
H E W .ETTPACKARD

J A N U A R Y 1 9 8 6

HIGH-
PREOSIOIÃ

RRCHITECTURE

F * f Ã ­ S C R L

© Copr. 1949-1998 Hewlett-Packard Co.

H E W _ E T " T P A C K A R D
CD Ul

January 1986 Volume 37 â€¢ Number 1

Articles

4 Comp i l e r s f o r t he New Gene ra t i on o f Hew le t t -Packa rd Compu te rs , by Debo rah S .
Coutant , Caro l L Hammond, and Jon W. Ke l ley Opt imiz ing compi le rs rea l ize the poten

t ia l of the new reduced-complexi ty archi tecture.

6 Components of the Opt imizer
16 An Optimizat ion Example

18 A u t h o r s

A Stand-Alone Measurement Plot t ing System, by Thomas H. Danie ls and John Fenogl io
Measure and record low-frequency phenomena with this instrument. I t a lso can send the

measurements to a host computer and p lot data taken by other inst ruments.

22 El iminating Potentiometers

2 4 Dig i t a l Con t ro l o f Measu remen t G raph i cs , by S teven T . Van Voo rh i s Pu t t i ng a m ic ro
processor in the servo loop is a key feature. A vector prof i l ing a lgor i thm is another .

27 Measu remen t G raph i cs So f twa re , by F ranc i s E . Bookman and Em i l Maghak ian Th i s
package phenomena. measuring, recording, plotting, and annotating low-frequency phenomena.

3 2
ranges.

A n a l o g N o f o r a L o w - F r e q u e n c y W a v e f o r m R e c o r d e r , b y J o r g e S a n c h e z N o
potent iometers are used in th is des ign that automat ica l ly zeros and ca l ibrates i ts input

OÂ£> Usab i l i t y Tes t i ng : A Va luab le Too l f o r PC Des ign , by Dan ie l B . Ha r r i ng ton Somet imes
O U a persona l computer fea ture i sn ' t used the way i t was expec ted . Watch ing sample users
can help remedy such d i f f icu l t ies.

Editor, Richard Susan Dolan â€¢ Associate Editor. Kenneth A. Shaw â€¢ Assistant Editor, Nancy R Teater â€¢ Art Director, Photographer, Arvid A. Danielson â€¢ Support Supervisor. Susan E.Wright
Il lustrator, Publisher, S. Vanderbloom, â€¢ Administrative Services, Typography, Anne S. LoPresti â€¢ European Production Supervisor, Michael Zandwijken â€¢ Publisher, Russell M H Berg

2 HEWLETT-PACKARD JOURNAL JANUARY 1986 ewlet t -Packard Company 1986 Pr inted in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

In this Issue
Hewlett-Packard's next-generation computers are now under development

in the program code-named Spectrum, and are scheduled to be introduced
f t i n 1 9 8 6 . I n o u r A u g u s t 1 9 8 5 i s s u e , J o e l B i r n b a u m a n d B i l l W o r l e y d i s c u s s e d

the phi losophy and the a ims of the new computers and HP's arch i tecture,
_ . w h i c h h a s b e e n v a r i o u s l y d e s c r i b e d a s r e d u c e d - c o m p l e x i t y , r e d u c e d i n s t r u c -

P ^ t i o n p e r f o r - c o m p u t e r (R I S C) , o r h i g h - p r e c i s i o n . B e s i d e s p r o v i d i n g h i g h e r p e r f o r -
~ t - m a n e e t h a n e x i s t i n g H P c o m p u t e r s , a n i m p o r t a n t o b j e c t i v e f o r t h e n e w a r

chitecture is to support eff icient high-level language development of systems
and appl icat ions sof tware. Compat ib i l i ty wi th ex is t ing sof tware is another

important object ive. The design of h igh- level language compi lers is ext remely important to the
new computers, and in fact, the architecture was developed jointly by both hardware and software
eng ineers . In the a r t i c le on page 4 , th ree HP comp i le r des igners desc r ibe the new comp i le r
system. to in t roduct ion, there wi l l be For t ran, Pascal , COBOL, and C compi lers , wi th others to
become available later. An optional component of the compiler system cal led the optimizer tai lors
the object code to real ize the fu l l potent ia l of the archi tectural features and make programs run
faster remain the new machines. As much as possible, the compiler system is designed to remain
unchanged for d i f ferent operat ing systems, an invaluable character ist ic for appl icat ion program
development. In the art ic le, the authors debunk several myths about RISCs, showing that RISCs
don' t code an archi tected procedure cal l , don' t cause signi f icant code expansion because of the
simpler instructions, can readily perform integer multipl ication, and can indeed support commercial
languages such as COBOL. They also descr ibe mi l l icode, HP's implementat ion of complex func
t ions Mil l icode the simple instructions packaged into subroutines. Mil l icode acts l ike microcode in
more traditional designs, but is common to all machines of the family rather than specific to each.

The art icle on page 20 introduces the HP 7090A Measurement Plott ing System and the art ic les
on pages X-Y 27, and 32 expand upon var ious aspects o f i ts des ign. The HP 7090A is an X-Y
recorder, a digi ta l p lot ter, a low-frequency waveform recorder, and a data acquis i t ion system al l
in one separate ly A l though a l l o f these inst ruments have been avai lab le separate ly before, for
s o m e t h e r e a p p l i c a t i o n s w h e r e g r a p h i c s o u t p u t i s d e s i r e d t h e r e a r e a d v a n t a g e s t o h a v i n g
them a l l ex tend The ana log- to-d ig i ta l conver ter and memory o f the waveform recorder ex tend
the bandwidth of the X-Y recorder wel l beyond the l imi ts of the mechanism (3 kHz instead of a
few hertz). The signal condit ioning and A-to-D conversion processes are descr ibed in the art ic le
on page inputs The servo design (page 24) is multipurpose â€” the HP 7090A can take analog inputs
d i rect ly or can p lo t vectors rece ived as d ig i ta l data. A spec ia l measurement graphics sof tware
p a c k a g e H P 2 7) i s d e s i g n e d t o h e l p s c i e n t i s t s a n d e n g i n e e r s e x t e n d t h e s t a n d - a l o n e H P
7090A's capabi l i t ies without having to wri te their own software.

No matter how good you th ink your design is , i t wi l l confound some users and cause them to
c i rcumvent your best ef for ts to make i t f r iendly. Knowing th is, HP's Personal Computer Div is ion
has been expected usab i l i t y tes ts o f new PC des igns. Vo lunteers who resemble the expected
users and given a series of tasks to perform. The session is videotaped and the product's designers
are inv i ted to observe. The ar t ic le on page 36 repor ts on the somet imes humorous and a lways
valuable results.

-P.P. Do/an

What's Ahead
The February issue wi l l present the design stor ies of three new HP instrument of fer ings. The

cover subject wi l l be the HP 5350A, HP 5351 A, and HP 5352A Microwave Frequency Counters,
which 40 gal l ium arsenide hybrid technology to measure frequencies up to 40 GHz. Also featured
will be system HP 8757A Scalar Network Analyzer, a transmission and reflection measurement system
for the 31/2-to-61/2-digit engineer, and the HP 3457A Multimeter, a seven-function, 31/2-to-61/2-digit
systems digital voltmeter.

The HP Journal Letters technical discussion ol Ihe topics presented in recent articles and will publish letters expected to be of interest to our readers. Letters musÃ­ be brief and are subiect
lo edit ing. Letters should be addressed to: Editor, Hewlett-Packard Journal. 3000 Hanover Street. Palo Alto. CA 94304. U S.A.

JANUARY 1986 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

Compilers for the New Generat ion of
Hewlett -Packard Computers
Compi lers are part icular ly important for the reduced-
complexi ty , h igh-precis ion archi tecture of the new
machines. They make it possible to realize the full potential
of the new architecture.

by Deborah S. Coutant , Carol L . Hammond, and Jon W. Kel ley

WITH THE ADVENT of any new architecture, com
pilers must be developed to provide high-level
language interfaces to the new machine. Compilers

are particularly important to the reduced-complexity, high-
precision architecture currently being developed at Hewlett-
Packard in the program that has been code-named Spectrum.
The Spectrum program is implementing an architecture that
is similar in philosophy to the class of architectures called
RISCs (reduced instruction set computers}.1 The importance
of compilers to the Spectrum program was recognized at
its inception. From the early stages of the new architecture's
development, software design engineers were involved in
its specification.

The design process began with a set of objectives for the
new architecture.2 These included the following:
â€¢ It must support high-level language development of sys

tems and applications software.
â€¢ It must be scalable across technologies and implementa

tions.
â€¢ It must provide compatibility with previous systems.

These objectives were addressed with an architectural
design that goes beyond RISC. The new architecture has
the following features:
â€¢ There are many simple instructions, each of which exe

cutes in a single cycle.
â€¢ There are 32 high-speed general-purpose registers.
â€¢ There are separate data and instruction caches, which

are exposed and can be managed explicitly by the operat
ing system kernel.

â€¢ The pipeline has been made visible to allow the software
to use cycles normally lost following branch and load
instructions.

â€¢ Performance can be tuned to specific applications by
adding specialized processors that interface with the
central processor at the general-register, cache, or main
memory levels.
The compiling system developed for this high-precision

architecture enables high-level language programs to use
these features. This paper describes the compiling system
design and shows how it addresses the specific require
ments of the new architecture. First, the impact of high-
level language issues on the early architectural design de
cisions is described. Next, the low-level structure of the
â€¢The instruction "high-precision architecture" is used because the instruction set for the new
archi tecture was chosen on the basis of execut ion f requency as determined by extensive
measurements across a var iety of work loads

compiling system is explained, with particular emphasis
on areas that have received special attention for this ar
chitecture: program analysis, code generation, and optimi
zation. The paper closes with a discussion of RISC-related
issues and how they have been addressed in this compiling
system.

Designing an Architecture for High-Level Languages
The design of the new architecture was undertaken by

a team made up of design engineers specializing in
hardware, computer architecture, operating systems, per
formance analysis, and compilers. It began with studies of
computational behavior, leading to an initial design that
provided efficient execution of frequently used instruc
tions, and addressed the trade-offs involved in achieving
additional functionality. The architectural design was scru
tinized by software engineers as it was being developed,
and their feedback helped to ensure that compilers and
operating systems would be able to make effective use of
the proposed features.

A primary objective in specifying the instruction set was
to achieve a uniform execution time for all instructions.
All instructions other than loads and branches were to be
realizable in a single cycle. No instruction would be in
cluded that required a significantly longer cycle or signif
icant additional hardware complexity. Restricting all in
structions by these constraints simplifies the control of exe
cution. In conventional microcoded architectures, many in
structions pay an overhead because of the complexity of
control required to execute the microcode. In reduced-com
plexity computers, no instruction pays a penalty for a more
complicated operation. Functionality that is not available
in a single-cycle instruction is achieved through multiple-
instruction sequences or, optionally, with an additional
processor.

As the hardware designers began their work on an early
implementation of the new architecture, they were able to
discover which instructions were costly to implement, re
quired additional complexity not required by other instruc
tions, or required long execution paths, which would in
crease the cycle time of the machine. These instructions
were either removed, if the need for them was not great,
or replaced with simpler instructions that provided the
needed functionality. As the hardware engineers provided
feedback about which instructions were too costly to in-

4 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

elude, the software engineers investigated alternate ways
of achieving the same functionality.

For example, a proposed instruction that provided
hardware support for a 2-bit Booth multiplication was not
included because the additional performance it provided
was not justified by its cost. Architecture and compiler
engineers worked together to propose an alternative to this
instruction. Similarly, several instructions that could be
used directly to generate Boolean conditions were deleted
when they were discovered to require a significantly longer
cycle time. The same functionality was available with a
more general two-instruction sequence, enabling all other
operations to be executed faster.

The philosophy of reduced-complexity computers in
cludes the notion that the frequent operations should be
fast, possibly at the expense of less frequent operations.
However, the cost of an infrequent operation should not
be so great as to counterbalance the efficient execution of
the simple operations. Each proposed change to the ar
chitectural specification was analyzed by the entire group
to assess its impact on both software and hardware im
plementations. Hardware engineers analyzed the instruc
tion set to ensure that no single instruction or set of instruc
tions was causing performance and/or cost penalties for
the entire architecture, and software engineers worked to
ensure that all required functionality would be provided
within performance goals. Compiler writers helped to de
fine conditions for arithmetic, logical, and extract/deposit
instructions, and to specify where carry/borrow bits would
be used in arithmetic instructions.

As an example of such interaction, compiler writers
helped to tune a conditional branch nullification scheme
to provide for the most efficient execution of the most
common branches. Branches are implemented such that
an instruction immediately following the branch can be
executed before the branch takes effect.1 This allows the
program to avoid losing a cycle if useful work is possible
at that point. For conditional branches, the compiler may
or may not be able to schedule an instruction in this slot
that can be executed in both the taken-branch and non-
taken-branch cases. For these branches, a nullification
scheme was devised which allows an instruction to be
executed only in the case of a taken branch for backward
branches, and only in the case of a non-taken branch for
forward branches. This scheme was chosen to enable all
available cycles to be used in the most common cases.
Backward conditional branches are most often used in a
loop, and such branches will most often be taken, branching
backwards a number of times before falling through at the
end of the iteration. Thus, a nuiiificauon scheme that al
lows this extra cycle to be used in the taken-branch case
causes this cycle to be used most often. Conversely, for
forward branches, the nullification scheme was tuned to
the non-taken-branch case. Fig. 1 shows the code generated
for a simple code sequence, illustrating the conditional
branch nullification scheme.

Very early in the development of the architectural specifi
cation, work was begun on a simulator for the new com
puter architecture and a prototype C compiler. Before the
design was frozen, feedback was available about the ease
with which high-level language constructs could be trans-

L i L O W 4 (s p) . r 1 : F i r s t i n s t r u c t i o n o f l o o p

C O M I B T . = . N 1 0 . r 2 . L 1 + 4
L O W 4 (s p) . r 1

: B r a n c h t o L 1 - 4 i f 1 0 = r 2
: Copy of f irst loop instruction.
: executed before branch takes effect

C O M I B F . = . N O . M . L 1 : B r a n c h i f r 1 i s n o t e q u a l t o 0
A D D I 4 , r 2 . r 2 : F i r s t i n s t r u c t i o n o f t h e n c l a u s e

L1

(b)

Fig. 1 . An i l lust rat ion of the condi t ional branch nul l i f icat ion
scheme, (a) The condi t ional branch at the end of a loop wi l l
often be fol lowed by a copy of the f irst instruction of the loop.
This instruct ion wi l l only be executed i f the branch is taken,
(b) The forward condi t ional branch implement ing an i f s ta te
ment wi l l of ten be fol lowed by the f i rst instruct ion of the then
c lause, a l lowing use o f th is cyc le w i thout rear rangement o f
code. Th is ins t ruct ion wi l l on ly be executed i f the branch is
not taken.

lated to the new instruction set. The early existence of a
prototype compiler and simulator allowed operating sys
tem designers to begin their development early, and enabled
them to provide better early feedback about their needs,
from the architecture as well as the compiler.

At the same time, work was begun on optimization tech
niques for the new architecture. Segments of compiled code
were hand-analyzed to uncover opportunities for optimiza
tion. These hand-optimized programs were used as a
guideline for implementation and to provide a performance
goal. Soon after the first prototype compiler was developed,
a prototype register allocator and instruction scheduler
were also implemented, providing valuable data for the
optimizer and compiler designers.

Compil ing to a Reduced Instruct ion Set
Compiling for a reduced-complexity computer is simpli

fied in some aspects. With a limited set of instructions
from which to choose, code generation can be straightfor
ward. However, optimization is necessary to realize the
full advantage of the architectural features. The new HP
compiling system is designed to allow multiple languages
to be implemented with language-specific compiler front
ends. An optimization phase, common to all of the languages,
provides efficient register use and pipeline scheduling, and
eliminates unnecessary computations. With the elimina
tion of complex instructions found in many architectures,
the responsibility for generating the proper sequence of
instructions for high-level language constructs falls to the
compiler. Using the primitive instructions, the compiler can
construct precisely the sequence required for the application.

For this class of computer, the software architecture plays
a strong role in the performance of compiled code. There
is no procedure call instruction, so the procedure calling
sequence is tuned to handle simple cases, such as leaf
routines (procedures that do not call any other procedures),
without fixed expense, while still allowing the com
plexities of nested and recursive procedures. The saving
of registers at procedure call and procedure entry is depen-

(cont inued on page 7)

JANUARY 1986 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

Components of the Optimizer

The opt imizer is composed of two types of components, those
t ha t t ha t da ta f l ow and con t ro l f l ow ana l ys i s , and t hose t ha t
perform opt imizat ions. The informat ion provided by the analysis
components is shared by the opt imiza t ion components , and is
used to de te rm ine when ins t ruc t i ons can be de le ted , moved ,
rearranged, or modif ied.

For each procedure, the control f low analysis ident i f ies basic
b locks (sequences o f code tha t have no i n te rna l b ranch ing) .
These a re comb ined in to i n te rva ls , wh ich fo rm a h ie ra rchy o f
control structures. Basic blocks are at the bottom of this hierarchy,
and entire procedures are at the top. Loops and if-then constructs
are examples of the intermediate structures.

D a t a e x i n f o r m a t i o n i s c o l l e c t e d f o r e a c h i n t e r v a l . I t i s e x
pressed in terms of resource numbers and sequence numbers.
Each register, memory location, and intermediate expression has
a un ique resource number , and each use o r de f in i t i on o f a re
source has a unique sequence number. Three types of data f low
information are calculated:
â€¢ Reaching definit ions: for each resource, the set of definit ions

that could reach the top of the interval by some path.
â€¢ Exposed uses: for each resource, the set of uses that could

be reached by a def in i t ion at the bot tom of the interval .
â€¢ UNDEF set: the set of resources that are not available at the

top of the interval. A resource is avai lable i f i t is defined along
a l l paths reaching ' the in terval , and none of i ts operands are
later redef ined along that path.

From this information, a fourth data structure is bui l t :
â€¢ Web: a set of sequence numbers having the property that for

each use in the set, al l def ini t ions that might reach i t are also
i n the i t L i kew ise , f o r each de f i n i t i on i n the se t , a l l uses i t
might reach are a lso in the set . For each resource there may
be one or many webs.

Loop Optimizat ions
Frequently the majority of execution t ime in a program is spent

execut ing ins t ruc t ions conta ined in loops. Consequent ly , loop-
b a s e d s i g c a n p o t e n t i a l l y i m p r o v e e x e c u t i o n t i m e s i g
n i f icant ly . The fo l lowing d iscuss ion descr ibes components that
perform loop opt imizat ions.
Loop Inva r ian t Code Mot ion . Computa t i ons w i th in a l oop tha t
y ield the same result for every i terat ion are cal led loop invariant
compu ta t i ons . These compu ta t i ons can po ten t i a l l y be moved
outs ide the loop, where they are executed less f requent ly .

An inst ruct ion ins ide the loop is invar iant i f i t meets e i ther of
two condit ions: either the reaching definit ions for al l i ts operands
are outside the loop, or i ts operands are def ined by instruct ions
that have a l ready themselves been ident i f ied as loop invar iant .
In addition, there must not be a conflicting definit ion of the instruc
t ion 's condi ins ide the loop. I f the inst ruct ion is executed condi
t ional ly ins ide the loop, i t can be moved out only i f there are no
exposed uses of the target at the loop exi t .

An example is a computat ion invo lv ing var iab les that are not
mod i f ied in the loop . Ano ther i s the computa t ion o f an a r ray 's
base address.
Strength Reduct ion and Induct ion Var iables. Strength reduct ion
replaces mult ip l icat ion operat ions inside a loop with i terat ive ad
d i t ion operat ions. S ince there is no hardware ins t ruc t ion for in
t e g e r o f i n t h e a r c h i t e c t u r e , c o n v e r t i n g s e q u e n c e s o f
shir ts and adds to a s ingle instruct ion is a performance improve
ment . Induct ion var iab les are var iab les that are def ined ins ide
the loop in terms of a s imple funct ion of the loop counter .

Once the i nduc t i on va r iab les have been de te rm ined , t hose
that mul appropr iate for th is opt imizat ion are selected. Any mul
t ip l ica t ions invo lved in the computat ion o f these induct ion var i
ables are replaced with a COPY from a temporary. This temporary
holds the init ial value of the function, and is init ial ized preceding
the loop. I t is updated at the point of al l the reaching def ini t ions
of the induction variable with an appropriate addit ion instruct ion.
Final ly, the induct ion variable i tsel f is el iminated i f possible.

T h i s o f i s f r e q u e n t l y a p p l i e d t o t h e c o m p u t a t i o n o f
ar ray ind ices ins ide a loop, when the index is a funct ion of the
loop counter.

Common Subexpression El iminat ion
Common subexpress ion e l im ina t ion i s the remova l o f redun

dant computat ions and the reuse of the one resul t . A redundant
computat ion can be deleted when i ts target is not in the UNDEF
se t fo r the bas ic b lock i t i s con ta ined in , and a l l the reach ing
def in i t ions of the target are the same inst ruct ion. S ince the op
t imizer runs at the machine leve l , redundant loads of the same
var iab le in add i t ion to redundant a r i thmet ic computa t ions can
be removed.

Store-Copy Optimization
I t is possible to promote certain memory resources to registers

for the scope of the i r def in i t ions and uses. Only resources that
sat is fy a l ias ing rest r ic t ions can be t ransformed th is way. I f the
transformation can be performed, stores are converted to copies
and the loads are el iminated. This opt imizat ion is very useful for
a machine that has a large number of registers, since it maximizes
the use of regis ters and min imizes the use of memory.

For each memory resource there may be mult ip le webs. Each
memory web i s an i ndependen t cand ida te f o r p romo t i on t o a
register.

Unused Definit ion Elimination
Def in i t ions o f memory and reg is ter resources that a re never

used the removed. These de f in i t i ons a re iden t i f i ed dur ing the
bui ld ing of webs.

Local Constant Propagation
Constant propagat ion involves the fo ld ing and subst i tu t ion of

constant computat ions throughout a basic b lock. I f the resul t of
a computat ion is a constant , the inst ruct ion is de leted, and the
r e s u l t a n t c o n s t a n t i s u s e d a s a n i m m e d i a t e o p e r a n d i n s u b
sequent instructions that reference the original result. Also, i f the
operands o f a condi t iona l branch are constant , the branch can
be changed to an uncondi t iona l branch or de le ted.

Coloring Register Allocation
Many componen ts in t roduce add i t i ona l uses o f reg is te rs o r

pro long the use of ex is t ing registers over larger por t ions of the
procedure. Near-opt imal use of the avai lable registers becomes
crucia l af ter these opt imizat ions have been made.

Global register al location based on a method of graph coloring
is performed. The register resources are part i t ioned into groups
of disjoint def ini t ions and uses cal led register webs. Then, using
the exposed uses in format ion, in ter ferences between webs are
computed . An in te r fe rence occurs when two webs mus t be as
s i g n e d o f m a c h i n e r e g i s t e r s . R e g i s t e r s t h a t a r e c o p i e s o f
each other are assigned to the same register and the copies are
eliminated. The webs are sorted based on the number of Â¡nterfer-

6 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

enees each con ta ins . Then reg is te r ass ignment i s done us ing
th is order ing. When the regis ter a l locator runs out of regis ters.
i t f rees a register by saving another one to memory temporar i ly.
A heur is t ic a lgor i thm is used to choose which reg is ter to save.
Fo r examp le , reg i s te rs used heav i l y w i th in a l oop w i l l no t be
saved to f ree a register

Peephole Optimizations
The peephole opt imizer uses a dict ionary of equivalent instruc

t i o n p a t t o s i m p l i f y i n s t r u c t i o n s e q u e n c e s . S o m e o f t h e p a t
t e r n s b i t s i m p l i f i c a t i o n s t o a d d r e s s i n g m o d e c h a n g e s , b i t
manipulat ions, and data type convers ions.

Branch Optimizations
The branch opt imizer component t raverses the ins t ruc t ions ,

t rans forming branch Ins t ruc t ion sequences in to more e f f i c ien t
Inst ruct ion sequences. I t converts branches over s ingle inst ruc
tions whose instructions with conditional nullification. A branch whose
target is the next Instruct ion is deleted. Branch chains involving

b o t h i n t o a n d c o n d i t i o n a l b r a n c h e s a r e c o m b i n e d i n t o
shorter sequences wherever possible For example, a condit ional
branch to an uncondi t ional branch is changed to a s ingle condi
t ional branch.

Dead Code El iminat ion
Dead code is code that cannot be reached at program execu

t i on , s ince no b ranch to i t o r fa l l - th rough ex is ts . Th is code i s
deleted.

Scheduler
The Ins t ruc t ion schedu le r reorders the Ins t ruc t ions w i th in a

basic b lock, minimiz ing load/store and f loat ing-point inter locks.
I t a lso schedules the instruct ions fo l lowing branches.

Suneel Jain
Development Engineer

In format ion Technology Group

(cont inued f rom page 5)

dent on the register use of the individual procedure. A
special calling convention has been adopted to allow some
complex operations to be implemented in low-level
routines known as miliicode, which incur little overhead
for saving registers and status.

Compiling to a reduced instruction set can be simplified
because the compiler need not make complicated choices
among a number of instructions that have similar effects.
In the new architecture, all arithmetic, logical, or condi
tional instructions are register-based. All memory access
is done through explicit loads and stores. Thus the compiler
need not choose among instructions with a multitude of
addressing modes. The compiler's task is further simplified
by the fact that the instruction set has been constructed in
a very symmetrical manner. All instructions are the same
length, and there are a limited number of instruction for
mats. In addition to simplifying the task of code generation,
this makes the task of optimization easier as well. The
optimizer need not handle transformations between in
structions that have widely varying formats and addressing
modes. The symmetry of the instruction set makes the tasks
of replacing or deleting one or more instructions much
easier.

Of course, the reduced instruction set computer, though
simplifying some aspects of the compilation, requires more
of the compilers in other areas. Having a large number of
registers places the burden on the compilers to generate
code that can use these registers efficiently. Other aspects
of this new architecture also require the compilers to be
more intelligent about code generation. For example, the
instruction pipeline has become more exposed and, as men
tioned earlier, the instruction following a branch may be
executed before the branch takes effect. The compiler there
fore needs to schedule such instructions effectively. In ad
dition, loads from memory, which also require more than
a single cycle, will interlock with the following instruction
if the target register is used immediately. The compiler can
increase execution speed by scheduling instructions to
avoid these interlocks. The optimizer can also improve the
effectiveness of a floating-point coprocessor by eliminating

unnecessary coprocessor memory accesses and by reorder
ing the floating-point instructions.

In addition to such optimizations, which are designed
to exploit specific architectural features, conventional op
timizations such as common subexpression elimination,
loop invariant code motion, induction variable elaboration,
and local constant propagation were also implemented.3
These have a major impact on the performance of any com
puter. Such optimizations reduce the frequency of loads,
stores, and multiplies, and allow the processor to be used
with greater efficiency. However, the favorable cost/perfor
mance of the new HP architecture can be realized even with
out optimization.

The Compi ler System
All of the compilers for the new architecture share a

common overall design structure. This allows easy integra
tion of common functional components including a sym
bolic debugger, a code generator, an optimizer, and a linker.
This integration was achieved through detailed planning,
which involved the participation of engineers across many
language products. Of the new compilers, the Fortran/77,
Pascal, and COBOL compilers will appear very familiar to
some of our customers, since they were developed from
existing products available on the HP 3000 family of com
puters. All of these compilers conform to HP standard
specifications for their respective languages, and thus will
provide smooth migration from the HP 1000, HP 3000, and
HP 9000 product lines. The C compiler is a new product,
and as mentioned earlier, was the compiler used to pro
totype the instruction set from its earliest design phase.
The C compiler conforms to recognized industry standard
language specifications. Other compilers under develop
ment will be integrated into this compiler system.

To achieve successful integration of compilers into a
homogeneous compiling system it was necessary to define
distinct processing phases and their exact interfaces in
terms of data and control transfer. Each compiler begins
execution through the front end. This includes the lexical,
syntactic, and semantic analysis prescribed by each lan-

JANUARY 1986 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

guage standard. The front ends generate intermediate codes
from the source program, and pass these codes to the code
generators. The intermediate codes are at a higher level
than the machine code generated by a later phase, and
allow a certain degree of machine abstraction within the
front ends.

Two distinct code generators are used. They provide
varying degrees of independence from the front ends. Each
interfaces to the front ends through an intermediate code.
One of these code generation techniques has already been
used in two compiler products for the HP 3000. Fig. 2
shows the overall design of the compilers. Each phase of
the compilation process is pictured as it relates to the other
phases. The front ends are also responsible for generating
data to be used later in the compilation process. For exam
ple, the front end generates data concerning source state
ments and the types, scopes and locations of procedure/
function and variable names for later use by the symbolic
debugger. In addition, the front end is responsible for the
collection of data to be used by the optimizer.

These compilers can be supported by multiple operating
systems. The object file format is compatible across operat
ing systems.

Code Generat ion
The code generators emit machine code into a data struc

ture called SLLIC (Spectrum low-level intermediate code).
SLLIC also contains information regarding branches and
their targets, and thus provides the foundation for the build-

C o m p i l e r
S t ra tegy

Executable
Code

D e b u g g e r
S t ra tegy

Debug
Manager

Fig. 2. The compi ler system for HP's new generat ion of high-
prec is ion-archi tecture computers.

ing of a control flow graph by the optimizer. The SLLIC
data structure contains the machine instructions and the
specifications for the run-time environment, including the
program data space, the literal pool, and data initialization.
SLLIC also holds the symbolic debug information generated
by the front end, is the medium for later optimization, and
is used to create the object file.

The reduced instruction set places some extra burden
on the code generators when emitting code for high-level
language constructs such as byte moves, decimal opera
tions, and procedure calls. Since the instruction set con
tains no complex instructions to aid in the implementation
of these constructs, the code generators are forced to use
combinations of the simpler instructions to achieve the
same functionality. However, even in complex instruction
set architectures, complex case analysis is usually required
to use the complex instructions correctly. Since there is
little redundancy in the reduced instruction set, most often
no choice of alternative instruction sequences exists. The
optimizer is the best place for these code sequences to be
streamlined, and because of this the overall compiler de
sign is driven by optimization considerations. In particular,
the optimizer places restrictions upon the code generators.

The first class of such restrictions involves the presenta
tion of branch instructions. The optimizer requires that all
branches initially be followed by a NOP (no operation) in
struction. This restriction allows the optimizer to schedule
instructions easily to minimize interlocks caused by data
and register access. These NOPs are subsequently replaced
with useful instructions, or eliminated.

The second class of restrictions concerns register use.
Register allocation is performed within the optimizer.
Rather than use the actual machine registers, the code
generators use symbolic registers chosen from an infinite
register set. These symbolic registers are mapped to the set
of actual machine registers by the register allocator. Al
though register allocation is the traditional name for such
an activity, register assignment is more accurate in this
context. The code generators are also required to associate
every syntactically equivalent expression in each proce
dure with a unique symbolic register number. The symbolic
register number is used by the optimizer to associate each
expression with a value number (each run-time value has
a unique number). Value numbering the symbolic registers
aids in the detection of common subexpressions within
the optimizer. For example, every time the local variable
i is loaded it is loaded into the same symbolic register, and
every time the same two symbolic registers are added to
gether the result is placed into a symbolic register dedicated
to hold that value.

Although the optimizer performs transformations at the
machine instruction level, there are occasions where it
could benefit from the existence of slightly modified and/or
additional instructions. Pseudoinstructions are instruc
tions that map to one or more machine instructions and
are only valid within the SLLIC data structure as a software
convention recognized between the code generators and
the optimizer. For example, the NOP instruction mentioned
above is actually a pseudoinstruction. No such instruction
exists on the machine, although there are many instruction/
operand combinations whose net effect would be null. The

8 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

NOP pseudoinstruction saves the optimizer from having to
recognize all those sequences. Another group of pseudo-
instructions has been defined to allow the optimizer to
view all the actual machine instructions in the same canon
ical form without being restricted by the register use pre
scribed by the instructions. For example, some instructions
use the same register as both a source and a target. This
makes optimization very difficult for that instruction. The
solution involves the definition of a set of pseudo-
instructions, each of which maps to a two-instruction se
quence, first to copy the source register to a new symbolic
register, and then to perform the operation on that new
register. The copy instruction will usually be eliminated
by a later phase of the optimizer.

Another class of perhaps more important pseudoinstruc-
tions involves the encapsulation of common operations
that are traditionally supported directly by hardware, but
in a reduced instruction set are only supported through
the generation of code sequences. Examples include mul
tiplication, division, and remainder. Rather than have each
code generator contain the logic to emit some correct se
quence of instructions to perform multiplication, a set of
pseudoinstructions has been defined that makes it appear
as if a high-level multiplication instruction exists in the
architecture. Each of the pseudoinstructions is defined in
terms of one register target and either two register operands
or one register operand and one immediate. The use of
these pseudoinstructions also aids the optimizer in the
detection of common subexpressions, loop invariants, and
induction variables by reducing the complexity of the code
sequences the optimizer must recognize.

Control flow restrictions are also placed on generated
code. A basic block is defined as a straight-line sequence
of code that contains no transfer of control out of or into
its midst. If the code generator wishes to set the carry/bor
row bit in the status register, it must use that result within
the same basic block. Otherwise, the optimizer cannot
guarantee its validity. Also, all argument registers for a
procedure/function call must be loaded in the same basic
block that contains the procedure call. This restriction
helps the register allocator by limiting the instances where
hard-coded (actual) machine registers can be live (active)
across basic block boundaries.

Optimization
After the SLLIC data structure has been generated by the

code generator, a call is made to the optimizer so that it
can begin its processing. The optimizer performs intrapro-
cedural local and global optimizations, and can be turned
on and off on a procedure-by-procedure basis by the pro
grammer through the use of compiler options and directives
specific to each compiler. Three levels of optimization are
supported and can also be selected at the procedural level.

Optimization is implemented at the machine instruction
level for two reasons. First, since the throughput of the
processor is most affected by the requests made of the mem
ory unit and cache, optimizations that reduce the number
of requests made, and optimizations that rearrange these
requests to suit the memory unit best, are of the most value.
It is only at the machine level that all memory accesses
become exposed, and are available candidates for such op

timizations. Second, the machine level is the common de
nominator for all the compilers, and will continue to be
for future compilers for the architecture. This allows the
implementation of one optimizer for the entire family of
compilers. In addition to very machine specific optimiza
tions, a number of theoretically machine independent op
timizations (for example, loop optimizations) are also in
cluded. These also benefit from their low-level implemen
tation, since all potential candidates are exposed. For exam
ple, performing loop optimizations at the machine level
allows the optimizer to move constants outside the loop,
since the machine has many registers to hold them. In sum
mary, no optimization has been adversely affected by this
strategy; instead, there have been only benefits.

Level 0 optimization is intended to be used during pro
gram development. It is difficult to support symbolic de
bugging in the presence of all optimizations, since many
optimizations reorder or delete instruction sequences. Non-
symbolic debugging is available for fully optimized pro
grams, but users will still find it easier to debug nonop-
timized code since the relationship between the source and
object code is clearer. No code transformations are made
at level 0 that would preclude the use of a symbolic debug
ger. In particular, level 0 optimizations include some copy
and NOP elimination, and limited branch scheduling. In
addition, the components that physically exist as part of
the optimizer, but are required to produce an executable
program, are invoked. These include register allocation and
branch fixing (replacing short branches with long branches
where necessary).

After program correctness has been demonstrated using
only level 0 optimizations, the programmer can use the
more extensive optimization levels. There are two addi
tional levels of optimization, either of which results in
code reordering. The level any particular optimization
component falls into is dependent upon the type of infor
mation it requires to perform correct program transforma
tions. The calculation of data flow information gives the
optimizer information regarding all the resources in the
program. These resources include general registers, dedi
cated and status registers, and memory locations (vari
ables). The information gleaned includes where each re
source is defined and used within the procedure, and is
critical for some optimization algorithms. Level 1 optimi
zations require no data flow information, therefore adding
only a few additional optimizations over level 0. Invoking
the optimizer at level 2 will cause all optimizations to be
performed. This requires data flow information to be calcu
lated.

Level 1 optimization introduces three new optimiza
tions: peephole and branch optimizations and full instruc
tion scheduling. Peephole optimizations are performed by
pattern matching short instruction sequences in the code
to corresponding templates in the peephole optimizer. An
example of a transformation is seen in the C source expres
sion

i f (f l ag & 0x8)

which tests to see that the fourth bit from the right is set
in the integer flag. The unoptimized code is

JANUARY 1986 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

L D O 8 (0) , 1 9
A N D 3 1 , 1 9 , 2 0
C O M I B T , = 0 , 2 0 , l a b e l

load immediate 8 into r1 9
intersect r31 (f lag) with r1 9 into r20
compare resu l t aga ins t 0 and branch

Peephole optimization replaces these three instructions
with the one instruction

B B , > = 3 1 , 2 8 , l a b e l ; b r a n c h o n b i t

which will branch if bit 28 (numbered left to right from 0)
in r31 (the register containing flag) is equal to 0.

Level 1 optimization also includes a branch optimizer
whose task is to eliminate unnecessary branches and some
unreachable code. Among other tasks, it replaces branch
chains with a single branch, and changes conditional
branches whose targets are unconditional branches to a
single conditional branch.

The limited instruction scheduling algorithm of level 0
is replaced with a much more thorough component in level
1. Level 0 scheduling is restricted to replacing or removing
the NOPs following branches where possible, since code
sequence ordering must be preserved for the symbolic de
bugger. In addition to this, level 1 instructions are sched
uled with the goal of minimizing memory interlocks. The
following typify the types of transformations made:
â€¢ Separate a load from the instruction that uses the loaded

register
â€¢ Separate store and load instruction sequences
â€¢ Separate floating-point instructions from each other to

improve throughput of the floating-point unit.
Instruction scheduling is accomplished by first con

structing a dependency graph that details data dependen
cies between instructions. Targeted instructions are sepa
rated by data independent instructions discovered in the
graph.

The same register allocator is used in level 0 and level
1 optimization. It makes one backwards pass over each
procedure to determine where the registers are defined and
used and whether or not they are live across a call. It uses
this information as a basis for replacing the symbolic regis
ters with actual machine registers. Some copy elimination
is also performed by this allocator.

Level 2 optimizations include all level I optimizations
as well as local constant propagation, local peephole trans
formations, local redundant definition elimination, com
mon subexpression and redundant load/store elimination,
loop invariant code motion, induction variable elaboration
and strength reduction, and another register allocator. The
register allocator used in level 2 is partially based on graph
coloring technology.4 Fully optimized code contains many
more live registers than partially optimized or nonop-
timized code. This register allocator handles many live
registers better than the register allocator of levels 0 and
1. It has access to the data flow information calculated for
the symbolic registers and information regarding the fre
quency of execution for each basic block.

Control F low and Data Flow Analysis
All of the optimizations introduced in level 2 require

data flow information. In addition, a certain amount of
control flow information is required to do loop-based op

timizations. Data flow analysis provides information to the
optimizer about the pattern of definition and use of each
resource. For each basic block in the program, data flow
information indicates what definitions may reach the block
(reaching definitions) and what later uses may be affected
by local definitions (exposed uses). Control flow informa
tion in the optimizer is contained in the basic block and
interval structures. Basic block analysis identifies blocks
of code that have no internal branching, interval analysis
identifies patterns of control flow such as if-then-else and
loop constructs.5 Intervals simplify data flow calculations,
identify loops for the loop-based optimizations, and enable
partial update of data flow information.

In the optimizer, control flow analysis and data flow
analysis are performed in concert. First, basic blocks are
identified. Second, local data flow information is calcu
lated for each basic block. Third, interval analysis exposes
the structure of the program. Finally, using the interval
structure as a basis for its calculation rules, global data
flow analysis calculates the reaching definitions and ex
posed uses.

Basic block analysis of the SLLIC data structure results
in a graph structure where each basic block identifies a
sequence of instructions, along with the predecessor and
successor basic blocks. The interval structure is built on
top of this, with the smallest interval being a basic block.
Intervals other than basic blocks contain subintervals
which may themselves be any type of interval. Interval
types include basic block, sequential block (the subinter
vals follow each other in sequential order), if-then, if-then-
else, self loop, while loop, repeat loop, and switch (case
statement). When no such interval is recognized, a set of
subintervals may be contained in either a proper interval

Sequen t i a l B l ock

Basic Block
Â¡ :=0;

Fig. simple This figure illustrates the interval structure of a simple
sequence o f Pasca l code . The nes ted boxes represen t the
interval hierarchy.

10 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

(if the control flow is well-behaved) or an improper interval
(if it contains multiple-entry cycles or targets of unknown
branches). An entire procedure will be represented by a
single interval with multiple descendants. Fig. 3 shows the
interval structure for a simple Pascal program.

Calculation of data flow information begins with an
analysis of what resources are used and defined by each
basic block. Each use or definition of a resource is identified
by a unique sequence number. Associated with each se
quence number is information regarding what resource is
being referenced, and whether it is a use or a definition.
Each SLLIC instruction entry contains sequence numbers
for all of the resources defined or used by that instruction.
The local data flow analysis determines what local uses
are exposed at the top of the basic block (i.e., there is a use
of a resource with no preceding definition in that block)
and what local definitions will reach the end of the block
(i.e., they define a resource that is not redefined later in
the block). The local data flow analysis makes a forward
and backward pass through the instructions in a basic block
to determine this information.

Local data flow information is propagated out from the
basic blocks to the outermost interval. Then, information
about reaching definitions and exposed uses is propagated
inward to the basic block level. For known interval types,
this involves a straightforward calculation for each subin-
terval. For proper intervals, this calculation must be per
formed twice for each subinterval, and for improper inter
vals, the number of passes is limited by the number of
subintervals.

As each component of the optimizer makes transforma
tions to the SLLIC graph, the data flow information becomes
inaccurate. Two strategies are employed to bring this infor
mation up-to-date: patching of the existing data flow infor
mation and partial recalculation. For all optimizations ex
cept induction variable elimination, the data flow informa
tion can be patched by using information about the nature
of the transformation to determine exactly how the data
flow information must be changed. All transformations take
place within the loop interval in induction variable elimi
nation. The update of data flow information within the
loop is performed by recalculating the local data flow infor
mation where a change has been made, and then by prop
agating that change out to the loop interval. The effect of
induction variable elimination on intervals external to the
loop is limited, and this update is performed by patching
the data flow information for these intervals.

Aliasing
The concept of resources has already been presented in

the earlier discussion of data flow analysis. The optimizer
provides a component called the resource manager for use
throughout the compiler phases. The resource manager is
responsible for the maintenance of information regarding
the numbers and types of resources within each procedure.
For example, when the code generator needs a new sym
bolic register, it asks the resource manager for one. The
front ends also allocate resources corresponding to memory
locations for every variable in each procedure. The re
sources allocated by the resource manager are called re
source numbers. The role of the resource manager is espe

cially important in this family of compilers. It provides a
way for the front end, which deals with memory resources
in terms of programmer variable names, and the optimizer,
which deals with memory resources in terms of actual
memory locations, to communicate the relationship be
tween the two.

The most basic use of the resource numbers obtained
through the resource manager is the identification of
unique programmer variables. The SLLIC instructions are
decorated with information that associates resource num
bers with each operand. This allows the optimizer to rec
ognize uses of the same variable without having to compare
addresses. The necessity for communication between the
front ends and the optimizer is demonstrated by the follow
ing simplified example of C source code:

proc() {
in t i , j , k , *p ;

i = j - t - k ;
* P = 1 ;
i = j + k ;

At first glance it might seem that the second calculation
of j + k is redundant, and in fact it is a common subexpres
sion that need only be calculated once. However, if the
pointer p has been set previously to point to either j or k,
then the statement *p = 1 might change the value of either
j or k. If p has been assigned to point to j, then we say that
*p and j are aJiased to each other. Every front end includes
a component called a gatherer6 whose responsibility it is
to collect information concerning the ways in which mem
ory resources in each procedure relate to each other. This
information is cast in terms of resource numbers, and is
collected in a similar manner by each front end. Each
gatherer applies a set of language specific alias rules to the
source. A later component of the optimizer called the
aliaser reorganizes this information in terms more suitable
for use by the local data flow component of the optimizer.

Each gatherer had to solve aliasing problems specific to
its particular target language. For example, the Pascal
gatherer was able to use Pascal's strong typing to aid in
building sets of resources that a pointer of some particular
type can point to. Since C does not have strong typing, the
C gatherer could make no such assumptions. The COBOL
compiler had to solve the aliasing problems that are intro
duced with the REDEFINE statement, which can make data
items look like arrays. Fig. 4 shows the structure of the
new compilers from an aliasing perspective. It details data
and control dependencies. Once the aliasing data has been
incorporated into the data flow information, every compo
nent in the optimizer has access to the information, and
incorrect program transformations are prevented.

The aliaser also finishes the calculation of the aliasing

J A N U A R Y 1 9 8 6 H E W L E T T - P A C K A R D J O U R N A L 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

relationships by calculating the transitive closure on the
aliasing information collected by the gatherers. The need
for this calculation is seen in the following skeleton Pascal
example:

p r o c e d u r e p ;
beg in

P ' ' ' i n t e g e r ;

q : A i n tege r ;

p := q;

q := p;

The SLLIC Package
The SLLIC data structure is allocated, maintained, and

manipulated by a collection of routines called the SLLIC
package. Each code generator is required to use these
routines. The SLLIC package produces an object file from
the SLLIC graph it is presented with, which is either op
timized or unoptimized. During implementation it was re
latively easy to experiment with the design of the object
file, since its creation is only implemented in one place.
The object file is designed to be transportable between
multiple operating systems running on the same architec
ture.

The SLLIC graph also contains the symbolic debug infor
mation produced by the front end. This information is
placed into the object file by the SLLIC package. The last
step in the compilation process is the link phase. The linker
is designed to support multiple operating systems. As much
as possible, our goal has been for the new compilers to
remain unchanged across operating systems, an invaluable
characteristic for application development.

end;

The aliasing information concerning q must be trans
ferred to p, and vice versa, because of the effects of the two
assignment statments shown. The aliaser is an optimizer
component used by all the front ends, and requires no
language specific data. Another type of memory aliasing
occurs when two or more programmer variables can overlap
with one another in memory. This happens within C unions
and Fortran equivalence statements. Each gatherer must
also deal with this issue, as well as collecting information
concerning the side effects of procedure and function calls
and the use of arrays.

"Trans i t i ve c losure : For a g iven resource, the se t o f resources tha t can be shown to be
al iased to the given resource by any sequence of al iasing relat ionships.

Addressing RISC Myths
The new compiling system provides a language develop

ment system that is consistent across languages. However,
each language presents unique requirements to this system.
Mapping high-level language constructs to a reduced-com
plexity computer requires the development of new im
plementation strategies. Procedure calls, multiplication,
and other complex operations often implemented in micro
code or supported in the hardware can be addressed with
code sequences tuned to the specific need. The following
discussion is presented in terms of several misconceptions,
or myths, that have appeared in speculative discussions
concerning code generation for reduced-complexity ar
chitectures. Each myth is followed by a description of the
approach adopted for the new HP compilers.

Myth: An architected procedure call instruction is
necessary for efficient procedure calls.

HP Pascal
Front End

HP Fortran/77
Front End

H P C O B O L
Front End

HP C
Front End

Fig. 4. Scheme for the col lect ion of a l ias informat ion.

Modern programming technique encourages program
mers to write small, well-structured procedures rather than
large monolithic routines. This tends to increase the fre
quency of procedure calls, thus making procedure call ef
ficiency crucial to overall system performance.

Many machines, like the HP 3000, provide instructions
to perform most of the steps that make up a procedure call.
The new HP high-precision architecture does not. The
mechanism of a procedure call is not architected, but in
stead is accomplished by a software convention using the
simple hardwired instructions. This provides more flexibil
ity in procedure calls and ultimately a more efficient call
mechanism.

Procedure calls are more than just a branch and return
in the flow of control. The procedure call mechanism must
also provide for the passing of parameters, the saving of
the caller's environment, and the establishment of an envi
ronment for the called procedure. The procedure return
mechanism must provide for the restoration of the calling
procedure's environment and the saving of return values.

The new HP machines are register-based machines, but

12 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

by convention a stack is provided for data storage. The
most straightforward approach to procedure calls on these
machines assumes that the calling procedure acquires the
responsibility for preserving its state. This approach em
ploys the following steps:
â€¢ Save all registers whose contents must be preserved

across the procedure call. This prevents the called pro
cedure, which will also use and modify registers, from
affecting the calling procedure's state. On return, those
register values are restored.

â€¢ Evaluate parameters in order and push them onto the
stack. This makes them available to the called procedure
which, by convention, knows how to access them.

â€¢ Push a frame marker. This is a fixed-size area containing
several pieces of information. Among these is the static
Jink, which provides information needed by the called
procedure to address the local variables and parameters
of the calling procedure. The return address of the calling
procedure is also found in the stack marker.

â€¢ Branch to the entry point of the called procedure.
To return from the call, the called procedure extracts the

return address from the stack marker and branches to it.
The calling procedure then removes the parameters from
the stack and restores all saved registers before program
flow continues.

This simple model correctly implements the steps
needed to execute a procedure call, but is relatively expen
sive. The model forces the caller to assume all responsibil
ity for preserving its state. This is a safe approach, but
causes too many register saves to occur. To optimize the
program's execution, the compiler makes extensive use of
registers to hold local variables and temporary values.
These registers must be saved at a procedure call and re
stored at the return. The model also has a high overhead
incurred by the loading and storing of parameters and link
age information. The ultimate goal of the procedure call
convention is to reduce the cost of a call by reducing mem
ory accesses.

The new compilers minimize this problem by introduc
ing a procedure call convention that includes a register
partition. The registers are partitioned into caJler-saves (the
calling procedure is responsible for saving and restoring
them), caJJee-saves (the called procedure must save them
at entry and restore them at exit), and linkage registers.
Thirteen of the 32 registers are in the caller-saves partition
and 16 are in the callee-saves partition. This spreads the
responsibility for saving registers between the calling and
called procedures and leaves some registers available for
linkage.

The register allocator avoids unnecessary register saves
by using caller-saves registers for values that need not be
preserved. Values that must be saved are placed into regis
ters from the callee-saves partition. At procedure entry,
only those callee-saves registers used in the procedure are
saved. This minimizes the number of loads and stores of
registers during the course of a call. The partition of regis
ters is not inflexible; if more registers are needed from a
particular partition than are available, registers can be bor
rowed from the other partition. The penalty for using these
additional registers is that they must be saved and restored,
but this overhead is incurred only when many registers are

needed, not for all calls.
In the simple model, all parameters are passed by being

placed on the stack. This is expensive because memory
references are made to push each parameter and as a con
sequence the stack size is constantly altered. The new com
pilers allocate a permanent parameter area large enough to
hold the parameters for all calls performed by the proce
dure. They also minimize memory references when storing
parameters by using a combination of registers and memory
to pass parameters. Four registers from the callee-saves
partition are used to pass user parameters; each holds a
single 32-bit value or half of a 64-bit value. Since proce
dures frequently have few parameters, the four registers
are usually enough to contain them all. This removes the
necessity of storing parameter values in the parameter area
before the call. If more than four 32-bit parameters are
passed, the additional ones are stored in the preallocated
parameter area. If a parameter is larger than 64 bits, its
address is passed and the called procedure copies it to a
temporary area.

Additional savings on stores and loads occur when the
called procedure is a leaf routine. As mentioned previously,
the optimizer attempts to maximize the use of registers to
hold variable values. When a procedure is a leaf, the register
allocator uses the caller-saves registers for this purpose,
thus eliminating register saves for both the calling and
called procedures. It is never necessary to store the return
address or parameter registers of a leaf routine since they
will not be modified by subsequent calls.

Leaf routines do not need to build a stack frame, since
they make no procedure calls. Also, if the allocator suc
ceeds is representing all local variables as registers, it is
not necessary to build the local variable area at entry to
the leaf procedure.

The convention prescribes other uses of registers to elimi
nate other loads and stores at procedure calls. The return
address is always stored in a particular register, as is the
static link if it is needed.

To summarize, the procedure call convention used in
the new HP computers streamlines the overhead of proce
dure calls by minimizing the number of memory references.
Maximal use of registers is made to limit the number of
memory accesses needed to handle parameters and linkage.
Similarly, the convention minimizes the need to store val
ues contained in registers and does not interfere with at
tempts at optimization.

Myth: The simple instructions available in RISC
result in significant code expansion.

Many applications, especially commercial applications,
assume the existence of complex high-level instructions
typically implemented by the system architecture in micro
code or hardware. Detractors of RISC argue that significant
code expansion is unavoidable since the architecture lacks
these instructions. Early results do not substantiate this
argument.7'8 The new HP architecture does not provide
complex instructions because of their impact on overall
system performance and cost, but their functionality is
available through other means.

As described in an earlier article,2 the new HP machines

JANUARY 1986 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

do not have a microcoded architecture and all of the in
structions are implemented in hardware. The instructions
on microcoded machines are implemented in two ways.
At the basic level, instructions are realized in hardware.
More complex instructions are then produced by writing
subroutines of these hardware instructions. Collectively,
these constitute the microcode of the machine. Which in
structions are in hardware and which are in microcode are
determined by the performance and cost goals for the sys
tem. Since HP's reduced instruction set is implemented
solely at the hardware level, subroutines of instructions
are equivalent to the microcode in conventional architec
tures.

To provide the functionality of the complex instructions
usually found in the architecture of conventional machines,
the design team developed the alternative concept of mil-
Jicode instructions or routines. Millicode is HP's imple
mentation of complex instructions using the simple hard
ware instructions packaged into subroutines. Millicode
serves the same purpose as traditional microcode, but is
common across all machines of the family rather than spe
cific to each.

The advantages of implementing functionality as mil-
licode are many. Microcoded machines may contain hid
den performance penalties on all instructions to support
multiple levels of instruction implementation. This is not
the case for millicode. From an architectural viewpoint,
millicode is just a collection of subroutines indistinguish
able from other subroutines. A millicode instruction is exe
cuted by calling the appropriate millicode subroutine.
Thus, the expense of executing a millicode instruction is
only present when the instruction is used. The addition of
millicode instructions has no hardware cost and hence no
direct influence on system cost. It is relatively easy and
inexpensive to upgrade or modify millicode in the field,
and it can continue to be improved, extended, and tuned
over time.

Unlike most microcode, millicode can be written in the
same high-level languages as other applications, reducing
development costs yet still allowing for optimization of
the resultant code. Severely performance-critical millicode
can still be assembly level coded in instances where the
performance gain over compiled code is justified. The size
of millicode instructions and the number of such instruc
tions are not constrained by considerations of the size of
available control store. Millicode resides in the system as
subroutines in normally managed memory, either in virtual
memory where it can be paged into and out of the system
as needed, or in resident memory as performance consid
erations dictate. A consequence of not being bound by re
strictive space considerations is that compiler writers are
free to create many more specialized instructions in mil
licode than would be possible in a microcoded architecture,
and thus are able to create more optimal solutions for spe
cific situations.

Most fixed instruction sets contain complex instructions
that are overly general. This is necessary since it is costly
to architect many variations of an instruction. Examples
of this are the MVB (move bytes) and MVW (move words)
instructions on the HP 3000. They are capable of moving
any number of items from any arbitrary source location to

any target location. Yet, the compiler's code generators
frequently have more information available about the
operands of these instructions that could be used to advan
tage if other instructions were available. The code generators
frequently know whether the operands overlap, whether
the operands are aligned favorably, and the number of items
to be moved. On microcoded machines, this information
is lost after code generation and must be recreated by the
microcode during each execution of the instruction. On
the new HP computers, the code generators can apply such
information to select a specialized millicode instruction
that will produce a faster run-time execution of the opera
tion than would be possible for a generalized routine.

Access to millicode instructions is through a mechanism
similar to a procedure call. However, additional restrictions
placed on the implementation of millicode routines pre
vent the introduction of any barriers to optimization. Mil
licode routines must be leaf routines and must have no
effect on any registers or memory locations other than the
operands and a few scratch registers. Since millicode calls
are represented in SLLIC as pseudoinstructions, the op
timizer can readily distinguish millicode calls from proce
dure calls. Millicode calls also use different linkage regis
ters from procedure calls, so there is no necessity of preserv
ing the procedure's linkage registers before invoking milli
code instructions.

The only disadvantage of the millicode approach over
microcode is that the initiation of a millicode instruction
involves an overhead of at least two instructions. Even so,
it is important to realize that for most applications, mil
licode instructions are infrequently needed, and their over
head is incurred only when they are used. The high-preci
sion architecture provides the frequently needed instruc
tions directly in hardware.

Myth: RISC machines must implement integer
multiplication as successive additions.

Integer multiplication is frequently an architected in
struction. The new architecture has no such instruction
but provides others that support an effective implementa
tion of multiplication. It also provides for inclusion of a
high-speed hardware multiplier in a special function unit.2

Our measurements reveal that most multiplication oper
ations generated by user programs involve multiplications
by small constants. Many of these occurrences are explicitly
in the source code, but many more are introduced by the
compiler for address and array reference evaluation. The
new compilers have available a trio of instructions that
perform shift and add functions in a single cycle. These
instructions, SH1 ADD (shift left once and add), SH2ADD (shift
left twice and add) and SH3ADD (shift left three times and
add) can be combined in sequences to perform multiplica
tion by constants in very few instructions. Multiplications
by most constants with absolute values less than 1040 can
be accomplished in fewer than five cycles. Negatively
signed constants require an additional instruction to apply
the sign to the result. Multiplication by all constants that
are exact powers of 2 can be performed with a single shift
instruction unless overflow conditions are to be detected.
Additionally, multiplications by 4 or 2 for indexed address-

14 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

ing can be avoided entirely. The LDWX (load word indexed)
and LDHX (load half-word indexed) instructions optionally
perform unit indexing, which combines multiplication of
the index value with the address computation in the
hardware.

The following examples illustrate multiplication by vari
ous small constants.

Source code:
4Â»k

Assembly code:
S H 2 A D D 8 , 0 , 9

Source code:
-163*k

Assembly code:
S H 3 A D D 8 , 8 , 1

SH3ADD 1,1,1

SH1ADD 1,8,1

SUB 0,1,1

Source code:

A(k)
Assembly code:

L D O - 4 0 4 (3 0) , 9

L O W - 5 6 (0 , 3 0) 7
L D W X . S 7 (0 , 9) , 5

sh i f t r8 (k) le f t 2 p laces,
add to rO (zero) into r9

shi f t r8(k) le f t 3 p laces, add
to itself into r1
shif t r1 left 3 places, add to
itself into r1
shif t r1 left 1 place, add to
k i n t o r !
subtract resul t f rom 0 to
negate; back into r1

load a r ray base address
into r9
load unit index value into r 7
mul t ip ly index by 4 and
load e lement in to r5

When neither operand is constant or if the constant is
such that the in-line code sequence would be too large,
integer multiplication is accomplished with a millicode
instruction. The multiply millicode instruction operates
under the premise that even when the operands are un
known at compile time, one of them is still likely to be a
small value. Application of this to the multiplication al
gorithm yields an average multiplication time of 20 cy
cles, which is comparable to an iterative hardware im
plementation.

Myth: HISC machines cannot support commercial
applications languages.

A popular myth about RISC architectures is that they
cannot effectively support languages like COBOL. This be
lief is based on the premise that RISC architectures cannot
provide hardware support for the constructs and data types
of COBOL-like languages while maintaining the one-in-
struction-one-cycle advantages of RISC. As a consequence,
some feel that the code expansion resulting from perform
ing COBOL operations using only the simple architected
instructions would be prohibitive. The significance of this
is often overstated. Instruction traces of COBOL programs
measured on the HP 3000 indicate that the frequency of
decimal arithmetic instructions is very low. This is because
much of the COBOL program's execution time is spent in
the operating system and other subsystems.

COBOL does place demands on machine architects and
compiler designers that are different from those of lan
guages like C, Fortran, and Pascal. The data items provided
in the latter languages are represented in binary and hence
are native to the host machine. COBOL data types also in
clude packed and unpacked decimal, which are not com
monly native and must be supported in ways other than
directly in hardware.

The usual solution on conventional machines is to pro
vide a commercial instruction set in microcode. These ad
ditional instructions include those that perform COBOL
field (variable) moves, arithmetic for packed decimal val
ues, alignment, and conversions between the various arith
metic types.

In the new HP machines, millicode instructions are used
to provide the functionality of a microcoded commercial
instruction set. This allows the encapsulation of COBOL
operations while removing the possibility of runaway code
expansion. Many COBOL millicode instructions are avail
able to do each class of operation. The compiler expends
considerable effort to select the optimal millicode opera
tion based on compile-time information about the opera
tion and its operands. For example, to generate code to
perform a COBOL field move, the compiler may consider
the operand's relative and absolute field sizes and whether
blank or zero padding is needed before selecting the appro
priate millicode instruction.

Hardware instructions that assist in the performance of
some COBOL operations are architected. These instruc
tions execute in one cycle but perform operations that
would otherwise require several instructions. They are
emitted by the compiler in in-line code where appropriate
and are also used to implement some of the millicode in
structions. For example, the DCOR (decimal correct) and
UADDCM (unit add complement) instructions allow packed
decimal addition to be performed using the binary ADD
instruction. UADDCM prepares an operand for addition and
the DCOR restores the result to packed decimal form after
the addition. For example:

r 1 a n d r 2 c o n t a i n p a c k e d d e c i m a l o p e r a n d s
r 3 c o n t a i n s t h e c o n s t a n t X ' 9 9 9 9 9 9 9 9 '

UADDCM 1 ,3 ,31
A D D 2 , 3 1 , 3 1
D C O R 3 1 , 3 1

pre-b ias operand in to r31
per fo rm b ina ry add
cor rec t resu l t

Millicode instructions support arithmetic for both
packed and unpacked decimal data. This is a departure
from the HP 3000, since on that machine unpacked arith
metic is performed by first converting the operand to
packed format, performing the arithmetic operation on the
packed data, and then converting the result back to un
packed representation. Operations occur frequently enough
on unpacked data to justify the implementation of un
packed arithmetic routines. The additional cost to imple
ment them is minimal and avoids the overhead of convert
ing operands between the two types. An example of the
code to perform an unpacked decimal add is:

JANUARY 1986 HEWLETT-PACKARD JOURNA^ 15

© Copr. 1949-1998 Hewlett-Packard Co.

r 1 a n d r 2 c o n t a i n u n p a c k e d d e c i m a l o p e r a n d s
r 3 c o n t a i n s t h e c o n s t a n t X ' 9 6 9 6 9 6 9 6 '
r4 con ta ins the cons tan t X 'OfOfOfOf
r 5 c o n t a i n s t h e c o n s t a n t X ' 3 0 3 0 3 0 3 0 '

ADD 3,1,31

ADD 31,2,31

DCOR 31,31

AND 4,31,31

OR 5,31,31

pre-b ias operand in to r31
binary add into r31
cor rec t resu l t
mask resu l t
res to re sum to unpacked dec ima l

In summary, COBOL is supported with a blend of
hardware assist instructions and millicode instructions.
The compiled code is compact and meets the run-time
execution performance goals.

Conclusions
The Spectrum program began as a joint effort of hardware

and software engineers. This early communication allowed
high-level language issues to be addressed in the architec
tural design.

The new HP compiling system was designed with a re
duced-complexity machine in mind. Register allocation,
instruction scheduling, and traditional optimizations allow
compiled programs to make efficient use of registers and
low-level instructions.

Early measurements have shown that this compiler tech
nology has been successful in exploiting the capabilities
of the new architecture. The run-time performance of com
piled code consistently meets performance objectives.
Compiled code sizes for high-level languages implemented

An Optimization Example

This example i l lust rates the code generated for the fo l lowing
C program for both the unopt imized and the opt imized case.

test ()
{
int i, j;
inta1[25], a2[25], r[25][25];

for (i = 0; i < 25; Â¡+ +) {
for Ã¼ = 0; j < 25; j + +) (

r [i] 0] = at [i] * a2 [Â¡];

Ã­
In the example code that fol lows, the fol lowing mnemonics are

used:
r p r e t u r n p o i n t e r , c o n t a i n i n g t h e

a d d r e s s t o w h i c h c o n t r o l s h o u l d
b e r e t u r n e d u p o n c o m p l e t i o n o f
t h e p r o c e d u r e

a r g O f i r s t p a r a m e t e r r e g i s t e r
a r g 1 s e c o n d p a r a m e t e r r e g i s t e r
s p s t a c k p o i n t e r , p o i n t i n g t o t h e t o p

o f t he cu r ren t f r ame
m r e t O m i l l i c o d e r e t u r n r e g i s t e r
m r p m i l l i c o d e r e t u r n p o i n t e r .

The value of register zero (rO) is always zero.

The fo l lowing is a br ief descr ipt ion of the instruct ions used:
LDO
LOW
LDWX.S
STW
STWS
STWM

immed(r1),r2
immed(r1),r2
r1(r2),r3
M ,immed(r2)
r1,immed(r2)
r1,immed(r2)

rt
*(r1

r2 + immed
COMB,<= M,r2 , labe l
BL

BV
ADD
SH1ADD
SH2ADD

label, M

0(r1)
r1,r2,r3
M,r2,r3
r1,r2,r3

Â¡mmed.
+ Â¡mmed)

r 3 ^ * (4 * r t + r 2)
*(r2 + Â¡mmed)Â»â€” r1
*(r2 + immed)<â€” r1
* (r2 + immed)<-r1 ANDr2<
if M< = r2, branch to label
branch to label, and put return address into r1 (for
procedure call)
branch to address in r1 (for procedure return)
r 3 ^ r 1 + r 2
r3<â€” 2*r1 + r2
r3< -4 * r1 + r2

SH3ADD
COPY
NOP

rt,r2,r3
r t , r2

r2

no effect

In the fol lowing step-by-step discussion, the unoptimized code
on the l e f t i s p r i n ted i n b lack , and the op t im ized code on the
r ight and pr in ted in co lor . The code appears in i ts ent i re ty , and
can be read f rom the top down in each co lumn.

S a v e U n r e g i s t e r s a n d I n c r e m e n t s t a c k p o i n t e r . U n
optimized case uses no register that needs to be live across a call.

LDO 2 7 6 0 (s p) , s p S T W
S T W M
S T W

2 , - 2 0 (0 , s p)
3 , 2 7 6 8 (0 , s p)
4 , - 2 7 6 4 (0 , s p)

Assign zero to i. In the optimized case, i resides in register19.

S T W 0 , - 5 2 (0 , s p) C O P Y 0 , 1 9

Compare i to 25. This test is e l iminated in the opt imized case
since the value of i is known.

L O W - 5 2 (0 , s p) , 1
L D O 2 5 (0) , 3 1
C O M B , < = , N 3 1 , 1 , L 2

In the opt imized vers ion, a number of expressions have been
moved out of the loop:

{ m a x i m u m v a l u e o f j }
{ add ress o f a1 }
{add ress o f a2 }
{address o f r }
{ i n i t i a l va lue o f 100* i }
{max imum va lue o f 1 00*1}

L D O
L D O
L D O
L D O
L D O
L D O

2 5 (0) , 2 0
- 1 5 6 (s p) , 2 2
- 2 5 6 (s p) , 2 4
- 2 7 5 6 (s p) , 2 8
0 (0) , 4
2 5 0 0 (0) , 2

Init ial ize j to zero, and compare j to 25. This test has also been
eliminated in the optimized version, since the value of j is known.
Note that j now resides in register 21.

L3
S T W
L D W

0 , - 5 6 (0 , s p)
- 5 6 (0 , s p) , 1 9

C O P Y 0,21

16 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

in this low-level instruction set are comparable to those
for more conventional architectures. Use of millicode in
structions helped achieve this result. Complex high-level
language operations such as procedure calls, multiplica
tion, and COBOL constructs have been implemented effi
ciently with the low-level instructions provided by the
high-precision architecture. A later paper will present per
formance measurements.

Acknowledgments
The ideas and results presented in this paper are the

culmination of the work of many talented engineers in
volved with the Spectrum compiler program. We would
like to acknowledge the individuals who made significant
technical contributions to the work presented in this paper

in the following areas: early compiler development and
optimizer investigation at HP Laboratories, optimizer de
velopment, aliasing design and implementation in the com
piler front ends, code generator design and implementa
tion, procedure call convention design, and object module
specification.

Megan Adams
Robert Ballance
Bruce Blinn
William Buzbee
Don Cameron
Peter Canning
Paul Chan
Gary Coutant

EricEidt
Phil Gibbons
Adiel Corel
Richard Holman
Mike Huey
Audrey Ishizaki
Suneeljain
Mark Scott Johnson

JANUARY 1986 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

Steven Kusmer
Tom Lee
Steve Lilker
Daniel Magenheimer
Tom McNeal
SueMeloy
Terrence Miller
Angela Morgan
Steve Muchnick

Karl Pettis
David Rickel
Michelle Ruscetta
Steven Saunders
Carolyn Sims
Ron Smith
Kevin Wallace
Alexand Wu

We feel privileged to have the opportunity to present their
work. We would like to extend special thanks to Bill Buzbee
for his help in providing code examples, and to Suneel Jain
for providing the description of the optimization components.

References
1. D.A. Patterson, "Reduced Instruction Set Computers," Com
munications of the ACM, Vol. 28, no. 1, January 1985, pp. 8-21.

2. J.S. Birnbaum and W.S. Worley, Jr., "Beyond RISC: High-Preci
s i o n 8 , H e w l e t t - P a c k a r d J o u r n a l , V o l . 3 6 , n o . 8 ,
August 1985, pp. 4-10.
3. A.V. Aho and J.D. Ullman, Principies of Compiler Design, Ad-
dison-Wesley, 1977.
4. G.J. Chaitin, "Register Allocation and Spilling via Graph Color
ing," Proceedings of the SIGPLAN Symposium on Compiler Con
struction, June 1982, pp. 98-105.
5. M. Sharir, "Structural Analysis: A New Approach To Flow
Analysis in Optimizing Compilers," Computer Languages, Vol. 5,
Pergamon Press Ltd., 1980.
6. D.S. Coutant, "Retargetable High-Lsvel Alias Analysis," Confer
ence Hecord of the 13th ACM Symposium on Principles of Pro
gramming Languages, January 1986.
7. J.A. Otto, "Predicting Potential COBOL Performance on Low-
Level Machine Architectures," SIGPLAN Notices, Vol. 20, no. 10,
October 1985, pp. 72-78.
8. G. Radin, "The 801 Computer," Symposium on Architectural
Support for Programming Languages and Operating Systems,
March 1982, pp. 39-47.

Authors
J a n u a r y 1 9 8 6

4 = C o m p i l e r s :

Jon W. Kel ley
With HP s ince 1975, Jon
Kel ley has worked on
BASIC and RPG compilers
for the HP 300 Business
Compu te r and on a p ro
totype opt imizer . He has
a lso con t r ibu ted to the de
ve lopment o f code
generators for HP 3000
Computers and for the

Spectrum program. Jon graduated in 1 974 from the
Univers i ty o f Cal i forn ia at Berkeley wi th a BA de
gree in computer sc ience. He l ives in Sunnyvale,
Cal i fornia and l ists f ly-f ishing, hunt ing, and f ly ing
as outside interests.

Deborah S. Coutant
Debbie Coutant earned a
BA degree in psycho logy
from the Universi ty of
Arizona in 1 977 and an MS
degree in computer science
from the Universi ty of
Ar izona in 1981. Af ter jo in
ing HP's In format ion Net
works Division Â¡n 1 981 , she

I worked on Pascal for HP
3000 Computers and la ter invest igated compi ler
opt imizat ion techniques and contr ibuted to the de
ve lopment o f code generators and opt imizers for
the Spectrum program. She Is the author of a paper
on retargetable alias analysis and is a member of
the ACM and SIGPLAN. Born in Bethpage, New
York, Debbie l ives in San Jose. Cal i fornia. She's

married and enjoys playing the French horn in com
muni ty orchestras. Her other outs ide in terests in
c lude racquetba l l and camping.

Carol L . Hammond
With HP since 1982, Carol
Hammond manages an op
t imizer project Â¡n the com
puter language laboratory

' _ ^ p o f H P ' s I n f o r m a t i o n T e c h -
* " " â € ¢ ' " " f i n o l o g y G r o u p . I n e a r l i e r

I ass ignmen ts a t HP Labo ra
to r ies she wro te arch i tec
ture ver i f icat ion programs
and worked on a compi le r

pro ject . She is a member of ACM and SIGPLA.N.
Caro l was born in Long Branch, New Jersey and
studied physics at the Universi ty of Cal i fornia at
Davis (BS 1977). She worked as a professional
musician for four years before resuming her studies
at the University of California at Berkeley, complet
ing work for an MS degree Â¡n computer science Â¡n
1 983. She lives in San Jose, California and still en
joys s ing ing and p lay ing the p iano.

f

18 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

2 0 M e a s u r e m e n t P l o t t i n g S y s t e m ;

Thomas H . Dan ie l s
Wi th HP s ince 1963. Tom
Dan ie ls was p ro jec t man
ager for the HP 7090A Mea
surement Plott ing System
and ear l ier was project
manager for the HP 9872A
Plot ter . He coauthored an
HP Journal article on the HP
9872A. Tom was born in
Los Angeles, California and

received a BSEE degree from Northrop University
in 1 963. He's now a resident of Escondido, Califor
n ia, is marr ied, and has two chi ldren. His outs ide
interests inc lude woodwork ing and restor ing o ld
Chevrolet Vegas.

J o h n F e n o g l i o
An R&D manager a t HP's
San Diego Divis ion, John
Fenoglio has been with the
company s ince 1972. He
was sect ion manager for
t he HP 7090A Measu re
ment Plot t ing System and
has held various engineer
ing , marke t ing , and man
agement posi t ions for

analog and digital products He was born in Texas
and holds a BSEE degree f rom Cal i forn ia State
Polytechnic University (1 972) and an MSEE degree
from San Diego State University (1 974). He is also
the coauthor of an HP Journal ar t ic le on the HP
7225A Plot ter . John is a resident of San Diego,
Cal i forn ia and an adventure-seeker. He is a sk ier
and scuba diver and has (Â¡own in exotic locations,
from the polar ice caps to South American jungles.
He a lso restores spor ts cars and is an amateur
rad io operator . He has bounced s ignals of f the
moon using a 40- foot d ish antenna.

24 :z: Measurement Graphics :

Steven T . Van Voorhis
Steve Van Voorhis holds a
BA degree in b io logy and
psycho logy f rom the Un i
versity of Cali fornia at San
Diego (1973) and an MA
degree in e lec t r i ca l en
g ineer ing f rom San Diego
State University (1980).
With HP since 1 981 , he's a
project leader in the design

graphics sect ion of HP's San Diego Div is ion and
was a design engineer on the HP 7090A Measure
ment Plotting System. He was also a research as
s istant and design engineer at the Univers i ty of
California at San Diego and is the coauthor of three
papers on human v isua l and audi tory responses
A native of California, he was born in Los Angeles
and now iives in Solana Beach. He and his v. ;
two sons enjoy spending time at the beach. He is
also a soccer player and is remodeling his house.

3 2 A n a l o g C h a n n e l ' .

2 7 = 1 S o f t w a r e

Emil Maghakian
With HP since 1979, Emil
Maghakian has worked on
HP 7310 Printer f i rmware,
on ink- je t pr in ter technol
ogy, and on sof tware for
various products, including
the HP 7090A Measu re
ment Plott ing System. He
was born in Tehran, I ran
apd s tud ied compu te r sc i

ence at Virginia Polytechnic Institute and State Uni
vers i ty , receiv ing h is BS degree in 1976 and MS
degree in 1978. He was an instructor at Hollins Col
lege before coming to HP. H is pro fess iona l in
te res ts inc lude computer graph ics and man-
machine interface problems. A resident of Escon
d ido, Cal i forn ia , Emi l is marr ied and has two ch i l
dren. He's active in various Armenian organizations
in San Diego and is interested in public speaking.
He a lso enjoys soccer and aerobics.

Francis E. Bockman
A computer sof tware
special ist wi th HP's San
Diego Divis ion, Frank
Bockman has invest igated
a computer -a ided work
sys tem and cha r t i ng mod
ules and has contributed to
t he deve lopmen t o f mea
surement g raph ics so f t
ware for the HP 7090A

Measurement Plott ing System. Hewas born In San
Diego, Cal i forn ia, came to HP as a student intern
In 1980, and completed his BA degree in computer
science from the Universi ty of Cal i fornia at San
Diego in 1982. His professional interests Include
computer graphics, vector- to-raster convers ion,
and Â¡mage rendering. Frank l ives in Escondido,
California, is married, and has a daughter. He Is ac
tive in his church and enjoys soccer, racquetball,
woodwork ing, gardening, and wine tast ing.

â€¢.

Jorge Sanchez
With HP since 1 980. Jorge
Sanchez at tended San
Diego State Universi ty,
completing work for a BSEE
degree in 1977 and an
MSEE degree in 1981. His
work on the HP 7090A Mea-
surement Plot ter includes

A ~ ' J ^ Â · Â · Â « Ã ­ 3 d e s i g n i n g t h e a n a l o g c h a n -
H ^ P M n e l a n d t h e c a l i b r a t i o n a l

gor i thms fo r the ana log channe l as we l l as con
t r ibut ing to e lectromagnet ic compat ib i l i ty design.
He is now developing new products as an R&D proj
ect manager. His previous professional experience
was with National Semiconductor Corporation and
wi th NCR Corporat ion. Jorge was born In Tecate.
Mexico and currently lives in San Diego, California
with his wife and two children. He is an avid sports
fan and enjoys running, swimming, p lay ing the
p iano, and gardening.

3 6 = U s a b i l i t y T e s t i n g :

Daniel B. Harrington
Dan Har r ing ton ho lds de
g rees in phys ics f rom A l
bion College (BA 1 950) and
the Universi ty of Michigan
(MS 1951). With HP since
1 972, he has held a variety
o f m a n a g e m e n t a n d e n
gineering posit ions. He has
been a p roduc t manager
and an app l i ca t i ons en

gineer and is now a publications engineer. He also
worked a t another company on the deve lopment
and market ing o f a mass spect rometer . He is
named co inven to r fo r a pa ten t on a mass spec
t rometer and Inventor for three other patents on
various topics. Born In Detroit, Michigan, Dan lives
in Corvall is, Oregon, is married, and has three chil
dren. He is president of the local Klwanls Club and
l ikes photography, music , camping, and t rave l .

JANUARY 1986 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

A Stand-Alone Measurement Plott ing
System
This compact laboratory instrument serves as an X-Y
recorder , a low- f requency waveform recorder , a d ig i ta l
p lot ter , or a data acquis i t ion system.

by Thomas H. Danie ls and John A. Fenogl io

MANY PHYSICAL PHENOMENA are characterized
by parameters that are transient or slowly varying.
If these changes can be recorded, they can be ex

amined at leisure and stored for future reference or com
parison. To accomplish this recording, a number of elec
tromechanical instruments have been developed, among
them the X-Y recorder. In this instrument, the displacement
along the X-axis represents a parameter of interest or time,
and the displacement along the Y-axis varies as a function
of yet another parameter.

Such recorders can be found in many laboratories record
ing experimental data such as changes in temperature, vari
ations in transducer output levels, and stress versus applied
strain, to name just a few. However, the study of more
complex phenomena and the use of computers for storage
of data and control of measurement systems requires en
hancement of the basic X-Y recorder. Meeting the need,
Hewlett-Packard's next-generation laboratory recorder, the
HP 7090A (Fig. 1), is a compact stand-alone instrument

that can be used as a conventional X-Y recorder, a low-fre
quency waveform recorder, a digital plotter, and a complete
data acquisition system.

X-Y Recorder Features
The HP 7090A Measurement Plotting System offers many

improvements for the conventional X-Y recorder user. In
the past, X-Y recorders have been limited to a frequency
response of a few hertz by the response time of the mech
anism. The HP 7090A uses analog-to-digital converters
(ADCs) and digital buffers to extend the measurement
bandwidth well beyond the limits of the mechanism. Each
input channel has a 12-bit ADC capable of a 30-kHz sample
rate. Since it is necessary to have about 10 samples/cycle
for a good plot of the signal (remember, the minimum
Nyquist rate of two samples/cycle only applies if there is
a perfect low-pass output filter), this approach allows sig
nals with bandwidths up to 3 kHz to be recorded.

The front-end amplifier presented many design chai-

F i g . 1 . T h e H P 7 0 9 0 A M e a s u r e
m e n t P l o t t i n g S y s t e m c o m b i n e s
many of the features of an X-Y re
corder, a low-frequency waveform
recorder , a d ig i ta l p lo t te r , and a
data acquis i t ion system in one in
s t rument that can be operated by
i t se l f o r as pa r t o f a l a rge r com
puter-control led system.

20 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

lenges. High common-mode rejection, high sensitivity, low
noise, and static protection were a few of the more difficult
areas. X-Y and stripchart recorders have used floating input
circuitry to allow users maximum flexibility in connecting
signals to the measuring device. The degree to which input
signals can be isolated from chassis ground is specified as
the common mode rejection (CMR). Achieving a high CMR
means that the input circuitry must not be connected to
chassis ground. This requirement posed a dilemma for a
microprocessor-controlled system like the HP 7090A, be
cause the microprocessing system must be connected to
ground for noise prevention reasons. This design contradic
tion is resolved by using small independent power supplies
for the front-end channels and by doing all of the data
communication via optoisolator links. The point in the
system where the floating circuitry is connected to the
processing circuitry is shown by the optoisolator in the
system block diagram (Fig. 2).

The most sensitive range of the HP 7090A is 5 mV full
scale. The 12-bit resolution of the ADC allows measure
ments as low as 1 /xV. Input amplifier noise and all external
switching noises must be kept well below 1 Â¿Â¿V over the
full 3-kHz bandwidth. In addition, the standard HP design
requirement of electrostatic discharge protection offered
an even greater challenge â€” the same high-sensitivity float
ing input must be able to withstand 25-kV discharges di- â€¢
rectly to the input terminals! (See article on page 32 for
details about the front-end design.)

The microprocessor is used for many functions, includ
ing signal processing on the raw analog-to-digital measure
ments. This makes it possible to calibrate the instrument
digitally. Hence, there are no adjustment potentiometers
in the HP 7090A (see box on page 22). During the factory
calibration, a known voltage is applied to the input and
the microprocessor reads the corresponding value at the
output of the ADC. The calibration station then compares
this value with the expected value. Any small deviation
between the measured and expected values is converted
to a calibration constant that is stored in the HP 7090A's
nonvolatile memory (an electrically erasable, programma
ble read-only memory, or EEPROM). This constant is used
by the internal microprocessor to convert raw measurement
data to calibrated measurement data during the normal

operation of the instrument. In addition, offset errors are
continually checked and corrected during measurements.
This helps eliminate the offset or baseline drifts normally
associated with high-sensitivity measurements.

The use of a microprocessor also allows the user of an
HP 7090A to select a very large number of calibrated input
voltage ranges. Conventional approaches to input ranging
usually involve mechanical attenuator switches with about
fourteen fixed positions corresponding to fourteen fixed
ranges. An uncalibrated vernier potentiometer is used for
settings between the fixed ranges. The HP 7090A uses dig
itally programmable preamplifiers and attenuators. The
gain of this circuitry can be set to 41,000 different values.
The microprocessor commands different gain settings by
writing to the front-end control circuitry via the opto
isolator link.

Low-Frequency Waveform Recorder Features
The HP 7090A also can be used as a low-frequency

waveform recorder. Triggering on selected input signal con
ditions allows a waveform recorder to capture transient
events. In the HP 7090A, the triggering modes are expanded
from the traditional level-and-slope triggering to include
two modes of window triggering. The outside window
mode allows for triggering on signals that break out of
either an upper or a lower window boundary. The special
inside window mode allows for triggering when the signal
stays inside upper and lower window boundaries for the
entire measurement period. The latter is the only effective
way to trigger on a decaying periodic waveform like that
caused by an ac power line failure (Fig. 3).

To implement the sophisticated triggering capability de
scribed above, the HP 7090A uses digital triggering tech
niques. No analog circuitry is involved. The trigger decision
is made by looking at the digitized input data that comes
from the ADCs and comparing this to the desired trigger
conditions set by the user. At the higher sampling rates
the microprocessor is not fast enough to make trigger deci
sions unaided. Therefore, a semicustom LSI circuit is used
to augment the processor in this area. This 1C is a CMOS
770-gate array especially programmed to do input data buf
fer management. It is shown in the system block diagram
as the front-end gate array.

Analog
Input

44 Optoisolator

Pen
Paper
Turret F ig . 2 . S imp l i f i ed b lock d iag ram

of the HP 7090 A.

JANUARY 1986 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

1000-Sample
Measurement Period

Upper
Limit

Trigger
Level

F ig . 3 . The HP 7090 'A ' s spec ia l i ns ide w indow t r i gger ing
mode a l l ows cap tu re o f wave fo rms tha t r ema in i ns ide t he
window for the measurement per iod. In the above example,
the t r igger occurs a f ter the thousandth consecut ive sample
that is inside the window defined by setting the TRIGGER LEVEL
and TRIGGER WIDTH controls on the front panel. This enables
the recording of such events as a decaying periodic waveform
caused by an ac l ine fa i lure.

One final measurement feature is the highly accurate,
wide-dynamic-range, time-axis capability that comes about
because the HP 7090A's time axis is computed by dividing
the system's crystal-controlled clock frequency. This al
lows for time sweeps from 0.03 second to 24 hours full
scale.

Recorder/Plotter Features
The desire to produce a single product that could be

used as a continuous X-Y recorder and as a full-perfor
mance digital plotter created many different performance
objectives for the sophisticated servo system found in the
HP 7090A. It uses three separate servo algorithms, each
optimized for a specific task. In the digital plotter mode,
the servo must match both axes and faithfully draw straight
line vectors between endpoints.

Plotting data from the digitized input signal buffers also
requires the servo to draw vectors between the data points,
but there is a subtle difference. In this case, the servo can
be optimized to look ahead at the next few data points and

Eliminating Potentiometers

Potent iometers are not needed in the HP 7090A Measurement
Plot t ing System because i ts internal microprocessor:
â€¢ Controls the front end
â€¢ Determines the gain constants
â€¢ Performs the offset calibration
â€¢ Corrects the data.

The microprocessor has the abi l i ty to wri te to three main ports
in the f ront channel (see Fig. 1) . The f i rs t por t contro ls the FET
sw i t ches and re lays tha t govern the coarse ga in se t t i ngs and
the relay that passes the input signal into the front-end amplif iers.
The second po r t de te rm ines the amoun t o f o f f se t fed in to the
input s ignal . The th i rd por t establ ishes the at tenuat ion that the
s igna l sees by means o f the d ig i ta l l y p rogrammable ampl i f ie r .
This port governs the f ine gain set t ings.

There are 14 coarse gain set t ings cover ing a span of 5 mV to
100V, inc lus ive. Whi le an HP 7090A is on the assembly l ine , i t
passes th rough a ca l i b ra t i on o f t he ga in o f each o f t he th ree
channe ls a t each o f the coarse ga in se t t ings . Th is ca l ib ra t ion
procedure produces a two-byte number for each channel at each
set t ing, and then s tores these numbers in nonvola t i le memory.

To determine these numbers, an offset cal ibrat ion Â¡s performed
(as discussed later) and a voltage equal to the ful l -scale voltage
is p laced on the inputs of the channel . For example, i f the fu l l -
sca le vo l t age o f t he f ron t end i s se t t o 200 mV, a 200 -mV dc
signal Â¡s placed on the inputs. The buffer is fil led using a 250-ms/
measurement t ime base and 200 of the uncorrected analog- to-
d ig i ta l samples are sent over the HP 7090A's HP-IB (IEEE 488)
to the con t ro l le r , an HP Ser ies 200 Computer . These samples
are not internally corrected; they are the direct output of the ADC
in the instrument 's f ront end. These samples are averaged, and
the average A is put into the fo l lowing formula:

Gain constant = / 1 9 7 4 I D V M
\ A - S - 2 0 4 8 / I d e a l V o l t s /

where DVM is the voltage read by a digi tal voltmeter of the input
vol tage to the f ront end, and Ideal Vol ts corresponds to the ful l -
scale voltage that should be on the input. S Â¡s the software offset
found 1.03. the offset calibration. The typical result Â¡s about 1.03.
The word stored in the nonvolat i le memory is the gain constant

FET Switches and
Relays for the
Coarse Gain

Setting

Digitally
Programmable

Amplifier

O 1

V 7 Â ±

Sample-and-
Hold 1

To Multiplexer
and ADC

Sample-and-
Hold 2

From
Microprocessor Fig. 1 . Block diagram of front-end

sect ion of the HP 7090A.

22 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

minus one The above procedure fo r f ind ing the ga in constants
is repeated for each of the 1 4 ranges, for each of the HP 7090A's
three channels.

The number 1974 in the above equat ion comes f rom the fu l l -
sca le i npu t to Â ¡he ADC be ing mapped to 4022-2048 + 1974 .
ra the r than 4095 . so tha t some marg in can ex is t a t the upper
and lower l im i ts o f the ana log- to -d ig i ta l ou tpu t Th is a l lows fo r
some offset var iat ion in the front-end electronics.

O p e n i n p u t r e l a y

T

Ã̄

T
I

W a i t f o r d e b o u n c e

C l o s e F E T g r o u n d s w i t c h

W a i t f o r d e b o u n c e

I n c r e m e n t o f f s e t
D A C b y 1

I n d u c e t w o c o n v e r s i o n s

No R e s u l t
c l o s e r t o d e s i r e d

v a l u e ?

Yes

D e c r e m e n t b y 2

D e c r e m e n t b y 1

Yes

D e c r e m e n t b y 1

I n c r e m e n t b y 1

T
S a m p l e 1 6 t i m e s ,

1 m s a p a r t t o
r e m o v e 6 0 - H z n o i s e

A v e r a g e m i n u s d e s i r e d
v a l u e g o e s i n t o R A M

R e s e t t h e F E T s a n d r e l a y

Fig. 2. Flow chart of f ront-end cal ibrat ion procedure for each
channel of the HP 7090A.

i n -Se rv i ce Au toca l i b ra t i on
At any point in t ime, there is some offset in the front end This

o f fset can change because of such factors as temperature and
the age of the components Therefore, there is a need to calibrate
the instrument while it is in operation, and even during a measure
m e n t T h e i n t e r n a l r e a l - t i m e c l o c k i s u s e f u l i n t e l l i n g t h e H P
7090A's in ternal processor when to per form an in ternal ca l ibra
tion. Generally, such a calibration is done every 7 to 1 0 minutes

The procedure (F ig . 2) fo l lowed fo r cor rec t ing the o f fse ts in
one channel begins with opening the input relay â€” the one that
al lows the input signal to pass through the front end. Next, a FET
is tu rned on . wh ich g rounds the inpu t to the ampl i f ie rs . There
are appropr ia te de lays to le t the re lay and FET debounce and
set t le to f ixed va lues. The processor is then able to induce the
ADC to convert the zero input twice. The two samples come from
the two sample-and-hold sections within the front end. The result
ing values are stored in RAM. Next, the offset port is writ ten with
a number equa l to one p lus the o r ig ina l va lue . The p rocessor
induces two more conversions, and the new values are compared
with the previous values stored in RAM. I f the new pair of values
is c loser to the des i red zero va lue, based on in terna l computa
t ions o f the range and o f f se t se t t ings , the o f f se t por t va lue i s
incremented again and the process of compar ison is repeated.
If the new values are farther than the previous set from the desired
value, then the of fset por t va lue is decremented twice, and two
new values are found and compared wi th those for the or ig ina l
o f fse t por t number . I f the new va lues are c loser to the des i red
value, the offset port value is decremented once and the process
i s repea ted . The p rocess s tops when the mos t recen t va lues
from the ADC are farther than the previous values from the desired
value.

The p rocesso r reve rses the t rend o f i nc remen t ing o r dec re
ment ing the of fset por t value once leaving the of fset DAC at i ts
opt imal value, takes 16 samples one mi l l isecond apart for each
sample-and-hold, and averages these samples to e l iminate any
60 -Hz no ise . The two averages have the des i red o f f se t va lue
subtracted from them, and the two differences are stored in RAM.
The resul t is that the of fset por t is a t i ts opt imal va lue and two
16-b i t words are s tor , d that cor respond to the res idual o f fsets
o f t he f ron t end and each samp le -and -ho ld . These words a re
cal led the software of fsets, and are used in correct ing the data.
The zero FET is turned off and the input relay is closed. The front
end is now calibrated and ready for sampling the external input.

When the ADC samples data, i ts output must be corrected for
ga in and o f f se t . Each t ime a convers ion takes p lace , a 10 -b i t
counter is incremented and the least s igni f icant b i t is the index
for which sample-and-hold (1 or 2) corresponds to the data sam
ple. The uncorrected data is inserted into the following formula:

(D,-Vosi- Ideal Zero) x GF(J) + Ideal Zero = Dcorrecled

where D(cor responds to the uncor rec ted da ta o f sample-and-
hold i (i = 1 or 2), VOSI equals the software offset for sample-and-
hold i , Ideal Zero is the binary equivalent of the of fset scaled to
0 to 4095 where 2048 represents a zero of fset , and GF(J) is the
gain factor word stored in the EEPROM plus a word for range J
(J = 1 t h r o u g h 1 4 , c o r r e s p o n d i n g t o t h e 5 - m V t h r o u g h 1 0 0 V
ranges).

Stephen D. Goodman
Development Engineer

San Diego Divis ion

JANUARY 1986 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

adjust its acceleration profile to reduce the plot time by
removing the need to come to a complete stop after each
data point. When in the RECORD DIRECT mode, the digitized
input signal data is fed directly to the servo control system,
bypassing the data buffers, and the pen follows the input
signal in the continuous (nonvector) manner of conven
tional X-Y recorders.

The servo system uses the familiar dc motors and optical
position encoders that are common to all modern digital
plotters. But unlike such plotters, this servo system uses
an algorithm that closes the servo loop and allows the
device to emulate the analog-like characteristics of tradi
tional X-Y recorders. This is done by using the micropro
cessing system and another semicustom LSI circuit, a
CMOS 2000-gate array. This hardware combination allows
the processing system to model the characteristic block
diagram of a traditional analog servo system in a manner
fast enough to appear real-time to the user when recording
slow-moving signals (under a few cycles per second). In
this mode, the HP 7090A performs in exactly the same
manner as a conventional X-Y recorder.

Another feature of the HP 7090A is its ability to draw
its own grids. No longer is the user forced to try to align
the desired measurement to a standard inch or metric grid.
The user simply specifies the required number of grid di
visions, from one to one hundred, by using the HP 7090A's
front-panel controls. A firmware algorithm is invoked by
pressing the front-panel GRID button, which then draws
the specified grid between the specified zero and full-scale
points.

The graphs created by the HP 7090A can be used for
observing the trends of the measurement. The high-accu
racy measurement made possible by the 12-bit ADC can
be appreciated further by using the internal character

generator to annotate any desired data point with three-
digit resolution.

The processor also makes possible other features that
enhance the measurement display capability of the HP
7090A. A calendar clock 1C backed up with a battery and
connected to the processor can be used to provide labeling
of time and date at the push of a front-panel button. A
nonvolatile memory (EEPROM) 1C stores front-panel setup
conditions, and two internal digital-to-analog converters
convert digital data in the buffer memory to analog signals
that can be displayed on a conventional oscilloscope to
preview the buffer data, if desired, before plotting.

Data Acquisi t ion System Features
The HP 7090A can be used as a computer-interfaced data

acquisition system by using its built-in HP-IB (IEEE 488)
I/O capabilities. All setup conditions and measurements
can be controlled remotely by using an extension of the
HP-GL (Hewlett-Packard Graphics Language) commands
tailored for measurements. The data in the buffer can be
transferred to a computer. The computer can process the
data and then address the HP 7090A as a plotter to display
the results.

The HP 17090 A Measurement Graphics Software pack
age (see article on page 27) was developed to provide user-
friendly access to the many measurement capabilities of
the HP 7090A.

Acknowledgments
The final design challenge was to offer the above capabil

ities without increasing the price above that of a conven
tional X-Y recorder. We would like to thank the many
departments of HP's San Diego Division that helped make
this dream a reality.

Digital Control of Measurement Graphics
by Steven T . Van Voorh is

THE OBJECTIVE of the servo design team for the HP
7090A Measurement Plotting System was to develop
a low-cost servo capable of producing quality hard-

copy graphics output, both in real-time directly from the
analog inputs and while plotting vectors either from the
instrument's internal data buffer or received over the HP-IB
(IEEE 488) interface. The mechanical requirements of the
design were met by adopting the mechanics of the earlier
HP 7475A Plotter. This approach had the significant advan
tage of a lower-cost solution than could have been achieved
with a new design. What remained then was to design the
electronics and firmware for reference generation and con
trol of the plant (dc servo motor and mechanical load).

Servo Design
Fig, 1 is a block diagram of the major components of the

HP 7090A servo design for one axis, there being no signific
ant difference between the pen and paper axes for the pur
poses of this discussion. Fig. 2 shows the corresponding
servo model. The plant is modeled as a system with the
transfer function of Km/(s+Pe)(s+Pm). Feedback of position
and velocity was found to give sufficient control to meet
the line-quality objectives.

The prime mover for each axis is a low-cost dc servo
motor. Feedback of motor shaft position is provided by a
500-line optical encoder. By detecting all state changes of
the two-channel quadrature output of the encoder, 2000
encoder counts per revolution of the motor shaft can be
detected. This yields an encoder resolution of slightly bet-

24 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Servo Ga te A r ray

Pulse
Width

Modulator
Microprocessor

Position
Counter

ter than 0.001 inch at the pen tip. Since the feedback is
derived from the motor shaft and not the pen tip, any plant
dynamics between these two points are open-loop with
respect to the servo system. It is therefore essential that
the mechanics be "stiff" between the motor shaft and the
pen tip within the 100-Hz bandwidth of the servo system.

The digital electronics portion of the control loop is im
plemented in a single gate array of some 2000 gates pack
aged in a 40-pin dual in-line package. The two-channel
quadrature feedback signals from the optical encoders are
decoded within the gate array to clock two 8-bit relative
position counters, one for each axis. The position counters
are cleared on each read by the microprocessor, in essence
providing velocity feedback to the microprocessor. The mi
croprocessor integrates this feedback to generate position
information. The power supply check circuitry provides
the microprocessor with a 6-bit measurement of the motor
drive supply voltage.

In the feed-forward path, the microprocessor controls
each motor by writing to two 8-bit registers for each axis
in the gate array. The two registers control the period and
duty cycle of the pulse-width-modulated motor drive sig
nals. Pulse-width-modulated motor drive circuits were
chosen because of the ease of interfacing to digital systems
and their efficiency advantage over linear drivers. Using
the feedback of the motor drive supply voltage, the micro
processor can adjust the period of the drive signal to regu
late the gain of the drive path. This eliminates the expense
of having a regulated supply for the motor drivers. The
microprocessor varies the duty cycle of the pulse width
modulator as dictated by the solution of the control equa
tions to achieve control of the plant.

When sampling the front-end channel at high sample
rates, there is not sufficient processing power available
from the 6809 microprocessor to execute both the channel
and the servo routines in real time. Thus, a multiplexer
under microprocessor control is provided to allow the gate
array to close a position loop about the plant without mi
croprocessor intervention. To avoid any instability caused
by loss of velocity information, the position loop gain is
halved when this is done. This allows the microprocessor
to supervise the channel data transfer without the overhead
of executing the servo routines. Other miscellaneous cir
cuitry in the servo gate array provides pen-lift control, the
microprocessor watchdog timer, the front-end channel

Optical
Encoder

Fig. 1 . Block diagram of HP 7090 A
servo system.

communications serializer, and a chip test.
The real-time servo routines are initiated by a nonmask

able interrupt, which is run at a 1-kHz rate while plotting.
Aside from various housekeeping duties, the main respon
sibilities of the servo routine are to maintain control of the
plant by closing the feedback loop, and to generate the
reference inputs to drive the system.

Closing the feedback loop is always done in the same
manner while plotting either vectors or data directly from
the front-end channels. The relative position register is
read and summed with the old plant position to generate
the updated plant position. A copy of the relative position
register value is multiplied by the velocity feedback con
stant to generate the velocity feedback term. The plant po
sition is subtracted from the reference input to generate
the position error. From this, the velocity feedback term is
subtracted and a deadband compensation term is added to
generate the control value to be sent to the pulse width
modulator. The power supply check register is read and
the period of the pulse width modulator is adjusted to
ensure a constant gain for the motor drive block.

Plotting Data
There are three separate reference generators that can be

invoked, depending on the mode of plotting. The first is
for direct recording of the front-end channel data, the sec
ond is used when plotting vectors parsed from the I/O bus
(HP-IB), and the third is used when plotting from the HP
7090 A's internal data buffer. When directly recording front-
end channel data, the inputs are continuously sampled at
250 Hz and the internally generated time base is updated
at the same rate. The samples are scaled according to the

Reference
Generator Compensat ion

M o t o r D r i v e p l a n t

Fig. 2. Model of servo in Fig. 1 .

JANUARY 1986 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

prevailing setup conditions to provide the new desired
position for the pen and paper axes. Were these inputs fed
directly to the servos, high-frequency or noisy input signals
could easily result in motor overheating. The new desired
positions are therefore passed to the servos through a refer
ence profiler, which limits plant acceleration to 2g and
maximum slewing speed to 50 inches per second. This
limits the power input to the motors to a safe operating
level and preserves acceptable writing quality. This ap
proach results in no overshoot when recording step inputs
and provides good reproduction of 1-cm peak-to-peak
sinusoidal waves for frequencies below 10 Hz.

When the HP 7090A operates as a plotter, HP-GL com
mands received over its HP-IB interface are parsed in accor
dance with the current graphics environment to generate
new desired pen and paper locations. These new locations
are represented as two-dimensional vectors relative to the
present location. These vectors are passed to a vector refer
ence generator via a circular queue capable of storing up
to 30 vectors. The vector reference generator takes vectors
from the queue and profiles the input to the servos to con
strain the plant to a constant 2g acceleration and 75-cm/s
maximum vector velocity. Fig. 3 depicts the profiling of
two consecutive vectors. The second vector is long enough
for the pen to reach maximum velocity and then to slew at
this velocity for some time before the onset of deceleration.

A short pause of 12 milliseconds between vectors ensures
settling of the plant at the vector endpoints. The references
for the paper and pen axes are simply scaled from the
vector profile by the cosine and sine, respectively, of the
angle between the vector and the positive paper axis.

Vector Profi ler
Plotting from the internal data buffer could be performed

in exactly the same manner as plotting vectors from the
HP-IB interface. However, several attributes of this mode
of plotting led to the development of a new reference

"Hewlet t -Packard Graphics Language

+ 2 -

+ 7 5 4

7 5 -

generator. The first is that for each channel to be plotted,
a string of 1000 vectors is already stored in the internal
data buffer. Thus, the overhead of running the HP-IB inter
rupt routines, the parser, character generator, and other
routines to create vectors is eliminated. Second, since the
functions to be plotted are continuous, the 1000 data points
form a contiguous string of short vectors (typically less
than 0.025 inch), all plotted pen down. Furthermore, the
angle formed between any two consecutive vectors is typ
ically very shallow.

Consider the trivial case of plotting a dc signal from the
internal data buffer. Assuming a 15-inch trace on B-size
paper, this amounts to plotting 1000 vectors, each of length
0.015 inch, all along a straight line. Using the HP-IB vector
reference generator would require 10 ms to profile the ac
celeration and deceleration of each vector, plus a 12-ms
intervector delay. Thus, it would require 22 seconds to
draw this 1 5-inch line, whereas if it were plotted as a single
vector at 75 cm/s, it would require just over 0.5 second.
Therefore, a new vector profiler was designed for plotting
from the internal data buffer with the objective of improv
ing throughput. This algorithm does not require a stop at
each vector endpoint. Rather, it constrains the vector end-
point velocity so that the following three conditions are
met:
â€¢ The angle drawn at the vector endpoint is drawn with

negligible error.
â€¢ The vector is not drawn in less than eight iterations of

the servo interrupt routines (i.e., 8 ms).
â€¢ A 2g deceleration to a full stop at the end of the vector

string is achievable.
Using this internal data buffer reference profiler, a 15-

inch dc signal trace is plotted in 8 seconds, because of the
second constraint. This is nearly a factor of three in
throughput improvement compared to using the HP-IB vec
tor reference generator. In fact, many functions are plottable
in the 8-second minimum time with this technique, result
ing in throughput gains as high as eight.

Why not apply the same profiling technique to vectors
received over the HP-IB interface? The answer is twofold.
First, vectors plotted from the bus are generally not contigu
ous strings representing continuous functions. They typi
cally have many pen up/down cycles, form acute angles,
and are longer, all of which reduce the throughput gain
using this algorithm. Second, applying the three conditions
to determine the vector endpoint velocity requires addi
tional processing of each vector to check angles and deter
mine the distance to the end of the current string of vectors.
To do this in real time requires that, as each new vector is
received, the processor backtrack through the list of current
unplotted vectors to see if their endpoint velocities can be
increased. When the nature of the plot is such that little
throughput gain is possible from the application of these
algorithms, the additional processing load of executing
them can actually result in a throughput loss. Therefore,
this approach is restricted to plotting of the internal data
buffers where the throughput gains are the greatest.

Fig. 3. Profi l ing of two typical vectors parsed from the HP-IB.

26 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Measurement Graphics Software
by Francis E. Bockman and Emit Maghakian

HP 17090A MGS IS A SOFTWARE PACKAGE written
for the HP 7090A Measurement Plotting System that
runs on HP's Series 200 Computers. MGS allows the

user to:
â€¢ Set up measurements
â€¢ Take measurements
â€¢ Store and retrieve measurement data to and from disc

files
â€¢ Annotate measurements with text, axes, and simple

graphics
â€¢ Manipulate measured data
â€¢ Provide soft and hard copy of measured and manipulated

data.
MGS was written to provide a system solution to some

of the general problems of measurement recording and data
acquisition. It is designed to be used by scientists and en
gineers not wanting to write their own software. This soft
ware package extends the capabilities of the stand-alone
HP 7090A.

The package consists of two discs. The first disc contains
the core of the system, the initialization routines, the library
routines, and the memory manager. The second disc con
tains six code modules, one for each functional subsystem.
The measurement setup module contains code to help the
user specify the setup parameters relevant to the measure
ment. The measurement module allows one to start the
measurement and the flow of measurement data into the
computer. The storage-retrieval module contains code to
store and retrieve measurement data and setup information
to and from disc memory. The data manipulation module
implements the ability to manipulate measurement data
mathematically. The annotation module adds the capabil
ity of adding graphical documentation to the measurement
record. The display module allows a user to display the
measurement data taken and the annotation on either the
computer's display screen or on paper.

System/Subsystem Name

Parameter
Name
Area

Message L ine

Current
Parameter

Setting
Area

Since MGS is intended for the instrument/scientific mar
ket where users typically write their own instrument con
trol software, we used BASIC as the application language.
Hence, users of the package can add their own code in a
commonly understood language to tailor it to their specific
needs. The application is distributed in source form.

Human Interface
The human interface is designed for both novice and

expert users. We have made the assumption that all our
users are familiar with X-Y recording, and that they have
used recorders for data measurement.

A human interface should be self explanatory and de
scriptive to accommodate a novice user. An expert user,
on the other hand, requires an interface that is like a tool â€”
one that does not hamper creativity and does not ask a lot
of questions (conversational).

MGS's human interface is an extension of the HP 7090A's
human interface. There are no operational conflicts be
tween the HP 7090A and MGS.

Screen layout is an important part of every human inter
face. We have made a special effort to ensure a consistent
screen layout (Fig. 1) throughout the modules to improve
the feedback to the user. Fig. 2 is an example of an actual
CRT display for MGS. The definitions for the various ele
ments of the screen layout are:
1) Subsystem Name. This is the name of the subsystem.
Each box on the design tree (Fig. 3) is a subsystem. For
instance, the DISPLAY functional area is composed of the
CHANGE SETUP, SCREEN, and PLOTTER subsystems. The
CHANGE SETUP subsystem also has under it the CHANGE
SCALE subsystem (not shown).
2) Arrow. The user can only change one parameter setting
at a time. The arrow points to the parameter that is currently
modifiable. The arrow is controlled by the softkeys UP (kO)
and DOWN (k5).
3) Parameter Name Area. This area of the CRT is where
the parameter names are displayed.
4) Current Parameter Setting Area. The current parameter

MEflSUREMENT SETUP

I D E F A U L T ! h e l p

. > M e o s u r e m e n t
U n i t s

R e c o r d e r M o d e
D e p e n d e n t v s .
I n d e p e n d e n t

M e a s u r e m e n t
M o d e

T r i g g e r
M o d e
P o s t / P r e

T o t a l T i m e

<Sy$ t em>

<Ch 1>

<Tlme>

< B u - f f e r e d >

< Ma nu a 1
< 0 . 0 0 >

. 0 0 S e c . >

Fig. 1 . Screen layout for MGS. F ig . 2 . MGS cont ro l d isp lay .

JANUARY 1986 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

setting is displayed on the same line as the parameter name.
The parameter setting is enclosed by angle brackets. For
example:

paraml
->param2

param N

<param1 set t ing>
<param2set t ing>

<paramNset t i ng>

where parameter 2 is currently selected to be modified.
5) Help Area. This area of the CRT is used to display help
information to the user, which will consist of either the
current valid range of parameter settings for the parameter
designated by the arrow, or information on how to set the
parameter, or what to set the parameter to.
6) Message Line. This line is used by the software to dis
play messages to the user. When applicable, it will specify
the permissible range of parameter settings.
7) Input Line. This line is used for entering text and num
bers when required by MGS.
8) CRT Softkey Labels. This area displays the labels for
the HP 9000 Series 200 Computer's softkeys. The labels
shown in Fig. 1 do the following actions when the corre
sponding softkeys are pressed:

U P (k O) : P l a c e s t h e a r r o w u p o n e p a r a m e t e r .
DOWN (k5) : P laces the a r row down one paramete r .
DEFAULT (k3) : Sets the current menu parameters to

their default settings.
he lp (k4) : Th i s so f tkey has an on /o f f t ogg le ac t ion

An asterisk in the softkey label implies
the help information will be dis
played in the help area on the CRT,
for the current menu and all the fol
lowing menus. This softkey may be
toggled on and off as many times as

necessary.
E X I T (k 9) : R e t u r n s t h e u s e r u p o n e l e v e l o f t h e

tree to the previous subsystem.

The primary user input to the software is the knob and
the softkeys on the keyboard of the Series 200 Computer.
Input from the keyboard has been limited as much as pos
sible. The softkeys provide the user with the abili ty to
control the flow through the design tree (Fig. 3).

The knob controls the setting of the .parameter selected
by the arrow on the menu. To set any parameter, the knob
must be rotated first. The software will then react in one
of the ways listed in Table I.

 T a b l e I

P a r a m e t e r T y p e S o f t w a r e R e a c t i o n

Enumerated Turning the knob will scroll through the current
(i.e., specific list valid parameter settings for the specified
of se t t ings) parameter .

Positional Turning the knob will mo ve the graphics cursor
in a left or right direction. Turning the knob with
the SHIFT key held down will move the graphics
cursor in an up or down direction.

Number with Turning the knob will cause the parameter set-
limited range ting to be incremented or decremented by a

small amount. Turning the knob with the SHIFT
key held down will cause the parameter setting
to be incremented or decremented by a large
amount.

Text or number Turning the knob will cause a message
with unlimited to be displayed on the message line and the cur-
range rent setting to be displayed on the input line.

Then the user may modify this setting by typing
in the new setting and pressing the ENTER key
when correct.

Configuration

Channel 1
Setup

Y-Channel 1 â€¢ Y-Channel 2 â€¢ Y-Channel 3

Fig. 3. Conceptual layout of MGS.

28 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

The major philosophy in this human interface is "mod
ification, not specification." This means that at all times
the system settings are valid, and user can change one valid
setting to another. The user is not burdened by descriptions
or questions. The help area describes the current possible
settings. It is placed to one side intentionally so it does not
interfere with the man-machine interface. It can be turned
on and off at the user's discretion.

The design of the human interface limits the number of
error states. The user can only see an error message when
entering a number from the keyboard or using the HP 7090A
to enter a voltage. We have managed to achieve this goal
by updating the next possible state lists every time a param
eter is modified.

Overall Design
There is a menu associated with every mode of the design

tree (Fig. 3). The tree is three levels deep from the main
level. The main level consists of the menu that allows
access to the six major functional modules: measurement
setup, measurement, display, annotation, storage/retrieval,
and data manipulation. The softkeys are labeled according
to their function; pressing a softkey will place the appro
priate menu on the CRT. The general rule is that a user
exits a menu to the same menu(s) the user went through
to enter the menu. Pressing the EXIT softkey returns the
user up one level of the tree. The configuration level is a
one-time process and is only entered at the start of the
program. Pressing the EXIT softkey at the main level will
stop the program after verifying that the user really wants
to exit.

Core Library and Swapper
The software package consists of a core or kernel that

must always reside in memory. There is additional code
for initialization and configuration that is loaded initially
and then removed from memory after running. The six
main code modules that implement the functionality of
the system can be either resident in memory or loaded from
disc, depending on the system configuration and available
memory. There is also a library of utility routines that re
sides in memory with the kernel. The library contains code
to handle the screen menus and data structures. Also, the

code that communicates with the HP 7090A for data trans
mission resides in the library.

A part of the system known as the swapper, or memory
manager, is responsible for ensuring that there is enough
memory available for requested operations. At program ini
tialization time, the swapper loads in the whole system if
there is enough memory: if not, it loads just the main section
of the system and the supporting libraries. Provided enough
memory exists for the former action to take place, the swap
per will not need to take further action. Assuming there is
insufficient memory to load the complete system, the swap
per will take actions when memory allocation is needed.
The swapper handles all requests to enter a subsystem from
the main menu. It first checks to see if the subsystem is in
memory. If it is, no action is taken by the swapper and the
subsystem is entered. If the subsystem is not in memory,
the swapper checks to see if enough memory is available
to load it in. If so, it is loaded and entered. Otherwise,
space in memory will be made available by removing other
subsystems not needed.

Data Structures for Menus
As mentioned earlier, all the menus in MGS are consis

tent. There is a single data structure that contains all the
data for a screen. The diagram in Fig. 4 gives a graphical
representation of the logical structure and Table II defines
the elements shown in Fig. 4.

MGS prevents the user from entering error states. This
task is done by changing o_strt and o_cnt entries for a given
attribute. All the valid entries for attribute p are always
between o_strt(p) and o_strt(p)+o_cnt(p).

This data structure is built using one and two-dimen
sional arrays in BASIC. There are several copies of this
structure, one for each screen layout. The data definition
portion of MGS would have been much smaller and storage
more efficient if BASIC had dynamic storage allocation
capability like Pascal.

Data Structure for the Knob
MGS relies heavily on the knob of the Series 200 Comput

ers for input. At times the knob is used for entering a
numeric value, such as volts at full scale, total time, etc.
To make the knob more useful we had to make it nonlinear.

F ig . 4 . Graph ica l rep resen ta t ion
of MGS data structure for a screen
display.

JANUARY 1986 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

Table I

E l e m e n t D e f i n i t i o n

n a m e $ H o l d s p a r a m e t e r n a m e s
name-pos Holds the encoded x-y posit ion of the names on

the screen. There is one entry for every name$
entry. Instead of using two integer arrays for
keeping the x and y positions, the following
encoding scheme is used:
name-pos(i) =x(i)*51 2+y(i).
This is done to conserve storage space,

n-cnt Holds the number of ent r ies in names and name-pos
columns.

a t t r $ H o l d s t h e c u r r e n t p a r a m e t e r s e t t i n g ,
a t t r -pos Holds the x-y posi t ion of where parameters are to

be displayed,
pntr-pos Holds the x-y posit ion of where the pointer is to be

displayed for each parameter,
op t ions A two-d imens iona l s t ruc tu re . Each row of th i s

structure holds all the possible settings for the
corresponding parameter,

o - c n t H o l d s t h e c o u n t o f v a l i d e n t r i e s p e r r o w i n t h e
option table,

o - i n d H o l d s t h e c u r r e n t i n d e x o f t h e i t e m f r o m t h e
option table that is being displayed, that is,
attr$(i)=option$(i,o-ind(i)).

o- s t r t Ho lds t he l og i ca l f i r s t en t ry i n op t ions ,
o -pos Ho lds the x -y pos i t ion o f where op t ions a re to be

displayed.
o - m a x M a x i m u m n u m b e r o f o p t i o n s i n t h e o p t i o n t a b l e ,
t i t l e H o l d s a s t r i n g t h a t c o n t a i n s a s c r e e n n a m e ,
poin ter Poin ts to the current row in the opt ion table . The

UP and DOWN softkeys change the value of this
variable,

a - c n t H o l d s t h e n u m b e r o f p a r a m e t e r s i n t h e d a t a
structure,

o ld -pn t r Ho lds l a s t va lue o f t he po in t e r .

This means the step size of the knob is dependent on the
current value of the knob. For example, when the current
value for volts at full scale is between 0 and IV, the incre
ment is 0.05V, and when the current value is between 50
and 100V, the increment is IV.

To make this task uniform throughout MGS the data
structure outlined in Fig. 5 is used.

Each table contains several rows of data. Each row is for
a given range. Table III defines the parameters.

Table II I

E l e m e n t D e f i n i t i o n

increment Holds the value by which the current setting will
be incremented.

lower_bound Holds the minimum limit of the range.
upper_bound Holds the maximum limit of the range,
c jowjnd Holds the f i r s t lega l row of the tab le .
c_hi Jnd Holds the las t legal row of the table .
c j n d e x P o i n t s t o t h e c u r r e n t r o w i n t h e t a b l e .
c_cur r Holds the cur ren t va lue . This i s the var iab le tha t i s

being incremented and decremented.

cjowjnd and cjiijnd are used to control the legal limits
of the knob. Valid limits are kept between the high and
low indexes.

The following conditions are used for moving up and
down in the table:

I f c _ c u r r > u p p e r _ b o u n d (c J n d e x) t h e n c _ i n d e x = c _ i n d e x + 1 a n d c _ c u r r
= l o w e r _ b o u n d (c j n d e x)

I f c _ c u r r < l o w e r _ b o u n d (c _ i n d e x) t h e n c j n d e x = c j n d e x - 1 a n d c _ c u r r
= u p p e r j D o u n d (c j n d e x)

Every time the value of cjndex is changed, the following
condition must be checked:

I f c j n d e x > c j i i J n d t h e n c j n d e x = c j o w j n d
I f c j n d e x < c j o w j n d t h e n c j n d e x = c _ h U n d

There is a copy of this data structure for every numeric
parameter. Again, this is because of the limitations of
BASIC.

Measurement Setup Module
In this module, the user sets up an experiment and

specifies dependent channels, independent channels, trig
gering mode, duration of experiment, type of experiment,
etc. Accessible through this module are channel setup mod
ules. In those modules the user sets range, offset, and trigger
level and width for each channel. If the measurement is to
be conducted in user units, the user specifies the minimum
and maximum user units, instead of range and offset.

Up to now, most users of X-Y recorders had to convert
their units to voltage levels, and then take a measurement
in volts. Finally, they had to convert volts back to their
units. This is also the case with the stand-alone HP 7090A.

MGS allows the user to set up an experiment in volts.
This is provided for the sake of consistency with the stand
alone machine. In addition to volts, MGS gives the user
the capability of setting up and taking a measurement in
some other unit system: displacement, acceleration, force,
saturation, etc. To set up a measurement in volts, the user
specifies range and offset settings for each channel and
trigger information for Channel 1 , just as for the stand-alone
HP 7090A.

When in user units, a measurement is set up by specifying
the minimum and maximum possible readings in user units
for each channel and trigger information for Channel 1.
Trigger information is specified in user units. We believe
that the availability of user units enhances the usefulness
of MGS. For example, in measuring temperature in a chem
ical experiment, we can set user units limits for Channel
1 to -100Â°C and 100Â°C and set the trigger level to 10Â°C.

cont_tab

0 i n c r e m e n t 1 l o w e r b o u n d 2 u p p e r b o u n d

Fig. 5 . Data s t ructure for knob contro l .

30 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

Volts
12 -T-

10

8 --

Z --

Circuit Turnâ€” On Characteristics
mWRTTS

2 2 5
mHMPS

- I - 1 2 0

â € ” 1 0 0

r a n s i s . r C u r r e n t

1 3 : 2 7 : 5 2 2 1 M Â « r 8 4
T Q T H L T I M E : . 3 >

S X P r e T R I G G E R
T R I G G E R : I n t e r n Â » ! 1 , 0 , F
T R I G T I M E : 1 8 : 9 2 : 1 8

 8 0

 6 0

Power =

Current x Voltage

 4 0

T r a n s i s t o r V o l t a g e

 2 0

T i ' m e (s e c .)

Measurement Module
The measurement subsystem implements the ability to

take measurements. It starts the measurement, and when
data becomes available, receives the data and stores it in
the software's channel buffers. There are three types of
measurements: direct on-screen, direct on-paper, and data
streaming. In direct on-screen measurements, the data is
plotted to the screen in real time as the data is being stored
in the software's channel buffers. Direct on-paper measure
ments emulate a traditional X-Y recorder and no data is
sent to the computer. Data streaming mode allows up to
ten thousand samples from each of three channels to be
buffered into memory and then written out to a disc file
for later processing.

Display Module
The display subsystem allows measurements and anno

tation to be displayed on the screen or on paper. There is
a display setup mode that allows the user to specify which
data channels of the measurement will be displayed. The
display scale and the size of the displayed measurement
can be adjusted. The output to paper can be formatted so
that up to four measurements and their data can be plotted
on one page.

Data Manipulat ion Module
In a measurement system the user may have a need to

postprocess the recorded measurement. This module gives
the user the capability of performing arithmetic operations
on data channels. This subsystem has the capability of
performing + , - , X, +, square root, square, log, and nega
tion. This subsystem gives the user the capability of build
ing algebraic equations with two operands and one
operator. Operands can be any data channel or constants
or the result of the previous operation. The results can be
displayed using the display module. The last five opera
tions are shown in a small window. This is done to simplify

F i g . 6 . E x a m p l e M G S p l o t s h o w
ing a calculated parameter (power)
v e r s u s m e a s u r e d c u r r e n t a n d
voltage.

the task of computing complex equations through the
chaining of operations. For example, when measuring volt
age and current, the subsystem can be used to compute
power by multiplying the voltage and current readings as
shown in Fig. 6. Manipulations not provided directly by
the software can be applied to the data sets through user-
written programs.

Storage and Retr ieval Module
The storage and retrieval subsystem allows the user to

save not only the measurement data but also the current
measurement setup, annotation, and display setup param
eters. When retrieving data, the users can select subsets of
the data to be retrieved. For instance, the annotation can
be stored from one measurement and retrieved into another.
The measurement setup parameters will always be re
trieved along with the measurement data because the data
itself does not have meaning without its setup conditions.
There is a file header at the beginning that contains infor
mation about where the data and setup parmeters are lo
cated in the file.

Annotat ion Module
The annotation subsystem gives the measurement

graphics user the capability to put grids, axes, labels, lines,
markers, and an annotation box on the measurement graph.
It is not intended to do general-purpose drawing or to be
a graphics editor. Some features are:
â€¢ Axes and grids feature automatic tic labeling in the units

of the measurement. Log axes and grids are also available.
â€¢ Labels are useful for titles and for adding documentation

to the graph. They can be added, changed, or deleted at will.
â€¢ Lines can be used for simple drawing.
â€¢ Markers annotate points on the data line and they can

be automatically labeled with their respective x and y
coordinates. The cursor can be used to step through
points on the data line to position the marker.

JANUARY 1986 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

â€¢ The annotation box can be used to supply information
about the measurement, such as channel settings, trigger
level, trigger time, and time of day.

Acknowledgments
In addition to the authors, Diane Fisher and Irene Ortiz

contributed to the design and development of the MGS
package. Larry Hennessee managed the project.

Analog Channel for a Low-Frequency
Waveform Recorder
by Jorge Sanchez

THE ANALOG CHANNEL of the HP 7090A Measure
ment Plotting System conditions and digitizes the
signals connected to the inputs of the instrument.

The analog signals are amplified, filtered, and digitized by
a series of stages as shown in Fig. I. After the signals are
digitized, the equivalent binary words are processed
through a series of calibration procedures performed by
the microprocessor to provide the full dc accuracy of the
machine. The architecture of the channel is designed with
flexibility of operation as a goal. Thus, the microprocessor
is used to set up the multiple stages for coarse and fine
gains and offsets. This allows the execution of zeroing and
calibration routines and eliminates manual adjustments in
the manufacturing process. (No potentiometers were used
in the design. See box on page 22. J The analog channel has
floating, guarded inputs. Through the use of isolation and
shielding, common mode rejections of >140 dB for dc and

>100 dB for 60 Hz are obtained.

Preamplifier
The analog channel preamplifier (Fig. 2) uses a set of

low-noise, low-leakage JFETs and low-thermal-EMF relays
to switch the inputs of amplifier Al to the gain and attenu
ation string of resistors. The amplifier switches are con
nected in such a way as to set the 14 major ranges for the
HP 7090A. (Other ranges are provided by a postamplifier
as will be explained later.) The ranges are set by the micro
processor's loading the appropriate words in front-end re
gisters 1 and 2. Amplifier A2 is used as a buffer to drive
three different circuits:
â€¢ The internal guards that minimize printed circuit board

leakage in critical areas
â€¢ The on/off and biasing circuits for the range setting

switches (as set by front-end registers 1 and 2)

G u a r d O

Optical
Interface

To
^â€¢Microprocessor

Board
Serial-to-

Paral lel Converter
Fig . 1 . B lock d iagram o f ana log
channel.

32 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

On/Off, Bias Circuits
(To JFETS and Relays)

FE Register 1

t... f
FE Register 2

Internal
1 B u s

F ig . 2 . Ana log channe l p reamp l i
fier.

m The input protection feedback loop.
To satisfy the performance requirements of the HP 7090A

to handle signals as low as a few microvolts with a
bandwidth spanning from dc to a few kilohertz, the design
uses carefully chosen components such as the precision
low-noise amplifiers Al and A2 and metal-film resistors
of small values (to avoid white noise). In addition, printed
circuit board layout becomes critical. Hence, extensive use
of guarding and shielding of critical areas is done, including
the use of Teflonâ„¢ cups for the input node.

Transistor Q3 is part of the circuitry used in an autozero-
ing routine to eliminate channel offsets caused by initial
component errors, temperature drift, and aging.

ESD and Overload Protect ion
Front-end inputs are likely to experience ESD (electro

static discharge) transients since they can be touched by

the user. Also, in a general-purpose instrument, temporary
dc overloads may be applied. For this reason, protection
circuits are necessary. Very often these circuits tend to
degrade amplifier performance. This situation was avoided
in the HP 7090A by using the circuit shown in Fig. 3.

If there is no way to prevent ESD from penetrating the
machine, the next best thing is to shunt the transient to
ground through a preferential path of impedance lower
than the rest of the circuits. The primary ESD clamp is
actuated by electron tube El and the source inductance.
El has a very large resistance and low capacitance when
in the off state. Hence, it does not degrade the amplifier's
input impedance. Capacitor Cl turns off El after the surge.
Resistor Rl discharges Cl. This circuit can only limit VI
to several hundred volts because of the insufficient speed
of El.

The secondary protection devices clamp the input to a

High O

L o w O

G u a r d O Common
Plane

Fig. 3. Input protect ion c i rcu i t ry .

JANUARY 1986 HEWLETT-PACKARD JOURNAL 33

© Copr. 1949-1998 Hewlett-Packard Co.

voltage less than the maximum allowable voltage for Al.
(This is also used as the dc overload protection.) The other
circuits minimize leakages. Buffer A2 sets rectifiers CRl
and CR2 to zero bias by feedback. Leakage caused by Zener
diodes VRl and VR2 is provided by A2 and not by the
minus node of Al.

To avoid sourcing current for the bottom plate of Cl from
the common plane, and since there is no way to obtain a
simultaneous turn-on of El and E2, C2 is installed between
the low and guard terminals to provide the current.

RVl is a voltage clamp device used to protect the devices
between the low and guard terminals against overloads
between the input terminals or against transients applied
to the low terminal. The final shunting of the ESD transient
to earth ground is provided by electron tube E2.

In a circuit such as this, care must be taken to shield or
orient the components and connections to prevent reradi-
ation of noise to other areas. In addition, the breakdown
voltages of interconnections should be much higher than
the breakdown voltages of the devices used. These protec
tion circuits proved successful during testing by enduring
many thousands of electrostatic discharges up to 25 kV
that were applied to the inputs.

Vernier Gain Stage
The digitally programmable vernier stage consists of a

12-bit multiplying digital-to-analog converter (DAC) and
an operational amplifier. Its main function, in conjunction
with the preamplifier, is to provide the numerous cali
brated ranges of the machine. The gain in this stage is
represented by G = â€” D/4096, where D is the decimal equi
valent of the binary word that is applied to the DAC. The
number D is equal to the product of two scaling factors Dl
and D2. Dl accounts for the vernier gain. It is derived from
the range entered by the user and from internal routines

Change gain

T

T
T

Open input at tenuator and
close preampli f ier zero switch

Load the of fset DAC wi th count
f rom approximate formula

Do A- to-D convers ions, and by
i terat ion on the loaded word in

the of fset DAC, get the of fset as
c lose to zero vol ts as possible

in the microprocessor as indicated by the channel's range
calibration equations. D2 is a fixed attenuation factor and
is used as a coarse gain adjustment to account for system
gain error caused by component tolerances.

Postamplifier
The postamplifier stage has the following functions:

â€¢ It amplifies the signal to a voltage level that is suitable
for the digitizer

â€¢ It contains a 3-kHz low-pass active filter
â€¢ It provides an offset voltage that is programmable by the

microprocessor.
The programmable offset is accomplished by the use of a
low-cost DAC. This converter is used primarily for subtract
ing out the analog channel's subsystem offset each time
the ranges are changed, and for periodically performing a
zero calibration to account for drifts. The offset DAC per
forms a coarse offset subtraction in hardware. To ac
complish a fine offset calibration, the residual offset Vos is
first found by the offset calibration routine (see Fig. 4).
This offset is subtracted from the incoming data during the
data correction routine, which is executed after the input
signal is sampled.

A-to-D Conversion Circuits
This section consists of one sampling stage with two

sample-and-hold devices connected in parallel and requir
ing an analog multiplexer, buffer and control logic, and a
12-bit analog-to-digital converter (ADC). Two sample-and-
hold ICs are used here to be able to perform an A-to-D
conversion on a sample while simultaneously acquiring
the next sample (see Fig. 1 on page 22). After the conversion
is completed, the sample-and-hold stages are swapped by
the sequencing circuits and the cycle is restarted. This
eliminates the acquisition time wait for a conversion cycle,
thereby allowing the use of a slower low-cost converter.

Studies have shown that the eye can distinguish very
small fluctuations in a ramp waveform when it is plotted.
For this reason, a 12-bit-resolution ADC had to be used,
since the HP 7090A can plot the digitized waveform.

Common Mode Reject ion Rat io (CMRR)
The CMRR specifications of the HP 7090A demand a

high degree of isolation between the analog channel and
ground. This requires resistances on the order of gigohms
and a maximum capacitance to ground of about 25
picofarads. There are two main areas that provide the iso
lation â€” the optical interface and the channel power supply.

Take resul ts of last A- to-D conversion
and compute the res idual channel of fset

V0,

I
T

Store V0, in RAM

Open zero swi tch and restore
the appropiate at tenuator

for the range

Fig. 4. Flowchart of of fset cal ibrat ion rout ine. F ig . 5 . S impl i f ied error model for HP 7090A f ront end.

34 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

(G-AG)VS

GV5

Line 2: y=rri jX

L ine 1 : y=m,x

Fig. 2 To ca l ibrate gain, the response represented by l ine 2
is mapped into the ideal response indicated by l ine 1 .

The optical isolators provide all of the digital communi
cations with the system processor in serial form. This is
done with a small degradation in capacitance and resis
tance to ground. In addition, internal shields in the op-
tocouplers provide common mode transient rejection of at
least 1000 V//xs.

The most critical component in the channel power sup
ply is the isolation transformer. To obtain a low isolation
capacitance, three box shields are used. I t can be dem
onstrated that three box shields will eliminate the most
common ground loops associated with a floating front end.1
Box shields and special manufacturing techniques minimize
and cancel currents induced by the transformer into the
preamplifier circuits. With this and careful pin assignments,
low coupling capacitances in the hundreds of femtofarads
are obtained.

The analog channel printed circuit board is placed in a
sheet-metal shield to decrease coupling capacitances to
ground and to minimize external source interference into
the sensitive amplifiers.

Modern analog front ends of ten include digi ta l and
analog signals in the same set of circuits. This can become
troublesome when there is a need to handle microvolt-level
signals at high accuracy and wide bandwidths. Detailed
attention to printed circuit board layout makes it possible
to obtain high-quality signal conditioning. For this pur
pose, isolation of internal grounds and of analog and digital
signals was done. Ground planes are also used to minimize
intersignal capacitances. In addition, well-known tech
niques2 are used throughout the board for isolating power
supply output impedances and ground returns from the
different stages.

Computer Cal ibrat ion
To p rese rve accuracy under d i f f e ren t t empera tu re cond i

t i ons and to compensa t e fo r t he ag ing o f componen t s , t he
HP 7090A's microprocessor executes a ser ies of cal ibrat ion
rou t ines . These same rou t ines a l l ow the use o f au toma ted
ga in ca l ibra t ion a t the fac tory . The ca l ibra t ion fac tors thus
o b t a i n e d a r e s t o r e d i n a n o n v o l a t i l e m e m o r y i n t h e H P
7090A.

E v e r y s t a g e i n t h e f r o n t e n d a d d s e r r o r s t o t h e s i g n a l .
T h e p r o c e d u r e f o l l o w e d i s t o l u m p a l l e r r o r s , r e f e r t h e m
to the inputs , and separate them into gain and offset errors .

F i g . 5 s h o w s a s i m p l i f i e d e x a m p l e o f a n e r r o r m o d e l . I n
this case G = ideal gain, Vs = input s ignal , AG = gain error ,
V0 = signal at the ADC. V05 = offset error, and [V0] = quan
t i zed va lue of

To ca l ib ra te the sampled s igna l , we f i r s t s ample the sys
t e m o f f s e t b y c l o s i n g S 2 a n d o p e n i n g S i . T h i s i s d o n e i n
the HP 7090A during the offset cal ibrat ion rout ine out l ined

in Fig . 4 . This y ie lds :

V0i = (G + AG)VOS

T h e n , w e a c q u i r e t h e i n p u t s i g n a l b y o p e n i n g S 2 a n d

c los ing S i , wh ich g ives :

V02 = GVS + AGVS + GVO

After of fse t compensa t ion we ge t :

Vn = V - V = G V V 0 2 V 0 , V J V S

AGVO

AGV5

To do a gain calibration, we map response line 2 in Fig.
6 into line 1 by the procedure explained in the box on page
22. This yields the gain calibration factor G/(G+AG). This
factor is obtained for each one of the 14 major ranges of
the machine. As mentioned before, these factors are stored
in the HP 7090A's internal nonvolatile memory.

Accuracy in other ranges that use the vernier is guaran
teed by the circuit design.

The gain calibration requires a final multiplication:

V0t = V03(G/(G = [VS(G + AG)][G/(G = GVS

T h i s l a s t q u a n t i t y i s i n d e e d t h e a m p l i f i e d i n p u t v o l t a g e ,

wh ich i s t he de s i r ed quan t i t y .
O t h e r m o r e c o m p l e x m o d e l s , s i m i l a r t o t h e o n e a b o v e ,

a r e u s e d t o a c c o u n t f o r o t h e r o p e r a t i o n s o f t h e m a c h i n e
such as use r ' s en te red o f f se t , f ac to ry ca l ib ra t ion rou t ines ,
and combinat ions of in teract ing errors . The exact equat ions
used for the correct ions in f i rmware are a lso in a quant ized

form.

References
1 . R . Morr i son , Grounding and Shie ld ing Techniques in In
strumentation, second edition, John Wiley & Sons, 1967.
2. Henry Ott, Noise Reduction Techniques in Electronic Systems,
John Wiley & Sons, 1976.

JANUARY 1986 HEWLETT-PACKARD JOURNAL 35

© Copr. 1949-1998 Hewlett-Packard Co.

Usabi l i ty Test ing: A Valuable Tool for PC
Design
by Daniel B. Harrington

Evaluat ing the exper iences of users unfami l iar wi th a new
computer product can prov ide va luab le gu idance to the
des igner and the documentat ion preparer .

A KEY ELEMENT IN THE DESIGN of a personal com
puter is how easy it is for a new owner to set it up,
get it running, and do basic tasks such as printing

output, loading software, entering data, and handling files.
To evaluate these qualities, HP's Portable Computer Divi
sion has conducted three usability tests, two on the Integral
PC (one before, one after introduction) and one on The
Portable (after introduction). A single test program uses
ten reviewers, one per day, each performing for pay the
same set of tasks on the selected computer model. The
tasks are performed in the testing room at the division.

The reviewers are selected to meet the profile of the
expected buyer of the computer. Each reviewer's experi
ence is videotaped, and an observer in the test room con
stantly monitors the reviewer's progress (see Fig. 1). When
a reviewer becomes frustrated enough to call the dealer for
help, the observer acts as the dealer and offers the help
requested. Product engineers and management are invited
to observe the test sessions. The results of the test, including
suggestions for product improvement, are widely distrib
uted. Finally, a reviewer debriefing meeting is held where
the reviewers and HP engineers can discuss the usability
of the product.

Why Have Usabi l i ty Test ing?
Hewlett-Packard is committed to quality and customer

satisfaction. To know if we're satisfying our customers, we
must measure our performance. Usability testing provides
one means of measuring product quali ty and customer
satisfaction. This method has several advantages:
â€¢ Product engineers can observe users (the reviewers)

using their products, both during product development
and after market introduction. Tests conducted during
product development allow changes in the design of the
product to satisfy the observed needs of users.

â€¢ It's a controlled measurement allowing statistical evalu
ation and comparisons of user satisfaction before and
after product changes are made.

â€¢ Product engineers can meet the group of reviewers at a
debriefing meeting. At this meeting, engineers can hear
what the reviewers liked and did not like about the prod
uct, and the product changes they wish HP would make.
This meeting also allows dialog between engineers and
reviewers.

â€¢ It's an especially effective test of documentation, a key
part of this type of product.

Many of our competitors emphasize the human interface.
They understand that buying decisions are affected both
by the reported length of time it takes new users to get
familiar with a computer and the difficulties users have
encountered in using it. Corporate buying decisions are
especially influenced by the computer productivity ex
pected from a particular brand or model.

Magazine evaluations also focus on user-friendliness.
Perhaps you've read, as we have, magazine reviews of new
computers, in which the writers take great pleasure in de
scribing their frustrations in trying to use the computers.
Such negative reviews must hurt sales, just as positive
reviews must help sales.

Customers do not like to be frustrated by incomprehen
sible error messages, manual jargon, confusing instruc
tions, peripherals that won't work when connected, and
all the other problems that a first-time user of a personal
computer too often encounters. Usability testing offers an
effective way to measure and reduce such problems.

Fig . 1 . A rev iewer s tud ies the ins t ruc t ions fo r the computer
being tested. Note the observer and monitor in background.

36 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

H o w i s U s a b i l i t y T e s t i n g D o n e ?
We learn from product management the profile of the

expected buyer of the computer we're about to test. \Ve
then seek people in the local community who fit that profile
and who are not HP employees. We find most of them are
excited about spending a day with us playing with a new
computer. As a token of our appreciation, we pay reviewers
for their help.

We encourage HP people to observe the usability test.
We want those responsible for the product to watch and
listen to these reviewers as they work. While it can be a
humbling experience to see how the results of our efforts
somehow fail to work in the reviewer's hands as we in
tended them to, such experiences are vital to developing
a product that satisfies users.

Each reviewer spends a day using the computer in a
simulated work environment. We equip the testing room
with a table set up like a typical office desk, complete with
plant and in-basket. At best, the test situation in which the
reviewers find themselves is still foreign, but we try to
create an atmosphere that is at least partially familiar. We
feel the closer the testing environment is to a typical user's
workplace, the more valid our results will be.

An opening questionnaire gives us the reviewer's com
puter experience and educational background. This infor
mation helps us qualify each reviewer's experiences during
the test session. This questionnaire also confirms that the
reviewer meets the profile of the expected buyer.

Before users operate a computer for the first time, most
have studied the market and already know something about
the particular computer they have chosen. Reading
brochures and reviews, having discussions with dealers
and other users, and watching others use the computer
allow a user to set up and run a new computer more effi
ciently than one who has never seen nor heard of the prod
uct before opening the box. We can't completely duplicate
this knowledge, especially for a product still under de
velopment, but we do give each reviewer a description of
the product before the test session begins. For a released
product, we mail a brochure and data sheet to each reviewer
a week before the test starts.

The reviewers start with the computer in its shipping
carton. We give each of them the same set of tasks or ob
jectives, and ask them to perform them in any order they
desire.

A video and audio recording of each session is made.
These recordings serve several purposes:
â€¢ They support the notes the observer makes at each session.
â€¢ They are available for study after the test is over.
â€¢ They provide the raw material for the summary tape

shown at the reviewer debriefing meeting.
We urge reviewers to comment freely. The audio portion
of the tape is often the most important. We want reviewers
to tell us what they're doing, how they feel, what they like
and don't like about the product; in short, we want almost
a stream-of-consciousness narrative.

An observer is always in the room with the reviewer.
The observer uses notes taken during the usability test to
write the test report. When the observer needs more opin
ions and information from the reviewer, the reviewer is
asked appropriate questions during the test.

When we started these tests, we were concerned about
the observer sharing the test room with the reviewer. The
standard testing arrangement used by IBM1 consists of two
rooms separated by a one-way mirror. The reviewer is alone
in one room, which is identical to a typical office. The
observers, video cameras, and other equipment are in the
other room. We started with and still use only one room,
but we feared the observer's presence would inhibit the
reviewer's actions and comments, making the results less
valid. Therefore, we specifically asked reviewers who
helped us with our first test if the observer's presence hurt
the effectiveness of the test. They told us the nearness of
the observer helped, rather than hurt the process. They felt
they were talking to a human rather than a machine, which
made it easier to comment freely. They also appreciated
the reviewer's encouragement and requests for comments.

We also emphasize that the product is on trial, that the
reviewer cannot fail. It's important that reviewers feel at
ease so that their experiences are as close as possible to
those real users would experience. However, some review
ers still feel under some pressure to perform, and try to
finish the tasks as fast as they can to do a good job. An
observer can help reduce this pressure by creating an at
mosphere of you-can't-fail informality. This is another ad
vantage in having the observer share the test room with
the reviewer.

The reviewers have only two sources of help:
â€¢ The manuals, disc-based tutors, on-screen help mes

sages, and other material delivered with the product.
â€¢ Their dealer (the observer).

Reviewers that reach a level of frustration that would
produce a call to their dealer if they were using their own
computer in their home or office can pick up the uncon
nected phone on their desk. This action tells the observer
that a dealer call is being made. The observer then acts as
the dealer and gives whatever help is needed. The number

Fig. 2. HP's Integral Personal Computer2 is a powerful mul t i
task ing computer sys tem in a 25- lb t ranspor tab le package.
Des igned fo r techn ica l p ro fess iona ls , i t f ea tu res a bu i l t - i n
printer, display, disc drive, and HP-IB interface and the HP-UX
opera t ing sys tem, HP 's ve rs ion o f AT&T Be l l Labora to r ies '
UNIX" opera t ing sys tem.

JANUARY 1986 HEWLETT-PACKARD JOURNAL 37

© Copr. 1949-1998 Hewlett-Packard Co.

of such calls and the reasons for them can tell us a lot
about what product features are hard to understand or not
working well.

A closing questionnaire asks for opinions about the prod
uct. In general, this questionnaire asks two types of ques
tions. One type asks reviewers to rank their level of agree
ment or disagreement with a number of positive statements
about various features of the product, such as:

The owner's manual is easy to understand.
The error messages are easy to understand.
I like the display.
Each reviewer is asked to rank each statement from 1

(strongly agree) to 5 (strongly disagree). The other general
type of question asks reviewers to comment on various parts
of the product, such as manuals, keyboard, display, help
messages, etc. Often, a product feature like a manual is the
subject of both a ranking question and an essay question.
Another common question asks reviewers to identify the
most difficult or the three most difficult tasks. That ques
tion is followed with a ranking question something like
this: "Considering the difficulty of the task you identified
as the most difficult, the instructions for that task are as
clear as they can be."

The video recorder is stopped while the closing question
naire is completed. Then it is turned on again to record
the closing interview. The observer chooses some closing
topics to discuss further, generally about product areas
reviewers felt needed improvement. These interviews often
produce some of the best and most useful video footage.

About two weeks after the last test session, the reviewers
and the product engineers meet together. This is a very
useful meeting. It allows the product engineers (hardware,
software, electronic, system, packaging, manual, quality,
production, etc.), management, and anyone else who is
interested to hear reviewers' opinions directly. By asking
questions, the audience can draw out additional reviewer
opinions and suggestions.

The final report is widely distributed. This report describes
the test and gives the reviewers' opinions and suggestions.

How Has Usabi l i ty Test ing Helped?
During the preintroduction test of the Integral PC,2 re

viewers felt the initial mechanical design did not give an
impression of quality and ruggedness. A description of this
computer will help to explain their complaint. The Integral
PC (Fig. 2) is a transportable computer. The bottom of the
keyboard is the front face of the closed-up computer, and
the carrying handle is attached to the top, which opens up
and folds back to release the keyboard and reveal the built-
in flat-panel display, SVfe-inch disc drive, and Thinkjet
printer. The main reviewer complaint about the apparent
lack of ruggedness centered on the mechanism that controls
the opening and closing action of the top cover. This mech
anism had been tested by engineering and had satisfied
their tough strength specifications. However, the reviewers
felt the looseness of the mechanism suggested weakness
and sloppy design.

The mechanical engineers accepted the reviewers' judg
ment that the top cover mechanism should not only be
rugged, but should also appear rugged. They made design
changes that largely eliminated the looseness of this mech

anism, and the postintroduction usability test of the Inte
gral PC told us that they did an excellent job. The reviewers
who judged this computer during this second test felt the
computer did give an impression of quality and ruggedness.

The Integral PC's on-screen tutor, a new type of instruc
tion product for our division, incorporated usability testing
as a key item in its development schedule. The strong posi
tive acceptance of the final tutor would not have been
possible without the user feedback given by two informal
usability tests and a final, formal usability test conducted
during product development.

The Integral PC Setup Guide (Fig. 3) is another new type
of instruction product for our division. This guide uses a
series of pictures with very few words to tell a first-time
user how to open the computer's case, connect the keyboard
and optional mouse, and start the on-screen tutor. Other
sections of this setup guide tell the user how to install the
printhead cartridge for the built-in Thinkjet printer, how
to load fanfold paper into the printer, and how to prepare
the Integral PC for transporting.

Usability testing was incorporated into the development
schedule for this setup guide. These tests indicated the
need for major changes in the initial guide. The postin
troduction usability test proved the final setup guide was
very useful, and suggested some further improvements.

The preintroduction usability test of the Integral PC
suggested improvements in the packaging. The initial ship
ping carton design we tested included a thin, flat parts box
inside the shipping carton. Either of the two large faces of
this parts box could be opened easily by users, but the box
would reveal all of its contents only when one of these
faces was opened. If the other face was opened, many of
the smaller parts were well hidden. When the reviewers
pulled this parts box out of the shipping carton, chance
would dictate which large face was up when the box was
laid on a table. If the wrong side faced up, the wrong side
was opened, and parts were lost.

The packaging engineer observed some of the reviewers
opening the wrong side, and had a cure specified before

F i g . 3 . I n t e g r a l P C S e t u p G u i d e , a 1 0 - p a g e g u i d e w h o s e
development depended on usabi l i ty test ing.

38 HEWLETT-PACKARD JOURNAL JANUARY 1986

© Copr. 1949-1998 Hewlett-Packard Co.

the sequence of usability tests was over. He specified that
the words "Open this side" appear in large letters on the
right side, and the words. "Open other side" appear in
large letters on the wrong side. This improved parts box
was tested during the postintroduction usability test. Dur
ing this test, the reviewers proved that people often don't
see what they look at and don't read what they see. In spite
of the words "Open other side" printed in large letters on
the wrong side of the parts box. several reviewers opened
the wrong side anyway, and did not see or remove the
smaller parts, including the ink cartridge for the Thinkjet
Printer. One reviewer suggested that we design our parts
box to open only one way. Again the packaging engineer
responded quickly, and the Integral PC parts box now opens
only one way. This example shows the importance of test
ing the cures inspired by previous tests.

During the preintroduction test of the Integral PC, review
ers felt the disc drive busy light was too dim. Engineering
responded, and the production computer now has a satis-
fyingly bright light to indicate disc drive activity.

Some help screens provided by The Portable (Fig. 4),
and displayed by pressing a function key, do not state
clearly how to get out of the help screen. One help screen
set, consisting of a number of screens, does not tell the
user how to exit until the fourth screen. The software group
in engineering listened to the reviewer's comments about
this. The Portable PLUS, developed after The Portable, also
uses help screens, but the first screen of every help screen
set clearly tells the user how to exit.

The Portable includes a disc-based diagnostic program.
This program was loaded into the memory of the f irs t
shipped units of The Portable, and its label was shown in
the PAM's (Personal Application Manager's) main screen
at the far left. When The Portable's display was first turned
on, the selection arrow pointed to the diagnostic program's
label. During the usability test, several reviewers pressed
Start on the keyboard to see what would happen. This would
start the diagnostic program, causing much confusion.
Again engineering listened, and they specified that this
disc-based diagnostic program no longer be loaded into
The Portable before shipment, although the disc containing
this program continues to be included with the product.

The Portable was the first computer from this division
to use three-ring binders for its manuals. We elected to put
five separate manuals into one binder separated by tabs,
since these five manuals fit comfortably in one binder, and
doing so reduced product cost. A second binder was used
to contain only one manual, the Lotusâ„¢ 1-2-3'" User's Man
ual. Even though we stated clearly (we thought) on the
second page of the first manual that five separate manuals
were in the binder, and gave descriptions of each, many
reviewers were confused. They thought instead that the
binder contained several sections of one manual. For exam
ple, they would look in the index of the last manual, the
MSâ„¢ -DOS Operating System User's Guide, for page refer
ences to the other manuals. Since each of the five manuals
started with page 1-1, reviewers were understandably frus
trated. As a result, future loose-leaf binders will each con
tain only one loose-leaf manual, or will provide clear ways
for users to realize that it contains more than one.

The Portable reviewers made many other suggestions for

manual improvement. Three of the more important sugges
tions that have been implemented are:
â€¢ Start each chapter with a table of contents.
â€¢ Every reference to a function key should be followed

with the keycap label, like Start (f1).
â€¢ Every keystroke sequence that requires pressing Return

to generate the desired action should include Return as
the last keystroke.
The postintroduction test of the Integral PC gave us our

first chance to test the general manual improvements. Each
reviewer opened a new box fresh from the production line
to ensure that the contents were arranged and packaged
just as actual users would see them when opening their
newly purchased computer. One complaint these reviewers
had was the difficulty and frustration of tearing the plastic
shrink wrapping off the manual binders. They were espe
cially vocal about the very rugged clear plastic we used for
the plastic bag containing the setup guide and tutor disc.
These reviewers suggested we add an easy-open tab to the
shrink wrapping and use a zip-lock plastic bag for the setup
guide and tutor disc. These suggestions are being consid
ered.

Our documentation department maintains a revision file
on all current manuals. When a manual reprinting becomes
due, the responsible writer checks the appropriate file and
incorporates the corrections and changes that have col
lected since the last printing. All reviewer suggestions for
manual improvements made during the postintroduction
test of the Integral PC have been inserted in the appropriate
manual revision file, provided the suggestions make sense
(most of them do). In this way, the next printing of each
manual will profit from the feedback given to us by these
reviewers.

What Improvements Have We Made to the Testing Process?
Each time we conduct a usability test we learn how we

can improve it further. Some of the improvements we've
made to the testing process since we began are:
â€¢ The task list we used for the early tests was quite detailed.

Fig. 4. The Portable is a 9- lb personal computer wi th bui l t - in
sof tware tor t i le management, spreadsheets, graphics, word
process ing, and data communicat ions.

JANUARY 1986 HEWLETT-PACKARD JOURNAL 39

© Copr. 1949-1998 Hewlett-Packard Co.

For instance, the test of The Portable asked each reviewer
to perform 38 narrowly defined tasks that we expected
reviewers to perform in a particular order. For example,
the first task asked them to turn on the computer. We now
ask reviewers to complete a smaller series of broader objec
tives, and urge them to complete these objectives in any
logical order. (An example of an illogical order would be
to start a program from the electronic disc before first copy
ing that program from a flexible disc.) The first task listed
on our latest 14-item task list asks reviewers to install extra
memory, but since we urged reviewers to perform tasks
in any order, one reviewer performed this task near the
end of his session.
In the beginning, we used only one microphone, a lapel
mike for the reviewer. Therefore, only half of the several
conversations per session between the observer and the
reviewer were recorded. Now the observer also has a mike,
and we use a mixer to feed both audio signals to the video
recorder.
The videotape of the first test consisted exclusively of
medium-to-long-distance shots of the reviewer working at
the desk. Much of the recorded action consisted of review
ers turning manual pages hoping to find answers to their
problems. Now we only use long-distance shots to show
the action during unpacking, connecting peripherals, load
ing printer paper, etc. As soon as a reviewer starts working
at the keyboard, we record a close-up shot of the display.
The main advantage is that the observer can tell what the
reviewer is doing by watching the computer's display in
the TV monitor.
We now record the closing interview, rather than simply

take notes as we did at first. These produce some of our
best recordings, since they often contain excellent useful
comments on our products.

â€¢ We have always held debriefing meetings, in which the
reviewers have a chance to give their opinions directly to
the people in the division responsible for the product. We
now have added another feature to these meetings â€” a spe
cial videotape lasting one hour or less and containing the
most significant results of the approximately 50 hours of
videotape recorded during the 10 sessions. These have
proved quite informative, and clearly show the occasional
sad and funny experiences of new users when they're con
fronted with the result of our work.

â€¢ During preintroduction tests, serious and obvious product
and manual errors are now corrected immediately during
the test program where possible. This allows us to measure
these cures during the later sessions of the same test, per
mitting further change if needed before product release.

A c k n o w l e d g m e n t s
The author thanks Bob Ulery, manager of the Portable

Computer Division's product support department, Don Cole,
the document and training department manager, and John
Beaton, the author's supervisor during the time this work
was done. Their initiative and continuing strong support
makes our usability testing program possible.

R e f e r e n c e s
1. J. Gallant, "Behind the Looking Glass, Users Test IBM Software,"
ComputenvorJd, February 27, 1984, p. 4.
2. Complete issue, Hewlett-Packard Journal , Vol. 36, no. 10,
October 1985.

Hewlet t -Packard Company, 3000 Hanover
Street, Palo Alto, Cal i fornia 94304

January 1986 Volume 37 â€¢ Number 1

Technical Information from the Laborator ies of
Hewlet t -Packard Company

Hewlet t -Packard Company. 3000 Hanover St reet
Palo Alto. Cal i fornia 94304 U.S.A.

Hewlet t -Packard Centra l Mai l ing Department
P.O. Box 529. Star tbaan 16

1180 AM Amste lveen. The Nether lands
Yokogawa-Hewlet t -Packard L td . , Suginami-Ku Tokyo 168 Japan

Hewlet t -Packard (Canada) Ltd.
877 Goreway Dr ive, Miss issauga. Ontar io L4V 1M8 Canada

C H A N G E O F A D D R E

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

07Â£Â£Â£nLACÂ£CAQO
LAL

0200020
KR C A
JOHN rtÃ¼PKINS UNIV
APPLIED PHYSICi LAr.
JOHNS HOPKINS RD
LAUREL i 07

To subscribe, change your address, or delete your name from our mail ing l ist, send your request to Hewlett-Packard
Journal . 3000 Hanover Street , Palo Al to. CA 94304 U.S.A. Inc lude your o ld address label , i f any. Al low 60 days.

5953-8543

© Copr. 1949-1998 Hewlett-Packard Co.

	Compilers for the New Generation of Hewlett-Packard Computers
	Components of the Optimizer
	An Optimization Example
	A Stand-Alone Measurement Plotting System
	Eliminating Potentiometers
	Digital Control of Measurement Graphics
	Measurement Graphics Software
	Analog Channel for a Low-Frequency Waveform Recorder
	Usability Testing: A Valuable Tool for PC Design

