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Viewpoints—Chuck House on the Electronic Bench VLS| will create both a need for
new analysis and synthesis tools and a way to realize them.

In this Issue:

We are now in the age of LS|—large-scale integration—and are about to enter the age of
VLSl—very large-scale integration. LS| has given us the microcomputer, a complete com-
puter on a tiny chip of silicon smaller than a fingertip, and many other complex integrated cir-
cuits with tens of thousands of transistors and logic gates on a chip. In the age of VLSI we'll
see circuits with hundreds of thousands or millions of logic elements on a single chip. We'll
see them, that is, once we're able to solve the formidable problems of designing such com-

s plex devices and writing software for them. Beginning on page 30, Chuck House discusses

Tﬁ‘ the problems and the likely solutions. Instead of a single talented designer, we'll have teams

of demgners working on a chip. These designers will need new tools that automate many of the steps we now do

manually. They'll have to be able to call up various computer-aided design tools and different kinds of analyzers

atthe touch of a button. The system that will give them these advanced analysis and synthesis tools is something

Chuck calls the electronic bench. It doesn't exist yet; in fact, we'll need VLS| to make it a reality. Only with VLSI

will we be able to make analyzers and other instruments small enough and inexpensive enough to make it
practical to build an electronic bench crammed full of them.

That brings us to the subject of this issue, Model 64000 Logic Development System. The 64000 is a tool for
developing hardware and software for products based on commercial microcomputers. While it's a long way
from the electronic bench, it's a first step towards that goal. It allows up to six designers to share a common data
base, and it gives each designer a work station with a dedicated computer and a dedicated logic analyzer built in.
Its architecture and capabilities are discussed in the articles on pages 3, 13, 20, and 28.

Our cover photo shows a basic 64000 System consisting of work station, disc drive and printer, along with a
close-up of one of the pods that interface the 64000 to the system under development.

-R. P. Dolan
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Logic Development System Accelerates
Microcomputer System Design

This expandable, flexible system offers a complete set of
facilities for generating and debugging microprocessor-
system hardware and software. It's designed with next-

generation VLSI circuits in mind.

by Thomas A. Saponas and Brian W. Kerr

cant improvements in the performance and flex-

ibility of much of today’s electrical and mechani-
cal hardware. One consequence is that our approach to
designing products has had to change, and so have the
skills of the engineers responsible for these products. The
design team of a microprocessor-based product might be
more than half software designers. It is not unusual for a
product’s definition to change in the very late design stages
in spite of excellent research and definition at the begin-
ning. Then the flexibility of the software is the vehicle for
accommodating such changes.

Because the microprocessor is only one piece of a com-
plete system, itrepresents a software design problem unlike
most computer systems. The processor is usually an inte-
gral part of some hardware that has nothing to do with
computation. In some cases it is simply being used as a
programmable logic element or for control of the human
interface with some process. These differences make the
conventional tools for generating and debugging hardware
and software incomplete for the task facing the micro-
processor system designer. The 64000 Logic Development
System was meant to provide a complete solution to this
task in one package, and to make significant contributions
to the efficiency of designers’ time.

MICROPROCESSDRS HAVE PROVIDED signifi-

Architecture

A basic 64000 Logic Development System consists of one
Model 64100A Development Station with a Model 64940A
Magnetic Tape Cartridge Unit installed, compatible HP
hard disc and printer, and software packages to edit, assem-
ble, link, and store program modules. Adding an emulator
option and up to 64K bytes of independent emulation
memory adds the download function through emulation,
which is the standard tool for exercising, debugging, and
integrating hardware and software in the early develop-
ment phases. Further assistance in troubleshooting the
target system is gained by adding Model 64300A Logic
Analyzer, which monitors activity on the address, data, and
control buses of the target microprocessor system. As pro-
gram modules are completed, they may be mapped into the
target system’s random-access memory, or with Model
64500A PROM Programming System, they can be down-
loaded into one of many widely used programmable read-
only memories (PROMs). The system may be expanded to
accommodate larger design teams or multiple design efforts

by adding up to five more development stations (see Fig. 1).

Development Station

The development station kevboard and display (see Fig.
2) provide the interface between the operator and the logic
development system. Operating systems, input/output,
kevboard, display, and the development station bus are
managed by the independent host processor and memory.

—@
TR 64100A
—
Hard Disc :
64100A
Line Printer ; -
64100A
& .
,-/
" 6a100A
’ - |
( N
" 64100A

Fig. 1. The 64000 Logic Developrment System consists of at
least one 64100A Development Station, a hard disc, and a line
printer. The systern can be expanded to as many as six sta-
tions. Each station has its own processor
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Modular power supply is

CRT provides 25 rows easily exchanged in the field,

by 80 columns of
characters. (Display can be

Ten card slots are available
for options.

shifted to reveal additional
columns.)

Directed syntax for
on-line documentation
is provided through
softkeys that are
defined by the
operating system.

Full ASCIil keyboard with
additional control keys and
speclal softkeys defined
under program control.

PROM programmer consists
of universal programmer
control card and PROM
personality interface unit.

The host processor in each 64100A Development Station is
afield-proven 16-bit processor manufactured by HP.! Much
of the other hardware is adapted from other HP products.
However, the emulator option and the PROM programmer
are new and are discussed in detail elsewhere in this issue.

The development station's easily accessed card cage has
slots to house the circuitry for the various system options.
The first three slots of the card cage are occupied by the
three cards of the host system, leaving the remaining ten
slots available for system options. The development station
bus is universal, and options may be placed in any slot. The
development station bus carries address, data, and control
signals between the host processor system and option card
positions.

Each option card can identify itself to the host processor.
Thus the option software is self-configuring. Communica-
tion with the options is via a 32K-byte memory address
space window, When a card is addressed by the host one of
three bank switch modes is also set, thereby expanding this
window to an effective 96K bytes per option card.

Fig. 3 is a map of the entire 128K-byte address space of the
host processor including the 32K-byte window. The dis-
play memory is an integral part of the program RAM, mak-
ing possible the rapid display update required for such
things as tracking softkeys and a screen-mode editor. The
ROM space in the system is used for the bootstrap programs,
for some frequently used utilities, and for the mainframe
self-test software. In the current version of the 64000A sys-
tem, 16K bytes of ROM is unused and reserved for future
enhancements. All of the operating software resides in the
RAM area and is segmented so that only the current task is
in memory.

The emulation system uses a separate emulation bus be-
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Tape cartridge unit with
225K-byte capacity for source
file backup, system program
entry and file backup.

" Host processor system

implemented with 16-bit
processor, 64K of host
memory, and |/O control
manages the operating
system, I/O transactions, and
system data transfers on the
development station bus.
Fig. 2. Model 641004 Develop-
ment Station includes keyboard,
display, and host processor. Op-
tions include PROM programmers
and emulators for various micro-
processors, a logic analyzer, and
a tape controller and drive.

tween emulation control, emulation memory, and analysis
cards. A second high-speed bus connects emulation con-
trol and emulation memory, and a third bus may be re-
quired for input/output in some modules and configura-
tions (see Fig. 4).

Architecture Advantages

The architecture of the 64000 Logic Development System
offers several advantages. Each user has a dedicated proces-
sor and memory, not just a terminal. Therefore, as stations
are added, so is computing power. By contrast, with
timesharing systems the user is required to buy sufficient
computing power with the very first terminal to support the
ultimate size of the system. Philosophically, it is also more

Bootstrap and

Utilities l
32K-Byte ROM

<

Option
Card

) 32K-Byte 1/0

catio

Program
- ) 64K-Byte RAM

Fig. 3. Host processor memory map.
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Emulation Memory and Control (Uses Emulation Bus)
Analysis (Uses Emulation Bus)
PROM Programmer

Fig. 4. The host processor and the microprocessor being emulated have independent buses
and can run simultaneously. Thus software development can be concurrent with emulation

reasonable to present to the user a response time that is
more a function of the task, which is the case with distrib-
uted processing, than to have the response time determined
by the total system loading, as in a timesharing system. The
64000 network can also be expanded to include large cen-
tral data bases or additional 64000 clusters using the
RS-232-C port contained in each station.

By sharing peripherals, it is much easier to justify
higher-performance units than when each user has a dedi-
cated set. Users get not only higher performance but also the
ability to develop software jointly sharing the same data
base. Experience has shown that as the software tools im-
prove and the efficiency of programmers increases, the
need for disc space rapidly outpaces the original estimates
of capacity. Also, with the text editing features of the system
providing a convenient way to maintain documentation, a
further burden is placed on disc capacity. At HP's Colorado
Springs Division, for example, we are now using two to five
megabytes of disc space per user per year, compared to
approximately one megabyte before these tools were avail-
able. The 64000 System expands easily to accommodate
such changes.

Operation

At power-up the host processor interrogates a rear-panel
switch to determine the ROM program to execute. There are
four selectable modes: system bus, local mass storage,
ROM, or performance verification. The performance verifi-
cation mode exercises all of the mainframe hardware, in-
cluding the memory, tape drive, RS-232-C port, and system
bus. The other three modes are bootstrap programs from
three sources. The normal mode of operation is to boot from
the hard disc, which is on the system bus. The program that
is loaded then performs a poll to determineall of the devices

on the bus, configures the software I/O drivers based on that
poll, and displays a system map. Eight softkey labels are
displayed at the bottom of the display indicating the vari-
ous functions available. The system is now awaiting a
command and a status message indicates that state. To
perform an assembly of a source file, for example. the
softkey labeled assemble is pushed, followed by the name of
the file to be assembled. The editor, compiler, and linker all
use this same syntax.

Emulation

A challenging aspect of microprocessor system design is
the lack of a friendly run time environment for debugging
software and hardware. If, for example, the user is develop-
ing a microprocessor-controlled meat scale, the product
will not have peripherals such as CRT, keyboard, disc, and
printer to help the debugging process. Because of the direct
interaction of hardware and software, the techniques used
in computer development—halting, single-stepping,
dumping registers, and software tracing—might so perturb
the system that the measurement obtained is meaningless.
Because the completed system is usually read-only-
memory-based, a convenient software prototyping envi-
ronment is also essential so that software can be tested and
developed before being committed to ROM.

The 64000 emulator option is designed to imitate the
microprocessor in the user's system and provide all the
necessary debugging facilities. The emulator is used by
removing the microprocessor to be emulated from the user’s
hardware and plugging in the probe from the 64000 System
in its place. The user then specifies the memory area to be
taken from the user system and that to be provided by the
emulator, The answers to these configuration questions are
automatically stored in a file so that when the emulator is
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used later with the same configuration only the file name
needs to be specified. The emulator can be used before any
user hardware exists by simply specifyving the internal
clock and all emulation memory. Because the emulator has
access to the display, disc, printer, and keyboard, much
software development can take place before the user
hardware is ready.

In the 64000 System, we have completely separated the
emulation processor bus from the host environment (see
Fig. 4). This allows passive monitoring of the execution of
software without stopping the process. Because of this sep-
aration it is also possible to continue emulation while
software development is occurring on the same station, thus
potentially doubling the use. The two buses are so inde-
pendent that the prototype containing the emulator probe
can be powered down and then up without affecting the
host system. Even the data stored in the emulation memorv
remains unchanged and the processor simply goes through
its normal power-up sequence,

Another important benefit of this architecture is the fu-
ture expandability of emulation. The host processing sys-
tem puts no restrictions on the speed or word length of the
processor being emulated. Future microprocessors will cer-
tainly be faster and more powerful, so it is important to
allow for this to preserve the capital investment in the
development system.

The emulator option for the 64000 Logic Development
System is described in the article beginning on page 13.

Directed-Syntax Softkeys Provide Friendly Interface
Since a substantial part of a microprocessor system de-
signer's time is spent at the keyboard of a microprocessor

STATUS: Awaiting command userid TS

(’}m:um_- DU R

STATUS: Awaiting command userid TS

directory _

STATUS: Awaiting command userid TS

directory all_files _

LUSERID <DISC #» _CTYPEY  allouser: modified accessed listisle ==offf=-=

(c)

STATUS: Ausiting command userid TS

directory all_files modified after 8/28-80 listfile printer _

development system, ease of use is very important. By
means of directed-syntax softkeys, the 64000 leads the new
user through an often bewildering maze of tools. The use of
a random-access display further simplifies the operator in-
terface to provide a feeling that the human is in control and
not the machine.

Eight unmarked keys immediately below the CRT are
labeled by the CRT. These softkeys reflect the complete set
of allowable entries and change with each kevstroke to
reflect the next expected keyword or data in a command. If
the user enters only the information prompted by the
softkeys the syntax is guaranteed correct. Conversely, any
entry not shown in the softkey labels will result in a syntax
error. Thus the processor is always telling the user what it
expects, avoiding the usual guessing game, “You enter a
command and T'll tell you if it's right.” In addition to
eliminating the guessing game, the softkeys provide exactly
the same interface for all operations.

Fig. 5a shows an example using the directory command,
which can consist simply of the keyword directory or several
options. In Fig, 5b the directory softkey has been pushed and

the next allowable alternatives are shown:
=FILE=> user file name
all_files all disc files
rec__files all recoverable files

all tape files
specify an alternate listing file.

tapefiles
listfile

In Fig. 5c, the all-files option is selected and the labels
again change to reflect other options. The complete com-
mand shown in Fig. 5d calls for all of the files modified after
August 28, 1980 to be listed on the line printer.

If the cursor is moved to edit the command, the labels
change to reflect the options available at that point in the
line. If a softkey is pressed when the cursor is under any
character in a keyword, the entire keyword is replaced by
the new one and the line is expanded or contracted to
accommodate the new entry.

Software

Just as important as the hardware architecture in a com-
plete solution is the software package. 64000 software cur-
rently available includes the following modules, some of
which come in several versions to accommodate ditferent
microprocessors and languages: monitor, multiprocessing
operating system, file manager, editor, assembler, com-
piler, linker, emulator, PROM programmer, and hardware
self test.

Since users of the system can range everywhere from the
expert digital hardware designer to one with no previous
software experience, the 64000 system is designed to pro-
vide considerable capability for the experienced software
designer, and through the use of the directed-syntax
softkeys, to give the new user access to the full capability of
the system, not just the subset that is frequently used and
remembered. To further enhance the convenience of the
system an effort was made to provide a uniform syntax and
feature set in all aspects of the development tools. For
example, numeric constants can be specified in decimal,
hexadecimal, octal, or binary in the assembler, compiler,
linker, emulator, PROM programmer, monitor, and editor.
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The rules for variable names are the same for the assembler,
compiler, linker, and emulator. The feature set for all of the
above modules also remains the same for each micropro-
cessor, so that the learning curve for a new processor is
much shorter. In some cases the same person has to work
with maore than one processor type simultaneously, so this
approach becomes essential to reduce confusion.

With these features combined with the performance of a
16-bit processor per user and a high-speed hard disc, the
turnaround cycle for changes is substantially reduced. As
an example, it is possible to edit a file to make corrections,
assemble that file, link it to other modules, and then execute

the new code on the emulator in one minute. This level of
performance encourages proper maintenance of source
programs instead of memory patching to fix a problem.
The Editor

Perhaps the most important part of a development sys-
tem's operator interface is the editor. The functioning of the
editor provides the most convincing argument fora random
access display. The ability to modify the text by inserting,
deleting, or overtvping and see the changes on a key-by-key
basis gives the confident feeling of absolute control.

The importance of a symmetric instruction set is just
being understood in the microprocessor world, but the

A 64000 Logic Development System is ordered as Model 640018,
with the options wanted listed separately. A 64001S System consists,
at a minimum, of one 64100A Development Station, a disc memory,
and a magnetic tape cartridge drive. A maximum of six 64100A
Development Stations, a printer, and eight disc drives can be con-
nected on a single /O bus.

The operating system software executing in the host processor of
each 84100A is implemented as a single-tasking system, responding
to its keyboard inputs independently of any other 641004 stations,
except when two or more stations require access to a shared re-
source simultaneously (e.g., a disc memory or the printer). The use of
these shared resourges must be coordinated. The sharing protocol is
simple, minimizing overhead in the operating system and reducing
the number of operations that must be recovered in case of a system
fault. Specifically, the shared resources are:

1. Access to a disc memory (excludes directory)
2. Access to read or modify a disc directory
3. Access to the printer.

The mechanical and electrical protocol used on the 64000 I/O bus
Is compatible with the HP Interface Bus, or HP-IB (IEEE Standard
488-1978). However, in the 64000 Systern context, messages are
restricted to those needed for system operation. For example, /0
drivers and message protocols that would allow direct user control of
interface message generation are not available. Therefore, only sup-
ported disc memories and printers and other 64 100A stations may be
connected to a 64100A station

The HP-IB standard was selected because of the existence of
compatible disc memories and printers and a related family of
reliable components (infegrated interface electronics, connectors,
and cables).

Each 64100A station can operate on the HP-1B as an active control-
ler, talker, or listener. The current active controller monitors the state
of the network—that is, which 64100A stations are using or are
waiting to use a shared resource. The active controller has the exclu-
sive right to use the /0 bus until control is passed to another 64100A.
However, a resource reserved by ancther 64100A may not be used.
Disc accesses not involving a disc directory access may be made by
the active controller without restriction. Directory and printer access-
es are the only two resources that must be reserved. Use of these
resources is regulated by queues resident in the active controller for
each function. The HP-IB address (from 2to 7) corresponding to each
64100A is used as a name in the gueues, with 0 serving as the null
entry. The head of each queue has the exclusive right to use the
resource. Addresses within the queue indicate 64100A stations wait-

Resource Sharing in the Logic Development System

by Alan J. DeVilbiss

ing for the resource. Only the active controller can modify the queue
by removing its address from the head of the queue. All other entries
are moved up by one position when the active controller is finished
with the resource, The active controller can also replace the first null
entry in the gueue with its own address when it requires the resource.

The active controller may modily the queues and make one disc
access (a read or write of up to 4096 bytes, typically) and fill the
printer buffer if it is at the head of the printer gueue. Then control must
be passed if any other 64 100A has a pending /O request. The active
controlier conducts a parallel poll. If no other 64100A responds, the
current active controller remains active controller and can continueg
with its own |/O as required. Affirmative poll response from another
641004 indicates a request to become active controller. If more than
one 64100A responds, the address of the responding 64100A next
higher (modulo 8) than the current active controller is selected.

The selected 64100A is sent an eight-byte message indicating the
current state of the directory and printer queues, and then the Take
Control interface message is sent to that 64100A. The selected
64100A becomes active controller and may use the 1/O bus and/or
modify the queues.

On each 64000 system, one and anly one 64100A is designated as
master controller. This unit is responsible for initiating system activity
by becoming the first active controller when the system is powered-
on. Only this unit may assert the Interface Clear message, and there-
fore it is responsible for restarting a system that has experienced a
partial power failure or a disruptive hardware or software fault.

When a 64100A powers on, it must first load its operating system
from the system disc at /O address 0, unit 0. To accomplish this
without disturbing a functioning system if this 64 100A Is entering late,
the nonactive controller status is selected at power-up, and /O bus
control is requested by affirmative response to any parallel poll by an
active controller. If the unit is not master controller, it must wait until
control is passed to it from another 64100A. If the 64100A is desig-
nated master controller, it waits for about three seconds (a worst-
case delay for a functioning system), asserts Interface Clear and
becomes the active controiler.

Once a 84100A station has become an active controller and
loaded its operating system software from system disc memary, it
executes a program to identify all other devices connected to the |/O
bus at that time. The results of that procedure are used to control
generation of tables in the disc, printer, and network /0 drivers to
make proper use of the devices attached to the network.

Each disc memory identified is cataloged by I/O address, disc unit
number, type (7905, 7906, 7910, 7920, 7925), directory location and
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size, and record size. A logical unit number is assigned for each
disc. The results of the /O identification are listed on the 64100 display
for reterence and to aid in debugging a malfunctioning system.

This architecture makes it easy to change the number of 641004
development stations, the number and/or type of disc drives, and
the printar. To effect a change, the system is powered off, recon-
nected and powered back on. No user-directed change in software is
needed,

Fault Recovery

Recovery features have been implemented to lessen the effects of
system faults., For example, it would be undesirable if low power on
one 64100A station aborted an edit session on anacther station. All /O
operations have time-outs assigned, with appropriate recovery pro-
cedures in the event of malfunction. Disc operations that can't com-
plete are retried. If a pass of control doesn't complete within the
allotted time, the process is aborted and the previous active con-
troller resumes control status.

The master controller assumes a system monitor function.
Whenever the master controller passes control a three-second timer
is started. If this timer expires, control must be requested by affirma-
tive poll response, even if the master contraller has no pending /O
request. If another three seconds go by without a response, the active
controller is presumed to have crashed or powered off, and the
master controller asseris the interface Clear message and becomes
active controller

Whenever the master controller becomes active controller by Inter-
face Clear, the network queues are initialized to the null state, arestart

flag is set and the queues and control are passed around the network
one time, independent of I/O requests. The restart flag inhibits normal
I/O activity, Each 64100A is given the oppartunity to take either the
directory or the printer gueue head if its internal state indicates it had
this position before the restart. This process minimizes the effects of
the loss of network state information by a crash of the active controller
while another 64 100A is moditying the directory or using the printer.
When contral is returned to the master controller, the restart flag is
cleared and normal operation resumes. Time-outs in the printer and
network drivers of 64 100A stations that were waiting for the directory
or the printer cause them to reenter the network queues. The arder in
the queues may be changed but everyone ultimately is serviced.

Alan J. DeVilbiss

Al DeVilbiss has been a circuit and

. software designer with HP since 1965,
A native of Roanoke, Louisiana, he re-
ceived his BSEE degree from Louisiana
Tech University in 1960 and his MSEE
degree from California Institute of
Technology in 1961, Before coming to
HP he designed flight computers for
four years. Two patents, on electronic
ignition and vertical amplifier circuits,
have resulted from his work. Al is mar-
ried, has two children, and lives in Col-
orado Springs, Colorado.
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same motivation also exists for symmetry in an editor com-
mand set. The first step in the editing process is usually
positioning to an area in the file of interest. In the 64000
there are no artificial constraints on file size or workspace
use, and positioning can be performed by rolling the text up
or down, moving the cursor up or down, paging up or
down, randomly by specifying a line number, or searching
for a character string in the forward or reverse direction. All
operations involving a group of lines, such as deleting,
extracting, copying, listing, or performing character re-
placement are done starting with the line containing the
cursor thru or until (inclusive or exclusive) a line number, a
character string, the start of the file, the end of the file or the
entire file. With directed-syntax softkeys the availability of
these symmetrical options is always obvious to the user.

The memory space available to the editor can be viewed
as two double-ended queues (Fig. 6). These two queues
share the same memory space, so when one contracts the
other can expand into available memory. Another way to
view this memory is as a single circular buffer with a dis-
play window. When an edit session is started two scratch
files are created. Since more than one 64100A Development
Station may be using copies of the editor at the same time,
the names of these files are made unique by appending the
bus address of the station. These files serve as temporary
storage for text that will not fit in memory.

When the original source file is opened, enough lines to
fill the display are read and placed on the CRT screen. More
of the source file is read into queue A. The amount of text
read is limited to produce a reasonable response time. Many
edit sessions do not extend over the entire source program,
and a long initial delay can be annoying. Only for very short
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Editor File Structure

Scratch|
File B

Queue B

.

Double-Ended

Display Buffer
Queues

fo=0 = =
Source Scratch|
File File A

Fig. 6. The 64000 editor's memory space can be viewed as
two double-ended queues that occupy the same memory
space, so that when one expands the other contracts. Scratch
files are created when an edit session is started
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64500 PROM Programmer

-Roger Cox

files is the entire file read before the user is allowed to issue
commands.

As various commands cause more of the source file to be
read the data is brought into memory and shuffled between
the two double-ended queues. When the internal memory
space is filled records are written to scratch file B in the
forward direction. Should a command require moving toan
earlier line of text the records are written to scratch file A
and read from scratc!t

file B. The original source file is never
overwritten.

stination file is

When the end command is issued a d
created. The text is written from scratch file B, the internal
buffer space, scratch file A, and the source file into this
destination file. The original source file is then purged and
the destination file renamed as source. The original file has
then been placed in a deleted file list by the 64000 file
manager and can be recovered. When the scratch files are
closed they are deleted from the disc directory by the file
manager

A particular problem in the microprocessor world is the
use of different assemblers and cross assemblers for the
same microprocessor, sometimes from the same manufac-
turer. The text editor is a tool that usually bridges this gap,

> specification

File Management

T'he heart of all modern software development tools is the
file management system. While automatic space allocation
is a part of almost all systems, in the 64000 system this
facility is significantly extended to include the ability to

recover accidently purg

s of edited

SET UP THE PRRAMETERS

GET LETTER FOR COMPRRISON
108 CHECK FOR “LESS THAM" MODE
109 NOT THAN
110 “LESS THAN“ MODE
111
NEM
HEM
NEW
WEE rExT1 K FOR “GREATER THAN" MODE
ATER THAN'
REATER THAN" MODE
SET THE FLAG
SET UP THE POINTER

STATUS: Editing CONTROL:TS

replace *"GREATER THAN"" w “"GREATER THAN REF A"* thru 117_

182 1 SET UP THE PRRAMETERS
183
184
105
106
107
108
109
119
1
NEH
HEW
NEW
EE rexTi CPI CHECK FOR “GREATER THAM REF A“ MODE
116 INZ MOT “GREATER THAN REF A
17 ;1 GREATER THAN REF A"
118 NEXT3 STA SET THE
119 NE 2 SET UP THE POINTER

STATUS: Strinas changed : 3
_replace “"GREATER THAN"* with ~"GREATER THAN REF A"" thru 117

ipaecs . reuise . delete _ fipd  _replace LLINE 82 _ _end

(b)
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SET UP THE PARAMETERS

‘GREATER THAN REF A* MODE
EATER THAN REF A"
P THAN PEF A" MODE
THE FLAG

thry 182

_replace 8.8 © witn 8.0 °

SET P THE PAREBMETERS

SET THE FL

LXI STORE,H SET UP THE POINTER

STATUS: Strings changed :

_replace 5.8 * with "8.8 ~ thru 1082

files up to the time when the space is needed for new files. A
further enhancement aimed at managing the increased
number of files being used is the user identification added
to files names. By entering a user 1D at the beginning of a
session all operations will be carried out on files under that
name. The directory list defaults to listing only the files
under that 1D,

Further enhancements offered by the 64000 file manager

come in the directory, including a listing of space available
and comprehensive data on file use. Monitoring revisions
to programs is made easy since the date and time of last
access and modification of each file are automatically main-
tained and shown in the directory list. The linking loader
also specifies in the load map the dat
update of each relocatable module loaded. The significance
of this record keeping in a multiple-design project where

and time of the last

program modules are independently maintained cannot be
overstated.

Another important function for the file system is the
ability to submit a stream of system commands contained in
ity, a

performing a long series of tasks almost foolproof. An ex-

ile. This capal lable on many systems, makes
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tension to this function in the 64000 allows parameters to be

passed to one of these command files in a manner similar to
assembly language macros. Then more generalized com-
mand files can be created, thus reducing the number of files
created and used. For example, a command file could be
created that automatically sequences through the opera

tions of assembly, linking, loading, and emulating, and

only the source file(s) need be specified at the time the

command file is invoked. Also, by including a learn mode

for building command files the full aid of the directed-
syntax softkevs is made available in construt ting c ommand

files.

Page Structure

The 64000 file management system has a linked list struc-
ture. Each of the files consists of blocks of sectors called
pages. The number of sectors per page is constant for a
given disc but may vary for different discs to optimize
certain file management operations. The pages of a file are
linked in both forward and backward directions (see Fig. 9)
This symmetry is used to its greatest advantage in the 64000
editor. Editor operations such as rolling, paging, and string
searching can be done with equal efficiency either forward
or backward through the text,

When a file is being updated the same sectors on the disc
are used. If the size of the file is increased the file manager
allocates another page to the file, linking it to the end of the
last page. The list of available pages is kept in much the
same way as a file. It is a doubly linked list of pages. Free
pages are taken from the front of the list when they are
allocated to files. This approach allows files to grow easily

without bound and precludes the need for a user-invoked
disc packing program
packed by the nature of the file structure

The disc remains continuously

Directory Format

As with most file manas I
ing a file on the disc are kept in a separate area called the
directory. The 64000 directory is organized as a hash coded
list. Hash coding minimizes the amount of searching re-
n file. The

hashed value of the file name indicates the directory sector

tems the keys to locat-

quired to locate the directory entry for a give

on which the file information is most likely to reside. The

File Pages

Active
File ¢
List |

Free |

List__
Information
Deleted

File

List

Free Pages

Fig. 9. 64000 file structure. The linked
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64000 Command Parsing

Commands are interpreted in the 64000 System using an LALR
(logk-ahead, left-to-right) parsing technique. The syntax of the com-
mands of an application module such as the monitor, editor, or PROM
programmer is described in a concise and readable format by a
grammar. An example of this is the editor's delete command shown in
Fig. 1. The complete grammar is given as input 1o a parser generator
program. and the result is a table that is used by the 84000 parser to
parse the text that the user types on the command line.

<line# >
thru | | <string=>
1) delete | | YPW! :’::

b) <DELETE__COMMAND > = < delete><"RANGE__SPEC>
< RANGE__SPEC> u= <EMPTY>
<<thru=><"LIMIT>

<until><<LIMIT>
all

< LIMIT> u= <STRING>
< NUMBER>
end
start
< delete n= delete
< thru=> n= thru
<until> n= until

Fig. 1. Syntax of the editor's aeiete command. (a) Concise
syntax. (b) BNF-like grammar used to drive semantic and
softkey routines

LALR parsing provides a convenient structure for 64000 applica-
tion programs. When a command is parsed it is decomposed in
exactly the same manner as the grammar used to create the parsing
tables. Each line of the grammar is an opportunity to perform a
semantic function. Thus the 64000 parser acts as a driver for the
various functions a program performs.

The same features of LALR parsing that drive the executing func-
tions of 64000 programs are used to drive the softkeys. As a com-
mand is typed into the command line the characters are continuously
scanned by the 64000 parser. As the various statements of the
grammar are applied to the character string the corresponding level
of softkeys is selected. This parse continues up to the present posi-
tion of the cursor in the command line. At the end of the parse the
softkeys corresponding to the cursor position are displayed. In this
way the user is shown all of the available choices at that time.

Since the command line is scanned almost continuously the
softkeys are always consistent with the cursor position. Because of
this the cursor can be moved to any position in the line and the
softkeys will track the syntax. Also, the correct softkey level is depen-
dent only on the characters contained in the command and not on a
sequence of user actions. For users who choose to type instead of
using the softkeys and for commands that are recalled into the
command line the softkey tracking still works.

LALR parsing is deterministic in the detection of syntax errors.
When a string of characters does not correspond to a permissible
sequence as defined by the grammar it is detected as an error. Atthat

STATUS: Editing FILEX
merge __
<FILE> from thru

STATUS: Editing FILEX
merge FILEZ from 2§ thru 45

ERROR: Invalid line number
merge FILEZ from 2§ thru 45
thru

Fig. 2. When a syntax error is detected an instructive mes-
sage is displayed and the cursor Is placed under the error. The
softkeys are consistent with the cursor position.

time the position of the error in the command and the set of correct
syntax elements are known, The 64000 convention is to place the
cursor at the position of the error and report the error in a manner that
specifies what was expected. The softkey parsing is reinitiated as
well, so that the softkeys are again labeled with the available choices
for the current cursor position (see Fig. 2).

Flexibility is a bonus of the LALR parsing technique. When a
change or addition to the syntax of a program is desired, it can be
made quickly with a minimum of impact on other features. Tables for
the new grammar are generated and, if required, a softkey level
template is added or changed. A new message may be added to the
table of error messages. The general structure of the softkey parsing
is shown in Fig. 3.

-Brian Kerr

Keyboard
Scanner

Keyboard

~— Command Line

Fig. 3. Softkey operation. Interactions between the main pro-
gram and the softkeys are well-defined and suitable for many
applications.
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data on that sector will indicate if the file exists or if another
directory sector should be searched. As long as the direc-
tory is only partially full the file should either be found or
proved nonexistent with only one disc read. Directory size
has been chosen to correspond to the size of the disc. This
guarantees that the directory will not be too full for efficient
file lookup.

Each directory entry gives the name, user identification,
and type of the file. Each entry contains pointers to the first
and last pages of the file. This is the necessary information
for accessing and deleting the file. In addition, two dates
and times are kept for each file, One is the date and time that
the file was last accessed. This is modified with the system
date and time whenever the file is opened. The other is the
date and time that the file was last modified. It is updated
when the file is closed after records have been added or
rewritten. These dates provide the user with convenient
records of file use. The directory list and cassette backup
commands use the dates as qualifiers for operations. IFor
example, the user can store all recently changed files with
the command store all__files modified after 5/31/80.

Recovering Deleted Files

The linked list file structure allows for a special feature of
the 64000 file management system. Since deleted files are
added to the end of the free list they are still intact until the
entire free list has been allocated to other files. When afile is
deleted its directory information is transferred to a special
section of the directory. This is a circular list of files that
have been deleted. A user who has made a mistake and
deleted the wrong file can issue a recover command. This
routine searches the recoverable file list for the file and if
thefile is found checks to insure that its pages have not been
allocated to another file. If they have not, the file is restored
to the directory of active files. Since the 64000 editor always
purges the original file and creates a new copy. the user can
recover previous versions.

File Format

All user-accessible files have a similar data format. The
data is stored in variable-length records. The number of
words of data in a record is placed in the bytes immediately
preceding and following the data. Again, this symmetry
allows for bidirectional access. It also provides a means for
insuring the integrity of the file data. If the two lengths of a
record are not the same then a data read or write error can be
assumed.

Program modules such as the editor, assembler, and
linker are called by the 64000 monitor using a system of
overlays. When a module has been selected by the user or
the currently running module an operating system routine
is called to bring the correct file from the disc. Files of this
sort are kept in a special non-record format. They are stored
as memory images that can be read directly into the location
in memory where they will be executed. It is desirable that
this operation be performed as quickly as possible so as to
be transparent to the user. To accomplish this the disc is
organized in a special way. Normally sectors that are logi-
cally adjacent in a file management system are also physi-
cally adjacent on the disc. In the 64000 this is not the case.
Logically adjacent sectors are spaced some distance apart
depending on the particular type of disc. When a sector is
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read the disc continues to rotate while the data is being
transmitted over the system bus and placed in the 64000
memory. By the time the next sector is requested the disc
has rotated so that the physical sector is in the correct
position to be read. In this way many disc rotations are
eliminated.
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Emulators for Microprocessor System

Development

by James B. Donnelly, Gordon A. Greenley, and Milo E. Muterspaugh

IM-U-LATE vt: to pretend, feign. EM-U-LATE vt:

to equal. Until recently, the development and de-

bugging of software for new processor-based sys-
tems was frequently done with the aid of simulators, which
are programs running on a large host computer and having
the property of simulating the instruction set and the pro-
gramming model of the new or target processor. After the
software was initially debugged using the simulator, fur-
ther debugging of the software-hardware system was done
with the aid of debug programs and various hardware and
software facilities that provided breakpoints, single-step-
ping, and other capabilities. More recently, logic analyzers
have also aided in the process.

With the introduction of microprocessor development
systems, a new tool has been made available to the designer
in the form of the microprocessor emulator. Today's
emulators combine many powerful software and hardware
development tools into one convenient, easy-to-use system
and greatly facilitate the process of integrating the
hardware and software components of newly developed

microprocessor-based systems. At the user interface, the
hardware portion of the emulator replaces the microproces-
sor, and in keeping with the definition of emulation, at-
tempts to be as much like the actual microprocessor as
possible, both functionally and electrically.

The advantages of using an emulator include the ability
to develop software on the actual processor to be used, the
ability to load the newly developed programs into emula-
tion memory and execute those programs in the develop-
ment hardware in real time without having to use PROMs,
thus speeding the development cycle, and the ability to
debug hardware and software under very controlled condi-
tions by being able to run, halt, and step the processor at
will and to examine and modify registers and memory. An
additional advantage is the ease with which the emulator is
connected to the user system: it simply plugs into the socket
where the microprocessor would normally go.

Design Objectives
In developing the emulators for the 64000 Logic De-
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velopment System, the principal objective was to maximize
transparency to the user and the user’'s system. This objec-
tive was applied to both the functional and the electrical
aspects of the emulator.

Functionally, transparency was defined to mean that the
user must not be deprived of or restricted in the use of any
address space, instructions, interrupt systems, or other fea-
tures normally available in the microprocessor being emu-
lated.

Electrically, transparencyv means that the design of the
emulator must minimize degradation in timing and electri-
cal loading, so that the emulator will operate in the user’s
system as much like the emulated processor as possible.

System Description

In the 64000 System, a complete emulation system con-
sists of the microprocessor emulator, the memory emulator,
a logic analyzer, and a software support package that inte-
grates the hardware components into a powerful, easy-to-
use development tool (see Fig. 1).

The emulator system is partitioned into three interfaces:
1) the user interface, which is defined by the specifications
of the processor being emulated, 2) the emulation bus, a
high-speed bus that connects the processor emulator, the
memory emulator, and the logic analyzer, and 3) the
64100A mainframe bus, which provides for control and
communication between the mainframe host processor and
the emulation system.

This architecture provides complete separation of the
host processor and memory from the emulation system.
This allows the host processor to run the emulation support
software independently of the emulator, thus relieving the
emulation processor of the burden of that overhead and
helping to meet the design goal of functional transparency.

The Microprocessor Emulator

The microprocessor component of the emulation system
is divided into two subassemblies, a pod external to the
654100A mainframe and a control board contained in the
64100A card cage (see Fig, 2).
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Fig. 1. The 64000 emulator sub-
system consists of a microproces-
sor emulator, a memory emulator,
a logic analyzer, and a software
support package.

The emulator pod contains a high-speed version of the
emulated microprocessor, interface buffers, buffer con-
trol circuitry, and an internal clock source. A fully buf-
fered architecture is used. Some of the advantages of this
configuration are the minimization of potential damage
from the user’s breadboard and the ability of the 64000
system to gain control of the emulation processor and con-
tinue to function even though an electrical fault may exist
in the user system. The combination of less than maximum
capacitive loading on the processor provided by the isola-
tion of the buffers and the use of high-speed versions of the
processors gives the emulator the ability to operate with
little or no degradation of timing specifications in most
cases. The pod is connected to the user's microprocessor
socket by a 30-cm dual flat cable and a 40-pin plug. Each
signal wire in the cable is isolated from adjacent signals by
alternating ground wires with the signal wires to minimize
coupling. The pod connects to the emulator control board
by two 1.5-m twisted-pair flat cables. This cable is driven by
Schottky TTL buffers and is terminated in its characteristic
impedance with one wire of each pair grounded to insure
good high-speed signal quality.

The emulator control board consists of a timing section,
which converts the timing signals of a given microproces-
sor into the standardized timing requirements of the 64000
emulation bus, various status and control registers, a 256-
byte memory referred to as the background memory,
background memory access control circuitry, a state
machine called the background controller, and an illegal
opcode detector. The function of the control board is to
provide timing signals for the emulation memory and logic
analyzer units and to provide the status and control inter-
face between the emulation processor and the 64000 host
Processar.

The Universal Approach

Early in the emulator design phase, it appeared that it
might be possible to identify certain functions of the control
board that could be considered independent of micro-
processor type and that these functions could be designed
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Control
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into a universal architecture, which could then become the
core of several emulators. The result of this effort became
known as the breeder board. It consists of a printed ciruit
board containing the interface buffers, status and control
registers, background memory and access control,
background controller, and illegal opcode detector, plus an
undefined wirewrap section to be used by the designer in
breadboarding the timing section, which is the principal
difference between the various microprocessors. To date,
the breeder board has been the basis for three control boards
that serve a total of five distinct microprocessors depending
on the pod selected.

For HP, this approach has had the obvious advantage of
more efficient use of engineering resources and shortened
design cycles. The customer has also benefited by virtue of
the fact that a common architecture results in a degree of
consistency and continuity in the operating characteristics
of the various emulators, thus reducing learning time. In
addition, this approach has made it possible for some con-
trol boards to serve more than one microprocessor by just
changing the pod.

Functional Description

In operation, the emulator exists in one of two states,
foreground or background. In the foreground state, the
emulator appears to the user system as a standard micro-
processor and executes user-written code, which may be
physically resident in either user memory or emulation
memory or a mixture of both, depending on how the user's
memory space has been mapped. It is worthwhile to note
that even though physical memory such as ROM may exist
at a given address space in a user's system, it is possible to
overlay that memory with 64000 emulation memory for
code patching and debugging purposes.

In the background state, execution in the user system is
suspended and the processor appears halted to the user

Timing

Fig. 2. The 64000 emulator and
host processor have separate
buses so the host processor can
run the emulation software inde-
pendently of the emulator, thus
helping to make the emulator func-
tionally transparent to the user and
the user's system.

Background
Access
Controlier

Address Data Control

system. The apparent halted state at the user interface is
synthesized by manipulation of the pod buffers while the
processor is actually running under 64000 system control
in background memory. While in background, all inputs
from the user system are inhibited to prevent possible user
system interference with the execution of emulator
background tasks.

Two important features of the 64000 emulators are key to
the achievement of the functional transparency design ob-
jective, The first is the concept of background memory and
the second is the means by which control is transferred
between the user system and the 64000 system, that is,
between foreground and background.

Background memory is a 256-byte RAM resident on the
emulator control board. This memory is physically distinct
from any memory either in the user system or on the emula-
tion memory board (see “Emulation Memory™ below), and
does not occupy any of the user's address space. The
background memory is accessible to both the emulation
processor and the 64000 host processor and serves as the
primary communication link between the two. The 64000
host processor loads various register unloading and register
and memory read/modify routines into background mem-
ory and these routines are then executed by the emulation
processor when it is transferred from foreground to
background.

Transfer of the emulation processor from foreground to
background is initiated by the occurrence of a break condi-
tion. A break may originate in any one of four sources. It
may come from the logic analyzer unit after a specified
condition has been met, from the emulation memory unit
because of an illegal memory reference or write to ROM,
from the processor emulator control board as a result of an
illegal opcode fetch, or from the host processor, for example
when the user enters a keyboard command for the emulator
to stop.
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Background

Program Controller Processor Emulation Break
Execution State Address Address Operation Condition
I
1CF4 1CF4 Fetch Opcode Off
Executing 1CF5 1CF5 Memory Reference l
User Foreground 1CF6 1CF6 Memory Reference
Program 1CF7 1CF7 Fetch Opcode
¢ l 1CF8 1CF8 Memory Reference On
1CF8 ___ 1CF9 _ Memory Reference On
T 1CFA XX00  Fetch Call on
1CFB XX01 20 X
Jam Background 1CFC Xx02 50 X
¢ 3000 XxX03 Stack Upper Retl. Addr.
3001 ___ XX04 _ Stack Lower Ret. Addr.
5020 5020 Fetch Opcode
5021 5021 Memory Reference
Executing /l, ,L J,
Background 3' $ I
Program
Idle Background 5030 5030 Fetch JMP (Trap)
5031 5031 30
5032 5032 50
A A A e
i ¢ : Fig. 3. The ermulatar exists in one
= = — of two states, foreground or
= * 50F7 50F7 Fetch JMP (Exit) background., The background
Exit Background 50F8 50F8 FA controller, a four-state state
A4 * S0F9 ____ SOF9 __ 1C machine, controls the transfer of
Executing s 1CFA  Fetch Opcode the emulator processor from
User Foreground 1CFB 1CFB Memory Reference foreground to background and
Program l vice versa. This chart shows de-
¢ l i l tails of the background entry/exit
v process.

A prime consideration in choosing the means for trans-
ferring control of the processor was the need to have some
method that is independent of processor type, since the
universal architecture of the control board was intended to
work with a variety of processors. For example, a nonmask-
able interrupt (NMI) might be a reasonable way to seize
control of a processar, but some, such as the 8080, have no
NMI. This need led to the use of a technique of jamming
addresses independent of the addresses being generated by
the processor onto the emulation background memory ad-
dress bus at the appropriate time in the processor instruc-
tion cycle. This causes the opcode fetch to be returned to the
processor from background memory.

The jamming process is synchronized by the background
controller to the first opcode fetch cycle following the oc-
curence of a break condition. This process simultaneously
inhibits the user interface buffers and the address buffers
from the processor to the background memory while en-
abling the jam address counter onto the bus. The jam ad-
dress counter generates consecutive addresses starting at
00H for the length of one full instruction cycle. The length
of the jam count is elastic, since state transitions of the
controller occur on opcode fetch cycles and so the count
length is a function of the instruction loaded into address
00H. Typically, a call instruction is used in the background
code as the first instruction. The use of this type of instruc-
tion serves two purposes. First, the processor responds by
placing the program counter on the stack. The stack is
always in the same two locations in background memory
regardless of where the processor stack pointer is set be-
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cause the address bus is being jammed by the jam counter,
This information is later used to determine where to send
the processor when the emulator is returned to the fore-
ground state. Second, the program counter is changed to the
starting address of the background program, which results
in transferring program control to the background memory
when the jam cycle is terminated on the next opcode fetch.
Functionally, this process may be viewed as a hardware
implementation of a nonmaskable interrupt that is inde-
pendent of processor type (Fig. 3).

The background controller is a state machine having four
states: jam background, idle background, exit background,
and foreground (see Fig. 4). State transitions occur at the
beginning of opcode fetch cycles that are coincident with
other qualifving events.

The background controller enters the idle background
state on the next fetch following the beginning of the jam
cyvcle previously described. This returns control of the ad-
dress bus to the emulator processor which begins executing
the background entry program. During this time, registers
are unloaded, return addresses are computed, and so on.
Following the completion of these tasks, the processor en-
ters a jump self loop called TRAP where it awaits further
direction from the host processor.

The host processor communicates with and controls the
emulator processor indirectly through the medium of the
background memory. This is possible because the memory
is designed so that the host processor can read or modify
background memory at the same time the emulator proces-
sor is executing code in that memory. The method of contraol
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Fig. 4. Background controller transition diagram

involves the host processor loading a program or programs
into background memory and then changing the jump ad-
dress of TRAP on the fly to coincide with the starting ad-
dress of the desired background program. The emulator
processor reads the new jump address and transfers to that
point.

The exit background state is initiated when the host pro-
cessor causes the emulator processor to make an opcode
fetch from a dedicated background address called EXIT. The
background controller recognizes the fetch from EXIT and
makes the state transition. The opcode loaded into location
EXIT is a jump instruction and the following bytes contain
the address of the desired foreground entry point.

The transition from the exit background state to fore-
ground immediately follows on the next opcode fetch cycle.
At this point, the program counter of the emulator processor
has been transferred lo the foreground entry address by
virtue of the previous jump instruction. The background
controller hardware simultaneously enables the user inter-
face buffers and switches the program source from
background memory to foreground memory, which may be
either user memory or emulation memory as determined by
the memory mapper.

The process of entering and exiting background described
here is emploved in all cases where it is necessary for the
host system to control the emulator processor. An example
of this is single-stepping, where the emulator is returned to
foreground for a single instruction cycle and then immedi-
ately jammed into background. Continuous stepping and
non-real-time analysis are done in a similar manner.

Emulation Memory

The emulation memory consists of the memory emulator
control board and from one to four emulation memory
boards, Each fully loaded memory board contains 32K bytes

of static memory.

The memory controller interfaces the emulation memory
to the mainframe and the emulator system. The emulator
has the full bandwidth of the emulation memory. If the
mainframe wants to access the emulation memory, the
mainframe cycles are held off until the emulator completes
its memory cycle. A mainframe cycle is then attempted and
a flag is set if there was sufficient time to complete the
mainframe memory read. (Only mainframe read cycles are
allowed while the emulator is accessing the emulation
memory, since write cycles may not be interrupted.) This
feature lets the user dynamically watch the memory while
the emulation processor is running, provided that sufficient
dead time is available.

The memory controller provides mapping of the target
processor’s address space into 64 blocks of equal size. This
is accomplished by placing a mapper RAM in series with
the six highest-order address lines from the emulator. Each
block can contain from 256 bytes to 32,768 bytes depending
on the address bus size and whether the data bus is 8 or 16
bits wide for the processor being emulated. The mapping
feature allows the available memory (as little as 8K bytes) to
be placed anywhere in the emulated processor’'s address
space. For an 8-bit processor, such as the 8080, each availa-
ble block of memory can be placed anywhere from 0 to 64K
in 1K increments. The mapper also provides status bits for
each block of memory. The status bits tell the emulator
whether that block of memory is RAM, ROM or undefined.

The memory controller sends a break to the emulator if an
illegal memory operation is performed, such as a write to
ROM.

Emulator Software

The purpose of the emulator software is to provide a
friendly interface for the user to verify program code in a
hardware configuration that emulates the end product, a
microprocessor-based system. Hardware resources used by
the 64000 System emulator software include the processor
emulator, the memory emulator (up to 64K bytes), and the
logic analyzer unit, which provides 256 states of address,
data, status, and count data.

The first task for the user is configuration assignment,
that is, specifying the configuration of the hardware (see
Fig. 5). This includes
1. Processor clock (internal or external)

2. Illegal opcode detection (enable or disable)

3. Real-time run control (enable or disable)

4. Memory assignment for 64 equal address ranges. Each
range can be assigned as emulation memory, user mem-
ory, or illegal, and as RAM or ROM.

5. Simulated /O control addresses for display, printer,
keyboard, RS-232-C interface, and disc file(s).

Once the hardware configuration has been set up, the in-

formation can be stored in a user-specified file so that re-

peated emulate sessions can be initialized without repeat-
ing the configuration assignment task.

The next user task is loading program code. This is ac-
complished by specifying the file name of the user program
code file. The configuration and/or load-memory file names
may be specified when the emulate command is initiated.
For example, the following command may be given:
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STATUS: Memory essignment

Uger RAN address range?_

Fig. 5. To

haraware
emulate CONFIG load memory PROGNAME

This command brings in the emulate software, initializes
the hardware resources (processor, memory, etc.) as previ-
ously stared in CONFIG, and then loads memory with code
from PROGNAME.

After the emulator has been configured and program code
loaded, the user can start an emulate session. There are a
variety of ways for the user to debug program flow. These
include:

1. Execution control, such as run, step, stop, trace com-

mands
2. Display options, such as registers, memory, trace
3. Modify options, such as registers or memory
4. Simulated 1/O control.

Execution Control

Upon entry to the emulate module, the status of the pro-
cessor emulator is “ready’” and the module is waiting for the
next command. Commands that may be used include run,
step and stop. These commands have the following syntax:

run [fmm address] [Lmri] !ermi run processor at current
program counter or speci-
fied address. A stop term
may be specified.

step processor one instruc-
tion or specified number

of instructions

stop processor

step |number instructions ]

stop processor

The processor may be stopped by an illegal opcode (if
enabled), an illegal memory reference, completion of the
analysis, or a user command.
Real-Time Trace Command

The trace command allows the user to view program
flow. The command is simply:

trace

The resultant trace display shows program flow in

menomic form and may look as shown in Fig. 6

When the program code is loaded, the symbol file is also
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TRACE COUNT TIME  ABSOLUTE
-

AFTER  @0BeH JC . us
+91 08 sp=1 37FFH (sp-1,5p-2) OBEH s us
+hez ! F

+983 i 1 (ki)

+0da 37TEH (hl

sp 3TFEH (sp,sp+l) @QBEH
a 344

thl) 77H
BORFH RR
BoBEH JC 85954
STATUS: 8088----Running Trace complete

_trace

provided for user convenience. This means that any expres-
sion may contain symbolic references. For example, the
following trace specification may be given:

trace after SYMBOL

The user may also make the following type of trace
specification:

trace after registerc = 3

This causes the system to single-cycle the emulator proces-
sor and perform the specified trace. The emulator software
tries to do the specified task in real time, but if the user
makes a specification beyond the real-time analysis
capabilities of the system, then the emulator processor is
cycled to perform the specification. The trace command can
be a complex specification. For example consider the fol-
lowing trace commands:

trace in sequence 0AOCH then 063EH
trigger after 00A7H

This specification can be accomplished in a pseudo-run

COUNT TIME  ABSOLUTE

BRRFH

depaH

B@B3H C 3 H (sp-1, BRBEH
BE3EH

BE41H

BE42H

BE43H

BE44H RNZ s | GRBEH
@0B6H LDA FECRH g

V0BSH XR1 CoH

STATUS: B@8@----Running Trace complete

~trace in_sequence BARCH then B63EH trigger after BATH

—run___ _step . trace  display  modify _ stop . _eod  =——EJ(-=-
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STATUS: B08d---—Stopped

mode, that is,
and stop, then run in real time to 063EH, and so on. The

the processor can run in real time to 0AOCH

ad trace micht be as shi

dig

Display Options

The display options include registers, memory, and trace.
An example of a display of the processor registers is as
shown in Fig. 8.

Memory displays can be of any assigned memory. Modes
of display include absolute, mnemonic, offset, and
dynamic. The absolute mode displays memory in hexadec-

imal and ASCII, as shown in Fig. 9. The mnemonic mode

displays memory as opcodes, mnemonically, as shown in
Fig. 10
In the offset mode, displayed addresses are offset by a
specified value, The dynamic mode displays memory using
a sampled mode (not real time).
Trace displays show the results of analysis data. Modes of
display include:
1. Mnemonic, to display opcodes mnemaonically
2. Absolute, to display all data in hexadecimal
Packed, to group data h_‘,' IJ]]I_lI\i."
1. Unpacked, to display all data without grouping

5. Address offset, to display addresses offset by a specified

STATUS: B@80----Stopped Trace complete

display memory BATH

Trace complete

displey memory

—t _Siep __ _irace  dosplag . modafy __stop . sod

Fig. 10. A mnemonic-mode memory display, showing

value. This feature allows the user to view program code

writh addraceps o +} e~ i 1 1:
with -1\1'-_11!_'.‘").“""' do LICY al© Ul -.|||' cl.‘"‘\'-']'.ll..'it"l LISl

Modify Options
The modify commands include:
1. modify register, to modify any specified register
modify memory, to modity any specified memory to a

specified value.

Simulated /O

Simulated I/O control allows the user to use 64000 input
output facilities until the real VO system can be interfaced to
the processor. Since this is done in a sampled mode, not in
real time, it is called simulated I/O. The general procedure is
to give the control address for the /0O device desired, fol-
lowed by a status byte specifving the type of request. Any
additional parameters are placed after the control address

The standard IO devices are display, printer, RS-232-C
interface, keyboard, and disc files. Display requests are
open, close, roll lines 1-18 up and write to line 18, set row
(1-18) and column (1-80), and write to row/column. Printer
requests are open, close, and write line. RS-232-C requests
byte,
and read/write buffer data. Keyboard requests are open,

are set controls/modes, read status, read/write si

close, set mode, read line, and read special keystrokes, Disc
file requests are create (up to 6 files), open, close, position to
record, read/write record, and change file name.
Conclusion

The 64000 emulation system, with wholly separate host
and emulation processor architecture, buffered pod for iso-
lation and protection from the user system, the background
memory concept, and a novel method of host and emulation
system interaction, provides a new level of transparency to
the user system and offers unrestricted use of the full ad-
dress space, interrupt systems, and all other functions of the
microprocessor being emulated. This, coupled with flexi-
ble memory mapping, real-time analysis unit and an inte-
grated software support package, provides a powerful emu-
lation tool in a new microprocessor development system
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The Pascal/64000 Compiler

by lzagma |. Alonso-Velez and Jacques Gregori Bourque

language rich in control and data structures that

make programming natural, that is, the Pascal struc-
stures are close to the way one would express the same
concepts in English. The block structure of Pascal encour-
ages the programmer to write modular and well-structured
programs, and features such as tvpe checking force the
programmer to understand the program logic in detail be-
fore and during program development. The fact that the
program is well structured and written in a way that is
natural to the programmer makes understanding of the
program easier, both at the time it is being developed (for
debugging purposes) and later when it needs to be changed
(for maintenance purposes). In summary, Pascal makes
program development easier and more enjoyable all the
way from the moment of conceptualization, through writ-
ing and debugging the program, to maintaining it at a later
time.

P ASCALIS A STRUCTURED computer programming
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Pascal/64000

A compiler is a program that translates a high-level com-
puter programming language into low-level machine lan-
guage instructions. Effectively, the compiler simulates a
high-level language machine.

The Pascal/64000 compiler is designed to translate pro-
grams written in Pascal into code for microprocessors. It is
implemented as a subset of the language definition given by
Jensen and Wirth,! but several options and extensions have
been added to the language to make it more appropriate for
microprocessor programming.

Extensions include type-changing capabilities, an
OTHERWISE clause for the CASE statement, the BYTE stan-
dard type (for microprocessors with byte addressing
capabilities), some standard procedures such as SHIFT and
SHIFTC for manipulating data and ADDR for getting at the
address of a variable, separate compilation of modules (in
standard Pascal the whole program has to be compiled in a
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single module), constant expressions, and HEX, OCTAL and
BINARY bases.

One of the options available in the compiler allows the
user to declare variables and procedures as GLOBAL or EX-
TERNAL for separate compilation. This also permits the use
of routines not written in Pascal. These routines can be
declared as EXTERNAL in the Pascal program and, as long as
the parameter passing is compatible with the Pascal calling
sequence, they can then be called and used from the Pascal
source program. The Pascal compiler subroutine calling
sequence is fully documented to allow the programmer to
use non-Pascal routines.

Other important options include the capability of
separating data from program code (for example, data can
be allocated to RAM and program code to ROM) and the
accessing of absolute addresses (can be used to implement
memory mapped V0],

The following is a list of compiler options and a short
description of each. It is important to note that the pro-
grammer who prefers standard Pascal can ignore all the
options and extensions and write portable standard Pascal
programs.

$ANSI ONS§, SANSI OFF§$
ON causes a warning message to be issued for any feature
of Pascal/64000 that is not part of standard Pascal. De-
fault: OFF.

$ASM__FILES

This option causes the compiler to create a source file
containing the equivalent assembler source information
of the program being compiled. This source file (named
ASMB085) is acceptable to the assembler for the 8085
microprocessor. If the LIST_CODE option is ON the
ASMB808s file also contains intermixed Pascal source lines
as assembler comments. Default: OFF.

$DEBUG ONS$, $DEBUG OFF$
ON causes all arithmetic operations with bytes and inte-
gers to call external library routines, which insure that no
overflow, underflow, or divide-by-zero operations occur.
Default: OFF.

$EMIT__CODE ON$, $EMIT__CODE OFF$
ON specifies that executable code is to be emitted to the
relocatable code file. Default: ON.

$END_ORGS
Used after the ORG option to return the variable allocation
to the previous mode.

SEXTENSIONS ONS§, EXTENSIONS OFF$

ON allows the programmer to use the microprocessor-
oriented extensions to the Pascal language. OFF disallows
the use of these language extensions. The extensions
include functional type changing, the address function,
the BYTE data type, built-in functions, SHIFT and SHIFTC,
and nondecimal constant representations. EXTENSIONS
ON turns RECURSIVE OFF and vice versa. Default: OFF.

SEXTVAR ONS$, SEXTVAR OFF$
ON causes all variables defined until the subsequent

EXTVAR OFF is encountered to be declared EXTERNAL. No
local storage is allocated in this moedule for such vari-
ables. Default: OFF.

S$GLOBPROC ONS, $SGLOBPROC OFF$
ON causes all main-block procedures defined until the
subsequent GLOBPROC OFF is encountered to be declared
GLOBAL so they may be accessed by other modules. De-
fault: OFF.

$GLOBVAR ONS, SGLOBVAR OFF%
ON causes all main-block variables defined until the sub-
sequent GLOBVAR OFF is encountered to be declared
GLOBAL so they may be accessed by ather modules. De-
fault: OFF.

SLIST ONS, SLIST OFF§
ON causes the source file to be copied to the list file. OFF
suppresses the listing except for lines that contain errors.
Default: ON.

SLIST _CODE ONS§, $LIST__CODE OFF$
ON specifies that the program list file will contain the
symbolic form (assembly language) of the code produced
intermixed with the source lines. Default: OFF.

SOPTIMIZE ON$, $OPTIMIZE OFF$

ON causes certain run time checks to be ignored, such as
prechecking the range values of a CASE statement. This
mode will typically produce somewhat smaller and faster
modules that are susceptible to bad (out of range) data at
run time. This option should only be used for well-
structured programs that have been thoroughly de-
bugged. Default: OFF,

$ORG number$
All variables declared until END_ORG is encountered
will be allocated sequential absolute addresses starting
from the number specified.

$PAGE$
Causes a form feed to be output to the listing file. Default:
NULL.

$RECURSIVE ONS$, $RECURSIVE OFF$
ON causes all procedures declared until the subsequent
RECURSIVE OFF is encountered to be compiled to allow
recursive or reentrant calling sequences. OFF causes pro-
cedures to be compiled in a static mode which does not
allow for recursive or reentrant calling sequences. De-
fault: ON.

$SEPARATE ONS$, $SEPARATE OFF%
ON enables the separation of program, constants, and
data, such that program code and constants are put in the
PROG relocatable area and data is put in the DATA relocat-
able area. OFF puts all program code, constants, and data
into the PROG relocatable area. Default: OFF.

$TITLE “string"'$
The first 50 characters of the string are moved into the
header line printed at the top of each subsequent page.
Default: NULL,
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Program Debugging with Pascal/64000

by P. Alan McDonley

High-level languages allow a programmer to create algorithms
logically without concern for processor-dependent steps. During the
debug phase of program development using the target machine
emulator, a programmer must trace the program in machine code, a
language different from the source code language, such as Pascal,
that was used to design the algorithm.

Pascal/64000 generates relocatable symbolic information during
the code generation pass (pass 2) to help the user debug programs.
In particular, the user can request an expanded listing (see Fig. 1).
This listing contains the assembly language source statements cor-
responding to the machine code placed in the relocatable file, inter-
mixed with the original Pascal source lines. All of the symbols and
labels used in the compiler-generated assembly language source
lines are available during emulation to ease the user'stranslation from
the original Pascal to the machine code seen when tracing execution.

In Fig. 1, the leftmost number is the source line number. Next is a
relocatable offset, and next a level number, Beiow each line are the

NAME "DRIVER Pascal
T heoe
4 ooy
ERUTTT
& oo
7oooen
B OO0

o TAUOMHE

SPLAY RREAYD
RGF

F GHs
SWER1EYTE

§01 OF BYTE

4T HHEWEE

PELTVRE UFFS
DISELAY _INBEW IBYTE]

» D000
(el T
11 Doot
tZ o ooo

E DISPLAY_RHSUER:

13 o0d o0

000 BISFLAYT_ANS

14 Ul 2 DISPLAYIDISPLAY_INCEXNT =
onog  Ta 2o LD@

cp 2737 TALL
1

3 0015 2

Fig. 1. Expanded listing of relocatable code produced by the
Pascal/l64000 compiler contains assembly language state-
ments intermixed with the original Pascal source lines. This
makes program debugging easier.

relocatable offset, opcode and mnemonic equivalent of the code put
in the relocatable file.
The user interacts with the emulator using statements such as:

run fram DISPLAY __ANSWER until LINE_17
or
display memary ANSWER

where DISPLAY _ANSWER is the name of a global procedure in the listing
above, LiNE_17 is a local symbol that the compiler generated for line
17 of the source, and answen is the name of a global variable. Using
this listing, the programmer can madify variables and execute seg-
ments of a procedure or program separately, so that each part may
be proved correct and the interactions more closely followed.

Global and external variables may be accessed by name during
emulation. Local variables are renamed by the compiler and may be
inspected and modified using the new name found in the expanded
listing. In the listing above orRiveR_D is the local name of DispLAY _IN-
DeEx. To use specific variables for debugging purposes, the user may
declare them to be GLoeaL. This option causes the symbol name (up
to 15 characters) to be sent to the linker as a global symbol in the
relocatable file.

Traditionally, when errors are detected during execution, inter-
mediate results are printed at run time and errors are narrowed fo a
few lines of source code, which can then be proved incorrect by
hand execution. Much time can be spent with this type of program
development.

Run time library routines may have features to aid the user in
debugging programs or may be designed for final product use,
where errors are not expected. A DIVISION BY 0 effor message would
mean little to the grocery store clerk attempting to weigh tomatoes.

The Pascal/64000 debug library provides the user with range
checking for arithmetic operations, protection against misuse of
dynamic memory space, and detection of some other types of non-
fatal errors. When an error occurs, program execution is suspended
to allow the input parameters and program flow at the error to be
examined, By listing local symbols in a file called Derrors, the value of
each register and the address of the calling routine are displayed.
Fig. 2 shows a sample listing of the local symbols in Darrers. When an
error is detected, the program counter address at which program
execution stops is displayed. Maiching this address with the upper
addresses in the middle column of the terrors listing reveals the type of
error that caused execution to stop. The lower entries in the rightmaost
column of the listing show the values of the registers passed to the

BEBFH CaH

_END_PROGRAR
¥ OEATH 0iH

Z
P ERNLASE
:

CERR_DIV_BY_U UESCH B
I_ERR_FUTURE DEESH BH
I _ERR_HEAP DEETH 0EH
£_ERR_OVERFLOW DEF4H 081
F_ERK_SET HEADH GEH
OEYEN aH
NEEBH FFH
NEERH &EN
UEERH Al
GEEAH aiH
UEEDH AEH
UEELH LOH
REEFH BIH
dEEEH 20H
DEETH DisH
IEE&H BDH

Fig. 2. A typical listing of local symbols, program counter
addresses, and register contents at the point where an error is
detected. Knowing the address at which program execution
stops, the user can determine the type of error from this listing
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routine that detected the error

By viewing the stack, the curmrent state of each recursion into
procedures and functions can also be determined. In all, with the aid
the 64000 emulators and Pascal, the productivity of microproces-
1 software designers is raised substantially. Pascall6400C has
een designed to support the user without knowing the user’'s config-
providing the tools neaded to code efficiently for micro-
processors in a high-level language
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SWARN OFFS, SWARN OFF$
ON specifies that the warning messages will be displayed
and written to the listing file. OFF specifies that only error
messages will be displayed and listed. Default: ON.

SWIDTH number$
The number determines the number of significant charac-
ters in the source line. Additional characters are ignored.
Default: 120.

In accordance with the 64000 design philosophy, the
Pascal compiler is designed to be easy to use and have
capabilities that, combined with emulation, provide power-
ful debugging tools. Any global procedure or variable can
be addressed by name from emulation, and program state-
ments can be accessed by their Pascal program source line
numbers.

The compiler is evoked by pressing the softkey labeled
compile, The softkeys then guide the user to the available
options. The first line of the source program is a special
compiler directive that indicates to the compiler which
microprocessor it is to compile for. The microprocessor
name appears embedded in quotes: "8085", “Z80", and so
on. During compilation the status line of the 64100A dis-
plays the compiler status at each point.

Implementation

Pascal/64000 is implemented in two passes (Fig. 1). The
first pass reads the Pascal source program and checks for
errors. If no errors are found the compiler generates data for
the second pass or code generator. This data consists of an
intermediate language (IL), which contains the information
from the source program that the second pass needs to
generate code for the given microprocessor. The code
generalor then reads the IL and from it produces the relocat-
able code to perform the operations described by the pro-
grammer in the original Pascal source program.

If errors are found during the first pass, the compiler
writes the errors to the display. At the end of compilation
the display also makes available to the programmer a sum-
mary of the meaning of each error found in the program. If a
list file has been indicated, the compiler includes informa-

tion about errors in the list file as well. Errors are listed even
if the NOLIST option is on. In the event of errors the com-
piler does not generate relocatable code; the code generator
is not evoked and only the listing second pass is executed.

Intermediate Languages

Intermediate languages have been implemented as zero-
address, one-address, two-address, and three-address
forms. Only the three-address form can explicitly describe
each of the source and result operands of a binary operation.
Each of the other methods has some implicitly specified
operands.

The zero-address form uses a data stack, where all source
and result operands are implicitly found. Loads and stores
are equivalent to stack push and pop operations. Binary
operations assume that both source operands are on the
stack before the instruction. They are popped after the oper-
ation and the result is pushed onto the stack. This form of IL
is generally well suited to top-down or recursive-descent
compilers, since it allows for the generation of an IL for a
particular language construct at the first possible moment
after semantic recognition. It is the IL used in the popular
P-code versions of the portable Pascal compiler.

The one-address form uses a single implicit register as
part of each IL instruction. All operations may operate on
this single register or on this register and memory.

The two-address form uses a fixed number of registers
and allows an IL instruction to operate explicitly on a pair of

Relocatable
Code
Input to Complier Output from
the Compiler the Compiler

Code for
the Given

Pascal
Source
Microprocessor

Fig. 1. Pascal/64000 is a two-pass compiler. The first pass
reads the Pascal source program, checks for errors, and
produces an intermediale language (IL). The second pass
generates code for a specified microprocessor,
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registers or on a register and memory. A pair of operands
may be specified for each instruction and the result of an
operation goes into one of the specified operands (usually
one of the explicit registers).

By allowing each source and result operand to be
explicitly described, the three-address form permits the IL
description of a program to be more suitable for translation
to target processors with any type of stack or register ar-
chitecture. The other three forms with their implicit result
operands are more conveniently translated to target
machines with a stack architecture (zero-address IL),
single-register architecture (one-address IL), or multiple-
register architecture (two-address IL).

Pascal/64000 Intermediate Language

The Pascal/64000 compiler generates relocatable object
code for microprocessors from an intermediate language
(IL) temporary file created by the compiler during pass 1.
This IL file is logically equivalent to the original source
program. The code generator module (pass 2) creates the
machine-specific object code relocatable file from this IL
file.

The Pascal/64000 compiler uses a three-address (or qua-
druples) IL. The four parts of a quadruple are the instruction
or operation, the leftmost source item, the rightmost source
item, and the result. For example, the Pascal expression:

A: =B-C;

would cause generation of the intermediate language

quadruple:
SUB B,CA Subtract C from B, store result in A.

For comparison, the equivalent code using a zero-address

IL (the P-code portable Pascal compilers use this form)
would generate the following IL instructions:

LOAD B Push value of B onto stack

LOAD C Push value of C onto stack

SUB Subtract first stack item from second, pop
both, push result onto stack

STORE A Pop stack into A.

For a one-address IL the following instructions are

equivalent:

LOAD B Load accumulator with B
SUB C Subtract C from accumulator
STORE A Store accumulator into A.

For a two-address IL the following instructions are equiva-
lent:

LOAD r,.B Load register r with B
SUB r,C Subtract C from register
STORE r,A Store register into A.

For this example the number of IL instructions for each
form of IL is in the ratio of 4:3:3:1 for zero-address, one-
address, two-address and three-address forms, respec-
tively. Some important results for optimization can be in-
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ferred from the compactness of quadruple IL representa-
tions. It is time-consuming for a code generator to analyze
multiple IL instructions to detect patterns for optimization.
Since the quadruple form of IL packs more information in a
single instruction, it simplifies the effort to generate
reasonably efficient object code for a specific target micro-
processor,

Each operand of a Pascal/64000 intermediate language
quadruple has an explicit operand type, which specifies its
addressing mode as a memory location (absolute, relocata-
ble or external) or as an implied address (immediate con-
stant or temporary pseudo-address). The mapping of these
operand types toa specific microprocessor instruction set is
left to the code generator. Some processors with limited
memory accessing modes use a purely static (but relocata-
ble) form for all explicit memory references. For these pro-
cessors recursion is supported by additional run time
routines to permit safe recursive calling sequences. For
other processors with more sophisticated memory access-
ing modes (particularly if register and stack relative
addressing is available) data and parameters are allocated to
the stack in a more traditional dyvnamic local memory allo-
cation scheme.

Most optimizations implemented by the Pascal/64000
compiler are local optimizations performed by the pass 2
code generator specific to the target processor. However,
some optimization of expression evaluation is done during
pass 1. Expressions are built into trees as they are being
parsed. The IL generator traverses these trees before
generating the IL instructions and attempts to minimize the
number of tem porary results needed to evaluate the expres-
sion. These expression trees are also used to discover con-
stant expressions, which are folded into a single constant
before any IL is generated. It is possible to perform some
global optimizations during pass 1, and this may allow fora
reduction in the size of the IL file.

Code Generation

The intermediate language representation of Pascall
64000 contains all the information needed to create
processor-specific code equivalent to the source program.
The translation of the intermediate language to relocatable
code for a specific target microprocessor is guided by the
limitations of the target processor's instruction set.

All programs must eventually fit into a system that has
been implemented in a specific hardware configuration,
usually with some fixed memory size. Generally, if more
memory is required in a specific implementation, it will
cost more to design and produce that system. The speed of
program execution is generally less important, in the sense
that specific program modules that consume a large
percentage of program execution time can almost always be
reprogrammed to execute faster. With these observations
concerning the relative importance of memory use and
execution time, code generation patterns have been chosen
to minimize memory use rather than execution time where
obvious tradeoffs can be made.

Two areas where the memory minimization objective can
have a significant impact on the structural form of the code
generation patterns are the use of static versus dynamic
allocation of memory for parameters and local variables and
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The 64000 Linker

by James B. Stewart

Tne 64000 linker takes relocatable object files generated by the
assembler or Pascal compiler and combines them to produce an
executable absolute file. The linker resolves symbolic references
between relocatable files (linking). It also assigns relocatable code to
an absolute location in the target processor's logical address space
and changes memory references to refer to the absolute memory
locations (relocation). The linker was designed with three major
goals: to support a wide variety of microprocessors, to be easy to use,
and to provide the user with a complete set of teatures to facilitate
linking relocatable modules for complex microprocessor systems.

The designer of a microprocessor system needs to control the
locations of code and data in memory. Before the widespread use of
linkers, this was done by coding the entire system in one assembly
language program with fixed absolute addresses. A small change in
the code required that the entire system be reassembied. Besides
being time-consuming, this made it difficult for multiple designers to
work concurrently on the same software.

A relocating linker overcomes these problems. Each program
segment may be developed and assembled independently. The
designer specifies to the assembler that the code is relocatable. At
link time, the relocatable code from muitipie files is concatenated into
one continuous piece of memary.

The 64000 assembler and linker provide the user with several
relocatable areas. The assembly language statemenis ORG. PROG
DaTA, and comn define the relocatability of code. orc defines code to
be absolute or nonrelocatable, PrROG and DATA are general-purpose
relocation counters that allow the user to partition code to be loaded
at different memory locations, for example all program in ROM and all
data in RAM. comn specifies that the data be relocated to the same
starting address as the comn from all other relocatable modules. This
is similar to unnamed common in FORTAN. When the relocatable
modules are linked, the user provides the starting addresses for the
PROG. DaTA and comn relocatable code. To provide greater flexibility,
the user may define several PROG, DATA and comn areas. For example
the PROG. DATA, and comn areas for files A and B may start at memary
locations 1000H, 2000H, and 3000H respectively, and for files C and
D at locations 8000H, EOO0H, and 3000H.

Aload map and a cross-reference table may be generated for each
link. The load map (Fig. 1) describes the final memory locations of all
relocatable files, The linker also keeps track of memory use and
warns the user if any conflicts exist. A "memory overlap’ error mes-
sage is given for any memory that has been allocated more than
once.

A teature of the 64000 linker known as no-load allows the user to
design overlays into the system. Any subset of the relocatable files
may be declared to be no-loaded. This subset is linked and relocated
with the files that are not no-loaded. The only difference is that the
absolute file generated by the linker contains no code from the
no-loaded relocatable files. For example, suppose the user has 6000
bytes of code and data, but only 4000 bytes of physical memory. It
may be possible to use overlays to partition the program into pieces
that will fit in 4000 bytes. This is done by creating two separate
absolute files. The first contains one set of relocatable routines plus
the shared routines and data. The second contains the remaining
relocatable routines, also linked to the shared routines and data. The
shared routines and data would be no-loaded in the case of the
second absolute file.

All 64000 emulators allow the user to debug programs using the
symbals from the source code. This is particularly useful when deal-
ing with the relocated code, since the user doesn't have ta know

1000

Program B

oo Y

3000

8000 Program C

Program D
M) DataC |
Fig. 1. A load map may be generated each time the 64000
linker is used. The map shows the final memory locations of alf
relocatable files.

where in memory the linker put the code. Any location in memary may
be referred to by its symbolic name or its absolute address. To
accomplish this, the assembler outputs the entire symbol table for
each source program. When the relocatable code is linked, its reloca-
tion addresses are saved so they may be used during emulation to
find the absolute values of symbols, The linker also generates a
symbol file of global symbols. This file has two uses. It is used by the
emulator, along with assembler symbaol tables, to provide symbolic
debugging. It may also be used in subsequent links to preload the
linker's symbol table. This feature has uses in overlays and in reduc-
ing linking and download time in large systems.

A table-driven architecture allows the linker to support a variety of
target processors. Information in each relocalable file defines the
intended target processor. Each supported processor corresponds
to a systemn disc file. This file is used by the linker to configure itself for
the particular processor,

The configuration files contain two basic types of information: gen-
eral information such as word width and addressing space, and
tables or sequences of instructions for the linker. The different instruc-
tion types and addressing modes allowed in the targel processor
correspond to entry points in the linker table.

Within the assembler-generated relocatable files, each operand
address is tagged as either absolute (no relocation), FROG relocata-
ble, pata relocatable, comn relocatable, or external reference. Re-
locatable and external tags contain a reference to an entry pointin the
processor-dependent linker table. Knowing the relocatability of the
operand, the linker first computes its absolute address, independent
of the target processor. It then follows the instructions in the linker
table to generate the actual operand. The table allows operations
such as shifts, masks and compares, which may be performed on
various operands such as the absolute address, the current program
counter, or constants. In the 6800 microprocessor, for example, the
direct addressing mode requires that an instruction's operand ad-
dress be in the range O=address=255. The linker table for handling
the direct addressing mode performs the following operations:
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LOADWORD = ABSOLUTE _ADDRESS

TEMP = OFFH

IF LOADWORD = TEMP THEM "Address out of range
OUTPUT = LOBYTE (LOADWORD)
PROGRAM_COUNTER = PROGRAM__COUNTER + 1
RETURN

The various instruction formats and addressing modes for all sup-
ported microprocessors are implemented using similar seguences of
simple instructions. The obvious advantages are the speed and ease
with which the linker can be configured to support additional proces-
sors. Typical linker tables are generated with 20 to 50 lines of
processor-specific code

James B. Stewart
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the use of run time library subroutines to perform many
relatively simple operations. The 8085 microprocessor, for
example, is able to access memory directly as bytes or words
with immediate two-byte absolute (relocatable) addresses,
and it may access bytes of memory indirectly through regis-
ter pairs. Dynamic allocation of local data using stack rela-
tive addressing must be performed by in-line code or
through subroutine calls using the stack offset value as a
parameter. A static allocation scheme permits access to
local variables or parameters with an arbitrary offset from
some (relocatable) label with a direct access instruction
which requires only three bytes. This permits access to both
byte and word simple variables. Since Pascal programs
must access many variables, this reduction of code size by
40 to 50% for each variable access can save a significant
amount of memory in a large program. This staticallocation
of local variables does add additional code and run time
overhead for the user requiring recursive calling sequences.
These additional memory and time considerations are a
reminder to use recursion only where absolutely necessary.

The 8085 instruction set does not support arithmetic for
16-bit signed numbers. IF I, ], and K are type INTEGER, the

statement:
K:i=l-]J-K

generates the following 8085 code, calling library routine
Zintsub to perform the subtraction operation:

LHLD TEST1_D
XCHG

LHLD TEST1_D+2
CALL Zintsub

put I in register HL
move | to register DE
put | in HL

subtract ] from 1

XCHG put result in DE
LHLD TEST1_D+4 get K
CALL Zintsub subtract K from (1-])

SHLD TEST1_D+4 store the result to K.

The 16-bit subtraction routine from the non-debug library
is a relatively short program:

Zintsub  PUSH PSW SAVE ACCUMULATOR

DCX H TWO'S COMPLEMENT REG HL (Y)
MOV A\H COMPLEMENT HIGH BYTE

CMA

MOV HA

MOV AL

CMA COMPLEMENT LOW BYTE
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MOV LA

POP PSW  GET BACK ACCUMULATOR
AND FLAGS

DAD D X+(—Y] ADD DE AND HL

RET

Using in-line code it would take eight bytes of code to
perform the integer subtraction operation each time it is
needed. Using the library approach above, it takes eleven
bytes for the library routine and only three additional bytes
for the subroutine call each time a subtraction is required.
After only three integer subtractions the program is already
four bytes smaller. For ten subtractions in-line code genera-
tion would have added 80 bytes of code to the program,
while library calls add only 41 bytes.

This comparison of in-line code versus library sub-
routines for even simple operations accounts for a signifi-
cant memory savings when applied to the most commonly
used operations that cannot be accomplished in a few bytes
of instructions on the target machine.

When the linker creates an absolute file, it tries to find any
unsatisfied symbols or routines in a specified library file. It
only needs to append run time library routines that have
been specifically requested. The actual code size added to
an absolute file from the run time library is typically much
smaller then the 4K bytes required for loading the entire
library.

If a user feels the need for a run time library routine that
performs some special operations or is otherwise tailored to
the specific application, the user can write another version
of any run time library routine using the same name as that
used in the library. The new relocatable file is then loaded
with the linker in a specific location and the linker will not
load the library module of the same name. Thus the run time
library serves as a basis for the user's program environment
and may be used or improved as the program requirements
evolve.

Performance

A certain amount of overhead is expected whenever a
high-level language is used. One can hardly claim that it is
possible to write all programs in Pascal in such a way that
the code generated by the compiler will be as efficient as the
code that would have been obtained by direct assembly
coding. However, as described above, some optimization
has been implemented to generate efficient code: the con-
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tents of registers are remembered over operations, short
jumps are implemented for predefined labels that are
within range. the overhead for parameter passing is in the
receiving routine, and so on. In short, the Pascal/64000
compiler generates good space-efficient code.

The speed of the compiler is 400-600 lines per minute,
depending on the way the programmer writes the program
and what kind of program is being written. The compiler
speed may also vary from microprocessor to microproces-
sor, since it depends on the level of difficulty and the
amount of work required to generate code for the given
microprocessor.,

By overlaying different parts of the compiler, it was made
to fit in 24K words of storage without degrading its perfor-
mance. A diagram of the compiler overlay structure is given
in Fig. 2.

Conclusion

Because of the inherent inefficiencies involved in using a
high-level language, users of small computers have in the
past written their programs almost totally in assembly lan-
guage. Pascal/64000 is an alternative. It has all the well-
known advantages of a high-level language in addition to
space-efficient code generation.

The Pascal/64000 compiler is implemented as a subset of
the basic definition of standard Pascal with extensions and
options that make it possible for microprocessor program-
mers to use a high-level language efficiently. The pro-
grammer can ignore the extensions and options and write
standard Pascal, if desired.

Currently the 8080/8085 and Z80 microprocessors are
supported and others will be supported in the future.
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An Assembler for All

by Brad E. Yackle

offered to the software designer was the assembler.

It is a very basic level of programming, since each
instruction usually controls a single function of the proces-
sor. Then higher-level languages were introduced, allow-
ing programmers to generate software faster and easier, and
making code more readable and transportable. However,
assemblers will always be part of a computer system, espe-
cially a microprocessor system. Assembly-level program-
ming is very close to the machine language of the processor
and is therefore good for interacting with hardware and /O
devices. Since assembler code allows complete control of
the processor, the assembly language programmer can gen-
erate the most efficient code possible. Assembly-level pro-
gramming is the only practical programming tool for cus-
tom or bit-slice processors.

The number of microprocessors on the market and being
developed by industry is very large. Each processor has a set
of instructions that control its functions. Unfortunately,
each processor is different; it has different instructions,
registers, speed, memory size, and so on. One assembler
cannot possibly be general enough to understand the as-
sembly languages of all processors, so typically a new as-
sembler must be generated for each.

The prospect of generating a new assembler for each
processor's assembly language is highly undesirable. First
there is the problem of writing the basic assembler to handle
the syntax of assembly language programming. The assem-
bler must handle I/O operations as well as parse the operand
fields. It must be able to handle expressions, generate object
code, and give error messages when necessary., All as-
semblers have the same basic syntax for instructions. In
general, assemblers expect an optional label field followed
by an opcode and then some tvpe of operand. However,
each assembler must recognize a different set of instruc-
tions along with register and/or address-type operands.
Therefore, code must be added and/or modified to handle
each new processor. Each time this is done, there is a possi-
bility of generating new errors in the common assembler
functions. Later, if modifications or changes are necessary,
all of the assemblers may have to be modified.

Thus, a new assembler for each new processor language

T HE FIRST PRACTICAL PROGRAMMING TOOL
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applications programming. This language standard will
assure the continued use of Pascal on HP products within
HP and by its customers.
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Microprocessors

introduces two software problems, arising from the dupli-
cation of code. One is the introduction of new errors when
translating code from the basic assembler to each new one,
and the second is the problem of software update which is
multiplied with each duplication of code.

64000 Assembler

The assembler for the 64000 Logic Development System
is designed to be flexible enough to understand the instruc-
tion set of any processor’s assembly language. This means
that the 64000 assembler contains some processor-
dependent code to handle the variety of instruction sets.
However, the problem of software duplication is minimized
by making the majority of code processor-independent and
putting the dependent code in tables that the assembler
reads to understand the instructions. An assembler like this
is known as a table-driven assembler. Its main functions are
the same for all languages, and it contains additional infor-
mation in the form of tables to understand processor-
dependent instructions.

The common functions of the assembler cover the in-
teraction with the host computer system. This includes
reading and parsing the source file. The assembler handles
all of the input and output file operations dealing not only
with the source file but the relocatable and list files as well.
It parses the source lines and identifies the instructions for
the particular language. It keeps a symbol table containing
symbols along with associated values and symbol types. It
checks operand fields and flags errors if syntax and/or ad-
dress rules are violated. The assembler is designed to be as
general as possible to allow for the minor differences in the
syntaxes of different processors’ assembly languages.

The part of the 64000 assembler that interprets table code
to understand each processor’s instruction set consists of a
set of routines that use standard assembler functions but
read the table code to decide which functions to perform.
Thus the assembler can be redefined simply by reading
different table code.

Assembler Operation
The 64000 assembler reads the first line of the source file
and expects to find a key that tells it which type of processor
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language is in the file. It then reads another file that con-
tains the table code for the language. The table code can be
broken into two parts, the opcode set and the set of rules
governing the operand field.

Each processor has a set of instructions, which are given
names by the designers. These names are commonly called
the opcode or mnemonic set of the processor, and are gener-
ally abbreviations of the functions performed. For example,
let us suppose we have a processor that has an accumulator

and an instruction to load data into it. An assembly lan-
guage statement to do this might look like the following:

LDA DATA

where the opcode is LDA, which means load (LD) the ac-
cumulator (A) with data found at the address pointed to by
the symbol DATA. The opcode set of the processor is com-
posed of all of its opcodes, including a set of standard
opcodes that control program listing, external and global
symbols, the macro facility, and other functions.

Once an opcode is identified the assembler checks to see
whether it is an instruction that requires table code to un-
derstand the operand. If so, control is transferred to the
special routines that use the table code to control the as-
sembler. The tables instruct the assembler how to parse the
operand field, what values to expect, how to generate the
object code, and what error messages to generate, if any.

Since a set of tables is the only requirement necessary for
the assembler to recognize different languages, we decided
to make this capability available to the user. A user can
generate an assembler for a custom chip or bit-slice proces-
sor, or enhance existing assemblers with custom instruc-
tions. To generate a custom assembler the user must de-
scribe the syntax of each instruction and how to generate
the object code. The 64000 assembler will take care of all
system overhead. It will generate relocatable files that can
be handled by the system linker and will produce list files
like any of the other system assemblers.

Table Processor

The part of the assembler that handles the table code is
really a type of simple processor itself. It takes the specially
coded table information and decodes it into instructions for
the assembler. These instructions call assembler functions,
such as expression handlers and object code generators.
They also allow for arithmetic operations and testing of the
results.

The best way to show how the process works is to give a
simple example. Let us suppose that we have a processor
that has two instructions that have the same type operand
and addressing modes. We will call them LDA and STA, for
load accumulator and store accumulator. The object code
forms of these instructions are both 8-bit opcodes and re-
quire one register as their operand. The value of the register
is combined with the eight bits of opcode and resides in the
third and fourth bit positions as follows:

00rr0000

The user will predefine to the assembler the registers that
are legal for the instructions, and will give these registers a

value and a type. Let us assume that the user makes the
obvious choice and defines the registers as type “register.”

REGISTERS
A =00
B=0
C=10
D=11

The object code that the assembler is expected to produce is
also defined:

LDA = 10000000
STA = 11000000

The assembler will now recognize these mnemonics on
source lines and pass the defined object code to the next set
of table instructions for processing. The table instructions
process the code as foilows.

EXPRESSION General-purpose expression
parser
IF TYPE <> REGISTER THEN GOTO OPERAND__
ERROR
LOAD VALUE Get the register number
SHIFT_LEFT 4 Move to proper position

OR OBJECT_CODE
GEN__CODE ABS 8,

Combines with apcode value
Generate the code

ACCUMULATOR
DONE Signal to return to assembler
OPERAND__ERROR
ERROR 10_ERR Invalid operand found
DONE Return

This routine first calls a general-purpose expression
handler designed to parse expressions and return a value
and a type. Next it checks the type returned to make sure it is
one of the predefined registers. If the operand is legal the
value of the register is shifted left four bits and combined
with the object code passed by the main assembler. Line 6
generates eight bits of absolute data to the relocatable file
which is the desired result of the instruction. If an error is
found then an error message is generated from the instruc-
tion in the ninth line.
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Conclusion

In conclusion. the 64000 assembler is a very general
table-driven assembler. It is easy to maintain and expand to
handle new processors. This increases its reliability, since
the majority of its code is processor-independent and well
tested. This also aids in software update, since we are not

Viewpoints

faced with duplication of code. Assembler tables can be
changed without affecting the main assembler, and the user
has the ability to enhance existing assemblers or generate
others for new languages.

Chuck House on the Electronic Bench

{very large-scale integration). The potential of VLSI is

staggering. For example, we'll have extremely powerful
32-bit parallel computers with one-megabyte instruction rates on a
single chip for a few hundred dollars within a very few years. We'll
go from 16K to 64K to 256K to 1M RAM chips in the same time
frame. We'll also be facing some great design challenges because of
these silicon advances. The software crisis is already said to be
upon us, since the cost of developing correct code for ROM-based
designs far outweighs the cost of the silicon for even relatively
high-volume products. The 64000 Logic Development System de-
scribed in this issue was created to address these problems.

The 64000 System and the needs of VLSI portend a dramatic shift
in emphasis in the types of tools available for designers. For years,
instrumentation has provided analysis capability for use after the
initial design was realized. We are now starting to create synthesis
tools, which aid the designer in realizing products faster, more
accurately, and more productively. This shift from analysis tools to
synthesis tools is fundamental to our ability to take advantage of
the “macro’” power of VLSI. It is conceptually impossible to realize
effective designs with millions of gates and millions to billions of
coded instructions in software without new automated techniques
to replace the “brute force” techniques employed in our industry so
far.

A quick example might be the familiar rectangle layouts for
emitter, base, and collector of a transistor. They are replicated
many times, and relocated in tedious fashion by a designer or
draftsman as a function of the desired electrical circuit. True, this
process has been automated in recent years, primarily with
computer-aided artwork generators that include checking al-
gorithms to assure that the process design rules are followed. This
has eliminated some of the drafting and spatial relations tedium,
but it has had little impact upon the creative design process. A
more useful step might be the macro-cell approach: a series of
functional cells is preprocessed in silicon, and a simple design
algorithm for interconnecting cells creates the mask set to realize
the equivalent custom gate array required.

At a much higher synthesis level, it's conceivable that the
mathematical transfer function of the desired IC could be entered
into a computer-aided design tool, which would generate the mask
sets to create the IC. This is the goal of the California Institute of

T HE ELECTRONICS INDUSTRY is entering the age of VLSI
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Technology ‘‘Bristleblocs' project, which has both industrial and
academic sponsors. The premise of these attempts to work at a
macro level is that the view of the forest allows a better perspective
for the designer than a consistent and unremitting examination of
each tree in the forest, or as some frustrated designers express it,
“Chewing on the tree bark incessantly, trying to find the forest.”

Adoption of the premise that such high-level design is desirable
and practical is necessarily rooted in two major assumptions. First,
tools must exist that translate the designer's high-level constructs
into correct, effective, low-level realizations. These are the syn-
thesis tools mentioned above. Second, analysis tools must be
adapted to this environment, which means that they must provide
analysis functions at every hierarchical level from high to low,
much as a microscope or TV camera has pan or zoom capability.

One additional requirement is imposed by the magnitude of the
task, since many projects are designed, produced, and maintained
by increasingly large teams of people. Thus, synthesis and analysis
tools are increasingly obliged to link to each other simultaneously,
across large distances, across cultural and educational barriers, and
even across time.

These are stiff requirements, but then so are the challenges facing
designers if these requirements are not satisfied. How might they
be met? I think that we can see the day, not too distant, when
engineers will have an electronic bench, much as we discuss elec-
tronic mail and electronic offices and electronic homes. Such an
electronic bench will satisty the three requirements of synthesis,
analysis, and linking.

To illustrate this concept, Fig. 1 portrays a typical product life
cycle for a digital product, along with the classical design aids and
analysis tools used by most companies today. There are several
points worth noting. First, virtually all design aids and analysis
tools in use today are not linked in any data base or even
measurement-interactive manner. Second, the level of synthesis
capability in the design aids is extremely primitive. Third, the level
of zoom from high-level analysis to low-level is likewise primitive.
Fourth, the operator interface is variable, and quite formidable,
from one piece of equipment to another. Examining the needs that
VLSI design imposes, these conditions are clearly unacceptable.

There are same current examples of the electronic bench concept
at such places as automotive design research centers, airframe
manufacturers, and the larger computer and semiconductor design
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Fig. 1. Design aids and analysis tools used at various points
in the life cycle of a typical digital product

centers, These centers, usually built around computer-aided draft-
ing systems, are very expensive, but also very productive and
cost-effective, Just as the computer mainframe and minicomputer
manufacturers have developed precursars of the type of software
development system exemplified by the 64000 System, these CAA
and CAD centers point the way toward the electronic bench.

In effect, the solution will embody an intelligent terminal or
work station that can provide the capabilities of any required de-
sign aid or analysis function. Work performed at this work station
will automatically link to a shared data base for the entire program,
which includes the R&D functions, production test, service diag-
nostics, and documentation. Likewise, environmental and life test
data will become the beginning of a library of service data that links
with lab analysis, production data, and user performance data to
promaote design improvements and better field-support diagnostic
procedures.

It is not hard to postulate such capabilities or their desirability.
What has been difficult is a cost-effective and performance-
effective realization. There are three major handicaps in this regard
when we examine the realities of existing digital analysis tools, to
say nothing of the shortage of effective synthesis tools.

1. The user interface of most instruments is verv complex, and the
commonality of terms, functions, and operations is very low. For
example, the specific functions available by name on the front
panel of a storage oscilloscope, a logic timing analyzer, and a serial
data bus analyzer bear little resemblance to each other, Each front
panel takes considerable “getting used to'" for a beginning
operator, and knowing one of them well can often seem more a
handicap than a help when trying the next machine.

2. Today's realizations of this equipment are sophisticated,
reasonably expensive, and relatively bulky, The thought of creat-
ing an integrated solution has historically been dismissed as not
practical in terms of size, heat, weight, and cost.

3. Linking of many measurement hierarchies [the zoom concept)
has not been required or practical because of the available in-
strumentation, and because the problems being tackled could be

solved by “brute force’ techniques.

The 64000 architectural concept may serve to illustrate how
these handicaps might be diminished. The foremost problem, the
human interface, is addressed via a standard typewriter keyboard,
along with the guided syntax and softkey format. The versatility of
screen graphics for menu selections or guided prompting is well
established in instrumentation by now. It is a simple extension to
provide conversion from one type of equipment to another. The
difficulty with such a concept is the reality of its implementation.

Let's consider the manner in which the guided syntax structure
operates. The guided syntax softkeys represent another important
enhancement of the softkey-with-"help” approach embodied in
several of HP's more recent computer systems. Not only do these
keys provide prompting of the next correct or allowable entries, but
they also allow full flexibility for system reconfiguration as the
resident operating system module is swapped from the disc.

Naotice the significance of this architecture. The stored program
that determines the machine characteristics that appear to the
operator is totally resident on disc. Thus, redefining the instrument
is easy, and the operating system reconfiguration time is about
one-third of a second! Mareover, the guided syntax approach re-
moves the need for a different set of keycaps on the front panel, and
the user is never faced with relearning the panel functions as the
instrument changes.,

Thus, the 64000 has a system architecture that links all data files,
provides redefinition of effective functions at each work station,
and allows easy operator interaction with those significant
changes. The major remaining tasks are two-fold: to provide ex-
tended operating system enhancements in the guided syntax for-
mat, and to provide data acquisition modules for specific functions
that may be required.

This flexibility might be employed as an emulating terminal for
any computer system, as the following whimsical softkey choices
illustrate.

640008 HP 1000 HP 3000 1BM DEC APPLE HP 85A ETC
TERM TERM TERM TERM TERM

When 640005 is pressed the choices would be (the current wakeup
mode):

EDIT COMPILE ASSEMBLE LINK FMULATE PROM PGM (CMDFILE) ETC

When epiT is pressed, the eniT module is brought in from the system
disc, and these become the key labels:

INSERT REVISE DELETE FIND REPLACE  <LINE #> END ETC
An obvious set of choices under an Analyzer key choice might be:

Logic Logic Serial Analog Digital Network  Spectrum  ETC
State Timing State O'scope  (Fscope Analyzer  Analyzer
Analyzer Analyzer  Analvzer

The trace point conditions for the state analyzer, the timing
analyzer and the scope could be the same, providing the zoom
capability mentioned earlier. It becomes practical to consider mi-
croprogrammable measurement intelligence, which could modify
the degree of zoom or pan according to dynamic decisions about
the observed data. Obviously, the data base linkage methods could
also admit software control of multiple measurements at multiple
stations for simultaneous analysis of major system problems.
Perhaps the most productive improvements will come with high-
level software analyzers, linked to the greatly improved code gen-
eration capabilities described herein. These tools must not only
provide code generation, editing, and debug aid, but also valida-
tion, verification, optimization, and maintenance functions. The
64000 already provides an important enhancement for these needs.
Further extensions are imperative for the effective reduction of the
software bottleneck in our industry.

COCTOBER 1980 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.



The technology that allows us to consider the true possibility of
such a system is based heavily upon the VLSI extensions that the
system intends to support, For example, by reducing major equip-
ment such as a sophisticated logic state analyzer to a one or two-
card module allows zoom potential, because several different
modules can be resident in the card cage of a work station. Also, a
cluster network can be composed of different configurations in
each work station, and potentially could even include a desktop
computer for information graphics or management information
systems. A significant problem in terms of computer power—IC
cell layout and lead routing, or PC board layouts—could be routed
to a major computer network from the cluster as well.

The 64000 described in this issue already takes a significant step
in microcomputer software development integration by virtue of
its LSI computer support in each work station, guided syntax
interaction to allow conversion from one function to another, and
four-bus interaction capability, which allows significant data base
and measurement networking. The programming effectiveness for
designers developing structured code on this system, debugging it
in breadboard systems, and moving toward final product is dra-
matic, and it is a contribution to synthesis, more than to analysis.
This shows up most dramatically in larger project teams, where the
linked files and the data base management system help to mitigate
the classic communication difficulties of large teams. Hardware
system synthesis, whether at an IC or PC board level, should be
amenable to similar enhancement. The hardest task in my view is
the question of effective benchmarking of simulations, which con-
ceptually is possible, but realistically seems relatively difficult to
attain.

The next few years should see significant development of tools to
enable the electronic bench concept to be realized. This electronic
bench will encompass the necessary synthesis, analysis, and link-

ing functions. Clearly the costs of such powerful automated design
centers will be dramatically reduced, concurrent with substan-
tially improved combinational performance. With the aid of such
instrumentation concepts, we hope to support the design and
analysis requirements of the VLSI era.
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