abstract message class DicMessage.

= A new metafield, example, is used in a general-purpose
test procedure to build an example source message. It is
also used in an automatic documentation procedure.

Conclusion

The object-oriented message machine has been used in
the HP 2345A DTC PAD support project (see article, page
63). Validating a new version of the PAD support software
only requires starting an HP-UX shell; no further human
intervention is needed.

After having being successfully used by the PAD support
project, the message machine proved its ability to adapt to
a new project, where it is now used.
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Application of a Reliability Model to the HP SoftBench Environ-
ment

A New Generation of Software Development Tools, Colin Gerety

Development Manager

Program Editor

Program Builder

Static Analyzer

Program Debugger

Integrated Help

HP Encapsulator: Bridging the Generation Gap, Brian D. Fromme

HP Encapsulator CASE Case Study

Introduction to Particle Beam LC/MS. James A. Apffel, Jr. and
Robert G. Nordman

Advances in IC Testing: The Membrane Probe Card, Farid Matta
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HP Manufacturing Automation Protocol 3.0, Collin Y. W. Park
and Bruce |. Talley

Overview of the OSI Reference Model

Upper Layer Architecture for HP MAP 3.0 OS] Services, Sanjay
B. Chikarmane

Directory Services in the HP MAP 3.0 Environment, Beth E.
Cooke, Colleen S. Fettig, Paul B. Koski, Darrell O. Swope, and
Roy M. Vandoorn

HP MAP 3.0 File Transfer, Access, and Management/800, Steven
W. Manweiller

HP MAP 3.0 Manufacturing Message Specification/800, Peter A.
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HP MMS/800 Services

HP-UX Kernel Communications Modules for a Card-Based OS]
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Protocol Stack, Eric €. Scoredos, Kimberly K. Scott, and Richard
H. Van Gaasbeck

Interoperability Testing for HP MAP 3.0, Jeffrey D. Mever

The HP MAP 3.0 Software Integration Lifecycle, Douglas R.
Gregory

The Integrated Personal Development Environment

500-MHz and 300-MHz Programmable Pulse Generators, Werner
Berkel, Gerd Koffmane, Frederick L. Eatock, Patrick Schmid,
Heino Hopke and Hans-Jiirgen Snackers

Hybrid Assembly

A 500-MHz Pulse Generator Qutput Section, Stefan G. Klein and
Hans-Jiirgen Wagner

A 300-MHz, Variable-Transition-Time Pulse Generator Output
Section, Peter Schinzel, Volker Eberle, and Giinter Steinbach

October 1990

An Overview of the HP Interactive Visual Interface. Roger K. Lau
and Mark E. Thompson

HP IVI Project Management

Quality Function Deployment and HP VI

The HP IV1 Object-Oriented Toolkit, Mydung Thi Tran and David
G. Wathen

HP IVI Application Program Interface Design, Pamela W. Munsch,
Warren I. Otsuka, and Gary D. Thomsen

Object-Oriented Design in HP IVI

HP IVIBuild: Interactive User Interface Builder for HP IV, Steven
P. Witten and Hai-Wen L. Bienz

Creating an Effective User Interface for HP IVIBuild, Steven R.
Anderson and Jennifer Chaffee

26.5-10-75-GHz Preselected Mixers Based on Magnetically Tunable
Barium Ferrite Filters, Dean B, Nicholson, Robert |. Matreci,
and Michael |. Levernier

Hexagonal Ferrites for Millimeter-Wave Applications, Dean B.
Nicholson

HP DIS: A Development Tool for Factory-Floor Device Interfaces,
Kent L. Garliepp, Irene Skupniewicz, John U. Frolich, and
Kathleen A. Fulton

Finite State Machine

Matching Messages

Action Routines
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Unit, Vivek Mansingh and Kent P. Misegades

December 1990

A Rewritable Optical Disk Library System for Direct Access Sec-
ondary Storage, Donald J. Stavely, Mark E. Wanger, and Kraig
A. Proehl

Magnetooptical Recording Technology

Integrating the Optical Library Unit into the HP-UX Operating
System,

Mechanical Design of an Optical Disk Autochanger, Daniel R.
Dauner, Raymond C. Sherman, Michael L. Christensen, Jennifer
L. Methlie, and Leslie . Christie, Jr.

Optical Disk Autochanger Servomechanism Design, Thomas C.
Oliver and Mark |. Bianchi

Data Capture System

Error Injection

Qualification of an Optical Disk Drive for Autochanger Use
Kevin 8. Saldanha and Colette T. Howe

A CD-ROM Drive for HP 3000 and HP 9000 Computer Systems,
Edward W. Sponheimer and John C. Santon

Error Correction Implementation and Performance in a CD-ROM
Drive, John C. Meyer

Error Detection and Correction Primer

Providing Software Protection Capability for a CD-ROM Drive,
Kenneth R. Nielsen

Support for the ISO 9660/HSG CD-ROM File System Format in
the HP-UX Operating System, Ping-Hui Kao, William A. Gates,
Bruce A. Thompson, and Dale K. McCluskey

X.25 Packet Assembler/Disassembler Support in the HP 3000 Data
Communications and Terminal Controller, Jean-Pierre Allégre
and Marie-Thérése Sarrasin

An Object-Oriented Message Interface for Testing the HP 3000
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PART 2: Subject Index

Subject Page/Month
A

Absolute referencing ......cc.cceeeneee. ITVAPE.

Absorbance detectors, LC ............ 36/Apr.

Abstract Syntax Notation One

[ASNLL) oroeerceracreessens 32/Feb..25,37/Aug.
ACSE (Association Control Service
Element) ...ccoocoveereeeo. 6,31/Feb. 11/Aug.

Action Toutines .........ccoseveennenne. 83,69/0ct.

Actions. HP Softbench weies BZ{June
Aging, cold-drawn CuBe .............. 88/Dec.
Air flow simulation ........... . 82/0ct.
AK (acknowledgment) TPDU . 38/Feb.
Algorithm, circuit slmu]atwn vevers 79/0ct.

Algarithm, optical disk swapping . 11/Dec.

Amplifier, GAAS ....cormvermsrmsrcarananens 81/Aug.
Amplifier performance

prediction .. .. 78/0ct.
Amplifier, vartahil*-gam lmea.r . 91/Aug.
Analog-to-digital converter .......... 41/Apr.
Analyzer, lightwave signal ceraernnnn BO/Feb.
Anisotropic dimensional changes.

CuBe .. ; . .. 88/Dec.
Appearance and behavmr.

mwm . . 13/June
Apph{,atmn Layer SLrurture .. 11/Aug.

Application program

interface .................. 38/June,11,21/Oct.
Archival storage, upticaI i OIDBE;
Arglists ... .. 12/0ct.
ASE [prlicat ion service

element) .. ~ 11,22/Aug.
Asy‘ncbronous event handling ..... 17/Feb.
Autochanger, optical disk .............. 6/Dec.
Autosampler, LC ....ociiiiiicinnnn. 17/ApT.

B

Backplane handler, OSI Express

card .. .. B/Feb.
Backpiane message mter{ace

(BMI) .. ... 27/Feb.

Barium ferrite prreavnessansssassrenns: LD IICE;
Bounce-back module, OSI Express

card .. .... 73/Feb.
Bridge Manager' HP Open\heu .. BB/Apr.

Broadcast message server ........... 39/June
Bubble detection ...........ccceveeeee.. 34/Apr.
Builder, program ............. ... 52/June
Bumped wafer probing ................ 83/June
Byte-code message ....................... 74/Dec.
C

Calibration, lightwave analyzer ... 88/Feb.
Calibration, millimeter-wave

mixers . weee DB/0CL
Callback handlmg, HP IVI .. 23/0ct.
Callback procedures, OSFMohf

widgets ............en. srgmensny 33fJUNG
Capacitance measurament o 74/0ct.
Capacitive step .......c.cocuevens . B7/Aug.
CD audio standard ........................ 42/Dec.

cdnode . e B6/DeC,
CD- RD\;I . .. 38/Dec.
CD-ROM flIe wslem ARSI 1) - o4
CD-ROM, HP-UX mtegrahun ........ 54/Dec.
CD-ROM standard .................... 39,42/Dec.

Channel bits ..........
Chirp, laser irequem:)

Chromatograph, |1qu1d saciias GIAPE:
CIRE1, CIRE2 ..........coocerserennaers 39,42/Dec.
Class 4 transport layer .................. 36/Feb.

CMS (card management services), OSI
Express card ........coureesnasinsin. 68/Feb.

Cold-drawn CuBe ..........ccccconrinnnn. 88/DeC.

Common management information

pratocal (CMIP) .....ccocccverrecnnnnn. SB/ADT.
Compilation, message ................... 76/Dec.
Compiler, Encapsulator .............. 67/June
Completion list entry,

OSI Express card ........ccceveienenns 11/Feb.
Component graphics, mwm <. 24/June
Compressibility ..... et 25 .28/Apr.
Compression volume ............. 27/Apr,
(T ] U R e e R 18.29.32!’]"91).
CONE interface adapter,

HP MAP 3.0 . 1eimrsacnserrasssessnnssecs AU
Conformance testing ............c....... 50/Aug,
Congestion avoidance ................... 41/Feb.

Congestion control ............ 37,41,43/Feb.

Consistent behavior, OSF/Motif .... 6/June
Contact resistance, wafer probe .. 81/June
Controller, autochanger ................ 13/Dec.
Controller, CD-ROM ....cc.cvuevuenneens 40/D0C.

Coordinate systems, HP IVI . .. 25/0¢ct.
Copper beryllium alloy ................. 88/Dec.
Cray computers ............ . 82/0ct.
Credit window, OSI Expre:,s (ard 41/Feb.
Cross interleaved Reed-Solomon

code (CIRC) .. s 21300
CS-80 {Cornrnand Seut su] ........ 33 49/Dec.

D

Data capture system .. seminins 29/Dec,
Datacom and lermmal mnrrulis-r 63/Dec.
Data editing, network . .. 69/Dec.
Data line monitoring ... . 71/Apr.
Data link layer ........cccoeinine .. 45/Feb.
Data storage, optical ...... G B 38/Dec.
Data quad .. .. 9/Feb.
Debugger, pmgmm s e . 55/June
Decoder, OSI Express t:ard .. 35/Feb.
Decompilation, message ............... 76/Dec.
Decompression volume .............. 27/Apr.
Delay compensation, filter drive .. 55/0ct.
Delayed self-homodyne

technique ....... .. 94/Feb.

Demand-page exec, CD ROM flie
L (e e e IS S S 58/Dec.
Dependencies, automatic

© Copr. 1949-1998 Hewlett-Packard Co.

generation .. : . 52/June
Desolvation chamber .... 70/June
Detectors, LE ........ccocmmesnsssrensensens 36/Apr.
Development manager,

HP Softbench . vereeneneeneees 49/June
Development malhodn]ogv PAD

software .. = cesssesrenss TOIDGE.
Device mterface system ennmnmasesesanss: BESOEL
Diagnostic tools, OSI Express

card .. ; .. 59/Feb.
Dialog box ()SFchnf oo 11/June
Diode array detector .................. 39/Apr.
Dimensional changes, CuBe ........ 88/Dec.
Direct access secondary storage ..... 6/Dec.
Directory services,

HP MAP 3.0 ..ccoovvvoereee. 15,19/Aug.
Directory system agent, X.500 ..... 17/Aug.
Directory user agent, X.500 ......... 17/Aug.
Distributed communications

infrastructure ........... -ee DTIADE,
Distributed execution .................. 40/June
Distributed support,

HP Softbench .......cccccoovvcnnrenenn 41/June
Distributed feedback lasers .......... 93/Feb.
Distributions, production,

predicion ... 78/0ct
DMA chaining .........cccnmevcininiann. 10/Feb.
Driver, autochanger ...........ccceeeeonn 11/D0C,

DTC Manager, HP Open-

NVIBW ccunvismissivess ?ﬁh\pr 64/Dec.
DTC PAD su ppuri .. 63/Dec.
DUALIB . .. 20/Aug.

E
ECC/EDC (error correction

code/error detection

€0de) e 39,42,46/Dec,
Edit widget ... iininnian.ass d2{0ne
Editor, program ..........cceeeeneenee. 81/line
EFM (eight-to-fourteen

modulation) .. s 39/Des:
Elasticity, pump c.hambpr .. 29/Apr.
Encapsulation, software too}s ..... 59/June
Encapsulator description language
wnieisne Bl UmE
Encapsulator facility ........ ... 59/June
Encoder, OSI Express card ........... 34/Feb.
Enterprise network ........c..cccoooee. 54/Apr.

Ergonomics, LC ...
Error injection .......
Error protection, CIJ RDVI

Error recovery, autochanger ......... 31/Dec
Errors, RLC measurement ............. 76/0ct.
Event logging, OSI Express card .. 68/Feb.
Event processing, mwm . .. 19/June
Event triggers .. e 39/June
Events, HP Snftbanch veeeee B1/June
Exception generator, DS] Expresa
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E
Factory-floor device interfaces ..... 62/0ct,
Failure message ...........cccocviurnn 39,63/June
Fast slope generator ................... 87/Aug.
Fiber r:pli(, interferometer ............ 92/Feb,
FIDAP . .. B2/0ct.

File access dala uml [FADU] ...... 25/Aug.
Filters, barium ferrite
preselettion o iastani. 52/0ct.

Finite element airflow analysis .... 82/0cl.
Finite state machine ................. 65/0ct.
Pirmware, LE .onvivesmsiusiimiss 44/Apr.
Firmware, lightwave signal

analyzer .. sasswversean BT 1EOD,
Firmware, pulsp gencaralur .. 74/Aug.
Firmware, optical disk duto—

CHAREBE oo vorvimmonss v s pss s sy 26/Dec.
Flip mechanism ..........cc.coociineeen. 20/DeC:

Flow call coaniamasnmiss o 37/Apr.
Flow control, OSI

Express card ........c.cccveeen..... 36,39/Feb,

Flow rates, fan .........cccoveeviviinnnnnn. 86/0ct.
Flow symmetry analysis .............. 34/Apr.
Forward optics detector ... . 38/Apr.
Force sense of touch ......ccvvveeee 26/Dec.
Four-sphere barium ferrite

filter .. ... 53/0ct.
FTAM !Flle 'Iransfar Au ess and

Management) ... 24/Aug,

G

Gated delayed self-homodyne

techniqUe .o 93IFED,
General-behavior resources,

mwm . ; . 19/June
Grddlent programming .. oo 32/Apr.
Graphics, HP IVI ..o 21,28/Oct.
GIroup access Map ..., 30/0eC,
GRsahey Lo s aedaisnannnana oy pes

H

Habit planes ....cccccveeeneiricicnenne.... 89/Dec.
Help. HP SnftBench _______ ... 57/June
Hexagonal ferrite filters ................ 52/Oct.
Hexagonal ferrites ......................... 59/0ct.
High Sierra Group [HSG] <o 54/Dec.
Hog time ... e MHIIRE,
Horizontal Cdmage ... 17/Dec.
HP and MAP . iees BIAUE.
HP DIS . .. 62/0ct.
HP Encapsu!ator famhty ‘v B9 June
HP IVI Build . 5 32 41/0ct.

HP OpenView Ne’rwork Manngemenl
Architecture ......cccuei.... 54/Apr.

HP MAP 3.0 and FTAM ... 27/Aug,
HP MMS/800 . oo 34/Aug:
HP MMS/800 services .................. 38/Aug,
HP OpenView object model ........ 56/Apr.
HP OSI Express card ........ 6/Feb., 40/Aug.
HP Precision bus imerface chip ... 15/Feb.
HP SoftBench environment ......... 36/une
HP window manager (hpwm) ........ 12/June
HP-UX integration, CD-ROM ........ 54/Dec.

HP-UX integration, optical library . 11/Dec.
HP-UX networking model ........... 41/Aug.
Hybrid assembly ................... 76/Aug.
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IC, fast slope generator ................ 87/Aug.
IC, GaAs amplifier ............. W 80/Aug,
IC package model verification ...... 74/Oct.
IC, pulse timing ........coccevrvriinneneen. 69/AUEG.

IC, pump control ... . 30/Apr.

Independent noise ............ ... 37/Feb.
Inductance measurement ... e 75/0ct.
Industrial design, LC ........ccccoie 9/Apr.

30,34/0ct.
.. 28/Dec.

Inheritance, objects ..o
Initialization, autochanger .. 3
Injector, LG .. ovensnie . 17/Apr.
INOUE eveveeesiviirerieseesinieees .... Bb/Dec.
Input handling, HP IVI ............ 22,34/0Oct.
Integrated personal development

environment, HP MAP 3.0 .......
Integrdtiun and test, OSI Express

card .. sansipesm e s R N R
lntpnq;lv noise, laser ..................... 89/Feb.
Interclient communication conventions

(ICCC) trreeecrmrririerescessssnnnsareenes. 23/June
Interferometer, fiber optic ............ 92/Feb.
Interleaving, CD-ROM file system . 58/Dec.
Interoperability testing,

50/Aug.

HP MAP 3.0 :ciiveiiiiiinnninens 38,50/Aug.
Interpreter, Encapsulator . 68/June
IPBE cusmniiaimmit st 50/Aug.
Irig-coupled fIIter ..o 52/0ct.
ISO 9660/HSG CD-ROM file system

standard ..o v SHDBC,

J

K

L
Lambert-Beer law ......cccorinviuenenn. 36/ApT.
LAN bridge .......ccoremvnrereevervensenses, BO/APT.
Lands, CD-ROM . % .. 38/Dec.
Language, Encapsulator Desrrlp-

tion ........... rerrenneaneenees B1/JUne
Laser measu_rements 87 92/Feb.
LC/MS particle beam mlerfat.e ... 69/June
Leak drajnage SYStEM ..ooviviieven. 9/ApEL

Level shifter ..
Lightwave receiver ........

... 89/Aug.
.. B1/Feh.

Lightwave s‘.lgnal ana]ysls .. BO/Feb.
Line driver .. 3 ... 82/Aug.
Linewidth measuremams lat;er ... 93/Feb.
Link quad .. .. 10/Feb.
Linking, HP Encapsulator . B6/June
Liquid chromatograph ................. 6/Apr.
List manipulation, HP TVI ............ 17/Oct,

LLC (logical link control) ... .. 45/Feb.

Local area network (LAN) .......... 66/Apr.
Loop-back, OSI Express card ....... 49/Feb.
M
MAC (media access control] ........ 45/Feb.

Magazines, optical disk ...... ... 22/Dec.
MAGIC LC/MS .. . 70/June
Magnetooptical storage {echnology 8/Dec.
Mail management, LC firmware .. 48/Apr.
Mailslot ...ooeeeeeeerrcreseeeren e 21/DeC.
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mailx encapsulation ... f0/June

Makefiles .............. . 52/June
Manager objects, H!’ bufthpnrh . 62/June
Manufacturing, LC e 14/ApT,
Mapconf ..........oees oo B/Aug.
Mapping, network request .. ... 68/MDec,
Mastering, CD-ROM ...coovevvnrernreenn 39/Dec,
Mechanical design, optical disk
BVLOCHANEET 1ocasrserisisnessisaisssseens 14/Dec,
Membrane probe card .................. 77/June
Memory controller chip ................ 15/Feh.

Memory management, OSI Express
card s TR 25/Feb

Menu handling, mwm .. 22{June
Merge bits, CD-ROM ........ccccoveenn. 39/DeC.
Message compilation/

decompilation .........ccorvrerinennnn 76/D6C,
Message interface .. ... 74/Dec,
Message interface, Encapsulator 62(June
Message machine ................. .. 74/Dec.
Message match.mg, HP DIS .. B7/0ct.
Message script .. ... 74/Dec.
Message lrace ......... ... 74/Dec.
Messaging, objects .. .. 29/0ct,
Metafields ....cccovevieernrnreeenrnirnnnns 78/Dec,
Metamessages ... 78/06C
Metering device, LC .. o 20/Apr.
Mixers, preselected m1lI|ms~tr-r-

WRVE o e 49/0ct.
MMS [Manufacturmg Measage

Specification) .. s A AN
MMS Services ........... o 33."Aug.
Model, computer air fluw .. B3/0ct.

Model, IC package .. s BICIGE
Modulation respnnse. laser ..... aa.ngeb,

Module design, LC .........cccveevveiinne. B/ApT.
Momentum separator ................... 70/June
Multiple symbol registration ....... 64/Apr.
Multiple wavelength detector ..... 39/Apr.
mwm (HP OSF/Motif window
Manager] .. . 12/June
Multivariate stat:sttcs e 78/0cCL
N
Native language support .............. 42/June
Nebulizer wvees 70/June
Network management .................. 55/Apr.
Noise, LC detector ..o 37/Apr.
Notification message ............... 39,63/June
(0]
Object hierarchy, HP IVI .............. 11/Oct.
Object-oriented design ............. 22,29/0ct,

Object-oriented message machine . 74/Dec.
Objeets. s .. 11,29/0ct.

Objects, HP Fncapsu]ator . .. 62/June
Offset elimination ......... .. 85/Aug.
One-line editables ........ ceeer 42/June
Open Software F oundallon [OSF} 8/June

Optical disk drives, qualification . 35/Dec.

Optical disk library system ............ 6/Dec.
Optical library, HP-UX

INEEEPAHON s 1 HBG:
OSF/Motif .....ciciicviviiiiinnissininne. 6,8/June
OSI addressing .......ccccovieiiiiininen.. 18/Feb.



OSI connectionless network

protocol .. . 49/Feb.
OSI Express card Y . 6/Feb.
OSI Express card drwer .. 45/Aug.
0Sl1 object model ......coocoeeveccrenn 56/Apr.
OSI reference model ...........ccccoii 8/Aug.
OS] system management model .. 56/Apr.
QOutput section, 500-MHz

pulse generator ...........ccccceeee. 79/A0g.
Output section, variable-slope

pulse generator ....... .. B5/Aug.
Overshoot adjustment .................. 84/Aug.
OVRun, OVAdmin, OVDraw ...... 60,72-74/Apr.

P

PAD support software .................. 63/Dec.
Particle beam interface ................ 69/June
Particle traces .......cccccoeeene. T 86/0ct.
Pattern matching ................. .. B4/June
PDUs (protocol data units) ........... 32/Feb.
Performance, HP DIS ......c.c.. 71/0ct.
Performance, OSI Express card .... 51/Feb.
PhotOTECEIVET vovevrererereennsaeneeneesere 84/Feb.
Picker ... 19/Dec.
Pats, CEEREN.....cconovunesensssmmmrenmnsess FOUICE:
Plunge motion ..., 15/Dec.
Polymorphism .....c..ccceeenn. 12,30,34/Oct.
Pop-up menus, check boxes, and

pushbuttons, OSF/Motif ........... 11/June
Power spectrum measurements,

Taser oo daaks 94/Feb.
Preamplifier ........c..cnn .. 82/Aug.
Precompression phase .. ... 25/Apr.
Preselected mixers ........ ... 49/0ct.
Presentation layer .........cccceeeeeeien 31/Feb,
Prossute drop i 86/0ct.

Pressure monitoring .. .. 34/Apr.
Primary channel .. v 33/Apr.
Primitive objects ....... weeeee B2/June
Principal component anelyels ...... 78/0ct.
Probe cards, wafer test . . 77/June

Process defects, diagnosis .. 80/0ct.

Process integration .. .. B5/June
Process model, OSI Expres:, L.d!‘d 24/Feb.
Process specifications .................. 65/June
Profiles, X.3 . ... 67/Dec.
Program test, FIP Softhemh enee 54/June
Programmable pulse generaters .. B4/Aug.
Programming, OSF/Motif

widgets .. weeneee 26{June
Project management HP IV] .......... 7/0ct.

. 37/Apr.

Proportional noise . =
.. 62/0ct.

Protocol interface, HP DIS

Protocol module interfaces, DSI

Express card .. .. 20/Feb.
Protocol bpemhcahon Language 63/0ct.
Protocols, X.25 network ............ 65/Dec.
Pulse generators, 500-MHz ......... 64/Aug.
Pump module, LC ..o 24/Apr.

Q

Qualification, optical disk drives . 35/Dec.
Quality engineering, LC ............... 11/Apr.
Quality function deploymenl

(QFD) .. PSPPI - [ [+ 9
Quaternary pump module et S2HADT:

Real-time procedure tracer, OS]

EXPress Card ........oeeesiviseiorases D7/FED:
Receiver, lightwave .......c...ccouen.. 81/Feb.
Red book standard,

RO oo s e =i 39,42/Dec.
Reed-Solomon pmdun -like

code ... Y — .. 39.44/Dec.
Region access map .. 50/Dec.
Register sets eeeen. BfFeb.
Reliability, LC . . . 12/Apr.
Reliability medel seﬁware .. 46/June
Remote builds . ... 53/June
Remote execu[ir}n PR e 4 1313 T
Request message,

HP Softbench .......c.ccccvveeeee. 39,63/June
Responder process, FTAM .......... 28/Aug.
Reuse, €ode .covernireeerieninnes .. 44/Apr.

Reverse optics detector ...... 39/Apr.
Rewritable optical lechnoiogy seeneene BiDEC.
RIN (relative intensity noise) ....... 90/Feb.

Ripple, flow ....cccvciiarennsinnnnen. 26/ApT.
Ripple measurement .................... 34/Apr.
RLC measurement in VLSI

packages .. . 73/0Oct.
Roll-off, f]ow ZSxApr
ROSE (Remote Operamm Servme

BB o raisesevesssonsenninnes . 11,22/Aug.

S

Sampling unit, LC ....c.ccvciciiinennee. 19/ApIL
SAP selectors, OS] Express card .. 20/Feb.
Saturation, SErvO .....c...occeocenes 18/D8C.

Scanning absorbance detector ..... 38/Apr.
Scenario interpreter agent, OSI Express

card .. : 73/Feb.
Sc.hemes HP Softbench weee 41/June
Schottky noise ........coovviiieierennes 37/ApE
Security, CD-ROM .. .. 49/Dec.

.. 68/Dec.
.. 49/Dec.

Security, network ..
Security toolbox, (..D ROM
Self-homodyne measure-

BN . ceerneenrinas s sashatsvasen
Sense of touch i
Service provider process,

94 ,95/Feb.
26/Dec.

HP MAP 3.0 ....ocoeeiveennee. 12,28,35/Aug.
Servo design, optical disk

autochanger .......cccoeeencinennnnns 24/D80.
Session layer ..., 29/Feb.
Shaper .. - 82Mug.
Shrmkage Luld drawn CuBe .. B8/Dec.
Signal-to-noise ratio, LC

detector .. . 37/Apr.
Simulation, stanstlcal .. 78/0ct.
Single-frequency laser measure-

121517 F R e o e £ 74 110
Slope generator . a5/Aug.
S1oW BIODEB . preracssmsmmemes .. 85/Aug.
SoftBench env1renment .. 36/June
Software development environ-

ment .. 2 . 36/June
Software env1ronment tools cieeene. A8(June

Software integration,
HP MAP 310 i

Solvent delivery system ...........

Specifications, projection .............
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Spheres, barium ferrite ............ 52,61/0ct.

Spike generator ......... ... 70/Aug.
State machine, HP IV1 . .. 34/0ct.
Statement table .. i .. 67/June
Static analysis. (JSi Eb(press card 51/Feb.
Static analyzer . - . 54Tune
Statistical 51mulat10n 78/0ct.

Structure definition utility, Obl Express

card .. x e B OReE:
SVTanIIL pregrammmﬂ ssvassaissasan: T EIICE.
Syndrome, CD-ROM . .... 43/Dec.
System interface, OSI Express

card .. wees 27/Feh.
Swappmg optlral dlsk .- 11/Dec.

2
Tables, LC firmware .......c.ccccuces.. 48/Apr.
Task configuration, LC .. ... 48/Apr.
Tasks. BTE coiicanimminman 64/Dec.
Temperature compensation,

Hitor diive i anns iaasaniss 55/0ct.
Testing, HP MAP 3.0 ............. 29,50/Aug.
Testing, CD-ROM drive . ... 45/Dec.
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Effect of Fiber Texture on the Anisotropic
Dimensional Change of Cu 1.8 wt% Be

The dimensional changes in cold-drawn Cu 1.8 wt% (11.4
at%) Be rods resulting from aging are investigated. The
dimensional changes are nearly isotropic for as-quenched
specimens but are anisotropic for cold-drawn specimens.
The theoretical dimensional changes predicted based on
the degree of preferred orientation, the crystallographic
data of Cu-Be, and the geometry of the specimens agree

with the experimental results.

by Frank E. Hauser and Nguyen P. Hung

ally used for spring connectors in the electronic in-

dustry because it has high conductivity, is platable,
is low in cost, and has high strength with a relatively low
modulus of elasticity (good spring characteristic). The ma-
terial is usually machined when it is still soft after being
solution-quenched and cold-worked. Machined parts are
then precipitation hardened (aged) at an elevated temper-
ature. This nearly doubles the mechanical strength without
significantly changing platability or conductivity.

For precision components with tolerances on the order
of =5 um (%£0.0002 in), the use of Cu-Be alloy is limited
because of the inconsistent dimensional changes that ac-
company aging. The shrinkage of Cu-Be during aging has
been investigated by several other researchers'** who as-
sumed isotropic shrinkage of this material. This paper in-
vestigates the anisotropic dimensional changes of Cu-Be
during aging, and discusses the effects of cold drawing,
aging time, and aging temperature.

C OPPER BERYLLIUM (Cu-Be) ALLOY is tradition-

Experiments

Table 1 lists the properties of the tested material. The
tested bars were centerless ground with minimum material
removal, then machined into cylinders 25 mm (1.01in) long.
Next, the ends of these cylinders were ground parallel
within 1.25 um (50 pin). The specimens were ultrasoni-
cally cleaned, then aged at different temperatures from
200°C to 480°C (390°C to 900°F) in a mixture of 95% N,
and 5% H, to minimize any measurement error caused by
surface oxidation.

All samples were measured before and after each aging
period. The measurements were performed in an environ-
mentally controlled room in which temperature was held
to 23=1°C. Diameters were measured with a scanning He-
Ne laser system with resolution of 0.2 um (10 win) and
accuracy of £0.8 pm (£30 pin). The specimen lengths were
measured with an indicating system with a resolution of
0.2 um (10 win) and accuracy of =1 um (=40 win).

An x-ray diffraction method was used to characterize the
sample texture. Inner and outer pieces of a bar were re-
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moved on a traveled wire electrical discharge machine* as
shown in Fig. 1a. The diffractometer was set up for CuK,
x-rays with a Ni filter and a 0.4° beam split. The areas
under the (200) and {111) diffraction peaks were measured
with a planimeter and compared with data for copper pow-
der.

Table |
Composition and Size of the Test Pieces

Material: Cu 1.8 wt% Be 0.23 Co 0.10 Si
Condition: Solutionized at 775°C (1425°F),
Water-Quenched

Cold-Drawn, % Diameter Change

0 10 20 30
Size (mm) 14.27 12.70 11.43 10.06
Size (in) 0.562 0.500 0.450 0.396
Results

While the as-quenched specimens had the same random
texture as the copper powder, distinct evidence of a prefer-
red orientation or nonuniform texture was found in the
cold-drawn specimens. As Fig. 1b shows, the preferred
orientation increases from the outside to the center of a
drawn bar, and increases with the percent of cold drawing.

The percentage changes in the lengths and diameters of
the cylindrical samples for different aging times at 315°C
(600°F) are plotted in Fig. 2. The effects of aging time and
temperature on the dimensional changes are shown in Figs.
3 and 4, respectively.

Discussion

The decomposition of the supersaturated phase of Cu-Be
by precipitation has been found by other researchers®**®
to be:

“Atraveled wire electrical discharge machine usesa moving conductive wire &s an electrode
to erode another conductive part with a seres of tiny electrical sparks
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In a supersaturated phase of this alloy, there is a random
distribution of Be atoms in a solid solution with Cu atoms.
The GP (Guinier-Preston) zones are locations where pre-
cipitates form.

The equilibrium vy phase does not exist in the ranges of
aging temperature and time used in this experiment. The
GP zone, ¥", and y' phases consist of multilavered plates
formed on {100} planes. Shrinkage results from the phase
transformation because the unit cell dimensions of the GP
zone, y', and y' phases are smaller than those of the «
phase, as summarized in Table II.

Table Il
Dimensions of the Unit Cells

Phase: GP zone ¥ v o
Lattice:  tetragonal tetragonal cubic FCC
a=h(A) 2.53 2.53 2.70 3.58
c (A 3.22 2.90 2.70 3.58

+0.4

| | |  SEE S
T | ] 1

] o i
20 30 Fig. 1. (a) Specimens for the dif-

fractometry method. (b) Nonuri-
form textures caused by cold
drawing

where a. b, and ¢ are the unit cell dimensions and FCC
indicates a face-centered cubic lattice.

The coherency of the plate-type precipitates allows di-
mensional change in the direction normal to the plate, but
prohibits any shrinkage in the habit plane (the flat plane
in which precipitation plates tend to form). If this were
not the case, voids would form at the perimeters of the
precipitate plates.

Anisotropic dimensional change on a macroscopic scale
is the combined effect of:

m Microscopic dimensional change caused by each pre-
cipitate

m Formation of the precipitates on habit planes and direc-
tional shrinkage relative to these planes

w Preferred orientation of the habit planes induced by the
cold drawing process.

Consider a cylinder of diameter D and length L. Its vol-
ume V is given by:

V = —L.
4

i
(]

Upon aging, the volume change resulting from small
changes in both diameter and length is:

0% Cold-Drawn
= o= 10% Cold-Drawn
------ 20% Cold Drawn
== 30% Cold Drawn

202+ 98 oo gnnnee 8 £
3 g-a— s
@ g —— =
5 +0.0 ‘3 = -
£ :
2 E
5 § —e— g
=02 i e
L4 o —f "'8--—8. ______ s
—— . =y
— b
S AR
; Fig. 2. Effect of aging time at
Time at 315°C/600°F (hr t 315°C/600°F (h !
- BOE ) et ST 315°C on (a) axial and (b) trans-
(a) (b) verse dimensional changes.
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=25 + =& (1)

All of the GP zone, v, and v’ phases are present after
aging at 315°C (600°F) for a short time.” It is assumed for
simplicity that only the v’ phase is present after long aging
time (10 hr). The theoretical volume change dV/V after
complete transformation of the a phase to the ' phase in
Cu 1.8 wt% Be was calculated” to be:

d—\}! = —0.61%. (2)

This agrees with results from other researchers.'” By
combining equations 1 and 2, the plot of dD/D (%) versus
dL/L (%) is found to be a straight line:

dD _ dL
o SRy

— 0.305%. (3)
Equation 3 is plotted in Figs. 3 and 4 together with the
experimental data. As shown in Fig. 3, the measured shrink-
age data of the as-quenched specimens after long aging at
315°C (600°F) agrees with the isotropic shrinkage calcu-
lated from equation 1;

1 d
e s L 29 4
3V 0.2% (4)

Consider a cubic lattice whose [001] direction coincides
with the bar axis (longitudinal axis of a cylindrical bar).
There are only two planes, (001) and (002), perpendicular
to the bar axis, but there are four planes—(100), (200), (010),
and (020)—parallel to this direction. Assume that the prob-
abilities of forming plate-type precipitates on all {001}
planes are equal. Since the aging-induced shrinkage is sig-
nificant in the direction perpendicular to the habit plane
as pointed out earlier, and since there are more habit planes
parallel to the bar axis, it can be seen that the transverse
direction has to shrink more than the axial direction when
the material lattice structures align themselves after cold
drawing so that the [001] fiber axis is parallel to the bar axis.

The experimental data can now be explained. First, since

Before Aging

the precipitation process happens quickly at 315°C (600°F),
dimensions of the aged samples change mostly during the
first hour, then vary slowly as the aging time increases, as
shown in Fig. 2.

Second, the data points start slightly off the anisotropic
shrinkage line in Fig, 3 at the early stage of precipitation,
but approach this line as the aging time increases as indi-
cated by the direction of the arrows. (Recall that the theoret-
ical line represents the near-equilibrium condition after
very long aging time.) Experimental data also suggests that
the axial dimensions of the textured samples expand to
conserve their volumes at equilibrium as modeled by equa-
tions 2 and 3.

Third, for aging below 260°C (500°F), the dimensional
change of Cu-Be is more complicated. As seen in Fig. 4,
the as-quenched samples alwavs shrink isotropically be-
cause of their random orientation. The textured samples
change their dimensions anisotropically but the experi-
mental data converges to the theoretical line represented
by equation 3.

Conclusions and Recommendations
The anisotropic dimensional change of cold-drawn, then

aged Cu-Be rods was investigated. This paper shows that:

® Cold drawing of Cu-Be forms a distinct [001] fiber tex-
ture.

# The anisotropic dimensional change during an aging pro-
cess is significantly influenced by the texture.

B The as-quenched samples shrink isotropically in the
temperature range 200°C to 480°C (390°F to 900°F) be-
cause of their near-random texture. The textured speci-
mens change their dimensions anisotropically. The
transverse dimension of cylindrical samples shrinks but
the axial dimension expands to conserve their volume
after long aging at temperatures greater than 315°C
(600°F).

® A more precise shrinkage model should consider the
different phases in the aged samples, grain boundaries,
and other volume defects that affect the sample dimen-
sions.

® Dimensional changes are dominated by cold-work-in-
duced texture. Therefore, if the amount of cold work is
controlled, then a fixed set of shrinkage factors for a

Experimental Data
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dimensional change of Cu 1.8 wt%
Be. Aging temperature 315°C.

© Copr. 1949-1998 Hewlett-Packard Co.
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3 e
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particular aging process can be used in practice to predict
dimensional changes of machined parts.
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