# Advanced Digital Signal Analyzer Probes Low-Frequency Signals with Ease and Precision Significant new features include absolute internal calibration in the user's choice of engineering units, digital band selectable or 'zoom' analysis, fully annotated dual-trace CRT display with X and Y axis cursors, digital storage of data and measurement setups on a tape cartridge, and a random noise source to provide test stimulus. #### by Richard H. Grote and H. Webber McKinney IGITAL SIGNAL ANALYSIS has become a widely used technique for the analysis of mechanical structures, noise, vibration, control systems, electronic networks, and many other devices and physical phenomena. In the past, digital signal processing equipment has been expensive, difficult to move, and has required an operator that understands digital signal analysis as well as the problem to be solved. While there is a definite need for such sophisticated laboratory equipment, there is also a need for instrumentation that is less expensive, easier to use, and more portable. Such an instrument is the new Model 5420A Digital Signal Analyzer (Fig. 1). The 5420A is a two-channel instrument that analyzes signals in the dc-to-25-kHz frequency range. The new analyzer has a two-tone dynamic range of 75 dB and amplitude flatness of 0.1 dB. Band selectable (zoom) analysis provides 0.004-Hz frequency resolution anywhere in the measurement band. The 5420A makes many powerful time domain and frequency domain measurements, including transient capture and time averaging, auto and cross correlation, histogram, linear spectrum, auto and cross spectrum, transfer function, coherence function, and impulse response. All measurements are continuously calibrated, and can be easily recalibrated in the operator's engineering units. Built-in random noise stimulus and a digital tape cartridge for storing data records and instrument set-ups make the 5420A a complete measuring system. Measurement results are displayed on a fully annotated, dual-trace, high-resolution CRT, and can be output directly to an optional X-Y recorder or digital plotter. The display provides three graphic formats and 14 choices of coordinates. The display scale can Cover: In a dramatic demonstration of its versatility, HP engineers used a Model 5420A Digital Signal Analyzer to determine the response and vibrational characteristics of a compound bow of the type used by tournament archers. Ac- celerometers mounted on the bow provided the input signals to the analyzer. (Bow provided by Jennings Compound Bow, Inc.) #### In this Issue: | Advanced Digital Signal Analyzer<br>Probes Low-Frequency Signals with<br>Ease and Precision, by Richard H.<br>Grote and H. Webber McKinney | page | 2 | |--------------------------------------------------------------------------------------------------------------------------------------------|------|----| | Front End Design for Digital Signal<br>Analysis, by Jean-Pierre Patkay, Frank<br>R.F. Chu, and Hans A.M. Wiggers | page | 9 | | Display and Storage Systems for a<br>Digital Signal Analyzer, by Walter M.<br>Edgerley, Jr. and David C. Snyder | page | 14 | | Digital Signal Analyzer Applications,<br>by Terry L. Donahue and Joseph P.<br>Oliverio | page | 17 | | Printing Financial Calculator Sets New<br>Standards for Accuracy and Capability,<br>Roy E. Martin | page | 22 | Fig. 1. Model 5420A Digital Signal Analyzer is a dual-channel instrument that analyzes signals in the dc-to-25-kHz frequency range. It makes many powerful time and frequency domain measurements, including spectrum, transfer function, and impulse response. Results are displayed on a fully annotated dual-trace CRT in any of three graphic formats and 14 choices of coordinates. be set either by the operator or automatically to maximize the use of the display surface. #### Measurements The new digital signal analyzer makes an extensive set of time domain and frequency domain measurements. Here is a description of each measurement and an example of where the measurement is useful. Time Record Average. This measurement is used to average time records, or to capture transient time records. The Fourier transform (linear spectrum) of the time waveform is also provided. Time averaging is used primarily for improving the signal-to-noise ratio of time functions. A synchronous time signal is required to trigger the time average. Autocorrelation. The primary application for the autocorrelation function is also pulling signals out of noise. However, the autocorrelation function does not require time synchronization. The disadvantage of autocorrelation is that the autocorrelation function of complex signals is difficult to interpret. As a result, this technique is mainly used for sinusoids, which are preserved under autocorrelation. Crosscorrelation. The crosscorrelation function is mathematically similar to the autocorrelation function. However, crosscorrelation is used to determine the relationship between two signals. A major application of crosscorrelation is the determination of relative delays between two signals. **Histogram**. The histogram provides an estimate of the probability density function of the incoming time waveform. The histogram can provide the operator with an indication of the statistical properties of a signal. Linear Spectrum. The linear spectrum is the frequency domain equivalent of the time record average. The result of this measurement is a display of rms amplitude versus frequency. The linear spectrum requires time synchronization for averaging, and contains both magnitude and phase information. Power or Auto Spectrum. This is the measurement performed by a traditional spectrum analyzer, that is, power as a function of frequency. The auto spectrum is calibrated in units of mean square for sinusoidal signals, power spectral density for random signals, or energy density for transient signals. The auto spectrum is used for characterizing signals in the frequency domain. Cross Spectrum. The cross spectrum is the frequency domain equivalent of the crosscorrelation function. The cross spectrum produces a display of relative power versus frequency. The cross spectrum can be used to determine mutual power and phase angle as a function of frequency. **Transfer Function**. The transfer function measurement characterizes a linear system in terms of gain and phase versus frequency. When the operator selects this measurement, the following measurements are also provided. Coherence ( $\gamma^2$ ). This function is related to the signal-to-noise ratio (S/N = $\gamma^2/(1-\gamma^2)$ ). It indicates the degree of causality between the output and the input **Fig. 2.** Band selectable analysis (BSA) makes it possible to zoom in on a narrow frequency band and examine the detailed structure of measured data with resolution as fine as 0.004 Hz. Here the baseband measurement (a) shows a resonance at about 5 kHz. The 0.4-Hz resolution of the BSA measurement (b) reveals that there are actually two resonances there. as a function of frequency. A coherence of 1 indicates perfect causality. Input and Output Auto Spectrum. See above. Impulse Response. The time domain equivalent of the transfer function. The impulse response shows the time response of the system to an impulsive input. #### Band Selectable Analysis (BSA) Band selectable (zoom) analysis concentrates the full resolution of the analyzer in a narrow frequency band of the user's choice. This narrow band can be placed any where in the 25-kHz bandwidth. Its width is selectable and may be less than 1 Hz. BSA can provide better than 4-mHz resolution, and measurements below 250 Hz can be made with a resolution better than 40 $\mu$ Hz. This resolution is obtained using purely digital techniques with no sacrifice in accuracy or dynamic range. An example of the power of BSA is shown in Fig. 2. The 25-Hz resolution of the baseband measurement of Fig. 2a indicates the presence of a single resonance centered at 5 kHz. The 0.4-Hz-resolution BSA measurement of Fig. 2b clearly shows two resonances in the vicinity of 5 kHz. #### **Advanced Triggering Capability** The 5420A offers the operator a wide choice of triggering capabilities, including free run, internal triggering on either channel, external triggering ac or dc coupled, and remote start. When the analyzer is free running, it acquires and processes input data as fast as it can. For measurement bandwidths below the instrument's real-time bandwidth, this results in overlapped processing of input data. In this case, processing periods overlap input data records, and the analyzer processes the latest available data. Overlapped processing increases the variance reduction per unit time. All triggering modes allow the operator to condition triggering by entering a per-channel pre-trigger or post-trigger delay. Pre-trigger delays up to the time record length and post-trigger delays up to 40 seconds can be accommodated. Post-trigger delays are necessary when there are inherent delays in the measurement process, such as in measuring the transfer characteristics of an auditorium. Pre-trigger delay is of particular importance when triggering on impulsive signals that have all their energy focused in a very short time interval; without pre-trigger delay it is very difficult to capture the leading edge of the signal's energy. #### Easy to Use An important design objective for the 5420A Digital Signal Analyzer was that it be easy to use, both for the novice and for the experienced operator. Frontpanel design for such a powerful, flexible instrument poses particular problems. These were solved in part by using the CRT display to extend and simplify the front panel (Fig. 3). The display presents measurement parameters and status information. Instead of having to inspect all of the front-panel controls to determine how the instrument is set up, the operator simply pushes the VIEW key and the setup is displayed on the CRT. The CRT is also used to display menus of choices from which the user makes selections of measurements, averaging, input signals, and triggering. #### **Display Features** Once a measurement has been specified, it is initiated by pushing the START button. As soon as the first time record has been digitized and processed, fully calibrated measurement results appear on the display. If stable averaging was chosen, the measure- Fig. 3. CRT display extends the front panel, helping to make the new analyzer easy to use for both the novice and the experienced operator. For example, pushing the VIEW key causes the instrument's status to be displayed. Other keys display lists of choices from which the user can select measurement parameters. ment continues until the specified number of averages has been done. If one of the other averaging types —exponential, peak channel hold, or peak level hold—was selected, the instrument continues processing data and displaying calibrated results indefinitely until the operator manually stops the measurement by pushing the PAUSE/CONT button. Pushing this button a second time resumes the measurement by averaging new data into the previous result. Measurement results can be viewed in any of several display formats. Fig. 2a shows the most basic FULL format. The instrument automatically scales and calibrates the X and Y axes, generates an internal graticule, and labels both axes. The type of measurement result—transfer function in this case—is indicated in the upper left corner of the display and the number of averages used to make the measurement is indicated in the upper right corner. In the lower left corner is an "echo field" that tells the user the last sequence of front-panel buttons pushed, and in the lower right corner are error messages, such as ADC overflow. Two measurement results can be viewed simultaneously, either UPPER/LOWER (Fig. 1), or one superimposed on the other, FRONT/BACK (Fig. 2b). The results are fully annotated and calibrated, and either trace can be modified independently of the other. These formats are of considerable benefit for such purposes as viewing two parameters of a measurement simultaneously (e.g., magnitude and phase of a transfer function), or comparing a result with that of a previous measurement. Results can be displayed in the following coordinate systems: magnitude of the function, phase, log magnitude, log of the horizontal axis (when log magnitude versus log frequency is selected, the result is the classical Bode plot), real part of the function, imaginary part, real part plotted versus imaginary (Nyquist plot), and log magnitude versus phase (Nichols plot, useful in control theory applications). In dual display modes, the coordinates of the two traces can be chosen independently. #### **Cursor Capability** A major user convenience of the 5420A is its powerful cursor capability. The instrument can display two independent cursors in each axis. The positions of the cursors are indicated at the top of the display. At the intersection of the X cursor and the waveform is an intensified point, and the value of that point on the waveform is indicated on the display along with the cursor position. Hence one application of the cursor is to indentify numerical values associated with a measurement. For example, an X axis cursor can be used to identify the amplitude at a particular frequency, or the two Y axis cursors can be used to identify what frequency components are, say, 50 dB below a peak level. Although the cursors are primarily means of identifying specific values of a measurement result, they can be used in other ways to enhance the power and the convenience of the instrument. In conjunction with the control and setup keys, the cursors can be used to define the center frequency and bandwidth of a new measurement. In conjunction with the display operator keys, the cursors have other uses. If an X cursor is moved to coincide with a resonance of a transfer function, the frequency and the percent critical damping of that resonance can be determined by pushing the **PEAK** key. #### The Module I/O Bus (MIOB) The module input/output bus (MIOB) is the interconnect scheme for all of the modules of the 5420A Digital Signal Analyzer (cartridge, display, filters, ADC, etc.). It consists of 16 bidirectional data lines, one handshake pair for sending commands from computer to module, and one handshake pair for everything else (status flow from module to computer and data transfers). The computer can use the bus at any time to send commands to a module. The modules must accept commands at any time. However, they may send status or send or receive data only when they "own" the bus. To maintain high speed at the system level and controllable response time, it is necessary to reduce the hardware and software overhead required for bus access. On the hardware side, this is accomplished by using burst mode transfers from 64-word FIFO memories. On the software side, all I/O is performed using two special microcoded opcodes, XCW and XIO. The computer does not use the conventional direct memory access (DMA) hardware. DMA would be useful only during the burst portion of the data transfer. It has no facilities to control response time between bursts or to perform the buffer blocking and I/O chaining required. The microcode facility of the 21MX K-Series Computer provides far greater performance. A time log of activity on the bus during normal system operation might look like this: - Display sends a code word (CW) then inputs 64 words - ADC sends CW then outputs 32 words - Display sends CW then inputs 64 words - Display sends CW then inputs 26 words - Computer sends \$60HZSYNC (interrupt on power line sync) to display - Keyboard sends CW - ADC sends CW then outputs 32 words. Transactions are either commands from the computer to a module or burst mode transfers initiated by a module and always beginning with a code word containing the device's name and status. This structure causes the computer to be interrupt-driven, that is, most bus transactions are initiated by a device. Normally, real-time software associated with so many devices is very complex, but again, the ability of microcode to provide just the right elementary operations keeps complexity to a minimum. Each module (display, ADC, etc.) is controlled by a separate software module called a device control process (DCP). Each DCP appears to own the entire computer all of the time and is unaware of interrupts. Hence the DCPs can be programmed using simple in-line structures instead of complex, shared-computer, save/restore registers—interactive structures characteristic of most interrupt-driven systems. The mechanisms for this simplification are the two MIOB I/O opcodes: XCW and XIO. When an MIOB interrupt (XCW) occurs, a microcoded interrupt processor automatically saves registers, reads the code word (CW) on the bus, and branches through a table to the appropriate DCP. When it is ready to relinquish control, that DCP performs another XCW opcode, causing the interrupt branch table to be updated, registers restored, and the high-level processing resumed. This entire procedure costs the DCP only 20µs per XCW, or 20µs per interrupt. The other special I/O opcode, XIO, is a pseudo-DMA with many embellishments. An inescapable issue whenever hardware and software meet is the mapping of data structures. The hardware designer provides a 128-word sector, an 80-word FIFO memory, or a 2K-word refresh buffer, while the software designer needs an N-byte text buffer, a 1000-word data buffer, or something else. The XIO opcode directly addresses this problem. The XIO opcode's operand is a chain of fourword control blocks that define the desired I/O transfer —for example, "output three commands, then input 50 words, then output two commands." The control blocks tell where to get the commands or data by pointing to the buffer structure, which may include fixed buffers, variable buffers (e.g., the next 50 words in a 1000-word buffer), buffers requiring blocking or unblocking (a composite buffer having many physical pieces, some perhaps deactivated), circular buffers, double buffers, or some other type. This opcode transforms what is usually implemented in dynamic real-time consuming software into static definitions of data structure. For example, the display DCP that produces the calibrated data display provides the display hardware with 64-word data bursts followed by two-word command bursts. It extracts these from seven buffers containing ASCII code, cursors, graticules, annotation, and so on. Each sub-buffer is separate, variable in length, and in its own natural format. Yet the DCP is only 15 lines of code instead of the many hundreds of lines of time-critical code normally required. Furthermore, the average data transfer bandwidth is higher than could have been obtained with DMA. It exceeds 200 kHz at system level, including amortization of all overhead (code words, invisible interrupts, other devices, interrupt latency, etc.) Conventional approaches would probably yield system level average transfer bandwidth much less than 10 kHz because of this overhead, plus that associated with sharing DMA between I/O channels and sharing I/O channels between devices, and because of the software required to convert buffer formats into DMA's linear sequential forms. There is also the general program complexity that seems to be always associated with interrupt subroutines. A time-sequenced record of all MIOB transactions is automatically maintained by the extended I/O instructions. This trace-file capability is very useful in tracking down any I/O-related problems. Another feature, backgrounding, allows DCPs to create other software processes that run at the same time as the DCP. This allows a DCP to do time-consuming operations (e.g., scan a large buffer) without tying up the MIOB at all. -David C. Snyder Critical damping is a measure of the sharpness of the resonance and is equal to 1/2Q, where Q is the quality factor familiar to electrical engineers. Finally, the cursor can be used to identify the harmonics of a particular spectral component. Pushing the HARMONIC button causes the harmonics of the frequency component, identified by an X cursor, to be intensified on the CRT. #### **Display Operators** Powerful post-processing capabilities allow the user to manipulate measurement results. It is possible to add, subtract, multiply, or divide a measurement by another measurement or by a complex constant. These operators could be used, for example, to calculate the percent difference between two measurements. Using another post-processing operation, the Fig. 4. Block diagram of Model 5420A Digital Signal Analyzer. The three principal sections—central processor, analog input section, and display—are connected by a common bus. The input section consists of a dual-channel analog-to-digital converter and digital filter. An HP 21MX K-Series Computer serves as the central processor. user can multiply or divide a frequency domain result by $j\omega$ , which has the effect of differentiating or integrating that measurement in the time domain. These operations are useful for converting acceleration spectrums to displacement spectrums, charge to current, and so forth. The POWER key allows the operator to calculate the total power in the display, the power at a specific line or in a band defined by the cursors, or the power in the harmonics of a particular frequency when the harmonic cursor mode is enabled. The POWER key turns the instrument into a frequency selective power meter. #### **Analyzer Organization** A block diagram of the 5420A Digital Signal Analyzer is shown in Fig. 4. The three principal elements are the central processor, the analog input section, and the display/cartridge interface section. These three functional sections are connected by a bus known as the module input/output bus (MIOB), a 50-conductor ribbon cable on the backplane of the 5420A (see box, page 6). The MIOB conveys all control and data between the processor and the input section and between the processor and the display section by means of a 16-wire parallel bus and eight control signals. By having all system I/O pass through one port of the processor, and by using only one cable, module interconnections were greatly simplified while maintaining high data transfer rates. The processor is the central controller and data manipulator of the 5420A. The processor is a microprogrammed HP 21MX K-Series Computer with 48K words of MOS random-access memory (RAM) and 3K words of read-only memory (ROM). The ROM is used for microprogram storage. An arithmetic booster board significantly increases the computational power of the instrument. This 90-IC board bolts onto the bottom of the computer's CPU board. The MIOB interface connects the processor to the other sections of the instrument, while an HP-IB option interfaces the 5420A to the Hewlett-Packard interface bus (IEEE Standard 488-1975). The input section consists of a dual-channel analog-to-digital converter (ADC) and digital filter. Each input channel has a floating differential input (to eliminate ground loops present in many measurement environments), anti-aliasing filters to remove unwanted spectral components above one-fourth the sampling rate, and a 12-bit successive approximation analog-to-digital converter. The input channel also has an analog trigger capable of triggering on an external signal or either of the analog inputs, and a noise generator for producing stimulus signals. The noise bandwidth is automatically adjusted to be as close as possible to the bandwidth of the measurement being made. The digital filter, which is the key to the great frequency resolution capability of the instrument, translates the frequency components of the sampled data and then digitally filters the result with one of 16 filter bandwidths. The third section is the display and cartridge unit. The instrument has two cartridges, both interfaced through the same drive electronics. The front-panel cartridge is used for measurement results and setup state storage. Up to 120 measurement results and 50 setup states can be stored on this cartridge. The internal cartridge is used to "boot-up" the instrument at initial power turn-on. This boot-up operation is necessary because the RAM memory in the processor is volatile, so its contents need to be loaded when power is first applied. The display is the high-resolution HP 1332A CRT with full vector and character generation circuits. An external CRT and an analog plotter can be driven directly from the connections on the rear of the display section. #### Richard H. Grote Dick Grote has been in the digital signal analysis lab since he joined HP in 1969. Now a section manager, he was project leader for the 5420A hardware. Born in Indianapolis, Indiana, he received his BSEE degree in 1969 from the University of Kansas and his MSEE in 1971 from Stanford University. He's married to an HP mathematician (and author of a 1974 article in these pages), and lives in Palo Alto, California. His interests include woodworking and home projects, reading, old movies, singing in his church choir, and a number of sports. Frequency and Time Characteristics TIME DOMAIN: TIME RECORD LENGTHS (T): 32 selections from 0.005 seconds to 32 000 Measurement Characteristics Measurement Characteristics Measurements PERFORMED: TIME DOMAIN: View Input (Channel 1 and Channel 2): Time Average, Autocorrelation; Crosscorrelation; Impulse Response (Impulse Response is available as part of the transfer function measurement). FREQUENCY DOMAIN: Linear Spectrum, Auto Power Spectrum; Cross Power Spectrum, Power Spectrum Power Spectrum, Power Spectrum P the measurement. STABLE: Equal weighting, stops after reaching selected number of averages. EXPONENTIAL Stable up to number of averages selected, then exponential with decay constaint degular humber of averages selected. trum only). PEAK LEVEL HOLD: Holds spectrum corresponding to maximum value of cumulative channels (Auto Spectrum only). IUMBER OF AVERAGES. From 1 to 30 000 ensemble averages. seconds nominal. RESOLUTION (Δt): Automatically computed from T. RANGE: 10 µseconds to 64 seconds. ODES: PASSBAND: Bandwidth (BW) about center frequency (CF). FREQUENCY DOMAIN #### H. Webber McKinney Webb McKinney received his BSEE and MSEE degrees in 1968 and 1969 from the University of Southern California. He Joined HP in 1969 as a sales engineer, and a year later moved into the digital signal analysis lab, where he's now a section manager. He was project leader for the 5420A software and human interface. Webb was born in Upland, in southern California, and now lives in Los Altos. He spends his spare time working on his house, playing tennis, bicycling, playing folk guitar, and "getting into" yoga. He's married and has two #### SPECIFICATIONS HP Model 5420A Digital Signal Analyzer ALIBRATION: All measurements are fully calibrated, including provision for a user entered calibration factor (K-C1/C2) for each channel (K1,K2) to give results in engineering units. PASSBAND: Bandwidth (BW) about center frequency (OF). CENTER FREQUENCY (CF): 0.16 Hz to 25 kHz, nominal. CF SETTABILITY: Within 1.6 Hz of desired value, spically 0.016 Hz below 250 Hz. BANDWIDTHS (BW): 16 selections from 0.8 Hz to 25 kHz for CF of 25 kHz and below. Additional 16 selections from 0.086 Hz to 250 Hz for CF of 250 Hz and below. BANGE: All Hz of CF = BWIZ-SE5 kHz. BANGE: All Hz of CF = BWIZ-SE5 kHz. BANGE: All Hz of Desired Hz of CF = BWIZ-SE5 kHz. BANGE: Salme as to passband mode. RANGE: Salme as to passband mode. RANGE: Salme as bordwidth. RSOLUTION (30): Automatically computed from bandwidth selection. RANGE: 16 μHz to 100 Hz. | Cross Spectrum Transfer Function Coherence Linear Spectrum Time Record Auto Correlation | | Signal Type | | |-----------------------------------------------------------------------------------------|-------------|-------------------|-------------------| | | Sinusoidal | Random | Transient | | Auto Spectrum | (K·Vrms)² | | (K V)*sec<br>Hz | | Cross Spectrum | K1-K2-Vrms² | K1-K2-VrmsF<br>Hz | K1 K2 V²sec<br>Hz | | Transfer Function | | K2/K1 | | | Coherence | | Unitiess | | | Linear Spectrum | | K-Vrms | | | Time Record | | K-V | | | Auto Correlation | | (K·V)2 | | | Cross Correlation | | K1-K2-V* | | | Histogram | | K-Range to +K-Ra | nge | | | | | | #### Input Characteristics #### INPUT CHANNELS: Two INPUT CHANNELS: Two—via BNC connectors. INPUT IMPEDANCE: FRONT-PANEL INPUT: 1 MΩ shunted by <50 pF. REAR-PANEL INPUT: 1 MΩ shunted by <200 pF. INPUT COUPLING: SINGLE ENDED: do or ac on each channel separately. Ac down 3 dB at 3 Hz FLOATING: Differential input: dc only. COMMON MODE REJECTION RATIO: ⇒85 dB below 120 Hz for differential floating input. MAXIMUM COMMON MODE VOLTAGE: =10 volts FULL-SCALE RANGES: =0.1, 0.25, 0.5, 1, 2.5, 5, and 10 volts peak. AMPLITUDE FLATNESS: =0.1 dB over the entire frequency range (=0.05 dB CHANNEL-TO-CHANNEL MATCH AMPLITUDE: ±0.1 AB (±0.05 as typical). PHASE: ±5 degrees (±2 degrees typical). TRIGGER MODES: Free run with overlap process signal, esternal, ac or do (±5V max level). \$LOPE: + or LEVEL. Adjustable from 10% to 90% of full scale. assing: internal on either input DELAY: Independent delays on each channel, either pre- or post-trigger. PRE-TRIGGER: ≪T POST-TRIGGER: ≪4000T DYNAMIC RANGE: ≥75 dB for each full-scale range setting. Measured by tall That is a vertages of a minimum detectable signal in the presence of a full-scale, in-band signal with random signal type selected and a frequency separa-tion between signals of at least 6% of the selected bandwidth. Includes distor-tion, noise, and spurious signals caused by full-scale, outside energy within 00 kHz. For passband mode, the exact center of the passband is reduced to 65 dB from full-scale. #### Noise Output Characteristics PRE Broadbard renorm, universely ANDWIDTH: BASEBAND MODE do to selected bandwidth, PASSBAND MODE do to center frequency plus one-half the bandwidth, MAXIMUM OUTPUT CURRENT: ±50 mA peak. OUTPUT LEVEL: Adjustable from 0.35 Vrms to 3.5 Vrms typically. Also Display Characteristics NUMBER OF TRACES: One or two—designated A and B. DISPLAY FORMATS: Full (single trace); Upperlower (dual trace); Front Back ACTIVE TRACE: The active trace may be designated A, B, or A and B. DISPLAY QUIRSORS: Clustors are displayed in full forms as ether a line or on the X axis, the Y axis, or both axes simultaneously. Cursors may be avither control keys or set to values explicitly entered by the operator. DISPLAY UPDATE: Display is buffered and refreshed at the line frequent. #### Miscellaneous Characteristics SELF-TEST: A self-test function is provided. HP-IB: An optional HP-IB interface is available. A rear-panel switch se only or addressable operating modes. HP-IB is Hewlett-Packard's implementa-tion of IEEE Standard 488-1975. Digital interface for Programmable Instrumenta- REMOTE START: Measurement may be initiated by contact closure to ground via EXTERNAL SAMPLING: A rear-panel connector is provided for an external sampling signal at TTL levels. The frequency provided must be four times the desired range (100 kHz single, 75 kHz dual channel maximum). Internal littless EXTERNAL CRT OUTPUT: Horizontal, vertical and intensity outputs are proto drive an external large screen display. Honzontal and vertical outputs provide a nominal range of ± ½ volt. Intensity output provides = 1± volt to ±1 volt. Display ANALOG PLOTTER OUTPUT: A rear-manel ribb General Characteristics DIMENSIONS: 64 14 cm (25.25 in) D × 42.55 cm (16.75 in) W × 40.64 cm (16.0 in) H WEIGHT: \$2.16 kg [115 ks], net. POWER: 110V ±20%, optional 230V ±20%, 800 VA max. (600 watts max.), PRICE IN U.S.A.: 529.900. MANUFACTURING DIVISION: SANTA CLARA DIVISION Santa Clara, California 95050 U.S.A. # IGNAL TYPES: SINISCIDIAL Optimizes peak amplitude accuracy. RANDOM. Normalizes power to 1 Hz nose bandwidth. TRANSIENT. Normalizes energy to 1 Hz noise bandwidth for transient analysis. IMPACT: Same as transient but allows preview of input signals before analysis. 8 Details of the operation of these sections are described in the articles that follow. #### Acknowledgments Pete Roth originally conceived the idea for the product. Bob Puette provided support. Bob Reynolds, Al Low, and Gary Schultheis did the product design. Al Langguth designed the digitizer. Norm Rogers designed the arithmetic booster board, did micropro- gramming, and provided general signal processing expertise. Ralph Smith, Dave Conklin, Tom Robins, Mary Foster, and Chuck Herschkowitz developed the software. John Curlett helped with the digital filter and the front panel. Dennis Kwan and Walt Noble provided support in production. Thanks also to Bob Perdriau and Ken Ramsey for their marketing efforts, to Hal Netten, John Buck, and Richard Buchanan for manuals and service policy, and to Ken Jochim and Skip Ross for many suggestions and management talent. # Front-End Design for Digital Signal Analysis by Jean-Pierre D. Patkay, Frank R.F. Chu, and Hans A.M. Wiggers THE INPUT CHANNELS of the new 5420A Digital Signal Analyzer perform the dual function of data acquisition and preprocessing. Preprocessing minimizes data storage and computational demands on the central processor while providing the user with increased measurement capability. Some signal analyzers using the Fourier transform are limited to baseband measurements, that is, the measurement band extends from dc to a maximum frequency. If increased resolution is desired, more samples must be taken, requiring more data storage and processing time. In the 5420A front end is a hardware implementation of band-selectable analysis (BSA), a measurement technique that makes it possible to perform spectral analysis over a frequency band whose upper and lower limits are independently selectable. Increased resolution can be obtained by narrowing the measurement bandwidth, without increasing the data block size. BSA is realized by digitally filtering the sampled input signal to remove all data corresponding to frequencies outside the desired band. A functional diagram of the 5420A front end is included in Fig. 4 on page 7. The hardware is divided into two plug-in modules that share a common power supply. Two analog input channels are contained in the 54410A Analog-to-Digital Converter Module. All digital filtering operations are contained in the 54470B Digital Filter Module. In combination, the two modules provide a dynamic range of 75 dB over seven input ranges from 100 mV full-scale to 10V full-scale. A noise generator in the ADC module provides a stimulus signal for transfer function measurement. The noise generator, a combination of an analog noise source and a digital filter, generates a flat energy spectrum from dc to the maximum frequency of the measurement. The noise bandwidth tracks the selected measurement bandwidth. The analog trigger input in the ADC module has a pseudo-logarithmic potentiometer to provide maximum trigger-level sensitivity around zero volts. Software features allow the user to advance or delay the measurement time window with respect to the trigger; this can be done independently for each channel.\* #### Analog Inputs Each analog input channel has a buffered input, an anti-aliasing filter, and a 12-bit successive approximation analog-to-digital-converter (ADC). The maximum measurement frequency is determined by the sampling frequency, which is the conversion rate of the ADC, and by the anti-aliasing filter. According to the Nyquist sampling theorem, the maximum measurement frequency cannot exceed half the sampling frequency or measurement errors will occur. The anti-aliasing filters insure that there are no higher-frequency components that can fold down or alias into the measurement band as a result of the sampling process. Since they do not have an infinitely sharp cutoff, they further limit the maximum measurement frequency. In the 5420A the maximum sample rate is 102.4 kHz and the maximum measurement frequency is specified as 25.6 kHz. Without BSA the input channel would be sampled at the lowest possible frequency that would still include the measurement band of interest. This gives maximum resolution for a fixed data block size, but requires a large number of available sample rates and <sup>\*</sup>To use this feature, both channels must be running constantly. The software determines when to take data. The trigger signal merely tells the software that the trigger condition has been satisfied. **Fig. 1.** The analog anti-aliasing filters in the 5420A use the FDNR (frequency dependent negative resistance) active filter approach. Any general passive LCR network can be transformed into network of resistors, capacitors, and FDNR elements that has the same voltage transfer function. Here circuit (a) has been transformed into circuit (b). $D_1$ is the FDNR element. Resistors RC1 and RC2 have been added to (b) to define the dc behavior. either a large number of fixed filters or tracking filters, both of which are costly. The digital filter allows us to avoid this expense. The ADC runs at only two sample rates, 102.4 kHz and 1.024 kHz, so only two anti-aliasing filter ranges are required. Higher measurement resolution in intermediate bands is obtained by means of the digital filter. #### Anti-Aliasing Filters—the FDNR Approach The two anti-aliasing filter ranges in each input channel are 30 kHz and 300 Hz. In this low frequency range, the only feasible low-pass filter type is an active filter. The active anti-aliasing filters in the 5420A use the FDNR (frequency dependent negative resistance) approach developed by Dr. L. Bruton.² Basically, any general passive LCR network can be transformed into a topologically similar network that contains resistors, capacitors, and FDNR elements. The new network has the same voltage transfer function as the original LCR network. To illustrate, consider the passive LCR network shown in Fig. 1a. Let $V_{out}/V_{in} = N(s)/D(s)$ . Now let us make an impedance transformation, multiplying each component by 1/s. The transformed network is as shown in Fig. 1b. For this circuit, $$\frac{V_{out}}{V_{in}} = \frac{N(s)/s}{D(s)/s} = \frac{N(s)}{D(s)}$$ $D_1 = 1/C_1s^2$ is the FDNR element. Resistors RC1 and RC2 are added to define the dc behavior. The FDNR element $D_1$ can be realized by the circuit shown in Fig. 2. $Z_{\rm in}$ is a frequency dependent negative resistance. For the 30-kHz FDNR filter used in the 5420A, the design objectives dictated a seventh-order elliptical filter with passband ripple of 0.01 dB and rejection band attenuation of 90 dB. The corresponding normalized low-pass filter is illustrated in Fig. 3.<sup>3</sup> Now, for $f_c=30~kHz$ and $C=2000~pF,\,R=1/\omega C=2.65~k\Omega.$ Multiplying each normalized component value by 2650 results in the FDNR filter shown in Fig. 4. This circuit has greater than 80 dB of stop-band attenuation for frequencies above 60 kHz. The passband characteristics of any two filters are matched within $\pm 0.1~dB$ and phase shifts are matched within $\pm 2^\circ$ throughout the entire 5420A operating temperature range of 0°C to 50°C. The circuit components consist of high-bandwidth operational amplifiers, 1% mica dipped capacitors, and 1% metal film resistors. #### Digital Filter The digital filter can operate in two modes, a baseband mode and a passband mode. In the baseband case the band to be analyzed is between dc and some maximum frequency $f_1 \leq 25.6 \, \text{kHz}$ , Fig. 2. A realization of a frequency dependent negative resistance. Fig. 3. Normalized low-pass filter having the characteristics required for the 5420A's anti-aliasing filters. as shown in Fig. 5a. The filter is switched into the baseband mode and set to the narrowest bandwidth that includes $f_1$ . The available bandwidths are given by This gives a total of 32 bandwidth choices. In a more general case the user wants to analyze a band between two arbitrary frequencies $f_1$ and $f_2$ , as shown in Fig. 5b. In this case the analyzer first calculates a center frequency $f_0 = \frac{1}{2}(f_2 - f_1)$ , and by using the digital equivalent of a coquad mixer, shifts the entire frequency spectrum to the left by an amount $f_0$ . This centers the desired analysis band at dc. Second, a low-pass filtering operation is used to obtain the desired bandwidth. However, there is a significant difference here from the baseband measurement. In Fig. 5a, only the positive frequency domain is shown. This is appropriate because the digital significant nal stream coming from the ADC represents a real signal and therefore has the property that positive and negative components are the same. In the bandpass measurement, the positive and negative frequency bands are not the same, since the negative part contains the information from $f_1$ to $f_0$ and the positive part contains the information from $f_0$ to $f_2$ . As a consequence, the samples describing the shifted spectrum are complex numbers instead of real ones. This can also be seen mathematically. The effect of shifting by fo in the frequency domain is the same as convolving the signal with the spectral component $e^{-j\omega_0 n}$ . This corresponds to multiplication of the time-domain ADC signal $x(n\Delta t)$ by $e^{-j\omega_0 t} = \cos \omega_0 \Delta t$ – $j\sin\omega_0\Delta t$ , and so the shifted signal is $x(n\Delta t)(\cos\omega_0n\Delta t)$ $-j\sin \omega_0 n\Delta t$ ). Thus for every sample $x(n\Delta t)$ that goes into the frequency shifter, two components come out. a real part $x(n\Delta t)\cos\omega_0 n\Delta t$ and an imaginary part $-jx(n\Delta t)\sin\omega_0 n\Delta t$ . The low-pass filter operation then has to be performed on these complex points. Fortunately, digital filtering operations are distributive, that is, filtering a complex signal is the same as filtering the real and imaginary parts separately. The frequency shift and filter operation is shown schematically in Fig. 6. #### Frequency Shifter To generate the values of $\sin\omega_0 n\Delta t$ and $\cos\omega_0 n\Delta t$ for the frequency shift operation, 1024 samples of a half-sine wave are stored in a read-only memory. The ROM address register is incremented at the sample frequency rate by an amount corresponding to $\omega_0$ . This register contains 16 bits. The two most significant bits are decoded to determine which quadrant of Fig. 4. The active FDNR filter derived from the normalized filter of Fig. 3. **Fig. 5.** Digital band selector in the 5420A Digital Signal Analyzer operates in either baseband mode or passband mode. The user has a choice of 32 bandwidths (BW). Sampling frequency $f_{\rm s}$ is either 104.2 or 1.042 kHz. the sine wave the sample is in. For the first quadrant the sample stored in ROM is output. For the second quadrant the ROM address is inverted to get the correct value. For the third quadrant the value stored in ROM is used, but the output is inverted (this is done in the multiplier). For the fourth quadrant both the ROM address and the output value are inverted. To obtain the cosine samples a similar process is used. The ADC sample and the $\cos\omega_0 t$ sample are multiplied in a hardware 12-bit×12-bit multiplier. The actual multiply takes 1.2 microseconds. A new sample can be handled every 2.4 $\mu s$ , corresponding to a maximum sample rate of about 400 kHz for one channel. Since the 5420A has two channels, the maximum sample rate is 200 kHz. The actual sample rate is 102,400 samples per second, and the output of the multiplier consists of 409,600 samples per second. The digital filter has to be fast enough to handle this Fig. 6. Band selectable analysis is implemented by a frequency shift and digital filtering operation. Fig. 7. A simple first-order digital filter can be implemented with one adder, one shift register, and one multiplier. many samples without losing any. #### Digital Filter The digital filter is based on a linear difference system. Input samples coming from the ADC or the frequency shifter are temporarily stored in holding registers. The input samples are then combined with previous sample values to give an output value. In the simplest case (Fig. 7) the output would be y(nt) = x(nT) + ax((n-1)T), which could be implemented with one adder, one shift register, and one multiplier. Analysis of the circuit of Fig. 7 is most easily done in the frequency domain using the Fourier transform. If the Fourier transform of x(nT) is $X(j\omega)$ then it can be shown that the Fourier transform of the delayed time series x((n-1)T) is $e^{-j\omega T}X(j\omega)$ . Thus $$Y(j\omega) = X(j\omega) + ae^{-j\omega T} X(j\omega).$$ The transfer function of the circuit of Fig. 7 is $$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = 1 + ae^{-j\omega T}$$ or, using Euler's expression for $e^{-j\omega T}$ , $$H(j\omega) = 1 + a\cos\omega T - ja\sin\omega T.$$ Similar equations can be worked out for secondorder difference equations. In particular, it is possible to take the delayed samples and add them to the input Fig. 8. A second-order digital filter section. as well as to the output (see Fig. 8). The difference equations are $$y_0(nT) = x(nT) + K_1y_0((n-1)T) + K_2y_0(n-2)T$$ $$y(nT) \, = \, L_0 y_0(nT) \, + \, L_1 y_0((n\!-\!1)T) \, + \, L_2 y_0((n\!-\!2)T)$$ The transfer function is $$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = -\frac{L + L e^{-j\omega T} + L e^{-2j\omega T}}{1 - K_1 e^{-j\omega T} - K_2 e^{-2j\omega T}}$$ Or $$H(j\omega) = \frac{L_0 + L_1 cos\omega T + L_2 cos2\omega T - jL_1 sin\omega T - jL_2 sin2\omega T}{1 - K_1 cos\omega T - K_2 cos2\omega T + jK_1 sin\omega T + jK_2 sin2\omega T}$$ The magnitude of this transfer function is $$\big|\,H(j\omega)\,\big|^{\,2} = \frac{(L_0 + L_1 cos\omega T + L_2 cos2\omega T)^2 + (L_1 sin\omega T - L_2 sin2\omega T)^2}{(1 - K_1 cos\omega T - K_2 cos2\omega T)^2 + (K_1 sin\omega T + K_2 sin2\omega T)^2}$$ at dc ( $\omega = 0$ ), $$|H(j\omega)| = \frac{L_0 + L_1 + L_2}{1 - K_1 - K_2}$$ The coefficients $L_0$ , $L_1$ , $L_2$ , $K_1$ and $K_2$ may be selected to give unity gain at dc as well as the desired passband and rejection band characteristics. For the 5420A, to obtain the required 80-dB out-ofband rejection, it was necessary to implement two of the sections shown in Fig. 8, each having different coefficients. The final overall filter characteristic is shown in Fig. 9. #### Resampling It should be noted that the filter characteristic is dependent on the sample frequency f<sub>s</sub>. If f<sub>s</sub> were Fig. 9. Each 5420A digital filter consists of two second-order sections and has the characteristic shown here. twice as low, the filter passband would be twice as narrow. Also, the frequency content of the filtered signal is roughly half the content of the pre-filter signal. According to the Nyquist sampling theorem, the filter output can be resampled at half the original rate without losing information. The new sample frequency is $f_s' = \frac{1}{2} f_s$ . If this resampled signal is sent through the same filter the bandwidth is halved again. By successively filtering and resampling, the bandwidth can be reduced by powers of two. The same filter handware can be used for these consecutive steps if the filter is designed so that calculation of the first "filter pass" #### Hans A.M. Wiggers Hans Wiggers received his engineering degree from the Technical University at Delft, The Netherlands, in 1965. He joined HP in 1972 with several years' experience in digital IC design. He designed the 54470 Digital Filter module for the 5420A. Born in Amsterdam, Hans is married, has two sons, and lives in Los Gatos, California. He's a soccer coach, an amateur photographer, and a recorder player. #### Jean-Pierre D. Patkay Pierre Patkay received BS and MS degrees in engineering from Harvey Mudd College in 1973. He Joined HP's digital signal analysis lab the same year. Pierre served as project leader and production engineer for the 54410 ADC Module for the 5420A. Born in Pasadena, California, he's married, lives in Los Altos, California, and occupies his spare time with tennis, alpine skiing, ski touring, yoga, and "pulling weeds." #### Frank Rui-Feng Chu Frank Chu designed the front end of the 54410 ADC Module and the ADC FIFO memory board for the 5420A. He's been doing circuit design for HP spectrum analyzers and digital signal analyzers since he joined the company in 1970. Frank received his BSEE degree from the University of Washington in 1970 and his MSEE degree from Stanford University in 1972. He's married, has a daughter, and lives in Santa Clara, California. He plays table tennis, collects stamps and coins, and is working on an MBA degree. takes less than half the sample time. The other half of the available time may then be used for calculation of one of the other "passes". An algorithm to do this is built into the 5420A. The partial sums are stored in the memory instead of a shift register, and the control section regulates which pass is being calculated. Because the digital filter must be able to handle 409,600 samples per second, and half of the time must be devoted to other passes, the maximum allowable time for one calculation is about 1.25 $\mu$ s. Actually the filter performs the calculations in about half this time. 2 #### References - H.W. McKinney, "Band-Selectable Fourier Analysis," Hewlett-Packard Journal, April 1975. - 2. L.T. Bruton, "Network Transfer Functions Using the Concept of Frequency Dependent Negative Resistance," IEEE Transactions on Circuit Theory, Vol. CT-16, pp. 406-408, August 1969. - 3. A.I. Zverev, "Handbook of Filter Synthesis," pp.278-280. - 4. R.N. Bracewell, "The Fourier Transform and Its Applications," McGraw-Hill, 1965. # Display and Storage Systems for a Digital Signal Analyzer by Walter M. Edgerley, Jr. and David C. Snyder WHILE DATA IS BEING TAKEN into the 5420A Digital Signal Analyzer and is being manipulated by the processor, the analyzer must be displaying this data graphically and alphanumerically, without flicker, and in a clear, clean manner. A key factor in realizing the required performance is the high-resolution HP-designed CRT. It has a viewing area of $9.6~\rm cm \times 11.9~\rm cm$ and produces a keenly focused spot of $0.33~\rm mm$ diameter everywhere in the viewing area, more than adequate to display alphanumeric characters $1.6~\rm mm \times 2.6~\rm mm$ in size. Data is transmitted via the MIOB (see box, page 6), which services all modules in the 5420A. The display receives data in 16-bit $\times$ 64-word bursts from the processing module. The high-speed bus makes it possible to maintain a flicker-free directed-beam display without large amounts of memory. Fig. 1 shows the signal flow from the processor to the CRT. The data passes from the processor to the display control board via the interface and timing board. This board not only handshakes the data from the processor, but generates all timing signals for digital operations. On the control board, the data is tested for data type, which is either graphic or alphanumeric. If graphic, it is assumed to be in horizontal and vertical pairs and is sent to the stroke generator. If alphanumeric, it is first sent to the character generator for processing into the proper horizontal and vertical bit patterns for character construction and then to the stroke generator. The stroke generator transforms the digital information into the appropriate horizontal, vertical, and blanking analog signals. #### Character Generator Fig. 2 is a block diagram of the character generator. It is an algorithmic state machine (ASM) that accepts seven-bit ASCII codes and generates appropriate horizontal and vertical bit patterns to construct the display alphanumerics. The bit pattern construction is dependent on two control lines (A and B) at the output of the ROM. There are four possible control situations: Load new ASCII code into ROM address register (RAR), but do not increment character counter Fig. 1. 5420A display system receives data from the central processor via the MIOB and displays it on a high-resolution directed-beam CRT. Volumes 25, 26, 27, 28 September 1973 through August 1977 Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, California 94304 U.S.A. Hewlett-Packard Central Mailing Department, Van Heuven Goedhartlaan 121, Amstelveen-1134 The Netherlands Yokogawa-Hewlett-Packard Ltd., Shibuya-Ku, Tokyo 151 Japan # PART 1: Chronological Index September 1973 A Low-Frequency Spectrum Analyzer that Makes Slow Sweeps Practical, William L. Hale and Gerald E. Weibel A High-Performance Beam Tube for Cesium Beam Frequency Standards, Ronald C. Hyatt, Louis F. Mueller and Terry N. Osterdock October 1973 The Logic Analyzer: A New Kind of Instrument for Observing Logic Signals, Robin Adler, Mark Baker, and Howard D. Marshall A Pulse Generator for Today's Digital Circuits, Reinhard Falke and Horst Link #### November 1973 A Self-Contained, Hand-Held Digital Multimeter—A New Concept in Instrument Utility, Robert L. Dudley and Virgil L. Laing A Portable High-Resolution Counter for Low-Frequency Mea- surements, Kenneth J. MacLeod A High-Speed Pattern Generator and an Error Detector for Testing Digital Systems, Thomas Crawford, James Robertson, John Stinson, and Ivan Young #### December 1973 A Go-Anywhere Strip-Chart Recorder That Has Laboratory Accuracy, Howard L. Merrill and Rick A. Warp Telecommunication Cable Fault Location from the Test Desk, Thomas R. Graham and James M. Hood High-Efficiency Modular Power Supplies Using Switching Regulators, B. William Dudley and Robert D. Peck #### January 1974 The Logic State Analyzer—Displaying Complex Digital Processes in Understandable Form, William A. Farnbach A Laser Interferometer that Measures Straightness of Travel, Richard R. Baldwin, Barbara E. Grote, and David A. Harland #### February 1974 Practical Oscilloscopes at Workaday Prices, Hans-Günter Hohmann Laboratory Notebook—Sharp Cut-Off Filters for That Awkward UHF Band A Data Error Analyzer for Tracking Down Problems in Data Communications, Jeffrey R. Duerr #### March 1974 An Automatic, Precision 1-MHz Digital LCR Meter, Kohichi Maeda A Moderately Priced 20-MHz Pulse Generator with 16-Volt Output, Günter Krauss and Rainer Eggert Laboratory Notebook—Logarithmic Amplifier Accepts 100 dB Signal Range Versatile VHF Signal Generator Stresses Low Cost and Portability, Robert R. Hay #### April 1974 Mass Memory System Broadens Calculator Applications, Havyn E. Bradley and Chris J. Christopher An Easily Calibrated, Versatile Platinum Resistance Thermometer, Tony E. Foster Speeding the Complex Calculations Required for Assessing Left Ventricular Function of the Heart, Peter Dikeman and Chi-ning #### May 1974 The "Personal Computer": A Fully Programmable Pocket Calculator, Chung C. Tung Programming the Personal Computer, R. Kent Stockwell Designing a Tiny Magnetic Card Reader, Robert B. Taggart Testing the HP-65 Logic Board, Kenneth W. Peterson Economical Precision Step Attenuators for RF and Microwaves, George R. Kirkpatrick and David R. Veteran #### **Tune 1974** A New Generation in Frequency and Time Measurements, James L. Sorden The 5345A Processor: An Example of State Machine Design, Ronald E. Felsenstein Time Interval Averaging: Theory, Problems, and Solutions, David ### Part 1: Chronological Index (continued) Third Input Channel Increases Counter Versatility, Arthur S. Muto A Completely Automatic 4-GHz Heterodyne Frequency Converter, Ali Bologlu Interface Bus Expands Instrument Utility, Bryce E. Jeppsen and Steven E. Schultz July 1974 Powerful Data Base Management System for Small Computers, Richard E. McIntire Quality Frequency Counters Designed for Minimum Cost, Lewis W. Masters and Warren J. O'Buch A Versatile Bipolar Power Supply/Amplifier for Lab and Systems Use, Santo Pecchio An Automatic Exposure Control for a Lab-Bench X-Ray Camera, John L. Brewster August 1974 Measuring Analog Parameters of Voiceband Data Channels, Noel E. Damon Transient Measurements, Paul G. Winninghoff The 4940A Sine Wave Transmitter, Richard T. Lee Nonlinear Distortion Measurements, Donald A. Dresch Envelope Delay Distortion Measurements, Richard G. Fowles and Johann J. Heinzl Peak-to-Average Ratio Measurements, Erhard Ketelsen Microwave Integrated Circuits Solve a Transmission Problem in Educational TV, James A. Hall, Douglas J. Mellor, Richard D. Pering, and Arthur Fong September 1974 A 250-MHz Pulse Generator with Transition Times Variable to Less than 1 ns, Gert Globas, Joel Zellmer, and Eldon Cornish Optimizing the Design of a High-Performance Oscilloscope, P. Kent Hardage, S. Raymond Kushnir, and Thomas J. Zamborelli A Thin-Film/Semiconductor Thermocouple for Microwave Power Measurements, Weldon H. Jackson Microelectronics Enhances Thermocouple Power Measurements, John Lamy October 1974 A User-Oriented Family of Minicomputers, John M. Stedman Microprogrammable Central Processor Adapts Easily to Special User Needs, Philip Gordon and Jacob R. Jacobs Testing the 21MX Processor, Cleaborn C. Riggins and Richard L. Hammons All Semiconductor Memory Selected for New Minicomputer Series, Robert J. Frankenberg The Million-Word Minicomputer Main Memory, John S. Elward A Computer Power System for Severe Operating Conditions, Richard C. Van Brunt November 1974 Distributed Computer Systems, Shane Dickey A Quality Course in Digital Electronics, James A. Marrocco and Barry Bronson Simplified Data-Transmission Channel Measurements, David H. Guest December 1974 Improved Accuracy and Convenience in Oscilloscope Timing and Voltage Measurements, Walter A. Fischer and William B. Risley Laboratory Notebook—An Active Loop-Holding Device A Supersystem for BASIC Timesharing, Nealon Mack and Leonard E. Shar Deriving and Reporting Chromatograph Data with a Microprocessor-Controlled Integrator, Andrew Stefanski Adapting a Calculator Microprocessor to Instrumentation, Hal Barraclough January 1975 The Hewlett-Packard Interface Bus: Current Perspectives, Donald C. Loughry Putting Together Instrumentation Systems at Minimum Cost, David W. Ricci and Peter S. Stone Filling in the Gaps—Modular Accessories for Instrument Systems, Steven E. Schultz and Charles R. Trimble A Quiet, HP-IB-Compatible Printer that Listens to Both ASCII and BCD, Hans-Jürg Nadig A Multifunction Scanner for Calculator-Based Data Acquisition Systems, David L. Wolpert Minimal Cost Measuring Instruments for Systems Use, Gary D. Sasaki and Lawrence P. Johnson Visualizing Interface Bus Activity, Harold E. Dietrich February 1975 High-Sensitivity X-Y Recorder Has Few Input Restrictions, Donald W. Huff, Daniel E. Johnson, and John M. Wade Digital High-Capacitance Measurements to One Farad, Kunihisa Osada and Jun-ichi Suehiro Computer Performance Improvement by Measurement and Microprogramming, David C. Snyder March 1975 A High-Performance 2-to-18-GHz Sweeper, Paul R. Hernday and Carl J. Enlow Broadband Swept Network Measurements, John J. Dupre and Cyril J. Yansouni The Dual Function Generator: A Source of a Wide Variety of Test Signals, Ronald J. Riedel and Dan D. Danielson April 1975 A Portable 1100-MHz Frequency Counter, Hans J. Jekat Big Timer/Counter Capability in a Portable Package, Kenneth J. A High-Current Power Supply for Systems that Use 5-Volt IC Logic Extensively, Mauro DiFrancesco Band-Selectable Fourier Analysis, H. Webber McKinney May 1975 An Understandable Test Set for Making Basic Measurements on Telephone Lines, Michael B. Aken and David K. Deaver A Computer System for Analog Measurements on Voiceband Data Channels, Stephen G. Cline, Robert H. Perdriau, and Roger F. Rauskolb A Precision Spectrum Analyzer for the 10-Hz-to-13-MHz Range, Jerry W. Daniels and Robert L. Atchley June 1973 Cost-Effective, Reliable CRT Terminal Is First of a Family, James A. Doub A Functionally Modular Logic System for a CRT Terminal, Arthur B. Lane A High-Resolution Raster Scan Display, Jean-Claude Roy Firmware for a Microprocessor-Controlled CRT Terminal, Thomas A Microprocessor-Scanned Keyboard, Otakar Blazek Packaging for Function, Manufacturability, and Service, Robert B. July 1975 Modularity Means Maximum Effectiveness in Medium-Cost Universal Counter, James F. Horner and Bruce S. Corya Using a Modular Universal Counter, Alfred Langguth and William D. Jackson Synthesized Signal Generator Operation to 2.6 GHz with Wideband Phase Modulation, James A. Hall and Young Dae Kim Applications of a Phase-Modulated Signal Generator, James A. Hall August 1975 The Logic State Analyzer, a Viewing Port for the Data Domain, Charles T. Small and Justin S. Morrill, Jr. Unravelling Problems in the Design of Microprocessor-Based Systems, William E. Wagner A Multichannel Word Generator for Testing Digital Components and Systems, Arndt Pannach and Wolfgang Kappler September 1975 ATLAS: A Unit-Under-Test Oriented Language for Automatic Test Systems, William R. Finch and Robert B. Grady Automatic 4.5-GHz Counter Provides 1-Hz Resolution, Ali Bologlu A New Instrument Enclosure with Greater Convenience, Better Accessibility, and High Attenuation of RF Interference, Allen F. Inhelder ### Part 1: Chronological Index (continued) October 1975 Digital Power Meter Offers Improved Accuracy, Hands-Off Operation, Systems Compatibility, Allen P. Edwards Very-Low-Level Microwave Power Measurements, Ronald E. Pratt Active Probes Improve Precision of Time Interval Measurements, Robert W. Offermann, Steven E. Schultz, and Charles R. Trimble Flow Control in High-Pressure Liquid Chromatography, Helge Schrenker November 1975 Three New Pocket Calculators: Smaller, Less Costly, More Powerful, Randall B. Neff and Lynn Tillman Inside the New Pocket Calculators, Michael J. Cook, George Fichter, and Richard Whicker Packaging the New Pocket Calculators, Thomas A. Hender A New Microwave Link Analyzer for Communications Systems Carrying Up to 2700 Telephone Channels, Svend Christensen and Ian Matthews December 1975 A 100-MHz Analog Oscilloscope for Digital Measurements, Allan I. Best An Oscilloscope Vertical-Channel Amplifier that Combines Monolithic, Thick-Film Hybrid, and Discrete Technologies, Joe K. Millard A Real-Time Operating System with Multi-Terminal and Batch/ Spool Capabilities, George A. Anzinger and Adele M. Gadol Real-Time Executive System Manages Large Memories, Linda W. Averett January 1976 An Automatic Selective Level Measuring Set for Multichannel Communications Systems, J. Reid Urquhart Designing Precision into a Selective Level Measuring Set, Hugh P. Walker Designing a Quiet Frequency Synthesizer for a Selective Level Measuring Set, John H. Coster Making the Most of Microprocessor Control, David G. Dack Real-Time Multi-User BASIC, James T. Schultz February 1976 Laser Transducer Systems for High-Accuracy Machine Positioning, André F. Rudé and Michael J. Ward Electronics for the Laser Transducer, William E. Olson and Robert B. Smith Using a Programmable Calculator as a Data Communications Terminal, James E. Carlson and Ronald L. Stickle #### March 1976 A Cesium Beam Frequency Reference for Severe Environments, Charles E. Heger, Ronald C. Hyatt, and Gary A. Seavey Calibrated FM, Crystal Stability, and Counter Resolution for a Low-Cost Signal Generator, Robert R. Collison and Ronald E. Kmetovicz A 50-Mbit/s Pattern Generator and Error Detector for Evaluating Digital Communications System Performance, Ivan R. Young, Robert Pearson, and Peter M. Scott April 1976 Electronic Total Station Speeds Survey Operations, Michael L. Bullock and Richard E. Warren Designing Efficiency into a Digital Processor for an Analytical Instrument, John S. Poole and Len Bilen May 1976 New CRT Terminal Has Magnetic Tape Storage for Expanded Capability, Robert G. Nordman, Richard L. Smith, and Louis A. Witkin Mini Data Cartridge: A Convincing Alternative for Low-Cost, Removable Storage, Alan J. Richards Laboratory Notebook—A Logarithmic Counter Iune 1976 Third-Generation Programmable Calculator Has Computer-Like Capabilities, Donald E. Morris, Chris J. Christopher, Geoffrey W. Chance, and Dick B. Barney High-Performance NMOS LSI Processor, William D. Eads and David S. Maitland Character Impact Printer Offers Maximum Printing Flexibility, Robert B. Bump and Gary R. Paulson Mid-Range Calculator Delivers More Power at Lower Cost, Douglas M. Clifford, F. Timothy Hickenlooper, and A. Craig Mortensen July 1976 A Direct-Reading Network Analyzer for the 500-kHz-to-1.3-GHz Frequency Range, Hugo Vifian Processing Wide-Range Network Analyzer Signals for Analog and Digital Display, William S. Lawson and David D. Sharrit A Precision RF Source and Down-Converter for the Model 8505A Network Analyzer, Rolf Dalichow and Daniel R. Harkins August 1976 Series II General-Purpose Computer Systems: Designed for Improved Throughput and Reliability, Leonard E. Shar An All-Semiconductor Memory with Fault Detection, Correction, and Logging, Elio A. Toschi and Tak Watanabe HP 3000 Series II Performance Measurement, Clifford A. Jager September 1976 An Easier-to-Use Variable-Persistence/Storage Oscilloscope with Brighter, Sharper Traces, Van Harrison An Automatic Wide-Range Digital LCR Meter, Satoru Hashimoto and Toshio Tamamura October 1976 Continuous, Non-Invasive Measurements of Arterial Blood Oxygen Levels, Edwin B. Merrick and Thomas J. Hayes Laboratory Notebook—A Signal-Level Reference An Accurate Low-Noise Discriminator Card-Programmable Digital IC Tester Simplifies Incoming Inspection, Eric M. Ingman November 1976 A Pair of Program-Compatible Personal Programmable Calculators, Peter D. Dickinson and William E. Egbert Portable Scientific Calculator Has Built-In Printer, Bernard E. Musch and Robert B. Taggart The New Accuracy: Making 23 = 8, Dennis W. Harms High-Power Solid-State 5.9-12.4-GHz Sweepers, Louis J. Kuhlman, Jr. The GaAs FET in Microwave Instrumentation, Patrick H. Wang December 1976 Current Tracer: A New Way to Find Low-Impedance Logic-Circuit Faults, John F. Beckwith New Logic Probe Troubleshoots Many Logic Families, Robert C. Quenelle A Multifunction, Multifamily Logic Pulser, Barry Bronson and Anthony Y. Chan Probe Family Packaging, David E. Gordon Multifamily Logic Clip Shows All Pin States Simultaneously, Durward Priebe Interfacing a Parallel-Mode Logic State Analyzer to Serial Data, Justin S. Morrill, Jr. January 1977 A Logic State Analyzer for Microprocessor Systems, Jeffrey H. Smith Firmware for a Microprocessor Analyzer, Thomas A. Saponas A Versatile, Semiautomatic Fetal Monitor for Non-Technical Users, Erich Courtin, Walter Ruchsay, Peter Salfeld, and Heinz February 1977 A Fast-Reading, High-Resolution Voltmeter that Calibrates Itself Automatically, Albert Gookin A High-Speed System Voltmeter for Time-Related Measurements, John E. McDermid, James B. Vyduna, and Joseph M. Gorin Contemporary Design Practice in General-Purpose Digital Multimeters, Roy D. Barker, Virgil L. Laing, Joe E. Marriott, and H. Mac Juneau March 1977 A New Series of Small Computer Systems, Lee Johnson ### Part 1: Chronological Index (continued) HP 1000 Operating System is Enhanced Real-Time Executive, David L. Snow and Kathleen F. Hahn Development and Application of Microprograms in a Real-Time Environment, Harris Dean Drake E-Series Doubles 21MX Performance, Cleaborn C. Riggins How the E-Series Performance Was Achieved, Scott J. Stallard Microprogrammed Features of the 21MX E-Series, Thomas A. Lane OPNODE: Interactive Linear Circuit Design and Optimization, William A. Rytand Viewpoints—John Moll on HP's Integrated Circuit Technology #### April 1977 Silicon-on-Sapphire Technology Produces High-Speed Single-Chip Processor, Bert E. Forbes CMOS/SOS, David Farrington Miniature Oscilloscope Probes for Measurements in Crowded Circuits, Carolyn M. Finch, Marvin F. Estes, and Lawrence A. Gammill A Small, Solid-State Alphanumeric Display, John T. Uebbing, Peter B. Ashkin, and Jack L. Hines #### May 1977 Signature Analysis: A New Digital Field Service Method, Robert A. Frohwerk Easy-to-Use Signature Analyzer Accurately Troubleshoots Complex Logic Circuits, Anthony Y. Chan Signature Analysis—Concepts, Examples, and Guidelines, Hans J. Nadig Personal Calculator Algorithms I: Square Roots, William E. Egbert #### June 1977 A Wide-Ranging Power Supply of Compact Dimensions, Paul W. Bailey, John W. Hyde, and William T. Walker Remote Programming of Power Supplies Through the HP Interface Bus, Emery Salesky and Kent Luehman Coaxial Components and Accessories for Broadband Operation to 26.5 GHz, George R. Kirkpatrick, Ronald E. Pratt, and Donald R. Chambers Personal Calculator Algorithms II: Trigonometric Functions, William E. Egbert #### **July 1977** Small Computer System Supports Large-Scale Multi-User APL, Kenneth A. Van Bree APL Data: Virtual Workspaces and Shared Storage, Grant J. Munsey APLGOL: Structured Programming Facilities for APL, Ronald L. Johnston #### APL/3000 Summary A Dynamic Incremental Compiler for an Interpretive Language, Eric J. Van Dyke A Controller for the Dynamic Compiler, Kenneth A. Van Bree Extended Control Functions for Interactive Debugging, Kenneth A. Van Bree CRT Terminal Provides both APL and ASCII Operation, Warren W. Leong #### August 1977 New 50-Megabyte Disc Drive: High Performance and Reliability from High-Technology Design, Herbert P. Stickel An Individualized Pulse/Word Generator System for Subnanosecond Testing, Christian Hentschel, Günter Riebesell, Joel Zellmer, and Volker Eberle ### PART 2: Subject Index | Mon | th/Yea | or Subject | Model | Apr. | 1974 | Angio analyzer | 5693A | |---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|--------------|-------------------------------------------------------------------|----------------------| | MOI | itn/ rea | ar Subject | Model | July | 1977 | APL (a programming language) | 3000 | | | | A | | July | 1977 | APLGOL | 3000 | | | | A The Artist Control of o | 00004 | July | 1975 | Applications for phase-modulated | 47-0300 del | | | 1974 | Accounting system, desk-top compute | | jurj | 20,0 | generator | 86634A, | | Sept. | | Adaptive sweep in a spectrum analyze | | | | 80-10-10-10 | 86635A | | May | 1977 | Algorithm, personal calculator, square root | _ | July | 1975 | Armed measurements, counter/timer/ | | | June | 1977 | Algorithms, personal calculator, | | | | DVM | 5328A* | | 10 | | trigonometric | 9 <u></u> | Sept. | 1975 | ATLAS (abbreviated test language for | | | June | 1974 | Algorithmic state machine design | 5345A | | | avionics systems) | 9510D, | | Apr. | 1977 | Alphanumeric displays, solid-state | HDSP-2000 | | | | option 100 | | Nov. | 1975 | AM-to-PM conversion, detection of | 3790A | | | | 9500D, | | July | 1974 | Amplifier/power supply | 6825A/ | | 4000 | A | option 180 | | | | | 6A/7A | Sept. | 1973 | Atomic frequency standard (cesium), | E004 A | | Aug. | 1974 | Amplitude distortion, telephone | | | | high-performance | 5061A,<br>option 004 | | | | measurements | 4940A | 3.60- | 1976 | Atomic frequency reference (cosium) | 5062C | | May | 1975 | Amplitude distortion, telephone | | Mar. | | Atomic frequency reference (cesium) Attenuator, classical problem | 3571A/ | | | | measurements | 5453A | May | 1975 | Attenuator, classical problem | 3044A/ | | Nov. | 1974 | Amplitude/delay distortion | 3770A | | | | 3045A* | | Feb. | 1974 | Analyzer, data transmission errors | 1645A | Morr | 1074 | Attenuators, coaxial, step, dc-18 GHz | 8495A/B | | Aug. | 1975 | Analyzer, digital pattern recognition | 1620A | May | 1974 | Attenuators, coaxiai, step, dc-16 Griz | 8496A/B | | May | 1977 | Analyzer, digital signature | 5004A | June | 1977 | Attenuators, coaxial, step, dc-26.5 GH | | | Oct. | 1973 | Analyzer, logic (serial) | 5000A | Feb. | 1977 | Autocalibration in a digital voltmeter | 3455A* | | Jan. | 1974 | Analyzer, logic state (parallel) | 1601L | July | 1974 | Automatic exposure control for X-rays | | | Aug. | 1975 | Analyzer, logic state | 1600S | | 1974 | Automatic 4-GHz frequency converter | | | Jan. | 1977 | Analyzer, logic state | 1611A | June | 19/4 | plug-in | 5354A | | Nov. | 1975 | Analyzer, microwave link | 3790A | Sant | 1975 | Automatic test system programming | 333471 | | July | 1976 | Analyzer, network, 0.5-1300 MHz | 8505A* | sept. | 13/3 | language (ATLAS) | 9510D. | | Sept. | 1973 | Analyzer, spectrum, 5 Hz to 50 kHz, | 7000000000 | | | language (minio) | option 100 | | | | portable | 3580A | | | | 9500D. | | May | 1975 | Analyzer, spectrum, 10 Hz to 13 MHz | 3571A/ | | | | option 180 | | | | | 44A/3045A* | lune | 1974 | Averaging, time interval, theory | 5345A* | | May | 1975 | Analyzer, transmission parameter | 5453A | juite | 13/1 | | 001011 | | Aug. | 1975 | Analyzing microprocessor-based | 10005 | | | В | | | | 4070 | systems | 1600S | Δ | 1075 | Band-selectable Fourier analysis | 5451B | | Apr. | 1976 | Angle measurements, surveying | 3810A | Apr. | 1975<br>1976 | BASIC, real-time multi-user | 92101A | | | 1.1.1 | 10.1 00.1 00.1 00.1 00.1 00.1 00.1 00.1 | D. ID. | Jan. | | BASIC, real-time multi-user<br>BASIC/3000 timeshared computer | 92101A | | Asteris | ik indicates | s instruments compatible with the HP interface bus (H | P-1D). | Dec. | 1974 | pysicisono ninesuaren combater. | | | Dec. | 1973 | system<br>Battery-powered strip-chart recorder | MPET/3000<br>7155A | Mar. | 1976 | Communications, digital, error detection | 3780A | |--------------|--------------|-----------------------------------------------------------------------|------------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------| | Dec.<br>July | 1975<br>1977 | Batch/spool capability for RTE systems<br>Beating (in APL/3000) | 9600/9700 | May | 1975 | Communications, telephone test set | 3551A, | | July | 1974 | Bipolar power supply/amplifier | 3000 | Nov. | 1072 | C | 3552A | | | 1973 | Bit-error rate detector (150 MHz) | 6825A-27A<br>3761A | INOV. | 1973 | Communications test data generator/<br>error detector | 3760A<br>3761A | | Mar. | 1976 | Bit-error rate detector (50 MHz) | 3780A | Nov. | 1975 | Communications test, microwave link | | | Feb. | 1974 | Bit-error rate detector,<br>terminal-to-terminal | 1645A | Ion | 1976 | analyzer<br>Communications test, selective level | 3790A | | Oct. | 1976 | Blood oxygen levels, measurement of | 47201A | Jan. | 19/0 | measurements | 3745A* | | | 1974 | Breadboard, digital (logic lab) | 5035T | Aug. | 1974 | Communications test, transmission | | | Aug.<br>Feb. | 1975<br>1975 | Breakpoint register (pattern analyzer)<br>Breakpoint register, use of | 1620A | 1.7 | | impairment measuring set | 4940A | | reu. | 19/0 | breakpoint register, use of | _ | May | 1975 | Communications test, transmission<br>parameter analyzer | 5453A | | | | Bus, HP interface. See HP-IB. | | July | 1977 | Compiler, dynamic, APL | 3000 | | | 1975 | Business calculator, pocket | HP-22 | Mar. | 1977 | Computer, increased performance | 21MX | | Apr. | 1974 | Business software for desktop<br>computer system | 0000 A | pol. | 1075 | C | E-Series* | | | | computer system | 9880A | Feb.<br>Aug. | 1975<br>1976 | Computer performance improvement<br>Computer performance measurements | 3000 | | | | С | | Aug. | 1970 | Computer performance measurements | Series II | | Sept. | 1975 | Cabinets, system II | | Apr. | 1975 | Computer power supply, switching | 75/10/20/20/20/20 | | July | 1974 | Cabinet X-ray system | 43805 | | | regulated | 62605M | | Dec. | 1973 | Cable fault locator, test desk | 4913A | | | Computers. Also see Desktop | | | May | 1977 | Calculator algorithms, square root | 13 <del>- 23</del> | Oct. | 1974 | Computers<br>Computers | 21MX* | | | 1977 | Calculator algorithms, trigonometric | _ | | 1977 | Computers | 21MX-E* | | | 1975 | Calculator, business, pocket | HP-22 | Dec. | 1974 | Computer system, BASIC/3000 | ZIMIX-L | | June | 1974 | Calculator/counter systems, HP | | 200 | | | MPET/3000 | | Ann | 1074 | interface bus | 5345A* | May | 1975 | Computer system for voiceband data | | | Apr.<br>May | 1974<br>1974 | Calculator mass memory system | 9880A | 1000-1000 | | channel measurements | 5453A | | | 1975 | Calculator, pocket, programmable<br>Calculator, pocket, programmable | HP-65<br>HP-25 | Mar. | 1977 | Computer systems | 1000* | | | 1976 | Calculator, pocket, programmable | HP-67 | Aug. | 1976 | Computer systems 30 | 000 Series II | | | 1976 | Calculators, portable, printing | HP-91. | Nov. | | | 9700 Series | | | | outstations, portable, printing | HP-97 | July | 1977 | Computer terminal, APL | 2641A | | Nov. | 1976 | Calculators, portable, programmable | HP-97 | June<br>May | 1975<br>1976 | Computer terminal, CRT<br>Computer terminal, CRT with tape | 2640A | | | | Calculator, programmable, desktop. | | ividy | 1570 | storage | 2644A | | | | See desktop computers. | | June | 1977 | Connectors, coaxial APC-3.5 | _ | | Nov. | 1975 | Calculator, pocket, scientific | HP-21 | June | 1974 | Counter systems, HP interface bus | 5345A* | | Mar. | 1974 | Capacitance measurements | 4271A* | June | 1974 | Counter, general-purpose | 5345A* | | | 1976 | Capacitance measurements | 4261A* | Nov. | 1973 | Counter, high-resolution, module for | | | Feb. | 1975 | Capacitance meter | 4282A | | | 5300 system | 5307A | | Jan. | 1977 | Cardiotocograph | 8030A | - | 1976 | Counter, logarithmic (lab notebook) | | | May<br>Mar. | 1976<br>1976 | Cartridge, data, mini<br>Cesium beam frequency reference for | _ | July | 1974 | | 5381A-82A | | ividi. | 13/0 | severe environments | 5062C | Apr.<br>Sept. | 1975 | Counter, 1100-MHz Counter, microwave frequency | 5305A<br>5341A* | | Sept. | 1973 | Cesium beam frequency standard, | 50020 | | 1974 | Counter plug-in, automatic frequency | 334171 | | | | high performance beam tube for | 5061A, | june | 13/1 | converter | 5354A | | | | | option 004 | June | 1974 | Counter plug-in, third input channel | 5353A | | June | 1974 | Channel C plug-in for 5345A counter | 5353A | | 1975 | Counter/synchronizer for signal | | | Apr. | 1976 | Chromatography, gas, microprocessor | | | | generator | 8655A | | 0.1 | | control | 5840A | | 1975 | Counter/timer/DVM, universal | 5328A* | | Oct. | 1975 | Chromatography, liquid, flow control | 1010B | | 1975 | Counter/timer, 75-MHz universal | 5308A | | Dec. | 1974 | Chromatography, reporting integrator for | 00004 | | 1975 | CRT terminal | 2640A | | Apr. | 1974 | Cineangiogram analysis | 3380A<br>5693A | | 1977 | CRT terminal, APL | 2641A | | Mar. | 1977 | Circuit design, computer-aided | 3093A | - A | 1976<br>1976 | CRT terminal with dual tape drives<br>Current tracer | 2644A<br>547A | | Trace. | 101 | (OPNODE) | 92817A | | 1975 | Cyclic redundancy check codes (CRC), | | | Apr. | 1977 | Clip for oscilloscope probing of IC's | 10024A | ividy | 13// | used in signature analysis | 5004A | | Dec. | 1976 | Clip, logic | 548A | | | about in digitatore unarydis | 000111 | | Jan. | 1975 | Clock for systems using HP interface bus | 59309A* | | | D | | | June | 1977 | Coaxial components | 0.10=73/16 | 4 | 4075 | A SECTION AND | | | | | attenuators, dc-26.5 GHz<br>detectors, 0.01-26.5 GHz 8473 | 8495D/K | Jan. | 1975 | Data acquisition systems, | noron* | | | | sliding load, 2-26.5 GHz | 3C/33330C | Ech | 1077 | programmable | 3050B* | | | | switches, dc-26.5 GHz | 911C<br>33311C | Feb. | 1977 | Data acquisition systems, programmable | 3052A* | | May | 1974 | Coaxial step attenuators, dc-18 GHz | 8495A/B | July | 1974 | Data base management software | 303271 | | | 1.00 | country stop attendations, do to only | 8496A/B | jury | 10/1 | (IMAGE) | 24376B. | | Jan. | 1975 | Code converter, ASCII to parallel | 59301A* | | | | 2215A,16A | | Feb. | 1975 | Common driver circuit for guarded | Al-Color Manual Market | May | 1976 | Data cartridge, mini | | | | 2.2 | input | 7047A | May | 1975 | Data channel measurements, analog, | | | Feb. | 1976 | Communications, data, desktop | | | | voiceband | 5453A | | | | | 470 470 470 470 4 | A | 2 62 69 4 | | | | Feb | 1974 | computer | 9830A | Aug. | 1974 | Data channel measurements, analog, | 4040 4 | | Feb. | 1974 | computer<br>Communications, digital, error<br>detection | 9830A<br>1645A | Aug. | | Data channel measurements, analog,<br>voiceband<br>Data channel measurements, analog, | 4940A | | Peb. 1974 Data channel measurements 1645 Aug. 1974 Electronic counter, general-purpose 500 1976 Data communications, desk-top 1980 1978 Electronic counter, general-purpose 1978 Data communications desk-top 1980 1978 Electronic counter, general-purpose 1978 Data communications desk-top 1978 Data generator, 150 Mitz PBIS 3760 Aug. 1974 Data generator, 150 Mitz PBIS 3760 Aug. 1974 Delay distortion, CCTIT 7770 1974 Delay distortion, CCTIT 7770 1975 Delay generator, 100-ps steps 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 198 | | | | | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------| | Early Earl | Feb. | 1974 | The state of s | 3770A | May | 1974 | Edgeline transmission in attenuators | 8495A/B<br>8496A/B | | Peb. 1976 Data communications, desk-top computer co | 100. | 20, 2 | | 1645A | Aug. | 1974 | Educational TV receiver | 2- | | computer | Feb | 1976 | | | | | Electronic counter, general-purpose | 5345A* | | Dec. 1975 Data domain, analog oscilloscope 1740A Aug. 1974 Data generator, Iso MHz PRS 3760A Nov. 1974 Data logiging systems, programmable 3051A* Nov. 1974 Delay distortion, ECUTT 3770A Nay 1975 Delay distortion, Delay distortion, Delay State Nay 1975 Delay generator, 100-ps steps 8092A Feb. 1976 Desktop computer, data communications test, see data Nay 1975 Desktop computer, data communications test, see data Nay 1976 Desktop computer, data communications test, see data Nay 1976 Desktop computer, data communications test, see data Nay 1976 Desktop computer, data communications test, see data Nay 1976 Desktop computer, data communications test, see data Nay 1976 Digital test Nay 1976 Digital Communications test Nay 1976 Digital Digital partern generator, communications Nay 1976 Digi | 1.00 | 4010 | V | 9830A | A 1500 - 111 / 150 | | | 100000000000000000000000000000000000000 | | Nov. 1973 Data generator, 150 MHz PRBS 3760 A Nov. 1974 Enveloped delay distortion September Sept. | Dec. | 1975 | | | | | Envelope delay distortion | | | Feb. 1977 Data logging systems, programmable 3051A' Nov. 1974 Delay distortion, Bell System 4940A Nov. 1974 Delay distortion, Bell System 4940A Nov. 1974 Delay distortion, CCITT Nov. 1974 Delay distortion, Bell System 4940A Nov. 1974 Delay distortion, Bell System 4940A Nov. 1974 Delay distortion, Bell System 4940A Nov. 1974 Delay distortion, CCITT Nov. 1975 Delay generator, 100-ps steps 8982A Nov. 1976 Delay generator, 100-ps steps 8982A Nov. 1976 Delay generator, 100-ps steps 8982A Nov. 1976 Delay generator, 100-ps steps 9830A Nov. 1976 Delay generator, 100-ps steps 9830A Nov. 1976 Delay generator, 100-ps steps 9830A Nov. 1976 Delay generator, 100-ps steps | | | | | | | measurements | 4940A | | Aug. 1974 Delay distortion, Bell System 4940A May 1975 Enveloped delay distortion measurements 1976 Delay distortion, CITT recommendation 1976 Delay generator, 100-ps steps 8092A Feb. 1976 Desktop computers 9815A/9825A* May 1976 Error analyzer, data transmissions 1976 Desktop computers 9815A/9825A* May 1976 Error desction by transition counting 1976 Desktop computers 1976 Desktop computer 1976 Desktop computer 1976 Desktop computers 1976 Desktop computer | | | | | Nov. | 1974 | Envelope delay distortion | | | Nov. 1974 Delay distortion, CCITT | | | | | | | | 3770A | | Procumendation | | | | | May | 1975 | Envelope delay distortion | | | 1977 Delaty generator, 100-ps steps | | | | 3770A | | | | 5453A | | June 1976 Desktop computers 9815A/9825A* Aug. 1976 Error-correcting memory 3000 Ser | Aug. | 1977 | | 8092A | Feb. | 1974 | Error analyzer, data transmissions | 1645A | | Peb. 1976 Desktop computer, data | | | | 315A/9825A* | Aug. | 1976 | Error-correcting memory 30 | 000 Series II | | Decearch | 1.0.0 | | | | | | | | | Digital Crester 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. 5045. | | | | 9830A | | | and signature analysis | 5004A | | Digital Communications test, see data channel measurements channel measurements channel measurements channel measurements and kits logic properation of the proportion th | lune | 1977 | Detector, 0.01-26.5 GHz 84 | 73C/33330C | Nov. | 1973 | Error detector, communications test | | | Digital Crossber 5045A Feb. 1976 1976 1976 1976 1976 1977 1976 1977 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 | 8 | | Digital communications test, see data | | | | (150 MHz) | 3761A | | Digital Circumble-shooting instruments and kits logic probe, 545A,546A Digital click meter 42f1A* Feb. 1977 Extending a digital multimeter's rang, 34 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 347 34 | | | channel measurements | | Mar. | 1976 | Error detector, communications test | | | Instruments and kits (logic probe, 545A,546A Feb. 1976 Igital LCR meter 4271A* Agama 1974 Igital LCR meter 4271A* Agama 1975 Igital logic course 5000A Agama 1976 Igital logic course 5005T Agama 1976 Igital logic course 5035T Agama 1976 Igital multimeter, low cost 3435A,3465A/B Dec. 1976 Igital pattern analyzer for triggering 1802A Agama 1976 Igital pattern generator, communications test 1604A Igital processor in a gas chromatograph 1977 Igital-to-analog converter for HP-HB 593093A* Igital voltmeters, byte signature analysis 1977 Igital-to-analog converter for HP-HB 593093A* Igital voltmeters, options, for universal counter 1978 Igital voltmeters, options, for universal counter 1979 Igital voltmeters, options, for universal counter 1979 Igital voltmeters, options, for universal counter 1970 c | Oct. | 1976 | Digital IC tester | 5045A | | | (50 MHz) | 3780A | | Feb. 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1977 1976 1977 1976 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 19 | Dec. | 1976 | | | July | 1974 | Exposure control for X-ray system | 43805 | | Sept. 1976 Digital LCR meter 4271A* Mar. 1974 Digital logic course 50000A Nov. 1973 Digital logic course 50000A Nov. 1974 Digital logic course 50000A Nov. 1975 Digital logic course 50351 Aug. 1975 Digital pattern analyzer for triggering 1620A Aug. 1975 Digital pattern generator, communications test 1645A Peb. 1974 Digital pattern generator, communications test 1645A Apr. 1976 Digital pattern generator, communications test 1645A Apr. 1976 Digital potential pattern generator, communications test 1645A Apr. 1976 Digital potential pattern generator, communications test 1645A Apr. 1976 Digital potential pattern generator, communications test 1645A Apr. 1976 Digital processor in a gas chromatograph 1971 Apr. 1976 Digital processor in a gas chromatograph 1972 Apr. 1976 Digital processor in a past chromatograph 1972 Apr. 1976 Digital processor in a gas chromatograph 1972 Apr. 1976 Digital processor in a gas chromatograph 1972 Apr. 1976 Digital processor in a past chromatograph 1972 Apr. 1976 Digital processor in a gas chromatograph 1972 Apr. 1976 Digital processor in a gas chromatograph 1972 Apr. 1976 Digital processor in a past chromatograph 1972 Apr. 1977 Digital voltmeter, 5½ digit, autocalibrating 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1 | | | | 545A,546A | Feb. | 1977 | Extending a digital multimeter's range | 3435A, | | Mar. 1974 Digital LICR meter 4271A* Nov. 1973 Digital logic course 5000A Nov. 1974 Digital logic course 5035T Sigital logic course 5035T Sigital multimeter, hand-held 970A Digital multimeter, hand-held 970A Digital multimeter, hand-held 376A/B Sigital multimeter, hand-held 376A/B Sigital multimeter, hand-held 376A/B Sigital multimeter, hand-held 376A/B Sigital pattern generator, communications test communication | | | | | | | The second control of the second seco | 3465A/B | | Mar. 1974 Digital LCR meter 4271A* 50000A 7000 1974 Digital of course 5035T 8700A 1975 Digital multimeter, hand-held 970A 970A 1975 Digital multimeters, low cost 3435A,3465A/B 3476A/B 1975 Digital pattern analyzer for triggering 1620A 1976 1976 Digital pattern generator, communications test 3760A 1976 1974 Digital pattern generator, communications test 3760A 1976 1974 Digital pattern generator, communications test 1645A 1974 Digital pattern generator, communications test 1645A 1975 Digital processor in a gas 1977 Digital-to-analog converter for HP-IB 59301A* 1975 Digital-to-analog converter for HP-IB 59301A* 1975 Digital-to-analog converter for HP-IB 59301A* 1975 Digital voltmeter, 5½ digit, auto-calibrating 1975 Digital voltmeter, 5½ digit, auto-calibrating 1976 Digital voltmeter, 8016A 1977 Digital-to-analog converter page Digital-to-analo | Sept. | 1976 | Digital LCR meter | 4261A* | | | | 3476A/B | | Oct. 1973 Digital logic course 5000A Nov. 1974 Digital multimeter, hand-held 970A Nov. 1974 Digital multimeter, hand-held 970A Nov. 1973 Digital multimeter, hand-held 970A Nov. 1974 Digital multimeter, hand-held 970A Nov. 1973 Digital multimeter, how cost 3435A,3465AB Aug. 1975 Digital pattern analyzer for triggering 1620A Nov. 1973 Digital pattern analyzer for triggering 1620A Nov. 1974 Digital pattern generator, communications test 1760ABBB 1770ABBB 1770ABB 1770ABBB 1770ABB 1770ABBB 1770ABB 1770ABBB 1770ABBB 1770ABBB 1770ABBB 1770ABBB 1770ABBB 1770ABBB | | | Digital LCR meter | 4271A* | | | _ | | | Nov. 1973 Digital multimeters, low cost 3435A, 3465A/B 3476A/B 3 | | | | 5000A | | | E | | | Nov. 1973 Digital multimeters, how cost 3435A,3465A/B 3476A/B 34 | Nov. | 1974 | Digital logic course | 5035T | Ana | 1976 | Fault control memory 30 | 00 Series II | | Feb. 1977 Digital multimeters, low cost 3435A,3465A/B 3476A/B Aug. 1975 Digital pattern analyzer for triggering 1620A Nov. 1973 Digital pattern generator, communications test 1020A Digital pattern generator, communications test 270 Digital processor in a gas 27 | Nov. | 1973 | Digital multimeter, hand-held | 970A | 0 | | | 4913A | | 1975 | Feb. | 1977 | Digital multimeters, low cost 3435 | 5A,3465A/B | | | | 101011 | | Aug. 1975 Digital pattern analyzer for triggering 1620A Nov. 1973 Digital pattern generator, communications test 1 Digital pattern generator, communications test 2 Jan. 1976 Digital pattern generator, communications test 2 Jan. 1976 Digital pattern generator, communications test 3780A Mar. 1976 Peb. 1974 Pilor pattern generator, communications test 2 Jan. 1975 Digital pattern generator, communications test 3780A Mar. 1976 Feb. 1974 Pilor pattern generator, communications test 2 Jan. 1975 Digital pattern generator, communications test 3780A Mar. 1976 Feb. 1974 Pilor pattern generator, communications test 3780A Mar. 1975 Peb. 1979 Digital storage in a spectrum analyzer 3880A Jan. 1977 Digital tronalog converter for HP-IB 59301A* Nov. 1973 Digital volumeter, 51½ digit, auto-calibrating 3437A* 3437A* Digital volumeter, 51½ digit, 3437A* Digital volumeter, 51½ digit, 3437A* Digital volumeter, 51½ digit, 3437A* Digital volumeter | | | | 3476A/B | 1300 | 10.0 | 200 m (17.1.) [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1.1.] [1 | 547A | | Nov. 1973 Digital pattern generator, communications test series and property of the proputs of the property of the proputs | Aug. | 1975 | Digital pattern analyzer for triggering | 1620A | Nov | 1976 | | HFET-1000 | | cations test Digital pattern generator, communications test Cations test Digital pattern generator, communications test Cations test Digital pattern generator, communications test Cations test Cations test Digital pattern generator, communications test Cations test Cations test Cations test Digital processor in a gas Chromatograph Sept. 1973 Digital storage in a spectrum analyzer Digital-to-analog converter for HP-IB S9303.4* Sept. 1973 Digital volumeter, 5½ digit, auto- Calibrating Digital volumeter, 5½ digit, auto- Calibrating Digital volumeter, 5½ digit, auto- Digital volumeter, 5½ digit, auto- Digital volumeter, 5½ digit, auto- Digital | Nov. | 1973 | Digital pattern generator, communi- | | | | | 8030A | | Mar. 1976 Digital pattern generator, communications test 3780A Mar. 1976 Digital pattern generator, communications test 1645A Mar. 1976 PM, calibrated, signal generator 8 Apr. 1975 Pourier analysis, band selectable 5 Fourier analysis 5 Fourier analysis, band selectable 5 Fourier analysis 5 Fourier analysis, band selectable 5 Fourier analysis 5 Fourier analysis, band selectable 5 Fourier analysis | | | cations test | 3760A | | | | | | cations test 1974 Digital pattern generator, communications test Digital pattern generator, communications test Digital processor in a gas Chromatograph Savo, Sept. 1973 Digital storage in a spectrum analyzer 3580A Sept. 1973 Digital storage in a spectrum analyzer 3580A Sept. 1973 Digital storage in a spectrum analyzer 3580A Sept. 1975 Digital storage in a spectrum analyzer 3580A Sept. 1975 Digital storage in a spectrum analyzer 3580A Sept. 1975 Digital volt-analog converter for HP-IB 59303A* Sept. 1977 Digital voltmeter, 5½ digit, auto-calibrating 3455A* June 1974 Digital voltmeter, 5½ digit, auto-calibrating 3455A* June 1974 Digital word generator, serial, 300 MHz 30 | Mar. | 1976 | Digital pattern generator, communi- | | | | | 7 1010B | | Feb. 1974 Digital pattern generator, communications test 1645A Feb. 1975 Digital processor in a gas chromatograph 5840A Sept. 1973 Digital-to-analog converter for HP-IB 59303A* Nov. 1974 Digital-to-analog converter for HP-IB 59303A* Digital troubleshooting by signature analysis 5004A Apr. 1975 Digital-to-analog converter for HP-IB 59501A* Nov. 1974 Digital-to-analog converter for HP-IB 59501A* Nov. 1974 Digital-to-analog converter for HP-IB 59303A* Nov. 1974 Digital-to-analog converter for HP-IB 59303A* Nov. 1974 Digital-to-analog converter for HP-IB 59303A* Nov. 1975 Digital voltmeter, 5½ digit, auto-calibrating 3455A* July 1975 Digital voltmeters, options, for universal counter 5328A* Aug. 1975 Digital word generator, serial. 300 MHz 8084A/ Apr. 1976 Disc drive for desktop computer 1975 Display, CRT terminal magnetic tape 1975 Display, CRT terminal, magnetic tape 1975 Display, small solid-state alphanumeric alphanumeric 4401A Aug. 1977 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4271A* Dissipation factor measurements 4271A* Dissipation factor measurements 4271A* Dissipation factor measurements, amplitude, phase, envelope delay, nonlinear no | | | cations test | 3780A | | | | 8654B | | cations test 1645A Feb. 1975 Digital processor in a gas chromatograph | Feb. | 1974 | Digital pattern generator, communi- | | | | | 5451B | | Apr. 1976 Digital processor in a gas chromatograph should be a proposal of the | | | cations test | 1645A | | | 32.2 | 5451B | | chromatograph | Apr. | 1976 | Digital processor in a gas | | | | | 5354A | | Sept. 1973 Digital storage in a spectrum analyzer 3580/A plune 1974 Digital-to-analog converter for HP-IB 59501A* May 1977 Digital-to-analog converter for HP-IB 59501A* May 1977 Digital troubleshooting by signature analysis 5004A Prediction of the properties th | | | chromatograph | | | | | 5341A* | | Jan. 1975 Digital-to-analog converter for HP-IB 59303A* Nov. 1973 Frequency counter, high-resolution module for 5300 system 5504A July 1977 Digital troubleshooting by signature analysis 5004A Apr. 1975 Digital voltmeter, 5½ digit, auto-calibrating 3455A* July 1975 Digital voltmeter, fast reading, systems 3437A* July 1975 Digital voltmeter, 5½ digit, auto-calibrating July 1975 Digital voltmeters, options, for universal counter 5328A* Aug. 1977 Digital word generator, serial, 300 MHz 8084A 300 MHz 8080A Apr. 1976 Disc drive, 50 megabytes 7920A Apr. 1976 Disc drive for desktop computer 9880A Apr. 1976 Display, CRT terminal 2640A Apr. 1976 Display, cRT terminal 2640A Apr. 1977 Display station, APL 2641A Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Distortion measurements 4282A Aug. 1977 Dissipation factor measurements 4282A Aug. 1977 Dissipation factor measurements 4261A* Apr. 1976 Distortion 42 | Sept. | 1973 | | | | | | 5345A* | | Indeed | Jan. | 1975 | Digital-to-analog converter for HP-IB | 59303A* | | | | | | Sept. 1977 Digital troubleshooting by signature analysis 1977 Digital voltmeter, 5½ digit, autocalibrating 3455A* 3437A* 1975 Digital voltmeters, options, for universal counter 5328A* Aug. 1977 Digital word generator, 8-bit parallel 8016A* Sept. 1977 Digital word generator, serial, 300 MHz 8084A/ Apr. 1977 Disc drive, 50 megabytes 7920A Apr. 1974 Disc drive for desktop computer 9880A Apr. 1975 Display, CRT terminal 2640A Apr. 1976 Display, CRT terminal 2640A Apr. 1977 Display, CRT terminal 2644A Apr. 1977 Display, CRT terminal 2644A Apr. 1976 Display, numeric for HP interface bus 59303A* Apr. 1976 Display, small solid-state alphanumeric HDSP-2000 Display station, APL 2641A Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Distortion m | June | 1977 | | 59501A* | | | ************************************** | 5307A | | analysis analysis 5004A Feb. 1977 Digital voltmeter, 5½ digit, auto- calibrating 3455A* Digital voltmeter, fast reading, systems 3437A* Feb. 1977 Digital voltmeter, fast reading, systems 3437A* Aug. 1975 Digital voltmeters, options, for universal counter Univers | May | 1977 | Digital troubleshooting by signature | | July | 1974 | 502.1 | 5381A,82A | | Feb. 1977 Digital voltmeter, 5½ digit, auto- calibrating Feb. 1977 Digital voltmeter, fast reading, systems July 1975 Digital voltmeters, options, for universal counter Aug. 1975 Digital word generator, 8-bit parallel Aug. 1977 Digital word generator, serial, June 1978 Apr. 1974 Disc drive, 50 megabytes Aug. 1975 Display, CRT terminal Aug. 1975 Display, small solid-state alphanumeric Apr. 1976 Display station, APL Aug. 1977 Display station, APL Aug. 1977 Display station factor measurements Apr. 1976 Display to Display to Display to Display to Display in factor measurements Apr. 1976 Display to Displa | NACONE. | | | 5004A | F | 1975 | | 5305A | | Feb. 1977 Digital voltmeter, fast reading, systems 3437A* Digital voltmeters, options, for universal counter 5328A* Aug. 1975 Digital word generator, 8-bit parallel 8016A* Sept. 1973 Digital word generator, serial. 300 MHz 8080A Apr. 1974 Disc drive, 50 megabytes 7920A Apr. 1974 Disc drive for desktop computer 9880A Apr. 1975 Display, CRT terminal 2640A Apr. 1975 Display, CRT terminal 2640A Apr. 1975 Display, cRT terminal 2640A Apr. 1975 Displays, small solid-state alphanumeric bisplay, numeric for HP interface bus 59303A* Apr. 1976 Displays, small solid-state alphanumeric 4261A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distortion measurements, amplitude, phase, envelope delay, nonlinear Nov. 1974 Distributed computer systems 9700 Series Prequency reference, cesium beam 56 Aug. 1974 Sept. 1975 Frequency standard, high-performance cesium beam 50 Option 750 Prequency standard, high-performance cesium beam 50 Option 750 Prequency standard, high-performance cesium beam 50 Option 750 Prequency standard, high-performance cesium beam 50 Option 750 Opti | Feb. | 1977 | | 22 | June | 1974 | Frequency measurements, reciprocal | 5345A* | | July 1975 Digital voltmeters, options, for universal counter 5328A* Aug. 1975 Digital word generator, 8-bit parallel 8016A* Sept. 1973 Digital word generator, serial. 300 MHz 8080A Apr. 1974 Disc drive, 50 megabytes 7920A Apr. 1976 Display, CRT terminal 2640A Apr. 1977 Display, CRT terminal, magnetic tape 2644A Apr. 1977 Display, small solid-state alphanumeric Display, small solid-state alphanumeric HDSP-2000 Jisplay station, APL 2641A Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distortion measurements 4282A Apr. 1976 Distortion measurements 4282A Apr. 1976 Distortion measurements 4281A applitude, phase, envelope delay, nonlinear Apase, envelope delay, nonlinear Dropouts 4940A Play 1977 Dropouts 4940A Play 1976 Dropouts 4940A Play 1976 Dropouts 4940A Play 1976 Dropouts 4940A Play 1976 Group delay detector 85 | | | | | June | 1974 | Frequency profile measurements, | | | Aug. 1975 Digital word generator, 8-bit parallel 8016A* Sept. 1973 Digital word generator, serial, 300 MHz 8080A Apr. 1974 Disc drive, 50 megabytes 7920A Apr. 1976 Display, CRT terminal 2640A Apr. 1977 Display, CRT terminal, magnetic tape 2644A Apr. 1977 Display, small solid-state alphanumeric HDSP-2000 Jisplay, small solid-state alphanumeric HDSP-2000 Display station, APL 2641A Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distance measurements 4282A Apr. 1976 Distortion measurements, amplitude, phase, envelope delay, nonlinear Nov. 1974 Dragalong (in APL/3000) Aug. 1974 Dropouts Fig. 1976 Dropouts Fig. 1977 Dragalong (in APL/3000) South Apr. 1976 Dropouts Fig. 1977 Dragalong (in APL/3000) South App. 1976 Dropouts Fig. 1976 Dropouts Fig. 1977 Dragalong (in APL/3000) South App. 1976 Dropouts Fig. 1976 Dropouts Fig. 1977 Dragalong (in APL/3000) South App. 1976 Dropouts Fig. 1977 Dragalong (in APL/3000) South App. 1976 Dropouts Fig. 1977 Dragalong (in APL/3000) South App. 1976 Dropouts Fig. 1977 Dragalong (in APL/3000) South App. 1976 Dropouts Fig. 1977 Dragalong (in APL/3000) South App. 1978 Dropouts Fig. 1978 Dropouts Fig. 1979 Dragalong (in APL/3000) South App. 1979 Dropouts Fig. Fi | ALC: UNITED IN | | | s 3437A* | | | pulsed RF | 5345A* | | Aug. 1975 Digital word generator, 8-bit parallel B016A* Sept. 1973 Frequency standard, high-performance cesium beam 50 option cesium beam 50 option from 1975 Display, CRT terminal 2640A Jun. 1975 Display, CRT terminal 2640A Jun. 1975 Display, CRT terminal, magnetic tape 2644A Jun. 1975 Display, numeric for HP interface bus 59303A* Apr. 1977 Displays, small solid-state alphanumeric 4261A* Sept. 1976 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4261A* Feb. 1975 Dissipation factor measurements 4261A* Apr. 1976 Distortion 1975 Distortion measurements 4261A* Apr. 1976 Distortion measurements 4261A* Apr. 1976 Generator, signal, phase modulated 866 Generators, pulse; see pulse generators Generators, word; see word generators Generators, word; see word generators Generators Gradient programming, liquid chromatography 140 1 | July | 1975 | | | Mar. | 1976 | Frequency reference, cesium beam | 5062C | | Aug. 1977 Digital word generator, serial, 300 MHz 8080A Aug. 1977 Disc drive, 50 megabytes 7920A Apr. 1974 Disc drive for desktop computer 9880A Oct. 1976 Display, CRT terminal 2640A May 1976 Display, CRT terminal, magnetic tape 2644A Apr. 1977 Displays, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL 2641A Mar. 1974 Dissipation factor measurements 4261A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distance measurements, amplitude Aphase, envelope delay, nonlinear Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Bossana Mar. 1975 Function generator, dual source 33 Amay 1975 Function generator, dual source 33 Amay 1975 Function generator, low distortion 3551A/33 Amay 1975 Gas FET amplifier, chips HFET Gas chromatograph, digitally-controlled 54 Apr. 1976 Gas chromatograph reporting integrator 33 Generator, digital, 150 MHz 33 Generator, signal, phase modulated 866 Generators, pulse; see pulse generators Generators, word; see word generators Generators, word; see word generators Gradient programming, liquid chromatography 14 Apr. 1976 Group delay detector 85 | 020000000 | o a transación | | | Aug. | 1974 | Frequency shift measurements | 4940A | | Aug. 1977 Disc drive, 50 megabytes 7920A Apr. 1974 Disc drive for desktop computer 9880A Oct. 1976 Display, CRT terminal, magnetic tape 2644A Apr. 1975 Display, CRT terminal, magnetic tape 2644A Apr. 1977 Display, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL 2641A Apr. 1976 Dissipation factor measurements 4261A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Distance measurements, amplitude, phase, envelope delay, nonlinear Nov. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Book Am. 1975 Function generator, dual source 33 Function generator, dual source 53 Function generator, dual source 33 Function generator, dual source 34 Function generator, dual source 35 54 Function generator, dual source 40 fector 40 Function fector 40 Function generator, dual source 40 Function fector 40 Function | | | | 8016A | Sept. | 1973 | Frequency standard, high-performance | | | Aug. 1977 Disc drive, 50 megabytes 7920A Apr. 1974 Disc drive for desktop computer 9880A Oct. 1976 Discriminator (lab notebook) — June 1975 Display, CRT terminal 2640A May 1976 Display, CRT terminal, magnetic tape 2644A Jan. 1975 Display, numeric for HP interface bus 59303A* Apr. 1977 Display, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL 2641A Mar. 1974 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1975 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Distortion measurements 4261A* Apr. 1976 Distortion measurements 4261A* Apr. 1976 Distortion measurements 4261A* Apr. 1977 Distortion measurements 4261A* Apr. 1978 Distortion measurements 4261A* Apr. 1979 Distortion measurements 4261A* Apr. 1970 Distortion measurements 4261A* Apr. 1971 Distortion measurements 4261A* Apr. 1972 Distortion measurements 4261A* Apr. 1973 Distortion measurements 4261A* Apr. 1974 Distortion measurements 4261A* Apr. 1975 Distortion measurements 4261A* Apr. 1975 Distortion measurements 4261A* Apr. 1976 Distortion measurements 4261A* Apr. 1976 Distortion measurements 4261A* Apr. 1977 Distortion measurements 4261A* Apr. 1978 Distortion measurements 4261A* Apr. 1979 Distortion measurements 4261A* Apr. 1975 Generator, digital, 150 MHz 33 Generator, signal, synthesized 2.6 GHz 866 Generators, pulse; see pulse generators Generators, word; see word generators Gradient programming, liquid chromatography 10 Group delay detector | Aug. | 1977 | | 00011 | | | | 5061A, | | Aug. 1977 Disc drive, 50 megabytes 7920A Apr. 1974 Disc drive for desktop computer 9880A Oct. 1976 Discriminator (lab notebook) Iune 1975 Display, CRT terminal 2640A May 1976 Display, CRT terminal, magnetic tape 2644A Apr. 1977 Displays, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL 2641A Mar. 1974 Dissipation factor measurements 4261A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1977 Dissipation factor measurements 4261A* Apr. 1978 Dissipation factor measurements 4261A* Apr. 1976 Distance measurements 4261A* Apr. 1976 Distance measurements, surveying 3810A Aug. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Parallel Andrew Policy of desktop computer 9880A May 1975 Function generator, low distortion 3551A/36 Gas hits measurements 45 Apr. 1976 Gas chromatograph, digitally-controlled 56 Gas chromatograph, digitally-controlled 57 Gas chromatograph, digitally-controlled 57 Gas chromatograph, digitally-controlled 58 Gas chromatograph, digitally-controlled 58 Generator, signal, synthesized 2.6 GHz 866 Generators, word; see word generators Gradient programming, liquid chromatography 10 Generators, word; see word generators Gradient programming, liquid chromatography 10 Gas chromatograph, digitally-controlled 58 chr | | | 300 MHz | | | | | option 004 | | Apr. 1974 Disc drive for desktop computer Oct. 1976 Discriminator (lab notebook) — G June 1975 Display, CRT terminal 2640A May 1976 Display, CRT terminal, magnetic tape 2644A Apr. 1977 Display, numeric for HP interface bus 59303A* Apr. 1977 Display, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL Mar. 1974 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distance measurements, surveying 3810A Aug. 1974 Distortion measurements, amplitude 5453A Aug. 1974 Distortion measurements, amplitude 5453A Aug. 1974 Distortion measurements, amplitude 5453A Aug. 1974 Distortion measurements 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Feb. 1975 1976 Group delay detector Feb. 1975 Dropouts Feb. 1976 Gradient programming, liquid chromatography Aug. 1976 Group delay detector Feb. 1976 Gradient programming, liquid chromatograp | | | D: 1: 50 1.1 | | | 1975 | | 3312A | | Oct. 1976 Discriminator (lab notebook) June 1975 Display, CRT terminal 2640A May 1976 Display, CRT terminal, magnetic tape 2644A Jan. 1975 Display, umeric for HP interface bus 59303A* Apr. 1977 Displays, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL 2641A Mar. 1974 Dissipation factor measurements 4261A* Sept. 1976 Dissipation factor measurements 4261A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1976 Distance measurements 4282A Apr. 1976 Distance measurements, surveying May 1975 Distortion measurements, amplitude, phase, envelope delay, nonlinear Nov. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts CaAs FET amplifier, chips HFET Gain hits measurements 426 Apr. 1976 Gas chromatograph, digitally-controlled 56 Generator, digital, 150 MHz 37 Generator, signal, phase modulated 866 Generator, signal, synthesized 2.6 GHz 866 Generators, pulse; see pulse generators Generators, word; see word generators Generators, pulse; see pulse generators Generators, pulse; see pulse generators Generators, word; see word pulse; see pulse generators Generators, pulse; see pulse generators Generators, word; see word generators Gradient programming, liquid chromatography Group delay detector | | | | | May | 1975 | Function generator, low distortion 353 | 51A/3552A | | June 1975 Display, CRT terminal 2640A May 1976 Display, CRT terminal, magnetic tape 2644A Jan. 1975 Display, numeric for HP interface bus 59303A* Apr. 1977 Displays, small solid-state | | | | | | | G | | | May 1976 Display, CRT terminal, magnetic tape 2644A Jan. 1975 Display, numeric for HP interface bus 59303A* Apr. 1977 Displays, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL 2641A Sept. 1976 Dissipation factor measurements 4261A* Peb. 1975 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4261A* Apr. 1976 Distortion measurements 4282A Apr. 1976 Distortion measurements, surveying 3810A Aug. 1974 Distortion measurements, amplitude, phase, envelope delay, nonlinear Aug. 1974 Dropouts Propouts Propouts Propouts Propouts Propouts Propouts Propouts Propouts Spand Aug. 1976 Group delay detector Propouts Propouts Spand Aug. 1976 Group delay detector A | | | | | | | ď | | | Jan. 1975 Display, numeric for HP interface bus 59303A* Apr. 1977 Displays, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL 2641A Mar. 1974 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4261A* Feb. 1975 Dissipation factor measurements 4282A Apr. 1976 Distance measurements 4282A Apr. 1976 Distortion measurements 4282A Aug. 1974 Distortion measurements, amplitude, phase, envelope delay, nonlinear Aug. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Feb. 1975 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Feb. 1975 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Feb. 1976 Gas chromatograph, digitally-controlled Gas chromatograph reporting integrator Generator, digital, 150 MHz Generator, digital, 150 MHz 37 Generator, signal, phase modulated 866 Metalon Metalo | | | | | Nov. | 1976 | GaAs FET amplifier, chips | HFET 1000 | | Apr. 1977 Displays, small solid-state alphanumeric HDSP-2000 July 1977 Display station, APL 2641A Mar. 1974 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4261A* Feb. 1975 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distance measurements 4282A Apr. 1976 Distance measurements 4282A Apr. 1976 Distortion measurements, amplitude Apr. 1975 Distortion measurements, amplitude Apr. 1976 Distortion measurements, amplitude Apr. 1976 Gas chromatograph, digitally-controlled Gas chromatograph reporting integrator Generator, digital, 150 MHz Generator, signal, phase modulated 866 Berrator, signal, synthesized 2.6 GHz Berrators, pulse; see pulse generators Nov. 1974 Distributed computer systems July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Feb. 1975 Generator, signal, synthesized 2.6 GHz Generators, pulse; see pulse generators Generators, word; see word generators Gradient programming, liquid chromatograph, digitally-controlled Gas chromatograph, digitally-controlled Gas chromatograph integrator Generator, signal, synthesized 2.6 GHz Generators, pulse; see pulse generators Generators, word; see word generators Gradient programming, liquid chromatography Generator of Gradient programming, liquid chromatography Generator of Gradient programming, liquid chromatograph, digitally-controlled Gas chromatograph digitally-controlled Generator, signal, phase modulated Sector Generators, word; see word generators Gradient programming, liquid chromatography Generators Generators Generators Generators Generators | 100000 | | | | Aug. | 1974 | | 4940A | | July 1977 Displays station, APL 2641A Mar. 1974 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distance measurements 4282A Apr. 1976 Distance measurements, surveying May 1975 Distortion measurements, amplitude, phase, envelope delay, nonlinear Nov. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts HDSP-2000 digitally-controlled 58 Generator, digital, 150 MHz 37 Generator, signal, phase modulated 866 Better and the programming p | | | | 59303A | 100 | | | | | July 1977 Display station, APL Mar. 1974 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4261A* Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distance measurements, surveying May 1975 Distortion measurements, amplitude, phase, envelope delay, nonlinear Nov. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts E Dec. 1974 Gas chromatograph reporting integrator 33 Generator, digital, 150 MHz Generator, signal, phase modulated 866 866 Beta Apr. 1975 Generator, signal, synthesized 2.6 GHz 866 Generators, pulse; see pulse generators Generators, pulse; see pulse generators Generators, word; see word generators Generators, word; see word generators Gradient programming, liquid chromatography 10 Generator of the programming | Apr. | 1977 | | TIDED 2000 | | | | 5840A | | Mar. 1974 Dissipation factor measurements 4271A* Sept. 1976 Dissipation factor measurements 4261A* Feb. 1975 Dissipation factor measurements 4282A Apr. 1976 Distance measurements, surveying 3810A May 1975 Distortion measurements, amplitude Aug. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts F Integrator Generator, digital, 150 MHz 37 Generator, signal, phase modulated 866 866 Benerator, signal, synthesized 2.6 GHz 866 Benerator, signal, synthesized 2.6 GHz 866 Benerator, signal, synthesized 2.6 GHz 866 Benerator, signal, phase modulated 866 Benerator, signal, synthesized 2.6 GHz 866 Benerator, signal, synthesized 2.6 GHz 866 Benerators, pulse; see pulse generators Generators, pulse; see pulse generators Generators, pulse; see pulse generators Generators, pulse; see word generators Gradient programming, liquid chromatography 10 Group delay detector 85 | Terler | 1027 | | | Dec. | 1974 | | | | Sept. 1976 Dissipation factor measurements 4261A* Sept. 1975 Dissipation factor measurements 4261A* Apr. 1976 Distinct measurements 4282A Apr. 1976 Distortion measurements, surveying 3810A Aug. 1974 Distortion measurements, amplitude, phase, envelope delay, nonlinear Aug. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) 3000 Aug. 1974 Dropouts 4940A F Sept. 1976 Dissipation factor measurements 4261A* July 1975 Generator, digital, 150 MHz 366 866 866 866 866 866 866 Generator, signal, phase modulated 866 866 866 Generators, pulse; see pulse generators Generators, word; see word generators Gradient programming, liquid chromatography 16 Group delay detector 85 | | | | | | | | 3380A | | Feb. 1975 Dissipation factor measurements 4282A Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Dissipation factor measurements 4282A Apr. 1976 Distance measurements, surveying 3810A Distortion measurements, amplitude 5453A Aug. 1974 Distortion measurements, amplitude, phase, envelope delay, nonlinear 4940A Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) 3000 Aug. 1974 Dropouts 4940A Dropouts 4940A Dropouts 4940A Dropouts 4940A Dropouts 4940A Oct. 1975 Gradient programming, liquid chromatography 100 Group delay detector 85 | | | | | Nov. | 1973 | | 3760A | | Apr. 1976 Distance measurements, surveying May 1975 Distortion measurements, amplitude Aug. 1974 Distortion measurements, amplitude, phase, envelope delay, nonlinear Mov. 1974 Distributed computer systems Pragalong (in APL/3000) Series July 1977 Dropouts Propouts | | | [1] (이라고 아니다) (하나 하는 사람이 하는 데 다른 아니라 하나 하는 사람들이 하는 사람들이 하는 사람들이 하는 것이다. | | | | 있습니다. 이번 10 TO | 86634A, | | May 1975 Distortion measurements, amplitude 5453A Aug. 1974 Distortion measurements, amplitude, phase, envelope delay, nonlinear 4940A Nov. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) 3000 Aug. 1974 Dropouts 4940A F Generator, signal, synthesized 2.6 GHz Generators, pulse; see pulse generators Generators, word; see word generators Gradient programming, liquid chromatography 16 Group delay detector 85 | | | | | , | | | 86635A | | Aug. 1974 Distortion measurements, amplitude, phase, envelope delay, nonlinear 4940A Nov. 1974 Distributed computer systems 9700 Series July 1977 Dragalong (in APL/3000) 3000 Aug. 1974 Dropouts 4940A F July 1976 Group delay detector 85 | - | | | | July | 1975 | Generator, signal, synthesized 2.6 GHz | | | phase, envelope delay, nonlinear A940A Nov. 1974 Distributed computer systems July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Propouts Oct. 1975 Generators, pulse; see pulse generators Generators, word; see word generators Gradient programming, liquid chromatography 10 F July 1976 Group delay detector Senerators Oct. 1975 Gradient programming, liquid chromatography 11 Group delay detector | 11.000 | | | 3433A | 100 HOUSE | | and a stranger with the stranger and the first and a stranger and the stra | | | Nov. 1974 Distributed computer systems July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts 9700 Series 9700 Series Generators, word; see word generators 4940A Oct. 1975 Gradient programming, liquid chromatography 10 F July 1976 Group delay detector 85 | Aug. | 19/4 | | 40404 | | | Generators, pulse; see pulse generators | | | July 1977 Dragalong (in APL/3000) Aug. 1974 Dropouts Oct. 1975 Generators, word; see word generators Gradient programming, liquid chromatography Illy 1976 Group delay detector S5 | 200 | 1074 | | | | | | | | Aug. 1974 Dropouts Oct. 1975 Gradient programming, liquid chromatography July 1976 Group delay detector 85 | Norte | | | | | | Generators, word; see word generators | | | F July 1976 Group delay detector 85 | | 124// | | | Oct. | 1975 | | | | July 1976 Group delay detector 85 | July | | | +3+0/1 | | | | 4040D | | | July | | Dropouts | | | | chromatography | 1010B | | | July | | ** | | July | 1976 | | 8505A* | | Oct. 1976 Ear oximeter 47201A Nov. 1974 Group delay measurements 37 | July | | ** | | 1000 | | Group delay detector | | | | July<br>Aug. | 1974 | E | | Aug. | 1974 | Group delay detector<br>Group delay measurements | 8505A* | | | | | | | * | | | |--------------|--------------|----------------------------------------------------------|-------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | May | 1975 | Group delay measurements | 5453A | Dec. | 1976 | Logic-state analyzers, serial-to-parallel | 100544 | | | | Н | | Dee | 1075 | conversion<br>Logic test, analog oscilloscope | 10254A<br>1740A | | lan. | 1977 | Heart-rate monitoring, fetal | 8030A | Dec.<br>Aug. | 1975<br>1975 | Logic trigger | 1230A | | Feb. | 1975 | High capacitance meter | 4282A | May. | 1977 | Logic troubleshooting by signature | 120011 | | Sept. | | High-performance cesium beam tube | | | 10,, | analysis | 5004A | | Dopti | | 8 F | option 004 | Aug. | 1974 | Loss measurements | 4940A | | Nov. | 1973 | High-resolution counter module for | | May | 1975 | Loss measurements | 5453A | | | | 5300 system | 5307A | | 1974 | Loss measurements | 3770A | | Feb. | 1975 | High-sensitivity X-Y recorder | 7047A | May | 1975 | | 1A/3552A | | June | 1976 | HPL, desktop computer language | 9825A* | July | 1974 | | 381A-82A | | Jan. | 1975 | HP-IB analyzer | 59401A* | Feb. | 1977 | Low-cost digital multimeters | 3435A. | | Jan. | 1975 | HP-IB, current status | 5345A* | ** | 4070 | | 3,3476A/B | | June | 1974 | HP-IB, counter systems | 3343A | Nov. | 1973 | Low-frequency measurements with<br>high-resolution counter | E207A | | Jan. | 1975 | HP-IB systems | _ | Cont | 1973 | Low-frequency spectrum analyzer | 5307A<br>3580A | | | | HP interface bus, see HP-IB | | sept. | 19/3 | Low-frequency spectrum analyzer | 330071 | | Apr. | 1976 | Horizontal distance and angle | | | | | | | · · · | 10,0 | measurements | 3810A | | | M | | | | | | | Feb. | 1976 | Machine positioning laser transducer | 5501A* | | | | 1 | | Jan. | 1974 | Machine tool calibration | 5526A | | Oct. | 1976 | IC tester, digital | 5045A | May | 1976 | Magnetic tape cartridge, mini | _ | | Oct. | 1976 | IC testing, economic considerations | 5045A | June | 1976 | Magnetic tape minicartridge, | 9815A/ | | Dec. | 1976 | IC troubleshooting instruments and | 33335 | Material | | in desk-top computer | 9825A* | | 200, | 10,0 | kits | 545A,546A, | May | 1976 | Magnetic tape storage, in CRT terminal | 2644A | | | | | 547A,548A | Apr. | 1974 | Mass memory for desk-top computer | 9880A | | July | 1974 | IMAGE | 24376B, | Feb. | 1977 | Math functions in a digital voltmeter | 3455A* | | A.S. A. | | | 32215A-16A | Oct. | 1974 | Memory, semiconductor | 21MX* | | June | 1976 | Impact printer | 9871A | | 1976 | Meter, LCR digital | 4261A* | | Aug. | 1974 | Impulse noise measurements | 4940A | Aug. | 1977 | MFM code, for magnetic recording | 7920A | | May | 1975 | Impulse noise measurements | 5453A | | 1974 | Microcircuit TV receiver | - | | Oct. | 1976 | Incoming inspection, digital ICs | 5045A | Apr. | 1977 | Micro-CPU chip (MC <sup>2</sup> ), CMOS/SOS | 1600A | | Mar. | 1974 | Inductance measurement | 4271A* | Aug. | 1975 | Microprocessors, logic-state analysis of<br>Microprocessors, logic-state analyzer for | 1611A | | Sept. | | Inductance measurement | 4261A*<br>24376B, | Jan.<br>Oct. | 1977<br>1974 | Microprogrammable central processor | 21MX | | July | 1974 | Information management software | 32215A-16A | | 1977 | Microprogramming aids | 1000* | | Mar. | 1977 | Integrated-circuit technology, | 32213A-10A | Feb. | 1975 | Microprogramming, performance | 12000 | | wiar. | 19// | viewpoint | | 100. | 1070 | improvement by | _ | | Dec. | 1974 | Integrator, chromatograph, reporting | 3380A | Mav | 1974 | Microwave attenuators, dc-18 GHz 8495 | \/B-96A/B | | Jan. | 1975 | Interface, ASCII, for 5300-series | | June | 1977 | Microwave attenuators, dc-26.5 GHz | 8495D/K | | , | | instruments | 5312A* | Sept. | 1975 | Microwave counter, 4.5 GHz | 5341A* | | | | | | Nov. | 1975 | Microwave link analyzer, 140-MHz IF | 3790A | | | | Interface bus, see HP-IB. | | Nov. | 1976 | Microwave sweep oscillators, | 86242C, | | Jan. | 1974 | Interferometer, straightness | 5526A, | | | 5.9-12.4 GHz | 86250C | | | | | option 30 | July | 1975 | Modulator, phase, for signal generator | 86634A, | | Apr. | 1974 | Inventory control system, desk-top | 00004 | Descri | 4074 | MPET/2000 multiprogramming | 86635A | | | | computer | 9880A | Dec. | 1974 | MPET/3000, multiprogramming executive for timesharing | 32010A | | | | J | | Aug. | 1076 | | 0 Series II | | | | | | | 1973 | Multimeter, digital, hand-held | 970A | | | | K | | Feb. | 1977 | Multimeters, digital, low cost | 3435A. | | | | i i | | 1.001 | 1.50 | | 3.3476A/B | | | | | | Feb. | 1977 | Multimeters, extending the ranges of | _ | | July | 1977 | [14] [15] [15] [15] [15] [15] [15] [15] [15 | 3000 Series II | Jan. | 1976 | Multiplexed communications test, | | | Sept. | | | 9500D,9510D | | | frequency division | 3745A* | | June | 1976 | Language, desktop computer, HPL | 9825A* | Aug. | 1976 | Multiprogramming computer | | | Jan. | 1974 | Laser interferometer, straightness | 5526A, | | | The state of s | 0 Series II | | | | | option 30 | Jan. | 1976 | Multi-user real-time BASIC | _ | | Feb. | 1976 | Laser transducer system | 5501A* | | | N | | | Sept. | | LCR meter, automatic, digital | 4261A*<br>4271A* | | | | | | Mar. | 1974 | LCR meter, 1 MHz automatic, digital | HDSP-2000 | July | 1976 | Network analyzer, 0.5-1300 MHz | 8505A* | | Apr.<br>July | 1977<br>1976 | LED displays, alphanumeric<br>Line stretcher, electronic | 8505A* | Nov. | 1974 | Networks, computer 97 | 700 Series | | Oct. | 1975 | Liquid chromatography, flow control | | Mar. | | Network measurements, 2-18 GHz | | | June | 1977 | Load, sliding, 2-26.5 GHz | 911C | 10000 | 1976 | NMOS LSI processor | 9825A* | | May | 1976 | Logarithmic counter (lab notebook) | 200 | Mar. | 1974 | Noise, types, in signal generators | 8654A | | Oct. | 1973 | Logic analyzer | 5000A | Aug. | | Noise measurements, telephone | 4940A | | Dec. | 1976 | Logic clip, multifamily | 548A | | 1975 | Noise measurements, telephone | 5453A | | Nov. | 1974 | Logic lab | 5035T | | 1974 | Nonlinear distortion measurements | 4940A | | Dec. | 1976 | Logic probe, multifamily | 545A | May | 1975 | Nonlinear distortion measurements<br>Nonlinear distortion measurements | 5453A | | Dec. | 1976 | Logic pulser, multifamily | 548A | Nov. | 1975 | on microwave links | 3790A | | Aug. | 1975 | Logic state analyzer | 1600S | | | | 373071 | | Jan. | 1974 | Logic state analyzer | 1601L | | | 0 | | | Jan. | 1977 | Logic state analyzer for | 1011 A | Don | 1075 | Operating eveteme real time | 92001A, | | | | microprocessors | 1611A | Dec. | 1975 | Operating systems, real-time | 32001A, | | | | | | | | | | | | | (RTE-II, RTE-III) | 02060 4 | | | - 1 1 1 | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------| | Mar. | 1977 | OPNODE | 92060A<br>92817A | Mar. | 1976 | Pseudorandom binary sequences | | | Mar. | | Optimization, circuit, computer aided | 92817A | | | (50 MHz) for testing digital communications | 3780A | | Nov. | 1976 | Oscillators, sweep, 5.9-12.4 GHz | 86242C, | Nov. | 1973 | Pseudorandom binary sequences | 3/0UA | | | . N | Manager of the second s | 86250C | | | (150 MHz) for testing digital | | | Mar. | 1975 | Oscillator, sweep, 2-18 GHz | 86290A | | | communications | 3790A | | Dec. | 1975<br>1974 | Oscilloscope, 100 MHz<br>Oscilloscope, 275 MHz | 1740A | | 1974 | Pulsed RF frequency measurements | 5345A* | | Dec. | 1974 | Oscilloscope, dual-delayed sweep, | 1720A | Mar. | 1974 | Pulse generator, 20 MHz, | CONTRACTOR CONTRACT | | | 20/ 2 | microprocessor-controlled, | | Oct | 1070 | counted burst | 8011A | | | | numeric display | 1722A | Oct. | 1973 | Pulse generator, 50 MHz, 16V,<br>counted burst | 8015A | | Apr. | 1977 | | 0017A et al. | Aug. | 1977 | Pulse generator, 1 GHz | 8080-Series | | Feb. | 1974 | Oscilloscopes, low-cost, dc-15 MHz 12 | | | 1977 | Pulse generator, dual-output with | 0000 001103 | | Aug. | 1975 | Oscilloscope triggering on | 10250/ | 7 | | | 092A/8080A | | Oct. | 1973 | digital events 12<br>Oscilloscope, used with logic analyzer | 30A/1620A | Sept. | 1974 | Pulse generator, variable risetime to 1 n | s 8082A | | Dec. | 1975 | Oscilloscope, used with logic analyzer | 5000A | | | Q | | | 10000000 | | analyzer | 1740A | | 5550 | | | | Sept. | 1976 | Oscilloscope, variable persistence/ | | July | 1974 | QUERY | 24376B, | | | | storage | 1741A | | | | 82215A-6A | | Oct. | 1976 | Oximeter | 47201A | | | R | | | Oct. | 1976 | Oxygen levels in blood, measurement o | f 47201A | | | n. | | | | | Р | | Jan. | 1974 | Ray-trace program | _ | | | | | | Jan. | 1976 | Real-time BASIC | 92101A | | Nov. | 1973 | PCM systems, error detection 370 | 60A/3761A | Mar. | 1977 | Real-time executive operating system | 1000* | | | 1976 | PCM systems, error detection | 3780A | Nov. | 1974 | Real-time executive systems,<br>in distributed networks | 9700 Series | | Aug. | 1974 | Peak-to-average ratio measurements | | Dec. | 1975 | Real-time executive systems, | 9700 Series | | Aug. | 1974 | on voiceband data channels Phase distortion measurements | 4940A | 713-745-1 | | | 01A,92060A | | May | 1975 | Phase distortion measurements | 4940A<br>5453A | Dec. | 1973 | Recorder, strip-chart, portable | 7155A | | | 1974 | Phase hits measurements | 4940A | Feb. | 1975 | Recorder, X-Y, high-sensitivity | 7047A | | | 1974 | Phase jitter measurements | 4940A | Jan. | 1975 | Relay actuator for HP interface bus | 59306A* | | May | 1975 | Phase jitter measurements | 5453A | Mar.<br>Mar. | 1974<br>1975 | Resistance measurements | 4271A* | | July | 1975 | Phase-modulated signal generator | 86634A, | Dec. | 1975 | RF plug-in, 2-18 GHz<br>RTE-II real-time executive system | 86290A<br>92001A | | Tuno | 1074 | plug-in; also, applications for | 86635A | Dec. | 1975 | RTE-III real-time executive system | 3200171 | | June | 1974<br>1974 | Plug-in, automatic frequency converter | | | | for large memories | 020604 | | | | | 5252A | | | for large memories | 92060A | | | 1975 | Plug-in, channel C<br>Pocket calculator, business | 5353A<br>HP-22 | | | properties of the property of the party t | 92000A | | | | Pocket calculator, business Pocket calculator, card programmable | 5353A<br>HP-22<br>HP-65 | | | S | 92000A | | Nov.<br>May<br>Nov. | 1975<br>1974<br>1976 | Pocket calculator, business<br>Pocket calculator, card programmable<br>Pocket calculator, card programmable | HP-22 | | 1974 | <b>S</b> Satellite computer systems | 9601,9610 | | Nov.<br>May<br>Nov.<br>Nov. | 1975<br>1974<br>1976<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable | HP-22<br>HP-65<br>HP-67<br>HP-25 | Aug. | 1974 | Satellite computer systems<br>Satellite-relayed TV | 9601,9610<br>— | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov. | 1975<br>1974<br>1976<br>1975<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21 | Aug.<br>Jan. | 1974<br>1975 | Satellite computer systems<br>Satellite-relayed TV<br>Scanner for calculator-based systems | 9601,9610<br>—<br>3495A* | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97 | Aug.<br>Jan.<br>Jan. | 1974<br>1975<br>1975 | Satellite computer systems<br>Satellite-relayed TV<br>Scanner for calculator-based systems<br>Scanner option for printer | 9601,9610<br>—<br>3495A*<br>5150A* | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Nov.<br>Dec. | 1975<br>1974<br>1976<br>1975<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A | Aug.<br>Jan. | 1974<br>1975 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set | 9601,9610<br>—<br>3495A* | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Nov.<br>Dec. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97 | Aug.<br>Jan.<br>Jan.<br>Jan. | 1974<br>1975<br>1975<br>1976 | Satellite computer systems<br>Satellite-relayed TV<br>Scanner for calculator-based systems<br>Scanner option for printer | 9601,9610<br>—<br>3495A*<br>5150A* | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Dec.<br>Sept.<br>Oct. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A | Aug.<br>Jan.<br>Jan.<br>Jan. | 1974<br>1975<br>1975<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by | 9601,9610<br>—<br>3495A*<br>5150A*<br>3745A* | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Dec.<br>Sept.<br>Oct.<br>Oct.<br>July | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power splitter, 3-way | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B | Aug.<br>Jan.<br>Jan.<br>Jan.<br>Dec.<br>May | 1974<br>1975<br>1975<br>1976<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Dec.<br>Sept.<br>Oct.<br>Oct.<br>July<br>June | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1975<br>1976 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power meter, digital Power sensor, high-sensitivity Power supplies, 200W, wide range | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A* | Aug.<br>Jan.<br>Jan.<br>Jan.<br>Dec.<br>May | 1974<br>1975<br>1975<br>1976<br>1976<br>1977 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A<br>8654A | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Dec.<br>Sept.<br>Oct.<br>Oct.<br>July<br>June<br>July | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1975<br>1976<br>1977<br>1974 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power supplies, 200W, wide range Power supply/amplifier, bipolar | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A* | Aug.<br>Jan.<br>Jan.<br>Jan.<br>Dec.<br>May<br>Mar.<br>Mar. | 1974<br>1975<br>1975<br>1976<br>1976<br>1977<br>1974<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A<br>8654A<br>8654B | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Dec.<br>Sept.<br>Oct.<br>Oct.<br>July<br>June | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1975<br>1976 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A* | Aug.<br>Jan.<br>Jan.<br>Jan.<br>Dec.<br>May | 1974<br>1975<br>1975<br>1976<br>1976<br>1977 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications | 9601,9610<br>———————————————————————————————————— | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Dec.<br>Sept.<br>Oct.<br>July<br>June<br>July<br>June | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1974<br>1977 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power supplies, 200W, wide range Power supply/amplifier, bipolar | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A* | Aug.<br>Jan.<br>Jan.<br>Dec.<br>May<br>Mar.<br>Mar.<br>Mar. | 1974<br>1975<br>1975<br>1976<br>1976<br>1977<br>1974<br>1976<br>1974 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM | 9601,9610<br> | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Dec.<br>Sept.<br>Oct.<br>July<br>June<br>July<br>June | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1974<br>1977 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A* | Aug. Jan. Jan. Jec. May Mar. Mar. July Mar. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1976<br>1974<br>1975<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator, phase modulated Signal generator synchronizer/counter | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A<br>8654A<br>8654B<br>8654A<br>86635A<br>8655A/<br>8654B | | Nov.<br>May<br>Nov.<br>Nov.<br>Nov.<br>Oct.<br>Oct.<br>July<br>June<br>July<br>June<br>Dec. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1977<br>1977<br>1973 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J | Aug. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1976<br>1974<br>1975<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A<br>8654A<br>8654B<br>8654A<br>86635A<br>8655A/<br>8654B<br>86603A | | Nov. May Nov. Nov. Nov. Oct. Oct. July June July June Dec. Apr. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1974<br>1977<br>1973<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply/amplifier, bipolar Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>625A-27A<br>59501A*<br>62600J<br>62605M<br>9871A | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1976<br>1974<br>1975<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator, phase modulated Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A<br>8654A<br>8654B<br>86635A<br>86635A<br>8655A/<br>8654B<br>86603A | | Nov. May Nov. Nov. Nov. Oct. Oct. July June July June Dec. Apr. June Dec. | 1975<br>1974<br>1976<br>1975<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply/amplifier, bipolar Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>625A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A | Aug. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May | 1974<br>1975<br>1976<br>1976<br>1977<br>1974<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A<br>8654A<br>8654B<br>8654A<br>86635A<br>8655A/<br>8654B<br>86603A | | Nov. May Nov. Nov. Nov. Oct. Oct. July June July June Dec. Apr. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1974<br>1977<br>1973<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power meter, digital Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A* | Aug. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. | 1974<br>1975<br>1976<br>1976<br>1977<br>1974<br>1976<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator, phase modulated Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A<br>8654A<br>8654B<br>86635A<br>86635A<br>8655A/<br>8654B<br>86603A | | Nov. May Nov. Nov. Nov. Oct. Sept. Oct. July June July June Dec. Apr. June June June June June June June Jun | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1977<br>1973 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>625A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A | Aug. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. | 1974<br>1975<br>1976<br>1976<br>1977<br>1974<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator, phase modulated Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements | 9601,9610<br>3495A*<br>5150A*<br>3745A*<br>10254A<br>5004A<br>8654A<br>8654B<br>86635A<br>86635A<br>8655A/<br>8654B<br>86603A | | Nov. May Nov. Nov. Nov. Nov. Oct. July June July June Dec. Apr. June June Dec. Apr. Jan. Nov. Apr. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1974<br>1977<br>1973<br>1975<br>1976<br>1977<br>1975<br>1976<br>1975<br>1976<br>1975<br>1976<br>1977 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-piotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators HI Probes, oscilloscope, miniature | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A* | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. Aug. | 1974<br>1975<br>1976<br>1976<br>1977<br>1974<br>1976<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator phase modulated Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654B 8654A 8655A/ 8655B/ 8654B 86603A 5004A | | Nov. May Nov. Nov. Nov. Dec. Sept. Oct. July June July June Dec. Apr. June Dec. Jan. Nov. Apr. Oct. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1974<br>1977<br>1973<br>1975<br>1976<br>1975<br>1976<br>1975<br>1976<br>1975<br>1975<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators HI Probes, oscilloscope, miniature Probes, time interval | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>52-91,HP-97<br>017A et al.<br>5363A* | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. July Mar. July Oct. May Apr. Aug. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977<br>1977<br>1974 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator, phase modulated Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 8654A 86635A 8655A/ 8654B 86603A 5004A 4940A | | Nov. May Nov. Nov. Nov. Dec. Sept. Oct. July June July June Dec. Apr. June Dec. Jan. Nov. Apr. Oct. June | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1974<br>1975<br>1976<br>1974<br>1975<br>1976<br>1977<br>1975<br>1976 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, NMOS LSI | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>2-91,HP-97<br>2017A et al.<br>5363A*<br>9825A | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. Aug. May June | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1976<br>1975<br>1976<br>1975<br>1976<br>1977<br>1974<br>1975 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Sigle-frequency interference measurements Sliding load, 2-26.5 GHz | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 86635A 86655A/ 86635A - 5004A - 4940A 5453A 911C | | Nov. May Nov. Nov. Nov. Dec. Sept. Oct. July June July June Dec. Apr. June Dec. Jan. Jan. Nov. Apr. Oct. June Apr. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1974<br>1975<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, CPU, CMOS/SOS | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>2-91,HP-97<br>017A et al.<br>5363A*<br>9825A | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1976<br>1975<br>1976<br>1977<br>1977<br>1974<br>1975 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Sliding load, 2-26.5 GHz Slope distance measurements | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654B 8654A 8655A/ 8655B/ 8654B 86603A 5004A 4940A 5453A 911C 3810A | | Nov. May Nov. Nov. Nov. Dec. Sept. Oct. July June July June Dec. Apr. June Dec. Jan. Jan. Nov. Apr. Oct. June Apr. May | 1975<br>1974<br>1976<br>1975<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1974<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, CPU, CMOS/SOS Programmable calculator, pocket-sized | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>2-91,HP-97<br>7017A et al.<br>5363A*<br>9825A<br>HP-65 | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. July | 1974<br>1975<br>1976<br>1976<br>1977<br>1974<br>1976<br>1974<br>1975<br>1976<br>1977<br>1977<br>1974<br>1975<br>1977<br>1975 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Sliding load, 2-26.5 GHz Slope distance measurements Source, RF, tracking | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 86635A 86554B 86603A — 5004A — 4940A 5453A 911C 3810A 8505A* | | Nov. May Nov. Nov. Nov. Dec. Sept. Oct. July June July June Dec. Apr. June Dec. Jan. Jan. Nov. Apr. Oct. June Apr. May | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, CPU, CMOS/SOS Programmable calculator, pocket-sized Programmable calculator, pocket-sized | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>9825A<br>HP-65<br>HP-65 | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. July Mar. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1976<br>1975<br>1976<br>1977<br>1977<br>1974<br>1975 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Sliding load, 2-26.5 GHz Slope distance measurements Source, RF, tracking Sparse Y matrix, in circuit analysis | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654B 8654A 8655A/ 8655B/ 8654B 86603A 5004A 4940A 5453A 911C 3810A | | Nov. May Nov. Nov. Nov. Oct. July June Dec. Apr. June Dec. Jan. Jan. Nov. Apr. Oct. June Apr. May Nov. Nov. June | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1974<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, CPU, CMOS/SOS Programmable calculator, pocket-sized Programmable calculator, pocket-sized Programmable calculator, desk-top 981 | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>5150A*<br>7-91,HP-97<br>017A et al.<br>5363A*<br>9825A<br>HP-65<br>HP-65<br>HP-67<br>HP-25 | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. July Mar. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977<br>1974<br>1975<br>1976<br>1977<br>1976<br>1976<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Sliding load, 2-26.5 GHz Slope distance measurements Source, RF, tracking | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 86635A 86554B 86603A — 5004A — 4940A 5453A 911C 3810A 8505A* | | Nov. May Nov. Nov. Nov. Oct. July June Dec. Apr. June Dec. Jan. Nov. Apr. Oct. June Apr. May Nov. Nov. June Oct. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1976<br>1977 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, CPU, CMOS/SOS Programmable calculator, pocket-sized Programmable calculator, pocket-sized Programmable computer, desk-top 981 Programmable IC tester | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>5150A*<br>2-91,HP-97<br>017A et al.<br>5363A*<br>9825A<br>—<br>HP-65<br>HP-67<br>HP-25<br>5A/9825A*<br>5045A | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. July Mar. Sept. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977<br>1974<br>1975<br>1977<br>1976<br>1976<br>1976<br>1976<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator, phase modulated Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Sliding load, 2-26.5 GHz Slope distance measurements Source, RF, tracking Sparse Y matrix, in circuit analysis Spectrophotometry applied to blood oxygen measurement | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 8654A 86635A 8655A/ 8654B 86603A 5004A 4940A 5453A 911C 3810A 8505A* 92817A 47201A 3580A | | Nov. May Nov. Nov. Nov. Oct. July June Dec. Jan. Nov. Apr. Oct. June Apr. May Nov. Nov. June Oct. June Oct. July | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, CPU, CMOS/SOS Programmable calculator, pocket-sized Programmable calculator, pocket-sized Programmable lC tester Programmable IC tester Programming language, APL | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>52-91,HP-97<br>017A et al.<br>5363A*<br>9825A<br>HP-65<br>HP-65<br>HP-67<br>HP-25<br>5A/9825A*<br>5045A<br>3000 | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. July Mar. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977<br>1974<br>1975<br>1977<br>1976<br>1976<br>1976<br>1976<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator, phase modulated Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Sliding load, 2-26.5 GHz Slope distance measurements Source, RF, tracking Sparse Y matrix, in circuit analysis Spectrophotometry applied to blood oxygen measurement Spectrum analyzer, 5 Hz to 50 kHz Spectrum analyzer, 10 Hz to 13 MHz | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 8654A 86635A 8655A/ 8654B 86603A 5004A 4940A 5453A 911C 3810A 8505A* 92817A 47201A 3580A 3571A/ | | Nov. May Nov. Nov. Nov. Dec. Sept. Oct. July June July June Dec. Jan. Jan. Nov. Apr. Oct. June Apr. May Nov. Nov. June Apr. June Apr. June Apr. June Apr. May Nov. Nov. June Apr. June Sept. July Sept. | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1974<br>1975<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, CPU, CMOS/SOS Programmable calculator, pocket-sized Programmable calculator, pocket-sized Programmable calculator, desk-top 981 Programmable IC tester Programming language, APL Programming language ATLAS | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. July Mar. Oct. Sept. May. | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1976<br>1975<br>1976<br>1977<br>1974<br>1975<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Sliding load, 2-26.5 GHz Slope distance measurements Source, RF, tracking Sparse Y matrix, in circuit analysis Spectrophotometry applied to blood oxygen measurement Spectrum analyzer, 5 Hz to 50 kHz Spectrum analyzer, 10 Hz to 13 MHz | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 8654A 86635A 8655A/ 8654B 86603A 5004A 4940A 5453A 911C 3810A 8505A* 92817A 47201A 3580A | | Nov. May Nov. Nov. Nov. Dec. Sept. Oct. July June July June Dec. Jan. Jan. Nov. Apr. Oct. June Apr. May Nov. Nov. June Apr. May Nov. June Cot. July Sept. June June | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1974<br>1975<br>1976<br>1977<br>1974<br>1975<br>1976<br>1977<br>1976<br>1977<br>1974<br>1975<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1976 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter, digital Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, oscilloscope, miniature Processor, NMOS LSI Processor, CPU, CMOS/SOS Programmable calculator, pocket-sized Programmable calculator, pocket-sized Programmable computer, desk-top 981 Programming language, APL Programming language ATLAS Programming language ATLAS | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>52-91,HP-97<br>017A et al.<br>5363A*<br>9825A<br>HP-65<br>HP-65<br>HP-67<br>HP-25<br>5A/9825A*<br>5045A<br>3000 | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. July Mar. Oct. Sept. May. Dec. | 1974<br>1975<br>1976<br>1976<br>1977<br>1974<br>1976<br>1975<br>1976<br>1975<br>1976<br>1977<br>1974<br>1975<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Silding load, 2-26.5 GHz Slope distance measurements Source, RF, tracking Sparse Y matrix, in circuit analysis Spectrophotometry applied to blood oxygen measurement Spectrum analyzer, 5 Hz to 50 kHz Spectrum analyzer, 10 Hz to 13 MHz | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 8654A 86635A 8655A/ 8654B 86603A 5004A 4940A 5453A 911C 3810A 8505A* 92817A 47201A 3580A 3571A/ | | Nov. May Nov. Nov. Nov. Dec. Sept. Oct. July June July June Dec. Apr. June Apr. Nov. Apr. Oct. June Apr. May Nov. June Oct. July Sept. June | 1975<br>1974<br>1976<br>1975<br>1975<br>1976<br>1973<br>1974<br>1975<br>1976<br>1977<br>1973<br>1975<br>1976<br>1974<br>1975<br>1976<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1975<br>1976<br>1977<br>1974<br>1975<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1975 | Pocket calculator, business Pocket calculator, card programmable Pocket calculator, card programmable Pocket calculator, key programmable Pocket calculator, scientific Portable calculators Portable strip-chart recorder Power meter Power meter Power sensor, high-sensitivity Power splitter, 3-way Power supplies, 200W, wide range Power supply/amplifier, bipolar Power supply/amplifier, bipolar Power supply programmer (HP-IB) Power supplies, switching regulator, modular, 4-28V, 300 W Power supply, switching regulated, 5V, 500 W Printer, impact Printer-plotter for chromatographs Printer, thermal, for instruments Printer with clock option Printing calculators Probes, oscilloscope, miniature Probes, time interval Processor, CPU, CMOS/SOS Programmable calculator, pocket-sized Programmable calculator, pocket-sized Programmable calculator, desk-top 981 Programmable IC tester Programming language, APL Programming language ATLAS | HP-22<br>HP-65<br>HP-67<br>HP-25<br>HP-21<br>P-91,HP-97<br>7155A<br>435A<br>436A*<br>8484A<br>11850A/B<br>6002A*<br>825A-27A<br>59501A*<br>62600J<br>62605M<br>9871A<br>3380A<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A*<br>5150A | Aug. Jan. Jan. Jan. Dec. May Mar. Mar. Mar. July Mar. July Oct. May Apr. Aug. May June Apr. July Mar. Oct. Sept. May. Dec. May | 1974<br>1975<br>1976<br>1976<br>1976<br>1977<br>1974<br>1976<br>1975<br>1976<br>1977<br>1974<br>1975<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976<br>1977<br>1976 | Satellite computer systems Satellite-relayed TV Scanner for calculator-based systems Scanner option for printer Selective level measuring set Serial-to-parallel conversion for logic-state display Servicing digital equipment by signature-analysis circuits Signal generator, 10-520 MHz Signal generator, calibrated FM Signal generator noise specifications Signal generator synchronizer/counter Signal generator synchronizer/counter Signal generator, synthesized 2.6 GHz Signal-level reference (lab notebook) Signature analysis Silicon-on-sapphire (SOS), CPU chip Single-frequency interference measurements Single-frequency interference measurements Sliding load, 2-26.5 GHz Slope distance measurements Source, RF, tracking Sparse Y matrix, in circuit analysis Spectrophotometry applied to blood oxygen measurement Spectrum analyzer, 5 Hz to 50 kHz Spectrum analyzer, 10 Hz to 13 MHz | 9601,9610 3495A* 5150A* 3745A* 10254A 5004A 8654A 8654B 8654A 86635A 8655A/ 8654B 86603A 5004A 4940A 5453A 911C 3810A 8505A* 92817A 47201A 3580A 3571A/ | | Sept. | 1976 | Storage/variable persistence oscilloscope | 1741A | Apr.<br>Dec. | 1975<br>1974 | Timer/counter, 75-MHz universal<br>Timeshared system, BASIC/3000 | 5308A<br>MPET/3000 | |------------|--------------------|-----------------------------------------------------------------------|------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------| | Jan. | 1974 | Straightness interferometer | 5526A, | Jan. | 1975 | Timing generator for HP interface but | | | juii. | 10, 1 | oddigitaless interioreness | option 30 | Apr. | 1976 | Total station | 3810A | | Dec. | 1973 | Strip chart recorder, portable, | | Feb. | 1976 | Transducer, laser | 5501A | | 200 000000 | | battery-powered | 7155A | Aug. | | Transient measurements on | | | July | 1977 | Structured programming, APL/3000 | 3000 | | | voiceband data channels | 4940A | | Apr. | 1976 | Surveying, distance and angle | | Nov. | 1976 | Transistor, FET GaAs microwave | HFET 1000 | | | | measurements | 3810A | Apr. | 1975 | Transistor process, 5-GHz | | | Nov. | 1976 | Sweep oscillators, 5.9-12.4 GHz | 86242C, | May | 1977 | Transition counting algorithms | 5004A | | | | | 86250C | Aug. | 1974 | Transmission impairment | | | Mar. | 1975 | Sweep oscillator, 2-18 GHz | 86290A | | | measuring set | 4940A | | Jan. | 1975 | Switch, VHF, for HP interface bus | 59307A* | May | 1975 | Transmission parameter analyzer | 5453A | | Apr. | 1975 | Switching regulated power supply,<br>5V, 500W | 62605M | Aug. | 1975 | Trigger probes/recognizers | 10250/<br>230A/1620A | | Dec. | 1973 | Switching regulated power supplies, | 02000111 | June | 1977 | Trigonometric algorithms, calculator | 23011/102011 | | Dec. | 15/3 | modular, 4-28V, 300W | 62600] | May | 1977 | Troubleshooting logic circuits by | | | June | 1977 | Switches, microwave, dc-26.5 GHz | 33311C | ividy | 13// | signature analysis | 5004A | | | 1976 | Synchronizer/counter for signal | 200110 | | | | 000121 | | 174411 | 10,0 | generator | 8655A | | | U | | | July | 1975 | Synthesized signal generator, 2.6 GH | | T., I., | 1075 | Universal accordant times (DVM | E222 A | | Nov. | 1974 | Systems, distributed computer | 9700 Series | July | 1975 | Universal counter/timer/DVM | 5328A<br>5308A | | Feb. | 1977 | Systems voltmeter, fast reading | 3437A* | Apr. | 1975 | Universal counter/timer, 75-MHz | 3300A | | | | T | | | | V | | | May | 1976 | Tape cartridge, mini | | Apr. | 1974 | Ventricular function, analysis of | | | Nov. | | Telephone data channel | | - 5 | | cineangiograms | 5693A | | 14041 | 107.1 | measurements, analog | 3770A | Feb. | 1977 | | A*,3437A*, | | Aug. | 1974 | Telephone data channel | | | | 3435A,3465A | /B,3476A/B | | | | measurements, analog | 4940A | Sept. | 1976 | Variable-persistence/storage | | | May | 1975 | Telephone data channel | | | | oscilloscope | 1741A | | 2000000 | | measurements, analog | 5453A | Apr. | 1976 | Vertical distance measurements | 3810A | | Feb. | 1974 | Telephone data channel | | Jan. | 1975 | VHF switch for HP interface bus | 59307A | | | | measurements, error analysis | 1645A | Aug. | 1977 | Vibrations, mechanical analogy | 7000 A | | Dec. | 1974 | Telephone measurements, | | 3.6 | | for servo system | 7920A | | | | loop-holding device | 3770A | Mar. | 1977 | Viewpoints, integrated-circuit | | | Jan. | 1976 | Telephone measurements, | | A | 1076 | technology<br>Virtual-memory computer systems 3 | Ono Sories II | | | | multichannel systems | 3745A* | Aug. | 1976 | | 3000 | | May | 1975 | Telephone measurements, | | July | 1977 | Virtual workspace, APL/3000<br>Voiceband data channel analyzer | 5453A | | | | | 551A/3552A | May | 1975<br>1974 | Voiceband data channel Voiceband data channel | 3433A | | Aug. | 1974 | Television by satellite, receiver for | | Aug. | 13/4 | measurements, analog | 4940A | | Feb. | 1976 | Terminal (calculator), | 00004 | Nov. | 1974 | Voiceband data channel | 451071 | | | TATE OF THE SECOND | data communications | 9830A | 1404. | 13/1 | measurements, analog | 3770A | | June | 1975 | Terminal, computer, CRT | 2640A | July | 1975 | Voltmeter options for | 50.000.00 | | July | 1977 | Terminal, CRT, APL | 2641A<br>2644A | ,, | 10.7.0 | universal counter | 5328A | | May | 1976 | Terminal, CRT, with dual tape drives<br>Test desk cable fault locator | 4913A | | | | | | Dec. | 1973<br>1976 | Test sets, network analysis | 8502A/ | | | W | | | July | 1970 | lest sets, network analysis | 8503A | Feb. | 1977 | Waveform measurements with digital | | | Oct. | 1976 | Tester, digital IC | 5045A | reu. | 19// | voltmeter | 3437A | | Feb. | 1977 | Testing a multimeter abusively | 3435A, | Ang | 1977 | Word generator, 300 MHz | 8084A | | 1.00. | 1377 | | /B.3476A/B | | 1975 | Word generator, multichannel | 8016A | | Nov. | 1976 | | P-91, HP-97 | Trub. | 10.0 | | 001011 | | Sept. | | Thermocouple power meter | 435A | | | X | | | | 1974 | Thermometer, platinum, digital | 2802A | Tay Inc. | 1074 | X-ray system for bench use | 4200= | | Dec. | 1975 | Thick-film hybrid oscilloscope | | July<br>Feb. | 1974<br>1975 | X-ray system for bench use<br>X-Y recorder, high-sensitivity | 43805<br>7047A | | | | amplifier | 1740A | - 0.01 | 55000 | A COLOR DE CARACTER DE CARACTER DE CONTRACTOR DE CARACTER CARAC | | | June | 1974 | Time-interval averaging | | | | Υ | | | Oct. | 1975 | Time interval probes | 5363A* | Man | 1075 | VIC tuned oscillator | | | Dec. | 1974 | Time interval measurements, | 629,5727.202 | Mar. | 19/5 | YIG-tuned oscillator | _ | | 15 | | very short | 1722A | | | Z | | | Feb. | 1977 | Time-related voltage measurements<br>Timer/counter/DVM, universal | 3437A*<br>5328A* | | 1-919-9010-1 | | | | July | 1975 | | | | 1976 | Zenith angle measurements | 3810A | # PART 3: Model Number Index | Model | Instrument | Month/Yea | ar HP-22<br>HP-25 | Calculator<br>Calculator | | 1975<br>1975 | |---------------------|--------------------------------------------|----------------------|-------------------|------------------------------------------------------------------|------------|--------------| | HP-21<br>*21MX | Calculator<br>Computers | Nov. 197<br>Oct. 197 | | Programmable Pocket Calculator<br>Programmable Pocket Calculator | May<br>Nov | 1974<br>1976 | | | es Computers | Mar. 197 | 77 HP-91 | Printing Portable Calculator | | 1976 | | *Asterisk indicates | instruments compatible with the HP interfa | ce bus (HP-IB). | HP-97 | Programmable Printing<br>Portable Calculator | Nov. | 1976 | ## Part 3: Model Number Index (continued) | 435A | Power Meter | Sept. | 1974 | *5150A | Thermal Printer | Jan. | 1975 | |-----------------|----------------------------------------------|-------|--------------|-------------------------|--------------------------------------------------|--------------|--------------| | *436A | Power Meter | Oct. | 1975 | 5300B | 8-Digit Mainframe | Apr. | 1975 | | 545A | Logic Probe | Dec. | 1976 | 5305A | 1100-MHz Frequency Counter | Apr. | 1975 | | 546A | Logic Pulser | Dec. | 1976 | 5307A | High-Resolution Counter | Nov. | | | 547A | Current Tracer | Dec. | 1976 | 5308A | 75-MHz Universal Timer/Counter | Apr. | 1975 | | 548A | Logic Clip | Dec. | 1976 | *5312A | ASCII Interface | Jan. | 1975 | | 911C | Sliding Load | June | 1977 | *5328A | Universal Counter | July | 1975 | | 970A | Probe Multimeter | | 1973 | *5341A | Frequency Counter | | 1975 | | HFET-1000 | GaAs FET | | 1976 | *5345A | Electronic Counter | June | 1974 | | *1000-Series | Small Computer Systems | Mar. | | 5353A | Channel C Plug-In | June | 1974 | | 1010B | Liquid Chromatograph | Oct. | 1975 | 5354A | Automatic Frequency Converter | 724 | SOUTH CO | | | Oscilloscopes, 15 MHz | Feb. | 1974 | and a transport and the | 0.015-4.0 GHz | June | 1974 | | 1230A | Logic Trigger | | 1975 | *5363A | Time Interval Probes | Oct. | 1975 | | 1600A/S | Logic State Analyzer | 1 | 1975 | | Frequency Counters | July | 1974 | | 1601L | Logic State Analyzer | Jan. | 1974 | 5451B | Fourier Analyzer | Feb. | 1975 | | 1607A | Logic State Analyzer | | 1975 | 5451B | Fourier Analyzer with BSFA | | 4075 | | 1611A | Logic State Analyzer | Jan. | 1977 | F.150.A | Capability | Apr. | 1975 | | 1620A | Pattern Analyzer | | 1975 | 5453A | Transmission Parameter Analyzer | May | 1975 | | 645A | Data Error Analyzer | Feb. | 1974 | 5468A | Transponder | May | 1975 | | 1720A | Oscilloscope, 275 MHz | | 1974 | *5501A | Laser Transducer System | Feb. | 1976 | | 1722A | Oscilloscope, dual-delayed sweep | Dec. | 1974<br>1975 | | Straightness Interferometers | Jan. | 1974 | | 1740A<br>1741A | Oscilloscope, 100 MHz | Dec. | 1975 | 5693A | Angio Analyzer | Apr. | 1974 | | 1/41A | Variable Persistence/Storage<br>Oscilloscope | Cont | 1076 | 5840A | Gas Chromatograph | Apr. | 1976<br>1977 | | HDSP-2000 | Solid-State Alphanumeric Display | Apr. | 1976 | *6002A | DC Power Supply, 200W | June | | | IMAGE/2000 | Data Base Management System | July | 1977<br>1974 | 6825A/6A/7A<br>7047A | | July<br>Feb. | 1974<br>1975 | | 2640A | Interactive Display Terminal | June | 1975 | 7155A | X-Y Recorder<br>Portable Strip-Chart Recorder | Dec. | 1973 | | 2641A | APL Display Station | July | 1977 | 7920A | Disc Drive | | | | 2644A | CRT Terminal with Magnetic | july | 13// | 8011A | Pulse Generator, 20 MHz | Mar. | 1974 | | 2044/1 | Tape Storage | May | 1976 | 8015A | Pulse Generator, 50 MHz | Oct. | 1973 | | 2802A | Platinum-Resistance Thermometer | Apr. | 1974 | *8016A | Word Generator | Aug. | 1975 | | | Computer System | | 1976 | 8030A | Cardiotocograph | Jan. | 1977 | | APL/3000 | A Programming Language | July | 1977 | 8080-Series | High-Speed Pulse/Word Generator | | 1977 | | IMAGE/3000 | Data Base Management System | July | 1974 | 8082A | Pulse Generator, 250 MHz | | 1974 | | MPET/3000 | Multiprogramming Executive | Dec. | 1974 | 8473C | Coaxial Detector, 0.01-26.5 GHz | June | 1977 | | *3044A | Spectrum Analyzer, | 1000 | 10/1 | 8481A et al. | Power Sensors | 100 | 1974 | | 44. | 10Hz to 13MHz | May | 1975 | 8484A | Power Sensor, High Sensitivity | Oct. | 1975 | | *3045A | Automatic Spectrum Analyzer | May | 1975 | 8495A/B, | Tower comon, mgn committee | | 10.0 | | *3050B | Automatic Data | | | 8496A/B | Step Attenuators, dc-18 GHz | May | 1974 | | | Acquisition System | Jan. | 1975 | 8495D/K | Step Attenuators, dc-26.5 GHz | | 1977 | | *3051A | Data Logging System | Feb. | 1977 | 8502A | Transmission and Reflection | ********** | | | *3052A | Programmable Data | | | | Test Set | July | 1976 | | | Acquisition System | Feb. | 1977 | 8503A | S-Parameter Test Set | July | 1976 | | 3312A | Function Generator | Mar. | 1975 | *8505A | Network Analyzer, 0.5-1300 MHz | July | 1976 | | 3380A | Chromatograph Integrator | Dec. | 1974 | 8620A | Sweep Oscillator | Mar. | 1975 | | 3435A | Digital Multimeter | Feb. | 1977 | 8654A | Signal Generator, 10-520 MHz | Mar. | 1974 | | *3437A | System Voltmeter | Feb. | 1977 | 8654B | Signal Generator with FM | Mar. | 1976 | | *3455A | Digital Voltmeter | Feb. | 1977 | 8655A | Synchronizer/Counter | Mar. | 1976 | | 3465A/B | Digital Multimeter | Feb. | 1977 | 8660C | Synthesized Signal Generator | | | | 3476A/B | Digital Multimeter | Feb. | 1977 | | Mainframe | July | 1975 | | *3495A | Scanner | Jan. | 1975 | | ATLAS Compiler and Processors | | 1975 | | 3551A | Transmission Test Set | May | 1975 | | ATLAS Compiler and Processors | | 1975 | | 3552A | Transmission Test Set | May | 1975 | 9601/9610 | Satellite Computer Systems | | 1974 | | *3571A | Tracking Spectrum Analyzer | | 1975 | 9700-Series | Distributed Computer Systems | | 1974 | | 3580A | Spectrum Analyzer, 5Hz-50kHz | | 1973 | *9815A | Desktop Computer | June | 1976 | | *3745A/B | Selective Level Measuring Set | Jan. | 1976 | *9825A | Desktop Computer | June | 1976 | | | Data Generator/Error Detector | Nov. | 1973 | *9830A | Desktop Computer (application of) | Feb. | 1976 | | 3770A | Amplitude/Delay | NI | 1074 | 9871A | Impact Printer | June | 1976 | | 27224 | Distortion Analyzer | | 1974 | 9880A/B | Desktop Computer Mass | | 4074 | | 3780A | Pattern Generator/Error Detector | Mar. | | 400484 4 1 | Memory System | | 1974 | | 3790A | Microwave Link Analyzer | | 1975 | 10017A et al. | Miniature Oscilloscope Probes | Apr. | 1977 | | 3810A<br>*4261A | Total Station | | 1976 | 10250-Series | Trigger Probes | Aug. | 1975 | | | LCR Meter | | 1976 | 10254A | Serial-to-Parallel Converter | Dec. | 1976 | | *4271A<br>4282A | LCR Meter<br>High-Capacitance Meter | Feb. | 1974<br>1975 | 11850A | Three-Way Power Splitter, | Triler | 1076 | | 4282A<br>4913A | Test Desk Fault Locator | | 1973 | 24376B | 0.5-1300 MHz<br>IMAGE/2000 Data Base | July | 1976 | | 4940A | Transmission Impairment | Dec. | 19/3 | 243/0D | | Inly | 1974 | | 134011 | Measuring Set | Ana | 1974 | 320104 | Management System | July<br>Dec. | 1974 | | 5000A | Logic Analyzer | Oct. | 1974 | 32010A<br>32105A | MPET/3000 Operating System<br>APL/3000 Subsystem | July | 1974 | | 5004A | Signature Analyzer | | 1977 | 32105A<br>32215A | IMAGE/3000 Data Base | July | 13// | | 5035T | Logic Lab | | 1974 | 0221011 | Management System | July | 1974 | | 5045A | IC Tester | Oct. | 1976 | 32216A | QUERY/3000 Data Base | july | 10/4 | | | High-Performance Cesium Beam | 000 | | Und I UII | Inquiry Facility | July | 1974 | | adding open our | Standard | Sept. | 1973 | 33311C | Microwave Switch, dc-26.5 GHz | June | 1977 | | 5062C | Cesium Beam Frequency Reference | | 1976 | 33321A/B | Step Attenuators, dc-18 GHz | May | 1974 | | | 1 miles | | F-6/3/20 | | | * | | ### Part 3: Model Number Index (continued) | 33321D/K<br>33330C | Step Attenuators, dc-26.5 GHz<br>Coaxial Detector, 0.01-26.5 GHz | June<br>June | 1977<br>1977 | 62605M | 500W Switching Regulated<br>Power Supply | Apr. | 1975 | |--------------------|------------------------------------------------------------------|--------------|--------------|---------------|------------------------------------------|------|------| | 43805 | X-Ray System | July | 1974 | 86242C, | RF Plug-Ins for 8620C Sweep | | | | 47201A | Oximeter | Oct. | 1976 | 86250C | Oscillator | Nov. | 1976 | | *59301A | ASCII-Parallel Converter | Jan. | 1975 | 86290A | 2-18 GHz RF Plug-In | Mar. | 1975 | | *59303A | Digital-to-Analog Converter | Jan. | 1975 | 86603A | 1-2600 MHz RF Section | July | 1975 | | *59304A | Numeric Display | Jan. | 1975 | 86634A | PM Modulation Section | July | 1975 | | *59306A | Relay Actuator | Jan. | 1975 | 86635A | FM/PM Modulation Section | July | 1975 | | *59307A | VHF Switch | Jan. | 1975 | 91700A et al. | Distributed Computer Systems | Nov. | 1974 | | *59308A | Timing Generator | Jan. | 1975 | 92001A | RTE-II Real-Time Executive System | Dec. | 1975 | | *59309A | ASCII Digital Clock | lan. | 1975 | 92001B | RTE-II Real-Time Executive System | Mar. | 1977 | | *59401A | Bus System Analyzer | Jan. | 1975 | 92060A | RTE-III Real-Time Executive System | Dec. | 1975 | | *59501A | Isolated D-A/Power | | | 92060B | RTE-III Real-Time Executive System | Mar. | 1977 | | | Supply Programmer | June | 1977 | 92061A | RTE Microprogramming Package | Mar. | 1977 | | 62604] et al. | Switching Regulated Modular | | | 92101A | Real-Time BASIC Subsystem | Jan. | 1976 | | | Power Supplies | Dec. | 1973 | 92817A | OPNODE | Mar. | 1977 | ## PART 4: Author Index | Author | Α | Month/ | Year | Corya, Bruce S.<br>Coster, John H. | July<br>Jan. | 1975<br>1976 | Forbes, Bert E.<br>Foster, Tony E. | Apr.<br>Apr. | 1977<br>1974 | |--------------------------------------|------|--------------------|-------|-----------------------------------------------------------|---------------------|--------------|----------------------------------------|-----------------------------------------|--------------| | Adler, Robin | | Oct. | 1973 | Courtin, Erich | Jan. | 1977 | Fowles, Richard G. | | . 1974 | | Ainsworth, Geral | d | Oct. | 1976 | Crawford, Thomas | Nov. | 1973 | Fox, Kenneth A. | Dec. | | | Aken, Michael B. | | | 1975 | Crow, George | Iune | 1975 | Frankenberg, Robert J. | Oct. | 1974 | | Anzinger, George | Α. | Dec. | 1975 | | | | Frederick, Wayne | July | 1976 | | Arnold, David | | | 1976 | D | | | Frohwerk, Robert A. | May | 1977 | | Ashkin, Peter B. | | | 1977 | ь | | | G | | | | Atchley, Robert L | | May | 1975 | Dack, David G. | Jan. | 1976 | G | | | | Averett, Linda W | | Dec. | 1975 | Dalichow, Rolf | July | 1976 | Gadol, Adele M. | Dec. | 1975 | | | В | | | Damon, Noel E. | Aug. | 1974 | Gammill, Lawrence A. | Apr. | 1977 | | | D | | | Daniels, Jerry W. | May | 1975 | Globas, Gert | Sept. | . 1974 | | Bailey, Paul W. | | June | 1977 | Danielson, Dan D. | Mar. | 1975 | Gookin, Albert | Feb. | 1977 | | Baker, Mark | | | 1973/ | Deaver, David K. | May | 1975 | Gordon, David E. | Dec. | | | | | Oct. | 1976 | Dickey, Shane | Nov. | 1974 | Gordon, Philip | Oct. | | | Baldwin, Richard | R. | Jan. | 1974 | Dickinson, Peter D. | Nov. | 1976 | Gorin, Joseph M. | Feb. | | | Barney, Dick B. | | June | 1976 | Diehl, Van | Dec. | 1975 | Grady, Robert B. | | . 1975 | | Barker, Roy D. | | Feb. | 1977 | Dietrich, Harold E. | Jan. | 1975 | Graham, Thomas R. | Dec. | | | Barraclough, Hal | | Dec. | 1974 | DiFrancesco, Mauro | Apr. | 1975 | Grote, Barbara E. | Jan. | | | Basawapatna, Gar | nesh | Mar. | 1975 | Dikeman, Peter | Apr. | 1974 | Guest, David H. | | 1974/ | | Beckwith, John F | | Dec. | 1976 | Dilman, Richard | Feb. | 1974 | | Dec. | 1974 | | Best, Allan I. | | | 1975 | DiPietro, David M. | Apr. | 1975 | н | | | | Bilen, Len | | | 1976 | Dresch, Donald A. | Aug. | 1974 | | | | | Blazek, Otakar | | | 1975 | Drake, Harris Dean | Mar.<br>Iune | 1977<br>1975 | Hahn, Kathleen F. | Mar. | 1977 | | Bologlu, Ali | | June | | Doub, James A.<br>Dudley, B. William | Dec. | 1973 | Hale, William L. | Sept. | . 1973 | | = 10 0 10 | | Sept. | | Dudley, B. William<br>Dudley, Robert L. | Nov. | | Hall, James A. | Aug. | 1974/ | | Botka, Julius | | A | 1976 | Duerr, Jeffrey R. | Feb. | 1974 | | July | 1975 | | Bradley, Havyn E | *0 | | 1974 | Dupre, John J. | Mar. | 1975 | Hammons, Richard L. | Oct. | 1974 | | Brewster, John L. | | | 1974 | 1201 (1400 141 150 120 120 120 120 120 120 120 120 120 12 | war. | 10,0 | Hardage, P. Kent | 100000000000000000000000000000000000000 | . 1974 | | Bronson, Barry | | Nov. | | E | | | Harkins, Daniel R. | July | | | D | | Dec.<br>Aug. | 1976 | E-d- William D | Tuno | 1976 | Harland, David A. | Jan. | 1974 | | Buesen, Jürgen | T | Apr. | | Eads, William D. | June | 1975 | Harms, Dennis W. | Nov. | | | Bullock, Michael | L. | June | | Eastham, Terry<br>Eberle, Volker | Aug. | 1975 | Harrison, Joel | Aug. | | | Bump, Robert B. | | June | 1370 | Edwards, Allen P. | Oct. | 1975 | Harrison, Van | | . 1976 | | | C | | | Egbert, William E. | | 1976/ | Hashimoto, Satoru | 100000000000000000000000000000000000000 | . 1976 | | | | | 4000 | Egbert, William E. | | 1977/ | Hay, Robert R. | Mar. | | | Campbell, John V | ٧. | | 1975 | | lune | 1977 | Hayes, Thomas J. | Oct. | | | Carlson, James E. | 1 n | | 1976 | Eggert, Rainer | Mar. | 1974 | Heger, Charles E.<br>Heinzl, Johann J. | Mar. | 1974 | | Chambers, Donal | | June<br>Dec. | 1977 | Elward, John S. | Oct. | 1974 | Hender, Thomas A. | | 1974 | | Chan, Anthony Y | • | | 1976 | Enlow, Carl Jr. | Mar. | 1975 | Hentschel, Christian | Aug. | | | Chanas Caoffron | TAT | | 1976 | Estes, Marvin F. | Apr. | 1977 | Hernday, Paul R. | Mar. | | | Chance, Geoffrey<br>Chen, Philip | VV. | | 1976 | | | | Hickenlooper, F. Timothy | June | | | Christensen, Svei | nd. | Nov. | | F | | | Hines, Jack L. | Apr. | Charles . | | Christopher, Chri | | Apr. | | Falke, Reinhard | Oct. | 1973 | Hohmann, Hans-Günter | Feb. | | | Christopher, Chri | 5 ]. | June | | Farnbach, William A. | Jan. | 1974 | Hood, James M. | | 1973/ | | Chu, Alejandro | | Mar. | | Farrington, David | Apr. | 1977 | jumos m | | 1977 | | Chu, David C. | | lune | | Felsenstein, Ronald E. | June | 1974 | Horner, James F. | July | 1975 | | Clifford, Douglas | M. | | 1976 | Fichter, George | | | House, Charles H. | Dec. | | | Cline, Stephan G. | | # 1 TO 1 TO 1 TO 1 | 1975 | Finch, Carolyn M. | Apr. | 1977 | Huff, Donald W. | Feb. | | | | | Mar. | | Finch, William R. | | 1975 | Hyatt, Ronald C. | | 1973/ | | Collison, Kobert i | | | | | The see Land of the | | | | | | Collison, Robert I<br>Cornish, Eldon | | Sept. | 1974 | Fischer, Walter A. | Dec. | 1974 | | Mar. | 1976 | ## Part 4: Author Index (continued) | 1 | | Mortensen, A. Craig | June 1976 | Smith, Robert B. | Feb. 1976 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Inaman Eric M | Oct. 1976 | Mueller, Louis F. | Sept. 1973 | Snow, David L. | Mar. 1977 | | Ingman, Eric M. | | Munsey, Grant J. | July 1977 | Snyder, David C. | Feb. 1975 | | Inhelder, Allen F. | Sept. 1975 | Musch, Bernard E. | Nov. 1976 | Sommer, Heinz | Jan. 1977 | | J | | Muto, Arthur S. | June 1974 | Sorden, James L. | June 1974 | | | | | , manual | Stallard, Scott J. | Mar. 1977 | | lackson, William D. | July 1975 | N | | Stancliff, Roger | Mar. 1975 | | Jackson, Weldon H. | Sept. 1974 | N. P. T. T. | 1 1075 | Stedman, John M. | Oct. 1974 | | Jacobs, Jacob R. | Oct. 1974 | Nadig, Hans-Jürg | Jan. 1975/ | | | | | Aug. 1976 | and the second second | May 1977 | Stefanski, Andrew | | | Jager, Clifford A. | | Neff, Randall B. | Nov. 1975 | Stickel, Herbert P. | Aug. 1977 | | Jekat, Hans J. | | Nordman, Robert G. | May 1976 | Stickle, Ronald L. | Feb. 1976 | | Jensen, Ronald C. | Feb. 1976 | 0 | | Stinson, John | Nov. 1973 | | Jeppsen, Bryce E. | June 1974 | O | | Stockwell, R. Kent | May 1974 | | Jeremiasen, Robert | Mar. 1974 | O'Buch, Warren J. | July 1974 | Stone, Peter S. | Jan. 1975 | | Johnson, Daniel E. | Feb. 1975 | | Oct. 1975 | Suehiro, Jun-ichi | Feb. 1975 | | Johnson, Lawrence P. | Jan. 1975 | Offermann, Robert W. | Feb. 1976 | - | | | Johnson, Lee | Mar. 1977 | Olson, William E. | | т | | | Johnston, Ronald L. | July 1977 | Osada, Kunihisa | Feb. 1975 | mall w nial alm | D 1075 | | Joly, Robert | Mar. 1975 | Osterdock, Terry N. | <sup>*</sup> Sept. 1973 | Tabbutt, Richard D. | Dec. 1975 | | Juneau, H. Mac | Feb. 1977 | P | | Taggart, Robert B. | May 1974/ | | - A CONTROL OF THE PROPERTY | | E: | | CASA Commencial Security (CASA CASA CASA CASA CASA CASA CASA CAS | Nov. 1976 | | K | | Pannach, Arndt | Aug. 1975 | Tamamura, Toshio | Sept. 1976 | | 5551 GV 15501 SE | g postages | Paulson, Gary R. | June 1976 | Tang, Edward | June 1975 | | Kappler, Wolfgang | Aug. 1975 | Pearson, Robert | Mar. 1976 | Tillman, Lynn | Nov. 1975 | | Keever, Jerome | June 1975 | | | Trimble, Charles R. | Jan. 1975/ | | Ketelsen, Erhard | Aug. 1974 | Pecchio, Santo | July 1974 | | Oct. 1975 | | Kim, Young Dae | July 1975 | Peck, Robert D. | Dec. 1973 | Toschi, Elio A. | Aug. 1976 | | Kirkpatrick, George R. | May 1974/ | Perdriau, Robert H. | May 1975 | Tung, Chung C. | May 1974 | | | June 1977 | Pering, Richard D. | Aug. 1974 | Tverdoch, Richard | Feb. 1974 | | Kmetovicz, Ronald E. | Mar. 1976 | Peterson, Kenneth W. | May 1974 | i verdocii, Richard | 160. 1574 | | Knorpp, Billy | Mar. 1975 | Pierce, Robert B. | June 1975 | U | | | Krauss, Günter | Mar. 1974 | Poole, John S. | Apr. 1976 | | | | | Nov. 1976 | Pope, Richard | Oct. 1976 | Uebbing, John T. | Apr. 1977 | | Kuhlman, Louis J. Jr. | | Pratt, Ronald E. | Oct. 1975/ | Urquhart, J. Reid | Jan. 1976/ | | Kushnir, S. Raymond | Sept. 1974 | | June 1977 | 8800 (19- <b>4</b> 0 ) 277 (24 (74.5 (70 <b>8</b> 7 ) 24 (70 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 ) 27 (74 | Oct. 1976 | | L | | Priebe, Durward | Dec. 1976 | ** | | | - <del></del> | | | | V | | | Talma Wingil I | Nov. 1973/ | Q | | 22 4 7 | July 1977 | | Laing, virgii L. | | | | | | | Laing, Virgil L. | Feb. 1977 | | D 1050 | Van Bree, Kenneth A. | | | | Feb. 1977 | Quenelle, Robert C. | Dec. 1976 | Van Brunt, Richard C. | Oct. 1974 | | Lamy, John | Feb. 1977<br>Sept. 1974 | | Dec. 1976 | Van Brunt, Richard C.<br>Van Dyke, Eric J. | Oct. 1974<br>July 1977 | | Lamy, John<br>Lane, Arthur B. | Feb. 1977<br>Sept. 1974<br>June 1975 | Quenelle, Robert C. | Dec. 1976 | Van Brunt, Richard C.<br>Van Dyke, Eric J.<br>Veteran, David R. | Oct. 1974<br>July 1977<br>May 1974 | | Lamy, John<br>Lane, Arthur B.<br>Lane, Thomas A. | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977 | R | | Van Brunt, Richard C.<br>Van Dyke, Eric J.<br>Veteran, David R.<br>Vifian, Hugo | Oct. 1974<br>July 1977<br>May 1974<br>July 1976 | | Lamy, John<br>Lane, Arthur B.<br>Lane, Thomas A.<br>Langguth, Alfred | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975 | <b>R</b><br>Rauskolb, Roger F. | May 1975 | Van Brunt, Richard C.<br>Van Dyke, Eric J.<br>Veteran, David R. | Oct. 1974<br>July 1977<br>May 1974 | | Lamy, John<br>Lane, Arthur B.<br>Lane, Thomas A.<br>Langguth, Alfred<br>Larsen, James | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974 | R<br>Rauskolb, Roger F.<br>Ricci, David W. | May 1975<br>Jan. 1975 | Van Brunt, Richard C.<br>Van Dyke, Eric J.<br>Veteran, David R.<br>Vifian, Hugo<br>Vyduna, James B. | Oct. 1974<br>July 1977<br>May 1974<br>July 1976 | | Lamy, John<br>Lane, Arthur B.<br>Lane, Thomas A.<br>Langguth, Alfred<br>Larsen, James<br>Lawson, William S. | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976 | R<br>Rauskolb, Roger F.<br>Ricci, David W.<br>Richards, Alan J. | May 1975<br>Jan. 1975<br>May 1976 | Van Brunt, Richard C.<br>Van Dyke, Eric J.<br>Veteran, David R.<br>Vifian, Hugo | Oct. 1974<br>July 1977<br>May 1974<br>July 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976<br>Aug. 1974 | Rauskolb, Roger F.<br>Ricci, David W.<br>Richards, Alan J.<br>Riebesell, Günter | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977 | Van Brunt, Richard C.<br>Van Dyke, Eric J.<br>Veteran, David R.<br>Vifian, Hugo<br>Vyduna, James B. | Oct. 1974<br>July 1977<br>May 1974<br>July 1976<br>Feb. 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976<br>Aug. 1974<br>July 1977 | Rauskolb, Roger F.<br>Ricci, David W.<br>Richards, Alan J.<br>Riebesell, Günter<br>Riedel, Ronald J. | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. | Oct. 1974<br>July 1977<br>May 1974<br>July 1976<br>Feb. 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976<br>Aug. 1974<br>July 1977<br>Oct. 1973 | Rauskolb, Roger F.<br>Ricci, David W.<br>Richards, Alan J.<br>Riebesell, Günter | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974/ | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. | Oct. 1974<br>July 1977<br>May 1974<br>July 1976<br>Feb. 1977<br>Feb. 1975<br>Aug. 1975 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976<br>Aug. 1974<br>July 1977<br>Oct. 1973<br>Apr. 1974 | Rauskolb, Roger F.<br>Ricci, David W.<br>Richards, Alan J.<br>Riebesell, Günter<br>Riedel, Ronald J.<br>Riggins, Cleaborn C. | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974<br>Mar. 1977 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. | Oct. 1974<br>July 1977<br>May 1974<br>July 1976<br>Feb. 1977<br>Feb. 1975<br>Aug. 1975<br>June 1975 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976<br>Aug. 1974<br>July 1977<br>Oct. 1973<br>Apr. 1974<br>Jan. 1975 | R Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974/<br>Mar. 1977<br>Dec. 1974 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. | Oct. 1974<br>July 1977<br>May 1974<br>July 1976<br>Feb. 1977<br>Feb. 1975<br>Aug. 1975<br>June 1975<br>Jan. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976<br>Aug. 1974<br>July 1977<br>Oct. 1973<br>Apr. 1974 | R Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974/<br>Mar. 1977<br>Dec. 1974<br>Nov. 1973 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 Aug. 1975 June 1975 June 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976<br>Aug. 1974<br>July 1977<br>Oct. 1973<br>Apr. 1974<br>Jan. 1975 | R Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974/<br>Mar. 1977<br>Dec. 1974<br>Nov. 1973<br>July 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 Aug. 1975 June 1975 Jan. 1976 June 1977 Nov. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. | Feb. 1977<br>Sept. 1974<br>June 1975<br>Mar. 1977<br>July 1975<br>Feb. 1974<br>July 1976<br>Aug. 1974<br>July 1977<br>Oct. 1973<br>Apr. 1974<br>Jan. 1975 | R Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974/<br>Mar. 1977<br>Dec. 1974<br>Nov. 1973 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 | R Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974/<br>Mar. 1977<br>Dec. 1974<br>Nov. 1973<br>July 1976<br>June 1975<br>Feb. 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 | R Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974/<br>Mar. 1977<br>Dec. 1974<br>Nov. 1973<br>July 1976<br>June 1975 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973/ | R Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. | May 1975<br>Jan. 1975<br>May 1976<br>Aug. 1977<br>Mar. 1975<br>Oct. 1974/<br>Mar. 1977<br>Dec. 1974<br>Nov. 1973<br>July 1976<br>June 1975<br>Feb. 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 Jan. 1976 June 1977 Nov. 1976 Feb. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973/ Apr. 1975 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974 Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 Aug. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973/ Apr. 1975 Mar. 1975 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974 Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 Jan. 1976 June 1977 Nov. 1976 Feb. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973/ Apr. 1975 Mar. 1974 June 1976 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 Aug. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1976 Aug. 1977 Sept. 1973 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973/ Apr. 1975 Mar. 1974 June 1976 Feb. 1977 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 Aug. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1973 Apr. 1974 Nov. 1973 Apr. 1974 Jan. 1975 Mar. 1974 June 1976 Feb. 1977 Nov. 1974 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 Jan. 1977 June 1977 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 Aug. 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973/ Apr. 1975 Mar. 1975 Mar. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1973 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975/ | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1976 Aug. 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973 Apr. 1975 Mar. 1975 Mar. 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 Jan. 1977 Aug. 1975 Jan. 1977 Aug. 1975 Jan. 1977 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1974 May 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973 Apr. 1975 Mar. 1975 Mar. 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1977 Jan. 1977 Jan. 1977 Jan. 1977 Jan. 1977 Jan. 1975 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1975 Sept. 1976 Aug. 1974 May 1976 June 1975 June 1975 June 1976 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973 Apr. 1975 Mar. 1975 Mar. 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1977 Jan. 1977 Jan. 1975 Oct. 1975 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1974 May 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973 Apr. 1975 Mar. 1975 Mar. 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1977 Jan. 1977 Jan. 1977 Jan. 1977 Jan. 1977 Jan. 1975 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1975 Sept. 1976 Aug. 1974 May 1976 June 1975 June 1975 June 1976 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973 Apr. 1975 Mar. 1975 Mar. 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 Feb. 1977 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1977 Jan. 1977 Jan. 1975 Oct. 1975 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1975 Sept. 1976 Aug. 1974 May 1976 June 1975 June 1975 June 1976 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1975 Mar. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 Feb. 1977 July 1974 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 Aug. 1977 Aug. 1975 Jan. 1975 Oct. 1975 Jan. 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1975 Sept. 1976 Aug. 1974 May 1976 June 1975 June 1975 June 1976 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1973 Apr. 1974 Nov. 1973 Apr. 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1975 Aug. 1975 Aug. 1975 Aug. 1974 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1977 Jan. 1977 Jan. 1975 Oct. 1975 Jan. 1976 June 1975 Oct. 1975 Jan. 1976 June 1974/ | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1976 July 1976 July 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1973/ Apr. 1975 Mar. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1975 Aug. 1976 Aug. 1976 Aug. 1976 Aug. 1976 Aug. 1976 Aug. 1976 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, Steven E. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 Aug. 1977 Jan. 1977 Jan. 1975 Jan. 1975 Jan. 1975 Jan. 1975 Jan. 1975 Jan. 1975 Jan. 1976 June 1974/ Jan. 1975/ Oct. 1975 Oct. 1975 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick X Y Yansouni, Cyril J. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1974 May 1976 July 1976 Mar. 1975 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. Merrill, Howard L. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973 Apr. 1975 Mar. 1975 Mar. 1976 Feb. 1977 Nov. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1976 Dec. 1976 Dec. 1976 Dec. 1976 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, Steven E. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 Aug. 1977 June 1977 June 1977 Jan. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1975 Oct. 1975 Mar. 1976 Mar. 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1973 Nov. 1975 July 1976 Mar. 1975 July 1976 Mar. 1975 Nov. 1973 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. Merrill, Howard L. Millard, Joe K. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1973 Apr. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1975 Aug. 1975 Aug. 1976 Dec. 1976 Dec. 1973 Dec. 1976 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, Steven E. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1976 June 1974/ Jan. 1975 Oct. 1975 Mar. 1976 Mar. 1976 Mar. 1976 Mar. 1976 Mar. 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick X Y Yansouni, Cyril J. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1974 May 1976 July 1976 Mar. 1975 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. Merrill, Howard L. Millard, Joe K. Mingle, P. Thomas | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Mov. 1973 Apr. 1975 Mar. 1976 Feb. 1977 Nov. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Apr. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1974 Apr. 1975 Aug. 1974 Oct. 1973 July 1974 Apr. 1975 Aug. 1976 Dec. 1973 Dec. 1973 Dec. 1975 Apr. 1975 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, Steven E. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1976 Mar. 1976 Mar. 1976 Mar. 1976 Dec. 1974/ | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick X Y Yansouni, Cyril J. Young, Ivan R. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1973 Nov. 1975 July 1976 Mar. 1975 July 1976 Mar. 1975 Nov. 1973 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. Merrill, Howard L. Millard, Joe K. Mingle, P. Thomas Misson, William | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1975 Mar. 1974 June 1976 Feb. 1977 Nov. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1975 Aug. 1976 Dec. 1976 Dec. 1976 Dec. 1976 Dec. 1976 Dec. 1975 Apr. | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, Steven E. Scott, Peter M. Seavey, Gary A. Shar, Leonard E. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1975 Oct. 1975 Jan. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1975 Oct. 1975 Mar. 1976 Mar. 1976 Mar. 1976 Dec. 1974/ Aug. 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick X Y Yansouni, Cyril J. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1977 Feb. 1975 June 1975 June 1976 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1973 Nov. 1975 July 1976 Mar. 1975 July 1976 Mar. 1975 Nov. 1973 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. Merrill, Howard L. Millard, Joe K. Mingle, P. Thomas Misson, William Moll, John | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1974 Nov. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Apr. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1975 Aug. 1975 Aug. 1976 Dec. 1973 Dec. 1975 Aug. 1976 Dec. 1975 Aug. 1976 Dec. 1975 Aug. | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. S Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, Steven E. Scott, Peter M. Seavey, Gary A. Shar, Leonard E. Sharritt, David D. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Oct. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1976 June 1974/ Jan. 1975/ Oct. 1975 Mar. 1976 Mar. 1976 Mar. 1976 Mar. 1976 Dec. 1974/ Aug. 1976 July 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick X Y Yansouni, Cyril J. Young, Ivan R. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1975 Aug. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1976 Aug. 1976 July 1976 Aug. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1976 Aug. 1976 Aug. 1976 Aug. 1976 Aug. 1976 Aug. 1976 July 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. Merrill, Howard L. Millard, Joe K. Mingle, P. Thomas Misson, William | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1973 Apr. 1974 Nov. 1973 Apr. 1975 Mar. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Apr. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1974 Oct. 1976 Dec. 1973 Dec. 1975 Aug. 1975 Aug. 1975 Aug. 1975 Mar. | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, James T. Schultz, Steven E. Scott, Peter M. Seavey, Gary A. Shar, Leonard E. Sharritt, David D. Small, Charles T. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Oct. 1975 Jan. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1975 Oct. 1975 Mar. 1976 Mar. 1976 Mar. 1976 Mar. 1976 Dec. 1974/ Aug. 1976 July 1976 Aug. 1976 July 1976 Aug. 1976 July 1976 Aug. 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick X Y Yansouni, Cyril J. Young, Ivan R. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1975 Aug. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1977 Sept. 1976 Aug. 1977 Sept. 1976 July 1976 July 1976 July 1976 July 1976 Mar. 1975 Nov. 1973 Mar. 1976 Sept. 1976 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. Merrill, Howard L. Millard, Joe K. Mingle, P. Thomas Misson, William Moll, John Morrill, Justin S., Jr. | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1973 Apr. 1974 Nov. 1973 Apr. 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Nov. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1975 Aug. 1975 Aug. 1976 Dec. 1973 Dec. 1975 Apr. 1975 Aug. 1975 Apr. 1975 Apr. 1975 Apr. 1975 Mar. Dec. 1976 | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, James T. Schultz, Steven E. Scott, Peter M. Seavey, Gary A. Shar, Leonard E. Sharritt, David D. Small, Charles T. Smith, Jeffrey H. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Jan. 1977 Jan. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1976 June 1974/ Jan. 1976 Mar. 1976 Mar. 1976 Mar. 1976 Dec. 1974/ Aug. 1976 July 1976 Aug. 1976 July 1976 Aug. 1975 Jan. 1977 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick X Y Yansouni, Cyril J. Young, Ivan R. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1975 Aug. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1976 Aug. 1976 Aug. 1977 Sept. 1973 Apr. 1976 Aug. 1977 Sept. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1976 July 1976 July 1976 July 1976 Mar. 1975 Nov. 1975 Sept. 1976 Aug. 1977 Sept. 1976 Aug. 1977 Sept. 1976 Aug. 1976 July 1976 Sept. 1976 Sept. 1976 Sept. 1976 Sept. 1977 | | Lamy, John Lane, Arthur B. Lane, Thomas A. Langguth, Alfred Larsen, James Lawson, William S. Lee, Richard T. Leong, Warren W. Link, Horst Liu, Chi-ning Loughry, Donald C. Luehman, Kent M Mack, Nealon MacLeod, Kenneth J. Maeda, Kohichi Maitland, David S. Marriott, Joe E. Marrocco, James A. Marshall, Howard D. Masters, Lewis W. Matthews, Ian McDermid, John E. McIntire, Richard E. McKinney, H. Webber Mellor, Douglas J. Merrick, Edwin B. Merrill, Howard L. Millard, Joe K. Mingle, P. Thomas Misson, William Moll, John | Feb. 1977 Sept. 1974 June 1975 Mar. 1977 July 1975 Feb. 1974 July 1976 Aug. 1974 July 1977 Oct. 1973 Apr. 1974 Jan. 1975 June 1977 Dec. 1973 Apr. 1974 Nov. 1973 Apr. 1975 Mar. 1974 June 1976 Feb. 1977 Nov. 1974 Oct. 1973 July 1974 Apr. 1975 Feb. 1977 July 1974 Apr. 1975 Aug. 1974 Oct. 1976 Dec. 1973 Dec. 1975 Aug. 1975 Aug. 1975 Aug. 1975 Mar. | Rauskolb, Roger F. Ricci, David W. Richards, Alan J. Riebesell, Günter Riedel, Ronald J. Riggins, Cleaborn C. Risley, William B. Robertson, James Roos, Mark Roy, Jean-Claude Rudé, André F. Ruchsay, Walter Rytand, William A. Salfeld, Peter Salesky, Emery Saponas, Thomas A. Sasaki, Gary D. Schrenker, Helge Schultz, James T. Schultz, James T. Schultz, Steven E. Scott, Peter M. Seavey, Gary A. Shar, Leonard E. Sharritt, David D. Small, Charles T. | May 1975 Jan. 1975 May 1976 Aug. 1977 Mar. 1975 Oct. 1974/ Mar. 1977 Dec. 1974 Nov. 1973 July 1976 June 1975 Feb. 1976 Jan. 1977 Mar. 1977 June 1977 Aug. 1975 Oct. 1975 Jan. 1975 Oct. 1975 Jan. 1976 June 1974/ Jan. 1975 Oct. 1975 Mar. 1976 Mar. 1976 Mar. 1976 Mar. 1976 Dec. 1974/ Aug. 1976 July 1976 Aug. 1976 July 1976 Aug. 1976 July 1976 Aug. 1976 | Van Brunt, Richard C. Van Dyke, Eric J. Veteran, David R. Vifian, Hugo Vyduna, James B. W Wade, John M. Wagner, William E. Waitman, Thomas F. Walker, Hugh P. Walker, William T. Wang, Patrick H. Ward, Michael J. Warp, Rick A. Warren, Richard E. Watanabe, Tak Weber, Lynn Weibel, Gerald E. Whicker, Richard Wickliff, Robert G. Winninghoff, Paul G. Witkin, Louis A. Wolpert, David L. Woodhull, Frederick X Y Yansouni, Cyril J. Young, Ivan R. | Oct. 1974 July 1977 May 1974 July 1976 Feb. 1975 Aug. 1975 June 1975 June 1977 Nov. 1976 Feb. 1976 Dec. 1973 Apr. 1976 Aug. 1977 Sept. 1973 Nov. 1975 Sept. 1973 Nov. 1975 Sept. 1976 Aug. 1977 Sept. 1976 Aug. 1977 Sept. 1976 July 1976 July 1976 July 1976 July 1976 Mar. 1975 Nov. 1973 Mar. 1976 Sept. 1976 | **Fig. 2.** Character generator produces horizontal and vertical bit patterns for alphanumeric characters and sends them to the stroke generator. - Load new ROM address into RAR from ROM output - Increment RAR to next ROM address - Load new ASCII code into RAR and increment character counter. These control situations allow the ASM to step consecutively from one bit pattern to the next for portions of a character that are unique, or to jump anywhere within the ROM to access portions of another character that are common to the one being constructed. For example, an eight may be made from a three and a pattern unique to an eight: This yields maximum efficiency in the use of ROM and makes it possible to store a complete ASCII character set plus a few Greek and lower-case letters for engineering notation in 512 16-bit words of ROM. #### Stroke Generator To display high-quality lines with uniform intensity, three signals have to be generated: the horizontal component, the vertical component, and the blanking signal. This is the job of the stroke generator. The stroke generator converts digital bit patterns into uniform line segments. The horizontal and vertical lines are voltage ramps. The blanking signal is generated from the horizontal and vertical components and determines the line's intensity and turns the beam on or off. To generate a uniform straight line with constant intensity, the signal moving the beam should be a linear ramp, as shown in Fig. 3. A simplified diagram of the circuit used to generate this signal is Fig. 3. Lines are drawn by moving the beam with a smooth ramp to maintain constant intensity. shown in Fig. 4. A digital-to-analog converter (DAC) generates the desired output level. The present output value is subtracted from the DAC value to generate a difference $\Delta X$ , which is sampled and held. Then the integrator switch closes and the sample-and-hold switch opens, and the output ramps to the desired output value. For a given CRT drive, a certain number of electrons per second are generated by the electron gun. If the beam is moved twice as far in the same amount of time, the electron density is halved, so the line is dimmer. It is a simple matter to generate an intensity level that will compensate for this, knowing the horizontal and vertical line lengths $\Delta X$ and $\Delta Y$ : Intensity = $$A\sqrt{(\Delta X)^2 + (\Delta Y)^2}$$ , where A is a proportionality constant related to the integration time. In the 5420A, this is approximated using one-half the sum of the magnitudes of $\Delta X$ and $\Delta Y$ . This results in a slightly greater intensity for horizontal and vertical lines than for diagonal lines of the same length. However, this is of little consequence, because the compensation is applied only for lines longer than a certain threshold value. In other words, some variation in intensity is permitted, although much less than there would be without compensation. This is because a slightly greater intensity for short lines than for long lines not only livens the display, but Fig. 4. Simplified ramp generator circuit. A digital-to-analog converter generates the desired value of the output. This is subtracted from the present value and the difference is sampled and held. Then the integrator switch closes and the sample-and-hold switch opens, and the output ramps to the desired value. also introduces some information on how quickly a plot is changing. #### Mini-Cartridge Data Storage The mini-cartridge has proved its utility as a data storage medium in HP terminals and desktop computers. <sup>1,2</sup> In the 5420A Digital Signal Analyzer, the minicartridge is used for data storage and as a backup store for a large semiconductor RAM memory. The minicartridge holds about 250,000 16-bit words of information, accessible at a 1-kHz word rate. It was designed jointly by HP and 3M corporation as a small, reliable storage device that could stand up to the vigorous demands of a computer controlled system.<sup>3</sup> A feature of the minicartridge is its belt drive, which eliminates tape-to-capstan contact and enhances reliability. There are two cartridge drives in the 5420A Digital Signal Analyzer. The front-panel cartridge provides the ability to store and restore instrument setups and data waveforms for later use. The second cartridge drive is hidden under the instrument's top cover. Its function is to back up 48K words of high-speed volatile memory. #### Memory Back-Up The "personality" of the 5420A is stored in 48K words of high-speed semiconductor RAM memory. This memory is volatile, so it must be loaded during the power-up sequence. The memory loading process is accomplished in several steps and involves the 21MX K-Series Computer, a small bootstrap program residing in ROM (non-volatile), ROM-stored micro- Fig. 5. Two tape drives in the 5420A share read/write electronics and communicate with the central processor over the MIOB. One drive is used for storing data and instrument setups. The second drive is internal, and is used to back up the 5420A's semiconductor memory. code, the module I/O bus (MIOB), and the hidden cartridge. When the power is switched on, the computer performs an initial bootload opcode (IBL), which loads a small bootstrap program from ROM into the computer's main 48K memory. This program checks the memory and tests the integrity of the MIOB, and then proceeds to load data stored on the hidden cartridge, filling the computer's memory. To enhance reliability, the 48K memory contents are stored in 1K records, and there are multiple copies of each record on the cartridge. If an error is encountered during the loading of a record, alternate copies of the record are used. If the alternate copies also have errors, the noise reject threshold used in decoding the tape head signal is changed. Thus the loading process is desensitized #### Walter M. Edgerley, Jr. With HP since 1971, Walt Edgerley has designed power and hybrid microwave amplifiers and, more recently, the 5441A Display Module for the 5420A. He received his BSEE degree from the University of California at Berkeley in 1972. A former professional bowler, Walt participates in a variety of sports and coaches young peoples' baseball and basketball teams. He was born in Albany, California, has two sons, and now lives in Fremont, California. #### David C. Snyder Dave Snyder designed the tape cartridge hardware and the module I/O bus for the 5420A. With HP since 1971, he's been project leader for the 5451B Fourier Analyzer and has done software design for nuclear analyzers and automatic test systems. Dave Graduated from the University of California at Berkeley with a BS degree in engineering physics in 1965. Before joining HP he worked as an astrodynamicist, a software analyst, and a software designer. He's done graduate work at three universities in a variety of fields including computer science, systems, and digital design. A native of Mankato, Minnesota, Dave is married to a nurse, has three children, and lives in the Santa Cruz mountains of California. His interests include microprocessing, games, cryptography, hiking, woodworking, photography, and guitar. to tape errors, and in fact, will load perfectly even in the presence of multiple hard errors. #### Cartridge Hardware The cartridge hardware interfaces two tape transport assemblies, each consisting of motor, head, and preamplifier, to the 5420A module I/O bus (MIOB), as shown in Fig. 5. The MIOB transactions involve sending and receiving data, receiving commands (e.g., \$RUN, \$STOP, \$READ,...), and sending status information (e.g., %MOVING, %EOF,...) called "code words". The motor servo's job is to maintain the tape speed at 22 or 88 inches per second (ips), both forward and reverse. The tape velocity increases linearly from a stop to 22 ips in approximately 20 milliseconds; this corresponds to accelerating the motor uniformly from 0 to 1300 r/min within one-half of one motor revolution or about 0.5 inch of tape travel. An optical tachometer providing 2000 pulses per revolution is the control feedback element. Data is written on the tape bit-serially, encoded in HP's delta distance format.<sup>2</sup> This is an efficient technique in which the recording density varies between 900 and 1600 bits per inch depending on the bit composition of the data. In this format, zeros are represented by short magnets (about 600 $\mu$ in) and ones are represented by long magnets (about 1000 $\mu$ in). The control portion of the cartridge hardware han- dles all MIOB transactions, performs serial-to-parallel conversions, and handles exceptions (for example, sending status code words to the computer whenever an error is detected). The control section is implemented as a PROM-driven 32-state algorithmic state machine (ASM). A diagnostic mode is provided that allows software read and write arbitrary patterns on the tape, instead of being limited to reading and writing one and zeros. Using the standard XIO pseudo-DMA opcode, the signal at the tape head may be set or sensed with a resolution of about one microsecond, equivalent to a tape motion of about 20 $\mu$ in. This capability can be used to read and record worst-case test patterns such as frequency response patterns, dropout patterns, and so on, for diagnostic purposes. #### References 1. R.G. Nordman, R.L. Smith, and L.A. Witkin, "New CRT Terminal Has Magnetic Tape Storage for Expanded Capability," Hewlett-Packard Journal, May 1976. 2. D.E. Morris, C.J. Christopher, G.W. Chance, and D.B. Barney, "Third-Generation Programmable Calculator Has Computer-Like Capabilities," Hewlett-Packard Journal, June 1976. 3. A.J. Richards, "Mini Data Cartridge: A Convincing Alternative for Low-Cost, Removable Storage," Hewlett-Packard Journal, May 1976. ### **Digital Signal Analyzer Applications** Analyses of two actual systems, one electrical and one mechanical, show what the analyzer can do. by Terry L. Donahue and Joseph P. Oliverio THE 5420A DIGITAL SIGNAL ANALYZER is basically a two-channel digital low-frequency spectrum and transfer function analyzer. A major application area is the analysis of mechanical structures, since these typically exhibit low-frequency (below 25 kHz) oscillations. However, its versatility, wide choice of measurements, and post-measurement processing capability make it a useful tool in other areas, such as acoustics, underwater sound, control system analysis, phase noise analysis, and filter design. This article describes two applications, one electrical, the other mechanical. The examples include the results of actual measurements made on an electronic speed controller and a mechanical structure. #### **Electronic Speed Controller** Fig. 1 is a block diagram of the speed controller for the 5420A's own cartridge tape drive, which is driven by an armature-controlled permanent-magnet dc motor. An analog tachometer voltage is obtained by filtering the output of an optical pulse tachometer. The set point input $R(j\omega)$ represents a command for the motor to run at a constant speed. The feedback is the analog tachometer voltage, which is proportional to motor speed and therefore tape speed. System noise, represented by $S(j\omega)$ , is contributed by several elements including the unregulated dc motor voltage, mechanical imbalances in the system, and varying frictional forces. The solid black summing node in Fig. 1 is added to the system to introduce noise $N(j\omega)$ from the 5420A's random noise source. The measurement technique is to measure the transfer function $T(j\omega)=X(j\omega)/N(j\omega)$ and compute the open-loop transfer function $G(j\omega)H(j\omega)$ . This is possible because Fig. 1. Block diagram of a cartridge tape drive system to be analyzed by the 5420A Digital Signal Analyzer. The black summing node has been added to the system to introduce noise $N(j\omega)$ from the 5420A's random noise source. The technique is to measure $T(j\omega) = X(j\omega)/N(j\omega)$ and compute the open-loop transfer function $G(j\omega)H(j\omega)$ . $T(j\omega) \approx G(j\omega)H(j\omega)/[1+G(j\omega)H(j\omega)].$ The black summing node in Fig. 1 must be added to the system with some care. To provide isolation from the noise source and to prevent disturbing the normal operation of the system, an operational amplifier circuit, as shown in Fig. 2, can be used. The Rs should be matched to provide a gain $\left|Y(j\omega)/X(j\omega)\right|=1$ to an accuracy consistent with normal parameter variations in the system. The circuit should have unity gain and no phase shift over the control system bandwidth. **Fig. 2.** An operational amplifier circuit for introducing noise $N(j\omega)$ into a system without disturbing the system. Fig. 3 shows log magnitude and phase versus frequency of the measured transfer function $T(j\omega)$ . To get the open-loop transfer function $G(j\omega)H(j\omega)$ the 5420A's arithmetic operations are used to get the results illustrated in Fig. 4. From the figures, it is possible to estimate that $G(j\omega)H(j\omega)$ contains a pole at 0 Hz and another at about 200 Hz. An analysis of the system predicted a response dominated by the loop filter and the motor. The loop filter was expected to contribute a pole at 0 Hz and a low-frequency zero, and the motor a low and a high-frequency pole. The measured result shows the pole at 0 Hz, the high-frequency motor pole near 200 Hz, and the low-frequency filter zero nearly perfectly cancelling the low-frequency motor pole. #### Stability Analysis Once $G(j\omega)H(j\omega)$ has been obtained, it is possible to determine the absolute and relative stability of the system. A simplified version of the Nyquist stability criterion that can usually be applied to real systems states that a system with an open-loop transfer function $G(j\omega)H(j\omega)$ that has no poles in the right half of the complex plane is closed-loop stable if the Nyquist plot (imaginary part versus real part) of $G(j\omega)H(j\omega)$ for $0 < \omega < \infty$ does not enclose the critical point -1+j0. Fig. 5a shows the results of using the coordinate keys to display the measured $G(j\omega)H(j\omega)$ in the Nyquist format. The system is seen to be absolutely stable since the critical point is not enclosed. Relative stability is measured by how close $G(j\omega)H(j\omega)$ comes to enclosing the critical point. This is traditionally measured by the gain and phase margins, which are easily determined by again changing coordinates. In Fig. 5b $G(j\omega)H(j\omega)$ is displayed using coordinates of log magnitude versus phase. The gain margin is 23 dB and the phase margin is 75 degrees. Fig. 3. Closed-loop transfer function $T(j\omega)$ measured by the 5420A. Fig. 4. The result of calculating $G(j\omega)H(j\omega) \approx T(j\omega)/[1-T(j\omega)]$ using the 5420A's arithmetic keys. The measurements were repeated on the system with an extra gain block inserted into the loop. The Nyquist display is shown in Fig. 6a superimposed on the original Nyquist display. The original system is conditionally stable. Adding gain, while not making it unstable, has decreased the relative stability. From Fig. 6b, it can be seen that the gain margin has de- function is then just $T(j\omega)$ , which is shown in Fig. 3. #### Characterizing Structural Vibrations One way of modeling the dynamic characteristics of a mechanical structure is to identify its modes of vibration. An automobile, for example, may ride smoothly at 40 mi/hr, vibrate considerably at 50 mi/hr, Fig. 5. (a) Nyquist display of open-loop gain $G(j\omega)H(j\omega)$ . (b) Same function in different coordinate system permits measurement of gain margin (gain at $-180^{\circ}$ phase) and phase margin (phase difference from $-180^{\circ}$ at 0 dB gain). creased to 15 dB and the phase margin to 45 degrees. The only question remaining is the shape of the closed-loop transfer function. In the general case, this is given by $G(j\omega)/[1+G(j\omega)H(j\omega)]$ . If the output of the speed controller is defined to be the tach voltage, a known function of the tape speed, the system is unity-feedback, with $H(j\omega)=1$ . The closed-loop transfer and then ride smoothly again at 60 mi/hr. This happens because one of the modes of vibration of the car, perhaps in the front suspension, body, or frame, is excited at 50 mi/hr but not at the other speeds. A mode is defined by a natural frequency of vibration, a damping value that defines how quickly the vibration will decay to zero when external forces are removed, and a Fig. 6. The measurements of Fig. 5 repeated with more gain in the system. Gain and phase margins have decreased. Fig. 7. A steel plate is to be analyzed by the 5420A. An electrodynamic shaker supplies the stimulus. The plate's response is detected by accelerometers at various points on the surface. mode shape, or spatial distribution of the amplitude and phase of the resonant condition over the structure. In mechanical design, one objective is to design a structure whose modes of vibration occur at frequencies outside the frequency range of known external driving forces. When this is not possible, it may be Fig. 8. A result of the measurement of Fig. 7 for one point on the plate surface. The resonance at 551 Hz (identified by the X cursor) represents a mode of vibration with a damping factor of 0.559%. possible to add damping material to the structure, which has the effect of damping its modes of vibration as well as reducing its amplitude of vibration at any frequency. Modal parameters—frequency, damping, and mode shape—can be identified from transfer function measurements on a structure. The following example illustrates how the 5420A can be used to identify the modes of vibration of a flat plate. #### Modal Survey The setup is shown in Fig. 7. The 5420A's noise generator is used to excite the structure by means of an electrodynamic shaker. A force transducer mounted between the structure and the shaker provides the input signal for channel 1 of the analyzer. The accelerometer mounted on the surface of the steel plate provides the response signal for channel 2 of the analyzer. The 5420A measures the transfer function of the structure between the stimulus and response points. The result is shown in Fig. 8 for position #1 on the surface. Each peak represents a mode of vibration of the structure. The resonant frequency (FR) and percent critical damping (%D) of each mode can be determined by placing the X cursor on the peak and pressing the PEAK key. Fig. 9. How modal analysis is done with the 5420A Digital Signal Analyzer. Fig. 10. Results of a modal analysis of the steel plate. Each response point on the structure will exhibit a different transfer function with respect to the input. For lightly damped structures the amplitude of the mode can be determined from the imaginary, or quadrature, part of the transfer function. Thus the mode shape can be drawn by recording the imaginary value of the transfer function at each measurement point for the resonance of interest and plotting these values as a function of their position on the surface. The process is shown pictorially in Fig. 9. The result of recording each imaginary value and plotting it as a function of its position on the surface is shown in Fig. 10. #### Reducing Unwanted Vibrations The two most common methods of reducing un- Fig. 11. Measurements before and after adding mass to the steel plate. Extra mass decreases the amplitudes and frequencies of the resonances. wanted vibrations are to add mass to the structure and to increase its stiffness. Both will affect the frequency of a resonance. Adding mass will lower a natural resonant frequency. Increasing the stiffness will increase a natural resonant frequency. An example of the result of adding mass to the steel plate is shown in Fig. 11. Not only are the resonances lower in frequency but their amplitudes have decreased because the added mass increased the damping of the structure. #### Joseph P. Oliverio Joe Oliverio received his BSEE degree in 1968 from the University of Santa Clara. After a year as a design engineer, he joined HP in 1969 as a sales engineer. Now a digital signal analyzer product marketing engineer, he's written two magazine articles on digital signal analysis. Joe was born in San Jose, California and still lives there. He's married and has two children. He's an amateur magician and an actor in local theater productions, and he enjoys skling, tennis, and golf. #### Terry L. Donahue Terry Donahue earned his BSEE and MSEE degrees at the University of Southern California in 1971 and 1972, and joined HP in 1972 as a design engineer. For the 5420A, he wrote the display software and compiled an application note on control system measurements. In 1976, he received his MBA degree from the University of Santa Clara. He's a member of IEEE. Terry comes from Long Beach, California. He's married and now lives in Santa Clara. # Printing Financial Calculator Sets New Standards for Accuracy and Capability This briefcase-portable calculator has several new functions and is exceptionally easy to use. Most important, the user need not be concerned about questions of accuracy or operating limits. by Roy E. Martin EWLETT-PACKARD INTRODUCED its first financial calculator, the HP-80, in 1973. The HP-80 was followed, although never replaced, by the HP-81, the HP-70, the HP-22, and the HP-27. The new HP-92 Financial Calculator, Fig. 1, while superficially similar in many respects to these units, vastly exceeds all of them in functional capability and accuracy. Originally conceived as a briefcase-portable printing calculator packaged like the HP-91<sup>3</sup> and the HP-97<sup>4</sup> and having the financial capabilities of the HP-22, the HP-92 in reality goes far beyond this modest goal. Among its features are: - Compound interest keys redefined to enhance capability and ease of use - A printed amortization schedule, correctly rounded and clearly labeled - Internal rate of return (IRR) that allows the user to enter up to 31 cash flows with arbitrary positive and negative values - The greatest accuracy ever achieved in any HP financial calculator - Calendar functions with a range of 900,000 days (approximately 2464 years) - Bond and note functions that conform to Securities Industry Association equations<sup>5</sup> - Three types of depreciation that can be done after entering data only once - Means, standard deviations, and linear regression for two variables. #### **New Compound Interest Keys** The cornerstone of the HP-80 and all subsequent HP financial calculators is the row of compound interest keys: n i PV PMT FV - n = number of compounding periods - i = percent interest per period - PV, PMT, FV specify the cash values in various problems (PV = present value; PMT = payment; FV = future or final value). These keys allow the user to solve for an unknown value by first placing known values in the calculator and then pressing the key corresponding to the unknown. Example: Find the monthly payment due on a 36-month, 12%, \$3000 loan. | | Key | strokes | | |----------------------------|------|---------|------------------------------| | These keystrokes | 36 | n | | | place the known | 1 | i | (12% annual is 1% per month) | | values into the calculator | 3000 | PV | | | Then press: | | PMT | | | Answer displayed | ł: | 99.64 | Monthly Payment | This sequence of keystrokes will solve this problem on all previous HP financial calculators.\* The compound interest keys solve three types of problems, based on the following three equations. (In these and subsequent equations, i is a decimal fraction, e.g., 0.05 for five percent.) ``` \begin{split} FV &= PV(1+i)^n & Compound \ Amount \\ PV &= PMT\big[1-(1+i)^{-n}\big]/i & Loan \\ FV &= PMT\big[(1+i)^n-1\big]/i & Sinking \ Fund \end{split} ``` Each of these equations has four variables. As long as three of the four variables are known (n or i must be one of the three knowns) a user can solve for an unknown. Because there are three distinct equations and only one set of keys, it is necessary to specify which equation is involved. This is done automatically through the use of status bits (flags). Internally, status bits are set when values associated with n, i, PV, PMT, FV are keyed into the calculator. As soon as three status bits are set, the equation is specified and a value can be computed. On the HP-80, known values are pushed onto the stack and then lost when a value is computed, requiring the reentry of data on every new computation. The HP-70, HP-22, and HP-27 have separate registers to hold the financial values but require special functions to clear the status bits. \*The HP-27 requires the use of a shift key but is fundamentally the same. Fig. 1. HP-92 Investor is a financial printing calculator with superior accuracy and capability. Keyboard is designed to prompt the user, making many problem solutions obvious even without a manual. This design, although creatively conceived and cleanly implemented, is inconvenient for chained calculations. Also, an important class of problems, loans with a balance, cannot be solved without tedious iteration by the user. The same keys, n, i, PV, PMT, FV, were to be on the HP-92. However, we wanted to improve and simplify their use. The most attractive alternative came in the form of a more general equation: $$PV (1+i)^n + PMT [(1+i)^n - 1]/i + FV = 0.$$ The three equations in previous calculators are all special cases of this one, up to a sign change. The basic premise in this equation and a major difference between the HP-92 and other financial calculators is that money paid out is considered negative and money received is considered positive. Implemented in the HP-92, this equation allows free-format problem solving, letting the user change any variable at any time or solve for any value at any time. It also increases the functional capability of the calculator to include loans with a balance, fixes the roles of PV, PMT, and FV, making them easier to explain, reduces the number of equations from three to one, and eliminates the need for status bits—the data in the calculator determines the problem to be solved. In the early stages of the project, the new compound interest equation was simulated. The increase in capability and simplicity was substantial. Within minutes, inexperienced people could understand the concept and apply the keys to problems formerly considered too complicated to solve. Naturally, we were pleased. The new calculator would be more capable than earlier designs and easier to use as well. But our satisfaction was short-lived, for it turned out that here, **Fig. 2.** Newton's method is used by the HP-92 to solve compound interest problems. Starting from some point $i_0$ on the graph of an equation, the goal is to find the root of the equation, or the point where the graph crosses the axis. Drawing a tangent line to the graph at $i_0$ and finding where this line crosses the axis gives a second point $i_1$ . This process is repeated to find $i_2$ , $i_3$ , and so on, until a point is reached that is close enough to where f=0, $i_0$ is called the initial guess. **Fig. 3.** Equations used in previous HP financial calculators have favorable graph shapes (the one shown is typical), so that starting from any initial guess i<sub>0</sub> the steps taken by Newton's method are always toward the root. as usual, nothing is free. The numerical analysis used in solving the three equations in the HP-80 had been formidable. Yet the accuracy and reliability of the algorithms was borderline and their performance deteriorated unacceptably when they were applied to the new more general equation. The most difficult problem was solving for i in the compound interest problems. Internally, this involves the microprogrammed application of Newton's method in the solution of polynomial equations (see Fig. 2). Newton's method requires an initial guess, $i_0$ , at the root of f(i)=0. Subsequent values are produced using $i_{k+1} = i_k + \frac{f(i_k)}{f'(i_k)}$ until $|i_k-i_{k+1}|$ < required error limit. Basically, we slide down the graph of f(i) sawtoothing into the solution. Three factors that affect the use of Newton's method are the shape of the graph, the accuracy of evaluation of the function f(i) and its derivative, and the quality of the initial guess. For certain graphs any reasonable initial guess will produce convergence to the correct answer. This was the case with the equations solved by previous HP financial calculators (see Fig. 3). Inaccuracy in evaluation of the function and its derivative can cause various problems. For example, a small error can cause the iteration to step in the wrong direction, say to the previous point, resulting in an infinite loop. Worse yet, it can produce a wrong answer. The new more general equation was more sensitive than the old to round-off errors, and introduced another difficulty not encountered before. The quality of the initial guess became a critical issue. Unless the initial guess was good enough, Newton's method would fail (see Fig. 4). With this in mind, we implemented several transformations to change the shapes of the graphs in an attempt to make Newton's iteration less sensitive to poor first guesses. We also carried extra digits and programmed numerically stable formulas to diminish the impact of rounding errors on the accuracy of intermediate calculations. But our work was far from done. Even with the transformations and increased accuracy, initial guesses in error by less than 1% proved inadequate, because convergence was too slow when n was large. After four months of careful examination and simu- **Fig. 4.** Modified equation used in HP-92 enhances ease of use, but is more difficult to solve. Shape of graph is such that some initial guesses will cause Newton's method to step away from the root. To prevent this a strategy was developed that produces initial guesses accurate to five decimal places. #### Using the n. I. PV. PMT. FV Keys Corresponding to each of these keys is a storage register. To put a value in the storage register, just key in the value and then press the appropriate key. Money paid out is represented as negative and money received is represented as positive. Problem: 1. If you deposit \$10,000 in a fund that pays 7.75% annual rate, how much could you withdraw 12 years later? 2. If, in addition, you deposit \$1000 each year thereafter, how much would you be able to withdraw after 12 years? 3. If you wanted to withdraw \$45,000 at the end of the 12-year period, how much would you have to deposit each year? 4. If you could deposit \$18,500 initially, how much would you have to deposit each year to be able to withdraw \$45,000 at the end of the 12 Solution: Press CL FIN . This clears the registers. 1. Key In Then Press This is the number of years. 12 in: This is the periodic interest rate. 7.75 You are putting the money into the bank so you 10.000 CHS PV key it in as negative. This tells the calculator that you wish to solve for the cash flow at the end of the time period. See displayed: 24,491.05, the amount you could withdraw in 12 years. 2. After values are keyed in (or calculated), they remain in the registers. To do the second part of the problem, all we have to do is key - 1000 into PMT (12 remains in n. 7.75 in and -10,000 in PV) and then press FV Comment Key In Then Press 1000 CHS PMT Again payment is negative because you are giving money to the bank. This tells the calculator to find the cash flow at the end of the 12 years. See displayed 43,189,17. The amount you could withdraw after 12 years. 3. If you needed to withdraw \$45,000 and wanted to find out what your yearly deposit would be, put 45,000 into FV and then tell the calculator to solve for PMT Then Press Comment Key In At the end of the 12 years you will receive \$45,000. This tells the calculator to find the annual deposit you must make. See displayed -1096.85. The amount you must deposit annually. 4. Now put -18,500 into pv, then press PMT Key In Then Press Comment You plan to deposit \$18,500 at the beginning of 18 500 CHS the 12 years. What will your deposit be so that you can still withdraw \$45,000 at the end of 12 vears? This tells you that you could withdraw this See displayed 16.50 Fig. 5. An example illustrating how natural the HP-92's compound interest keys are to use. An important difference from previous financial calculators is that money paid out is considered negative and money received is considered positive. amount each year and still get \$45,000 at the lation we devised an initial guess strategy that produces guesses correct to five places over all ranges of PV, FV, PMT, and i, and with n as large as 10<sup>8</sup>. Computation time for i was reduced to about a dozen seconds. end of 12 years. Some of the techniques employed were: An initial guess strategy that selects an initial guess by problem classification, the production of as many as three guesses, and the selection of the final initial guess based upon the three guesses - Enhanced accuracy in +, -, ×, ÷, ln, e<sup>x</sup> - Special evaluation of [(1+i)<sup>n</sup>-1]/i to avoid damage from cancellation - Carrying more digits internally than any previous HP financial calculator. In the final implementation of the n, i, PV, PMT, and FV keys we were able to achieve reliable functional capability over a wide range of data and problems, a dramatic enhancement in ease of use, and definitive accuracy (see accuracy discussion) exceeding that of any previous HP calculator. Fig. 5 demonstrates how easy the new compound interest keys are to use. #### Internal Rate of Return Given an initial investment and a series of uneven cash flows $CF_0$ , $CF_1$ ,..., $CF_n$ occurring at equally spaced time intervals the IRR (internal rate of return) is the interest rate that satisfies the following equation: $$CF_0 + CF_1(1+i)^{-1} + CF_2(1+i)^{-2} + ... + CF_n(1+i)^{-n} = 0.$$ The only other HP financial calculators to produce IRR are the HP-27, which allows eleven cash flows, and the HP-81, which allows ten cash flows. The HP-92 allows up to 31 uneven cash flows. We again applied Newton's method to solve this equation, but in this case the shape of the graph presented a different type of problem. In the compound interest problem there is only one root (the graph crosses the axis only once). In the IRR problem it is possible for the equation to have many roots. Descartes' rule of signs allows polynomial equations with several changes of sign in their coefficients to have several roots. Since the cash flows in the IRR problem represent the coefficients of a polynomial (see equation), cash flows that change direction more than once produce this possibility. However, if there is more than one root, none of the solutions will be financially meaningful. To avoid this complication, the HP-27 will not allow more than one sign change.\* Example: Consider the following two problems. Negative values represent investment and positive values represent income. | | Problem 1 | Problem 2 | |---------|-----------|-----------| | Initial | -\$10,000 | -\$10,000 | | Year 1 | -\$ 1,000 | \$ 2,000 | | Year 2 | \$ 2,000 | -\$ 1,000 | | Year 3 | \$13,000 | \$13,000 | The HP-27 produces an answer of 11.83% for Problem 1 but returns **ERROR** for Problem 2. To most users it is not apparent why this happens. We wanted to remove this kind of limitation. Again <sup>\*</sup>It should be noted here that the techniques used in the HP-27 were the best available at the time. Many implementations of IRR take no precautions to protect the user from anomalous answers. after considerable investigation we were able to implement an IRR function with a much broader range. For Problem 2 above the HP-92 produces the correct answer of 12.99%. The IRR function on the HP-92 will produce the correct answer for any problem with up to 31 cash flows and any number of sign changes, provided that there is at least one sign change and that there is only one significant sign change. In general, this means that there is only one real root. Multiple sign changes are allowed provided that all but one of the cash flows changing sign are small in comparison to the other cash flows. #### Example: | | Problem 3 | Problem 4 | |---------|---------------|---------------| | | Acceptable | Unacceptable | | Initial | -\$100,000.00 | -\$100,000.00 | | Year 1 | \$500.00 | \$500,000.00 | | Year 2 | -\$200.00 | -\$200,000.00 | | Year 3 | \$100.00 | \$100,000.00 | | Year 4 | \$150,000.00 | \$150,000.00 | For Problem 3 the HP-92 produces the correct answer of 10.77%. For Problem 4 the HP-92 will calculate indefinitely. The mathematically correct but financially meaningless answers to Problem 4 are -147.31% and 362.98%. This does not mean that the problem is financially meaningless, but only that IRR is not the way to attack it. If there is a financially meaningful answer to an IRR problem the HP-92 will find it. #### Bonds The SIA (Securities Industry Association) handbook<sup>5</sup> specifies certain procedures for the calculation of bond values. Most bonds have semiannual coupon periods determined by their maturity dates. For example, if a bond matures on December 15, 1985. then the coupon periods will end on June 15, 1985, December 15, 1984, June 15, 1984, and so on. A bond is not usually purchased on a coupon date (see Fig. 6). This implies that both simple and compound interest must be used during calculations of price and yield. The SIA procedure for the calculation of purchase price involves the exact number of days in the coupon period in which the bond is purchased. The number of days in a coupon period can vary from 180 to 184. Inside the HP-92 the calendar functions determine the exact number of days to the end of the coupon period from the purchase or settlement date, automatically taking leap years into account (Fig. 7). The computations can be based on a 360 or 365-day year. #### A Manual on the Keyboard The HP-92's keyboard is designed to prompt the user and make it obvious how to solve many problems. Keys of the same kind are grouped together. In Fig. 6. In bond calculations, coupon dates are determined by the maturity date and are six months apart. Settlement (purchase) date can be any business day. Built-in HP-92 calendar functions determine the exact number of days between the settlement date and the coupon date. many problems all required input parameters have individual storage registers. To place a value in one of these registers the user simply keys in the value and then presses the key corresponding to that register. Example: There are three types of depreciation: straight line (SL), sum of the years digits (SOYD), and declining balance (DB). The input parameters and the corresponding keys are life (LIFE), starting period (N1), book value (BOOK), ending period (N2), salvage value (SAL), and declining balance factor (FACT). These values are loaded into their registers using the blue and gold shift keys where appropriate. Once this is done, any or all of the three types of depreciation schedules may be calculated by pressing the SL, SOYD, or DB keys. #### **Accuracy and Operating Limits** Everyone who participated in the HP-92's design wanted to produce a calculator whose reliability, accuracy, and capability would exceed whatever might reasonably be demanded of it. Previous calculators would have to be surpassed, if only because as time passes, users take previous accomplishments for granted and demand more. One target for improvement was accuracy. Consider the following slightly unrealistic problem. Example: Find the present value and the future value of 63 periodic payments of one million dollars each at the (very tiny but still positive) interest rate i = 0.00000161%. #### Calculate the price of a corporate bond with 8.241977 a settlement date of August 24, 1977, a matur-ST ity date of March 15, 2000, a coupon rate of 3.152000 MI 8.75% and a yield of 8%. (Calculated on 8.750000 CPN 30-day month, 360 day year.) 8.0000000 YLD Solution: Enter the settlement date, maturity date, BOND \*360 PRC coupon rate, and yield. Press PRICE. The 3.864583 AI bond's accumulated interest and price are 107.768456 \*\*\* then printed Fig. 7. A bond problem and the HP-92 solution. That February has only 28 days is automatically taken into account. HP-80 HP-22,27 HP-92 PV 62,608,695.65 63,000,000.00 62,999,967.54 FV 62,608,695.65 62,981,366.46 63,000,031.44 The HP-92 answers are correct, but more significant, the other answers are clearly wrong: interest is positive but money is lost. Obvious errors even on such unrealistic problems can undermine user confidence. The only way to prevent apprehension is to preclude all anomalies. For this reason, we set out to produce such robust algorithms that the user need never be concerned with questions of accuracy or operating limits. The extent of our success may be gauged by the reader's readiness to forget the limitations explained below. Calendar Functions: (S. ST. MT Dates of issue, set- tlement, maturity Days between dates DATE + DAYS g PRINT x Day of the week. These functions accept dates from October 15, 1582 to November 25, 4046. The first date marks the inception of the Gregorian calendar, now in use throughout Europe and the Americas, in which leap years are those evenly divisible by 4, but not by 100 unless also by 400. (The year 2000 will be a leap year, but not 1900 nor 2100.) The second date is determined by internal register limitations, not by any special knowledge of the future. ### Mathematical Operations: $+, -, \times, \div, 1/x, \%, \%\Sigma, \Delta\%, \sqrt{x}, e^x, LN$ Error is less than one unit in the last (tenth) significant digit over a range of magnitudes including $10^{-99}$ and $9.999999999\times 10^{99}$ . $y^{x}$ is also accurate to within one unit in the last significant digit for $10^{-20} \le y^{x} \le 10^{20}$ ; outside that range the error is less than ten units in the last significant digit. #### Statistics: Σ+, Σ- These keys accumulate various sums using arithmetic to ten significant digits. This determines the range and accuracy achievable by the other statistical keys $\hat{y}$ , LR, r, $\bar{x}$ , and s. For x data consisting of four-digit integers, $\bar{x}$ and s will be correct to ten significant digits and $\hat{y}$ , r, and LR will be in error by less than the effect of perturbing each y value by one unit in its tenth significant digit. For x data with more than four digits per point the error can be significant if the data points have redundant leading digits; in this case both time (keystrokes) and accuracy will be conserved if the redundant digits are not entered, following recommendations by D.W. Harms. Bond Yield and Interest Rates: YIELD, i. IRR. The error will be smaller than one unit in the last (tenth) significant digit or 0.000000001, provided that the number of periods n does not exceed 1,000,000, and for IRR, provided that the cash flows reverse sign significantly only once as described above. These rates are calculated far more accurately than the Securities Industry Association requires. #### Money Values: PRICE, PMT, PV, FV, AMORT, SL, SOYD, DB, n Errors will be smaller than the effect of changing all input values in their tenth significant digits. Typically, this means that if $(1+i)^n$ does not exceed 1000 then errors will be less than one unit in the last (tenth) digit. This amounts to a fraction of a cent in transactions involving tens of millions of dollars. #### Verifying Accuracy A simple means of verifying the accuracy of a given computation on any calculator is to attempt to recalculate the known quantities using a quantity the calculator has computed based on the knowns. Example: Key the following values into the HP-92: | | | FEATUR | HP-92 Investor | | |-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | Controls printing of Keyboard operations. Selects payments at beginning or end of period; or selects band or note calculations. | PERCENTAGE | Computes percent of change between two numbers. Computes percent one number is of a total. | NUMBER ENTRY AND MANIPULATION ENTER! Separates numbers for antimetic and other functions. CHS Changes sign of displayed number of exponent. susy RI, RI Functions to misripulate numbers in operational stack. Esta responent of 19. | | 360 E 365 | Day basis switch for calender, bond/note, and interest calculations. | CALENDAR<br>2000 Year | October 15, 1582 to November 25, 4046 | RND Rounds actual number in display to number seen in display | | COMPOUND INTE | REST | Calendar | | LAST a Recalls number displayed before last operation back. | | n<br>12×<br>1<br>12+<br>PV<br>FV<br>PMT | Stores or computes number of periods. Converts number of periods from years to months. Stores or computes interest rate per compounding period. Converts interest from yearly to mothiny rate. Stores or computes present value (inflat) cash flow at the beginning of a financial problem). Stores or computes future value (final cash flow at the end of a financial problem). Stores or computes apayment amount. SH FLOW ANALYSIS Computes the present value of future cash flows. Computes internal rate of return of series of up to 31 cash flows. | DATE -DAYS A DAYS B PRINT X STATISTICS Y LR. STORAGE STO | Computes a future or past data from a given date and a fixed number of days. Computes number of days between dates. For a given date, prints its day of the week. Automatically accommistes two variables for statistics problems: Xx Xy Xx² Xy Xx Xy Xx and number of serms n. Deletes statistical variables for changing or correction. Computes mean for x and y. Computes standard deviation for x, and y. Linear regression of frend line. Linear regression of serms of the computes standard deviation for x. Stores number in one of 30 storago registers. Performs atorage register arithmetic upon 15 of the registers. | display MATHEMATICS A Baises number to power B Natural analoganthm. LN Natural analoganthm. √x Square root. 1/x Reciprocal Anthonatic functions. PHYSICAL SPECIFICATIONS WIDTH: 2.9 centimetres (9,0 on). LENOTH: 2.9 centimetres (6 o in). HEIGHT: 6.35 centimetres (2.5 in). WEIGHT: 1.1 si laigrams (40 oz). RECHARGERIAC ADAPTER WEIGHT: 170 grams (6 oz). SHIPPING WEIGHT: 2.7 kingrams (§ 5 15 oz). TEMPERATURE SPECIFICATIONS | | IS, ST | Stores the issue and settlement dates of bond or note for<br>calculations. Stores the maturity date of a bond or note. | RCL | Recalls number from one of 30 storage registers. | OPERATING TEMPERATURE RANGE: 0° to 45°C (32°F to 113°F), with page<br>5% to 95% reliable humidity.<br>CHARGING TEMPERATURE RANGE: 15° to 40°C (59° to 104°F). | | CALL | Stores the call price or redemption value of a bond or note: | PRINTING AND C | LEARING | STORAGE TEMPERATURE RANGE: -40" to +55°C (-40" to +131°F). | | CPN. | Stores the coupon amount (percentage) for bond or note calculations. | AMORT | Prints amortization schedule. Prints all values for compound interest problems, bonds and | POWER SPECIFICATIONS AC. Depending on recharger/ac adapter chosen, 115 or 230V +10%, 50. | | DEPRECIATION | | | notes, and depreciation schedules. | 60 Hz. | | SL | Calculates straight-line depreciation schedule. | PRINT x | Prints contents of display. | BATTERY: 5.0 Vdc nickel-cadmium battery pack | | SOYD | Calculates sum-of-the-years digits depreciation schedule. | LIST STACK | Prints contents of operational stack. | BATTERY OPERATING TIME, 3 to 7 hours. | | DB | Calculates declining balance depreciation schedule. | LIST REG 5 | Together print contents of 30 addressable storage registers | BATTERY RECHARGING TIME: Calculator off, 7 to 10 hours: calculator of | | BOOK | Stores book value of an asset. | OLX | Clears display. | 17 hours | | LIFE | Stores depreciable life of an asset. | OL FIN | Clears financial functions for new problem. | PRICE IN U.S.A.: \$629. | | SAL | Stores salvage value of an asset. | CL REG CLY | Together clear 30 addressable storage registers. | MANUFACTURING DIVISION: CORVALLIS DIVISION | | N1<br>N2 | Stores the starting year for a depreciation schedule. | CLEAR | Clears entire calculator—display, operational stack, all storage | 1000 N.E. Circle Boulevard<br>Corvalis, Oregon 97330 U.S.A. | n=111.1111111, i=2.2222222222, PV=333.33333333, PMT=4.444444444. These numbers are selected to make any loss of digits noticeable, but are otherwise arbitrary. Now solve for FV. The HP-92 gives FV = -5931.82294. Now recalculate the known quantities. The HP-92 answers are n = 111.11111111, i = 2.2222222222, PV = 333.3333333, PMT = 4.444444443. Note the loss of one digit in the last place of PMT. Then resolve for FV. The HP-92 again gives FV = -5931.82294, showing that the lost digit has no impact. #### Acknowledgments The HP-92 represents the efforts and contributions of many people drawing upon technical advances in the mathematics of finance as well as in materials, mechanics, and electronics. The bulk of the development was done by Paul Williams and me. The algorithms are based primarily on work done by Professor W. Kahan of the University of California at Berkeley. The product, as it is now defined, would never have been implemented without the early leadership and creative contributions of Bernie Musch. The hard work and enthusiasm of the following people contributed much to the total product and they can take pride in their extensive contributions: Jim Abrams (manual), Janet Cryer (applications book), A.J. Laymon, Dennis Harms, Hank Suchorski, Bob Youden, Bill Crowley, and John van Santen. I would also like to thank Bob Dudley for his support and encouragement. #### References 1. W.L. Crowley and F. Rodé, "A Pocket-Sized Answer Machine for Business and Finance," Hewlett-Packard Journal, May 1973. - 2. R.B. Neff and L. Tillman, "Three New Pocket Calculators: Smaller, Less Costly, More Powerful," Hewlett-Packard Journal, November 1975. - 3. B. E. Musch and R. B. Taggart, "Portable Scientific Calculator has Built-In-Printer," Hewlett-Packard Journal, November 1976. - 4. P. D. Dickinson and W. E. Egbert, "A Pair of Program-Compatible Personal Programmable Calculators," Hewlett-Packard Journal, November 1976. - 5. B. M. Spence, J. Y. Graudenz, and J. J. Lynch, Jr., "Standard Securities Calculation Methods—Current Formulas for Price and Yield Computations," Securities Industry Association, New York, 1973. - D. W. Harms, "The New Accuracy: Making 2<sup>3</sup>=8," Hewlett-Packard Journal, November 1976. #### Ho mic cal Ca Ma gre Jos two #### Roy E. Martin Roy Martin did product definition, microprogramming, and numerical analysis for the HP-92. A native Californian, he was born in San Mateo, and received his BA degree in mathematics from San Jose State University in 1967. After two years as a programmer/ analyst, he enrolled at lowa State University and received his MS degree in mathematics in 1971. He remained at Iowa State for the next two years, doing course work and teaching mathematics, then joined HP in 1973. He's worked in product support as well as the lab, and is currently doing computer performance modeling and analysis. In 1975 he conceived and wrote the script for an HP videotape that was judged best instructional videotape in the nation by the Industrial Television Association. Roy is married, has three children, and lives in San Jose. He coaches a youth soccer team and participates in a number of sports. Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, California 94304 #### HEWLETT-PACKARD JOURNAL OCTOBER 1977 Volume 29 . Number 2 Technical information from the Laboratories of Hewlett-Packard Company Hewlett-Packard Central Mailing Department Van Heuven Goedhartlaan 121 Amstelveen-1134 The Netherlands Yokogawa-Hewlett-Packard Ltd., Shibuya-Ku Tokyo, 151 Japan Editorial Director • Howard L. Roberts Managing Editor • Richard P. Dolan Art Director, Photographer • Arvid A. Danielson Illustrator • Susan E. Wright Administrative Services, Typography • Anne S. LoPresti European Production Manager • Dick Leeksma Bulk Rate U.S. Postage Paid Hewlett-Packard Company 208107JCHNAAABLACAAA 165 MR C A BLACKBURN JOHN HOPKINS UNIV APPLIED PHYSICS LAB JOHNS HOPKINS RD LAUREL MD 20810 CHANGE OF ADDRESS. To change your address or delete your name from our mailing list please send us your old address label (it peels off). Send changes to Hewlett-Packard Journal, 1501 Page Mill Road, Palo Alto, California 94304 U.S.A. Allow 60 days.