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In this Issue 
Hewlett-Packard's next-generation computers are now under development 

in the program code-named Spectrum, and are scheduled to be introduced 
f t  i n  1 9 8 6 .  I n  o u r  A u g u s t  1 9 8 5  i s s u e ,  J o e l  B i r n b a u m  a n d  B i l l  W o r l e y  d i s c u s s e d  

the phi losophy and the a ims of  the new computers and HP's  arch i tecture,  
_ .  w h i c h  h a s  b e e n  v a r i o u s l y  d e s c r i b e d  a s  r e d u c e d - c o m p l e x i t y ,  r e d u c e d  i n s t r u c -  

P ^  t i o n  p e r f o r -  c o m p u t e r  ( R I S C ) ,  o r  h i g h - p r e c i s i o n .  B e s i d e s  p r o v i d i n g  h i g h e r  p e r f o r -  
~ t  -  m a n e e  t h a n  e x i s t i n g  H P  c o m p u t e r s ,  a n  i m p o r t a n t  o b j e c t i v e  f o r  t h e  n e w  a r  

chitecture is to support eff icient high-level language development of systems 
and appl icat ions sof tware.  Compat ib i l i ty  wi th  ex is t ing sof tware is  another  

important  object ive.  The design of  h igh- level  language compi lers is  ext remely important  to  the 
new computers, and in fact, the architecture was developed jointly by both hardware and software 
eng ineers .  In  the  a r t i c le  on  page  4 ,  th ree  HP comp i le r  des igners  desc r ibe  the  new comp i le r  
system. to  in t roduct ion,  there wi l l  be For t ran,  Pascal ,  COBOL, and C compi lers ,  wi th  others to  
become available later. An optional component of the compiler system cal led the optimizer tai lors 
the object  code to real ize the fu l l  potent ia l  of  the archi tectural  features and make programs run 
faster remain the new machines. As much as possible, the compiler system is designed to remain 
unchanged for  d i f ferent  operat ing systems, an invaluable character ist ic  for  appl icat ion program 
development.  In the art ic le,  the authors debunk several  myths about RISCs, showing that RISCs 
don' t  code an archi tected procedure cal l ,  don' t  cause signi f icant code expansion because of the 
simpler instructions, can readily perform integer multipl ication, and can indeed support commercial 
languages such as COBOL. They also descr ibe mi l l icode,  HP's implementat ion of  complex func 
t ions Mil l icode the simple instructions packaged into subroutines. Mil l icode acts l ike microcode in 
more traditional designs, but is common to all machines of the family rather than specific to each. 

The art icle on page 20 introduces the HP 7090A Measurement Plott ing System and the art ic les 
on pages X-Y 27,  and 32 expand upon var ious aspects  o f  i ts  des ign.  The HP 7090A is  an X-Y 
recorder,  a digi ta l  p lot ter,  a low-frequency waveform recorder,  and a data acquis i t ion system al l  
in  one separate ly  A l though a l l  o f  these inst ruments have been avai lab le separate ly  before,  for  
s o m e  t h e r e  a p p l i c a t i o n s  w h e r e  g r a p h i c s  o u t p u t  i s  d e s i r e d  t h e r e  a r e  a d v a n t a g e s  t o  h a v i n g  
them a l l  ex tend The ana log- to-d ig i ta l  conver ter  and memory  o f  the  waveform recorder  ex tend 
the bandwidth of  the X-Y recorder  wel l  beyond the l imi ts  of  the mechanism (3 kHz instead of  a  
few hertz).  The signal condit ioning and A-to-D conversion processes are descr ibed in the art ic le 
on page inputs The servo design (page 24) is multipurpose â€” the HP 7090A can take analog inputs 
d i rect ly  or  can p lo t  vectors  rece ived as d ig i ta l  data.  A spec ia l  measurement  graphics sof tware 
p a c k a g e  H P  2 7 )  i s  d e s i g n e d  t o  h e l p  s c i e n t i s t s  a n d  e n g i n e e r s  e x t e n d  t h e  s t a n d - a l o n e  H P  
7090A's capabi l i t ies without having to wri te their  own software. 

No matter  how good you th ink your design is ,  i t  wi l l  confound some users and cause them to 
c i rcumvent your best  ef for ts to make i t  f r iendly.  Knowing th is,  HP's Personal  Computer Div is ion 
has been expected usab i l i t y  tes ts  o f  new PC des igns.  Vo lunteers  who resemble  the expected 
users and given a series of tasks to perform. The session is videotaped and the product's designers 
are inv i ted to  observe.  The ar t ic le  on page 36 repor ts  on the somet imes humorous and a lways 
valuable results. 

-P.P.  Do/an 

What's Ahead 
The February issue wi l l  present  the design stor ies of  three new HP instrument of fer ings.  The 

cover subject  wi l l  be the HP 5350A, HP 5351 A, and HP 5352A Microwave Frequency Counters,  
which 40 gal l ium arsenide hybrid technology to measure frequencies up to 40 GHz. Also featured 
will be system HP 8757A Scalar Network Analyzer, a transmission and reflection measurement system 
for the 31/2-to-61/2-digit engineer, and the HP 3457A Multimeter, a seven-function, 31/2-to-61/2-digit 
systems digital  voltmeter. 

The HP Journal Letters technical discussion ol Ihe topics presented in recent articles and will publish letters expected to be of interest to our readers. Letters musÃ­ be brief and are subiect 
lo edit ing. Letters should be addressed to: Editor,  Hewlett-Packard Journal.  3000 Hanover Street.  Palo Alto. CA 94304. U S.A. 
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Compilers for  the New Generat ion of  
Hewlett -Packard Computers 
Compi lers are part icular ly  important  for  the reduced- 
complexi ty ,  h igh-precis ion archi tecture of  the new 
machines. They make it possible to realize the full potential 
of  the new architecture. 

by Deborah S.  Coutant ,  Carol  L .  Hammond,  and Jon W.  Kel ley 

WITH THE ADVENT of any new architecture, com 
pilers must be developed to provide high-level 
language interfaces to the new machine. Compilers 

are particularly important to the reduced-complexity, high- 
precision architecture currently being developed at Hewlett- 
Packard in the program that has been code-named Spectrum. 
The Spectrum program is implementing an architecture that 
is similar in philosophy to the class of architectures called 
RISCs (reduced instruction set computers}.1 The importance 
of compilers to the Spectrum program was recognized at 
its inception. From the early stages of the new architecture's 
development, software design engineers were involved in 
its specification. 

The design process began with a set of objectives for the 
new architecture.2 These included the following: 
â€¢ It must support high-level language development of sys 

tems and applications software. 
â€¢ It must be scalable across technologies and implementa 

tions. 
â€¢ It must provide compatibility with previous systems. 

These objectives were addressed with an architectural 
design that goes beyond RISC. The new architecture has 
the following features: 
â€¢ There are many simple instructions, each of which exe 

cutes in a single cycle. 
â€¢ There are 32 high-speed general-purpose registers. 
â€¢ There are separate data and instruction caches, which 

are exposed and can be managed explicitly by the operat 
ing system kernel. 

â€¢ The pipeline has been made visible to allow the software 
to use cycles normally lost following branch and load 
instructions. 

â€¢ Performance can be tuned to specific applications by 
adding specialized processors that interface with the 
central processor at the general-register, cache, or main 
memory levels. 
The compiling system developed for this high-precision 

architecture enables high-level language programs to use 
these features. This paper describes the compiling system 
design and shows how it addresses the specific require 
ments of the new architecture. First, the impact of high- 
level language issues on the early architectural design de 
cisions is described. Next, the low-level structure of the 
â€¢The instruction "high-precision architecture" is used because the instruction set for the new 
archi tecture was chosen on the basis of  execut ion f requency as determined by extensive 
measurements across a var iety of  work loads 

compiling system is explained, with particular emphasis 
on areas that have received special attention for this ar 
chitecture: program analysis, code generation, and optimi 
zation. The paper closes with a discussion of RISC-related 
issues and how they have been addressed in this compiling 
system. 

Designing an Architecture for  High-Level  Languages 
The design of the new architecture was undertaken by 

a team made up of design engineers specializing in 
hardware, computer architecture, operating systems, per 
formance analysis, and compilers. It began with studies of 
computational behavior, leading to an initial design that 
provided efficient execution of frequently used instruc 
tions, and addressed the trade-offs involved in achieving 
additional functionality. The architectural design was scru 
tinized by software engineers as it was being developed, 
and their feedback helped to ensure that compilers and 
operating systems would be able to make effective use of 
the proposed features. 

A primary objective in specifying the instruction set was 
to achieve a uniform execution time for all instructions. 
All instructions other than loads and branches were to be 
realizable in a single cycle. No instruction would be in 
cluded that required a significantly longer cycle or signif 
icant additional hardware complexity. Restricting all in 
structions by these constraints simplifies the control of exe 
cution. In conventional microcoded architectures, many in 
structions pay an overhead because of the complexity of 
control required to execute the microcode. In reduced-com 
plexity computers, no instruction pays a penalty for a more 
complicated operation. Functionality that is not available 
in a single-cycle instruction is achieved through multiple- 
instruction sequences or, optionally, with an additional 
processor. 

As the hardware designers began their work on an early 
implementation of the new architecture, they were able to 
discover which instructions were costly to implement, re 
quired additional complexity not required by other instruc 
tions, or required long execution paths, which would in 
crease the cycle time of the machine. These instructions 
were either removed, if the need for them was not great, 
or replaced with simpler instructions that provided the 
needed functionality. As the hardware engineers provided 
feedback about which instructions were too costly to in- 
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elude, the software engineers investigated alternate ways 
of achieving the same functionality. 

For example, a proposed instruction that provided 
hardware support for a 2-bit Booth multiplication was not 
included because the additional performance it provided 
was not justified by its cost. Architecture and compiler 
engineers worked together to propose an alternative to this 
instruction. Similarly, several instructions that could be 
used directly to generate Boolean conditions were deleted 
when they were discovered to require a significantly longer 
cycle time. The same functionality was available with a 
more general two-instruction sequence, enabling all other 
operations to be executed faster. 

The philosophy of reduced-complexity computers in 
cludes the notion that the frequent operations should be 
fast, possibly at the expense of less frequent operations. 
However, the cost of an infrequent operation should not 
be so great as to counterbalance the efficient execution of 
the simple operations. Each proposed change to the ar 
chitectural specification was analyzed by the entire group 
to assess its impact on both software and hardware im 
plementations. Hardware engineers analyzed the instruc 
tion set to ensure that no single instruction or set of instruc 
tions was causing performance and/or cost penalties for 
the entire architecture, and software engineers worked to 
ensure that all required functionality would be provided 
within performance goals. Compiler writers helped to de 
fine conditions for arithmetic, logical, and extract/deposit 
instructions, and to specify where carry/borrow bits would 
be used in arithmetic instructions. 

As an example of such interaction, compiler writers 
helped to tune a conditional branch nullification scheme 
to provide for the most efficient execution of the most 
common branches. Branches are implemented such that 
an instruction immediately following the branch can be 
executed before the branch takes effect.1 This allows the 
program to avoid losing a cycle if useful work is possible 
at that point. For conditional branches, the compiler may 
or may not be able to schedule an instruction in this slot 
that can be executed in both the taken-branch and non- 
taken-branch cases. For these branches, a nullification 
scheme was devised which allows an instruction to be 
executed only in the case of a taken branch for backward 
branches, and only in the case of a non-taken branch for 
forward branches. This scheme was chosen to enable all 
available cycles to be used in the most common cases. 
Backward conditional branches are most often used in a 
loop, and such branches will most often be taken, branching 
backwards a number of times before falling through at the 
end of the iteration. Thus, a nuiiificauon scheme that al 
lows this extra cycle to be used in the taken-branch case 
causes this cycle to be used most often. Conversely, for 
forward branches, the nullification scheme was tuned to 
the non-taken-branch case. Fig. 1 shows the code generated 
for a simple code sequence, illustrating the conditional 
branch nullification scheme. 

Very early in the development of the architectural specifi 
cation, work was begun on a simulator for the new com 
puter architecture and a prototype C compiler. Before the 
design was frozen, feedback was available about the ease 
with which high-level language constructs could be trans- 

L i  L O W  4 ( s p ) . r 1  :  F i r s t  i n s t r u c t i o n  o f  l o o p  

C O M I B T .  = . N  1 0 . r 2 . L 1 + 4  
L O W  4 ( s p ) . r 1  

:  B r a n c h  t o  L 1 - 4  i f  1 0  =  r 2  
:  Copy of f irst loop instruction. 
:  executed before branch takes effect  

C O M I B F .  =  . N  O . M . L 1  :  B r a n c h  i f  r 1  i s  n o t  e q u a l  t o  0  
A D D I  4 , r 2 . r 2  :  F i r s t  i n s t r u c t i o n  o f  t h e n  c l a u s e  

L1 

(b) 

Fig.  1 .  An i l lust rat ion of  the condi t ional  branch nul l i f icat ion 
scheme, (a)  The condi t ional  branch at  the end of  a loop wi l l  
often be fol lowed by a copy of the f irst instruction of the loop. 
This instruct ion wi l l  only be executed i f  the branch is  taken,  
(b)  The forward condi t ional  branch implement ing an i f  s ta te  
ment wi l l  of ten be fol lowed by the f i rst  instruct ion of the then 
c lause,  a l lowing use o f  th is  cyc le  w i thout  rear rangement  o f  
code.  Th is  ins t ruct ion wi l l  on ly  be executed i f  the branch is  
not taken. 

lated to the new instruction set. The early existence of a 
prototype compiler and simulator allowed operating sys 
tem designers to begin their development early, and enabled 
them to provide better early feedback about their needs, 
from the architecture as well as the compiler. 

At the same time, work was begun on optimization tech 
niques for the new architecture. Segments of compiled code 
were hand-analyzed to uncover opportunities for optimiza 
tion. These hand-optimized programs were used as a 
guideline for implementation and to provide a performance 
goal. Soon after the first prototype compiler was developed, 
a prototype register allocator and instruction scheduler 
were also implemented, providing valuable data for the 
optimizer and compiler designers. 

Compil ing to a Reduced Instruct ion Set  
Compiling for a reduced-complexity computer is simpli 

fied in some aspects. With a limited set of instructions 
from which to choose, code generation can be straightfor 
ward. However, optimization is necessary to realize the 
full advantage of the architectural features. The new HP 
compiling system is designed to allow multiple languages 
to be implemented with language-specific compiler front 
ends. An optimization phase, common to all of the languages, 
provides efficient register use and pipeline scheduling, and 
eliminates unnecessary computations. With the elimina 
tion of complex instructions found in many architectures, 
the responsibility for generating the proper sequence of 
instructions for high-level language constructs falls to the 
compiler. Using the primitive instructions, the compiler can 
construct precisely the sequence required for the application. 

For this class of computer, the software architecture plays 
a strong role in the performance of compiled code. There 
is no procedure call instruction, so the procedure calling 
sequence is tuned to handle simple cases, such as leaf 
routines (procedures that do not call any other procedures), 
without fixed expense, while still allowing the com 
plexities of nested and recursive procedures. The saving 
of registers at procedure call and procedure entry is depen- 

(cont inued on page 7)  
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Components of the Optimizer 

The opt imizer is composed of two types of components,  those 
t ha t  t ha t  da ta  f l ow  and  con t ro l  f l ow  ana l ys i s ,  and  t hose  t ha t  
perform opt imizat ions. The informat ion provided by the analysis 
components  is  shared by  the  opt imiza t ion  components ,  and is  
used  to  de te rm ine  when  ins t ruc t i ons  can  be  de le ted ,  moved ,  
rearranged, or modif ied.  

For each procedure,  the control  f low analysis ident i f ies basic 
b locks  ( sequences  o f  code  tha t  have  no  i n te rna l  b ranch ing ) .  
These  a re  comb ined  in to  i n te rva ls ,  wh ich  fo rm a  h ie ra rchy  o f  
control structures. Basic blocks are at the bottom of this hierarchy, 
and entire procedures are at the top. Loops and if-then constructs 
are examples of  the intermediate structures.  

D a t a  e x  i n f o r m a t i o n  i s  c o l l e c t e d  f o r  e a c h  i n t e r v a l .  I t  i s  e x  
pressed in  terms of  resource numbers and sequence numbers.  
Each register, memory location, and intermediate expression has 
a  un ique  resource  number ,  and  each  use  o r  de f in i t i on  o f  a  re  
source has a unique sequence number.  Three types of data f low 
information are calculated: 
â€¢ Reaching definit ions: for each resource, the set of definit ions 

that  could reach the top of  the interval  by some path.  
â€¢ Exposed uses: for each resource, the set of  uses that could 

be reached by a def in i t ion at  the bot tom of  the interval .  
â€¢ UNDEF set: the set of resources that are not available at the 

top of the interval.  A resource is avai lable i f  i t  is defined along 
a l l  paths reaching ' the in terval ,  and none of  i ts  operands are 
later redef ined along that path.  

From this information, a fourth data structure is bui l t :  
â€¢ Web: a set of sequence numbers having the property that for 

each use in the set,  al l  def ini t ions that might reach i t  are also 
i n  the  i t  L i kew ise ,  f o r  each  de f i n i t i on  i n  the  se t ,  a l l  uses  i t  
might  reach are a lso in the set .  For each resource there may 
be one or  many webs.  

Loop Optimizat ions 
Frequently the majority of execution t ime in a program is spent 

execut ing ins t ruc t ions conta ined in  loops.  Consequent ly ,  loop-  
b a s e d  s i g  c a n  p o t e n t i a l l y  i m p r o v e  e x e c u t i o n  t i m e  s i g  
n i f icant ly .  The fo l lowing d iscuss ion descr ibes components  that  
perform loop opt imizat ions. 
Loop  Inva r ian t  Code  Mot ion .  Computa t i ons  w i th in  a  l oop  tha t  
y ield the same result  for every i terat ion are cal led loop invariant 
compu ta t i ons .  These  compu ta t i ons  can  po ten t i a l l y  be  moved  
outs ide the loop,  where they are executed less f requent ly .  

An inst ruct ion ins ide the loop is  invar iant  i f  i t  meets e i ther  of  
two condit ions: either the reaching definit ions for al l  i ts operands 
are outside the loop, or  i ts  operands are def ined by instruct ions 
that  have a l ready themselves been ident i f ied as loop invar iant .  
In addition, there must not be a conflicting definit ion of the instruc 
t ion 's  condi  ins ide the loop.  I f  the inst ruct ion is  executed condi  
t ional ly  ins ide the loop,  i t  can be moved out  only i f  there are no 
exposed uses of  the target  at  the loop exi t .  

An example is  a  computat ion invo lv ing var iab les that  are not  
mod i f ied  in  the  loop .  Ano ther  i s  the  computa t ion  o f  an  a r ray 's  
base address.  
Strength Reduct ion and Induct ion Var iables.  Strength reduct ion 
replaces mult ip l icat ion operat ions inside a loop with i terat ive ad 
d i t ion operat ions.  S ince there is  no hardware ins t ruc t ion for  in  
t e g e r  o f  i n  t h e  a r c h i t e c t u r e ,  c o n v e r t i n g  s e q u e n c e s  o f  
shir ts and adds to a s ingle instruct ion is a performance improve 
ment .  Induct ion var iab les  are  var iab les  that  are  def ined ins ide 
the loop in terms of  a s imple funct ion of  the loop counter .  

Once  the  i nduc t i on  va r iab les  have  been  de te rm ined ,  t hose  
that  mul  appropr iate for  th is  opt imizat ion are selected.  Any mul  
t ip l ica t ions invo lved in  the computat ion o f  these induct ion var i  
ables are replaced with a COPY from a temporary. This temporary 
holds the init ial  value of the function, and is init ial ized preceding 
the loop. I t  is updated at the point  of  al l  the reaching def ini t ions 
of the induction variable with an appropriate addit ion instruct ion. 
Final ly,  the induct ion variable i tsel f  is el iminated i f  possible. 

T h i s  o f  i s  f r e q u e n t l y  a p p l i e d  t o  t h e  c o m p u t a t i o n  o f  
ar ray ind ices ins ide a loop,  when the index is  a  funct ion of  the 
loop counter. 

Common Subexpression El iminat ion 
Common subexpress ion  e l im ina t ion  i s  the  remova l  o f  redun  

dant  computat ions and the reuse of  the one resul t .  A redundant 
computat ion can be deleted when i ts target is  not  in the UNDEF 
se t  fo r  the  bas ic  b lock  i t  i s  con ta ined  in ,  and  a l l  the  reach ing  
def in i t ions of  the target  are the same inst ruct ion.  S ince the op 
t imizer  runs at  the machine leve l ,  redundant  loads of  the same 
var iab le  in  add i t ion  to  redundant  a r i thmet ic  computa t ions  can  
be removed. 

Store-Copy Optimization 
I t  is possible to promote certain memory resources to registers 

for  the scope of  the i r  def in i t ions and uses.  Only  resources that  
sat is fy  a l ias ing rest r ic t ions can be t ransformed th is  way.  I f  the 
transformation can be performed, stores are converted to copies 
and the loads are el iminated. This opt imizat ion is very useful  for 
a machine that has a large number of registers, since it maximizes 
the use of  regis ters and min imizes the use of  memory.  

For each memory resource there may be mult ip le webs.  Each 
memory  web  i s  an  i ndependen t  cand ida te  f o r  p romo t i on  t o  a  
register. 

Unused Definit ion Elimination 
Def in i t ions  o f  memory  and reg is ter  resources that  a re  never  

used  the  removed.  These  de f in i t i ons  a re  iden t i f i ed  dur ing  the  
bui ld ing of  webs. 

Local  Constant Propagation 
Constant  propagat ion involves the fo ld ing and subst i tu t ion of  

constant  computat ions throughout  a basic b lock.  I f  the resul t  of  
a  computat ion is  a  constant ,  the inst ruct ion is  de leted,  and the 
r e s u l t a n t  c o n s t a n t  i s  u s e d  a s  a n  i m m e d i a t e  o p e r a n d  i n  s u b  
sequent instructions that reference the original result.  Also, i f  the 
operands o f  a  condi t iona l  branch are  constant ,  the branch can 
be changed to  an uncondi t iona l  branch or  de le ted.  

Coloring Register Allocation 
Many  componen ts  in t roduce  add i t i ona l  uses  o f  reg is te rs  o r  

pro long the use of  ex is t ing registers over  larger  por t ions of  the 
procedure.  Near-opt imal use of  the avai lable registers becomes 
crucia l  af ter  these opt imizat ions have been made.  

Global register al location based on a method of graph coloring 
is performed. The register resources are part i t ioned into groups 
of disjoint def ini t ions and uses cal led register webs. Then, using 
the exposed uses in format ion,  in ter ferences between webs are 
computed .  An  in te r fe rence  occurs  when  two  webs  mus t  be  as  
s i g n e d  o f  m a c h i n e  r e g i s t e r s .  R e g i s t e r s  t h a t  a r e  c o p i e s  o f  
each other are assigned to the same register and the copies are 
eliminated. The webs are sorted based on the number of Â¡nterfer- 
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enees  each  con ta ins .  Then reg is te r  ass ignment  i s  done us ing  
th is  order ing.  When the regis ter  a l locator  runs out  of  regis ters.  
i t  f rees a register by saving another one to memory temporar i ly.  
A heur is t ic  a lgor i thm is  used to  choose which reg is ter  to  save.  
Fo r  examp le ,  reg i s te rs  used  heav i l y  w i th in  a  l oop  w i l l  no t  be  
saved to f ree a register  

Peephole Optimizations 
The peephole opt imizer uses a dict ionary of equivalent instruc 

t i o n  p a t  t o  s i m p l i f y  i n s t r u c t i o n  s e q u e n c e s .  S o m e  o f  t h e  p a t  
t e r n s  b i t  s i m p l i f i c a t i o n s  t o  a d d r e s s i n g  m o d e  c h a n g e s ,  b i t  
manipulat ions,  and data type convers ions.  

Branch Optimizations 
The branch opt imizer  component  t raverses  the  ins t ruc t ions ,  

t rans forming  branch Ins t ruc t ion  sequences  in to  more  e f f i c ien t  
Inst ruct ion sequences.  I t  converts  branches over  s ingle inst ruc 
tions whose instructions with conditional nullification. A branch whose 
target is the next Instruct ion is deleted. Branch chains involving 

b o t h  i n t o  a n d  c o n d i t i o n a l  b r a n c h e s  a r e  c o m b i n e d  i n t o  
shorter sequences wherever possible For example, a condit ional 
branch to an uncondi t ional  branch is  changed to a s ingle condi  
t ional branch. 

Dead Code El iminat ion 
Dead code is  code that  cannot  be reached at  program execu 

t i on ,  s ince  no  b ranch  to  i t  o r  fa l l - th rough  ex is ts .  Th is  code  i s  
deleted. 

Scheduler 
The Ins t ruc t ion  schedu le r  reorders  the  Ins t ruc t ions  w i th in  a  

basic b lock,  minimiz ing load/store and f loat ing-point  inter locks.  
I t  a lso schedules the instruct ions fo l lowing branches. 

Suneel Jain 
Development Engineer 

In format ion Technology Group 

(cont inued f rom page 5)  

dent on the register use of the individual procedure. A 
special calling convention has been adopted to allow some 
complex operations to be implemented in low-level 
routines known as miliicode, which incur little overhead 
for saving registers and status. 

Compiling to a reduced instruction set can be simplified 
because the compiler need not make complicated choices 
among a number of instructions that have similar effects. 
In the new architecture, all arithmetic, logical, or condi 
tional instructions are register-based. All memory access 
is done through explicit loads and stores. Thus the compiler 
need not choose among instructions with a multitude of 
addressing modes. The compiler's task is further simplified 
by the fact that the instruction set has been constructed in 
a very symmetrical manner. All instructions are the same 
length, and there are a limited number of instruction for 
mats. In addition to simplifying the task of code generation, 
this makes the task of optimization easier as well. The 
optimizer need not handle transformations between in 
structions that have widely varying formats and addressing 
modes. The symmetry of the instruction set makes the tasks 
of replacing or deleting one or more instructions much 
easier. 

Of course, the reduced instruction set computer, though 
simplifying some aspects of the compilation, requires more 
of the compilers in other areas. Having a large number of 
registers places the burden on the compilers to generate 
code that can use these registers efficiently. Other aspects 
of this new architecture also require the compilers to be 
more intelligent about code generation. For example, the 
instruction pipeline has become more exposed and, as men 
tioned earlier, the instruction following a branch may be 
executed before the branch takes effect. The compiler there 
fore needs to schedule such instructions effectively. In ad 
dition, loads from memory, which also require more than 
a single cycle, will interlock with the following instruction 
if the target register is used immediately. The compiler can 
increase execution speed by scheduling instructions to 
avoid these interlocks. The optimizer can also improve the 
effectiveness of a floating-point coprocessor by eliminating 

unnecessary coprocessor memory accesses and by reorder 
ing the floating-point instructions. 

In addition to such optimizations, which are designed 
to exploit specific architectural features, conventional op 
timizations such as common subexpression elimination, 
loop invariant code motion, induction variable elaboration, 
and local constant propagation were also implemented.3 
These have a major impact on the performance of any com 
puter. Such optimizations reduce the frequency of loads, 
stores, and multiplies, and allow the processor to be used 
with greater efficiency. However, the favorable cost/perfor 
mance of the new HP architecture can be realized even with 
out optimization. 

The Compi ler  System 
All of the compilers for the new architecture share a 

common overall design structure. This allows easy integra 
tion of common functional components including a sym 
bolic debugger, a code generator, an optimizer, and a linker. 
This integration was achieved through detailed planning, 
which involved the participation of engineers across many 
language products. Of the new compilers, the Fortran/77, 
Pascal, and COBOL compilers will appear very familiar to 
some of our customers, since they were developed from 
existing products available on the HP 3000 family of com 
puters. All of these compilers conform to HP standard 
specifications for their respective languages, and thus will 
provide smooth migration from the HP 1000, HP 3000, and 
HP 9000 product lines. The C compiler is a new product, 
and as mentioned earlier, was the compiler used to pro 
totype the instruction set from its earliest design phase. 
The C compiler conforms to recognized industry standard 
language specifications. Other compilers under develop 
ment will be integrated into this compiler system. 

To achieve successful integration of compilers into a 
homogeneous compiling system it was necessary to define 
distinct processing phases and their exact interfaces in 
terms of data and control transfer. Each compiler begins 
execution through the front end. This includes the lexical, 
syntactic, and semantic analysis prescribed by each lan- 
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guage standard. The front ends generate intermediate codes 
from the source program, and pass these codes to the code 
generators. The intermediate codes are at a higher level 
than the machine code generated by a later phase, and 
allow a certain degree of machine abstraction within the 
front ends. 

Two distinct code generators are used. They provide 
varying degrees of independence from the front ends. Each 
interfaces to the front ends through an intermediate code. 
One of these code generation techniques has already been 
used in two compiler products for the HP 3000. Fig. 2 
shows the overall design of the compilers. Each phase of 
the compilation process is pictured as it relates to the other 
phases. The front ends are also responsible for generating 
data to be used later in the compilation process. For exam 
ple, the front end generates data concerning source state 
ments and the types, scopes and locations of procedure/ 
function and variable names for later use by the symbolic 
debugger. In addition, the front end is responsible for the 
collection of data to be used by the optimizer. 

These compilers can be supported by multiple operating 
systems. The object file format is compatible across operat 
ing systems. 

Code Generat ion 
The code generators emit machine code into a data struc 

ture called SLLIC (Spectrum low-level intermediate code). 
SLLIC also contains information regarding branches and 
their targets, and thus provides the foundation for the build- 

C o m p i l e r  
S t ra tegy  

Executable 
Code 

D e b u g g e r  
S t ra tegy  

Debug 
Manager  

Fig. 2.  The compi ler system for HP's new generat ion of  high- 
prec is ion-archi tecture computers.  

ing of a control flow graph by the optimizer. The SLLIC 
data structure contains the machine instructions and the 
specifications for the run-time environment, including the 
program data space, the literal pool, and data initialization. 
SLLIC also holds the symbolic debug information generated 
by the front end, is the medium for later optimization, and 
is used to create the object file. 

The reduced instruction set places some extra burden 
on the code generators when emitting code for high-level 
language constructs such as byte moves, decimal opera 
tions, and procedure calls. Since the instruction set con 
tains no complex instructions to aid in the implementation 
of these constructs, the code generators are forced to use 
combinations of the simpler instructions to achieve the 
same functionality. However, even in complex instruction 
set architectures, complex case analysis is usually required 
to use the complex instructions correctly. Since there is 
little redundancy in the reduced instruction set, most often 
no choice of alternative instruction sequences exists. The 
optimizer is the best place for these code sequences to be 
streamlined, and because of this the overall compiler de 
sign is driven by optimization considerations. In particular, 
the optimizer places restrictions upon the code generators. 

The first class of such restrictions involves the presenta 
tion of branch instructions. The optimizer requires that all 
branches initially be followed by a NOP (no operation) in 
struction. This restriction allows the optimizer to schedule 
instructions easily to minimize interlocks caused by data 
and register access. These NOPs are subsequently replaced 
with useful instructions, or eliminated. 

The second class of restrictions concerns register use. 
Register allocation is performed within the optimizer. 
Rather than use the actual machine registers, the code 
generators use symbolic registers chosen from an infinite 
register set. These symbolic registers are mapped to the set 
of actual machine registers by the register allocator. Al 
though register allocation is the traditional name for such 
an activity, register assignment is more accurate in this 
context. The code generators are also required to associate 
every syntactically equivalent expression in each proce 
dure with a unique symbolic register number. The symbolic 
register number is used by the optimizer to associate each 
expression with a value number (each run-time value has 
a unique number). Value numbering the symbolic registers 
aids in the detection of common subexpressions within 
the optimizer. For example, every time the local variable 
i is loaded it is loaded into the same symbolic register, and 
every time the same two symbolic registers are added to 
gether the result is placed into a symbolic register dedicated 
to hold that value. 

Although the optimizer performs transformations at the 
machine instruction level, there are occasions where it 
could benefit from the existence of slightly modified and/or 
additional instructions. Pseudoinstructions are instruc 
tions that map to one or more machine instructions and 
are only valid within the SLLIC data structure as a software 
convention recognized between the code generators and 
the optimizer. For example, the NOP instruction mentioned 
above is actually a pseudoinstruction. No such instruction 
exists on the machine, although there are many instruction/ 
operand combinations whose net effect would be null. The 
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NOP pseudoinstruction saves the optimizer from having to 
recognize all those sequences. Another group of pseudo- 
instructions has been defined to allow the optimizer to 
view all the actual machine instructions in the same canon 
ical form without being restricted by the register use pre 
scribed by the instructions. For example, some instructions 
use the same register as both a source and a target. This 
makes optimization very difficult for that instruction. The 
solution involves the definition of a set of pseudo- 
instructions, each of which maps to a two-instruction se 
quence, first to copy the source register to a new symbolic 
register, and then to perform the operation on that new 
register. The copy instruction will usually be eliminated 
by a later phase of the optimizer. 

Another class of perhaps more important pseudoinstruc- 
tions involves the encapsulation of common operations 
that are traditionally supported directly by hardware, but 
in a reduced instruction set are only supported through 
the generation of code sequences. Examples include mul 
tiplication, division, and remainder. Rather than have each 
code generator contain the logic to emit some correct se 
quence of instructions to perform multiplication, a set of 
pseudoinstructions has been defined that makes it appear 
as if a high-level multiplication instruction exists in the 
architecture. Each of the pseudoinstructions is defined in 
terms of one register target and either two register operands 
or one register operand and one immediate. The use of 
these pseudoinstructions also aids the optimizer in the 
detection of common subexpressions, loop invariants, and 
induction variables by reducing the complexity of the code 
sequences the optimizer must recognize. 

Control flow restrictions are also placed on generated 
code. A basic block is defined as a straight-line sequence 
of code that contains no transfer of control out of or into 
its midst. If the code generator wishes to set the carry/bor 
row bit in the status register, it must use that result within 
the same basic block. Otherwise, the optimizer cannot 
guarantee its validity. Also, all argument registers for a 
procedure/function call must be loaded in the same basic 
block that contains the procedure call. This restriction 
helps the register allocator by limiting the instances where 
hard-coded (actual) machine registers can be live (active) 
across basic block boundaries. 

Optimization 
After the SLLIC data structure has been generated by the 

code generator, a call is made to the optimizer so that it 
can begin its processing. The optimizer performs intrapro- 
cedural local and global optimizations, and can be turned 
on and off on a procedure-by-procedure basis by the pro 
grammer through the use of compiler options and directives 
specific to each compiler. Three levels of optimization are 
supported and can also be selected at the procedural level. 

Optimization is implemented at the machine instruction 
level for two reasons. First, since the throughput of the 
processor is most affected by the requests made of the mem 
ory unit and cache, optimizations that reduce the number 
of requests made, and optimizations that rearrange these 
requests to suit the memory unit best, are of the most value. 
It is only at the machine level that all memory accesses 
become exposed, and are available candidates for such op 

timizations. Second, the machine level is the common de 
nominator for all the compilers, and will continue to be 
for future compilers for the architecture. This allows the 
implementation of one optimizer for the entire family of 
compilers. In addition to very machine specific optimiza 
tions, a number of theoretically machine independent op 
timizations (for example, loop optimizations) are also in 
cluded. These also benefit from their low-level implemen 
tation, since all potential candidates are exposed. For exam 
ple, performing loop optimizations at the machine level 
allows the optimizer to move constants outside the loop, 
since the machine has many registers to hold them. In sum 
mary, no optimization has been adversely affected by this 
strategy; instead, there have been only benefits. 

Level 0 optimization is intended to be used during pro 
gram development. It is difficult to support symbolic de 
bugging in the presence of all optimizations, since many 
optimizations reorder or delete instruction sequences. Non- 
symbolic debugging is available for fully optimized pro 
grams, but users will still find it easier to debug nonop- 
timized code since the relationship between the source and 
object code is clearer. No code transformations are made 
at level 0 that would preclude the use of a symbolic debug 
ger. In particular, level 0 optimizations include some copy 
and NOP elimination, and limited branch scheduling. In 
addition, the components that physically exist as part of 
the optimizer, but are required to produce an executable 
program, are invoked. These include register allocation and 
branch fixing (replacing short branches with long branches 
where necessary). 

After program correctness has been demonstrated using 
only level 0 optimizations, the programmer can use the 
more extensive optimization levels. There are two addi 
tional levels of optimization, either of which results in 
code reordering. The level any particular optimization 
component falls into is dependent upon the type of infor 
mation it requires to perform correct program transforma 
tions. The calculation of data flow information gives the 
optimizer information regarding all the resources in the 
program. These resources include general registers, dedi 
cated and status registers, and memory locations (vari 
ables). The information gleaned includes where each re 
source is defined and used within the procedure, and is 
critical for some optimization algorithms. Level 1 optimi 
zations require no data flow information, therefore adding 
only a few additional optimizations over level 0. Invoking 
the optimizer at level 2 will cause all optimizations to be 
performed. This requires data flow information to be calcu 
lated. 

Level 1 optimization introduces three new optimiza 
tions: peephole and branch optimizations and full instruc 
tion scheduling. Peephole optimizations are performed by 
pattern matching short instruction sequences in the code 
to corresponding templates in the peephole optimizer. An 
example of a transformation is seen in the C source expres 
sion 

i f  ( f l ag  &  0x8 )  

which tests to see that the fourth bit from the right is set 
in the integer flag. The unoptimized code is 
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L D O  8 ( 0 ) ,  1 9  
A N D  3 1 , 1 9 , 2 0  
C O M I B T , =  0 , 2 0 , l a b e l  

load immediate 8 into r1 9 
intersect r31 (f lag) with r1 9 into r20 
compare  resu l t  aga ins t  0  and  branch  

Peephole optimization replaces these three instructions 
with the one instruction 

B B , >  =  3 1  , 2 8 ,  l a b e l  ;  b r a n c h  o n  b i t  

which will branch if bit 28 (numbered left to right from 0) 
in r31 (the register containing flag) is equal to 0. 

Level 1 optimization also includes a branch optimizer 
whose task is to eliminate unnecessary branches and some 
unreachable code. Among other tasks, it replaces branch 
chains with a single branch, and changes conditional 
branches whose targets are unconditional branches to a 
single conditional branch. 

The limited instruction scheduling algorithm of level 0 
is replaced with a much more thorough component in level 
1. Level 0 scheduling is restricted to replacing or removing 
the NOPs following branches where possible, since code 
sequence ordering must be preserved for the symbolic de 
bugger. In addition to this, level 1 instructions are sched 
uled with the goal of minimizing memory interlocks. The 
following typify the types of transformations made: 
â€¢ Separate a load from the instruction that uses the loaded 

register 
â€¢ Separate store and load instruction sequences 
â€¢ Separate floating-point instructions from each other to 

improve throughput of the floating-point unit. 
Instruction scheduling is accomplished by first con 

structing a dependency graph that details data dependen 
cies between instructions. Targeted instructions are sepa 
rated by data independent instructions discovered in the 
graph. 

The same register allocator is used in level 0 and level 
1 optimization. It makes one backwards pass over each 
procedure to determine where the registers are defined and 
used and whether or not they are live across a call. It uses 
this information as a basis for replacing the symbolic regis 
ters with actual machine registers. Some copy elimination 
is also performed by this allocator. 

Level 2 optimizations include all level I optimizations 
as well as local constant propagation, local peephole trans 
formations, local redundant definition elimination, com 
mon subexpression and redundant load/store elimination, 
loop invariant code motion, induction variable elaboration 
and strength reduction, and another register allocator. The 
register allocator used in level 2 is partially based on graph 
coloring technology.4 Fully optimized code contains many 
more live registers than partially optimized or nonop- 
timized code. This register allocator handles many live 
registers better than the register allocator of levels 0 and 
1. It has access to the data flow information calculated for 
the symbolic registers and information regarding the fre 
quency of execution for each basic block. 

Control  F low and Data Flow Analysis  
All of the optimizations introduced in level 2 require 

data flow information. In addition, a certain amount of 
control flow information is required to do loop-based op 

timizations. Data flow analysis provides information to the 
optimizer about the pattern of definition and use of each 
resource. For each basic block in the program, data flow 
information indicates what definitions may reach the block 
(reaching definitions) and what later uses may be affected 
by local definitions (exposed uses). Control flow informa 
tion in the optimizer is contained in the basic block and 
interval structures. Basic block analysis identifies blocks 
of code that have no internal branching, interval analysis 
identifies patterns of control flow such as if-then-else and 
loop constructs.5 Intervals simplify data flow calculations, 
identify loops for the loop-based optimizations, and enable 
partial update of data flow information. 

In the optimizer, control flow analysis and data flow 
analysis are performed in concert. First, basic blocks are 
identified. Second, local data flow information is calcu 
lated for each basic block. Third, interval analysis exposes 
the structure of the program. Finally, using the interval 
structure as a basis for its calculation rules, global data 
flow analysis calculates the reaching definitions and ex 
posed uses. 

Basic block analysis of the SLLIC data structure results 
in a graph structure where each basic block identifies a 
sequence of instructions, along with the predecessor and 
successor basic blocks. The interval structure is built on 
top of this, with the smallest interval being a basic block. 
Intervals other than basic blocks contain subintervals 
which may themselves be any type of interval. Interval 
types include basic block, sequential block (the subinter 
vals follow each other in sequential order), if-then, if-then- 
else, self loop, while loop, repeat loop, and switch (case 
statement). When no such interval is recognized, a set of 
subintervals may be contained in either a proper interval 

Sequen t i a l  B l ock  

Basic Block 
Â¡ :=0; 

Fig. simple This figure illustrates the interval structure of a simple 
sequence  o f  Pasca l  code .  The  nes ted  boxes  represen t  the  
interval hierarchy. 
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(if the control flow is well-behaved) or an improper interval 
(if it contains multiple-entry cycles or targets of unknown 
branches). An entire procedure will be represented by a 
single interval with multiple descendants. Fig. 3 shows the 
interval structure for a simple Pascal program. 

Calculation of data flow information begins with an 
analysis of what resources are used and defined by each 
basic block. Each use or definition of a resource is identified 
by a unique sequence number. Associated with each se 
quence number is information regarding what resource is 
being referenced, and whether it is a use or a definition. 
Each SLLIC instruction entry contains sequence numbers 
for all of the resources defined or used by that instruction. 
The local data flow analysis determines what local uses 
are exposed at the top of the basic block (i.e., there is a use 
of a resource with no preceding definition in that block) 
and what local definitions will reach the end of the block 
(i.e., they define a resource that is not redefined later in 
the block). The local data flow analysis makes a forward 
and backward pass through the instructions in a basic block 
to determine this information. 

Local data flow information is propagated out from the 
basic blocks to the outermost interval. Then, information 
about reaching definitions and exposed uses is propagated 
inward to the basic block level. For known interval types, 
this involves a straightforward calculation for each subin- 
terval. For proper intervals, this calculation must be per 
formed twice for each subinterval, and for improper inter 
vals, the number of passes is limited by the number of 
subintervals. 

As each component of the optimizer makes transforma 
tions to the SLLIC graph, the data flow information becomes 
inaccurate. Two strategies are employed to bring this infor 
mation up-to-date: patching of the existing data flow infor 
mation and partial recalculation. For all optimizations ex 
cept induction variable elimination, the data flow informa 
tion can be patched by using information about the nature 
of the transformation to determine exactly how the data 
flow information must be changed. All transformations take 
place within the loop interval in induction variable elimi 
nation. The update of data flow information within the 
loop is performed by recalculating the local data flow infor 
mation where a change has been made, and then by prop 
agating that change out to the loop interval. The effect of 
induction variable elimination on intervals external to the 
loop is limited, and this update is performed by patching 
the data flow information for these intervals. 

Aliasing 
The concept of resources has already been presented in 

the earlier discussion of data flow analysis. The optimizer 
provides a component called the resource manager for use 
throughout the compiler phases. The resource manager is 
responsible for the maintenance of information regarding 
the numbers and types of resources within each procedure. 
For example, when the code generator needs a new sym 
bolic register, it asks the resource manager for one. The 
front ends also allocate resources corresponding to memory 
locations for every variable in each procedure. The re 
sources allocated by the resource manager are called re 
source numbers. The role of the resource manager is espe 

cially important in this family of compilers. It provides a 
way for the front end, which deals with memory resources 
in terms of programmer variable names, and the optimizer, 
which deals with memory resources in terms of actual 
memory locations, to communicate the relationship be 
tween the two. 

The most basic use of the resource numbers obtained 
through the resource manager is the identification of 
unique programmer variables. The SLLIC instructions are 
decorated with information that associates resource num 
bers with each operand. This allows the optimizer to rec 
ognize uses of the same variable without having to compare 
addresses. The necessity for communication between the 
front ends and the optimizer is demonstrated by the follow 
ing simplified example of C source code: 

proc( )  {  
in t  i ,  j ,  k ,  *p ;  

i  =  j  - t -  k ;  
* P  =  1 ;  
i  =  j  +  k ;  

At first glance it might seem that the second calculation 
of j + k is redundant, and in fact it is a common subexpres 
sion that need only be calculated once. However, if the 
pointer p has been set previously to point to either j or k, 
then the statement *p = 1 might change the value of either 
j or k. If p has been assigned to point to j, then we say that 
*p and j are aJiased to each other. Every front end includes 
a component called a gatherer6 whose responsibility it is 
to collect information concerning the ways in which mem 
ory resources in each procedure relate to each other. This 
information is cast in terms of resource numbers, and is 
collected in a similar manner by each front end. Each 
gatherer applies a set of language specific alias rules to the 
source. A later component of the optimizer called the 
aliaser reorganizes this information in terms more suitable 
for use by the local data flow component of the optimizer. 

Each gatherer had to solve aliasing problems specific to 
its particular target language. For example, the Pascal 
gatherer was able to use Pascal's strong typing to aid in 
building sets of resources that a pointer of some particular 
type can point to. Since C does not have strong typing, the 
C gatherer could make no such assumptions. The COBOL 
compiler had to solve the aliasing problems that are intro 
duced with the REDEFINE statement, which can make data 
items look like arrays. Fig. 4 shows the structure of the 
new compilers from an aliasing perspective. It details data 
and control dependencies. Once the aliasing data has been 
incorporated into the data flow information, every compo 
nent in the optimizer has access to the information, and 
incorrect program transformations are prevented. 

The aliaser also finishes the calculation of the aliasing 

J A N U A R Y  1 9 8 6  H E W L E T T - P A C K A R D  J O U R N A L  1 1  

© Copr. 1949-1998 Hewlett-Packard Co.



relationships by calculating the transitive closure on the 
aliasing information collected by the gatherers. The need 
for this calculation is seen in the following skeleton Pascal 
example: 

p r o c e d u r e  p ;  
beg in  

P  '  ' ' i n t e g e r ;  

q  :  A i n tege r ;  

p := q; 

q := p; 

The SLLIC Package 
The SLLIC data structure is allocated, maintained, and 

manipulated by a collection of routines called the SLLIC 
package. Each code generator is required to use these 
routines. The SLLIC package produces an object file from 
the SLLIC graph it is presented with, which is either op 
timized or unoptimized. During implementation it was re 
latively easy to experiment with the design of the object 
file, since its creation is only implemented in one place. 
The object file is designed to be transportable between 
multiple operating systems running on the same architec 
ture. 

The SLLIC graph also contains the symbolic debug infor 
mation produced by the front end. This information is 
placed into the object file by the SLLIC package. The last 
step in the compilation process is the link phase. The linker 
is designed to support multiple operating systems. As much 
as possible, our goal has been for the new compilers to 
remain unchanged across operating systems, an invaluable 
characteristic for application development. 

end;  

The aliasing information concerning q must be trans 
ferred to p, and vice versa, because of the effects of the two 
assignment statments shown. The aliaser is an optimizer 
component used by all the front ends, and requires no 
language specific data. Another type of memory aliasing 
occurs when two or more programmer variables can overlap 
with one another in memory. This happens within C unions 
and Fortran equivalence statements. Each gatherer must 
also deal with this issue, as well as collecting information 
concerning the side effects of procedure and function calls 
and the use of arrays. 

"Trans i t i ve  c losure :  For  a  g iven resource,  the  se t  o f  resources tha t  can be shown to  be 
al iased to the given resource by any sequence of al iasing relat ionships. 

Addressing RISC Myths 
The new compiling system provides a language develop 

ment system that is consistent across languages. However, 
each language presents unique requirements to this system. 
Mapping high-level language constructs to a reduced-com 
plexity computer requires the development of new im 
plementation strategies. Procedure calls, multiplication, 
and other complex operations often implemented in micro 
code or supported in the hardware can be addressed with 
code sequences tuned to the specific need. The following 
discussion is presented in terms of several misconceptions, 
or myths, that have appeared in speculative discussions 
concerning code generation for reduced-complexity ar 
chitectures. Each myth is followed by a description of the 
approach adopted for the new HP compilers. 

Myth: An architected procedure call instruction is 
necessary for efficient procedure calls. 

HP Pascal  
Front  End 

HP Fortran/77 
Front  End 

H P  C O B O L  
Front  End 

HP C 
Front  End 

Fig.  4.  Scheme for  the col lect ion of  a l ias informat ion.  

Modern programming technique encourages program 
mers to write small, well-structured procedures rather than 
large monolithic routines. This tends to increase the fre 
quency of procedure calls, thus making procedure call ef 
ficiency crucial to overall system performance. 

Many machines, like the HP 3000, provide instructions 
to perform most of the steps that make up a procedure call. 
The new HP high-precision architecture does not. The 
mechanism of a procedure call is not architected, but in 
stead is accomplished by a software convention using the 
simple hardwired instructions. This provides more flexibil 
ity in procedure calls and ultimately a more efficient call 
mechanism. 

Procedure calls are more than just a branch and return 
in the flow of control. The procedure call mechanism must 
also provide for the passing of parameters, the saving of 
the caller's environment, and the establishment of an envi 
ronment for the called procedure. The procedure return 
mechanism must provide for the restoration of the calling 
procedure's environment and the saving of return values. 

The new HP machines are register-based machines, but 
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by convention a stack is provided for data storage. The 
most straightforward approach to procedure calls on these 
machines assumes that the calling procedure acquires the 
responsibility for preserving its state. This approach em 
ploys the following steps: 
â€¢ Save all registers whose contents must be preserved 

across the procedure call. This prevents the called pro 
cedure, which will also use and modify registers, from 
affecting the calling procedure's state. On return, those 
register values are restored. 

â€¢ Evaluate parameters in order and push them onto the 
stack. This makes them available to the called procedure 
which, by convention, knows how to access them. 

â€¢ Push a frame marker. This is a fixed-size area containing 
several pieces of information. Among these is the static 
Jink, which provides information needed by the called 
procedure to address the local variables and parameters 
of the calling procedure. The return address of the calling 
procedure is also found in the stack marker. 

â€¢ Branch to the entry point of the called procedure. 
To return from the call, the called procedure extracts the 

return address from the stack marker and branches to it. 
The calling procedure then removes the parameters from 
the stack and restores all saved registers before program 
flow continues. 

This simple model correctly implements the steps 
needed to execute a procedure call, but is relatively expen 
sive. The model forces the caller to assume all responsibil 
ity for preserving its state. This is a safe approach, but 
causes too many register saves to occur. To optimize the 
program's execution, the compiler makes extensive use of 
registers to hold local variables and temporary values. 
These registers must be saved at a procedure call and re 
stored at the return. The model also has a high overhead 
incurred by the loading and storing of parameters and link 
age information. The ultimate goal of the procedure call 
convention is to reduce the cost of a call by reducing mem 
ory accesses. 

The new compilers minimize this problem by introduc 
ing a procedure call convention that includes a register 
partition. The registers are partitioned into caJler-saves (the 
calling procedure is responsible for saving and restoring 
them), caJJee-saves (the called procedure must save them 
at entry and restore them at exit), and linkage registers. 
Thirteen of the 32 registers are in the caller-saves partition 
and 16 are in the callee-saves partition. This spreads the 
responsibility for saving registers between the calling and 
called procedures and leaves some registers available for 
linkage. 

The register allocator avoids unnecessary register saves 
by using caller-saves registers for values that need not be 
preserved. Values that must be saved are placed into regis 
ters from the callee-saves partition. At procedure entry, 
only those callee-saves registers used in the procedure are 
saved. This minimizes the number of loads and stores of 
registers during the course of a call. The partition of regis 
ters is not inflexible; if more registers are needed from a 
particular partition than are available, registers can be bor 
rowed from the other partition. The penalty for using these 
additional registers is that they must be saved and restored, 
but this overhead is incurred only when many registers are 

needed, not for all calls. 
In the simple model, all parameters are passed by being 

placed on the stack. This is expensive because memory 
references are made to push each parameter and as a con 
sequence the stack size is constantly altered. The new com 
pilers allocate a permanent parameter area large enough to 
hold the parameters for all calls performed by the proce 
dure. They also minimize memory references when storing 
parameters by using a combination of registers and memory 
to pass parameters. Four registers from the callee-saves 
partition are used to pass user parameters; each holds a 
single 32-bit value or half of a 64-bit value. Since proce 
dures frequently have few parameters, the four registers 
are usually enough to contain them all. This removes the 
necessity of storing parameter values in the parameter area 
before the call. If more than four 32-bit parameters are 
passed, the additional ones are stored in the preallocated 
parameter area. If a parameter is larger than 64 bits, its 
address is passed and the called procedure copies it to a 
temporary area. 

Additional savings on stores and loads occur when the 
called procedure is a leaf routine. As mentioned previously, 
the optimizer attempts to maximize the use of registers to 
hold variable values. When a procedure is a leaf, the register 
allocator uses the caller-saves registers for this purpose, 
thus eliminating register saves for both the calling and 
called procedures. It is never necessary to store the return 
address or parameter registers of a leaf routine since they 
will not be modified by subsequent calls. 

Leaf routines do not need to build a stack frame, since 
they make no procedure calls. Also, if the allocator suc 
ceeds is representing all local variables as registers, it is 
not necessary to build the local variable area at entry to 
the leaf procedure. 

The convention prescribes other uses of registers to elimi 
nate other loads and stores at procedure calls. The return 
address is always stored in a particular register, as is the 
static link if it is needed. 

To summarize, the procedure call convention used in 
the new HP computers streamlines the overhead of proce 
dure calls by minimizing the number of memory references. 
Maximal use of registers is made to limit the number of 
memory accesses needed to handle parameters and linkage. 
Similarly, the convention minimizes the need to store val 
ues contained in registers and does not interfere with at 
tempts at optimization. 

Myth: The simple instructions available in RISC 
result in significant code expansion. 

Many applications, especially commercial applications, 
assume the existence of complex high-level instructions 
typically implemented by the system architecture in micro 
code or hardware. Detractors of RISC argue that significant 
code expansion is unavoidable since the architecture lacks 
these instructions. Early results do not substantiate this 
argument.7'8 The new HP architecture does not provide 
complex instructions because of their impact on overall 
system performance and cost, but their functionality is 
available through other means. 

As described in an earlier article,2 the new HP machines 
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do not have a microcoded architecture and all of the in 
structions are implemented in hardware. The instructions 
on microcoded machines are implemented in two ways. 
At the basic level, instructions are realized in hardware. 
More complex instructions are then produced by writing 
subroutines of these hardware instructions. Collectively, 
these constitute the microcode of the machine. Which in 
structions are in hardware and which are in microcode are 
determined by the performance and cost goals for the sys 
tem. Since HP's reduced instruction set is implemented 
solely at the hardware level, subroutines of instructions 
are equivalent to the microcode in conventional architec 
tures. 

To provide the functionality of the complex instructions 
usually found in the architecture of conventional machines, 
the design team developed the alternative concept of mil- 
Jicode instructions or routines. Millicode is HP's imple 
mentation of complex instructions using the simple hard 
ware instructions packaged into subroutines. Millicode 
serves the same purpose as traditional microcode, but is 
common across all machines of the family rather than spe 
cific to each. 

The advantages of implementing functionality as mil- 
licode are many. Microcoded machines may contain hid 
den performance penalties on all instructions to support 
multiple levels of instruction implementation. This is not 
the case for millicode. From an architectural viewpoint, 
millicode is just a collection of subroutines indistinguish 
able from other subroutines. A millicode instruction is exe 
cuted by calling the appropriate millicode subroutine. 
Thus, the expense of executing a millicode instruction is 
only present when the instruction is used. The addition of 
millicode instructions has no hardware cost and hence no 
direct influence on system cost. It is relatively easy and 
inexpensive to upgrade or modify millicode in the field, 
and it can continue to be improved, extended, and tuned 
over time. 

Unlike most microcode, millicode can be written in the 
same high-level languages as other applications, reducing 
development costs yet still allowing for optimization of 
the resultant code. Severely performance-critical millicode 
can still be assembly level coded in instances where the 
performance gain over compiled code is justified. The size 
of millicode instructions and the number of such instruc 
tions are not constrained by considerations of the size of 
available control store. Millicode resides in the system as 
subroutines in normally managed memory, either in virtual 
memory where it can be paged into and out of the system 
as needed, or in resident memory as performance consid 
erations dictate. A consequence of not being bound by re 
strictive space considerations is that compiler writers are 
free to create many more specialized instructions in mil 
licode than would be possible in a microcoded architecture, 
and thus are able to create more optimal solutions for spe 
cific situations. 

Most fixed instruction sets contain complex instructions 
that are overly general. This is necessary since it is costly 
to architect many variations of an instruction. Examples 
of this are the MVB (move bytes) and MVW (move words) 
instructions on the HP 3000. They are capable of moving 
any number of items from any arbitrary source location to 

any target location. Yet, the compiler's code generators 
frequently have more information available about the 
operands of these instructions that could be used to advan 
tage if other instructions were available. The code generators 
frequently know whether the operands overlap, whether 
the operands are aligned favorably, and the number of items 
to be moved. On microcoded machines, this information 
is lost after code generation and must be recreated by the 
microcode during each execution of the instruction. On 
the new HP computers, the code generators can apply such 
information to select a specialized millicode instruction 
that will produce a faster run-time execution of the opera 
tion than would be possible for a generalized routine. 

Access to millicode instructions is through a mechanism 
similar to a procedure call. However, additional restrictions 
placed on the implementation of millicode routines pre 
vent the introduction of any barriers to optimization. Mil 
licode routines must be leaf routines and must have no 
effect on any registers or memory locations other than the 
operands and a few scratch registers. Since millicode calls 
are represented in SLLIC as pseudoinstructions, the op 
timizer can readily distinguish millicode calls from proce 
dure calls. Millicode calls also use different linkage regis 
ters from procedure calls, so there is no necessity of preserv 
ing the procedure's linkage registers before invoking milli 
code instructions. 

The only disadvantage of the millicode approach over 
microcode is that the initiation of a millicode instruction 
involves an overhead of at least two instructions. Even so, 
it is important to realize that for most applications, mil 
licode instructions are infrequently needed, and their over 
head is incurred only when they are used. The high-preci 
sion architecture provides the frequently needed instruc 
tions directly in hardware. 

Myth: RISC machines must implement integer 
multiplication as successive additions. 

Integer multiplication is frequently an architected in 
struction. The new architecture has no such instruction 
but provides others that support an effective implementa 
tion of multiplication. It also provides for inclusion of a 
high-speed hardware multiplier in a special function unit.2 

Our measurements reveal that most multiplication oper 
ations generated by user programs involve multiplications 
by small constants. Many of these occurrences are explicitly 
in the source code, but many more are introduced by the 
compiler for address and array reference evaluation. The 
new compilers have available a trio of instructions that 
perform shift and add functions in a single cycle. These 
instructions, SH1 ADD (shift left once and add), SH2ADD (shift 
left twice and add) and SH3ADD (shift left three times and 
add) can be combined in sequences to perform multiplica 
tion by constants in very few instructions. Multiplications 
by most constants with absolute values less than 1040 can 
be accomplished in fewer than five cycles. Negatively 
signed constants require an additional instruction to apply 
the sign to the result. Multiplication by all constants that 
are exact powers of 2 can be performed with a single shift 
instruction unless overflow conditions are to be detected. 
Additionally, multiplications by 4 or 2 for indexed address- 

14  HEWLETT-PACKARD JOURNAL JANUARY 1986  

© Copr. 1949-1998 Hewlett-Packard Co.



ing can be avoided entirely. The LDWX (load word indexed) 
and LDHX (load half-word indexed) instructions optionally 
perform unit indexing, which combines multiplication of 
the index value with the address computation in the 
hardware. 

The following examples illustrate multiplication by vari 
ous small constants. 

Source code: 
4Â»k 

Assembly code: 
S H 2 A D D  8 , 0 , 9  

Source code: 
-163*k 

Assembly code: 
S H 3 A D D  8 , 8 , 1  

SH3ADD 1,1,1 

SH1ADD 1,8,1 

SUB 0,1,1 

Source code: 

A(k) 
Assembly code: 

L D O  - 4 0 4 ( 3 0 ) ,  9  

L O W  - 5 6 ( 0 , 3 0 ) 7  
L D W X . S  7 ( 0 , 9 ) ,  5  

sh i f t  r8 (k ) le f t  2  p laces,  
add to rO (zero) into r9 

shi f t  r8(k)  le f t  3  p laces,  add 
to itself into r1 
shif t  r1 left  3 places, add to 
itself into r1 
shif t  r1 left  1 place, add to 
k i n t o r !  
subtract  resul t  f rom 0 to 
negate; back into r1 

load  a r ray  base  address  
into r9 
load unit  index value into r 7 
mul t ip ly  index by 4 and 
load e lement  in to  r5  

When neither operand is constant or if the constant is 
such that the in-line code sequence would be too large, 
integer multiplication is accomplished with a millicode 
instruction. The multiply millicode instruction operates 
under the premise that even when the operands are un 
known at compile time, one of them is still likely to be a 
small value. Application of this to the multiplication al 
gorithm yields an average multiplication time of 20 cy 
cles, which is comparable to an iterative hardware im 
plementation. 

Myth: HISC machines cannot support commercial 
applications languages. 

A popular myth about RISC architectures is that they 
cannot effectively support languages like COBOL. This be 
lief is based on the premise that RISC architectures cannot 
provide hardware support for the constructs and data types 
of COBOL-like languages while maintaining the one-in- 
struction-one-cycle advantages of RISC. As a consequence, 
some feel that the code expansion resulting from perform 
ing COBOL operations using only the simple architected 
instructions would be prohibitive. The significance of this 
is often overstated. Instruction traces of COBOL programs 
measured on the HP 3000 indicate that the frequency of 
decimal arithmetic instructions is very low. This is because 
much of the COBOL program's execution time is spent in 
the operating system and other subsystems. 

COBOL does place demands on machine architects and 
compiler designers that are different from those of lan 
guages like C, Fortran, and Pascal. The data items provided 
in the latter languages are represented in binary and hence 
are native to the host machine. COBOL data types also in 
clude packed and unpacked decimal, which are not com 
monly native and must be supported in ways other than 
directly in hardware. 

The usual solution on conventional machines is to pro 
vide a commercial instruction set in microcode. These ad 
ditional instructions include those that perform COBOL 
field (variable) moves, arithmetic for packed decimal val 
ues, alignment, and conversions between the various arith 
metic types. 

In the new HP machines, millicode instructions are used 
to provide the functionality of a microcoded commercial 
instruction set. This allows the encapsulation of COBOL 
operations while removing the possibility of runaway code 
expansion. Many COBOL millicode instructions are avail 
able to do each class of operation. The compiler expends 
considerable effort to select the optimal millicode opera 
tion based on compile-time information about the opera 
tion and its operands. For example, to generate code to 
perform a COBOL field move, the compiler may consider 
the operand's relative and absolute field sizes and whether 
blank or zero padding is needed before selecting the appro 
priate millicode instruction. 

Hardware instructions that assist in the performance of 
some COBOL operations are architected. These instruc 
tions execute in one cycle but perform operations that 
would otherwise require several instructions. They are 
emitted by the compiler in in-line code where appropriate 
and are also used to implement some of the millicode in 
structions. For example, the DCOR (decimal correct) and 
UADDCM (unit add complement) instructions allow packed 
decimal addition to be performed using the binary ADD 
instruction. UADDCM prepares an operand for addition and 
the DCOR restores the result to packed decimal form after 
the addition. For example: 

r 1  a n d  r 2  c o n t a i n  p a c k e d  d e c i m a l  o p e r a n d s  
r 3  c o n t a i n s  t h e  c o n s t a n t  X ' 9 9 9 9 9 9 9 9 '  

UADDCM 1 ,3 ,31  
A D D  2 , 3 1 , 3 1  
D C O R  3 1 , 3 1  

pre-b ias operand in to  r31 
per fo rm b ina ry  add  
cor rec t  resu l t  

Millicode instructions support arithmetic for both 
packed and unpacked decimal data. This is a departure 
from the HP 3000, since on that machine unpacked arith 
metic is performed by first converting the operand to 
packed format, performing the arithmetic operation on the 
packed data, and then converting the result back to un 
packed representation. Operations occur frequently enough 
on unpacked data to justify the implementation of un 
packed arithmetic routines. The additional cost to imple 
ment them is minimal and avoids the overhead of convert 
ing operands between the two types. An example of the 
code to perform an unpacked decimal add is: 

JANUARY 1986  HEWLETT-PACKARD JOURNA^  15  

© Copr. 1949-1998 Hewlett-Packard Co.



r 1  a n d  r 2  c o n t a i n  u n p a c k e d  d e c i m a l  o p e r a n d s  
r 3  c o n t a i n s  t h e  c o n s t a n t  X ' 9 6 9 6 9 6 9 6 '  
r4  con ta ins  the  cons tan t  X 'OfOfOfOf  
r 5  c o n t a i n s  t h e  c o n s t a n t  X ' 3 0 3 0 3 0 3 0 '  

ADD 3,1,31 

ADD 31,2,31 

DCOR 31,31 

AND 4,31,31 

OR 5,31,31 

pre-b ias operand in to  r31 
binary add into r31 
cor rec t  resu l t  
mask  resu l t  
res to re  sum to  unpacked  dec ima l  

In summary, COBOL is supported with a blend of 
hardware assist instructions and millicode instructions. 
The compiled code is compact and meets the run-time 
execution performance goals. 

Conclusions 
The Spectrum program began as a joint effort of hardware 

and software engineers. This early communication allowed 
high-level language issues to be addressed in the architec 
tural design. 

The new HP compiling system was designed with a re 
duced-complexity machine in mind. Register allocation, 
instruction scheduling, and traditional optimizations allow 
compiled programs to make efficient use of registers and 
low-level instructions. 

Early measurements have shown that this compiler tech 
nology has been successful in exploiting the capabilities 
of the new architecture. The run-time performance of com 
piled code consistently meets performance objectives. 
Compiled code sizes for high-level languages implemented 

An Optimization Example 

This example i l lust rates the code generated for  the fo l lowing 
C program for  both  the unopt imized and the opt imized case.  

test ( ) 
{ 
int i, j; 
inta1[25], a2[25], r[25][25]; 

for ( i  = 0;  i  < 25; Â¡+ +) {  
for Ã¼ = 0; j < 25; j + + ) ( 

r [i] 0] = at [i] * a2 [Â¡]; 

Ã­ 
In the example code that fol lows, the fol lowing mnemonics are 

used: 
r p  r e t u r n  p o i n t e r ,  c o n t a i n i n g  t h e  

a d d r e s s  t o  w h i c h  c o n t r o l  s h o u l d  
b e  r e t u r n e d  u p o n  c o m p l e t i o n  o f  
t h e  p r o c e d u r e  

a r g O  f i r s t  p a r a m e t e r  r e g i s t e r  
a r g  1  s e c o n d  p a r a m e t e r  r e g i s t e r  
s p  s t a c k  p o i n t e r ,  p o i n t i n g  t o  t h e  t o p  

o f  t he  cu r ren t  f r ame  
m r e t O  m i l l i c o d e  r e t u r n  r e g i s t e r  
m r p  m i l l i c o d e  r e t u r n  p o i n t e r .  

The value of register zero (rO) is always zero. 

The fo l lowing is  a br ief  descr ipt ion of  the instruct ions used: 
LDO 
LOW 
LDWX.S 
STW 
STWS 
STWM 

immed(r1),r2 
immed(r1),r2 
r1(r2),r3 
M ,immed(r2) 
r1,immed(r2) 
r1,immed(r2) 

rt 
*(r1 

r2 + immed 
COMB,<= M,r2 , labe l  
BL 

BV 
ADD 
SH1ADD 
SH2ADD 

label, M 

0(r1) 
r1,r2,r3 
M,r2,r3 
r1,r2,r3 

Â¡mmed. 
+ Â¡mmed) 

r 3 ^ * ( 4 * r t  +  r 2 )  
*(r2 + Â¡mmed)Â»â€” r1 
*(r2 + immed)<â€” r1 
* ( r2  + immed)<-r1 ANDr2< 
if M< = r2, branch to label 
branch to label, and put return address into r1 (for 
procedure call) 
branch to address in r1 (for procedure return) 
r 3 ^ r 1  +  r 2  
r3<â€” 2*r1 + r2 
r3< -4 * r1  +  r2  

SH3ADD 
COPY 
NOP 

rt,r2,r3 
r t , r2  

r2 

no effect 

In the fol lowing step-by-step discussion, the unoptimized code 
on  the  l e f t  i s  p r i n ted  i n  b lack ,  and  the  op t im ized  code  on  the  
r ight  and pr in ted in  co lor .  The code appears in  i ts  ent i re ty ,  and 
can be read f rom the top down in  each co lumn.  

S a v e  U n  r e g i s t e r s  a n d  I n c r e m e n t  s t a c k  p o i n t e r .  U n  
optimized case uses no register that needs to be live across a call. 

LDO 2 7 6 0 ( s p ) , s p  S T W  
S T W M  
S T W  

2 ,  - 2 0 ( 0 , s p )  
3 , 2 7 6 8 ( 0 , s p )  
4 , - 2 7 6 4 ( 0 , s p )  

Assign zero to i. In the optimized case, i resides in register19. 

S T W  0 , - 5 2 ( 0 , s p )  C O P Y  0 , 1 9  

Compare i  to 25.  This test  is  e l iminated in the opt imized case 
since the value of i  is known. 

L O W  - 5 2 ( 0 , s p ) , 1  
L D O  2 5 ( 0 ) , 3 1  
C O M B , <  =  , N  3 1 , 1 , L 2  

In the opt imized vers ion,  a number of  expressions have been 
moved out  of  the loop:  

{ m a x i m u m  v a l u e  o f  j }  
{ add ress  o f  a1 }  
{add ress  o f  a2 }  
{address  o f  r }  
{ i n i t i a l  va lue  o f  100* i }  
{max imum va lue  o f  1  00*1}  

L D O  
L D O  
L D O  
L D O  
L D O  
L D O  

2 5 ( 0 ) , 2 0  
- 1 5 6 ( s p ) , 2 2  
-  2 5 6 ( s p ) , 2 4  
- 2 7 5 6 ( s p ) , 2 8  
0 ( 0 ) , 4  
2 5 0 0 ( 0 ) , 2  

Init ial ize j to zero, and compare j to 25. This test has also been 
eliminated in the optimized version, since the value of j  is known. 
Note that j  now resides in register 21. 

L3 
S T W  
L D W  

0 , - 5 6 ( 0 , s p )  
- 5 6 ( 0 , s p ) , 1 9  

C O P Y  0,21 
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in this low-level instruction set are comparable to those 
for more conventional architectures. Use of millicode in 
structions helped achieve this result. Complex high-level 
language operations such as procedure calls, multiplica 
tion, and COBOL constructs have been implemented effi 
ciently with the low-level instructions provided by the 
high-precision architecture. A later paper will present per 
formance measurements. 
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A Stand-Alone Measurement Plott ing 
System 
This compact laboratory instrument serves as an X-Y 
recorder ,  a  low- f requency waveform recorder ,  a  d ig i ta l  
p lot ter ,  or  a data acquis i t ion system. 

by Thomas H.  Danie ls  and John A.  Fenogl io  

MANY PHYSICAL PHENOMENA are characterized 
by parameters that are transient or slowly varying. 
If these changes can be recorded, they can be ex 

amined at leisure and stored for future reference or com 
parison. To accomplish this recording, a number of elec 
tromechanical instruments have been developed, among 
them the X-Y recorder. In this instrument, the displacement 
along the X-axis represents a parameter of interest or time, 
and the displacement along the Y-axis varies as a function 
of yet another parameter. 

Such recorders can be found in many laboratories record 
ing experimental data such as changes in temperature, vari 
ations in transducer output levels, and stress versus applied 
strain, to name just a few. However, the study of more 
complex phenomena and the use of computers for storage 
of data and control of measurement systems requires en 
hancement of the basic X-Y recorder. Meeting the need, 
Hewlett-Packard's next-generation laboratory recorder, the 
HP 7090A (Fig. 1), is a compact stand-alone instrument 

that can be used as a conventional X-Y recorder, a low-fre 
quency waveform recorder, a digital plotter, and a complete 
data acquisition system. 

X-Y Recorder Features 
The HP 7090A Measurement Plotting System offers many 

improvements for the conventional X-Y recorder user. In 
the past, X-Y recorders have been limited to a frequency 
response of a few hertz by the response time of the mech 
anism. The HP 7090A uses analog-to-digital converters 
(ADCs) and digital buffers to extend the measurement 
bandwidth well beyond the limits of the mechanism. Each 
input channel has a 12-bit ADC capable of a 30-kHz sample 
rate. Since it is necessary to have about 10 samples/cycle 
for a good plot of the signal (remember, the minimum 
Nyquist rate of two samples/cycle only applies if there is 
a perfect low-pass output filter), this approach allows sig 
nals with bandwidths up to 3 kHz to be recorded. 

The front-end amplifier presented many design chai- 

F i g .  1 .  T h e  H P  7 0 9 0  A  M e a s u r e  
m e n t  P l o t t i n g  S y s t e m  c o m b i n e s  
many of  the features of  an X-Y re 
corder,  a low-frequency waveform 
recorder ,  a  d ig i ta l  p lo t te r ,  and  a  
data acquis i t ion system in one in  
s t rument  that  can be operated by 
i t se l f  o r  as  pa r t  o f  a  l a rge r  com 
puter-control led system. 
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lenges. High common-mode rejection, high sensitivity, low 
noise, and static protection were a few of the more difficult 
areas. X-Y and stripchart recorders have used floating input 
circuitry to allow users maximum flexibility in connecting 
signals to the measuring device. The degree to which input 
signals can be isolated from chassis ground is specified as 
the common mode rejection (CMR). Achieving a high CMR 
means that the input circuitry must not be connected to 
chassis ground. This requirement posed a dilemma for a 
microprocessor-controlled system like the HP 7090A, be 
cause the microprocessing system must be connected to 
ground for noise prevention reasons. This design contradic 
tion is resolved by using small independent power supplies 
for the front-end channels and by doing all of the data 
communication via optoisolator links. The point in the 
system where the floating circuitry is connected to the 
processing circuitry is shown by the optoisolator in the 
system block diagram (Fig. 2). 

The most sensitive range of the HP 7090A is 5 mV full 
scale. The 12-bit resolution of the ADC allows measure 
ments as low as 1 /xV. Input amplifier noise and all external 
switching noises must be kept well below 1 Â¿Â¿V over the 
full 3-kHz bandwidth. In addition, the standard HP design 
requirement of electrostatic discharge protection offered 
an even greater challenge â€” the same high-sensitivity float 
ing input must be able to withstand 25-kV discharges di- â€¢ 
rectly to the input terminals! (See article on page 32 for 
details about the front-end design.) 

The microprocessor is used for many functions, includ 
ing signal processing on the raw analog-to-digital measure 
ments. This makes it possible to calibrate the instrument 
digitally. Hence, there are no adjustment potentiometers 
in the HP 7090A (see box on page 22). During the factory 
calibration, a known voltage is applied to the input and 
the microprocessor reads the corresponding value at the 
output of the ADC. The calibration station then compares 
this value with the expected value. Any small deviation 
between the measured and expected values is converted 
to a calibration constant that is stored in the HP 7090A's 
nonvolatile memory (an electrically erasable, programma 
ble read-only memory, or EEPROM). This constant is used 
by the internal microprocessor to convert raw measurement 
data to calibrated measurement data during the normal 

operation of the instrument. In addition, offset errors are 
continually checked and corrected during measurements. 
This helps eliminate the offset or baseline drifts normally 
associated with high-sensitivity measurements. 

The use of a microprocessor also allows the user of an 
HP 7090A to select a very large number of calibrated input 
voltage ranges. Conventional approaches to input ranging 
usually involve mechanical attenuator switches with about 
fourteen fixed positions corresponding to fourteen fixed 
ranges. An uncalibrated vernier potentiometer is used for 
settings between the fixed ranges. The HP 7090A uses dig 
itally programmable preamplifiers and attenuators. The 
gain of this circuitry can be set to 41,000 different values. 
The microprocessor commands different gain settings by 
writing to the front-end control circuitry via the opto 
isolator link. 

Low-Frequency Waveform Recorder  Features 
The HP 7090A also can be used as a low-frequency 

waveform recorder. Triggering on selected input signal con 
ditions allows a waveform recorder to capture transient 
events. In the HP 7090A, the triggering modes are expanded 
from the traditional level-and-slope triggering to include 
two modes of window triggering. The outside window 
mode allows for triggering on signals that break out of 
either an upper or a lower window boundary. The special 
inside window mode allows for triggering when the signal 
stays inside upper and lower window boundaries for the 
entire measurement period. The latter is the only effective 
way to trigger on a decaying periodic waveform like that 
caused by an ac power line failure (Fig. 3). 

To implement the sophisticated triggering capability de 
scribed above, the HP 7090A uses digital triggering tech 
niques. No analog circuitry is involved. The trigger decision 
is made by looking at the digitized input data that comes 
from the ADCs and comparing this to the desired trigger 
conditions set by the user. At the higher sampling rates 
the microprocessor is not fast enough to make trigger deci 
sions unaided. Therefore, a semicustom LSI circuit is used 
to augment the processor in this area. This 1C is a CMOS 
770-gate array especially programmed to do input data buf 
fer management. It is shown in the system block diagram 
as the front-end gate array. 

Analog 
Input 

44 Optoisolator 

Pen 
Paper 
Turret F ig .  2 .  S imp l i f i ed  b lock  d iag ram 

of the HP 7090 A. 
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1000-Sample 
Measurement Period 

Upper 
Limit 

Trigger 
Level 

F ig .  3 .  The  HP 7090  'A  ' s  spec ia l  i ns ide  w indow t r i gger ing  
mode  a l l ows  cap tu re  o f  wave fo rms  tha t  r ema in  i ns ide  t he  
window for  the measurement  per iod.  In  the above example,  
the t r igger  occurs  a f ter  the thousandth  consecut ive  sample 
that is inside the window defined by setting the TRIGGER LEVEL 
and TRIGGER WIDTH controls on the front panel. This enables 
the recording of such events as a decaying periodic waveform 
caused by an ac l ine fa i lure.  

One final measurement feature is the highly accurate, 
wide-dynamic-range, time-axis capability that comes about 
because the HP 7090A's time axis is computed by dividing 
the system's crystal-controlled clock frequency. This al 
lows for time sweeps from 0.03 second to 24 hours full 
scale. 

Recorder/Plotter Features 
The desire to produce a single product that could be 

used as a continuous X-Y recorder and as a full-perfor 
mance digital plotter created many different performance 
objectives for the sophisticated servo system found in the 
HP 7090A. It uses three separate servo algorithms, each 
optimized for a specific task. In the digital plotter mode, 
the servo must match both axes and faithfully draw straight 
line vectors between endpoints. 

Plotting data from the digitized input signal buffers also 
requires the servo to draw vectors between the data points, 
but there is a subtle difference. In this case, the servo can 
be optimized to look ahead at the next few data points and 

Eliminating Potentiometers 

Potent iometers are not needed in the HP 7090A Measurement 
Plot t ing System because i ts internal  microprocessor:  
â€¢ Controls the front end 
â€¢ Determines the gain constants 
â€¢ Performs the offset calibration 
â€¢ Corrects the data. 

The microprocessor has the abi l i ty to wri te to three main ports 
in the f ront  channel  (see Fig.  1) .  The f i rs t  por t  contro ls the FET 
sw i t ches  and  re lays  tha t  govern  the  coarse  ga in  se t t i ngs  and  
the relay that passes the input signal into the front-end amplif iers. 
The  second  po r t  de te rm ines  the  amoun t  o f  o f f se t  fed  in to  the  
input  s ignal .  The th i rd  por t  establ ishes the at tenuat ion that  the 
s igna l  sees  by  means o f  the  d ig i ta l l y  p rogrammable  ampl i f ie r .  
This port  governs the f ine gain set t ings.  

There are 14 coarse gain set t ings cover ing a span of  5 mV to 
100V,  inc lus ive.  Whi le  an HP 7090A is  on the assembly  l ine ,  i t  
passes  th rough  a  ca l i b ra t i on  o f  t he  ga in  o f  each  o f  t he  th ree  
channe ls  a t  each  o f  the  coarse  ga in  se t t ings .  Th is  ca l ib ra t ion  
procedure produces a two-byte number for each channel at each 
set t ing,  and then s tores these numbers in  nonvola t i le  memory.  

To determine these numbers, an offset cal ibrat ion Â¡s performed 
(as discussed later) and a voltage equal to the ful l -scale voltage 
is  p laced on the inputs of  the channel .  For  example,  i f  the fu l l -  
sca le  vo l t age  o f  t he  f ron t  end  i s  se t  t o  200  mV,  a  200 -mV dc  
signal Â¡s placed on the inputs. The buffer is fil led using a 250-ms/ 
measurement  t ime base and 200 of  the uncorrected analog- to-  
d ig i ta l  samples are sent  over the HP 7090A's HP-IB ( IEEE 488) 
to  the  con t ro l le r ,  an  HP Ser ies  200  Computer .  These  samples  
are not internally corrected; they are the direct output of the ADC 
in the instrument 's f ront  end. These samples are averaged, and 
the average A is  put  into the fo l lowing formula:  

Gain  constant  =  /  1 9 7 4   I  D V M   
\ A - S -  2 0 4 8 /   I d e a l  V o l t s  /  

where DVM is the voltage read by a digi tal  voltmeter of the input 
vol tage to the f ront end, and Ideal  Vol ts corresponds to the ful l -  
scale voltage that should be on the input. S Â¡s the software offset 
found 1.03. the offset calibration. The typical result Â¡s about 1.03. 
The word stored in the nonvolat i le  memory is  the gain constant  

FET Switches and 
Relays for the 
Coarse Gain 

Setting 

Digitally 
Programmable 

Amplifier 

O    1  

V  7  Â ±  

Sample-and- 
Hold 1 

To Multiplexer 
and ADC 

Sample-and- 
Hold 2 

From 
Microprocessor Fig. 1 . Block diagram of front-end 

sect ion of  the HP 7090A. 
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minus one The above procedure  fo r  f ind ing the ga in  constants  
is repeated for each of the 1 4 ranges, for each of the HP 7090A's 
three channels. 

The number  1974 in  the above equat ion comes f rom the fu l l -  
sca le  i npu t  to  Â ¡he  ADC be ing  mapped  to  4022-2048  +  1974 .  
ra the r  than  4095 .  so  tha t  some marg in  can  ex is t  a t  the  upper  
and lower  l im i ts  o f  the  ana log- to -d ig i ta l  ou tpu t  Th is  a l lows fo r  
some offset var iat ion in the front-end electronics. 

O p e n  i n p u t  r e l a y  

T  

Ã̄ 

T 
I  

W a i t  f o r  d e b o u n c e  

C l o s e  F E T  g r o u n d  s w i t c h  

W a i t  f o r  d e b o u n c e  

I n c r e m e n t  o f f s e t  
D A C  b y  1  

I n d u c e  t w o  c o n v e r s i o n s  

No R e s u l t  
c l o s e r  t o  d e s i r e d  

v a l u e ?  

Yes 

D e c r e m e n t  b y  2  

D e c r e m e n t  b y  1  

Yes 

D e c r e m e n t  b y  1  

I n c r e m e n t  b y  1  

T  
S a m p l e  1 6  t i m e s ,  

1  m s  a p a r t  t o  
r e m o v e  6 0 - H z  n o i s e  

A v e r a g e  m i n u s  d e s i r e d  
v a l u e  g o e s  i n t o  R A M  

R e s e t  t h e  F E T s  a n d  r e l a y  

Fig. 2.  Flow chart  of  f ront-end cal ibrat ion procedure for each 
channel  of  the HP 7090A. 

i n -Se rv i ce  Au toca l i b ra t i on  
At any point  in t ime, there is some offset in the front end This 

o f fset  can change because of  such factors  as temperature and 
the age of the components Therefore, there is a need to calibrate 
the instrument while it is in operation, and even during a measure 
m e n t  T h e  i n t e r n a l  r e a l - t i m e  c l o c k  i s  u s e f u l  i n  t e l l i n g  t h e  H P  
7090A's  in ternal  processor  when to  per form an in ternal  ca l ibra 
tion. Generally, such a calibration is done every 7 to 1 0 minutes 

The procedure  (F ig .  2 )  fo l lowed fo r  cor rec t ing  the  o f fse ts  in  
one channel begins with opening the input relay â€” the one that 
al lows the input signal to pass through the front end. Next, a FET 
is  tu rned on .  wh ich  g rounds  the  inpu t  to  the  ampl i f ie rs .  There  
are  appropr ia te  de lays  to  le t  the  re lay  and FET debounce and 
set t le  to  f ixed va lues.  The processor  is  then able to  induce the 
ADC to convert the zero input twice. The two samples come from 
the two sample-and-hold sections within the front end. The result 
ing values are stored in RAM. Next, the offset port is writ ten with 
a  number  equa l  to  one  p lus  the  o r ig ina l  va lue .  The  p rocessor  
induces two more conversions, and the new values are compared 
with the previous values stored in RAM. I f  the new pair of values 
is  c loser  to  the des i red zero  va lue,  based on in terna l  computa 
t ions  o f  the  range  and  o f f se t  se t t ings ,  the  o f f se t  por t  va lue  i s  
incremented again and the process of  compar ison is  repeated.  
If the new values are farther than the previous set from the desired 
value,  then the of fset  por t  va lue is  decremented twice,  and two 
new values are found and compared wi th  those for  the or ig ina l  
o f fse t  por t  number .  I f  the  new va lues are  c loser  to  the des i red 
value, the offset port value is decremented once and the process 
i s  repea ted .  The  p rocess  s tops  when  the  mos t  recen t  va lues  
from the ADC are farther than the previous values from the desired 
value. 

The  p rocesso r  reve rses  the  t rend  o f  i nc remen t ing  o r  dec re  
ment ing the of fset  por t  value once leaving the of fset  DAC at  i ts  
opt imal  value,  takes 16 samples one mi l l isecond apart  for  each 
sample-and-hold,  and averages these samples to e l iminate any 
60 -Hz  no ise .  The  two  averages  have  the  des i red  o f f se t  va lue  
subtracted from them, and the two differences are stored in RAM. 
The resul t  is  that  the of fset  por t  is  a t  i ts  opt imal  va lue and two 
16-b i t  words are s tor ,  d  that  cor respond to  the res idual  o f fsets  
o f  t he  f ron t  end  and  each  samp le -and -ho ld .  These  words  a re  
cal led the software of fsets,  and are used in correct ing the data.  
The zero FET is turned off and the input relay is closed. The front 
end is now calibrated and ready for sampling the external input. 

When the ADC samples data,  i ts  output  must be corrected for  
ga in  and  o f f se t .  Each  t ime  a  convers ion  takes  p lace ,  a  10 -b i t  
counter  is  incremented and the least  s igni f icant  b i t  is  the index 
for  which sample-and-hold (1 or 2)  corresponds to the data sam 
ple. The uncorrected data is inserted into the following formula: 

(D,-Vosi- Ideal Zero) x GF(J) + Ideal Zero = Dcorrecled 

where  D(  cor responds to  the  uncor rec ted  da ta  o f  sample-and-  
hold i (i = 1 or 2), VOSI equals the software offset for sample-and- 
hold i ,  Ideal  Zero is the binary equivalent of  the of fset  scaled to 
0 to 4095 where 2048 represents a zero of fset ,  and GF(J) is the 
gain factor  word stored in the EEPROM plus a word for  range J 
( J  =  1  t h r o u g h  1 4 ,  c o r r e s p o n d i n g  t o  t h e  5 - m V  t h r o u g h  1 0 0 V  
ranges). 

Stephen D.  Goodman 
Development Engineer 

San Diego Divis ion 
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adjust its acceleration profile to reduce the plot time by 
removing the need to come to a complete stop after each 
data point. When in the RECORD DIRECT mode, the digitized 
input signal data is fed directly to the servo control system, 
bypassing the data buffers, and the pen follows the input 
signal in the continuous (nonvector) manner of conven 
tional X-Y recorders. 

The servo system uses the familiar dc motors and optical 
position encoders that are common to all modern digital 
plotters. But unlike such plotters, this servo system uses 
an algorithm that closes the servo loop and allows the 
device to emulate the analog-like characteristics of tradi 
tional X-Y recorders. This is done by using the micropro 
cessing system and another semicustom LSI circuit, a 
CMOS 2000-gate array. This hardware combination allows 
the processing system to model the characteristic block 
diagram of a traditional analog servo system in a manner 
fast enough to appear real-time to the user when recording 
slow-moving signals (under a few cycles per second). In 
this mode, the HP 7090A performs in exactly the same 
manner as a conventional X-Y recorder. 

Another feature of the HP 7090A is its ability to draw 
its own grids. No longer is the user forced to try to align 
the desired measurement to a standard inch or metric grid. 
The user simply specifies the required number of grid di 
visions, from one to one hundred, by using the HP 7090A's 
front-panel controls. A firmware algorithm is invoked by 
pressing the front-panel GRID button, which then draws 
the specified grid between the specified zero and full-scale 
points. 

The graphs created by the HP 7090A can be used for 
observing the trends of the measurement. The high-accu 
racy measurement made possible by the 12-bit ADC can 
be appreciated further by using the internal character 

generator to annotate any desired data point with three- 
digit resolution. 

The processor also makes possible other features that 
enhance the measurement display capability of the HP 
7090A. A calendar clock 1C backed up with a battery and 
connected to the processor can be used to provide labeling 
of time and date at the push of a front-panel button. A 
nonvolatile memory (EEPROM) 1C stores front-panel setup 
conditions, and two internal digital-to-analog converters 
convert digital data in the buffer memory to analog signals 
that can be displayed on a conventional oscilloscope to 
preview the buffer data, if desired, before plotting. 

Data Acquisi t ion System Features 
The HP 7090A can be used as a computer-interfaced data 

acquisition system by using its built-in HP-IB (IEEE 488) 
I/O capabilities. All setup conditions and measurements 
can be controlled remotely by using an extension of the 
HP-GL (Hewlett-Packard Graphics Language) commands 
tailored for measurements. The data in the buffer can be 
transferred to a computer. The computer can process the 
data and then address the HP 7090A as a plotter to display 
the results. 

The HP 17090 A Measurement Graphics Software pack 
age (see article on page 27) was developed to provide user- 
friendly access to the many measurement capabilities of 
the HP 7090A. 
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Digital Control of Measurement Graphics 
by Steven T .  Van Voorh is  

THE OBJECTIVE of the servo design team for the HP 
7090A Measurement Plotting System was to develop 
a low-cost servo capable of producing quality hard- 

copy graphics output, both in real-time directly from the 
analog inputs and while plotting vectors either from the 
instrument's internal data buffer or received over the HP-IB 
(IEEE 488) interface. The mechanical requirements of the 
design were met by adopting the mechanics of the earlier 
HP 7475A Plotter. This approach had the significant advan 
tage of a lower-cost solution than could have been achieved 
with a new design. What remained then was to design the 
electronics and firmware for reference generation and con 
trol of the plant (dc servo motor and mechanical load). 

Servo Design 
Fig, 1 is a block diagram of the major components of the 

HP 7090A servo design for one axis, there being no signific 
ant difference between the pen and paper axes for the pur 
poses of this discussion. Fig. 2 shows the corresponding 
servo model. The plant is modeled as a system with the 
transfer function of Km/(s+Pe)(s+Pm). Feedback of position 
and velocity was found to give sufficient control to meet 
the line-quality objectives. 

The prime mover for each axis is a low-cost dc servo 
motor. Feedback of motor shaft position is provided by a 
500-line optical encoder. By detecting all state changes of 
the two-channel quadrature output of the encoder, 2000 
encoder counts per revolution of the motor shaft can be 
detected. This yields an encoder resolution of slightly bet- 
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Servo  Ga te  A r ray  

Pulse 
Width 

Modulator 
Microprocessor 

Position 
Counter  

ter than 0.001 inch at the pen tip. Since the feedback is 
derived from the motor shaft and not the pen tip, any plant 
dynamics between these two points are open-loop with 
respect to the servo system. It is therefore essential that 
the mechanics be "stiff" between the motor shaft and the 
pen tip within the 100-Hz bandwidth of the servo system. 

The digital electronics portion of the control loop is im 
plemented in a single gate array of some 2000 gates pack 
aged in a 40-pin dual in-line package. The two-channel 
quadrature feedback signals from the optical encoders are 
decoded within the gate array to clock two 8-bit relative 
position counters, one for each axis. The position counters 
are cleared on each read by the microprocessor, in essence 
providing velocity feedback to the microprocessor. The mi 
croprocessor integrates this feedback to generate position 
information. The power supply check circuitry provides 
the microprocessor with a 6-bit measurement of the motor 
drive supply voltage. 

In the feed-forward path, the microprocessor controls 
each motor by writing to two 8-bit registers for each axis 
in the gate array. The two registers control the period and 
duty cycle of the pulse-width-modulated motor drive sig 
nals. Pulse-width-modulated motor drive circuits were 
chosen because of the ease of interfacing to digital systems 
and their efficiency advantage over linear drivers. Using 
the feedback of the motor drive supply voltage, the micro 
processor can adjust the period of the drive signal to regu 
late the gain of the drive path. This eliminates the expense 
of having a regulated supply for the motor drivers. The 
microprocessor varies the duty cycle of the pulse width 
modulator as dictated by the solution of the control equa 
tions to achieve control of the plant. 

When sampling the front-end channel at high sample 
rates, there is not sufficient processing power available 
from the 6809 microprocessor to execute both the channel 
and the servo routines in real time. Thus, a multiplexer 
under microprocessor control is provided to allow the gate 
array to close a position loop about the plant without mi 
croprocessor intervention. To avoid any instability caused 
by loss of velocity information, the position loop gain is 
halved when this is done. This allows the microprocessor 
to supervise the channel data transfer without the overhead 
of executing the servo routines. Other miscellaneous cir 
cuitry in the servo gate array provides pen-lift control, the 
microprocessor watchdog timer, the front-end channel 

Optical 
Encoder 

Fig. 1 . Block diagram of HP 7090 A 
servo system. 

communications serializer, and a chip test. 
The real-time servo routines are initiated by a nonmask 

able interrupt, which is run at a 1-kHz rate while plotting. 
Aside from various housekeeping duties, the main respon 
sibilities of the servo routine are to maintain control of the 
plant by closing the feedback loop, and to generate the 
reference inputs to drive the system. 

Closing the feedback loop is always done in the same 
manner while plotting either vectors or data directly from 
the front-end channels. The relative position register is 
read and summed with the old plant position to generate 
the updated plant position. A copy of the relative position 
register value is multiplied by the velocity feedback con 
stant to generate the velocity feedback term. The plant po 
sition is subtracted from the reference input to generate 
the position error. From this, the velocity feedback term is 
subtracted and a deadband compensation term is added to 
generate the control value to be sent to the pulse width 
modulator. The power supply check register is read and 
the period of the pulse width modulator is adjusted to 
ensure a constant gain for the motor drive block. 

Plotting Data 
There are three separate reference generators that can be 

invoked, depending on the mode of plotting. The first is 
for direct recording of the front-end channel data, the sec 
ond is used when plotting vectors parsed from the I/O bus 
(HP-IB), and the third is used when plotting from the HP 
7090 A's internal data buffer. When directly recording front- 
end channel data, the inputs are continuously sampled at 
250 Hz and the internally generated time base is updated 
at the same rate. The samples are scaled according to the 

Reference 
Generator Compensat ion 

M o t o r  D r i v e  p l a n t  

Fig. 2. Model of servo in Fig. 1 . 
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prevailing setup conditions to provide the new desired 
position for the pen and paper axes. Were these inputs fed 
directly to the servos, high-frequency or noisy input signals 
could easily result in motor overheating. The new desired 
positions are therefore passed to the servos through a refer 
ence profiler, which limits plant acceleration to 2g and 
maximum slewing speed to 50 inches per second. This 
limits the power input to the motors to a safe operating 
level and preserves acceptable writing quality. This ap 
proach results in no overshoot when recording step inputs 
and provides good reproduction of 1-cm peak-to-peak 
sinusoidal waves for frequencies below 10 Hz. 

When the HP 7090A operates as a plotter, HP-GL com 
mands received over its HP-IB interface are parsed in accor 
dance with the current graphics environment to generate 
new desired pen and paper locations. These new locations 
are represented as two-dimensional vectors relative to the 
present location. These vectors are passed to a vector refer 
ence generator via a circular queue capable of storing up 
to 30 vectors. The vector reference generator takes vectors 
from the queue and profiles the input to the servos to con 
strain the plant to a constant 2g acceleration and 75-cm/s 
maximum vector velocity. Fig. 3 depicts the profiling of 
two consecutive vectors. The second vector is long enough 
for the pen to reach maximum velocity and then to slew at 
this velocity for some time before the onset of deceleration. 

A short pause of 12 milliseconds between vectors ensures 
settling of the plant at the vector endpoints. The references 
for the paper and pen axes are simply scaled from the 
vector profile by the cosine and sine, respectively, of the 
angle between the vector and the positive paper axis. 

Vector Profi ler 
Plotting from the internal data buffer could be performed 

in exactly the same manner as plotting vectors from the 
HP-IB interface. However, several attributes of this mode 
of plotting led to the development of a new reference 

"Hewlet t -Packard Graphics Language 

+  2 -  

+ 7 5 4  

7 5 -  

generator. The first is that for each channel to be plotted, 
a string of 1000 vectors is already stored in the internal 
data buffer. Thus, the overhead of running the HP-IB inter 
rupt routines, the parser, character generator, and other 
routines to create vectors is eliminated. Second, since the 
functions to be plotted are continuous, the 1000 data points 
form a contiguous string of short vectors (typically less 
than 0.025 inch), all plotted pen down. Furthermore, the 
angle formed between any two consecutive vectors is typ 
ically very shallow. 

Consider the trivial case of plotting a dc signal from the 
internal data buffer. Assuming a 15-inch trace on B-size 
paper, this amounts to plotting 1000 vectors, each of length 
0.015 inch, all along a straight line. Using the HP-IB vector 
reference generator would require 10 ms to profile the ac 
celeration and deceleration of each vector, plus a 12-ms 
intervector delay. Thus, it would require 22 seconds to 
draw this 1 5-inch line, whereas if it were plotted as a single 
vector at 75 cm/s, it would require just over 0.5 second. 
Therefore, a new vector profiler was designed for plotting 
from the internal data buffer with the objective of improv 
ing throughput. This algorithm does not require a stop at 
each vector endpoint. Rather, it constrains the vector end- 
point velocity so that the following three conditions are 
met: 
â€¢ The angle drawn at the vector endpoint is drawn with 

negligible error. 
â€¢ The vector is not drawn in less than eight iterations of 

the servo interrupt routines (i.e., 8 ms). 
â€¢ A 2g deceleration to a full stop at the end of the vector 

string is achievable. 
Using this internal data buffer reference profiler, a 15- 

inch dc signal trace is plotted in 8 seconds, because of the 
second constraint. This is nearly a factor of three in 
throughput improvement compared to using the HP-IB vec 
tor reference generator. In fact, many functions are plottable 
in the 8-second minimum time with this technique, result 
ing in throughput gains as high as eight. 

Why not apply the same profiling technique to vectors 
received over the HP-IB interface? The answer is twofold. 
First, vectors plotted from the bus are generally not contigu 
ous strings representing continuous functions. They typi 
cally have many pen up/down cycles, form acute angles, 
and are longer, all of which reduce the throughput gain 
using this algorithm. Second, applying the three conditions 
to determine the vector endpoint velocity requires addi 
tional processing of each vector to check angles and deter 
mine the distance to the end of the current string of vectors. 
To do this in real time requires that, as each new vector is 
received, the processor backtrack through the list of current 
unplotted vectors to see if their endpoint velocities can be 
increased. When the nature of the plot is such that little 
throughput gain is possible from the application of these 
algorithms, the additional processing load of executing 
them can actually result in a throughput loss. Therefore, 
this approach is restricted to plotting of the internal data 
buffers where the throughput gains are the greatest. 

Fig. 3. Profi l ing of two typical vectors parsed from the HP-IB. 
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Measurement Graphics Software 
by Francis E.  Bockman and Emit  Maghakian 

HP 17090A MGS IS A SOFTWARE PACKAGE written 
for the HP 7090A Measurement Plotting System that 
runs on HP's Series 200 Computers. MGS allows the 

user to: 
â€¢ Set up measurements 
â€¢ Take measurements 
â€¢ Store and retrieve measurement data to and from disc 

files 
â€¢ Annotate measurements with text, axes, and simple 

graphics 
â€¢ Manipulate measured data 
â€¢ Provide soft and hard copy of measured and manipulated 

data. 
MGS was written to provide a system solution to some 

of the general problems of measurement recording and data 
acquisition. It is designed to be used by scientists and en 
gineers not wanting to write their own software. This soft 
ware package extends the capabilities of the stand-alone 
HP 7090A. 

The package consists of two discs. The first disc contains 
the core of the system, the initialization routines, the library 
routines, and the memory manager. The second disc con 
tains six code modules, one for each functional subsystem. 
The measurement setup module contains code to help the 
user specify the setup parameters relevant to the measure 
ment. The measurement module allows one to start the 
measurement and the flow of measurement data into the 
computer. The storage-retrieval module contains code to 
store and retrieve measurement data and setup information 
to and from disc memory. The data manipulation module 
implements the ability to manipulate measurement data 
mathematically. The annotation module adds the capabil 
ity of adding graphical documentation to the measurement 
record. The display module allows a user to display the 
measurement data taken and the annotation on either the 
computer's display screen or on paper. 

System/Subsystem Name 

Parameter  
Name 
Area 

Message L ine 

Current  
Parameter  

Setting 
Area 

Since MGS is intended for the instrument/scientific mar 
ket where users typically write their own instrument con 
trol software, we used BASIC as the application language. 
Hence, users of the package can add their own code in a 
commonly understood language to tailor it to their specific 
needs. The application is distributed in source form. 

Human Interface 
The human interface is designed for both novice and 

expert users. We have made the assumption that all our 
users are familiar with X-Y recording, and that they have 
used recorders for data measurement. 

A human interface should be self explanatory and de 
scriptive to accommodate a novice user. An expert user, 
on the other hand, requires an interface that is like a tool â€” 
one that does not hamper creativity and does not ask a lot 
of questions (conversational). 

MGS's human interface is an extension of the HP 7090A's 
human interface. There are no operational conflicts be 
tween the HP 7090A and MGS. 

Screen layout is an important part of every human inter 
face. We have made a special effort to ensure a consistent 
screen layout (Fig. 1) throughout the modules to improve 
the feedback to the user. Fig. 2 is an example of an actual 
CRT display for MGS. The definitions for the various ele 
ments of the screen layout are: 
1) Subsystem Name. This is the name of the subsystem. 
Each box on the design tree (Fig. 3) is a subsystem. For 
instance, the DISPLAY functional area is composed of the 
CHANGE SETUP, SCREEN, and PLOTTER subsystems. The 
CHANGE SETUP subsystem also has under it the CHANGE 
SCALE subsystem (not shown). 
2) Arrow. The user can only change one parameter setting 
at a time. The arrow points to the parameter that is currently 
modifiable. The arrow is controlled by the softkeys UP (kO) 
and DOWN (k5). 
3) Parameter Name Area. This area of the CRT is where 
the parameter names are displayed. 
4) Current Parameter Setting Area. The current parameter 

MEflSUREMENT SETUP 

I  D E F A U L T  !  h e l p  

.  >  M e o s u r  e m e n t  
U n  i  t  s  

R e c o r  d e r  M o d e  
D e  p  e  n d e n  t  v s  .  
I  n d e p e n d e  n  t  

M e  a  s u r  e m e n t  
M o d e  

T r  i  g  g e  r  
M o d e  
P o s  t  / P r  e  

T o t  a l  T  i  m e  

<Sy$ t em> 

<Ch 1> 

<Tlme> 

< B u - f f  e r e d >  

< Ma nu a 1 
< 0 . 0 0 >  

. 0 0  S e c  .  >  

Fig. 1 .  Screen layout for MGS. F ig .  2 .  MGS cont ro l  d isp lay .  
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setting is displayed on the same line as the parameter name. 
The parameter setting is enclosed by angle brackets. For 
example: 

paraml 
->param2 

param N 

<param1 set t ing> 
<param2set t ing> 

<paramNset t i ng>  

where parameter 2 is currently selected to be modified. 
5) Help Area. This area of the CRT is used to display help 
information to the user, which will consist of either the 
current valid range of parameter settings for the parameter 
designated by the arrow, or information on how to set the 
parameter, or what to set the parameter to. 
6) Message Line. This line is used by the software to dis 
play messages to the user. When applicable, it will specify 
the permissible range of parameter settings. 
7) Input Line. This line is used for entering text and num 
bers when required by MGS. 
8) CRT Softkey Labels. This area displays the labels for 
the HP 9000 Series 200 Computer's softkeys. The labels 
shown in Fig. 1 do the following actions when the corre 
sponding softkeys are pressed: 

U P  ( k O )  :  P l a c e s  t h e  a r r o w  u p  o n e  p a r a m e t e r .  
DOWN (k5)  :  P laces  the  a r row down one  paramete r .  
DEFAULT (k3) :  Sets  the current  menu parameters to 

their default settings. 
he lp  (k4 )  :  Th i s  so f tkey  has  an  on /o f f  t ogg le  ac t ion  

An asterisk in the softkey label implies 
the help information will be dis 
played in the help area on the CRT, 
for the current menu and all the fol 
lowing menus. This softkey may be 
toggled on and off as many times as 

necessary. 
E X I T  ( k 9 )  :  R e t u r n s  t h e  u s e r  u p  o n e  l e v e l  o f  t h e  

tree to the previous subsystem. 

The primary user input to the software is the knob and 
the softkeys on the keyboard of the Series 200 Computer. 
Input from the keyboard has been limited as much as pos 
sible.  The softkeys provide the user with the abili ty to 
control the flow through the design tree (Fig. 3). 

The knob controls the setting of the .parameter selected 
by the arrow on the menu. To set any parameter, the knob 
must be rotated first. The software will then react in one 
of the ways listed in Table I. 

  T a b l e  I    

P a r a m e t e r  T y p e  S o f t w a r e  R e a c t i o n  

Enumerated Turning the knob will scroll through the current 
(i.e., specific list valid parameter settings for the specified 
of  se t t ings)  parameter .  

Positional Turning the knob will mo ve the graphics cursor 
in a left or right direction. Turning the knob with 
the SHIFT key held down will move the graphics 
cursor in an up or down direction. 

Number with Turning the knob will cause the parameter set- 
limited range ting to be incremented or decremented by a 

small amount. Turning the knob with the SHIFT 
key held down will cause the parameter setting 
to be incremented or decremented by a large 
amount. 

Text or number Turning the knob will cause a message 
with unlimited to be displayed on the message line and the cur- 
range rent setting to be displayed on the input line. 

Then the user may modify this setting by typing 
in the new setting and pressing the ENTER key 
when correct. 

Configuration 

Channel 1 
Setup 

Y-Channel  1 â€¢ Y-Channel  2 â€¢ Y-Channel  3 

Fig. 3. Conceptual layout of MGS. 
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The major philosophy in this human interface is "mod 
ification, not specification." This means that at all times 
the system settings are valid, and user can change one valid 
setting to another. The user is not burdened by descriptions 
or questions. The help area describes the current possible 
settings. It is placed to one side intentionally so it does not 
interfere with the man-machine interface. It can be turned 
on and off at the user's discretion. 

The design of the human interface limits the number of 
error states. The user can only see an error message when 
entering a number from the keyboard or using the HP 7090A 
to enter a voltage. We have managed to achieve this goal 
by updating the next possible state lists every time a param 
eter is modified. 

Overall  Design 
There is a menu associated with every mode of the design 

tree (Fig. 3). The tree is three levels deep from the main 
level. The main level consists of the menu that allows 
access to the six major functional modules: measurement 
setup, measurement, display, annotation, storage/retrieval, 
and data manipulation. The softkeys are labeled according 
to their function; pressing a softkey will place the appro 
priate menu on the CRT. The general rule is that a user 
exits a menu to the same menu(s) the user went through 
to enter the menu. Pressing the EXIT softkey returns the 
user up one level of the tree. The configuration level is a 
one-time process and is only entered at the start of the 
program. Pressing the EXIT softkey at the main level will 
stop the program after verifying that the user really wants 
to exit. 

Core Library and Swapper 
The software package consists of a core or kernel that 

must always reside in memory. There is additional code 
for initialization and configuration that is loaded initially 
and then removed from memory after running. The six 
main code modules that implement the functionality of 
the system can be either resident in memory or loaded from 
disc, depending on the system configuration and available 
memory. There is also a library of utility routines that re 
sides in memory with the kernel. The library contains code 
to handle the screen menus and data structures. Also, the 

code that communicates with the HP 7090A for data trans 
mission resides in the library. 

A part of the system known as the swapper, or memory 
manager, is responsible for ensuring that there is enough 
memory available for requested operations. At program ini 
tialization time, the swapper loads in the whole system if 
there is enough memory: if not, it loads just the main section 
of the system and the supporting libraries. Provided enough 
memory exists for the former action to take place, the swap 
per will not need to take further action. Assuming there is 
insufficient memory to load the complete system, the swap 
per will take actions when memory allocation is needed. 
The swapper handles all requests to enter a subsystem from 
the main menu. It first checks to see if the subsystem is in 
memory. If it is, no action is taken by the swapper and the 
subsystem is entered. If the subsystem is not in memory, 
the swapper checks to see if enough memory is available 
to load it in. If so, it is loaded and entered. Otherwise, 
space in memory will be made available by removing other 
subsystems not needed. 

Data Structures for  Menus 
As mentioned earlier, all the menus in MGS are consis 

tent. There is a single data structure that contains all the 
data for a screen. The diagram in Fig. 4 gives a graphical 
representation of the logical structure and Table II defines 
the elements shown in Fig. 4. 

MGS prevents the user from entering error states. This 
task is done by changing o_strt and o_cnt entries for a given 
attribute. All the valid entries for attribute p are always 
between o_strt(p) and o_strt(p)+o_cnt(p). 

This data structure is built using one and two-dimen 
sional arrays in BASIC. There are several copies of this 
structure, one for each screen layout. The data definition 
portion of MGS would have been much smaller and storage 
more efficient if BASIC had dynamic storage allocation 
capability like Pascal. 

Data Structure for the Knob 
MGS relies heavily on the knob of the Series 200 Comput 

ers for input. At times the knob is used for entering a 
numeric value, such as volts at full scale, total time, etc. 
To make the knob more useful we had to make it nonlinear. 

F ig .  4 .  Graph ica l  rep resen ta t ion  
of MGS data structure for a screen 
display. 
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Table I 

E l e m e n t  D e f i n i t i o n  

n a m e $  H o l d s  p a r a m e t e r  n a m e s  
name-pos Holds the encoded x-y posit ion of the names on 

the screen. There is one entry for every name$ 
entry. Instead of using two integer arrays for 
keeping the x and y positions, the following 
encoding scheme is used: 
name-pos(i) =x(i)*51 2+y(i). 
This is done to conserve storage space, 

n-cnt  Holds  the  number  of  ent r ies  in  names  and name-pos  
columns. 

a t t r $  H o l d s  t h e  c u r r e n t  p a r a m e t e r  s e t t i n g ,  
a t t r -pos  Holds  the  x-y posi t ion of  where parameters  are  to  

be displayed, 
pntr-pos Holds the x-y posit ion of where the pointer is  to be 

displayed for each parameter, 
op t ions  A two-d imens iona l  s t ruc tu re .  Each  row of  th i s  

structure holds all the possible settings for the 
corresponding parameter, 

o - c n t  H o l d s  t h e  c o u n t  o f  v a l i d  e n t r i e s  p e r  r o w  i n  t h e  
option table, 

o - i n d  H o l d s  t h e  c u r r e n t  i n d e x  o f  t h e  i t e m  f r o m  t h e  
option table that is being displayed, that is, 
attr$(i)=option$(i,o-ind(i)). 

o- s t r t  Ho lds  t he  l og i ca l  f i r s t  en t ry  i n  op t ions ,  
o -pos  Ho lds  the  x -y  pos i t ion  o f  where  op t ions  a re  to  be  

displayed. 
o - m a x  M a x i m u m  n u m b e r  o f  o p t i o n s  i n  t h e  o p t i o n  t a b l e ,  
t i t l e  H o l d s  a  s t r i n g  t h a t  c o n t a i n s  a  s c r e e n  n a m e ,  
poin ter  Poin ts  to  the  current  row in  the  opt ion  table .  The  

UP and DOWN softkeys change the value of this 
variable, 

a - c n t  H o l d s  t h e  n u m b e r  o f  p a r a m e t e r s  i n  t h e  d a t a  
structure, 

o ld -pn t r  Ho lds  l a s t  va lue  o f  t he  po in t e r .  

This means the step size of the knob is dependent on the 
current value of the knob. For example, when the current 
value for volts at full scale is between 0 and IV, the incre 
ment is 0.05V, and when the current value is between 50 
and 100V, the increment is IV. 

To make this task uniform throughout MGS the data 
structure outlined in Fig. 5 is used. 

Each table contains several rows of data. Each row is for 
a given range. Table III defines the parameters. 

Table II I  

E l e m e n t  D e f i n i t i o n  

increment Holds the value by which the current setting will  
be incremented. 

lower_bound Holds the minimum limit of the range. 
upper_bound Holds the maximum limit of the range, 
c jowjnd Holds  the  f i r s t  lega l  row of  the  tab le .  
c_hi  Jnd Holds  the  las t  legal  row of  the  table .  
c j n d e x  P o i n t s  t o  t h e  c u r r e n t  r o w  i n  t h e  t a b l e .  
c_cur r  Holds  the  cur ren t  va lue .  This  i s  the  var iab le  tha t  i s  

being incremented and decremented. 

cjowjnd and cjiijnd are used to control the legal limits 
of the knob. Valid limits are kept between the high and 
low indexes. 

The following conditions are used for moving up and 
down in the table: 

I f  c _ c u r r  >  u p p e r _ b o u n d ( c  J n d e x )  t h e n  c _ i n d e x  =  c _ i n d e x + 1  a n d  c _ c u r r  
=  l o w e r _ b o u n d  ( c j n d e x )  

I f  c _ c u r r  <  l o w e r _ b o u n d ( c _ i n d e x )  t h e n  c j n d e x  =  c j n d e x -  1  a n d  c _ c u r r  
=  u p p e r j D o u n d  ( c j n d e x )  

Every time the value of cjndex is changed, the following 
condition must be checked: 

I f  c j n d e x  >  c j i i  J n d  t h e n  c j n d e x  =  c j o w j n d  
I f  c j n d e x  <  c j o w j n d  t h e n  c j n d e x  =  c _ h U n d  

There is a copy of this data structure for every numeric 
parameter. Again, this is because of the limitations of 
BASIC. 

Measurement  Setup Module 
In this module, the user sets up an experiment and 

specifies dependent channels, independent channels, trig 
gering mode, duration of experiment, type of experiment, 
etc. Accessible through this module are channel setup mod 
ules. In those modules the user sets range, offset, and trigger 
level and width for each channel. If the measurement is to 
be conducted in user units, the user specifies the minimum 
and maximum user units, instead of range and offset. 

Up to now, most users of X-Y recorders had to convert 
their units to voltage levels, and then take a measurement 
in volts. Finally, they had to convert volts back to their 
units. This is also the case with the stand-alone HP 7090A. 

MGS allows the user to set up an experiment in volts. 
This is provided for the sake of consistency with the stand 
alone machine. In addition to volts, MGS gives the user 
the capability of setting up and taking a measurement in 
some other unit system: displacement, acceleration, force, 
saturation, etc. To set up a measurement in volts, the user 
specifies range and offset settings for each channel and 
trigger information for Channel 1 , just as for the stand-alone 
HP 7090A. 

When in user units, a measurement is set up by specifying 
the minimum and maximum possible readings in user units 
for each channel and trigger information for Channel 1. 
Trigger information is specified in user units. We believe 
that the availability of user units enhances the usefulness 
of MGS. For example, in measuring temperature in a chem 
ical experiment, we can set user units limits for Channel 
1 to -100Â°C and 100Â°C and set the trigger level to 10Â°C. 

cont_tab 

0  i n c r e m e n t  1  l o w e r  b o u n d  2  u p p e r  b o u n d  

Fig.  5 .  Data s t ructure for  knob contro l .  
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Measurement  Module 
The measurement subsystem implements the ability to 

take measurements. It starts the measurement, and when 
data becomes available, receives the data and stores it in 
the software's channel buffers. There are three types of 
measurements: direct on-screen, direct on-paper, and data 
streaming. In direct on-screen measurements, the data is 
plotted to the screen in real time as the data is being stored 
in the software's channel buffers. Direct on-paper measure 
ments emulate a traditional X-Y recorder and no data is 
sent to the computer. Data streaming mode allows up to 
ten thousand samples from each of three channels to be 
buffered into memory and then written out to a disc file 
for later processing. 

Display Module 
The display subsystem allows measurements and anno 

tation to be displayed on the screen or on paper. There is 
a display setup mode that allows the user to specify which 
data channels of the measurement will be displayed. The 
display scale and the size of the displayed measurement 
can be adjusted. The output to paper can be formatted so 
that up to four measurements and their data can be plotted 
on one page. 

Data Manipulat ion Module 
In a measurement system the user may have a need to 

postprocess the recorded measurement. This module gives 
the user the capability of performing arithmetic operations 
on data channels. This subsystem has the capability of 
performing + , - , X, +, square root, square, log, and nega 
tion. This subsystem gives the user the capability of build 
ing algebraic equations with two operands and one 
operator. Operands can be any data channel or constants 
or the result of the previous operation. The results can be 
displayed using the display module. The last five opera 
tions are shown in a small window. This is done to simplify 

F i g .  6 .  E x a m p l e  M G S  p l o t  s h o w  
ing a calculated parameter (power) 
v e r s u s  m e a s u r e d  c u r r e n t  a n d  
voltage. 

the task of computing complex equations through the 
chaining of operations. For example, when measuring volt 
age and current, the subsystem can be used to compute 
power by multiplying the voltage and current readings as 
shown in Fig. 6. Manipulations not provided directly by 
the software can be applied to the data sets through user- 
written programs. 

Storage and Retr ieval  Module 
The storage and retrieval subsystem allows the user to 

save not only the measurement data but also the current 
measurement setup, annotation, and display setup param 
eters. When retrieving data, the users can select subsets of 
the data to be retrieved. For instance, the annotation can 
be stored from one measurement and retrieved into another. 
The measurement setup parameters will always be re 
trieved along with the measurement data because the data 
itself does not have meaning without its setup conditions. 
There is a file header at the beginning that contains infor 
mation about where the data and setup parmeters are lo 
cated in the file. 

Annotat ion Module 
The annotation subsystem gives the measurement 

graphics user the capability to put grids, axes, labels, lines, 
markers, and an annotation box on the measurement graph. 
It is not intended to do general-purpose drawing or to be 
a graphics editor. Some features are: 
â€¢ Axes and grids feature automatic tic labeling in the units 

of the measurement. Log axes and grids are also available. 
â€¢ Labels are useful for titles and for adding documentation 

to the graph. They can be added, changed, or deleted at will. 
â€¢ Lines can be used for simple drawing. 
â€¢ Markers annotate points on the data line and they can 

be automatically labeled with their respective x and y 
coordinates. The cursor can be used to step through 
points on the data line to position the marker. 
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â€¢ The annotation box can be used to supply information 
about the measurement, such as channel settings, trigger 
level, trigger time, and time of day. 
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Analog Channel for a Low-Frequency 
Waveform Recorder 
by Jorge Sanchez 

THE ANALOG CHANNEL of the HP 7090A Measure 
ment Plotting System conditions and digitizes the 
signals connected to the inputs of the instrument. 

The analog signals are amplified, filtered, and digitized by 
a series of stages as shown in Fig. I. After the signals are 
digitized, the equivalent binary words are processed 
through a series of calibration procedures performed by 
the microprocessor to provide the full dc accuracy of the 
machine. The architecture of the channel is designed with 
flexibility of operation as a goal. Thus, the microprocessor 
is used to set up the multiple stages for coarse and fine 
gains and offsets. This allows the execution of zeroing and 
calibration routines and eliminates manual adjustments in 
the manufacturing process. (No potentiometers were used 
in the design. See box on page 22. J The analog channel has 
floating, guarded inputs. Through the use of isolation and 
shielding, common mode rejections of >140 dB for dc and 

>100 dB for 60 Hz are obtained. 

Preamplifier 
The analog channel preamplifier (Fig. 2) uses a set of 

low-noise, low-leakage JFETs and low-thermal-EMF relays 
to switch the inputs of amplifier Al to the gain and attenu 
ation string of resistors. The amplifier switches are con 
nected in such a way as to set the 14 major ranges for the 
HP 7090A. (Other ranges are provided by a postamplifier 
as will be explained later.) The ranges are set by the micro 
processor's loading the appropriate words in front-end re 
gisters 1 and 2. Amplifier A2 is used as a buffer to drive 
three different circuits: 
â€¢ The internal guards that minimize printed circuit board 

leakage in critical areas 
â€¢ The on/off and biasing circuits for the range setting 

switches (as set by front-end registers 1 and 2) 

G u a r d  O  

Optical 
Interface 

To 
^â€¢Microprocessor 

Board 
Serial-to- 

Paral lel  Converter 
Fig .  1  .  B lock  d iagram o f  ana log  
channel. 
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On/Off,  Bias Circuits 
(To JFETS and Relays)  

FE Register 1 

t... f 
FE Register 2 

Internal 
1  B u s  

F ig .  2 .  Ana log  channe l  p reamp l i  
fier. 

m The input protection feedback loop. 
To satisfy the performance requirements of the HP 7090A 

to handle signals as low as a few microvolts with a 
bandwidth spanning from dc to a few kilohertz, the design 
uses carefully chosen components such as the precision 
low-noise amplifiers Al and A2 and metal-film resistors 
of small values (to avoid white noise). In addition, printed 
circuit board layout becomes critical. Hence, extensive use 
of guarding and shielding of critical areas is done, including 
the use of Teflonâ„¢ cups for the input node. 

Transistor Q3 is part of the circuitry used in an autozero- 
ing routine to eliminate channel offsets caused by initial 
component errors, temperature drift, and aging. 

ESD and Overload Protect ion 
Front-end inputs are likely to experience ESD (electro 

static discharge) transients since they can be touched by 

the user. Also, in a general-purpose instrument, temporary 
dc overloads may be applied. For this reason, protection 
circuits are necessary. Very often these circuits tend to 
degrade amplifier performance. This situation was avoided 
in the HP 7090A by using the circuit shown in Fig. 3. 

If there is no way to prevent ESD from penetrating the 
machine, the next best thing is to shunt the transient to 
ground through a preferential path of impedance lower 
than the rest of the circuits. The primary ESD clamp is 
actuated by electron tube El and the source inductance. 
El has a very large resistance and low capacitance when 
in the off state. Hence, it does not degrade the amplifier's 
input impedance. Capacitor Cl turns off El after the surge. 
Resistor Rl discharges Cl. This circuit can only limit VI 
to several hundred volts because of the insufficient speed 
of El. 

The secondary protection devices clamp the input to a 

High O 

L o w  O  

G u a r d  O  Common 
Plane 

Fig.  3.  Input  protect ion c i rcu i t ry .  
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voltage less than the maximum allowable voltage for Al. 
(This is also used as the dc overload protection.) The other 
circuits minimize leakages. Buffer A2 sets rectifiers CRl 
and CR2 to zero bias by feedback. Leakage caused by Zener 
diodes VRl and VR2 is provided by A2 and not by the 
minus node of Al. 

To avoid sourcing current for the bottom plate of Cl from 
the common plane, and since there is no way to obtain a 
simultaneous turn-on of El and E2, C2 is installed between 
the low and guard terminals to provide the current. 

RVl is a voltage clamp device used to protect the devices 
between the low and guard terminals against overloads 
between the input terminals or against transients applied 
to the low terminal. The final shunting of the ESD transient 
to earth ground is provided by electron tube E2. 

In a circuit such as this, care must be taken to shield or 
orient the components and connections to prevent reradi- 
ation of noise to other areas. In addition, the breakdown 
voltages of interconnections should be much higher than 
the breakdown voltages of the devices used. These protec 
tion circuits proved successful during testing by enduring 
many thousands of electrostatic discharges up to 25 kV 
that were applied to the inputs. 

Vernier  Gain Stage 
The digitally programmable vernier stage consists of a 

12-bit multiplying digital-to-analog converter (DAC) and 
an operational amplifier. Its main function, in conjunction 
with the preamplifier, is to provide the numerous cali 
brated ranges of the machine. The gain in this stage is 
represented by G = â€” D/4096, where D is the decimal equi 
valent of the binary word that is applied to the DAC. The 
number D is equal to the product of two scaling factors Dl 
and D2. Dl accounts for the vernier gain. It is derived from 
the range entered by the user and from internal routines 

Change gain  

T  

T 
T 

Open input  at tenuator  and 
close preampli f ier  zero switch 

Load the  of fset  DAC wi th  count  
f rom approximate  formula  

Do A- to-D convers ions,  and by  
i terat ion on the loaded word in  

the of fset  DAC,  get  the of fset  as 
c lose to  zero vol ts  as possible  

in the microprocessor as indicated by the channel's range 
calibration equations. D2 is a fixed attenuation factor and 
is used as a coarse gain adjustment to account for system 
gain error caused by component tolerances. 

Postamplifier 
The postamplifier stage has the following functions: 

â€¢ It amplifies the signal to a voltage level that is suitable 
for the digitizer 

â€¢ It contains a 3-kHz low-pass active filter 
â€¢ It provides an offset voltage that is programmable by the 

microprocessor. 
The programmable offset is accomplished by the use of a 
low-cost DAC. This converter is used primarily for subtract 
ing out the analog channel's subsystem offset each time 
the ranges are changed, and for periodically performing a 
zero calibration to account for drifts. The offset DAC per 
forms a coarse offset subtraction in hardware. To ac 
complish a fine offset calibration, the residual offset Vos is 
first found by the offset calibration routine (see Fig. 4). 
This offset is subtracted from the incoming data during the 
data correction routine, which is executed after the input 
signal is sampled. 

A-to-D Conversion Circuits 
This section consists of one sampling stage with two 

sample-and-hold devices connected in parallel and requir 
ing an analog multiplexer, buffer and control logic, and a 
12-bit analog-to-digital converter (ADC). Two sample-and- 
hold ICs are used here to be able to perform an A-to-D 
conversion on a sample while simultaneously acquiring 
the next sample (see Fig. 1 on page 22). After the conversion 
is completed, the sample-and-hold stages are swapped by 
the sequencing circuits and the cycle is restarted. This 
eliminates the acquisition time wait for a conversion cycle, 
thereby allowing the use of a slower low-cost converter. 

Studies have shown that the eye can distinguish very 
small fluctuations in a ramp waveform when it is plotted. 
For this reason, a 12-bit-resolution ADC had to be used, 
since the HP 7090A can plot the digitized waveform. 

Common Mode Reject ion Rat io  (CMRR) 
The CMRR specifications of the HP 7090A demand a 

high degree of isolation between the analog channel and 
ground. This requires resistances on the order of gigohms 
and a maximum capacitance to ground of about 25 
picofarads. There are two main areas that provide the iso 
lation â€” the optical interface and the channel power supply. 

Take resul ts  of  last  A- to-D conversion 
and compute  the  res idual  channel  of fset  

V0, 

I  
T 

Store  V0,  in  RAM 

Open zero  swi tch and restore  
the appropiate  at tenuator  

for  the range 

Fig.  4.  Flowchart  of  of fset  cal ibrat ion rout ine.  F ig .  5 .  S impl i f ied error  model  for  HP 7090A f ront  end.  
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(G-AG)VS 

GV5 

Line 2: y=rri jX 

L ine  1 :  y=m,x  

Fig.  2  To ca l ibrate gain,  the response represented by l ine 2 
is  mapped into the ideal  response indicated by l ine 1 .  

The optical isolators provide all of the digital communi 
cations with the system processor in serial form. This is 
done with a small degradation in capacitance and resis 
tance to ground. In addition, internal shields in the op- 
tocouplers provide common mode transient rejection of at 
least 1000 V//xs. 

The most critical component in the channel power sup 
ply is the isolation transformer. To obtain a low isolation 
capacitance,  three box shields are used.  I t  can be dem 
onstrated that three box shields will eliminate the most 
common ground loops associated with a floating front end.1 
Box shields and special manufacturing techniques minimize 
and cancel currents induced by the transformer into the 
preamplifier circuits. With this and careful pin assignments, 
low coupling capacitances in the hundreds of femtofarads 
are obtained. 

The analog channel printed circuit board is placed in a 
sheet-metal shield to decrease coupling capacitances to 
ground and to minimize external source interference into 
the sensitive amplifiers. 

Modern analog front  ends of ten include digi ta l  and 
analog signals in the same set of circuits. This can become 
troublesome when there is a need to handle microvolt-level 
signals at high accuracy and wide bandwidths. Detailed 
attention to printed circuit board layout makes it possible 
to obtain high-quality signal conditioning. For this pur 
pose, isolation of internal grounds and of analog and digital 
signals was done. Ground planes are also used to minimize 
intersignal capacitances.  In addition, well-known tech 
niques2 are used throughout the board for isolating power 
supply output impedances and ground returns from the 
different stages. 

Computer Cal ibrat ion 
To p rese rve  accuracy  under  d i f f e ren t  t empera tu re  cond i  

t i ons  and  to  compensa t e  fo r  t he  ag ing  o f  componen t s ,  t he  
HP 7090A's  microprocessor  executes  a  ser ies  of  cal ibrat ion 
rou t ines .  These  same  rou t ines  a l l ow the  use  o f  au toma ted  
ga in  ca l ibra t ion  a t  the  fac tory .  The  ca l ibra t ion  fac tors  thus  
o b t a i n e d  a r e  s t o r e d  i n  a  n o n v o l a t i l e  m e m o r y  i n  t h e  H P  
7090A. 

E v e r y  s t a g e  i n  t h e  f r o n t  e n d  a d d s  e r r o r s  t o  t h e  s i g n a l .  
T h e  p r o c e d u r e  f o l l o w e d  i s  t o  l u m p  a l l  e r r o r s ,  r e f e r  t h e m  
to the inputs ,  and separate  them into gain and offset  errors .  

F i g .  5  s h o w s  a  s i m p l i f i e d  e x a m p l e  o f  a n  e r r o r  m o d e l .  I n  
this  case G = ideal  gain,  Vs = input  s ignal ,  AG = gain error ,  
V0 = signal  at  the ADC. V05 = offset  error,  and [V0] = quan 
t i zed  va lue  of  

To  ca l ib ra te  the  sampled  s igna l ,  we  f i r s t  s ample  the  sys  
t e m  o f f s e t  b y  c l o s i n g  S 2  a n d  o p e n i n g  S i .  T h i s  i s  d o n e  i n  
the  HP 7090A during the offset  cal ibrat ion rout ine out l ined 

in  Fig .  4 .  This  y ie lds :  

V0i = (G + AG)VOS 

T h e n ,  w e  a c q u i r e  t h e  i n p u t  s i g n a l  b y  o p e n i n g  S 2  a n d  

c los ing  S i ,  wh ich  g ives :  

V02 = GVS + AGVS + GVO 

After  of fse t  compensa t ion  we ge t :  

Vn =  V  -  V  =  G V  V 0 2  V 0 ,  V J V S  

AGVO 

AGV5 

To do a gain calibration, we map response line 2 in Fig. 
6 into line 1 by the procedure explained in the box on page 
22. This yields the gain calibration factor G/(G+AG). This 
factor is obtained for each one of the 14 major ranges of 
the machine. As mentioned before, these factors are stored 
in the HP 7090A's internal nonvolatile memory. 

Accuracy in other ranges that use the vernier is guaran 
teed by the circuit design. 

The gain calibration requires a final multiplication: 

V0t = V03(G/(G = [VS(G + AG)][G/(G = GVS 

T h i s  l a s t  q u a n t i t y  i s  i n d e e d  t h e  a m p l i f i e d  i n p u t  v o l t a g e ,  

wh ich  i s  t he  de s i r ed  quan t i t y .  
O t h e r  m o r e  c o m p l e x  m o d e l s ,  s i m i l a r  t o  t h e  o n e  a b o v e ,  

a r e  u s e d  t o  a c c o u n t  f o r  o t h e r  o p e r a t i o n s  o f  t h e  m a c h i n e  
such  as  use r ' s  en te red  o f f se t ,  f ac to ry  ca l ib ra t ion  rou t ines ,  
and combinat ions  of  in teract ing errors .  The exact  equat ions  
used for  the  correct ions  in  f i rmware are  a lso  in  a  quant ized 

form. 

References 
1 .  R .  Morr i son ,  Grounding  and  Shie ld ing  Techniques  in  In  
strumentation, second edition, John Wiley & Sons, 1967. 
2. Henry Ott, Noise Reduction Techniques in Electronic Systems, 
John Wiley & Sons, 1976. 

JANUARY 1986  HEWLETT-PACKARD JOURNAL 35  

© Copr. 1949-1998 Hewlett-Packard Co.



Usabi l i ty  Test ing:  A Valuable Tool  for  PC 
Design 
by Daniel  B.  Harrington 

Evaluat ing the exper iences of  users unfami l iar  wi th a new 
computer  product  can prov ide va luab le  gu idance to  the  
des igner  and the documentat ion preparer .  

A KEY ELEMENT IN THE DESIGN of a personal com 
puter is how easy it is for a new owner to set it up, 
get it running, and do basic tasks such as printing 

output, loading software, entering data, and handling files. 
To evaluate these qualities, HP's Portable Computer Divi 
sion has conducted three usability tests, two on the Integral 
PC (one before, one after introduction) and one on The 
Portable (after introduction). A single test program uses 
ten reviewers, one per day, each performing for pay the 
same set of tasks on the selected computer model.  The 
tasks are performed in the testing room at the division. 

The reviewers are selected to meet the profile of the 
expected buyer of the computer. Each reviewer's experi 
ence is videotaped, and an observer in the test room con 
stantly monitors the reviewer's progress (see Fig. 1). When 
a reviewer becomes frustrated enough to call the dealer for 
help, the observer acts as the dealer and offers the help 
requested. Product engineers and management are invited 
to observe the test sessions. The results of the test, including 
suggestions for product improvement, are widely distrib 
uted. Finally, a reviewer debriefing meeting is held where 
the reviewers and HP engineers can discuss the usability 
of the product. 

Why Have Usabi l i ty  Test ing? 
Hewlett-Packard is committed to quality and customer 

satisfaction. To know if we're satisfying our customers, we 
must measure our performance. Usability testing provides 
one means of  measuring product  quali ty and customer 
satisfaction. This method has several advantages: 
â€¢ Product engineers can observe users (the reviewers) 

using their products, both during product development 
and after market introduction. Tests conducted during 
product development allow changes in the design of the 
product to satisfy the observed needs of users. 

â€¢ It's a controlled measurement allowing statistical evalu 
ation and comparisons of user satisfaction before and 
after product changes are made. 

â€¢ Product engineers can meet the group of reviewers at a 
debriefing meeting. At this meeting, engineers can hear 
what the reviewers liked and did not like about the prod 
uct, and the product changes they wish HP would make. 
This meeting also allows dialog between engineers and 
reviewers. 

â€¢ It's an especially effective test of documentation, a key 
part of this type of product. 

Many of our competitors emphasize the human interface. 
They understand that buying decisions are affected both 
by the reported length of time it  takes new users to get 
familiar with a computer and the difficulties users have 
encountered in using it. Corporate buying decisions are 
especially influenced by the computer productivity ex 
pected from a particular brand or model. 

Magazine evaluations also focus on user-friendliness. 
Perhaps you've read, as we have, magazine reviews of new 
computers, in which the writers take great pleasure in de 
scribing their frustrations in trying to use the computers. 
Such negative reviews must hurt  sales,  just  as positive 
reviews must help sales. 

Customers do not like to be frustrated by incomprehen 
sible error messages, manual jargon, confusing instruc 
tions, peripherals that won't work when connected, and 
all the other problems that a first-time user of a personal 
computer too often encounters. Usability testing offers an 
effective way to measure and reduce such problems. 

Fig .  1 .  A  rev iewer  s tud ies  the ins t ruc t ions  fo r  the  computer  
being tested. Note the observer and monitor in background. 
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H o w  i s  U s a b i l i t y  T e s t i n g  D o n e ?  
We learn from product management the profile of the 

expected buyer of the computer we're about to test. \Ve 
then seek people in the local community who fit that profile 
and who are not HP employees. We find most of them are 
excited about spending a day with us playing with a new 
computer. As a token of our appreciation, we pay reviewers 
for their help. 

We encourage HP people to observe the usability test. 
We want those responsible for the product to watch and 
listen to these reviewers as they work. While it can be a 
humbling experience to see how the results of our efforts 
somehow fail to work in the reviewer's hands as we in 
tended them to, such experiences are vital to developing 
a product that satisfies users. 

Each reviewer spends a day using the computer in a 
simulated work environment. We equip the testing room 
with a table set up like a typical office desk, complete with 
plant and in-basket. At best, the test situation in which the 
reviewers find themselves is still foreign, but we try to 
create an atmosphere that is at least partially familiar. We 
feel the closer the testing environment is to a typical user's 
workplace, the more valid our results will be. 

An opening questionnaire gives us the reviewer's com 
puter experience and educational background. This infor 
mation helps us qualify each reviewer's experiences during 
the test session. This questionnaire also confirms that the 
reviewer meets the profile of the expected buyer. 

Before users operate a computer for the first time, most 
have studied the market and already know something about 
the particular computer they have chosen. Reading 
brochures and reviews, having discussions with dealers 
and other users, and watching others use the computer 
allow a user to set up and run a new computer more effi 
ciently than one who has never seen nor heard of the prod 
uct before opening the box. We can't completely duplicate 
this knowledge, especially for a product still under de 
velopment, but we do give each reviewer a description of 
the product before the test session begins. For a released 
product, we mail a brochure and data sheet to each reviewer 
a week before the test starts. 

The reviewers start with the computer in its shipping 
carton. We give each of them the same set of tasks or ob 
jectives, and ask them to perform them in any order they 
desire. 

A video and audio recording of each session is made. 
These recordings serve several purposes: 
â€¢ They support the notes the observer makes at each session. 
â€¢ They are available for study after the test is over. 
â€¢ They provide the raw material for the summary tape 

shown at the reviewer debriefing meeting. 
We urge reviewers to comment freely. The audio portion 
of the tape is often the most important. We want reviewers 
to tell us what they're doing, how they feel, what they like 
and don't like about the product; in short, we want almost 
a stream-of-consciousness narrative. 

An observer is always in the room with the reviewer. 
The observer uses notes taken during the usability test to 
write the test report. When the observer needs more opin 
ions and information from the reviewer, the reviewer is 
asked appropriate questions during the test. 

When we started these tests, we were concerned about 
the observer sharing the test room with the reviewer. The 
standard testing arrangement used by IBM1 consists of two 
rooms separated by a one-way mirror. The reviewer is alone 
in one room, which is identical to a typical office. The 
observers, video cameras, and other equipment are in the 
other room. We started with and still use only one room, 
but we feared the observer's presence would inhibit the 
reviewer's actions and comments, making the results less 
valid. Therefore, we specifically asked reviewers who 
helped us with our first test if the observer's presence hurt 
the effectiveness of the test. They told us the nearness of 
the observer helped, rather than hurt the process. They felt 
they were talking to a human rather than a machine, which 
made it easier to comment freely. They also appreciated 
the reviewer's encouragement and requests for comments. 

We also emphasize that the product is on trial, that the 
reviewer cannot fail. It's important that reviewers feel at 
ease so that their experiences are as close as possible to 
those real users would experience. However, some review 
ers still feel under some pressure to perform, and try to 
finish the tasks as fast as they can to do a good job. An 
observer can help reduce this pressure by creating an at 
mosphere of you-can't-fail informality. This is another ad 
vantage in having the observer share the test room with 
the reviewer. 

The reviewers have only two sources of help: 
â€¢ The manuals, disc-based tutors, on-screen help mes 

sages, and other material delivered with the product. 
â€¢ Their dealer (the observer). 

Reviewers that reach a level of frustration that would 
produce a call to their dealer if they were using their own 
computer in their home or office can pick up the uncon 
nected phone on their desk. This action tells the observer 
that a dealer call is being made. The observer then acts as 
the dealer and gives whatever help is needed. The number 

Fig.  2.  HP's Integral  Personal  Computer2 is a powerful  mul t i  
task ing computer  sys tem in  a  25- lb  t ranspor tab le  package.  
Des igned  fo r  techn ica l  p ro fess iona ls ,  i t  f ea tu res  a  bu i l t - i n  
printer, display, disc drive, and HP-IB interface and the HP-UX 
opera t ing  sys tem,  HP 's  ve rs ion  o f  AT&T Be l l  Labora to r ies '  
UNIX"  opera t ing  sys tem.  
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of such calls and the reasons for them can tell us a lot 
about what product features are hard to understand or not 
working well. 

A closing questionnaire asks for opinions about the prod 
uct. In general, this questionnaire asks two types of ques 
tions. One type asks reviewers to rank their level of agree 
ment or disagreement with a number of positive statements 
about various features of the product, such as: 

The owner's manual is easy to understand. 
The error messages are easy to understand. 
I like the display. 
Each reviewer is asked to rank each statement from 1 

(strongly agree) to 5 (strongly disagree). The other general 
type of question asks reviewers to comment on various parts 
of the product, such as manuals, keyboard, display, help 
messages, etc. Often, a product feature like a manual is the 
subject of both a ranking question and an essay question. 
Another common question asks reviewers to identify the 
most difficult or the three most difficult tasks. That ques 
tion is followed with a ranking question something like 
this: "Considering the difficulty of the task you identified 
as the most difficult, the instructions for that task are as 
clear as they can be." 

The video recorder is stopped while the closing question 
naire is completed. Then it is turned on again to record 
the closing interview. The observer chooses some closing 
topics to discuss further, generally about product areas 
reviewers felt needed improvement. These interviews often 
produce some of the best and most useful video footage. 

About two weeks after the last test session, the reviewers 
and the product engineers meet together. This is a very 
useful meeting. It allows the product engineers (hardware, 
software, electronic, system, packaging, manual, quality, 
production, etc.), management, and anyone else who is 
interested to hear reviewers' opinions directly. By asking 
questions, the audience can draw out additional reviewer 
opinions and suggestions. 

The final report is widely distributed. This report describes 
the test and gives the reviewers' opinions and suggestions. 

How Has Usabi l i ty  Test ing Helped? 
During the preintroduction test of the Integral PC,2 re 

viewers felt the initial mechanical design did not give an 
impression of quality and ruggedness. A description of this 
computer will help to explain their complaint. The Integral 
PC (Fig. 2) is a transportable computer. The bottom of the 
keyboard is the front face of the closed-up computer, and 
the carrying handle is attached to the top, which opens up 
and folds back to release the keyboard and reveal the built- 
in flat-panel display, SVfe-inch disc drive, and Thinkjet 
printer. The main reviewer complaint about the apparent 
lack of ruggedness centered on the mechanism that controls 
the opening and closing action of the top cover. This mech 
anism had been tested by engineering and had satisfied 
their tough strength specifications. However, the reviewers 
felt the looseness of the mechanism suggested weakness 
and sloppy design. 

The mechanical engineers accepted the reviewers' judg 
ment that the top cover mechanism should not only be 
rugged, but should also appear rugged. They made design 
changes that largely eliminated the looseness of this mech 

anism, and the postintroduction usability test of the Inte 
gral PC told us that they did an excellent job. The reviewers 
who judged this computer during this second test felt the 
computer did give an impression of quality and ruggedness. 

The Integral PC's on-screen tutor, a new type of instruc 
tion product for our division, incorporated usability testing 
as a key item in its development schedule. The strong posi 
tive acceptance of the final tutor would not have been 
possible without the user feedback given by two informal 
usability tests and a final, formal usability test conducted 
during product development. 

The Integral PC Setup Guide (Fig. 3) is another new type 
of instruction product for our division. This guide uses a 
series of pictures with very few words to tell a first-time 
user how to open the computer's case, connect the keyboard 
and optional mouse, and start the on-screen tutor. Other 
sections of this setup guide tell the user how to install the 
printhead cartridge for the built-in Thinkjet printer, how 
to load fanfold paper into the printer, and how to prepare 
the Integral PC for transporting. 

Usability testing was incorporated into the development 
schedule for this setup guide. These tests indicated the 
need for major changes in the initial guide. The postin 
troduction usability test proved the final setup guide was 
very useful, and suggested some further improvements. 

The preintroduction usability test of the Integral PC 
suggested improvements in the packaging. The initial ship 
ping carton design we tested included a thin, flat parts box 
inside the shipping carton. Either of the two large faces of 
this parts box could be opened easily by users, but the box 
would reveal all of its contents only when one of these 
faces was opened. If the other face was opened, many of 
the smaller parts were well hidden. When the reviewers 
pulled this parts box out of the shipping carton, chance 
would dictate which large face was up when the box was 
laid on a table. If the wrong side faced up, the wrong side 
was opened, and parts were lost. 

The packaging engineer observed some of the reviewers 
opening the wrong side, and had a cure specified before 

F i g .  3 .  I n t e g r a l  P C  S e t u p  G u i d e ,  a  1 0 - p a g e  g u i d e  w h o s e  
development  depended on usabi l i ty  test ing.  
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the sequence of usability tests was over. He specified that 
the words "Open this side" appear in large letters on the 
right side,  and the words.  "Open other side" appear in 
large letters on the wrong side. This improved parts box 
was tested during the postintroduction usability test. Dur 
ing this test, the reviewers proved that people often don't 
see what they look at and don't read what they see. In spite 
of the words "Open other side" printed in large letters on 
the wrong side of the parts box. several reviewers opened 
the wrong side anyway, and did not  see or remove the 
smaller parts, including the ink cartridge for the Thinkjet 
Printer. One reviewer suggested that we design our parts 
box to open only one way. Again the packaging engineer 
responded quickly, and the Integral PC parts box now opens 
only one way. This example shows the importance of test 
ing the cures inspired by previous tests. 

During the preintroduction test of the Integral PC, review 
ers felt the disc drive busy light was too dim. Engineering 
responded, and the production computer now has a satis- 
fyingly bright light to indicate disc drive activity. 

Some help screens provided by The Portable (Fig. 4), 
and displayed by pressing a function key,  do not state 
clearly how to get out of the help screen. One help screen 
set, consisting of a number of screens, does not tell the 
user how to exit until the fourth screen. The software group 
in engineering listened to the reviewer's comments about 
this. The Portable PLUS, developed after The Portable, also 
uses help screens, but the first screen of every help screen 
set clearly tells the user how to exit. 

The Portable includes a disc-based diagnostic program. 
This  program was loaded into the memory of  the f irs t  
shipped units of The Portable, and its label was shown in 
the PAM's (Personal Application Manager's) main screen 
at the far left. When The Portable's display was first turned 
on, the selection arrow pointed to the diagnostic program's 
label. During the usability test, several reviewers pressed 
Start on the keyboard to see what would happen. This would 
start  the diagnostic program, causing much confusion. 
Again engineering listened, and they specified that this 
disc-based diagnostic program no longer be loaded into 
The Portable before shipment, although the disc containing 
this program continues to be included with the product. 

The Portable was the first computer from this division 
to use three-ring binders for its manuals. We elected to put 
five separate manuals into one binder separated by tabs, 
since these five manuals fit comfortably in one binder, and 
doing so reduced product cost. A second binder was used 
to contain only one manual, the Lotusâ„¢ 1-2-3'" User's Man 
ual. Even though we stated clearly (we thought) on the 
second page of the first manual that five separate manuals 
were in the binder, and gave descriptions of each, many 
reviewers were confused. They thought instead that the 
binder contained several sections of one manual. For exam 
ple, they would look in the index of the last manual, the 
MSâ„¢ -DOS Operating System User's Guide, for page refer 
ences to the other manuals. Since each of the five manuals 
started with page 1-1, reviewers were understandably frus 
trated. As a result, future loose-leaf binders will each con 
tain only one loose-leaf manual, or will provide clear ways 
for users to realize that it contains more than one. 

The Portable reviewers made many other suggestions for 

manual improvement. Three of the more important sugges 
tions that have been implemented are: 
â€¢ Start each chapter with a table of contents. 
â€¢ Every reference to a function key should be followed 

with the keycap label, like Start (f1). 
â€¢ Every keystroke sequence that requires pressing Return 

to generate the desired action should include Return as 
the last keystroke. 
The postintroduction test of the Integral PC gave us our 

first chance to test the general manual improvements. Each 
reviewer opened a new box fresh from the production line 
to ensure that the contents were arranged and packaged 
just as actual users would see them when opening their 
newly purchased computer. One complaint these reviewers 
had was the difficulty and frustration of tearing the plastic 
shrink wrapping off the manual binders. They were espe 
cially vocal about the very rugged clear plastic we used for 
the plastic bag containing the setup guide and tutor disc. 
These reviewers suggested we add an easy-open tab to the 
shrink wrapping and use a zip-lock plastic bag for the setup 
guide and tutor disc. These suggestions are being consid 
ered. 

Our documentation department maintains a revision file 
on all current manuals. When a manual reprinting becomes 
due, the responsible writer checks the appropriate file and 
incorporates the corrections and changes that have col 
lected since the last printing. All reviewer suggestions for 
manual improvements made during the postintroduction 
test of the Integral PC have been inserted in the appropriate 
manual revision file, provided the suggestions make sense 
(most of them do). In this way, the next printing of each 
manual will profit from the feedback given to us by these 
reviewers. 

What Improvements Have We Made to the Testing Process? 
Each time we conduct a usability test we learn how we 

can improve it further. Some of the improvements we've 
made to the testing process since we began are: 
â€¢ The task list we used for the early tests was quite detailed. 

Fig.  4.  The Portable is a 9- lb personal  computer wi th bui l t - in 
sof tware tor  t i le  management,  spreadsheets,  graphics,  word 
process ing,  and data  communicat ions.  
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For instance, the test of The Portable asked each reviewer 
to perform 38 narrowly defined tasks that we expected 
reviewers to perform in a particular order. For example, 
the first task asked them to turn on the computer. We now 
ask reviewers to complete a smaller series of broader objec 
tives, and urge them to complete these objectives in any 
logical order. (An example of an illogical order would be 
to start a program from the electronic disc before first copy 
ing that program from a flexible disc.) The first task listed 
on our latest 14-item task list asks reviewers to install extra 
memory, but since we urged reviewers to perform tasks 
in any order, one reviewer performed this task near the 
end of his session. 
In the beginning, we used only one microphone, a lapel 
mike for the reviewer. Therefore, only half of the several 
conversations per session between the observer and the 
reviewer were recorded. Now the observer also has a mike, 
and we use a mixer to feed both audio signals to the video 
recorder. 
The videotape of the first test consisted exclusively of 
medium-to-long-distance shots of the reviewer working at 
the desk. Much of the recorded action consisted of review 
ers turning manual pages hoping to find answers to their 
problems. Now we only use long-distance shots to show 
the action during unpacking, connecting peripherals, load 
ing printer paper, etc. As soon as a reviewer starts working 
at the keyboard, we record a close-up shot of the display. 
The main advantage is that the observer can tell what the 
reviewer is doing by watching the computer's display in 
the TV monitor. 
We now record the closing interview, rather than simply 

take notes as we did at first. These produce some of our 
best recordings, since they often contain excellent useful 
comments on our products. 

â€¢ We have always held debriefing meetings, in which the 
reviewers have a chance to give their opinions directly to 
the people in the division responsible for the product. We 
now have added another feature to these meetings â€” a spe 
cial videotape lasting one hour or less and containing the 
most significant results of the approximately 50 hours of 
videotape recorded during the 10 sessions. These have 
proved quite informative, and clearly show the occasional 
sad and funny experiences of new users when they're con 
fronted with the result of our work. 

â€¢ During preintroduction tests, serious and obvious product 
and manual errors are now corrected immediately during 
the test program where possible. This allows us to measure 
these cures during the later sessions of the same test, per 
mitting further change if needed before product release. 
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