
JULJKJM

m

© Copr. 1949-1998 Hewlett-Packard Co.

HEWLETT-PACKARD JOURNAL
Technica l In format ion f rom the Laborator ies of Hewlet t -Packard Company

JUNE 1979 Volume 30 â€¢ Number 6

Contents:

A B u s i n e s s C o m p u t e r f o r t h e 1 9 8 0 s , b y G e o r g e R . C l a r k T h e H P 3 0 0 l o o k s l i k e a f r e e
s tand ing te rmina l , bu t i t ' s a comple te , h igh-per formance computer sys tem.

The In teg ra ted D i sp lay Sys tem and Te rm ina l Access Me thod , by E r i c P .L . Ha and James
R . G ro f f The HP 300 hand les up t o 16 app l i ca t i on t e rm ina l s s imu l t aneous l y . I t s own d i s
p lay can act l i ke severa l min i -d isp lays a t once.

R e d u c i n g t h e C o s t o f P r o g r a m D e v e l o p m e n t , b y F r e d e r i c k W . C l e g g I t ' s a c o m p i l e r -
based system, so run-t ime ef f ic iency is h igh, but i t has many of the conveniences of an inter
pre ter -based system.

Managing Data: HP 300 Fi les and Data Bases, by Phi l l ip N. Taylor, Alan T. ParÃ©, and James
R . G r o f f C h o o s e o n e o f s e v e n d i f f e r e n t f i l e s t r u c t u r e s o r t h e I M A G E d a t a b a s e m a n a g e
ment system.

A n E a s y - t o - U s e R e p o r t G e n e r a t i o n L a n g u a g e , b y T u - T i n g C h e n g a n d W e n d y P e i k e s
Templa tes on the screen take the p lace o f RPG cod ing sheets .

HP 300 Business BASIC, by May Y. Koval ick
appl icat ions language.

It 's special ly designed as a versati le business

I n n o v a t i v e P a c k a g e D e s i g n E n h a n c e s H P 3 0 0 E f f e c t i v e n e s s , b y D a v i d A . H o r i n e M o n o -
coque const ruct ion is the s tar t ing po in t . Even the sh ipp ing conta iner is nove l .

In this Issue:
This Th is issue is devoted ent i re ly to the HP 300 Computer . Th is compact , modera te ly

p r i c e d w e ' v e h a s g e n e r a t e d m o r e e x c i t e m e n t w i t h i n H e w l e t t - P a c k a r d t h a n w e ' v e
seen fo r o f l ong t ime. Des igned fo r bus iness da ta p rocess ing , i t rep resen ts the s ta te o f
the art conve both hardware and sof tware and sets formidable new performance and conve
nience standards for computers in i ts c lass.

A s ingle HP 300 wi l l support up to s ixteen terminals handl ing inventory control , accounts
receivable processing, and other business appl icat ions. Of course, l ike a l l computers, the
HP 300 necessary to be programmed to do these things, and since HP doesn't supply the necessary

bus iness so f tware p rog rams a t th i s t ime , the f i r s t cus tomers fo r the HP 300 a re expec ted to be so f tware
companies, or iginal equipment manufacturers (OEMs), and sophist icated end users, who wil l use the advanced
sof tware HP does supply to deve lop bus iness programs for themselves and the i r customers .

There are issue. many technical contributions in the HP 300 that there isn't room to cover them all in one issue. For
that reason, we' re devot ing two consecut ive issues to a s ingle product for the f i rs t t ime ever . This month we
describe articles HP 300 as the user sees it, starting with an introductory overview (p. 3). This is followed by articles
on the on and display (p. 6) , what i t 's l ike to develop programs on the HP 300 (p. 9) , faci l i t ies for stor ing and
re t r iev ing da ta (p . 16) , the two h igh- leve l p rogramming languages now ava i lab le , RPG (p . 20) and BASIC
(p. 23), hardware the package design (p. 26). Next month we'll go inside and look at the design of the hardware and the
operat ing system.

This three cover photo shows the HP 300 system uni t wi th the three special ly designed s i l icon-on-sapphire
integrated circuits that are used in its processor section. Sil icon-on-sapphire technology is a major contributor to
the HP power. remarkable combinat ion of compactness and comput ing power.

-R. P. Do/an

Editorial Danielson Howard L. Roberts â€¢ Managing Editor, Richard P. Dolan â€¢ Art Director, Photographer. Arvid A. Danielson â€¢ Illustrator, Susan
E .Wr igh t â€¢ Leeksma Serv ices , Typography , Anne S LoPres t i â€¢ European Produc t ion Manager , D ick Leeksma

2 HEWLETT-PACKARD JOURNAL JUNE 1979 Â© Hewlet t -Packard Company 1979 Pr inted in U.S.A.

© Copr. 1949-1998 Hewlett-Packard Co.

A Business Computer for the 1980s
A to ta l l y new bus iness-or ien ted des ign based on HP's
s i l icon-on-sapphi re in tegrated c i rcu i t technology, th is new
sys tem packs a vas t amount o f p rocess ing power in to a
surpr is ing ly smal l package.

by George R. Clark

HEWLETT-PACKARD'S new HP 300 Computer, Fig.
1, is an advanced, office-oriented multi-user system
designed to simplify the tasks of developing and

running business application programs. The product of one
of the largest development programs ever undertaken by
Hewlett-Packard, the HP 300 marks the beginning of a
major new computer family intended for business data pro
cessing applications. This issue and next month's issue of
the Hewlett-Packard Journal will review the HP 300, begin
ning in this article with a discussion of the design consider
ations and an overview of certain features that distinguish
the HP 300 from other computers.

Design Requirements
Today's computer must above all be easy to use. This is

obviously a desirable characteristic for computers in all
applications, but it is especially important in the business
environment. If the computer is to be effective in managing
the day-to-day problems of order entry, inventory control,
and accounts receivable, people having limited technical
skills, such as clerks and secretaries, must feel comfortable
using it. These persons must be able to run the application
programs and routinely access data bases in a natural man
ner without having to remember complex procedures or
long command sequences. Simply, the computer must be

viewed as a friend, not an adversary.
The system should provide quick response to inquiries

from its users. It should be possible for a salesperson to
respond to a customer's inquiry and ascertain the sched
uled shipment date of an order while the customer waits on
the phone. High system performance and a powerful
software architecture are required to support such transac
tions effectively while several other users are updating data
bases, accessing files, writing reports, or developing pro
grams at the same time. To be well-suited for the office
environment, the system should consume minimal floor
space and require no major changes to office facilities for
installation. This means that no special temperature and
humidity controls and no special power should be required.
The system must be quiet, safe, and esthetically pleasing.
There must be no radiated electromagnetic energy that
would interfere with other equipment in the vicinity, and
static discharges to the machine produced by walking on
carpets during periods of low humidity must not cause
malfunctions.

As the needs of the customer grow and the use of the
computer increases, the system must be expandable to pro
vide enhanced performance and new application capa
bilities. If a sales manager buys a system to handle incoming
orders and later realizes the need to publish reports and

F ig . 1 . An HP 300 Compute r Sys
t e m i n c l u d i n g t h e s y s t e m u n i t
(center) , a pr inter, two appl icat ion
te rmina ls , and an add i t iona l d isc
d r i v e . U p t o 1 6 t e r m i n a l s , t w o
p r i n t e r s , a n d 2 6 0 m e g a b y t e s o l
d isc s torage can be suppor ted by
one system unit .

JUNE 1979 HEWLETT-PACKARD JOURNAL 3

© Copr. 1949-1998 Hewlett-Packard Co.

coordinate the orders with inventory control and the
shipping/receiving department, it shouldn't be necessary to
throw away the existing investment in hardware and data
base development. Rather, it must be possible to add the
necessary peripherals, applications programs, and memory
with minimal cost and system down-time.

With increasing dependence upon the system to manage
more and more work, reliability becomes critical. The re
sponsibilities assigned to a business computer can increase
to such as extent that there really is no effective backup
procedure when a system failure occurs. For example, the
volume of billing notices issued by a lending institution is
often so large that the job cannot be completed without
the computer's assistance. Yet, a delay in mailing the bills
can have devastating financial effects for the company.
Thus, the potential benefits of using a computer in the
business can easily be nullified by untimely failures and
costly repairs.

The total cost of owning the system must be low. This
requirement is really a result of proper achievement of the
other goals, but deserves mention separately. Ease of use at
the cost of undue complexity, reliability through the use of
special, costly hardware, quick repair via a force of on-site
maintenance personnel, expandability at the expense of
difficult reconfiguration procedures, low electromagnetic
radiation through exotic packaging techniques, perfor
mance at the expense of power consumption â€” these design
philosophies, if followed, would drive up the total cost to
the customer and prevent the computer from achieving
widespread acceptance in the business market.

Such considerations formed the basis of the HP 300 de
sign objectives, with the result that many departmental data
processing problems now may be solved in a manner never
before practical.

The HP 300 Approach
From the moment power is applied to the HP 300, its ease

of use is striking. The computer comes up running and
ready to use with no complicated cold-load procedures.
The operator may Â¡mediately begin developing programs,
activating existing applications, accessing files, and so on.
Various questions the operator may have about commands,
procedures, or syntax may be answered through the on-line
reference "manual" called HELP. A simple English question
like, "HOW DO I BUILD A FILE?" causes the system to respond
with the appropriate information â€” in this case, instruction
on use of the CREATE FILE command. The operator soon
notices that spelling errors are corrected and commands
may even be abbreviated. This allows the operator to con
centrate on being productive, rather than mentally battling
the computer.

The novel features of the integrated display system (IDS)
exemplify the friendliness and sophistication of the HP 300
System. The display consists of several windows (indepen
dent display areas) that may be used by the operating sys
tem or an application program to display information from
several different sources at the same time. For example, an
inventory control program might use one window to dis
play the parts list while another window gives access to
vendor information. Along the right side of the IDS are eight
pushbutton switches whose functions may be dynamically

altered to suit the needs of the system and user. These
softkeys allow high-level responses from the operator by
providing a menu of options available at any time. This
eliminates the need for the user to understand and re
member a multitude of commands to select various re
sponses from the system. For example, an application pro
gram for general inquiry concerning a group of customers
might allow the operator to examine credit, past orders, or
payment status by simply pressing one of the softkeys. The
functions of the eight keys are dynamically labeled in a
window along the right side of the screen.

During program development, the windows and softkeys
are used to display various aspects of the programming
environment and to accept directions from the programmer
concerning the editing of statements, correction of errors,
and so on. This approach can virtually eliminate the need
for program listings during the development process. In
addition, the concept of the language subsystem (see arti
cle, page 9) makes it possible to manage the entire set of
files and software modules through a single, consistent user
interface. The HP 300 is actually easier to program than
many interactive interpreter-based machines, yet it pro
vides the flexibility and efficiency of a multilingual
compiler-based system.

Reliability
The HP 300 has been designed with reliability as a major

requirement. This is evident from the fact that there is no
periodic maintence on the basic system except for an occa
sional change of the fan filters. In the event that a failure
does occur, an extensive set of hardware and software tools
have been built in to assure quick and easy repair. Each time
the system powers up, the processor runs a microcoded
self-test that includes an in-depth check of the processor
itself, main memory, and the input/output channel. During
the same time, the fixed system disc, the flexible disc, and
the IDS are performing their own self-tests, so that when the
system begins operation there is high probability that the
hardware and microcode for the system and its primary
peripherals are functioning properly. These self-tests may
also be invoked through switches located on the various
circuit boards just inside the rear door or through off-line
program control. The results of the tests may be viewed on a
bank of LEDs for quick interpretation of any failures that
occur.

System verification beyond the self-test capability may be
accomplished with an extensive set of diagnostics provided
for the system and all its peripherals. These programs have
been structured so that unskilled users can run them by
following the instructions that appear on the IDS when the
stand-alone diagnostic/utility package is launched. The
tests are thorough yet fast, taking advantage of features such
as data loopback and remote invocation of extended self-
tests to yield a group of diagnostic tools that can be
routinely run by the owner to verify that the system is in
good working order. Each diagnostic provides a simple
go/no-go message to the operator, but can also output highly
structured failure information to assist the service engineer
in isolating system faults.

The HP 300 features error-correcting main memory,
which corrects all single-bit errors and detects all double-

4 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

bit errors without intervention by the user. Various other
errors are logged in a dedicated file on the system disc for
analysis by service personnel. In addition, a system trace
table maintained in main memory contains a list of the most
recent system events. This provides a history of activity just
before any failures that may occur, permitting the failure to
be characterized and reproduced. Even a list of the most
recent console commands is kept on a disc file. All these
tools assure that any repair will be fast and orderly with a
minimum of down-time.

Expansion
Essentially all the standard and optional peripherals for

the HP 300 use a common hardware interface. This allows
discs and printers to be added to the minimum system
without the need to add special interface boards. In most
cases the owner can purchase these peripherals and add
them to the existing system without lengthy installation
procedures or a service call from an HP representive. New
devices are configured into the operating software using the
SYSTEM BUILD utility, which leads the user step-by-step
through the configuration process, taking full advantage of
the IDS and its softkeys. Any errors that the operator makes
in defining device type or address are automatically de
tected through a self-identification feature that all HP 300
peripherals contain.

The basic HP 300 System includes 256 kilobytes of error-
correcting semiconductor main memory, the integrated
display system, a 12-megabyte fixed disc, a one-megabyte
flexible disc, and a general I/O channel, all in a self-
contained package only slightly larger than a teletypewrit
er. Standard software includes the AMIGO/300 virtual-
memory operating system, the on-line reference manual
HELP, a text editor called TYPIST, a SORT/MERGE utility for
file manipulations, the interactive system configurator
SYSTEM BUILD, and the stand-alone diagnostic/utility
package.

Available languages include HP Business BASIC and
RPG-II for report generation. In addition to the AMIGO/300
file system, which provides access to files and devices,
IMAGE/300 may be used for efficient management of data
bases without the need for special application programs.
The system can grow to include up to 16 applications ter
minals, two external printers, 260 megabytes of disc stor
age, and one megabyte of main memory.

SOS Techno logy
Key to achieving the capabilities of the HP 300 in such a

small package is the use of silicon-on-sapphire (SOS) inte
grated circuit technology, with its high-speed, low-power
characteristics and exceptionally high logic densities. This
permits more functions to be placed on each chip, thereby
optimizing performance. For example, the CPU (central
processing unit) is based on a stack architecture, with the
stack residing in main memory. Several of the registers that
are used to manage the stack are kept in hardware (on the
chips), reducing the number of memory accesses required
for execution of the various stack-oriented operations.
Without SOS, this would not have been possible, and the
performance would have been lower. Future generations of
the HP 300 will take advantage of the natural evolution of

this new technology to yield even more computing power
and friendliness for the business data processing needs of
the 1980s.

Acknowledgments
By most means of reckoning, the HP 300 represents the

most massive product development effort in Hewlett-
Packard history. A number of different managers have
played major roles in leading the sizable teams that made
the product a reality.

Division general managers whose vision, understanding,
and support were instrumental in the HP 300's develop
ment have included Dick Anderson, Paul Ely, and Ed
McCracken.

Jim Cockrum, Dave Crockett, Bill Gimple, Dick Hackborn,
Larry Lopp, and Tom Whitney have all provided vital lead
ership in capacities as lab managers through the progres
sive phases of the program. Dave Crockett has provided
imaginative leadership as program manager and Bob
Kadarauch and Jim Peachey have headed the marketing and
manufacturing wings, respectively, of the HP 300 program
since it assumed its present organizational structure in June
of 1976.

Section managers have borne a major share of the leader
ship, planning, and organizational work that has helped
bring the HP 300 from conception to the marketplace. In the
HP 300 lab, this cast has included at various times Fred
Clegg, Jim Cockrum, Bill Gimple, Jake Jacobs, Bob Jones,
Jim McCullough, Peter Rosenbladt, Howard Smith, John
Stedman, Phil Taylor, and the author. Bob Jones has pro
vided for consistently good support as head of engineering
services.

The lists of project managers, project leaders, and indi
vidual engineers who contributed to the HP 300 are far too
lengthy for inclusion here but are largely covered in the
acknowledgments elsewhere in this and next month's is
sue. Every past and present team member can rightfully be
proud of his or her contribution to the overall achievement.

George R. Clark
Born in F lor ida, George Clark grew up
on a fa rm in Ind iana and rece ived h is
BSEE and MSEE degrees f rom Purdue
Univers i ty in 1968 and 1973. Between
deg rees he p i cked up t h ree yea rs ex
per ience as an ins t rumenta t ion en
g ineer . He jo ined HP's Microwave Div i
s ion in 1973 as an e lect ron ic too l ing
eng ineer , deve lop ing in -house tes t
equ ipment for microwave semiconduc-

| tors. Since 1975, he's been with the HP
Computer Systems Group, invo lved in

I the design of hardware for I /O and data
I communicat ions appl icat ions on the HP
1 300. George and his wi fe l ive in

Sunnyva le and en joy ou tdoor ac t i v i t ies such as backpack ing and
skiing.

JUNE 1979 HEWLETT-PACKARD JOURNAL 5

© Copr. 1949-1998 Hewlett-Packard Co.

The Integrated Display System and
Termina l Access Method
by Er ic P . L . Ha and James R . Grof f

THE HP 300 COMPUTER SYSTEM is designed for
on-line, multiterminal applications processing. Any
combination of up to 16 HP 264X and HP 2621 Ter

minals can be included in an HP 300 system. These ter
minals are dedicated to applications processing. They
cannot control system operations, and they operate totally
under the control of HP 300 application programs.

The application programs control the application termi
nals via the terminal access method software, a set of call
able HP 300 system services that enable the application
programs to perform input/output to terminals as if they were
done to sequential files. These system services also provide
simplified program control of additional terminal features
such as block-mode input, display enhancements, cursor
manipulations, and peripheral devices such as tape cas
settes and printers.

In tegrated Display System
The HP 300 system is controlled from the integrated

display system (IDS) that forms the upper part of the system
unit. The IDS is especially designed to provide a highly
interactive, easy-to-use environment for the HP 300 user. Its
advanced display and editing functions and pushbutton-
oriented operation give the user direct, personal control
overall aspects of HP 300 operation. The IDS also serves as a
programming station for developing HP 300 application
software. Application programs can also use it as an appli
cation terminal.

The IDS keyboard, Fig. 1, includes a main typewriter key
group, a numeric keypad, and separate control key clusters
for editing and display control. The screen displays 1920
characters in a 24-row-by-80-column format. A full 128-
character upper/lower-case character set is standard, and
there are optional character sets to display international
and mathematical symbols, large characters, and line-

drawn forms. For formatted screen displays, the IDS in
cludes display enhancements for blinking, half-bright, un
derlined, and inverse video (black-on-white) fields. These
can be combined with special IDS format modes for forms-
oriented screen processing.

In addition to these basic features (which it shares with
the HP 300 application terminals), the IDS incorporates a
set of advanced display features that offer significant new
display capability. Through the IDS windowing feature, the
display screen can be divided into multiple sections (called
windows) for greater display flexibility. Using several win
dows, the IDS can simultaneously display several different
kinds of information on a single screen. Or, windows can be
used to perform several functions at once on the IDS, with
each function handled in its own separate window.

Eight softkeys bordering the right side of the IDS screen
provide a pushbutton choice capability for the IDS user.
The softkeys are used in a variety of ways to represent
alternative actions or special functions that can be invoked
at the press of a button.

The special features of the IDS are complemented by a set
of terminal access method system services that further en
hance the raw capabilities of the hardware. These system
services are available to both HP 300 system software and
application programs.

Softkeys
The IDS softkeys can be used to provide a pushbutton

choice capability for the user. Each softkey can be individu
ally labelled on the adjacent screen area with up to three
lines of label information. The labels can be changed
dynamically under program control to constantly indicate
the function each key performs. The softkey label window
can be made as wide as necessary to accommodate lengthy
labels.

OOOOOOOOOOB B OH O O O

v'.'. : i 1 1 1 1 1 1 1 1 1 1 1 r
Fig . 1 . The HP 300 keyboard .

6 HEWLETT-PACKARD JOURNAL MAY 1979

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. Eight keys at the r ight s ide of the HP 300's integrated
d isp lay sys tem (IDS) can be ass igned funct ions dynamica l ly
by app l i ca t i on p rog rams . The f unc t i ons a re d i sp l ayed i n a
window next to these sof tkeys.

Softkeys can be used for selecting one of several choices,
as in Fig. 2, or they may allow multiple responses. In the
latter case, the keys are set into a nonterminating mode that
allows many of them to be pressed in response to a single
input request. The application program can then determine
which keys were pressed, and in what order. Softkeys oper
ate totally under control of the application program, which
calls system services to label them and accept softkey input.

Windows
HP 300 applications programs can use the IDS window

ing capability to present information from many different
sources in a straightforward way on the IDS screen. This is a
frequent requirement in complex inquiry applications,
such as the one illustrated in Fig. 3. In this example, a
single-line window at the top of the screen identifies the
displayed data as an aged accounts receivable report. The
body of the report occupies the large display area in the
center of the screen, and summary totals are held in a third
window at the bottom. Other examples of windowing can
be found in other illustrations in this article.

Windows are visually indicated by dotted-line borders on
the IDS screen. These are automatically generated by the
IDS between character positions and do not reduce the
number of available display positions. Each window is in
dependently controlled, and functions like a mini-display
screen, with its own input capabilities. This allows even
complex, dynamically changing displays to be constructed,

as illustrated in Fig. 4.
In Fig. 4. the IDS is used as a dispatcher's screen in a

shipping/receiving department. As trucks come and go at
the various docks, clerks enter and retrieve data at HP 300
terminals located there. The display on the IDS constantly
shows the status of each dock in the window on the left.
while an inquiry and scheduling function is performed on
the right side of the screen.

Up to 32 windows can be created in the IDS at any one
time. Each window is either open (displayed) or closed (not
displayed), with the restriction that concurrently open
windows may not overlap. Output is permitted to both open
and closed windows. For example, a new display can be
readied in a closed window while waiting for a user re
sponse to the current display. All windowing functions â€”
including setting window boundaries, creating, destroy
ing, opening and closing windows, and input and output to
windows â€” are under the control of the application pro
gram, which calls system services to manipulate the IDS.

The total amount of data contained in windows in the IDS
may exceed the actual display memory size. When data is
being output to windows, it is backed up in the HP 300
system by the terminal access method software. The IDS
gives priority for the use of display memory to windows
that are currently open. When a window is changed from a
closed to an open state, its data will be replenished from the
system if it has been discarded to make room for other open
windows.

Viewing Data Fi les
Another major IDS feature is the ability to view HP 300

data files through IDS windows. Relative and keyed se
quential files with type DOUBLE keys can be directly at
tached to a window, with the records of the file displayed in
consecutive rows of the window. The window thus be
comes an actual window into the file, displaying data
exactly as it appears there (see Fig. 5).

Scrolling
Files that are too long to fit in an IDS window can be

viewed by vertically scrolling them past the window. Using
keys on the IDS keyboard, the user can move the window up
and down over the attached data file a line at a time, bring
ing into view records above or below the displayed section
of the file. Other-keys move the window forward and back
ward a page at a time, or directly to the beginning or end of
the file.

File viewing and vertical scrolling allow even lengthy

Fig . 3 . The IDS screen can be d iv ided in to independent w in
dows, each of which acts l ike a separate display. Windows are
ind ica ted by dot ted- l ine borders on the screen. F ig . 4 . Windows in a rea l - t ime appl icat ion.

JUNE 1979 HEWLETT-PACKARD JOURNAL 7

© Copr. 1949-1998 Hewlett-Packard Co.

Data File
Relative Record

IDS Screen

Invisible
Part of

File

Record Length

Fig. 5 . F i les can be at tached to windows so that data can be
displayed exact ly as i t appears in a f i le. Each window may be
scro l led independent ly through i ts a t tached f i le , up or down,
left or r ight.

files or reports to be viewed directly at the IDS. They can
a lso be combined wi th more extensive appl icat ion pro
gramming for sophisticated inquiry applications like the
one shown in Fig. 6. In this example, a customer fi le is
at tached to the upper window for viewing. To see more
detai led information on a customer, the user can scroll
that customer into the inverse-video row and select the
appropriate softkey, resulting in the display in the lower
half of the screen.

Horizontal scrolling is used to view files that are wider
than an IDS window. Using keys on the IDS keyboard, the
user can move a window left and right through an attached
file to directly view records up to 160 characters long. As
Fig. 7 shows, horizontal scrolling is useful for presenting
more information than a s ingle screen can hold, or for
previewing printed reports.

Hor izonta l and ver t ica l sc ro l l ing are both ava i lab le
whenever a file is attached to an IDS window by an applica
tion program. The program has complete control over at
taching files, enhancing window rows, selecting windows
for scrolling, and so on.

Automat ic F i le Update
Files can also be attached to windows in an automatic

update mode that permits not only direct viewing, but di
rect modification of the data in the file. In this mode, the

F i g . 6 . I n t h i s c u s t o m e r r e c o r d a p p l i c a t i o n , t h e u s e r c a n
scro l l the customer of in terest in to the inverse-v ideo row and
p r e s s t h e a p p r o p r i a t e s o f t k e y t o s e e d e t a i l e d i n f o r m a t i o n
on tha t cus tomer d isp layed in the lower w indow.

F ig . in Hor izon ta l sc ro l l i ng i s use fu l fo r p resen t ing more in
f o rma t i on than a s ing le sc reen can ho ld , o r f o r p rev iew ing
repor ts to be pr in ted.

user can respond to input requests from the application
program by scrolling the file past the screen, moving the
cursor about, and directly modifying the displayed data
with the IDS edi t ing keys. Terminal access method au
tomatically updates the attached data file, record by record,
as the screen image is changed. The application program is
also informed of the identity and contents of each record as
it is modified.

Automatic file update provides a natural editing capabil
ity that is especially useful in text processing applications,
because it assures that the screen image always exactly
matches the data in the a t tached f i le . To prevent unau
thorized file modifications, automatic file update must be
explicity invoked by the application program.

Sharing The IDS
The attention feature of the IDS is implemented by a

special set of terminal access method system services that
are available only to the HP 300 system software. This
feature is useful for responding to special requests that
come in the form of interruptions to normal processing. An
application running on the IDS or a long-running command
can be interrupted at any time simply by pressing the AT
TENTION key on the IDS keyboard. This key returns IDS
control to the operating system, making it possible to enter
commands, start new programs, or use the IDS for another
application as required. The attention facili ty can be in
voked repeatedly, allowing interruptions to interruptions,
as shown in Fig. 8.

When an application or command is interrupted with the
ATTENTION key, it continues to execute so long as it does
not attempt to use the IDS for input or output (that is, the
ATTENTION key only takes away IDS "ownership"; it does
not automatically suspend execution). This allows several
different commands or jobs to execute in parallel. Later, the
IDS can be reconnected to the interrupted command or job
with no loss of data.

The attention feature can also be used to share the IDS
among several different jobs that use it infrequently. This is
especially useful in applications that require supervisor
intervention at the IDS only in exceptional circumstances
or for a short startup dialogue. When the IDS is being used
and another job requests it, the system software lights the
message light on the IDS keyboard to inform the user. The
user can interrupt current processing (using the ATTEN
TION key) to determine which job is requesting the IDS, and
then decide to communicate with that job or resume the

8 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

Ordinary
Processing
at the IDS...

Is Interrupted to
Make an Inquiry

on Request from
Management. . .

Which Is Again
Interrupted to
Run a Special

Report...

The Inquiry Is
Immediately

Resumed.
and when I t Is
Completed...

Ordinary
Processing

Resumes where
It Left off.

Fig. 8. The ATTN (attention) key on the IDS returns IDS control
t o t h e o p e r a t i n g s y s t e m , m a k i n g i t p o s s i b l e t o e n t e r c o m
mands, start new programs, or use the IDS for another appl ica
tion.

prior work. The HP 300 automatically manages contention
among jobs for the IDS and assures that no data is lost in
shifting from one job to another.

Acknowledgments
We wish to express our appreciation to Al Knoll's project

team that developed the IDS: Al, Norm Marschke, Hal
Sampson and Bernard Stewart designed the hardware;
David Delano, Tom Gilbert and Wing Chan wrote the
firmware; and Nellie Monsees did the prototype assembly.
Development of the terminal access method software bene
fited tremendously from the participation of Bill Parrish
and Mike Ard; Mike also contributed significantly to the
development of the IDS firmware.

Nowait Input/Output
Input /output- in tensive appl icat ions can use the " I /O wi thout wai t "

fea tu re to over lap I /O and p rocess ing fo r i nc reased per fo rmance .
Using input I /O, a program can request an I /O operat ion (e.g. , input
from an appl icat ion terminal) and then proceed with other processing
wh i l e t he I /O ope ra t i on comp le tes (e .g . , wh i l e t he use r t ypes the
rep ly) . La te r , i f t he p rog ram comes to an exp l i c i t WAIT s ta tement
before the I /O completes, i t w i l l wai t for the I /O to complete before
proceeding fur ther .

Nowait I /O techniques are especial ly useful for mult i terminal appl i
cat ions. Nowait I /O can also be select ively used in combinat ion wi th
other appl icat ion. to opt imize t ime-cr i t ical port ions of an appl icat ion.

James R. Grof f
Former ly a commerc ia l app l ica t ions
programmer/analyst , J im Grof f jo ined
HP and the HP 300 market ing group in
1976 , and i s now app l i ca t i ons man
a g e r . A 1 9 7 4 g r a d u a t e o f M a s
sachusetts Inst i tute of Technology wi th
a BS degree in mathemat ics, he holds
an MBA deg ree f r om Ha rva rd Un i ve r
sity, received in 1976. Born in Palmyra,
Pennsylvania, J im is marr ied and l ives
in San Jose, California. He's active in his
church and en joys read ing , c lass ica l
music, and t ravel l ing.

Eric P.L. Ha
Eric Ha developed the terminal access
method software for the HP 300. Now a
p ro jec t manager a t HP 's Genera l Sys
tems D iv is ion , he 's a lso done mic ro
programming for HP 21 MX Computers,
and be fo re com ing to HP i n 1972 , de
ve loped so f tware fo r computer
g raph ics and da ta communica t ions .
Born in Hong Kong, he rece ived h is
BSEE degree in 1962 f rom the Univer
s i ty of Cal i forn ia at Berkeley and his
MSEE degree in 1965 f rom the Univer
si ty of Michigan at Ann Arbor. He's mar
r ied, has two chi ldren, and enjoys c las

sical Cupertino, reading, and swimming. Eric and family live in Cupertino,
California.

Reducing the Cost of Program
Development
by Freder ick W. Clegg

IN TYPICAL SCENARIOS of twenty years ago, virtually
all production program development was done using
unit record equipment to prepare a source tape or card

deck that was then submitted for processing with a batch
of other jobs. Today, by contrast, most program develop

ment is done in an environment characterized by a greater
or lesser degree of dialog between the programmer and the
computer through an on-line terminal. To the user of some
of today's more pleasant program development facilities,
the computer appears to understand the language being

JUNE 1979 HEWLETT-PACKARD JOURNAL 9

© Copr. 1949-1998 Hewlett-Packard Co.

used; a number of currently available implementations of
BASIC and APL, for instance, convey this impression quite
thoroughly. Of course, virtually no machines directly
understand BASIC, APL, or any other high-level pro
gramming language. Almost invariably, the description of
some sequence of computing operations written by a
programmer to tell a computer how to perform some de
sired task is translated into one or more intermediate
representations before the computer can carry out the pro
grammer's instructions. The translation is done primarily
to make the most efficient use of both the computer's
storage capacity and its processing capabilities. However,
the gains in efficiency do not come free. The translation
inevitably consumes some of the computer's resources.
More important, a significant toll is often extracted in
terms of the time spent and the distractions endured by
the programmer.

To gain a fuller understanding of the price associated
with to translations and intermediate representations to
achieve greater program efficiency, let us consider briefly a
typical program development scenario, as summarized in
Fig. 1. Once a programmer has completed the writing of a
program or a program module (i.e., having written the
source code, be it on a coding form or the back of an en
velope), the next task is to get this source code into the
computer. With most modern systems, this is done through
the use of an editing program â€” EDIT/3000 being a good
example. The programmer converses with this editor typi
cally through an on-line terminal such as an HP 2645. The
editor allows source text typed by the programmer to be
stored in magnetic disc and/or tape files and permits conve
nient correction of typing and logic errors. To get even this
far, the programmer needs to know not only the language in
which the source program has been written, but also how to
access the editor and at least a subset of the command
language used to invoke the various functions of the editor.
Just getting this far often takes even an experienced pro-

Fig . 1 . A typ ica l p rogram deve lopment scenar io .

F i g . 2 . H P 3 0 0 p r o g r a m d e v e l o p m e n t i s s i m p l i f i e d b y t h e
language subsys tem concep t .

grammer several full days when confronted with an un
familiar computer for the first time.

Once the source code for a program has been entered into
one or more files (called, appropriately, source files) on the
computer, the first translation to an intermediate represen
tation is undertaken. This translation is accomplished by a
program usually called a compiler, which reads the source
code file(s) and produces an output in a form similar to the
machine code the computer can directly execute. Compiler
output is usually modular as defined by the boundaries of
various program units such as procedures, subroutines,
code segments, or whatever. These output modules typi
cally contain references among themselves and to various
capabilities in the computer's operating system software.
Such references, more often than not, are not resolved by
the compiler, but rather after compilation is complete are
resolved by some separate program called a linkage
editor or (as is the case on the HP 3000) a segmenter. The
output of this last program might best be characterized as an
almost-ready-to-run version of the user's program. Even at
this point, however, some additional services such as final
linking, loading into memory, and the like are commonly
required to bring the user's program into control of the
computer.

These various translation steps and associated inter
mediate forms permit more efficient and flexible use of
computer resources by the final running version of the
program than would otherwise be possible. The price paid
for this efficiency is imposed upon the programmer and/or
the company paying the programmer's salary. The pro
grammer needs to know not just the programming language
in which the original program is written, but also typically

1 0 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

three to six totally different other languages â€” the command
languages required to operate the editor, compiler, seg-
menter. loader, and so on. Indeed, it is the learning of these
minor to that usually constitutes the largest hurdle to
be overcome by a person learning to use a new computer.

The software designers of the HP 300 believe that the
need for familiarity with the numerous translation steps
and intermediate representations required to get a
production-level program running on a typical computer is
a major contributing factor in the oft-bemoaned high cost of
software development in today's computing industry. This
concern led us to depart from tradition in significant ways
and to conceive for the HP 300 a highly integrated program
development environment that differs in a number of
dramatic ways from the typical scenario painted above.

HP 300 Language Subsystem Concept
From a very early point in the design cycle of the HP 300,

it was decided that the application programmer should
perceive a single, integrated environment throughout the
program development cycle. That is, the programmer
should not be required to invoke an editor, work on the
source program, exit the editor, invoke a compiler, do the
compilation, exit the compiler, invoke the segmentar, and
so on. Instead, we wanted the HP 300 programmer to be able
to complete all phases of software development, from initial
source entry to completion of final testing, from the same
place in the system. Now, this goal is rather easily achieved
through the use of a fully interpretive language processing
system, such as the versions of BASIC found on numerous
computer systems (and even the HP 3000's BASIC interpre
ter). It is characteristic of such interpretive systems, how
ever, that they consume considerably more storage space
and execute much more slowly than comparable programs
that have been subjected to the several translation phases
sketched above. Primarily in the interest of run-time per
formance, it was decided that all of the HP 300's program
languages would be supported by compilers. This decision
notwithstanding, the goal of a highly integrated, convenient
program development environment was not to be compro
mised. In short, then, our objective was to obtain the execu
tion-time performance characteristics of compiler-based
systems and at the same time to provide the convenience
and productivity-improving features found heretofore only
in interpreter-based program development systems.

To obtain the performance, power, and flexibility inher
ent in compiler-based program development systems, most
or all of the system programs discussed in our earlier
scenario (i.e., editor, compiler, segmenter, etc.) play essen
tial roles. Indeed, each programming language subsystem
on the HP 300 incorporates exactly such components. Our
goal, however, was to make knowledge of how to get to and
operate each of these components â€” indeed, knowledge of
their very presence â€” unnecessary for the development of
programs on the HP 300. Our implementation to achieve
this goal is shown symbolically in Fig. 2. A central role is
played by a component called a language monitor. This is
the central, supervisory program in a language subsystem.
It is analogous to an automatic switchboard that determines
when the programmer is ready for the services of an editor,
compiler, segmenter, or the like, and then automatically

invokes the services of that component, without explicit
direction from the user to do so.

Closely related to the language monitor is a second key
concept in each HP 300 programming language subsystem:
the program workspace. Simply defined, a workspace is a
collection of all files related to the development of a given
program. Instead of keeping separate, explicit track of all
the source, relocatable, and other files associated with a
program, the HP 300 programmer needs to remember only a
single program name.

The detailed organization of an HP 300 program work
space is shown in Fig. 3. The root file serves as a directory to
the rest of the workspace. The prolog file contains paramet
ric information such as IDS (integrated display system) tab
stops, parameters (e.g., line number increments) used for
editing, file equations to be used at execution, and the like.
The source text entered by the user resides in one or more
source module files. Initially, a workspace always has a
source module named MAIN, and other modules may be
created and given arbitrary names by the user.

The compiler output files (header file and relocatablefile)
and the debug file are all written to by the compiler. Of
particular interest is the debug file, which permits fully
symbolic debugging when a program malfunctions. To in
spect the value of a variable called Rate immediately before
execution of statement 230 in a BASIC program, for in
stance, a programmer needs no information whatsoever
about the numerical memory addresses occupied by the
object code corresponding to source statement 230 or the
address associated with the data item Rate. The programmer
need only tell the symbolic debug facility (in the BASIC
language subsystem in this case), BREAK AT 230, and then,
when the resulting breakpoint is encountered, PRINT Rate.

The segment file is produced by the HP 300 segmenter as
a result of processing the header and relocatable files dur
ing program preparation. At the same time, the segmenter
updates certain information in the debug file to account for
intersegment references.

After successful program preparation, the segment file is
read by the linker, which resolves references by the user's
program to services in the AMIGO/300 operating system
and libraries, and produces the contents of the execution
file, essentially the execution-time, memory-image, object
code representation of the user's program, ready to be
loaded and executed without further processing.

Each time a user program is created or altered on an HP
300, the language monitor automatically invokes the ser
vices appropriate to what the user is doing at any given
point. Each component providing these services acquires
access to the appropriate representation of the user's pro
grams (i.e., to the appropriate files associated with that
program) through the workspace management modules of
the AMIGO/300 operating system.

Wri t ing a Program on the HP 300
Now let us turn to a scenario of a typical program de

velopment session on the HP 300 in an attempt to capture,
as much as is possible on these pages, the personality of the
HP 300 as perceived by the programmer. Most of the exam
ples will be taken from the BASIC subsystem, since this is
the most widely known of all the languages currently sup-

JUNE 1979 HEWLETT-PACKARD JOURNAL 1 1

© Copr. 1949-1998 Hewlett-Packard Co.

HP 300
Program Workspace

Source Module Fi les
O

Compiler Output Fi les n
Editing

Services

Directory Structure
Data Transfer Compiler

Segmenter Symbolic
Debug

Main
Memory

Language Monitor

Fig . 3 . Organ iza t ion o f an HP 300 p rogram workspace .

ported on the HP 300. Later we will explore certain features
of the RPG-II subsystem that represent significant innova
tions to the RPG programmer.

Access to a programming language subsystem on the HP
300 is achieved simply by typing the name of the desired
language into the command window of the integrated dis
play system (IDS) while in the AMIGO/300 operating sys
tem environment. Upon invocation, a language subsystem
begins by prompting for the name of the user's program
(this is in fact the name of the user's program workspace). If
no workspace with the specified name is found, a new one
with this name is automatically created.

Use of the IDS during program development is typified by
Fig. 4. As seen here, the top of the screen is used by the
one-line environment window, which identifies that the
user in this case is in the BASIC subsystem, working on the
module MAIN of a program called PAYROLL. Down the
right-hand side of the screen is the softkey label window.

The top softkey is labelled HELP, as is nearly always the
case in HP 300 system software. Any time the user is uncer
tain about what to do, the HELP subsystem may immediately
be accessed by pressing this key. HELP is the HP 300's
on-line quick-reference guide. Access to items in HELP is
greatly facilitated through the use of an internal KWIC (key
word in context) index and a clever inquiry analysis al
gorithm.

HP 300 language subsystems operate in two modes dur
ing editing operations: command mode and compose
mode. In the former, the next-to-last row of the IDS screen is
used as the command window, as shown in Fig. 5, in much
the same fashion as in the AMIGO/300 operating system
environment. Here the user specifies the operation to be
performed using a single command language to access all
components' services (i.e., those of the editor, compiler,

segmenter, etc.) with a syntax very close to that of colloquial
English. The valid command verbs accepted by HP 300
language subsystems are shown in Table 1.

Table 1
Language Subsys tem Command Verbs

ADD
APPEND
BIND
CHANGE
CLEAR
CLOSE
COMPILE
COPY
CREATE
DELETE
DEVELOP
DUPLICATE
EDIT
EQUATE
EXIT

FIND
LINK
MOVE
OPEN
PREPARE
PRINT
PURGE
RECALL
RENUMBER
RESEQUENCE
RESET
SAVE
SET
SHOW
TEST
VIEW

The bottom line of the IDS screen is always reserved as
the error window and is used to report all difficulties en
countered. HP 300 error messages are in English and de
signed to be self-explanatory rather than to require a man
ual to interpret. The user may switch back and forth be
tween command and compose mode by striking the
COMMAND/COMPOSE softkey at the bottom of the softkey
array. One of the words COMMAND or COMPOSE is always
highlighted when this key is active. The highlighted word
identifies the mode the language subsystem is in.

In compose mode, language subsystems use the powerful
editing features of the IDS to permit the user to enter and

1 2 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

Fig . 4 . BASIC language subsystem prompt ing for a new l ine
of text i l lustrates typical use of the integrated display system
(IDS) for program edi t ing.

alter source text in the workspace's source module files. In
this mode, the IDS cursor may be positioned anywhere in
what is called the display window to make changes and
additions to source text, as is illustrated in Fig. 6. In com
pose mode, the command window does not appear on the
IDS screen. Instead, the display window is expanded
downward one row to take advantage of this extra space.

The compose mode of a language subsystem is im
plemented through three different internal states of the
language monitor: edit state, insert state, and append state.
Edit state is entered to modify existing source text lines in
the user's workspace. When the user specifies the name of
an existing, non-empty workspace when initially prompted
for the name of the program, the language monitor automat
ically changes to the edit state (and also, therefore, compose
mode). The insert state of the language monitor is used to
insert new source text between existing lines of text. A
transition to this state is occasioned by striking the INS
ENTRY key on the IDS keyboard, or by typing some com
mand requiring the addition of new text between two al
ready existing lines. That the language monitor is in insert
state may be readily identified by the presence of the cursor
in a space between two existing lines in the IDS display
window. In the case of the BASIC language subsystem, an
automatically generated statement number is placed just
before the cursor whenever the user is prompted for a new
source statement. This is true in both the append state
(discussed below and illustrated in Fig. 4) and the insert
state. Insert state is exited when the user strikes the INS
ENTRY key a second time, performs any editing operation
directed at existing text, or begins to add new text to the end

Fig. 5. The IDS screen whi le the BASIC language subsystem
is in command mode.

F ig . 6 . Making immediate ed i t ing changes in compose mode
as ind ica ted by the syn tax checker .

of the present text module. In the latter case, the language
monitor changes to its append state. The append state is
also entered if the user strikes the APPEND softkey while in
edit or insert state. While in the append state, the APPEND
softkey label is highlighted in inverse video and the user is
prompted by the IDS cursor (and in BASIC by automatically
generated statement numbers) for additional text at the end
of the present workspace source module. Append state is
exited when the user strikes the highlighted APPEND
softkey or requests any other operation other than the add
ing of text at the end of the source module.

Whenever source text is being entered or modified in an
HP 300 language subsystem, whether in command mode or
compose mode, it is automatically checked for correct syn
tax. Should an error be detected, the error is immediately
explained in English in the error window and the cursor is
placed in the display window at the point where the error
was detected, as illustrated in Fig. 6. This powerful feature
ensures that most programming errors will be detected and
corrected immediately, well before any compilations are
attempted.

One of the softkeys, labeled SPLIT SCREEN, causes the
large area occupying the central rows of t he IDS screen to be
split into two smaller windows, in the manner shown in
Fig. 7. The lower of these is simply a shrunken version of
the display window, in which the cursor appears and edit
ing operations are performed while in compose mode. The
upper half of the screen (minus the environment window at
the top) is now devoted to what is called the view window.
This is a read-only window (i.e., the cursor never appears in
it) that may be used to view such diverse things as paramet
ric data in the active workspace's prolog file, source text in
any module of any workspace to which the user has legiti
mate access, listings and maps produced by the compiler,
segmenter. and linker, and the like. If the screen is split
through the use of the SPLIT SCREEN softkey (rather than
through the use of a VIEW command issued in command
mode that explicitly indicates what the user wants to view),
the default information shown in the view window is the
source text in the module the user is currently working on.
To use the terminology of the HP 300's terminal access
method, we describe this situation by saying that the text in
this source module file (i.e., the active module) is attached
to the view window. Once a given file is attached to the
view window, it remains attached to that window across
subsequent unsplitting/splitting operations until some later
command dictates that the user wishes to view something

JUNE 1979 HEWLETT-PACKARD JOURNAL 13

© Copr. 1949-1998 Hewlett-Packard Co.

F i g . 7 . P o s t - c o m p i l a t i o n e r r o r c o r r e c t i o n u s i n g t h e s p l i t -
screen feature and the NEXT ERROR softkey.

else. While this split screen feature is being used, the
SCROLL UP/LO softkey is active, as may be seen in Fig. 7.
There is only one set of scrolling control keys on the IDS
keyboard. These keys operate on either the display window
or the view window, as specified by the corresponding
highlighted word in the SCROLL UP/LO softkey label. While
using split screen operation, the softkey formerly labeled
SPLIT SCREEN is relabeled SINGLE SCREEN. Depression of
this key causes the view window to be closed and the
display window to be again expanded to occupy the space
on the screen thus freed. When the user thus reverts to
single-screen operation, the SINGLE SCREEN softkey is re
labeled SPLIT SCREEN and the effects of the scrolling keys
automatically revert to the display window.

Once the source text for a program has been entered and
edited to the point where it is believed to be correct, the
programmer ordinarily strikes the TEST softkey. This ac
tion causes the language subsystem to perform the correct
sequence of steps to bring the user's program into test
execution. In the most common case, this sequence consists
of compilation, segmentation, linking, and launching into
execution under the auspices of the symbolic debug facil
i ty. in steps in this sequence (e.g. , compilation in
the event that the source code has not been altered since the
last compilation) are automatically bypassed when the
TEST softkey (or the synonymous TEST command) is ser
viced.

Some errors a programmer can make are undetectable at
* A n a l t e r n a t i v e l a b e l f o r t h i s k e y m i g h t b e R U N . H o w e v e r , a p r o g r a m i s l a u n c h e d i n t o
execut ion th rough a substant ia l l y d i f fe rent mechan ism f rom wi th in a language subsys tem
t h a n t h a t u s e d i n r e s p o n s e t o t h e R U N c o m m a n d h o n o r e d d i r e c t l y b y t h e A M I G O / 3 0 0
operat ing system. When a program is RUN, for instance, the services of the symbol ic debug
faci l i ty are not avai lable To avoid possible confusion ar is ing from these internal di f ferences,
the word RUN was deemed inappropr ia te fo r th is so f tkey labe l -

Fig . 8 . Us ing the symbo l i c debug fac i l i t y .

1 4 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

the time source statements are being entered. An example of
this situation is inclusion of the statement GOTO 150 in a
program containing no statement 150. When errors like this
are detected during compilation, another novel feature of
the HP 300 language subsystems becomes apparent. If er
rors are detected, the automatic sequence entered in servic
ing the TEST softkey or command (assuming this is why the
compiler was invoked) is halted, the IDS screen is automat
ically split, the compiler's error summary is shown in the
view window, and the NEXT ERROR softkey becomes active.
Each activation of the NEXT ERROR softkey causes the de
tailed message explaining the next error to be shown in the
view window, beginning with the first error the compiler
found and proceeding in the order in which the compiler
found subsequent errors. Simultaneously, the actual source
text in which the error was detected is made visible in the
display window and the IDS's cursor is positioned within
the offending statement to expedite correction of the mis
take, as shown in Fig. 7. The language subsystem is in the
edit state at this point, and all the editing features discussed
earlier are available to aid the user in correcting the source
text while viewing the errors in the other half of the split
screen.

Once compilation, segmentation, and linking have been
successfully achieved, the user 's program may be
launched into test execution. Within the language subsys
tem environment, this is always done under the watchful
eye of the HP 300's symbolic debug facility. When this is the
case, run-time exception conditions (e.g., division by zero,
array bounds violation, etc.) cause the user's program to be
suspended with control transferred to the debug facility.
The debug facility conducts a dialog with the user, explains
what has gone wrong, and allows the user to inspect and
alter the values of variables in the program, insert break
points (temporary, permanent, or counting), perform mis
cellaneous calculations in any mixture of decimal, octal,
and hexadecimal bases, and, in general, figure out what has
gone awry and why. A typical IDS display in the debug
environment is shown in Fig. 8. It is noteworthy that all
references to variable data and code locations within a
user's program are ordinarily entirely symbolic. Thus the
programmer need not be bothered by having to learn to
decipher and to sift through compiler variable maps and
segmenter/linker load maps to determine the actual
numeric memory addresses of data and program code under
scrutiny.

Once the programmer using the symbolic debug facility
understands any anomalies and is ready to try appropriate
alterations to the program, he or she may exercise the CAN
CEL option (either by command or softkey). This terminates
the program being debugged and immediately returns the
user to the compose mode of the subsystem to accommodate
further editing. Thus we have completed the cycle that
typifies software development efforts, from original source
entry through debugging. The single most important thing
to be noted in the above description of this cycle is that the
programmer works the entire time from one place, the ap
propriate language subsystem, and does not need to switch

â€¢Errors during the segmentation and l inking phases of program development on the HP 300
are very th is except when the user is employ ing h is or her own run- t ime l ibrar ies. For th is
r e a s o n , t h i s a n d p o s t - l i n k i n g e r r o r r e s o l u t i o n w i l l n o t b e c o v e r e d i n t h i s a r t i c l e
However, they are st ra ight forward.

© Copr. 1949-1998 Hewlett-Packard Co.

explicitly between editor, compiler, segmenter. and so on.

Novel RPG Programmer A ids
All of the examples used thus far to depict the HP 300

program development environment have been taken from
the BASIC language subsystem. Much of the flavor per
ceived in these examples may be found in other HP 300
subsystems, as well. Many of the features of TYPIST, the
text-editing package of the HP 300, directly parallel the
source code entry and editing capabilities already discus
sed. Of course, some other features are not appropriate â€” the
TEST function described earlier, for instance, has no mean
ing in the context of general document editing. While all HP
300 subsystems have many features in common, one in
particular, the RPG-II language subsystem, has so many
innovative features that it warrants special mention. RPG is
a comparatively specialized business data processing lan
guage. One of its disadvantages in the eyes of many pro
grammers is that it enforces a complex, position-sensitive
input format â€” that is, specific codes for specific functions
must be in specific columns of specific classes of source
records. For this reason, it is impractical to attempt the
writing of an RPG program for most computers without
using a standard coding form. The HP 300 RPG-II language
subsystem obviates this need by providing a template facil
ity for each of the seven different source record types mak
ing up this language. RPG-II/300 is described in the article
on page 20.

Conclusion
All of the features described above are highly integrated

in the HP 300's language subsystem. An objective of great
importance in their selection and organization was that a
programmer new to the HP 300 but knowing one of the
languages it supports should be able to write and debug
even production-level programs after only a very brief
orientation period with the machine. Features were de
signed to be as self-explanatory as possible. Although it is
true that the programmer must learn the subsystem's com
mand language to exploit the full power and flexibility
inherent in these subsystems, every effort was made to
make this command language as natural and close to col
loquial English as possible, subject to constraints imposed
by the automatic parser generation techniques employed.
The inclusion of synonyms in the command language and
the addition of a spelling-corrector/abbreviation-acceptor
algorithm to the front end of the command language in
terpreter further enhance the friendliness and conve
nience experienced by the user. And of course, when the
user does get stuck despite these features, there is always
HELP!

One of the most troublesome and challenging of all the
problems facing the disciplines of computer science and
data processing today is that of the rapidly rising costs of
software development. The fundamental goal of the con-
ceivers, designers, and implementers of the HP 300's lan
guage subsystems has been to make a major contribution
toward alleviating this problem by enhancing programmer
productivity. Judging from initial reactions obtained from
field personnel, early customers, and other new users of
first-release HP 300 systems, a large measure of success has
been achieved in accomplishing this objective.

Acknowledgments
Many people have been instrumental in the conception

and evolution of the HP 300 language subsystems. Propos
als by Denise Pitsch and Fred White had significant influ
ence on the original design efforts. Jordan Brodsky and
Mary Berner wrote the original versions of much important
support code for the subsystems. Credit for the novel fea
tures of the RPG-II subsystem goes to Larry Chapin, Tu-Ting
Cheng, Jon Kelley, Wendy Peikes, and Ken Van Aalsburg.
The authors of the HP 300's compilers, notably May
Kovalick and Denise Pitsch of the BASIC team, made impor
tant contributions to the definition of the language-
monitor/compiler interfaces. Peter Schorer and Carol
Fuquay conceived and did much of the early work on the
HELP facility. James Miller deserves credit for the symbolic
debug facility from its conception all the way through its
release in HP 300 subsystems. Last, but certainly not least,
the final phases of the implementation of the subsystems
were accomplished by the assiduous efforts of Don
Coleman, Harry Muttart, Ollie Polk, Dick Somrak, and
D.D. Roberts.

Some important HP 300 user subsystems software is not
explicitly mentioned in this article. Paramount here is the
systems programming language designed specifically for
implementation of all HP 300 systems software. Bill Barrett,
John Couch, Danny Low, Rick Meyers, and D.D. Roberts
were instrumental in the definition, implementation and
support of this language. Danny Low and Leon Leong de
signed and implemented the SORT/MERGE package. Ed
Dufour, Mike Lipsie, Dave Stallmo and John Trimble en
gineered the I/O formatter. Karen Chez, Tom Peters and
Peter Lau developed the multiterminal data entry package
discussed in the article on RPG-II later in this issue. Carol
Chan, Judy Guist, Sue Meloy, and Fred White implemented
the mathematical functions library.

The author would like to express his profound gratitude
to these persons as well as the numerous others who as
sisted in the development of the HP 300 user subsystems.

Freder ick W. Clegg
Fred C legg is sec t ion manager fo r HP

| 300 user subsystems. Jo in ing HP in
1975 as a deve lopment eng ineer , he
des igned the HP 300 language
mon i to rs , t hen became p ro jec t man
ager for the language monitors, BASIC,
SPL-II, and TYPIST. After receiving his BS
degree in eng ineer ing sc ience f rom
Oakland Univers i ty in 1965, he spent a
year a t Techn ische Hochschu le
Darmstadt , then at tended Stanford
Univers i ty , rece iv ing h is MS and PhD
degrees in e lect r ica l engineer ing in
1 967 and 1 970. He served as instructor
of e lectr ica l engineer ing at Stanford

from engineer 969 to 1 970 and was assistant professor of electrical engineer
ing and computer science at the University of Santa Clara from 1 970
to 1 975. He's a member of IEEE and the IEEE Computer Society, and
is l i s ted in Amer ican Men and Women o f Sc ience. Born in At lan ta ,
Georg ia , Fred is s ing le , has a daughter , and l ives in San Jose,
Cal i forn ia. His in terests inc lude aerobat ic f ly ing, t rap shoot ing,
amateur radio, and e lect ronic t inker ing.

JUNE 1979 HEWLETT-PACKARD JOURNAL 15

© Copr. 1949-1998 Hewlett-Packard Co.

Managing Data: HP 300 F i les and
Data Bases
by Phi l l ip N. Taylor, Alan T. ParÃ©, and James R. Groff

DATA IN THE HP 300 SYSTEM can be organized in
two ways: files and data bases. The software to
manage these capabilities consists of the AMIGO/

300 file system and IMAGE/300, respectively.

Fi le System
The AMIGO/300 file system manages HP 300 data storage

and controls access to all HP 300 files and devices. The file
system automatically handles all low-level file manage
ment tasks such as disc management, buffering, blocking,
device handling and device allocation. It offers the pro
grammer a broad set of high level, device-independent
capabilities for data storage and access.

A subset of the AMIGO/300 command language is used to
manage files and devices from the integrated display sys
tem. Program access is provided by the input/output struc
tures of the HP 300 programming languages, or through
callable HP 300 system services. In addition to these on-line
capabilities, the HP 300 diagnostic and utility system pro
vides a stand-alone environment for disc formatting, sys
tem volume restoration, and other off-line functions.

Fi le System Organizat ion
In the HP 300 file system, a file is a named collection of

records, such as a file of timecards or accounting transac
tions. A file domain is a collection of files grouped together
for reference, such as all the files for a given application.
File domains can be protected with passwords to prevent
unauthorized access. A device is a physical unit for data
storage, input, or output, such as a disc drive, terminal or
printer. A volume is a piece of physical storage media (such
as a flexible disc) that resides on a storage device.

Every file, domain, device, and volume on an HP 300
system is identified by its user-assigned name. These names
can be combined into a fully qualified filename that
uniquely identifies a file or device. Fig. 1 shows an example
of a fully qualified filename and its interpretation.

For non-file-structured devices (such as printers or ter
minals), only the device portion of the fully qualified
filename is needed (e.g., .PRINTER or .TERMNL4). In prac
tice, fully qualified filenames are almost never used. In
stead, the system assumes default values for omitted parts
of the name, so files can generally be referenced with simple
names such as CHECKS or ORDERS.

As Fig. 1 shows, the HP 300 has a unified naming scheme
for files and devices. There is also a uniform set of proce
dures for accessing both files and devices, anda uniform set
of commands for file and device management. The result is
a high level of file and device independence that simplifies
both application design and system operation.

Fi le and Dev ice Access
The file system provides both serial and keyed file access.

In serial access, records are processed in order, in a forward
or backward direction. Serial access is used to process a file
in sequence and to access sequential devices such as print
ers and terminals. In keyed access, records are accessed
randomly, based on a key associated with each record.
Keyed access is for selective retrieval of records from a file.
Both access methods can be used to input, output, add,
delete, and replace records as needed, limited only by the
characteristics of the file or device being used.

The file system offers a choice of seven different file
structures for storing data. Each structure meets a particular
application need, such as rapid random access or simple
sequential retrieval.

Sequential files provide rapid serial access to the records
in the file. Records are stored in chronological order as they
are entered, and are also accessed serially. Sequential files
are efficient for data that is always processed in a fixed
sequence, such as transaction files.

Relative /iles provide access to records based upon their
relative record number within the file. Records are stored in
order or relative record number and access is either serial or
random by relative record number. Relative files are often
used to store data that is accessed through pointers in other
files.

Keyed sequential files provide access based upon a rec
ord key associated with each record. Records are stored in
order by key , together with a key index that is used to access
them. Access is serial in record key order or random by
record key. Keyed sequential files are used to store data that
must be processed both randomly and serially in key order,
such as a customer master file.

Direct files provide rapid access based on a record key
associated with each record. Records are stored by applying
a hashing algorithm to the record keys, which tends to
distribute the records evenly through the file. Access is
random by record key, or serial in physical storage (not
record key) order. Direct files are used for data that requires
rapid keyed access and little or no serial processing.

Library files allow collections of logically related files to

The F i le Named CHECKS

. . .on the Flexible Disc Volume Named D5VOL4

CHECKS(PAYROLL) .FLEXDISC(D5VOL4)

. . .Mounted on the Device Named FLEXDISC

. . in the Domain Named PAYROLL

F ig . 1 . A f u l l y qua l i f i ed HP 300 f i l ename . I n gene ra l , mos t
parts of the name can be omit ted and the system wi l l assume
default values.

1 6 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

S e q u e n t i a l K e y e d S e q u e n t i a l

K e y -

1 2 2 2 2 3

I D I I B I I

Primitive Library Memory

Sector No. Module -

Input Output

â€¢mi â€¢â€¢â€¢â€¢â€¢â€¢â€¢â€¢â€¢ >HBH' Fig . 2 . The HP 300 f i le sys tem of
f e r s a c h o i c e o f s e v e n f i / e s t r u c
tures for stor ing data.

be stored together in one common file (a library). A library
file is composed of one or more named modules that are
accessed randomly by name. Each individual module has
the storage and access characteristics of a sequential file.
Library files are generally used to store collections of
things, such as a set of terminal screen formats.

Primitive files provide low-level file access for sophisti
cated application programmers. In a primitive file, records
correspond to logical disc sectors within the file. Access is
random by relative record number (i.e., sector number) and
data is transferred in sector multiples. Primitive files are
especially useful for programmers who want to augment
the HP 300 file structures with a customized structure.

Memory files provide efficient program-to-program
communications between one or more sending programs
and a receiving program. Records are stored in a circular
first-in-first-out buffer in virtual memory. Access is serial
for both writing data into the file and reading data from the
file. Memory files are used for communication and syn
chronization among multiple programs or tasks in an appli
cation system.

In addition to these seven file structures, the file man
agement system offers the following capabilities for storing
and accessing data:
â€¢ Variable length records. Records may vary from one to

over 2,000 characters in length for efficient disc space
use. The file system automatically manages and recovers
space when records are replaced or deleted.

â€¢ Domain security. Passwords on private file domains pre
vent unauthorized entry into the domains.

â€¢ Dynamic file allocation. Storage space is automatically
allocated for data files as they need it.

â€¢ Private volumes. Removable private disc volumes can be
used to transport files to other HP 300 systems or to share a
single storage device among several sets of data.

â€¢ File sharing. Programs can obtain exclusive access to a
file, or multiple programs can concurrently access the file
in a read-only sharing mode or an update sharing mode
(with file locking and unlocking).

â€¢ File equation. HP 300 programs can specify the files and
devices they use as logical file names. These logical
names are associated with actual physical files or devices
through file equations that can be changed independently
of the program. File equations can be stored with the
program as default file assignments, and they can be en
tered as commands at execution time.

â€¢ Input/output without wait. Using nowait input/output, a
program can initiate an I/O operation (such as input from
a terminal) and then continue with other processing be
fore the I/O is complete (e.g., before the user types in the
response). Sophisticated programmers can use this
technique to increase performance in I/O-intensive appli
cations by overlapping I/O and processing.

IMAGE/300 Data Base Management System
IMAGE/300 is the data base management system for the

HP 300 computer system. IMAGE offers an alternative to
conventional file systems, and can help to reduce data re
dundancy and promote consistency, timeliness, and integ
rity of data, allowing it to be more responsive to user needs.
Using IMAGE, the data for an entire application can be
stored in an integrated, highly structured data base. Appli
cation programs use this structure to access the data and
derive information about relationships among the data
items. In addition, the IMAGE data base inquiry facility
allows the user to access and inquire into the data base
without application programming.

IMAGE/300 consists of several components:
â€¢ A schema processor that translates a data base schema (a

formal data base description written in the IMAGE data
base definition language) into an internal data base rep
resentation

â€¢ Commands for creating, purging, erasing, storing and
restoring the data base

â€¢ System services that are used by applications programs to
access the data base

â€¢ A data base inquiry facility for making impromptu data
base inquiries and for data base testing and debugging.

JUNE 1979 HEWLETT-PACKARD JOURNAL 17

© Copr. 1949-1998 Hewlett-Packard Co.

IMAGE/300 Data Base St ructure
An IMAGE data base consists of data items, data entries,

and data sets. A data item is a single piece of data, such as an
employee number or employee name. A data entry is an
ordered set of related data items, such as all the information
about a particular employee. A data set is a named collec
tion of data entries, such as the set of all information on all
employees. A data base is a named collection of related
data sets, such as all the data sets that relate to a pay
roll application.

Fig. 3 shows how data items, data entries, and data sets
relate to one another, using a payroll application as an
example. As shown in Fig. 3, data entries are related by two
different types of IMAGE data sets:
â€¢ Master data seis are used to store data entries that repre

sent uniquely identifiable entities. The storage location
assigned to each master entry is determined by the value
of a specific data item within the entry. This data item,
called a search item or key, serves as the primary identifi
cation for that entry. All entries in a master data set have
the same search item, and each entry has a different value
for that item. In the example of Fig. 3, EMPLOYEE and
PAY-PERIOD are master data sets. EMPLOYEE NUMBER and
PAY DATE are their respective search items.

â€¢ Detail data sets are used to store entries that represent
related entities. In a detail data set, the storage location
assigned to a particular entry has no relation to its data
content. When a new entry is added, it is placed in the
first available location. Unlike master data sets, a detail
data set may have up to 16 search items, and the values of
a particular search item need not be different for different
entries. In general, many entries will have the same value
for a given search item.
An important purpose of master data sets is to serve as

indexes to detail data sets. Data entries in a master data set
contain pointers to groups of entries in detail data sets that
have the same search item as the master set. In Fig. 3,
TIMECARDS is a detail data set that is indexed by both the
EMPLOYEE and PAY-PERIOD data sets. A master data set may
be related in this way to more than one detail data set, and a
detail data set may be related to more than one master data
set.

To represent data relationships, master and detail data
sets are combined in a network of data sets that forms an
entire data base. This network not only stores data, but

P E R S O N A L
D A T A

F i g . 3 . A n I M A G E / 3 0 0 d a t a b a s e c o n s i s t s o f a n e t w o r k o f
related master data sets (EMPLOYEE, PAY-PERIOD) and detail data
sets (TIMECARDS).

Fig. the Entering the schema that describes the structure of the
data base of F ig. 3.

represents relationships among pieces of data as well. The
data can then be retrieved based on these relationships.

Creat ing an IMAGE/300 Data Base
To create an IMAGE data base, the user must first decribe

the data base structure to the HP 300 system. The descrip
tion is called a schema, and it defines the data items, data
entries, and data sets that make up the data base, as well as
other capacity and security information. The IMAGE
schema processor, DBSCHEMA, is used to enter the schema,
as illustrated in Fig. 4. The partial schema shown corre
sponds to the payroll data base example in Fig. 3.

The schema processor creates an interactive environment
for entering and editing schemas that closely resembles the
TYPIST text editing environment. When the schema has
been entered, the TEST softkey compiles it into an internal
form and reports any errors for immediate correction. After
the schema has been defined, AMIGO/300 commands can
be used to create, purge, erase, store and restore the data
base.

IMAGE/300 Data Base Access
Application programs access IMAGE data bases through

a set of IMAGE system services. These services give the
programmer high-level, applications-oriented data base ac
cess, without concern for where the data is stored or how it
is accessed. Services are available to open and close a data
base for access, obtain information about the data base, read
all or some of the data items in a specific data entry, add a
new data entry to the data set, update data item values in an
existing data entry, delete a data entry from the data set, and
lock and unlock the data base or a subset of it for temporary
exclusive access.

Using these services, programs can access the data base in
one of four modes. Serial access retrieves successive data
entries from the data set. It is often used to process an entire
data set in one pass. Direct access retrieves data entries
based upon their record locations within the data base. It is
generally used when the application already knows the
identity of the data entry it wants. Calculated access re
trieves the data entries in a master data set based on their
search item (key) values. For example, calculated access
might be used to obtain the data entry for an individual
employee, given the employee number. Chained access is
used to successively retrieve all the data entries in a detail
data set that share a common search item value. For exam
ple, chained access would be used to retrieve all the

1 8 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

timecard data entries for a given employee. Data entries can
be retrieved in either a forward or backward direction.

IMAGE/300 da t a bases a r e p ro t ec t ed aga ins t unau
thorized access by several layers of security features. In
addition to the file system's domain passwords, the data
base can be protected with a maintenance word that must be
supplied to gain access to the data base from outside its
domain. Data bases are stored as privileged HP 300 files,
and cannot be accessed through the normal HP 300 fi le
management system services.

Within a data base, individual data entries and data items
are protected through an access level security scheme. Each
data entry and data item can be optionally assigned a read
access level and a write access level. When users or applica
tions programs open the data base for access, they supply a
level word, which determines the read and write levels they
are permitted. For example, in the payroll data base of Fig.
3, certain users could be restricted to accessing only the
PAY-PERIOD and TIMECARD data sets, while others might be
permitted to access all data items except employee names
and hourly rates, and sti l l others might be permitted to
access the entire data base.

Data Base Inquiry Faci l i ty
The data base inquiry (DBI) facility is used to access an

IMAGE data base without an application program. It is
particularly useful during application debugging to gener
ate test data in the data base or examine data base contents.
Data base inquiry is also useful for handling impromptu
inquires into the data base, to display and summarize the
data stored there. Using it, the user can display information
about the data base structure, add data entries to a data set,
delete data entries from a data set, modify data item values
in a data entry, display the values of data items in selected
data entries, and print data base inquiry responses on the
printer.

Inquires to DBI take the form of natural, sentence-like
commands. For example, to display the employee number
and name of everyone in department 537 who is age 60 or
older, the user would enter:
DISPLAY EMPLOYEE*, NAME FOR DEPARTMENT = 537 AND

AGE > = 60
Data base inqui ry would then d isplay the employee

names and numbers for the employees who met the selec
tion criteria.

Data entries are selected for display by specifying values
or value ranges for one or more data items. DBI accepts all
the standard comparison relationships, and multiple selec
tion criteria can be combined with AND and OR connectives
to generate more complex inquiries. In response, DBI dis
plays the contents of the qualifying data entries, or it can
display only selected data i tems on request . All access
through DBI is governed by IMAGE'S standard security
features, to prevent unauthorized access to sensitive infor
mation.

DBI is also a useful tool for data base maintenance. For
example, if all the employees in job classification J4 have
just received a pay increase to $3.60 per hour, the user can
make the change with a single DBI command:

REPLACE RATE WITH 3.60 FOR JOB_CLASS =]4
To delete from the data base all employees who termi

nated employment over one year ago, again a single DBI

command does the job:
DELETE EMPLOYEE FOR TERMIXATIONâ€”DATE < 771231
DBI can also be used to add new data entries to the data

base. For example, to add a new employee, the user would
enter:

ADD EMPLOYEE
DBI requests a value for each data item in the data entry,

by name, on the screen. The data supplied in response is
checked for validity before being stored in the data base.

Acknowledgments
Numerous people have been involved in the design, im

plementation, and refinement of the HP 300 file and data
base management subsystems. Araceli Keiser, Grant Shaw,
and Doug Zumbiel deserve credit for evolving the file sys
tem from a concept to a product. Credit for many of the file
management commands as well as the diagnostic and util
ity subsystem file capabilities goes to Al Dalrymple. Myron
Zeissler deserves credit for all of the printer and disc I/O
drivers. Tom Spross contributed the initial design and im
plementation of what grew to be a very comprehensive file
management test tool. Credit for a file management perfor
mance tool goes to Bob Spivack. Bob Brown deserves credit
for his efforts in developing IMAGE/300. Bob had responsi
bili ty for the schema processor and inquiry facili ty. We
would like to express our appreciation to these individuals
for their diligence and dedication.

Phil l ip N. Taylor
Phi l Tay lor has been deve lop ing
sof tware w i th HP s ince 1972. He was
pro jec t manager for HP 300 f i le and
da ta base management , and i s now
sect ion manager for HP 300 data man
agement and commun ica t ions
software. Born in San Francisco, he re
ceived his BS degree in mathematics in
1968 from the University of California at
Dav is , and was invo lved in computer
systems development for four years be
fore jo in ing HP. Phi l is marr ied, has
three chi ldren, and l ives in San Jose,
Cal i fornia. His interests include garden
i ng , woodwork ing , backpack ing , t en
n is, and basketbal l .

Alan T. ParÃ©
Alan ParÃ© was project leader for
IMAGE/300. He received his BA degree
in mathematics in 1967 from Cal i fornia
State University at San Jose and his MS
degree in appl ied mathematics in 1971
f rom the Univers i ty of Santa Clara. Be
fore joining HP in 1972 he specialized in
in format ion s torage and re t r ieva l sys
tems and mathemat ica l p rogramming .
Wi th HP, he ' s con t r i bu ted to the de
velopment of the RPG compi ler for HP
21 MX Computers. Alan is a nat ive
Cali fornian, born in Santa Monica. He's
single, has twochildren, and l ives in Los
Gatos. Among h is in terests are music ,
b i cyc l i ng , and co l l ec t i ng a r t and an
t iques for h is home.

JUNE 1979 HEWLETT-PACKARD JOURNAL 19

© Copr. 1949-1998 Hewlett-Packard Co.

An Easy-to-Use Report Generation
Language
by Tu -T ing Cheng and Wendy Pe ikes

RPG-II (Report Program Generator II) is a widely used
high-level problem-solving language for business
data processing. The language is designed to facili

tate production of well-formatted printed reports. It also
greatly simplifies the tasks of data retrieval, file main
tenance, and file creation.

In other commonly used compiled languages, such as
BASIC, FORTRAN and COBOL, the programmer supplies
the step-by-step instructions corresponding to the desired
program logic. RPG-II differs in that the programmer need
only describe the format of the input data, output reports
and calculation operations. The RPG-II compiler does the
rest, including supplying the program logic.

Another major difference between RPG-II and most other
languages lies in the format of its source lines. Instead of the
relatively free format of BASIC or FORTRAN, RPG-II is a
completely fixed-format language. That is, each field on an
RPG-II source line must appear in precisely the correct
columns, and each set of columns may contain only one
particular field. The descriptions of the fields correspond
ing to each set of columns are part of the language specifica
tion of RPG-II, and the names of these fields are printed
across the appropriate columns on the RPG-II coding forms.
Therefore, writing an RPG-II program consists simply of
taking these coding forms and filling in the blanks.

RPG-II has extensive file processing capabilities. The file
organizations supported include sequential, random, and
keyed. A file in an RPG-II program may be processed either
sequentially or randomly, and its records may be of either
fixed or variable length. A portion of any keyed file can be
processed sequentially or between two key limits, and rec
ords can be added or deleted from a keyed file at any time
within an RPG-II program. There is also a technique called
matching records, which allows the processing of multiple
files as a single file. These are only a few of the advanced file
processing techniques built into the language.

Options in RPG output statements relieve the program
mer of the task of writing routines to format the output data.
The RPG-II compiler generates all of the routines necessary
to print and format heading, detail, and total output lines.
The programmer only has to supply the variable parts of the
information to be printed.

Similarly, the vast choice of operators available in the
calculation statements allows for much flexibility in the
type of tasks one can program without much effort. Again,
the compiler supplies all of the routines necessary to per
form all of the language's calculation actions, such as man
ipulating quantities and varying the course of events ac
cording to the results obtained.

Fig. 1 is an example of an RPG-II program. This program
is very simple; all it does is read some input and echo this
input data to a line printer.

I ' f l G L Ã ­ R P G Ã I 3 0 0 V s . A . 0 1 . 0 1
S U N , M A Y f e , 1 9 7 ' ? , 1 1 : 3 3 A M

i O H
2 0 F I N P U 1 I P F 8 0
Ã O F O U T P U T O F 8 (1

401. INPUT MA EÂ» Ã­

HEWLETT-PACKARD

5 o :r.
6 0 0 0 U T P I J T D
7 0 0

0 ERRORS,

01
Ã­ 80 DATA

! 1 A T A B O

0 WARNINGS DETECTED DURING COMPILATION

F ig . 1 . A s imp le RPG- I I p rogram tha t reads some inpu t and
echoes i t to a l ine pr inter .

RPG-ll /300
RPG-II/300 is the implementation of the RPG-II program

ming language on the HP/300 Computer System. Much of
its design effort was spent ensuring compatibility with the
RPG languages on the HP 3000 and the IBM System/32 and
System/34. This allows existing programs from these
machines to be transported to the HP/300 without extensive
modification. It also enables programmers already familiar
with RPG-II to use RPG-II/300 with very little additional
training.

As a matter of fact, there is no need to make any changes
to an RPG-II program from another machine. The HP 300
RPG language monitor and compiler together detect every
possibily incompatibility in a source program. Each such
error is either corrected by the language monitor or reported
to the user so that it can be fixed.

This error detection occurs as a two-step process. First,
the language monitor screens out incompatible source rec
ords. The program is then compiled, with the compiler on
the alert for more language incompatibilities. For each such
error, the user receives a message explaining what is wrong
and how it can be corrected.

The language monitor finds all incompatibilities in a
source program in the following manner:

Fig . 2 . RPG- I I /300 uses screen templa tes ins tead o f cod ing
sheets. Each f ie ld of the RPG speci f icat ion is ident i f ied in the
t emp la te a rea a t t he bo t t om o f t he sc reen . As each l i ne i s
en te red i t t a kes i t s p l ace i n t he d i sp l ay w indow above t he
template.

2 0 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

^ ^ ^ ^

Initially, an existing source program must be transferred
to the HP 300 in the form of a sequential file. The user then
brings the program into the language monitor via the COPY
FILE command. This command performs line-by-line syn
tax checking on each source record in the program. If an
error occurs, a self-explanatory error message immediately
appears in the error message window, and the line in error
is displayed. The user has two choices at this point: to
ignore the error by hitting the BYPASS softkey, or to correct
the error by typing in the changes. No matter what choice is
made for each error, the user can be sure of one thing when
the entire program has been brought in: that the program
does not contain any unknown syntax errors.

Another feature of the RPG-II/300 compiler is that all error
messages are self-explanatory, easily understood sen
tences. This type of human engineering, coupled with the
features of the RPG-II/300 language monitor (such as the
NEXT ERROR softkey), allow debugging convenience rarely
found in other RPG systems.

The entire RPG-II/300 package, consisting of the compiler
and the language monitor, adds up to a new approach for
on-line development of RPG programs. The features of the
language monitor are discussed in greater detail later in this
article and in the article on page 9.

RPG Program Deve lopment
The RPG-II/300 language subsystem is similar to the Bus

iness BASIC/300 language subsystem in that program de
velopment can be performed in a highly interactive man
ner. The additional features of the source entry facility of
RPG-II/300 greatly simplify the task of entering and editing
a program. The most outstanding of these conveniences is
the source entry window, which is in the form of a template.
Each field in the RPG specification being entered is sepa
rately identified and labeled on the template. This elimi
nates the need for the programmer to count columns and
spaces as the various fields are entered. Forward and back
ward tabbing and the IDS editing keys are additional fea
tures that make it easy to edit data in the templates.

As each source line is entered, it takes its place in its
proper sequence in the display window (see Fig. 2). There is
a different template for each of the distinct types of RPG-II
specifications. To switch to another template, all the user
need do is press the CHANGE FORM softkey and type in the
new specification type, as shown in Fig. 3.

Each line in the program is checked for correct syntax as it
is entered. Errors are reported immediately and can be cor-

Fig. 4 . Edi t ing a prev iously entered l ine us ing the APRENDÃ
M O D I F Y , S E L E C T L I N E , a n d D E L E T E S O t t k e y S .

rected by typing the new field directly into the template.
The user can also delete, edit, or duplicate a previously

entered line via the following sequence of actions. First, hit
the APPEND/MODIFY softkey to put the language monitor
into modify mode. Then, enter the sequence number of the
line to be edited, and hit the SELECT LINE softkey. The line
selected will be displayed in the template window ready to
be edited. Hitting the DELETE softkey causes the line to be
deleted. If the line has been modified, hitting the ENTER key
causes the replacement of the original line. If the sequence
number has been changed, the line is duplicated in place on
the screen (see Fig. 4).

To test the program, press the TEST softkey. The RPG
language monitor automatically compiles, prepares, links,
and executes the program, providing that no error has oc
curred. If the compiler has detected an error, the program
listing is displayed in the upper window of the split screen.
By pressing the NEXT ERROR softkey, the user can bring the
line in error to the template window for editing as desired.
The user can correct the error, or BYPASS it temporarily, or
QUIT the NEXT ERROR processing. All this is done simply by
hitting the appropriately labeled softkey (Fig. 5).

The RPG Language Moni tor
The language monitor serves as the RPG-II/300 user inter

face both for source entry and for program compilation and
testing. The integration of these functions, together with
innovative features such as the source templates and split
screen, make RPG-II program development on the HP/300
far more convenient than on any other machine.

Fig. 3. To switch templates the user presses the CH
sof tkey, and is o f fered a menu o f fo rm types.

Fig. 5. When the TEST softkey is pressed, compilat ion begins.
I f an The is d iscovered, i t is d isp layed on a spl i t screen. The
user can correct the error, BYPASS i t temporari ly, or QUIT the
er ror process ing mode.

JUNE 1979 HEWLETT-PACKARD JOURNAL 21

© Copr. 1949-1998 Hewlett-Packard Co.

The feature that does the most to facilitate program de
velopment is the source window, which is in the form of an
RPG-II template. Since RPG is a language composed en
tirely of fixed-format statements, the user must enter each
field on a source line in precisely the correct columns. This
makes conventional RPG source entry a long, tedious, and
error-prone process, with much time spent writing on cod
ing sheets and counting columns. A program listing cannot
even be read without a listing analyzer, which tells the
programmer which columns correspond to which fields.

The language monitor's template facility takes care of all
of this for the programmer. There is no need to count col
umns, or even use coding sheets. On the source entry
template, each field on the source line has its own small
window, marked clearly with the field's name. There is not
even the need for the programmer to be concerned with
right errors left justification of fields, a frequent source of errors
in a conventional RPG source entry system. The language
monitor knows how each field should be justified, and does
so accordingly. And, as soon as one field has been typed in,
the language monitor positions the cursor to the next field
to be entered on the source line.

The language monitor's immediate detection of the pro
grammer's syntax errors saves much time and effort. In a
conventional RPG source entry system, the whole program
must be typed in and compiled before the programmer can
be informed of any error. Not only does this waste much
computer and programmer time by causing extra journeys
through the source-entry/compilation/error-correction cy
cle, but it does nothing to prevent the programmer from
making the same syntax error many times in a program.

The HP 300's language monitor, on the other hand, de
tects a syntax error as soon as the source line has been typed
in. It informs the user of the error by placing a sentence in
the message window that clearly explains precisely why
the line is incorrect and what the programmer must do to fix
the mistake. It also positions the source entry cursor to the
field in error, so the programmer can easily type in the
correction. However, the programmer is not forced to cor
rect the error; hitting the BYPASS softkey will enter the

Ã

T
Enter RPG

Source Record
Bypass, Correct, or Delete

the Source Record

Interactive
Syntax Checker

Yes Posit ion The Cursor
to Field in Which the

Error Occured

Record Added
to Source Fi le

Fig. 7. RPG-II 1300 detects syntax errors immediately so they
can be corrected in teract ive ly .

source line, as is, into the program.
This immediate reporting of syntax errors saves the pro

gram unnecessary trips through the compilation cycle, as
well as preventing the programmer from making repeated
mistakes. When the program has been compiled, the source
entry screen splits to simultaneously display both the
source program being edited and the list file created by the
compiler.

Figs. 6 through 8 illustrate the operation of the language
monitor and compare it with a conventional RPG system.

Mult iple Terminals
RPG-II/300 features an interactive multiterminal data

entry extension that significantly expands the terminal ac
cessing capability of RPG. Using this extension, an execut
ing RPG program can accept data entered from one or more
HP/300 application terminals or from the IDS. The system
automatically enacts this facility by starting a dialogue with
the user at the IDS before the program executes. At this time,
the user tells the system which terminal or group of termi
nals is going to be accessed by the program. This capability
can also be used dynamically to add a terminal to or remove

RPG-II /300

RPG Language
Monitor (Line-by-Line

Syntax Checker)

Source Program
that Is Line-by-Line

Syntactical ly Correct

Convent ional RPG

^^^M

RPG
Compiler

Use Listing
Analyzer to

Correct Listing

N o

F i g . 6 . R P G - I I / 3 0 0 a n d c o n v e n
t iona l RPG program deve lopment
cycle.

2 2 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

C o m p a r i s o n s O f R P G
S o u r c e E n t r y A p p r o a c h e s

R P G - I I 3 0 0 L a n g u a g e
M o n i t o r

1 N o c o d i n g s h e e t i s n e e d e d T h e R P G
t e m p l a t e s p r o v i d e d e s c r i p t i o n s o f a l l
f i e l d s , e l i m i n a t i n g t h e n e e d f o r
c o l u m n c o u n t i n g . T h e l a n g u a g e
m o n i t o r p e r f o r m s a l l n e c e s s a r y r i g h t
a n d l e f t j u s t i f i c a t i o n a n d a u t o m a t i c a l l y
s e t s a t a b a t t h e b e g i n n i n g o f e a c h
f i e l d . T h i s t o o l f a c i l a t e s s o u r c e e n t r y
a n d m i n i m i z e s s y n t a x e r r o r s .

2 T h e l a n g u a g e m o n i t o r d e t e c t s a n d
r e p o r t s s y n t a x e r r o r s a s s o o n a s t h e
s o u r c e l i n e i s e n t e r e d a n d p o s i t i o n s
t h e c u r s o r t o t h e c o l u m n w h e r e t h e
e r r o r o c c u r r e d . T h e e a r l y e r r o r
d e t e c t i o n s a v e s c o m p i l a t i o n t i m e a n d
t h e c u r s o r p o s i t i o n i n g g r e a t l y
s i m p l i f i e s t h e j o b o f e r r o r c o r r e c t i o n .

3 . T h i s d a t a e n t r y f a c i l i t y m i n i m i z e s t h e
n u m b e r o f t i m e s t h a t t h e u s e r s
p r o g r a m m u s t g o t h r o u g h t h e s o u r c e
e n t r y l o o p .

C o n v e n t i o n a l

1 . A c o d i n g s h e e t i s r e q u i r e d . T h e u s e r
m u s t c o u n t t h e c o l u m n s a n d k e e p
t r a c k o f t h e s t a r t i n g p o s i t i o n o f e a c h
f i e l d w h i l e e n t e r i n g t h e s o u r c e .

2 . T h e u s e r m u s t w a i t u n t i l t h e p r o g r a m
i s c o m p i l e d t o b e i n f o r m e d o f a n y
e r ro r s .

3 . E a c h t i m e a s i n g l e e r r o r i s d e t e c t e d ,
t h e u s e r s p r o g r a m m u s t g o t h r o u g h
t h e e n t i r e s o u r c e e n t r y l o o p . E a c h
t i m e t h e c o d e i s c o r r e c t e d , t h e r e i s a
c h a n c e o f i n t r o d u c i n g m o r e e r r o r s .

R P G - I I 3 0 0 F e a t u r e s w i t h N o
C o n v e n t i o n a l C o u n t e r p a r t s

1 . H e l p f a c i l i t y
2 . E d i t o r c o m m a n d s
3 . " N e x t E r r o r l a n g u a g e m o n i t o r

s o f t k e y
4 . S p l i t - w i n d o w s c r e e n t o v i e w s o u r c e

a n d c o m p l e t e l i s t i n g s i m u l t a n e o u s l y .

Fig. 8. How the RPG-II 1300 source entry method benefi ts the
user.

a terminal from an executing RPG program.
Such a powerful extension adds only minor changes to

the RPG-II language constructs. All terminal operation is
transparent to an RPG program, which views the terminal(s)
as a conventional input file with the special device name
CONSOLE. Terminal formatting and prompting for data are
handled automatically on a field-by-field basis, according
to the input specifications of the RPG program. No special
coding effort is necessary; only the use of the device name
CONSOLE is required to take advantage of this facility.

Wendy Peikes
Wendy Peikes received a BS degree in
compu te r sc ience and e lec t r i ca l en
g ineer ing in 1976 f rom Massachuset ts
Ins t i tu te o f Techno logy, and an MS de
gree in computer sc ience and comput
er engineer ing in 1978 f rom Stanford
Univers i ty . Wi th HP s ince 1976, she's
developed a syntax-d i rected edi tor for
b l ock -s t ruc tu red l anguages and con
t r ibuted to the deve lopment o f the
RPG- l l /300 compi ler . Wendy was born
in New York C i ty and grew up there .
Now l iv ing in Sunnyvale, Cal i fornia,
she 's s ing le and en joys racquetbal l ,
t rap shoot ing, ice skat ing, and ra is ing
houseplants.

Tu-Tmg Cheng
Born in Bangkok, Tu-T ing Cheng
earned h is BS degree in e lec t r i ca l en
g ineer ing f rom Nat ional Taiwan Univer
s i ty in 1969. Seven years la ter he re
ceived his PhD degree in computer sci
ence f rom Ohio State Univers i ty . In be
tween, he col lected two MS degrees in
d i f ferent areas of computer sc ience,
one f rom the Univers i ty of Wisconsin
and the other f rom Ohio State. With HP
s ince 1976, he 's been invo lved wi th
RPG-l l /300 development, most recent ly
as pro ject leader . Tu-T ing is marr ied
and l ives in Sunnyvale, Cal i fornia. His
le isure act iv i t ies inc lude f ishing and
carpentry.

HP 300 Bus iness BASIC
by May Y . Kova l ick

BASIC IS THE ACRONYM for Beginner's All-Pur
pose Symbolic Instruction Code. As the name sug
gests, i t is distinguished from other program

ming languages in its concern for the novice user. While
BASIC is a general-purpose programming language, it
is designed primarily to be easy to learn, easy to use, and
easy to remember. Because of this, BASIC has found
wide acceptance for educational, scientific, and commer
cial data processing. BASIC'S simple statement format per
mits rapid development of simple, straightforward pro
grams. In addition, its flexible input/output capability
makes it well suited to interactive, terminal-oriented appli
cations. BASIC was thus a natural choice for the HP 300.

Since an interactive environment facilitates learning,
BASIC is oriented, but not restricted, to interactive use.
BASIC/300 takes full advantage of the editing capabilities

provided by the integrated display system (IDS) and the
language monitor of the HP 300 to give the user an interac
tive program development environment. It also provides
on-line syntax checking as each statement is entered, in
teractive error reporting, and symbolic debugging. All of
these features provide many of the program development
advantages of an interpreter.

On the other hand, because BASIC/300 is implemented as
a compiler, it generates and stores developed programs in
machine-executable form. This insures maximum runtime
efficiency.

BASIC/300 is compatible with and is a superset of the
ANSI X3.60 standard for minimal BASIC. Advanced fea
tures of the language, together with many enhancements in
BASIC/300, allow programmers to accomplish more sophis
ticated tasks and make BASIC/300 a versatile business ap-

JUNE 1979 HEWLETT-PACKARD JOURNAL 23

© Copr. 1949-1998 Hewlett-Packard Co.

plication language.

BASIC /300 Data Types
The purpose of a program is to produce meaningful re

sults by manipulating data, either numeric or character
strings. BASIC/300 allows the user to represent data by
meaningful alphanumeric names. A BASIC/300 numeric
variable name is composed of an upper-case letter followed
by any number of digits, lower-case letters, or the underline
symbol (up to 15 characters are recognized). A string
variable name is formed by attaching $ to the end of the
valid numeric variable name. This feature makes programs
more descriptive and understandable. BASIC/300 also sup
ports five numeric data types: integer (16 bits), double in
teger (32 bits), short (32 bits floating point), real (64 bits
floating point), and decimal. The inclusion of the decimal
arithmetic data type enhances the usefulness of BASIC/300
for the manufacturing, inventory control, and commercial
market. Instead of converting numbers to binary representa
tion to perform calculations, arithmetic is done in base 10
by special routines. This allows the user to have more con
trol over round-off effects and the number of significant
digits.

The user is also given the ability to set the precision of
individual BASIC decimal variables. Through a declara
tion, the user may specify both the total number of digits
and the number of digits to the right of the decimal point.
For example,

10 DECIMAL A[lO, 2], B[9, 5]

declares that A has ten digits with two to the right of the
decimal point, and B has nine digits, five to the right of the
decimal point. A maximum of 27 digits is allowed.

Because of all the different data types available, mixed-
mode arithmetic is provided by BASIC/300. Automatic data
type conversion is done if necessary on arithmetic opera
tions.

BASIC/300 also handles character string data composed
of a sequence of valid ASCII characters. The string may be
from 0 to 255 characters long. One may specify the
maximum length of a string by using the DIM statement. For
example,

10 DIM A$[25], B$(10) [7]
specifies that the string A$ may have up to 25 characters,
and that each of the 11 elements of string array B$ may have
up to seven characters. The default maximum length is 18
characters.

Strings may be concatenated with the concatenation
operator &.

Normally a reference to a string refers to the entire string
value. However, sometimes it is necessary to reference only
a portion of the string. This kind of substring operation is
a l lowed by using any of three different substr ing
designators:

A$[m,n] specifies the mth through nth characters
A$[m specifies n characters starting at the mth

position
A$[m] specifies the mth through the last character.

These constructs make substring replacement and extrac
tion possible.

There is also a set of over 30 built-in (or predefined)
numeric and string functions available for reference by the

BASIC/300 user. For example, POS(X$,Y$) provides the
capability to do substring searching. It returns the starting
position of the string Y$ within the string X$. Numeric/
string conversion is possible with the VAL$ and VAL func
tions. These functions perform conversion of numeric data
to string data and vice versa.

Branching to Alphanumer ic Labels
Most BASICs allow users to branch to a statement or

subroutine within the program with GOTO or GOSUB state
ments, respectively. The destination of the branch is usu
ally identified by a line number. This means that the pro
grammer either needs to know the line number for all the
forward branches, or must go back and patch them up later.
BASIC/300 allows users to label any statement with an
alphanumeric label that has the same format as a variable
name. This label may then be used to refer to the statement
instead of the line number. This not only makes the pro
gram more readable and easier to follow, but also lets the
programmer develop the program logically without worry
ing about line numbers.

Array Manipulat ions
An array is a collection of related data grouped under one

name. The various values of the array are arranged in an
ordered relationship. BASIC/300 users may use both
numeric (all data types except decimal) and string arrays.
Arrays may have up to 32 dimensions, and may be declared
explicitly in a DIM or type declaration statement. For
example, the statements

10 DIM A(-10:10)
20 INTEGER B (1:20)

declare that real array A has 21 elements, A(-io), A(-9),. . .,
A(o), A(i) A(lO),and integer array B has 20 elements, B(l)
to B(20). These two statements explicitly specify the lower
and upper bounds of the arrays.

Another way of specifying the lower bound of a dimen
sion of an array is by using the OPTION BASE statement. It
declares that all lower bounds of dimensions that are not
explicitly specified are either 0 or 1. For example, the
statements

30 OPTION BASE 1
40 DIM C(10), D$(5,5)

specify that array C has 10 elements, and that D$ has five
elements in the first dimension and five elements in the
second dimension, for a total of 25 elements. If a program
unit does not contain an OPTION BASE statement and the
array declaration does not explicitly specify a lower bound,
the assumed lower bound is zero.

Another powerful tool to manipulate an array is the
executable statement REDIM, which dynamically changes
the shape of the array. Although the number of dimensions
may not be changed, the number of elements in each di
mension may be changed and new lower and upper bounds
may be specified. Assuming that we are in the same pro
gram unit as above, the statements

100 REDIM D$(3,4)
110 REDIM C(-5:3)

redimension the arrays C and D$ so that D$ now has 12
elements, three in the first dimension and four in the sec
ond, and C now has nine elements.

Each element of the array may be accessed by using sub-

2 4 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

scripts, such as A(5)=B(7,2). The whole array may also be
manipulated by MAT statements. These statements allow
the user to initialize all the elements of the array, to input or
print a whole array, and to do mathematical operations on
numeric arrays.

Both numeric and string arrays are allocated space in the
user's data space. The only limitation on the size of any
numeric array is that the maximum number of elements
specified in the DIM or type declaration statement may not
exceed 32,767 divided by the data size of the array element.
For string arrays, the maximum number of characters as
specified in the DIM statement cannot exceed 65,536.

Funct ions and Subprograms
Increased interest in structured design and programming

has made it desirable to be able to write modular programs.
To accomplish this, BASIC/300 provides subprograms and
multiline functions. Each function or subprogram is a block
of statements that is complete in itself. In this way, pro
grams may be developed in small modular units, and a more
structured approach to BASIC programming is achieved.
Multiline functions, subprograms, and the main program
are known as program units. Each may be compiled inde
pendently, so that minor changes in a program unit do not
require a complete recompilation. Parameters, either
numeric or string, simple or array, or file numbers, may be
passed to the subprograms or multiline functions.

Each subprogram is delimited by a SUB statement and a
SUBEND statement. The number and types of parameters are
defined in the SUB statement. Multiline functions are sub
programs that return values. They are delimited by DEF and
FNEND statements. The DEF statement is similar to a SUB
statement in that it defines the number of parameters and
their types. It also defines the type of the function, that is,
the type of the value to be returned. Multiline functions are
invoked by using the function's name and parameter list in
an expression. Subprograms are invoked with a CALL
statement.

Both subprograms and multiline functions may be recur
sive, that is, they may invoke themselves and they may
invoke other subprograms or functions.

So far, we have mentioned one way to communicate
between program units, namely, by passing parameters.
Sometimes it is desirable to set up an area of data that is
common to several program units. This is accomplished in
BASIC/300 with the COM statement. Variables specified in a
COM statement are placed in a common global area so that
values assigned to these variables in one program unit are
retained when control is transferred to another program
unit. Thus data may be shared among program units with
out using a long list of variables passed as parameters.

Cal l ing System Services
The AMIGO/300 operating system provides a wide range

of system services for program management, task manage
ment, file management, data base management, synchroni
zation, resource management, IDS control, and other func
tions. All of these services are useful and necessary for
commercial business application programs.

Instead of inventing and designing a new language con
struct for every one of these services, BASIC/300 has pro

vided a clean and easy statement that enables the user to
take the of all the callable system services. This is the
ICALL (intrinsic call) statement. The BASIC syntax for
ICALL is

ICALL procedure-name (parameter-list)
or

ICALL procedure-name (parameter-list), numeric-variable
The procedure-name is the name of the system service

procedure being called. The numeric-variable is used for
calling procedures that return values. This statement al
lows the user to programmatically access all the facilities
provided by AMIGO/300 without having to learn a com
pletely new set of system-dependent language constructs
for each of the system services needed.

The ICALL statement is versatile and easy to use, and
helps to keep the BASIC language from being a conglomera
tion of complicated system-dependent commands.

File Manipulat ion
For applications that require permanent data storage ex

ternal to a particular program, BASIC/300 provides a data
file capability that allows flexible, direct manipulation of
large volumes of data stored on files. There are many ways
of arranging data in a file, depending upon the application.
BASIC/300 supports four different file structures (sequen
tial, of keyed-sequential, and memory), three types of
file storage mechanisms in the files (ASCII, binary, and
BASIC-formatted), and two methods of accessing the file
(serial and direct). These provisions, plus programmatic
file creation and purging, are directly available through the
language constructs of BASIC/300.

Formatt ing Output
The PRINT USING and IMAGE statements of BASIC/300

give the user explicit and exact control over the format of
program output. All types of numbers can be printed, and
the exact positions of signs can be specified. String values
can be printed in specified fields, and literal strings and
blanks can be inserted whenever needed. Carriage return
and line feed can also be under explicit control. Also pro
vided are print functions such as TAB, SPA, LIN, and so on.

The PRINT USING statement allows easy construction of
printed reports and formatted terminal displays. It may also
be used to print to files or for formatting the printing of
whole arrays. The format specification may be fixed at
compile time with an IMAGE statement or a string literal, or
may be fixed at runtime by PRINT USING A$; print-list. This
allows the user to specify the format dynamically.

Take for example, the simple PRINT statement:
PRINT print-list

As mentioned above, we may specify the format with
PRINT USING format; print-list

If we want to print whole arrays, we may use
MAT PRINT [USING format print-list

The part in brackets is optional. To print to a file, we simply
add the file number to the PRINT statement:

[MAT] PRINT #n [USING format]; print-list
This its do serial printing to the specified file starting at its
current file pointer. We may also access the file directly by
specifying the key of the record we wish to print to:

[MAT] PRINT #n, record-key [USING format]; print-list
These examples illustrate how a variety of output and file

JUNE 1979 HEWLETT-PACKARD JOURNAL 25

© Copr. 1949-1998 Hewlett-Packard Co.

manipulation tasks can be accomplished by making simple,
easy extensions to the PRINT statement.

Compatibi l i ty
The core of BASIC/300 is compatible with the implemen

tations of BASIC on the HP 9845A Desktop Computer1 and
the HP 250 Small-Business Computer.2 There has been an
earnest effort on the part of all of the developers of newer
BASIC on HP machines to follow this trend, so that pro
grams written on one HP machine are easily transportable
to another.

Acknowledgments
Many people contributed to the success of BASIC/300. I

would like to extend special thanks and appreciation to
Denise Pitsch and Jon Kelley for their contributions to the
design and implementation of the BASIC/300 compiler.

References
1. W.E. Eads and J.M. Walden, "A Highly Integrated

May Y. Koval ick
May Koval ick , pro ject leader for the
BASIC/300 compi ler, holds BS degrees
in mathemat ics and computer sc ience
f rom the Univers i ty of Cal i fornia at
Berke ley . She graduated In 1974 and
has been Invo lved In comp i le r de
velopment with HP since 1 975. A native
of Hong Kong, May Is marr ied and l ives
in Santa Clara, Cal i fornia. She devotes
much o f her t ime to B ib le s tudy and
church act iv i t ies. She also plays piano
and en joys read ing and l i s ten ing to
music.

Desktop Computer System," Hewlett-Packard Journal,
April 1978.
2. D.L. Peery, "HP 250 BASIC: A Friendly, Interactive,
Powerful System Language," Hewlett-Packard Journal,
April 1979.

Innovat ive Package Design Enhances
HP 300 Ef fect iveness
by David A. Hor ine

THE COMPACT HP 300 PACKAGE is a deceptively
s imple s t ruc ture but i t had to sa t i s fy an ex
tremely complex set of design requirements. One

way to understand this is to examine the anatomy of the
package on a layer-by-layer basis. The outermost layer, the
skin of the machine, is the human interface. It has to be
comfortable, relatively quiet, and relatively easy to use. It
has to fit in an office environment and be durable for the
conditions of use there, and it has to protect the user from
any internal hazards. The next layer is the overall frame
work of the machine. This framework is governed by many
requirements, such as manufacturability, interference pro
tection, cost, and structural integrity. Next, there are the
internal modules, such as the disc and power supply. Here,
serviceability, component size, air cooling circuits, and
grounding for electrostatic discharge are important
parameters.

Another aspect of the machine is the electrical intercon
nection system, which includes the power cord, I/O cables,
printed circuit boards, and the wire bonds to the integrated
circuits. Cost, safety from shock hazard, international safety
standards, durability, and immunity from electromagnetic
interference (EMI) and electrostatic discharge (BSD) are
important concerns. The printed circuit boards are also a
level of packaging, with parameters of size governed by
interconnect cost, packaging density, system partitioning,

mechanical durability, tolerances to avoid misalignment,
manufacturability, and serviceability. The innermost level
of the machine is the circuit devices. Here, packaging de
sign is concerned with orientation for optimum cooling,
mounting, interconnection, and testability.

Altogether, the design parameters form a diverse and
often conflicting set (Fig. 1). The HP 300 package design
treated many of these parameters in new and innovative
ways.

Human Factors
User-oriented design was an important consideration

from the beginning. Fortunately, we were able to work
closely with potential users in the form of the many
software designers on the project team. This close interac
tion of surveys, observation, and the construction of
functional models that the software designers could use for
program development. This work, together with literature
and field surveys, led to the following features.

The overall configuration of the machine is basically a
compact vertical arrangement of components. With this
arrangement, the HP 300 occupies a minimal amount of
floor space, which is often in short supply in the office
environment (Fig. 2). The HP 300 can fit next to an existing
desk or other work surface or an optional side table can be
added to provide a wrap-around work area.

2 6 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

International
Safety
Codes

Electrostatic
Discharge Appearance

Serviceability

Manufacturing
Processes

Tool ing
Cost

Environmental
Constraints/

Durability

Thermal
Control

Fig . 1 . Des ign parameters fo r the HP 300 package des ign .

The selection and arrangement of controls and displays
were subjects for considerable research and deliberation.
The most prominent of these features is the column of eight
softkeys along the right side of the display. These keys are
labeled under program control on the screen, and can be an
extremely versatile tool in applications programs. While
the concept of softkeys was axiomatic from the beginning of
the project, the location was not. The vertical right-hand
arrangement was selected because it offers maximum flexi
bility in creating labels. As many as three full lines of copy
on the screen can be assigned to each key. The disadvan
tages to this arrangement were thought to be that it would
require an excessive reach by the operator and that the
right-hand labels could interfere with the length of other
text on the screen. The first objection was overcome by

Flexible
Disc

Display

Keyboard

Card Cage
(CPU, Memory ,
I /O Channels,

Options)

Power
Supply

Fixed
Disc

F i g . 2 . C o m p a c t v e r t i c a l a r r a n g e m e n t o l c o m p o n e n t s c o n
serves space in the of f ice env i ronment .

providing an alternate method of accessing the softkeys by
typing CONTROL 1 through CONTROL 8 on the main
keyboard. Thus, knowledgeable user/typists can keep their
hands on the keyboard while less familiar users can take
advantage of the accuracy resulting from the close proxim
ity of labels and screen-mounted keys. The second objec
tion was met by providing the feature of horizontal scroll
ing. Thus, in the few cases where text and softkey labels
overlap, it is possible to move the entire text to the left to
uncover the hidden data.

On the main alphanumeric keyboard, the arrangement of
characters resembles that found on a typewriter. The
philosophy here was that more people are familiar with a
typewriter than with other alphanumeric keyboards, such
as the teletypewriter. Keys have been added to this general
arrangement to implement the full ASCII character set.
Close cooperation among many HP divisions has resulted
in this basic arrangement becoming a standard for a number
of diverse data entry products.

Simplicity was a major consideration, and it resulted in
the paring away of many extraneous controls and displays.
Other than the CRT itself, the only display normally visible
from the front of the machine is the ATTENTION light and
thus the light 's importance is emphasized. Several
seldom-used controls and displays have been located be
hind a door to deemphasize their importance to the average
user. The main power switch is located below the keyboard
to deemphasize its relative importance in the on-going op
eration of the machine while providing easy accessibility in
an emergency. Its location has the additional benefit that
the switch is mounted directly to the power supply module
so it can be removed and serviced with the supply.

We considered it important for the customer to be able to
reconfigure and add boards to the card cage. This resulted
in the development of a number of information labels on
individual boards and on the card cage. These labels iden
tify by names and colors the functions and locations of
individual boards. In addition, the labels identify ad
dress select switches, cable locations, and diagnostic
lights (Fig. 3).

The method by which the machine would be moved
about raised some mechanical and human factors ques
tions. A high degree of mobility was not thought to be
necessary. On the other hand, the machine will be moved
for servicing, floor cleaning, or other purposes. The ob
vious solution of four locking wheels was considered un
desirable, since it would cause the anti-tip feet to be too
high above the floor, creating a barrier for the operator's
legs. Our solution was to mount two wheels in the rear of
the machine and to use leveling pads in front. With this
arrangement, it is easy to lift the machine by tilting the
keyboard and then to move it as one would move a wheel
barrow. When the machine is set down, there is no possi
bility of accidental movement (Fig. 4).

Structural Design
Two of the most important parameters in the structural

design of the cabinet were low cost and ease of modifica
tion. The second parameter arose from the need to accom
modate the disc mountings and RFI/ESD requirements,
which were not defined until late in the development pro-

JUNE 1979 HEWLETT-PACKARD JOURNAL 27

© Copr. 1949-1998 Hewlett-Packard Co.

Fig . 3 . HP 300 card cage is labe led to ident i fy the func t ions
and loca t ions o f p r in ted-c i rcu i t boards .

cess. Our studies in cost reduction led us to examine the
structures of home appliances, such as washing machines
and refrigerators. Many of these products make use of the
efficient monocoque design, which uses the skin of the
machine as a part of the load-bearing structure. In other
words, the skin serves a dual function of cover and struc
ture, unlike other designs, in which it is common to use a
skeletal structure covered by non-load-bearing shrouds. We

A Novel Shipping Container
We are proud of the fact that the HP 300 shipping container system

received the Best of Show award at the 1 978 International Packaging
Week Exposit ion. I t is a mult i funct ional design that sat isf ies needs in
product ion, sh ipping, and insta l la t ion.

The packaging process s tar ts wi th the inser t ion o f caster wheels
in to the bot tom of the sh ipp ing pa l le t . Th is pa l le t then serves as a
mobi le assembly p lat form and e l iminates the need for convent ional
product handl ing systems. The empty mini rack wi th feet at tached is
set on the pal let and the remaining parts are instal led as i t is moved
f rom stat ion to stat ion in the product ion area. The wheel height was
se lec ted to p rov ide comfo r tab le access du r ing assemb ly and tes t
ing.

The pallet also functions as an eff icient shock and vibration isolator
d u r i n g o f I t s f l o a t e r b a s e d e s i g n i n c o r p o r a t e s t w o t y p e s o f
foam pads that serve as springs and dampers. Together, they reduce
v ibrat ion loads and el iminate the problem of "bot toming out . " These
pads a re a lso des igned to w i ths tand the ex t remes o f ho t and co ld
temperature cyc l ing that each HP 300 undergoes in our product ion
env i ronmenta l tes t chamber .

Af ter assembly and test ing, the package is prepared for sh ipping
by bolt ing the HP 300 to the pal let, adding accessory parts, instal l ing
a co r ruga ted cover w i th snap-on /snap-o f f c l i ps , and remov ing the
wheels.

A t the cus tomer ' s s i te , the package i s des igned fo r qu ick d i sas
sembly and un load ing . One inexper ienced person can unpack and
unload the 260-pound HP 300 in about f ive minutes. The unpacking
ins t ruct ions show a s tep-by-s tep procedure wi th p ic tures a lone, so
instruct ions in di f ferent languages are not required. After removal of
the cl ipped-on cover and unbolt ing of the feet, a self-contained ramp
is set a longside the pal le t and the HP 300 is ro l led of f .

F ig . 4 . HP 300 can be moved l i ke a whee lba r row

2 8 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

implemented this concept with a welded sheet steel frame
that we call the "minirack" (Fig. 5). The minirack serves as
the original part to which everything else is attached. The
feet are bolted to the underside, the CRT/floppy disc assem
bly is riveted to the top, the keyboard shelf rivets to the
front, internal modules including the card cage, disc, and
power supply are bolted in, and a front and rear door are
installed. Most of these modules mount in such a way that
they enhance the rigidity of the overall structure. The pro
cess of adding parts to the minirack occurs while the
minirack is in place on its shipping pallet with wheels
mounted to the pallet's underside for production mobility
(see "A Novel Shipping Container," page 28).

Most of the cabinet parts were designed so that they could
be made on our numerically controlled punching ma
chines. This "soft tooling" approach has the advantages of
extremely low tooling cost and fast implementation of de
sign changes. Consequently, while the basic cabinet design
has remained from an early prototype stage, we were able to
modify parts to include such things as cooling holes and
grounding lugs without incurring the substantial time de
lays that often accompany the alternative of "hard" tooling.

Structural testing included a series of shake, shock, and
drop tests that were defined as appropriate for the office
environment. We also performed abnormal use tests, such
as standing on the machine to change a light bulb. An
unplanned measure of structural integrity occurred during
a IVi-foot vertical drop test when the cabinet, after hitting

Fig. 5. The HP 300's skin serves as both cover and structure.
T h i s " m i n i r a c k " i s t h e o r i g i n a l p a r t a n d e v e r y t h i n g e l s e i s
at tached to i t .

the ground, continued to move and fell on its back side. The
only significant damage was a twisted bracket and one
loose connector. After reinstallation of the connector, the
machine was operable.

Serviceabil i ty
Rapid serviceability is an important consideration in

terms of minimizing both user down time and service costs.
The package design contributes to system serviceability by
providing rapid access to internal components and by dis
playing a large amount of diagnostic and configuration
information in the card cage. Access to all of the major
modules can be gained by removing the front and rear
doors, CRT shroud, and keyboard shroud. Most of these
covers employ captive fasteners to minimize the common
problem of lost screws. Once the rear door is unlocked and
removed, the card cage is exposed. The cage contains all of
the circuitry for the CPU, memory, and I/O devices, and
most of the circuitry for the two discs and the integrated
display system. Thus, most service functions can be per
formed in this one area.

As previously mentioned, the front side of the card cage
boards contains many diagnostic lights and configuration
switches. Thus it is often possible for the service person to
make a quick assessment of system configuration and fail
ure modes by looking at this area. Some subtle features that
enhance serviceability include an auxiliary power connec
tor on the backplane for connecting test probes, and a delib
erate effort to minimize the number of fastener sizes.

Safety and Environmenta l Codes
Safety considerations played a large role in the HP 300

design, mainly because of an increasing awareness and
definition of international safety codes. While many safety
considerations can be identified by common sense, others
can involve subtle misuse of the machine or the relative
value judgments of safety agencies in different countries.
Consequently, package design included ongoing reviews
by our product safety group, and they spent much of their
time keeping abreast of international developments. Our
general philosophy was to design for the worst cases from
all of the codes instead of tailoring machines for individual
countries. Safety-related packaging features include:
â€¢ Definition of customer and service access areas. Service

access areas require a tool for entry.
â€¢ Selection of materials to comply with various flammabil-

ity standards.
â€¢ Caution and warning labels addressed to operators and

service people.
â€¢ Shields for hazardous voltages and moving parts. Many

of these shields are located inside the machine to protect
the service person. Some of them also function to protect
the system from shorting caused by such things as wan
dering screws and paper clips.

â€¢ Anti-tipover feet that also extend out from the rear of the
machine to minimize the possibility that fan openings
will be blocked by an adjacent wall.

â€¢ Numerous details to provide secure safety grounding
throughout the chassis.
Two environmental concerns played a major role in

package development: electromagnetic interference (EMI)

JUNE 1979 HEWLETT-PACKARD JOURNAL 29

© Copr. 1949-1998 Hewlett-Packard Co.

and electrostatic discharge (BSD). Limitations on EMI emis
sions are presently prescribed by the German communica
tions authority. The HP 300 was tested to the German
specifications early in its development and found to have
excessive emissions. Application of some theory and much
trial-and-error design led to the following changes:
â€¢ All conductive parts of the cabinet are grounded together

at many points via screws and welds.
â€¢ Plated parts were substituted in places for painted ones to

achieve better grounding.
â€¢ The doors are grounded to the main cabinet by leaf

springs.
â€¢ I/O cable shields are grounded to the frame of the

machine by die-cast mounting clips.
â€¢ Shields were added to several parts of the cabinet.

ESD problems occur when a person creates a spark by
touching the machine or a nearby conductive object. In
general, we found that ESD problems could be eliminated
by solving EMI problems.

applicable and many of these were being changed as the
project progressed. Peter Rosenbladt contributed the
foreign keyboard designs and much of the overall project
coordination.

Acknowledgments
The contributions mentioned in this article represent the

work of many people. Scott Stillinger did much of the
product design in the form of configuration definition and
parts design. Roger Lee was our industrial designer and the
styling theme that he established with the HP 300 has been
applied to a number of other compatible HP devices. Impor
tant production-oriented inputs were made by Virgil
Springer and Tony Napolitan who joined the team first to
assemble prototypes and later to function as supervisors in
our manufacturing area. Curt Gowan contributed important
ideas relating to serviceability. Bob Schaffer and Tony
Napolitan established the basic concept of using the ship
ping pallet as a mobile assembly platform. Bill Kropf and
Pat Wright were our shipping container designers. Beth
Blomenkamp is to be commended for the prodigious task of
producing over 500 square feet of mechanical drawings,
which represented the package design documentation. Ron
Morgan provided product safety consultation and review.
This was an incredibly difficult task, since over fourteen
different international safety standards were found to be

David A. Hor ine
Dave Hor ine was pro jec t manager fo r
the HP 300 package des ign . Be fo re

I coming to HP in 1971 he worked as a
des igner o f surg ica l dev ices and la te r
as a p roduc t des ign consu l tan t . A
graduate of Stanford Univers i ty in
m e c h a n i c a l e n g i n e e r i n g p r o d u c t d e
sign, he earned h is BS in 1963, his MS in

j 1965 and the degree of eng ineer in
1 969. For the past six years he has been
an inst ructor in Stanford 's Depar tment
of Design in addi t ion to his work at HP.
Or ig inal ly f rom Glendale, Cal i fornia,

Â« Dave now lives in Los Altos with his wife
^ and f i ve daugh te rs . Dave has an i n

teres t in long d is tance endurance spor ts , and h is ac t iv i t ies have
inc luded several 200-mi le-per-day b ike r ides over Mt. Lassen, a sk i
t r ip numer the Sierra Nevada range, running a marathon, and numer
ous backpacking tr ips. He also enjoys creative design act ivi t ies such
as jewelry and furn i ture bui ld ing.

World-Wide Regulatory Compliance
The HP 300 Compute r i s marke ted wor ld -w ide and mus t comp ly

with regula variety of domestic and international safety and other regula
tory requirements. For North American markets, the product is l is ted
and cer t i f ied to the fo l lowing safety requi rements.

UL114 : S tandards fo r Sa fe ty o f O f f i ce App l iances and Bus iness
Equipment (Underwr i ters Laborator ies) .

UL 478: Standard for Safe ty o f E lec t ron ic Data Process ing Uni ts
and Systems (Underwr i ters Laborator ies) .

C S A 2 2 . 2 N o . 1 5 4 : D a t a P r o c e s s i n g E q u i p m e n t (p a r t o f
Canad ian E lec t r i ca l Code , Par t I I , Sa fe ty S tandards fo r
Electr ical Equipment) .

For the international market, the HP 300 is cert i f ied by the German
agency Ve rband Deu t sches E lec t r o techn i ke r (Assoc ia t i on o f Ge r
man Electr ical Engineers) as conforming to the fol lowing standards.

V D E 0 7 3 0 : p a r t I a n d p a r t I I - P : R e g u l a t i o n f o r E l e c t r i c M o t o r -
Ope ra ted App l i ances f o r Domes t i c and S im i l a r Pu r
poses (Of f ice Machines) .

V D E 0 8 7 1 / 6 . 7 8 : R a d i o I n t e r f e r e n c e S u p p r e s s i o n o f H i g h F r e
quency Apparatus for Industr ial , Scient i f ic, and Medical
(ISM) and Simi lar Purposes.

The HP 300 i s l i censed by the German FTZ (Bureau o f Te lecom
municat ion Technology) .

The HP 300 is designed for compl iance wi th the fo l lowing requi re
ments of the Internat ional Electrotechnical Commission.

IEC 380: Safety of Electr ica l ly Energized Off ice Machines.
IEC 435: Safety of Data Processing Equipment .
The product is a lso des igned for compl iance wi th the safety s tan

dards o f F in land, Swi tzer land, the Uni ted K ingdom, and Aust ra l ia .
-Rona ld E . Morgan

3 0 H E W L E T T - P A C K A R D J O U R N A L J U N E 1 9 7 9

© Copr. 1949-1998 Hewlett-Packard Co.

S P E C I F I C A T I O N S
H P 3 0 0 C o m p u t e r S y s t e m

H P 3 0 0 S y s t e m U n i t
The HP 300 Sys tem Uni t i s the cent ra l e lement in every HP 300 sys tem conf igura t ion . I t
combines into a singie, compact, integrated package all the hardware components necessary
for system operat ion.

Processor
Main Memory
Input/Output Channels
12M-byte Fixed Disc (opt ional)
1M-byte Flexible Disc Drive
Integrated Display System
Power Supply.

PROCESSOR:
INSTRUCTION SET: 195 ins t ruc t ions
D A T A T Y P E S :

Bit
Byte
Integer (2- and 4-byte)
Float ing point (4- and 8-byte)

U S E R P R O G R A M A D D R E S S I N G S P A C E :
Code: 2,064,384 bytes maximum (up to 63 code segments of up to 32,768 bytes each)
Data : 268,369,920 bytes max imum (up to 4096 data segments o f up to 65,536 bytes

each)
MINOR CYCLE TIME: 270 nanoseconds; var iab le microcyc le t iming.
LEVELS OF INTERRUPT PRIORITY: 15 .

M E M O R Y
WORD LENGTH: 22 b i ts (16 data/6 er ror cor rect ion)
CYCLE TIME: 500 nanoseconds
MEMORY MODULE: 128K by tes
MINIMUM MEMORY: 256K by tes (2 modu les)
MAXIMUM MEMORY: 1024K by tes (8 modu les)
M E M O R Y T E C H N O L O G Y : 1 6 K - b i t M O S R A M s

G E N E R A L I N P U T / O U T P U T C H A N N E L (Q I C)
CAPACITY: 8 dev ices per QIC, max imum; 2 GICs per sys tem, max imum
DATA TRANSFER RATE: 1 M-by te /second max imum
CABLE LENGTH: 15m (50 f t) max imum per QIC
INTERFACE: General -purpose byte-para l le l in ter face bus
DEVICES SUPPORTED:

Integrated Display System
Fixed Disc
Flexible Disc Drive
2631A Ser ia l Pr inter
7906M/S Disc Dr ive
7920M/S Disc Dr ive
7925M/S Disc Dr ive

A S Y N C H R O N O U S D A T A C O M M U N I C A T I O N C H A N N E L (A D C C)
CAPACITY: 8 dev ices per ADCC, max imum (4-Main , 4 -Extender) ; 2 ADCCs per sys tem

maximum (tota l o f 16 devices per system)
DATA 4800 , 50 , 75 , 110 , 134 .5 , 150 , 200 , 300 , 600 , 1200 , 2400 , 4800 , 9600 baud
CABLE LENGTH: 15m (50 f t) max imum per dev ice
INTERFACE: RS-232C/CCITT V.24 asynchronous, b i t -ser ia l in ter face
DEVICES SUPPORTED:

2640B Interact ive Display Terminal
2645A Display Stat ion
2647A Inte l l igent Graphics Terminal
2648A Graph ics Termina l

F IXED DISC (HP 7910K-020)
CAPACITY: 12 mi l l ion 8-b i t bytes (formatted)
BYTES/SECTOR: 256
SECTORS/TRACK: 32
T R A C K S : 7 3 8 x 2
TRACKS/ INCH: 300
BITS/ INCH: 3225
TRACK-TRACK SEEK T IME: 10 ms
A V E R A G E S E E K : 7 0 m s
W O R S T C A S E S E E K : 1 1 0 m s
A V E R A G E L A T E N C Y : 1 0 m s
TRANSFER RATE: 526.5 k i loby tes /second

FLEXIBLE D ISC DRIVE (HP 7902)
CAPACITY:

1.03M bytes (1,029,120 bytes)
256 bytes/sector
30 sectors/track
67 tracks/surface
2 surfaces

MEDIUM: 2-s ided, double-densi ty f lex ib le d isc (IBM #2736700 d isket te)
TRACK-TO-TRACK SEEK T IME: 18 ms
AVERAGE SEEK T IME: 91 ms

A V E R A G E L A T E N C Y : 8 3 m s
DATA TRANSFER RATE: 100K by tes /s (bu rs t)

I N T E G R A T E D D I S P L A Y S Y S T E M (I D S)
D I S P L A Y S C R E E N D I M E N S I O N S : 1 3 . 7 x 2 6 . 4 " c m (5 . 4 x 1 0 . 4 i n) ; 2 4 l i n e s o f 8 0

characters.
C H A R A C T E R S : 2 . 4 6 x 3 . 1 8 m m (. 0 9 7 x . 1 2 5 i n) ; 7 x 9 e n h a n c e d d o t m a t r i x w i t h h a l f

dot shift ing.
INTENSITY CONTROL: Opera tor access ib le
STANDARD CHARACTER SET: 1 28-charac te r USASCI I
OPTIONAL CHARACTER SETS: Math charac te rs . L ine d rawing se t , Large charac te rs .

International characters.
D I S P L A Y E N H A N C E M E N T S : H a l f - b r i g h t , B l i n k i n g , I n v e r s e v i d e o (b l a c k - o n - w h i t e) ,

Underline.
KEY-CONTROLLED FUNCTIONS: Disp lay enhancements , Character set se lec t ion, Set '

c lear tab, Display of contro l funct ions, Screen hardcopy.
WINDOWING

Concurrent ly Act ive Windows: 32 max imum
Borders: 1 arbi t rary vert ical border maximum; Arbi t rary hor izontal borders.
I /O: ac t ive f rom one d isp layed window a t a t ime; Output to any ac t ive w indow on an

asynchronous basis.
Format Impl ic i t ly Unformat ted (window contents modi f iab le f rom keyboard) ; Impl ic i t ly

Formatted (output protected from modif icat ion); Expl ic i t ly Formatted (input restr icted
to defined f ields).

F ILE ATTACHMENT/SCROLL ING/EDIT ING
Fi les At tachable: Keyed Sequent ia l w i th DOUBLE keys, Di rect .
Maximum Fi le Length: Arb i t rary
M a x i m u m R e c o r d L e n g t h : 1 6 0 d i s p l a y a b l e c h a r a c t e r s (2 5 6 i n c l u d i n g c o n t r o l

characters).
S c r o l l i n g F u n c t i o n s : S c r o l l u p / d o w n , S c r o l l l e f t / r i g h t , D i s p l a y f i r s t / l a s t p a g e , D i s

play previous/next page.
E d i t i n g (t y p e S c r o l l i n g , C u r s o r u p / d o w n / l e f t / r i g h t , C h a r a c t e r r e p l a c e (t y p e

over), Character insert /delete, Line insert /delete.
SOFTKEYS

Number of Sof tkeys: 8.
Softkey Labels: Dynamic label l ing; 1 to 3 l ines/ label ; 1 to 80 characters/ label l ine.
So f t key Mode : Te rm ina t i ng (i npu t t e rm ina tes when key i s s t ruck) ; Non- te rm ina t i ng

(input cont inues af ter key is struck).
E N V I R O N M E N T A L

T E M P E R A T U R E
Operating: 10Â° to 40Â° C (50Â° to 104Â° F)
Non-Operating: -40" to 65Â° C (-40Â° to 149Â° F)
Maximum Rate of Change: 10Â° C/hour (l inear)

HUMIDITY
Operat ing: 20% to 80% RH (maximum wet bulb temperature 26Â° C, no condensation)
Non-Opera t ing : 8% to 80% RH (max imum wet bu lb tempera tu re 30Â° C, no conden

sation)
ALT ITUDE

Operat ing: To 4600m (15,000 f t)
Non-Operat ing: To 15,200m (50,000 f t)

G E N E R A L
P O W E R R E Q U I R E M E N T S

Vol tage: 100, 120, 220, or 240V; Â±5%, -10%
F r e q u e n c y : 5 0 o r 6 0 H z ; + 2 H z , - 2 H z

P O W E R D I S T U R B A N C E S (S Y S T E M W I T H S T A N D S) :
S h o r t - T e r m U n d e r v o l t a g e : - ^ 8 5 % o f n o m i n a l f o r 1 1 m s d u r a t i o n , m e a s u r e d

f rom peak o f the ac waveform.
S h o r t - T e r m O v e r v o l t a g e : 1 5 0 V f o r 3 0 s d u r a t i o n (1 1 0 , 1 2 0 V) ; 3 0 0 V f o r 3 0 s

durat ion (220, 240V)
Line neutral-to-ground) Pulses: 1000V for 50 Â¿is (line-to-neutral or neutral-to-ground)
Fast ground) Disturbances: 1500V for 30 ns (l ine and neutral to ground)

SHOCK (NON-OPERATING) : 30 g
FLEXIBLE DISC STORAGE TEMPERATURE: 5Â° to 50Â° C (41Â° F to 122Â° F)
MAXIMUM RATE OF TEMPERATURE CHANGE: 20Â°C/hr (36Â°F/hr)
HUMIDITY: 8% to 80% RH
SAFETY/RFI CERTIF ICATION

U S A : U L 4 7 8 , 1 1 4
Canada : C22 .2 #154

H P 300 So f tw a r e
A M I G O / 3 0 0 O P E R A T I N G S Y S T E M
AMIGO/300 F ILE SYSTEM

F I L E D i r e c t S e q u e n t i a l , R e l a t i v e , K e y e d S e q u e n t i a l , D i r e c t (H a s h e d) , L i b r a r y ,
Pr imit ive, Memory, Nul l .

ACCESS METHODS: Ser ia l (fo rward /backward) , Keyed.
K E Y T Y P E S S U P P O R T E D :

Integer (2- and 4-byte)
Real (4- and 8-byte)

JUNE 1979 HEWLETT-PACKARD JOURNAL 31

© Copr. 1949-1998 Hewlett-Packard Co.

Character s t r ing (to 255 bytes)
K E Y E D R E T R I E V A L M O D E S : E x a c t k e y m a t c h , N e x t k e y < s e a r c h k e y , N e x t k e y >

sea rch key , Nex t key < - sea rch key . Nex t key > = sea rch key .
F ILE Upda te MODES: Exc lus i ve access . Read -on l y sha r i ng , Upda te sha r i ng w i t h f i l e

locking/unlocking.
MAXIMUM RECORD LENGTH: 2028 to 2036 by tes , i nc l ud ing keys , depend ing on f i l e

structure.
I M A G E / 3 0 0 D A T A B A S E M A N A G E M E N T S Y S T E M (O P T I O N A L)

DATA se ts . STRUCTURE: Networked, w i th master and de ta i l da ta se ts .
D A T A s e t) , A C C E S S M E T H O D S : S e r i a l , D i r e c t , C a l c u l a t e d (M a s t e r s e t) , C h a i n e d

(Detai l set).
D A T A I T E M N A M E S P E R D A T A B A S E : 2 5 5 m a x i m u m
D A T A I T E M S P E R D A T A E N T R Y : 1 2 7 m a x i m u m
D A T A S E T S P E R D A T A B A S E : 5 0 m a x i m u m
D E T A I L D A T A S E T S P E R M A S T E R D A T A S E T : 8 m a x i m u m
S E A R C H I T E M S (K E Y S) P E R D E T A I L S E T : 8 m a x i m u m
DATA ENTRY SIZE: 2034 by tes (Mas te r) , 2020 by tes (De ta i l) max imum
D A T A E N T R I E S P E R D A T A S E T : 6 5 , 5 3 5 m a x i m u m
D A T A E N T R I E S P E R C H A I N : 6 5 . 5 3 5 m a x i m u m

BUSINESS BASIC /300
RPG-l l /300
UTILITIES

S O R T / M E R G E
Input F i les : 16 max imum
Input Fi le Organizat ions:

Sequent ia l
Relat ive
Keyed Sequent ia l
Direct

Sor t /Merge Keys : 16 max imum
Sor t /Merge Key Types:

ASCII s t r ing (to 255 bytes)
Logical (2 bytes)
Integer (2 or 4 bytes)
Real (4 or 8 bytes)
Packed Decimal (to 27 d ig i ts)
Zoned Dec imal (to 27 d ig i ts)

Key Posi t ions: arbi t rary
Sor ted/Merged Output Opt ions:

Comple te records
Sor ted /merged keys on ly

Record addresses (tag sort) â€” Sort only
TYPIST
HELP
SYSTEM BUILD
S Y S T E M S T A R T U P
D IAGNOSTIC AND UT IL ITY SYSTEM
PRICE IN U.S.A. : $36.500 (inc ludes one language)
M A N U F A C T U R I N G D I V I S I O N : G E N E R A L S Y S T E M S D I V I S I O N

1 9447 Pruner idge Avenue
Cupert ino, Cal i fornia 95014 U.S. A

Hewlet t -Packard Company, 1501 Page Mi l l
Road, Palo Al to , Cal i forn ia 94304

ÛRNAL

Bulk Rate
U.S. Postage

Paid
Hewlett-Packard

Company

June 1979 Volume 30 â€¢ Nur
T e c h n i c a l I n f o r m a t i o n f r o m t h e L a b o r a t o r i e s o f

H e w l e t t - P a c k a r d C o m p a n y
Hewle t t -Packard Company . 1501 Page Mi l l Road

Palo Al to, Cal i forn ia 94304 U.S.A.
Hewle t t -Packard Cent ra l Ma i l ing Depar tment

Van Heuven Goedhar t laan 121
1180 AM Ams te l veen The Ne the r l ands

Yokogawa-Hewle t t -Packard L td . . Sug inami -K
Tokyo 1 68 Japan

/ ~ \ I d e l e t e A f r o m I p l e a s e [~ ~ ^ ~ s [~ ~ A r ^ v | â € ” \ [~ \ | ^ O O â € ¢ T o C n a n 9 e y Â ° u r a d d r e s s o r d e l e t e y o u r n a m e f r o m o u r m a i l i n g l i s t p l e a s e s e n d u s y o u r o l d a d d r e s s l a b e l S e n d
V _ / l l / A I N 9 4 3 0 4 ' \ _ y I / A L J I - J l l t O O . c h a n g e s t o H e w l e t t - P a c k a r d J o u r n a l , 1 5 0 1 P a g e M i l l R o a d , P a l o A l t o . C a l i f o r n i a 9 4 3 0 4 U . S . A . A l l o w 6 0 d a y s .

© Copr. 1949-1998 Hewlett-Packard Co.

	A Business Computer for the 1980s
	The Integrated Display System and Terminal Access Method
	Reducing the Cost of Program Development
	Managing Data: HP 300 Files and Data Bases
	An Easy-to-Use Report Generation Language
	HP 300 Business BASIC
	Innovative Package Design Enhances HP 300 Effectiveness
	A Novel Shipping Container
	World-Wide Regulatory Compliance

