JANUARY 1973

HEWLETT PACKARD JOURNAL

An Economical Full-Scale Multipurpose

Computer System

This is the first 16-bit computer system to have
a hardware stack architecture and virtual memory.
It handles time-sharing, batch processing, and real-
time operations In several languages concurrently.

by Bert E. Forbes and Michael D. Green

HE HP 3000 COMPUTER SYSTEM is Hewlett-
Packard's first full-scale multipurpose compu-
ter system. Its primary objective is to provide, at
low cost, a general-purpose* computer system ca-
pable of concurrent batch processing, on-line termi-
nal processing, and real-time processing, all with
the same software. Many users can access the sys-
tem simultaneously using any of several program-
ming languages and applications library programs.
The HP 3000 (Fig. 1) is an integrated software-
hardware design. It was developed by engineers
and programmers to provide a small computer ca-
pable of multiprogramming. Unlike many compu-
ters of the past, it was not built by the engineers
and turned over to the programmers to see what
they could do with it.

Helping define the objectives for the HP 3000
was HP's long experience with both customer and
internal use of 2100-Series Computers and 2000-
Series Time-Shared Systems. These computers and
systems have been widely used in educational, in-
strumentation, industrial, and commercial applica-
tions. These are also expected to be the primary
applications areas for the HP 3000 (see page 7).

A comprehensive set of software and the hard-
ware to support it has been developed for the
HP 3000. Software includes the Multiprogramming
Executive operating system, several programming
language translators, and an applications library.

Architectural Features

The scope of the software for the HP 3000 re-
quires certain capabilities in the computer on which
the software is to run. Among these are efficient
program segmentation, relocation, reentrancy, code

*!'General-purpose’ means that a user is not restricted to a single application, but
can readily write programs to fit his own application, whatever it might be.

2

sharing, recursion, user protection, code compres-
sion, efficient execution, and dynamic storage allo-
cation. All are provided in the HP 3000 design.
Efficient program segmentation makes it possible
to run programs which are much larger than the
available memory without incurring a large over-
head. Much of the power and flexibility of the HP
3000 comes from the virtual memory that results

Cover: Although it could
be mistaken for an organist
in concert, this photo actu-
ally shows the new HP 3000
Computer System harmoni-
ously coordinating the ac-
tivities of several users—it
handles multiple process-
ing modes, users, and lan-
guages all at the same time.,
The panels with the red
lights in the foreground are control panels used
for hardware maintenance and system checkout.

In this issue:
An Economical Full-Scale Multipur-
pose Computer System, by Bert E.

Forbes and Michael D. Green . page 2
Central Bus Links Modular HP 3000
Hardware, by Jamshid Basiji and

Arndt B. Bergh page 9
Software for a Multilingual Computer,

by William E. Foster page 15
Single Operating System Serves All

HP 3000 Users, by Thomas A. Blease

and Alan Hewer - page 20

© Copr. 1949-1998 Hewlett-Packard Co.

Flg. 1. HP 3000 Computer Sys-
tem has multilingual and multi-
programming capabilities usually
found on much larger systems.

from the segmentation capabilities of the system.

Swapping of programs and data is made easier
by an automatic relocation technique that is part
of the addressing structure of this multiprogram-
ming computer, The operating system doesn’t have
to take time to adjust all addresses in a program,
nor does it have to put something in the same phys-
ical location every time.

Reentrancy is a property of HP 3000 code, It
makes it possible for a given sequence of instruc-
tions to be used by several processes without hav-
ing to be concerned about the code being changed
or temporary variables being destroyed by the
other processes.

Automatic relocation and reentrancy make code
sharing possible. It would be extremely wasteful
of main memory to keep multiple copies of pro-
grams in memory. In the HP 3000, one copy of a
program can be shared by many processes.

Another consequence of reentrancy is recursion,
or the ability to have a routine call itself. The hard-
ware stack architecture of the HP 3000 plays an
important role in recursive calls.

One of the key items in designing a multipro-
gramming operating system is that of user isolation
and system protection. If the operating system and
the users are not completely protected from the in-
tentional or unintentional destructive actions of
another user, the system will crash so often as to

3

be unusable. HP 3000 protection covers programs,
data, and files that exist in the system.

In a small-word-size machine, the amount of
addressable memory is limited. To take full advan-
tage of it, the HP 3000 has dynamic storage alloca-
tion. All temporary and local variables are assigned
physical memory only when needed at procedure
or block entry and are deallocated upon exit.

The HP 3000's unified real-time, terminal-orien-
ted, and batch environment is accomplished with-
out the use of fixed or variable memory partitions.
Instead, priorities are used to control system re-
sources. Partitioning, it was felt, places arbitrary
restrictions on memory, the most valuable resource
in a multiprogramming system.

Multiprogramming Executive Operating System

The HP 3000 has a single operating system called
the Multiprogramming Executive (MPE). MPE is a
general-purpose system that can handle three
modes of operation concurrently. In time-sharing,
one or more users can interactively communicate
with the system via computer terminals. In batch
processing, users can submit entire jobs to be per-
formed by the system with no interaction between
the system and the user. In real-time operations,
tasks are dependent upon the occurrence of exter-
nal events and must be performed within critical
time periods.

MPE also provides many services to users, such

© Copr. 1949-1998 Hewlett-Packard Co.

as input/output handling, file management, mem-
ory management, and system resource allocation
and scheduling.

There are many advantages to an operating sys-
tem of this sort. For example, subsystems (com-
pilers, applications programs, etc.) need not be cus-
tomized for different operating systems or configu-
rations. In fact, the same subsystem can be used
concurrently by an interactive user and by a batch
user. Another advantage is that software can be
generated much more efficiently because the oper-
ating system already performs many of the more
difficult tasks. Also, with a single operating sys-
tem, it is easier to attain consistency throughout
the various software subsystems, thereby simplify-
ing the user/system interface.

Although there is only a single operating system
on the HP 3000, it can be adapted to operate in a
number of different hardware configurations, each
tailored to the needs of its users (Fig. 2). Thus, one
installation may run only small batch processing
jobs using a card reader and a line printer, while
another may add a number of time-sharing termi-
nals. The same software is used by all these in-
stallations.

Programming Languages

Several different programming languages have
been developed for the HP 3000. Most important
of these is SPL, the Systems Programming Lan-
guage. This is a higher-level programming language
designed specifically for systems programming. Al-
most all of the HP 3000 software has been devel-
oped using SPL, the few exceptions being some of
the applications programs.

The reasons for using a higher-level language
rather than an assembly language for systems pro-
gramming are much the same as those for using a
higher-level language for applications program-
ming. It's possible to write and debug programs
more quickly, to modify them more easily, and to
make them more reliable and easier to read and
understand. Furthermore, programs often perform
better because more time can be spent on general
methods than on coding details. Improving pro-
grams by rewriting substantial sections of code is
not distasteful, as it often is when programs are
written in assembly language. In general, in a given
period of time much more software can be devel-
oped by using SPL than by using a lower-level as-
sembly language.

Since SPL is designed for HP 3000 systems pro-
gramming, it was necessary to give SPL program-
mers easy access to all the features of the central
processor, For this reason, much of the syntax is

4

based on these features, and the machine code gen-
erated by the compiler is related in an obvious way
to the higher-level statements in the language.

Other programming languages which have been
developed for the HP 3000 are FORTRAN, COBOL,
and BASIC. SPL, BASIC, and FORTRAN are all
recursive, that is, programs, procedures, and sub-
routines can call themselves. HP 3000 software
also includes scientific and statistical applications
program libraries, and text editing and formatting
facilities.

Program Environment

Traditionally, 16-bit computers have been von
Neumann-like machines with little or no distinc-
tion between program code and data. In a multi-
programming environment there is much to be
gained from separating the two, In the HP 3000, a
typical user's environment consists of one or more
program code segments and a data segment (Fig. 3).
All code is nonmodifiable while active in the sys-
tem. Overlay techniques can therefore be used (that
is, new code can be written over old code) without
having to write the old code back out on the swap-
ping disc, since an exact copy already exists there.
The data area consists of global data (data common
to several procedures) and a push-down stack that
is handled automatically by the hardware.

Code Segmentation

In the HP 3000, code is grouped into logical en-
tities called segments, each consisting of one or
more procedures. Each segment may be up to 16K
words long. Programs are normally broken into
segments by the user, although he may choose not
to do this and his program will run as a single seg-
ment unless it is too large, in which case an error
message will be generated.

There is a master directory, the Code Segment
Table (CST), that contains one entry for each seg-
ment that is currently active on the system. The
CST is maintained by the operating system and is
used by the central processor for procedure entry
and exit. The table doesn't occupy a fixed position
in memory but its address is always stored in abso-
lute location 0.

Each two-word CST entry contains the beginning
address and the length of the code segment. There
are also four bits that are used by the central proc-
essor. One of these, the reference bit, is used to
implement a software least-recently-used overlay
algorithm. Another, the trace bit, causes a proce-
dure call to the trace routine if set. The mode bit
specifies whether the segment will be run in privi-
leged or user mode, The absent-from-main-memory

© Copr. 1949-1998 Hewlett-Packard Co.

HP 3000 COMPUTER SYSTEM
30000A MAINFRAME

INCLUDES: CPU, cabinets
64K byles core, memory
imterface, internal system clock

power supphes, card cages, multiplexer channel

ntroller, system control desk, console/lerminal
Cartridge (Racked)
* 30110A 4 SMByte Car

-140 96K, 2 mcu-no interleaving
-160 112K, 2 mcu—-no interleaving
-180 128K, 2 mcu-no interleaving

-181 128K, 2 mcu—2 way
interleaving

-182 128K, 4 mcu—no interleaving

-183 128K, 4 meu—4 way
nterfeaving

{mcu = module control unit)

CONSOLES AND
TERMINALS

PAPER TAPE

« 30123A CRT Console/Terminal

Reader (Racked)

+ 30104A Reader and
interface

Punch (Racked)
» 30105A Punch and

interface

« 30124A ASR-33-Console/Terminal

CARD PUNCHES

* 30112A Punch
250 cpm

TIME SHARING, PERFORMANCE, RTE, AND
OTHER OPTIONAL EQUIPMENT

001 103 Data Set

002 103 and 202 Data Sets
(order either D01 or 002
not both)

+ 30055A Synchronous Single
Line Controller, 201 or 208
Data Sets. 9600 bps

with cabile

= 30030A First High Speed
Channel

« 30032A Asynchronous Multi
plexer 16 terminals hardwired

001 Second High Speed
Channe!

« 30390A Expansion Bay
{Above normal requirements)

= 30050A Unnersal Interface
Uly; Ground Level True, TTL

001 Universal imterface (LH)
Positive Level True, TTL

» 30051A Uinwersal Interface (U1)
Differential Levels

« 30031A Second Clock

i
+ AC Power Options for total system: o = — St tridge Disc and 4
¢ re— 0 drive inferface
Standard-120/208V, 3 phase, 60 Hz r 010 A
-015-230V, Single Phase, 50 Hz ° 0:Additional drive
025-120/240V, Split Phase, 60 Hz ar .
+ Color Options-System Accent i) Fixed Head (Racked)
Standard-Sun Gold * 30103A IMByte and
interface
050 Woodgra
B 'S -001 ZMByte total
051 Marine Blue S
052 Red rel 1 002 4MByte total
« Additional Memory Options— a
total system capability in bytes. Required ltems
-101 64K, 2 mcu—no interfeaving 1| Magnetic Tape Drive 1 Console m . .
-120 BOK, 2 meu—no interleaving 1-Disc m 11 High Disc - Removable
w

nterface
Master drive

-200 800 cpi
45 1ps drive.

Master drive

CARD READERS

« 30106A 6500 cpm
+ 30107A 1200 cpm
-001 Dual Read Station

MAGNETIC TAPE UNITS

9-Track (Racked)

7+ 30115A BOD cpi. 45 ips
drive and 4 drive

-100 1600 cpi. 45 ips

drive interface

Additional Unnt
-300 1600 cpi: 45 1p5

Additional Linit

* 30102A 47MByte drive
and 8 Drive Interface

‘010 Additional Drives

-400 1600 cpi; 45 1ps,
Slave® drive
Additional Unit
(Must be used with
1600 cpi master an
same interface)

7-Track (Racked)
= 30117A 200/556/800
cpi, 45 ips drive and
4 drive interface
4010 200/556/800 bpi,
45 ips drive.
Additional Unit.

and 4

LINE PRINTERS

« 30108A 200 Ipm.
64 Char
001 130 lpm
96 Char

* 30109A 600 Ipm:
64 Char
001 400 lpm;
96 Char

SOFTWARE

W 320004 ﬂPE /3000 (includes
i Moy
/30000, Compiler Library,
Utilities)
W 32100A SPL /3000
4 32101A BASIC/3000
4 32102A FORTRAN/3000

PRODUCTS

32201A EDIT/3000

32202A FORMATTER/ 3000
32204 A STAR/3000

32205A SCIENTIFIC LIBRARY
Standard Software

Optional Software

L L

Fig. 2. HP 3000 Computer Systems are modular and can be configured to fit a variety of
applications. The same software Is used by all configurations.

5

© Copr. 1949-1998 Hewlett-Packard Co.

Code
Segment

PB-Register

Data
Segment

Displacement 2
=0,1,23,4 l "

(Logical Top-of-Stack)

=

Increasing
Addresses

(Stack Limit)

(Program Base) (Data Limit)
DB-Register
(Data Base)
Global Variables
| and Pointers
|
{Program Counter) |
(Stack Marker)
Q-Register Parameters
Local Variables
=
o (Top-of-Stack in Memory)
Pri Limit
J }Temporary
B Variables

Fig. 3. Code and data are kept
separate in the 3000 Computer
System. Code is never modified
and can be shared by several
users. Code segmentation gives

the system virtual memory capa-

bility. Data segments are orga-
nized as pushdown stacks.

bit causes a procedure call to the make-present
routine if set, and it implies that the second word
of the CST descriptor is a disc address. The maxi-
mum number of entries in the CST is 255.

Every procedure call must go through the Code
Segment Table and must check the absent-from-
main-memory bit, This is part of the virtual mem-
ory implementation of the HP 3000, If the proce-
dure called is in a program segment that isn't in
main memory, the required segment is automati-
cally brought in. When a segment is given control
of the central processor, the program base (PB) and
program limit (PL) registers are set from the CST
entry of that segment.

While code segmentation is normally specified
by the user, data segmentation is handled by the
MPE/3000 operating system. A normal user has
only one data segment, which is limited to 32K
words. Additional data segments may be requested.

Relocatable Code

Relocation is the normal mode of operation in
the HP 3000 because of its relative addressing
capability. All addressing is relative to hardware
registers.

Fig. 4 shows the memory reference instruction
format. The address mode bits have been Huffman-
coded to give the maximum displacement range
on the most frequently used codes.

In the code segment, normal addressing is rela-
tive to the program counter register (P). Indirect

6

addressing is similar except that the content of the
indirect cell is assumed to be relative to its own
location.

In the data segment, the addressing modes are
designed to match the types of data encountered
in a procedure-oriented language. Fig. 3 shows the
organization and common use of the data area.
Global variables and pointers are stored relative
to the data base (DB) register. The DB+ mode has
a direct range of up to 255 words without index-
ing or a 64K word range with indexing.

Stack Operation

The stack concept,* which on the HP 3000 is
fully used for the first time in a 16-bit machine,
allows dynamic storage allocation on a procedure
level. The stack is the area of a user's data seg-
ment between the DB register and the stack pointer
(S).

Local stack storage in a procedure is allocated
only upon entry and is automatically freed upon
exit. This allows reuse of that area of memory by
other parts of the program. The stack also provides
automatic temporary storage of intermediate re-
sults until they are needed later in a computation.
This is transparent to the programmer, and the
compiler doesn't have to be concerned with saving
and restoring registers.

Parameters that are passed to procedures are

*A stack is a linear collection of data elements which is normally accessed from one
end on 2 last-in-first-out basis. An everyday sxample is 2 stack of piates in a plate
warmer in a3 cafeteria.

© Copr. 1949-1998 Hewlett-Packard Co.

Education and Instrumentation are traditional fields for HP,
and the HP 3000 Computer System significantly enhances
the company's capabilities in these areas. The new system
is also well suited to advanced industrial and commercial
applications,

Education

HP computers entered the education field in 1968. The
HP 2000A Time-Shared BASIC System, along with its suc-
cessors, provided cost-effective computer aided instruction
(CAl), problem-solving, and computer science education. A
math drill and practice program, an instructional dialog fa-
cility, and an instructional management facility are available
to the teacher for use on the HP 2000. These programs are
written in HP BASIC and are therefore upward compatible
with the HP 3000. In addition to these programs, there are
other CAl packages available for use on both HP systems.

In addition to the time-shared CAl use of the HP 3000,
the Multiprogramming Executive operating system allows
simultaneous batch mode computation. This permits a
school to use the computer for administrative tasks concur-
rently with CAl, giving a more cost-effective solution to the
needs of school systems. Many secondary schools will alsa
be able to teach programming and other computer science
concepts using the multiprogramming capability of the HP
3000.

Junior colleges and small four-year colleges, to keep
costs down, often find it necessary to have only one com-
puter for all their activities. The HP 3000, with its simultane-
ous multilingual time-sharing and batch operating modes,
has the ability to tackle diverse computing needs. In addi-
tion to these two modes, real-time experiments may also be
handled by the operating system, and this makes the sys-
tem useful to university scientific departments.

Because the HP 3000 was designed around the latest
concepts in computer science, it has many features in hard-
ware and software that university professors have been
teaching in recent years. The 3000 should provide a com-
puter science department with a machine that can be used
not only as case study of advanced architecture, but also
as a vehicle for operating system study. The modular struc-
ture of the software allows students to rewrite small por-
tions of the system as projects and then try them in the
operating system. It would be too large a task to write a
whole system in a semester, but a small self-contained

A Computer for All Reasons

module is the right size for a term project.

Instrumentation

While the education field is mainly interested in the time-
sharing and batch modes of operation under the Multipro-
gramming Executive (MPE), the instrumentation fleld makes
extensive use of the compatible real-time capability. Pre-
vious systems generally had one or the other, but not all
three in a unified environment.

MPE provides the ability to collect data and control proc-
esses in real time while allowing the data so generated to
be accessed through the common file system by terminal-
oriented and batch mode programs. This multi-mode capa-
bility is a natural extension and combination of the real-time
executive and time-sharing systems that use the HP 2100
family of computers.

Industrial/Commercial

The HP 3000 will find many industrial and commercial
applications. One reason is that it is designed to support
hierarchical computing systems. The data-base handling
capabilities of MPE, along with a powerful and wide-band-
width 1/O structure, make the 3000 a good middleman
computer. It will have extensive data communication facili-
ties for connection to a large general-purpose computer
and will be able to control several minicomputers on the
other end of the hierarchy.

There will be many instances of this computer-to-compu-
ter connection in the future. Standard software protocols
and hardware interfaces are being developed for the HP
3000 to support these systems. The HP 2100 family provides
compatible minicomputer facilities in systems where the
3000 is the host computer. Intercomputer links may be by
direct connection or by modems over common carrier
facilities.

Commercially oriented languages and data base man-
agement systems currently in development will give HP the
ability to develop and support commercial applications
such as on-line inventory management, order entry and
production control. The hierarchical computing capability
combined with this business data-processing software will
make the HP 3000 more and more useful in industry and
commerce, particularly if the strong trend toward distributed
processing continues as expected.

pushed onto the stack before the procedure call.
When the procedure call occurs the status of the
presently executing code segment is stored on the
stack and the Q register is set to point at the top
of the stack (S). Parameters are then accessed by
Q— addressing, while the local variables used by
the procedure are accessed by Q+ addressing, as
shown in Fig. 3.

Upon exiting from a procedure the operating sys-
tem retrieves the status of the previously executing
code segment from the stack and returns control
to the instruction following the procedure call.

Addressing in the negative direction with re-

7

spect to the stack pointer (S) register is useful for
accessing temporary results left on the stack dur-
ing processing. The area between the data limit
(DL) register and DB may be addressed only in-
directly and is used for such purposes as storing
symbol tables and the like.

Reentrant Code

The separation of code and data, the use of a
pushdown stack with Q+ and Q— addressing
modes and the nonmodification of code make re-
entrant code the natural way to write HP 3000 pro-
grams. Reentrant code, in conjunction with the

© Copr. 1949-1998 Hewlett-Packard Co.

De===uJ il =i et einatudend? ©
[OoP x| " Address Mode 1
I. Code | and Displacement
; ;
P 0 % |£255
DB+ 1 O +255
Q+/1 1 0 +127
Q-1 1 10 —63
§s -1 1 11 | —63

L AN ~ J
Mode Displacement

I-Indirect

X-Add Index Register to
Final Address
{Post Indexing)

Fig. 4. Memory reference instruction format. All address-
ing is relative to hardware registers, making code and
data easily relocatable.

use of the Code Segment Table as the master direc-
tory of all active segments, allows code segments
to be shared between users. Control is transferred
through the CST to the proper segment number of
the shared code as determined by the loader when
the segment was made active. Thus only one copy
of a compiler or a library or the operating system
intrinsics need be available, saving valuable space
in main memory.

Protection Features

User isolation and protection takes several forms
on the HP 3000. Programs may execute in one of
two modes: privileged or user. In privileged mode
no bounds checking is done except for stack over-
flow (S>Z), and all instructions are available for
use. All system interrupts including external (1/0)
interrupts are handled on a separate interrupt con-
trol stack so the user running when the interrupt
occurs is fully protected. In user mode, access is
limited to within the user's own code and data
areas.

In addition to the hardware memory protection,
files are protected by the MPE/3000 file manage-
ment system. Access to files may be controlled at
several levels which range from unrestricted access
by anyone to controlled access available only to
the creator of the file.

Modular Hardware Organization

HP 3000 hardware is organized on a modular ba-
sis. A major feature is the central data bus, which
can service up to seven independent and asynchro-
nous modules. These can be central processors,
memory modules, and/or various types of input/
output channels including a high-speed selector

8

channel capable of transferring data at a rate of
2.8 megabytes per second.

Modules attached to the bus are technology-
independent. Thus the memories may be magnetic
core, semiconductor, or anything else. Up to four
memory modules can be attached to the bus, and
these can be interleaved (two-way or four-way).Z

Bert E. Forbes

Bert Forbes has been designing computers for HP since
1967. He was project manager for the HP 3000 CPU and
has several patents pending as a result of that project.
He's a member of ACM and the author of articles on
computer architecture and integrated circuits for mini-
computers. Now at HP’'s Geneva, Switzerland, data center,
he's supporting the European introduction of the HP 3000.
Bert received his B. S. degree in electrical engineering
from Massachusetts Institute of Technology in 1966 and
his M.S.E.E. degree from Stanford in 1967. He's also
done work towards the Ph, D. degree. He's an amateur
photographer and a connaisseur of fine wines, and is
active in church youth and social-action groups.

Michael D. Green

Mike Green came to HP in 1966. He's been project
manager for ALGOL/2116, 2000A Time-Shared BASIC,
and BASIC/3000, and he's currently project manager for
MPE/3000. Mike graduated from Columbia University in
1964 with a B.S. degree in mathematics, then got his M.S
degree in computer science at Stanford University in 1968,
He's a member of ACM. For relaxing away from the world
of computers, he favors bicycle touring and chess

© Copr. 1949-1998 Hewlett-Packard Co.

Central Bus Links Modular

HP 3000 Hardware

Sharing the bus can be one or more CPU's, 1/0O

processors, memory modules, high-speed I/O channels,
and special devices. The microprogrammed CPU's

have a procedure-oriented stack architecture.

by Jamshid Basiji and Arndt B. Bergh

N THE HARDWARE LEVEL, the HP 3000

Computer System consists of independently
functioning modules communicating over a high-
speed multiplexed central data bus (Fig. 1). The
modules may include one or more central process-
ing units (CPUs) and input/output (I/0) processors,
one to four memory modules, one or more selector
channels for high-speed input/output, and one or
more special-purpose modules. Hardware modu-
larity makes the system flexible and expandable,
and leaves the door open for future performance
improvements through new technologies such as
faster memories.

The memory now available is a magnetic core
memory that has a cycle time of 960 nanoseconds.
Optional is an interleaved addressing capability
that places sequential addresses in different mem-
ory modules. Memory modules can operate concur-
rently. With interleaving, the system can support a
5.7 megahertz byte data rate.

The 3000 CPU is a microprogram-controlled
processor. It has a stack architecture and special
hardware to make procedure execution very effi-
cient. Instructions are implemented in micropro-
grammed read-only memories, making possible a
powerful instruction set with some instructions
resembling those of higher-level languages.

The data for each user is organized as a data
stack. In general, a stack is a storage area in core
memory where the last item stored in is always the
first item taken out. The stack structure provides
an efficient mechanism for parameter passing, dy-
namic allocation of temporary storage, efficient
evaluation of arithmetic expressions, and recursive
subroutine or procedure calls. In addition, it en-
ables rapid context switching—21 microseconds to
establish a new environment when an interrupt

9

occurs. In the HP 3000, all features of the stack (in-
cluding checking for overflow and underflow) are
implemented in hardware.

Bus Operation

The central data bus is a high-speed synchronous
bus that can service up to seven modules. The
transfer cycle time of the central data bus is equiv-
alent to the cycle time of the system master clock,
175 nanoseconds. During each transfer cycle six-
teen bits of data plus parity and eight bits of
source-destination addresses and operation code
are transmitted from the source module to the des-
tination module.

Control of the bus is distributed among the mod-
ules; there is no central control. The bus control
and interface logic for a given module is in the
module control unit (MCU) for that module.

Bus cycles are granted to a transmitting module
when two conditions are met. First, the transmit-
ting module must request a bus cycle from its MCU
and the destination module must be willing to ac-
cept the message in the next cycle. The willingness
of a module to accept a message is indicated by the
logical state of its “Ready" line. There are seven
“Ready" lines in the central data bus, one for each
module.

The second condition that must be met before a
module is granted a bus cycle is that there must not
be any higher priority module seeking to obtain the
next bus cycle. Module priority is a function of
data transfer urgency. Memory modules have the
highest priority, and the high-speed selector chan-
nel has a higher priority than the CPU or input/
output processor (IOP). A module, when ready to
transmit a message, blocks lower priority modules
by lowering its “Enable” line. There are seven ded-

© Copr. 1949-1998 Hewlett-Packard Co.

Central Data Bus

|

(1 [2]3]4

Very High
Speed Device
Controller
(S10)

Memory Memory Memory Memory
Module Module Module Module
1 2 3 4
\ v
: 1

Maximum Memory Size
is 128K Bytes
{4 Modules, 32K Bytes Each)

Selector
Channel
Bus Multiplexer
Channel
(S10)
Muitiplexer
Channel A
Bus Device
Controller
I
CPU = Central Processing Unit (510)
I0P = Input/Output Processor
MCU = Module Control Unit Non SI0
Device
Controller

10P BUS

xoz mm
=

1

Special Module
Interface

Fig. 1. Central data bus of HP
3000 serves up to seven inde-
pendent modules. 16 bits of
data plus parity and eight bits
of address and operation code
are transferred in 175 nanosec-
onds.

icated “Enable"” lines, one for each module, in the
central data bus. Each MCU checks the status of
all higher priority modules prior to granting the
next bus cycle to its host module.

With this bus-cycle allocation scheme, the “hand-
shaking” mode of operation is not necessary, so
data transfer speed is improved.

The central processing unit and the input/output
processor share a module control unit. Thus the
CPU and IOP share a single port on the central data
bus. The IOP has a higher priority for bus access
than the CPU, although both have independent ac-
cess to the bus. The IOP provides the 1/0 devices
with a direct path to memory through a buffered
connection between the central data bus and the
I/0 bus.

The Central Processor

Because it provides a great deal of instruction
power very economically, the microprogrammed
read-only memory (ROM) method of logic control
was chosen for the HP 3000. The central processing
unit, Fig. 2, has a general-purpose microprocessor
structure with some special features to aid the
stack architecture. The 170 individual instructions
are implemented by sequences of microinstructions
stored in the control ROM.,

In the CPU are approximately 30 registers. Those
of most interest to the user are the four top-of-stack
data registers (A, B, C, D), three code-segment reg-
isters (PB, P, PL), a status register, an I/O mask
register, an index register (X), and six stack pointer

10

registers (DL, DB, QQ, SM, SR, Z). The DB register
is the base of the stack, and the S register, defined
as SM -+ SR, is the top of the stack. The area be-
tween Q and S is for local variables of the current
procedure or routine, The top-of-stack registers are
logical extensions of the stack area in core and
their use greatly improves instruction execution
time. The SR register tells how many of these regis-
ters are filled.

To improve the efficiency of handling data in
the CPU, a two-stage “‘pipelined” data path struc-
ture is used. In the first stage, data is selected from
the source registers and fed onto the two data
buses (R and S) and into the bus storage registers
shown in Fig. 2. These storage registers are the
pipeline holding registers and serve as the data
source for the second stage. In the second stage
this data is processed through the arithmetic logic
unit and a shift network, and the result is option-
ally tested and stored in selected destination reg-
isters. New data is entered into the stream on each
clock pulse to keep the pipeline full and maximize
throughput. The 175 ns clock time achieved with
this structure is much lower than would have been
possible if the whole source-to-destination process-
ing were done in one clock period.

Communication paths from the CPU to outside
modules include a path to memory through the
MCU and central data bus, a path to device con-
trollers through the 1/0 processor and 1/0 bus, and
a path to the control panel through a special panel
interface.

© Copr. 1949-1998 Hewlett-Packard Co.

CPU Operation

The CPU performs tasks by sequentially enabling
the appropriate logic to pass data through the proc-
essing structure and to perform other non-data-
path functions. For each sequential step a 32-bit
ROM word, divided into seven coded control fields,
enables the required functions. Each 32-bit ROM
word constitutes a microinstruction. As shown in
Fig. 3, the seven fields in each microinstruction are
the R and S bus source register fields, the operation
or function field, the shift field, the register store
field, the test field, and a special field for executing
non-data-related tasks.

Because each control field can, in general, select
only one meaningful field option at a time, it was
possible to encode them with little loss of capabil-
ity. For a slight reduction in speed, field encoding,
or “vertical microprogramming,” offers consider-
able ROM cost savings over the one-bit-per-option
method.

Branching capability is provided by redefining
the R bus, shift, and special fields to be interpreted

as a branch address when a Jump or Jump Subrou-
tine instruction occurs in the function field. Con-
stants also are generated by redefining fields when
a function field designator occurs.

Programs and Microprograms

As the CPU executes a user program, it sequen-
tially fetches software instructions from main
memory. From the binary pattern of each instruc-
tion, a combination ROM lookup table and decod-
ing logic generates a ROM address and stores itin a
presettable indexing ROM address register. This
register is used first to access and then to step
through the sequence of microinstructions, or mi-
croprogram, that causes the software instruction to
be executed. There is a microprogram in ROM for
each of the 170 machine instructions.

The CPU executes a software program in the nor-
mal sequence of phases, that is, instruction fetch,
data fetch, and execute. In the HP 3000 these phases
are more accurately described as instruction pre-
fetch, optional data address computation or hard-

CPU

Registers

R-Bus Register Arithmetic/
= aFSi
S-Bus Register and Shifter

CPU Qutput
Register

|
|
|
|
|
|
|
|
|
|
|
Field Decode :
|
|
|
|
|
|
|
|
|
|

ROM ROM
ROM Output Output
ROM Lookup Table Address Regis?:r 1 Register 2
and Decoding Logic Register and and
R.S Decode
w Current Instruction
é’r Register
E Data Ta/From CPU Registers
= A
e Instructions Next Instruction
s
S
Module PPRLLEDD
Control
as Central Processing Unit (CPU)
_________________________________ input/Output Processor (I0P) |
1/0 Execution I
Data 1/0 Logic _I :
External Interrupts |
| External Intput/Output |
| Interrupts| |
e S S e S S S N S ——
1/0 Devices

Fig. 2. Central processor has a general-purpose microprocessor structure with special
features to aid stack operation.

1

© Copr. 1949-1998 Hewlett-Packard Co.

ware stack register preadjust, and instruction exe-
cution. Instruction prefetch is an automatic hard-
ware activity that gets the next instruction during
the execution of the present instruction, thus avoid-
ing the normal instruction fetch time. For memory
reference instructions, hardware has been provided
to compute the absolute memory address, that is, to
add the displacement and index to the appropriate
base register. A general bounds-testing routine in
ROM then checks the computed address for valid-
ity before the individual instruction microprogram
is used. Instructions that use only top-of-stack data
normally (90% of the time) don't require a data
fetch, but if necessary, these instructions are first
routed through a microprogram that fills the ap-
propriate number of hardware stack registers from
the equivalent logical locations in core.

Interrupts

As the execution of each instruction is completed
a microprogram control signal is issued that starts
the execution of the next instruction unless an in-
terrupt is requesting service. If an interrupt has oc-
curred, a force to an interrupt microprogram takes
place. This causes the status of the present user
program to be stored on the stack. Then if the in-
terrupt is not directly user related, the micropro-
gram transfers the status to a system interrupt stack
and calls the first instruction of the software pro-
gram serving that interrupt. After the interrupt has
been serviced control is returned to the MPE oper-
ating system.

TOS Hardware

To achieve faster execution of instructions that
reference the top elements of the stack, special
hardware has been provided. Up to four of the top
elements of the stack can be kept in four top-of-
stack hardware registers, and manipulation of these
registers by the microcode has been made as easy
as possible. The TOS hardware includes the four
registers and renaming logic that allows each of the
four registers to assume any of the four positions
relative to the top of the stack. Thus, the stack can
be logically shifted up or down by simply renaming
the registers, without moving the contents of one
register to another. The number of stack elements
that currently reside in the TOS hardware registers
is kept in the TOS register pointer, SR.

Memory

Memory modules on the HP 3000 are designed to
be self-contained asynchronous units of up to 64K
bytes each. The maximum memory limit is 128K
bytes in up to four modules. The modules interface
with the system through an MCU port on the cen-

12

tral data bus. Only data transmissions to the system
have to be synchronized with the system clock; all
other memory timing and control is contained
within each module, Since no fixed response time
is required, faster memories can be interfaced as
they become available.

Memory commands include read, write, and a
special multiprocessor semaphore function: read
and write all 1's within one memory cycle.

The present memory is a 960-nanosecond three-
wire 3D magnetic core memory using the same core
stack and phased X-Y drive current arrangement as
is used in the HP 2100A Computer.’ A basic module
consists of one timing, control, and MCU interface
card, one X-Y switch and inhibit-current load card
and one to four 8K word stack cards. Because the
sense amplifiers, X-Y drivers and inhibit drivers
all are on the stack card, memory expansion only
requires the addition of one stack card for each
additional 16K bytes.

Input/Output Processor

The functions of the I/0 processor have been dis-
tributed between a kernel processor attached to the
CPU and one or more multiplexer channels on the
1/0 bus. The kernel processor controls the 1/0 bus,
which is the data path from external devices to
memory and the communication path between ex-
ternal devices and the CPU. The multiplexer chan-
nel does the bookkeeping for block transfers of
data to and from memory for up to 16 devices.
When needed, additional multiplexer channels may
be added to the system.

Input/output operations in the HP 3000 are di-
vided into three categories: direct I/O, programmed
I/0 and interrupt processing. Programmed 1/0
operations have priority on the I/O bus over other
types.

Direct 1/0 operations take place as a result of the
execution of an I/0 instruction by the CPU. These
operations either exchange a word of information
between the top-of-stack register (TOS) in the CPU
and the 1/0 device controller, or cause a control
function to take place in the 1/0 system. During the
execution of I/0 instructions the CPU microproc-
essor performs the basic control functions such as
assembling the /O command, checking the status
of the [/0 device controller, and exchanging a word
of information between the TOS register and the
1/0 device via the I/O bus.

Programmed 1/0 operations are aimed at trans-
ferring blocks of data between 1/0 devices and the
memory. This type of operation begins for an I/O
device when the CPU issues an SIO instruction for
that device. The device controller in conjunction

© Copr. 1949-1998 Hewlett-Packard Co.

with the multiplexer channel then executes the 1/0
control program for that device without further
CPU intervention. This allows the CPU and I/0O
processing to carry on in parallel.

The interrupt structure is a multilevel priority
network that allows the processing of CPU pro-
grams or lower-level interrupts to be preempted by
higher-level interrupts. This assures a prompt re-
sponse to critical external processes. A “polling”
scheme is used in the priority network. Up to 253
devices are allowed on the interrupt poll line, and
the interrupt priority of a device is determined by
its logical proximity to the CPU on the interrupt
poll line. A 16-bit mask register is provided for the
purpose of masking off groups of interrupts. Any
number of devices can be assigned to any particular
mask group.

I/0 bus transfer cycles are granted to multiplexer
channels based on their priorities. A polling scheme
similar to the interrupt polling is used to resolve
priority among the multiplexer channels. However,
the data poll line is separate from the interrupt poll
line, so the data priority of a channel can be dif-
ferent from its interrupt priority.

Selector Channel

High-speed devices may communicate directly to
the central data bus through a selector channel. Un-
like the multiplexer channel, the selector channel is
designed to service one device at a time for the
duration of the execution of the I/O control pro-
gram for that device. This eliminates the time-slice
multiplexing overhead, thereby allowing the SEL
channel to achieve higher data transfer rates than
are possible with the MUX channel. The selector
channel is a part of the SEL module, which is an
independent system module that contains up to
four selector channels and has an independent port
to the central data bus (see Fig. 1). This port enables
the selector channels to fetch and execute their
own I/O command words and transfer data be-
tween the memory and the I/0 devices independ-
ently of the 1/0 processor. Each selector channel
has its own SEL bus and can interface up to eight
devices through this bus.

Special Devices
Ports on the central data bus are not device-de-

pendent. Therefore, they can be used for special
custom devices should the system application war-
rant their use. An example of such a device might
be a communications processor.

Acknowledgments

By Richard E. Toepfer

Engineering Section Manager,
Multiprogramming Computer Systems

The design of a system like the HP 3000 requires
the contributions of a large group of people. The
following list represents the members of the Data
Systems Development Laboratory who were prin-
cipally concerned with the design and realization
of the hardware and its associated diagnostic soft-
ware. Mainframe Electronics Design: Harlan An-
drews, [im Basiji, Arne Bergh, Bill Berte, Wally
Chan, Ken Check, John Dieckman, Mauro Di-
Franceso, Bert Forbes, Gordon Goodrich, Barney
Greene, John Grimaldi, Jim Hamilton, Marty Ka-
shef, Jim Katzman, Walt Lehnert, Frank McAninch,
Joe Olkowski, Mike Raynham, Gene Stinson, Tak
Watanabe, Steve Wierenga, Dennis Wong. Main-
frame Mechanical Design: George Canfield, Bob
Dell, Joe Dixon, Bill Gibson, Gary Lepianka, Larry
Peterson, Bob Pierce, Don Reeves, Fred Reid. Mass
Storage Subsystems: Naresh Aggarwal, Ole Eske-
dal, Karl Helness, Ed Holland, Jake Jacobs, Earl
Kieser, Harry Klein, Stan Mintz, Malcolm Neill,
Cliff Wacken. 1/0 Subsystems: Mitch Bain, Oty
Blazek, Vince Emma, Ron Kolb, Tom Kornei, Rick
Lyman, Al Marston, Joe Mixsell, Bill Murrin, Jack
Noonan, Jim Obriant, Ken Pocek, Willard Reed,
Willis Shanks, Elio Toschi, Lloyd Summers. Diag-
nostic Software: Bob Bellizzi, Gary Curtis, Hank
Davenport, Dan Gibbons, Pete Graziano, Tony
Hunt, Walt Wolff, Tom Ellestad.

Particular credit must be given to the following
individuals and groups whose special talents great-
ly contributed to the success of our development
effort. Coordinators—Karl Balog and Ollie Saun-
ders. Printed circuit layout—Bob Jones and staff.
Industrial Design—Gerry Priestly and staff. Mate-
rial and Reliability Engineering—Bernie Levine and
staff. Publications—Joe Kintz and staff. System
Management—Dave Crockett and staff. &

Reference
1. Hewlett-Packard Journal, October 1971,

Fig. 3. 170 HP 3000 instruc-
tions are implemented by se-

Bits:|e o« » o2 o o & s|/0 o o o s/ o 0|0 o 0 o @

quences of microinstructions

Fields:| R-Bus S-Bus Function Shift Store

Special Skip stored in read-only memaries.
Each 32-bit microinstruction has

seven coded fields.

13

© Copr. 1949-1998 Hewlett-Packard Co.

SPECIFICATIONS
HP 3000 Compuler System
DESCRIPTION

CENTRAL PROCESSOR

ARC

sition
ACGRAMMING LAN

ate registers explicily
Bit man|pulatio
Branches based sxpl

iy on herdwere sistus

SOFTWARE

Jamshid Basiji

Since coming to HP in 1969, Jim Basiji has worked on
high-speed |/ O processing techniques, developed the
architecture of the /0 system and central data bus for the
HP 3000, and helped design the |/O processor and
central p ssor modules for the HP 3000. A graduate of
the University of California at Berkeley, Jim received his
degree in 1965 and his M.S.E.E. degree in 1966.
g HP, he worked on computer development
and ad omputing techniques for IBM. His idea

of a fascinating way to sp his free moments is with a

Arndt B. Bergh

he HP 300

14

© Copr. 1949-1998 Hewlett-Packard Co.

Software for a Multilingual Computer

SPL is a high-level language that produces code
that's as efficient as other systems’ assembly-language
code. Other 3000 languages are FORTRAN, BASIC and

COBOL.

by William E. Foster

ROGRAMMING LANGUAGES NOW AVAIL-

ABLE FOR THE HP 3000 USER are FOR-
TRAN, BASIC, and SPL (Systems Programming
Language). COBOL will be available in summer
1973. The system will support all these languages
simultaneously.

Systems Programming Language

SPL is an ALGOL-like language. Its objective is
to provide systems programming capability from a
high-level language rather than the traditional as-
sembly language. The benefits are faster coding and
easier debugging. Virtually all the HP 3000 soft-
ware is written in SPL.

It's imperative, of course, that a systems pro-
gramming language produce efficient object code,
and this was another major objective of SPL. Code
optimization has been achieved through the logic
of the compiler and through close correlation be-
tween the SPL syntax and the 3000 instruction set.

A significant aspect of SPL is that it may be used
as either a machine independent or a machine de-
pendent programming language. At the machine
independent level, the syntax of SPL closely re-
sembles that of ALGOL, It isn't necessary for the
programmer to understand the architecture of the
3000 to program at this level.

The machine dependent programmer is one who
has some knowledge of the 3000 architecture (in-
struction set, stack, status register, etc.); the greater
his knowledge, the more he is able to make use of
the machine dependent features of SPL. The effect
of using these features of SPL is improved object
code.

Fig. 1 illustrates the two levels of SPL applied to
the same programming problem. Fig. 2 is an exam-
ple of a more typical SPL program.

15

FORTRAN/3000
FORTRAN is one of the most widely used and

oldest programming languages. Initial specifications

for the language date back to 1954. FORTRAN/3000
is an ANSI-standard compiler with extensions that
enhance the capability of the language and use the
features of the HP 3000. Among these features are

CHARACTER variables, which were added to the

language to provide the capability of string manipu-

lation. Additionally, a great deal of power is pro-
vided in the area of input/output operations.

B Free-field I/0. Variables may be input and out-
put in a free-field manner, without the specifica-
tion of a FORMAT statement.

B Qutput expressions. Expressions may be includ-
ed in the output list (Fig. 3). For example,

WRITE (3,10) I+5,A+B
is a legal FORTRAN/3000 statement.

B Logical unit table. A global table is created by

the compiler and built by the loader that is used

to associate FORTRAN logical unit (storage de-
vice) numbers with internal file numbers. The

FORTRAN programmer has the capability, with

the use of library routines, to tailor this table to

his own needs. For instance, he may explicitly
open a file through a call to the file system in-
trinsic FOPEN, then set the returned file number
to correspond to a particular FORTRAN unit
number (say unit #7). Subsequent READ or

WRITE statements using unit #7 would, in fact,

be referencing this file.

FORMAT specification. Two important specifi-

cations have been added to the FORMAT state-

ment: the T-specification, which positions the
format scanner to specific locations in the record,
and the S-specification, which outputs character
data with a field width that corresponds to the

© Copr. 1949-1998 Hewlett-Packard Co.

Machine independent method

The conventional approach, used in most program-

ming languages, would be to use a temporary vari- Hitiees teses 1 RERCIDDe SSEVINNLAN NSE ey mrsrrsic it 0 o Goote we
able in making the exchange: :?:muﬁ":-i T
BITALeRE eeees | PRTEGER i
- e " v ~ SITEEREE wasen | LoafcaL /3
SPL statement Purpose Generated Code it senes | s,
TEMP:=A; Store the value of LOAD A oL
Ain TEMP. STOF‘ TEMP ll!m= aﬂ 2 INTESES foda®olamrgsdy
A:=B; Store the value of LOAD B s
- G ewer
Bin A. . STOR A eitrases’ saees BEAL ARRAY FIRUNI<GIRINI 0
B:=TEMP; Store the original LOAD TEMP e
. WITETHES seeed LOGLCHL aWuAY ®rlivi
value of A in B. STOR B l'uluu: % z LOGICAL BOINTER Pent
Machine dependent method : e ﬁ EN;‘[E.?;::I;‘.:‘_
A more efficient approach would be to use the spe- E:x ﬁ :...:T.,ér
cial SPL symbol TOS. When used in place of an Sifvass emark 108 o bmpait S e T
identifier, this symbol denotes the current top of Eim :..:.3 etein” :""“ bt ccumang 1w
TEReEE WIGOIsE « TEMOY
stack. ::m a‘ Fos J'» @ UNTIL W D0
: :{m w :!E-l: I SCREARCH FOR #IvOTes
SPL statement Purpose Generated Code iy et Fgra. e
TOS: =A; Push the value of LOAD A :{m m{ Tr-'?:il:r:ﬂl-aulmtusl
A onto the stack i i TS
. aisiossn sert? RIGD186 + Tas 4
A:=B; Store the value of LOAD B St eise eel st ausiubis oneL 1
:l:‘m :}: - (‘15”31’! ARCw FOR BIyOfes
_ e, S s s e w R
B:=TOS; Store the current STOR B sisivess sl s e
value that is on the '}&n‘m i ComsENT ntn::e}h OF ELpsNATION STER 14
top of the stack into bt i i
e Cohg
B, then pop the stack. s R

SCIENTTIFICAHLIN BvesETE|E SETELE [NGREBION SOUT i

Fig. 1. An SPL program to swap the values of two integer
variables, A and B, illustrating the machine dependent
and machine independent levels of the language.

length of the associated list element (Fig. 3).
Direct-access 1/0. Disc files may be referenced
as direct access devices, For example, the state-

ment

READ (3@RECNUM) A,B
reads from logical unit #3 the record specified by
RECNUM, and transmits the data to the list ele-

ments A and B.

Other extensions of standard FORTRAN are
mixed-mode arithmetic, free format program entry
for more convenient usage from terminals, removal
of restrictions on indexing and DO-loops, and an
interactive debugging facility.
characteristics
TRAN/3000 are that programs are recursive and
reentrant. In the HP 3000, code and data are stored
separately, and code is never altered. This means
that programs can be shared by several jobs. If one
job is using a program and is interrupted by another
job that uses the same program, the first job can
later reenter the program and continue from the
point of interruption. Thus programs are reentrant.
Recursive means that programs can call them-
selves. Another machine dependent feature is

Machine dependent

Wipesade IF Widy TwEw TOS » aToE
€S0 T05 « ~aTOS)
iBsanee Bkl = TUgH
BiEaTonn ASSLLE (FNES Fuy)) S W ST RG IR e
am aiEr = TO4I
Basabe N
BlESeRe COMENT ELImINATION PEOPERS
BLESIRRN - #i
" FOR K = @ UNTEL & DO
L J = § UNTEL ® DO
o

i
R

TGEWTIFIES CLasg Treg SoORESS

0 i

: e 3OE

el She via: foatew. oo

i il ::: INESER @ eee3

. . InNTESEs 9 b

" Siwe, van

" Hi= = 4 14

Ll DEF [N ke

» awsAy AL LRI

) asnay oo a sl

» ammar LoSICaL 5 e#iZ

we ol LOSICh 5 -mir

L) Sl van, INTESLS ARER

Of FO R_ TEmD oerFIne LB

BRORE EISHIY ITITHR BSTaLE BSIANS BE03ER Bledel A3SesE [TITEE SERlE ESIs1L B1e8S 883
SRETE BEIIRE BISONE BADARE WSDA0e LZISES BISERl BS3sIT esjall HEM BN il B
FALE Ba1h8T FSENEE LeB208 B34p03 Inlag]l FRSSsl FSiens SReesd WS @Eless |Tieds RE1
BERLE e ladh BTIeBs BEIISE BEIaBe L11a@s #aTeIZ BLITEE |Dlaes ETE 1ETeRd aledl 89S
WELRE s lads FSIARS Bela®s #TIeRT IeBRE? SeRled FSFaEE [51s8] FELLE WIeRRE WESERE sl
BRIZE B3A@ET L10eeT ISTHER SRSl BISRS IATHR 131485 [ATall J BFREI 1ETAIR see
BN FSiake (Tiaga BEIMEL BAlsR BR1eRE FSEEIE [SERIZ BereRd 158 aeaRdl MRRRE HND
BEIAE STRME BIANT [6THRS BBesBR | Jlegs LaTeid $TRIE FLITES BELTE ESSSD (seeRs b0
BE2R0 BAlet MEIIME BSIels [Tiegs BZIRE] B8RS FEERRT |edEds BARIR Beledd BTIARe BEL
SIS it o DI S0 e VR i e R i IR
2ee | B3N L3iees 15THM SRS IR0 i“‘.‘lmalbll T mm:n

FoR J + 8 UNTIL ®=1 DO
LI

LTI

gl w ATas
IF 3in) Telh ASSEMELLIFNEG.FMRT)
LLSE AsSEmmLE iF eyl

RSP
A1al = TER0)

AIE) = BiSieQIN] » AiLid LTS BT TR R
*Le

N0
IND 1 aelianh | oo
ENDI CaRET Ve

T S T

that storage for local variables is allocated on the

stack dynamically when functions or subroutines
are entered, and deallocated upon exit.

16

© Copr. 1949-1998 Hewlett-Packard Co.

Fig. 2. A matrix inversion routine from the HP 3000 Scien-
titic Library, written in SPL. The compiler output shown
here includes much optional information (shown in color),
such as sequence numbers, PB-relative address of source
statements, a BEGIN/END count, a symbol table dump,
and a machine code dump.

BASIC/3000

The HP 3000 BASIC subsystem runs as an inter-
preter rather than a compiler, which means that
programs are not translated into machine code that
is directly executable, but into an intermediate
language that is executed by control routines.

The primary reasons for having an interpreter
instead of a compiler are faster development and
greater debugging facilities. The interactive debug-
ging mode in BASIC provides the following capa-
bilities:
® Tracing of the path of execution through a pro-
gram and changes in the values of variables
Interactively displaying the dynamic nesting
structure of a program, that is, the order in which
programs and functions are called
Displaying and modifying the values of variables
Altering the execution sequence of a program.
One aspect of an interpreter is that programs are
really data to the interpreter. Therefore, BASIC
programs do not execute as code segments and so
are not sharable. For this reason, HP is currently
developing a BASIC compiler that accepts the in-
ternal file generated by the interpreter and gener-
ates executable code. In this way, BASIC programs
will not only run as sharable code segments, but
will also execute faster.

The BASIC/3000 language is a superset of HP
2000 BASIC, incorporating many extensions:

2000

26 numeric arrays
26 string variables
one data type (32-bit real)

3000
286 numeric arrays
286 strings or string arrays
four data types (16-bit integer, 32-bit real, 48-bit
real, 64-bit complex)

Other extensions include compound statements
(Fig. 4), mixed-mode arithmetic, multiple-line func-
tions, string-valued functions, access to all MPE

WRITE(8,10) "PRESSURE", P
WRITE(8,10) “TEMPERATURE", 2T
10 FORMAT (“ THE VALUE FOR ", 8, "IS", F7.3)

Result: (assume P=1.0339 and T =55.87)

THE VALUE FOR PRESSURE IS 1.034
THE VALUE FOR TEMPERATURE IS 111.740

Fig. 3. FORTRAN/3000 program illustrating the use of an
expression in an output list, and the "'S" specification in
the FORMAT statement.

17

10 IF A>B THEN 60
—®20 ELSE DO
| 30 IFB<=CTHENB=C+1
DO- 40 IF C # D THEN DO
DOEND 50 C = C + FNK(D,D+A,C)
Pairs 60 D=2+ A
#70 DOEND
LBO ELSE 110
90 DOEND

Fig. 4. An exampie of a BASIC/3000 compound state-
ment.

files and peripheral devices, capability of calling
SPL procedures, many additional predefined string
and numeric functions, string arrays, program over-
lays, picture I/O formatting, statement execution
frequency reporting, dynamic array redimension-
ing, handling of non-BASIC files, and additional
file commands.

SPL, BASIC, and FORTRAN are all recursive,
that is, programs, procedures, and subroutines can
call themselves, Fig. 5 illustrates this property.

COBOL/3000

COBOL (COmmon Business Oriented Language)
is the result of an effort to establish a standard pro-
gramming language for business processing. The
original specifications were drawn up in 1959 by
CODASYL (the COnference on DAta SYstems Lan-
guages). COBOL/3000 conforms to the highest level
of Federal Government Standard COBOL and has
the added capability of interprogram communica-
tions.

COBOL is a structured language that consists of
Indentification, Environment, Data, and Procedure
divisions. A feature of COBOL that makes it attrac-
tive in commercial applications is that it provides
fixed-point arithmetic up to 18 digits; this elimi-
nates the problem of round-off error which exists
in "floating-point"” formats.

Switching Languages Made Easy
HP 3000 languages share many common attri-

butes that aid the user in switching from one lan-

guage to another. Among the areas of compatibility
are:

B Program-to-program communication. SPL, FOR-
TRAN, and COBOL programs can all call pro-
grams written in either SPL, FORTRAN, or
COBOL. BASIC programs can call SPL, FOR-
TRAN, or COBOL programs as well as other
BASIC programs. Files written in one language
are accessible by other languages.

B Compiler construction. The command languages
for all of the compilers are consistent. For ex-

© Copr. 1949-1998 Hewlett-Packard Co.

SPL
INTEGER PROCEDURE FAC (N); VALUE N; INTEGER N;
FAC:= IFN <= 1 THEN 1 ELSE N*FAC (N—1);

FORTRAN
INTEGER FUNCTION FAC (N)
IF(N.GT.1) GO TO 10

FAC = 1
RETURN
10 FAC = N * FAC (N—1)
RETURN
END
BASIC

100 DEF INTEGER FNF (INTEGER N)
110 IFN <= 1 THEN RETURN 1

120 ELSE RETURN N * FNF (N—1)
130 FNEND

FAC(N)

Return the Answer

Return the Answer N x FAC (N-1)

Fig. 5. SPL, BASIC/3000, and FORTRAN/3000 programs
to calculate Integer tactorials. All three languages have
recursive capabilities.

ample, the commands that tell the compiler to
merge a source file with an update file are
identical for each compiler. Also, the language
translators share the same system library rou-
tines. These library routines are used both during
compilation and as run-time routines to imple-
ment the language features. For example, the
program that converts a character string into an
internal binary number is used both by SPL at
compile time and by the FORTRAN formatter at
execution time. This modularity not only simpli-
fies the task of making changes to common pro-
grams, but also reduces the development cost by
eliminating duplication of effort. The steps in
compiling and executing programs are as follows
(Fig. 6):

1) The source program (main program plus sub-

18

routines) is compiled into relocatable modules
that are stored in the user's subprogram file
(USL). If the programmer decides to change any
part of his program, he can recompile any sub-
routine, or the main program, into the USL file
and the old copy of that subroutine will be de-
activated. (It will still exist in the file, and could
later be reactivated.) The relocatable modules
can be added, deleted, activated, or deactivated
from the USL. Also, these modules can be copied
from one USL to another.

Next, the USL file is prepared into a Program
File. Preparation consists of segmenting the code
and defining the initial stack size.

Now, the Program File can be allocated/exe-
cuted. The segments are allocated into virtual
memory, external references are satisfied from
the libraries, and the program is scheduled for
execution according to its priority,

2)

General-Purpose Applications Software

Several general-purpose software packages are
now available for the HP 3000. There is a scientific
library, an interactive statistical package, a text
editor, and a text formatter. Other packages will
be available in the future.

Scientific Library. The scientific library consists of
a collection of SPL procedures that reside in the
system library. The initial capabilities include:
error function/complimentary error function, gam-
ma and log. gamma functions, exponential, sine-
cosine, Fresnel integrals, elliptic integrals and ellip-
tic functions, Bessel functions, and statistical pro-
cedures including elementary statistics (kurtosis,
means, etc.), one-way frequency distribution, cor-
relation, and multiple linear regression. This library

o e

Compiler Compiler

Segmenter

Segmenter

Program
File

Loader g Libraries

Allocation/
Execution

Flg. 6. HP 3000 compilation/execution process.

© Copr. 1949-1998 Hewlett-Packard Co.

will be kept open for future enhancement.

Interactive Statistical Analysis Package (STAR).
This subsystem provides the user with the capabil-
ity of performing various kinds of statistical analy-
sis in an interactive (question-answer) mode. This
package may also be used in a batch mode. All of
the statistical capabilities that exist in the scientific
library are available to the STAR user, along with
the following additions: data file manipulation
(creation, editing, etc.), scatter diagrams, histo-
grams, and variable transformation.

The output from STAR may be to the user’s ter-
minal, or to a line printer. All results are displayed
in an easily readable, tabular form. The data may
be input directly from the terminal, or from the
batch input device, or from a file created by a FOR-
TRAN, SPL, or BASIC program.

In keeping with the modular structure of the
HP 3000 system, STAR makes use of the scientific
and compiler libraries in performing its functions.
As new capabilities are added to the scientific li-
brary, these capabilities will be easily extendable
to STAR merely by adding the necessary input/out-
put routines and calling on the scientific library to
perform the calculations.

Text Editor. EDIT/3000 is a general-purpose utility
that provides the user with the capability of easily
creating and manipulating files of upper and lower
case ASCII characters. Lines and characters can be
inserted, deleted, replaced, searched for, and so on.
The files to be edited can be FORTRAN, SPL, BA-
SIC, or COBOL source files, or textual material
such as reports.

One feature of this program not usually found in
text editors is its ability to selectively modify text
depending on conditions found within the text it-
self, When this is done, the “‘edit language"” has an
ALGOL-like structure with the metacommands
WHILE, NOT, and OR acting upon statements that
can be compound statements (groups of statements
enclosed by a BEGIN-END pair). These commands
and statements can be nested indefinitely. Interac-
tive users can write an edit program to send mes-
sages to the terminal and place input from the user
in appropriate places within the text file. Together,
these features make the editor a powerful tool for
many applications other than simple program edit-
ing.

Text Formatter. This program lists ASCII files un-
der the control of format records imbedded in the
text file. FORMAT/3000 may also be used with the
text editor. The formatter provides the capability
of preparing simple documents to be listed on line

19

printers or other ASCII devices.

Acknowledgments
The following people were directly involved in
the implementation of the languages and general-
purpose products:
SPL: Doug Jeung, Gerry Bausek, Tom Blease.
FORTRAN: Jerry Smith, Terry Hamm, Jim Hew-
lett, John Couch
BASIC: Mike Green, Terry Opdendyk, John Ship-
man
COBOL: Steve Ng, Waldy Haccou, John Welsch,
John Yu, Paul Rosenfeld, Gerry Bausek
STAR, Scientific Libraries: Paul Rosenfeld, Dave
Johnson
Editor/Formatter: Fred Athearn.
Credit is also due the many people in software QA
and publications who have done such a great job.&

William E. Foster

As section manager for systems software, Bill Foster is
responsible for programming languages and operating
systems for 2100, 2000, and 3000 Computer Systems. Bill
received his B.A. degree in mathematics from California
State University at San Jose in 1966, then spent the next
three years developing satellite orbit prediction, tracking
and reentry software. In 1969 he got his M.S. degree in
applied mathematics from the University of Santa Clara
and joined HP as a software project manager. He became
a section manager in 1971 and assumed his present job
in 1972. A member of ACM and the American
Management Association, Bill is now a candidate for the
M.B.A. degree at Santa Clara. He enjoys golf, tennis,
bicycling, basketball, hydroplaning (he built his own
boat). and exploring the Bay Area by motorcycle, and
he's now taking flying lessons

© Copr. 1949-1998 Hewlett-Packard Co.

Single Operating System
Serves All HP 3000 Users

The Multiprogramming Executive operating system takes
care of command interpretation, file management,
memory management, scheduling and dispatching,

and input/output management for time-sharing, batch,

and real-time users.

by Thomas A. Blease and Alan Hewer

ULTIPROGRAMMING EXECUTIVE (MPE/
3000] is a general-purpose disc-based operat-
ing system that supervises the operation of the HP
3000 Computer System and its variety of users.
MPE/3000 allows users to access the system con-
currently in three distinct but compatible modes:
batch processing, time sharing, and real-time proc-
essing, MPE is designed to take maximum advan-
tage of system resources, to make the system easy
to use, and to relieve the user of the need for de-
tailed knowledge of the internal hardware or direct
interaction with it. Each user’'s environment is pro-
tected; program protection is provided by hardware
and data protection by any of several software fa-
cilities depending on the degree of security desired.
MPE/3000 has a modular organization that makes
it more convenient to check out and maintain, and
provides a flexible base on which additional capa-
bilities may later be developed. Users interact with
the 3000 System through the command interpreter,
one of the functional units of MPE. Programming
access to the hardware is provided by system rou-
tines called MPE intrinsics. Uniform access to disc
files and input/output devices is provided by the
MPE file system. MPE also has memory manage-
ment, an input/output system, and scheduling for
dynamic allocation of resources.

Process Structure

Underlying the modularity of MPE/3000 and its
ability to support three kinds of users concurrently
is its process structure. Except for a few specialized
system controls such as the dispatcher and inter-
rupt structure, all operating-system and user func-
tions are performed as a series of processes.

A process is the basic entity that can be executed
by the central processor. While a program identi-

20

fies a static sequence of instructions and data, a

process denotes the dynamically changing sequence

of states of an executing program. Under MPE/

3000, a process consists of:

® A unique process control block which describes
and controls the process,

B A private (stack) data segment, accessible only
by the process, for data operation and storage,
and

® An instruction in a code segment which may be
private to the process or may be shared with
other processes,

Processes are organized hierarchically in a tree
structure as shown in Fig. 1. Each process has only
one immediate ancestor, but may have several
immediate descendants. Control and information
flows are restricted to proceed only along branches
of this logical tree structure. The primary interac-
tions which are provided for are creation, deletion,
control, and intercommunication.

The root process is the progenitor. All immediate
descendants of the progenitor are system processes.
They include:

B [/O system controller processes, which queue,
initiate, and complete all input/output requests
for all devices configured under the operating
system.

B The make-a-process-present (MAPP) process.
which schedules the allocation of memory re-
sources to data segments belonging to active pro-
Cesses.

B The device recognition (DREC) process, which
performs the administrative tasks of allocating
input/output devices and also verifying and initi-
ating new users under the operating system.

B The user controller (UCOP) process, which is

© Copr. 1949-1998 Hewlett-Packard Co.

Progenitor

System
Processes

Main
Pro-

Fig. 1 Multiprogramming Executive (MPE) operating sys-
tem for HP 3000 has a process structure. All functions are
performed as a series of processes.

defined as the ancestor of all user processes cur-

rently running under MPE/3000. The primary re-

sponsibility of UCOP is to create, supervise, and
delete user process tree structures.

Of these system processes, the most important is
UCOP, the root process of the user structure. An
immediate descendant, created by UCOP, is called
a main process, and the code executing under it is
normally the command interpreter. The process
tree structure originating at a main process defines
a job (job/session/task). A basic feature of a job
is its complete independence from all other jobs
currently existing.

Apart from the progenitor and several specific
system processes which together constitute the op-
erating system and which must exist, the process
tree structure is completely dynamic, expanding
and contracting as operating system and user re-
quirements change.

Memory Management

The primary function of MPE/3000 memory man-
agement is the allocation of main memory to meet
the demands of users. *‘Main memory" is core mem-
ory as opposed to disc memory. The memory man-
agement module is also responsible for code seg-
ment table entries, data segment table entries, and
overlay disc storage for data segments.

Main Memory Organization
Main memory is organized into three contiguous

21

areas (Fig. 2). The first area contains system tables,
interrupt procedures, and MPE intrinsics which
must be core resident, that is, always present and
accessible in main memory.

The second area is of variable length and is used
to satisfy requests from users for core resident
storage. This area is dynamically expanded and con-
tracted and can be of zero length.

The remaining main memory is referred to as
linked memory. Linked memory is composed of
free (not currently being used) and assigned (allo-
cated for a code or data segment) areas of varying
sizes. Areas not currently in use are linked together
and form the free space list. Similarly, the assigned
areas are linked together and form the assigned
space list. Each area contains an information header
defining its size. If the area is assigned, the header
also contains information about disposition (1/0
pending, etc.), segment type (code or data with in-

Location O
Reserved Core

(System) Pointer

Pointer

Reserved Core
{Core Resident
User Area)

Assigned
Segment =0

Free
Segment 21

Assigned
Segment =2

Assigned
Segment =1

Free

Segment #2

Assigned
Segment =3

_—

Free
Segment =0
Location
177777,—P

Fig. 2 Main memory is organized into reserved and linked
memory. Linked memory consists of free and assigned
areas.

© Copr. 1949-1998 Hewlett-Packard Co.

Relocatable Binary Module A t

Virtual Memory

Code seconda
Segment Memt‘.u‘)rr‘J|I
A
| .
|"‘

10000

C
i
I

l
L ||
Com- <
piler, Main
\# pemary | o Fie
S <
—
: 1 1—1 r—ﬁ
| o - e

| Data

Se t
r\ Code P
\ Source

J

Data
Source

Fig. 3 Program segmentation gives the HP 3000 virtual
memory. MPE automatically brings into main memory only
those code segments that are currently needed. Thus a
user's program may be much larger than main memory.

dex into code segment table or data segment table),
disc address, priority, and frequency of access. This
additional information is used in the selection of
assigned areas to overlay when a request cannot
be satisfied from the free area list.

Virtual Memory

Virtual memory consists of main memory plus an
area of mass storage called secondary memory, or
the swapping area (Fig. 3). The swapping area is on
disc or drum memory, although not necessarily on
a single device; it may include areas of several de-
vices. In the swapping area is a collection of pieces
of code or data defined as segments. As a program
executes, segments are swapped in and out of main
memory by the operating system. Whether a seg-
ment is in main memory or absent, it is neverthe-
less part of virtual memory. Thus from the point of
view of a user, he is working with a memory that
appears to be many times larger than the actual
physical size of main memory. His own program
may exceed the 65K-word maximum main memory
capacity and still allow space for many other users
on the same machine.

As shown in Fig. 3, code is entered into the com-

22

puter in some source language, is translated to bi-
nary form by a compiler, and is stored in the file
area. Each compiled program or subprogram exists
in the file area as a relocatable binary module.

When the user is ready to execute his program,
the appropriate command is given and the operat-
ing system loads the binary modules of his program
into the swapping area of virtual memory. Simul-
taneously with this transfer, the binary modules
are formed into segments as specified by the user.
In some cases no actual change takes place; for ex-
ample, a small program may consist of just one
segment and the loader will probably not move it
from a file disc onto the system disc unless the user
wants this done.

Data segments are allocated dynamically when a
program is loaded, and are always on the system
disc.

Scheduling/Dispatching

To accommodate the different modes of opera-
tion which may coexist under MPE/3000, the sched-
uling system is based upon a priority structure. All
processes are logically organized into a linear mas-
ter scheduling queue in order of their priority.

The dispatcher is responsible for allocating the
central processor to the active processes in the
scheduling queue. A process is considered active if
it requires access only to the central processor.
Otherwise, it is considered inactive, awaiting some
other resource.

The basic organization of the scheduling queue
is shown in Fig. 4. System processes are scheduled
directly onto the master queue. Subqueues are used
to schedule processes belonging to users. Note that
since processes are scheduled independently, not
all processes in a job are necessarily entered in the
same subqueue.

There are five standard subqueues. Three are
linear in structure. In a linear (sub)queue, the high-
est priority active process is given access to the
central processor by the dispatcher, and it main-
tains this access until it becomes inactive or until
it is preempted when a higher priority process be-
comes active. The three linear subqueues are for
core-resident processes, real-time processes, and
low-priority (idle) processes,

The other two subqueues are circular subqueues.
These are for time-share processes and batch proc-
esses. In a circular subqueue, all processes are con-
sidered to be of equal priority and each active proc-
ess accesses the central processor for a certain time
interval, At the end of this time interval, the proc-
ess releases the CPU and the next active process
in the subqueue is dispatched. This continues in a

© Copr. 1949-1998 Hewlett-Packard Co.

High Rank ¢ — — — — — — — Low Rank

High Priority T
A

| Core Resident

| Real Time

1/0 Bound

Cnlnpute Bound ‘>

¢ e _"‘H;{\J
N

ra == i

T Time
Share

master Queue

1/0 Bound
|~ ComputeBound

L}_{,_ﬂ—
\
S

-_—

Batch

—

Idle

‘______.,.‘

Low Priority

v
Subqueues

Fig. 4 MPE schedules processes on the basis of priorities
Processes are organized into a queue and
five subqueues.

linear master

round-robin manner.

Each of the two circular subqueues is composed
of two subqueues—a higher priority subqueue con-
taining I/0O-bound processes and a lower priority

CHANGE OF ADDRESS NOTICE

~ | The address shown is NOT correct
it should be as | have indicated below

Remove my name from future JOURNAL mailings

e —

Please complete the above and matil this section
with address label an reverse side to

HEWLETT-PACKARD JOURNAL

1501 Page Mill Road Palo Alto. Calitornia 94304

23

[File System 1/0 ‘

| Privileged 1/0 | |

'Real-Time 1/0

User-Supplied
Driver

= |

Fig. 5 Basic HP 3000 input/output access methods

subqueue containing compute-bound processes. The
dynamic rescheduling of processes between the
dual subqueues is performed by MPE/3000. In the
case of highly interactive time-share processes,
this arrangement provides quicker response at the
terminal.

1/0 System

The purpose of the MPE/3000 1/0 system is to
perform input/output operations for the file sys-
tem. The user doesn’t interact directly with the I/O
system, but indirectly via the file system. However,
privileged users may access the I/0 system directly,
and users with real-time capability may bypass
both the file system and the 1/O system for direct
access to specific devices. Fig. 5 shows the basic
1/0 access methods.

In a typical 1/0 operation the sequence of opera-
tions is as follows. An executing user process gen-
erates a file request to the file system. The file
system calls the attach-I/0 intrinsic. Attach-1I/0
allocates an 1/0 queue entry and links it into the
queue for the device specified. When all earlier
requests for the device have been completed and
the I/0 monitor process has the highest priority
among all other processes, the I/O monitor process
begins execution of this request. There is one I/0
monitor process for each device controller.

The I/0 monitor process first assures that the
data buffer is frozen in memory. The initiator sec-
tion and the I/O program issue an SIO instruction
to the device controller and return control to the
[/O monitor process. Data is then transferred
between the I/0 device and the data buffer.

When the 1/0 monitor process is again dispatch-

© Copr. 1949-1998 Hewlett-Packard Co.

ed, it recognizes that an interrupt has occurred and
calls the completion section of the device driver.
The completion section checks for successful com-
pletion and returns the results of the I/O operation
to the file system via the I/O control block. The
user’s process is activated upon I/0 completion.
When the user process is again dispatched, re-
turn is made to the point following the file request.

Acknowledgments

The following people were directly involved in
the design and implementation of MPE/3000: Harlan
Andrews, Larry Birenbaum, Terry Branthwaite,
Jean-Michel Gabet, Jack MacDonald, Bob Miya-
kusu, Chris Larson, Tom Ellestead, Paul Rosenfeld,
Steve Brown, and Myron Zeissler. £

Thomas A. Blease

Tom Blease's carear in software design and
implementation got its start in 1960 when he received his
B.A_ in mathematics from the University of California at
Berkeley. In the ensuing years he held positions in that
field with several organizations in Florida and California. At
HP since 1969, he participated in the design and imple-
mentation of SPL and MPE for the HP 3000. He's a mem-
ber of ACM and he enjoys a good hike on his days off

Alan Hewer

Alan Hewer received his B.A. and M.A. degrees in
mathematics from Christ's College, Cambridge University,
England in 1960 and 1963, respectively. Between 1960
and 1970 he worked on software design and implementa-
tion with various companies in England and the United
States. When he joined HP in 1870, he was first

involved in the hardware design of the HP 3000, Later in
the project he took on his recent responsibilities in

the design and implementation of MPE/3000

Address Correction Reguested

Hewlett-Packard Company, 1501 Page Mill
Road, Palo Alto, California 94304

HEWLETT-PACKARD JOURNAL

Bulk Rate

U S Postage
Paid
Hewlett-Packard
Company

© Copr. 1949-1998 Hewlett-Packard Co.

	An Economical Full-Scale Multipurpose Computer System
	A Computer for All Reasons
	Central Bus Links Modular HP 3000 Hardware
	Software for a Multilingual Computer
	Single Operating System Serves all HP 3000 Users

