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In this Issue

This issue continues the series of papers on major hardware and software
components of HP's new generation of computers, products of the HP Pre-
cision Architecture development program. Earlier issues have presented the
motivation and framework for the program (August 1985), the optimizing
compiler technology (January 1986), and the processor and input/output
architecture together with the measurement and simulation methodologies
which guided their development (August 1986).

Although the low-level processor and I/O architecture have been the focus
of much attention, most users will see the system through higher-level inter-
faces. This issue presents two such facilities: the HP-UX operating system and the ALLBASE
data base management subsystem. Each represents a very substantial software development
effort, and each has been designed to make maximal use of the speed, large address space,
and IO capabilities provided by HP Precision Architecture.

The first paper (page 4) presents the implementation of HP-UX, a real-time extension of AT&T’s
UNIX System V.2 operating system for the HP 9000 Series 800 Model 840 processor. The ways
in which the implementation exploits the capabilities of HP Precision Architecture are described,
with particular attention given to real-time extensions, memory mapping, and the I/O subsystem.

The second paper (page 33) describes the multilevel implementation of ALLBASE, a new data
base management system that fully supports both a relational access model and the more tra-
ditional network model of data access. ALLBASE presents the same interface and supports the
same data representations on both HP-UX and MPE XL operating systems.

Future papers in this series will treat hardware realizations of the architecture, the MPE XL
operating system, and other topics.

Michael J. Mahon
Manager, Computer Language Laboratory
Cover Guest Editor

Origins of the HP-UX operating system (Fig. 3, page 5) sculpted in plastic.

What's Ahead
The January issue begins with four articles about the HP 3562A, a low-frequency dynamic
signal analyzer with built-in curve-fitting and synthesis features. The articles discuss the design
of the HP 3562A and its measurement modes, curve fitter, and synthesis capability.
Concluding the issue is an article detailing how performance measurements pointed to the
design changes that provide the increased performance of the HP 3000 Series 70 Business
Computer.

he MP Journal encourages technical descussion ol he topics prasentad n recant afticles and will publsh esteo expected 10 be ol nlerest to our teaders. Latters must be bre! ana ane subject
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The HP-UX Operating System on HP
Precision Architecture Computers

HP-UX is the technical operating system for HP Precision
Architecture processors. It's an extension of AT&T's UNIX

System V.2.

by Frederick W. Clegg, Gary Shiu-Fan Ho, Steven R. Kusmer, and John R. Sontag

of AT&T’s UNIX* System V operating system."® It

is currently supported on the HP 9000 family of
computers, including its most recent addition, the Series
800 Model 840. HP-UX is one of the two operating systems
offered on the HP Precision Architecture family of proces-
sors. The HP-UX implementation on the Model 840 pro-
vides all of the functionality needed for full support of
both computer integrated manufacturing (CIM) and design
automation (CAD/CAE).

Earlier HP Journal articles have covered implementations
of HP-UX on HP 9000 Series 300 and 500 Computers”®
and on the HP Integral Personal Computer.”'?"" Compari-
son of those articles with this one will reveal a strong
similarity between those implementations of HP-UX and
the HP Precision Architecture implementation described
in this article. This is not by accident. HP’s corporate strat-
egy calls for the HP-UX operating system to appear the
same from the user's point of view, no matter what under-
lying architecture is used.'®'* Therefore, after a quick sum-
mary of HP-UX, this article will stress the contributions to
HP-UX made by the HP Information Technology Group
project teams responsible for implementing HP-UX on HP
Precision Architecture. These contributions include kernel
preemption, job control, native language support, and real-
time enhancements,

Hewlett-Packard has chosen to support a UNIX operating
system because it has several assets:

Existing standards and a means to standardize further
Productive software development environment
Portability of software

Easy access to existing applications software
Hardware and vendor independence

Multivendor networking

Ability to run on micros, minis, and mainframes.

A UNIX operating system can offer these benefits because
it is flexible and powerful. It is constructed of a collection
of tool-like programs, each of which performs a general-
purpose task. These programs can be combined in various
ways so that myriad complicated tasks can easily be ac-
complished. In addition, new programs can be added with-
out affecting the existing operating system.

One of the more powerful features in this system is that
the output from one program can become the input for
another without the user’s creating an intervening tempo-

I I P-UX IS HEWLETT-PACKARD'S standard version

*UNIX and Systemn V are registered trademarks of AT&T Ball Laboratories in the LLS.A.
and other countries

4 HEWLETT-PACKARD JOURNAL DECEMBER 1986

rary file. This allows speedy. powerful commands to be
constructed without the unwanted overhead necessary in
other operating systems.

Three major parts make up the core of a UNIX operating
system (see Fig. 1): the kernel, which controls the resources
of the computer’s hardware, the file system, which is the
means for organizing the layout of data storage, and the
shell, which is the command interpreter.

A large number of tools are also available in a UNIX
operating system, including programming languages, text
processors, and many maore. A traditional UNIX operating
system is interactive, which means that the user’s input is
immediately responded to by the system. In addition, a
UNIX system is multitasking, so the user can instruct the
computer to run background tasks while continuing to
work interactively. It is also multiuser in that many people
can use it at once.

The features of a UNIX operating system are traditionally
explained in a large reference manual, which documents
each core program, tool, and interface. This large tome is
organized much like a dictionary and is available on-line
for quick reference. It is divided into sections by type of

File System

Application

Programs

PAM and Windows

Fig. 1. Organization of the HP-UX operating system
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program. For example, all utilities are in section 1 and all
C libraries are in section 3c.

History of HP-UX

The shape and contents of the HP-UX system resuit

primarily from three historical forces:
s Development and standardization efforts by AT&T
s Enhancements added by the University of California at

Berkeley
s Development and standardization efforts by HP.

The UNIX operating system was developed at Bell
Laboratories in 1969 by programmers who wanted a simple,
flexible, and powerful environment in which to write their
programs. One of their first projects was to develop text
processing and formatting tools for internal documentation
needs at AT&T. Because of its power, flexibility, and ease
of use, the UNIX operating system quickly found wide-
spread acceptance by computer scientists throughout the
Bell Labs organization. In 1975 the first public version,
Version 6, was released to universities. Divergence began
as the university students and professors added features,
while the AT&T engineers continued on their own path.
By Version 7 in 1978 the portability of the system had been
improved with the rewriting of most of the operating system
in the high-level language C. In 1979 Berkeley's 3.0BSD
(for “third Berkeley software distribution”) added virtual
memory. Meanwhile, HP purchased source code from
AT&T in 1980 and began to enhance the operating system
as well.

In 1981 AT&T released System III, which incorporated
many Version 7 features. Between 1980 and 1981, Berkeley
added job control, tuning, long variable names, and differ-
ent hardware support. Because they had established them-
selves as a leader in development, Berkeley received a grant
from the U.S. Department of Defense Advanced Research
Projects Agency (DARPA), to provide support for network-
ing. By the next release in 1983, 4.2BSD, Berkeley had also
added a faster file system and a means of interprocess com-
munication.

In 1983 AT&T released System V, which improved per-

y

HP Enhancements

AT&T's
Syslem V.2

uc
Berkele

Members of
the Industry

Fig. 2, Origins of the HP-UX operating system

formance and added semaphores and shared memory. By
System V, Release 2, Issue 2 in 1985, AT&T had added
shell layers (permitting a single user to work on multiple
jobs simultaneously), flexnames (accommodating longer
names for identifiers), and virtual memory.

To prevent various versions of the operating system from
diverging any further. AT&T published the System V Inter-
face Definition, Issue 1, (called the SVID) in 1985. The
SVID defines the de facto industry standard interfaces for
System V, so that portability between similarly compliant
UNIX operating systems is possible. The interfaces are de-
fined individually in the SVID, much as they are in the
traditional UNIX operating system reference manual. The
input needed and resultant output are explained, but the
method of implementation is not. Therefare, each computer
is free to implement the interfaces in its own way, yet it
can still comply with the SVID and be compatible with
other UNIX operating system implementations.

While the SVID is the most important standard in the
UNIX operating system community to date, standardization
efforts have been spearheaded by the [EEE, /usr/group (an
international UNIX users group), X/OPEN (a consortium of
European and U.S. manufacturers), and others. HP has par-
ticipated heavily in these efforts and continues to be a leader.

HP-UX Defined

HP-UX complies with the SVID, Issue 1, and is a superset
of it (see Fig. 2). In addition to SVID features, HP-UX in-
cludes some features from Berkeley versions and other ver-
sions in the industry.

For example, virtual memory management and local-area

Increasing
Performance

HP 9000
Series
800

Multiuser
H;ezzgo Graphics and
200 Computational
Engine
Integral
PC CAE/CAT
Workstation
b T v
Transportable, Graphics Powerful
Single-User Workstations Processing
System for for CAE,
CAD, CAT, Al Manufacturing,
efc.

Fig. 3. The HP-UX computer family and its applications
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networking have been derived from the Berkeley 4.2BSD
implementation. In other areas, such as those of real-time
support and native language support (internationalization),
new capabilities have originated at HP. HP is actively work-
ing with other UNIX system vendors and with standards
organizations such as IEEE and X/OPEN toward the goal
of having HP extensions to UNIX operating system capabil-
ities accepted as industry standards.

Recognizing the importance of UNIX operating systems
as an emerging standard, HP management convened the
first meeting of a UNIX operating system working group
in May of 1981. This working group, composed of represen-
tatives of all HP entities working on or contemplating a
product based on a UNIX operating system, was formed to
facilitate communication between implementors in differ-
ent locations in an effort to minimize differences at the
user application interface level between their respective
implementations.

The working group identified three fundamental objec-
tives that have guided its efforts since its inception:

m Effortless application and user migration from the latest
AT&T UNIX system and easy migration from other popu-
lar UNIX system environments

= Effortless application and user migration between any
HP-UX systems

# Added value without impairing ease of migration.
“Effortless application migration"” means that code can

be recompiled and run without change on a new system.

This level of compatibility is commonly referred to as

source code compatibility. This encourages importation of

applications from other vendors' machines, serves to pre-
serve the valued investments of our customers, and facili-
tates the leverage of HP’s development efforts across HP-UX
systems. Object code compatibility is supported across sys-
tems of the same architecture. For example, code for the

Model 840 will run on other HP-UX members of the HP

Precision Architecture family without recompilation.
The UNIX operating system working group evolved into

the HP-UX Steering Council and created several subcom-
mittees, which include the management council, technical
working group, marketing working group, documentation
working group, and support working group. The councils
and working groups strive to develop a consistent approach
to all aspects of the product, as well as a common operating
system interface across multiple product families and cor-
porate divisions.

Compliance with the HP-UX Standard

The current focal point of the standardization effort at
HP is the two-volume HP-UX Standard Specification, Ver-
sion B.1, published in January 1986. The standard, as pre-
scribed by this specification, closely follows the SVID and
documents all features in HP-UX. The reference manuals
customers receive with their computers beginning in late
1986 will be derived directly from the standard specifica-
tion.

Hewlett-Packard computing products that wish to offer
an operating system derived from, or similar to, AT&T's
UNIX system must comply with this standard. Waivers for
any deviation from the standard require approval by the
HP-UX management council before the deviating product
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can be placed on the corporate price list.

Compliance with the HP-UX standard is verified by run-
ning the HP-UX verification test suite on a system. This is
a highly automated, extensive collection of “black box"
tests that systematically verify that the behavior of each
operating system service and library call matches that
called for by the entries in the standard. The HP-UX verifi-
cation suite is the product of over twenty engineering years
of effort in various HP organizations over the past five years
to produce the vardsticks necessary to implement a solid
standard.

The HP-UX verification suite was recently com-
plemented by HP's purchase of the AT&T System V verifi-
cation suite (SVVS). The HP-UX standard and the HP-UX
verification suite have, of course, been carefully designed
to be compatible. Availability of the SVVS is an important
milestone, nonetheless, since it provides for an additional
guarantee of SVID compatibility. HP intends to have all
HP-UX products pass the SVVS. After January 1987, UNIX
system implementations passing the SVVS will be eligible
for certification by AT&T that the implementation is SVID
compatible.

One other factor helps ensure that HP-UX implementa-
tions on various HP computer products are compatible and
conform to the HP-UX standard: most of the source code
for these implementations at the commands and libraries
level is shared across all implementations. A single shared
source repository is accessed by the engineering staff work-
ing on all HP-UX products. To ensure that updates to this
software are properly coordinated, they are supervised by
a shared source administrator. Before a module may be
modified by a member of any engineering team, that mod-
ule must be checked out from the shared source data base.
No one else may access that module for the purpose of
changing it while it is checked out. Needless to say, this
approach not only helps keep different HP-UX products
compatible, but also affords HP tremendous engineering
leverage whereby the refinements of a single engineer on

g Separate
Network Prgducts
Services and

LAN/HP-UX ¢

HP-UX Product

« Kernel

« Utilities

+ Libraries

* C Compiler

« Assembler

* HP-UX Symbolic Debugger
= Device 'O Library

* Real-Time Features
=Port/HP-UX DGL AGP
Graphics

Pascal Fortran 77 |

Fig. 4. Software products available for HP-UX systems.
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one product team can be quickly shared across the entire
HP-UX product line.

Operating System Enhancements

Because the original UNIX operating system was written
by programmers for programmers, certain biases are appar-
ent in it. Most of them are of benefit, but some are perceived
as drawbacks in certain circumstances. Early UNIX operat-
ing systems were designed for general-purpose, timeshared
applications in an English-speaking environment. New
needs and new markets have developed and HP-UX has
had to address them. These have been accommodated by
adding enhancements to HP-UX with the philosophy of
adopting existing industry standard interfaces (e.g., SVID,
System V.2, Berkeley 4.2BSD, /usr/group, and IEEE P1003)
whenever possible.

One apparent drawback of traditional UNIX operating
systems has been the difficulty in learning them. The pro-
grammers who devised the user interface were interested
in keeping their typing to a minimum and so created ex-
tremely terse and cryptic command names. For example,
grep stands for global regular expression printer, which
probably would not mean much to a novice. HP-UX has
enhanced the operating system by adding interfaces that
are menu-driven and provide for windowing on the screen.

HP-UX on the HP 9000 Model 840 is implemented di-
rectly atop the new HP Precision Architecture hardware,
that is, it is a native mode implementation, not a layered
implementation. It combines the features necessary to sup-
port the design automation and computer integrated man-
ufacturing markets, but shares most features with the other
members of the HP-UX family (see Fig. 3), which run on
widely differing architectures.'® Examples of HP-UX family
features (see Fig. 4) include support for graphics, local area
networking, and native language support (internationaliza-
tion).

Native Language Support

Native language support (NLS) is an area in which HP
has taken a leadership position in expanding the capability
of UNIX operating systems (see Fig. 5). More than 50% of
HP's sales are to international customers. In addition, the
international community is demanding that computer sys-
tems have the capability to interact with users in their
respective native languages. Much of the support for this
capability lies within the operating system. HP's engineers
began investigating how to extend the UNIX operating sys-
tem to make this possible over four years ago.'*'®'” The
objective was to provide a satisfactory base for end users
who want their application programs to run in languages
other than “USASCIL." Recently, the European standards
group X/OPEN adopted HP's technology as their standard
for NLS interfaces.

The User Interface

The user interface to any UNIX system is the shell. This
is essentially a command interpreter program that accepts
user inplits and turns them into requests to the underlying
kernel, libraries, and other utilities to accomplish desired
actions. Additionally, the shell performs housekeeping
functions such as keeping track of the current working

directory for a given user within the file system and other
environment variables. A fundamental distinguishing
characteristic of UNIX operating systems is that the shell
is just another user program, that is, it is not embedded in
the kernel, which is the heart of the operating system. A
reasonably sophisticated user not happy with any of the
shells provided can write a custom shell and use that in-
stead of the one provided by the system’s manufacturer.

Currently, HP 9000 systems (including the Model 840)
are shipped with two shells. The more traditional Bourne
shell, sh, is a direct descendant of the shells used with the
earliest UNIX systems at Bell Laboratories. The C shell,
csh, was developed at Berkeley and adds such capabilities
as command substitution based on a stack of previously
executed commands, a pushdown stack of file system direc-
tories currently being used, and commands to move mul-
tiple simultaneous jobs between background and fore-
ground modes in conjunction with the supported Berkeley
job control functionality (see box, **A System V Compatible
Implementation of 4.2BSD Job Control,” page 9). Csh as
currently supplied by HP has been enhanced with the ad-
dition of features (in the past found in the public domain
program tesh) originally found in Digital Equipment Corp.'s
TENEX operating system, including command and file
name completion. With this capability, a user can type
only as many leading characters of a command or file name
as needed to distinguish that command or file from the
other valid ones in that context and then strike the ESC
key to request the shell to fill in the missing keystrokes.
Also adopted from tesh is an autologout feature that auto-
matically logs users out of the system after they have been
inactive for a specified period of time (as when a program-
mer goes home for the night having forgotten to log out).

Other shells are available. as well. For example, the Korn
shell, ksh, recently released by AT&T is available to those
users who purchase a license for its use from AT&T.

The ability to use arbitrary shells is one of the features
contributing to the high degree of flexibility for which
UNIX systems are so highly praised. As an example, in

Supported Language |Comments

Language Set

American English |ASCII Supported by HP terminals, printers,

Canadian English |Roman8 and plotters

Danish Romang

Dutch Romang

English (U.K.) Roman8

Finnish Romang

French Roman8

German Roman8

Italian Romang

Norwegian Roman8

Portuguese Romang

Spanish Roman8

Swedish RomanB

Greek Greek8 Supported by HP terminal

Turkish Turkish8

Japanese Japani5s Katakana is supported by HP printers
and plotters. Katakana, Kanji, and
Hiragana are supported by a special
terminal available from Yokogawa-
Hewlett-Packard in Japan

Fig. 5. Languages supparted on HP-UX systems,
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1983, HP R&D engineers implementing HP-UX on a new
processor wrote a simple shell to mimic the command in-
terpreter of HP's MPE V operating system on the HP 3000.
Another special shell, rtesh, is part of the software migration
aids package discussed later in this article. It provides a
user command interpreter that looks and acts like that of
the RTE operating system for HP 1000 Computers.

In addition to serving as the interpreter of user commands
entered interactively, most UNIX operating system shells
have the capability of executing scripts, which consist of
files of commands. Shell scripts, in turn, can contain con-
ditional execution and looping constructs, permitting the
user to write entire simple programs without the need to
resort to C, BASIC. Pascal, or other more traditional pro-
gramming languages. The C shell, csh, purportedlv derives
its name from efforts to give its programming constructs a
syntax as consistent as possible with the C language.

The Program Development Environment

Traditional UNIX systems are generally acknowledged
to be the most productive software development environ-
ment available on a widespread basis. Virtually every as-
pect of a software engineer’s job is aided by one or more
tools of the system.

Ex, vi, and other editors (full-screen and otherwise), as
well as numerous other text manipulation tools (grep, awk,
sed—the list is very long), speed the entry of everything
from design proposals to source code to maintenance
documentation. Many of these tools “know' about the
structure of specific programming languages so that asingle
keystroke can be used to move the cursor to the beginning
of the next block, for example.

Source code preprocessors such as lint, cpp, cxref, and cb
are available to provide early screening of errors and to
improve program readability. Compilers for C, Fortran, and
Pascal are currently available on HP-UX products. Lisp,
Ada, and BASIC will be available soon from HP. Third-
party vendors offer a wealth of other languages, including
Forth and COBOL, for HP-UX systems.

For dealing with larger software systems, tools such as
make are available to ensure that the proper version of each
component is employed in the generation of a system. SCCS
(the source code control system) and other utilities from
AT&T’s Programmer's Workbench are available to facilitate
administration of multiple versions of a given software
system. For engineers building software that must recog-
nize and/or translate commands or some other formal lan-
guage input, HP-UX includes lex (a lexical analyvzer) and
yacc (vet another compiler compiler). For getting new pro-
grams to work well at run time, two very powerful debug-
gers are provided. The traditional adb (assembler-level de-
bugger) has been carefully tailored to HP Precision Ar-
chitecture on the Series 800 (a major challenge on a RISC
architecture). Higher-level (source-level) debugging is
facilitated by xdb, the latest in a lineage of symbolic debug-
gers including sdb and cdb in earlier UNIX systems. Xdb has
been generalized to support Fortran and Pascal, as well as
C programs. It is sufficiently powerful to tackle even such
difficult jobs as analyzing a memory dump of the kernel
after a crash. Finally, HP-UX offers tools such as prof and
vmstat to aid in monitoring the run-time behavior of a pro-
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gram and in performance tuning.

Real-Time Commands and Libraries

The implementation of HP-UX on HP Precision Architec-
ture is noteworthy in its extensions and alterations that
make it suitable for real-time applications.'® Most of the
work to accomplish this was done within the kernel of the
operating system. Command and library support for the
real-time feature set consists of the datalock routine and the
getprivgroup, setprivgroup, prealloc, and rtprio commands.

Real-time privileges are the capabilities given to pro-
cesses to become real-time processes and/or lock them-
selves in memory. These privileges give users direct control
over scarce system resources and must be controlled care-
fully. The approach chosen by HP-UX is an extension of
the Berkeley access groups concept. Each real-time
privilege is controlled by one or more real-time access
groups, which are set up by the superuser. A process is
given a real-time privilege only if it is a member of the
corresponding real-time access group. This approach al-
lows dynamic revocation of real-time privileges by the
superuser by redefining the real-time access groups. A user
process can also remove a real-time privilege from its child
process by deleting the corresponding real-time access
group from its child process before it passes control to the
child process.

Process Management
Process Scheduling. A typical UNIX system scheduling
algorithm was designed to provide equitable access to the
CPU and memory in a timeshared environment. Process
scheduling priority is recalculated periodically and process
execution is time-sliced to ensure a fair share of the CPU
for each process.

The concept of real-time priorities has been added to
HP-UX to satisfy the real-time needs of the computer inte-
grated manufacturing market. All real-time priorities are

i

Most
UNIX 0-1000 ms
Systems
\ Finish Current Kernel Service

Interrupt
Latency

Pause Current

Kernel Service Context

Switch
HP-UX

- N\ N\

Time to Start a User Real-Time
Process on Interrupt

Fig. 6. HP-UX real-time extensions achieve an order of mag-
nitude improvement in preemption latency over traditional
UNIX systems.
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of higher scheduling priorities and are not modified by the
operating system. A process with the appropriate real-time
privilege can set its own real-time priority and the real-time
priarities of its offspring. In the extreme case, the process
with the highest real-time priority can monopolize the pro-
cessor and have full control of the system. Real-time pro-
cesses with the same priority are executed under a round-
robin, time-sliced policy.

Time-Based Scheduling. Processes can be scheduled by
firing an alarm clock in traditional UNIX systems. UNIX
System V supports an alarm clock with a resolution of one
second. That is sufficient for most timeshared applications

but is too coarse for time-critical applications. HP-UX has
adopted the Berkeley 4.2BSD timer interface, which sup-
ports microsecond resolution of three types: real time (wall
clock time), virtual time (time spent in the user code) and
prof time [time spent in both the kernel and user code). The
timer is nondrifting in the sense that a process can schedule
itself for execution at regular intervals independently of
the dispatching and rescheduling overhead of the process.

Preemption Latency. In a traditional UNIX system, a pro-
cess executing in user code can be preempted immediately.
However, when executing in the kernel, the process gives
up the CPU only voluntarily and explicitly, for example

The job control functionality first introduced into UNIX operating
systems by Jim Kulp of IASA and later provided by the 4.2BSD
version has become a de facto industry standard.’? It allows the
user to control multiple simultaneous tasks from a single terminal
easily. However, this job control facility, as impiemented in
4.2BSD, is incompatible in several respects with System V. This
is typical of many cases where new features desired by custom-
ers must be carefully engineered to fit comfortably into HP-UX
without violating industry standards for compatibility.

4.2BSD job control allows users fo stop (suspend) the execu-
tion of processes and continue (resume) their execution at any
later point. This only works easily for processes that are stopped
and continued during the same login session.

The user almost always employs this facility via the interactive
interface jointly supplied by the system tty driver and a job control
shell such as csh. The tty driver recognizes a user-defined sus-
pend character which causes all current foreground processes
to stop and the user's job control shell to resume. The job control
shell provides commands that continue stopped processes in
either the foreground or the background. The tty driver will also
stop a background process when it attempts to read from or
write to the user's terminal. This allows the user to finish or sus-
pend the foreground task without interruption and continue the
stopped background process at a more convenient time.

Some of the System V incompatibilities of 4.2BSD job control
that aare resolved in HP-UX are discussed in the following sec-
tions.

SIGHUP Changes

System V semantics state that when a process group leader
dies, all processes in the same process group are sent the
SIGHUP signal which, by default, kills all the processes. Job con-
trol shells execute a cormmand by making all processes in the
pipeline belong 1o the same (brand new) process group and by
making the first program in the pipeline be the process group
leader. Typically, the first program in a pipeline terminates befare
the other programs. Under System V serantics, this would cause
the premature death of the remaining pipeline. Because of this,
4.285D does not generate SIGHUP on process group leader
death. To support System V semantics and still allow job control
to function properly, HP-UX makes a distinction between a "Sys-
tem V process group leader” and a "job control process group
leader."” A System V process group leader is given System V
semantics (SIGHUP |s generated) and a job control process group
leader is given 4 2BSD semantics (SIGHUP is not generated).

siGcLD Changes
Under System V, the SIGCLD signal is sent to a process

A UNIX System V Compatible Implementation of 4.2BSD Job Control

whenever one of its immediate child processes dies. Under
4 2BSD, SIGCLD (or its variant, SIGCHLD) is also generated when
a process changes state from running to stopped. Since a System
V application would not expect to receive SIGCLD under these
new circumstances and since a job control shell would not be
able to function properly without such notification, a compatible
compromise was developed. The (parent) process wishing to
trap SIGCLD may set a flag when calling the HP-UX sigvector routine
to establish a signal handler. This flag will cause SIGCLD to be
sent for stopped children, in addition to terminated children. A

System V application using signal will see the System V compatible

SIGCLD semantics.

Controlling Terminal Changes

Under System V, whenever a process group leader dies, the
controlling terminal associated with that process group (if any)
is deallocated (disassociated from that process group). 4.2BSD
does nat deallocate controlling terminals on process group
leader death for the following reason: job control shells make
the lead process in every pipeline a process group leader. If the
controlling terminal for each pipeline were deallocated whenever
the lead process terminated, then the remaining processes would
effectively become background processes (assuming they were
currently in the foreground) and would stop when any of them
attempted subsequent /O to the terminal,

To allow bath semantics, controlling terminals are only deallo-
cated when a System V process group leader dies and not when
a job conlrol process group leader dies. (See the discussion of
SIGHUP changes above )

tty Driver Considerations

For System V compatibility, the suspend and delayed suspend
characters are defaulted to a disabled value (0377). This means
that job control is inactive by default when a user logs on. The
user must explicitly activate job control by defining either or both
of these characters via stty or some similar interface.
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by blocking for some unavailable resource or by completing
a system call. This may significantly delay the execution
of a high-priority real-time process and is unacceptable to
critical real-time applications. For a detailed description
of how the HP-UX kernel on the Model 840 has been mod-
ified to allow preemption in the kernel, see the box “De-
creasing Real-Time Process Dispatch Latency Through Ker-
nel Preemption,” on page 13. The effects of these modifica-
tions are shown in Fig. 6.

Job Control. Job control allows users to suspend the execu-
tion of processes selectively and resume their execution at
any later point. Job control, as implemented in Berkeley
4.2BSD, is incompatible with the UNIX System V semantics
in several areas: signaling mechanism, process group, and
controlling terminal semantics. A job control interface that
supports the Berkeley functionality and is compatible with
the UNIX System V specification has been added to HP-UX
and implemented on the Model 840, This interface has
been accepted in the working draft of the IEEE P1003.1
POSIX, the Portable Operating System Interactive Execu-
tive standard. For a detailed description of the HP-UX im-
plementation of job control, see the box “A UNIX System
V Compatible Implementation of 4.2BSD Job Control,” on
page 9.

Process Synchronization

Reliable Signals. A signal is the software interrupt mech-
anism supported in a UNIX system to relate asynchronous
events to user processes. Traditional UNIX systems includ-
ing System V suffer from the race condition, which is that
a signal can be lost or the receiving process can be killed
if the signal is sent to a process when the process is in the
middle of processing another signal of the same type and
has not rearmed its signal handler. The Berkeley system
recognized this problem and defined a set of signal system
calls to eliminate it. This interface has been adopted by
HP-UX and implemented on the Model 840 with minor
modifications so that it is compatible with System V.
Shared Memory, Semaphores, and Messages. Shared mem-
ory, semaphores, and messages are interprocess communi-
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cation mechanisms added to UNIX Systemn V.2. The same
mechanisms have also been added to HP-UX and imple-
mented on the Model 840.
Memory Management

For a process to have predictable response time, HP-UX
allows a process to lock its text segment, data segment, or
both in memory. When a process locks its data segment,
its stack and heap segments are also locked in memory at
the same time. A process can also reserve additional heap
and stack space when it locks itself in memory to avoid
future page faults. If it outgrows its reserved space, the
additional page is locked in memory automatically. Shared
segments can be locked in memory by using the shared
memory system calls. The above capabilities (through the
same interface) have been added to the SVID and are cur-
rently supported on UNIX System V.2. The only difference
is that HP-UX allows a process to lock memory segments
in memory only if it possesses the memory locking
privilege. This allows tight control of the memory locking
capability, Naive or malicious users who do not have the
memory locking capability cannot consume most of the
system memory, either intentionally or unintentionally, by
locking themselves in memory. When full UNIX System V
compatibility is needed, it can be achieved by giving the
memory locking privilege to every process. Berkeley
4.2BSD does not support any of the above capabilities.

The swapping policy of the HP-UX implementation on
the Model 840 has been modified in such a way that it
favors real-time processes. In general, timeshared sleeping
processes are swapped out first, then real-time sleeping
processes, then timeshared runnable processes, and finally
real-time runnable processes. This policy is transparent to
the users. The only difference is that timeshared processes
may be swapped out maore frequently and thus run slower.

File System

Because a UNIX operating system uses its file system
very heavily, the traditional UNIX file system is a perfor-
mance bottleneck. The HP-UX implementation on the
Model 840 is based on the Berkeley fast file system, with

HP 1000
Model

A400
(Future)

Fig. 7. Migration paths for HP-UX
and RTE systems.
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minor modifications for UNIX System V compatibility. File
access rates up to ten times faster than a traditional UNIX
file system have been achieved in the fast file system.
The fast file system partitions the disc into one or more
cylinder groups, each of which consists of one or more
consecutive cylinders on a disc. Inedes, which store infor-
mation such as file types and locations, are allocated in
each cylinder to reduce disc head movement, rather than
at the beginning of a file system as in a traditional UNIX
operating svstem. Large data blocks with small fragments
are supported to maximize disc transfer rates and minimize
file system fragmentation. New data blocks are allocated
on the same cylinder as the previous block, whenever pos-
sible, with rotational latency taken into consideration. Files
belonging to the same directory are placed in the same
cylinder group whenever possible. The fast file system user
interface is fully compatible with that of a traditional file
system.
File Locking. File locking has been added to HP-UX and
implemented on the Model 840. Both advisory and enforce-
ment mode locks are supported. An advisory lock allows
a process to lock a region of a file to achieve exclusive use
of the region among cooperating processes. A process can
still have access to an advisorily locked region if it chooses.
Enforcement lock enforces exclusive access by the locking
process. Other processes that attempt to access the locked
resource either return an error or sleep until the resource
becomes unlocked. The same interface has been accepted
into the SVID and /usr/group standard.
Scatter Read and Gather Write. Scatter read allows a user
to read from a file and scatter the data into multiple buffers
in one system call. Gather write allows a user to gather
data from multiple buffers and write it to a file in one
system call. It is extremely useful for data acquisition ap-
plications to minimize the system call overhead. The inter-
face was first defined in Berkeley 4.2BSD, added to HP-UX,
and implemented on the Model 840.
User Control of Buffering. In traditional UNIX operating
systems, the file systems store the most recently used data
in their buffer cache to reduce the file system access time
and improve the file system bandwidth. The buffer cache
is periodically flushed out to disc to ensure data integrity
in a system crash. UNIX System V supports the capability
of flushing out all of its buffer cache. The operation incurs
significant overhead to the system and, therefore, is done
infrequently. The Berkeley system added the capability of
flushing out only the buffer cache of a specified file to
allow users better control of the buffering. This interface
has been adopted into HP-UX and implemented on the
Model 840. In addition to flushing out the buffer cache of
the specified file, HP-UX on the Model 840 also flushes
out the inode and indirect blocks of the file so that data
integrity of the file is guaranteed.
Preallocation of Disc Space. In a traditional UNIX operat-
ing system, the disc space of a file is allocated as needed
on write operations. This implies that performance on write
is slower since time may be spent allocating space during
the write operation. This may be unacceptable to some
critical real-time applications. The capability of preallocat-
ing file space has been added to HP-UX and implemented
on the Model 840.

Powerfail Recovery. The HP-UX operating system on the
Maodel 840 also supports powerfail recovery. On a tempo-
rary power failure, the CPU state and data stored in the
cache are flushed out to memory backed up by battery. If
power is restored within a short time (15 minutes for a
24M-byte system), all /'O devices are reset, /O transactions
ongoing at the time of the power failure are restarted, CPU
and cache states are restored, and a signal is sent to each
process informing it of the power failure. A process can
then take appropriate recovery actions.

Asynchronous /O

In a traditional UNIX operating system, a process cannot
continue its execution until the completion of the requested
/O operation. The delayed write feature in a UNIX operat-
ing system is an attempt to gain more parallelism in the
system. However, many applications in the computer inte-
grated manufacturing market want to start multiple IO
operations, continue their execution, and then wait for
completion of all of the I/O transactions. Other applications
may want to perform multiple asynchronous VO operations
and be signaled on the completion of any of the I/O trans-
actions. The Berkeley 4.2BSD system supports asynchro-
nous /O activities of this type. This capability has been
added to HP-UX and implemented on the Model 840. In
particular, a process can request that it be signaled when
a certain driver state occurs. Alternatively, it can poll a
driver to determine if the driver is ready for reading or
writing, or if it has an exceptional condition pending. It
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Fig. 8. AT&T's UNIX System V Interface Definition implies
that processes have the following components: text, data,
unitialized data, a user stack, a heap, and zero or more shared
memory segments. The user stack may grow automatically
to suit the procedure call nesting of the process. The heap
will grow (or shrink) when the process requests more (or less)
memory using the brk or sbrk system calls.
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can also make nonblocking requests to drivers.

Custom |/O Drivers

In the computer integrated manufacturing market, appli-
cation developers may want to write their own device driv-
ers to have direct control of their equipment. The HP-UX
implementation on the Model 840 supports a configuration
tool to allow users to add drivers to the system without
requiring the acquisition of a UNIX system source license.

Debugging tools used by the lab developers are also avail-
able to users for their driver development: a kernel debug-
ger for debugging the kernel on the hardware, an off-line
driver debugging environment to allow logical debugging
of software in a UNIX system user environment before test-
ing it on the hardware, and driver skeletons to help users
in designing their own drivers, HP's Data Systems Division
also plans to release the above tools as products shortly
after the first release of the Model 840, together with an
HP-UX source product with a technical specification of the
internal operation of the HP-UX operating system.

The device I/O library is a set of libraries in HP-UX that
allows users to have direct control of /O devices. It was
first supported on the HP 9000 Series 500, then on the
Series 300, and is now supported on the Model 840. With
first release of the Model 840, users have, through this
library, direct access to the HP-IB card, which is used for
instrumentation, and the high-speed parallel /O card from
HP's Roseville Networks Division.

Software Quality

Extensive measures have been taken to ensure that the
HP-UX software on the Model 840 meets the high quality
standard of HP. In particular, the HP-UX software meets
the defect density, breadth, and depth coverage require-
ments as discussed in reference 19. Two software tools
have been developed to measure the test coverage of the
software: the path flow analyzer (PFA) and the instruction
coverage analyzer (ICA). The PFA operates by adding in-
structions to each path of a program to count the number
of times a path has been executed. It was used on all soft-
ware in the system except the kernel to confirm the extent
to which tests have been comprehensive. The ICA operates
by replacing all of the instructions of a program at the very
beginning of an execution with break instructions. A spe-
cial trap handler puts the original instruction back when
a break instruction is encountered. The program runs very
slowly at the beginning but soon runs at its normal speed
when most of the break instructions have been replaced.
The ICA tool has been used extensively in kernel testing
since it does not alter the execution timing of the system,
It has proven to be a very valuable tool.

Software Migration Aids

HP’s computer products strategy presently calls for a
convergence upon three operating systems for all products.
These are MS-DOS for personal computer products, MPE
for commercial and business data processing markets, and
HP-UX for most other computer markets to which HP ca-
ters. These include scientific and engineering computation,
real-time process control, computer-integrated manufac-
turing, and general-purpose computing.
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HP’s strategy calls for migrating the established base of
RTE customers and application software, where appro-
priate, to HP-UX beginning with the advent of HP Precision
Architecture (see Fig. 7) and continuing through the next
decade as HP Precision Architecture systems become avail-
able for all types of applications. To facilitate this process,
HP has developed an entire package of migration tools
called Port/HP-UX, which is included in the base software
package for the HP 9000 Series 800.

Limited tools are provided for previous members of the
HP 9000 family to facilitate migration of HP 1000 software
to those machines. The Model 840, however, is the first
HP-UX implementation to offer sufficiently complete real-
time functionality and sufficiently fast real-time perfor-
mance to accommodate the vast majority of HP 1000 appli-
cations. For this reason, a much more extensive set of mi-
gration tools was deemed appropriate for the Series 800
than those offered for Series 200, 300, or 500 members of
the HP 9000 family. Of course, no tools are needed for
migration from Series 200, 300, or 500 systems to Series
800 machines. This is because of the inherent portability
of software based on UNIX operating systems.

Port/HP-UX provides an extensive library of emulation

(continued on page 15)
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Fig. 9. The components of an HP-UX process are mapped
onto HP Precision Architecture as shown. The kernel stack
Is a stack used only while the kernel is executing on behalf
of the process, and it is otherwise inaccessible to the process.
The kernel is not included in the short-pointer address space
of the process. Rather, it executes out of a separate space
(0) and it accesses the memory of the process using a handful
of functions that use long-pointer addressing mode
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Decreasing Real-Time Process Dispatch Latency Through Kernel Preemption

A key measure of a real-time sysiem is how quickly a waiting
process can be dispatchad in response to some event (for exam-
ple, /0 completion). One maijor component of this is the time it
takes to preeampt the currently executing process. Ina traditional
UNIX operating system, a process executing in user code can
be preempied immediaiely. However, when exscuting in the ker-
nel, the process gives up the CPU only voluntarily and explicitly
(for example, by blocking for some unavailable resource or by
completing a system call). The kernel can theretore execute for
a significant period of time before giving up the processor to
another process. This period of time is called preemption latency
and, when significant, it is unacceptable in a real-time system.

This article describes modifications to the HP-UX kernel that
substantially reduce this time. Measurement resulls are pre-
sented that quantify these times and the improvements that have
been made

Alternative Solutions

The goal is to decrease the amount of time the kernel executes
before it gives up the processor to a waiting higher-priority real-
time process. To achieve this goal there are two basic alterna-
tives: 1) the kernel can be made to execute all of its functions
more quickly, or 2) the kernel can be made to tolerate interrupting
its execution in deference to the waiting process (preemption).

The former is clearly a superior approach, because it has the
side benefit of causing the entire system to execute faster and
with less kernel overhead. It can be achieved through a combi-
nation of faster hardware and algorithmic changes. In addition
to algorithm changes that reduce total execution time, one can
shift code from the kernel into the user program. One example
would be to implement the file system manipulation code in a
user library and leave only the code supporting basic device
access in the kernel. This allows more of the "kernel" to execute
in user mode where it is readily preemptable. The problems with
moving kernel algorithms into user mode are a loss of reliable
security checking and a loss of atomicity of operation with respect
to other processes. In addition, there is only so much kernel
code that can be reasonably moved into user mode. In the final
analysis, preemption latency Is typically left unacceptably high.
So the second alternative, increasing the preemptability of the
kernel, is explored.

The problem with making the kernel arbitrarily preemptable is
a loss of atomicity. Kernel data structures can be viewed as
memory shared among all the user processes. Each process
makes requests of the kernel that update this shared data. There
must be a mechanism that ensures that these updates are per-
formed atomically;, otherwise, faulty operations and a system
crash usually result. Simultaneous (multiprocessor) and inter-
leaved (uniprocessor) data structure access is prevented either
through one or more semaphores (which reduces the problem
to updating shared semaphores) or by preventing even the pos-
sibility of contending access. The latter approach is usually pro-
vided by atomic hardware instructions and/or architecting the
system so that such colliding accesses never happen.

The mechanism used in a traditional UNIX operating system
is this latter approach: nothing interrupts a process while it is
running in the kernel. (The exception to this, /0 interrupt process-
ing, will be discussed later.) This implementation has too coarse
a granularity. That is, the data structure lock can be held for a
long period of time, and this can prevent other processes from
running even if they don't access the same data structures being

currently updated. Thus the lock covers more data structures
and lasts-for a longer period of time than is usually needed. It
is this drawback that gives rise to the poor preemption latency
of UNIX operating systems

Solution Implementation

The preferred solution is to use multiple semaphores and have
each semaphore control access to an independently used data
structure. No other process will access the data structures the
preempied process is using since no other process has the
necessary semaphores locked. The kernel can then be im-
mediately preempted at any point in its execution. This results
in the fastest preemption time but requires that the entire kernel
be modified to adhere to semaphoring conventions. Just sorting
through the various data structures and assigning semaphores
can be a large amount of work. This approach is typically em-
ployed in multiprocessor systems. For a description of one such
implementation and the affort required see Bach' and Felton.?

An approach that is easier to implement is to find places in
the kernel where it is already safe to preempt and only allow
preemption there. Such a safe place is a spot or region in kernel
code where all kernel data structures are either updated and
consistent or locked via semaphore. This does not require mod-
ifying the entire kernel to conform to a new data access
philosophy. It does have several drawbacks, however. Rather
than occurring immediately, preemption is held off until the next
safe place. Also, our experience has shown that these safe places
are not found but made. This approach can be viewed as a
generalized extension of a technique described by Ferrin.®

Because implementation schedule was of strong importance,
our solution combines both these preemption styles: there is a
synchronous method, which allows preemption at a specific point
during kernel execution, and an asynchronous method, which
allows preemption anywhere during a region of kernel execution

The synchronous method is useful when places can be iden-
tified in the kernel where data structures are either in a consistent
state (i.e., between an access transaction) or all required re-
sources are locked via some semaphoring mechanism. The syn-
chronous method is invoked by placing a call to the macro
KPREEMPTPOINT at such a safe place in the kernel. This macro
merely checks a global flag, reqkpreempt, which indicates the
presence of a higher-priority real-time process that is ready to
run and calls a function, kpreempt, o cause a swich to the process.
The regkprempt flag is similar in function to the runrun flag used in
typical UNIX operating systems to indicate that a higher-priority
timeshare process is ready to run.

There is also a function variant of KPREEMPTPOINT called
IFKPREEMPTPOINT which returns true if a pending preemption
was serviced; otherwise it returns false. This is useful if lengthy
algorithms need to allow preemption, but if preemption occurs,
there are assumptions that may have been invalidated and now
must be rechecked.

The asynchronous method is useful when preemption can be
tolerated over a region of execution and synchronous polling via
KPREEMPTPOINT would incur unacceptable overhead (for exam-
ple, large memory copies during fork, exec, or user /0). This
method is implemented via a sofiware-generated interrupt which
is recognized by hardware. Hardware causes an asynchronous
transfer of control to the trap handling routine (similar to a page
fault taken inside the kernel when accessing user pages), which
in turn calls kpreempt to preempt the kernel.
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In total, approximately 180 synchronous preemption points
and 20 asynchronous preemption regions were added to the
HP-UX kernel.

Overcoming Limitations

There is one overriding limitation on what kernel preemption
can accomplish. Kernel preemption can only preempt (suspend
via swich) an operation being executed within a process context,
It cannot preempt interrupt processing code and allow a process
to execute because the UNIX system does not support this type
of operation. Therefore, all interrupt processing is implicitly con-
sidered to be of higher priority than any (real-time) process. This
means that no matter how quickly preemptable one makes the
kernel, if interrupt processing becomes unacceptably time-con-
suming then timely kernel preemption cannot be achieved. So
the only option is to reduce interrupt processing overhead to an
acceptable level Note that, even if all individual interrupt servic-
ing operations are short, kernel preemption can be held off for
an arbitrarily long time by many quickly arriving (back-to-back)
interrupts during heavy I/O activity. There is nothing that can be
done in this situation since interrupt processing, by definition,
has priority over all process execution. In addition to the typical
11O driver code, the UNIX system allows non-I/O code to be
executed in an interrupt processing context, This facility, called
the callout queue, causes a kemnel procedure to be executed at
a specified time offset. The procedure is invoked from an interrupt
processing context during clock interrupt servicing. This is usu-
ally done at a weaker interrupt priority than all other /O interrupts.
(See Straathof* for a more detailed discussion of the callout
queue mechanism.)

To minimize callout queue execution overhead, a separate
system process was created to provide a preemptable process
context in which to execute some lengthy callout queue code.
This process, the stat daemon, is a lightweight kernel process
similar to the swapping daemon (sched) or the pageout daemon.
It waits for the lightning bolt event (the lightning bolt event is a
standard UNIX operating system event that occurs frequently,
for example, every second) and then executes a standard set
of statistics gathering routines. These routines represent the
lengthy portion of the schedepu function. (Among other things,
schedcpu recomputes process priorities every second; see
Straathof? for a discussion of its operation.) A new routine,
sendibolt, is now scheduled on the callout queue in place of
schedcpu. Sendlbolt performs the quick functions of schedepu includ-
ing generating the lightning bolt event.

General Performance Improvements

In addition to the preemption specific modifications, kernel
preemption times were improved by several general performance
improvements. These include making the process table multi-
threaded and placing entries in different states on different lists,
and using hashing technigues to speed data structure searches.
See Feder® or McKusick® for a discussion of similar improve-
ments.

Measurements

To tell how long the kernel executes without blocking or
preempting, and where in the kernel these long execution paths
are, the kernel was instrumented to collect timing measurements.
To obtain sufficiently accurate times, a new kernel routine was
introduced to obtain clock time accurate to a microsecond.

To determine the improvement made in real-time process dis-
patch time, two sets of measurements were taken, one set with
kernel preemption enabled and one set with it disabled. The
same workload was run during both measurements.

The workload consisted of a suite of tests that validate the
correct working of all kerne! functions. Because the instrumented
kernel precisely measures each section of the kernel every time
it is executed, it is not necessary to execute a kernel code path
more than once.

The results are summarized in Table |.

Table |
Nonpreemptable Kernel Time

Preemption Off Preemption On Improvement

90% kernel 40ms 14ms %28
99% kernel 129ms 3.4ms x 37
Maximum kernel 1127 ms 14,6 ms X 77

Note that these results are for a particular run of a particular
workload. Results will vary from run to run and from workload to
workload.

Table | shows that HP-UX kernel preemption has provided
significant improvements in real-time process dispatch time. In
the worst case observed with our workloads the improvement
was well over 50-fold. With preemption enabled it was found that
nonpreemptable kernel code paths were significantly shorter,
and more consistently so, than in the traditional case. This re-
sulted in better and more reliable timely dispatch of real-time
processes regardless of background workload.
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{continued from page 12)

routines that permit most HP 1000 applications programs
written in Fortran or Pascal to be moved to HP-UX on HP
Precision Architecture with only a simple recompilation.
To provide early assessment of the likely magnitude of a
contemplated HP 1000-to-Series 800 port, Port/HP-UX in-
cludes a migration analysis utility (or MAU).

The MAU reads the source code of HP 1000 applications
programs and automatically identifies any constructs that
may need to be changed to work properly in the Series 800
environment. To assist current HP 1000 owners in antici-
pation of transitions of their own enterprises from HP 1000
systems to the HP Precision Architecture family, the MAU
is also available on HP 1000s.

HP 1000 Programs on HP-UX

HP 1000 programs run as native HP-UX programs
whenever they are in user application code. This gives the
immediate benefit that application code runs significantly
faster on the Series 9000 Model 840 than it does on an HP
1000. Ported programs also can take advantage of features
of HP Precision architecture, including 32-bit address
space, paged virtual memory, and a rich set of registers.

HP 1000 programs are recompiled to run on HP-UX using
the standard HP-UX compilers. The Fortran compiler in
particular includes a number of extensions to facilitate
compiling HP 1000 programs. Programs are linked with
the standard HP-UX linker and libraries containing essen-
tially all commonly used RTE entry points, such as EXEC,
FMP, the RTE system library, Image, AGP, DGL, and F/1000.

These libraries of RTE entry points make use of HP-UX
facilities to provide an environment suitable for RTE pro-
grams. Key RTE tables such as the ID segment table, /O
tables, and resource tables are maintained in shared mem-
ory and are accessed by the EXEC and FMP calls, An FMP
format file system is maintained using HP-UX facilities,
and a set of utility programs is provided for manipulating
the RTE environment. These programs include a command
interpreter called rtesh that provides most of the commands
available from Clon RTE, and an editor called ed1000, which
simulates EDIT/1000 on RTE, including screen mode and
regular expressions.

The RTE libraries attempt to provide complete emulation
of their RTE equivalents; differences are documented, and
are identified by the MAU. Performance of the emulated
RTE calls is such that most application programs will still
see a net performance improvement when they are moved
from an HP 1000 Model A900 to an HP 9000 Model 840,
Exceptions are programs that are very operating system
dependent. Some of the calls, such as resource number
operations and HP-IB transfers, can take more time on the
840 than they do on the A900.

Implementation Highlights: The Kernel

The implementation of the HP-UX operating system on
the HP Precision Architecture HP 9000 Series 800 Comput-
ers is fully compatible with the AT&T UNIX System V
Interface Definition (SVID) and with the HP-UX Standard
Specification Version B.1. It is an operating system tuned

for high system throughput in a multiuser environment

and fast real-time response.

Conforming to the SVID has many implications, among
which is the support of a process model. This process
model defines how processes are created, how they perform
input and output, how they communicate with one another,
and how they are destroyed. It also implies what compo-
nents make up a process, and how they may be accessed.
The UNIX operating system process model assumes that
each process has its own separate 32-bit address space,
although certain components in that address space may be
shared between processes. HP Precision Architecture has
a 64-bit or 48-bit address space, but, as will be described
later, it also has an addressing mode that allows support
of the 32-bit addressing model.

Each process is assumed to have the following compo-
nents (Fig. 8, page 11):

m Text—the instructions of the program. Most UNIX sys-
tems separate instructions from data not only to enforce
good programming practice, but also to allow for the
nonwritable instructions to be shared among many pro-
cesses. The text must be not only executable, but also
accessible as data because constants are often loaded
here to increase memory sharing.

w Data—the data of a program. This component is in-
itialized from the program file during an exec system call.

m Bss—the data of a program that was not initialized in
the program'’s source code. The SVID process model as-
sumes that bss is initialized to zero during the exec system
call, It is kept separate from the data component and
does not take up space in the program file. (By the way,
bss is a time-worn mnemonic from a computer long since
dead. It means “block started by symbol.”)

m Heap—a data area that is allocated at run time. The heap
will grow or contract when requested by the process
through a brk or sbk system call. Many application pro-
grams assume that heap starts at the end of the data
component and grows toward higher-numbered address-

Real Memory
Layout

Reserved
Kernel Text

Kernel Dala

Kernel BSS

Run-Time Allocated
Structures

Memory Governed
Available by
for Clock
Processes Algorithm

End of Memory

Fig. 10. This is how the real memory of the computer is or-
ganized. First is the area reserved by the architecture, fol-
lowed by the kernel text, data, and bss. Next are kernel data
structures that are sized during system initialization. The re-
maining memory of the computeris available for processes.
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es, so this convention has become part of the process
model.

m Stack—the procedure stack. This stack automatically
grows to suit the procedure nesting of the process.

® Shared memory segments. Shared memory segments
allow processes to share data quickly and easily, without
system call overhead. Each process may have zero or
more shared memory segments, and may control who
may read or write them based on user and group num-
bers.

Mapping the UNIX Process Model onto HP Precision
Architecture

For any UNIX operating system implementation, the pro-
cess model must be mapped onto the underlying computer
architecture. HP Precision Architecture is well-suited to
support the SVID process model through its state-of-the-art
virtual memory architecture. The architecture has two basic
modes of memory access: real (physical) and virtual.*
While running in real mode, the processor accesses mem-
ory using a 32-bit address generated from registers and
displacements selected in the instruction. While running
in virtual mode, the processor accesses memory using a
64-bit address. (Actually, initial releases of HP Precision
Architecture computers implement a 48-bit address. The
upper 16 bits are not required to meet current market
needs.) Only small portions of the operating system execute
in real mode; most of the operating system and all processes
execute in virtual mode.

The 64-bit virtual address is also generated from registers
and displacements selected in the instruction, but because
the processor’s general registers are 32 bits wide, more bits
are needed. These bits are taken from separate registers
called space registers, of which there are eight. The space
registers must be loaded with the desired space number
before the instruction that accesses memaory is executed.

There are two different ways by which a space register
is selected, and these define the two basic virtual address-
ing modes of the architecture: long-pointer and short-
pointer.”” Long-pointer addressing mode is selected when
a two-bit field in the instruction is 1, 2, or 3. In this case,
space register 1, 2, or 3 is selected, respectively. The con-
tents of this space register [called a space number) are
concatenated with the 32-bit address generated from gen-
eral registers and displacements selected in the instruction
to produce a 64-bit address. The 64-bit virtual address is
then converted to a 32-bit real address through a combina-
tion of hardware and software.

Previously it was mentioned that the process model im-
plies that a process is accessed using addresses that are 32
bits wide. The short-pointer addressing mode provides this
functionality, and is used exclusively to implement the
process model for HP-UX. In this addressing mode, the
lower 32 bits of the 64-bit address are generated (as usual)
from general registers and displacements selected in the
instruction. The upper two bits of the address contained
in the register are used to select one of space registers 4,
5, 6, or 7, whose contents are then concatenated with the
lower 32 bits to form a complete 64-bit virtual address.

To sum up so far, the short-pointer virtual addressing
mode is used exclusively by processes in HP-UX. The long-
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pointer address maode is only used by the operating system,
and only to a limited extent. All long-pointer addressing
is limited to routines written in assembly language in the
operating system.

The components of a process are accessed by the process
using the short-pointer addressing mode (see Fig. 9 on page
12). The 32-bit address space is effectively broken into
quadrants whose space numbers are determined by space
registers 4, 5, 6, and 7. The text of the process is governed
by space register 4, and it begins at the start of that quadrant.
The data, bss, heap, and user stack of the process are gov-
erned by space register 5. Data, bss, and heap are contiguous
and begin at the beginning of the quadrant. User stack
begins in the middle of the quadrant. The shared memory
segments are governed by space register 7, and are located
throughout the quadrant.

The quadrant governed by space register 6 is reserved
for operating system use, and is currently used to contain
the stack that the kernel uses when executing on behalf of
the process.

Memory Management

HP-UX on the HP 9000 Series 800 has full virtual memory
support for all process components, and the operating sys-
tem has been tuned for both multiuser and real-time envi-
ronments. Memory management is done through a combi-
nation of paging and swapping. Paging is implemented
through a process called the pageout daemon, which scans
through memory, pushes dirty pages to disc memory called
the swap device, and tries to keep a reasonable amount of
memory on a list of pages that are free. When the paging
system becomes overloaded, a swapper process (sched) will
push whole processes to the disc and keep them from
executing until the overload has subsided. Swapping has
two positive effects: 1) it frees up large amounts of memory
very quickly, and 2) it prevents the swapped process from
page faulting and keeping the paging system swamped.
The paging svstem is overloaded when all of the processes
cannot keep their working sets in memory.

Trailing hand frees
pages if page-referenced
bit is clear.

Hands are a fixed
BM bytes apart.

Leading hand clears
page-referenced bit.

Fig. 11. The global clock algorithm is used to approximate
a least recently used page-replacement algorithm. In this
algorithm, the pages of real memory are depicted as wrapped
around the edge of a clock. A pair of hands sweeps around
the clock, with the leading hand clearing the page-referenced
bit, and the trailing hand freeing pages that have not been
referenced.
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The following are features of memory management on

the HP 9000 Series 800:

® Demand paging. A process may reside in memory or on
disc with a granularity of the 2048-byte page of HP Pre-
cision Architecture.

®m Page reclaims. After pages have been unmapped and put
on the free list, they can still be reclaimed when the
process faults on that page.

® Page clustering. When paging from the swap device, up
to eight contiguous virtual pages around the faulted page
may be brought in in one disc transfer. When paging to
the swap device, up to eight contiguous dirty virtual
pages will be pushed to the swap device in one transfer.

m Paging from file. The text and data of the process will
initially be paged directly from the program file. There-
after, it is paged to and from the swap device. This means
that the whole program need not be brought into memory
on exec, and pages will only be brought in as needed.
Even though text is nonwritable, it is moved to the swap
device to take advantage of page clustering later.

® Zero fill on demand. Virtual pages in the bss, stack, heap,
and shared memory segments will be allocated real mem-
ory and zeroed on first demand.

® Multiple swap devices. The system supports more than
one swap device through the swapon system call and the
swapon system administration command. The swap area
is considered to be interleaved among the swap devices,
leading to increased bandwidth for swapping because
there are multiple disc heads and spindles. This also
means that virtual memory limits are unconstrained by
the maximum disc size available.

® Text page reattaches. Between executions of a program,
the pages of text may be on the free list. Before the operat-
ing system decides to bring in text pages from disc, it
checks to see if the page is in the free list by searching
ina hashed list of pages sorted by text disc block number.

Real Memory Layout

The real memory of the computer contains both the
operating system and the application programs as shown
in Fig. 10. A few pages are used at the beginning of real
memory for the architecturally reserved functions. There-
after, the kernel text, data, and bss are placed. After that
are data structures that are allocated at run time, such as
the file system buffer cache, whose size is a fraction of the
memory in the machine. Lastly comes memory that is avail-
able for applications programs and is controlled by the
paging and swapping algorithms.

The area available for paging and swapping is governed
by an algorithm called the clock algorithm.*"** This al-
gorithm approximates a least recently used algorithm. The
only hardware assistance required are page-referenced and
page-dirtied bits, which is why the algorithm has been
ported to many architectures.

The clock algorithm is implemented by the pageout
daemon. In the clock algorithm, the real pages available
for paging are represented as being wrapped around the
edge of a clock (Fig. 11). The clock has two hands, and
they are kept a fixed distance apart. The hands move around
the clock at a speed that is dependent on the fraction of
memory in the free list of pages. The lower the fraction of

free memory, the faster the hands move around the clock.
The pageout daemon enly bothers to run when less than a
quarter of memory is free.

The pageout daemon clears the page-referenced bit for the
real page to which the leading hand points, and checks the
page-referenced bit for the real page to which the trailing
hand points. If the page has been referenced, then it is left
alone. If the page has not been referenced, then the page-dir-
tied bit is checked. If the page is not dirty, it is unmapped
and placed onto the free list where it can be used for a new
purpose or reclaimed. If the page is dirty, then it is placed
on a list of pages to be copied to the swap device and given
to the swap device driver. After the page has been copied
the pageout daemon will place it in the free list.

Architectural Accommodations

Many of the innovations of HP Precision Architecture
have implications for operating system designers. Two im-
portant ones are 1) delayed branches and signals and 2)
the virtual caches.

The architecture allows for a delayed branch concept of
instruction execution that exposes a two-level pipeline to
the compiler designers and the operating system designers.
After an interrupt or trap, this pipeline can be restored

1/0 Software System
Logical Device Manager (LDM)

Device Manager (DM)

Device Adapter Manager (DAM)

| tovios Dovios Menager (0M) __|
| DevioManager OM) | puu
[ Chomnel Adaper Manegr (CAM) ___ iy

Computer CPU and I/0 Hardware

Channel Adapter Manager (CAM)

Memory

CIO Channel
Adapter

Device Adapter
Card

Device

Fig. 12. The hierarchical HP-UX /O system on the HP 9000
Model 840 Computer uses the HP CIO system. There are
three levels of hardware. The software structure reflects the
hardware structure; there is a manager (driver) for each
hardware element.
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only by using a privileged instruction, and this impacts
how the signal software interrupt mechanism of HP-UX is
implemented. In other architectures, the signal stack is set
up by the operating system, the signal function is executed,
and then user-level code restores the state of the process
at the time of the signal. Because the HP Precision Architec-
ture pipeline can only be restored by a privileged instruc-
tion, a special (hidden) system call has been added to im-
plement the signal return.

Virtual Cache

One of the most unconventional aspects of HP Precision
Architecture is the area of memory cache design. Several
of the architecture’s features require more work on the part
of the operating system. These include:-

B No requirement for a write-through data cache
® Separate code and data caches
® Virtually addressed caches.

Because HP Precision Architecture does not require im-
plementations to have a write-through cache, physical
memory will not always be consistent with the data cache.
One effect of this is that /O transactions, which access
physical memory, must have data flushed from the cache
before the transaction begins (more about this later). Also,
separate code and data caches imply that when code is
modified by the processor, it must write the data to the
data cache, purge any oustanding cache lines in the instruc-
tion cache, and flush the data from the data cache to main
memory, where it can then be accessed consistently from
the instruction cache, One example of where this occurs
is in the ptrace system call, which is used to set breakpoints
in the text of a process. Although these innovations require
mare work on the part of the operating system, the overall
performance improvement far outweighs the effort.

HP Precision Architecture supports virtually addressed
caches, which allows for parallelism in cache access and
virtual translation. While the virtual addressing hardware
is generating the physical address and checking page access
rights, the cache is using the virtual address to select a
cache line and present it to the processor. Cache misses
are determined in parallel with the processor’'s acting on
the data in the cache line.

This feature leads to higher performance for the architec-
ture, but it also leads to interesting problems for the operat-
ing system. One rule of thumb is that the operating system
is never able to point two different virtual addresses to the
same physical address. This would lead to data inconsis-
tency, because the different virtual addresses might address
different cache lines. Thus, HP Precision Architecture does
not support a feature loosely termed address aliasing.

One impact of this restriction is that the full SVID shared
memory definition cannot be implemented. In UNIX Sys-
tem V, a process can attach a shared memory segment at
an address it specifies in its virtual space. If two or more
processes want to access the shared memory segment at
addresses that they specify, the result is address aliasing.
HP-UX on HP Precision Architecture anly supports shared
memory attaches at an address that the operating system
chooses, which will be the same for all processes sharing
that shared memory segment. This is the most often used
method for attaching shared memory segments, so the lack
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of address aliasing is not critical,

Implementation Highlights:
The Input/Output System

HP Precision Architecture supports a memory mapped
I/O architecture. I/O devices are accessed by normal read
and write operations. The I/O subsystem for the HP 9000
Model 840, the first HP Precision Architecture computer
that runs the HP-UX operating system, uses HP’s channel
/O (CIO) system for its initial implementation. The choice
of CIO allows device adapters designed for HP 9000 Series
500 Computers to be used in the Model 840. The decision
to leverage existing device adapter cards reduced the time
required to design the I/O software, and allowed support
of a large number of prototype systems.

1/0 Software Design Concepts

The HP-UX I/O system is designed to provide an interface
to the I/O hardware that conforms to the HP-UX Standard
Specification Version B.1. The system is also designed to
make use of common interface routines to handle driver
requirements, and to be easily configured to adapt to a
wide range of hardware configurations. The underlying
structure of the I/O subsystem is designed to follow the
natural hierarchy of the hardware. A manager (driver) exists
tor each piece of hardware in the system. A message-based
protocol is used to communicate between layers in the
hierarchy. Each manager in the software hierarchy is pre-
sented with a serial stream of messages. While the module
is processing a message, it cannot be reentered.

Manager
Code

e

Local Data
Stack:
New Each
Invocation

Global Data:
Shared by All
Instances

Fig. 13. An instance of a manager is made up of four data
areas.
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In addition te normal I/O functionality, a uniform sup-
port interface for the system is provided. To make HP-UX
more supportable in the field, an error logging interface
and an interface for diagnostic programs were defined. The
error logging interface allows system histories to be main-
tained.

Hardware Hierarchy

HP Precision Architecture supports a hierarchical I/O
hardware subsystem.** In the case of the CIO subsystem
on the Model 840, there are three levels of hardware in the
system.

A CIO channel adapter, also called a bus adapter, resides
on the midbus, where it converts midbus requests to CIO
requests, and presents a memory mapped view of the CIO
device adapter cards (see Fig. 12). On the CIO bus, up to
12 device adapter cards are multiplexed by the CIO chan-
nel, Some device adapter cards, like the HP 271108 HP-IB
card, can handle up to eight devices simultaneously. Each
level imposes some constraints on the type, size, and
number of operations that can be supported. HP Precision
Architecture requires that DMA transactions be cache line
aligned, up to a maximum cache line size of 64 bytes. On
the Model 840, the midbus requires that DMA transfers be
32-byte aligned, that caches be flushed by software before
I/O starts, and that IO buffers be a multiple of 32 bytes
long. CIO requires that transaction starts be synchronized
in a certain way, and each device adapter card has its own
particular limitations. The /O software is designed to re-
flect this hierarchy of hardware and solve the problems of
each hardware level in the associated code.

Software Hierarchy

At the lowest level, the CIO channel adapter manager
(CAM) handles the multiplexing of starts and completions
on the CIO channel. Device adapter managers (DAMs), such
as the HP-1B device adapter manager, send requests to and
receive completion notification from the CAM. Above the
DAMs, device managers (DMs) handle device specific pro-
tocols. Finally, logical device managers (LDMs) handle the
interface. Any of these levels can be collapsed for simple
devices or high performance.

For each occurrence of a piece of hardware in the system,
there exists an instance of a manager to control it. An in-
stance of a manager is made up of four parts (see Fig. 13):
the manager code which is shared by all instances of the
manager, global data which is shared by all instances of
the manager, the port data area (PDA) which is private
static storage for a single instance of the manager, and a
local data stack which is new for each invocation of the
manager. Each instance of a manager also has a port as-
sociated with it, which maintains the relationship between
an instance of a manager and its PDA, and provides the
connection to other managers.

HP-UX Interface

The HP-UX I/O system presents a traditional UNIX
operating system interface to the user. The HP-UX I/O sys-
tem appears to the user as standard files which may be
accessed through open, close, read, write, and ioctl calls. HP-UX
provides security for the I/O system through the standard

file ownership and protection mechanisms.

An LDM has access to several HP-UX kernel functions
to lock down memory and validate addresses, allocate and
deallocate kernel buffers, set and reset timers, move data
to and from user space, and sleep on an event. An LDM
has the choice of doing DMA directly to or from user space,
allocating a system buffer to cache data, or using a character
list to manage byte FIFOs.

When the LDM is ready to touch the hardware, it uses
I/O services to make a request to the next lower manager.

I/O Services

/O services provide the functions needed to configure
managers, communicate between managers, and log errors
reported by managers.

During the configuration process, I/O services build the
software hierarchy to match the configuration, allocate port
numbers to managers so that a parent or child manager in
the hierarchy can invoke the correct instance of a manager,
and provide memory allocation for managers so that pri-
vate, static data (PDA) can be allocated for an instance of
a manager. I/O services also provide timer services for man-
agers to use, as well as an error logging facility.

The major role of 1/0 services is to route requests and
replies from one manager to another (see Fig. 14). Managers
request service from other managers by sending a message.
A reply is a message from a manager that has completed
servicing a request. /O services use a port number passed
with each request or reply to invoke the correct instance
of a manager. With each invocation, I/O services pass a
message from a sending to a receiving manager, and guaran-
tee seriality of execution through an instance of a manager.
This means that a particular instance of a manager that has
been invoked cannot be reentered, but higher-priority inter-
rupts can be processed. If I/0 services find that an instance
of a manager is busy when a message is ready to be deliv-
ered, /O services queue the message on the port for that

Messages

e}
Services
Configuration,
Memory
Allocation,
Timers,
Error
Logging

Messages

Messages

Fig. 14. 110 services provide functions needed to configure
managers, log errors, and route messages Irom one manager
to another.
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instance of the manager, and deliver it when the manager
returns. Managers save state and exit while they are waiting
for a request to be serviced. The manager will be invoked
again by the reply coming from the serving manager.

Supported Interfaces

At first release, the Model 840 supports a set of CIO
device adapter cards that allows connection to most exist-
ing HP peripherals and to customer black boxes (see Fig.
15).

The HP-IB device adapter card supported on the Model
840 is the HP 27110B. It is supported as a standard IEEE
488 bus for instrumentation, as a high-speed bus for HP
CIPER printers (HP 2563/64/65/66/67) and magnetic tape
drives (HP 7974/78), and as a high-speed dedicated bus for
HP CS-80 and SS-80 disc and tape drives.

To optimize performance of the disc subsystem, a
monolithic LDM, a manager that interfaces to the HP-UX
kernel and the CIO CAM, was written to support an HP
271108 device adapter with only CS-80 discs/tapes on it.
The result is a very high-performance disc interface capable
of supporting four discs simultaneously at full speed, or
eight discs at a slightly lower rate.

Instrument control is possible on the Model 840 through
the use of the Device Independent Library (DIL), the HP-UX
standard interface library for HP-IB instruments. This li-
brary gives the user complete control over the HP-1B device
adapter, making it possible to talk directly to any device
that can connect to the HP-IB.

It is also possible for users migrating from the HP 1000
Computer RTE operating system to use the RTE HP-IB li-
braries provided by Port/HP-UX for RTE programs that con-
trol instruments.

The HP 27140A 6-channel terminal multiplexer is the
supported RS-232-C interface on the Model 840. The HP
27140A supports full modem control on all six ports, as
well as XON/XOFF flow control. The HP 27140A provides
the connection mechanism for terminals and for serial
printers such as the HP LaserJet. Each multiplexer in the
system is polled every 30 milliseconds to pick up any in-
coming characters and to send out any characters in the
outhound queue.

The HP 271258 interface allows the Model 840 to connect
to either Ethernet or IEEE 802.3 local area networks. The
Model 840 supports both AdvanceNet, HP's proprietary
networking strategy, for communication with HP systems,
and Berkeley/ARPA services for communication with other
machines using a UNIX operating system. The LAN card
is armed to interrupt whenever a packet arrives, and is
then polled to move the packets into the system.

For users who need to connect to 16-bit general-purpose
parallel devices, the HP 27114A is supported on the Model
840. This card supports both single-ended and differential
input/output lines and has three sense and three control
lines. The DIL library is also supported for this interface,
giving the user low-level control of the HP 27114A in a
standard manner.

Software Control Flow
To show how the I/O system works on the Model 840,
the process for generating, booting, and using the the I/O
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system will be described, along with an example of how a
disc transaction would flow through the system.

The I/O system for the Model 840 is configured with a
simple kernel building process. A C-like description of the
hardware and software hierarchy is entered as input to the
build program, uxgen. The user includes all of the devices
that may be connected, even though some of the devices
may not be present at any given boot time. Uxgen creates a
table which the boot process uses to configure the /0 sys-
tem. References to all the managers required are generated,
and a kernel is linked containing all of the necessary soft-
ware, all in just a few minutes. The user moves the new
kernel to the root partition, / directory and reboots the
system.

The system is brought into memory and begins to config-
ure the 1/0 system and perform other tasks required to
make the system functional. The I/O configuration software
creates the software hierarchy, calling each instance of a
manager and allocating any PDA space that it needs. Man-
agers that cannot find their associated hardware log an
error to the diagnostic system and then go into an idle state.
The manager attempts to configure the hardware again on
a user request for devices or on a powerfail recovery for
device adapter cards. As soon as a path from the hardware
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Fig. 15. HP-UX I/O system structure for the HP 9000 Model
840 Computer.
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to the kernel interface is configured, that path becomes
available for /O transactions.

Request Initiation

A request is initiated by a user process. The LDM checks
the validity of the user’s request, locks down the affected
pages in memory, and performs any queuing that may need
to be done.

In the case of the disc manager's performing a user re-
quest directly to the disc, the buffer address is checked for
validity, the pages are locked in memory so that they cannot
be paged out, the disc addresses are computed, and the
request is inserted into the disc queue. When the request
gets to the head of the queue, a message is sent to the CAM,
giving a request chain and the address of the device adapter
that the request is for.

The CAM has four major tasks to perform for each re-
quest. It translates all of the virtual addresses to real
addresses for the hardware, flushes all of the request buffers
out of the cache, guarantees the alignment of buffers so
that DMA does not affect data outside of the user request,
and initiates the request on the hardware.

The CAM builds a request chain paralleling that sent
down by the calling driver. The requesting manager sends
all of its requests down with virtual addresses. The CAM
builds a similar list, but all of the addresses are in real
mode, which the hardware understands. In the Model 840
implementation, buffers must be 32-byte aligned, so if the
buffer is not aligned, the CAM allocates a 32-byte buffer,
called a buflet, for temporary storage. A separate request
block is built for each page of the request, since virtually
contiguous pages may be physically separated. Finally, a
buflet is allocated to cover the last bytes of the transaction
if the buffer does not end on a 32-byte boundary. On a read
operation, the data is transferred by DMA into the buffer
addresses in the real chain. Data in buflets must be copied
back to the user's buffer after DMA is completed on reads,
and copied to the buflets before DMA starts on writes. Data
in the aligned buffers goes directly into the buffer.

Finally, the CAM starts the transaction on the hardware
and returns. The LDM returns to the kernel, the requesting
user process is put into a sleeping state, and the kernel
causes a switch to another process which will run.

DMA Transaction

Fig. 16 shows an example of a DMA transaction and how
the CAM changes it before it is started on the hardware.
The first quad®® in the chain (the write) is already 32-byte
aligned, so the CAM simply translates the DMA buffer ad-
dress to a real address. Note that the DMA will be done
directly from the buffer passed down to the CAM. The
second quad in the chain (the read) is not 32-byte aligned.
The CAM must divide this quad into several new quads
to ensure correct buffer alignment. The first quad the CAM
allocates is 8 bytes long and will go into a CAM-allocated
buflet. Effectively, this aligns the rest of the buffer on a
32-byte boundary. The next buffer is 672 bytes long and
accounts for the rest of this page. The next buffer is 2048
bytes long (a page). The next buffer is 1344 bytes long and
includes all of the remaining buffer until the last 32-byte
boundary. The final buffer is 24 bytes long and points to

a buflet. This preserves the end of the user's buffer. Finally,
the last quad in the chain is processed; it is 32-byte aligned
and therefore only an address translation is required.

Iinterrupt Servicing

When the hardware has finished processing a request,
an interrupt is signaled and the CAM is called to complete
the transaction processing. On request completion, the
CAM copies any buflets that need to be copied back to user
space, the real chain elements are returned to a pool, and
a replv message is sent to the requesting manager.

The LDM cleans up its resources, sends a wakeup to the
process that requested the data, and wakes up its initiation
section to start any queued requests,

Powerfail Recovery

After power has returned, the IO system begins to re-
cover by sending a message to the CAM notifying the low-
est-level manager of the power failure. The CAM in turn
sends a message to each of the managers above it with the
same notification. Each manager notifies the managers
above it that power has failed, and replies to managers to
acknowledge receipt of the powerfail message. Messages
move up through the system, against the flow of normal
requests. A lower manager will return every message it

Original Quads New Quads

Link Address
CMD = WR
Buffer Address
Length = 128

Link Address

CMD = Write

Address = Page
Aligned

Length = 128 Byles

Commands

Link Address
CMD = RD,C
Buffer Address
Length = 8

Buflet 1

Link Address
CMD = RD,C
Buffer Address
Length = 672

Link address
CMD = Read
Address >< 32 Bytes
Length = 4096 Bytes

Link Address
CMD =RD,C
Buffer Address
Length = 2048
Link = EOC
gl CMD = Read Status
Address = 32 Byte
Aligned
Length = 32 Bytes

Link Address
CMD = RD,C
Buffer Address
Length = 1344

Link Address
CMD = RD
Buffer Address
Length = 24

‘—_’

Fig. 16. An example of a DMA transaction, showing how the
channe! adapter manager changes it before it Is passed on
lo the hardware
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sees from a higher manager with a powerfailed status until
it sees a powerfail reply. In that way, all queued messages
are cleared out, and each manager can then reinitialize its
piece of hardware.

Error Logging and Diagnostics

In the case of hard or frequent soft errors, the manager
sends a log message to a special diagnostic port. A user
process reads the error messages from the diagnostic port
and logs them to both the console and a file.

To facilitate hardware fault diagnosis, special hooks were
added to the Model 840 I/O managers. Unlike traditional
systems, this design has a set of read, write, and ioctl calls
built into a diagnostic section of each manager. When the
manager is opened with a special mode bit set, controlled
by file security, the diagnostic mode is enabled. In this
mode, card status can be queried, cards can be reset, and
special diagnostic sequences can be sent down to the de-
vice.

Conclusions

HP Precision Architecture is the foundation for a full
product line of machines running the HP-UX operating
system. Many features of the architecture, combined with
accommodations by the operating system, have led to a
high-performance system able to support the UNIX System
V Interface Definition and the HP-UX Standard Specifica-
tion.
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Reader Forum

The HP Journal encourages technical discussion of the topics presented
n recent articles and will publish letters expecied

ta be of inlerest to gur readers.

Letters must be brief and are subject to editing.

Letters should be addressed to

Editor, Hewlett-Packard Journal, 3200 Hillview Avenue
Palo Alto, CA 94304, U.S.A

Editor:

In the July 1986 issue of the HP Journal you refer to local
customs ("'"New HP-UX Features for HP 9000 Series 300 Work-
stations,” p. 38). You make no mention of international stan-
dards relevant to these points. I suggest that your Journal, with
its world-wide circulation, is an ideal place to do this.

Concerning large decimal numbers, the digits are grouped
in threes on either side of the radix, without any separating
character. The preferred symbol for the radix is a comma. So
vour example, written in accord with the International Organi-
zation for Standardization (ISO), is 1 432 679,09. For obvious
reasons this convention is not always followed when sums of
money are involved, in which case the numbers are regularly
spaced.

Concerning currency, there is at least one currency that is
divided into two smaller unils involving two decimal points.
The Maltese pound comprises 100 cents of ten mills each. So
three Maltese pounds may appear as £M 3.00.0.

Concerning dates, ISO Standard 2014 Writing of Calendar
Dates in All-Numeric Form requires that dates in the Gregorian
calendar be written in the sequence of year, month, day in one
of the following wavs. Using your example:

1986 10 12
86 10 12

19861012 1986-10-12

86-10-12

861012

This standard was approved in 1976 by the U.5.A., Japan, the
U.K., and 13 other European countries, among others. Unless
we all adopt this standard within about ten years we will have
great confusion with dates such as 01-02-03 with three possible
interpretations!

For simple numbering of days, independent of calendar con-
ventions, Comité Consultatif International des Radiocommuni-
cations Standard 457-1 recommends the use of the Modified
Julian Date (MJD), a five-digit decimal day count originating
on 17 November 1858. A more convenient reference is the
author’s fortieth birthday, 27 October 1984 with MJD 46000.

Concerning time scales, in practice all world time scales (and
time signals) are derived from Coordinated Universal Time
{(UTC), which can differ from Greenwich Mean Time (GMT)
by up to 0.9 second either way. UTC has seconds of constant
length, but not always 60 seconds in each minute. GMT always
has 60 seconds in each minute, but the length of the second
varies slowly. I suspect that your computer software does not
provide for leap seconds so it is effectively, as you say, based
on GMT although this is not generally accessible to the public.

Contrary to the information given in your Journal the Cook
Islands are currently 10 hours behind UTC/GMT and this
changes seasonally on 86-10-26 to 9 hours, 30 minutes. Singa-
pore is now always 8 hours ahead of UTC/GMT. The only
country with an offset not a multiple of 30 minutes is Nepal
(5 hours, 45 minutes ahead).

John P. Chambers
Tadwaorth, Surrey, United Kingdom

Thank you for the information that you provided.

The intent of the Native Language Support (NLS] section of
the July 1986 HP-UX article was to provide an overview of
native language support issues and indicate some of the so-
lutions already in place, The UNIX community is just begin-
ning to understand how many limiting assumptions are en-
countered in UNIX. Character set, local customs, and user
messages were selected as three key limitations. There are
others. Many people find staggering the total number of
changes required to remove these limitations. The section was
kept quite short to keep it from becoming overwhelming. How-
ever, to keep the information from being too removed from
reality, several examples were added, some based on rather
obscure facts.

The selected examples reflect the existing Hewlett-Packard
solution. Almost all of the information included in HP-UX
Native Language Support products is selected to be compatible
with the HP 3000 Computer NLS products, The infoermation
was derived from international standards as well as inputs
from our sales force and customers. With specific reference to
the ISO 2014 standard concerning numeric dates, while it was
adopted in 1976, the de facto standard in the United States
remains month, day, year. It is not clear to me how to effect
a change. Witness the failure to convert to the metric system
in the U.S.A. However, HP-UX Native Language Support pro-
vides the flexibility to accommodate such a change. Using the
dumpmsg and gencat commands along with an editor of choice,
a user can easily change or correct the format. No recoding or
recompilation is required.

Your point is well taken concerning world time scales. Orig-
inal AT&T documentation refers to Greenwich Mean Time
(GMT). HP-UX has retained this reference. Also retained is the
admittedly narrow interval of time that UNIX addresses. Dates
before 1970 and after 1999 are not accommodated uniformly.
There is discussion currently within the UNIX community con-
cerning dates before and after these limits but to report any
conclusions would be premature.

HP-UX maintains historical information about time zone
adjustments for the time intervals from 1970 to 1999, The cur-
rent adjustments (10 hours behind GMT for the Cook Islands,
8 hours ahead for Singapore) and those used as examples (10
hours 38 minutes for the Cook Islands, 7 hours 30 minutes for
Singapore) fall within the UNIX time interval and are equally
valuable. The dates and times of each change in time zone
adjustment are also required.

Leap seconds have been an amusing issue to me. The cost
of implementation and performance has made such a change
unjustifiable for the moment. While UNIX claims to use GMT,
all known hardware uses seconds of uniform interval. From
what you say, UNIX could more correctly be said to run Coor-
dinated Universal Time (UTC) and be {1 believe) thirteen sec-
onds off.

Ronald G. Tolley
Member of the Technical Staff
Systems Software Operation
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Data Base Management for HP Precision
Architecture Computers

HP ALLBASE supports both network and relational data
access and runs under both the MPE XL and the HP-UX
operating systems. Migration of existing data bases to the
new architecture has been carefully planned for.

by Alan S. Brown, Thomas M. Hirata, Ann M. Koehler, Krishnan Vishwanath, Jenny Ng, Michael J.
Pechulis, Mark A. Sikes, David E. Singleton, and Judson E. Veazey

ness is the data required to manage its daily opera-
tion. This data can include such information as a

list of customers, the components required to build a prod-

uct, sales records, and organization charts—in other words,

any information that helps the business operate efficiently

and smoothly. A data base management system (DBMS)] is

a collection of programs and procedures intended to help

a business control its data. Logically related data is stored

together in a set of files called a data base. The DBMS

software provides tools for defining these data bases and

regulating access to them.
The benefits of using a DBMS include:

® Centralized control. All data essential to an organization
resides in one place, and the responsibility for managing
it can be well-defined,

® Data consolidation. Because the same data can be easily
shared by many application programs, duplicate copies
of the data are not needed. Thus changes to the data can
be made once and are available simultaneously to all
programs with access to the data base. Since there is
only one copy of the data, there is no risk that two pro-
grams will use different versions of the data and produce
inconsistent results.

® Program independence from physical storage. The
DBMS, by providing a standard interface for retrieving
and updating data, hides the physical storage represen-
tation and the file system dependencies from the appli-
cation programmer. It allows the programmer to concen-
trate on developing the functionality of the application
rather than designing data file formats and access proce-
dures.

® Flexibility. As new needs arise, data and access roules
can be added to the data base to support new functions
without affecting currently working programs.

® Data security. When data is stored in standard files, a
user can typically be given access to either all of the data
or none of it. A DBMS can allow access rights to be
regulated down to the data item level. That is, a user
may be allowed to read one part of the data base and at
the same time be denied access to another part. So it is
possible, for example, to allow a personnel clerk to re-
trieve the name of an employee's manager but not the
employee's salary.

O NE OF THE MOST VALUABLE ASSETS of a busi-

® Ad hoc data retrieval, Using a query program supplied
with the DBMS, one-time requests for information can
be satisfied when the need for the data arises. Special
programs do not have to be written to retrieve the infor-
mation.

Three Data Models

Most data base management systems today model data
in one of three ways: hierarchical, network, or relational
(see Fig. 1). In the hierarchical model, data has a one-to-
many relationship; the data is logically organized as a tree.
A “parent” file can have several children, but a “child”
file can have only one parent. The network model relaxes
the restriction that a child can have only one parent. It
supports a many-to-many relationship of data; the data
organization is that of a graph. So the network model en-
compasses the hierarchical model.

In both hierarchical and network models, all data re-
lationships are predefined by the data base designer. These
relationships are typically embedded in the data. It is the
user’'s responsibility to identify which path should be fol-
lowed to retrieve information from the data base. For this
reason, the hierarchical and network models are often
called navigational data base management systems. The
application program navigates through the predefined re-
lationships to manipulate the data.

The relational model, the third form of data base manage-
ment system, presents the user with a simpler view of the
data. Data appears as a collection of tables, which do not
contain any predefined relationships. The data relation-
ships are defined by the queries made against the data base.
When a query is made, the DBMS, rather than the applica-
tion program, determines the route used to access the data.

Navigational data base management systems typically
offer better performance whenever processing is repetitive
and there is a high volume of transactions. A characteristic
of such applications is that they use stable data base struc-
tures. Performance considerations are more important than
arbitrary access to the data. A navigational DBMS allows
the programmer to specify exactly how the data is to be
accessed. While this requires more planning, it allows the
sophisticated user to design for optimum performance.

Relational data base management systems, on the other
hand, tend to be easier to use and more flexible. Since the
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data base does not contain any fixed data relationships,
the scope of a query is not restricted by the structure of
the data base, Changes to the data base organization are
also easier to make. Furthermore, because the DBMS rather
than the programmer selects the access path, complex
queries are no more difficult to code than simple ones.

Historically, only one of these data base models has been
available from any particular DBMS. With the introduction
of HP Precision Architecture, HP offers its customers the
choice of either a network or a relational interface from
one DBMS. Customers are free to select the best data base
model for each application. This new DBMS is called
ALLBASE and is supported on both the MPE XL and the
HP-UX operating systems.

ALLBASE Overview

ALLBASE has three major software components: HP-
IMAGE, HPSQL, and DBCore.

HPIMAGE is the network model interface that carries
forward the Image tradition that began with HP’s highly
successful Image/3000 and Image/1000 products. HPIMAGE
provides a migration path for current Image users and in-
troduces several new features,

HPSQL is the relational interface based on Structured
Query Language, an ANSI industry standard relational in-
terface developed by IBM. This interface is the same as the
one supported by the HP SQL/V product recently intro-
duced on the MPE V operating system.

DBCore is an internal set of data base definition and
access services shared by the HPIMAGE and HPSQL com-
ponents of ALLBASE.

In addition to ALLBASE, the data base management soft-
ware for HP Precision Architecture computers includes a
migration package that helps customers move their existing
data bases and applications to ALLBASE, and query prod-

Hierarchical

Parent

Relational
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ucts that allow users to access their HPIMAGE and HPSQL
data bases without writing programs. Fig. 2 gives an over-
view of the product structure.

DBCore

DBCore is the heart of ALLBASE. It is the internal com-
ponent used by both HPIMAGE and HPSQL that defines
and manipulates data. DBCore performs the basic DBMS
functions of data definition, data access, transaction man-
agement, concurrency control, logging and recovery, and
accounting. In addition, it hides operating system and file
system dependencies from the higher levels of software.

From the user’s perspective, there are two major
categories of DBMS functions: data definition and data
manipulation.

Data Definition

Data in ALLBASE is stored in the form of relations (see
“Data Storage in ALLBASE," page 46. A relation is a two-
dimensional table composed of rows and columns. The
rows of a relation are called tuples. A tuple consists of an
ordered set of data values. The values that are in the same
position in each tuple form a column. All the values in a
particular column are the same type of data. The data types
supported by DBCore are integer, character, binary, real,
packed decimal, and zoned decimal.

The tuples in a relation are often accessed according to
the values in a certain set of columns. To avoid exhaustive
searches for these values, DBCore allows data structures
called indexes to be built on relations. The columns whose
values are of interest form the key of the index. DBCore
supports three types of indexes: b-tree indexes, parent-
child relationships, and hash indexes. It also supports
linked lists or threads that allow the higher levels of soft-

Network

Fig. 1. The three data base mod-
els used by data base manage-
ment systems.
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ware to define their own access order. It is this variety of
access structures that enables DBCore to support both net-

work and relational data base models.
A b-tree index defines a search tree on a relation that

divides the tuples in the relation into groups based on the
values of the key columns. The b-tree substantially reduces
the number of tuples DBCore must examine to find all
tuples containing a specific value. When a b-tree is created,
it can be given the property of uniqueness; this means that
DBCore will not allow more than one tuple with a given
key value to be inserted into the relation. If the index is
not unique, then any number of tuples with the same key
value can be inserted into the relation. B-trees are the most
flexible indexes supported by DBCore; they can be created
or deleted at any time.

A parent-child relationship (PCR) defines a relationship
between the data of two relations. One relation is desig-
nated as the parent and one as the child. If a PCR is defined,
DBCore will not allow a tuple to be inserted into the child
relation unless the parent relation contains a tuple with
the same key value. Likewise, a tuple cannot be deleted
from a parent relation if there is a tuple in the child relation
with the same key value. In addition to supporting this
integrity constraint, a PCR provides a set of access methods.
First, it can be used just like a b-tree to access the data in
either the parent or the child. Second, given a parent tuple,
the PCR enables DBCore to retrieve all its child tuples. And
conversely, given a child tuple, DBCore can retrieve the
related parent tuple.

A hash index is defined on a relation by “hashing’ one
or more key columns into an address. Hashing is a mathe-
matical function that converts a key into an address. For
example, say the first column of a relation contains the
names of customers, and this column is the key to the hash
index. Each name is put through the hash function and an
exact address within the relation is returned. Whenever
data concerning a customer is requested the data can be

HPSQL

User Application ! IQUERY

Preprocessors P

§ SQL Utility ¥

fetched by hashing the customer’s name into the address
of the tuple containing the data for that customer. Hash
indexes, while providing fast random access to data, are
basically static structures; a hash index can only be created
on an empty relation, and the only way it can be deleted
is to drop the relation.

A thread is a linked list of pointers contained in one
column of the relation. Each pointer points to another tuple
in the relation. The maintenance of this list is the respon-
sibility of the DBCore user, that is, HPIMAGE or HPSQL.
DBCore simply provides a fast access method for following
the pointers.

Collections of relations, and the indexes on them, form
data bases. The relations in a data base have a user-defined,
logical relationship to one another. Data bases, in turn, are
grouped into data base environments (DBEnvironments).
A DBEnvironment is represented by a physical structure.
The objects that make up an ALLBASE DBEnvironment are:
® A configuration file (DBECon) containing the DBEnvi-

ronment startup parameters.

m A log file that contains a record of all changes made to
the DBEnvironment. The DBEnvironment is the ALL-
BASE unit of backup and recovery.

m The files used to hold the data for the relations and
indexes in the data bases belonging to the DBEnviron-
ment. These files are called DBEFiles.

DBEFiles are grouped together into DBEFilesets. A DBE-
Fileset is a mechanism to create a dynamic file system on
top of a static file system. When a relation becomes full,
new files can be associated with the DBEFileset that con-
tains the relation. Additional data inserted into the relation
will then be stored in these new files. DBEFilesets can have
up to 32,767 files associated with them.

Data Manipulation
The DBMS commands for adding data to a data base and
modifying it are known as the data manipulation language

HPIMAGE

User Application

5 © Command Executor |

;. Low-Level Services

SQL Data Base HPI Data Base

Fig. 2. HP ALLBASE product
structure. HPSQL is the relational
user interface. HPIMAGE is the
network user interface. DBCore is
used by both interfaces.
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(DML). The following scenario describes how the DBCore
DML is invoked by the ALLBASE interfaces in a typical
data base application.

As users run the HPIMAGE or HPSQL application, it
connects to the data base environment and starts a DBCore
user session. Within this session, the application proceeds
to do its work on behalf of the user. This work can include
such things as retrieving data, inserting new tuples, delet-
ing old ones, and updating existing data. All work is done
in logical units called transactions. The work is recorded
permanently in the data base as each transaction is commit-
ted (made permanent). A program commits work for the
user by executing an explicit commit work command. At
this time, ALLBASE makes all changes done in this trans-
action visible to other users. When a user exits the applica-
tion, the program terminates the DBCore session. Other
users can run this same program or other programs that
access the same data base simultaneously. When the last
session is terminated, the data base can be brought down
to back up the day’'s work.

DBCore supports data access methods that take advan-
tage of the indexes defined on relations. DBCore opens
scans on relations. The types of scans DBCore supports
are: relations scans, b-tree index scans, hash index scans,
parent-child scans, and thread scans. Data can be fetched
one tuple at a time or in bulk quantities. In a bulk operation
the user specifies the number of tuples to retrieve in a
single fetch,

In addition to retrieving data, DBCore also supports in-
serting tuples. deleting tuples, updating data in tuples, and
sorting data. Again, these operations can be done one tuple
at a time or in bulk. All data manipulation functions are
invoked from HPIMAGE or HPSQL by issuing a request to
DBCore. The language that defines these manipulations
consists, basically, of four data structures: a request block,
a predicate tree, a projection list, and a tuple buffer. The
request block is initialized for each DBCore request,
specifying the type and parameters of the request. The pa-
rameters of a request include the number of tuples to ma-
nipulate, from one to as many as requested, say five hun-
dred tuples for bulk manipulation. A predicate tree specifies
which tuples of a relation are requested. For example, the
user may only want to retrieve the tuples of customers who
have a credit rating less than 5. A projection list specifies
which columns of a tuple are requested. A tuple buffer is
the structure to which DBCore writes the output or from
which it reads the input of the request.

Data is inserted into relations as tuples. Data is inserted
by filling the tuple buffer with the tuples to be inserted
and initializing the request block with the information
needed to perform the insert. This information includes
the identifier of the relation into which the data is to be
inserted, the number of of tuples being inserted, and the
number, lengths, and data types of the columns in the
tuples.

An update works similarly to an insert. If the new data
is the same size as the existing data, it is written over the
old data. If it is larger, a new tuple containing the updated
columns is inserted into the relation and the old tuple is
deleted.

Data is deleted by specifying which tuples of a relation
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to delete. Whenever data is changed, inserted, updated, or
deleted, DBCore automatically updates any indexes that
are defined on the data in the relation.

Transaction Management

A transaction is a logical unit of work bounded by a
begin work statement and a commit work statement.
DBCore guarantees that either all of the work in a transac-
tion is performed or that none of itis. The begin and commit
work statements allow DBCore to maintain data integrity,
transparency, concurrency control, and recoverability, The
commit work statement tells DBCore that the user is satis-
fied with all the work and to commit the work (make it
permanent). Changes to the data base are only made perma-
nent when a transaction is committed. Similarly, changes
can be seen by other users only after work is committed.

Transactions that are nol committed at the time of a
svstem crash are undone at the next startup of the data base.

Concurrency Control

Since the data in a data base is shared, the DBMS must
prevent multiple users from altering the same data simul-
taneously. DBCore must ensure that no transactions are
lost, that transactions are not partially committed, and that
the changes made to data by a transaction are not seen
prematurely by other users. DBCore also guarantees that
all concurrent transactions are independent and serializa-
ble. To be serializable, the results of concurrent transac-
tions must be equivalent to the results of the transactions
if they were run one at a time.

DBCore controls concurrent data base access with trans-
actions and locking. Transactions isolate concurrent users
from each other. Each request within a transaction is
stamped with a unique transaction ID number and locks
the objects it touches. The requests are also marked with
a unique time stamp that makes the transactions serializa-
ble. The requests are recorded in a log file.

As DBCore touches objects, whether reading or writing,
the objects are automatically locked to prevent concurrent
users from changing the same data simultaneously. The
objects in DBCore that can be locked are: relations, pages
within a relation, and tuples within a page. In practice,
only the special system relations that store the structure
of the data base use tuple locks because of the high volume
of access. For performance reasons, only page and relation
locks are used on user data. The size of the object being
locked is referred to as its granularity. Relations, since they
are the largest, have the highest granularity, tuples the lowest.

Objects are locked in different modes. There are five lock
modes in DBCore. These lock modes constitute a lock com-
patibility matrix defining which lock combinations are
compatible for a certain object. The exclusive lock mode
prevents any access by other users. The share lock mode
allows multiple users to read but not alter the same data.
In addition to these two classic types of locks (exclusive
and share), DBCore supports the notion of intent (sub)
locks. It uses these to speed up its compatibility checking
across the different granularities of locks. The share subex-
clusive lock mode allows one user to alter parts of a relation
while allowing other users to read the unaltered portions
of the relation. The intention share lock mode indicates
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that there are share locks at a lower granularity, that is, if
there is an intention share lock on a relation, there is a
share lock on one or more of the pages of the relation. The
intention exclusive lock indicates that there are exclusive
locks at lower granularities.

When a lock is requested, DBCore checks to see what
locks already exist for that object. If the existing locks on
the object are compatible with the requested lock, the lock
is granted; otherwise the transaction is suspended until
the lock can be granted. DBCore checks to see if suspending
the transaction will cause a deadlock; if so, one of the
deadlocked transactions is picked by DBCore, usually the
vounger one that caused the deadlock, and that transaction
is aborted, thus resolving the deadlock. A deadlock is de-
fined as two or more user transactions, each waiting for
locks held by the other waiting user transactions.

DBCore locks internal control blocks to prevent users
from accessing the same control block at the same time.
These internal locks are known as latches. Latches are simi-
lar to locks, but they are used only on internal data struc-
tures or control blocks. Another difference is that latches
are never held across calls to DBCore. Since they are held
for only a brief time, concurrent access to the data base is
not reduced. Latches are acquired and released in a pre-
specified order to prevent deadlocking on internal objects.
When a transaction attempts to latch a control block, the
operation is either successful or not. If the operation is
successful, the transaction latches the centrol block and
owns the control block. If it is not successful, the transac-
tion is suspended and placed in a queue of transactions
waiting for that control block. When the control block is
freed, the waiting processes are awakened and they again
compete to latch the block. In practice, latches are usually
available when transactions need them, so transactions are
rarely suspended.

Logging and Recovery

DBCore logs all changes to the data in the DBEnviron-
ment in its log file. If the system crashes, DBCore uses the
information in the log file to restore the DBEnvironment
to a consistent state. To DBCore, there are two types of
system crashes: soft crashes and hard crashes. A soft crash
is a system failure in which the machine goes down but
the data on stable storage, usually disc, is still intact. A
hard crash is a loss of data; a head crash on a disc is an
example of a hard crash. After a soft crash the data in the
data base is still in the state it was in when the system
went down. After a hard crash, all or part of the data has
been destroyed; it has been physically lost.

Consistent data is a state in which all transactions of the
data base have finished completely. There are no partial
changes to data or partially executed transactions. If all
transactions are in this state, the data in the data base is
consistent. To ensure that data is consistent, DBCore pro-
vides the capability of rolling back, or undoing, uncommit-
ted transactions in the case of a soft crash. In the case of
a hard crash, DBCore has the ability to roll forward, or
redo, all transactions that were committed before the hard
crash.

To handle both rollforward and rollback recovery,
DBCore has two logging modes: archive mode and nonar-

chive mode. When DBCore is run in archive mode, all
changes to the DBEnvironment are logged and the log space
is never reused. When DBCore runs with archive mode
turned off, all changes to the data base are logged. but space
is periodically recovered and reused as transactions are com-
mitted. To perform rollforward recovery, DBCore must be
run in archive mode. Rollback recovery is always available.

DBCore uses a write-ahead log to ensure that transactions
are not lost and that the transactions are recoverable. Trans-
action requests are written to the log in the form of log
records. Log records contain before and after images of the
data and information about the type of the operation per-
formed by DBCore. These log records are written to the log
ahead of the data's being written to disc. This ensures that
the transactions can be recovered from the log. If there is
a system failure while data is being written to disc, the log
will already have the log records, from which the transac-
tion can be redone or undone as necessary.

Two transaction status tables are maintained at the begin-
ning of the log file: one for rollback recovery called the
checkpoint transaction status table and one for rollforward
recovery called the archive transaction status table. During
rollback recovery, DBCore reads the checkpoint transaction
status table to see which transactions were not committed
at system failure time. DBCore reads the log records for the
uncommitted transactions, undoing the operations as it
goes.

To perform rollforward recovery, an old copy of the
DBEnvironment is restored from a backup or archive copy.
The current log contains an image of the changes that have
been made since the last backup. These changes can then
be reapplied to the old data, rolling it forward to a consis-
tent state. The user tells DBCore the time to which to roll
forward. DBCore reads the archive transaction status table
and starts reading log records at the position indicated by
the archive status table. Log records are read one at a time
and redone as they are encountered until DBCore has read
forward to the specified recovery time. Transactions that
do not have an end transaction record at this point will be
rolled back to their begin transaction record.

DBCore supplies the fundamental services required by
a data base management system, but it lacks the cohesive,
user-oriented view of the data needed to be a complete
DBMS. The interface components of ALLBASE, HPIMAGE
and HPSQL, provide these remaining services.

HPIMAGE

The HPIMAGE component of ALLBASE supplies the
user with a network model interface to the data managed
by DBCore. Modeled after Image, the successful HP propri-
etary data base management system found on HP 1000s
and MPE V-based HP 3000s, HPIMAGE is a combination
of old and new. It supports an interface similar (although
not identical) to the one already used by many programs
and familiar to customers. At the same time, it has been
updated to reflect some of the advances in data base man-
agement technology that have been made since Image was
first designed 15 vears ago.

HPIMAGE consists of two components:
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®m A utility program called HPIUtil that provides com-
mands to create and delete data bases, back up and re-
cover data base environments, and perform other as-
sorted maintenance tasks.

® A set of intrinsics, or system procedures, for use in ap-
plication programs. The intrinsics provide a well-de-
fined and structured procedural interface for fast access
to the data in data bases.

For ease of discussion, the intrinsics are divided into
three categories. The data manipulation intrinsics include
all of the procedures that are used to retrieve and modify
data. These include HPIGET, HPIPUT, HPIDELETE, HPIUPDATE,
HPIFIND, and HPIFINDSET. The intrinsics in the second
group, for example HPIBEGIN and HPIEND, allow the user to
define transactions. The final category of intrinsics in-
cludes those procedures needed to gain access to a data
base (HPIOPEN) and to terminate it (HPICLOSE).

User’'s View of Data

An HPIMAGE data base consists of data items, data en-
tries, and data sets. A data item is the smallest accessible
element in an HPIMAGE data base and corresponds to a
column in a DBCore relation. A data entry is an ordered
set of related items. It is one record of information and
corresponds to a DBCore tuple. One or more data entries
form a data set, which is the same as a DBCore relation. A
data base is a named collection of related data sets. A col-
lection of data bases can be grouped together into a data
base environment.

Data Sets

Data sets in HPIMAGE can be defined as one of three
types: master, detail, or relation. A master data set can only
be defined as a parent, that is, the first level in the network
model. A detail set can only be defined as a child on the
lowest level. A relation data set can have the properties of
a master set, a detail set, or both at the same time, and
therefore can be at any level in an HPIMAGE data base.
This allows HPIMAGE data bases to be structured in mul-
tiple levels (removing the restriction of two levels found
in earlier versions of Image). Master sets can also be further
defined as either automatic or manual. In a manual master,
all data entries must be manipulated explicitly by the user,
as with the other data set types. In an automatic master,
however, data entries are automatically inserted and de-
leted for the user by HPIMAGE.

Parent sets, either master or relation data sets, serve as
indexes to child sets (detail or relation sets). To represent
data relationships, parent and child data sets are combined
in a network of data sets that forms the entire data base.
This network not only stores data but represents relation-
ships among pieces of data as well. The data can then be
retrieved based on their relationships.

Paths

The primary data relationship supported by HPIMAGE
is the parent-child relationship known as a path. One item
in a parent set can be specified as a key item. A key item
in a parent set serves as a unique index into a related child
set. Each key item value points to a chain that links all
entries in the child set that have a matching item value.
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The corresponding item in the child set is called a search
item. The key and search item relationship is the basis of
a path in HPIMAGE. If a path is defined, the user can
retrieve all entries in a child set with a given search item
value.

Besides providing a data access method, a path also im-
poses an integrity constraint. An entry can be added to a
child only if an entry with a matching key item value exists
in each parent of the child. Furthermore, an entry cannot
be deleted from a parent set until all child entries with the
same search item value have been deleted.

Fig. 3 shows how data items, data entries, and data sets
relate to one another, using a sales application as an exam-
ple.

Data Base Definition

All data relationships are defined in HPIMAGE at the
time the data base is created. The structure of an HPIMAGE
data base is basically static, and the method of creating a
data base reflects this assumption. The user creates a data
base by defining its structure and characteristics in a
schema file. A schema file is much like the data declaration
section of a program. The data items, data entries, and data
sets that make up the data base are described in a
specialized HPIMAGE data definition language. Fig. 4
shows part of the schema file used to define the data base
shown in Fig. 3. Once the schema has been written, the
user invokes the schema processor from the HPIUtil utility
program to build the data base according to the description
contained in the schema.

Data Base Security

The schema also contains a description of the data base
security. Data base security in HPIMAGE is implemented
through the use of passwords and security classes. A se-
curity class is a number between 1 and 63, and one pass-
word can be assigned to each security class. When a data
base is designed, the user specifies read and write class
lists for each data item and set. These lists specify which
security classes have read access, write access, or no access
to all or part of the data base. Whenever a user accesses a

STORE Data Base

CUSTOMERS
ACCOUNT

ORDERS
ORDER-NUM

INVENTORY SHIPPING

Fig. 3. Anexample ofan HPIMAGE data base called STORE
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data base by opening it, a password is specified and sub-
sequent access to data in the data base is either granted or
denied depending on the corresponding security class and
the read and write class lists.

Data Base Access

Before any data in an HPIMAGE data base can be ac-
cessed, HPIOPEN must be called to initiate access to the
data base. Opening a data base is like opening a file. It
links the data base to the application program and estab-
lishes the dynamic information needed for the program to
read from and write to the data base. Every time the program
is executed, it must call HPIOPEN.

A data base can be opened in one of four access modes.
Each mode determines the types of operations that a user
can perform on the data base as well as the types of oper-
ations other users can perform simultaneously. A data base
can be opened for reading or reading and writing, and with
shared or exclusive access. Sharing can be restricted to
other readers onlv.

The allowed access option combinations are:

read/write, shared
read/write, exclusive

open mode 1:
open mode 3:

Begin Data Base STORE;

Passwords: 10 Clerk;

20 Credit;

30 Shipping;

40 Manager;
Items: Account, 4
Address, X26
City, X12
Credit-rating, 12

.

(10,20,30/40);
(10,20,30/40);
(10,20,30/40);
(20/40);

Zip, X5 (10,20,30/40);

Sets:
Name:
Entry:

Customers, Relation (10,30/20,40);
Account(1),

Last-Name,

First-Name,

Address,

City,

State,

Zip,

Credit-rating;

Capacity: 200;

Orders, Relation
Account (Customers),
Order-num(1),
Prod-num,

Quantity,

Capacity: 500;

Name: (30/10,40);

Entry:

End.

Fig. 4. Aportion of the HPIMAGE schema defining the STORE
data base of Fig. 3.

read, shared with other readers only
read, shared.

open mode 8:
open mode 9:

Using HPIMAGE intrinsics, programs can access data in
the data base in several ways. Serial access retrieves succes-
sive data entries from the data set, one entry at a time.
Direct access retrieves a data entry based on its record
location within the data base. Calculated access retrieves
a data entry in a parent set based on its key item value.
Chained access retrieves successively all the data entries
in a child set that share a common search item value. Subset
access retrieves data entries from a subset of records within
a data set that satisfy a given set of conditions. Data entries
can be retrieved in either a forward or a backward direction.

For subset access, the HPIFINDSET intrinsic must be called

first to establish a current subset for the data set to be
accessed. HPIFINDSET allows a user to identify a subset of
entries in a data set that meet a designated set of conditions.
These conditions are specified in a predicate. A predicate
can span several items within a data set and consists of a
set of operators and operands. Generic search is also sup-
ported in HPIMAGE, that is, it is possible to retrieve entries
based on the value of the first number of characters of an
item of type character string. A generic search is indicated
by following the character string used for the search by the
character @.
Example 1: A user can find all records in the CUSTOMERS
data set for which ACCOUNT exceeds 500 and for which
item number 8 is not 10 by passing the following predicate
to HPIFINDSET:

(ACCOUNT >500) and (&8<> 10);

Example 2: To find all records in CUSTOMERS for which
LAST-NAME starts with the characters LU, the following pred-
icate can be used:

LAST-NAME = "LU"@;

Implementation on DBCore

The challenge of the HPIMAGE project was to map the
well-defined external definition of existing Image products
onto the new set of internal services provided by DBCore.
Using DBCore offers several advantages. First, DBCore is
designed to handle a high level of concurrent access, and
therefore, as HP Precision Architecture processors become
faster and faster, DBCore and HPIMAGE will be able to
support the increased numbers of users and transactions.
Second, it was only necessary to implement the DBMS
services required by both HPIMAGE and HPSQL once.
Traditional Image access methods do not support the rela-
tional model of data, whereas DBCore has the functionality
required to support both the relational and network models.
Third, because both HPIMAGE and HPSQL share a com-
mon set of internals, it is possible for the same data to be
accessed through either interface. This will be realized in
a future release of ALLBASE, which will allow an HPFIMAGE
data base to be accessed from both the HPIMAGE and
HPSQL interfaces.

The following discussion explains how the HPIMAGE
data structures and intrinsics are implemented using
DBCore.
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Data Structures
Because DBCore handles the physical storage of and ac-

cess to all data, HPIMAGE data structures must be mapped

onto the DBCore structures. The key concepts behind the
mapping are:

¥ A data set in an HPIMAGE data base corresponds to a
DBCore relation. One or more DBEFiles are created to
hold each data set.

® A data entry in the data set corresponds to a tuple in
the DBCore relation, and a data item is a column within
the relation.

B Paths are represented by DBCore parent-child relation-
ship (PCR) indexes. One PCR is created for each child
of a parent. A PCR supports both HPIMAGE chained
reads and the parent-child integrity constraint.

® A hash index is defined on each master data set for use
in cases where fast random access is required.
HPIMAGE also maintains a set of DBCore relations that

contain a description of each data base. These relations are
collectively known as the HPIMAGE catalog and are used
by the HPIMAGE software to record the structure of a data
base and generate the correct calls to DBCore needed to
perform the operations requested by the user. The catalog
is not accessed by the user.

Opening and Closing a Data Base

The intrinsic HPIOPEN is used to connect a user to a data
base. When a user calls HPIOPEN to open a data base for
the first time, a DBCore session is started for the user. (A
program can open the same data base more than once. This
work is done only on the first open.) All further operations
on the same DBEnvironment will connect to this DBCore
session. After the DBCore session is started, the information
about the data base in the HPIMAGE catalog is read into
shared memory. Subsequent intrinsic calls to access data
in the data base obtain information about the data base
from shared memory instead of having to go to the HPIMAGE
catalog. The DBCore session is ended when the last open
data base in the data base environment is closed. HPICLOSE
disconnects a user from a data base.

Transaction Management

DBCore guarantees data base integrity and consistency
by requiring data base activity to be performed within a
defined DBCore transaction. This is implemented at the
user level through HP Image transaction management,
which encompasses transaction definition, logging, and
locking. In HP Image, a transaction is bracketed by an
(HPIBEGIN, HPIEND) pair. All HP Image data manipulation
intrinsics must be called from within a transaction. HP
Image allows single and multiple data base transactions.
A multiple data base transaction is a transaction that spans
two or more data bases, as long as the data bases specified
in the HPIBEGIN call belong to the same data base environ-
ment.

There is a one-to-one mapping between HP Image trans-
actions and DBCore transactions. A DBCore transaction is
started when HPIBEGIN is called. The DBCore transaction
will be ended when HPIEND is called to commit the trans-
action. For multiple data base transactions, since all the
data bases specified must be in the same data base environ-
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ment, only one DBCore transaction needs to be started.

Data Manipulation

The insert, delete, and update data operations of HP
Image map directly onto their corresponding DBCore func-
tions. The mapping of the various HP Image data retrieval
methods is a little more complicated.

Serial access is implemented by opening a DBCore rela-
tion scan on the data set specified by the user. Scan infor-
mation is stored in a local control block. Each subsequent
HPIGET call will fetch one entry at a time in the forward or
backward direction, until there are no more entries in the
data set.

Direct access is implemented by calling the DBCaore fetch
function to retrieve the desired entry based on the HP Image
record number. Calculated access is implemented by open-
ing a DBCore index scan on the index defined for the parent
data set, The entry is then fetched based on the key item
value specified by the user.

For chained access, the intrinsic HPIFIND must be called
first to establish a current record chain based on a specific
search item value. Subsequent HPIGET calls will retrieve
entries from that chain. HPIFIND establishes information for
the current chain by opening a DBCore index scan on the
data set using the search item value as the key,

For subset access, HPIFINDSET establishes a current subset
by opening a DBCore index scan based on the predicate
specified by the user. Before the HPIMAGE predicate can
be passed to DBCore, it has to be translated into a form
understandable to DBCore. Building the predicate is done
in several steps. First, the HPIMAGE predicate is parsed
by HPIFINDSET, which takes a character string and checks
whether its syntax follows a given grammar. Its output is
the predicate in tree format.

DBCore does not directly support generic searches, so
these predicates have to be converted to a form that is
understood by DBCore. If the user submits the predicate
NAMES = “CE"@ to find all names that begin with the letters
CE, HPIMAGE translates this predicate into “find all names
greater than or equal to CE and less than CF.” From this
predicate, the following parse tree is generated:

AND
! Y
GE LT
o X f A
NAME “CE" NAME “CF”

The parse tree is then converted into DBCore linear for-
mat and used to open a DBCore scan. If an index exists on
one of the items involved in the predicate, then an index
scan is opened. Otherwise, a relation scan is used to search
for all records that meet the specified conditions. Sub-
sequent HPIGET calls to access records in this subset will
call the DBCore fetch function to retrieve one entry at a
time.

Generic search is a new feature not found in earlier ver-
sions of Image. It isan example of how the DBCaore function-
ality is being exploited to add the more flexible access
methods to HPIMAGE that are typically associated with
relational data base management systems. However, for the
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user who needs the total flexibility that a relational system
can offer, ALLBASE provides HPSQL.

HPSQL

HPSQL, the third component of ALLBASE, gives the user
a relational interface to the data managed by DBCore. Based
on the ANSI industry standard Structured Query Language,
HPSQL supports a nonprocedural command language for
accessing data. The user only needs to specify the function
to be performed, and HPSQL determines how to perform
it. The interface is the same as that of HPSQL/V on MPE
V systems, allowing users to develop relational applica-
tions on MPE V systems, and later move them to the HPSQL
interface of ALLBASE.

Unlike HPIMAGE, all access to HPSQL is through SQL
commands, These commands can either be embedded in
application programs where language preprocessors sup-
plied with HPSQL translate them into calls to the under-
lying HPSQL software, or they can be executed from ISQL,
the interactive HPSQL subsystem.

The basic HPSQL commands fall into the following
categories:

m Data definition

Data manipulation
Transaction management
Authorization control,

HPSQL Data Definition

HPSQL presents the user with a very simple view of
data. An HPSQL data base is a collection of tables. Like
the DBCore relation on which it is based, a table is com-
posed of rows and columns. To create a table, the user only
needs to specify a unique name for it along with the names,
types, and lengths of the columns in the table.

Users may also create indexes on a table to reduce the
time it takes to retrieve data from the table. An index is
specified as an ordered set of columns in a table; these
columns form the index key. The key values for each row
in the table are stored in a b-tree, so the rows can be located
quickly. Index data is never made visible to the user. This
allows the user to add and delete indexes without having
to modify previously written programs. Unlike HPIMAGE,
where the existence of indexes (or paths) determines how
the user accesses the data base, indexes in HPSQL are in-
visible to the user. If an index exists, HPSQL will use it to
retrieve data; otherwise it will scan the entire table looking
for the data to return. In either case, the user phrases the
query in the same way.

HPSQL allows tables and indexes to be added and de-
leted dynamically, so the user can easily change the data
base to reflect changing needs.

Data Manipulation

Data access and update in HPSQL consist of the INSERT,
UPDATE, DELETE, and SELECT commands. The INSERT and
DELETE operations work at the row level while UPDATE and
SELECT are column level operations (i.e., the user specifies
which columns are UPDATEd or SELECTed). Furthermore,
the SELECT operation supports computed arithmetic, sort-

ing, and aggregate functions (e.g., MIN, MAX; and AVG), and
GROUP BY operations.

The UPDATE, DELETE, and SELECT operations can be re-
strictively applied to certain rows that satisfy a given set
of conditions. These conditions are specified in terms of a
WHERE clause.

Example:

SELECT columni, column2 FROM table1 WHERE column3 > 100;

HPSQL supports the notion of null values as the absence
of any value. Each column in a table can be specified as
potentially NULL or NOT NULL. If a column is potentially
NULL, then certain rows in that table may contain no value
for that column. Columns in a table can also be updated
to contain a null value (i.e., no value).

Transaction Management

All HPSQL data definition and manipulation activities
happen within transactions. A user can begin a transaction
using the BEGIN WORK directive. (Optionally, if a transaction
is not active when an operation is attempted, one will be
started.) No changes will actually be written to disc until
the user does an explicit COMMIT WORK command. The
entire transaction can be annulled by using the ROLLBACK
WORK command.

Authorization Control

HPSQL provides a flexible and dynamic security mech-
anism. The creator of an object, for example, a table or a
stored query, automatically becomes its owner. To be able
to access some object created by another user, you need
explicit authorization from the owner. The owner of a table
may grant SELECT, INSERT, DELETE, UPDATE, ALTER, and
INDEX authorities, in any combination, to any user. Stored
query owners can give other users RUN authority to execute
the query,

In addition, there are three special authorities controlla-
ble only by the data base administrator (DBA), the person
who created the data base environment. To be able to access
a data base environment, a user must have CONNECT author-
ity. RESOURCE authority enables the user to create data
base objects. Finally, the user needs DBA authority to per-
form administrative functions like storage space manage-
ment, backup, and recovery. The DBA authority circum-
vents all other explicit authorization.

Users can be combined together into groups for authori-
zation purposes. A user group relationship is flexible in
that individual users or groups can be added to or removed
from other groups. Any authority granted to a group is also
implicitly granted to all its member users and groups.

All authority can be rescinded through the REVOKE com-
mand in HPSQL. Thus the various authorities in HPSQL
are completely dynamic.

HPSQL Objects and System Catalog

HPSQL, like HPIMAGE and DBCore, stores information
about its objects in a system catalog. This catalog is com-
posed of a set of tables, one table per object type. Examples
of object types are tables, columns, indexes, authorization
groups, stored queries, etc. When an object is created, a
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record describing it is added to the appropriate table; when
it is dropped, the corresponding record is deleted from the
table.

Query Processing

One of the major differences between HPIMAGE and
HPSQL is that the HPIMAGE user is responsible for iden-
tifying the access path to any data that is to be retrieved
or modified. With HPSQL, the user only specifies what
data is to be accessed and HPSQL determines how to locate
it. The query processor in HPSQL determines the best ac-
cess path. The complete relational functionality of HPSQL
is implemented in the query processor. The query processor
accepts input query trees from the calling subsystem, and
through a series of transformations, converts them into an
executable form.

The query processor can be invoked in a variety of ways.
An interactive SQL subsystem, ISQL, is provided for the
ad hoc user. ISQL supports complete SQL functionality
with the exception of functions that need programmatic
support (for example, host variables). In addition, ISQL
has its own set of commands that allow the user to monitor
the interactive environment, load and unload data from
and into flat files, etc.

The query processor can also be invoked programmati-
cally through a variety of language preprocessors provided
with HPSQL. Application programmers can embed SQL
commands within their host language programs. Before
compilation, an application program needs to go through
the appropriate language preprocessor. HPSQL preproces-
sors generate stored queries for embedded SQL commands
and replace those embedded statements by procedure calls
to execute the corresponding stored queries. (Stored
queries are explained in the next section.)

Before an SQL query can be sent to the query processor,
it has to be parsed and linearized. All subsystems that call
the query processor have to call the SQL parser first. The
parser converts an SQL command into an SQL parse tree.
This parse tree is then sent to the SQL linearizer. Lineari-
zation consists of generating a query tree without any ad-
dress pointers. The concept of linearization addresses the
issues of passing query trees between processes and writing
query trees to disc. After linearization, the resultant linear
tree is sent to the query processor where the query is either
executed or stored for future use.

Stored Queries

Because it is common in many environments for the
same query to be invoked repeatedly, HPSQL allows users
to predefine queries and save the executable form in the
data base environment. These stored queries are called sec-
tions. A section consists of the linearized input tree and
the executable tree (also called the run tree) generated by
the query processor.

More often than not, a section will depend on the exis-
tence of certain other objects and authorizations. If all the
dependencies of a section are met then the section is
marked as a valid stored query; otherwise it is marked as
invalid. For example, the following SQL command creates
a section named S1 that adds data to a table:
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PREPARE S1 from 'INSERT INTO U1.T1 Values (10)';

For this section to be valid, the table U1.T1 must exist,
and further, the user must have INSERT authority on U1.T1.
If either validation criterion is false, the section S1 cannot
be completely defined. However, HPSQL will still store
the input tree and mark the section as invalid. If the vali-
dation criteria are met, the query processor will generate
a run tree from the input tree and store it along with a list
of its dependencies. The section will remain valid as long
as the objects on which it is dependent do not change.

To execute this stored section, the user would issue the
command:

EXECUTE S1;

At run time, the query processor checks the section S1
for validity. If it is valid, the query processor retrieves and
executes the run tree. If the section is not valid, then the
input tree will be loaded and the query processor will
revalidate it. If all validation conditions are met at this
time, the run tree will be generated and executed. In addi-
tion, the run tree will be restored and the section will be
marked as valid.

Query Processor Internals

The query processor operates in two phases. It first pre-
pares the query for execution. This phase is also known as
query compilation, query preprocessing, and query defini-
tion. Second, it stores the preprocessed query for future
execution or executes it immediately.

During the query preprocessing phase, the input linear
tree is delinearized. Delinearization of a query tree consists
of reestablishing pointers between nodes of a tree.

The delinearized tree then goes through a binding oper-
ation, which involves verifying the existence (or nonexis-
tence] of data base objects. For example:

SELECT C1,C2 from T1;

requires that table T1 be already defined in the data base
and that €1 and €2 be valid columns in table T1, whereas
the query:

CREATE TABLE T2 (C1 integer, C2 char(20));

requires that table T2 not be already defined in the data
base. Binding also consists of verifying that the user is
indeed authorized to perform the function(s) implied by
the SQL query. If either condition is not true at this stage,
the query preprocessing goes no further, and an appropriate
error message is issued.

Query optimization follows the binding phase. HPSQL
attempts to optimize all data manipulation commands (IN-
SERT, UPDATE, DELETE, and SELECT).

First, the bound tree is transformed into an optimal form.
Projects and filters* are pushed as far down in the tree as
possible. Boolean factors are resolved into a conjunctive
normal form to the extent possible. View definitions are

*A filter is another name for the WHERE clause. A praject is a fist of column names to be
retrigvad
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compressed and aggregation operations are transformed.
The query tree is then converted into a set of query blocks.
A bound tree thus transformed is called a preoptimized
tree.

In the second phase of optimization, the query cost is
computed. The cost of a data manipulation query is given
by the cost of scanning each table in the query. The op-
timizer generates a scan plan for each table in the query.
This plan indicates the access method to be used for that
table and the I/O cost. The I/O cost of a query is estimated
in terms of the number of data and index pages likely to
be read to perform the query. At present, HPSQL uses two
tvpes of DBCore scans. A relation scan will read all pages
of the table once. An index scan will use a b-tree index
selected by the optimizer to read tuples in the order of key
value. The optimizer is guaranteed to generate a relation
scan for a table that has no WHERE clause on it. If a WHERE
clause is specified, then the optimizer will compute the
index scan cost and compare it with the cost of a simple
relation scan.

In addition to the scan plans, the optimizer also generates
join plans for multiple table retrievals. A join plan deter-
mines the scan order for a given pair of tables. Thus, for
an n-table SELECT, n— 1 join plans are generated. The idea
behind join optimization is to reduce the number of re-
trieved tuples as the query proceeds. The output of the cost
computation phase is the optimized tree.

After the optimization phase, the query processor is
ready to generate the executable tree for data manipulation
commands (for non-data-manipulation commands, the
bound tree is the executable tree). Along with tree nodes
specifying the kind of operation to be performed, the run
tree contains pseudocode (assembly-like code) to perform
a variety of HPSQL operations. These are:
® Buffer transfer
® Null evaluation
® Arithmetic expression evaluation
8 Aggregate computation
® Logical expression evaluation
® Pattern matching.

This code is embedded into the run tree as a binary
constant string.

Creation of the run tree marks the end of the query pre-
processing phase.

Query Storage/Execution

If the query is being defined (this could happen at prepro-
cessing time, or it could happen in ISQL through the PRE-
PARE command), then at the end of preprocessing, HPSQL
causes the query to be stored in the system catalog. A stored
query consists of the input tree and the executable tree,
which may be a bound tree or a run tree. Temporary queries
are held inside the local heaps of the query processor and
are never flushed to disc.

At run time (this could happen with the execution of a
preprocessed application, through the EXECUTE command
in ISQL, or through a direct SQL command in [SQL), the
preprocessed query is executed.

Interface with DBCore
HPSQL, like HPIMAGE, depends on DBCore to manage

data definition and access, to ensure data integrity, and to
control concurrency. The query processor invokes DBCore
for each query executed.

ALLBASE on MPE XL and HP-UX

Both commercial and technical customers use applica-
tions that need general-purpose data base management sys-
tems, so ALLBASE is supported on both the MPE XL and
the HP-UX operating systems. Because the user interfaces
are uniform, the user need not understand (or be confused
by] the intricacies of how the data base management system
uses the operating system. Making the interface between a
DBMS and the operating svstem transparent to the user
requires care because a DBMS is dependent on the operat-
ing system, particularly for accessing files. The importance
of the operating system makes it difficult to conceal unless
the DBMS is divided into lavers as is ALLBASE.

A uniform user interface was achieved rather simply, in
spite of the inherent difficulties of making two operating
systems transparent, because the ALLBASE products on
MPE XL and HP-UX share the same source code. The code
in ALLBASE that interfaces with one or the other of the
operating systems is conditionally compiled, that is, it is
compiled only for the operating system it accesses. But the
high-level code, written in either Pascal or C, is nearly the
same on both operating systems. Since project teams were
developing ALLBASE on both MPE XL and HP-UX simul-
taneously, each with their own copy of the source code,
coordination was required to maintain a complete version
of ALLBASE. The HPIMAGE and HPSQL teams used a
formal check-in, check-out system to maintain code integ-
rity. Only one team at a time could make changes to any
given module. This solution was viable because these com-
ponents of ALLBASE rely on DBCore to perform most
operating system dependent functions. The teams that de-
veloped DBCore used a resynchronization method. Each
team could make changes to their own copies, but period-
ically the two teams would merge all changes into a new
master copy. These mergers were simplified by the fact
that the routines that access the operating system make up
only about 10% of all procedures in DBCore.

From a software development point of view, maintaining
a single ALLBASE source program had several advantages.
First, development of the product was accelerated because
the teams developing ALLBASE on MPE XL and those
developing it for HP-UX were able to work in parallel.
Second, with two teams working on the same code, the
quality of the product was enhanced—a bug that might be
overlooked by one team is less likely to escape two. And
last, a single program is easier to maintain and improve,
since changes only need to be made once and they are
available in both products.

In software development, using existing code to perform
new functions is called leverage. ALLBASE is a highly
leveraged product. Not only is it leveraged across operating
systems, but the HPSQL language preprocessors are also
leveraged; they have very little code that is specific to the
language being processed. Most of the code is the same no
matter what language the user's program is written in.
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In summary, ALLBASE hides both operating systems and
presents a uniform interface to the user. The fact that the
ALLBASE source code is the same for both operating sys-
tems resulted in an accelerated software development pro-
cess and a product that is more reliable and easier to main-
tain.

Data Base Migration

One of the main objectives in the HP Precision Architec-
ture program is to provide a high degree of compatibility
as well as a smooth migration path between new and exist-
ing systems. This path should guarantee that the migration
of applications and data bases is easily understood, while
at the same time allowing flexibility, such as the capability
to maximize performance in specified applications. The
migration must be fast, and contingency options must exist.

The HP Precision Architecture data base migration plan
addresses all these needs and requirements. It involves a
series of smaller migration steps which vary in complexity
and performance/functionality improvements. The migra-
tion process has been designed to satisfy the needs of the
small data base application, consisting of one data base
and one program, as well as the large data base application
system, consisting of multiple data bases on many disc
volumes with multiple applications working together.

The migration plan is separated into two complete mi-
gration paths, one for each market. The first, a commercial
system migration path, supports migration between exist-
ing HP 3000 systems running MPE V with Turbolmage and
the HP 3000 Series 930 and 950 running MPE XL with both
Turbolmage and ALLBASE/XL. The second migration path
addresses the technical market and provides a migration
path between HP 1000 systems running RTE with Image/
1000 and HP Precision Architecture systems running HP-
UX with ALLBASE. These migration directions are dis-
cussed separately in the following paragraphs.

Commercial Data Base Migration

Because commercial data bases tend to be large and cus-
tomers frequently have many of them, it is assumed that
application and data base migration between traditional
HP 3000 systems and the HP Precision Architecture sys-
tems will be done gradually. The MPE XL migration soft-
ware takes this assumption into account by allowing users
to move applications and data bases individually, in a
series of simple steps. It is not necessary to follow all of
the steps. The migration software gives customers the
flexibity to select the migration path best suited to their
particular needs.

Migration to Turbolmage on MPE XL is the first step
along the migration path. Turbolmage on MPE XL is com-
pletely compatible with Turbolmage on MPE V, so data
bases and applications can simply be stored from an HP
3000 MPE V-based system and then restored onto an HP
3000 MPE XL-based system and run in compatibility made.
The advantages of this migration step include its simplicity
and the speed of migration. In addition, new applications
can be developed in compatibility mode on an MPE XL-
based system and then moved back to an MPE V-based
system without change.
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The second migration step is to move applications to
native mode. A performance gain can be realized for appli-
cations written in Pascal, Fortran, and COBOL by simply
recompiling with the native mode compilers. No source
code changes or data base conversions are required. Some
languages do not have native mode compilers. Applications
written in these languages can remain in compatibility
mode or can be rewritten as time permits.

An alternative second step is to move the Turbolmage
data bases to HPIMAGE. By converting data bases to HP-
IMAGE using a provided conversion utility, many of the
features of HPIMAGE are made available immediately,
while the existing Turbolmage application can be used in
either compatibility mode or native mode. An “onion skin”
layer of software on top of HPIMAGE, called TurboWin-
dow, translates each Turbolmage call to HPIMAGE and
translates the results back to Turbolmage format. Tur-
boWindow reduces the migration effort by performing the
syntax translations, error mapping, and transaction man-
agement on behalf of the application. However, for optimal
use of HPIMAGE transaction management, some code mod-
ifications will be required.

HPIMAGE features such as transaction consistency, auto-
matic rollback recovery, and dynamic restructuring can be
used as soon as the data base is moved to HPIMAGE. HP-
IMAGE is a native mode subsystem, so data base access
will be able to take full advantage of the speed of the HP
Precision Architecture.

The last step in the migration, once all applications are
in native mode and all data bases are HPIMAGE, is to
replace the Turbolmage interface with the HPIMAGE inter-
face. At this point, the maximum performance benefits are
attained, and the full HPIMAGE feature set is available.

Each migration step is a stable position, so customers
can operate indefinitely with a combination of compatibil-
ity and native mode applications, and a combination of
Turbolmage and HPIMAGE data bases accessed from these
applications.

MPE XL Data Base Migration Software

The data base migration software consists of four mod-
ules and utilities: DBMigrate, the native mode locator/
switcher, the compatibility mode locator/switcher, and
TurboWindow (see Fig. 5).

The utility DBMigrate is provided to migrate data from
Turbolmage to HPIMAGE. It unloads a Turbolmage data
base to tape or disc in HPIMAGE load format, and option-
ally starts the HPIMAGE load process simultaneously. It
can be used to check for conversion problems and require-
ments, such as disc space required and corrupted data sets,
without the I/O time needed to unload. Because the unload/
load time is critical in conversion to HPIMAGE, and the
quantity of data to unload is enormous for some Turbolm-
age data bases, DBMigrate runs in native mode and uses
the MPE XL mapped file feature to access Turbolmage data
sets. Bypassing the TurboImage intrinsic interface and the
MPE file system interface maximizes the performance of
DBMigrate, both by reducing the number of software levels
involved, and by ensuring that the execution path remains
wholly in native mode.

The native and compatibility locator/switcher modules
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perform similar functions for each mode of execution. The
native switcher mediates between a native mode applica-
tion and Turbolmage in compatibility mode. It handles
parameter formatting for compatibility mode and maps
compatibility specific information to more meaningful na-
tive mode information. Likewise, the compatibility
switcher mediates between a compatibility mode applica-
tion and TurboWindow in native mode. The native and
compatibility locators intercept TurboIlmage intrinsic calls,
detect the data base type. and then route data base requests
to either the data base management system residing in that
maode, or the associated switcher. Thus, both Turbolmage
and HPIMAGE through TurboWindow can be accessed
transparently from the same application from either mode.

TurboWindow performs the translation of calls from Tur-
bolmage to HPIMAGE. It performs transaction management
on behalf of the application, reformats and aligns parame-
ters, and maps status information from HPIMAGE back into
Turbolmage form. With only a few exceptions, the full
Turbolmage interface is supported.

Technical Data Base Migration

ALLBASE migration tools are available for Image/1000
customers running the HP 1000 RTE operating system whao
want to port their applications to the HP-UX operating
system. It is anticipated that HP 1000 customers who mi-
grate to the HP Precision Architecture machines will do
so to HP-UX rather than MPE XL. Since a compatibility
mode does not exist on HP-UX as it does for MPE XL, it
is always necessary to recompile the migrated programs
on HP-UX before they are executed. The transfer from one
system to another involves moving application programs
and data bases. ALLBASE provides a manual and software
tools to aid in the transfer. Fig. 6 shows an overview of the
technical data base migration process.

Compatibility Mode Native Mode

Application Recompile Application

Locator Locator

Switcher

Switcher

&

Turbolmage

4_

TurboWindow

HPIMAGE

i-Turbo DB : —

HPIMAGE DB

MPE Emulation

MPE XL

Fig. 5. Commercial data base migration components and
access paths

Application

Transiator

HPIMAGE

Fig. 6. Technical data base migration

Since the HPIMAGE data base structure differs from
Image/1000, Tmage/1000 data bases must be transformed
into HPIMAGE data bases. To accomplish this, the user
must edit the Image/1000 schema and convert it to an HPIM-
AGE schema. If the data base is Image/1000-I1, a root file
decompiler is available that will do most, if not all, of the
conversion. Once the new HPIMAGE data base has been
created on the HP-UX system, the data itself can be migrated
using a special unload utility, DBMUN, and reloaded onto
the new system.

Application programs are brought up on HP-UX in one
of two ways: they can have all of their Image/1000 calls
manually replaced by HPIMAGE calls and directly access
the new HPIMAGE data base, or they can leave the Image/
1000 calls unaltered and access the HPIMAGE data base
through a run-time call translator that converts Image/1000
calls into HPIMAGE calls. However, the translator is not
able to achieve 100% compatibility with Image/1000 func-
tionality. To help with source code conversion, another
migration tool, the migration analysis utility (MAU) is pro-
vided. MAU scans through a source program, locates and
flags Image/1000 calls as well as other HP 1000 system
dependencies, provides information about each call such
as whether or not it is fully emulated and whether a perfor-
mance degradation is expected, and summarizes with a
statistical profile of the analysis. Where feasible, it is ex-
pected that a user will convert the software to HPIMAGE
calls, but in the event that a more phased migration is
desirable, the translator is available.

Query Products

No data base management offering would be complete
without an ad hoc query interface. It is this level of software
that gives users the ability to retrieve and report stored
information without having to write a program. ALLBASE
offers interfaces compatible with current offerings to pro-
vide a smooth migration to HP Precision Architecture
machines. In addition, new tools that enhance the
ALLBASE data base management system have been added.

To solve the issue of a smooth migration, the current
version of Query/3000 has been ported to the MPE XL
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operating system where it is called Query/V. There have
been no changes made to the externals of the product, so
users who are using Query/3000 now will have no difficulty
using Query/V. Query/V can access both Turbolmage and
HPIMAGE data bases. This allows customers to move cur-
rent Turbolmage data bases from MPE V to MPE XL and
begin using them immediately. If and when data bases are
slowly migrated to HPIMAGE, Query will still be able to
access them transparently, that is, the person using Query/V
will not need to know that some of the data bases being
accessed are Turbolmage and some are HPIMAGE. The
differences will be handled automatically. Once all of a
customer’s data bases have been migrated to HPIMAGE,
Query/V can still be used to perform ad hoc retrieval and
reporting without the necessity of using a new interface.

Query/V, then, is simply Query/3000 running on MPE
XL. This is accomplished by running Query/3000 in com-
patibility mode on top of TurboWindow. TurboWindow
handles the actual communication between an application
and Turbolmage and/or HPIMAGE data bases.

Since there have been no enhancements to Query/3000
when moved to MPE XL, it will not support all the features
of HPIMAGE such as HPIFINDSET or relation sets. Because
of this, a query product is needed that in the long term
will support HPIMAGE and will be very robust. To fill this
need, there is IQUERY.

IQUERY is very similar to Query/3000. The main differ-
ence is that it accesses only HPIMAGE data bases. It runs
on the MPE XL and HP-UX operating systems and looks

exactly the same on both. For MPE XL, IQUERY runs in
native mode, so its performance is optimal. IQUERY will
be the long-term solution for programmers and data base
administrators to access HPIMAGE data bases. It will be
enhanced as necessary to support the full feature set of
HPIMAGE.

For the relational side of ALLBASE, there is a different
query product called ISQL. ISQL runs on both MPE XL
and HP-UX and provides access to HPSQL data bases. This
ISQL is exactly the same as ISQL/V, the interface released
with HPSQL on MPE V. Again, customers will find no
difficulty or surprises when migrating to HP Precision Ar-
chitecture.

One of the keys to the successful movement of the various
query products to the different operating systems lies in
the code itself. During development, code sharing among
operating systems is planned for at the early stages. This
means that whenever possible, machine dependent
routines and those nice features of Pascal that only certain
compilers support are not used. References in the source
code to file names (for INCLUDEd source) are isolated to
minimize changes resulting from file system differences.
Any operating system calls that are made are also isolated
in their own routines. As a result, nearly 90% of the code
can be shared among the different operating systems, ISQL,
for example, is maintained as one set of source code even
though there are slight differences for MPE V, MPE XL,
and HP-UX. Conditional compile directives are used to
help in some areas.

Data in ALLBASE is stored in the form of relations. Fig. 1 shows
an example. The characteristics of this relation are:
®m |is name is CUSTOMERS.
= |t has eight columns. All values within any given column will
have the same data type.
® When first created, the relation does not contain any data, that
is, all the rows in the relation are empty
Fig. 2 shows this relation with data inserted. Each row of the
relation is called atuple. A tuple is an ordered set of data values—
one value for each column. The value of a column may be null
(i.e., no value).
Because there are no indexes defined on the CUSTOMERS

CUSTOMERS

Data Storage in ALLBASE

relation, the only way to retrieve a tuple with a specific value for
one of the columns is to read the entire relation sequentially,
looking for the correct tuple. If the relation contains thousands
of tuples, this search could be too slow (acceptable speed de-
pends on the application and the frequency of the query). To
speed up the search, the user could define either a b-tree or
hash index on the relation. The key of the index should be the
column or columns that contain the values to be searched for.
The b-tree example in Fig. 3 assumes that the user wanits to
retrieve tuples from the relation based on the values in the AC-
COUNT column.

To find the tuple with ACCOUNT = 205 using the b-ree index,

ACCOUNT | LAST-NAME | FIRST-NAME ADDRESS ciTY

STATE ZIP CREDIT-RATING

4 Fig. 1. An example of a relation
Column called CUSTOMERS.
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CUSTOMERS

ACCOUNT| LAST-NAME | FIRST-NAME ADDRESS cimy STATE| ZIP | CREDIT-RATING

592 Johnson Eiaine 123 North Street Atlanta GA | 30348 2
789 Huxlev | Jobn 45 Main Street | Hollywood | CA | 91601 4

205 | Bumns | Mary | 92FirstAve. | Scranton | PA | 18092| 1 < |

| 20 Webster John 12 Starlight Lane Toledo OH | 43604 | 7

i 800 Haugen Denaid 986 Nicollet Ave. | Minneapolis| MN | 55414 10
603 Johnson William 1078 Bay Street Andover | MA | D1810 5 |

| 998 e - . . . .
148 - | . | | 2
720 . -
432 ‘
632 |
;g: Tuple
478
700
So8 Fig. 2. The CUSTOMERS relation

with data

the DBCore component of ALLBASE first retrieves the root node
of the index. It scans the key values in the root node to determine
which pointer to follow. If the specified value i1s =291 then the
first pointer is used.” If the value is in the range 291< value =700

‘B-trees are constructed in such a way that it iz guaranteed that all key iterm values
=281 (or whatever value s contained in the node) will be found along this branch of
the tree (if the key value exists in the relation)

Key Value

Pointer

*Leaf Nodes

the second pointer is followed, and if it is =700 then the third
pointeris used. Since 205<2391, the first pointeris used to retrieve
the nonleal node labeled A. This node is searched in the same
way as the rool node and new nodes farther down the tree are
retrieved until finally a leaf node is found. The leaf node is
searched for the key value that matches the specified value

Root Node

CUSTOMERS
ACCOUNT | LAST-NAME |FIRST-NAME ADDRESS CITY STATE | ZIP | CREDIT-RATING
P 592 Johnson Elaine 123 North Street Atlanta GA | 30348 2
789 Huxley John 45 Main Street Hollywood CA | 91601 4
4 205 Burns Mary 92First Ave. Scranton PA | 18092 1
291 Webster John 12 Starlight Lane Toledo OH | 43604 7
BOO Haugen Donald | 986 Nicollet Ave. |Minneapolis | MN | 55414 10
603 Johnson William 1078 Bay Street Andover MA | 01810 5
) ; y . . ] Fig. 3. A b-tree on the CUSTO-
= s A i 3 5 MERS relation. The key column is
ACCOUNT.
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205 205 205

CUSTOMERS ORDERS
ACCOUNT ) CREDIT-RATING ACCOUNT ] QUANTITY
592 205
b

789 > 205
205
291
800

(205). The pointer associated with this key value points to the
tuple in the relation that contains this same value. Each tuple in
the relation is pointed to by one and only one entry in a leaf page
of the index

For simplicity, the example shows only three values in each
node of the tree. In a more typical case, a node would be likely
to have 100 or more entries. This keeps the number of levels in
the tree small and thus minimizes the number of disc accesses
required to retrieve the tuple.

A PCR (parent-child relationship) is very similar in structure to
a b-tree. The primary difference between the two index types is

Fig. 4. An example of a parent-
child relationship (PCR) joining
the relations CUSTOMERS and
ORDERS

that a b-tree contains key values for only one relation while a
PCR contains values for two relations. The leaf nodes of a PCR
point to tuples in both the parent relation and the child relation
Fig. 4 shows an example of a PCR joining the relations CUSTOM-
ERS and ORDERS. Fealtures of this PCR are:
® An order cannot be placed for which a customer (ACCOUNT)
does not exist.
® The PCR can be used as a b-ree on either the CUSTOMERS
or the ORDERS relation to retrieve tuples with particular AC-
COUNT values.
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